ORACLE
COMMERCE

Version 11.3

Platform-Guided Search Integration Guide

Platform-Guided Search Integration Guide

Product version: 11.3
Release date: 04-28-17
Document identifier: EndecalntegrationGuide 1704181210

Copyright © 1997, 2017 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please
report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government,
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures
to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party
content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and

its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or
services, except as set forth in an applicable agreement between you and Oracle.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support: Oracle customers that have purchased support have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Table of Contents

LI (0] 47T (VT { o] PP TP PPN 1
INSTAllatioN REQUITEMENTS ..ouuutititit ittt ettt e ettt et e e et et e e e e e et et et eanaeneaeeenenanes 1
Creating the EAC APPIICAtiONSuneeiiiee ettt ee e 2

Using an Older Deployment TemMPIatec.ouininininin i 2
Determining the Number of EAC Applications t0 Createvuveviiriiniiiiiiniiiinieeienneenens 2
Provisioning the EAC APPlICationSuiuinirtiiirt it ettt e e ae e eaenenes 3
Configuring the Oracle Commerce Platform Server Instances in CIMc.coiviiiiiiiiiniiineiineeens 3
Product SEIECHIONeee e 3
Oracle Commerce Platform Server Instance Creationo.vuieiiiininininenenniiiieeeenenen. 3
Configuring the ApplicationConfiguration COMPONENTiuiuiuiriiititiieiie e e e eaeaeaans 4
Configuring Sites in @ Multisite ENVIFONMENTiuiiitiii ittt eene e 6
Transaction Timeout and Datasource Connection Pool Settingsocoviiiiiiiiiiiiiiiiiiieene 6
Increasing the Transaction TIMEOULiuuir ittt et e ee e e e et e e eaeaeeneaaanans 6
Increasing the Datasource ConNection POOIouiiiiniiiiii i 7
Oracle Commerce Platform MOGUIESouininie it enens 7
2. ROUTING Lottt ettt et e e e et e e et e et ettt ettt aaenaae 9
OVEIVIEW Of ROULING 1ottt ettt e e e et e e et e e e et et et et et e et et e eaaeraansenanens 9
APPlICatiONROULINGSTIAtEGY .. .euttininiet ittt e et e ettt ee e e et et e enaeseenaeaenens 10
(2o T01 {1 Te O] o] =T e 7Y k- o) =] PP PP 1
ConfigUIING ROUTING ... uiettie e e ettt ettt et e e 11
SingleApplicatioNROULINGSLIAtEgYvutti it eenes 12
SiteAppPlicatioNROULINGSTIAtEGY .. vuiniitiit ittt ettt e e et e e e e aenens 13
GroupingApplicatioNROULINGSEIAtEGY «...uvuirinin ittt e ee e enenns 15

3. OVEIVIEW Of INAXING ..ttt e ettt eenen 17

INAEXADIE CIASSES ...ttt e e e ane 18
EndecalndexingOutputCoNTig Classiuieieieirieetitet e e e e e e e e et eneaeaaaans 18
CategoryTre@ServiCe CIaSSc.uuiu ettt et et ettt et e ea et e e e e 20
RepositoryTypeHierarchyEXporter Classc.eueueninininii e 22
Yl Y= g T o T =T G - 11 S PPN 22

INdeXiNg MUIIPIE LaNQUAGES .. .euitieiietitee ettt et et e et et e e e et e et et enenaeaenenaenen 23

SUDMIEING the RECOITSenin e ettt e e e ens 24

MaNAGING the PrOCESS e et 25

Viewing the INAeXed Dataouiuiiitiiiiit ittt e et e e ea e e e e e et eaaneeenaaaanans 25

4, Configuring the INdeXing COMPONENTSiuitititetetete ettt e e e e teteteteteaeaeeeaeeeeaenenenenananas 27
IndexingApplicationConfiguration COMPONENTeuiininieiiet it e e enenes 27
EndecalndexingOutputConfig COMPONENTSeuinininin ettt e e 28
Data LOAder COMPONENTS .. .euuitinititinietet ettt te e et etenteteteataterantaserantaseneneasenensaseneneenenes 33

Tuning Incremental Loadingouinirtiniiiii et et e a e e e e ens 34
CategOTYTIEESEIVICE .ttt ittt e ettt e e aea 34
RepositoryTypeDimenSiONEXPOITErcuu ettt et e aeeeaes 35
Yl 1= 04 F=1 23 o T =T PPN 36
Document SUDMItEEr COMPONENTS .. .vuuutitintitinttet ettt ettt eet et e eaeeteneneeaeneneasenenennenens 37

RecordStoreDocumMENtSUDMITIENou ittt et e e e e e aes 37

ConfiglmportDocumentSUBMILLErunii e 39

FileDOCUMENTSUDMILTET ... ettt e et eeaeaes 39
g Yo U= N el 4o AT AV I PPN 40
ProductCatalogSimplelndexingAdmMIinoeuieuin e 41

Queueing INdexing JODS 43
ATG Content Administration COMPONENTSu.uiuititiiet ittt et ettt eentatetenerteneneerereneeaenenes 44

Specifying the DeploymMeNnt Targeluien ittt et e e e e ae e e e e enanananas 44

ENabling LOCal INA@XINGvuieninitiiet ettt 45

Platform-Guided Search Integration Guide iii

Enabling REMOte INAEXINGenininininiiii e aans 45

Triggering Indexing on Deployment 46
Viewing Records in the COmMPONENT BrOWSENutiuiniititirteteinteteeteteenteeenteteneneeneeneerenenaes 47
5. Configuring EndecalndexingOutputConfig Definition Filescccoviiiiiiiiiiiiiee e 49
Definition File FOIrMAt e eenens 49
Automatically Included Propertieso.oueiiii e 50
Specifying Guided Search SChema AttrDULESuiuieiniie e 51
Specifying Properties for INAeXiNGo.iuiuiiiitiie e et e e eneeanans 52
Specifying Multi-Value Propertiesoueuiiiiii e 52
SpPecifying Map Properties i 53
Specifying Properties of [tem SUDLYPESvuiininiiie e 54
Specifying a Default Property Valueco.oininiiiii e 55
Specifying Non-Repository Propertiesc.v.vu it 55
SUPPIESSING PrOPEITIES .. .nit ittt 56
INCIUAING SItEld PrOPEITIES .. vieit ittt e e et et e e et et e e eeteanaes 56
Renaming an OULPUL PrOPEITY ...cuuneininietitii ettt et et et e e et e ae e e eaenanaes 57
Translating Property ValUSo. it 57

Using Monitored Propertieso.u e et 59
Filtering Properties of Specific RepoSitory ItemSoeuiuiinieiii e 59
6. Customizing the OULPUL RECOIS ...euuiuinit ittt et et e e et e e e e et enenaenenens 61
USING PrOPEITY ACCESSOIS . .nentntntet ettt ettt ettt e et et e et e et et e et e e ettt eneeaaeneateteneneaaanens 61
FirstWithLOCalEPrOPEIrtyACCESSON ...t 62
LaNGUAGENGMEACCESSOL .. utententet ettt ettt atet e et eate et et et eatenteteteneeeeneenesneenenneanennenns 62
GENEratiVEPIOPEITY ACCESSON ..ttt ettt ettt ettt ettt et et et et et et et et eneraeenenneanennenns 62
Category DImension Value ACCESSOISuu ettt e e eenes 63

USING Variant ProOQUCETSoniniiii e et 63
LOCaleVariantPrOTUCETc.ouin ittt e e eenenes 64
CategoryPathVariantProdUCEruiniiiie e e e aeas 65
CustomCatalogVariantPrOGUCEToinininiie et e e 65
UNiqUeSTtEVariantPrOAUCETviit it e ettt e e e e e e e e eaaaas 66
MURIPIESItEVArTANTPIOAUCET . ..uiti ettt et e e et e e e enenenes 66

USING Property FOIMATIIS ...eut ittt ettt ettt e et et e et e et ee e e e et et e et eenaeaenenaenens 67
Using Property Value Filterso.ouiu ittt e e 68
L0 Lo Te U =] 1 =T 68

(@0oT g Ter= 1 41 L =] TP 69
UNIQUEWOIARIIEE .. ettt e ettt ettt e e e e e e et e e e s e eeneeaens 70

[1000 1T PP 71

7. Indexing the Content Management REPOSITONYeuiuiuinin it 73
Overview of Indexing Web Contentouiiiiiiiii e e e eanans 73
WCM EndecalndexingOutputConfig COMPONENTSuuuininininininiinieeenetenetereteaeteeeeeenenenenenens 74
WCM Dimension EXporter COMPONENTS ...ttt ettt et e ee et et e et e et et et eeeneaneeneaneneas 77
WCM Schema EXPOrter COMPONENTSuutinititiiet ettt eteneet et eenteteneaeetenenteseneaeateneneeneeneanens 78
WCM SimplelndeXing Admin COMPONENTiuititiit ittt e ee e erteaeenenaeeneeaenenaees 79
8. Indexing Dynamic Item Types and Properti€sc.euiuiuineitininiitirtet ettt ereerenenaeaenens 81
Updating the INndeXing COMPONENTSo.iuininiit ittt e e et e e aeaeans 81
Specifying Dynamic Items and Properties for INndexingccoouiuiiiiiiiiiiiiiiiieeea 82
Specifying the Output Property Nameoouiuiininiiii et 84
Adding Properties to a Search Interfacecovuviiiiiiiiiii s 84
SO0 T VA (0] C=Te =14 o] o H P PP PP PP PPPNt 85
CONTENE HEM CIASSES ..ttt ettt e e e e e e et e e et et e et aans 85
Invoking the Assembler in the Request Handling Pipelineoooiiiiiiiiiiiiiiiiiiineeieeens 86
Using a JSP Renderer to Render CONENT .. .ouvuininiitiiiet et eeeaens 87
Rendering XML or JSON CONTENTuuuininiin ittt et e e et e e e eenenas 89

Platform-Guided Search Integration Guide

When the Assembler Returns an Empty Contentltemo.ouvuviviiinininininiiiiiieeeaenen, 20

Invoking the Assembler using the InvokeAssembler Servlet Beanccooiiiiiiiiiiiiiiiinnnenen.. 20
Choosing Between Pipeline Invocation and Servlet Bean INVOCationccceveviiiiniviiiininiiieninnenns 93
Components for Invoking the AssembIErc.iiiiii e 93
AssemblerPipelineSErvIEtc.inii i e e 93
INVOKEASSEMDIET ...ttt e ettt 95
Accessing Commonly Used Functionality in AssemblerToolscoooiiiiiiiiiiiiiiiiiinenene, 97
Creating the Assembler Instance and Starting Content Assemblyccoviiiiiiiiininiiinennns 97
Calculating the Content Path from the Page Request URLcocoiiiiiiiiiiiiiiiiiiiiiiiieen, 97
Identifying the Renderer Mapping Component to Use for the Requestccoeiiiniann. 98
Creating the SiteState COMPONENTt ittt ettt et et et et e eneeaeaneeaenaneees 98
Defining Global Assembler SETHINGSiuiriritet ettt e e e et e e e e e e aeaeananens 100
Connecting to the Workbench and MDEXouiiiiiiiiiiiii s 100
AssemblerApplicationConfiguration COMPONENtceuiuiniiiiiiii e 100
ConNeCtiNg t0 @N IMDEXuintitiitiit e ettt ettt ettt e e aans 103
Connecting to the Workbench Server e 103
QUErYING the ASSEMIET ... ue e 106
Cartridge Handlers and Their Supporting CompPONENtSc.c.eueuiuiritititeteieeeeeeeeeeneneneneeenenenes 107
Providing Access to the HTTP Request to the Cartridgescouvuiuiiviiiiiiniiiiiiniiineineaeenenaes 108
Controlling How Cartridges Generate LINK URLSo.iuiiiiriiniiiiiieiineire et aeenans 108
BT eV oY o - 14 (=] PPN 109
DefaultActionPathProVider ... e 109
(g [V TaTe I 2{<Y g Te =T T PPN 112
ContentltemToRendererPath e 112

o 1 o =Y g Yo [T (@] o1 =T 0 1 | (=] ' 114
Configuring KeyWord REAIr@CEScuininineiii e 114
10. Retrieving Promoted CONTENTuieiiit ittt ettt e et e et e et e et et e e aeteenaenenenes 115
SiNGIE-MDEX ENVIFONMENT ...ttt ittt ettt ettt ettt et et e et ea et a et e e e eaeenaeteneneenenes 115
Multiple-MDEX ENVIFONMENTvtinititiiit et ettt et et e ee e et et e e e et et eeeeaeneaeasenaneasanans 116
Creating FileStoreFactory Instances from a Prototype-Scoped Componente..... 117
Creating FileStoreFactory Instances from Properties Filescoiviieiiiiiiiiiiiiniineneane. 117

1T, RECOIA FIEIING oottt e et e ettt e e e et e e et et een e e aeenaenen 119
RecordFilterBuilder Interface and Implementing Classescoooviiiiiiiiiiiiiieee e 119
LanguageRilterBUIlderc.ou e 119

(@ e oY | 21 (= ¢ 10 1] o =] PPN 120
SHEFITErBUIIAET ...eeee e e 120
Enabling Record Filter Builder COMPONENTSc.iuiuiniiiiiii et 122
DateRangeFilterBUilder 122
L o Y Ve |11 Ve o g el T I PP PP 125
PrICE LIST PaiISeeeei ettt ettt ettt ettt aeae 125
INAEXING PriCe LISt DAta ...vueieitieeteie ittt et ettt e e e e e e e e e aanaaas 126
PriceListPairVariantProdUucer 126
PriCELiStPaIrACCESSON ..uinitiniiit i 127
ACTIVEPTICEACCESSON ..ottt ettt ettt e ettt e e ns 127
QueueingPropertiesChangeLiStENETiuinii e 128
Indexing TiMe-Based PriCES et 129
Filtering Records By Price LiStueneiiii e ettt e aeaes 130
13. DIMeNsion Value Caching eeeuiiiti et ettt et et e e e e e e ena e eenans 131
Mapping Categories to DImension Valuescoiiiiiiii e 131
DimensionValueCache and DimensionValueCacheObjectcceuiuiiiiiiiiiiiinininenenene. 131
Managing the Cathe .. .o.uuii i e e e ettt e e e e e eees 132
Populating and Refreshing the Cachecoiiiiiiiiiiiii e, 132
DimensionValueCacheDroPletcuiuiiei it et e e e e e e eaaaan 133

Platform-Guided Search Integration Guide v

14, User SegmMENt SRaringo e 135

About User Segment Sharingo 135
Configuring User SEgmeENt SNaringouiuiuiiiiii e e et e e e eeenanas 136
Additional Configuration Required for the Production Serverccccoovviiiiiiiiiiiiinnininnnnns 136

About the RequestCredential AccessController COMPOoNENtevviiiiriiiiriiiieieeiennenanens 137

Managing Credentialso 137

Configuring the EAC APPlCationiuiniieiii e e e e e e 140

Note about Configuring Commerce Reference Storecooveveniiiiiiiiieiiiiiiiiiieieeennnen 142

Avoiding Duplicate User Segment Names in the Business Control Centerc..ccoeveiiinininnnnn. 142
Renaming a User Segment in the Business Control Centerc.vuiuiuiuiiiiiininininennieeeenenen, 142

15. Using Sites and Site Groups as Content [tem TrHgGErSuvu ittt eneeaenens 145
Adding Sites and Site Groups to EXperience Managerouvuvuiiriinirirtiiieteieneneeeieeeeeneneenenes 145
Constructing the SEGMENT LIStouiu ittt e enenes 146

16. Commerce SINGIE SIGN-ONt ettt et 147
Commerce SiNGIe SIGN-ON SEIVET ...o.uiuii it et et et ee e e e e e e e e eenanes 147
Oracle Commerce Platform PIUG-IN ... e eenes 148
oY o 113 T PP PP TP 149

Validation e 149

[T oI N YOS 149

[0 T o 11 150

Maintaining USEr ACCOUNTSuinteiit ittt ettt et et ettt et e et e et eeneeaeneaannen 150

LDAP AUTNENTICATION ...ttt e et eeenes 150
Setting up @ Composite Profile REPOSITOrYcuueuiuinitiii i 151

User AUTheNTICAtIONoeue ettt 152

Creating Users and Organizations in the Business Control Centerc.cocvevevininininininnn.. 152

17. Data Logging for Search REPOITINGc.ouiuiuit it 155
Recording Search Requests and RESPONSESuiuititinititirieteint et ert et e et et enenaeaeenaaen 155
SEArChIAPIOVIAENttt 156
EndecaReporting SEgmEnt Listuiiiiiiie e 156

Recording Search Results Selected ...t 157
Using the GetSearchClickThroughld Servlet Beanvoiviviiiiiiiiiiiiiniiiiiiieieienennen 157

Configuring the CaChe ... 158
SearchClickThroughServiet ... e 158

Recording Search Results Placed in Shopping Cartsocveveieriiinininie e 159

18. Data Loading for SEarch REPOITINGuvnininieiii et e e et e e e reaaaaes 161
Data Warehouse Tables ... e 161

Lo [e | (le 1 (=le l DL | - N PPN 162

Refr@Sh SEIVICES ... e 162

Loader and Processor Components for Search REPOITSvuvuininiiniiiiiiiiieiiieieeeee e eeeanens 163
Processor Components for Search Conversion REPOITSouuiinininiiieeieeieieieeeeeieaeaeanans 168
MaINTENANCE SEIVICES ...vniniite et et et et et e e e et e eeeanen 170

19. Search Reporting Dashboards ... e 171
Search Performance Dashboardc.veuiuiiuiiii e 171
YT T I Vet 1 1 | 4 PPN 171

KeYWOrd ANQAIYSIS et 172

Search MerchandiSingc.ou oo e 172

DIMENSION ANGIYSIS .o enenenen ettt e eaene 172

ATG Web Commerce Performance Dashboardc.coieiiiiiiiiiiiiiin e 172

20. Appendix A: Support for Older Deployment TEMPIateso.vuveiiiiiiri s 175
ReCOId STOre NAMING . ..enen ittt e et et e e eeaene 175
Yl aT=T 0 4 F= T o o Y PP 176
Hierarchical DimENSION EXPOITuiuetininiieitiiet ettt et et ettt e e e e e e e aeteeeeeeenaenenanans 176

Root Node Naming and EXPOItouiuininininiiii ettt e e e aeaas 176

vi

Platform-Guided Search Integration Guide

Platform-Guided Search Integration Guide vii

viii Platform-Guided Search Integration Guide

1 Introduction

The Oracle Core Commerce Platform - Guided Search integration enables customers of the Oracle Commerce
Platform and Oracle Commerce Guided Search to index data from GSA repositories in Oracle Commerce MDEX
Engines, where it can then be queried and the results can be displayed on commerce sites. This document
describes how to configure Oracle Commerce Platform indexing and querying components to work with Guided
Search.

