
Version 11.3

Platform-Guided Search Integration Guide

Platform-Guided Search Integration Guide

Product version: 11.3

Release date: 04-28-17

Document identifier: EndecaIntegrationGuide1704181210

Copyright © 1997, 2017 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are

protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,

reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any

means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please

report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government,

the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the

hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable

Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and

adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or

documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S.

Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended

for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or

hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures

to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in

dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are

trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or

registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties.

Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party

content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and

its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or

services, except as set forth in an applicable agreement between you and Oracle.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/

topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support: Oracle customers that have purchased support have access to electronic support through My Oracle Support. For

information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

if you are hearing impaired.

Platform-Guided Search Integration Guide iii

Table of Contents

1. Introduction . 1

Installation Requirements . 1

Creating the EAC Applications . 2

Using an Older Deployment Template . 2

Determining the Number of EAC Applications to Create . 2

Provisioning the EAC Applications . 3

Configuring the Oracle Commerce Platform Server Instances in CIM . 3

Product Selection . 3

Oracle Commerce Platform Server Instance Creation . 3

Configuring the ApplicationConfiguration Component . 4

Configuring Sites in a Multisite Environment . 6

Transaction Timeout and Datasource Connection Pool Settings . 6

Increasing the Transaction Timeout . 6

Increasing the Datasource Connection Pool . 7

Oracle Commerce Platform Modules . 7

2. Routing . 9

Overview of Routing . 9

ApplicationRoutingStrategy . 10

RoutingObjectAdapter . 11

Configuring Routing . 11

SingleApplicationRoutingStrategy . 12

SiteApplicationRoutingStrategy . 13

GroupingApplicationRoutingStrategy . 15

3. Overview of Indexing . 17

Indexable Classes . 18

EndecaIndexingOutputConfig Class . 18

CategoryTreeService Class . 20

RepositoryTypeHierarchyExporter Class . 22

SchemaExporter Class . 22

Indexing Multiple Languages . 23

Submitting the Records . 24

Managing the Process . 25

Viewing the Indexed Data . 25

4. Configuring the Indexing Components . 27

IndexingApplicationConfiguration Component . 27

EndecaIndexingOutputConfig Components . 28

Data Loader Components . 33

Tuning Incremental Loading . 34

CategoryTreeService . 34

RepositoryTypeDimensionExporter . 35

SchemaExporter . 36

Document Submitter Components . 37

RecordStoreDocumentSubmitter . 37

ConfigImportDocumentSubmitter . 39

FileDocumentSubmitter . 39

EndecaScriptService . 40

ProductCatalogSimpleIndexingAdmin . 41

Queueing Indexing Jobs . 43

ATG Content Administration Components . 44

Specifying the Deployment Target . 44

Enabling Local Indexing . 45

iv Platform-Guided Search Integration Guide

Enabling Remote Indexing . 45

Triggering Indexing on Deployment . 46

Viewing Records in the Component Browser . 47

5. Configuring EndecaIndexingOutputConfig Definition Files . 49

Definition File Format . 49

Automatically Included Properties . 50

Specifying Guided Search Schema Attributes . 51

Specifying Properties for Indexing . 52

Specifying Multi-Value Properties . 52

Specifying Map Properties . 53

Specifying Properties of Item Subtypes . 54

Specifying a Default Property Value . 55

Specifying Non-Repository Properties . 55

Suppressing Properties . 56

Including siteId Properties . 56

Renaming an Output Property . 57

Translating Property Values . 57

Using Monitored Properties . 59

Filtering Properties of Specific Repository Items . 59

6. Customizing the Output Records . 61

Using Property Accessors . 61

FirstWithLocalePropertyAccessor . 62

LanguageNameAccessor . 62

GenerativePropertyAccessor . 62

Category Dimension Value Accessors . 63

Using Variant Producers . 63

LocaleVariantProducer . 64

CategoryPathVariantProducer . 65

CustomCatalogVariantProducer . 65

UniqueSiteVariantProducer . 66

MultipleSiteVariantProducer . 66

Using Property Formatters . 67

Using Property Value Filters . 68

UniqueFilter . 68

ConcatFilter . 69

UniqueWordFilter . 70

HtmlFilter . 71

7. Indexing the Content Management Repository . 73

Overview of Indexing Web Content . 73

WCM EndecaIndexingOutputConfig Components . 74

WCM Dimension Exporter Components . 77

WCM Schema Exporter Components . 78

WCM SimpleIndexingAdmin Component . 79

8. Indexing Dynamic Item Types and Properties . 81

Updating the Indexing Components . 81

Specifying Dynamic Items and Properties for Indexing . 82

Specifying the Output Property Name . 84

Adding Properties to a Search Interface . 84

9. Query Integration . 85

Content Item Classes . 85

Invoking the Assembler in the Request Handling Pipeline . 86

Using a JSP Renderer to Render Content . 87

Rendering XML or JSON Content . 89

Platform-Guided Search Integration Guide v

When the Assembler Returns an Empty ContentItem . 90

Invoking the Assembler using the InvokeAssembler Servlet Bean . 90

Choosing Between Pipeline Invocation and Servlet Bean Invocation . 93

Components for Invoking the Assembler . 93

AssemblerPipelineServlet . 93

InvokeAssembler . 95

Accessing Commonly Used Functionality in AssemblerTools . 97

Creating the Assembler Instance and Starting Content Assembly . 97

Calculating the Content Path from the Page Request URL . 97

Identifying the Renderer Mapping Component to Use for the Request . 98

Creating the SiteState Component . 98

Defining Global Assembler Settings . 100

Connecting to the Workbench and MDEX . 100

AssemblerApplicationConfiguration Component . 100

Connecting to an MDEX . 103

Connecting to the Workbench Server . 103

Querying the Assembler . 106

Cartridge Handlers and Their Supporting Components . 107

Providing Access to the HTTP Request to the Cartridges . 108

Controlling How Cartridges Generate Link URLs . 108

BasicUrlFormatter . 109

DefaultActionPathProvider . 109

Retrieving Renderers . 112

ContentItemToRendererPath . 112

dsp:renderContentItem . 114

Configuring Keyword Redirects . 114

10. Retrieving Promoted Content . 115

Single-MDEX Environment . 115

Multiple-MDEX Environment . 116

Creating FileStoreFactory Instances from a Prototype-Scoped Component . 117

Creating FileStoreFactory Instances from Properties Files . 117

11. Record Filtering . 119

RecordFilterBuilder Interface and Implementing Classes . 119

LanguageFilterBuilder . 119

CatalogFilterBuilder . 120

SiteFilterBuilder . 120

Enabling Record Filter Builder Components . 122

DateRangeFilterBuilder . 122

12. Handling Price Lists . 125

Price List Pairs . 125

Indexing Price List Data . 126

PriceListPairVariantProducer . 126

PriceListPairAccessor . 127

ActivePriceAccessor . 127

QueueingPropertiesChangeListener . 128

Indexing Time-Based Prices . 129

Filtering Records by Price List . 130

13. Dimension Value Caching . 131

Mapping Categories to Dimension Values . 131

DimensionValueCache and DimensionValueCacheObject . 131

Managing the Cache . 132

Populating and Refreshing the Cache . 132

DimensionValueCacheDroplet . 133

vi Platform-Guided Search Integration Guide

14. User Segment Sharing . 135

About User Segment Sharing . 135

Configuring User Segment Sharing . 136

Additional Configuration Required for the Production Server . 136

About the RequestCredentialAccessController Component . 137

Managing Credentials . 137

Configuring the EAC Application . 140

Note about Configuring Commerce Reference Store . 142

Avoiding Duplicate User Segment Names in the Business Control Center . 142

Renaming a User Segment in the Business Control Center . 142

15. Using Sites and Site Groups as Content Item Triggers . 145

Adding Sites and Site Groups to Experience Manager . 145

Constructing the Segment List . 146

16. Commerce Single Sign-On . 147

Commerce Single Sign-On Server . 147

Oracle Commerce Platform Plug-In . 148

Login . 149

Validation . 149

Keep Alive . 149

Logout . 150

Maintaining User Accounts . 150

LDAP Authentication . 150

Setting up a Composite Profile Repository . 151

User Authentication . 152

Creating Users and Organizations in the Business Control Center . 152

17. Data Logging for Search Reporting . 155

Recording Search Requests and Responses . 155

SearchIdProvider . 156

EndecaReporting Segment List . 156

Recording Search Results Selected . 157

Using the GetSearchClickThroughId Servlet Bean . 157

Configuring the Cache . 158

SearchClickThroughServlet . 158

Recording Search Results Placed in Shopping Carts . 159

18. Data Loading for Search Reporting . 161

Data Warehouse Tables . 161

Aggregated Data . 162

Refresh Services . 162

Loader and Processor Components for Search Reports . 163

Processor Components for Search Conversion Reports . 168

Maintenance Services . 170

19. Search Reporting Dashboards . 171

Search Performance Dashboard . 171

Search Activity . 171

Keyword Analysis . 172

Search Merchandising . 172

Dimension Analysis . 172

ATG Web Commerce Performance Dashboard . 172

20. Appendix A: Support for Older Deployment Templates . 175

Record Store Naming . 175

Schema Export . 176

Hierarchical Dimension Export . 176

Root Node Naming and Export . 176

Platform-Guided Search Integration Guide vii

Dimension Value Property Names . 178

Index . 181

viii Platform-Guided Search Integration Guide

1 Introduction 1

1 Introduction

The Oracle Core Commerce Platform - Guided Search integration enables customers of the Oracle Commerce

Platform and Oracle Commerce Guided Search to index data from GSA repositories in Oracle Commerce MDEX

Engines, where it can then be queried and the results can be displayed on commerce sites. This document

describes how to configure Oracle Commerce Platform indexing and querying components to work with Guided

Search.

This chapter provides an overview of installing and configuring a Guided Search integration environment, and

provides a brief description of the Guided Search integration modules. It includes the following sections:

Installation Requirements (page 1)

Creating the EAC Applications (page 2)

Configuring the Oracle Commerce Platform Server Instances in CIM (page 3)

Configuring the ApplicationConfiguration Component (page 4)

Configuring Sites in a Multisite Environment (page 6)

Transaction Timeout and Datasource Connection Pool Settings (page 6)

Oracle Commerce Platform Modules (page 7)

Note that Oracle Commerce Reference Store makes extensive use of the Guided Search integration to

demonstrate the use of both the Oracle Commerce Platform and Oracle Commerce Guided Search on

commerce sites, and in some cases extends the capability of the integration. See the Commerce Reference Store

documentation for more information.

Installation Requirements

The Guided Search integration requires that the Oracle Commerce Platform and Oracle Commerce Guided

Search (with or without Oracle Commerce Experience Manager) be installed in your environment. We also

suggest that you initially install Oracle Commerce Reference Store, so that you have an application and data to

work with as you familiarize yourself with the integration.

For information about installing the Oracle Commerce Platform software, see the Platform Installation and

Configuration Guide. For information about installing Commerce Reference Store, see the Commerce Reference

Store Installation and Configuration Guide. For information about installing Oracle Commerce Guided Search

software, see the Oracle Commerce Guided Search Getting Started Guide and other related Guided Search

installation documentation.

2 1 Introduction

Creating the EAC Applications

To create a Guided Search EAC application to integrate with the Oracle Commerce Platform, use the CAS-based

deployment template described in the Oracle Commerce Guided Search Administrator’s Guide. (If your Oracle

Commerce Platform environment is based on Oracle Commerce Reference Store, you can use the CAS-based

deployment template that is included with it.) The deployment template includes a script that creates CAS

(Content Acquisition System) record stores that the Guided Search integration submits records to. The naming

convention for these record stores is:

applicationName-recordStoreType

For an application named ATGen that indexes GSA repository data, the record stores are:

• ATGen-data -- Holds data records representing repository items such as products and SKUs.

• ATGen-dimvals -- Holds dimension value records generated from the category hierarchy and from the

hierarchy of repository item types.

The Guided Search integration includes classes and components that create records and write them to these

records stores. In addition, the integration includes classes and components that create schema records, convert

them to Configuration Import API objects, and submit these objects to the Endeca Configuration Repository.

Note that there is also an ATGen-prules record store, which is used to create Guided Search precedence rules.

The integration does not provide a way to create precedence rules or write to this record store, but you can

create precedence rules directly in Guided Search. See the Guided Search documentation for information about

creating precedence rules.

Using an Older Deployment Template

This manual assumes you are using a CAS-based deployment template for your EAC applications, as mentioned

above. If you are creating new EAC applications, it is highly recommended that you use this type of deployment

template.

If you have EAC applications created in an earlier release, they may be using an older Forge-based deployment

template such as the one described in the Oracle Commerce Deployment Template Module for Product Catalog

Integration Usage Guide. This type of deployment template uses CAS for its record and schema storage, and

Forge to generate configuration and transform records on import. (CAS-style deployment templates also use

CAS for record storage, but store schema configuration in the Endeca Configuration Repository, and do not use

Forge at all.) Forge-based applications are still supported, but require some differences in the configuration of

Oracle Commerce Platform components, as they require record output in a somewhat different format from

applications that use a CAS-based template.

If you do have existing EAC applications that use a Forge-based deployment template, you can recreate your

EAC applications with a CAS-based deployment template. If you instead continue to use applications based

on the older-style template, you will need to reconfigure several Oracle Commerce Platform components, as

described in Appendix A: Support for Older Deployment Templates (page 175). In addition, you will need to

follow the Oracle Commerce Guided Search migration procedure described in the Oracle Commerce Guided

Search Tools and Frameworks Migration Guide.

Determining the Number of EAC Applications to Create

To integrate Guided Search with your Oracle Commerce Platform environment, you must create at least one EAC

application and a corresponding MDEX. If you have data in multiple languages or multiple sites, the number

1 Introduction 3

of EAC applications you have depends on your approach to indexing these languages and sites. To implement

a specific approach, you need to configure a routing strategy, which controls the logic for directing data for

indexing and querying to specific EAC applications. See the Routing (page 9)chapter for information about

configuring routing strategies.

Provisioning the EAC Applications

You must provision each EAC application individually by running the initialize_services.sh|bat script

found in the application’s /control directory. Therefore, if you have three EAC applications, you must invoke

the script three times. The initialize_services.sh script is found in the following location: /endeca/EAC-

application-directory/your-application/control/.

Configuring the Oracle Commerce Platform Server

Instances in CIM

You can configure your Oracle Commerce Platform server instances for a Guided Search integration

environment using the Configuration and Installation Manager (CIM). The options you must configure are

described below.

Product Selection

To configure your server instances to use the Guided Search integration, select the Guided Search integration

and the Oracle Commerce Platform in the Product Selection menu. If your installation includes Oracle

Commerce Reference Store, you can select Oracle Commerce Reference Store instead. Your server installations

will automatically include the Oracle Commerce Platform and the Guided Search integration, because

Commerce Reference Store requires them.

Oracle Commerce Platform Server Instance Creation

During your Oracle Commerce Platform server instance configuration, you must provide information about

your Guided Search environment so that the Oracle Commerce Platform server instance can communicate with

Guided Search. The required settings and their defaults are provided in the table below:

Setting Default

CAS hostname localhost

CAS port 8500

EAC hostname localhost

EAC port 8888

EAC base application name ATG

4 1 Introduction

Setting Default

Fully qualified Workbench host name, including domain n/a

Workbench port 8006

Default MDEX host name localhost

Default MDEX port number 15000

After your Oracle Commerce Platform server instances are configured in CIM, start them up in preparation for

indexing.

Configuring the ApplicationConfiguration Component

The atg.endeca.configuration.ApplicationConfiguration class provides a central place for

configuring various global settings, including language configuration options and application naming. The

Guided Search integration includes a component of this class, /atg/endeca/ApplicationConfiguration.

The following are key properties of this component:

locales

An array of the locales to generate records for. To generate records in multiple languages, you specify the locales

using this property. For example:

locales=en_US,fr_FR

Note that only one set of records is generated for each language. So, for example, if you specify multiple locales

where the language is French (for example, ca_FR and fr_FR), only one set of French records is generated.

defaultLanguageForApplications

The two-letter code of the default language for the applications. This should be null (the default) if you are using

a separate EAC application for each language. See the Routing (page 9)chapter for more information about

when this property should be set.

baseApplicationName

The base string used in constructing the EAC application names. The default setting is ATG. You can override the

default when you use CIM to configure your Oracle Commerce Platform environment.

keyToApplicationName

A map of application keys to application names. You can use this property to override the default application

naming convention. See the Routing (page 9)chapter for more information about the naming convention

and when this property should be set.

1 Introduction 5

defaultApplicationKey

The application key to use if the current application cannot otherwise be determined. An array of the keys is

stored in the read-only applicationKeys property. If there is a separate application for each language, the first

key listed in the applicationKeys property is the default, unless you change the default by explicitly setting

the defaultApplicationKey property to a different key.

If there is only one EAC application, you do not need to set this property; it will automatically be set to default.

applicationKeyToMdexHostAndPort

A map where the keys identify each EAC application and the values specify the host names and port numbers

for the MDEX engines associated with each application. See Connecting to the Workbench and MDEX (page

100) in the Query Integration (page 85) chapter for more information about this property.

applicationRoutingStrategy

A component of a class that implements the atg.endeca.configuration.ApplicationRoutingStrategy

interface. The specific class determines the logic for directing records to EAC applications for indexing and for

directing queries to those applications. See the Routing (page 9)chapter for more information.

workbenchHostName

The fully qualified host name, including the domain, of the machine running the Oracle Commerce Workbench.

You can specify this setting when you use CIM to configure your Oracle Commerce Platform environment.

workbenchPort

The port number for accessing the Oracle Commerce Workbench. The default setting is 8006. You can override

this default when you use CIM to configure your Oracle Commerce Platform environment.

credentialStoreManager

The component that manages the credential store where login credentials for the Oracle Commerce Workbench

are stored. By default, this property is set to:

credentialStoreManager=\
 /atg/dynamo/security/opss/csf/CredentialStoreManager

The credential store is implemented using the Credential Security Framework (CSF) of Oracle Platform Security

Services (OPSS). You can create credentials using CIM, and add or delete credentials using the page for the

CredentialStoreManager component in the Dynamo Server Admin. For more information about using CSF

with Oracle Commerce, see the Platform Programming Guide.

workbenchCredentialStoreMapName

The name of the credential store map used to store workbench login credentials. By default, this is set to:

workbenchCredentialStoreMapName=endecaToolsAndFrameworks

workbenchCredentialStoreKeyName

The name of the key used to retrieve workbench login credentials from the credential store map. By default, this

is set to:

6 1 Introduction

workbenchCredentialStoreKeyName=ifcr

recordIdName

The output name used in records for the $docId property. Set by default to record.id. The value of this

property is used as the unique identifier for a record. See Automatically Included Properties (page 50) in the

Configuring EndecaIndexingOutputConfig Definition Files (page 49) chapter for more information about this

property.

recordSourceName

The output name used in records for the $repository.repositoryName property. Set by default to

record.source. The value of this property identifies the name of the source repository. See Automatically

Included Properties (page 50) in the Configuring EndecaIndexingOutputConfig Definition Files (page 49)

chapter for more information about this property.

recordTypeName

The output name used in records for the $itemDescriptor.itemDescriptorName property. Set by default

to record.type. The value of this property identifies the repository item type used to generate the record.

See Automatically Included Properties (page 50) in the Configuring EndecaIndexingOutputConfig Definition

Files (page 49) chapter for more information about this property.

Configuring Sites in a Multisite Environment

In multisite environments that use the Guided Search integration, site configuration exists in both Site

Administration and in the EAC application. These configurations have to match each other; for example, if you

have three sites configured in Site Administration, you should have three corresponding sites configured for

your EAC application.

To create a mapping between the sites, you use the Guided Search Site ID property in Site Administration. This

property is located on the Site tab when you view a site’s details in Site Administration. For each site defined in

Site Administration, enter the ID of the corresponding site as defined in the EAC application.

Transaction Timeout and Datasource Connection Pool

Settings

Depending on your application server, you may need to increase the transaction timeout and datasource

connection pool settings in order for indexing to run successfully.

Increasing the Transaction Timeout

All supported application servers roll back transactions that do not complete in a specified number of seconds.

These transaction rollbacks can cause indexing jobs to fail. If your indexing process fails, try increasing the

1 Introduction 7

transaction timeout setting to 300 seconds or more. For details on changing your transaction timeout, see

Setting the Transaction Timeout on WebLogic, Setting the Transaction Timeout on JBoss, or Setting the Transaction

Timeout on WebSphere in the Platform Installation and Configuration Guide.

Increasing the Datasource Connection Pool

Oracle recommends setting the data source connection pool maximum capacity to 30 or greater for all of your

data sources. For information on setting the data source connection pool maximum capacity, refer to your

application server’s documentation.

Oracle Commerce Platform Modules

The main Guided Search integration modules are:

Module Description

DAF.Endeca.Index Includes the necessary classes for exporting data to CAS record

stores and triggering indexing, along with associated configuration.

DAF.Endeca.Index.Versioned Adds configuration for running on an ATG Content Administration

instance. This module adds basic record generation configuration

for ATG Content Administration servers, including a deployment

listener.

DAF.Endeca.Assembler Contains classes and configuration for creating an Assembler

instance that has access to the data in your application’s MDEX

engines. Also provides classes for querying the Assembler for data

and managing the content returned.

DCS.Endeca.Index Configures components for creating CAS data records from

products in the catalog repository and dimension-value records

from the category hierarchy.

DCS.Endeca.Index.SKUIndexing Modifies configuration so that CAS data records are generated

based on SKUs rather than products.

DCS.Endeca.Index.Versioned Adds Commerce-specific configuration for running on an ATG

Content Administration instance.

DCS.Endeca.Assembler Contains Commerce-specific configuration for query-related

components.

Additional modules for indexing Web content in the content management repository are described in the

Indexing the Content Management Repository (page 73) chapter.

Note that when you assemble an application that includes any of the modules listed in the table above, other

modules they have dependencies on, such as DAF.Endeca.Base or DAF.Search.Index, are automatically

8 1 Introduction

included in the EAR file as well. In addition, some of the Guided Search-specific modules pull in classes from

other search modules (without including the modules in their entirety) through the ATG-Class-Path entries in

their manifest files.

2 Routing 9

2 Routing

Routing is the process of directing records for indexing to specific EAC applications and their corresponding

MDEX instances, and ensuring that queries (for example, search terms or dimension selections) are directed to

the correct EAC applications as well.

The Guided Search integration supports a variety of routing options. These differ by how data for indexing is

divided up among EAC applications, depending on criteria such as language or site.

This chapter describes the various routing options available in the integration and how to configure them. It

includes the following sections:

Overview of Routing (page 9)

Configuring Routing (page 11)

Overview of Routing

Routing involves mapping languages or sites (or both) to specific EAC applications, based on criteria that you

specify. For example, if you have a site that is in French and English, you may want to direct the French records

to one EAC application for indexing, and direct the English records to a different EAC application. After indexing,

when a user enters a search term or selects a dimension, the same routing logic directs the query to the correct

EAC application (for example, French queries to the EAC application that indexes the French records).

Different routing options are supported by different classes that implement the

atg.endeca.configuration.ApplicationRoutingStrategy interface. The class you use determines the

logic for directing records to EAC applications for indexing and for directing queries to those applications.

In addition to ApplicationRoutingStrategy, there is another key routing interface,

atg.endeca.configuration.RoutingObjectAdapter. Classes that implement this interface are responsible

for determining the current site or language so the ApplicationRoutingStrategy class can then direct data

to the correct application. There are two subinterfaces of RoutingObjectAdapter:

• atg.endeca.index.configuration.ContextRoutingObjectAdapter – Classes that

implement this interface are used during indexing to obtain the current indexing context from the

atg.repository.search.indexing.Context object.

• atg.endeca.assembler.configuration.RequestRoutingObjectAdapter – Classes that

implement this interface are used during querying to obtain the current querying context from the

DynamoHttpServletRequest object and other objects that hold request-specific state, such as

SiteContext objects.

10 2 Routing

The ApplicationRoutingStrategy and RoutingObjectAdapter classes are discussed below. To specify the

routing classes you want to use, see Configuring Routing (page 11).

ApplicationRoutingStrategy

Different routing options are supported by different classes that implement the

atg.endeca.configuration.ApplicationRoutingStrategy interface. There are three main classes in the

atg.endeca.configuration package that implement this interface:

• SingleApplicationRoutingStrategy

• SiteApplicationRoutingStrategy

• GroupingApplicationRoutingStrategy

The various routing options and the ApplicationRoutingStrategy classes that support them are

summarized in the following table:

Option Description Routing Strategy

One EAC

application

All records are directed to a single EAC

application, regardless of the language or

site.

SingleApplicationRoutingStrategy

One language per

EAC application

Each language’s records are directed to

a separate EAC application. If there are

multiple sites, all records for an individual

language are directed to the language’s

EAC application, regardless of the site.

SingleApplicationRoutingStrategy

One site per EAC

application

Each site’s records are directed to a

separate EAC application. If there are

multiple languages, all records for

an individual site are directed to the

site’s EAC application, regardless of the

language.

SiteApplicationRoutingStrategy

One combination

of site and

language per EAC

application

Records for each combination of site and

language are directed to a separate EAC

application. For example, if there are five

sites and three languages, there may be as

many as 15 EAC applications. (There may

be fewer if not all of the sites include all

three languages.)

SiteApplicationRoutingStrategy

Arbitrary grouping

of sites per EAC

application

For example, there are five sites, with

records for two sites directed to one

EAC application, and records for the

other three sites directed to a second

EAC application. If a site has multiple

languages, all records for the site are

directed to the site’s EAC application,

regardless of the language.

GroupingApplicationRoutingStrategy

2 Routing 11

RoutingObjectAdapter

The RoutingObjectAdapter interface is responsible for obtaining context information that the

ApplicationRoutingStrategy uses to route data for indexing and querying. This interface has two

subinterfaces, ContextRoutingObjectAdapter (for indexing) and RequestRoutingObjectAdapter (for

querying). These subinterfaces differ mainly in terms of where they obtain the context information.

ContextRoutingObjectAdapter

Classes that implement the atg.endeca.index.configuration.ContextRoutingObjectAdapter

interface use the atg.repository.search.indexing.Context object to determine the current indexing

context. The Context object provides a central place to store data and state information, such as the current site

and locale, during an indexing job.

There are three ContextRoutingObjectAdapter classes in the atg.endeca.index.configuration

package, which correspond to the three ApplicationRoutingStrategy classes discussed above:

• SingleContextRoutingObjectAdapter

• SiteContextRoutingObjectAdapter

• GroupingContextRoutingObjectAdapter

So, for example, if you are using SiteApplicationRoutingStrategy as your routing strategy, you should use

SiteContextRoutingObjectAdapter for determining the indexing context.

RequestRoutingObjectAdapter

Classes that implement the atg.endeca.assembler.configuration.RequestRoutingObjectAdapter

interface use the atg.servlet.DynamoHttpServletRequest object and other objects that hold request-

specific state, such as SiteContext objects, to determine the current context for querying.

There are three RequestRoutingObjectAdapter classes in the atg.endeca.assembler.configuration

package, which correspond to the three ApplicationRoutingStrategy classes discussed above:

• SingleRequestRoutingObjectAdapter

• SiteRequestRoutingObjectAdapter

• GroupingRequestRoutingObjectAdapter

So, for example, if you are using SiteApplicationRoutingStrategy as your routing strategy

(and SiteContextRoutingObjectAdapter for determining the indexing context), you should use

SiteRequestRoutingObjectAdapter for determining the querying context.

Configuring Routing

Once you have determined the routing strategy you want to use (see Overview of Routing (page

9)), you specify it by setting the applicationRoutingStrategy property of /atg/endeca/

ApplicationConfiguration to a component of one of the ApplicationRoutingStrategy classes

mentioned above. Other configuration depends on which routing strategy class you specify.

This section describes how you configure different routing strategies and associated components.

For more information about configuring the IndexingApplicationConfiguration component,

12 2 Routing

see the IndexingApplicationConfiguration Component (page 27) section of the Configuring

the Indexing Components (page 27) chapter. For more information about configuring the

AssemblerApplicationConfiguration component, see the AssemblerApplicationConfiguration

Component (page 100) section of the Query Integration (page 85) chapter.

SingleApplicationRoutingStrategy

Use the SingleApplicationRoutingStrategy class if you have a single EAC application, or if you have a

separate EAC application for each language. In either case, routing is not affected by sites; for a given language,

records for all sites are directed to the EAC application associated with that language.

To use SingleApplicationRoutingStrategy, set the

ApplicationConfiguration.applicationRoutingStrategy property to null. This property is null by

default, so you can leave it unset or set it to null explicitly. If applicationRoutingStrategy is null, an instance

of the SingleApplicationRoutingStrategy class is created automatically.

Similarly, set the IndexingApplicationConfiguration.routingObjectAdapter and

AssemblerApplicationConfiguration.routingObjectAdapter properties to null to automatically create

instances of the SingleContextRoutingObjectAdapter and SingleRequestRoutingObjectAdapter

classes.

Additional configuration differs depending on whether you have a single EAC application for all languages or a

separate EAC application for each language.

Single EAC Application

If all languages are being handled by the same EAC application, set the ApplicationConfiguration

component’s defaultLanguageForApplications property to the two-letter language code for the default

language. For example:

defaultLanguageForApplications=en

Note that you should set this property even if your data is in only one language.

By default, the name of the application is assumed to be formed by concatenating the value of the

ApplicationConfiguration component’s baseApplicationName property and the value of the

defaultLanguageForApplications property. For example, if baseApplicationName is ATG and

defaultLanguageForApplications is en, the Oracle Commerce Platform assumes the name of the EAC

application is ATGen. If your application has a different name from the default, specify the name by setting the

ApplicationConfiguration component’s keyToApplicationName property:

keyToApplicationName=\
 default=application-name

For example, if the name of the EAC application is MyApp:

keyToApplicationName=\
 default=MyApp

Note that the key is default only when there is a single EAC application.

2 Routing 13

One EAC Application per Language

If each language is being handled by a separate EAC application, set the defaultLanguageForApplications

property to null. This property is null by default, but if it has been subsequently set to a non-null value, you must

explicitly set it back to null:

defaultLanguageForApplications^=/Constants.null

The two-letter language codes are used as the application keys for routing. By default, the name

of each application is assumed to be the value of the ApplicationConfiguration component’s

baseApplicationName property plus the two-letter language code. For example, if baseApplicationName

is ATG and you have records in English, German, and Spanish, the Oracle Commerce Platform assumes the

names of the EAC applications are ATGen, ATGde, and ATGes. If your applications are named differently, use the

ApplicationConfiguration component’s keyToApplicationName property to explicitly map the language

codes to your application names. For example:

keyToApplicationName=\
 en=MyEnglishApp,\
 es=MySpanishApp,\
 de=MyGermanApp

SiteApplicationRoutingStrategy

Use the SiteApplicationRoutingStrategy class if you have a separate EAC application for each site (with all

languages in a given site being handled by that site’s EAC application), or if you have a separate EAC application

for each combination of site and language.

To use SiteApplicationRoutingStrategy, set the ApplicationConfiguration component’s

applicationRoutingStrategy property as follows:

applicationRoutingStrategy=\
 /atg/endeca/configuration/SiteApplicationRoutingStrategy

In addition, to ensure that separate records are created for each site, you need to add the

UniqueSiteVariantProducer to the variantProducers property of each EndecaIndexingOutputConfig

component. For example

variantProducers+=/atg/search/repository/UniqueSiteVariantProducer

EndecaIndexingOutputConfig components are discussed in the next several chapters of this manual.

For information about variant producers, including UniqueSiteVariantProducer, see the Using Variant

Producers (page 63)section of the Customizing the Output Records (page 61) chapter.

Set the routingObjectAdapter property of the /atg/endeca/index/

IndexingApplicationConfiguration component to specify the ContextRoutingObjectAdapter

component to use:

routingObjectAdapter=\

14 2 Routing

 /atg/endeca/index/configuration/SiteContextRoutingObjectAdapter

Set the routingObjectAdapter property of the /atg/endeca/assembler/

AssemblerApplicationConfiguration component to specify the RequestRoutingObjectAdapter

component to use:

routingObjectAdapter=\
 /atg/endeca/index/configuration/SiteRequestRoutingObjectAdapter

Additional configuration differs depending on whether you have a single EAC application for each site or a

separate EAC application for each combination of site and language.

One EAC Application per Site

If you have one EAC application per site (with all languages for each individual site being handled by that site’s

EAC application), set the ApplicationConfiguration component’s defaultLanguageForApplications

property to the two-letter language code for the default language. For example:

defaultLanguageForApplications=it

Note that you should set this property even if your data is in only one language.

The site IDs are used as the application keys for routing. The value of the SiteApplicationRoutingStrategy

component’s applicationNameFormatString property specifies the default naming scheme for the EAC

applications. The value of this property is a format string in which 0 is the value of the baseApplicationName

property, 1 is the site ID, and 2 is the two-letter language code. In this case, since routing does not take language

into account, the 2 should be omitted, and the property should be set to:

applicationNameFormatString={0}{1}

Suppose, for example, that baseApplicationName is ATG and you have three sites whose IDs are storeIT,

storeDE, and storeFR. The default names of the EAC applications are ATGstoreIT, ATGstoreDE, and

ATGstoreFR. If your applications are named differently, use the ApplicationConfiguration component’s

keyToApplicationName property to explicitly map the site IDs to your application names. For example:

keyToApplicationName=\
 storeIT=MyItalyStore,\
 storeDE=MyGermanyStore,\
 storeFR=MyFranceStore

Separate EAC Application for each Combination of Site and Language

If you have a separate EAC application for each combination of site and language, set the

defaultLanguageForApplications property to null. This property is null by default, but if it has been

subsequently set to a non-null value, you must explicitly set it back to null:

defaultLanguageForApplications^=/Constants.null

Since in this case routing must take into account both site and language, each application key is

formed by concatenating the site ID with the language code, separated by the underscore character

2 Routing 15

(_). Similarly, the application names need to reflect the sites and languages, so the value of the

SiteApplicationRoutingStrategy component’s applicationNameFormatString property should be set

to:

applicationNameFormatString={0}{1}{2}

Suppose, for example, that baseApplicationName is ATG and you have Canada site whose ID is storeCA.

If the site has two languages, French and English, the default names for the corresponding EAC applications

would be ATGstoreCAfr and ATGstoreCAen, and the keys for these applications would be storeCA_fr and

storeCA_en.

Note that if you have multiple sites and multiple languages, but not all of the sites support all of the languages,

SiteApplicationRoutingStrategy does not create keys for the missing combinations. Records are

generated only for valid combinations of sites and languages.

If your applications do not use the default naming scheme, use the ApplicationConfiguration component’s

keyToApplicationName property to explicitly map the keys to your application names. For example:

keyToApplicationName=\
 storeCA_fr=MyCanadaStoreFrench,\
 storeCA_en=MyCanadaStoreEnglish,\
 storeDE_de=MyGermanyStoreGerman,\
 storeDE_en=MyGermanyStoreEnglish,\
 storeFR_fr=MyFranceStoreFrench

GroupingApplicationRoutingStrategy

The GroupingApplicationRoutingStrategy class allows more flexible groupings of sites than

SiteApplicationRoutingStrategy does. For example, with GroupingApplicationRoutingStrategy,

you can have three sites handled by one EAC application and two other sites handled by a second EAC

application. If a site has multiple languages, all records for the site are directed to the site’s EAC application,

regardless of the language.

To use GroupingApplicationRoutingStrategy, set the ApplicationConfiguration component’s

applicationRoutingStrategy property as follows:

applicationRoutingStrategy=\
 /atg/endeca/configuration/GroupingApplicationRoutingStrategy

Since this strategy may involve having multiple languages in a single EAC application, you need to set the

ApplicationConfiguration component’s defaultLanguageForApplications property to the two-letter

language code for the default language. For example:

defaultLanguageForApplications=fr

Note that you should set this property even if your data is in only one language.

The mapping of EAC applications to sites is done through the GroupingApplicationRoutingStrategy

component itself, rather than the ApplicationConfiguration component. Therefore, you must set the

keyToApplicationName properties of the ApplicationConfiguration component to null:

16 2 Routing

keyToApplicationName^=/Constants.null

Mapping of applications to sites is done through the applicationGroupingMap property of the

GroupingApplicationRoutingStrategy component. This property is a Map where each key is the name

of an EAC application and the corresponding value is a list of the site IDs of the sites to be routed to that

application. The list is in the form of a string with the pipe character (|) used as the separator between site IDs.

For example:

applicationGroupingMap=\
 footwearStores=shoeSiteUS|shoeSiteCanada,\
 apparelStores=clothesSiteUS|clothesSiteUK|clothesSiteCanada

Set the routingObjectAdapter property of the /atg/endeca/index/

IndexingApplicationConfiguration component to specify the ContextRoutingObjectAdapter

component to use:

routingObjectAdapter=\
 /atg/endeca/index/configuration/GroupingContextRoutingObjectAdapter

Set the routingObjectAdapter property of the /atg/endeca/assembler/

AssemblerApplicationConfiguration component to specify the RequestRoutingObjectAdapter

component to use:

routingObjectAdapter=\
 /atg/endeca/index/configuration/GroupingRequestRoutingObjectAdapter

To ensure that separate records are created for each EAC application, you need to add

the MultipleSiteVariantProducer to the variantProducers property of each

EndecaIndexingOutputConfig component. For example:

variantProducers+=/atg/search/repository/MultipleSiteVariantProducer

EndecaIndexingOutputConfig components are discussed in the next several chapters of this manual. For

information about variant producers, including MultipleSiteVariantProducer, see the Using Variant

Producers (page 63)section of the Customizing the Output Records (page 61) chapter.

3 Overview of Indexing 17

3 Overview of Indexing

To make data in GSA repositories available for searching, the Oracle Commerce Platform must transform the data

into the appropriate format, and then submit this data to Oracle Commerce for indexing.

The process of indexing GSA repository data in Guided Search works like this:

1. Oracle Commerce Platform components transform the repository data into Guided Search records that

represent Guided Search properties, dimensions, and schema:

• Properties of GSA repository items are used to create Guided Search properties and non-hierarchical

dimensions.

• The hierarchy of repository item types is used to create a hierarchical dimension in Guided Search. If you

index the product catalog, the category hierarchy is used to create a hierarchical category dimension.

• A Guided Search schema is created by examining the set of repository item properties to be indexed.

2. The generated data and dimension value records are submitted to CAS record stores. The schema records are

converted to the format used by the Endeca Configuration Repository and this data is submitted to it using

the Configuration Import API.

3. The EAC application is invoked, which processes the data and invokes indexing.

This chapter gives an overview of the classes and components that perform these steps, and the user interface

provided for managing the process. It focuses on the product catalog repository, but the process described here

applies to indexing any GSA repository.

This chapter includes the following sections:

Indexable Classes (page 18)

Indexing Multiple Languages (page 23)

Submitting the Records (page 24)

Managing the Process (page 25)

Viewing the Indexed Data (page 25)

Other chapters of this book provide more detail about configuring and using these and other classes and

components to work with the data in your Oracle Commerce Platform environment.

18 3 Overview of Indexing

Indexable Classes

The Oracle Commerce Platform includes an interface, atg.endeca.index.Indexable, that is implemented by

the classes involved in creating Guided Search records. Key classes that implement this interface include:

• atg.endeca.index.EndecaIndexingOutputConfig

• atg.commerce.endeca.index.dimension.CategoryTreeService

• atg.endeca.index.dimension.RepositoryTypeHierarchyExporter

• atg.endeca.index.schema.SchemaExporter

These classes are discussed below.

EndecaIndexingOutputConfig Class

The main class used to specify how to transform repository items into records is

atg.endeca.index.EndecaIndexingOutputConfig. The Guided Search integration includes two

components of this class for transforming data in the product catalog:

• /atg/commerce/search/ProductCatalogOutputConfig

• /atg/commerce/endeca/index/CategoryToDimensionOutputConfig

Each EndecaIndexingOutputConfig component has a number of properties, as well as an XML definition file,

for configuring how repository data should be transformed to create Guided Search records. The configuration

of these components is discussed in detail in EndecaIndexingOutputConfig Components (page 28).

ProductCatalogOutputConfig Component

The ProductCatalogOutputConfig component specifies how to create Guided Search data records that

represent items in the product catalog. Each record represents either one product or one SKU (depending

on whether you use product-based or SKU-based indexing), and contains the values of the properties to be

included in the index.

In addition, each record includes properties of parent and child items. For example, a record that represents a

product includes information about its parent category’s properties, as well as information about the properties

of its child SKUs. This makes it possible to search category and SKU properties as well as product properties

when searching for products in the catalog.

The names of the output properties include information about the item types they are associated with. For

example, a record generated from a product may have a product.description property that holds the value

of the description property of the product item, and a sku.color property that holds the value of the

color properties of the product’s child SKUs.

Multi-value properties are given names without array subscripts. For example, a product repository item might

have multiple child sku items, each with a different value for the color property. In the output record there will

be multiple entries for sku.color.

The following is an XML representation of a portion of a Commerce Reference Store data record. Note that the

actual records submitted to the CAS data record store are in a binary object format, not XML.

<RECORD>
 <PROP NAME="product.baseUrl">
 <PVAL>atgrep:/ProductCatalog/clothing-sku/xsku1013</PVAL>

3 Overview of Indexing 19

 </PROP>
 <PROP NAME="product.repositoryId">
 <PVAL>xprod1003</PVAL>
 </PROP>
 <PROP NAME="product.brand">
 <PVAL>CricketClub</PVAL>
 </PROP>
 <PROP NAME="product.language">
 <PVAL>English</PVAL>
 </PROP>
 <PROP NAME="product.priceListPair">
 <PVAL>plist3080003_plist3080002</PVAL>
 </PROP>
 <PROP NAME="product.description">
 <PVAL>Genuine English leather wallet</PVAL>
 </PROP>
 <PROP NAME="product.displayName">
 <PVAL>Organized Wallet</PVAL>
 </PROP>
 <PROP NAME="sku.activePrice">
 <PVAL>24.49</PVAL>
 </PROP>
 <PROP NAME="clothing-sku.color">
 <PVAL>Brown</PVAL>
 </PROP>
 <PROP NAME="clothing-sku.size">
 <PVAL>One Size</PVAL>
 <PROP NAME="record.id">
 <PVAL>
 clothing-sku-xsku1013..xprod1003.masterCatalog.en__US.plist3080003__plist3080002
 </PVAL>
 </PROP>
 <PROP NAME="record.source">
 <PVAL>
 ProductCatalog
 </PVAL>
 </PROP>
 <PROP NAME="record.type">
 <PVAL>
 clothing-sku
 </PVAL>
 </PROP>
</RECORD>

CategoryToDimensionOutputConfig Component

The CategoryToDimensionOutputConfig component specifies how to create Guided Search dimension value

records that represent categories from the product catalog. This category dimension makes it possible to use

Guided Search to navigate the categories of a catalog.

CategoryToDimensionOutputConfig creates dimension values using a special representation of the category

hierarchy that is generated by the/atg/commerce/endeca/index/CategoryTreeService component, as

described in the CategoryTreeService Class (page 20) section.

The following example shows an XML representation of a portion of a category dimension value record

generated by CategoryToDimensionOutputConfig:

<RECORD>

20 3 Overview of Indexing

 <PROP NAME="dimval.spec">
 <PVAL>cat10016.cat10014.catDeskLamps</PVAL>
 </PROP>
 <PROP NAME="Endeca.Id">
 <PVAL>product.category:cat10016.cat10014.catDeskLamps</PVAL>
 </PROP>
 <PROP NAME="category.rootCatalogId">
 <PVAL>masterCatalog</PVAL>
 </PROP>
 <PROP NAME="category.ancestorCatalogIds">
 <PVAL>masterCatalog</PVAL>
 </PROP>
 <PROP NAME="dimval.dimension_name">
 <PVAL>product.category</PVAL>
 </PROP>
 <PROP NAME="dimval.parent_spec">
 <PVAL>cat10016.cat10014</PVAL>
 </PROP>
 <PROP NAME="dimval.display_order">
 <PVAL>2</PVAL>
 </PROP>
 <PROP NAME="category.repositoryId">
 <PVAL>catDeskLamps</PVAL>
 </PROP>
 <PROP NAME="category.catalogs.repositoryId">
 <PVAL>masterCatalog,homeStoreCatalog</PVAL>
 </PROP>
 <PROP NAME="dimval.display_name">
 <PVAL>Desk Lamps</PVAL>
 </PROP>
</RECORD>

CategoryTreeService Class

The Guided Search integration uses the category hierarchy in the product catalog to construct a category

dimension in Guided Search. In some cases, the hierarchy cannot be translated directly, because the Core

Commerce catalog hierarchy supports categories with multiple parent categories, while Guided Search requires

each dimension value to have a single parent.

For example, suppose you have the following category structure in your product catalog:

3 Overview of Indexing 21

To deal with this structure, the Guided Search integration creates two different records for the Men’s Shoes

dimension value, one for each path to this category in the catalog hierarchy. These paths are computed by the

atg.commerce.endeca.index.dimension.CategoryTreeService class.

The Guided Search integration includes a component of this class, /atg/commerce/endeca/index/

CategoryTreeService. This component, which is run in the first phase of the indexing process, creates data

structures in memory that represent all possible paths to each category in the product catalog. A category can

have multiple parents, and those parents and their ancestors can each have multiple parents, so there can be

any number of unique paths to an individual category.

The CategoryToDimensionOutputConfig component then uses the /atg/commerce/endeca/index/

CategoryPathVariantProducer component to create multiple records for each category, one for each path

computed by CategoryTreeService. For each path, the corresponding record uses the pathname as the value

of its dimval.spec property; this makes it possible to differentiate records that represent different paths to the

same category.

In the example above, two records are created for the Men’s Shoes category. The dimval.spec entry in one of

the records might be:

<PROP NAME="dimval.spec">
 <PVAL>catClothing.catMensClothing.catMensShoes</PVAL>
</PROP>

The dimval.spec entry in the other record for the category might be:

<PROP NAME="dimval.spec">
 <PVAL>catShoes.catMensShoes</PVAL>
</PROP>

Note that the period (.) is used as a separator in the property values rather the slash (/). This is done so the

value can be passed to Guided Search through a URL query parameter when issuing a search query, without

requiring any characters to be escaped.

22 3 Overview of Indexing

RepositoryTypeHierarchyExporter Class

The atg.endeca.index.dimension.RepositoryTypeHierarchyExporter class creates Guided Search

dimension value records from the hierarchy of repository item types, and submits those records to the

CAS dimension values record store. This dimension is not typically displayed on a site, but can be used in

determining which other dimensions to display. For example, Commerce Reference Store has a furniture-

sku subtype that includes a woodFinish property that can be used as a Guided Search dimension. A site can

include logic to detect whether the items returned from a search are of type furniture-sku, and display the

woodFinish dimension if they are.

The Guided Search integration includes a component of class RepositoryTypeHierarchyExporter,

/atg/commerce/endeca/index/RepositoryTypeDimensionExporter, that is configured to work

with the ProductCatalogOutputConfig component. The RepositoryTypeDimensionExporter

component outputs dimension value records for all of the repository item types referred to in the

ProductCatalogOutputConfig definition file, as well as the ancestors and descendants of those item types.

RepositoryTypeDimensionExporter does not create records for any item types that are not part of the

hierarchy mentioned in the definition file.

There are additional components of class RepositoryTypeHierarchyExporter that create dimension

value records representing the item types in the content management repository. See the Indexing the Content

Management Repository (page 73) chapter for more information.

The following example shows a record produced by the RepositoryTypeDimensionExporter component for

the product item type:

<RECORD>
 <PROP NAME="dimval.dimension_name">
 <PVAL>record.type</PVAL>
 </PROP>
 <PROP NAME="dimval.display_name">
 <PVAL>Product</PVAL>
 </PROP>
 <PROP NAME="Endeca.Id">
 <PVAL>record.type:product</PVAL>
 </PROP>
 <PROP NAME="dimval.spec">
 <PVAL>product</PVAL>
 </PROP>
 <PROP NAME="dimval.parent_spec">
 <PVAL>/</PVAL>
 </PROP>
</RECORD>

SchemaExporter Class

The atg.endeca.index.schema.SchemaExporter class is responsible for generating schema configuration

and submitting it to the Endeca Configuration Repository. (See Submitting the Records (page 24) for

information about this process.) The /atg/commerce/endeca/index/SchemaExporter component of this

class examines the ProductCatalogOutputConfig definition file and generates a schema record for each

specified property of a repository item type. The schema record indicates whether the property should be

treated as a property or a dimension by Guided Search, whether it should be searchable, and the data type of

the property or dimension.

Note, however, that these schema records are not in the format required by the CAS-based deployment

template. Therefore, the /atg/endeca/index/ConfigImportDocumentSubmitter component converts the

3 Overview of Indexing 23

schema data to Configuration Import API objects before submitting it to the Endeca Configuration Repository.

See the Document Submitter Components (page 37) section for more information.

Indexing Multiple Languages

This section summarizes considerations that are specific to indexing data in multiple languages.

Data Records

If you are indexing data in multiple languages, separate data records must be generated for each language. For

example, if a product has separate data for French and English (such as descriptions and color names), a French

record and an English record must be generated. This is true regardless of whether you have a separate EAC

application for each language or multiple languages in the same EAC application.

To generate the data records, the ProductCatalogOutputConfig component uses the

LocaleVariantProducer, which ensures that separate records are created for each of the locales listed

in the /atg/endeca/ApplicationConfiguration component’s locales property. (See Using Variant

Producers (page 63) for more information about LocaleVariantProducer.) If multiple languages are

indexed by the same application, each data record includes a product.language property whose value

identifies the language of the record. The language name is given in its own language. For example, the value for

the German language is Deutsch.

Schema

If there is a separate application for each language, a separate schema is generated for each application. If there

are multiple languages in an application, a single schema is generated based on the first locale listed in the /

atg/endeca/ApplicationConfiguration component’s locales property.

Dimension Values

If you are indexing data in multiple languages, separate dimension value records must be generated for each

language. This is true regardless of whether you have a separate EAC application for each language or multiple

languages in the same EAC application.

To generate category dimension value records, the CategoryToDimensionOutputConfig component uses

the LocaleVariantProducer to create separate records for each of the locales listed in the /atg/endeca/

ApplicationConfiguration component’s locales property. The RepositoryTypeDimensionExporter

component also generates separate records for each language.

If multiple languages are indexed in the same application, the records generated by the /atg/

commerce/endeca/index/RepositoryTypeDimensionExporter component contain additional

properties for the translated display names of the repository item types. These properties are named

displayName_languageCode, where languageCode is the two-letter language code associated with one of

the specified locales. For example:

<PROP NAME="displayName_en">
 <PVAL>Product</PVAL>
</PROP>
<PROP NAME="displayName_de">
 <PVAL>Produkt</PVAL>
</PROP>
<PROP NAME="displayName_es">

24 3 Overview of Indexing

 <PVAL>Producto</PVAL>
</PROP>

Note that the property names shown in the example above are appropriate for use with CAS-based deployment

templates, and assume that the name changes specified in propertyNameReplacementMap property of the

DimensionDocumentSubmitter component have been applied. See RecordStoreDocumentSubmitter (page

37)for more information.

In addition, if you set the multiLanguageSynonyms property of the RepositoryTypeDimensionExporter

component to true, then additional Guided Search record properties are generated to indicate that all

translations of the same repository type are synonyms for searching. For example:

<PROP NAME="dimval.search_synonym">
 <PVAL>Product</PVAL>
 <PVAL>Produkt</PVAL>
 <PVAL>Producto</PVAL>
</PROP>

Submitting the Records

Once the records have been generated, they are submitted to Guided Search by components of classes that

implement the atg.repository.search.indexing.DocumentSubmitter interface. The Guided Search

integration includes these DocumentSubmitter components:

• /atg/endeca/index/DataDocumentSubmitter – This component of class

atg.endeca.index.RecordStoreDocumentSubmitter submits records to the data record store (for

example, ATGen-data).

• /atg/endeca/index/DimensionDocumentSubmitter -- This component of class

atg.endeca.index.RecordStoreDocumentSubmitter submits records to the dimension values record

store (for example, ATGen-dimvals).

• /atg/endeca/index/ConfigImportDocumentSubmitter -- This component of class

atg.endeca.index.ConfigImportDocumentSubmitter converts the schema records to Configuration

Import API objects and submits them to the Endeca Configuration Repository.

The EndecaIndexingOutputConfig, RepositoryTypeHierarchyExporter, and SchemaExporter classes

each have a documentSubmitter property that is used to specify the document submitter component to

use to submit records. The following table shows default values of the documentSubmitter property of each

component of these classes:

Component Record Submitter

ProductCatalogOutputConfig DataDocumentSubmitter

CategoryToDimensionOutputConfig DimensionDocumentSubmitter

RepositoryTypeDimensionExporter DimensionDocumentSubmitter

3 Overview of Indexing 25

Component Record Submitter

SchemaExporter ConfigImportDocumentSubmitter

Managing the Process

The atg.endeca.index.admin.SimpleIndexingAdmin class provides a mechanism for managing

the process of generating records, submitting them to Guided Search, and invoking indexing. The

Guided Search integration includes a component of this class, /atg/commerce/endeca/index/

ProductCatalogSimpleIndexingAdmin, that is configured to manage indexing of the product catalog.

The page for this component in the Component Browser of the Dynamo Server Admin presents a simple user

interface for controlling and monitoring the process:

After the records are generated and submitted to Guided Search, ProductCatalogSimpleIndexingAdmin

calls the /atg/commerce/endeca/index/EndecaScriptService component (of class

atg.endeca.eacclient.ScriptIndexable). This component is responsible for invoking EAC scripts that

trigger indexing.

The UI provides buttons for initiating a Guided Search baseline index or a partial update. Note that even if you

click Partial Index, a baseline update may be triggered if the changes since the last baseline update necessitate

it. See EndecaIndexingOutputConfig Components (page 28) for more information.

Viewing the Indexed Data

You can view the indexed data residing in your MDEX engines using Guided Search’s JSP Reference

Implementation. To use this reference implementation, do the following:

1. In a browser, navigate to http://host:port/endeca_jspref, where host:port refers to the name and

port of the server hosting the Guided Search Tools and Frameworks installation, for example:

http://localhost:8006/endeca_jspref

2. Click the ENDECA-JSP Reference Implementation link.

26 3 Overview of Indexing

3. Enter an MDEX host and port, and then click Go.

4 Configuring the Indexing Components 27

4 Configuring the Indexing

Components

This chapter provides detailed information about the Nucleus components in the Guided Search integration

that are involved in indexing product catalog data, the functions these components perform, how they are

configured, and how you can modify them to alter various aspects of indexing. It includes the following sections:

IndexingApplicationConfiguration Component (page 27)

EndecaIndexingOutputConfig Components (page 28)

Data Loader Components (page 33)

CategoryTreeService (page 34)

RepositoryTypeDimensionExporter (page 35)

SchemaExporter (page 36)

Document Submitter Components (page 37)

EndecaScriptService (page 40)

ProductCatalogSimpleIndexingAdmin (page 41)

ATG Content Administration Components (page 44)

Viewing Records in the Component Browser (page 47)

For information about the components for indexing data in the content management repository, such as articles

and media content items, see the Indexing the Content Management Repository (page 73) chapter.

IndexingApplicationConfiguration Component

The atg.endeca.index.configuration.IndexingApplicationConfiguration class provides a central

place for configuring various indexing settings. The Guided Search integration includes a component of this

class, /atg/endeca/index/IndexingApplicationConfiguration. This component is configured by default

with typical settings, but you can override these defaults when you use CIM to configure your Oracle Commerce

Platform environment.

28 4 Configuring the Indexing Components

CASHostName

The hostname of the machine running CAS. The default setting is:

CASHostName=localhost

CASPort

The port number for accessing CAS. The default setting is:

CASPort=8500

eacHostName

The hostname of the EAC server. The default setting is:

eacHost=localhost

eacPort

The port number for accessing the EAC server. The default setting is:

eacPort=8888

routingObjectAdapter

A component of a class that implements the

atg.endeca.index.configuration.ContextRoutingObjectAdapter interface. The specific class must

reflect the routing strategy in use. See the Routing (page 9)chapter for more information.

applicationConfiguration

The component of class atg.endeca.configuration.ApplicationConfiguration used to configure

global settings for the integration. The default setting is:

applicationConfiguration=/atg/endeca/ApplicationConfiguration

EndecaIndexingOutputConfig Components

The atg.endeca.index.EndecaIndexingOutputConfig class has a number of properties that configure

various aspects of the record creation and submission process:

indexingApplicationConfiguration

The component of class atg.endeca.index.configuration.IndexingApplicationConfiguration

used to configure indexing settings for the integration. For both the ProductCatalogOutputConfig and

CategoryToDimensionOutputConfig components, the default setting is:

4 Configuring the Indexing Components 29

indexingApplicationConfiguration=\
 /atg/endeca/index/IndexingApplicationConfiguration

definitionFile

The full Nucleus pathname of the XML indexing definition file that specifies the repository item

types and properties to include in the Guided Search records. For the /atg/commerce/search/

ProductCatalogOutputConfig component, this property is set as follows:

definitionFile=/atg/commerce/endeca/index/product-sku-output-config.xml

For /atg/commerce/endeca/index/CategoryToDimensionOutputConfig:

definitionFile=/atg/commerce/endeca/index/category-dim-output-config.xml

See the Configuring EndecaIndexingOutputConfig Definition Files (page 49) chapter for information about the

definition file’s elements and attributes that configure how GSA repository items are transformed into Guided

Search records.

repository

The full Nucleus pathname of the repository that the definition file applies to. For both the

ProductCatalogOutputConfig and CategoryToDimensionOutputConfig components, this property is set

to the product catalog repository:

repository=/atg/commerce/catalog/ProductCatalog

It is also possible to specify the repository in the indexing definition file using the repository-path attribute

of the top-level item element. If the repository is specified in the definition file and also set by the component’s

repository property, the value set by the repository property overrides the value set in the definition file.

Note that in an ATG Content Administration environment, the repository should not be set to a versioned

repository. Instead, it should be set to the corresponding unversioned target repository. For example, an

EndecaIndexingOutputConfig component for a product catalog in an ATG Content Administration

environment could be set to:

repository=/atg/commerce/catalog/ProductCatalog_production

repositoryItemGroup

A component of a class that implements the atg.repository.RepositoryItemGroup interface. This

interface defines a logical grouping of repository items. Items that are not included in this logical grouping

are excluded from the index. For the CategoryToDimensionOutputConfig component, this property

is set by default to null (so no items are excluded). For the ProductCatalogOutputConfig component,

repositoryItemGroup property is set by default to:

repositoryItemGroup=/atg/commerce/search/IndexedItemsGroup

30 4 Configuring the Indexing Components

The IndexedItemsGroup component uses this targeting rule set to select only products that have an ancestor

catalog:

<ruleset>
 <accepts>
 <rule op=isNotNull>
 <valueof target="computedCatalogs">
 </rule>
 </accepts>
</ruleset>

This rule set ensures that the index does not include products that are not part of the catalog hierarchy.

It is also possible to specify a repository item group in the indexing definition file using the repository-

item-group attribute of the top-level item element. If a repository item group is specified in the definition file

and also by the component’s repositoryItemGroup property, the value set by the repositoryItemGroup

property overrides the value set in the definition file.

Note that the IndexedItemGroup component has a repository property that specifies the repository that

the items are selected from. This value must match the repository that the ProductCatalogOutputConfig is

associated with.

For more information about targeting rule sets, see the Personalization Programming Guide.

documentSubmitter

The component (typically of class atg.endeca.index.RecordStoreDocumentSubmitter) to use to submit

records to the appropriate CAS record store. For the ProductCatalogOutputConfig component, this property

is set as follows:

documentSubmitter=/atg/endeca/index/DataDocumentSubmitter

For the CategoryToDimensionOutputConfig component:

documentSubmitter=/atg/endeca/index/DimensionDocumentSubmitter

See Document Submitter Components (page 37) for more information.

forceToBaselineOnChange

If true, a baseline update is performed when a partial update is requested, if a value of a hierarchical

dimension has been changed. For CatalogToDimensionOutputConfig, this property is set to true

by default, because the component generates category dimension values, which are hierarchical. For

ProductCatalogOutputConfig, this property is set to false by default, because the component does not

generate hierarchical dimension values.

configRepositoryItemChangedProcessor

A component of a class that implements the

atg.repository.search.indexing.ConfigRepositoryItemChangedProcessor interface.

For CatalogToDimensionOutputConfig, this property is set to /atg/commerce/endeca/index/

CategoryRepositoryItemChangedProcessor. This component is responsible for preventing category

items from being added to the incremental item queue unnecessarily.

4 Configuring the Indexing Components 31

If the forceToBaselineOnChange property is true, a baseline update is triggered when a partial update

is requested, if the incremental item queue contains any category items. In some cases, the baseline

update is not really necessary, because the category item changes do not affect the category dimension

values (for example, changes to properties that are not included in the indexed records). In this situation,

CategoryRepositoryItemChangedProcessor prevents the changes from being added to the queue, so a

baseline update is not triggered.

bulkLoader

A Nucleus component of class atg.endeca.index.RecordStoreBulkLoaderImpl. This is typically set to /

atg/search/repository/BulkLoader. Any number of EndecaIndexingOutputConfig components can

use the same bulk loader.

See Data Loader Components (page 33) for more information.

enableIncrementalLoading

If true, incremental loading is enabled.

incrementalLoader

A Nucleus component of class atg.endeca.index.RecordStoreIncrementalLoaderImpl. This is typically

set to /atg/search/repository/IncrementalLoader. Any number of EndecaIndexingOutputConfig

components can use the same incremental loader.

See Data Loader Components (page 33) for more information.

excludedItemsAncestorIds

A list of the IDs of the items whose child items should not be indexed. For example, Commerce Reference Store

excludes products and SKUs that are not part of the standard catalog hierarchy (such as gift wrapping) by

setting the excludedItemsAncestorIds property of the ProductCatalogOutputConfig component to:

excludedItemsAncestorIds=\
 NonNavigableProducts,homeStoreNonNavigableProducts

Note that an item is excluded only if all of its ancestor items are specified. So to exclude a product that is several

levels deep in the catalog hierarchy, excludedItemsAncestorIds must list all of the categories in the path

to the product you want to exclude. If there are multiple paths to an item, all of its ancestor categories in all of

those paths must be listed in excludedItemsAncestorIds, or the item will not be excluded. For example, if

all of a product’s ancestors in one path are excluded, but there is another path to this product and some of the

categories in that path are not excluded, the product will be indexed.

siteIDsToIndex

A list of site IDs of the sites to include in the index. The value of this property is used to automatically set the

value of the sitesToIndex property, which is the actual property used to determine which sites to index. If

siteIDsToIndex is explicitly set to a list of site IDs, sitesToIndex is set to the sites that have those IDs. If the

value of siteIDsToIndex is null (the default), sitesToIndex is set to a list of all enabled sites. So it is only

necessary to set siteIDsToIndex if you want to restrict indexing to only a subset of the enabled sites.

replaceWithTypePrefixes

A list of the property-name prefixes that should be replaced with the item type that the property

is associated with. In this list, a period (.) specifies that a type prefix should be added to properties

32 4 Configuring the Indexing Components

of the top-level item, which is product for ProductCatalogOutputConfig and category for

CategoryToDimensionOutputConfig.

For ProductCatalogOutputConfig, the replaceWithTypePrefixes property is set by default to:

replaceWithTypePrefixes=.,childSKUs

This means, for example, that the brand property of the product item is given the name product.brand

in the output records, and the onSale property of the sku item (which appears in the definition file as the

childSKUs property of the product item) is given the name sku.onSale. Properties that are specific to a sku

subtype are prefixed with the subtype name in the output records. For example, Commerce Reference Store

has a furniture-sku subtype, so the woodFinish property (which is specific to this subtype) is given the

output name furniture-sku.woodFinish, while onSale (which is common to all SKUs) is given the name

sku.onSale.

Adding these prefixes ensures that there is no duplication of property or dimension names in Guided Search, in

case different repository item types (or records from other sources) have identically named properties.

For CategoryToDimensionOutputConfig, the replaceWithTypePrefixes property is set to:

replaceWithTypePrefixes=.

This means, for example, that the ancestorCatalogIds property of the category item is given the name

category.ancestorCatalogIds in the output records.

If replaceWithTypePrefixes is null, the behavior is the same as if the property is set to a period; the type

prefix is added to the names of the output properties of the top-level item. Note, however, that in this case the

behavior is due to a default in the Java class, rather than the Nucleus configuration. So if you add a setting like

the following in a properties file, the class default will no longer be in effect, which means the type prefix will not

be added to properties of the top-level item:

replaceWithTypePrefixes+=childSKUs

To get the desired results, you should instead use a setting like this:

replaceWithTypePrefixes=.,childSKUs

prefixReplacementMap

A mapping of property-name prefixes to their replacements. This mapping is applied after any type prefixes are

added by replaceWithTypePrefixes.

For ProductCatalogOutputConfig, prefixReplacementMap is set by default to:

prefixReplacementMap=\
 product.ancestorCategories=allAncestors

So, for example, the ancestorCategories.displayName property is renamed to

product.ancestorCategories.displayName by applying replaceWithTypePrefixes, and then the result

is renamed to allAncestors.displayName by applying prefixReplacementMap.

4 Configuring the Indexing Components 33

For CategoryToDimensionOutputConfig, prefixReplacementMap is set to null by default, so no prefix

replacement is performed.

suffixReplacementMap

A mapping of property-name suffixes to their replacements. In addition to any mappings you specify in the

properties file, the following mappings are automatically included:

$repositoryId=repositoryId,
$siteId=siteId,
$url=url,
$baseUrl=baseUrl

These mappings remove the dollar-sign ($) character from the names of special repository properties, because

this character is not valid in Guided Search property names.

The suffixReplacementMap property is set to null by default for both ProductCatalogOutputConfig and

CategoryToDimensionOutputConfig, which means only the automatic mappings are used. You can exclude

the automatic mappings by setting the addDefaultOutputNameReplacements property to false.

Data Loader Components

The EndecaIndexingOutputConfig components specify how to generate records from items in the catalog

repository, but the generation itself is performed by data loader components. Depending on your environment,

data loading may be an operation that is performed occasionally (if the content rarely changes) or frequently

(if the content changes often). To be as flexible as possible, the Guided Search integration provides two

approaches to loading the data:

• Bulk loading generates the complete set of records for the catalog. Bulk loading is performed by the

atg.endeca.index.RecordStoreBulkLoaderImpl class. The Guided Search integration includes a

component of this class, /atg/search/repository/BulkLoader.

• Incremental loading generates only the records that have changed since the last load. The incremental

loader records which repository items have changed since the last incremental or bulk load. It deletes the

records that represent items that have been deleted, and creates records for any items that are new or have

been modified.

Incremental loading is performed by the atg.endeca.index.RecordStoreIncrementalLoaderImpl

class. The Guided Search integration includes a component of this class, /atg/search/repository/

IncrementalLoader.

Bulk loading and incremental loading are not mutually exclusive. For some environments, only bulk loading will

be necessary, especially if content is updated only occasionally. For other environments, incremental loading

will be needed to keep the search content up to date, but even in that case, you should perform a bulk load

occasionally to ensure the integrity of the indexed data.

Note that Guided Search always does a baseline update after the Oracle Commerce Platform performs bulk

loading, and typically does a partial update after incremental loading. In some cases, however, a baseline update

may be triggered after incremental loading. For example, if incremental loading adds a new category dimension

value, a baseline update must be performed. See EndecaIndexingOutputConfig Components (page 28) for

information about how to configure this.

34 4 Configuring the Indexing Components

The IncrementalLoader component uses an implementation of the PropertiesChangedListener interface

to monitor the repository for add, update, and delete events. It then analyzes these events to determine

which ones necessitate updating records, and creates a queue of the affected repository items. When a new

incremental update is triggered, the IncrementalLoader processes the items in the queue, generating and

loading a new record for each changed repository item.

Tuning Incremental Loading

The number of changed items accumulating in the queue can vary greatly, depending on how frequently

your data changes and how long you specify between incremental updates. Rather than processing all of

the changes at once, the EndecaIndexingOutputConfig component groups changes in batches called

generations.

The EndecaIndexingOutputConfig class has a maxIncrementalUpdatesPerGeneration property that

specifies the maximum number of changes that can be assigned to a generation. By default, this value is

1000, but you can change this value if necessary. Larger generations require more Oracle Commerce Platform

resources to process, but reduce the number of Guided Search jobs required (and hence the overhead

associated with starting up and completing these jobs). Smaller generations require fewer Oracle Commerce

Platform resources, but increase the number of Guided Search jobs.

CategoryTreeService

The following describes key properties of the

atg.commerce.endeca.index.dimension.CategoryTreeService class and the default configuration of

the /atg/commerce/endeca/index/CategoryTreeService component of this class:

indexingOutputConfig

The component of class atg.endeca.index.EndecaIndexingOutputConfig whose definition file should be

used for generating schema records. By default, this property is set to:

indexingOutputConfig=/atg/commerce/search/ProductCatalogOutputConfig

catalogTools

The component of class atg.commerce.catalog.custom.CustomCatalogTools for accessing the catalog

repository. By default, this property is set to:

catalogTools=/atg/commerce/catalog/CatalogTools

excludeRootCategories

A boolean that specifies whether dimension values should be created for root categories. This property defaults

to false, meaning dimension values are created. Commerce Reference Store sets excludeRootCategories to

true, because its root categories are not displayed and therefore should not have associated dimension values.

4 Configuring the Indexing Components 35

excludedItemsCategoryIds

A list of IDs of categories that dimension values should not be created for, because their child products and

SKUs are excluded from indexing. If excludedItemsCategoryIds is not set explicitly, it is automatically set to

the list of category IDs in the excludedItemsAncestorIds property of the ProductCatalogOutputConfig

component.

Note that to prevent creation of a dimension value for a specific category, all of its ancestor and descendant

categories must be specified in excludedItemsCategoryIds. If there are multiple paths to a category,

a separate dimension value is created for the category for each path; if you exclude the dimension value

associated with one path (by listing all of the categories in that path), that does not prevent the creation of

dimension values for other paths.

excludedCategoryIds

A list of IDs of categories that dimension values should not be created for (in addition to any categories excluded

by the values of excludeRootCategories and excludedItemsCategoryIds).

sitesForCatalogs

To create a representation of the category hierarchy in which each category dimension value has only one

parent, the CategoryTreeService class creates data structures in memory that represent all possible paths to

each category in the product catalog. In order to do this, it must be provided with a list of the catalogs to use for

computing paths.

The sitesForCatalogsproperty specifies a list of sites, and CategoryTreeService uses the catalogs

associated with these sites for computing paths. The sitesForCatalogs property cannot be set through a

properties file; by default, it is set automatically to the value of the sitesToIndex property of the associated

EndecaIndexingOutputConfig component. If sitesToIndex is null, CategoryTreeService instead uses

the rootCatalogsRQLString property to determine the catalogs.

rootCatalogsRQLString

An RQL query that returns a list of catalogs. If sitesForCatalogs is null, the catalogs returned from this query

are used. The query is set by default to:

rootCatalogsRQLString=\
 directParentCatalogs IS NULL AND parentCategories IS NULL

If sitesForCatalogs and rootCatalogsRQLString are both null, CategoryTreeService uses the

rootCatalogIds property to determine the catalogs.

rootCatalogIds

An explicit list of catalog IDs of the catalogs to use. This list is used if sitesForCatalogs and

rootCatalogsRQLString are both null. By default, rootCatalogIds is set to null.

RepositoryTypeDimensionExporter

This section describes key properties of the

atg.endeca.index.dimension.RepositoryTypeHierarchyExporter class and the default configuration

of the /atg/commerce/endeca/index/RepositoryTypeDimensionExporter component of this class.

36 4 Configuring the Indexing Components

dimensionName

The name to give the dimension created from the hierarchy of repository item types. This property is set by

linking to the recordTypeName property of the/atg/endeca/ApplicationConfiguration component:

dimensionName^=/atg/endeca/ApplicationConfiguration.recordTypeName

If you want to change the value of the dimensionName property, you should do so by changing the value of

ApplicationConfiguration.recordTypeName to ensure that other properties that link to it are changed as

well.

indexingOutputConfig

The component of class atg.endeca.index.EndecaIndexingOutputConfig whose definition file should be

used for generating dimension value records from the repository item-type hierarchy. Set by default to:

indexingOutputConfig=/atg/commerce/search/ProductCatalogOutputConfig

documentSubmitter

The component (typically of class atg.endeca.index.RecordStoreDocumentSubmitter) to use to submit

records to the CAS dimension values record store. (See Document Submitter Components (page 37) for more

information.) Set by default to:

documentSubmitter=/atg/endeca/index/DimensionDocumentSubmitter

SchemaExporter

The following describes key properties of the atg.endeca.index.schema.SchemaExporter class and the

default configuration of the /atg/commerce/endeca/index/SchemaExporter component of this class:

indexingOutputConfig

The component of class atg.endeca.index.EndecaIndexingOutputConfig whose definition file should be

used for generating schema records. Set by default to:

indexingOutputConfig=/atg/commerce/search/ProductCatalogOutputConfig

documentSubmitter

The component (typically of class atg.endeca.index.ConfigImportDocumentSubmitter) to use to submit

schema data to the Endeca Configuration Repository. (See Document Submitter Components (page 37) for

more information.) Set by default to:

documentSubmitter=/atg/endeca/index/ConfigImportDocumentSubmitter

4 Configuring the Indexing Components 37

dimensionNameProviders

An array of components of classes that implement the

atg.endeca.index.schema.DimensionNameProvider interface. SchemaExporter uses these components

to create references from attribute names to dimension names.

By default, dimensionNameProviders is set to:

dimensionNameProviders+=RepositoryTypeDimensionExporter

Document Submitter Components

As described above, each component that generates records has a documentSubmitter

property that is set by default to a component of a class that implements the

atg.repository.search.indexing.DocumentSubmitter interface. These components perform two main

functions:

• Converting the output from the formats used by the older Forge-based deployment template to the formats

used by the CAS-based deployment template.

• Submitting the data to Guided Search for indexing.

The Guided Search integration includes several DocumentSubmitter components:

• The /atg/endeca/index/DataDocumentSubmitter and /atg/

endeca/index/DimensionDocumentSubmitter components are of class

atg.endeca.index.RecordStoreDocumentSubmitter. This class submits records to CAS using the Record

Store API. The DimensionDocumentSubmitter component is configured to rename the dimension value

properties in the submitted records to reflect the naming conventions used with CAS-based deployment

templates

• The /atg/endeca/index/ConfigImportDocumentSubmitter component is of class

atg.endeca.index.ConfigImportDocumentSubmitter. This component converts schema records to

the format used by Endeca Configuration Repository and submits the schema configuration to it using the

Configuration Import API.

In addition, the Guided Search integration includes the

atg.repository.search.indexing.submitter.FileDocumentSubmitter class, which you can use to

submit records to files for debugging purposes.

This section discusses the various document submitter classes and components.

RecordStoreDocumentSubmitter

The following are key properties of the RecordStoreDocumentSubmitter components.

indexingApplicationConfiguration

The component of class atg.endeca.index.configuration.IndexingApplicationConfiguration used

to configure indexing settings for the integration. The default setting is:

38 4 Configuring the Indexing Components

indexingApplicationConfiguration=\
 /atg/endeca/index/IndexingApplicationConfiguration

endecaDataStoreType

The type of the record store to submit to. This property is set to data for the DataDocumentSubmitter

component, and dimval for the DimensionDocumentSubmitter component.

idPropertyName

The record property whose value is used as the unique identifier for the record. For the

DimensionDocumentSubmitter component, this property is set to Endeca.id. For the

DataDocumentSubmitter component, this property is set to record.id by linking to the recordIdName

property of the /atg/endeca/ApplicationConfiguration component:

idPropertyName^=/atg/endeca/ApplicationConfiguration.recordIdName

If you want to change the value of DataDocumentSubmitter.idPropertyName, you should do so by

changing the value of ApplicationConfiguration.recordIdName to ensure that other properties that link

to it are changed as well.

propertyNameReplacementMap

By default, the /atg/commerce/endeca/index/CategoryToDimensionOutputConfig and /atg/

commerce/endeca/index/RepositoryTypeDimensionExporter components output dimension value

records whose property names reflect the older Forge-based deployment template rather than the CAS-based

template currently recommended. To support the naming conventions used with CAS-based deployment

templates, the propertyNameReplacementMap property of the DimensionDocumentSubmitter component

is used to map the older-style names to the new ones. By default, this property is set as follows:

propertyNameReplacementMap=\
 dimval.qualified_spec=Endeca.Id,\
 dimval.dimension_spec=dimval.dimension_name,\
 dimval.prop.category.ancestorCatalogIds=category.ancestorCatalogIds,\
 dimval.prop.category.rootCatalogId=category.rootCatalogId,\
 dimval.prop.displayName_es=displayName_es,\
 dimval.prop.displayName_en=displayName_en,\
 dimval.prop.displayName_de=displayName_de,\
 dimval.prop.category.repositoryId=category.repositoryId,\
 dimval.prop.category.catalogs.repositoryId=category.catalogs.repositoryId,\
 dimval.prop.category.siteId=category.siteId

So, for example, when the CategoryToDimensionOutputConfig component outputs a

dimval.dimension_spec property in the records it generates, DimensionDocumentSubmitter converts the

property name to dimval.dimension_name before submitting the records.

The propertyNameReplacementMap property of the DataDocumentSubmitter component is null by default,

because the new naming conventions affect only the properties of dimension value records, not data records.

flushAfterEveryRecord

A boolean that specifies whether to flush the buffer used by the connection to CAS after each record is

processed. This property is set by default to false. Setting it to true during debugging can be helpful for

determining which records are being rejected by CAS, because the errors will be isolated to specific records.

4 Configuring the Indexing Components 39

enabled

A boolean that specifies whether this component is enabled. This property is set by default to true, but it

can be set to false to always report success without submitting records to CAS. (This is useful for debugging

purposes when a CAS instance is not available.)

Reducing Logging Messages

In order to write records to the CAS record stores, the atg.endeca.index.RecordStoreDocumentSubmitter

class imports classes from the Guided Search com.endeca.itl.record and com.endeca.itl.recordstore

packages. These classes make use of the Apache CXF framework.

Using the default CXF configuration results in a large number of informational logging

messages. The volume of the messages can result in problems, such as locking up of the terminal

window. Therefore, it is a good idea to reduce the number of logging messages by setting

the logging level of the org.apache.cxf.interceptor.LoggingInInterceptor and

org.apache.cxf.interceptor.LoggingOutInterceptor loggers to WARNING.

The way to set these logging levels differs depending on your application server. See the documentation for

your application for information.

ConfigImportDocumentSubmitter

The following are key properties of the ConfigImportDocumentSubmitter component. Note that in order to

submit schema configuration to the Endeca Configuration Repository, ConfigImportDocumentSubmitter

must access the credential store for the Oracle Commerce Workbench to obtain login information. This

credential store is specified through properties of the /atg/endeca/ApplicationConfiguration

component. See Configuring the ApplicationConfiguration Component (page 4) for more information.

indexingApplicationConfiguration

The component of class atg.endeca.index.configuration.IndexingApplicationConfiguration used

to configure indexing settings for the integration. The default setting is:

indexingApplicationConfiguration=\
 /atg/endeca/index/IndexingApplicationConfiguration

workbenchImportOwner

The import owner associated with the submitted schema configuration. (The import owner identifies the source

of the configuration.) This property is set by default to:

workbenchImportOwner=ATG

For more information about the import owner, see the Oracle Commerce Guided Search Administrator’s Guide.

FileDocumentSubmitter

To help optimize and debug your output, you can have the generated records sent to files rather than to the

Guided Search record stores. Doing this enables you to examine the output without triggering indexing, so you

can determine if you need to make changes to the configuration of the record-generating components.

40 4 Configuring the Indexing Components

To direct output to files, create a component of class

atg.repository.search.indexing.submitter.FileDocumentSubmitter, and set

the documentSubmitter property of the record-generating components to point to the

FileDocumentSubmitter component. A separate file is created for each record generated.

Note that the output records reflect the naming conventions and data formats used with Forge-

based deployment templates, because the renaming and conversions done by the other document

submitters do not occur. Therefore, if you are using a CAS-based deployment template, the output

from FileDocumentSubmitter may not match the records actually submitted to Guided Search by

DimensionDocumentSubmitter and ConfigImportDocumentSubmitter.

The location and names of the files are automatically determined based on the following properties of

FileDocumentSubmitter:

baseDirectory

The pathname of the directory to write the files to.

filePrefix

The string to prepend to the name of each generated file. Default is the empty string.

fileSuffix

The string to append to the name of each generated file. Set this as follows:

fileSuffix=.xml

nameByRepositoryId

If true, each filename will be based on the repository ID of the item the file represents. If false (the default),

files are named 0.xml, 1.xml, etc.

overwriteExistingFiles

If true, if the generated filename matches an existing file, the existing file will be overwritten by the new file. If

false (the default), the new file will be given a different name to avoid overwriting the existing file.

EndecaScriptService

The /atg/commerce/endeca/index/EndecaScriptService component (of class

atg.endeca.eacclient.ScriptIndexable) is responsible for invoking EAC scripts that trigger indexing.

The following are key properties of this component.

EACScriptTimeout

The maximum amount of time (in milliseconds) to wait for an EAC script to complete execution before throwing

an exception. Set by default to 1800000 (1 hour). For large indexing jobs, you may need to increase this value to

ensure EndecaScriptService does not time out before indexing completes.

4 Configuring the Indexing Components 41

enabled

A boolean that specifies whether this component is enabled. This property is set by default to true, but it can

be set to false to always report success without invoking a script. (This is useful for debugging purposes when

an EAC instance is not available.)

indexingApplicationConfiguration

The component of class atg.endeca.index.configuration.IndexingApplicationConfiguration used

to configure indexing settings for the integration. The default setting is:

indexingApplicationConfiguration=\
 /atg/endeca/index/IndexingApplicationConfiguration

ProductCatalogSimpleIndexingAdmin

The /atg/commerce/endeca/index/ProductCatalogSimpleIndexingAdmin component (of class

atg.endeca.index.admin.SimpleIndexingAdmin) manages the process of generating records, submitting

them to Guided Search, and invoking indexing. The page for this component in the Component Browser of the

Dynamo Server Admin presents a simple user interface for controlling and monitoring the process.

The SimpleIndexingAdmin class defines indexing in terms of an indexing job, which is made of up indexing

phases, which in turn contain indexing tasks. Each indexing task is responsible for executing an individual

Indexable component. Tasks within a phase may run in sequence or in parallel, but in either case all tasks in a

phase must complete before the next phase can begin.

By default, the ProductCatalogSimpleIndexingAdmin defines three phases:

1. PreIndexing -- Runs /atg/commerce/endeca/index/CategoryTreeService.

2. RepositoryExport -- Runs these components in parallel:

• /atg/commerce/endeca/index/SchemaExporter

• /atg/commerce/endeca/index/CategoryToDimensionOutputConfig

• /atg/commerce/endeca/index/RepositoryTypeDimensionExporter

• /atg/commerce/search/ProductCatalogOutputConfig

3. EndecaIndexing -- Runs /atg/commerce/endeca/index/EndecaScriptService, which invokes Guided

Search indexing scripts.

ProductCatalogSimpleIndexingAdmin reports information about an indexing job, such as the start and

finish time of the job, the duration of each phase, the status of each task, and the number of records submitted.

You can invoke indexing jobs manually through the ProductCatalogSimpleIndexingAdmin user interface.

In addition, the SimpleIndexingAdmin class implements the atg.service.scheduler.Schedulable

interface, so it is also possible to configure the ProductCatalogSimpleIndexingAdmin component to invoke

indexing jobs automatically on a specified schedule. (See the Platform Programming Guide for information about

the Schedulable interface and other Scheduler services.)

42 4 Configuring the Indexing Components

Key configuration properties of ProductCatalogSimpleIndexingAdmin include:

phaseToPrioritiesAndTasks

This property defines the phases and tasks of an indexing job, and the order in which the phases are executed. It

is a comma-separated list of phases, where the format of each phase definition is:

phaseName=priority:Indexable1;Indexable2;...;IndexableN

Phases are executed in priority order, with lower number priorities executed first.

By default, this is set to:

phaseToPrioritiesAndTasks=\
 PreIndexing=5:CategoryTreeService,\
 RepositoryExport=10:\
 SchemaExporter;\
 CategoryToDimensionOutputConfig;\
 RepositoryTypeDimensionExporter;\
 /atg/commerce/search/ProductCatalogOutputConfig,\
 EndecaIndexing=15:EndecaScriptService

runTasksWithinPhaseInParallel

A boolean that controls whether to run tasks within a phase in parallel. Set to true by default. If set to false,

the tasks are executed in sequence, in the order specified in the phaseToPrioritiesAndTasks property.

Setting runTasksWithinPhaseInParallel to false can simplify debugging, because when tasks are run in

parallel, logging messages from multiple components may be interspersed, making them difficult to read.

enableScheduledIndexing

A boolean that controls whether to invoke indexing automatically on a specified schedule. Set to false by

default.

baselineSchedule

A String that specifies the schedule for performing baseline updates. Set to null by default. If you set

enableScheduledIndexing to true, set baselineSchedule to a String that conforms to one of the

formats accepted by classes implementing the atg.service.scheduler.Schedule interface, such as

atg.service.scheduler.CalendarSchedule or atg.service.scheduler.PeriodicSchedule. For

example, to schedule a baseline update to run every Sunday at 11:30 pm:

baselineSchedule=calendar * * 7 * 23 30

partialSchedule

A String that specifies the schedule for performing partial updates. The format for the String is the same as the

format used for baselineSchedule. Set to null by default.

retryInMs

The amount of time (in milliseconds) to wait before retrying a scheduled indexing job if the first attempt

to execute it fails. Set by default to -1, which means no retry. If you change this value, you should set it to a

4 Configuring the Indexing Components 43

relatively short amount of time to ensure that the indexing job completes before the next scheduled job begins.

If ProductCatalogSimpleIndexingAdmin estimates that the retried job will not complete before the next

scheduled job, it skips the retry.

jobQueue

Specifies the component that manages queueing of index jobs. Set by default to /atg/endeca/index/

InMemoryJobQueue. See Queueing Indexing Jobs (page 43) for more information.

indexingMessageSource

A component of class atg.endeca.index.events.IndexingMessageSource that sends a JMS message

when an indexing job completes. By default, this property is null, but you can set it to the /atg/endeca/

index/events/IndexingMessageSource component that is included with the Oracle Commerce Platform.

This message source is preconfigured in Patch Bay.

Note, however, that there is no message sink preconfigured to listen for events sent by

IndexingMessageSource. The Oracle Commerce Platform does provide an abstract class,

atg.endeca.index.events.IndexingMessageSink, that you can extend to listen for indexing events. You

will also need to create a component from the class you create and configure the message sink in Patch Bay.

For more information about JMS and Patch Bay, see the Oracle Commerce Platform Message System chapter in the

Platform Programming Guide.

Queueing Indexing Jobs

In certain cases, an indexing job cannot be executed immediately when it is invoked:

• If there is currently another indexing job running

• If an ATG Content Administration deployment is in progress

To handle these cases, ProductCatalogSimpleIndexingAdmin invokes the /atg/

endeca/index/InMemoryJobQueue component. This component, which is of class

atg.endeca.index.admin.InMemoryJobQueue, implements a memory-based indexing job queue that

manages these jobs on a first-in, first-out basis.