This chapter provides an overview of installing and configuring a Guided Search integration environment, and
provides a brief description of the Guided Search integration modules. It includes the following sections:

Installation Requirements (page 1)

Creating the EAC Applications (page 2)

Configuring the Oracle Commerce Platform Server Instances in CIM (page 3)
Configuring the ApplicationConfiguration Component (page 4)
Configuring Sites in a Multisite Environment (page 6)

Transaction Timeout and Datasource Connection Pool Settings (page 6)
Oracle Commerce Platform Modules (page 7)

Note that Oracle Commerce Reference Store makes extensive use of the Guided Search integration to
demonstrate the use of both the Oracle Commerce Platform and Oracle Commerce Guided Search on
commerce sites, and in some cases extends the capability of the integration. See the Commerce Reference Store
documentation for more information.

Installation Requirements

The Guided Search integration requires that the Oracle Commerce Platform and Oracle Commerce Guided
Search (with or without Oracle Commerce Experience Manager) be installed in your environment. We also
suggest that you initially install Oracle Commerce Reference Store, so that you have an application and data to
work with as you familiarize yourself with the integration.

For information about installing the Oracle Commerce Platform software, see the Platform Installation and
Configuration Guide. For information about installing Commerce Reference Store, see the Commerce Reference
Store Installation and Configuration Guide. For information about installing Oracle Commerce Guided Search
software, see the Oracle Commerce Guided Search Getting Started Guide and other related Guided Search
installation documentation.

1 Introduction 1

Creating the EAC Applications

To create a Guided Search EAC application to integrate with the Oracle Commerce Platform, use the CAS-based
deployment template described in the Oracle Commerce Guided Search Administrator’s Guide. (If your Oracle
Commerce Platform environment is based on Oracle Commerce Reference Store, you can use the CAS-based
deployment template that is included with it.) The deployment template includes a script that creates CAS
(Content Acquisition System) record stores that the Guided Search integration submits records to. The naming
convention for these record stores is:

appl i cati onNane-r ecor dSt or eType

For an application named ATGen that indexes GSA repository data, the record stores are:
« ATGen- dat a -- Holds data records representing repository items such as products and SKUs.

+ ATGen-di nval s -- Holds dimension value records generated from the category hierarchy and from the
hierarchy of repository item types.

The Guided Search integration includes classes and components that create records and write them to these
records stores. In addition, the integration includes classes and components that create schema records, convert
them to Configuration Import APl objects, and submit these objects to the Endeca Configuration Repository.

Note that there is also an ATGen- pr ul es record store, which is used to create Guided Search precedence rules.
The integration does not provide a way to create precedence rules or write to this record store, but you can
create precedence rules directly in Guided Search. See the Guided Search documentation for information about
creating precedence rules.

Using an Older Deployment Template

This manual assumes you are using a CAS-based deployment template for your EAC applications, as mentioned
above. If you are creating new EAC applications, it is highly recommended that you use this type of deployment
template.

If you have EAC applications created in an earlier release, they may be using an older Forge-based deployment
template such as the one described in the Oracle Commerce Deployment Template Module for Product Catalog
Integration Usage Guide. This type of deployment template uses CAS for its record and schema storage, and
Forge to generate configuration and transform records on import. (CAS-style deployment templates also use
CAS for record storage, but store schema configuration in the Endeca Configuration Repository, and do not use
Forge at all.) Forge-based applications are still supported, but require some differences in the configuration of
Oracle Commerce Platform components, as they require record output in a somewhat different format from
applications that use a CAS-based template.

If you do have existing EAC applications that use a Forge-based deployment template, you can recreate your
EAC applications with a CAS-based deployment template. If you instead continue to use applications based
on the older-style template, you will need to reconfigure several Oracle Commerce Platform components, as
described in Appendix A: Support for Older Deployment Templates (page 175). In addition, you will need to
follow the Oracle Commerce Guided Search migration procedure described in the Oracle Commerce Guided
Search Tools and Frameworks Migration Guide.

Determining the Number of EAC Applications to Create

To integrate Guided Search with your Oracle Commerce Platform environment, you must create at least one EAC
application and a corresponding MDEX. If you have data in multiple languages or multiple sites, the number

2 1 Introduction

of EAC applications you have depends on your approach to indexing these languages and sites. To implement
a specific approach, you need to configure a routing strategy, which controls the logic for directing data for
indexing and querying to specific EAC applications. See the Routing (page 9)chapter for information about
configuring routing strategies.

Provisioning the EAC Applications

You must provision each EAC application individually by running thei ni ti al i ze_ser vi ces. sh| bat script
found in the application’s / cont r ol directory. Therefore, if you have three EAC applications, you must invoke
the script three times. Thei ni ti al i ze_ser vi ces. sh script is found in the following location: / endeca/ EAC-
application-directory/your-application/control/.

Configuring the Oracle Commerce Platform Server
Instances in CIM

You can configure your Oracle Commerce Platform server instances for a Guided Search integration
environment using the Configuration and Installation Manager (CIM). The options you must configure are
described below.

Product Selection

To configure your server instances to use the Guided Search integration, select the Guided Search integration
and the Oracle Commerce Platform in the Product Selection menu. If your installation includes Oracle
Commerce Reference Store, you can select Oracle Commerce Reference Store instead. Your server installations
will automatically include the Oracle Commerce Platform and the Guided Search integration, because
Commerce Reference Store requires them.

Oracle Commerce Platform Server Instance Creation

During your Oracle Commerce Platform server instance configuration, you must provide information about
your Guided Search environment so that the Oracle Commerce Platform server instance can communicate with
Guided Search. The required settings and their defaults are provided in the table below:

Setting Default
CAS hostname | ocal host
CAS port 8500

EAC hostname | ocal host
EAC port 8888

EAC base application name ATG

1 Introduction

Setting Default
Fully qualified Workbench host name, including domain n/a
Workbench port 8006
Default MDEX host name | ocal host
Default MDEX port number 15000

After your Oracle Commerce Platform server instances are configured in CIM, start them up in preparation for
indexing.

Configuring the ApplicationConfiguration Component

The at g. endeca. confi gurati on. Appl i cati onConfi gurati on class provides a central place for
configuring various global settings, including language configuration options and application naming. The
Guided Search integration includes a component of this class, / at g/ endeca/ Appl i cat i onConfi gur ati on.
The following are key properties of this component:

locales

An array of the locales to generate records for. To generate records in multiple languages, you specify the locales
using this property. For example:

| ocal es=en_US, fr_FR

Note that only one set of records is generated for each language. So, for example, if you specify multiple locales
where the language is French (for example, ca_FRand f r _FR), only one set of French records is generated.

defaultLanguageForApplications
The two-letter code of the default language for the applications. This should be null (the default) if you are using
a separate EAC application for each language. See the Routing (page 9)chapter for more information about
when this property should be set.

baseApplicationName

The base string used in constructing the EAC application names. The default setting is ATG You can override the
default when you use CIM to configure your Oracle Commerce Platform environment.

keyToApplicationName
A map of application keys to application names. You can use this property to override the default application

naming convention. See the Routing (page 9)chapter for more information about the naming convention
and when this property should be set.

4 1 Introduction

defaultApplicationKey

The application key to use if the current application cannot otherwise be determined. An array of the keys is
stored in the read-only appl i cat i onKeys property. If there is a separate application for each language, the first
key listed in the appl i cat i onKeys property is the default, unless you change the default by explicitly setting
the def aul t Appl i cat i onKey property to a different key.

If there is only one EAC application, you do not need to set this property; it will automatically be set to def aul t.
applicationKeyToMdexHostAndPort

A map where the keys identify each EAC application and the values specify the host names and port numbers
for the MDEX engines associated with each application. See Connecting to the Workbench and MDEX (page
100) in the Query Integration (page 85) chapter for more information about this property.

applicationRoutingStrategy

A component of a class that implements the at g. endeca. confi gurati on. Appl i cati onRouti ngStr at egy
interface. The specific class determines the logic for directing records to EAC applications for indexing and for
directing queries to those applications. See the Routing (page 9)chapter for more information.

workbenchHostName

The fully qualified host name, including the domain, of the machine running the Oracle Commerce Workbench.
You can specify this setting when you use CIM to configure your Oracle Commerce Platform environment.

workbenchPort

The port number for accessing the Oracle Commerce Workbench. The default setting is 8006. You can override
this default when you use CIM to configure your Oracle Commerce Platform environment.

credentialStoreManager

The component that manages the credential store where login credentials for the Oracle Commerce Workbench
are stored. By default, this property is set to:

credenti al St or eManager =\
[at g/ dynano/ security/ opss/ csf/ Credenti al St or eManager

The credential store is implemented using the Credential Security Framework (CSF) of Oracle Platform Security
Services (OPSS). You can create credentials using CIM, and add or delete credentials using the page for the
Credenti al St or eManager component in the Dynamo Server Admin. For more information about using CSF
with Oracle Commerce, see the Platform Programming Guide.

workbenchCredentialStoreMapName

The name of the credential store map used to store workbench login credentials. By default, this is set to:

wor kbenchCr edent i al St or eMapNanme=endecaTool sAndFr amewor ks

workbenchCredentialStoreKeyName

The name of the key used to retrieve workbench login credentials from the credential store map. By default, this
is set to:

1 Introduction 5

wor kbenchCr edent i al St or eKeyNane=i f cr

recordldName

The output name used in records for the $docl d property. Set by default tor ecor d. i d. The value of this
property is used as the unique identifier for a record. See Automatically Included Properties (page 50) in the
Configuring EndecalndexingOutputConfig Definition Files (page 49) chapter for more information about this
property.

recordSourceName

The output name used in records for the $r eposi t ory. r eposi t or yNane property. Set by default to
recor d. sour ce. The value of this property identifies the name of the source repository. See Automatically
Included Properties (page 50) in the Configuring EndecalndexingOutputConfig Definition Files (page 49)
chapter for more information about this property.

recordTypeName

The output name used in records for the $i t enDescri pt or. i t enDescri pt or Name property. Set by default
torecord. t ype. The value of this property identifies the repository item type used to generate the record.
See Automatically Included Properties (page 50) in the Configuring EndecalndexingOutputConfig Definition
Files (page 49) chapter for more information about this property.

Configuring Sites in a Multisite Environment

In multisite environments that use the Guided Search integration, site configuration exists in both Site
Administration and in the EAC application. These configurations have to match each other; for example, if you
have three sites configured in Site Administration, you should have three corresponding sites configured for
your EAC application.

To create a mapping between the sites, you use the Guided Search Site ID property in Site Administration. This
property is located on the Site tab when you view a site’s details in Site Administration. For each site defined in
Site Administration, enter the ID of the corresponding site as defined in the EAC application.

Transaction Timeout and Datasource Connection Pool
Settings

Depending on your application server, you may need to increase the transaction timeout and datasource
connection pool settings in order for indexing to run successfully.

Increasing the Transaction Timeout

All supported application servers roll back transactions that do not complete in a specified number of seconds.
These transaction rollbacks can cause indexing jobs to fail. If your indexing process fails, try increasing the

6 1 Introduction

transaction timeout setting to 300 seconds or more. For details on changing your transaction timeout, see
Setting the Transaction Timeout on WebLogic, Setting the Transaction Timeout on JBoss, or Setting the Transaction
Timeout on WebSphere in the Platform Installation and Configuration Guide.

Increasing the Datasource Connection Pool

Oracle recommends setting the data source connection pool maximum capacity to 30 or greater for all of your
data sources. For information on setting the data source connection pool maximum capacity, refer to your
application server's documentation.

Oracle Commerce Platform Modules

The main Guided Search integration modules are:

Module Description

DAF. Endeca. | ndex Includes the necessary classes for exporting data to CAS record
stores and triggering indexing, along with associated configuration.

DAF. Endeca. | ndex. Ver si oned Adds configuration for running on an ATG Content Administration
instance. This module adds basic record generation configuration
for ATG Content Administration servers, including a deployment
listener.

DAF. Endeca. Assenbl er Contains classes and configuration for creating an Assembler
instance that has access to the data in your application’s MDEX
engines. Also provides classes for querying the Assembler for data
and managing the content returned.

DCS. Endeca. | ndex Configures components for creating CAS data records from
products in the catalog repository and dimension-value records
from the category hierarchy.

DCS. Endeca. | ndex. SKUI ndexi ng Modifies configuration so that CAS data records are generated
based on SKUs rather than products.

DCS. Endeca. | ndex. Ver si oned Adds Commerce-specific configuration for running on an ATG
Content Administration instance.

DCS. Endeca. Assenbl er Contains Commerce-specific configuration for query-related
components.

Additional modules for indexing Web content in the content management repository are described in the
Indexing the Content Management Repository (page 73) chapter.

Note that when you assemble an application that includes any of the modules listed in the table above, other
modaules they have dependencies on, such as DAF. Endeca. Base or DAF. Sear ch. | ndex, are automatically

1 Introduction

included in the EAR file as well. In addition, some of the Guided Search-specific modules pull in classes from
other search modules (without including the modules in their entirety) through the ATG O ass- Pat h entries in
their manifest files.

1 Introduction

Routing

Routing is the process of directing records for indexing to specific EAC applications and their corresponding
MDEX instances, and ensuring that queries (for example, search terms or dimension selections) are directed to
the correct EAC applications as well.

The Guided Search integration supports a variety of routing options. These differ by how data for indexing is
divided up among EAC applications, depending on criteria such as language or site.

This chapter describes the various routing options available in the integration and how to configure them. It
includes the following sections:

Overview of Routing (page 9)

Configuring Routing (page 11)

Overview of Routing

Routing involves mapping languages or sites (or both) to specific EAC applications, based on criteria that you
specify. For example, if you have a site that is in French and English, you may want to direct the French records
to one EAC application for indexing, and direct the English records to a different EAC application. After indexing,
when a user enters a search term or selects a dimension, the same routing logic directs the query to the correct
EAC application (for example, French queries to the EAC application that indexes the French records).

Different routing options are supported by different classes that implement the
at g. endeca. confi gurati on. Appl i cati onRout i ngSt r at egy interface. The class you use determines the
logic for directing records to EAC applications for indexing and for directing queries to those applications.

In addition to Appl i cat i onRout i ngSt r at egy, there is another key routing interface,

at g. endeca. confi gurati on. Rout i ngQbj ect Adapt er . Classes that implement this interface are responsible
for determining the current site or language so the Appl i cat i onRout i ngSt r at egy class can then direct data
to the correct application. There are two subinterfaces of Rout i ngCbj ect Adapt er:

+ atg. endeca. i ndex. confi guration. Cont ext Routi ngObj ect Adapt er — Classes that
implement this interface are used during indexing to obtain the current indexing context from the
at g. reposi tory. sear ch. i ndexi ng. Cont ext object.

+ atg. endeca. assenbl er. confi gurati on. Request Rout i ngObj ect Adapt er — Classes that
implement this interface are used during querying to obtain the current querying context from the
DynanoHt t pSer vl et Request object and other objects that hold request-specific state, such as
Si t eCont ext objects.