In addition, the queue handles the case where an indexing job is in progress when an ATG Content

Administration deployment is started. In this situation, the job in progress is stopped, moved to the top of the

queue (ahead of any other pending jobs), and restarted when the deployment is complete.

Queued jobs are listed on the ProductCatalogSimpleIndexingAdmin page in the Component Browser of

the Dynamo Server Admin. In the following example, an indexing job has been stopped due to an ATG Content

Administration deployment, and moved to the queue to be restarted once the deployment completes:

44 4 Configuring the Indexing Components

ATG Content Administration Components

If your environment includes ATG Content Administration, be sure to include the

DCS.Endeca.Index.Versioned module when you assemble the EAR file for your ATG Content Administration

server. This module enables indexing jobs to be triggered automatically after a deployment, ensuring that

changes deployed from ATG Content Administration are reflected in the index as quickly as possible. A full

deployment triggers a baseline update, and an incremental deployment triggers a partial update.

Indexing can be configured to trigger either locally (on the ATG Content Administration server itself) or

remotely (on the staging or production server). Note that even when indexing is executed on the ATG Content

Administration server, the catalog repository that is indexed is the unversioned deployment target (/atg/

commerce/catalog/ProductCatalog_production), not the versioned repository.

The Guided Search integration includes the /atg/search/repository/IndexingDeploymentListener

component, which is of class atg.epub.search.indexing.IndexingDeploymentListener. This

component listens for deployment events and, depending on the repositories involved, triggers one or more

indexing jobs.

The IndexingDeploymentListener component has a remoteSynchronizationInvokerService

property that is set by default to /atg/search/SynchronizationInvoker. The SynchronizationInvoker

component, which is of class atg.search.core.RemoteSynchronizationInvokerService, controls

whether indexing is invoked on the local (ATG Content Administration) server or on a remote system (such as the

production server).

Specifying the Deployment Target

After you set your ATG Content Administration deployment topology and perform site initialization, configure

the components of class atg.endeca.index.EndecaIndexingOutputConfig on the ATG Content

4 Configuring the Indexing Components 45

Administration server with the name of the deployment target. You typically set the targetName property of

each EndecaIndexingOutputConfig component to Production:

targetName=Production

After setting the targetName properties, restart the Content Administration server so these settings take effect.

When you restart, the unversionedRepositoryPath and versionedRepositoryPath properties of each

EndecaIndexingOutputConfig component are automatically set, based on the deployment topology. These

settings are needed in order for incremental loading to work properly.

Enabling Local Indexing

For local indexing (the default configuration), the SynchronizationInvoker component

invokes the /atg/endeca/index/LocalSynchronizationInvoker component on the

ATG Content Administration server to trigger the indexing job. This component, which is

of class atg.endeca.index.LocalSynchronizationInvoker, is specified through the

localSynchronizationInvoker property of the SynchronizationInvoker component:

localSynchronizationInvoker=/atg/endeca/index/LocalSynchronizationInvoker

The following diagram illustrates the configuration for local indexing:

Enabling Remote Indexing

To enable remote indexing, modify the configuration of the SynchronizationInvoker component on the ATG

Content Administration system so that it points to a SynchronizationInvoker component on the remote

system, and configure the remote SynchronizationInvoker to point to a LocalSynchronizationInvoker

on the remote system:

46 4 Configuring the Indexing Components

• On the ATG Content Administration system, set the SynchronizationInvoker.host property

to the host name of the remote system, and set the SynchronizationInvoker.port property

to the RMI port number to use for communication between systems. It is also a good idea to set

the SynchronizationInvoker.localSynchronizationInvoker property on the ATG Content

Administration system to null, to ensure local indexing is not triggered.

• On the remote system, ensure that the SynchronizationInvoker.localSynchronizationInvoker

property is set to /atg/endeca/index/LocalSynchronizationInvoker.

The following diagram illustrates the configuration for remote indexing:

Triggering Indexing on Deployment

The following steps describe how indexing is triggered when a deployment occurs:

1. The IndexingDeploymentListener component detects the event.

2. The IndexingDeploymentListener examines the event to see the list of repositories being deployed.

3. The IndexingDeploymentListener compiles a list of the EndecaIndexingOutputConfig components

that are associated with any of those repositories.

4. The IndexingDeploymentListener invokes the LocalSynchronizationInvoker component.

5. The LocalSynchronizationInvoker looks at the list of EndecaIndexingOutputConfig components

and compiles a list of SimpleIndexingAdmin components that are associated with any of the

EndecaIndexingOutputConfig components.

6. The LocalSynchronizationInvoker triggers an indexing job on each SimpleIndexingAdmin

component in the list.

Note that the lists of EndecaIndexingOutputConfig and SimpleIndexingAdmin components are not

configured explicitly. Instead, the SimpleIndexingAdmin components are automatically registered with the

4 Configuring the Indexing Components 47

LocalSynchronizationInvoker, and the EndecaIndexingOutputConfig components are automatically

registered with the LocalSynchronizationInvoker and the IndexingDeploymentListener.

Viewing Records in the Component Browser

For debugging purposes, you can use the Component Browser of the Dynamo Server Admin to view records

without submitting them to Guided Search. To do this, access the page for a component that generates records

and follow the instructions below.

Note that the records displayed reflect the naming conventions and data formats used with Forge-based

deployment templates, because the renaming and conversions done by DimensionDocumentSubmitter

and ConfigImportDocumentSubmitter do not occur. Therefore, if you are using a CAS-

based deployment template, the displayed records for CategoryToDimensionOutputConfig,

RepositoryTypeDimensionExporter, and SchemaExporter may not match the records actually submitted

to Guided Search.

ProductCatalogOutputConfig or CategoryToDimensionOutputConfig

The pages for the ProductCatalogOutputConfig and CategoryToDimensionOutputConfig components

include a Test Document Generation section that you can use to view the output for a single repository item:

Fill in the repository ID of a product item (for the ProductCatalogOutputConfig component) or a category

item (for the CategoryToDimensionOutputConfig component), and click Generate. The page will display the

output records.

Click the Show Indexing Output Properties link to see descriptions of how the GSA repository-item properties

are renamed in the Guided Search records, based on the values of various EndecaIndexingOutputConfig

properties. (See the EndecaIndexingOutputConfig Components (page 28) section for information about

these properties.)

RepositoryTypeDimensionExporter or SchemaExporter

The pages for the RepositoryTypeDimensionExporter and SchemaExporter components include a Show

XML Output link. Each of these components produces a single output for the entire catalog. Click the link to view

the output from the component.

48 4 Configuring the Indexing Components

5 Configuring EndecaIndexingOutputConfig Definition Files 49

5 Configuring

EndecaIndexingOutputConfig

Definition Files

This chapter describes various elements and attributes of EndecaIndexingOutputConfig XML definition files

that you can use to control the content of the output records created from the product catalog. It includes the

following sections:

Definition File Format (page 49)

Specifying Guided Search Schema Attributes (page 51)

Specifying Properties for Indexing (page 52)

Definition File Format

An EndecaIndexingOutputConfig indexing definition file begins with a top-level item element that specifies

the item descriptor to create records from, and then lists the properties of that item type to include. The

properties appear as property elements within a properties element.

The top-level item element in the definition file can contain child item elements for properties that refer to

other repository items (or arrays, Collections, or Maps of repository items). Those child item elements in turn can

contain property and item elements themselves.

The following example shows a simple definition file for indexing a product catalog repository:

<item item-descriptor-name="product" is-document="true">
 <properties>
 <property name="creationDate" type="date"/>
 <property name="brand" is-dimension="true" type="string"
 text-searchable="true"/>
 <property name="description" text-searchable="true"/>
 <property name="longDescription" text-searchable="true"/>
 <property name="displayName" text-searchable="true"/>
 </properties>

 <item is-multi="true" property-name="childSKUs">
 <properties>

50 5 Configuring EndecaIndexingOutputConfig Definition Files

 <property name="quantity" type="integer"/>
 <property name="description" text-searchable="true"/>
 <property name="displayName" text-searchable="true"/>
 <property name="color" is-dimension="true" type="string"
 text-searchable="true"/>
 </properties>

 <item is-multi="true" property-name="parentCategories"
 parent-property="childProducts">
 <properties>
 <property name="description" text-searchable="true"/>
 <property name="longDescription" text-searchable="true"/>
 <property name="displayName" text-searchable="true"/>
 </properties>
 </item>
</item>

Note that in this example, the is-document attribute of the top-level item element is set to true. This attribute

specifies that a record should be generated for each item of that type (in this case, each product item). This

means that each record indexed by Guided Search corresponds to a product, so that when a user searches

the catalog, each individual result returned represents a product. The definition file specifies that each output

record should include information about the product’s parent categories and child SKUs (as well as the product

itself), so that users can search category or SKU properties in addition to product properties.

If, instead, you want to generate a separate record per sku item, you set is-document to true for the

childSKUs item element and to false for the product item element. In that case, the product properties

(such as brand in the example above) are repeated in each record.

When you configure the Guided Search integration in CIM, you select whether to index by product or SKU.

Your selection determines whether certain application modules are included in your EAR files. These modules

configure the is-document attributes and other related settings appropriately for the option you select. See

Oracle Commerce Platform Modules (page 7) for information about these modules.

Automatically Included Properties

In addition to the properties you specify in the definition file, records generated by the Oracle Commerce

Platform also automatically include a few special properties that identify the document-level repository items

represented in the records. These properties initially include a dollar-sign ($) character in their names, but are

renamed for inclusion in the submitted records, because this character is not valid in Guided Search property

names. These renamed output properties include the following:

• record.id – Output name of the $docId property, whose value is used to uniquely identify a

record. The output name is specified through the recordIdName property of the /atg/endeca/

ApplicationConfiguration component.

• record.source – Output name of the $repository.repositoryName property, whose value identifies the

name of the source repository (for example, ProductCatalog).

• record.type – Output name of the $itemDescriptor.itemDescriptorName property, whose value

identifies the repository item type used to generate the record. This property is included for the document-

level item type and any subtypes of that item type. (For example, in Oracle Commerce Reference Store,

record.type values appear for the sku item type and the clothing-sku and furniture-sku subtypes.)

• item-type.siteId – Output name for item-type.$siteId properties, which contain repository IDs for

the sites the items are associated with. See Including siteId Properties (page 56) for more information.

5 Configuring EndecaIndexingOutputConfig Definition Files 51

• item-type.url and item-type.baseUrl – Output names for item-type.$url and item-type.

$baseUrlproperties, which contain the URLs for the repository items the records represent. The difference

between an item-type.url property and the corresponding item-type.baseUrl property (such as

product.url and product.baseUrl) is that the url property includes query parameters and the baseUrl

property does not. This means that if a VariantProducer is used to generate multiple records from the same

repository item, product.baseUrl will be the same for each record, but the product.url query parameters

will differ between records, making it possible to distinguish each record from the others.

If you want to include any of these properties for item types other than the document-level one, you can

add them through the definition file. For example, if you enable SKU-based indexing by including the

DCS.Endeca.Index.SKUIndexing module, some of these properties are output for products as well as SKUs,

because they are explicitly declared in the ProductCatalogOutputConfig definition file.

You may also want to explicitly declare properties even if they are included automatically, so you can specify

certain attributes (such as setting the is-dimension property to true, as discussed in the next section) or

override the default output name. You can also suppress the inclusion of automatically included properties by

setting the suppress attribute to true, as discussed in Suppressing Properties (page 56).

In addition to the properties listed above, which are output only for the document-level item type, item-

type.repositoryId properties are automatically included for all item types included in the records.

These properties are the output names for item-type.$repositoryId properties, which contain the

repository IDs for the repository items the records represent. For example, a record for a product might include

product.repositoryId, sku.repositoryId, and allAncestors.repositoryId properties.

Specifying Guided Search Schema Attributes

You can use various attributes of the property element to specify the way properties of repository items should

be treated in the MDEX. The SchemaExporter component then uses the values of these attributes in the

schema configuration it creates.

To specify the data type of a property, you use the type attribute. The value of this attribute can be date,

string, boolean, integer, or float. For example:

<property name="quantity" type="integer"/>

If a type value is not specified, it defaults to string.

You can designate a property as searchable, as a dimension, or both. To make a property searchable, set the

text-searchable attribute to true. To make a property a Guided Search dimension, set the is-dimension

attribute to true. In the following example, the color property is both a dimension and searchable:

<property name="color" is-dimension="true" text-searchable="true"/>

If is-dimension is true, you can use the multiselect-type attribute to specify whether the customer can

select multiple values of the dimension at the same time. The value of this attribute can be multi-or (combine

using Boolean OR), multi-and (combine using Boolean AND), or none (the default, meaning multiselect is not

supported for this dimension). For example:

<property name="brand" is-dimension="true" multiselect-type="multi-or"/>

52 5 Configuring EndecaIndexingOutputConfig Definition Files

Multiselect logic works as follows:

• Combining with Boolean OR returns results that match any of the selected values. For example, for a color

dimension, if the user selects yellow and orange, a given item is returned if its color value is yellow or

orange.

• Combining with Boolean AND returns results that match all of the selected values. For example, suppose

a product representing a laser printer has a paperSizes property that is an array of the paper sizes the

printer accepts, and you have a dimension based on this property. If the user selects A4 and letter for this

dimension, a given item is returned only if its paperSizes property includes both letter and A4.

Automatically Generating Dimension Values

If is-dimension is true for a repository item property, by default Guided Search examines the data and

automatically generates non-hierarchical dimension values for the values of that property. For example, if the

color property has values of orange, yellow, and blue, three dimension values are generated, representing

the values of the property.

For a hierarchical dimension, though, the dimension value records must be explicitly created by the Guided

Search integration. This is done by the CategoryToDimensionOutputConfig component (for the product

categories) and the RepositoryTypeDimensionExporter component (for the catalog repository item-type

hierarchy).

To prevent automatic generation of dimension values for a property, set the autogen-dimension-values

attribute to false. For example, the dimension for the repository item-type hierarchy is defined like this:

<property autogen-dimension-values="false"
 name="$itemDescriptor.itemDescriptorName" is-dimension="true"/>

Specifying Properties for Indexing

This section discusses how to specify various properties of catalog items for inclusion in the MDEX, and options

for how these properties should be handled.

Specifying Multi-Value Properties

In most cases, you specify a multi-value property, such as an array or Collection, using the property element,

just as you specify a single-value property. In the following example, the features property stores an array of

Strings:

<properties>
 <property name="creationDate" type="date"/>
 <property name="brand" is-dimension="true" type="string"
 text-searchable="true"/>
 <property name="displayName" type="string" text-searchable="true"/>
 <property name="features" type="string" text-searchable="true"/>
</properties>

Notice that features is specified in the same way as creationDate, brand, and displayName, which are all

single-value properties. The output will include a separate entry for each value in the features array.

5 Configuring EndecaIndexingOutputConfig Definition Files 53

If a property is an array or Collection of repository items, you specify it using the item element, and set the is-

multi attribute to true. For example, in a product catalog, a product item will typically have a multi-valued

childSKUs property whose values are the various SKUs for the product. You might specify the property like this:

<item property-name="childSKUs" is-multi="true">
 <properties>
 <property name="color" is-dimension="true" type="string"
 text-searchable="true"/>
 <property name="description" type="string" text-searchable="true"/>
 </properties>
</item>

If you index by product, the output records will include the color and description value for each of the

product’s SKUs.

Specifying Map Properties

To specify a Map property, you use the item element, set the is-multi attribute to true, and use the map-

iteration-type attribute to specify how to output the Map entries. If the Map values are primitives or Strings,

set map-iteration-type to wildcard, as in this example:

<item property-name="personalData" is-multi="true" map-iteration-type="wildcard">
 <properties>
 <property name="*" type="string"/>
 </properties>
</item>

In the output, the Map keys are treated as subproperties of the Map property, and the Map values are treated as

the values of these subproperties. All of the Map entries are included in the output. So, for example, the output

from the definition file entry shown above might look like this:

<PROP NAME="personalData.firstName">
 <PVAL>Fred</PVAL>
</PROP>
<PROP NAME="personalData.age">
 <PVAL>37</PVAL>
</PROP>
<PROP NAME="personalData.height">
 <PVAL>68</PVAL>
</PROP>

If you want to output only a subset of the Map entries, explicitly specify the keys to include, rather than using

the wildcard character (*). For example:

<item property-name="personalData" is-multi="true" map-iteration-type="wildcard">
 <properties>
 <property name="firstName" type="string" text-searchable="true"/>
 <property name="height" type="string"/>
 </properties>
</item>

54 5 Configuring EndecaIndexingOutputConfig Definition Files

Maps of Repository Items

If the Map values are repository items, set map-iteration-type to values, and specify the properties of

the repository item that you want to output. For example, suppose you want to index a productInfos Map

property whose keys are product IDs and whose values are productInfo items:

<item property-name="productInfos" is-multi="true" map-iteration-type="values">
 <properties>
 <property name="displayName" type="string" text-searchable="true"/>
 <property name="size" type="integer" is-dimension="true"/>
 </properties>
</item>

The output will include displayName and size tags for each productInfo item in the Map. In this case, the

Map keys are ignored, the properties of the repository items are treated as subproperties of the Map property,

and the values of the items are treated as the values of the subproperties. The output looks like this:

<PROP NAME="productInfos.displayName">
 <PVAL>Funny Hat</PVAL>
</PROP>
<PROP NAME="productInfos.size">
 <PVAL>8</PVAL>
</PROP>
<PROP NAME="productInfos.displayName">
 <PVAL>Clown Shoes</PVAL>
</PROP>
<PROP NAME="productInfos.size">
 <PVAL>14</PVAL>
</PROP>

Specifying Properties of Item Subtypes

A repository item type can have subtypes that include additional properties that are not part of the base item

type. This feature is commonly used in the Oracle Commerce Platform catalog for the SKU item type. A SKU

subtype might add properties that are specific to certain SKUs but which are not relevant for other SKUs.

When you list properties to index, you can use the subtype attribute of the property element to specify

properties that are unique to a specific item subtype. For example, suppose you have a furniture-sku subtype

that adds properties specific to furniture SKUs. You might specify your SKU properties like this:

<item property-name="childSKUs">
 <properties>
 <property name="description" type="string" text-searchable="true"/>
 <property name="color" type="string" text-searchable="true"
 is-dimension="true"/>
 <property name="woodFinish" subtype="furniture-sku" type="string"
 text-searchable="true"/>
 </properties>
</item>

This specifies that the description and color properties should be included in the output for all SKUs, but for

SKUs whose subtype is furniture-sku, the woodFinish property should also be included.

5 Configuring EndecaIndexingOutputConfig Definition Files 55

The item element also has a subtype attribute for specifying a subtype-specific property whose value is a

repository item. If woodFinish is a repository item, the example above would look something like this:

<item property-name="childSKUs">
 <properties>
 <property name="description" type="string" text-searchable="true"/>
 <property name="color" type="string" text-searchable="true"
 is-dimension="true"/>
 </properties>
 <item property-name="woodFinish" subtype="furniture-sku"/>
 <properties>
 <property name="texture" type="string" text-searchable="true"/>
 <property name="stainType" type="string" text-searchable="true"/>
 </properties>
 </item>
</item>

Specifying a Default Property Value

You may find it useful to specify a default value for certain indexed properties. For example, suppose you are

indexing address data, and for some addresses no value appears in the repository for the city property. In

these cases, you could set the property value in the index to be “city unknown.” A user could then search for this

phrase and return the addresses whose city property is null.

To set a default value, you use the default-value attribute of the property element. For example:

<property name="city" type="string" text-searchable="true"
 default-value="city unknown"/>

Specifying Non-Repository Properties

When you index a repository, you can include in the index additional properties that are not part of the

repository itself. For example, you might want to include a creationDate property to record the current time

when a record is created. The value for this property could be generated by a custom property accessor that

invokes the Java Date class.

To specify a property like this, use the is-non-repository-property attribute of the property element.

This attribute indicates that the property is not actually stored in the repository, and prevents warnings from

being thrown when the EndecaIndexingOutputConfig component starts up. Note that you must also specify

a custom property accessor that is responsible for obtaining the property values:

<property name="creationDate" is-non-repository-property="true"
 type="date" property-accessor="dateAccessor"/>

If no actual property accessor is needed, set the property-accessor attribute to null. For example, you might

do this if you have a default value that you always want to use for the property:

<property name="creationDate" is-non-repository-property="true"
 type="date" default-value="Mon Mar 15 16:07:15 EDT 2010"

56 5 Configuring EndecaIndexingOutputConfig Definition Files

 property-accessor="null"/>

See Using Property Accessors (page 61) for more information about custom property accessors.

Suppressing Properties

The output records automatically include certain special repository item properties, as discussed in

Automatically Included Properties (page 50). These properties provide information that identifies the

repository items represented in a record, and they are indicated by a dollar-sign ($) prefix: for example,

$repositoryId and $url. The dollar signs are removed by default in the output records, because Guided

Search property names cannot include them, and in some cases the properties are renamed.

You may want to return these properties in search results, to enable accessing the indexed repository and

repository items in page code. If you do not need a property, it is a good idea to exclude it from the index, as it

may significantly increase the size of the index. For example, most of these properties are included only for the

document-level item type, but the $repositoryId property is included for every item type. To suppress it for a

specific item type, use the suppress attribute. For example:

<item property-name="parentCategories" is-document="false">
 <properties>
 <property name="$repositoryId" suppress="true"/>
 </properties>
</item>

Including siteId Properties

If you are using the Oracle Commerce Platform multisite support, many of the item types in the catalog

repository have a context membership property (named siteIds by default) whose value is a comma-

separated list of the repository IDs of the sites an item appears on. For example, if you have three sites whose

repository IDs are siteA, siteB, and siteC, and a certain item is available on siteA and siteC (but not

siteB), the value of the item’s context membership property would be siteA,siteC.

For the document-level item type, the records generated by the Oracle Commerce Platform include special

item-type.$siteId properties that represent the repository item’s context membership property. These

item-type.$siteId properties are renamed to item-type.siteId in the generated records. The records

include a separate item-type.siteId entry for each site listed in the context membership property. For

example:

<PROP NAME="product.siteId">
 <PVAL>
 storeSiteUS
 </PVAL>
</PROP>
<PROP NAME="product.siteId">
 <PVAL>
 storeSiteDE
 </PVAL>
</PROP>

Note that the output records include entries only for sites that are listed in the sitesToIndex property of

the EndecaIndexingOutputConfig component. For example, if the value of a item’s context membership

5 Configuring EndecaIndexingOutputConfig Definition Files 57

property is siteA,siteB,siteC, but sitesToIndex lists only siteB and siteC, the record will not include an

entry for siteA. If an item’s context membership property is null, or if it lists only sites that are not listed in the

sitesToIndex property, no record is generated for the item.

For information about context membership properties, see the Multisite Administration Guide.

Item Types Lacking a Context Membership Property

If an item type does not have a context membership property, another mechanism is needed for including

item-type.siteId values in the generated records. In this situation, you can use the sites-property-name

and sitegroups-property-name attributes of the item element to specify the names of the properties that

hold references to sites and site groups in the site repository.

For example, the Commerce Reference Store location repository has a location item type that represents

the geographic location of a physical store. This item type does not have a context membership property, but

has sites and siteGroups properties that contain references to sites and site groups in the site repository.

Commerce Reference Store indexes location items so customers can use guided navigation to find stores in

specific locations. The indexing definition file includes:

<item item-descriptor-name="location" is-document="true"
 sites-property-name="sites" sitegroups-property-name="siteGroups">

Note that the specified properties must contain references to the actual site and site group items in the site

repository, not the site ID strings.

Renaming an Output Property

By default, the name of a property in an output record is based on its name in the repository, with

modifications applied based on the values of the replaceWithTypePrefixes, prefixReplacementMap,

and suffixReplacementMap properties of the EndecaIndexingOutputConfig component. (See the

EndecaIndexingOutputConfig Components (page 28) section for information about these properties.)

You can instead specify the output property name by using the output-name attribute of the property

element. For example:

<property name="material" output-name="product.fabric"
 text-searchable="true" is-dimension="true"/>

Note that the exact output-name value you specify is used with no modifications. So in this example, the item-

type prefix is explicitly included.

Translating Property Values

In some cases, the property values that you want to include in the index (and therefore in the generated records)

may not be the actual values used in the repository. You may want to normalize values (for example, index the

color values Rose, Vermilion, Crimson, and Ruby all as Red, so they are all treated as the same dimension value).

Or you may want to translate values into another language (for example., index the color value Green as Vert, so

when a customer searches for Vert, green items are returned).

To translate property values for indexing, you use the translate child element of the property element. The

translate element has an input attribute for specifying a property value found in the repository, and an

output attribute for specifying the value to translate this to in the output records. For example:

58 5 Configuring EndecaIndexingOutputConfig Definition Files

<property name="color" text-searchable="true" is-dimension="true">
 <translate input="Rose" output="Red"/>
 <translate input="Vermilion" output="Red"/>
 <translate input="Crimson" output="Red"/>
 <translate input="Ruby" output="Red"/>
</property>

The property element also has prefix and suffix child elements that you can use to append a text string

before or after the output property values. For example, you can use the suffix element to add units to the

property values:

<property name="length">
 <suffix value=" cm"/>
</property>

Note that the prefix and suffix values are concatenated to the property values exactly as specified, with no

additional spaces. If you want spaces before the suffix string or after the prefix string, include the spaces in

the value attribute, as in the example above.

You can use the prefix, suffix, and translate elements individually or in combination. The following

example translates the size values S, M, and L to “size small,” “size medium,” and “size large,” to make it easier for

customers to search for specific sizes:

<property name="size" text-searchable="true" is-dimension="true">
 <prefix value="size "/>
 <translate input="S" output="small"/>
 <translate input="M" output="medium"/>
 <translate input="L" output="large"/>
</property>

Translating Based on Locale

The prefix, suffix, and translate elements all have optional locale attributes that allow you to specify

different values for different locales. For example:

<property name="onSale" is-dimension="true">
 <translate locale="en_US" input="true" output="on sale"/>
 <translate locale="fr_FR" input="true" output="à la vente"/>
</property>
<property name="weight">
 <suffix locale="en_US" output=" grams"/>
 <suffix locale="fr_FR" output=" grammes"/>
</property>

When the records are generated, the EndecaIndexingOutputConfig component determines which tags to

use based on the current locale. So if the locale is en_US, only the tags that specify that locale are applied.

Multilingual environments typically use the LocaleVariantProducer, which generates multiple records

for each indexed item, one record for each locale specified in its locales array property. (See Using Variant

Producers (page 63) for more information.) If the value of the locales array is en_US,fr_FR, two sets of

records are generated, one using the translate, prefix, and suffix tags whose locale is en_US, and one

using the tags whose locale is fr_FR.

5 Configuring EndecaIndexingOutputConfig Definition Files 59

If a tag does not specify a locale, that tag is used as the default when the current locale does not match any of

the other tags. In the following example, Scarlet is translated to Rouge if the locale is fr_FR, but is translated to

Red for any other locale:

<property name="color" text-searchable="true" is-dimension="true">
 <translate input="Scarlet" output="Red"/>
 <translate locale="fr_FR" input="Scarlet" output="Rouge"/>
</property>

Using Monitored Properties

By default, the IncrementalLoader determines which changes necessitate updates by monitoring the

properties specified in the XML definition file. In some cases, however, the properties you want to monitor

are not necessarily the ones that you want to output. This is especially the case if you are outputting derived

properties, because these properties do not have values of their own.

For example, suppose you are indexing a user item type that has firstName and lastName properties, plus a

fullName derived property whose value is formed by concatenating the values of firstName and lastName.

You might want to output the fullName property, but to detect when the value of this property changes, you

need to monitor (but not necessarily output) firstName and lastName.

You can do this by including a monitor element in your definition file to specify properties that should be

monitored but not output. For example:

<properties>
 <property name="fullName" text-searchable="true"/>
</properties>
<monitor>
 <property name="firstName"/>
 <property name="lastName"/>
</monitor>

For information about derived properties, see the Repository Guide.

You can also monitor properties in a different repository from the one being indexed. For example,

if you are using price lists, changes to price items in the price list repository may necessitate

reindexing products or SKUs in the catalog repository that are referenced by these price items. The

atg.repository.search.indexing.listener.QueueingPropertiesChangeListener class provides a

mechanism for triggering reindexing of items in one repository based on changes to items in another repository.

See QueueingPropertiesChangeListener (page 128) in the Handling Price Lists (page 125) chapter for more

information.

Filtering Properties of Specific Repository Items

In some cases, you may want to output the values of a property for some repository items of a certain type but

not for others of that type. For example, you may want to output the value of the longDescription property of

most product items, but omit this property for a few specific product items.

60 5 Configuring EndecaIndexingOutputConfig Definition Files

The Oracle Commerce Platform includes an interface,

atg.repository.search.indexing.IndexingPropertyFilter, for filtering properties of specific

repository items. This interface defines a single method:

filterOutputProperties(RepositoryItem pItem,
 OutputProperty[] pOutputProperties)

This method is used to implement the logic that determines which property values to exclude from output

records.

The Oracle Commerce Platform also includes a class that implements this interface,

atg.repository.search.indexing.filter.GSAPropertyFilter. This class has two properties that are

used to specify the property values to exclude:

idToType

A Map in which the keys are IDs of repository items and the values are their item types.

propsToFilter

A List of the properties of the items specified by idToType whose values should be excluded

from the output. Note that the property names you supply should be the output names used

in records, after any prefix or suffix replacement or property renaming.

Commerce Reference Store includes a component of this class, /atg/commerce/endeca/index/

GSAPropertyFilter, that is configured as follows:

idToType=rootCategory=category,\
 homeStoreRootCategory=category
propsToFilter=allAncestors.displayName

To apply a GSAPropertyFilter component to an item type, you use the filter attribute of the item

element in the EndecaIndexingOutputConfig definition file. For example, Commerce Reference

Store adds this attribute to the ancestorCategories item specification in the definition file of the

ProductCatalogOutputConfig component:

<item is-multi="true" property-name="ancestorCategories"
 filter="/atg/commerce/endeca/index/GSAPropertyFilter">

The filterOutputProperties() method of the GSAPropertyFilter class examines the idToType

property to see which repository items to filter. In Commerce Reference Store, the property is configured so

that filtering is done for the category items whose IDs are rootCategory and homeStoreRootCategory. It

then uses the value of the component’s propsToFilter property to determine which properties to exclude the

values of. propsToFilter is set to allAncestors.displayName, so the value of this property is not output for

the rootCategory and homeStoreRootCategory categories. (This is done to address a problem in Commerce

Reference Store where searching for “root” would return every product in the catalog repository, because that

word appears in the value of the displayName property of both items, and every product has one of these

categories as an ancestor category.)

You can create other components of class GSAPropertyFilter and configure the idToType and

propsToFilter properties to filter different item types and properties, or you can implement different filtering

logic by writing your own class that implements the IndexingPropertyFilter interface.

6 Customizing the Output Records 61

6 Customizing the Output Records

This chapter describes interfaces and classes that can be used to customize the records created by the Guided

Search integration. It discusses the following topics:

Using Property Accessors (page 61)

Using Variant Producers (page 63)

Using Property Formatters (page 67)

Using Property Value Filters (page 68)

In addition to the classes described here, the Guided Search integration includes property accessors and variant

producers for accessing price data in price lists. See the Handling Price Lists (page 125) chapter for more

information.

For additional information about the classes and interfaces described in this chapter, see the ATG Platform API

Reference.

Using Property Accessors

Property values are read from the product catalog through an implementation of the

atg.repository.search.indexing.PropertyAccessor interface. For most properties, the default

is to use the atg.repository.search.indexing.PropertyAccessorImpl class, which just invokes

the RepositoryItem.getPropertyValue() method. You can write your own implementations of

PropertyAccessor that use custom logic for determining the values of properties that you specify. The

simplest way to do this is to subclass PropertyAccessorImpl.

In an EndecaIndexingOutputConfig definition file, you can specify a custom property accessor for a property

by using the property-accessor attribute. For example, suppose you have a Nucleus component named /

mystuff/MyPropertyAccessor, of a custom class that implements the PropertyAccessor interface. You can

specify it in the definition file like this:

<property name="myProperty"
 property-accessor="/mystuff/MyPropertyAccessor"/>

The value of the property-accessor attribute is the absolute path of the Nucleus component. To simplify

coding of the definition file, you can map PropertyAccessor Nucleus components to simple names, and

62 6 Customizing the Output Records

use those names as the values of property-accessor attributes. For example, if you map the /mystuff/

MyPropertyAccessor component to the name myAccessor, the above tag becomes:

<property name="myProperty" property-accessor="myAccessor"/>

You can perform this mapping by setting the propertyAccessorMap property of the

EndecaIndexingOutputConfig component. This property is a Map in which the keys are the names and the

values are PropertyAccessor Nucleus components that the names represent. For example:

propertyAccessorMap+=\
 myAccessor=/mystuff/MyPropertyAccessor

FirstWithLocalePropertyAccessor

The atg.repository.search.indexing.accessor package includes a subclass of

PropertyAccessorImpl named FirstWithLocalePropertyAccessor. This property accessor

works only with derived properties that are defined using the firstWithLocale derivation method.

FirstWithLocalePropertyAccessor determines the value of the derived property by looking up

the currentDocumentLocale property of the Context object. Typically, this property is set by the

LocaleVariantProducer, as described in Accessing the Context Object (page 64).

You can specify this property accessor in your definition file using the attribute value firstWithLocale. (Note

that you do not need to map this name to the property accessor in the propertyAccessorMap.) For example:

<property name="displayName" property-accessor="firstWithLocale"/>

For information about the firstWithLocale derivation method, and about derived properties in general, see

the Repository Guide.

LanguageNameAccessor

The atg.endeca.index.accessor.LanguageNameAccessor class, which is a subclass of

atg.repository.search.indexing.PropertyAccessorImpl, returns the name of the language that

a record is in. The Guided Search integration includes a component of this class, /atg/endeca/index/

accessor/LanguageNameAccessor, which the ProductCatalogOutputConfig uses to obtain the value of

the product.language property:

<property name="language" is-dimension="true" type="string"
 property-accessor="/atg/endeca/index/accessor/LanguageNameAccessor"
 output-name="product.language" is-non-repository-property="true"/>

GenerativePropertyAccessor

The atg.repository.search.indexing.accessor package includes a subclass of

PropertyAccessorImpl named GenerativePropertyAccessor. This is an abstract class that adds the ability

to generate multiple property names and associated values for a single property tag in the indexing definition

file.

6 Customizing the Output Records 63

You can write your own subclass of GenerativePropertyAccessor. Your subclass must implement the

getPropertyNamesAndValues method. This method returns a Map in which each key is a property name, and

the corresponding Map value contains the value to be associated with the property name.

Category Dimension Value Accessors

Several property accessors are used by the CategoryToDimensionOutputConfig component to extract the

values of various dimension value attributes from the data structures created by the CategoryTreeService

component.

A component of class atg.endeca.index.accessor.ConstantValueAccessor, /atg/commerce/endeca/

index/accessor/DimensionSpecPropertyAccessor, obtains the value of the dimval.dimension_spec

attribute, which is a unique identifier for the dimension (typically product.category).

Several components of class

atg.commerce.endeca.index.dimension.CategoryNodePropertyAccessor, also in the /atg/

commerce/endeca/index/accessor/ Nucleus folder, obtain the values of various dimension value attributes.

The following table lists these property accessors and describes the attributes they obtain values for. Note that

the property names shown in the table are appropriate for use with CAS-based Guided Search deployment

templates, and assume that the name changes specified in propertyNameReplacementMap property of the

DimensionDocumentSubmitter component have been applied. See RecordStoreDocumentSubmitter (page

37) for more information.

Property Accessor Property

RootCatalogPropertyAccessor category.rootCatalogId -- The repository ID of the root

catalog the category belongs to (e.g., masterCatalog).

SpecPropertyAccessor dimval.spec -- A unique identifier for the dimension

value that includes the path information to distinguish it

from other dimension values for the same category (e.g.,

cat10016.cat10014).

QualifiedSpecPropertyAccessor Endeca.Id -- A qualified identifier for the dimension

value consisting of the dimval.dimension_name

value and the dimval.spec value (e.g.,

product.category:cat10016.cat10014).

ParentSpecPropertyAccessor dimval.parent_spec -- A reference to the category’s parent

category (e.g., cat10016).

DisplayOrderPropertyAccessor dimval.display_order -- An integer specifying the order the

category is displayed in, relative to its sibling categories.

Using Variant Producers

By default, for the repository item type designated by the is-document attribute, the

EndecaIndexingOutputConfig component generates one record per item. In some cases, however, you may

64 6 Customizing the Output Records

want to generate more than one record for each repository item. For example, suppose you have a repository

whose text properties are stored in both French and English, and the language displayed is determined by the

user’s locale setting. In this case you typically want to create two records from each repository item, one with the

text content in French, and the other one in English.

To handle situations like this, the Oracle Commerce Platform provides an interface named

atg.repository.search.indexing.VariantProducer. You can write your own implementations of the

VariantProducer interface, or you can use implementations included with the Oracle Commerce Platform.

This interface defines a single method, prepareNextVariant(), for determining the number and type of

variants to produce. Depending on how your repository is organized, implementations of this method can use a

variety of approaches for determining how to generate variant records.

LocaleVariantProducer

The Guided Search integration includes an implementation of the VariantProducer interface,

atg.repository.search.indexing.producer.LocaleVariantProducer, for generating variant

records for different locales. It also includes a component of this class, /atg/commerce/search/

LocaleVariantProducer.

The LocaleVariantProducer class has a locales property where you specify the list of locales to generate

variants for. By default, this property is linked to the value of the locales property of the /atg/endeca/

ApplicationConfiguration component:

locales^=/atg/endeca/ApplicationConfiguration.locales

You specify the VariantProducer components to use by setting the variantProducers property of the

EndecaIndexingOutputConfig component. Note that this property is an array; you can specify any number of

VariantProducer components. For example:

variantProducers=/atg/commerce/search/LocaleVariantProducer,\
 /mystuff/MyVariantProducer

If you specify multiple variant producers, the EndecaIndexingOutputConfig generates a separate variant

for each possible combination of values of the variant criteria. For example, suppose you use the configuration

shown above and MyVariantProducer creates three variants (1, 2, and 3). The total number of variants

generated for each repository item is six (French 1, English 1, French 2, English 2, French 3, and English 3).

Accessing the Context Object

Classes that implement the PropertyAccessor or VariantProducer interface must be stateless, because

they can be accessed by multiple threads at the same time. Rather than maintaining state themselves, these

classes instead use an object of class atg.repository.search.indexing.Context to store state information

and to pass data to each other. The Context object contains the current list of parent repository items that were

navigated to reach the current item, the current URL (if any), the current collected output values (if any), and

status information.

One of the main uses of the Context object is to store information used to determine what variant to generate

next. For example, each time a new record is generated, the LocaleVariantProducer uses the next value in

its locale array to set the currentDocumentLocale property of the Context object. A PropertyAccessor

instance might read the currentDocumentLocale property and use its current value to determine the locale to

use for the property.

6 Customizing the Output Records 65

Note that classes that implement the PropertyFormatter or PropertyValuesFilter interface (described

below) are applied after all of the output properties have been gathered, so these classes do not have access to

the Context object.

For more information about the Context object, see the ATG Platform API Reference.

CategoryPathVariantProducer

The /atg/commerce/endeca/index/CategoryPathVariantProducer component is used by the

CategoryToDimensionOutputConfig component to produce multiple records per category (one record for

each unique path computed by CategoryTreeService). The CategoryPathVariantProducer component

is of class atg.commerce.endeca.index.dimension.CategoryPathVariantProducer, which implements

the atg.repository.search.indexing.VariantProducer interface. In each record this variant producer

creates, the value of the record’s dimval.spec property is the unique pathname that the record represents. For

example:

The CategoryPathVariantProducer component is added to the CategoryToDimensionOutputConfig

component’s variantProducers property by default:

variantProducers+=\
 CategoryPathVariantProducer

See the CategoryTreeService Class (page 20) section for more information about how category path variants are

computed.

CustomCatalogVariantProducer

In addition to the category, product, and sku items, the catalog repository includes catalog items that

represent different hierarchies of categories and products. Each user is assigned one catalog, and sees the

navigational structure, products and SKUs, and property values associated with that catalog. A given product

may appear in multiple catalogs. The product repository item type includes a catalogs property whose value

is a Set of the catalogs the product is included in.

Depending on how your catalog repository is configured, the property values of individual categories, products,

or SKUs may vary depending on the catalog. If so, when you index the catalog, you may need to generate

multiple records for each product or SKU (one for each catalog the item is included in).

To support creation of multiple records per product or SKU, the Guided Search integration uses the /

atg/commerce/search/CustomCatalogVariantProducer component. This component is of class

atg.commerce.search.producer.CustomCatalogVariantProducer, which implements the

atg.repository.search.indexing.VariantProducer interface. The variant producer iterates through

each catalog individually, so that each record contains only the property values associated with a single catalog.

The CustomCatalogVariantProducer component is added to the ProductCatalogOutputConfig

component’s variantProducers property by default:

variantProducers+=\
 CustomCatalogVariantProducer

The mechanism used for retrieving catalog-specific property values differs depending on the property. For

category, product, or sku item properties that use the atg.commerce.dp.CatalogMapDerivation class to

derive catalog-specific values, the correct values are automatically obtained by that class.

66 6 Customizing the Output Records

To get the value of the catalogs property of the product item, the ProductCatalogOutputConfig

component is configured by default to use the /atg/commerce/search/

CustomCatalogPropertyAccessor component. This component is of class

atg.commerce.search.producer.CustomCatalogPropertyAccessor, which implements the

atg.repository.search.indexing.PropertyAccessor interface. This accessor returns, for each record,

only the specific catalog the record applies to. The accessor is specified in the /atg/commerce/endeca/

index/product-sku-output-config.xml definition file:

<item is-multi="true" property-name="catalogs"
 property-accessor="customCatalog">

The CustomCatalogPropertyAccessor component is mapped to the name customCatalog by the

ProductCatalogOutputConfig component’s propertyAccessorMap property:

propertyAccessorMap+=\
 customCatalog=CustomCatalogPropertyAccessor

UniqueSiteVariantProducer

If you want to create separate records for each site, you can do so by using the /atg/search/

repository/UniqueSiteVariantProducer component. This component is of class

atg.commerce.endeca.index.producer.CommerceUniqueSiteVariantProducer, which implements the

atg.repository.search.indexing.VariantProducer interface.

UniqueSiteVariantProducer creates a separate record for each site that meets both of these criteria:

• The ID of the site is included in the siteIds property of the item being indexed.

• The site is listed in the sitesToIndex property of the EndecaIndexingOutputConfig component that

invokes the variant producer.

For example, if you are indexing by product and the value of a product’s siteIds property

is siteE,siteF,siteG, and the sitesToIndex property is set to sites B, E, and F,

UniqueSiteVariantProducer creates two records, one for site E and one for site F. The records are virtually

identical, except that each one has a different value for the siteId property.

To use the UniqueSiteVariantProducer, add it to the ProductCatalogOutputConfig component’s

variantProducers property:

variantProducers+=\
 /atg/search/repository/UniqueSiteVariantProducer

MultipleSiteVariantProducer

If you are using the GroupingApplicationRoutingStrategy, as described in the Routing (page 9)chapter,

you need to ensure that separate records are created for each EAC application. For example, if you have a total

of five sites, with one EAC application handling the data from two of the sites and another handling the data for

the other three, two sets of records should be created, each reflecting the group of sites handled by one of the

EAC applications.