2 Routing

The Appl i cati onRout i ngSt r at egy and Rout i ngObj ect Adapt er classes are discussed below. To specify the
routing classes you want to use, see Configuring Routing (page 11).

ApplicationRoutingStrategy

Different routing options are supported by different classes that implement the
at g. endeca. confi guration. Appl i cati onRout i ngSt r at egy interface. There are three main classes in the
at g. endeca. confi gur at i on package thatimplement this interface:

* Singl eApplicationRoutingStrategy

+ SiteApplicationRoutingStrategy

* Groupi ngApplicationRoutingStrategy

The various routing options and the Appl i cat i onRout i ngSt r at egy classes that support them are
summarized in the following table:

Option Description Routing Strategy
One EAC All records are directed to a single EAC Si ngl eAppl i cati onRout i ngSt r at egy
application application, regardless of the language or

One language per
EAC application

site.

Each language’s records are directed to

a separate EAC application. If there are
multiple sites, all records for an individual
language are directed to the language’s
EAC application, regardless of the site.

Si ngl eAppl i cati onRouti ngStr at egy

One site per EAC
application

Each site’s records are directed to a
separate EAC application. If there are
multiple languages, all records for

an individual site are directed to the
site’s EAC application, regardless of the
language.

Si t eAppl i cati onRouti ngStr at egy

One combination

Records for each combination of site and

Si t eAppl i cati onRouti ngStrat egy

of site and language are directed to a separate EAC
language per EAC | application. For example, if there are five
application sites and three languages, there may be as
many as 15 EAC applications. (There may
be fewer if not all of the sites include all
three languages.)
Arbitrary grouping | For example, there are five sites, with G oupi ngAppl i cati onRout i ngStr at egy
of sites per EAC records for two sites directed to one
application EAC application, and records for the

other three sites directed to a second
EAC application. If a site has multiple
languages, all records for the site are
directed to the site’s EAC application,
regardless of the language.

2 Routing

RoutingObjectAdapter

The Rout i ngObj ect Adapt er interface is responsible for obtaining context information that the

Appl i cati onRout i ngSt r at egy uses to route data for indexing and querying. This interface has two
subinterfaces, Cont ext Rout i ngCbj ect Adapt er (for indexing) and Request Rout i ngObj ect Adapt er (for
querying). These subinterfaces differ mainly in terms of where they obtain the context information.

ContextRoutingObjectAdapter

Classes that implement the at g. endeca. i ndex. confi gur ati on. Cont ext Rout i ngQbj ect Adapt er
interface use the at g. r eposi t ory. sear ch. i ndexi ng. Cont ext object to determine the current indexing
context. The Cont ext object provides a central place to store data and state information, such as the current site
and locale, during an indexing job.

There are three Cont ext Rout i ngQObj ect Adapt er classes in the at g. endeca. i ndex. confi gurati on
package, which correspond to the three Appl i cati onRout i ngSt r at egy classes discussed above:

» Si ngl eCont ext Rout i ngObj ect Adapt er
* SiteCont ext Routi ngOhj ect Adapt er
* G oupi ngCont ext Rout i ngOhj ect Adapt er

So, for example, if you are using Si t eAppl i cati onRout i ngSt r at egy as your routing strategy, you should use
Si t eCont ext Rout i ngQObj ect Adapt er for determining the indexing context.

RequestRoutingObjectAdapter

Classes that implement the at g. endeca. assenbl er. confi gur ati on. Request Rout i ngQbj ect Adapt er
interface use the at g. servl et. DynanoHt t pSer vl et Request object and other objects that hold request-
specific state, such as Si t eCont ext objects, to determine the current context for querying.

There are three Request Rout i ngQbj ect Adapt er classes in the at g. endeca. assenbl er. confi gurati on
package, which correspond to the three Appl i cati onRout i ngSt r at egy classes discussed above:

» Si ngl eRequest Rout i ngObj ect Adapt er
» SiteRequest Routi ngObj ect Adapt er
* G oupi ngRequest Rout i nghj ect Adapt er

So, for example, if you are using Si t eAppl i cati onRout i ngSt r at egy as your routing strategy
(and Si t eCont ext Rout i ngObj ect Adapt er for determining the indexing context), you should use
Si t eRequest Rout i ngbj ect Adapt er for determining the querying context.

Configuring Routing

Once you have determined the routing strategy you want to use (see Overview of Routing (page

9)), you specify it by setting the appl i cat i onRout i ngSt r at egy property of / at g/ endeca/

Appl i cati onConfi gurati on toacomponent of one of the Appl i cat i onRout i ngSt r at egy classes
mentioned above. Other configuration depends on which routing strategy class you specify.

This section describes how you configure different routing strategies and associated components.
For more information about configuring the | ndexi ngAppl i cati onConfi gur ati on component,

2 Routing

1

see the IndexingApplicationConfiguration Component (page 27) section of the Configuring

the Indexing Components (page 27) chapter. For more information about configuring the

Assenbl er Appl i cati onConfi gur ati on component, see the AssemblerApplicationConfiguration
Component (page 100) section of the Query Integration (page 85) chapter.

SingleApplicationRoutingStrategy

Use the Si ngl eAppl i cat i onRout i ngSt r at egy class if you have a single EAC application, or if you have a
separate EAC application for each language. In either case, routing is not affected by sites; for a given language,
records for all sites are directed to the EAC application associated with that language.

To use Si ngl eAppl i cati onRout i ngSt r at egy, set the

Appl i cati onConfi guration. applicationRoutingStrategy property to null. This property is null by
default, so you can leave it unset or set it to null explicitly. If appl i cat i onRout i ngSt r at egy is null, an instance
of the Si ngl eAppl i cati onRout i ngSt r at egy class is created automatically.

Similarly, set the I ndexi ngAppl i cati onConfi gurati on. routi ngQbj ect Adapt er and

Assenbl er Appl i cati onConfi gurati on. routi ngObj ect Adapt er properties to null to automatically create
instances of the Si ngl eCont ext Rout i ngQbj ect Adapt er and Si ngl eRequest Rout i ngQObj ect Adapt er
classes.

Additional configuration differs depending on whether you have a single EAC application for all languages or a
separate EAC application for each language.

Single EAC Application

If all languages are being handled by the same EAC application, set the Appl i cati onConfi gur ati on
component’s def aul t LanguageFor Appl i cat i ons property to the two-letter language code for the default
language. For example:

def aul t LanguageFor Appl i cati ons=en

Note that you should set this property even if your data is in only one language.

By default, the name of the application is assumed to be formed by concatenating the value of the

Appl i cati onConfi gurati on component’s baseAppl i cati onName property and the value of the

def aul t LanguageFor Appl i cat i ons property. For example, if baseAppl i cat i onNane is ATGand

def aul t LanguageFor Appl i cat i ons is en, the Oracle Commerce Platform assumes the name of the EAC
application is ATGen. If your application has a different name from the default, specify the name by setting the
Appl i cationConfi gurati oncomponent’s keyToAppl i cati onNane property:

keyToAppl i cat i onNanme=\
def aul t =appl i cati on- nanme

For example, if the name of the EAC application is My App:

keyToAppl i cati onNane=\
def aul t =MyApp

Note that the key is def aul t only when there is a single EAC application.

12

2 Routing

One EAC Application per Language

If each language is being handled by a separate EAC application, set the def aul t LanguageFor Appl i cati ons
property to null. This property is null by default, but if it has been subsequently set to a non-null value, you must
explicitly set it back to null:

def aul t LanguageFor Appl i cati ons”=/ Const ant s. nul |

The two-letter language codes are used as the application keys for routing. By default, the name

of each application is assumed to be the value of the Appl i cati onConfi gur ati on component’s

baseAppl i cat i onNane property plus the two-letter language code. For example, if baseAppl i cat i onNane

is ATGand you have records in English, German, and Spanish, the Oracle Commerce Platform assumes the
names of the EAC applications are ATGen, ATGde, and ATGes. If your applications are named differently, use the
Appl i cati onConfi gur ati on component’s keyToAppl i cat i onName property to explicitly map the language
codes to your application names. For example:

keyToAppl i cati onName=\
en=MyEngl i shApp, \
es=MySpani shApp, \
de=MyGer manApp

SiteApplicationRoutingStrategy

Use the Si t eAppl i cati onRout i ngSt r at egy class if you have a separate EAC application for each site (with all
languages in a given site being handled by that site’s EAC application), or if you have a separate EAC application
for each combination of site and language.

To use Si t eAppl i cati onRout i ngSt r at egy, set the Appl i cati onConfi gur ati on component’s
appl i cati onRout i ngSt r at egy property as follows:

appl i cati onRouti ngStrat egy=\
/ at g/ endecal/ confi guration/ Si t eAppl i cati onRout i ngStr at egy

In addition, to ensure that separate records are created for each site, you need to add the
Uni queSi t eVari ant Producer to thevari ant Producer s property of each Endecal ndexi ngQut put Confi g
component. For example

vari ant Producer s+=/ at g/ sear ch/ reposi t ory/ Uni queSi t eVari ant Producer

Endecal ndexi ngQut put Confi g components are discussed in the next several chapters of this manual.
For information about variant producers, including Uni queSi t eVar i ant Pr oducer, see the Using Variant
Producers (page 63)section of the Customizing the Output Records (page 61) chapter.

Set ther out i ngObj ect Adapt er property of the / at g/ endeca/ i ndex/
I ndexi ngAppl i cati onConfi gur ati on component to specify the Cont ext Rout i ngChj ect Adapt er
component to use:

routi ngoj ect Adapt er =\

2 Routing

13

/ at g/ endeca/ i ndex/ confi gurati on/ Si t eCont ext Rout i ngQbj ect Adapt er

Set ther out i ngObj ect Adapt er property of the/ at g/ endeca/ assenbl er/
Assenbl er Appl i cati onConfi gur at i on component to specify the Request Rout i ngQbj ect Adapt er
component to use:

routi ngoj ect Adapt er =\
/ at g/ endeca/ i ndex/ confi gurati on/ Si t eRequest Rout i ngQbj ect Adapt er

Additional configuration differs depending on whether you have a single EAC application for each site or a
separate EAC application for each combination of site and language.

One EAC Application per Site

If you have one EAC application per site (with all languages for each individual site being handled by that site’s
EAC application), set the Appl i cat i onConf i gur at i on component’s def aul t LanguageFor Appl i cat i ons
property to the two-letter language code for the default language. For example:

def aul t LanguageFor Appl i cati ons=it

Note that you should set this property even if your data is in only one language.

The site IDs are used as the application keys for routing. The value of the Si t eAppl i cat i onRout i ngSt r at egy
component’s appl i cat i onNanmeFor mat St ri ng property specifies the default naming scheme for the EAC
applications. The value of this property is a format string in which 0 is the value of the baseAppl i cat i onNane
property, 1 is the site ID, and 2 is the two-letter language code. In this case, since routing does not take language
into account, the 2 should be omitted, and the property should be set to:

appl i cati onNanmeFor mat Stri ng={ 0} {1}

Suppose, for example, that baseAppl i cat i onNane is ATGand you have three sites whose IDs are st orel T,
st or eDE, and st or eFR The default names of the EAC applications are ATGst or el T, ATGst or eDE, and
ATGst or eFR. If your applications are named differently, use the Appl i cat i onConf i gur ati on component’s
keyToAppl i cati onName property to explicitly map the site IDs to your application names. For example:

keyToAppl i cati onName=\
storel T=M/l tal yStore,\
st or eDE=MyGer many St or e, \
st or eFR=MyFr anceSt or e

Separate EAC Application for each Combination of Site and Language

If you have a separate EAC application for each combination of site and language, set the
def aul t LanguageFor Appl i cat i ons property to null. This property is null by default, but if it has been
subsequently set to a non-null value, you must explicitly set it back to null:

def aul t LanguageFor Appl i cati ons”=/ Const ants. nul |

Since in this case routing must take into account both site and language, each application key is
formed by concatenating the site ID with the language code, separated by the underscore character

14

2 Routing

(). Similarly, the application names need to reflect the sites and languages, so the value of the
Si t eAppl i cati onRout i ngSt r at egy component’s appl i cat i onNameFor mat St ri ng property should be set
to:

appl i cati onNameFor mat String={0}{1}{2}

Suppose, for example, that baseAppl i cat i onNane is ATGand you have Canada site whose ID is st or eCA.

If the site has two languages, French and English, the default names for the corresponding EAC applications
would be ATGst or eCAf r and ATGst or eCAen, and the keys for these applications would be st or eCA_fr and
storeCA en.

Note that if you have multiple sites and multiple languages, but not all of the sites support all of the languages,
Si t eAppl i cati onRout i ngSt r at egy does not create keys for the missing combinations. Records are
generated only for valid combinations of sites and languages.

If your applications do not use the default naming scheme, use the Appl i cat i onConf i gur ati on component’s
keyToAppl i cati onName property to explicitly map the keys to your application names. For example:

keyToAppl i cati onName=\
st oreCA_fr=My/CanadaSt or eFr ench, \
st or eCA_en=MyCanadasSt or eEngl i sh, \
st or eDE_de=MyGer nany St or eGer nan, \
st or eDE_en=MyGer many St or eEngl i sh, \
st or eFR_f r =MyFr anceSt or eFr ench

GroupingApplicationRoutingStrategy

The G oupi ngAppl i cati onRout i ngSt r at egy class allows more flexible groupings of sites than

Si t eAppl i cati onRouti ngStrat egy does. For example, with G- oupi ngAppl i cati onRout i ngSt r at egy,
you can have three sites handled by one EAC application and two other sites handled by a second EAC
application. If a site has multiple languages, all records for the site are directed to the site’s EAC application,
regardless of the language.

To use Gr oupi ngAppl i cat i onRout i ngSt r at egy, set the Appl i cati onConfi gur ati on component’s
appl i cati onRout i ngSt r at egy property as follows:

appl i cati onRouti ngStrat egy=\
[at g/ endecal confi gurati on/ G oupi ngAppl i cati onRouti ngStrat egy

Since this strategy may involve having multiple languages in a single EAC application, you need to set the
Appl i cati onConfi gur ati on component’s def aul t LanguageFor Appl i cat i ons property to the two-letter
language code for the default language. For example:

def aul t LanguageFor Appl i cati ons=fr

Note that you should set this property even if your data is in only one language.

The mapping of EAC applications to sites is done through the Gr oupi ngAppl i cati onRout i ngSt r at egy
component itself, rather than the Appl i cati onConfi gur ati on component. Therefore, you must set the
keyToAppl i cat i onName properties of the Appl i cat i onConfi gur ati on component to null:

2 Routing

15

keyToAppl i cati onNane”=/ Const ant s. nul |

Mapping of applications to sites is done through the appl i cat i onG oupi ngMap property of the

G oupi ngAppl i cati onRout i ngSt r at egy component. This property is a Map where each key is the name
of an EAC application and the corresponding value is a list of the site IDs of the sites to be routed to that
application. The list is in the form of a string with the pipe character (|) used as the separator between site IDs.
For example:

appl i cati onGr oupi ngMap=\
f oot wear St or es=shoeSi t eUS| shoeSi t eCanada, \
appar el St or es=cl ot hesSi t eUS| cl ot hesSi t eUK| cl ot hesSi t eCanada

Set ther out i ngObj ect Adapt er property of the/ at g/ endeca/ i ndex/
I ndexi ngAppl i cati onConfi gur ati on component to specify the Cont ext Rout i ngChj ect Adapt er
component to use:

routi ngoj ect Adapt er =\
/ at g/ endeca/ i ndex/ confi gur ati on/ G oupi ngCont ext Rout i ngCbj ect Adapt er

Set ther out i ngObj ect Adapt er property of the/ at g/ endeca/ assenbl er/
Assenbl er Appl i cati onConfi gur ati on component to specify the Request Rout i ngQbj ect Adapt er
component to use:

routi ngObj ect Adapt er =\
/ at g/ endecal i ndex/ confi gurati on/ G oupi hgRequest Rout i ngGhj ect Adapt er

To ensure that separate records are created for each EAC application, you need to add
the Mul ti pl eSi t eVari ant Producer tothevari ant Producer s property of each
Endecal ndexi ngQut put Conf i g component. For example:

vari ant Producer s+=/ at g/ search/ reposi tory/ Mul ti pl eSi t eVari ant Producer

Endecal ndexi ngQut put Conf i g components are discussed in the next several chapters of this manual. For
information about variant producers, including Mul ti pl eSi t eVari ant Pr oducer, see the Using Variant
Producers (page 63)section of the Customizing the Output Records (page 61) chapter.

2 Routing

Overview of Indexing

To make data in GSA repositories available for searching, the Oracle Commerce Platform must transform the data
into the appropriate format, and then submit this data to Oracle Commerce for indexing.

The process of indexing GSA repository data in Guided Search works like this:

1. Oracle Commerce Platform components transform the repository data into Guided Search records that
represent Guided Search properties, dimensions, and schema:

+ Properties of GSA repository items are used to create Guided Search properties and non-hierarchical
dimensions.

+ The hierarchy of repository item types is used to create a hierarchical dimension in Guided Search. If you
index the product catalog, the category hierarchy is used to create a hierarchical category dimension.

+ A Guided Search schema is created by examining the set of repository item properties to be indexed.

2. The generated data and dimension value records are submitted to CAS record stores. The schema records are
converted to the format used by the Endeca Configuration Repository and this data is submitted to it using
the Configuration Import API.

3. The EAC application is invoked, which processes the data and invokes indexing.

This chapter gives an overview of the classes and components that perform these steps, and the user interface

provided for managing the process. It focuses on the product catalog repository, but the process described here

applies to indexing any GSA repository.

This chapter includes the following sections:

Indexable Classes (page 18)

Indexing Multiple Languages (page 23)
Submitting the Records (page 24)
Managing the Process (page 25)

Viewing the Indexed Data (page 25)

Other chapters of this book provide more detail about configuring and using these and other classes and
components to work with the data in your Oracle Commerce Platform environment.

3 Overview of Indexing 17

Indexable Classes

The Oracle Commerce Platform includes an interface, at g. endeca. i ndex. | ndexabl e, that is implemented by
the classes involved in creating Guided Search records. Key classes that implement this interface include:

* atg. endeca. i ndex. Endecal ndexi ngQut put Confi g

* atg.commer ce. endeca. i ndex. di nensi on. Cat egor yTr eeSer vi ce

* atg.endeca. i ndex. di mensi on. Reposi t oryTypeHi er ar chyExporter
* atg.endeca. i ndex. schema. SchemaExporter

These classes are discussed below.

EndecalndexingOutputConfig Class

The main class used to specify how to transform repository items into records is
at g. endeca. i ndex. Endecal ndexi ngQut put Conf i g. The Guided Search integration includes two
components of this class for transforming data in the product catalog:

» [at g/ commer ce/ sear ch/ Product Cat al ogQut put Confi g
» [at g/ conmer ce/ endecal i ndex/ Cat egor yToDi nensi onQut put Confi g

Each Endecal ndexi ngQut put Conf i g component has a number of properties, as well as an XML definition file,
for configuring how repository data should be transformed to create Guided Search records. The configuration
of these components is discussed in detail in EndecalndexingOutputConfig Components (page 28).

ProductCatalogOutputConfig Component

The Pr oduct Cat al ogQut put Conf i g component specifies how to create Guided Search data records that
represent items in the product catalog. Each record represents either one product or one SKU (depending
on whether you use product-based or SKU-based indexing), and contains the values of the properties to be
included in the index.

In addition, each record includes properties of parent and child items. For example, a record that represents a
product includes information about its parent category’s properties, as well as information about the properties
of its child SKUs. This makes it possible to search category and SKU properties as well as product properties
when searching for products in the catalog.

The names of the output properties include information about the item types they are associated with. For
example, a record generated from a product may have a pr oduct . descri pt i on property that holds the value
of thedescri pti on property of the pr oduct item, and a sku. col or property that holds the value of the

col or properties of the product’s child SKUs.

Multi-value properties are given names without array subscripts. For example, a pr oduct repository item might
have multiple child sku items, each with a different value for the col or property. In the output record there will
be multiple entries for sku. col or.

The following is an XML representation of a portion of a Commerce Reference Store data record. Note that the
actual records submitted to the CAS data record store are in a binary object format, not XML.

<RECORD>
<PROP NAME="product. baseUr| ">
<PVAL>at gr ep: / Pr oduct Cat al og/ cl ot hi ng- sku/ xsku1013</ PVAL>

18

3 Overview of Indexing

</ PROP>

<PROP NAME="product. repositoryld">
<PVAL>xpr 0d1003</ PVAL>

</ PROP>

<PROP NAME="product . brand" >
<PVAL>Cri cket Cl ub</ PVAL>

</ PROP>

<PROP NAME="product .| anguage" >
<PVAL>Engl i sh</ PVAL>

</ PROP>

<PROP NAME="product. priceLi st Pair">
<PVAL>pl i st 3080003_pl i st 3080002</ PVAL>

</ PROP>

<PROP NAME="product. descri pti on">

<PVAL>Genui ne English |eather wallet</PVAL>

</ PROP>

<PROP NAME="pr oduct . di spl ayNane" >
<PVAL>Or gani zed Wal | et </ PVAL>

</ PROP>

<PROP NAME="sku. activePrice">
<PVAL>24. 49</ PVAL>

</ PROP>

<PROP NAME="cl ot hi ng- sku. col or">
<PVAL>Br own</ PVAL>

</ PROP>

<PROP NAME="cl ot hi ng- sku. si ze" >
<PVAL>One Si ze</ PVAL>

<PROP NAME="record.id">
<PVAL>

cl ot hi ng- sku- xsku1013. . xpr od1003. nast er Cat al og. en__US. pl i st 3080003__pl i st 3080002
</ PVAL>

</ PROP>

<PROP NAME="r ecord. source">
<PVAL>

Pr oduct Cat al og

</ PVAL>

</ PROP>

<PROP NAME="record.type">
<PVAL>

cl ot hi ng-sku

</ PVAL>

</ PROP>

</ RECORD>

CategoryToDimensionOutputConfig Component

The Cat egor yToDi mensi onQut put Conf i g component specifies how to create Guided Search dimension value
records that represent categories from the product catalog. This category dimension makes it possible to use
Guided Search to navigate the categories of a catalog.

Cat egor yToDi mensi onQut put Conf i g creates dimension values using a special representation of the category
hierarchy that is generated by the/ at g/ cormer ce/ endeca/ i ndex/ Cat egor yTr eeSer vi ce component, as
described in the CategoryTreeService Class (page 20) section.

The following example shows an XML representation of a portion of a category dimension value record
generated by Cat egor yToDi nensi onQut put Confi g:

<RECORD>

3 Overview of Indexing 19

<PROP NAME="di nval . spec" >

<PVAL>cat 10016. cat 10014. cat DeskLanps</ PVAL>

</ PROP>
<PROP NAME="Endeca. | d">

<PVAL>pr oduct . cat egory: cat 10016. cat 10014. cat DeskLanps</ PVAL>

</ PROP>

<PROP NAME="cat egory. r oot Cat al ogl d" >
<PVAL>mast er Cat al og</ PVAL>

</ PROP>

<PROP NAME="cat egory. ancest or Cat al ogl ds" >
<PVAL>mast er Cat al og</ PVAL>

</ PROP>

<PROP NAME="di nval . di mensi on_nane" >
<PVAL>pr oduct . cat egor y</ PVAL>

</ PROP>

<PROP NAME="di nval . parent _spec">
<PVAL>cat 10016. cat 10014</ PVAL>

</ PROP>

<PROP NAME="di nval . di spl ay_order">
<PVAL>2</ PVAL>

</ PROP>

<PROP NAME="cat egory. repositoryld">
<PVAL>cat DeskLanps</ PVAL>

</ PROP>

<PROP NAME="cat egory. cat al ogs. repositoryld">

<PVAL>mast er Cat al og, honeSt or eCat al og</ PVAL>

</ PROP>
<PROP NAME="di nval . di spl ay_nane" >
<PVAL>Desk Lanps</ PVAL>
</ PROP>
</ RECORD>

CategoryTreeService Class

The Guided Search integration uses the category hierarchy in the product catalog to construct a category
dimension in Guided Search. In some cases, the hierarchy cannot be translated directly, because the Core
Commerce catalog hierarchy supports categories with multiple parent categories, while Guided Search requires

each dimension value to have a single parent.

For example, suppose you have the following category structure in your product catalog:

20

3 Overview of Indexing

Shos Clothd ng

4 4
Men's Clothing Women's Clathing
Y y ¥ L
Wamen's Shoas Mlan's Shoas Men's Pants

To deal with this structure, the Guided Search integration creates two different records for the Men’s Shoes
dimension value, one for each path to this category in the catalog hierarchy. These paths are computed by the
at g. conmer ce. endeca. i ndex. di mensi on. Cat egor yTr eeSer vi ce class.

The Guided Search integration includes a component of this class, / at g/ comer ce/ endeca/ i ndex/

Cat egor yTr eeSer vi ce. This component, which is run in the first phase of the indexing process, creates data
structures in memory that represent all possible paths to each category in the product catalog. A category can
have multiple parents, and those parents and their ancestors can each have multiple parents, so there can be
any number of unique paths to an individual category.

The Cat egor yToDi mensi onQut put Conf i g component then uses the / at g/ comer ce/ endeca/ i ndex/

Cat egor yPat hVar i ant Producer component to create multiple records for each category, one for each path
computed by Cat egor yTr eeSer vi ce. For each path, the corresponding record uses the pathname as the value
of its di nval . spec property; this makes it possible to differentiate records that represent different paths to the
same category.

In the example above, two records are created for the Men’s Shoes category. The di nval . spec entry in one of
the records might be:

<PROP NAME="di nval . spec" >
<PVAL>cat d ot hi ng. cat MensC ot hi ng. cat MensShoes</ PVAL>
</ PROP>

The di mval . spec entry in the other record for the category might be:

<PROP NAME="di nval . spec">
<PVAL>cat Shoes. cat MensShoes</ PVAL>
</ PROP>

Note that the period (.) is used as a separator in the property values rather the slash (/) . This is done so the
value can be passed to Guided Search through a URL query parameter when issuing a search query, without
requiring any characters to be escaped.

3 Overview of Indexing 21

RepositoryTypeHierarchyExporter Class

The at g. endeca. i ndex. di nensi on. Reposi t or yTypeHi er ar chyExport er class creates Guided Search
dimension value records from the hierarchy of repository item types, and submits those records to the

CAS dimension values record store. This dimension is not typically displayed on a site, but can be used in
determining which other dimensions to display. For example, Commerce Reference Store has a f ur ni t ur e-
sku subtype that includes a woodFi ni sh property that can be used as a Guided Search dimension. A site can
include logic to detect whether the items returned from a search are of type f ur ni t ur e- sku, and display the
woodFi ni sh dimension if they are.

The Guided Search integration includes a component of class Reposi t or yTypeHi er ar chyExporter,

/ at g/ commer ce/ endeca/ i ndex/ Reposi t or yTypeDi mensi onExport er, that is configured to work

with the Pr oduct Cat al ogQut put Conf i g component. The Reposi t or yTypeDi mensi onExport er
component outputs dimension value records for all of the repository item types referred to in the

Pr oduct Cat al ogQut put Conf i g definition file, as well as the ancestors and descendants of those item types.
Reposi t or yTypeDi mensi onExport er does not create records for any item types that are not part of the
hierarchy mentioned in the definition file.

There are additional components of class Reposi t or yTypeHi er ar chyExpor t er that create dimension
value records representing the item types in the content management repository. See the Indexing the Content
Management Repository (page 73) chapter for more information.

The following example shows a record produced by the Reposi t or yTypeDi nensi onExport er component for
the pr oduct item type:

<RECORD>
<PROP NAME="di nval . di mensi on_nane" >
<PVAL>r ecord. t ype</ PVAL>
</ PROP>
<PROP NAME="di nval . di spl ay_nane" >
<PVAL>Pr oduct </ PVAL>
</ PROP>
<PROP NAME="Endeca. | d">
<PVAL>r ecord. t ype: product </ PVAL>
</ PROP>
<PROP NAME="di nval . spec">
<PVAL>pr oduct </ PVAL>
</ PROP>
<PROP NAME="di nval . parent _spec">
<PVAL>/ </ PVAL>
</ PROP>
</ RECORD>

SchemaExporter Class

The at g. endeca. i ndex. schema. SchenaExport er class is responsible for generating schema configuration
and submitting it to the Endeca Configuration Repository. (See Submitting the Records (page 24) for
information about this process.) The / at g/ comrmer ce/ endeca/ i ndex/ SchenaExpor t er component of this
class examines the Pr oduct Cat al ogQut put Conf i g definition file and generates a schema record for each
specified property of a repository item type. The schema record indicates whether the property should be
treated as a property or a dimension by Guided Search, whether it should be searchable, and the data type of
the property or dimension.

Note, however, that these schema records are not in the format required by the CAS-based deployment
template. Therefore, the / at g/ endeca/ i ndex/ Conf i gl nport Docunent Subni t t er component converts the

22

3 Overview of Indexing

schema data to Configuration Import API objects before submitting it to the Endeca Configuration Repository.
See the Document Submitter Components (page 37) section for more information.

Indexing Multiple Languages

This section summarizes considerations that are specific to indexing data in multiple languages.

Data Records

Schema

If you are indexing data in multiple languages, separate data records must be generated for each language. For
example, if a product has separate data for French and English (such as descriptions and color names), a French
record and an English record must be generated. This is true regardless of whether you have a separate EAC
application for each language or multiple languages in the same EAC application.

To generate the data records, the Pr oduct Cat al ogQut put Conf i g component uses the

Local eVari ant Producer, which ensures that separate records are created for each of the locales listed

inthe/ at g/ endecal Appl i cati onConfi gur ati on component’s | ocal es property. (See Using Variant
Producers (page 63) for more information about Local eVari ant Pr oducer .) If multiple languages are

indexed by the same application, each data record includes a pr oduct . | anguage property whose value
identifies the language of the record. The language name is given in its own language. For example, the value for
the German language is Deutsch.

If there is a separate application for each language, a separate schema is generated for each application. If there
are multiple languages in an application, a single schema is generated based on the first locale listed in the /
at g/ endeca/ Appl i cati onConfi gurati on component’s| ocal es property.

Dimension Values

If you are indexing data in multiple languages, separate dimension value records must be generated for each
language. This is true regardless of whether you have a separate EAC application for each language or multiple
languages in the same EAC application.

To generate category dimension value records, the Cat egor yToDi mensi onQut put Conf i g component uses
the Local eVari ant Pr oducer to create separate records for each of the locales listed in the / at g/ endeca/
Appl i cati onConfi gur ati on component’s| ocal es property. The Reposi t or yTypeDi mensi onExport er
component also generates separate records for each language.

If multiple languages are indexed in the same application, the records generated by the / at g/

comrer ce/ endeca/ i ndex/ Reposi t or yTypeDi nensi onExport er component contain additional
properties for the translated display names of the repository item types. These properties are named

di spl ayNane_| anguageCode, where | anguageCode is the two-letter language code associated with one of
the specified locales. For example:

<PROP NAME="di spl ayNanme_en" >
<PVAL>Pr oduct </ PVAL>

</ PROP>

<PROP NAME="di spl ayName_de" >
<PVAL>Pr odukt </ PVAL>

</ PROP>

<PROP NAME="di spl ayNanme_es" >

3 Overview of Indexing 23

<PVAL>Pr oduct o</ PVAL>
</ PROP>

Note that the property names shown in the example above are appropriate for use with CAS-based deployment
templates, and assume that the name changes specified in pr oper t yNaneRepl acenent Map property of the

Di mensi onDocunent Subni t t er component have been applied. See RecordStoreDocumentSubmitter (page
37)for more information.

In addition, if you set the mul t i LanguageSynonyns property of the Reposi t or yTypeDi nensi onExport er
component to t r ue, then additional Guided Search record properties are generated to indicate that all
translations of the same repository type are synonyms for searching. For example:

<PROP NAME="di nval . sear ch_synonyni >
<PVAL>Pr oduct </ PVAL>
<PVAL>Pr odukt </ PVAL>
<PVAL>Pr oduct o</ PVAL>

</ PROP>

Submitting the Records

Once the records have been generated, they are submitted to Guided Search by components of classes that
implement the at g. r eposi t ory. sear ch. i ndexi ng. Document Subni t t er interface. The Guided Search
integration includes these Docunment Submi t t er components:

« /at g/ endeca/ i ndex/ Dat aDocument Subni t t er — This component of class
at g. endeca. i ndex. Recor dSt or eDocunent Subni t t er submits records to the data record store (for
example, ATGen- dat a).

+ /at g/ endecal/ i ndex/ Di mensi onDocument Subni t t er -- This component of class
at g. endeca. i ndex. Recor dSt or eDocunent Subni t t er submits records to the dimension values record
store (for example, ATGen- di nval s).

« [at g/ endeca/ i ndex/ Confi gl nport Docunment Subni t t er -- This component of class
at g. endeca. i ndex. Confi gl mpor t Document Subni t t er converts the schema records to Configuration
Import APl objects and submits them to the Endeca Configuration Repository.