6 Customizing the Output Records 67

To create these records, add the /atg/endeca/index/producer/MultipleSiteVariantProducer

component to the ProductCatalogOutputConfig component’s variantProducers

property. The MultipleSiteVariantProducer component is of class

atg.endeca.index.producer.MultipleSiteVariantProducer, which is a subclass

of the atg.endeca.index.producer.GroupingVariantProducer abstract class.

MultipleSiteVariantProducer creates a separate variant for each grouping listed in the

GroupingApplicationRoutingStrategy component’s applicationGroupingMap property. For example,

suppose this property is set to:

applicationGroupingMap=\
 footwearStores=shoeSiteUS|shoeSiteCanada,\
 apparelStores=clothesSiteUS|clothesSiteUK|clothesSiteCanada

MultipleSiteVariantProducer will create two sets of records, one for each EAC application listed in the Map

keys.

Using Property Formatters

If a property takes an object as its value, the data loader must convert that object to a string to include it in an

output record. The PropertyFormatter interface defines methods for performing this conversion.

By default, the data loaders use the implementation class

atg.endeca.index.formatter.EndecaPropertyFormatter. This class invokes the object’s getLong()

method for numbers or getTime() method for dates; for booleans, it converts the value to the String

“0” (false) or “1” (true). For other objects, it calls the object’s toString() method.

You can write your own implementations of PropertyFormatter that use custom logic for performing the

conversion. The simplest way to do this is to subclass EndecaPropertyFormatter.

In an EndecaIndexingOutputConfig definition file, you can specify a custom property formatter by

using the formatter attribute. For example, suppose you have a Nucleus component named /mystuff/

MyPropertyFormatter, of a custom class that implements the PropertyFormatter interface. You can specify

it in the definition file like this:

<property name="myProperty" formatter="/MyStuff/MyPropertyFormatter"/>

The value of the formatter attribute is the absolute path of the Nucleus component. To simplify coding of

the definition file, you can map PropertyFormatter Nucleus components to simple names, and use those

names as the values of formatter attributes. For example, if you map the /mystuff/MyPropertyFormatter

component to the name myFormatter, the above tag becomes:

<property name="myProperty" formatter="myFormatter"/>

You can perform this mapping by setting the formatterMap property of the EndecaIndexingOutputConfig

component. This property is a Map in which the keys are the names and the values are PropertyFormatter

Nucleus components that the names represent.

68 6 Customizing the Output Records

Using Property Value Filters

In some cases, it is useful to filter a set of property values before outputting a record. For example, suppose

each record represents a product whose SKUs all have the same display name. Rather than outputting the

displayName property value of each SKU, you could include displayName in the record only once, by using a

filter that removes duplicate property values.

The PropertyValuesFilter interface defines a method for filtering property values. The

atg.repository.search.indexing.filter package includes several implementations of this interface:

• UniqueFilter removes duplicate property values, returning only the unique values.

• ConcatFilter concatenates all of the property values into a single string.

• UniqueWordFilter removes any duplicate words in the property values, and then concatenates the results

into a single string.

• HtmlFilter removes any HTML markup from the property values.

This section provides information about what these filters do and when they’re appropriate.

In an EndecaIndexingOutputConfig definition file, you can specify property filters by using the filter

attribute. Note that you can use multiple filters on the same property. The value of the filter attribute is a

comma-separated list of Nucleus components. The component names must be absolute pathnames.

To simplify coding of the definition file, you can map PropertyValuesFilter Nucleus components to simple

names, and use those names as the values of filter attributes. You can perform this mapping by setting the

filterMap property of the EndecaIndexingOutputConfig component. This property is a Map in which the

keys are the names and the values are PropertyFilter Nucleus components that the names represent.

Note, however, that you do not need to perform this mapping to use the UniqueFilter, ConcatFilter,

UniqueWordFilter, or HtmlFilter class. These classes are mapped by default to the following names:

Filter Class Name

UniqueFilter unique

ConcatFilter concat

UniqueWordFilter uniqueword

HtmlFilter html

So, for example, you can specify UniqueFilter like this:

<property name="color" filter="unique"/>

UniqueFilter

You may be able to reduce the size of your index by filtering the property values to remove redundant entries.

For example, suppose a record represents a product whose SKUs have a size property, with values of small,

6 Customizing the Output Records 69

medium, and large; multiple SKUs have the same size value, and are differentiated by other properties (e.g.,

color). The entries for size in a record might be:

<PROP NAME="sku.size">
 <PVAL>medium</PVAL>
 <PVAL>large</PVAL>
 <PVAL>medium</PVAL>
 <PVAL>small</PVAL>
 <PVAL>medium</PVAL>
 <PVAL>small</PVAL>
</PROP>

By filtering out redundant entries, you can reduce this to:

<PROP NAME="sku.size">
 <PVAL>medium</PVAL>
 <PVAL>large</PVAL>
 <PVAL>small</PVAL>
</PROP>

To automatically perform this filtering, specify the UniqueFilter class in the XML definition file:

<property name="size" filter="unique"/>

As a general rule, it is a good idea to specify the unique filter for a property if multiple items in a record may

have identical values for that property. If you specify this filter for a property and every value of that property

in a record is unique (or if only one item with that property appears in the record), the unique filter will have

no effect on the record (either negative or positive). However, executing this filter increases processing time to

create the record, so it is a good idea to specify it only for properties that will benefit from it.

ConcatFilter

You may also be able to reduce the size of your index by concatenating the values of text properties. For

example, suppose each record represents a product whose SKUs have a color property, with values of red,

green, blue, and yellow. The entries for color in a record might be:

<PROP NAME="sku.color">
 <PVAL>red</PVAL>
 <PVAL>green</PVAL>
 <PVAL>blue</PVAL>
 <PVAL>yellow</PVAL>
</PROP>

By concatenating the values, you can reduce this to:

<PROP NAME="sku.color">
 <PVAL>red green blue yellow</PVAL>
</PROP>

70 6 Customizing the Output Records

To combine these values into a single tag, specify the ConcatFilter class in the XML definition file:

<property name="color" filter="concat"/>

This setting invokes an instance of the atg.repository.search.indexing.filter.ConcatFilter class.

Note that you do not need to create a Nucleus component to use this filter.

You can use both the unique and concat filters on the same property, by setting the value of the filter

attribute to a comma-separated list. The filters are invoked in the order that they are listed, so it is important to

put the unique filter first for it to have an effect. For example:

<property name="color" filter="unique,concat"/>

UniqueWordFilter

The atg.repository.search.indexing.filter.UniqueWordFilter class removes any duplicate words

in the property values, and then concatenates the results into a single string. For example, suppose a product’s

SKUs have a size property, and the resulting entries in a record are:

<PROP NAME="sku.size">
 <PVAL>medium</PVAL>
 <PVAL>large</PVAL>
 <PVAL>x large</PVAL>
 <PVAL>xx large</PVAL>
</PROP>

By applying UniqueWordFilter, you can reduce this to:

<PROP NAME="sku.size">
 <PVAL>medium large x xx</PVAL>
</PROP>

Note that UniqueWordFilter converts all Strings to lowercase, so that redundant words are eliminated even if

they do not have identical case.

You can specify UniqueWordFilter in the XML definition file like this:

<property name="size" filter="uniqueword"/>

You do not need to create a Nucleus component to use this filter.

Although UniqueWordFilter removes redundancies and concatenates values, it is not equivalent to using

a combination of UniqueFilter and ConcatFilter. UniqueFilter considers the entire string when

it eliminates redundant values, not individual words. In this example, each complete string is unique, so

UniqueFilter would not actually eliminate any values, and the result would be:

<PROP NAME="sku.size">
 <PVAL>medium large x large xx large</PVAL>

6 Customizing the Output Records 71

</PROP>

Note: You should use UniqueWordFilter carefully, as under certain circumstances it can have undesirable

effects. If you use a dictionary that includes multi-word terms, searches for those terms may not return the

expected results, because the filter may rearrange the order of the words in the index.

HtmlFilter

The atg.repository.search.indexing.filter.HtmlFilter class removes any HTML markup from a

property value. This is useful, for example, if text properties include tags for bolding or italicizing certain words,

as in this longDescription property of a product:

You'll love this Italian <i>leather</i> sofa!

Because the HTML markup is included in the index, searches may return unexpected results. In this example,

searching for “leather sofa” might not return the product, because that string does not actually appear in the

longDescription property.

Using HtmlFilter, this value appears in the index as:

<PROP NAME="product.longDescription">
 <PVAL>You'll love this Italian leather sofa!</PVAL>
</PROP>

Now a search for “leather sofa” will find the value in this property and return this product.

72 6 Customizing the Output Records

7 Indexing the Content Management Repository 73

7 Indexing the Content Management

Repository

In addition to the products, SKUs, and other items stored and managed through the product catalog repository,

the Oracle Commerce Platform includes support for storing and managing HTML articles and digital media

through the Web Content Management (WCM) feature. These items are maintained in the content management

repository, as described in the Core Commerce Programming Guide.

This chapter describes Oracle Commerce Platform components that you can use to index the content in this

repository so it can be used for searching and guided navigation. It includes the following sections:

Overview of Indexing Web Content (page 73)

WCM EndecaIndexingOutputConfig Components (page 74)

WCM Dimension Exporter Components (page 77)

WCM Schema Exporter Components (page 78)

WCM SimpleIndexingAdmin Component (page 79)

For information about creating and editing articles and media items, see the Merchandising Guide for Business

Users.

Overview of Indexing Web Content

To provide robust support for Web content, the Oracle Commerce Platform includes a content

management repository for storing HTML articles and digital media. This repository, /atg/content/

ContentManagementRepository, has two main item types:

• article -- Intended for HTML documents. Text elements are stored in properties of the item (such as the

body, headline, and abstract properties) and can be used for searching and guided navigation.

• mediaContent -- Intended for binary content, including video, audio, image, and PDF files. The item has a

url property that contains a URL that points to an external binary file, and string properties such as title

and description that can be used for searching and guided navigation.

The repository and its item types are defined in the top-level ContentMgmt module of the Oracle

Commerce Platform. This module has a ContentMgmt.Endeca.Index submodule that configures the

EndecaIndexingOutputConfig components and related components for indexing article and

mediaContent items.

74 7 Indexing the Content Management Repository

WCM EndecaIndexingOutputConfig Components

The ContentMgmt.Endeca.Index module contains two components of class

atg.endeca.index.EndecaIndexingOutputConfig:

• The /atg/content/search/ArticleOutputConfig component specifies how to create data records that

represent article items in the content management repository.

• The /atg/content/search/MediaContentOutputConfig component specifies how to create data

records that represent mediaContent items in the content management repository.

This section describes the default configuration of these components. For more information about

EndecaIndexingOutputConfig components, see the Overview of Indexing (page 17) and Configuring the

Indexing Components (page 27) chapters.

indexingApplicationConfiguration

The component of class atg.endeca.index.configuration.IndexingApplicationConfiguration

used to configure indexing settings for the integration. For both the ArticleOutputConfig and

MediaContentOutputConfig components, the default setting is:

indexingApplicationConfiguration=\
 /atg/endeca/index/IndexingApplicationConfiguration

definitionFile

The full Nucleus pathname of the XML indexing definition file that specifies the repository item types and

properties to include in the Guided Search records. For the ArticleOutputConfig component, this property is

set as follows:

definitionFile=/atg/content/endeca/index/article-output-config.xml

This file specifies the properties of the article item type to include in the index. The article.headline,

article.abstract, article.author, article.body, and article.tag output properties are specified

as text searchable. The article.siteId, article.author, and article.tag properties are specified as

dimensions.

For the MediaContentOutputConfig component:

definitionFile=/atg/content/endeca/index/mediaContent-output-config.xml

This file specifies the properties of the mediaContent item type to include in the index. The

mediaContent.title, mediaContent.description, mediaContent.mediaType, and mediaContent.tag

output properties are specified as text searchable. The mediaContent.siteId, mediaContent.mediaType,

and mediaContent.tag properties are specified as dimensions.

Note that the MediaContentOutputConfig definition file sets the output name of the mediaContent.

$url property (which holds the URL of the repository item) to mediaContent._url, to override the default

output name of mediaContent.url. This is done to avoid a naming conflict with the url property of the

mediaContent item type, which has a url property that holds the URL of the binary media file the item

7 Indexing the Content Management Repository 75

represents. So in output records, mediaContent.url is used for the URL of the binary media file, while

mediaContent._url is used for the URL of the mediaContent repository item. For example:

<PROP NAME="mediaContent._url">
 <PVAL>
 atgrep:/ContentManagementRepository/mediaContent/m011?locale=en_US
 </PVAL>
</PROP>
<PROP NAME="mediaContent.url">
 <PVAL>
 /crsdocroot/content/images/articles/banner/marathon_mania.jpg
 </PVAL>
</PROP>

repository

The full Nucleus pathname of the repository that the definition file applies to. For both the

ArticleOutputConfig and MediaContentOutputConfig components, this property is set to the content

management repository:

repository=/atg/content/ContentManagementRepository

In an ATG Content Administration environment, the repository should be set to the corresponding unversioned

target repository:

repository=/atg/content/ContentManagementRepository_production

documentSubmitter

The component (typically of class atg.endeca.index.RecordStoreDocumentSubmitter) to use

to submit records to the appropriate CAS record store. For both the ArticleOutputConfig and

MediaContentOutputConfig components, this property is set as follows:

documentSubmitter=/atg/endeca/index/DataDocumentSubmitter

See Document Submitter Components (page 37) for more information.

forceToBaselineOnChange

If true, a baseline update is performed when a partial update is requested, if a value of a hierarchical dimension

has been changed. For both the ArticleOutputConfig and MediaContentOutputConfig components, this

property is set to false by default, because neither component generates hierarchical dimension values.

bulkLoader

A Nucleus component of class atg.endeca.index.RecordStoreBulkLoaderImpl. For both the

ArticleOutputConfig and MediaContentOutputConfig components, this property is set to /atg/search/

repository/BulkLoader. This is the same bulk loader used by the ProductCatalogOutputConfig and

CategoryToDimensionOutputConfig components.

See Data Loader Components (page 33) for more information.

76 7 Indexing the Content Management Repository

enableIncrementalLoading

If true, incremental loading is enabled. This property is set to true for both the ArticleOutputConfig and

MediaContentOutputConfig components.

incrementalLoader

A Nucleus component of class atg.endeca.index.RecordStoreIncrementalLoaderImpl. For both

the ArticleOutputConfig and MediaContentOutputConfig components, this property is set to /

atg/search/repository/IncrementalLoader. This is the same incremental loader used for the

ProductCatalogOutputConfig and CategoryToDimensionOutputConfig components.

See Data Loader Components (page 33) for more information.

siteIDsToIndex

A list of site IDs of the sites to include in the index. For both the ArticleOutputConfig and

MediaContentOutputConfig components, this property is null by default, which means the sitesToIndex

property (which is the actual property used to determine which sites to index) is automatically set to all enabled

sites. Set siteIDsToIndex only if you want to restrict indexing to only a specific subset of the enabled sites.

replaceWithTypePrefixes

A list of the property-name prefixes that should be replaced with the item type the property is

associated with. If this property is null (the default setting for both the ArticleOutputConfig and

MediaContentOutputConfig components), the type prefix is added to the names of the output properties

of the top-level item (article for the ArticleOutputConfig component, mediaContent for the

MediaContentOutputConfig component). See the EndecaIndexingOutputConfig Components (page 28) of

the Configuring the Indexing Components (page 27) chapter for more information about setting this property.

prefixReplacementMap

A mapping of property-name prefixes to their replacements. This mapping is applied after any type prefixes are

added by replaceWithTypePrefixes.

For both the ArticleOutputConfig and MediaContentOutputConfig components, this property is null by

default, which means no prefix replacement is performed.

suffixReplacementMap

A mapping of property-name suffixes to their replacements. If this property is null (the default setting for both

the ArticleOutputConfig and MediaContentOutputConfig components), these automatic mappings are

used:

$repositoryId=repositoryId,
$siteId=siteId,
$url=url,
$baseUrl=baseUrl

These mappings remove the dollar-sign ($) character from the names of special repository properties, because

this character is not valid in Guided Search property names.

You can exclude the automatic mappings by setting the addDefaultOutputNameReplacements property to

false.

7 Indexing the Content Management Repository 77

WCM Dimension Exporter Components

The ContentMgmt.Endeca.Index module contains two components of class

atg.endeca.index.dimension.RepositoryTypeHierarchyExporter:

• The /atg/content/endeca/index/ArticleDimensionExporter component outputs dimension value

records for the article item type and related item types.

• The /atg/content/endeca/index/MediaContentDimensionExporter component outputs dimension

value records for the mediaContent item type and related item types.

These dimension values are added to the record.type dimension, which represents the hierarchy of repository

item types.

This section describes the default configuration of these components. For more information about

RepositoryTypeHierarchyExporter components, see the Overview of Indexing (page 17) and Configuring the

Indexing Components (page 27) chapters.

dimensionName

The name to give the dimension created from the hierarchy of repository item types. For both the

ArticleDimensionExporter and MediaContentDimensionExporter components, this property is set by

linking to the recordTypeName property of the/atg/endeca/ApplicationConfiguration component:

dimensionName^=/atg/endeca/ApplicationConfiguration.recordTypeName

If you want to change the value of the dimensionName property, you should do so by changing the value of

ApplicationConfiguration.recordTypeName to ensure that other properties that link to it are changed as

well.

indexingOutputConfig

The component of class atg.endeca.index.EndecaIndexingOutputConfig whose definition file

should be used for generating dimension value records from the repository item-type hierarchy. For the

ArticleDimensionExporter component, this property is set by default to:

indexingOutputConfig=/atg/content/search/ArticleOutputConfig

For the MediaContentDimensionExporter component, this property is set by default to:

indexingOutputConfig=/atg/content/search/MediaContentOutputConfig

documentSubmitter

The component (typically of class atg.endeca.index.RecordStoreDocumentSubmitter) to use to submit

records to the CAS dimension values record store. (See Document Submitter Components (page 37) for

more information.) For both the ArticleDimensionExporter and MediaContentDimensionExporter

components, this property is set by default to:

documentSubmitter=/atg/endeca/index/DimensionDocumentSubmitter

78 7 Indexing the Content Management Repository

WCM Schema Exporter Components

The ContentMgmt.Endeca.Index module contains two components of class

atg.endeca.index.schema.SchemaExporter:

• The /atg/content/endeca/index/ArticleSchemaExporter component generates schema

configuration for each property of the article item type specified in the ArticleOutputConfig definition

file.

• The /atg/content/endeca/index/MediaContentSchemaExporter component generates

schema configuration for each property of the mediaContent item type specified in the

MediaContentOutputConfig definition file.

The schema configuration generated for each repository item-type property specifies whether it should be

treated as a property or a dimension by Guided Search, whether it should be searchable, and the data type of

the property or dimension.

This section describes the default configuration of these components. For more information about

SchemaExporter components, see the Overview of Indexing (page 17) and Configuring the Indexing

Components (page 27) chapters.

This section describes the default configuration of these components.

indexingOutputConfig

The component of class atg.endeca.index.EndecaIndexingOutputConfig whose definition file should

be used for generating schema records. For the ArticleSchemaExporter component, this property is set by

default to:

indexingOutputConfig=/atg/content/search/ArticleOutputConfig

For the MediaContentSchemaExporter component, this property is set by default to:

indexingOutputConfig=/atg/content/search/MediaContentOutputConfig

documentSubmitter

The component (typically of class atg.endeca.index.ConfigImportDocumentSubmitter) to use to submit

schema data to the Endeca Configuration Repository. (See Document Submitter Components (page 37) for more

information.) For both the ArticleSchemaExporter and MediaSchemaDimensionExporter components,

this property is set by default to:

documentSubmitter=/atg/endeca/index/ConfigImportDocumentSubmitter

dimensionNameProviders

An array of components of a class that implements the

atg.endeca.index.schema.DimensionNameProvider interface. SchemaExporter uses these components

to create references from attribute names to dimension names.

For the ArticleSchemaExporter component, dimensionNameProviders is set to:

7 Indexing the Content Management Repository 79

dimensionNameProviders+=ArticleDimensionExporter

For the MediaContentSchemaExporter component, dimensionNameProviders is set to:

dimensionNameProviders+=MediaContentDimensionExporter

WCM SimpleIndexingAdmin Component

The ContentMgmt.Endeca.Index module includes a /atg/content/

endeca/index/ContentMgmtSimpleIndexingAdmin component (of class

atg.endeca.index.admin.SimpleIndexingAdmin) for managing the process of indexing data from

the content management repository. This component is similar to the /atg/commerce/endeca/index/

ProductCatalogSimpleIndexingAdmin component, except that it is configured by default to index

article and mediaContent items rather than items in the product catalog repository. In addition, the

ContentMgmtSimpleIndexingAdmin is configured to use a different EndecaScriptService component

(/atg/content/endeca/index/EndecaScriptService) to invoke EAC scripts, but this component’s

configuration is identical to that of the /atg/commerce/endeca/index/EndecaScriptService component

described in the EndecaScriptService (page 40) section of the Configuring the Indexing Components (page 27)

chapter.

If you prefer, you can configure a single SimpleIndexingAdmin component to manage indexing

of both repositories. Oracle Commerce Reference Store uses this approach, reconfiguring the

ProductCatalogSimpleIndexingAdmin component to invoke the Indexable components associated with

both repositories.

This section describes the default configuration of ContentMgmtSimpleIndexingAdmin. For more information

about these properties, see the ProductCatalogSimpleIndexingAdmin (page 41) section of the Configuring the

Indexing Components (page 27) chapter.

phaseToPrioritiesAndTasks

This property defines the phases and tasks of an indexing job, and the order in which the phases are executed.

By default, this is set to:

phaseToPrioritiesAndTasks=\
 RepositoryExport=10:\
 ArticleSchemaExporter;\
 ArticleDimensionExporter;\
 /atg/content/search/ArticleOutputConfig;\
 MediaContentSchemaExporter;\
 MediaContentDimensionExporter;\
 /atg/content/search/MediaContentOutputConfig,\
 EndecaIndexing=15:EndecaScriptService

runTasksWithinPhaseInParallel

A boolean that controls whether to run tasks within a phase in parallel. Set to true by default. If set to false,

the tasks are executed in sequence, in the order specified in the phaseToPrioritiesAndTasks property.

80 7 Indexing the Content Management Repository

enableScheduledIndexing

A boolean that controls whether to invoke indexing automatically on a specified schedule. Set to false by

default.

baselineSchedule

A String that specifies the schedule for performing baseline updates. Set to null by default. If you set

enableScheduledIndexing to true, set baselineSchedule to a String that conforms to one of the formats

accepted by classes implementing the atg.service.scheduler.Schedule interface.

partialSchedule

A String that specifies the schedule for performing partial updates. The format for the String is the same as the

format used for baselineSchedule. Set to null by default.

retryInMs

The amount of time (in milliseconds) to wait before retrying a scheduled indexing job if the first attempt

to execute it fails. Set by default to -1, which means no retry. If you change this value, you should set it to a

relatively short amount of time to ensure that the indexing job completes before the next scheduled job begins.

If ContentMgmtSimpleIndexingAdmin estimates that the retried job will not complete before the next

scheduled job, it skips the retry.

jobQueue

Specifies the component that manages queueing of index jobs. Set by default to /atg/endeca/index/

InMemoryJobQueue, which is the same component used by ProductCatalogSimpleIndexingAdmin.

8 Indexing Dynamic Item Types and Properties 81

8 Indexing Dynamic Item Types and

Properties

Creating new item descriptors and properties in a repository typically involves modifying the repository’s

database schema and XML definition file, and then restarting your application to make the changes available.

If you want to avoid restarting, however, the Oracle Commerce Platform provides an alternate mechanism

for dynamically creating subtypes of existing item types and adding properties to static and dynamic item

types. This mechanism involves creating metadata items for the subtypes and properties through a Content

Administration project and deploying these metadata items. The system then generates the new subtypes

and properties from the metadata, and adds them to the repository definition automatically. Data for these

properties is stored in database tables that are included specifically for this purpose in the default schema.

The Oracle Commerce Platform can create Endeca records from these items and properties and submit them to

Oracle Commerce Guided Search for indexing. You can add dynamic item types and properties to the definition

files of your EndecaIndexingOutputConfig components in the same way that you add static item types and

properties.

However, adding these item types and properties in this way requires restarting the Oracle Commerce Platform

to make the EndecaIndexingOutputConfig definition file changes available. To avoid restarting, you can

use an alternate approach to specify dynamic item types and properties for indexing without modifying

EndecaIndexingOutputConfig definition files. Instead, you provide the necessary specifications when you

create the metadata items that the dynamic types and properties are generated from.

This chapter describes how to specify indexing information for dynamic item types and properties without

requiring a restart. It includes the following sections:

Updating the Indexing Components (page 81)

Specifying Dynamic Items and Properties for Indexing (page 82)

Note that this chapter assumes you are already familiar with dynamic item types and properties. See the

Creating Dynamic Item Types and Properties chapter of the Content Administration Programming Guide.

Updating the Indexing Components

To enable specifying dynamic properties for indexing through attributes of the associated

metadata items, you must first change the configuration of some of the indexing components.

The Oracle Commerce Platform includes a subclass of the EndecaIndexingOutputConfig class,

atg.endeca.index.DynamicEndecaIndexingOutputConfig. For repositories that support dynamic item

82 8 Indexing Dynamic Item Types and Properties

types or properties, change the class of the corresponding EndecaIndexingOutputConfig components to the

DynamicEndecaIndexingOutputConfig class:

$class=atg.endeca.index.DynamicEndecaIndexingOutputConfig

The Oracle Commerce Platform also includes a subclass of the SchemaExporter class,

atg.endeca.index.schema.DynamicSchemaExporter. For each EndecaIndexingOutputConfig

component whose class is set to DynamicEndecaIndexingOutputConfig, set the class of the corresponding

SchemaExporter component to DynamicSchemaExporter:

$class=atg.endeca.index.schema.DynamicSchemaExporter

In addition, for repositories that support dynamic item types or properties, you should

set the forceToBaselineOnChange property to true on associated components of the

RepositoryTypeHierarchyExporter and DynamicSchemaExporter classes. These settings ensure that a

baseline index is performed when you add or modify dynamic item types or properties. New dynamic item types

and properties do not appear in the MDEX until a baseline index has been performed.

Specifying Dynamic Items and Properties for Indexing

If a static item type is included in an EndecaIndexingOutputConfig definition file, then any dynamic

item types that are descendants of that item type are automatically available for indexing as well. For

example, if you create an electricalProduct subtype of the product item type (which is included in the

ProductCatalogOutputConfig definition file), electricalProduct items will be indexed, as will any

subtypes of the electricalProduct item type.

To specify that a dynamic property should be included in the index (either a dynamic property of a static item

type or a subtype-specific property of a dynamic subtype), you set the searchable attribute of the property to

true. In addition, you need to set at least one of the following attributes to true to specify how the property is

handled in the MDEX:

• textSearchable – Setting to true specifies that the values of the property should be treated as searchable

text. Equivalent to the text-searchable attribute in EndecaIndexingOutputConfig definition files.

• wildcardSearchable – Setting to true specifies that the values of the property should be treated as

searchable text and support the use of the asterisk (*) as a wildcard in search terms. Equivalent to the

wildcard-searchable attribute in EndecaIndexingOutputConfig definition files.

• dimension -- Setting to true specifies that the property should be treated as a dimension. Equivalent to the

is-dimension attribute in EndecaIndexingOutputConfig definition files.

To set these attributes, you create das_gsa_dynamic_attr metadata items that are associated with

the dynamic property when it is generated. For example, the following XML import file creates a

das_gsa_dynamic_prop metadata item for a dynamic property, and creates das_gsa_dynamic_attr items

that set attributes to specify that the property should be included in the MDEX:

<add-item item-descriptor="das_gsa_dynamic_prop" id="wattage"

8 Indexing Dynamic Item Types and Properties 83

 repository="/atg/repository/dynamic/DynamicMetadataRepository"
 no-checkin="false">
 <set-property name="property_name"><![CDATA[wattage]]></set-property>
 <set-property name="item_descriptor"><![CDATA[electricalProduct]]>
 </set-property>
 <set-property name="data_type"><![CDATA[float]]></set-property>
 <set-property name="repository">
 <![CDATA[/atg/commerce/catalog/ProductCatalog]]></set-property>
</add-item>

<add-item item-descriptor="das_gsa_dynamic_attr" id="wattageAttr1"
 no-checkin="false">
 <set-property name="attribute_name"><![CDATA[writable]]></set-property>
 <set-property name="item_descriptor"><![CDATA[electricalProduct]]>
 </set-property>
 <set-property name="property_name"><![CDATA[wattage]]></set-property>
 <set-property name="repository">
 <![CDATA[/atg/commerce/catalog/ProductCatalog]]></set-property>
 <set-property name="is_dynamic_property"><![CDATA[true]]></set-property>
 <set-property name="data_type"><![CDATA[string]]></set-property>
 <set-property name="value"><![CDATA[true]]></set-property>
</add-item>

<add-item item-descriptor="das_gsa_dynamic_attr" id="wattageAttr2"
 no-checkin="false">
 <set-property name="attribute_name"><![CDATA[searchable]]></set-property>
 <set-property name="item_descriptor"><![CDATA[electricalProduct]]>
 </set-property>
 <set-property name="property_name"><![CDATA[wattage]]></set-property>
 <set-property name="repository">
 <![CDATA[/atg/commerce/catalog/ProductCatalog]]></set-property>
 <set-property name="is_dynamic_property"><![CDATA[true]]></set-property>
 <set-property name="data_type"><![CDATA[string]]></set-property>
 <set-property name="value"><![CDATA[true]]></set-property>
</add-item>

<add-item item-descriptor="das_gsa_dynamic_attr" id="wattageAttr3"
 no-checkin="false">
 <set-property name="attribute_name"><![CDATA[dimension]]></set-property>
 <set-property name="item_descriptor"><![CDATA[electricalProduct]]>
 </set-property>
 <set-property name="property_name"><![CDATA[wattage]]></set-property>
 <set-property name="repository">
 <![CDATA[/atg/commerce/catalog/ProductCatalog]]></set-property>
 <set-property name="is_dynamic_property"><![CDATA[true]]></set-property>
 <set-property name="data_type"><![CDATA[string]]></set-property>
 <set-property name="value"><![CDATA[true]]></set-property>
</add-item>

Indexing settings that are specified through metadata item attributes override equivalent settings specified in

an EndecaIndexingOutputConfig definition file. In the example above, if the dynamic property is specified

for indexing in the definition file and its is-dimension attribute is set to false, this value is overridden by the

dimension attribute setting in the das_gsa_dynamic_attr metadata item. Similarly, if you want to disable

indexing of a property specified in an EndecaIndexingOutputConfig definition file, you can do this by

creating a das_gsa_dynamic_attr metadata item that sets the searchable attribute to false.

Note that the available options for configuring indexing settings through repository item attributes are

limited. Equivalent attributes exist only for a subset of the indexing settings that can be configured through

EndecaIndexingOutputConfig definition files.

84 8 Indexing Dynamic Item Types and Properties

Specifying the Output Property Name

By default, the output name of a dynamic property in generated records is:

item-type.property-name

For example, a weight dynamic property of the sku static item type would appear in the MDEX as sku.weight.

You can override the default output property name by setting the optional outputName attribute for the

dynamic property. For example, for a property to appear as sku.weightInGrams:

<add-item item-descriptor="das_gsa_dynamic_attr" id="weightAttr1"
 no-checkin="false">
 <set-property name="attribute_name"><![CDATA[outputName]]></set-property>
 <set-property name="item_descriptor"><![CDATA[sku]]>
 </set-property>
 <set-property name="property_name"><![CDATA[weight]]></set-property>
 <set-property name="repository">
 <![CDATA[/atg/commerce/catalog/ProductCatalog]]></set-property>
 <set-property name="is_dynamic_property"><![CDATA[true]]></set-property>
 <set-property name="data_type"><![CDATA[string]]></set-property>
 <set-property name="value"><![CDATA[sku.weightInGrams]]></set-property>
</add-item>

The outputName attribute is equivalent to the output-name attribute in EndecaIndexingOutputConfig

definition files.

For dynamic properties of dynamic subtypes, be sure to use the outputName attribute to specify the output

name, even if you are not overriding the default value. Doing this ensures that the correct item-type prefix is

included. For example, if you have an electricalProduct subtype of the product item type, and you add a

wattage property to electricalProduct, you could specify the output name as follows:

<add-item item-descriptor="das_gsa_dynamic_attr" id="wattageAttr4"
 no-checkin="false">
 <set-property name="attribute_name"><![CDATA[outputName]]></set-property>
 <set-property name="item_descriptor"><![CDATA[electricalProduct]]>
 </set-property>
 <set-property name="property_name"><![CDATA[wattage]]></set-property>
 <set-property name="repository">
 <![CDATA[/atg/commerce/catalog/ProductCatalog]]></set-property>
 <set-property name="is_dynamic_property"><![CDATA[true]]></set-property>
 <set-property name="data_type"><![CDATA[string]]></set-property>
 <set-property name="value"><![CDATA[electricalProduct.wattage]]></set-property>
</add-item>

Adding Properties to a Search Interface

In addition to marking dynamic properties as searchable as described above, you must also add them to a

search interface in Oracle Commerce Guided Search. See the Oracle Commerce Guided Search MDEX Engine

Developer’s Guide for information about search interfaces.

9 Query Integration 85

9 Query Integration

The Oracle Commerce Core Platform provides two options when querying for content served by the Oracle

Commerce Assembler:

• Invoking the Assembler via a servlet as part of the Core Platform’s request handling pipeline. This option

allows the call to the Assembler to happen early in the page’s life cycle, which is desirable when the bulk of

the page’s content is served by the Assembler.

• Invoking the Assembler from within a page, using a servlet bean. This option allows the call to the Assembler

to occur on a just-in-time basis for the portion of the page that requires Assembler-served content. This

approach is desirable when only a small portion of the page requires Assembler content.

The remainder of this chapter provides more detail on both configurations and the components that facilitate

them. It includes these sections:

Content Item Classes (page 85)

Invoking the Assembler in the Request Handling Pipeline (page 86)

Invoking the Assembler using the InvokeAssembler Servlet Bean (page 90)

Choosing Between Pipeline Invocation and Servlet Bean Invocation (page 93)

Components for Invoking the Assembler (page 93)

Defining Global Assembler Settings (page 100)

Connecting to the Workbench and MDEX (page 100)

Querying the Assembler (page 106)

Cartridge Handlers and Their Supporting Components (page 107)

Providing Access to the HTTP Request to the Cartridges (page 108)

Controlling How Cartridges Generate Link URLs (page 108)

Retrieving Renderers (page 112)

Configuring Keyword Redirects (page 114)

Content Item Classes

Similar to HTTP requests, requests that are made to the Assembler use the paradigm

of a request object and a response object. Both of these objects are of type

86 9 Query Integration

com.endeca.infront.assembler.ContentItem. There are two subclasses of ContentItem, depending

on the type of content being requested: com.endeca.infront.cartridge.ContentInclude and

com.endeca.infront.cartridge.ContentSlotConfig.

ContentInclude is used to request pages defined in the Site Pages section of Experience Manager. Invoking

the Assembler for a page request is also referred to as “invoking the Assembler with a ContentInclude.” The

handler for the ContentInclude component first tries to retrieve the content at the exact URI specified in the

ContentInclude. If there is no content at that location, the handler attempts to find the deepest matching

path. For example, assume a browse page exists in the Experience Manager Site Pages definitions for SiteA.

Passing in a /browse path for SiteA will match this browse page. Passing in a /browse/seo/url path will

also match this page because the deepest matching path that the handler can find for /browse/seo/url is /

browse (this example assumes that a browse/seo/url page does not exist in Experience Manager).

ContentSlotConfig is used to request content from a content folder that has been defined in the Content

section of Experience Manager. Invoking the Assembler for a content folder request is also referred to as

“invoking the Assembler with a ContentSlot item.” A content folder request must specify the name of the

content folder and the number of items to retrieve from that folder. The handler for ContentSlotConfig

uses these parameters to form a content trigger request that fetches the top item (or items) from the folder

by priority. The Assembler then processes the content items from the folder and returns them as part of the

response for rendering.

A third class, com.endeca.infront.cartridge.RedirectAwareContentInclude, also exists.

RedirectAwareContentInclude is a subclass of the ContentInclude class and it supports requests

for configurations that use keyword redirects. The remainder of this chapter makes a distinction between

ContentInclude, ContentSlotConfig, and RedirectAwareContentInclude classes when necessary.

When the distinction is not required, the more general ContentItem is used.

Note: For more information on the ContentInclude, ContentSlotConfig, and

RedirectAwareContentInclude classes and their associated handler classes, refer to the Oracle Commerce

Guided Search Assembler Application Developer’s Guide.

Invoking the Assembler in the Request Handling Pipeline

In this option, the Assembler is invoked early in the page rendering process as part of the Oracle Commerce Core

Platform request handling pipeline. This option is appropriate when the bulk of a page’s content is served by the

Assembler. This guide refers to these pages as “Assembler-driven pages.”

Assembler-driven pages are generally those pages that benefit greatly from increased merchandiser control. For

example, a home page is a good candidate to be Assembler-driven because merchandisers want to customize

their site’s home page based on the season, a current sale, or a customer’s profile. A search results page is also

a good candidate because merchandisers may want to control the order of search results, specify special brand

landing pages for particular searches, and so on. The Oracle Commerce Experience Manager tool, which works

in conjunction with the Assembler API, is designed to facilitate increased merchandiser control, therefore pages

that need a high level of merchandiser control are best served through the Assembler API/Experience Manager

combination.

The content that the Assembler returns to the client browser can take several forms: JSP, XML, or JSON, as

described in the following sections.

9 Query Integration 87

Using a JSP Renderer to Render Content

The request-handling architecture for an Assembler-driven JSP page looks like this:

In this diagram, the following happens:

1. The application server receives a request.

2. The application server passes the request to the Oracle Commerce Core Platform request handling pipeline.

3. The request handling pipeline does some preliminary work, such as setting up the profile and determining

which Oracle Commerce Platform site the request is for. At the appropriate point, the pipeline invokes the /

atg/endeca/assembler/AssemblerPipelineServlet.

4. The AssemblerPipelineServlet determines if the request is for a page or a content folder in

Experience Manager and creates either a RedirectAwareContentInclude object (for a page) or

a ContentSlotConfig object (for a content folder). Then, AssemblerPipelineServlet calls the

invokeAssembler() method on the /atg/endeca/assembler/AssemblerTools component and passes

it the request object it created.

88 9 Query Integration

5. The AssemblerTools component invokes the createAssembler() method on the /atg/endeca/

assembler/NucleusAssemblerFactory component.

6. The NucleusAssemblerFactory component returns an atg.endeca.assembler.NucleusAssembler

instance.

7. The AssemblerTools component invokes the assemble() method on the NucleusAssembler

instance and passes it the request object. The handler for the request object (which may be the

RedirectAwareContentIncludeHandler or ContentSlotConfigHandler, depending on the type of

request object passed in) resolves a connection to the Workbench and/or the MDEX. For page requests, the

handler also invokes a series of other components that transform the request URL into a URI that contains the

path to the page in Experience Manager.

8. The NucleusAssembler instance assembles the content for the request URI. Content, in this case,

corresponds to a hierarchical set of cartridges and their associated data. For each cartridge, the content starts

with any default data that was specified in the Experience Manager cartridge configuration files when the

cartridge was added to the page. That data is further modified and augmented with any data stored in the

Oracle Commerce Configuration Repository (that is, changes made and saved via the Experience Manager UI).

9. Next, the NucleusAssembler instance calls the NucleusAssembler.getCartridgehandler() method,

passing in the cartridge’s ContentItem type, to retrieve the correct handler for the cartridge. The handler

gets resolved and executed and the results are stored in the cartridge’s associated ContentItem. This

process happens recursively so that the assembled content takes the form of a response ContentItem that

consists of a root ContentItem which may have sub-ContentItem objects as attributes.

Note: If a cartridge handler does not exist for a ContentItem, the initial version of the item, created in step 8,

is returned.

10.The NucleusAssembler instance returns the root ContentItem to the AssemblerTools component.

11.The AssemblerTools component returns the root ContentItem to AssemblerPipelineServlet.

12.The AssemblerPipelineServlet component calls the /atg/endeca/assembler/cartridge/

renderer/ContentItemToRendererPath component to get the path to the renderer (in this case, a JSP

file) for the root ContentItem. The ContentItemToRendererPath component uses pattern matching to

match the ContentItem type to a JSP file; for example, in Commerce Reference Store, if the ContentItem

type is Breadcrumbs, the JSP file is /cartridges/Breadcrumbs/Breadcrumbs.jsp.

Note: See ContentItemToRendererPath (page 112) for more details on how the renderer path is calculated.

13.The AssemblerPipelineServlet component sets the assembled ContentItem as a contentItem

parameter on the HttpServletRequest, then forwards the request to the JSP determined by the

ContentItemToRendererPath component

14.Due to the nested nature of ContentItems, the JSP for the root ContentItem may have to render

sub-ContentItems, and those sub-ContentItems may have their own sub-ContentItems as well. As such,

each JSP renderer, from the root on down, must include dsp:renderContentItem tags for its immediate

sub-ContentItems. This configuration creates a recursive scenario that allows all sub-ContentItems to be

rendered.

15.The dsp:renderContentItem tag invokes the ContentItemToRendererPath component to retrieve the

JSP renderer for the current sub-ContentItem. The retrieved JSP is then included in the rendered page.

The dsp:renderContentItem tag also sets the contentItem attribute on the HttpServletRequest,

thereby making each sub-ContentItem available to its renderer; however, this value lasts only for the

duration of the include so that after the include is done, the contentItem attribute’s value returns to the

root ContentItem.

9 Query Integration 89

16.The JSPs returned by the ContentItemToRendererPath component are included in the response.

17.The response is returned to the browser.

Rendering XML or JSON Content

The process for handling XML or JSON output is very similar to that for JSPs, with some minor modifications. The

architecture diagram for an XML or JSON response looks like the following (note that this diagram is identical to

the JSP diagram except for steps 13 and 14):

Serializing the content to XML or JSON is controlled by the AssemblerPipelineServlet.formatParamName

property. This property specifies the name of the request parameter that must be passed in order to serialize the

content. This property defaults to format, meaning that, in order to serialize output, the request must include

a format parameter with an acceptable value. Acceptable values are xml and json. For example, the following

URL returns json for a content folder request:

http://localhost:8080/assembler/assembler?assemblerContentCollection=/content/
BrowsePageCollection&format=json

This example returns json for a page request:

90 9 Query Integration

http://localhost:8080/assembler/browse?format=json

If the request specifies the format parameter and either XML or JSON as the value, then after the

AssemblerPipelineServlet component receives the response ContentItem from AssemblerTools,

it calls the appropriate serializer to reformat the response into XML or JSON, respectively. The

AssemblerPipelineServlet component then returns the reformatted content to the client browser.

Setting the AssemblerPipelineServlet.formatParamName property to null disables the serializing feature

and suppresses the rendering of the response entirely. This feature allows you to suppress content as needed in

production environments.

When the Assembler Returns an Empty ContentItem

In the case where the NucleusAssembler instance returns a null response or the response

ContentItem contains an @error key (in other words, the request is not an Assembler request), the

AssemblerPipelineServlet component simply passes the request back to the Core Platform request

handling pipeline for further processing. This scenario is shown in the diagram below:

Note that you can configure an application to bypass the AssemblerPipelineServlet and avoid this scenario.

For more information, see the AssemblerPipelineServlet (page 93) section.

Invoking the Assembler using the InvokeAssembler

Servlet Bean

Invoking the Assembler from within a page, using a servlet bean, allows the call to the Assembler to occur on a

just-in-time basis for the portion of the page that requires Assembler-served content. This approach is desirable

9 Query Integration 91

when only a small portion of the page requires Assembler content. This guide refers to these pages as “Nucleus-

driven pages.”