The Endecal ndexi ngQut put Confi g, Reposi t or yTypeHi er ar chyExport er,and SchemaExport er classes
each have a docunent Subni tt er property that is used to specify the document submitter component to

use to submit records. The following table shows default values of the document Subni t t er property of each
component of these classes:

Component Record Submitter

Pr oduct Cat al ogQut put Confi g Dat aDocunent Submi tter

Cat egor yToDi nensi onCut put Confi g Di mensi onDocunent Submitter
Reposi t or yTypeDi nensi onExporter Di nensi onDocunent Submi tter

24 3 Overview of Indexing

Component Record Submitter

SchemaExport er Confi gl nport Docunent Submitter

Managing the Process

The at g. endeca. i ndex. admi n. Si npl el ndexi ngAdmni n class provides a mechanism for managing

the process of generating records, submitting them to Guided Search, and invoking indexing. The

Guided Search integration includes a component of this class, / at g/ conmer ce/ endeca/ i ndex/

Pr oduct Cat al ogSi npl el ndexi ngAdni n, that is configured to manage indexing of the product catalog.
The page for this component in the Component Browser of the Dynamo Server Admin presents a simple user
interface for controlling and monitoring the process:

Indexing Job Status

Phase Camponent Records Sent Records Failed Status
Pralndexng
latgfendecaindexicommerceCategonTreeSenice PEMNDING
RrepositoryExport
latgiendecaindexicomment e/Schemabsportar 0 0 FENDIMNG
latgfendacaindexicommerce/Catagony TaDimensionOulpatiC onfig O a PEMDING
latgfendecalindexicommerceRepositonTypelsmensionExporier O 0 FPEMDING
latgfcommercefseanc hiProductCatalogOutpatConfig 0 0 FENDING

Endacalndexing
latgfendacaindex/commenceEndecaScnpiSemncs PENDING
Actions: | Basaling Index ” Pastinl Indlax |

After the records are generated and submitted to Guided Search, Pr oduct Cat al ogSi npl el ndexi ngAdmi n
calls the / at g/ conmer ce/ endeca/ i ndex/ EndecaScri pt Ser vi ce component (of class

at g. endeca. eaccl i ent. Scri pt | ndexabl e). This component is responsible for invoking EAC scripts that
trigger indexing.

The Ul provides buttons for initiating a Guided Search baseline index or a partial update. Note that even if you
click Partial Index, a baseline update may be triggered if the changes since the last baseline update necessitate
it. See EndecalndexingOutputConfig Components (page 28) for more information.

Viewing the Indexed Data

You can view the indexed data residing in your MDEX engines using Guided Search'’s JSP Reference
Implementation. To use this reference implementation, do the following:

1. In a browser, navigateto ht t p: / / host : port/ endeca_j spr ef , where host : port refers to the name and
port of the server hosting the Guided Search Tools and Frameworks installation, for example:

http://1 ocal host: 8006/ endeca_j spr ef

2. Click the ENDECA-JSP Reference Implementation link.

3 Overview of Indexing 25

3. Enter an MDEX host and port, and then click Go.

26

3 Overview of Indexing

4 Configuring the Indexing
Components

This chapter provides detailed information about the Nucleus components in the Guided Search integration
that are involved in indexing product catalog data, the functions these components perform, how they are
configured, and how you can modify them to alter various aspects of indexing. It includes the following sections:

IndexingApplicationConfiguration Component (page 27)
EndecalndexingOutputConfig Components (page 28)
Data Loader Components (page 33)
CategoryTreeService (page 34)
RepositoryTypeDimensionExporter (page 35)
SchemaExporter (page 36)

Document Submitter Components (page 37)
EndecaScriptService (page 40)
ProductCatalogSimplelndexingAdmin (page 41)

ATG Content Administration Components (page 44)
Viewing Records in the Component Browser (page 47)

For information about the components for indexing data in the content management repository, such as articles
and media content items, see the Indexing the Content Management Repository (page 73) chapter.

IndexingApplicationConfiguration Component

The at g. endeca. i ndex. confi gur ati on. | ndexi ngAppl i cati onConfi gur ati on class provides a central
place for configuring various indexing settings. The Guided Search integration includes a component of this
class, / at g/ endeca/ i ndex/ | ndexi ngAppl i cati onConfi gurati on. This component is configured by default
with typical settings, but you can override these defaults when you use CIM to configure your Oracle Commerce
Platform environment.

4 Configuring the Indexing Components 27

CASHostName

The hostname of the machine running CAS. The default setting is:

CASHost Nare=| ocal host

CASPort

The port number for accessing CAS. The default setting is:

CASPor t =8500

eacHostName

The hostname of the EAC server. The default setting is:

eacHost =I ocal host

eacPort

The port number for accessing the EAC server. The default setting is:

eacPort =8888

routingObjectAdapter

A component of a class that implements the
at g. endeca. i ndex. confi gurati on. Cont ext Rout i ngObj ect Adapt er interface. The specific class must
reflect the routing strategy in use. See the Routing (page 9)chapter for more information.

applicationConfiguration

The component of class at g. endeca. confi gurati on. Appl i cati onConfi gurati on used to configure
global settings for the integration. The default setting is:

appl i cati onConfi gurati on=/at g/ endecal/ Appl i cati onConfi gurati on

EndecalndexingOutputConfig Components

The at g. endeca. i ndex. Endecal ndexi ngQut put Conf i g class has a number of properties that configure
various aspects of the record creation and submission process:

indexingApplicationConfiguration

The component of class at g. endeca. i ndex. confi gur ati on. | ndexi ngAppl i cati onConfi guration
used to configure indexing settings for the integration. For both the Pr oduct Cat al ogQut put Confi g and
Cat egor yToDi mensi onQut put Conf i g components, the default setting is:

28 4 Configuring the Indexing Components

i ndexi ngAppl i cati onConfi guration=\
/ at g/ endeca/ i ndex/ | ndexi ngAppl i cat i onConfi guration

definitionFile

The full Nucleus pathname of the XML indexing definition file that specifies the repository item
types and properties to include in the Guided Search records. For the / at g/ commer ce/ sear ch/
Pr oduct Cat al ogQut put Conf i g component, this property is set as follows:

definitionFile=/atg/comerce/ endecal i ndex/ product - sku- out put - confi g. xm

For/ at g/ commer ce/ endecal i ndex/ Cat egor yToDi mensi onQut put Confi g:

definitionFil e=/atg/comercel/ endecal/i ndex/ cat egory-di m out put - confi g. xm

See the Configuring EndecalndexingOutputConfig Definition Files (page 49) chapter for information about the
definition file’s elements and attributes that configure how GSA repository items are transformed into Guided
Search records.

repository

The full Nucleus pathname of the repository that the definition file applies to. For both the
Pr oduct Cat al ogQut put Confi g and Cat egor yToDi nensi onQut put Conf i g components, this property is set
to the product catalog repository:

reposi tory=/ at g/ conmer ce/ cat al og/ Pr oduct Cat al og

It is also possible to specify the repository in the indexing definition file using the r eposi t or y- pat h attribute
of the top-level i t emelement. If the repository is specified in the definition file and also set by the component’s
r eposi t ory property, the value set by the r eposi t or y property overrides the value set in the definition file.

Note that in an ATG Content Administration environment, the repository should not be set to a versioned
repository. Instead, it should be set to the corresponding unversioned target repository. For example, an
Endecal ndexi ngQut put Conf i g component for a product catalog in an ATG Content Administration
environment could be set to:

repository=/ at g/ conmer ce/ cat al og/ Product Cat al og_pr oducti on

repositoryltemGroup

A component of a class that implements the at g. r eposi t ory. Reposi t oryl t en oup interface. This
interface defines a logical grouping of repository items. Items that are not included in this logical grouping
are excluded from the index. For the Cat egor yToDi nensi onQut put Conf i g component, this property

is set by default to null (so no items are excluded). For the Pr oduct Cat al ogQut put Conf i g component,
reposi t oryl t enr oup property is set by default to:

reposi toryltenG oup=/ at g/ comrer ce/ sear ch/ | ndexedl t ensG oup

4 Configuring the Indexing Components 29

The I ndexedI t ems G oup component uses this targeting rule set to select only products that have an ancestor
catalog:

<rul eset >
<accept s>
<rul e op=i sNot Nul | >
<val ueof target="conputedCatal ogs">
</rul e>
</ accept s>
</rul eset >

This rule set ensures that the index does not include products that are not part of the catalog hierarchy.

It is also possible to specify a repository item group in the indexing definition file using the r eposi t or y-

i t em gr oup attribute of the top-level i t emelement. If a repository item group is specified in the definition file
and also by the component’s r eposi t or yl t enGr oup property, the value set by the r eposi t or yl t enGr oup
property overrides the value set in the definition file.

Note that the I ndexedl t enar oup component has a r eposi t or y property that specifies the repository that
the items are selected from. This value must match the repository that the Pr oduct Cat al ogQut put Confi g is
associated with.

For more information about targeting rule sets, see the Personalization Programming Guide.

documentSubmitter

The component (typically of class at g. endeca. i ndex. Recor dSt or eDocunment Subrmi t t er) to use to submit
records to the appropriate CAS record store. For the Pr oduct Cat al ogQut put Conf i g component, this property
is set as follows:

docunent Submi tt er =/ at g/ endeca/ i ndex/ Dat aDocumnent Submi tt er

For the Cat egor yToDi nensi onQut put Conf i g component:

docunent Submi tt er =/ at g/ endeca/ i ndex/ Di rensi onDocunent Submi tter

See Document Submitter Components (page 37) for more information.

forceToBaselineOnChange

Ift r ue, a baseline update is performed when a partial update is requested, if a value of a hierarchical
dimension has been changed. For Cat al ogToDi nensi onQut put Conf i g, this property is settotrue

by default, because the component generates category dimension values, which are hierarchical. For

Pr oduct Cat al ogQut put Conf i g, this property is set to f al se by default, because the component does not
generate hierarchical dimension values.

configRepositoryltemChangedProcessor

A component of a class that implements the

atg. repository. search. i ndexi ng. Confi gReposi t orylt enChangedPr ocessor interface.

For Cat al ogToDi nensi onQut put Conf i g, this property is set to/ at g/ comrer ce/ endeca/ i ndex/

Cat egor yReposi t or yl t enChangedPr ocessor . This component is responsible for preventing cat egor y
items from being added to the incremental item queue unnecessarily.

30

4 Configuring the Indexing Components

If the f or ceToBasel i neOnChange property ist r ue, a baseline update is triggered when a partial update

is requested, if the incremental item queue contains any cat egor y items. In some cases, the baseline
update is not really necessary, because the cat egor y item changes do not affect the category dimension
values (for example, changes to properties that are not included in the indexed records). In this situation,

Cat egor yReposi t oryl t enChangedPr ocessor prevents the changes from being added to the queue, so a
baseline update is not triggered.

bulkLoader

A Nucleus component of class at g. endeca. i ndex. Recor dSt or eBul kLoader | npl . This is typically set to /
at g/ sear ch/ r eposi t or y/ Bul kLoader . Any number of Endecal ndexi ngQut put Conf i g components can
use the same bulk loader.

See Data Loader Components (page 33) for more information.
enablelncrementalLoading

If t r ue, incremental loading is enabled.
incrementalLoader

A Nucleus component of class at g. endeca. i ndex. Recor dSt or el ncr enent al Loader I npl . This is typically
setto/ at g/ search/ reposi tory/ | ncrement al Loader . Any number of Endecal ndexi ngQut put Confi g
components can use the same incremental loader.

See Data Loader Components (page 33) for more information.
excludeditemsAncestorids

A list of the IDs of the items whose child items should not be indexed. For example, Commerce Reference Store
excludes products and SKUs that are not part of the standard catalog hierarchy (such as gift wrapping) by
setting the excl udedI t ems Ancest or | ds property of the Pr oduct Cat al ogQut put Conf i g component to:

excl udedl t ensAncest or | ds=\
NonNavi gabl ePr oduct s, homeSt or eNonNavi gabl ePr oduct s

Note that an item is excluded only if all of its ancestor items are specified. So to exclude a product that is several
levels deep in the catalog hierarchy, excl udedl t ensAncest or | ds must list all of the categories in the path

to the product you want to exclude. If there are multiple paths to an item, all of its ancestor categories in all of
those paths must be listed in excl udedl| t ensAncest or | ds, or the item will not be excluded. For example, if
all of a product’s ancestors in one path are excluded, but there is another path to this product and some of the
categories in that path are not excluded, the product will be indexed.

sitelDsTolndex

A list of site IDs of the sites to include in the index. The value of this property is used to automatically set the
value of the si t esTol ndex property, which is the actual property used to determine which sites to index. If

si t el DsTol ndex is explicitly set to a list of site IDs, si t esTol ndex is set to the sites that have those IDs. If the
value of si t el DsTol ndex is null (the default), si t esTol ndex is set to a list of all enabled sites. So it is only
necessary to set si t el DsTol ndex if you want to restrict indexing to only a subset of the enabled sites.

replaceWithTypePrefixes

A list of the property-name prefixes that should be replaced with the item type that the property
is associated with. In this list, a period (.) specifies that a type prefix should be added to properties

4 Configuring the Indexing Components 31

of the top-level item, which is pr oduct for Pr oduct Cat al ogQut put Confi g and cat egory for
Cat egor yToDi nensi onCut put Confi g.

For Pr oduct Cat al ogQut put Confi g, therepl aceWt hTypePr ef i xes property is set by default to:

repl aceWt hTypePrefi xes=., chi | dSKUs

This means, for example, that the br and property of the pr oduct item is given the name pr oduct . br and

in the output records, and the onSal e property of the sku item (which appears in the definition file as the

chi | dSKUs property of the pr oduct item) is given the name sku. onSal e. Properties that are specific to a sku
subtype are prefixed with the subtype name in the output records. For example, Commerce Reference Store
has af ur ni t ur e- sku subtype, so the woodFi ni sh property (which is specific to this subtype) is given the
output name f ur ni t ur e- sku. woodFi ni sh, while onSal e (which is common to all SKUs) is given the name
sku. onSal e.

Adding these prefixes ensures that there is no duplication of property or dimension names in Guided Search, in
case different repository item types (or records from other sources) have identically named properties.

For Cat egor yToDi mensi onQut put Confi g, ther epl aceW t hTypePr ef i xes property is set to:

repl aceWt hTypePrefi xes=.

This means, for example, that the ancest or Cat al ogl ds property of the cat egor y item is given the name
cat egory. ancest or Cat al ogl ds in the output records.

If repl aceW t hTypePr ef i xes is null, the behavior is the same as if the property is set to a period; the type
prefix is added to the names of the output properties of the top-level item. Note, however, that in this case the
behavior is due to a default in the Java class, rather than the Nucleus configuration. So if you add a setting like
the following in a properties file, the class default will no longer be in effect, which means the type prefix will not
be added to properties of the top-level item:

repl aceWt hTypePref i xes+=chi | dSKUs

To get the desired results, you should instead use a setting like this:

repl aceWt hTypePrefixes=., chi | dSKUs

prefixReplacementMap

A mapping of property-name prefixes to their replacements. This mapping is applied after any type prefixes are
added by r epl aceW t hTypePr ef i xes.

For Pr oduct Cat al ogQut put Confi g, pr ef i xRepl acement Map is set by default to:

pr ef i xRepl acenent Map=\
product. ancest or Cat egori es=al | Ancestors

So, for example, the ancest or Cat egor i es. di spl ayNane property is renamed to
product . ancest or Cat egor i es. di spl ayNane by applying r epl aceW t hTypePr ef i xes, and then the result
is renamed to al | Ancest or s. di spl ayNane by applying pr ef i xRepl acenent Map.

32

4 Configuring the Indexing Components

For Cat egor yToDi mensi onQut put Confi g, pr ef i xRepl acenment Map is set to null by default, so no prefix
replacement is performed.

suffixReplacementMap

A mapping of property-name suffixes to their replacements. In addition to any mappings you specify in the
properties file, the following mappings are automatically included:

$reposi toryl d=reposi toryld,
$sitel d=siteld,

$url =url,

$baseUr | =baselr |

These mappings remove the dollar-sign ($) character from the names of special repository properties, because
this character is not valid in Guided Search property names.

The suf fi xRepl acenent Map property is set to null by default for both Pr oduct Cat al ogQut put Confi g and
Cat egor yToDi mensi onQut put Conf i g, which means only the automatic mappings are used. You can exclude
the automatic mappings by setting the addDef aul t Qut put NameRepl acenment s property to f al se.

Data Loader Components

The Endecal ndexi ngQut put Conf i g components specify how to generate records from items in the catalog
repository, but the generation itself is performed by data loader components. Depending on your environment,
data loading may be an operation that is performed occasionally (if the content rarely changes) or frequently

(if the content changes often). To be as flexible as possible, the Guided Search integration provides two
approaches to loading the data:

+ Bulk loading generates the complete set of records for the catalog. Bulk loading is performed by the
at g. endeca. i ndex. Recor dSt or eBul kLoader I npl class. The Guided Search integration includes a
component of this class, / at g/ sear ch/ r eposi t or y/ Bul kLoader .

+ Incremental loading generates only the records that have changed since the last load. The incremental
loader records which repository items have changed since the last incremental or bulk load. It deletes the
records that represent items that have been deleted, and creates records for any items that are new or have
been modified.

Incremental loading is performed by the at g. endeca. i ndex. Recor dSt or el ncr enent al Loader | npl
class. The Guided Search integration includes a component of this class, / at g/ sear ch/ r eposi t ory/
I ncrenent al Loader.

Bulk loading and incremental loading are not mutually exclusive. For some environments, only bulk loading will
be necessary, especially if content is updated only occasionally. For other environments, incremental loading
will be needed to keep the search content up to date, but even in that case, you should perform a bulk load
occasionally to ensure the integrity of the indexed data.

Note that Guided Search always does a baseline update after the Oracle Commerce Platform performs bulk
loading, and typically does a partial update after incremental loading. In some cases, however, a baseline update
may be triggered after incremental loading. For example, if incremental loading adds a new category dimension
value, a baseline update must be performed. See EndecalndexingOutputConfig Components (page 28) for
information about how to configure this.

4 Configuring the Indexing Components 33

The | ncr ement al Loader component uses an implementation of the Pr operti esChangedLi st ener interface
to monitor the repository for add, update, and delete events. It then analyzes these events to determine

which ones necessitate updating records, and creates a queue of the affected repository items. When a new
incremental update is triggered, the | ncr enent al Loader processes the items in the queue, generating and
loading a new record for each changed repository item.

Tuning Incremental Loading

The number of changed items accumulating in the queue can vary greatly, depending on how frequently
your data changes and how long you specify between incremental updates. Rather than processing all of
the changes at once, the Endecal ndexi ngQut put Conf i g component groups changes in batches called
generations.

The Endecal ndexi ngQut put Conf i g class has a max| ncr enent al Updat esPer Gener at i on property that
specifies the maximum number of changes that can be assigned to a generation. By default, this value is
1000, but you can change this value if necessary. Larger generations require more Oracle Commerce Platform
resources to process, but reduce the number of Guided Search jobs required (and hence the overhead
associated with starting up and completing these jobs). Smaller generations require fewer Oracle Commerce
Platform resources, but increase the number of Guided Search jobs.

CategoryTreeService

The following describes key properties of the
at g. conmer ce. endeca. i ndex. di mensi on. Cat egor yTr eeSer vi ce class and the default configuration of
the/ at g/ commer ce/ endeca/ i ndex/ Cat egor yTr eeSer vi ce component of this class:

indexingOutputConfig

The component of class at g. endeca. i ndex. Endecal ndexi ngQut put Conf i g whose definition file should be
used for generating schema records. By default, this property is set to:

i ndexi ngQut put Conf i g=/ at g/ commer ce/ sear ch/ Product Cat al ogQut put Confi g

catalogTools

The component of class at g. conmer ce. cat al og. cust om Cust onCat al ogTool s for accessing the catalog
repository. By default, this property is set to:

cat al ogTool s=/ at g/ commer ce/ cat al og/ Cat al ogTool s

excludeRootCategories

A boolean that specifies whether dimension values should be created for root categories. This property defaults
to f al se, meaning dimension values are created. Commerce Reference Store sets excl udeRoot Cat egor i es to
t r ue, because its root categories are not displayed and therefore should not have associated dimension values.

34 4 Configuring the Indexing Components

excludedltemsCategorylds

A list of IDs of categories that dimension values should not be created for, because their child products and
SKUs are excluded from indexing. If excl udedl! t ensCat egor y! ds is not set explicitly, it is automatically set to
the list of category IDs in the excl udedl t emsAncest or | ds property of the Pr oduct Cat al ogQut put Confi g
component.

Note that to prevent creation of a dimension value for a specific category, all of its ancestor and descendant
categories must be specified in excl uded! t ensCat egor y| ds. If there are multiple paths to a category,

a separate dimension value is created for the category for each path; if you exclude the dimension value
associated with one path (by listing all of the categories in that path), that does not prevent the creation of
dimension values for other paths.

excludedCategoryids

A list of IDs of categories that dimension values should not be created for (in addition to any categories excluded
by the values of excl udeRoot Cat egor i es and excl udedI t ensCat egor yl ds).

sitesForCatalogs

To create a representation of the category hierarchy in which each category dimension value has only one
parent, the Cat egor yTr eeSer vi ce class creates data structures in memory that represent all possible paths to
each category in the product catalog. In order to do this, it must be provided with a list of the catalogs to use for
computing paths.

The si t esFor Cat al ogsproperty specifies a list of sites, and Cat egor yTr eeSer vi ce uses the catalogs
associated with these sites for computing paths. The si t esFor Cat al ogs property cannot be set through a
properties file; by default, it is set automatically to the value of the si t esTol ndex property of the associated
Endecal ndexi ngQut put Confi g component. If si t esTol ndex is null, Cat egor yTr eeSer vi ce instead uses
ther oot Cat al ogsRQLSt ri ng property to determine the catalogs.

rootCatalogsRQLString

An RQL query that returns a list of catalogs. If si t esFor Cat al ogs is null, the catalogs returned from this query
are used. The query is set by default to:

r oot Cat al ogsRQ.Stri ng=\
directParent Catal ogs |'S NULL AND parent Categories IS NULL

If si t esFor Cat al ogs and r oot Cat al ogsRQLSt ri ng are both null, Cat egor yTr eeSer vi ce uses the
r oot Cat al ogl ds property to determine the catalogs.

rootCataloglds

An explicit list of catalog IDs of the catalogs to use. This list is used if si t esFor Cat al ogs and
r oot Cat al ogsRQLSt ri ng are both null. By default, r oot Cat al ogl ds is set to null.

RepositoryTypeDimensionExporter

This section describes key properties of the
at g. endeca. i ndex. di mensi on. Reposi t or yTypeHi er ar chyExpor t er class and the default configuration
of the/ at g/ cormer ce/ endeca/ i ndex/ Reposi t or yTypeDi mensi onExport er component of this class.

4 Configuring the Indexing Components 35

dimensionName

The name to give the dimension created from the hierarchy of repository item types. This property is set by
linking to the r ecor dTypeNamne property of the/ at g/ endeca/ Appl i cati onConfi gurati on component:

di nensi onNanme”=/ at g/ endeca/ Appl i cati onConfi guration. recordTypeNanme

If you want to change the value of the di mensi onName property, you should do so by changing the value of
Appl i cati onConfi guration. recor dTypeName to ensure that other properties that link to it are changed as
well.

indexingOutputConfig

The component of class at g. endeca. i ndex. Endecal ndexi ngQut put Conf i g whose definition file should be
used for generating dimension value records from the repository item-type hierarchy. Set by default to:

i ndexi ngQut put Confi g=/ at g/ conmer ce/ sear ch/ Pr oduct Cat al ogQut put Confi g

documentSubmitter

The component (typically of class at g. endeca. i ndex. Recor dSt or eDocunment Subrmi t t er) to use to submit
records to the CAS dimension values record store. (See Document Submitter Components (page 37) for more
information.) Set by default to:

docunent Submi tt er =/ at g/ endeca/ i ndex/ Di mensi onDocunent Submi tter

SchemaExporter

The following describes key properties of the at g. endeca. i ndex. schema. SchemaExport er class and the
default configuration of the / at g/ commer ce/ endeca/ i ndex/ SchemaExpor t er component of this class:

indexingOutputConfig

The component of class at g. endeca. i ndex. Endecal ndexi ngQut put Conf i g whose definition file should be
used for generating schema records. Set by default to:

i ndexi ngQut put Conf i g=/ at g/ commer ce/ sear ch/ Product Cat al ogQut put Confi g

documentSubmitter

The component (typically of class at g. endeca. i ndex. Conf i gl mport Docunent Subni tt er) to use to submit
schema data to the Endeca Configuration Repository. (See Document Submitter Components (page 37) for
more information.) Set by default to:

docunent Submi tt er =/ at g/ endeca/ i ndex/ Confi gl nport Docunent Submi tter

36 4 Configuring the Indexing Components

dimensionNameProviders

An array of components of classes that implement the
at g. endeca. i ndex. schema. Di mensi onNamePr ovi der interface. SchemaExport er uses these components
to create references from attribute names to dimension names.

By default, di nensi onNanePr ovi der s is set to:

di nensi onNanePr ovi der s+=Reposi t or yTypeDi nensi onExporter

Document Submitter Components

As described above, each component that generates records has a docunent Subni t t er

property that is set by default to a component of a class that implements the

atg. reposi tory. sear ch. i ndexi ng. Docunment Subni t t er interface. These components perform two main
functions:

+ Converting the output from the formats used by the older Forge-based deployment template to the formats
used by the CAS-based deployment template.

+ Submitting the data to Guided Search for indexing.
The Guided Search integration includes several Docunent Subni t t er components:

+ The/ at g/ endeca/ i ndex/ Dat aDocunent Subni tter and/ at g/
endeca/ i ndex/ Di mensi onDocunent Subnmi t t er components are of class
at g. endeca. i ndex. Recor dSt or eDocunment Subnmi t t er . This class submits records to CAS using the Record
Store API. The Di mensi onDocunent Subni tt er component is configured to rename the dimension value
properties in the submitted records to reflect the naming conventions used with CAS-based deployment
templates

+ The/ at g/ endeca/ i ndex/ Confi gl npor t Document Submi tt er component is of class
at g. endeca. i ndex. Confi gl npor t Docunent Subni t t er. This component converts schema records to
the format used by Endeca Configuration Repository and submits the schema configuration to it using the
Configuration Import API.

In addition, the Guided Search integration includes the
atg. repository. search.indexi ng. submitter. Fi |l eDocunment Subni tter class, which you can use to
submit records to files for debugging purposes.

This section discusses the various document submitter classes and components.

RecordStoreDocumentSubmitter
The following are key properties of the Recor dSt or eDocunent Subni tt er components.
indexingApplicationConfiguration

The component of class at g. endeca. i ndex. confi gurati on. | ndexi ngAppl i cati onConfi gurati on used
to configure indexing settings for the integration. The default setting is:

4 Configuring the Indexing Components 37

i ndexi ngAppl i cati onConfi gurati on=\
/ at g/ endeca/ i ndex/ | ndexi ngAppl i cat i onConfi guration

endecaDataStoreType

The type of the record store to submit to. This property is set to dat a for the Dat aDocunent Subni t t er
component, and di nval forthe Di mensi onDocunent Subni tt er component.

idPropertyName

The record property whose value is used as the unique identifier for the record. For the

Di mensi onDocunent Submi t t er component, this property is set to Endeca. i d. For the

Dat aDocunent Subni t t er component, this property is set tor ecor d. i d by linking to the r ecor dl dNanme
property of the / at g/ endeca/ Appl i cati onConfi gur ati on component:

i dPr opert yNane”=/ at g/ endeca/ Appl i cati onConfi guration. recordl dNane

If you want to change the value of Dat aDocunent Submi tt er. i dPropert yName, you should do so by
changing the value of Appl i cati onConfi gurati on. recor dl dNane to ensure that other properties that link
to it are changed as well.

propertyNameReplacementMap

By default, the / at g/ commer ce/ endecal i ndex/ Cat egor yToDi nensi onQut put Confi g and/ at g/

comrer ce/ endeca/ i ndex/ Reposi t or yTypeDi nensi onExport er components output dimension value
records whose property names reflect the older Forge-based deployment template rather than the CAS-based
template currently recommended. To support the naming conventions used with CAS-based deployment
templates, the pr oper t yNanmeRepl acenent Map property of the Di mensi onDocument Subni tt er component
is used to map the older-style names to the new ones. By default, this property is set as follows:

pr opert yNaneRepl acenent Map=\
di nval . qual i fi ed_spec=Endeca. | d, \
di nval . di nensi on_spec=di mval . di mensi on_naneg, \
di nval . prop. cat egory. ancest or Cat al ogl ds=cat egory. ancest or Cat al ogl ds, \
di mval . prop. cat egory. r oot Cat al ogl d=cat egory. r oot Cat al ogl d, \
di nval . prop. di spl ayNane_es=di spl ayNane_es, \
di mval . prop. di spl ayNane_en=di spl ayNane_en, \
di mval . prop. di spl ayNane_de=di spl ayNane_de, \
di nval . prop. cat egory. reposi toryl d=cat egory. repositoryld,\
di nval . prop. cat egory. cat al ogs. reposi toryl d=cat egory. cat al ogs. repositoryld,\
di nval . prop. category. sitel d=category.siteld

So, for example, when the Cat egor yToDi nensi onQut put Conf i g component outputs a
di mval . di nensi on_spec property in the records it generates, Di mensi onDocunent Submi t t er converts the
property name to di nval . di mensi on_nane before submitting the records.

The pr oper t yNameRepl acenent Map property of the Dat aDocunment Subni t t er component is null by default,
because the new naming conventions affect only the properties of dimension value records, not data records.

flushAfterEveryRecord

A boolean that specifies whether to flush the buffer used by the connection to CAS after each record is
processed. This property is set by default to f al se. Setting it to t r ue during debugging can be helpful for
determining which records are being rejected by CAS, because the errors will be isolated to specific records.

38

4 Configuring the Indexing Components

enabled

A boolean that specifies whether this component is enabled. This property is set by default to t r ue, but it
can be set to f al se to always report success without submitting records to CAS. (This is useful for debugging
purposes when a CAS instance is not available.)

Reducing Logging Messages

In order to write records to the CAS record stores, the at g. endeca. i ndex. Recor dSt or eDocunent Subni tt er
class imports classes from the Guided Search com endeca.itl.recordandcom endeca.itl.recordstore
packages. These classes make use of the Apache CXF framework.

Using the default CXF configuration results in a large number of informational logging
messages. The volume of the messages can result in problems, such as locking up of the terminal
window. Therefore, it is a good idea to reduce the number of logging messages by setting

the logging level of the or g. apache. cxf . i nt er cept or. Loggi ngl nl nt er cept or and

or g. apache. cxf . i nterceptor. Loggi ngQut | nt er cept or loggers to WARNI NG

The way to set these logging levels differs depending on your application server. See the documentation for
your application for information.

ConfigimportDocumentSubmitter

The following are key properties of the Conf i gl npor t Docunent Submi t t er component. Note that in order to
submit schema configuration to the Endeca Configuration Repository, Conf i gl npor t Docunent Subnmi t t er
must access the credential store for the Oracle Commerce Workbench to obtain login information. This
credential store is specified through properties of the / at g/ endeca/ Appl i cati onConfi gurati on
component. See Configuring the ApplicationConfiguration Component (page 4) for more information.

indexingApplicationConfiguration

The component of class at g. endeca. i ndex. confi gur ati on. I ndexi ngAppl i cati onConfi gurati on used
to configure indexing settings for the integration. The default setting is:

i ndexi ngAppl i cati onConfi gurati on=\
/ at g/ endecal i ndex/ | ndexi ngAppl i cati onConfi gurati on

workbenchlmportOwner

The import owner associated with the submitted schema configuration. (The import owner identifies the source
of the configuration.) This property is set by default to:

wor kbenchl npor t Omner =ATG

For more information about the import owner, see the Oracle Commerce Guided Search Administrator’s Guide.

FileDocumentSubmitter

To help optimize and debug your output, you can have the generated records sent to files rather than to the
Guided Search record stores. Doing this enables you to examine the output without triggering indexing, so you
can determine if you need to make changes to the configuration of the record-generating components.

4 Configuring the Indexing Components 39

To direct output to files, create a component of class

atg.repository. search.indexi ng. submitter. Fi | eDocunent Subni tter,and set
the docunent Subni t t er property of the record-generating components to point to the

Fi | eDocunment Submi tt er component. A separate file is created for each record generated.

Note that the output records reflect the naming conventions and data formats used with Forge-
based deployment templates, because the renaming and conversions done by the other document
submitters do not occur. Therefore, if you are using a CAS-based deployment template, the output
from Fi | eDocunent Subni t t er may not match the records actually submitted to Guided Search by
Di mensi onDocunent Submi tt er and Conf i gl nport Docunent Subnitter.

The location and names of the files are automatically determined based on the following properties of
Fi | eDocunment Submi tter:

baseDirectory

The pathname of the directory to write the files to.

filePrefix
The string to prepend to the name of each generated file. Default is the empty string.
fileSuffix
The string to append to the name of each generated file. Set this as follows:
fileSuffix= xm
nameByRepositoryld

If t r ue, each filename will be based on the repository ID of the item the file represents. If f al se (the default),
files are named 0. xm , 1. xn , etc.

overwriteExistingFiles

If t r ue, if the generated filename matches an existing file, the existing file will be overwritten by the new file. If
f al se (the default), the new file will be given a different name to avoid overwriting the existing file.

EndecaScriptService

The/ at g/ commer ce/ endeca/ i ndex/ EndecaScri pt Ser vi ce component (of class
at g. endeca. eaccl i ent. Scri pt | ndexabl e) is responsible for invoking EAC scripts that trigger indexing.

The following are key properties of this component.
EACScriptTimeout

The maximum amount of time (in milliseconds) to wait for an EAC script to complete execution before throwing
an exception. Set by default to 1800000 (1 hour). For large indexing jobs, you may need to increase this value to
ensure EndecaScr i pt Ser vi ce does not time out before indexing completes.