The request-handling architecture for an Nucleus-driven JSP page looks like this:

In this diagram, the following happens:

1. The JSP page code calls the InvokeAssembler servlet bean and passes it either the includePath

parameter, for a page request, or the contentCollection parameter, for a content folder request.

2. The InvokeAssembler servlet bean parses the includePath or contentCollection parameter

into a request object, in the form of a RedirectAwareContentInclude object (for a page) or a

ContentSlotConfig object (for a content folder). Then, the InvokeAssembler servlet bean calls the

invokeAssembler() method on the /atg/endeca/assembler/AssemblerTools component and passes

it the request object it created.

3. The AssemblerTools component invokes the createAssembler() method on the /atg/endeca/

assembler/NucleusAssemblerFactory component.

92 9 Query Integration

4. The NucleusAssemblerFactory component returns an atg.endeca.assembler.NucleusAssembler

instance.

5. The AssemblerTools component invokes the assemble() method on the NucleusAssembler

instance and passes it the request object. The handler for the request object (which may be the

RedirectAwareContentIncludeHandler or ContentSlotConfigHandler, depending on the type of

request object passed in) resolves a connection to the Workbench and/or the MDEX. For page requests, the

handler also invokes a series of other components that transform the request URL into a URI that contains the

path to the page in Experience Manager.

6. The NucleusAssembler instance assembles the correct content for the request URI. Content, in this case,

corresponds to a hierarchical set of cartridges and their associated data. For each cartridge, the content starts

with any default data that was specified in the Experience Manager cartridge configuration files when the

cartridge was added to the page. That data is further modified and augmented with any data stored in the

Oracle Commerce Configuration Repository (that is, changes made and saved via the Experience Manager UI).

7. Next, the NucleusAssembler instance calls the NucleusAssembler.getCartridgehandler() method,

passing in the cartridge’s ContentItem type, to retrieve the correct handler for the cartridge. The handler

gets resolved and executed and the results are stored in the cartridge’s associated ContentItem. This

process happens recursively so that the assembled content takes the form of a response ContentItem that

consists of a root ContentItem which may have sub-ContentItem objects as attributes.

Note: If a cartridge handler does not exist for a ContentItem, the initial version of the item, created in step 6,

is returned.

8. The NucleusAssembler instance returns the root ContentItem to the AssemblerTools component.

9. The AssemblerTools component returns the root ContentItem to the InvokeAssembler servlet bean.

10.When the ContentItem is not empty, the InvokeAssembler servlet bean’s output oparam is rendered.

In this example, we assume that the output oparam uses a dsp:renderContentItem tag to call the

/atg/endeca/assembler/cartridge/renderer/ContentItemToRendererPath component to

get the path to the JSP renderer for the root ContentItem. However, choosing when and how many

times to invoke dsp:renderContentItem depends on what the application needs to do. It may make

sense to invoke dsp:renderContentItem for the root ContentItem, and then recursively invoke

dsp:renderContentItem for all the sub-ContentItems via additional dsp:renderContentItem tags.

Alternatively, you could take a more targeted approach where you invoke dsp:renderContentItem for

individual sub-ContentItems as needed.

Note that the dsp:renderContentItem tag also sets the contentItem attribute on the

HttpServletRequest, thereby making the ContentItem available to the renderers. This value lasts for the

duration of the include only.

11.The ContentItemToRendererPath component returns the correct renderer for the ContentItem.

12.The JSP returned by ContentItemToRendererPath is included in the response.

13.The response is returned to the browser.

9 Query Integration 93

Choosing Between Pipeline Invocation and Servlet Bean

Invocation

When choosing whether to use pipeline invocation or servlet bean invocation to retrieve content from the

Assembler, it is useful to keep in mind the following considerations:

• The pipeline servlet operates at an HTTP request level. HTTP requests often map to entire pages in Experience

Manager, making such pages good candidates for pipeline servlet invocation.

• The servlet bean is useful when only a portion of a page needs to be managed by the Experience Manager

user. This type of page can use the servlet bean to request that portion’s content from the Assembler.

• For performance reasons, Oracle recommends minimizing the number of servlet bean invocations on any

given page.

• Cartridges that are intended to work on the same result set should all be retrieved during the same Assembler

invocation, regardless of the invocation type you use. For example, the search results, breadcrumbs, and

navigation cartridges should all return content that is based on the same results set.

• If your business users need the ability to create their own page URLs, for example, /browse/WinterSale,

those pages should be managed in Experience Manager and they should be retrieved via pipeline servlet

invocation to ensure that the URL is recognized as an Assembler URL and properly directed to the Assembler.

Conversely, if you have pages whose URLs must not be edited, you can manage those pages as Nucleus-driven

pages and provide access to any configurable content in Experience Manager through a servlet bean.

Components for Invoking the Assembler

This section provides more details on the components that invoke the Assembler.

AssemblerPipelineServlet

The /atg/endeca/assembler/AssemblerPipelineServlet component is part of Oracle Commerce Core

Platform request handling pipeline and it is of class atg.endeca.assembler.AssemblerPipelineServlet.

AssemblerPipelineServlet’s primary task is to invoke the Assembler, passing in a ContentInclude (for

a page request) or a ContentSlotConfig (for a content folder request). AssemblerPipelineServlet

is started when the Oracle Commerce Platform server is started. The /Initial.properties file under

DAF.Endeca.Assembler configures this behavior by adding AssemblerPipelineServlet to its initial

services.

initialServices+=\
 /atg/endeca/assembler/AssemblerPipelineServlet

On invocation of the AssemblerPipelineServlet.service() method, several items are checked to

determine whether or not the servlet should execute:

• The AssemblerPipelineServlet.enable property: If this property is set to false, the servlet is disabled

and the request will be passed. This property defaults to true.

94 9 Query Integration

• The atg.assembler context parameter: A web application must explicitly set the atg.assembler context

parameter to true in its web.xml file, otherwise the AssemblerPipelineServlet will pass the request. To

set the atg.assembler context parameter to true, add the following to the application’s web.xml file:

<context-param>

<param-name>atg.assembler</param-name>

<param-value>true</param-value>

</context-param>

Applications that never have a need to invoke the Assembler, should set atg.assembler to false to bypass

the servlet and avoid making requests to the Assembler.

• The MIME type of the request: AssemblerPipelineServlet uses the request URI to determine the MIME

type of the request. If AssemblerPipelineServlet is not allowed to process the specified MIME type, it

passes the request. By default, the AssemblerPipelineServlet component passes all known MIME types

and only executes for a null MIME type. See Bypassing or Invoking the Assembler Based On MIME Type (page

95) for more information on customizing the MIME types that the AssemblerPipelineServlet is

allowed to execute.

• The AssemblerPipelineServlet.ignoreRequestURIPattern property: This optional property contains

a regular expression that defines a pattern for URIs that should be disallowed. When this property is set, the

request URI is compared against the specified regular expression and, if the current URI matches the regular

expression, the request is passed. Out of the box, this property is not set.

If all of the above checks pass, AssemblerPipelineServlet executes. Its first task is to determine whether the

request is a page request or a content folder request. AssemblerPipelineServlet makes this determination

based on the URL, as described in the following sections.

Content Folder Request Identification and Handling

The URL for a content folder request has some additional requirements that the URL for a page request

does not have. Specifically, the URL for a content folder must have an /assembler sub-path and an

assemblerContentCollection request parameter. For example:

/crs/storeus/assembler/?assemblerContentCollection=Search Box Auto Suggest Content

The /assembler sub-path can take any of these forms:

• /assembler

• <context-root>/assembler (for example, crs/assembler)

• <site.productionURL>/assembler (for example, /crs/storeus/assembler)

The assemblerContentCollection request parameter must specify the name of a content folder. If these

content folder URL conditions are met, AssemblerPipelineServlet creates a ContentSlotConfig object

and passes it to the Assembler:

contentItem = new ContentSlotConfig(content, ruleLimit);

A content folder URL may also include the optional assemblerRuleLimit request parameter. This is an integer

value that is used as an argument to the ContentSlotConfig constructor. It determines the number of items

to return from the content folder. If assemblerRuleLimit is not set or is an invalid value, then the default value

of 1 is used.

9 Query Integration 95

/crs/storeus/assembler/?assemblerContentCollection=Search Box Auto Suggest
 Content&assemblerRuleLimit=3

If the content folder does not exist, the Assembler returns a content item whose contents value is empty. For

example, this URL:

http://localhost:8080/assembler/assembler?assemblerContentCollection=/content/
BrowsePageCollection&format=json

Results in this data:

{"@type":"ContentSlot","contents":[],"ruleLimit":1,"contentCollection":"\/content\/
BrowsePageCollection"}

Page Request Identification and Handling

If the URL does not fit the requirements for a content folder request, the AssemblerPipelineServlet

component assumes that this is a page request. A page request URL must be transformed into a URI that

matches one of the pages defined Experience Manager. See the Calculating the Content Path from the Page

Request URL (page 97) section for details on how the URI is calculated.

Bypassing or Invoking the Assembler Based On MIME Type

By default, the AssemblerPipelineServlet limits its Assembler invocation to request paths that do not

match a known MIME type. It does this via a reference to the /atg/dynamo/servlet/pipeline/MimeTyper

component, which is part of the Oracle Commerce Core Platform system that routes and executes requests

based on matching MIME types. This configuration prevents the AssemblerPipelineServlet from

intercepting requests for JSP, CSS, HTML, and JavaScript files, among others.

You can add allowed MIME types or disable Assembler invocation for unknown MIME types using the following

AssemblerPipelineServlet configurable properties:

Whether to invoke the Assembler for a potential match on a request
that doesn't match a known MIME type (typically a directory).
#
assembleUnknownMimeTypes=true

A String array of allowed MIME types. Defaults to null, but
can be set to a MIME type if you want to pass certain extensions to
the Assembler (for example, ".asm" or ".endeca").
#
allowedMimeTypes=

See the Platform Programming Guide for more information on the MimeTyper component.

InvokeAssembler

The /atg/endeca/assembler/droplet/InvokeAssembler servlet bean, which is of class

atg.endeca.assembler.droplet.InvokeAssembler, provides a means of invoking the Assembler via

a servlet bean on a page. It is useful on pages that contain mostly Nucleus-driven content, with a section of

96 9 Query Integration

Assembler-based content. Note that, for pages that have multiple sections of Assembler content, you should

consider combining the requests for that content into a single InvokeAssembler call for performance reasons.

Input Parameters

The InvokeAssembler servlet bean has two input parameters, includePath and contentCollection,

described below. Note that you must provide either an includePath or a contentCollection parameter, but

you cannot provide both.

includePath

Use the includePath parameter for a page request. The path you specify must correspond to the name of a

page in Experience Manager and is relative to the current site. For example, if includePath is set to /browse

and the current site is Site A, the content for Site A’s browse page is retrieved. InvokeAssembler creates a

ContentInclude component and sets its contentUri property from the includePath parameter.

contentCollection

Use the contentCollection parameter for a content folder request. The value you provide for

contentCollection must correspond to the name of a content folder in Experience Manager, for example,

Search Box Auto Suggest Content. InvokeAssembler creates a ContentSlotConfig component and

inserts the contentCollection parameter in its contentUri property. Note that the ContentSlotConfig

component specifies both the content folder and the number of content items to return from that folder. The

number of items to return is specified using the InvokeAssembler.ruleLimit parameter, described next.

ruleLimit

This optional parameter is used in conjunction with the contentCollection parameter to specify the number

of items that should be returned from the specified content folder.

Output Parameters

The InvokeAssembler servlet bean has one output parameter, contentItem. This parameter contains the

root ContentItem returned by the Assembler. If this content item is empty, the request was not an Assembler

request.

Open Parameters

The InvokeAssembler has two open parameters.

output

Rendered when the Assembler returns a ContentItem.

error

Rendered if the Assembler returns a ContentItem with an @error key. The presence of this key indicates that

the ContentItem does not contain any content because the Assembler threw an exception or returned an error.

Example

This code snippet shows how to use the InvokeAssembler servlet bean on a page:

<dsp:importbean bean="/atg/endeca/assembler/droplet/InvokeAssembler"/>
<dsp:droplet name="InvokeAssembler">
 <dsp:param name="includePath" value="/browse"/>
 <dsp:oparam name="output">
 <dsp:getvalueof var="contentItem"
 vartype="com.endeca.infront.assembler.ContentItem"
 param="contentItem" />
 </dsp:oparam>
</dsp:droplet>

9 Query Integration 97

Accessing Commonly Used Functionality in

AssemblerTools

The /atg/endeca/assembler/AssemblerTools component provides commonly used functionality to other

query integration components. This component’s functionality includes:

• Making the actual content request to the Assembler by invoking the assemble() method on the

NucleusAssembler instance and passing it the request ContentItem.

• Assisting other components by calculating a content path based on the page request URL. The content path

identifies the page in Experience Manager whose content should be rendered.

• Identifying the renderer mapping component to use for the request.

The AssemblerTools component is of class atg.endeca.assember.AssemblerTools and it has the

following core method:

public ContentItem invokeAssembler(ContentItem pContentItem)

Creating the Assembler Instance and Starting Content Assembly

The AssemblerTools component has a configurable property, assemblerFactory, that out of the box

is set to /atg/endeca/assembler/NucleusAssemblerFactory. The NucleusAssemblerFactory

component is responsible for creating the Assembler instance that collects and organizes

content. The AssemblerTools.invokeAssembler() method calls createAssembler() on the

NucleusAssemblerFactory component to create an Assembler instance and then it calls assemble() on that

instance to begin the content assembly process. More details on the NucleusAssemblerFactory component

can be found in the Querying the Assembler (page 106) section.

Calculating the Content Path from the Page Request URL

Note: The information in this section applies to page requests processed by the AssemblerPipelineServlet

only. For information about page requests that are processed using the InvokeAssembler servlet bean, see the

InvokeAssembler (page 95) section.

For page requests processed by the AssemblerPipelineServlet, the AssemblerTools.getContentPath()

method calculates the content path to pass to the Assembler (for example, /browse). The content path

identifies the page in Experience Manager whose content should be rendered. The content path is relative to the

current site; for example, if the current site is storeus and the content path is /browse, then the /browse page

will be retrieved for the storeus site.

The getContentPath() method extracts the content path from the request URL by removing substrings that

match the values of properties of the siteConfiguration item for the site. For example, if a request is made to

http://localhost:8080/crs/storeus/browse/:

1. The getContentPath() method gets the request URI using the atg.servlet.ServletUtil class. In this

case, the request URI is:

/crs/storeus/browse/

98 9 Query Integration

2. If the AssemblerTools.removeSiteBaseURL property is true, getContentPath() compares the

request URI with the site base URL (the value of the siteConfiguration item’s productionURL

property). If the AssemblerTools.includeAdditionalProductionURLs property is also true, the

getContentPath() method compares the request URI with the values of the siteConfiguration item’s

additionalProductionURLs property, as well as with the value of productionURL. If one of the URLs

matches a substring of the request URI, getContentPath() removes that substring from the request URI.

3. If the AssemblerTools.removeContextRoot property is true and the site base URL has not been

removed, getContentPath() compares the request URI with the context root (the value of the

siteConfiguration item’s contextRoot property). If there is a match, getContentPath() removes the

context root from the request URI.

So, in this example, if one of the production URLs is /crs/storeus, the resulting content path is /browse/. If

none of the URLs match the request URI and the context root is /crs, the resulting content path is /storeus/

browse/.

Identifying the Renderer Mapping Component to Use for the Request

The AssemblerTools.defaultContentItemToRendererPath property specifies the default component that

should be used to map a response ContentItem to its correct renderer. Having this default ensures that the

same mapping component is used across all web sites:

Our default service for mapping from a ContentItem to the path of
its corresponding JSP rendering page
defaultContentItemToRendererPath=cartridge/renderer/ContentItemToRendererPath

You can override this setting on a web application-specific basis by specifying a context-param in your

application’s web.xml file. The name of the parameter must be contentItemToRendererPath and the value

must specify the Nucleus path of the mapping component you want to use:

<context-param>
 <param-name>contentItemToRendererPath</param-name>
 <param-value>Nucleus-path-to-mapper</param-value>
</context-param>

Creating the SiteState Component

For page requests, a request-scoped /atg/endeca/assembler/SiteState component must be resolved.

This component contains the siteId for the current request as well as the page URI, or contentPath, being

requested. Page requests begin when a ContentInclude object is passed to the NucleusAssembler

component, after which the ContentIncludeHandler is invoked to resolve the SiteState component and

the page content.

The SiteState component has the following properties:

• siteId: The Guided Search Site ID for the site that the current request resolves to, for example, /

storeSiteUS. Note that the Guided Search Site ID identifies the correct site within the EAC application. This

ID is distinct and different from the site ID that is part of a site’s definition in the Site repository. Each site in

9 Query Integration 99

the Site repository will have a site ID. It may also have a corresponding Guided Search Site ID. The purpose of

the Guided Search Site ID property is to create a mapping between a site definition in the Site repository and

its corresponding site in the EAC application.

• contentPath: The path to the page for the current request, for example, /browse. This path is relative to the

site specified in the siteId property.

• properties: This map provides a storage mechanism for additional properties you may want to include with

your SiteState component. Out of the box, it is empty.

To resolve the ContentIncludeHandler component’s reference to the SiteState component, Nucleus

calls the createSiteState() method of the com.endeca.infront.site.SiteStateBuilder class. The

SiteStateBuilder class is a factory class that constructs a SiteState component for the current request.

To create the SiteState component, the SiteStateBuilder class determines both the site context and the

contentPath of the Experience Manager page being requested, as described below.

To establish the site context, the SiteStateBuilder component uses a series of parsers. Each

parser contains logic that determines the Guided Search site ID for the current request and then

returns a SiteState object with a populated siteId property. A parser must implement the

atg.endeca.assembler.multisite.SiteStateParser interface, which has the following core method:

public interface SiteStateParser {
 public SiteState parseSiteState(HttpServletRequest request, SiteManager
 siteManager);
}

The SiteStateBuilder.siteStateParsers property contains a list of parsers that are executed in the

configured order to resolve the site context. Out of the box, this property is set to a single parser, the /atg/

endeca/assembler/multisite/SiteStateParser component, which looks at the site context for the

request and extracts the Guided Search Site ID from that site’s definition in the Site repository.

In the event that the parsers defined in the siteStateParsers property fail to determine a Guided Search site

ID and return a SiteState object, the SiteStateBuilder.defaultSiteStateParser property references

a default SiteStateParser. Out of the box, the defaultSiteStateParser property references the /atg/

endeca/assembler/multisite/DefaultSiteStateParser component. This component uses the default

site configured for the EAC application to determine the site context. Note that it is the Experience Manager

administrator’s responsibility to specify the default site when creating an EAC application. If a default site is not

specified for an EAC application, one of the following scenarios occurs:

• If there is only one site, then that site is used as the default.

• If there are multiple sites in the EAC application, the SiteState.siteId property will contain a value of

@error:siteNotFound, which leads the Assembler to return a FileNotFound error.

Assuming one of the parsers executed successfully, the result is a SiteState object with the Guided Search site

ID stored in its siteId property.

After determining the site context, the SiteStateBuilder class invokes the /atg/

endeca/assembler/multisite/ContentPathTranslator component specified in the

SiteStateBuilder.contentPathTranslator property. This component translates the original request

URL into an Experience Manager content path, for example, /browse. To calculate the content path, the

ContentPathTranslator component calls the AssemblerTools.getContentPath() method. This method

encapsulates the Oracle Commerce Core Platform’s logic for calculating the content path from the request URL

(note that this logic could be replaced by a different application-specific class and method). See the Calculating

the Content Path from the Page Request URL (page 97) section for details on how the getContentPath()

method works.

100 9 Query Integration

After the SiteStateParser and ContentPathTranslator components have executed, a SiteState

component exists for the current request and it has the site context and content path information the

ContentIncludeHandler needs to locate the correct content in the Experience Manager pages hierarchy.

Defining Global Assembler Settings

The /atg/endeca/assembler/cartridge/manager/AssemblerSettings component defines global

Assembler settings and is referenced by various components. The NucleusAssemblerSettings component

is of class atg.endeca.assembler.NucleusAssemblerSettings, which is an extension of the class

com.endeca.infront.assembler.AssemblerSettings. It has the following properties:

• defaultExperienceManagerPrefix: Defaults to /pages. This value is used by the /atg/endeca/

assembler/cartridge/manager/WorkbenchContentSource component when it calculates the absolute

path to a page in Experience Manager. All page content in Experience Manager resides under a /pages root.

• defaultGuidedSearchPrefix: Defaults to /service. This value is used by the /atg/endeca/assembler/

cartridge/manager/WorkbenchContentSource component when it calculates the absolute path to a

page in an application that uses Guided Search only (that is, without the Experience Manager).

• experienceManager: Defaults to true. Used by the AssemblerTools.isExperienceManager() method

to determine if Experience Manager is available.

Connecting to the Workbench and MDEX

Some cartridges need to communicate with the EAC applications managed by the Workbench server while

others need to communicate directly with the MDEX engines to do their work. The Guided Search integration

includes a number of components to facilitate both types of communication.

AssemblerApplicationConfiguration Component

The atg.endeca.assembler.configuration.AssemblerApplicationConfiguration class configures

the following:

• Workbench host information

• MDEX host and port information

• The method to use (direct calls to the Workbench versus retrieving content that the Workbench has stored on

the file system) when retrieving content in a multi-EAC application environment.

This information complements the configuration stored the /atg/endeca/ApplicationConfiguration

component, and enables communication with both the EAC applications managed by the Workbench server

and any MDEX instances.

The Guided Search integration includes a component of the AssemblerApplicationConfiguration

class, /atg/endeca/assembler/AssemblerApplicationConfiguration, that other

components reference to retrieve the Workbench and MDEX connection details. The

9 Query Integration 101

AssemblerApplicationConfiguration component also has an applicationConfiguration property that

points to the ApplicationConfiguration component:

applicationConfiguration=/atg/endeca/ApplicationConfiguration

This section provides information on how the AssemblerApplicationConfiguration component calculates

these details, while the sections after provide information on the components that use them. The following

chapter, Retrieving Promoted Content (page 115), provides details on the different content retrieval methods

and how to configure them.

Creating Application-specific Workbench Connections

Note: This section introduces the WorkbenchContentSource and DefaultWorkbenchContentSource

components, in the context of what the AssemblerApplicationConfiguration component does with them.

Additional information is provided about these component types in the following sections.

The /atg/endeca/assembler/cartridge/manager/WorkbenchContentSource component

holds details for connecting to a particular EAC application managed by the Workbench server

(or, to be more specific, it functions as an alias for other components that calculate the connection

details based on the environment and the current request). It is a requirement that a globally-scoped

com.endeca.infront.content.source.WorkbenchContentSource object be instantiated for each

EAC application in your environment before any content requests are made. Environments that have

multiple EAC applications (for example, a separate application for each language or site), will need multiple

WorkbenchContentSource components. The AssemblerApplicationConfiguration component is

responsible for creating these components when necessary.

To create the application-specific WorkbenchContentSource components, the

AssemblerApplicationConfiguration component resolves a prototype-scoped /atg/endeca/

assembler/cartridge/manager/PrototypeWorkbenchContentSource component, which is of class

atg.endeca.assembler.content.ExtendedWorkbenchContentSource, and inserts it into the Nucleus

global scope under a new name that follows this pattern:

WorkbenchContentSource_EAC-application-key

Adding the EAC-application-key to the end of the WorkbenchContentSource component name uniquely

identifies the WorkbenchContentSource component as the one to use for a given EAC application.

The PrototypeWorkbenchContentSource configuration includes a $basedOn property that

references the /atg/endeca/assembler/cartridge/manager/DefaultWorkbenchContentSource

component, where arguments for the WorkbenchContentSource constructor are

provided. The PrototypeWorkbenchContentSource component gets its settings from

the DefaultWorkbenchContent component, with the exception of the EAC application

name, which it gets from the AssemblerApplicationConfiguration component’s

currentInitializingWorkbenchContentSourceApplicationName property.

Determining Which MDEX to Use

The AssemblerApplicationConfiguration component determines which host name and port to use

to connect to the correct MDEX engine for any given request. The /atg/endeca/assembler/cartridge/

manager/MdexResource component, which represents the connection to a single MDEX, refers to the

AssemblerApplicationConfiguration component when creating a connection for a specific request.

The MDEX host and port values are stored in the

AssemblerApplicationConfiguration.currentMdexHostname and

AssemblerApplicationConfiguration.currentMdexPort properties, respectively. The

102 9 Query Integration

AssemblerApplicationConfiguration component includes configuration settings that specify how the

currentMdexHost and currentMdex port properties are determined.

To direct a request to the correct MDEX, you configure the applicationKeyToMdexHostAndPort property on

the /atg/endeca/ApplicationConfiguration component. The AssemblerApplicationConfiguration

component also has an applicationKeyToMdexHostAndPort property that is set automatically to the value

of the ApplicationConfiguration.applicationKeyToMdexHostAndPort property.

The applicationKeyToMdexHostAndPort property is a map where the keys identify each EAC application

and the values specify the host names and port numbers for the MDEX engines associated with each

application.

If you have a single EAC application, the key is default, and you map it to the MDEX as follows:

applicationKeyToMdexHostAndPort=\
 default=host:port

For example:

applicationKeyToMdexHostAndPort=\
 default=myHost.example.com:15300

Note that if the applicationKeyToMdexHostAndPort property is not set, the hostname and port are

obtained from the values of the AssemblerApplicationConfiguration.defaultMdexHostName and

AssemblerApplicationConfiguration.defaultMdexPort properties . These properties default to

localhost and 15000 respectively, but you can explicitly set them to other values. However, if you set

applicationKeyToMdexHostAndPort, it overrides these properties.

If you have multiple applications (for example, a separate application for each language), the keys depend on

the routing strategy you are using:

• If you are using SingleApplicationRoutingStrategy and you have a separate MDEX for each language,

the keys are the two-letter codes for the languages (for example, en for English, fr for French, it for Italian).

• If you are using SiteApplicationRoutingStrategy and you have a separate MDEX for each site, the keys

are the site IDs.

• If you are using SiteApplicationRoutingStrategy and you have a separate MDEX for each combination

of site and language, each key is formed by concatenating the site ID with the language code, separated by

the underscore character (for example, storeSiteUS_fr).

• If you are using GroupingApplicationRoutingStrategy, the keys are the names of EAC applications.

To determine which MDEX to direct a request to, the component specified by the

AssemblerApplicationConfiguration.routingObjectAdapter property examines the request and

related objects to find locale and site information. This component, which is of a class that implements the

RequestRoutingObjectAdapter interface, must match the routing strategy you are using. For example, if

your routing strategy is SiteApplicationRoutingStrategy, the routingObjectAdapter property should

be set to SiteRequestRoutingObjectAdapter.

Based on the information returned by the RequestRoutingObjectAdapter component, the

AssemblerApplicationConfiguration component retrieves the key in one of two ways:

• If the routing strategy is SingleApplicationRoutingStrategy or SiteApplicationRoutingStrategy,

the key is retrieved from the ApplicationConfiguration component.

9 Query Integration 103

• If the routing strategy is GroupingApplicationRoutingStrategy, the key is retrieved from the

GroupingApplicationRoutingStrategy component.

The key is then used to retrieve the host and port values from the applicationKeyToMdexHostAndPort map.

For example, if your environment has two EAC applications to support two languages, English and German, and

your routing strategy is SingleApplicationRoutingStrategy, the applicationKeyToMdexHostAndPort

setting might be:

applicationKeyToMdexHostAndPort=\
 en=localhost:15000,\
 de=localhost:15100

For more information about the ApplicationConfiguration component, see the Configuring the

ApplicationConfiguration Component (page 4) section of the Introduction (page 1). For more information about

routing strategies, see the Routing (page 9)chapter.

Connecting to an MDEX

The /atg/endeca/assembler/cartridge/manager/MdexResource component, of class

com.endeca.infront.navigation.model.MdexResource, is a request-scoped component that represents a

connection to a single MDEX. The NucleusAssembler uses this component to connect to the correct MDEX for

content.

The MdexResource component has host and port properties that represent the MDEX

host and port to use for the current request. The MdexResource component gets the

values for these properties from the AssemblerApplicationConfiguration component,

specifically, the AssemblerApplicationConfiguration.currentMdexHostName and

AssemblerApplicationConfiguration.currentMdexPort properties.

Connecting to the Workbench Server

Oracle Commerce Core Platform has several components for creating a connection to an EAC application

managed by the Workbench server. The connection components can vary depending on whether your

environment has a single EAC application or multiple applications (for example, to support multiple languages).

Here is a brief overview of the process:

1. On startup, the /atg/endeca/assembler/cartridge/manager/DefaultWorkbenchContentSource

component is instantiated. This component contains details for connecting to a default EAC application.

2. If the environment has more than one EAC application, the AssemblerApplicationConfiguration

component creates globally-scoped, WorkbenchContentSource_EAC-application-key components

for each EAC application. Each component has a suffix that identifies which EAC application the

component is for, for example, WorkbenchContentSource_en and WorkbenchContentSource_de.

These application-specific components have a set of properties that are comparable to those in the

DefaultWorkbenchContentSource, but contain values that are specific to each individual EAC application.

3. The NucleusAssembler resolves the /atg/endeca/assembler/cartridge/manager/

WorkbenchContentSource component. This component in turn resolves either the /atg/endeca/

assembler/cartridge/manager/DefaultWorkbenchContentSource component or the /atg/endeca/

assembler/cartridge/manager/PerApplicationWorkbenchContentSourceResolver as the

WorkbenchContentSource to use for the current request.

104 9 Query Integration

4. If the DefaultWorkbenchContentSource is resolved, the connection details defined by this component are

used when retrieving content.

5. If the PerApplicationWorkbenchContentSourceResolver is resolved, the component relies

on the AssemblerApplicationConfiguration to determine what the current EAC application

is and then it references the correct EAC application-specific WorkbenchContentSource that the

AssemblerApplicationConfiguration component has already created in step 2.

The remaining sections provide more details on the individual Workbench-related components.

WorkbenchContentSource

The /atg/endeca/assembler/cartridge/manager/WorkbenchContentSource component represents the

connection to a particular EAC application managed by the Workbench server. The NucleusAssembler class

uses this component to connect to an EAC application and request content, using the content retrieval method

specified.

Out of the box, the WorkbenchContentSource component uses a $basedOn property set to the /atg/

endeca/assembler/cartridge/manager/PerApplicationWorkbenchContentSourceResolver, which

is a request-scoped component that determines which EAC application-specific WorkbenchContentSource to

use, based on the current request. This default configuration is primarily intended to support environments that

have multiple EAC applications, although it works for single-application environments as well.

The WorkbenchContentSource properties file also includes some configuration, which has been commented

out, that is more efficient for environments that have a single EAC application:

$class=atg.nucleus.GenericReference

$scope=global

componentPath=DefaultWorkbenchContentSource

This configuration creates a globally-scoped WorkbenchContentSource component that gets its connection

details from the /atg/endeca/assembler/cartridge/manager/DefaultWorkbenchContentSource

component. This approach is more efficient for a single EAC application environment because it avoids having to

resolve the WorkbenchContentSource for every request. If you have a single EAC application environment, you

can use this configuration instead.

The following sections provide some additional details on the DefaultWorkbenchContentSource and

PerApplicationWorkbenchContentSource components that provide the connection details stored in a

WorkbenchContentSource component.

DefaultWorkbenchContentSource

The /atg/endeca/assembler/cartridge/manager/DefaultWorkbenchContentSource component, is a

globally-scoped component of class

atg.endeca.assembler.content.ExtendedWorkbenchContentSource. In a single EAC application

environment, the DefaultWorkbenchContentSource component provides connection details for the

single EAC application managed by the Workbench server that should be used for all requests. In a multi-

application environment, this component provides connection details to a default EAC application when

the PerApplicationWorkbenchContentSourceResolver cannot resolve an application-specific

WorkbenchContentSource.

Out of the box, this component is included in the initialServices property of the /initial component, to

ensure that it is created on start up.

initialServices+=\
 /atg/endeca/assembler/AssemblerPipelineServlet,\

9 Query Integration 105

 /atg/endeca/assembler/cartridge/manager/DefaultWorkbenchContentSource

The DefaultWorkbenchContentSource component has a set of properties that are used

to create the WorkbenchContentSource that is used to connect to the Workbench. The

DefaultWorkbenchContentSource component gets the values for some of these properties from the

ApplicationConfiguration and AssemblerApplicationConfiguration components. It is the

responsibility of these other two components to calculate the correct EAC application and Workbench server

connection details to use. The DefaultWorkbenchContentSource properties include:

• appName: The EAC application name. Defaults to /atg/endeca/

ApplicationConfiguration.defaultApplicationName.

• host: The Workbench server host name. Defaults to ../../

AssemblerApplicationConfiguration.workbenchHostName.

• serverPort: The port number that WorkbenchContentSource components must use to retrieve content

from the Workbench. Defaults to 8007.

Note that the serverPort property refers to the port used for content retrieval (8007, by default), as opposed

to the port used to connect to the Workbench (8006, by default).

• storeFactory: A reference to the store factory to use for retrieving content for the default EAC application.

Defaults to /atg/endeca/assembler/cartridge/manager/DefaultFileStoreFactory. See the

Retrieving Promoted Content (page 115) chapter for more information.

• defaultSiteRootPath: The site root path to use when calculating the absolute path to the content being

retrieved. Defaults to AssemblerSettings.defaultExperienceManagerPrefix.

• siteManager: A reference to the SiteManager component for retrieving site-based information, such as the

current site, for the request. Defaults to /atg/endeca/assembler/multisite/SiteManager.

PerApplicationWorkbenchContentSourceResolver

In an environment that has multiple EAC applications, it is the /atg/endeca/assembler/cartridge/

manager/PerApplicationWorkbenchContentSourceResolver component’s responsibility to determine

the correct globally-scoped, application-specific WorkbenchContentSource component to use for the

current request. This component also defines a default WorkbenchContentSource component to use if an

application-specific version cannot be found. PerApplicationWorkbenchContentSourceResolver is

of class atg.endeca.assembler.configuration.PerEndecaApplicationGenericReference, which

extends the atg.nucleus.GenericReference class to calculate the correct component to reference based on

the EAC application key of the current request.

Note that PerApplicationWorkbenchContentSourceResolver is request-scoped. This means that the

globally-scoped WorkbenchContentSource component that it resolves and references gets inserted into the

request scope as an alias. This effectively allows the application to resolve the WorkbenchContentSource

component on a per-request basis.

To perform its tasks, the PerApplicationWorkbenchContentSourceResolver component has the following

properties:

• defaultComponentPath: The Nucleus path of the WorkbenchContentSource component to default to if

an EAC application-specific version cannot be resolved. Defaults to /atg/endeca/assembler/cartridge/

manager/DefaultWorkbenchContentSource.

• componentBasePath: The base path for the application-specific WorkbenchContentSource components.

PerApplicationWorkbenchContentSourceResolver adds the EAC application keys, such as _en and

106 9 Query Integration

_es, as suffixes to this path to resolve the correct WorkbenchContentSource to reference. Defaults to /atg/

endeca/assembler/cartridge/manager/WorkbenchContentSource.

• assemblerApplicationConfiguration: The Nucleus path to the

AssemblerApplicationConfiguration component, where the

PerApplicationWorkbenchContentSourceResolver gets the application keys. Defaults to ../../

AssemblerApplicationConfiguration.

• useDefaultIfSingleApplication: Indicates that the

PerApplicationWorkbenchContentSourceResolver should use the

DefaultWorkbenchContentSource if there is only one EAC application and avoid resolving an application-

specific WorkbenchContentSource.

Manually Adding Application-specific WorkbenchContentSource Components

It is a requirement that the WorkbenchContentSource component used to communicate with any given

EAC application be globally scoped and started up front, before any requests are made. To accommodate this

requirement, the ApplicationAssemblerConfiguration component automatically creates corresponding

WorkbenchContentSource components for each EAC application on start up.

If the automatically-created WorkbenchContentSource components are not sufficient for your needs, you can

manually create .properties files for other application-specific WorkbenchContentSource components, for

example:

$basedOn=DefaultWorkbenchContentSource

EAC application name
appName=EAC-application-name

Workbench host
host=Workbench-host-name

Workbench content retrieval port, defaults to 8007
serverPort=8007

Note that the serverPort property refers to the port used for content retrieval (8007, by default), as opposed

to the port used to connect to the Workbench (8006, by default).

After creating the EAC application-specific WorkbenchContentSource components, you must add them to the

intialServices property of the /initial component so that they are started on application start-up, for

example:

initialServices+=\
/atg/endeca/assembler/cartridge/manager/WorkbenchContentSource_EAC-application-key

Querying the Assembler

The atg.endeca.assembler.NucleusAssemblerFactory class is responsible for creating the

atg.endeca.assembler.NucleusAssembler instance that retrieves and organizes content. The

9 Query Integration 107

NucleusAssemblerFactory class implements the com.endeca.infront.assembler.AssemblerFactory

interface and defines a createAssembler() method that the AssemblerTools component invokes to

get a NucleusAssembler instance. NucleusAssembler is an inner class of NucleusAssemblerFactory.

It implements the com.endeca.infront.assembler.Assembler interface and defines an assemble()

method that the AssemblerTools component invokes to begin a query. The following code excerpt from

AssemblerTools.java shows the use of these two methods:

// Get the assembler factory and create an Assembler
Assembler assembler = getAssemblerFactory().createAssembler();
assembler.addAssemblerEventListener(new AssemblerEventAdapter());
 // Assemble the content
ContentItem responseContentItem = assembler.assemble(pContentItem);

In addition to retrieving the base content from the cartridge XML configuration files, the NucleusAssembler

class also modifies that content as necessary using CartridgeHandler components. The

NucleusAssemblerFactory component provides the NucleusAssembler class with the configuration it

needs to find the correct CartridgeHandler components. CartridgeHandlers can be found either by using

a default naming strategy (that is, looking for a Nucleus component named after the cartridgeType in one of

the NucleusAssemblerFactory component’s path properties), or via an explicit mapping. To support these

strategies, the NucleusAssemblerFactory component provides the following properties:

• experienceManagerHandlerPath: Defaults to the /atg/endeca/assembler/cartridge/handler/

experiencemanager folder.

• guidedSearchHandlerPath: Defaults to the /atg/endeca/assembler/cartridge/handler/

guidedsearch folder.

• defaultHandlerPath: Defaults to the /atg/endeca/assembler/cartridge/handler folder.

• handlerMapping: A Map<String, String> property that provides a map from the cartridgeType to the

Nucleus path of the corresponding CartridgeHandler component. This property can be used to override

the default mapping specified in path properties.

When looking for a cartridge handler, the NucleusAssembler class first invokes the

AssemblerTools.isExperienceManager() method to determine if Experience Manager is present or

not. If isExperienceManager() returns true, the NucleusAssembler class tries to locate the correct

handler in the path specified by the NucleusAssemblerFactory.experienceManagerHandlerPath

property. For example, for the MyCartridge cartridge, the NucleusAssembler class would look

for the handler called /atg/endeca/assembler/cartridge/handler/experiencemanager/

MyCartridge. If isExperienceManager() returns false, the NucleusAssembler class looks for

the handler in the path specified by the NucleusAssemblerFactory.guidedSearchHandlerPath

property. If neither path resolves successfully, the NucleusAssembler class looks for the handler

in the path specified by the NucleusAssemblerFactory.defaultHandlerPath. Finally, if the

NucleusAssembler class still cannot find the correct handler, it looks at the explicit mappings defined in the

NucleusAssemblerFactory.handlerMapping property.

Cartridge Handlers and Their Supporting Components

To use cartridges, the Oracle Commerce Core Platform must create Nucleus components for the cartridge

handler classes and any classes that the handlers depend on. The DAF.Endeca.Assembler module includes

108 9 Query Integration

Nucleus component configuration for Platform-level cartridge handlers in the /atg/endeca/assembler/

cartridge/handler and /atg/endeca/assembler/cartridge/handler/config Nucleus paths. The

Store.Endeca.Assembler module includes component configuration for Commerce Reference Store-specific

cartridges in those same Nucleus path locations.

In addition to the handler classes, cartridges rely on Experience Manager configuration and application

rendering code. Because Experience Manager configuration and page rendering are both application-specific,

the files that support all cartridges are included in the Commerce Reference Store modules.

The default folder that Nucleus will try to resolve cartridge handlers in is /atg/endeca/assembler/

cartridge/handler. The /config subdirectory in that same location contains configuration components

associated with the CartridgeHandler components. Similarly, /atg/endeca/assembler/cartridge/

handler/xmgr and /atg/endeca/assembler/cartridge/handler/guidedsearch folders contain

cartridge handlers that are specific to Experience Manager and Guided Search, respectively, and they also have

their own /config sub-paths.

The components in the /atg/endeca/assembler/cartridge/manager Nucleus folder provide additional

cartridge support outside of what can be found in the cartridge handlers themselves. For example, the

NavigationStateBuilder and NavigationState components build and represent the current navigation

state, respectively; the DefaultFilterState component represents the state of any filters; and the

MdexRequestBuilder component builds MDEX requests.

Note: Currently, the /atg/endeca/assembler/cartridge/handler/xmgr and /atg/endeca/assembler/

cartridge/handler/guidedsearch folders are empty and function only as placeholders for future

components.

Providing Access to the HTTP Request to the Cartridges

The /atg/endeca/servlet/request/NucleusHttpServletRequestProvider component, which is of

class atg.endeca.servlet.request.NucleusHttpServletRequestProvider, provides access to the

current request to various components in both the /atg/endeca/assembler/cartridge/handler and /

atg/endeca/assembler/cartridge/manager Nucleus folders.

Controlling How Cartridges Generate Link URLs

If a cartridge needs to provide links to another navigation or record state, the handler for that cartridge store the

necessary information to build those links in com.endeca.infront.cartridge.model.NavigationAction

objects that are returned as part of the response ContentItem. The NavigationAction objects have

properties that define:

• The site context for the link, in the form of a reference to the SiteState object

• The site root for the link, for example, /pages

• The content path for the link, for example, /browse

• The navigation state query parameters for the link, for example, ?N=4294967263

9 Query Integration 109

For example, this NavigationAction object contains the information necessary to create a Remove All

Breadcrumbs link on a page:

removeAllAction: {@class:
 "com.endeca.infront.cartridge.model.NavigationAction",navigationState: "?
format=json",contentPath: "/browse",siteRootPath: "/pages",siteState: {@class:
 "com.endeca.infront.site.model.SiteState",contentPath: "/browse",siteId: "/
storeSiteUS",properties: { },matchedUrlPattern: ""}},

The com.endeca.infront.cartridge.NavigationCartridgeHandler class, and its

subclasses, has a reference to the SiteState object, allowing those classes to add a SiteState

reference to the NavigationAction objects they create. For the other link-related properties, the

NavigationCartridgeHandler classes rely on two additional components, BasicUrlFormatter and

DefaultActionPathProvider, described in the sections below.

It is the responsibility of the page code that renders the links to use the NavigationObject properties to build

appropriate link URLs.

BasicUrlFormatter

The /atg/endeca/url/basic/BasicUrlFormatter component is of class

com.endeca.soleng.urlformatter.basic.BasicUrlFormatter. This class is responsible for serializing

query parameters from a navigation state, for example, ?N=4294967263. It includes properties such as

defaultEncoding and prependQuestionMarks that control how the query parameters are generated. Out of

the box these properties are set to UTF-8 and true, respectively.

For more information on the BasicUrlFormatter class, refer to the Oracle Commerce Guided Search Assembler

Application Developer’s Guide.