40 4 Configuring the Indexing Components

enabled

A boolean that specifies whether this component is enabled. This property is set by default to t r ue, but it can
be settof al se to always report success without invoking a script. (This is useful for debugging purposes when
an EAC instance is not available.)

indexingApplicationConfiguration

The component of class at g. endeca. i ndex. confi gurati on. | ndexi ngAppl i cati onConfi gurati on used
to configure indexing settings for the integration. The default setting is:

i ndexi ngAppl i cati onConfi gurati on=\
[at g/ endecal i ndex/ | ndexi ngAppl i cati onConfi gurati on

ProductCatalogSimpleindexingAdmin

The / at g/ conmer ce/ endeca/ i ndex/ Pr oduct Cat al ogSi npl el ndexi ngAdnmi n component (of class

at g. endeca. i ndex. admi n. Si npl el ndexi ngAdni n) manages the process of generating records, submitting
them to Guided Search, and invoking indexing. The page for this component in the Component Browser of the
Dynamo Server Admin presents a simple user interface for controlling and monitoring the process.

The Si npl el ndexi ngAdni n class defines indexing in terms of an indexing job, which is made of up indexing
phases, which in turn contain indexing tasks. Each indexing task is responsible for executing an individual

I ndexabl e component. Tasks within a phase may run in sequence or in parallel, but in either case all tasks in a
phase must complete before the next phase can begin.

By default, the Pr oduct Cat al ogSi npl el ndexi ngAdni n defines three phases:
1. Prelndexing -- Runs / at g/ commer ce/ endeca/ i ndex/ Cat egor yTr eeSer vi ce.
2. RepositoryExport -- Runs these components in parallel:

» [at g/ commrer ce/ endeca/ i ndex/ SchemaExpor t er

« [at g/ commer ce/ endecal i ndex/ Cat egor yToDi nensi onQut put Confi g

» [at g/ commer ce/ endeca/ i ndex/ Reposi t or yTypeDi nensi onExporter

» /at g/ comrer ce/ sear ch/ Product Cat al ogQut put Confi g

3. Endecalndexing -- Runs / at g/ conmer ce/ endeca/ i ndex/ EndecaScri pt Ser vi ce, which invokes Guided
Search indexing scripts.

Pr oduct Cat al ogSi npl el ndexi ngAdni n reports information about an indexing job, such as the start and
finish time of the job, the duration of each phase, the status of each task, and the number of records submitted.

You can invoke indexing jobs manually through the Pr oduct Cat al ogSi npl el ndexi ngAdmni n user interface.
In addition, the Si npl el ndexi ngAdni n class implements the at g. servi ce. schedul er. Schedul abl e
interface, so it is also possible to configure the Pr oduct Cat al ogSi npl el ndexi ngAdni n component to invoke
indexing jobs automatically on a specified schedule. (See the Platform Programming Guide for information about
the Schedul abl e interface and other Scheduler services.)

4 Configuring the Indexing Components 41

Key configuration properties of Pr oduct Cat al ogSi npl el ndexi ngAdni n include:
phaseToPrioritiesAndTasks

This property defines the phases and tasks of an indexing job, and the order in which the phases are executed. It
is a comma-separated list of phases, where the format of each phase definition is:

phaseNane=priority: | ndexabl el; | ndexabl e2; . .. ;| ndexabl eN

Phases are executed in priority order, with lower number priorities executed first.

By default, this is set to:

phaseToPrioriti esAndTasks=\

Pr el ndexi ng=5: Cat egor yTr eeSer vi ce, \

Reposi t or yExport =10:\
SchemaExporter;\
Cat egor yToDi nensi onQut put Confi g; \
Reposi t oryTypeDi mensi onExporter;\
/ at g/ conmer ce/ sear ch/ Pr oduct Cat al ogQut put Confi g, \
Endecal ndexi ng=15: EndecaScri pt Servi ce

runTasksWithinPhaselnParallel

A boolean that controls whether to run tasks within a phase in parallel. Set to t r ue by default. If set to f al se,
the tasks are executed in sequence, in the order specified in the phaseToPri ori ti esAndTasks property.
Setting r unTasksW t hi nPhasel nPar al | el tof al se can simplify debugging, because when tasks are run in
parallel, logging messages from multiple components may be interspersed, making them difficult to read.

enableScheduledindexing

A boolean that controls whether to invoke indexing automatically on a specified schedule. Set to f al se by
default.

baselineSchedule

A String that specifies the schedule for performing baseline updates. Set to null by default. If you set

enabl eSchedul edl ndexi ng tot r ue, set basel i neSchedul e to a String that conforms to one of the
formats accepted by classes implementing the at g. ser vi ce. schedul er. Schedul e interface, such as
at g. servi ce. schedul er. Cal endar Schedul e or at g. servi ce. schedul er. Peri odi cSchedul e. For
example, to schedule a baseline update to run every Sunday at 11:30 pm:

basel i neSchedul e=cal endar * * 7 * 23 30

partialSchedule

A String that specifies the schedule for performing partial updates. The format for the String is the same as the
format used for basel i neSchedul e. Set to null by default.

retryInMs

The amount of time (in milliseconds) to wait before retrying a scheduled indexing job if the first attempt
to execute it fails. Set by default to -1, which means no retry. If you change this value, you should set it to a

42 4 Configuring the Indexing Components

relatively short amount of time to ensure that the indexing job completes before the next scheduled job begins.
If Pr oduct Cat al ogSi npl el ndexi ngAdni n estimates that the retried job will not complete before the next
scheduled job, it skips the retry.

jobQueue

Specifies the component that manages queueing of index jobs. Set by default to / at g/ endeca/ i ndex/
I nMenor yJobQueue. See Queueing Indexing Jobs (page 43) for more information.

indexingMessageSource

A component of class at g. endeca. i ndex. event s. | ndexi ngMessageSour ce that sends a JMS message
when an indexing job completes. By default, this property is null, but you can set it to the / at g/ endeca/

i ndex/ event s/ | ndexi ngMessageSour ce component that is included with the Oracle Commerce Platform.
This message source is preconfigured in Patch Bay.

Note, however, that there is no message sink preconfigured to listen for events sent by

I ndexi ngMessageSour ce. The Oracle Commerce Platform does provide an abstract class,

at g. endeca. i ndex. event s. | ndexi ngMessagesSi nk, that you can extend to listen for indexing events. You
will also need to create a component from the class you create and configure the message sink in Patch Bay.

For more information about JMS and Patch Bay, see the Oracle Commerce Platform Message System chapter in the
Platform Programming Guide.

Queueing Indexing Jobs

In certain cases, an indexing job cannot be executed immediately when it is invoked:
« If thereis currently another indexing job running
+ If an ATG Content Administration deployment is in progress

To handle these cases, Pr oduct Cat al ogSi npl el ndexi ngAdni n invokes the/ at g/

endeca/ i ndex/ | nMenor yJobQueue component. This component, which is of class

at g. endeca. i ndex. admi n. | nMenor yJobQueue, implements a memory-based indexing job queue that
manages these jobs on a first-in, first-out basis.

In addition, the queue handles the case where an indexing job is in progress when an ATG Content
Administration deployment is started. In this situation, the job in progress is stopped, moved to the top of the
queue (ahead of any other pending jobs), and restarted when the deployment is complete.

Queued jobs are listed on the Pr oduct Cat al ogSi npl el ndexi ngAdni n page in the Component Browser of
the Dynamo Server Admin. In the following example, an indexing job has been stopped due to an ATG Content
Administration deployment, and moved to the queue to be restarted once the deployment completes:

4 Configuring the Indexing Components 43

Indexing Job Status

Started. Jul 11, 2012 11:530:30 AM

Phase Component Records Sent Records Falled Status
Prelndesng (Duration: 000000}
fatghendad &indadcomimertaliC ateqon TreaSanice COMPLETE [Succesdad)
RapositoryExport (Started. b 11, 2012 1150050 AM)
{atgfendecaindadcommerca/SchemaExporar 192 0 COMPLETE (Succeaded)
fatglendecaindagcommerncalC ategonTolDimensionCutputCionfig 3 0 CAMNCELED
fatafendacaindadicommercaRapasibony TypeDimensionExporter 39 0 COMPLETE (Succeadad)
fataicomrsrdelseanc P roductic atalog OutputiC onfig ul (] CANCELIMNG
Endacaindaxng
fatgfendacaindadcommerceEndacascrptSanice CANCELED

.ﬂ.l:til:lns:| Cancel Ftfriesh
Indexlng Job Queue Status

L Owner Baseline Action
1 fatgfendecaindexicommenc eProductCatalogSimpleindedngAdmin trus

= Auto Refresh

Requasting update in 1 seconds

ATG Content Administration Components

If your environment includes ATG Content Administration, be sure to include the

DCS. Endeca. | ndex. Ver si oned module when you assemble the EAR file for your ATG Content Administration
server. This module enables indexing jobs to be triggered automatically after a deployment, ensuring that
changes deployed from ATG Content Administration are reflected in the index as quickly as possible. A full
deployment triggers a baseline update, and an incremental deployment triggers a partial update.

Indexing can be configured to trigger either locally (on the ATG Content Administration server itself) or
remotely (on the staging or production server). Note that even when indexing is executed on the ATG Content
Administration server, the catalog repository that is indexed is the unversioned deployment target (/ at g/
comer ce/ cat al og/ Product Cat al og_pr oduct i on), not the versioned repository.

The Guided Search integration includes the / at g/ sear ch/ r eposi t or y/ I ndexi ngDepl oynent Li st ener
component, which is of class at g. epub. sear ch. i ndexi ng. | ndexi ngDepl oynent Li st ener . This
component listens for deployment events and, depending on the repositories involved, triggers one or more
indexing jobs.

The | ndexi ngDepl oyment Li st ener component has ar enot eSynchr oni zat i onl nvoker Ser vi ce

property that is set by default to/ at g/ sear ch/ Synchr oni zat i onl nvoker.The Synchr oni zat i onl nvoker
component, which is of class at g. sear ch. cor e. Renot eSynchr oni zat i onl nvoker Ser vi ce, controls
whether indexing is invoked on the local (ATG Content Administration) server or on a remote system (such as the
production server).

Specifying the Deployment Target

After you set your ATG Content Administration deployment topology and perform site initialization, configure
the components of class at g. endeca. i ndex. Endecal ndexi ngQut put Conf i g on the ATG Content

44 4 Configuring the Indexing Components

Administration server with the name of the deployment target. You typically set the t ar get Nane property of
each Endecal ndexi ngQut put Confi g component to Producti on:

t ar get Nane=Pr oducti on

After setting the t ar get Name properties, restart the Content Administration server so these settings take effect.
When you restart, the unver si onedReposi t or yPat h and ver si onedReposi t or yPat h properties of each
Endecal ndexi ngQut put Conf i g component are automatically set, based on the deployment topology. These
settings are needed in order for incremental loading to work properly.

Enabling Local Indexing

For local indexing (the default configuration), the Synchr oni zat i onl nvoker component
invokes the / at g/ endeca/ i ndex/ Local Synchr oni zat i onl nvoker component on the
ATG Content Administration server to trigger the indexing job. This component, which is

of class at g. endeca. i ndex. Local Synchr oni zat i onl nvoker, is specified through the

I ocal Synchroni zati onl nvoker property of the Synchr oni zat i onl nvoker component:

| ocal Synchroni zati onl nvoker =/ at g/ endeca/ i ndex/ Local Synchr oni zat i onl nvoker

The following diagram illustrates the configuration for local indexing:

DeploymentServer

DeploymentListener

Synchronizationlnvoker

LocalSynchronizationlnvoker

ProductCatalog
SimplelndexingAdmin

ProductCatalog
_production

Enabling Remote Indexing

To enable remote indexing, modify the configuration of the Synchr oni zat i onl nvoker component on the ATG
Content Administration system so that it points to a Synchr oni zat i onl nvoker component on the remote
system, and configure the remote Synchr oni zat i onl nvoker to pointto a Local Synchroni zat i onl nvoker
on the remote system:

4 Configuring the Indexing Components 45

+ On the ATG Content Administration system, set the Synchr oni zat i onl nvoker . host property
to the host name of the remote system, and set the Synchr oni zat i onl nvoker . port property
to the RMI port number to use for communication between systems. It is also a good idea to set
the Synchr oni zat i onl nvoker. | ocal Synchr oni zat i onl nvoker property on the ATG Content
Administration system to null, to ensure local indexing is not triggered.

+ On the remote system, ensure that the Synchr oni zat i onl nvoker . | ocal Synchr oni zat i onl nvoker
property is setto/ at g/ endeca/ i ndex/ Local Synchr oni zat i onl nvoker.

The following diagram illustrates the configuration for remote indexing:

DeploymentServer

DeploymentListener

Remote

SR T Synchronizationlnvoker

LocalSynchronizationInvoker

ProductCatalog
SimplelndexingAdmin

ProductCatalog

production ProductCatalog

Triggering Indexing on Deployment
The following steps describe how indexing is triggered when a deployment occurs:
1. The |l ndexi ngDepl oynent Li st ener component detects the event.
2. Thel ndexi ngDepl oynent Li st ener examines the event to see the list of repositories being deployed.

3. The | ndexi ngDepl oyment Li st ener compiles a list of the Endecal ndexi ngQut put Conf i g components
that are associated with any of those repositories.

4, The I ndexi ngDepl oyment Li st ener invokes the Local Synchr oni zat i onl nvoker component.

5. The Local Synchroni zat i onl nvoker looks at the list of Endecal ndexi ngQut put Conf i g components
and compiles a list of Si npl el ndexi ngAdni n components that are associated with any of the
Endecal ndexi ngQut put Conf i g components.

6. The Local Synchroni zat i onl nvoker triggers an indexing job on each Si npl el ndexi ngAdmi n
component in the list.

Note that the lists of Endecal ndexi ngQut put Conf i g and Si npl el ndexi ngAdni n components are not
configured explicitly. Instead, the Si npl el ndexi ngAdni n components are automatically registered with the

46 4 Configuring the Indexing Components

Local Synchroni zat i onl nvoker, and the Endecal ndexi ngQut put Conf i g components are automatically
registered with the Local Synchr oni zat i onl nvoker and the | ndexi ngDepl oynent Li st ener.

Viewing Records in the Component Browser

For debugging purposes, you can use the Component Browser of the Dynamo Server Admin to view records
without submitting them to Guided Search. To do this, access the page for a component that generates records
and follow the instructions below.

Note that the records displayed reflect the naming conventions and data formats used with Forge-based
deployment templates, because the renaming and conversions done by Di mensi onDocument Submi tt er

and Conf i gl mpor t Docunent Subni t t er do not occur. Therefore, if you are using a CAS-

based deployment template, the displayed records for Cat egor yToDi mensi onQut put Confi g,

Reposi t or yTypeDi nensi onExport er, and SchemaExpor t er may not match the records actually submitted
to Guided Search.

ProductCatalogOutputConfig or CategoryToDimensionOutputConfig

The pages for the Pr oduct Cat al ogQut put Conf i g and Cat egor yToDi mensi onQut put Conf i g components
include a Test Document Generation section that you can use to view the output for a single repository item:

Test Document Generation

product D Generale |

Show Indexing Output Properties

Fill in the repository ID of a pr oduct item (for the Pr oduct Cat al ogQut put Conf i g component) or a cat egory
item (for the Cat egor yToDi mensi onQut put Conf i g component), and click Generate. The page will display the
output records.

Click the Show Indexing Output Properties link to see descriptions of how the GSA repository-item properties
are renamed in the Guided Search records, based on the values of various Endecal ndexi ngQut put Confi g
properties. (See the EndecalndexingOutputConfig Components (page 28) section for information about
these properties.)

RepositoryTypeDimensionExporter or SchemaExporter

The pages for the Reposi t or yTypeDi mensi onExpor t er and SchenaExport er components include a Show
XML Output link. Each of these components produces a single output for the entire catalog. Click the link to view
the output from the component.

4 Configuring the Indexing Components 47

48

4 Configuring the Indexing Components

5 Configuring
EndecalndexingOutputConfig
Definition Files

This chapter describes various elements and attributes of Endecal ndexi ngQut put Conf i g XML definition files
that you can use to control the content of the output records created from the product catalog. It includes the
following sections:

Definition File Format (page 49)
Specifying Guided Search Schema Attributes (page 51)

Specifying Properties for Indexing (page 52)

Definition File Format

An Endecal ndexi ngQut put Conf i g indexing definition file begins with a top-level i t emelement that specifies
the item descriptor to create records from, and then lists the properties of that item type to include. The
properties appear as pr oper t y elements within a pr oper t i es element.

The top-level i t emelement in the definition file can contain child i t emelements for properties that refer to
other repository items (or arrays, Collections, or Maps of repository items). Those child i t emelements in turn can
contain property and it emelements themselves.