DefaultActionPathProvider

The /atg/endeca/assembler/cartridge/manager/DefaultActionPathProvider component, of class

atg.endeca.assembler.navigation.DefaultActionPathProvider, calculates the site root path and the

content path for follow-on links. For example, in the link below, the site root path is /pages and the content

path is /browse, while the remainder of the URL represents the query parameters that define the request.

/pages/browse?N=4294967263

The combination of the site root path and the content path is called the action path.

To calculate the site root path and the content path, the DefaultActionPathProvider class implements the

com.endeca.infront.navigation.url.ActionPathProvider interface and its four methods:

• getDefaultNavigationActionContentPath(): Returns the content path for a navigation action.

• getDefaultNavigationActionSiteRootPath(): Returns the site root path for a navigation action.

• getDefaultRecordActionContentPath(): Returns the content path for a record action.

• getDefaultRecordActionSiteRootPath(): Returns the site root path for a record action.

The DefaultActionPathProvider component also has the following properties that support site root and

content path generation:

110 9 Query Integration

• defaultExperienceManagerNavigationActionPath: The content path to use for navigation requests

when Experience Manager is installed and no other content path can be resolved, defaults to /browse.

• defaultExperienceManagerRecordActionPath: The content path to use for record requests when

Experience Manager is installed and no other path can be resolved, defaults to /product.

• defaultGuidedSearchNavigationActionPath: The content path to use for navigation requests when

Guided Search is installed, defaults to /guidedsearch.

• defaultGuidedSearchRecordActionPath: The content path to use for record requests when Guided

Search is installed, defaults to /recorddetails.

• navigationActionUriMap: A map whose keys are navigation request action paths and whose values

are replacement action paths that should be substituted for the key action paths. For example, a /pages/

[site]/brand action path can be replaced with a /pages/[site]/browse action path. This map can be

used when overriding the action path of the current request is necessary. The keys are in regular expression

form, so things such as query parameters are ignored.

• recordActionUriMap: Analogous to navigationActionUriMap, this is a map whose keys represent record

request action paths and whose values are replacement action paths that should be substituted for the key

action paths. The keys are in regular expression form.

• assemblerTools: A reference to the AssemblerTools component. The AssemblerTools component

provides a reference to the AssemblerSettings component, where the default site root paths are defined.

Defaults to /atg/endeca/assembler/AssemblerTools.

• currentRequest: Provides access to the current request’s details. Defaults to /OriginatingRequest.

• contentSource: A reference to the WorkbenchContentSource component used to connect with the

correct Workbench server and application. Defaults to /atg/endeca/assembler/cartridge/manager/

WorkbenchContentSource. See Connecting to the Workbench and MDEX (page 100) for details on this

component.

Calculating the Content Path

To calculate the content path for a navigation action, the

DefaultActionPathProvider.getDefaultNavigationActionContentPath() method is

invoked. This method calls the AssemblerTools.isExperienceManager() method to determine

if Experience Manager is in use. If so, the DefaultActionPathProvider component calculates

the content path to return using the process described in the next paragraph. If Experience

Manager is not in use, the DefaultActionPathProvider component returns the value of its

defaultGuidedSearchNavigationActionPath property, which defaults to /guidedsearch.

To calculate the content path for navigation actions when Experience Manager is in use, the

DefaultActionPathProvider component retrieves the value of the /atg/endeca/assembler/multisite/

SiteState.contentPath property and looks for a match in the keys of its navigationActionUriMap

property. If a match is found, the DefaultActionPathProvider component returns the content path portion

of the matching entry’s value. If no match is found, the DefaultActionPathProvider component returns

the content path it retrieved from the SiteState object. If it cannot resolve a content path from either the

SiteState object or the navigationActionUriMap, the DefaultActionPathProvider component returns

the value specified in its defaultExperienceManagerNavigationActionPath property, which defaults to /

browse.

The process for calculating the content path for record actions when Experience Manager is in use is

very similar to that for navigation actions. The DefaultActionPathProvider component retrieves

the value of the SiteState.contentPath property, however, it uses the recordActionUriMap

property for the lookup instead. Also, if a content path cannot be resolved from either the

9 Query Integration 111

SiteState object or the recordActionUriMap, this method returns the value specified in the

DefaultActionPathProvider.defaultExperienceManagerRecordActionPath property, which defaults

to /product.

Calculating the Site Root Path

To calculate the site root path for a navigation action, the

DefaultActionPathProvider.getDefaultNavigationActionSiteRootPath() method uses a

combination of the /atg/endeca/assembler/cartridge/manager/WorkbenchContentSource

component and com.endeca.infront.content.source.ContentLocator objects. The

WorkbenchContentSource component provides access to the ContentLocator objects, and the

ContentLocator objects provide the site root path. Specifically, the DefaultActionPathProvider does the

following:

1. Passes the SiteState.contentPath value to the WorkbenchContentSource component to get a

ContentLocator object for that path. This ContentLocator object has two properties:

• A contentPath property that contains the absolute path for the associated content, for example, /pages/

[site]/browse.

• A siteRootPath property that contains the site root for the associated content.

2. DefaultActionPathProvider compares the value of the ContentLocator.contentPath property to the

keys in its navigationActionUriMap map to determine if a replacement is needed.

If a match is found, DefaultActionPathProvider makes another request to the

WorkbenchContentSource for a new ContentLocator, this time using the value for the matching key. This

new ContentLocator object’s siteRootPath is then used as the SiteRootPath for the follow-on links.

If no match is found, DefaultActionPathProvider uses the siteRootPath from the ContentLocator

retrieved in step 1.

If step 1 did not return a ContentLocator object, the DefaultActionPathProvider component calls the

AssemblerTools.isExperienceManager() method to determine if Experience Manager is in use. If so,

the DefaultActionPathProvider component invokes the AssemblerTools.assemblerSettings()

method to retrieve the default site root prefix. This prefix is dependent on whether or not Experience

Manager or Guided Search is installed and defaults to /pages and /service, respectively.

The process for calculating the site root path for record actions is very similar to that for navigation

actions. The getDefaultRecordActionSiteRootPath() method is invoked. This method performs

similarly to the getDefaultNavigationActionSiteRootPath() method, however, it uses the

recordActionUriMap property for the lookup instead. The process for retrieving a default site root in

cases where one cannot be resolved from a ContentLocator object is the same; a call is made to the

AssemblerTools.assemblerSettings() method to retrieve the default site root prefix.

DefaultActionPathProvider and the InvokeAssembler Servlet Bean

When using the /atg/endeca/assembler/droplet/InvokeAssembler servlet bean to retrieve content

from the Assembler, there is no concept of a “current request.” Because the DefaultActionPathProvider

logic uses the current request’s site root and content path values to do its calculations, the InvokeAssembler

servlet bean provides navActionContentPath and recordActionContentPath parameters for passing

in a value that can function as the current request’s site root and content path. These parameters are used

for navigation requests and record requests, respectively. The code sample below shows the use of the

navActionContentPath.

<dsp:droplet name="InvokeAssembler">

112 9 Query Integration

 <dsp:param name="contentCollection" value="/content/Shared/Guided
 Navigation"/>
 <dsp:param name="navActionContentPath" value="/browse"/>
 <dsp:oparam name="output">

 <dsp:getvalueof var="contentItem"
 vartype="com.endeca.infront.assembler.ContentItem"
 param="contentItem" />

 </dsp:oparam>

 </dsp:droplet>

Retrieving Renderers

The Oracle Commerce Core Platform includes one component, ContentItemToRendererPath, and one dsp

tag, dsp:renderContentItem, for retrieving the correct renderer for a content item.

ContentItemToRendererPath

The /atg/endeca/assembler/cartridge/renderer/ContentItemToRendererPath component is

responsible for locating the correct renderer for the ContentItem that has been return by the Assembler

in response to a request. The ContentItemToRendererPath component is an instance of the class

atg.endeca.assembler.cartridge.renderer.CartridgeRenderingPathMapperImpl, which

implements the atg.endeca.assembler.cartridge.renderer.CartridgeRenderingMapper interface.

The core method of the CartridgeRenderingMapper interface is:

public String getRendererPathForContentItem(ContentItem pItem);

The getRendererPathForContentItem() method returns the web-app relative path of the JSP file used to

render the ContentItem.

Creating the Path

The ContentItemToRendererPath component provides some configurable properties that control how a

ContentItem is mapped to a JSP path:

• formatString: The string that defines the relative path of the JSP file. Defaults to /cartridges/

{cartridgeType}/{cartridgeType}{selectorSuffix}.jsp. {cartridgeType} is replaced by the

type of the current ContentItem, which is determined using the cartridgeTypePropertyName property,

described below. {selectorSuffix} is provided by the SelectorReplacementValueProducer, also

described below.

• cartridgeTypePropertyName: The name of the ContentItem property that contains the cartridgeType.

Defaults to cartridgeType.

• contentItemToReplacementPropertyNames: A map that creates a relationship between a source

ContentItem attribute’s name and a formatString property name. You can use this map to make

ContentItem properties available for use in the formatString.

9 Query Integration 113

• replacementValueProducers: An array of ReplacementValueProducers, described below, that makes

additional values available for use in the formatString.

To create the path, getRendererPathForContentItem() creates a replacement map that gets populated

with values calculated by other components or retrieved from other contexts. The replacement map values are

then used to replace placeholders in the ContentItemToRendererPath.formatString property, resulting in

a string that defines the relative path of the JSP file.

ReplacementValueProducer and SelectorReplacementValueProducer

The atg.endeca.assembler.cartridge.renderer.ReplacementValueProducer interface can be

implemented by components that need to make new, perhaps dynamically-generated, values available for use

in the replacement map and, by extension, the formatString. It contains one method that adds values to the

replacement map.

/** Add any replacement values to pMap. Note that a given
 * instance may add a single value, multiple values, or none.
 *
 * @param pMap--The map to add parameters to.
 * @param pContentItem--The ContentItem (available for reference
 * and calculating replacement values based on the content item)
 * ContentItem should not be modified.
 * @param pRequest--The current request. May be null, if invoked
 * outside of a request.
 */
public void addReplacementValues(Map<String, String> pMap,
 ContentItem pContentItem,
 HttpServletRequest pRequest);

Out of the box, the Core Platform includes one replacement value producer, the /atg/endeca/assembler/

cartridge/renderer/SelectorReplacementValueProducer. This component adds a selector and

selectorSuffix to the replacement map, if needed. A selector represents the type of device being used to

view the web page, for example, a mobile device. The selectorSuffix is a corresponding suffix—for example,

“_mobile”—that gets added to the end of the JSP renderer path, so that the correct JSP is rendered for that type

of device.

The SelectorReplacementValueProducer component is of class

atg.endeca.assembler.cartridge.renderer and its primary configurable properties are:

• browserTypeToSelectorName: A map where the key is the browser type and the value is the

corresponding type of device (the “selector”). Out of the box, this property is configured to include the entry

iOSMobile=mobile, which declares that when the browser type is iOSMobile, the value in the replacement

map for selector is mobile. The selectorSuffix always has the same value as the selector with a

preceding underscore, making the selectorSuffix in this case _mobile. If no matching browser type is

found, selector and selectorSuffix are not set.

• selectorKeyName: The name of the key to use when putting the selector value into the replacement map.

Defaults to selector.

• selectorSuffixKeyName: The name of the key to use when putting the selector suffix value into the

replacement map. Defaults to selectorSuffix.

• selectorOverrideParameterName: The name of a request query parameter that can be used to override

the selector setting in the replacement map. Defaults to ciSelector. This property allows you to force a

selector value of mobile by having a ciSelector query parameter value of mobile.

114 9 Query Integration

dsp:renderContentItem

The dsp:renderContentItem JSP tag has two responsibilities:

• For a JSP response, it locates and dispatches to a rendering JSP page. The dsp:renderContentItem tag uses

the ContentItemToRendererPath component to determine the path of the JSP page to include.

• It sets an HttpServletRequest.contentItem attribute to the specified contentItem. This provides a well-

known attribute for rendering pages to pull data from; however, this attribute is set for the duration of the

include only.

The dsp:renderContentItem tag supports the following tag attributes:

• contentItem (required) - The ContentItem to locate a rendering JSP page for. The value of the

contentItem request attribute is also set to this ContentItem, for the duration of the include.

• format (optional) – Specifies whether the response should be serialized into JSON or XML. Acceptable values

are json or xml.

• webApp (optional) - The web application that the include is relative to. By default, the current web

application is used, but by passing another value in the webApp attribute, you can specify an include that

is relative to a different web application. The value of webApp may either be the content root of the target

web application (in which case, it must begin with a slash) or the display name of webApp (in which case, it is

located via Oracle Commerce’s WebAppRegistry; see the Platform Programming Guide for more information

on the WebAppRegistry).

• var (optional) – The name of the request attribute to set. You can use var to override the default request

attribute name of contentItem.

Similar to dsp:include, dsp:renderContentItem supports either nested dsp:param tags or dynamic

attributes for setting additional parameters.

Configuring Keyword Redirects

In order for keyword redirects that have been defined in the Workbench to work in an environment that includes

the Guided Search integration, you may have to do some additional configuration on the Oracle Commerce

Platform side. Specifically, keyword redirects that point to servers other than the one where the Oracle

Commerce Platform application is running require additional configuration. To add this additional configuration,

modify the allowedHostNames property of the /atg/dynamo/servlet/pipeline/RedirectURLValidator

component to include the host for the redirected URL. For example, for a keyword redirect that uses oracle as

its term and http://oracle.com as its link, you must add the host oracle.com to the allowedHostNames

property.

10 Retrieving Promoted Content 115

10 Retrieving Promoted Content

Each WorkbenchContentSource component uses a store factory of class

atg.endeca.assembler.content.ExtendedFileStoreFactory to retrieve promoted content. This class

extends the Guided Search com.endeca.infront.content.source.FileStoreFactory class.

This chapter describes how to configure store factory components and related components to retrieve

promoted content. The configuration required differs depending on whether your environment uses a single

MDEX engine or multiple MDEX engines.

For more information about content promotion, see the Oracle Commerce Guided Search Administrator’s Guide.

Single-MDEX Environment

If your environment includes a single MDEX engine (for example, if all indexed content is in one language,

or content is in multiple languages but all languages are indexed in the same MDEX), the /atg/endeca/

assembler/cartridge/manager/DefaultWorkbenchContentSource component uses the /atg/endeca/

assembler/cartridge/manager/DefaultFileStoreFactory component to retrieve promoted content.

(See the Connecting to the Workbench Server (page 103) section of the Query Integration (page 85) chapter for

information about the DefaultWorkbenchContentSource component.)

The DefaultFileStoreFactory component includes the following properties:

• isAuthoring: A boolean that specifies whether or not the component is running in an authoring

environment. The value of this property determines which other properties are taken into account.

(For example, connection information such as the serverPort property applies only to an authoring

environment.) Defaults to the value of the previewEnabled property of the AssemblerSettings

component:

isAuthoring^=AssemblerSettings.previewEnabled

• appName: The EAC application name. Defaults to the value of the defaultApplicationName property of the

/atg/endeca/ApplicationConfiguration component:

appName^=/atg/endeca/ApplicationConfiguration.defaultApplicationName

• host: The fully qualified host name of the machine running the Oracle Commerce Workbench. Defaults

to the value of the workbenchHostName property of the /atg/endeca/ApplicationConfiguration

component:

host^=/atg/endeca/ApplicationConfiguration.workbenchHostName

116 10 Retrieving Promoted Content

• serverPort: The port on the host machine that the Workbench uses to publish Experience Manager content.

Set by default to:

serverPort=8007

• clientPort: The port on the client machine that is used to retrieve Experience Management content from

the Workbench. If clientPort is set to -1 (the default), a port is assigned automatically.

clientPort=-1

• configurationPath: Set this property to the file-system pathname of the directory to retrieve promoted

content from. For example:

configurationPath=\

ToolsAndFrameworks/version/server/workspace/state/repository/ATG

In addition, the /atg/endeca/assembler/cartridge/manager/DefaultWorkbenchContentSource

component and the /atg/endeca/assembler/admin/EndecaAdministrationService component each

have a storeFactory property that is configured by default to point to the DefaultFileStoreFactory

component:

storeFactory=\
 /atg/endeca/assembler/cartridge/manager/DefaultFileStoreFactory

Multiple-MDEX Environment

If your environment includes multiple MDEX engines (for example, multiple languages with a separate MDEX per

language), configuring the retrieval of content requires a few more steps than in a single-MDEX environment.

As discussed in the Query Integration (page 85) chapter, in a multiple-MDEX environment, the Guided

Search integration uses a separate WorkbenchContentSource for each EAC application. Each

WorkbenchContentSource requires a separate instance of FileStoreFactory to retrieve the appropriate

content for the corresponding EAC application.

The /atg/endeca/assembler/AssemblerApplicationConfiguration component can automatically

create a FileStoreFactory for each WorkbenchContentSource it creates and set a reference to that

FileStoreFactory on the WorkbenchContentSource. This behavior is enabled by setting the value of the

useFileStoreFactory property of the AssemblerApplicationConfiguration component to true.

In addition, the /atg/endeca/assembler/admin/EndecaAdministrationService component

can manage the updates to the store factories. This behavior is enabled by changing the class of the

component from com.endeca.infront.assembler.servlet.admin.AdministrationService to

atg.endeca.assembler.MultiAppAdministrationService. The MultiAppAdministrationService

class extends AdministrationService to enable handling of updates to multiple store factory instances.

Two options for configuring content retrieval in a multiple-MDEX environment are described below:

• Creating FileStoreFactory instances automatically from a prototype-scoped component.

• Creating FileStoreFactory instances from properties files.

Note that both sets of instructions assume you have already created all of the EAC applications and configured

the various Oracle Commerce Platform routing components, as discussed in the Routing (page 9)chapter.

10 Retrieving Promoted Content 117

Creating FileStoreFactory Instances from a Prototype-Scoped Component

To create FileStoreFactory instances from a prototype-scoped component:

1. Modify the /atg/endeca/assembler/AssemblerApplicationConfiguration component in the

local server configuration. Set the useFileStoreFactory property to true to automatically create a

corresponding FileStoreFactory for each EAC application and set a reference to that FileStoreFactory

on the application’s WorkbenchContentSource:

useFileStoreFactory=true

The AssemblerApplicationConfiguration component has a prototypeFileStoreFactory property

that points to the /atg/endeca/assembler/cartridge/manager/PrototypeFileStoreFactory

component. (The PrototypeFileStoreFactory component’s $basedOn property is set to the

DefaultFileStoreFactory component described in the Single-MDEX Environment (page 115) section.)

The FileStoreFactory instances are created from the PrototypeFileStoreFactory component.

2. Set the assemblerContentBaseDirectory property of the AssemblerApplicationConfiguration

component to the file-system pathname of the directory to retrieve promoted content from. For example:

assemblerContentBaseDirectory=\

ToolsAndFrameworks/version/server/workspace/state/repository

For each FileStoreFactory created, the corresponding EAC application name is appended

to the assemblerContentBaseDirectory value to set the FileStoreFactory component’s

configurationPath property. For example, if assemblerContentBaseDirectory is set as

shown above, the configurationPath property for an application named ATGes would be

ToolsAndFrameworks/version/server/workspace/state/repository/ATGes.

3. Modify the /atg/endeca/assembler/admin/EndecaAdministrationService

component in the local server configuration. Set the $class property to

atg.endeca.assembler.MultiAppAdministrationService:

$class=atg.endeca.assembler.MultiAppAdministrationService

The MultiAppAdministrationService class is able to handle updates to multiple store factory instances.

4. Set the storeFactory property of the EndecaAdministrationService component to null:

storeFactory^=/Constants.NULL

Creating FileStoreFactory Instances from Properties Files

To create FileStoreFactory instances from properties files:

1. For each EAC application, create a properties file for the corresponding FileStoreFactory component. Set

the $class property to atg.endeca.assembler.content.ExtendedFileStoreFactory:

$class=atg.endeca.assembler.content.ExtendedFileStoreFactory

2. Set the configurationPath property of each FileStoreFactory component to the file-system pathname

of the directory to retrieve promoted content from. For example, the configurationPath property for the

FileStoreFactory component associated with an EAC application named ATGde might be:

configurationPath=\

ToolsAndFrameworks/version/server/workspace/state/repository/ATGde

118 10 Retrieving Promoted Content

3. Set the appName property of each FileStoreFactory component to the name of the associated EAC

application. For example:

appName=ATGde

4. Modify the /atg/endeca/assembler/AssemblerApplicationConfiguration component in the local

server configuration. Set the useFileStoreFactory property to true to automatically set a reference to

the corresponding FileStoreFactory on the application’s WorkbenchContentSource:

useFileStoreFactory=true

5. Set the applicationKeyToStoreFactory property of the AssemblerApplicationConfiguration

component to map application keys to the FileStoreFactory components you created. For example:

applicationKeyToStoreFactory=\

en=/atg/endeca/assembler/cartridge/manager/FileStoreFactory_en,\

es=/atg/endeca/assembler/cartridge/manager/FileStoreFactory_es,\

de=/atg/endeca/assembler/cartridge/manager/FileStoreFactory_de

6. Modify the /atg/endeca/assembler/admin/EndecaAdministrationService

component in the local server configuration. Set the $class property to

atg.endeca.assembler.MultiAppAdministrationService:

$class=atg.endeca.assembler.MultiAppAdministrationService

The MultiAppAdministrationService class is able to handle updates to multiple store factory instances.

7. Set the storeFactory property of the EndecaAdministrationService component to null:

storeFactory^=/Constants.NULL

11 Record Filtering 119

11 Record Filtering

Oracle Commerce Guided Search provides a mechanism for filtering the records returned by a query, based

on the values of record properties. For example, for a multi-language application, you can use record filters to

restrict the set of records returned to only those in the current language.

This chapter discusses Oracle Commerce classes you can use to build and apply Guided Search record filters. It

includes these sections:

RecordFilterBuilder Interface and Implementing Classes (page 119)

Enabling Record Filter Builder Components (page 122)

DateRangeFilterBuilder (page 122)

RecordFilterBuilder Interface and Implementing Classes

The Guided Search integration includes the

atg.endeca.assembler.navigation.filter.RecordFilterBuilder interface. Classes that build

Guided Search record filters implement this interface. The RecordFilterBuilder interface includes a

buildRecordFilter() method that is responsible for building the actual record filter.

The Guided Search integration includes a number of classes that implement the RecordFilterBuilder

interface, for example:

• LanguageFilterBuilder

• CatalogFilterBuilder

• SiteFilterBuilder

• PriceListPairFilterBuilder

The first three of these classes are described below. See the Handling Price Lists (page 125) chapter for

information about the PriceListPairFilterBuilder class.

LanguageFilterBuilder

The atg.endeca.assembler.navigation.filter.LanguageFilterBuilder class constructs a filter

that restricts the set of records returned to only those in the current language. LanguageFilterBuilder

120 11 Record Filtering

determines the current customer’s locale, and based on this, constructs a filter that excludes records that are not

in the locale’s language.

languagePropertyName

The name of the language property in Guided Search records to use for filtering. This is typically set to:

languagePropertyName=product.language

Note that the filter assumes that the value of this property was set in the records by the

LanguageNameAccessor property accessor. See the LanguageNameAccessor (page 62) section for more

information.

CatalogFilterBuilder

The atg.commerce.endeca.assembler.navigation.filter.CatalogFilterBuilder class constructs a

filter that restricts the set of records returned to only those associated with the appropriate catalogs.

catalogTools

The component of class atg.commerce.catalog.custom.CustomCatalogTools used to determine the

catalogs to include. By default, this property is set to:

catalogTools=/atg/commerce/catalog/CatalogTools

Note that a record associated with an excluded catalog might still be returned if it is also associated with an

included catalog.

catalogIdPropertyName

The name of the catalog ID property in Guided Search records to use for filtering. This is typically set to:

catalogIdPropertyName=product.catalogId

SiteFilterBuilder

The atg.endeca.assembler.navigation.filter.SiteFilterBuilder class constructs a filter that

restricts the set of records returned to only those associated with specified sites. For example, if there are three

sites, site A, site B, and site C, the filter might specify that only records associated with site A or site C should be

returned. (Note that a record associated with site B may still be returned if it is also associated with site A or site

C.)

Note that the SiteFilterBuilder class offers similar functionality to the site filters you can create when

you define a site for an EAC application. A site filter limits the records that are returned for a site to only

those that are specified in the filter. This filtering is applied to all queries made to the site. By contrast, the

SiteFilterBuilder class provides you with an additional measure of control over the site data that gets

filtered out. For example, your application may need to support off-site spotlights or off-site searches. In this

case, your application needs to query for results from the current site but also from other sites. To support

11 Record Filtering 121

this scenario, your application can request all records from the MDEX and then filter out the records for the

unneeded sites using the SiteFilterBuilder class.

A second distinction between a site filter and the filters provided by the SiteFilterBuilder class is that the

site filter is an application filter, while the filters created by the SiteFilterBuilder class are added to the

request as URL filters. Application filters happen implicitly, at an application level, every time a request is made,

while URL filters are passed along with the request URL and are only executed for the current request. URL filters

are combined with application filters before the results are returned from the MDEX.

Note: For more information on site filters and defining sites, see the Oracle Commerce Guided Search

Administrator’s Guide.

SiteFilterBuilder has a number of properties that it uses to determine which sites to include when it

constructs the filter, described below.

siteIds

An array of the site IDs of the sites to include. Typically the value of this property is set through a form handler

in a JSP, based on user interface elements, such as a set of checkboxes that the customer selects to indicate the

sites to search.

siteScope

If siteIds is null, the siteScope property is used to determine the set of sites to include. It can be any of the

following values:

• If siteScope is null or is set to current, only records associated with the current site are returned.

• If siteScope is set to any, all records that are associated with any site are returned.

• If siteScope is set to all, all records are returned, including ones not associated with any site.

• If siteScope is set to none, only records that are not associated with any site are returned.

• If siteScope is set to a shareable type ID, records are returned for any sites that are in a sharing group that

shares the shareable type with the current site.

includeInactiveSites

If true, any inactive sites specified in the siteIds property or determined via the siteScope property are

included. If false (the default), inactive sites are omitted.

includeDisabledSites

If true, any disabled sites specified in the siteIds property or determined via the siteScope property are

included. If false (the default), disabled sites are omitted.

sitePropertyName

The name of the site ID property in Guided Search records to use for filtering. This is typically set to:

sitePropertyName=product.siteId

siteManager

The component of class atg.multisite.SiteManager used to determine which sites are enabled and active.

This is typically set to /atg/multisite/SiteManager.

122 11 Record Filtering

siteGroupManager

The component of class atg.multisite.SiteGroupManager used to determine which sites share with the

current site the shareable type specified in the siteScope property. This is typically set to /atg/multisite/

SiteGroupManager.

Enabling Record Filter Builder Components

The Guided Search integration includes a number of record filter builder components, such as:

/atg/endeca/assembler/cartridge/manager/filter/LanguageFilterBuilder
/atg/endeca/assembler/cartridge/manager/filter/CatalogFilterBuilder
/atg/endeca/assembler/cartridge/manager/filter/PriceListPairFilterBuilder
/atg/endeca/assembler/cartridge/manager/filter/SiteFilterBuilder

To enable a specific record filter builder component, you add it to the recordFilterBuilders property of the

/atg/endeca/assembler/cartridge/manager/NavigationStateBuilder component. This property is an

array of components of classes that implement the RecordFilterBuilder interface. For example:

recordFilterBuilders+=\
/atg/endeca/assembler/cartridge/manager/filter/PriceListPairFilterBuilder,
/atg/endeca/assembler/cartridge/manager/filter/CatalogFilterBuilder

DateRangeFilterBuilder

In addition to the recordFilterBuilders property, the NavigationStateBuilder component has a

rangeFilterBuilders property that can be set to an array of components of classes that implement the

atg.endeca.assembler.navigation.filter.RangeFilterBuilder interface. Classes that implement this

interface construct range filters that are applied to results returned from MDEX queries.

Commerce Reference Store configures the rangeFilterBuilders property as follows:

rangeFilterBuilders+=\
 /atg/endeca/assembler/cartridge/manager/filter/DateRangeFilterBuilder

The DateRangeFilterBuilder component, which is of class

atg.endeca.assembler.navigation.filter.DateRangeFilterBuilder, builds range filters based

on the startDate and endDate properties of products and SKUs. It has startDatePropertyNames and

endDatePropertyNames properties that are configured like this:

startDatePropertyNames=\
 product.startDate,\
 sku.startDate

11 Record Filtering 123

endDatePropertyNames=\
 product.endDate,\
 sku.endDate

By default, DateRangeFilterBuilder uses only the day portion of the startDate and endDate timestamp

values in constructing filters. The granularity of the filters is controlled by the unitOfTime property, which is

set by default to DAYS. You can make the time period more granular by changing the value of this property to

HOURS or MINUTES. Note, however, that this can degrade filtering performance, because query caching becomes

less effective.

124 11 Record Filtering

12 Handling Price Lists 125

12 Handling Price Lists

If your application stores prices in product or SKU properties in the catalog repository, indexing price data

and accessing it on site pages is handled much like it is for other properties, such as color or brand. If your

application uses price lists, however, the prices are stored in a separate price list repository (/atg/commerce/

pricing/priceLists/PriceLists), so additional mechanisms are required to index the price data and

access it on sites.

This chapter describes how the Guided Search integration handles price data in price lists. It includes these

sections:

Price List Pairs (page 125)

Indexing Price List Data (page 126)

Indexing Time-Based Prices (page 129)

Filtering Records by Price List (page 130)

For more information about price lists, see the Core Commerce Programming Guide.

Price List Pairs

A common configuration used on Commerce sites involves assigning a pair of price lists to each customer, with

one price list containing the list prices for all SKUs in the catalog, and the other price list containing sale prices

for the SKUs that are currently on sale (and empty values for SKUs that are not on sale). The customer profile’s

priceList property is set to the price list holding the list prices, and the profile’s salePriceList property is

set to the price list holding the sale prices.

When the application looks up the price of an individual SKU, the following logic is applied:

• If the price list specified in the salePriceList property has a price for the SKU, use that price.

• If the price list specified in the salePriceList property does not have a price for the SKU, use the price from

the price list specified in the priceList property.

In other words, use the sale price if there is one, and if there isn’t, use the list price. The resulting value is referred

to as the active price.

The Guided Search integration includes classes that support this configuration. These classes assume

each customer is assigned a price list pair. There may be only one price list pair that is assigned to all

126 12 Handling Price Lists

customers, or there may be different price list pairs for each site in a multisite environment. For example, a

multisite environment with multiple country stores might have a different price list pair for each country

store, to handle different currency, catalogs, or pricing; the customer is assigned price lists based on the

defaultListPriceList and defaultSalePriceList site properties for the current site.

When the Guided Search integration generates records for a given SKU, various classes are used to retrieve the

data associated with specific price list pairs:

• The PriceListPairVariantProducer class produces a separate record for each price list pair.

• In each record, the PriceListPairAccessor class sets the value of the product.priceListPair property

to the price list pair the record applies to.

• In each record, the ActivePriceAccessor class sets the value of the sku.activePrice property based on

the price values in the price list pair.

• After the records are generated and indexed, the PriceListPairFilterBuilder is used during querying to

construct a filter that returns only the records associated with the price list pair for the current customer.

Note that if your application uses only a single price list pair, the PriceListPairVariantProducer and the

PriceListPairFilterBuilder are not needed and can be disabled. If your application assigns price lists

based on criteria other than site, you may need to write alternative classes (e.g., a different variant producer) to

implement price-handling logic.

Indexing Price List Data

This section describes the variant producer and property accessors used by the Guided Search integration to

index price list data.

PriceListPairVariantProducer

The atg.commerce.endeca.index.producer.PriceListPairVariantProducer class produces

a separate record for each price list pair. It obtains the price list pair for each site from the values of the

defaultListPriceList and defaultSalePriceList properties of the site’s siteConfiguration item.

The Guided Search integration includes a component of this class, /atg/

commerce/search/PriceListPairVariantProducer, which is added to the

ProductCatalogOutputConfig.variantProducers property by the DCS.Endeca.Index module. The

following are key properties of PriceListPairVariantProducer.

priceListPairUniqueParamName

The name of the query parameter used to specify the price list pair in the URL identifying a product or SKU. By

default, this property is set to priceListPair. For example, the value of the product.url property in a record

might be:

atgrep:/ProductCatalog/sku/xsku2099?_product=xprod2099&catalog=
 homeStoreCatalog&locale=en_US&priceListPair=plist3080003_plist3080002

12 Handling Price Lists 127

languagesPropertyName

The name of the property of the siteConfiguration item that specifies the languages for the site. By default,

this property is null. If this property is set, PriceListPairVariantProducer uses the value of the specified

siteConfiguration property to exclude unneeded variants.

For example, in Commerce Reference Store, the CRS Store US and CRS Home sites use the same price list

pair (representing prices in dollars), while CRS Store Germany uses a separate price list pair (representing

prices in euros). Commerce Reference Store sets the value of the languagesPropertyName property to

languages. For the CRS Store US and CRS Home sites, the siteConfiguration item’s languages property

is set to en,es. So when generating the records for the price list pair used for CRS Store US and CRS Home,

PriceListPairVariantProducer excludes the German language variants, since these price lists aren’t used

on any sites that support German.

Note that by default the Oracle Commerce Platform does not have a property for languages on the

siteConfiguration item. If the languagesPropertyName is not set to a valid siteConfiguration

property, records are generated for all possible combinations of language and price list pair.

PriceListPairAccessor

The atg.endeca.index.accessor.PriceListPairAccessor class sets the value of the

product.priceListPair property of a record to the record’s price list pair, which is obtained from

the PriceListPairVariantProducer. The product.priceListPair property is specified in the

ProductCatalogOutputConfig definition file like this:

<property name="priceListPair" is-dimension="true" type="string"
 property-accessor="/atg/endeca/index/accessor/PriceListPairAccessor"
 output-name="product.priceListPair" is-non-repository-property="true"/>

The resulting value has the following format:

salePriceList_listPriceList

For example:

<PROP NAME="product.priceListPair">
 <PVAL>
 plist3080003_plist3080002
 </PVAL>
</PROP>

ActivePriceAccessor

The atg.endeca.index.accessor.ActivePriceAccessor class sets the value of a record’s

sku.activePrice property based on the prices in the record’s price list pair. The sku.activePrice property

is specified in the ProductCatalogOutputConfig definition file like this:

<property name="price" type="float"
 property-accessor="/atg/commerce/endeca/index/accessor/ActivePriceAccessor"

128 12 Handling Price Lists

 output-name="sku.activePrice" is-non-repository-property="true"/>

The actual calculation of the price is performed by a component of class

atg.commerce.endeca.index.ActivePriceCalculator. This class looks up the prices in the price lists and

uses the sale price if there is one, or uses the list price if there is no sale price. The ActivePriceCalculator

component is specified through the activePriceCalculator property of the ActivePriceAccessor

component. By default, this property is set to:

activePriceCalculator=/atg/commerce/endeca/index/ActivePriceCalculator

QueueingPropertiesChangeListener

The IncrementalLoader component monitors when changes are made to the values of properties specified

in an EndecaIndexingOutputConfig component’s definition file, and adds the modified items to the

incremental item queue. So, for example, if the color property of a SKU in the product catalog is modified, that

SKU is added to the incremental item queue for reindexing.

Prices in price lists, however, are not referenced directly by catalog items; instead, price items in the price

list repository have references to the products or SKUs they apply to. So changes to price items do not

automatically trigger reindexing of the corresponding product or SKU.

The atg.repository.search.indexing.listener.QueueingPropertiesChangeListener class

addresses this issue by providing a mechanism for triggering reindexing of items in one repository based on

changes to items in another repository. Oracle Commerce includes a component of this class, /atg/commerce/

search/PriceListPropertiesChangedListener, that is configured to monitor changes to price items in

the price list repository and add products and SKUs that they reference to the incremental item queue.

The following describes key properties of the QueueingPropertiesChangeListener class, and their default

settings in the PriceListPropertiesChangedListener component.

incrementalLoader

The IncrementalLoader component to use. This component is responsible for queueing changes in the

incremental item queue. This property is set to:

incrementalLoader=/atg/search/repository/IncrementalLoader

repository

The repository whose items are monitored for changes. This property is set to the price list repository:

repository=/atg/commerce/pricing/priceLists/PriceLists

itemDescriptorName

The item type of the repository items to monitor for changes. This property is set to:

itemDescriptorName=price

12 Handling Price Lists 129

referencingPropertyToIndexedRepositoryAndType

A Map in which each key is the name of a property of the monitored item type, and the corresponding

value is the Nucleus pathname and item type of the item descriptor in the indexed repository that the

monitored properties reference. The values are of the form repositoryPathName:itemDescriptorName. For

PriceListPropertiesChangedListener, the keys are productId and skuId properties of price items in

the price list repository, and the values represent product and sku item descriptors in the catalog repository:

referencingPropertyToIndexedRepositoryAndType=\
 productId=/atg/commerce/catalog/ProductCatalog:product,\
 skuId=/atg/commerce/catalog/ProductCatalog:sku

monitoredPropertyNames

A list of properties of the item type specified by the itemDescriptorName property. If the value of

monitoredPropertyNames is null (the default), all properties of the item type are monitored, and

changes to the values of any of them triggers reindexing of the associated products or SKUs. If the value of

monitoredPropertyNames is not null, only the listed properties are monitored.

Indexing Time-Based Prices

If your sites use time-based pricing, a price list may have multiple prices for a given product or SKU, with the

active price differing depending on when the item is purchased. For example, a product may sell for $100.00

until December 25, and then sell for $50.00 after that.

To control which price values appear in indexed records, the ActivePriceCalculator class enables you to

specify a time in the future to use as the effective time for determining prices. For instance, in the example

mentioned above, if you run an indexing job on December 24 that uses an effective time of noon on December

26 for pricing, the record generated for the product will include a price value of $50.00.

You can specify the effective time for determining prices either as an explicit time or as an offset from the

indexing start time. The /atg/search/repository/BulkLoaderand /atg/search/repository/

IncrementalLoader components determine the time when an indexing job is started, and store this value

in the atg.repository.search.indexing.Context object. The effective time for determining prices is

calculated relative to this indexing start time. The indexing start time remains unchanged throughout the entire

indexing job, to ensure that the prices in all of the generated records reflect the same effective time, regardless

of how long the indexing job takes.

ActivePriceCalculator provides two properties for specifying the effective time for determining the prices

in an indexing job:

indexingTimeOffsetInHours

Specifies the effective time as a number of hours after the time when the indexing job is

started. For example, if the value of this property is 53.5, the effective time for pricing will be

two days plus five and a half hours later than the start time of the indexing job.

indexingTimeCalendarString

Specifies the effective time for pricing as an explicit time (for example, January 6, 2056, at

3:00 am) or series of times (for example, the 1st and 15th of each month, at 5:00 pm). The

value of this property is a string that uses the CalendarSchedule syntax described in the

130 12 Handling Price Lists

Scheduler Services section of the Platform Programming Guide. For example, the following

specifies the effective times as the 1st and 15th of each month, at 3:05 pm:

indexingTimeCalendarString=* 1,15 . . 15 5

Note that if indexingTimeCalendarString is set to a series of times, the effective time used for pricing for

an individual indexing job is the first time in the series after the indexing start time. For example, if you use the

indexingTimeCalendarString value above and you start an indexing job on the 8th of a month, the effective

time will be the 15th of that month at 3:05 pm. If you start an indexing job on the 16th of a month, the effective

time will be the 1st of the following month at 3:05 pm.

The indexingTimeOffsetInHours and indexingTimeCalendarString properties are mutually

exclusive. If both properties are set, the value of indexingTimeCalendarString is used, and

indexingTimeOffsetInHours is ignored. If neither property is set, the indexing start time is used as the

effective time for determining prices.

For more information about time-based pricing, see the Core Commerce Programming Guide.

Filtering Records by Price List

The atg.commerce.endeca.assembler.navigation.filter.PriceListPairFilterBuilder class

constructs a filter that restricts the set of records returned to only those associated with the price list pair used

for the current customer. The Guided Search integration includes a component of this class, /atg/endeca/

assembler/cartridge/manager/filter/PriceListPairFilterBuilder.

The name of the price list pair property in Guided Search records to use for filtering is specified through the

priceListPairPropertyName property. This is typically set to:

priceListPairPropertyName=product.priceListPair

See the Record Filtering (page 119) chapter for more information about configuring and using record filters.

13 Dimension Value Caching 131

13 Dimension Value Caching

This chapter discusses dimension value caching, which the Guided Search integration uses to map GSA

repository items to the Guided Search dimension values that represent them in the MDEX. The discussion in

this chapter focuses on categories, but the feature is implemented in a general way so it can work with other

repository items.

This chapter includes the following sections:

Mapping Categories to Dimension Values (page 131)

Managing the Cache (page 132)

DimensionValueCacheDroplet (page 133)

Mapping Categories to Dimension Values

A key aspect of the Guided Search integration involves treating product categories both as category items

in the product catalog repository and as Guided Search dimension values. In some contexts categories are

accessed via their category IDs, while in other contexts they are accessed via their dimension value IDs.

To manage the relationship between categories and dimension values, the Guided Search integration

maintains a cache that maps each Oracle Commerce Platform category ID to the equivalent Guided Search

product.category dimension value ID. The cache supports two-way lookup, so either value can be obtained

if the other one is known. Commerce Reference Store makes extensive use of this cache in both directions. For

example, to create a link from an Nucleus-driven page to an Assembler-driven category page, it can use the

cache to obtain the dimension value ID from the category ID; to provide the current category context to an

Oracle Commerce Platform scenario running in a cartridge on a category page, it can use the cache to find the

category ID associated with the current category dimension value.

If your Guided Search environment includes multiple MDEX engines (for example, if you use a separate MDEX for

each language), a separate dimension value cache is maintained for each MDEX. This avoids any collisions that

might be caused by multiple MDEX engines using the same dimension value IDs.

DimensionValueCache and DimensionValueCacheObject

The dimension value cache is implemented by the atg.commerce.endeca.cache.DimensionValueCache

class. This class uses objects of class atg.commerce.endeca.cache.DimensionValueCacheObject

for storing cache entries. The cache is a ConcurrentHashMap, where each key is an category ID, and the

corresponding map value is an instance of DimensionValueCacheObject.

The DimensionValueCacheObject class stores the following information about a dimension value:

132 13 Dimension Value Caching

• dimvalId – the dimension value ID for the category; e.g., 1245

• repositoryId – the GSA repository ID for the category; e.g., cat50087

• url -- the Guided Search URL for the dimension value; e.g., /browse?N=1245

• ancestorRepositoryIds – a List of repository IDs for the category’s ancestor categories; e.g.,

cat10016,cat10014

Note that a single key can be associated with multiple DimensionValueCacheObject instances,

because a category can have multiple parent categories. Therefore when a DimensionValueCache is

used to look up the dimension value for a specific repository ID, the results are returned as a List of

DimensionValueCacheObject instances (although in many cases the List may have only one entry).

Managing the Cache

The /atg/commerce/endeca/cache/DimensionValueCacheTools component (of class

atg.commerce.endeca.cache.DimensionValueCacheTools) provides methods used to access the caches.

These include methods for:

• Retrieving a List of DimensionValueCacheObject instances that correspond to a particular category ID.

• Retrieving the DimensionValueCacheObject associated with a particular dimension value ID.

• Creating a new cache.

• Refreshing an existing cache.

In an environment with multiple MDEX engines, a single DimensionValueCacheTools component

performs these operations on all caches. DimensionValueCacheTools has a getCache() method

which retrieves the appropriate cache to access for a given request, based on the value returned by the

getCurrentApplicationKey() method of the AssemblerApplicationConfiguration component.

Populating and Refreshing the Cache

The /atg/endeca/assembler/cartridge/handler/DimensionValueCacheRefresh component (of class

atg.commerce.endeca.assembler.cartridge.handler.DimensionValueCacheRefreshHandler) is

responsible for accessing the MDEX to populate the associated cache. If an attempt is made to access a cache

that does not exist, the DimensionValueCacheTools.createEmptyCache() method is invoked to create an

empty DimensionValueCache. The DimensionValueCacheRefresh component then accesses the MDEX

to populate the cache. For each dimension value of the specified dimension, DimensionValueCacheRefresh

creates a new DimensionValueCacheObject that stores the dimension value ID, the repository ID, the URL,

and the repository IDs of the item’s ancestor items.

If a cache lookup fails to find an entry, this may be because the cache is out of date. When this happens,

DimensionValueCacheRefresh attempts to refresh the cache by recreating all of the entries. However, to

prevent unnecessary refreshes (such as when an entry is not found because it has not been indexed, which

means a refresh will not fix the failed lookup), the cache is not refreshed if any of the following conditions exist:

• The number of seconds since the last refresh is less than the value of the

DimensionValueCacheTools.minimumCacheRefreshIntervalSecs property (default value is 600).

• A refresh is already in progress.

13 Dimension Value Caching 133

• The MDEX has not been updated since the last time the cache was refreshed.

To ensure that the caches do not become stale, DimensionValueCacheTools has a property,

checkMDEXUpdatedEveryNHours, for specifying a time interval in hours. (The default value is 24.) When an

attempt is made to access a cache, if the number of hours since the last refresh of the cache is greater than this

value, DimensionValueCacheRefresh attempts to refresh the cache. However, the cache is not refreshed if

any of the conditions listed above exist.

Key properties of the DimensionValueCacheRefresh component include:

dimensionName

The name of the dimension in the MDEX. Set by default to product.category.

repositoryIdProperty

The name of the property in the MDEX that represents the repository ID of the category. Set

by default to category.repositoryId.

dimensionValueCacheTools

The DimensionValueCacheTools component used to access the cache. Set by default to /

atg/commerce/endeca/cache/DimensionValueCacheTools.

navigationState

The component representing the Guided Search NavigationState to use to access the

MDEX. By default, this is set to the /atg/endeca/assembler/cartridge/manager/

UnfilteredNavigationState component, which creates a NavigationState object

without any refinements or filters applied. This is done so that the set of dimension values

returned is not restricted based on the navigational context.

Populating the DimensionValueCacheObject.url Property

To populate the url property of a DimensionValueCacheObject with an appropriate link, the

DimensionValueCacheTools component invokes the Assembler. These links must always begin with

the /browse content path and, as such, they require the DimensionValueCacheTools component

to perform an extra step. Specifically, before the invocation, the DimensionValueCacheTools

component modifies the request it passes to the Assembler to add a new request attribute,

DefaultActionPathProvider.ALWAYS_USE_DEFAULT_NAVIGATION_CONTENT_PATH, and sets it to

true. This request attribute forces the Assembler to use the DefaultActionPathProvider component’s

defaultExperienceManagerNavigationActionPath property when setting the content path for the

url, instead of going through the normal DefaultActionPathProvider calculations to derive the content

path. Because this property is set to /browse by default, forcing the Assembler to use it ensures that the links

returned to the DimensionValueCacheTools component are correct. The DimensionValueCacheTools

object subsequently removes the additional request attribute after the links are retrieved, so any other

invocations of the Assembler proceed as normal.

Note: For more details on Assembler invocation and the DefaultActionPathProvider component, see the

Query Integration (page 85) chapter.

DimensionValueCacheDroplet

On a JSP page, you can use the /atg/commerce/endeca/cache/DimensionValueCacheDroplet

component (of class atg.commerce.endeca.cache.DimensionValueCacheDroplet) to obtain the

dimension value associated with a specific category. This servlet bean takes the following input parameters:

134 13 Dimension Value Caching

repositoryId

The repository ID of the category to retrieve the corresponding

DimensionValueCacheObject for.

ancestors

A list of the repository IDs of the category’s ancestor categories, delimited by colons. This

value helps determine the correct DimensionValueCacheObject to retrieve for a category

that has more than one path in the catalog hierarchy.

DimensionValueCacheDroplet returns the DimensionValueCacheObject entry that matches these

parameters. For example:

<dsp:droplet name="DimensionValueCacheDroplet">
 <dsp:param name="repositoryId" value="${categoryId}"/>
 <dsp:param name="ancestors" value="${topLevelCategoryId}"/>
 <dsp:oparam name="output">
 <dsp:getvalueof var="categoryCacheEntry" param="dimensionValueCacheEntry" />
 </dsp:oparam>
</dsp:droplet>

The url property of the DimensionValueCacheObject can be used to render a link to an Assembler-driven

category page. For example:

<dsp:a page="${categoryCacheEntry.url}">
 <dsp:valueof value="${categoryDisplayName}">
 <fmt:message key="common.categoryNameDefault" />
 </dsp:valueof>
</dsp:a>

14 User Segment Sharing 135

14 User Segment Sharing

This chapter discusses the user segment sharing feature that allows a content administrator to choose a user

segment that has been defined in the Business Control Center as a trigger for a cartridge in Experience Manager.

This chapter includes the following sections:

About User Segment Sharing (page 135)

Configuring User Segment Sharing (page 136)

Avoiding Duplicate User Segment Names in the Business Control Center (page 142)

Renaming a User Segment in the Business Control Center (page 142)

About User Segment Sharing

The user segment sharing feature automatically populates the Add/Modify User Segments dialog box in

Experience Manager with any user segments that have been defined in the Business Control Center. This is the

dialog box that is used to define triggers for a cartridge, an example of which is shown below:

136 14 User Segment Sharing

User segments can be created in both the Business Control Center and in the Workbench, and Experience

Manager will show both in the Add/Modify User Segments dialog box. In general, to reduce the possibility for

duplication, user segments should be defined in the Business Control Center and then automatically populated

in the Add/Modify User Segments dialog box.

User segment sharing is a one-way relationship. When configured to do so, user segments created in the

Business Control Center are shared with Experience Manager. However, user segments created in Workbench are

not shared with the Business Control Center.

Configuring User Segment Sharing

When configuring the user segment sharing feature, you must specify an Oracle Commerce Platform server to

act as the user segment server. This server responds to Workbench requests for the list of user segments defined

in the Business Control Center. In general, Oracle recommends using the Content Administration server as the

user segment server.

If your environment does not have a Content Administration server, you can use the Production server instead

but additional configuration is required. Note that using the Production server as the user segment server is

less than ideal because typically the most up-to-date user segment data resides on the Content Administration

server, and you want a merchandiser to have access to that up-to-date data in Experience Manager. Also, calls

made to a live, customer-accessible Production server will typically have to go through a firewall. For these

reasons, you should only use the Production server as your user segment server in development environments

that do not use a Content Administration server.

Note: The Content Administration server is also referred to as the Publishing server in CIM.

To query for Business Control Center user segments, the Workbench sends a call to the user segment

server using the REST Service provided by the REST module. This REST call must be secure to prevent

unwanted access to the user segment data. By default, user segment security is enabled via the

RequestCredentialAccessController component that is included with the REST module. However,

you must add security credentials to both the user segment server and the Workbench to complete

the security configuration. Also, you must configure each EAC application with the correct URL for the

REST request. To request user segments, the Workbench sends its security credential in a header with

the EAC application’s REST request to the user segment server. On the user segment server side, the

RequestCredentialAccessController component compares the security credential in the request to the

security credentials configured on the user segment server. If a match is found, the request is allowed. If not, it is

denied.

Additional Configuration Required for the Production Server

If your environment does not have a Content Administration server, you can use the Production server as the

user segment server instead. Note that this configuration is recommended for development environments only

(see Configuring User Segment Sharing (page 136) for more information on why). To use the Production server

as the user segment server, you must make sure it includes the REST module. You can do this in CIM by choosing

the Oracle Commerce REST - RESTful Web Services option in the Product Selection menu. Alternatively, you can

include the REST module when running the runAssembler command to assemble your Production server’s

EAR file:

runAssembler earfilename –m REST other-modules

14 User Segment Sharing 137

In addition to including the REST module, you must also add the GetAllProfileGroups URL to the /atg/

rest/registry/ActorChainRestRegistry.registeredUrls property. To do this, create an /atg/rest/

registry/ActorChainRestRegistry.properties file in the Production server’s localconfig directory

with the following property, then restart the Production server:

registeredUrls+=/atg/userprofiling/ProfileGroupsActor/getAllProfileGroups

About the RequestCredentialAccessController Component

In order to make the REST calls for user segments secure, the REST module includes a component, /atg/rest/

security/RequestCredentialAccessController, that enables and enforces access control for these

calls. Out of the box, the RequestCredentialAccessController component’s enable property is set to

true. If you need to disable security for the REST calls, you can set this value to false, although this is not a

configuration that Oracle recommends.

To determine if a user segment request should be fulfilled, the RequestCredentialAccessController

component compares the security credential passed in an HTTP header of the request with the credentials

stored in a credential store map. If a matching credential exists in the credential store map, the request

is fulfilled. If no match exists, access to the user segment data is denied. To support this functionality, the

RequestCredentialAccessController component includes the properties listed below, in addition to the

enabled property. Note that these properties must not be changed or user segment security will cease to work:

• credentialStoreMap: The credential store map under which valid REST security credentials are stored. User

segment server requests must include a credential that matches a credential stored in this map in order to be

fulfilled. The default value for this property is requestCredentialMap and must not be changed.

• fieldName: The name of the HTTP header that contains the credential for user segment server REST requests.

This setting defaults to Request-Credential, which is the field that the Workbench uses to pass the

credential header, and it must not be changed.

Managing Credentials

In order for user segment security to work, you must add credentials in two places:

• To the credentialStoreMap. The RequestCredentialAccessController component references this

map when determining if a request includes a valid credential.

• To the Workbench so that it can pass a valid credential along with the user segment request.

Modifications to REST security credentials stored in the credentialStoreMap are effective immediately after

they are saved. Modifications to the Workbench security credential require a restart before those changes

become available for use.

Managing Credentials in the credentialStoreMap

You can add a credential to the credentialStoreMap using either CIM or Dynamo Server Admin. Follow the

instructions below to add a security credential to the credentialStoreMap using CIM.

1. In the CIM MAIN MENU, select [2] Configure OPSS Security.

2. In the SECURITY DEPLOYMENT MENU, choose [1] Enter the location to deploy OPSS files.

3. Press Enter to accept the default location for OPSS files.

4. In the SECURITY DEPLOYMENT MENU, choose [2] Enter the security credential for REST Services.

138 14 User Segment Sharing

5. Enter the new credential at the prompt. The credential can be any text, similar to a password, however it

should correspond to your organization’s OPSS security platform requirements.

6. Re-enter the credential to confirm it.

7. In the SECURITY DEPLOYMENT MENU, choose [3] Deploy configuration files.

8. In the COPY CREDENTIALS TO SHARED DIRECTORY menu, choose [D] Deploy to /<ATG11dir>/home/../

home/security.

9. In the VERIFY WHETHER TO OVERWRITE CURRENT DIRECTORY CONTENTS menu, choose [D] Deploy OPSS

configuration files.

10.In the SECURITY DEPLOYMENT MENU, choose [D] Done.

Alternatively, you can add or delete security credentials using Dynamo Server Admin.

To enter security credentials in Dynamo Server Admin:

1. In a browser, navigate to the instance of Dynamo Server Admin that is running on the user segment server:

http://<user_segment_server_host>:<user_segment_server_HTTP_port>/dyn/admin

2. In the authentication dialog box, enter the Dynamo Server Admin username and password click OK.

3. (WebLogic only) Depending on how you configured your environment, WebLogic may require an additional

login for the WebLogic server. If necessary, enter your WebLogic username and password, and then click OK.

You see the Administration home page.

4. Click the Component Browser link.

5. Navigate to /atg/dynamo/security/opss/csf/CredentialStoreManager.

6. From the Action drop-down menu, choose Create Generic Credential and then click Select.

7. In the Map Name field, enter requestCredentialMap.

8. Enter a key name in the Credential Key Name field, for example, key1. Use a unique key name to enter a new

credential. Use an existing key name to replace the credential for that key name.

9. Enter the new credential in the Enter Credential area. The credential can be any text, similar to a password,

however it should correspond to your organization’s OPSS security platform requirements.

10.Click Submit Credentials.

To delete an existing REST security credential:

1. In a browser, navigate to the instance of Dynamo Server Admin that is running on the user segment server.

See the previous section for detailed instructions on how to do this.

2. Click the Component Browser link.

3. Navigate to /atg/dynamo/security/opss/csf/CredentialStoreManager.

4. From the Action drop-down menu, choose Delete Credential and then click Select.

5. Select the credential you want to delete.

6. Click Delete Credential.

14 User Segment Sharing 139

Managing Credentials in the Workbench

To manage credentials in the Workbench, you use the manage_credentials script in the /

credential_store/bin directory under ToolsAndFrameworks.

To add a credential to the Workbench:

1. In a UNIX shell or command prompt, navigate to the ENDECA_TOOLS_ROOT/credential_store/bin

directory, for example, /usr/local/endeca/ToolsAndFrameworks/version/credential_store/bin

or C:\Endeca\ToolsAndFrameworks\version\credential_store\bin.

2. Enter one of the following commands.

On UNIX, enter:

./manage_credentials.sh add --user admin --config [path to jps-config.xml] --type

generic --mapName restService --key clientCredential

For example:

./manage_credentials.sh add --user admin --config $ENDECA_TOOLS_ROOT/server/

workspace/credential_store/jps-config.xml --type generic --mapName restService --key

clientCredential

On Windows, enter:

manage_credentials.bat add --user admin --config [path to jps-config.xml] --type

generic --mapName restService --key clientCredential

For example:

manage_credentials.bat add --user admin --config %ENDECA_TOOLS_ROOT%\server

\workspace\credential_store\jps-config.xml --type generic --mapName restService --

key clientCredential

3. Enter the new credential at the prompt.

4. Re-enter the credential to confirm the addition.

5. Follow the instructions below to restart the ToolsAndFrameworks service.

To restart the ToolsAndFrameworks service:

1. In a UNIX shell or command prompt, navigate to the ENDECA_TOOLS_ROOT/server/bin directory,

for example, /usr/local/endeca/ToolsAndFrameworks/version/server/bin or C:\Endeca

\ToolsAndFrameworks\version\server\bin.

2. Execute the shutdown script.

On UNIX, enter:

./shutdown.sh

On Windows, enter:

shutdown.bat

3. Execute the startup script.

On UNIX, enter:

140 14 User Segment Sharing

./startup.sh

On Windows, enter:

startup.bat

To delete a credential:

1. In a UNIX shell or command prompt, navigate to the ENDECA_TOOLS_ROOT/credential_store/bin

directory, for example, /usr/local/endeca/ToolsAndFrameworks/version/credential_store/bin

or C:\Endeca\ToolsAndFrameworks\version\credential_store\bin.

2. Enter one of the following commands.

On UNIX, enter:

./manage_credentials delete --user admin --config [path to jps-config.xml] --mapName

restService --key clientCredential

For example:

./manage_credentials delete --user admin --config $ENDECA_TOOLS_ROOT/server/

workspace/credential_store/jps-config.xml --mapName restService --key

clientCredential

On Windows, enter:

manage_credentials.bat delete --user admin --config [path to jps-config.xml] --

mapName restService --key clientCredential

For example:

manage_credentials.bat delete --user admin --config %ENDECA_TOOLS_ROOT%

\server\workspace\credential_store\jps-config.xml --mapName restService --key

clientCredential

You are notified when the credential is successfully deleted.

Configuring the EAC Application

For the EAC application, you must specify the hostname and port of the URL that is used to connect to the REST

Service (the remainder of the URL after the port is well known and cannot be changed). You can create this

configuration in either of the following ways:

• By directly modifying the atgServices.json file for the EAC application that needs access to Business

Control Center user segment data. With this approach, you are making a one-time change that will have to be

repeated if you re-create the EAC application in the future.

• By modifying the deployment template used to create your EAC application to add the necessary hostname

and port prompts and then store the responses in the application’s configuration. With this approach, every

EAC application that is created using the modified deployment template will include the proper user segment

sharing configuration.

Modifying the EAC Application Directly

To specify the REST Service hostname and port directly in the EAC application:

14 User Segment Sharing 141

1. Navigate to the config/ifcr/configuration/tools/xmgr directory of your deployed EAC application on

disk, for example, /usr/local/endeca/Apps/CRS/config/ifcr/configuration/tools/xmgr.

2. Open atgServices.json in a text editor.

3. Set the profileGroupsConnectionUrl property to the JSON response for the getAllProfileGroups

operation on the Content Administration server.

For example:

{

profileGroupsConnectionUrl:"http://<Content Administration

host>:<Content Administration server HTTP port>

/rest/model/atg/userprofiling/ProfileGroupsActor/

getAllProfileGroups?atg-rest-output=json&atg-preview=false"

}

4. Save and close the file.

5. Navigate to the control directory of your deployed EAC application on disk, for example, /usr/local/

endeca/Apps/CRS/control.

6. Run the set_editors_config script, for example:

./set_editors_config.sh

Modifying the Deployment Template

To modify the deployment template:

1. Locate the deploy.xml file you will use to configure your EAC application.

2. Add two <token> elements to the <custom-tokens> element with the following configuration:

<custom-tokens>

<!-- Other tokens -->

<token name="USER_SEGMENTS_HOST">

<prompt-question>Enter the hostname of user segment server.

This server will respond to user segment requests from the

Workbench. [Default:localhost]</prompt-question>

<install-config-option>userSegmentsHost</install-config-option>

<default-value>localhost</default-value>

</token>

<token name="USER_SEGMENTS_PORT">

<prompt-question>Enter the HTTP port of the user segment server.

This server will respond to user segment requests from the

Workbench.</prompt-question>

<install-config-option>userSegmentsPort</install-config-option>

</token>

</custom-tokens>

3. In the same directory as the deploy.xml file, add an /ifcr/configuration/tools/xmgr/

atgServices.json file with the following content:

{

profileGroupsConnectionUrl=

"http://@@USER_SEGMENTS_HOST@@:@@USER_SEGMENTS_PORT@@/

142 14 User Segment Sharing

rest/model/atg/userprofiling/ProfileGroupsActor/getAllProfileGroups?

atg-rest-output=json&atg-preview=false"

}

4. Save and close the file.

Note about Configuring Commerce Reference Store

If you are installing and configuring Commerce Reference Store, the URL connection prompts are incorporated

into the CIM script that Commerce Reference Store uses, via the following two options in the DEPLOY CRS EAC

APP menu:

Enter the hostname of the user segment server. Oracle recommends using the
Publishing server for this purpose. If your environment does not have a Publishing
server, enter the Production server host name and refer to the Guided Search
Integration Guide for additional configuration requirements. [[localhost]] >

Enter the hostname of the user segment server. Oracle recommends using the
Publishing server for this purpose. If your environment does not have a Publishing
server, enter the Production server host name and refer to the Guided Search
Integration Guide for additional configuration requirements. [[7003]]>

When CIM executes the deployment template, it uses the values specified for these two menu options to

populate the deployment template prompts.

Avoiding Duplicate User Segment Names in the Business

Control Center

The Business Control Center allows you to create folders for user segments. The user segment sharing feature

in Experience Manager, however, does not differentiate by folder, so the following two segments would both

appear as YoungMales in the Add/Modify User Segments dialog box:

/RepositoryGroups/YoungMales

/RepositoryGroups/mySegments/YoungMales

For this reason, it is important to use a unique name for every user segment you create in the Business Control

Center, regardless of its location in the user segment folder structure.

Renaming a User Segment in the Business Control Center

If the name of a user segment is changed in the Business Control Center, it is treated in Experience Manager as

if a new segment with a new name has been added. For example, assume you have created a user segment in

the Business Control Center called MySegment and, in Experience Manager, you have configured a cartridge

14 User Segment Sharing 143

called MyCartridge to be triggered when MySegment is part of the current query. If you subsequently

change the name of MySegment to RenamedSegment, when you return to Experience Manager, the trigger for

MyCartridge remains MySegment but this cartridge will never be triggered because MySegment no longer

exists.

Also, if you look at the Add/Modify User Segments dialog box for MyCartridge, it will show RenamedSegment

in the left hand pane, where segments that are available for selection are displayed, but it will continue to

show MySegment in the right pane, where the currently selected segments are displayed. To reconfigure

MyCartridge to use RenamedSegment as a trigger, you must remove MySegment from the currently selected

segments list and add RenamedSegment to the list of triggers.

144 14 User Segment Sharing

15 Using Sites and Site Groups as Content Item Triggers 145

15 Using Sites and Site Groups as

Content Item Triggers

In Experience Manager, content folders, unlike pages, are not site-specific, meaning a content folder’s items may

be shared by multiple sites. For organizational reasons, you may want to group a set of content items under the

same content folder but have some of those items only trigger for particular sites or site groups. For example,

you may want to organize all of your promotional banner content items in the same content folder, keeping

them together and easy to locate, but one of those promotional banners would only be triggered when a

particular site is the current site. For this site-specific promotional banner, you would specify the site as a trigger

when you add the banner’s content item to the content folder in Experience Manager. Note that a content item

can have one or more sites or site groups as a trigger.

Enabling the use of sites and site groups as triggers in Experience Manager requires some additional

configuration on the part of the Workbench administrator. Specifically, to incorporate sites and site groups in

content item triggers, the following happens:

• An administrator or business user manually adds a set of user segments to Workbench that correspond to the

sites and site groups that have been defined in Site Administration. This allows the sites and site groups to be

used in the user segment triggers configured by business users.

• Experience Manager business users configure triggering rules for the content items using the manually added

user segments.

• Every time the Core Platform calls the Assembler, it passes site context information (the current site and its site

groups) for the current request and shopper.

• The passed information allows the Assembler to return the correct content for the request, based on the

configuration set in Experience Manager.

The following sections provide more detail on these general steps.

Adding Sites and Site Groups to Experience Manager

An administrator or business user must manually add user segments to Workbench that correspond to the sites

and site groups that are defined in Site Administration before they can be referred to in triggering rules. When

adding the new Workbench user segments, business users must use the correct syntax. Site and site group IDs

are unique within a type but can, in theory, collide across types. Because these names are passed as a single list

to Workbench, a prefix scheme is used to ensure a unique identifier for each site and site group that is passed.

For more details on these prefixes, see the next section, Constructing the Segment List (page 146).

146 15 Using Sites and Site Groups as Content Item Triggers

Constructing the Segment List

The DAF module is responsible for adding sites and site groups to the user segment list that is

sent to the Assembler. The DAF module includes the request-scoped /atg/endeca/assembler/

cartridge/manager/user/LiveUserState component. This component is of class

atg.endeca.assembler.navigation.LiveUserState. The LiveUserState class is an extension of the

com.endeca.infront.navigation.UserState class that overrides the getUserSegments() method with

a call to a LiveUserState.computeSegments() method that computes the list of sites and site groups to

be added to the segment list that is sent to the Assembler. Segment names are added to the userSegments

property via the addUserSegments() method.

The DAF module contains the following configuration for the LiveUserState component:

sitePrefix=site
siteGroupPrefix=sitegroup
prefixDelimiter=.

This configuration specifies that, when the LiveUserState component adds a site to the segment list, it

prefixes the site’s ID (as defined in the Site Manager UI) with the word site and a period, for example:

site.MySite

A similar situation exists for site groups. Site group IDs are prefixed with sitegroup and a period, for example:

sitegroup.MySiteGroup

It is important to remember that any segments added in the Workbench must also follow these naming

conventions.

16 Commerce Single Sign-On 147

16 Commerce Single Sign-On

The Oracle Commerce Business Control Center and the Oracle Commerce Workbench are both used for

managing content and its presentation on sites built with the integration of the Oracle Commerce Platform and

Oracle Commerce Guided Search. To simplify working in both environments, the Guided Search integration

includes the Commerce Single Sign-On (SSO) feature. Commerce Single Sign-On ensures that when a user logs

into either the Business Control Center or the Workbench, that user is automatically also logged into the other

environment. Logging out of one environment automatically logs the user out of the other one as well.

Commerce SSO consists of three pieces:

• An Oracle Commerce Platform SSO server instance that is responsible for managing the SSO sessions shared

by the Business Control Center and the Workbench.

• An Oracle Commerce Platform plug-in that is responsible for communication between the Business Control

Center and the SSO server.

• A Oracle Commerce Guided Search plug-in that is responsible for communication between the Workbench

and the SSO server.

The Guided Search plug-in is discussed in the Oracle Commerce Guided Search Administrator’s Guide. This chapter

discusses the SSO server and the Oracle Commerce Platform plug-in, and includes the following sections:

Commerce Single Sign-On Server (page 147)

Oracle Commerce Platform Plug-In (page 148)

Maintaining User Accounts (page 150)

LDAP Authentication (page 150)

Commerce Single Sign-On Server

Commerce SSO is managed by a dedicated Oracle Commerce Platform server instance. When you set up your

environment in CIM, it gives you the option of setting up this server. The server includes the SSO module and the

DPS.InternalUsers module (which the SSO module has a dependency on), and uses the same datasources

as the ATG Content Administration server, so it can access the Oracle Commerce Platform internal profile

repository.

When an unauthenticated user attempts to access the Business Control Center or the Workbench, he or she is

redirected to the SSO server’s login page. The login is authenticated against either the internal profile repository

148 16 Commerce Single Sign-On

or the LDAP server, depending on which configuration is used. If the login succeeds, the requested application is

displayed.

The SSO module includes a web application that manages the single-sign on process. The application, whose

context root is sso, provides six main functions that can be accessed via plug-ins by client applications: login,

validate, keep alive, query, control, and logout.

To perform these tasks, the Commerce SSO makes use of ticket granting tickets and service tickets. A ticket

granting ticket is like a global flag that indicates the user has been successfully authenticated. When a user is

authenticated successfully, a service ticket is issued to the user. The service ticket is a short-term object that is

used to perform validation. The first time the user attempts to access a URL, the service ticket is passed to the

SSO server along with the URL to validate that the user is permitted to access the URL. The SSO server responds

either “yes” or “no” to the request based on the status of the ticket.

The SSO application adds the /atg/sso/servlet/SSODispatcherServlet component, of class

atg.servlet.pipeline.ServletPathDispatcherPipelineServlet, to the Oracle Commerce Platform

request-handling pipeline on the SSO server. This servlet dispatches requests to other servlets that provide

the SSO server functions. The servlet that SSODispatcherServlet dispatches the request to depends on the

servlet path of the request:

• /login – Dispatches the request to the /atg/sso/servlet/LoginServlet component, of class

atg.sso.servlet.LoginServlet. This servlet manages the process of authenticating the user and issuing

a service ticket.

• /validate -- Dispatches the request to the /atg/sso/servlet/ValidateServlet component, of class

atg.sso.servlet.ValidateServlet. This servlet manages the process of validating requests based on the

status of service tickets.

• /keepAlive -- Dispatches the request to the /atg/sso/servlet/KeepAliveServlet component, of

class atg.sso.servlet.KeepAliveServlet. This servlet ensures that an SSO session remains active as

long as there is activity in either the Business Control Center or the Workbench. For example, if the user logs

into Commerce SSO and accesses the Workbench for several hours without accessing the Business Control

Center, the keep alive function ensures that subsequent attempts to access the Business Control Center do

not require logging in again.

• /query -- Dispatches the request to the /atg/sso/servlet/QueryServlet component, of class

atg.sso.servlet.QueryServlet. This servlet is responsible for issuing RQL queries against the internal

profile repository. This function is accessed only by the Guided Search plug-in.

• /control – Dispatches the request to the /atg/sso/servlet/ControlServlet component, of class

atg.sso.servlet.ControlServlet. This servlet handles configuration of the client logout URL. This

function is accessed only by the Guided Search plug-in.

• /logout – Dispatches the request to the /atg/sso/servlet/LogoutServlet component, of class

atg.sso.servlet.LogoutServlet. This servlet manages the process of deleting any tickets associated

with the session and then redirecting to the login page.

Oracle Commerce Platform Plug-In

The Oracle Commerce Platform plug-in consists of extensions to the Business Control Center that provide

access to four of the SSO server functions discussed above: login, validate, keep alive, and logout. (The

other two functions, control and query, are accessed only by the Guided Search plug-in.) These extensions

16 Commerce Single Sign-On 149

include the /atg/dynamo/servlet/dafpipeline/LightweightSSOServlet component (of class

atg.userprofiling.sso.LightweightSSOServlet), which is inserted in the request-handling pipeline on

the ATG Content Administration server. This component manages much of the communication between the ATG

Content Administration server and the SSO server.

CIM includes options for configuring the SSO server instance. In addition, the CIM Commerce Add-Ons screen

has a Single Sign-On option for configuring the ATG Content Administration server with information that

enables it to communicate with the SSO server, such as the SSO server’s host name and port number.

The login, validate, keep alive, and logout functions are discussed below.

Login

When a user who is not logged in attempts to access the Business Control Center, the user is redirected to

the SSO login page, and is prompted to authenticate using Commerce SSO. If the authentication succeeds

on the SSO server, the user is then redirected to the ATG Content Administration server, which retrieves the

corresponding user profile from the internal profile repository and associates the current session with the

profile. If authentication fails, the user remains at the Commerce SSO login page.

The /atg/dynamo/servlet/dafpipeline/AccessControlServlet and /atg/web/assetmanager/

userprofiling/NonTransientAccessController components are reconfigured by the plug-in to delegate

control of the Business Control Center login process to Commerce SSO. The NonTransientAccessController

component is responsible for redirecting the user to the SSO server login URL, which it constructs by invoking

methods on the /atg/userprofiling/commercesso/CommerceSSOTools component.

Note: To enable redirection of requests from the ATG Content Administration server to the Commerce SSO

server, add the hostname of the SSO server to the allowedHostNames property of the /atg/dynamo/

servlet/pipeline/RedirectURLValidator component on the ATG Content Administration server. For

example:

allowedHostNames+=ssohost.example.com

Validation

When a user first attempts to access the Business Control Center, a validation request is sent to the Commerce

SSO server. This request contains both the ticket parameter and a service parameter containing the value of the

original URL being requested. (The request also contains a logout parameter to enable SSO logout, as discussed

below.) If the SSO server indicates it is valid for the user associated with the ticket to access the URL in the

service parameter, the ProfileRequestServlet loads the associated user profile.

Keep Alive

The LightweightSSOServlet component handles keep-alive calls to the SSO server. After a user’s login is

authenticated, LightweightSSOServlet periodically polls the KeepAliveServlet on the SSO server, and

continues polling as long as it receives a “yes” reply each time. If a “no” reply is received, the Core Commerce

session is terminated. If the SSO server cannot be reached, additional attempts are made to contact the server

before ending the Core Commerce session.

The polling behavior of the LightweightSSOServlet component is specified through the following

properties:

150 16 Commerce Single Sign-On

keepAlivePollingFrequency

The amount of time in minutes between keep-alive calls. Default is 10.

keepAliveAttempts

The number of keep-alive calls to make, if there is no response from the Commerce SSO

server, before ending the Core Commerce session. Default is 3.

Logout

The way logout is handled depends on whether it is initiated from the Business Control Center or the

Workbench.

If a user logs out from the Business Control Center, the standard Core Commerce logout process is

invoked, and the current Core Commerce session is terminated. The user request is then redirected to the

Commerce SSO logout URL, so that the Commerce SSO session is also terminated. To accomplish this, the

InternalProfileFormHandler.logoutSuccessURL and ControlCenterService.logoutSuccessURL

properties are configured to hold the Commerce SSO logout URL. If the SSO session includes a Workbench

session, the Commerce SSO server terminates the Workbench session by sending a callback URL.

If a user logs out of the Workbench, the Commerce SSO session is terminated. The Core Commerce logout

process must then be triggered as well. As part of the initial request to validate the service ticket and request

URL (see above), the Commerce SSO Server is sent a logout parameter populated with a logout callback URL.

This parameter is used by the SSO Server to initiate a logout from the Core Commerce session after the SSO

session has been terminated by the user logging out of the Workbench. The LightweightSSOServlet

detects such logout requests and invokes the logoutUser() method of the /atg/userprofiling/

ProfileServices component to handle logging out the user.

Maintaining User Accounts

User accounts and authentication credentials for Commerce SSO can be implemented in either of two ways:

• The Oracle Commerce Platform internal profile repository (used for storing Business Control Center accounts)

can be implemented as a standard SQL repository. In this case, the authentication information for Commerce

SSO is stored in the repository database.

• The internal profile repository can be implemented as a composite repository, where the authentication

information is stored in an LDAP directory.

The next section discusses using an LDAP server for authentication.

LDAP Authentication

Using LDAP authentication allows Commerce SSO to make use of an existing corporate LDAP server to control

access to the Business Control Center and the Workbench. In the Oracle Commerce Platform, the internal profile

repository is configured as a composite repository that accesses authentication data stored in an LDAP directory.

This configuration is described below.

16 Commerce Single Sign-On 151

Setting up a Composite Profile Repository

A composite profile repository is a variant of a standard profile repository in which some user data is stored

in a database and accessed through a SQL repository, while authentication information is stored in an LDAP

directory and accessed through an LDAP repository. The composite repository provides a unified view of all of

the data, regardless of its source. See the Personalization Programming Guide for information about composite

profile repositories. For more general information about composite repositories, see the Repository Guide.

You can use CIM to set up the internal profile repository as a composite repository. As mentioned above, CIM

includes options for configuring the SSO server instance, and the CIM Commerce Add-Ons screen has a Single

Sign-On selection for configuring SSO. If you select the Single Sign-On option, CIM will also display a Commerce

SSO Add-Ons screen which has a selection for configuring LDAP authentication settings.

If you select LDAP authentication, both the ATG Content Administration server and the Commerce SSO

server will include the DPS.InternalUsers.LDAP module. This module changes the class of the /atg/

userprofiling/InternalProfileRepository component from atg.adapter.gsa.GSARepository to

atg.adapter.composite.MutableCompositeRepository, and includes a SQL repository component (/

atg/userprofiling/InternalGSAProfileRepository) to serve as the primary view for the composite

repository. It also includes configuration for /atg/adapter/ldap/LDAPRepository (the LDAP repository that

provides the contributing view) and related components.

CIM prompts you for LDAP connection settings and to provide mappings between repository properties

and LDAP attributes. Each user item in the internal profile repository is linked to an LDAP user by the

login property. Repository properties such as firstName, lastName, and email can be mapped to LDAP

user attributes such as givenName, sn, and mail. If an attribute value is changed on the LDAP server, the

corresponding repository property is immediately updated automatically; no re-login is necessary for the

change to take effect.

CIM configures the user item type as a composite item with the primary item being in the SQL repository and a

contributing item being in the LDAP repository. Based on the information you provide, it creates or modifies the

following configuration files:

• /atg/userprofiling/composite.xml – configuration file for the composite repository

(InternalProfileRepository)

• /atg/userprofiling/internalUserProfile.xml – definition file for the SQL repository

(InternalGSAProfileRepository)

• /atg/adapter/ldap/ldapUserProfile.xml – definition file for the LDAP repository (LDAPRepository)

• /atg/adapter/ldap/InitialContextEnvironment.properties – properties file for the component

that specifies the environment settings for the JNDI initial context for the LDAP server

Note that in this configuration, the LDAP directory is not writable by the Oracle Commerce Platform. The LDAP

data should be maintained through your LDAP software, and be available to other systems for reading but not

modifying. Therefore, the LDAP repository is configured as read-only. This means that for Commerce SSO, unlike

other uses of LDAP by the Oracle Commerce Platform, you do not need to set up a password hasher component.

Password hashing should be handled through the LDAP software itself.

Mapping Organizations to LDAP Groups

After you specify the mapping of user properties to LDAP user attributes, CIM prompts you to link Business

Control Center LDAP organizations to LDAP groups by mapping organization properties to LDAP group

attributes. A Business Control Center organization is considered an LDAP organization if the organization’s

isLdap property is set to true. An LDAP organization links to the LDAP group whose group ID matches the

name of the organization.

152 16 Commerce Single Sign-On

The value of the isLdap property can be set in the Organizations interface in the Access Control area of the

Business Control Center:

User Authentication

As mentioned above, the LDAP directory is not writable by the Oracle Commerce Platform. Therefore, before a

user can log into Commerce SSO, an account must exist for that user in the LDAP directory.

When a user who has an LDAP account but does not have an account in the internal profile repository

attempts to log into Commerce SSO, an account for that user is automatically created in the

InternalGSAProfileRepository (assuming that the LDAP authentication succeeds). Once the user is logged

in, user properties that are not linked to the LDAPRepository can be updated.

In order for Commerce SSO to automatically create an internal user in this way, the user must belong to at least

one LDAP group whose group ID matches the name of an LDAP organization defined in the Business Control

Center. The new user is automatically assigned to this organization (and to any other LDAP organizations that

match existing LDAP groups). For each subsequent successful login, the user’s organization memberships are

resynchronized with the user’s current LDAP group memberships.

Validating a login against the LDAP directory on the Commerce SSO server is handled through

the /atg/dynamo/security/LDAPAuthenticationService component, which is of class

atg.security.ldap.LDAPAuthenticationService.

Creating Users and Organizations in the Business Control Center

As discussed in the previous section, if a user who has an LDAP account but does not have an account in the

internal profile repository attempts to log into Commerce SSO, an account for that user is automatically created

in the InternalGSAProfileRepository. Profile properties that are linked to LDAP attributes are read-only

and cannot be modified through the Business Control Center.

An administrator can create accounts in the internal profile repository for users who have not yet logged into

Commerce SSO. Because the LDAP repository is not writable, a new user must already have an LDAP account

with the same user name. The page in the Business Control Center for creating a new user has a Validate button

next to the Username field that you can click to verify that the account exists in the LDAP directory:

16 Commerce Single Sign-On 153

Note that this restriction means that a user account cannot be created by duplicating an existing account and

then changing the user name, since this would require writing to the LDAP directory. Therefore, the Duplicate

option is disabled in the Users interface in the Access Control area.

Organizations

An administrator can create organizations in the Business Control Center that are stored in the Commerce SSO

composite profile repository. There are two types of organizations supported: LDAP (which is linked to an LDAP

group) and Commerce (which is stored entirely in the InternalGSAProfileRepository and is not linked to

an LDAP group).

The name of an LDAP organization must match the group ID of the corresponding LDAP group. The page in the

Business Control Center for creating a new LDAP organization has a Validate button next to the Name field that

you can click to verify that the group exists in the LDAP directory.

Once you create an organization, you cannot change its name. This is true for Commerce organizations as well as

for LDAP organizations.

154 16 Commerce Single Sign-On

17 Data Logging for Search Reporting 155

17 Data Logging for Search Reporting

Oracle Commerce can use Oracle Business Intelligence to generate reports about how customers use Guided

Search to navigate sites and access products. To make data available for use in reports, it must be collected in

the form of log files, which are periodically loaded into the data warehouse.

This chapter discusses the specifics of logging search data for reporting. There are two main types of search data

logging:

• Recording the content of search requests and responses, in order to generate reports about general search

questions such as the most common search terms or the average number of searches per session.

• Recording when customers click on search results or dimension values to view items, and whether or not

those items are subsequently purchased, in order to generate conversion reports about how customers use

search and guided navigation to find and purchase items.

This chapter describes the components, processes, and configuration involved in logging the data. It includes

the following sections:

Recording Search Requests and Responses (page 155)

Recording Search Results Selected (page 157)

Recording Search Results Placed in Shopping Carts (page 159)

The data logging and loading processes are described in the Business Intelligence Installation and Configuration

Guide. Search reports are created from data stored in the data warehouse, which is described in the Business

Intelligence Data Warehouse Guide.

Recording Search Requests and Responses

To record Assembler data for use in reporting, the /atg/endeca/

assembler/event/SearchRequestEventListener component (of class

atg.endeca.assembler.event.SearchRequestEventListener) is included in the list of Assembler

event listeners specified by the assemblerEventListeners property of the /atg/endeca/assembler/

NucleusAssemblerFactory component. When SearchRequestEventListener detects an Assembler

request:

1. It constructs a JMS message of JMSType atg.endeca.assembler.message.SearchMessage, containing

data from the ContentItem returned by the Assembler.

2. SearchRequestEventListener uses the /atg/endeca/assembler/message/SearchMessageSource

component to send the JMS message.

156 17 Data Logging for Search Reporting

3. The message is received by the /atg/reporting/datacollection/endeca/SearchMessageListener

component, which processes the JMS message and passes the data to the components that generate the log

entries for the search data.

The actual log files are written by the /atg/reporting/datacollection/endeca/SearchFileLogger

component, which is of class atg.service.datacollection.RotationAwareFormattingFileLogger.

This component’s formatFields property specifies the JMS message properties to be logged. By default, this

property is set to:

formatFields=timestampAsDate:MM/dd/yyyy HH:mm:ss,searchId,profileId,
 sessionId,repositoryName,languageCode,segmentList,searchType,
 searchTerm,autoCorrectTo,suggestions,suggestionSelected,spotLights,
 responseTime,numRecords,siteId,dimensionNames,dimensionValues,wordCount

For more information about configuring a RotationAwareFormattingFileLogger component, see the

Business Intelligence Installation and Configuration Guide

SearchIdProvider

When the SearchRequestEventListener component construct a JMS message from the ContentItem

returned by the Assembler, it assigns a unique ID to the search request.

The component that generates these search IDs is specified by the SearchRequestEventListener

component’s searchIdProvider property. This property must be set to a component of a class that

implements the atg.endeca.assembler.event.SearchIdProvider interface. By default, the property is set

to:

searchIdProvider=/atg/endeca/assembler/event/SearchIdProvider

The SearchIdProvider component is of class atg.endeca.assembler.event.SearchIdProviderImpl,

which constructs the search ID using hashed values of the session ID, the search term, and the dimensions

selected by the user. If you want to use different parameters for generating search IDs, you can write your

own implementation of the SearchIdProvider interface, create a component of this class, and set the

searchIdProvider property to your new component.

EndecaReporting Segment List

Search reporting adds the EndecaReporting segment list to the Personalization Repository (/atg/

userprofiling/PersonalizationRepository). You can edit this segment list in the Business Control Center

to specify the user segments that are of interest for search reporting.

The /atg/reporting/datacollection/endeca/SearchLogEntryGenerator component is configured to

use this segment list when generating log entries:

repositoryGroupListManager=/atg/userprofiling/UserSegmentListManager
repositoryGroupListIds+=EndecaReporting

For more information about segment lists, see the Personalization Programming Guide.

17 Data Logging for Search Reporting 157

Recording Search Results Selected

In order to generate reports that associate search terms with items that are viewed or purchased, your sites must

record “click-through” events. These occur when a customer clicks on a product or SKU returned by a search, to

view it or purchase it. The recording of these events works like this:

1. For each result returned by Guided Search, the GetSearchClickThroughId servlet bean generates

a click-through ID, which you can append to the URL for that result using a query parameter named

searchClickId. The servlet bean also adds the record to a cache.

2. When a customer clicks a link to view a search result, the SearchClickThroughServlet examines the

request URL, finds the value of the searchClickId query parameter, and uses it to look up the record in

the cache. If it finds the record, the servlet fires a JMS event containing data from the search request and

response. This event is logged to be used for reporting.

This section discusses how click-through events are used to associate search results with views of specific

products. The Recording Search Results Placed in Shopping Carts (page 159) section discusses how click-

through events are used to associate search results with sales of specific products.

Using the GetSearchClickThroughId Servlet Bean

The /atg/endeca/clickthrough/droplet/GetSearchClickThroughId servlet bean is typically used in

a loop that renders a list of search results. For each result, it adds the item to a cache, and generates a click-

through ID to be included in the URL for viewing that item. The click-through ID consists of the search ID and the

record ID, separated by a delimiter.

Input Parameter

record

The record to generate the click-through ID for.

Output Parameter

searchClickId

The click-though ID for retrieving the record from the cache.

Open Parameter

output

The open parameter for rendering the click-though ID.

Example

You can use this servlet bean in pages that render a list of search results. For example, the following JSP code

creates a hyperlink to a product page and appends the searchClickId query parameter to the URL:

<c:forEach var="record" items="${contentItem.records}" >
 <dsp:droplet name="/atg/endeca/clickthrough/droplet/GetSearchClickThroughId">
 <dsp:param name="record" value="${searchResult}"/>
 <dsp:oparam name="output">
 <dsp:a href="/mystore/browse/productDetail.jsp">
 <dsp:param name="searchClickId" param="${searchClickId}"
 </dsp:a>
 </dsp:oparam>

158 17 Data Logging for Search Reporting

 </dsp:droplet>
</c:foreach>

Configuring the Cache

The /atg/endeca/assembler/cache/SearchRequestCache component, of class

atg.endeca.assembler.cache.SearchRequestCache, is a session-scoped component that manages

cached search results. Each cache entry includes a search ID and the associated records for that search.

Rather than storing complete records (which may use a lot of memory), the entries are objects of class

atg.endeca.assembler.cache.SearchRecord, which include only a subset of the record properties.

The SearchRequestCache component’s recordIdProperty specifies a record property to use as a unique

key for storing and retrieving the SearchRecord objects in the record cache. The key can be any property that

uniquely identifies the record. By default, this is set to:

recordIdPropertyName=product.repositoryId

Note that you must ensure that the record property is included in the ContentItem returned by the Assembler.

To do this, the property must be listed in the fieldNames property of the /atg/endeca/assembler/

cartridge/handler/config/ResultsListConfig component. By default, this property is set to:

fieldNames=record.id,record.type.raw,product.repositoryId

If you use a record property that is not in this list as your key, be sure to add that property to fieldNames.

The cache is designed as a Least Recently Used (LRU) cache, so if the cache is full and another entry is received,

the oldest entry is deleted to make room. To optimize the tradeoff between reporting accuracy and resource

use, you can tune the number of request objects in the cache and the number of records that should be cached

per request by setting the following properties of the SearchRequestCache component:

• requestCount -- Specifies the maximum number of search request/response objects to store. Default is 10.

To specify no maximum, set this value to -1.

• recordCount -- Specifies the maximum number of records to store per search request/response. Default is

1000. To specify no maximum, set this value to -1.

SearchClickThroughServlet

The /atg/endeca/clickthrough/servlet/SearchClickThroughServlet is inserted into the DAF

servlet pipeline after the SiteSessionEventTrigger. When a user clicks a link to view a search result,

SearchClickThroughServlet reads the click-through ID from the request URL and looks up the record in

the SearchRequestCache. If it finds the record, it triggers a SearchClickThroughMessage JMS event, which

includes the search ID, the record ID, and data about the search request.

To configure this servlet, set the following properties:

enabled

If true, the servlet processes the request. Default is false.

searchClickIdQueryArgs

17 Data Logging for Search Reporting 159

An array of the query arguments to read to find the click-through ID for a viewed item.

One of the values in this array must match the name of the output parameter set by

GetClickThroughId. Default is searchClickId.

Limiting the Pages to Examine

By default, this servlet examines all URLs to look for click-through IDs. This process can be inefficient,

because only product detail pages will typically have these IDs. Therefore SearchClickThroughServlet

has a clickThroughPages property that you can use to limit the pages to examine. This property is an

array of URLs, which can include asterisk (*) characters as wildcards. If clickThroughPages is not null,

SearchClickThroughServlet examine only the URLs that match one of the clickThroughPages entries. For

example, you could set clickThroughPages to:

clickThroughPages=\
 /*/*/productDetail.jsp,\
 /*/*/productDetailWithPicker.jsp,\
 /*/*/giftCertificateProduct.jsp

Recording Search Results Placed in Shopping Carts

To associate click-through events with items placed in shopping carts, the /atg/reporting/

datacollection/commerce/ItemAddedToOrderListener message sink responds to JMS messages of type

atg.commerce.order.ItemAddedToOrder. ItemAddedToOrderListener passes the message to the /atg/

reporting/datacollection/commerce/CommerceItemMarkerHandler component, which adds a marker

to the commerce item. The marker key is atg.endeca, and the marker value is the search ID.

When submitted orders are loaded into the data warehouse, the OrderSubmitLoader uses the atg.endeca

markers to track which purchased items are associated with searches. This information is used to generate

search conversion reports.

See the Core Commerce Programming Guide for more information about the OrderSubmitLoader.

Configuring CommerceItemMarkerHandler

In order to add a marker to a commerce item placed in a shopping cart, the CommerceItemMarkerHandler

component is configured to track the type of repository item it is (typically product, sku, or

a subtype of product or sku). To enable this tracking, CommerceItemMarkerHandler has a

recordItemDescriptorPropertyName property that is set to the name of a record property that holds the

name of the item type.

The recordItemDescriptorPropertyName property is set by default to record.type.raw. This is a special

property created by the /atg/endeca/index/accessor/ItemDescriptorNameAccessor component. By

default, the ProductCatalogOutputConfig component’s XML definition file is configured to use this property

accessor to include the record.type.raw property in the indexed records:

<property name="recordtyperaw" is-dimension="false" type="string"
 property-accessor="/atg/endeca/index/accessor/ItemDescriptorNameAccessor"
 output-name="record.type.raw" is-non-repository-property="true"
 text-searchable="false"/>

160 17 Data Logging for Search Reporting

The value of the record.type.raw record property is the name of an item type for the record. Typically it has

multiple values. For example:

<PROP NAME="record.type.raw">
 <PVAL>product</PVAL>
</PROP>
<PROP NAME="record.type.raw">
 <PVAL>sku</PVAL>
</PROP>

When an item is added to the cart, the record is checked to see if any of the values of record.type.raw match

the item type. If so, a marker is added to the item. In the example above, if the item type is product or sku, a

marker is added to the item.

The CommerceItemMarkerHandler component’s recordItemRepositoryIdProperty property should be

set to the name of the record property that holds the repository ID of the document-level item for the record. By

default, recordItemRepositoryIdProperty is set to product.repositoryId.

As with the record property used for storing and retrieving items in the record cache, the record properties

specified by recordItemDescriptorPropertyName and recordItemRepositoryIdProperty must be

listed in the fieldNames property of the ResultsListConfig component to ensure they are included in the

ContentItem returned by the Assembler. If you change the value of recordItemDescriptorPropertyName

or recordItemRepositoryIdProperty, be sure to modify fieldNames accordingly.

18 Data Loading for Search Reporting 161

18 Data Loading for Search Reporting

Data logging for search reporting occurs in the Core Commerce production environment. Much of the logging

occurs in real time as customers use the site. Loading data into the data warehouse is performed in a separate

Core Commerce environment, typically (but not necessarily) running on a different group of physical servers.

These data loader instances do not handle customer requests; their primary purpose is to process data from the

log files and load it into the data warehouse. Unlike logging, the loading process is not performed in real time. It

is run on a regular schedule, typically once a day.

This chapter describes the data loading and processor components used for search reporting. It includes the

following sections:

Data Warehouse Tables (page 161)

Loader and Processor Components for Search Reports (page 163)

Processor Components for Search Conversion Reports (page 168)

For detailed information about configuring data loading, see the Business Intelligence Installation and

Configuration Guide.

Data Warehouse Tables

The search reporting modules add tables to the data warehouse for storing search data, and modify existing

Core Commerce tables to add properties for associating order data with search data. The following is a list of the

tables that store data used in search reporting:

• ARF_SEARCH

• ARF_SEARCH_TYPE

• ARF_SEARCH_TERM

• ARF_FACET_SEL

• ARF_FACET_SEL_GROUP

• ARF_FACET_SEL_MBRS

• ARF_MERCH_RULE

• ARF_MERCH_RULE_GROUP

162 18 Data Loading for Search Reporting

• ARF_MERCH_RULE_ MBRS

• ARF_PROF_TYPE

• ARF_LINE_ITEM

• ARF_LINE_ITEM_SEARCH

Aggregated Data

The data warehouse includes aggregated data that is calculated using the data stored in the data warehouse

tables. Components running on the data warehouse loader server refresh the calculated data at regular intervals

so that it is available for reports. Performing intensive calculations before they are needed improves the speed of

the queries that use the calculated data.

In Oracle database schemas, the aggregated data calculations are presented as virtual tables using materialized

views. Other supported database products provide views or other comparable functions to make aggregated

data available.

The virtual tables used for search reporting are:

• ARF_SEARCH_MV_TYPE -- Aggregates search information based on search type, language, site, and date.

• ARF_SEARCH_MV_HOUR -- Aggregates search information based on date and time, search type, site, and

language.

• ARF_SEARCH_MV_VISIT -- Aggregates information about the average number of search requests per site visit.

• ARF_SEARCH_MV_SEARCH_TERM -- Aggregates search information based on search term, search type, site,

and language.

• ARF_SEARCH_MV_FACET_GROUP -- Aggregates search information based on facet group, search type,

language, and site.

Refresh Services

To refresh the aggregated data used for search reporting, the ARF.DW.Endeca module adds the /

atg/reporting/datawarehouse/refresh/search/SearchRefreshLauncher component to the

refreshables property of the /atg/reporting/datawarehouse/refresh/RefreshService component:

refreshables+=\
 search/SearchRefreshLauncher

The SearchRefreshLauncher component is of class

atg.reporting.datawarehouse.refresh.RefreshLauncherService. This class has a refreshables

property that specifies a list of components that are responsible for refreshing the calculated data. By default,

this property is set to:

refreshables=\
 SiteSearchAggregateType,SiteSearchAggregateHour,\
 SiteSearchAggregateVisit,SiteSearchAggregateSearchTerm,\

18 Data Loading for Search Reporting 163

 SiteSearchAggregateFacetGroup

Each of these components is responsible for refreshing one of the virtual tables listed above. For example, the

SiteSearchAggregateFacetGroup component refreshes the ARF_SEARCH_MV_FACET_GROUP virtual table.

For more information about data warehouse tables, aggregated data, and services for refreshing views, see the

Business Intelligence Data Warehouse Guide.

Loader and Processor Components for Search Reports

The ARF.DW.Endeca module adds the /atg/reporting/datawarehouse/loaders/SearchLoader

data loader component, of class atg.reporting.datawarehouse.loader.Loader. The SearchLoader

component initiates the data loading process, but the actual processing of the data is performed by the

searchQuery processor pipeline chain.

The SearchLoader component accesses the search log file in the atg.reporting.endecaQuery queue and

passes it to the /atg/reporting/datawarehouse/loaders/SearchPipelineDriver component, of class

atg.reporting.datawarehouse.loader.FilePipelineDriver. SearchPipelineDriver reads the file

line by line and invokes the searchQuery pipeline chain. The processors in the pipeline perform such tasks

as looking up data in the data warehouse, looking up data in repositories on the production site, performing

calculations, and writing data to the data warehouse.

The tables below summarize the processor components in the searchQuery pipeline chain.

lookupQueryDay

Reads the search timestamp and extracts the date.

Transactional Mode TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchDayLookupProcessor

Object atg.reporting.datawarehouse.process.DayLookupProcessor

Transitions Return value of 1 executes lookupQueryTime.

lookupQueryTime

Reads the search timestamp and extracts the time.

Transactional Mode TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchTimeLookupProcessor

Object atg.reporting.datawarehouse.process.TimeLookupProcessor

164 18 Data Loading for Search Reporting

Transitions Return value of 1 executes limitQueryPropertiesLength.

limitQueryPropertiesLength

Reads the length limits specified for input properties and reduces the output length of properties that exceed

the specified limits.

Transactional

Mode

TX_MANDATORY

Component /atg/reporting/datawarehouse/process/calculators/SearchQueryLimitLengthCalculator

Object atg.reporting.datawarehouse.process.calculators.LimitLengthCalculator

Transitions Return value of 1 executes lookupQueryExternalProfile.

lookupQueryExternalProfile

Looks up external user profile information associated with the query.

Transactional Mode TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchExternalProfileLookupProcessor

Object atg.reporting.datawarehouse.process.SearchSwitchedLookupProcessor

Transitions Return value of 1 or 2 executes lookupQueryInternalProfile.

lookupQueryInternalProfile

Looks up internal user profile information associated with the query.

Transactional Mode TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchInternalProfileLookupProcessor

Object atg.reporting.datawarehouse.process.RepositoryItemLookupProcessor

Transitions Return value of 1 executes lookupQuerySite.

lookupQuerySite

Looks up the site associated with the query.

18 Data Loading for Search Reporting 165

Transactional Mode TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchSiteLookupProcessor

Object atg.reporting.datawarehouse.process.RepositoryItemLookupProcessor

Transitions Return value of 1 executes lookupQuerySiteVisit.

lookupQuerySiteVisit

Looks up site visit information by session ID, date, and site.

Transactional Mode TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchSiteVisitLookupProcessor

Object atg.reporting.datawarehouse.process.SiteVisitLookupProcessor

Transitions Return value of 1 executes lookupQueryLanguage.

lookupQueryLanguage

Looks up the language code for the search query.

Transactional Mode TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchLanguageLookupProcessor

Object atg.reporting.datawarehouse.process.LanguageLookupProcessor

Transitions Return value of 1 executes lookupQuerySegmentCluster.

lookupQuerySegmentCluster

Looks up the segment cluster for the search query.

Transactional Mode TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchSegmentClusterLookupProcessor

Object atg.reporting.datawarehouse.process.GroupLookupProcessor

Transitions Return value of 1 executes lookupQueryDemographic.

166 18 Data Loading for Search Reporting

lookupQueryDemographic

Looks up demographic information for the user associated with the search query.

Transactional Mode TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchDemographicLookupProcessor

Object atg.reporting.datawarehouse.process.DemographicLookupProcessor

Transitions Return value of 1 executes lookupQueryType.

lookupQueryType

Looks up the search query type.

Transactional Mode TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchTypeLookupProcessor

Object atg.reporting.datawarehouse.process.RepositoryItemLookupProcessor

Transitions Return value of 1 executes lookupQuerySearchTerm.

lookupQuerySearchTerm

Looks up the search term of the query.

Transactional Mode TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchTermLookupProcessor

Object atg.reporting.datawarehouse.process.RegularRepositoryItemLookupProcessor

Transitions Return value of 1 executes lookupQueryFacetGroup.

lookupQueryFacetGroup

Looks up the facet group of the query.

Transactional Mode TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchFacetGroupLookupProcessor

18 Data Loading for Search Reporting 167

Object atg.reporting.datawarehouse.process.GroupLookupProcessor

Transitions Return value of 1 executes lookupQuerySpotlightGroup.

lookupQuerySpotlightGroup

Looks up the spotlight group of the query.

Transactional Mode TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchSpotlightGroupLookupProcessor

Object atg.reporting.datawarehouse.process.GroupLookupProcessor

Transitions Return value of 1 executes lookupQueryProfileType.

lookupQueryProfileType

Looks up the profile type associated with the query.

Transactional Mode TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchProfileTypeLookupProcessor

Object atg.reporting.datawarehouse.process.RepositoryItemLookupProcessor

Transitions Return value of 1 executes searchFactCalculator.

searchFactCalculator

Updates the autocorrect and suggestion properties based on values in the log file.

Transactional Mode TX_MANDATORY

Component /atg/reporting/datawarehouse/process/calculators/SearchFactCalculator

Object atg.reporting.datawarehouse.process.calculators.SearchFactCalculator

Transitions Return value of 1 executes logQuery.

logQuery

Inserts the record in the ARF_SEARCH table.

168 18 Data Loading for Search Reporting

Transactional Mode TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchLoggerProcessor

Object atg.reporting.datawarehouse.process.RepositoryLoggerProcessor

Transitions Last processor in the pipeline chain.

Processor Components for Search Conversion Reports

To enable creation of search conversion reports, the search data loader modules modify the Core Commerce

lineItem pipeline to add several processors. These processors are used to link purchased items with the search

terms, facet groups, and spotlight groups that customers use to navigate to the items. They create these links by

processing the markers that are added to the order items by the CommerceItemMarkerHandler component, as

described in the Data Logging for Search Reporting (page 155) chapter.

The tables below summarize the processor components that search reporting adds to the Core Commerce

lineItem pipeline.

getSearchId

Fetches the search ID using the marker key.

Transactional Mode TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchIdProcessor

Object atg.reporting.datawarehouse.process.CommerceItemMarkerProcessor

Transitions Return value of 1 executes lookupSearch.

lookupSearch

Looks up the search record in the fact table using the search ID.

Transactional Mode TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchFactLookupProcessor

Object atg.reporting.datawarehouse.process.RepositoryItemLookupProcessor

Transitions Return value of 1 executes lookupSearchTerm.

18 Data Loading for Search Reporting 169

lookupSearchTerm

Associates the search term with the line item.

Transactional Mode TX_MANDATORY

Component /atg/reporting/datawarehouse/process/LineItemSearchTermProcessor

Object atg.reporting.datawarehouse.process.PropertyAssignmentProcessor

Transitions Return value of 1 executes lineItemSearchFacetGroup.

lineItemSearchFacetGroup

Associates the search facet group with the line item.

Transactional Mode TX_MANDATORY

Component /atg/reporting/datawarehouse/process/LineItemSearchFacetGroupProcessor

Object atg.reporting.datawarehouse.process.PropertyAssignmentProcessor

Transitions Return value of 1 executes lineItemSpotlightGroup.

lineItemSpotlightGroup

Associates the search spotlight group with the line item.

Transactional Mode TX_MANDATORY

Component /atg/reporting/datawarehouse/process/LineItemSearchSpotlightGroupProcessor

Object atg.reporting.datawarehouse.process.PropertyAssignmentProcessor

Transitions Return value of 1 executes logLineItem.

logLineItemSearch

Updates the search-related information for the line item.

Transactional Mode TX_MANDATORY

Component /atg/reporting/datawarehouse/process/LineItemSearchLoggerProcessor

170 18 Data Loading for Search Reporting

Object atg.reporting.datawarehouse.process.LineItemSearchRepositoryLoggerProcessor

Transitions Last processor in the pipeline chain.

Maintenance Services

If search data is loaded into the data warehouse after order data has been loaded, the order data in the data

warehouse must be updated to associate purchased items with the search data. The order line items are

updated to link them to the search terms, facet groups, and spotlight groups that customers used to navigate to

those items.

To ensure that the search data and order data are linked properly, the search data loader modules include

the /atg/reporting/datawarehouse/process/jobs/SearchMaintenanceService component, of

class atg.reporting.datawarehouse.process.job.MaintenanceService. This service is responsible

for executing jobs specified in its maintenanceJobs property. This property is an array of components that

implement the atg.reporting.datawarehouse.process.job.MaintenanceJob interface. By default, it is

set to:

maintenanceJobs=\
 /atg/reporting/datawarehouse/process/jobs/SearchLineItemMaintenanceJob

The SearchMaintenanceService component is registered with the SearchLoader component

as a listener. SearchMaintenanceService detects when search data is loaded and invokes the

SearchLineItemMaintenanceJob component to update the associated order data in the data warehouse.

19 Search Reporting Dashboards 171

19 Search Reporting Dashboards

Search reporting adds the Search Performance Dashboard to the Oracle Business Intelligence user interface. This

dashboard displays a variety of analyses of Oracle Commerce Guided Search data. In addition, search reporting

adds search-related analyses to the ATG Web Commerce Performance Dashboard.

This chapter summarizes the search analyses available in these dashboards. It includes the following sections:

Search Performance Dashboard (page 171)

ATG Web Commerce Performance Dashboard (page 172)

For more information about accessing Oracle Commerce reports and analyses in Oracle Business Intelligence,

see the Reports Guide.

Search Performance Dashboard

The Search Reporting Dashboard consists of four pages of analyses:

• Search Activity -- statistical breakdowns of the way Guided Search has been used, including searches per visit

and per site, search types, and response times for search queries

• Keyword Analysis -- information about search terms used, such as top search terms, terms that returned no

results, and terms that were autocorrected or returned alternate suggestions

• Search Merchandising -- information about the relationships between search queries and items sold

• Dimension Analysis -- information about how often specific search dimensions or groups of dimensions were

selected

Search Activity

The Search Activity page includes the following reports:

• Key Search Indicators

• Response Time Analysis

• Searches Per Visit by Site

• Search Type Breakdown

• Request and Site Visit Summary

172 19 Search Reporting Dashboards

Keyword Analysis

The Keyword Analysis page includes the following reports:

• Top Search Terms

• Search Terms with No Results

• Spell Correction and Alternate Suggestions Summary

• Top Autocorrected Search Terms

• Top Search Terms without Spotlight

Search Merchandising

The Search Merchandising page includes the following reports:

• Searches Resulting in Most Purchases, which also contains links to:

• Top Products Associated with Search

• Top Dimensions Associated with Search

• Search Conversion Funnel

• Search Conversion Analysis

• Conversion Rate for Spotlights

• Top Spotlights Triggered

Dimension Analysis

The Dimension Analysis page includes the following reports:

• Top Single Dimensions Selected

• Top Single Dimension Values Selected

• Top Dimension Pairs Selected

• Top Two Dimension Values Selected

• Top Dimension Triple Selected

• Top Three Dimension Values Selected

• Top Dimension Values without Spotlight

ATG Web Commerce Performance Dashboard

Search reporting adds a Key Search Indicator report to the Traffic page on the ATG Web Commerce Performance

Dashboard. It also adds a Search page to the dashboard that includes the following reports:

19 Search Reporting Dashboards 173

• Key Search Indicators

• Response Time Analysis

• Search Conversion Analysis

• Top Search Terms

• Search Terms with No Results

• Searches Resulting in Most Purchases

174 19 Search Reporting Dashboards

20 Appendix A: Support for Older Deployment Templates 175

20 Appendix A: Support for Older

Deployment Templates

This manual assumes you are using a CAS-based deployment template for your EAC applications, as described

in the Oracle Commerce Guided Search Administrator’s Guide. If you are creating new EAC applications, it is highly

recommended that you use this type of deployment template.

If you have EAC applications created in an earlier release, they may be using an older Forge-based deployment

template such as the one described in the Oracle Endeca Commerce Deployment Template Module for Product

Catalog Integration Usage Guide in the Oracle Endeca Commerce Tools and Frameworks 11.0 documentation.

You can either recreate your EAC applications with a CAS-based deployment template or continue to use

your existing applications based on the older-style template. If you choose the latter option, you will need

to reconfigure several Oracle Commerce Platform components, because the default configuration of these

components now assumes the use of a CAS-based template.

This appendix describes the configuration changes needed for Oracle Commerce Platform components to work

with EAC applications that use an older Forge-based Oracle Commerce Guided Search deployment template. It

discusses the following topics:

Record Store Naming (page 175)

Schema Export (page 176)

Hierarchical Dimension Export (page 176)

Record Store Naming

For a CAS-based deployment template, the record store names have the format

applicationName-recordStoreType. For example, for an EAC application named ATGen, the dimension

values record store is named ATGen-dimvals.

For a Forge-based deployment template, the format of the record store names is

applicationName_languageCode_recordStoreType. So, for an EAC application named ATGen that indexes

records in English, the dimension values record store is named ATGen_en_dimvals.

The format of the record store names is configured by the recordStoreNameFormatString property of the

/atg/endeca/index/IndexingApplicationConfiguration component. The value of this property is a

format string in which 0 is the EAC application name, 1 is the two-character language code, and 2 is the type of

record store. By default, this is set to:

176 20 Appendix A: Support for Older Deployment Templates

recordStoreNameFormatString={0}-{2}

Note that the 1 does not appear, because record store names for CAS-based applications do not include the

language code.

For EAC applications that use Forge-based deployment templates, set the value of this property to:

recordStoreNameFormatString={0}_{1}_{2}

Schema Export

For a CAS-based deployment template, an application’s schema definition is created as Configuration

Import API objects, which are submitted to the Endeca Configuration Repository. These objects are created

and submitted by the /atg/endeca/index/ConfigImportDocumentSubmitter component. The

documentSubmitter property of components of class atg.endeca.index.schema.SchemaExporter

(including the SchemaExporter, ArticleSchemaExporter, and MediaContentSchemaExport components)

is set by default to:

documentSubmitter=/atg/endeca/index/ConfigImportDocumentSubmitter

For a Forge-based deployment template, an application’s schema definition is created as schema records, which

are written to the schema record store. To configure this behavior, change the value of each SchemaExporter

component’s documentSubmitter property to:

documentSubmitter=/atg/endeca/index/SchemaDocumentSubmitter

Hierarchical Dimension Export

There are a number of differences in how the names and the values of hierarchical dimension value properties

are represented in applications that use a CAS-based deployment template versus applications that use a Forge-

based template. These differences are discussed below.

Root Node Naming and Export

In a CAS-style application, the name of the root node in a dimension hierarchy is the forward slash (/). So, for

example, the forward slash is the name of the root node of the category dimension.

The following example is part of a record created by the CategoryToDimensionOutputConfig component

that represents a top-level category. The value of this category’s dimval.parent_spec property is the root

node:

20 Appendix A: Support for Older Deployment Templates 177

<PROP NAME="dimval.parent_spec">
 <PVAL>/</PVAL>
</PROP>

In a Forge-based application, the name of the root node of a hierarchical dimension is the name of the

dimension. For example, the root node of the category dimension hierarchy is product.category. So a record

representing a top-level category includes this instead:

<PROP NAME="dimval.parent_spec">
 <PVAL>product.category</PVAL>
</PROP>

The value for the name of the root node is configured separately for the category hierarchy and the

repository item type hierarchy. For the repository item type hierarchy, the rootParentSpecifier property

of components of class atg.endeca.index.dimension.RepositoryTypeHierarchyExporter

(including the RepositoryTypeDimensionExporter, ArticleDimensionExporter, and

MediaContentDimensionExporter components) is set by default to:

rootParentSpecifier=/

For a Forge-based application, set the rootParentSpecifier property of each

RepositoryTypeHierarchyExporter component to null so it uses its default value, which is the dimension

name:

rootParentSpecifier^=/Constants.null

For the category hierarchy, the name of the root node is configured through the defaultValue property of the

/atg/commerce/endeca/index/accessor/ParentSpecPropertyAccessor component. (See Category

Dimension Value Accessors (page 63) for information about this component.) This property is set by default to:

defaultValue=/

In a Forge-based application, change the value of this property to the name of the dimension:

defaultValue=product.category

Root Node Export

For a CAS-based application, the Oracle Commerce Platform does not create a record representing the root

node of a dimension hierarchy. Instead, Oracle Commerce Guided Search automatically creates the root node

and names it “/”. For a Forge-based application, however, the Oracle Commerce Platform does create a record

representing the root node, and gives the node the name of the dimension.

This behavior is configured separately for the category hierarchy and the repository item type hierarchy. For

the repository item type hierarchy, the createRootNode property of RepositoryTypeHierarchyExporter

components (including RepositoryTypeDimensionExporter, ArticleDimensionExporter, and

MediaContentDimensionExporter) is set by default to:

178 20 Appendix A: Support for Older Deployment Templates

createRootNode=false

In a Forge-based application, set the createRootNode property of all RepositoryTypeHierarchyExporter

components to true.

For the category hierarchy, creation of a record for the root node is controlled through the

indexingSynchronizations property of the CategoryToDimensionOutputConfig

component. This property accepts an array of components of classes that implement the

atg.repository.search.indexing.IndexingSynchronization interface. The default configuration

of this property includes the /atg/commerce/endeca/index/CategoryRootNodeSynchronization

component, which is responsible for creating the root node for Forge-based applications.

Configuring for Preview

To support previewing your sites in Experience Manager preview and Business Control Center preview, the

CategoryRootNodeSynchronization component includes the following properties:

• rootNodeParentSpec -- specifies the value of the dimval.parent_spec property of the root node of the

category hierarchy

• dummyNodeParentSpec -- specifies the value of the dimval.parent_spec property of the dummy node

used for previewing unindexed categories

These properties are configured by default to support a CAS-based application:

dummyNodeParentSpec=/
rootNodeParentSpec=/

For a Forge-based application, set these properties to the name of the dimension:

dummyNodeParentSpec=product.category
rootNodeParentSpec=product.category

Dimension Value Property Names

There are a number of differences in the names of dimension value properties in Forge-based and CAS-based

applications:

• In a Forge-based application, the ID property of a dimension is named dimval.qualified_spec. In a CAS-

based application, the property is named Endeca.Id.

• In a Forge-based application, the property specifying the name of a dimension must be named

dimval.dimension_spec. In a CAS-based application, the property is named dimval.dimension_name.

• In a Forge-based application, custom properties on dimension nodes must have names that begin with

dimval.prop. In a CAS-based application, no prefix is required.

By default, the components that produce dimension value records (including the

CategoryToDimensionOutputConfig, RepositoryTypeDimensionExporter,

ArticleDimensionExporter, and MediaContentDimensionExporter components) output records whose

property names reflect the older Forge-based deployment template. To support the naming conventions

20 Appendix A: Support for Older Deployment Templates 179

used with CAS-based deployment templates, the propertyNameReplacementMap property of the

DimensionDocumentSubmitter component is used to map the older-style names to the new ones. By default,

this property is set as follows:

propertyNameReplacementMap=\
 dimval.qualified_spec=Endeca.Id,\
 dimval.dimension_spec=dimval.dimension_name,\
 dimval.prop.category.ancestorCatalogIds=category.ancestorCatalogIds,\
 dimval.prop.category.rootCatalogId=category.rootCatalogId,\
 dimval.prop.displayName_es=displayName_es,\
 dimval.prop.displayName_en=displayName_en,\
 dimval.prop.displayName_de=displayName_de,\
 dimval.prop.category.repositoryId=category.repositoryId,\
 dimval.prop.category.catalogs.repositoryId=category.catalogs.repositoryId,\
 dimval.prop.category.siteId=category.siteId

So, for example, dimval.qualified_spec is renamed to Endeca.Id in the output

records, dimval.dimension_spec is renamed to dimval.dimension_name, and

dimval.prop.category.repositoryId is renamed to category.repositoryId.

For a Forge-based application, set the propertyNameReplacementMap property to null to restore the older-

style names:

propertyNameReplacementMap^=/Constants.null

And set the idPropertyName property of the DimensionDocumentSubmitter component to

dimval.qualified_spec:

idPropertyName=dimval.qualified_spec

180 20 Appendix A: Support for Older Deployment Templates

Index 181

Index

A
Assembler classes

ContentInclude, 85

ContentSlotConfig, 85

Assembler-driven pages, 86

AssemblerPipelineServlet, 93

AssemblerSettings, 100

AssemblerTools, 97

creating the Assembler instance, 97

identifying the renderer mapping component, 98

starting content assembly, 97

transforming the request URL, 97

ATG Content Administration components, 44

B
BasicUrlFormatter, 109

bulk loading, 33

bypassing the Assembler, 95

C
cartridge handlers

generating URLs, 108

locating, 106

providing access to the HTTP request to, 108

supporting components, 108, 108

cartridge manager components, 108

category dimension value accessors, 63

CategoryNodePropertyAccessor, 63

CategoryPathVariantProducer, 65

CategoryTreeService, 20, 34

Commerce Single Sign-On, 147

LDAP authentication, 150

Oracle Commerce Platform plug-in, 148

composite profile repository, 151

ConcatFilter, 69

connecting to an MDEX, 103

connecting to the Workbench, 103

ConstantValueAccessor, 63

content folder requests, 85, 94

ContentInclude, 85

ContentItemToRendererPath, 112

ContentSlotConfig, 85

Credential Security Framework (CSF), 5

CustomCatalogPropertyAccessor, 66

CustomCatalogVariantProducer, 65

customizing record output, 61

D
data loading, 33

data loading for reporting, 161

processor pipelines, 163

data logging for reporting, 155

default property values, 55

DefaultActionPathProvider, 109

DefaultMdexResource, 103

DefaultWorkbenchContentSource, 103

definition file format, 49

locale attribute, 58

prefix element, 58

schema attributes, 51

suffix element, 58

deployment templates, 175

dimension values

caching, 131

mapping categories to, 131

document submitters, 24, 37

dynamic item types and properties, 81

Dynamo Server Admin, 138

E
EAC applications

creating, 2

deployment templates, 175

determining how many to create, 2

provisioning, 3

supporting one language per MDEX, 13

empty ContentItem, 90

endeca_jspref, 25

EndecaIndexingOutputConfig, 18, 28

EndecaScriptService, 40

F
filtering records, 119

FirstWithLocalePropertyAccessor, 62

G
GenerativePropertyAccessor, 62

GetSearchClickThroughId, 157

global settings for the Assembler, 100

H
HtmlFilter, 71

182 Index

I
incremental loading, 33

monitored properties, 59

tuning, 34

Indexable classes, 18

indexing

increasing data source connection pool maximum, 6

increasing transaction timeout, 6

monitoring progress,

viewing indexed data, 25

installation and configuration

creating EAC applications, 2

requirements, 1

InvokeAssembler, 95

invoking the Assembler

bypassing based on MIME type, 95

identifying content folder requests, 94

identifying page requests, 95

InvokeAssembler, 95

using AssemblerPipelineServlet, 86, 93

using the InvokeAssembler servlet bean, 90, 95

item subtypes

indexing, 54

L
LanguageNamePropertyAccessor , 62

LDAP authentication for single sign-on, 150

loading data, 33

LocaleVariantProducer, 64

logging

configuration, 39

logging data for search reports, 155

M
Map properties

indexing, 53

MdexResource, 103

MIME type, using to bypass the Assembler, 95

modules for Guided Search integration, 7

monitored properties, 59

multi-language configurations, 103, 103

multi-value properties

indexing, 52

record output, 18

multisite catalogs

indexing, 56

N
non-repository properties

indexing, 55

normalizing property values, 57

Nucleus-driven pages, 90

NucleusAssembler, 106

NucleusAssemblerFactory, 97, 106

O
Oracle Commerce Platform server instances

configuring in CIM, 3

Oracle Platform Security Services (OPSS), 5

P
page requests, 85

identifying, 95

transforming a URL into, 97

PerLanguageMdexResourceResolver, 103

PerLanguageWorkbenchContentSourceResolver, 103

price lists, 125

filtering records, 130

indexing price data, 126

pairs, 125

time-based prices, 129

processor pipelines

data loading, 163

ProductCatalogSimpleIndexingAdmin, , 41, 79

property accessors, 61

CustomCatalogPropertyAccessor, 66

FirstWithLocalePropertyAccessor, 62

GenerativePropertyAccessor, 62

LanguageNamePropertyAccessor, 62

property values

default for indexing, 55

normalizing, 57

translating, 57

PropertyFormatter, 67

PropertyValuesFilter, 68

Q
querying the Assembler, 106

R
range filtering, 122

record filtering, 119

record output

customizing, 61

format, 18

viewing in Component Browser, 47

records

creating, 18

submitting, 24, 37

submitting to files, 39

renaming index properties, 57

renderContentItem tag, 114

renderers

ContentItemToRendererPath, 112

Index 183

creating the path to, 112

locating the correct renderer, 112, 114

renderContentItem tag, 114

rendering

JSON, 89, 114

JSP, 87

XML, 89, 114

ReplacementValueProducer, 113

reports, 171

data loading, 161

data logging, 155

repository indexing, 17

ConcatFilter, 69

customizing output, 61

default property values, 55

definition file format, 49

HtmlFilter, 71

item subtypes, 54

loading data, 33

Map properties, 53

multi-value properties, 52

multisite catalogs, 56

non-repository properties, 55

property accessors, 61

PropertyFormatter, 67

PropertyValuesFilter, 68

renaming output properties, 57

suppressing properties, 56

translating property values, 57

UniqueFilter, 68

UniqueWordFilter, 70

variant producers, 63

RepositoryTypeDimensionExporter, 35

RepositoryTypeHierarchyExporter, 22, 35

S
schema attributes, 51

SchemaExporter, 22, 36

search reporting, 171

data loading, 161

data logging, 155

SelectorReplacementValueProducer, 113

servlet beans

GetSearchClickThroughId, 157

SimpleIndexingAdmin, 25, 41, 79

single sign-on, 147

LDAP authentication, 150

Oracle Commerce Platform plug-in, 148

submitting records, 24, 37

submitting records to files, 39

subtypes

indexing, 54

suppressing properties from indexes, 56

T
time-based prices, 129

translating property values, 57

U
UniqueFilter, 68

UniqueSiteVariantProducer, 66

UniqueWordFilter, 70

user segment sharing, 135

V
variant producers, 63

CategoryPathVariantProducer, 65

CustomCatalogVariantProducer, 65

LocaleVariantProducer, 64

UniqueSiteVariantProducer, 66

W
WorkbenchContentSource, 103

184 Index

	Platform-Guided Search Integration Guide
	Table of Contents
	1 Introduction
	Installation Requirements
	Creating the EAC Applications
	Using an Older Deployment Template
	Determining the Number of EAC Applications to Create
	Provisioning the EAC Applications

	Configuring the Oracle Commerce Platform Server Instances in CIM
	Product Selection
	Oracle Commerce Platform Server Instance Creation

	Configuring the ApplicationConfiguration Component
	Configuring Sites in a Multisite Environment
	Transaction Timeout and Datasource Connection Pool Settings
	Increasing the Transaction Timeout
	Increasing the Datasource Connection Pool

	Oracle Commerce Platform Modules

	2 Routing
	Overview of Routing
	ApplicationRoutingStrategy
	RoutingObjectAdapter

	Configuring Routing
	SingleApplicationRoutingStrategy
	SiteApplicationRoutingStrategy
	GroupingApplicationRoutingStrategy

	3 Overview of Indexing
	Indexable Classes
	EndecaIndexingOutputConfig Class
	CategoryTreeService Class
	RepositoryTypeHierarchyExporter Class
	SchemaExporter Class

	Indexing Multiple Languages
	Submitting the Records
	Managing the Process
	Viewing the Indexed Data

	4 Configuring the Indexing Components
	IndexingApplicationConfiguration Component
	EndecaIndexingOutputConfig Components
	Data Loader Components
	Tuning Incremental Loading

	CategoryTreeService
	RepositoryTypeDimensionExporter
	SchemaExporter
	Document Submitter Components
	RecordStoreDocumentSubmitter
	ConfigImportDocumentSubmitter
	FileDocumentSubmitter

	EndecaScriptService
	ProductCatalogSimpleIndexingAdmin
	Queueing Indexing Jobs

	ATG Content Administration Components
	Specifying the Deployment Target
	Enabling Local Indexing
	Enabling Remote Indexing
	Triggering Indexing on Deployment

	Viewing Records in the Component Browser

	5 Configuring EndecaIndexingOutputConfig Definition Files
	Definition File Format
	Automatically Included Properties

	Specifying Guided Search Schema Attributes
	Specifying Properties for Indexing
	Specifying Multi-Value Properties
	Specifying Map Properties
	Specifying Properties of Item Subtypes
	Specifying a Default Property Value
	Specifying Non-Repository Properties
	Suppressing Properties
	Including siteId Properties
	Renaming an Output Property
	Translating Property Values
	Using Monitored Properties

	Filtering Properties of Specific Repository Items

	6 Customizing the Output Records
	Using Property Accessors
	FirstWithLocalePropertyAccessor
	LanguageNameAccessor
	GenerativePropertyAccessor
	Category Dimension Value Accessors

	Using Variant Producers
	LocaleVariantProducer
	CategoryPathVariantProducer
	CustomCatalogVariantProducer
	UniqueSiteVariantProducer
	MultipleSiteVariantProducer

	Using Property Formatters
	Using Property Value Filters
	UniqueFilter
	ConcatFilter
	UniqueWordFilter
	HtmlFilter

	7 Indexing the Content Management Repository
	Overview of Indexing Web Content
	WCM EndecaIndexingOutputConfig Components
	WCM Dimension Exporter Components
	WCM Schema Exporter Components
	WCM SimpleIndexingAdmin Component

	8 Indexing Dynamic Item Types and Properties
	Updating the Indexing Components
	Specifying Dynamic Items and Properties for Indexing
	Specifying the Output Property Name
	Adding Properties to a Search Interface

	9 Query Integration
	Content Item Classes
	Invoking the Assembler in the Request Handling Pipeline
	Using a JSP Renderer to Render Content
	Rendering XML or JSON Content
	When the Assembler Returns an Empty ContentItem

	Invoking the Assembler using the InvokeAssembler Servlet Bean
	Choosing Between Pipeline Invocation and Servlet Bean Invocation
	Components for Invoking the Assembler
	AssemblerPipelineServlet
	InvokeAssembler

	Accessing Commonly Used Functionality in AssemblerTools
	Creating the Assembler Instance and Starting Content Assembly
	Calculating the Content Path from the Page Request URL
	Identifying the Renderer Mapping Component to Use for the Request

	Creating the SiteState Component
	Defining Global Assembler Settings
	Connecting to the Workbench and MDEX
	AssemblerApplicationConfiguration Component
	Connecting to an MDEX
	Connecting to the Workbench Server

	Querying the Assembler
	Cartridge Handlers and Their Supporting Components
	Providing Access to the HTTP Request to the Cartridges
	Controlling How Cartridges Generate Link URLs
	BasicUrlFormatter
	DefaultActionPathProvider

	Retrieving Renderers
	ContentItemToRendererPath
	dsp:renderContentItem

	Configuring Keyword Redirects

	10 Retrieving Promoted Content
	Single-MDEX Environment
	Multiple-MDEX Environment
	Creating FileStoreFactory Instances from a Prototype-Scoped Component
	Creating FileStoreFactory Instances from Properties Files

	11 Record Filtering
	RecordFilterBuilder Interface and Implementing Classes
	LanguageFilterBuilder
	CatalogFilterBuilder
	SiteFilterBuilder

	Enabling Record Filter Builder Components
	DateRangeFilterBuilder

	12 Handling Price Lists
	Price List Pairs
	Indexing Price List Data
	PriceListPairVariantProducer
	PriceListPairAccessor
	ActivePriceAccessor
	QueueingPropertiesChangeListener

	Indexing Time-Based Prices
	Filtering Records by Price List

	13 Dimension Value Caching
	Mapping Categories to Dimension Values
	DimensionValueCache and DimensionValueCacheObject

	Managing the Cache
	Populating and Refreshing the Cache

	DimensionValueCacheDroplet

	14 User Segment Sharing
	About User Segment Sharing
	Configuring User Segment Sharing
	Additional Configuration Required for the Production Server
	About the RequestCredentialAccessController Component
	Managing Credentials
	Configuring the EAC Application
	Note about Configuring Commerce Reference Store

	Avoiding Duplicate User Segment Names in the Business Control Center
	Renaming a User Segment in the Business Control Center

	15 Using Sites and Site Groups as Content Item Triggers
	Adding Sites and Site Groups to Experience Manager
	Constructing the Segment List

	16 Commerce Single Sign-On
	Commerce Single Sign-On Server
	Oracle Commerce Platform Plug-In
	Login
	Validation
	Keep Alive
	Logout

	Maintaining User Accounts
	LDAP Authentication
	Setting up a Composite Profile Repository
	User Authentication
	Creating Users and Organizations in the Business Control Center

	17 Data Logging for Search Reporting
	Recording Search Requests and Responses
	SearchIdProvider
	EndecaReporting Segment List

	Recording Search Results Selected
	Using the GetSearchClickThroughId Servlet Bean
	Configuring the Cache
	SearchClickThroughServlet

	Recording Search Results Placed in Shopping Carts

	18 Data Loading for Search Reporting
	Data Warehouse Tables
	Aggregated Data
	Refresh Services

	Loader and Processor Components for Search Reports
	Processor Components for Search Conversion Reports
	Maintenance Services

	19 Search Reporting Dashboards
	Search Performance Dashboard
	Search Activity
	Keyword Analysis
	Search Merchandising
	Dimension Analysis

	ATG Web Commerce Performance Dashboard

	20 Appendix A: Support for Older Deployment Templates
	Record Store Naming
	Schema Export
	Hierarchical Dimension Export
	Root Node Naming and Export
	Dimension Value Property Names

	Index