The following example shows a simple definition file for indexing a product catalog repository:

<itemitemdescriptor-nanme="product" is-docunment="true">

<properties>
<property nanme="creati onDate" type="date"/>
<property nane="brand" is-di nension="true" type="string"

text - searchabl e="true"/>

<property nane="description" text-searchable="true"/>
<property nanme="|ongDescri ption" text-searchable="true"/>
<property nanme="di spl ayNane" text-searchabl e="true"/>

</ properties>

<itemis-multi="true" property-nanme="chil dSKUs" >
<properties>

5 Configuring EndecalndexingOutputConfig Definition Files 49

<property nanme="quantity" type="integer"/>
<property nanme="description" text-searchable="true"/>
<property nane="di spl ayNane" text-searchabl e="true"/>
<property nane="col or" is-dinension="true" type="string"
t ext - sear chabl e="true"/>
</ properties>

<itemis-multi="true" property-nanme="parentCategories"
par ent - property="chi | dProduct s">
<properties>
<property nanme="description" text-searchable="true"/>
<property nane="| ongDescri pti on" text-searchable="true"/>
<property nanme="di spl ayNane" text-searchabl e="true"/>
</ properties>
<litemr
</itenr

Note that in this example, the i s- document attribute of the top-level i t emelement is set to t r ue. This attribute
specifies that a record should be generated for each item of that type (in this case, each pr oduct item). This
means that each record indexed by Guided Search corresponds to a product, so that when a user searches

the catalog, each individual result returned represents a product. The definition file specifies that each output
record should include information about the product’s parent categories and child SKUs (as well as the product
itself), so that users can search category or SKU properties in addition to product properties.

If, instead, you want to generate a separate record per sku item, you seti s- docunent tot r ue for the
chi | dSKUs i t emelement and to f al se for the pr oduct i t emelement. In that case, the product properties
(such as br and in the example above) are repeated in each record.

When you configure the Guided Search integration in CIM, you select whether to index by product or SKU.
Your selection determines whether certain application modules are included in your EAR files. These modules
configure the i s- document attributes and other related settings appropriately for the option you select. See
Oracle Commerce Platform Modules (page 7) for information about these modules.

Automatically Included Properties

In addition to the properties you specify in the definition file, records generated by the Oracle Commerce
Platform also automatically include a few special properties that identify the document-level repository items
represented in the records. These properties initially include a dollar-sign ($) character in their names, but are
renamed for inclusion in the submitted records, because this character is not valid in Guided Search property
names. These renamed output properties include the following:

« record. i d-Output name of the $docl d property, whose value is used to uniquely identify a
record. The output name is specified through the r ecor dI dName property of the / at g/ endeca/
Appl i cati onConfi gurati on component.

+ record. sour ce - Output name of the $r eposi t ory. r eposi t or yNane property, whose value identifies the
name of the source repository (for example, Pr oduct Cat al og).

« record. type - Output name of the $i t enDescri ptor. i t enDescri pt or Nane property, whose value
identifies the repository item type used to generate the record. This property is included for the document-
level item type and any subtypes of that item type. (For example, in Oracle Commerce Reference Store,
recor d. t ype values appear for the sku item type and the cl ot hi ng- sku and f ur ni t ur e- sku subtypes.)

+ itemtype.sitel d-Outputnameforitemtype. $sit el d properties, which contain repository IDs for
the sites the items are associated with. See Including siteld Properties (page 56) for more information.

50

5 Configuring EndecalndexingOutputConfig Definition Files

« itemtype.url anditemtype. baseUr| —Output namesforitemtype. $url anditemtype.
$baseUr | properties, which contain the URLs for the repository items the records represent. The difference
betweenanitemtype. url property and the correspondingit em t ype. baseUr| property (such as
product. url and product . baseUr|)isthattheurl propertyincludes query parameters and the baseUr |
property does not. This means that if a Var i ant Pr oducer is used to generate multiple records from the same
repository item, pr oduct . baseUr | will be the same for each record, but the pr oduct . ur|l query parameters
will differ between records, making it possible to distinguish each record from the others.

If you want to include any of these properties for item types other than the document-level one, you can

add them through the definition file. For example, if you enable SKU-based indexing by including the

DCS. Endeca. | ndex. SKUI ndexi ng module, some of these properties are output for products as well as SKUs,
because they are explicitly declared in the Pr oduct Cat al ogQut put Conf i g definition file.

You may also want to explicitly declare properties even if they are included automatically, so you can specify
certain attributes (such as setting the i s- di nensi on property tot r ue, as discussed in the next section) or
override the default output name. You can also suppress the inclusion of automatically included properties by
setting the suppr ess attribute to t r ue, as discussed in Suppressing Properties (page 56).

In addition to the properties listed above, which are output only for the document-level item type, i t em
type. reposi t oryl d properties are automatically included for all item types included in the records.

These properties are the output names fori t em t ype. $r eposi t or yl d properties, which contain the
repository IDs for the repository items the records represent. For example, a record for a product might include
product . repositoryld,sku. repositoryld,andal | Ancestors. repositoryl dproperties.

Specifying Guided Search Schema Attributes

You can use various attributes of the pr oper t y element to specify the way properties of repository items should
be treated in the MDEX. The SchenmaExpor t er component then uses the values of these attributes in the
schema configuration it creates.

To specify the data type of a property, you use the t ype attribute. The value of this attribute can be dat e,
string,bool ean,int eger, orfl oat.For example:

<property nane="quantity" type="integer"/>

If atype value is not specified, it defaults to st ri ng.

You can designate a property as searchable, as a dimension, or both. To make a property searchable, set the
t ext - sear chabl e attribute to t r ue. To make a property a Guided Search dimension, set the i s- di mensi on
attribute to t r ue. In the following example, the col or property is both a dimension and searchable:

<property nane="col or" is-di mensi on="true" text-searchable="true"/>

Ifi s-di mensionistrue,youcan usethenul tisel ect -t ype attribute to specify whether the customer can
select multiple values of the dimension at the same time. The value of this attribute can be nul ti - or (combine
using Boolean OR), nul ti - and (combine using Boolean AND), or none (the default, meaning multiselect is not
supported for this dimension). For example:

<property nane="brand" is-di mension="true" nultiselect-type="multi-or"/>

5 Configuring EndecalndexingOutputConfig Definition Files 51

Multiselect logic works as follows:

+ Combining with Boolean OR returns results that match any of the selected values. For example, for a col or
dimension, if the user selects yel | owand or ange, a given item is returned if its col or valueisyel | owor
or ange.

+ Combining with Boolean AND returns results that match all of the selected values. For example, suppose
a product representing a laser printer has a paper Si zes property that is an array of the paper sizes the
printer accepts, and you have a dimension based on this property. If the user selects A4 and | et t er for this
dimension, a given item is returned only if its paper Si zes property includes both | et t er and A4.

Automatically Generating Dimension Values

Ifi s-di mensionistrue for arepository item property, by default Guided Search examines the data and
automatically generates non-hierarchical dimension values for the values of that property. For example, if the
col or property has values of or ange, yel | ow, and bl ue, three dimension values are generated, representing
the values of the property.

For a hierarchical dimension, though, the dimension value records must be explicitly created by the Guided
Search integration. This is done by the Cat egor y ToDi nensi onQut put Conf i g component (for the product
categories) and the Reposi t or yTypeDi mensi onExpor t er component (for the catalog repository item-type
hierarchy).

To prevent automatic generation of dimension values for a property, set the aut ogen- di nensi on- val ues
attribute to f al se. For example, the dimension for the repository item-type hierarchy is defined like this:

<property autogen-di mensi on-val ues="f al se"
name="3%i t enDescri ptor.itenDescri ptorName" is-di mension="true"/>

Specifying Properties for Indexing

This section discusses how to specify various properties of catalog items for inclusion in the MDEX, and options
for how these properties should be handled.

Specifying Multi-Value Properties

In most cases, you specify a multi-value property, such as an array or Collection, using the pr oper t y element,
just as you specify a single-value property. In the following example, the f eat ur es property stores an array of
Strings:

<properties>
<property nane="creati onDate" type="date"/>
<property nanme="brand" is-dimension="true" type="string"
t ext - sear chabl e="true"/ >
<property nane="di spl ayNane" type="string" text-searchable="true"/>
<property name="features" type="string" text-searchable="true"/>
</ properties>

Notice that f eat ur es is specified in the same way as cr eat i onDat €, br and, and di spl ayNane, which are all
single-value properties. The output will include a separate entry for each value in the f eat ur es array.

52 5 Configuring EndecalndexingOutputConfig Definition Files

If a property is an array or Collection of repository items, you specify it using the i t emelement, and set the i s-
mul ti attribute tot r ue. For example, in a product catalog, a pr oduct item will typically have a multi-valued
chi | dSKUs property whose values are the various SKUs for the product. You might specify the property like this:

<item property-nanme="chi | dSKUs" is-multi="true">
<properties>
<property nanme="col or" is-dimension="true" type="string"
text-searchabl e="true"/>
<property nane="description" type="string" text-searchable="true"/>
</ properties>
</litemr

If you index by product, the output records will include the col or and descri pti on value for each of the
product’s SKUs.

Specifying Map Properties

To specify a Map property, you use the i t emelement, set thei s-nul ti attribute to t r ue, and use the map-
i teration-type attribute to specify how to output the Map entries. If the Map values are primitives or Strings,
setmap-iteration-typetow | dcard,asin this example:

<item property-nane="personal Data" is-nulti="true" map-iteration-type="w | dcard">
<properties>
<property name="*" type="string"/>
</ properties>
</itenpr

In the output, the Map keys are treated as subproperties of the Map property, and the Map values are treated as
the values of these subproperties. All of the Map entries are included in the output. So, for example, the output
from the definition file entry shown above might look like this:

<PROP NAME="personal Data. first Nane" >
<PVAL>Fr ed</ PVAL>

</ PROP>

<PROP NAME="per sonal Dat a. age" >
<PVAL>37</ PVAL>

</ PROP>

<PROP NAME="per sonal Dat a. hei ght ">
<PVAL>68</ PVAL>

</ PROP>

If you want to output only a subset of the Map entries, explicitly specify the keys to include, rather than using
the wildcard character (*). For example:

<i tem property-nane="personal Data" is-nulti="true" map-iteration-type="w | dcard">
<properties>
<property nanme="firstNane" type="string" text-searchable="true"/>
<property name="hei ght" type="string"/>
</ properties>
</itenr

5 Configuring EndecalndexingOutputConfig Definition Files 53

Maps of Repository Items

If the Map values are repository items, set map-i t er at i on-t ype to val ues, and specify the properties of
the repository item that you want to output. For example, suppose you want to index a pr oduct | nf os Map
property whose keys are product IDs and whose values are pr oduct | nf o items:

<item property-nanme="productlnfos" is-multi="true" map-iteration-type="val ues">
<properties>
<property nane="di spl ayNane" type="string" text-searchable="true"/>
<property nanme="si ze" type="integer" is-dinmension="true"/>
</ properties>
</itenpr

The output will include di spl ayName and si ze tags for each pr oduct | nf o item in the Map. In this case, the
Map keys are ignored, the properties of the repository items are treated as subproperties of the Map property,
and the values of the items are treated as the values of the subproperties. The output looks like this:

<PROP NAME="product | nf os. di spl ayNanme" >
<PVAL>Funny Hat </ PVAL>

</ PROP>

<PROP NAME="product | nf os. si ze">
<PVAL>8</ PVAL>

</ PROP>

<PROP NAME="product | nf os. di spl ayNanme" >
<PVAL>Cl own Shoes</ PVAL>

</ PROP>

<PROP NAME="product | nf os. si ze">
<PVAL>14</ PVAL>

</ PROP>

Specifying Properties of Item Subtypes

A repository item type can have subtypes that include additional properties that are not part of the base item
type. This feature is commonly used in the Oracle Commerce Platform catalog for the SKU item type. A SKU
subtype might add properties that are specific to certain SKUs but which are not relevant for other SKUs.

When you list properties to index, you can use the subtype attribute of the property element to specify
properties that are unique to a specific item subtype. For example, suppose you have a furniture-sku subtype
that adds properties specific to furniture SKUs. You might specify your SKU properties like this:

<item property-nane="chi | dSKUs" >
<properties>
<property nanme="description" type="string" text-searchable="true"/>
<property nanme="col or" type="string" text-searchable="true"
i s-di mension="true"/>
<property nane="woodFi ni sh" subtype="furniture-sku" type="string"
text - searchabl e="true"/>
</ properties>
<litenr

This specifies that the descri pti on and col or properties should be included in the output for all SKUs, but for
SKUs whose subtypeis f ur ni t ur e- sku, the woodFi ni sh property should also be included.

54

5 Configuring EndecalndexingOutputConfig Definition Files

Thei t emelement also has a subt ype attribute for specifying a subtype-specific property whose value is a
repository item. If woodFi ni sh is a repository item, the example above would look something like this:

<item property-nanme="chi | dSKUs" >
<properties>
<property name="description" type="string" text-searchable="true"/>
<property nane="col or" type="string" text-searchabl e="true"
i s-di mensi on="true"/>
</ properties>
<i tem property-nanme="woodFi ni sh" subtype="furniture-sku"/>
<properties>
<property name="texture" type="string" text-searchable="true"/>
<property nane="stai nType" type="string" text-searchable="true"/>
</ properties>
</itemr
</itemr

Specifying a Default Property Value

You may find it useful to specify a default value for certain indexed properties. For example, suppose you are
indexing address data, and for some addresses no value appears in the repository for the ci t y property. In
these cases, you could set the property value in the index to be “city unknown.” A user could then search for this
phrase and return the addresses whose ci t y property is null.

To set a default value, you use the def aul t - val ue attribute of the pr oper t y element. For example:

<property nane="city" type="string" text-searchabl e="true"
def aul t -val ue="ci ty unknown"/>

Specifying Non-Repository Properties

When you index a repository, you can include in the index additional properties that are not part of the
repository itself. For example, you might want to include a cr eat i onDat e property to record the current time
when a record is created. The value for this property could be generated by a custom property accessor that
invokes the Java Dat e class.

To specify a property like this, use the i s- non-r eposi t ory- property attribute of the pr oper ty element.
This attribute indicates that the property is not actually stored in the repository, and prevents warnings from
being thrown when the Endecal ndexi ngQut put Conf i g component starts up. Note that you must also specify
a custom property accessor that is responsible for obtaining the property values:

<property nane="creationDate" is-non-repository-property="true"
type="date" property-accessor="dateAccessor"/>

If no actual property accessor is needed, set the pr oper t y- accessor attribute to nul | . For example, you might
do this if you have a default value that you always want to use for the property:

<property nanme="creati onDate" is-non-repository-property="true"
type="date" default-val ue="Mn Mar 15 16:07: 15 EDT 2010"

5 Configuring EndecalndexingOutputConfig Definition Files 55

property-accessor="null"/>

See Using Property Accessors (page 61) for more information about custom property accessors.

Suppressing Properties

The output records automatically include certain special repository item properties, as discussed in
Automatically Included Properties (page 50). These properties provide information that identifies the
repository items represented in a record, and they are indicated by a dollar-sign ($) prefix: for example,
$reposi toryl dand $url . The dollar signs are removed by default in the output records, because Guided
Search property names cannot include them, and in some cases the properties are renamed.

You may want to return these properties in search results, to enable accessing the indexed repository and
repository items in page code. If you do not need a property, it is a good idea to exclude it from the index, as it
may significantly increase the size of the index. For example, most of these properties are included only for the
document-level item type, but the $r eposi t or yI d property is included for every item type. To suppress it for a
specific item type, use the suppr ess attribute. For example:

<i tem property-nane="parent Cat egori es" is-docunent="fal se">
<properties>
<property nanme="$repositoryld" suppress="true"/>
</ properties>
<litenpr

Including siteld Properties

If you are using the Oracle Commerce Platform multisite support, many of the item types in the catalog
repository have a context membership property (named si t el ds by default) whose value is a comma-
separated list of the repository IDs of the sites an item appears on. For example, if you have three sites whose
repository IDs are si t eA, si t eB, and si t eC, and a certain item is available on si t eAand si t eC(but not

si t eB), the value of the item’s context membership property would be si t eA, si t eC.

For the document-level item type, the records generated by the Oracle Commerce Platform include special
itemtype. $sitel d properties that represent the repository item’s context membership property. These
itemtype. $sit el d properties are renamed toi t em t ype. si t el d in the generated records. The records
include a separatei t em t ype. si t el d entry for each site listed in the context membership property. For
example:

<PROP NAME="product.siteld">
<PVAL>
storeSiteUS
</ PVAL>
</ PROP>
<PROP NAME="product.siteld">
<PVAL>
storeSiteDE
</ PVAL>
</ PROP>

Note that the output records include entries only for sites that are listed in the si t esTol ndex property of
the Endecal ndexi ngQut put Conf i g component. For example, if the value of a item’s context membership

56

5 Configuring EndecalndexingOutputConfig Definition Files

property is si t eA, si t eB, siteC butsitesTol ndex lists only si t eBand si t eC, the record will not include an
entry for si t eA. If an item’s context membership property is null, or if it lists only sites that are not listed in the
si t esTol ndex property, no record is generated for the item.

For information about context membership properties, see the Multisite Administration Guide.

Item Types Lacking a Context Membership Property

If an item type does not have a context membership property, another mechanism is needed for including

i temtype. siteldvaluesinthe generated records. In this situation, you can use the si t es- pr oper t y- nane
and si t egr oups- pr oper t y- name attributes of the i t emelement to specify the names of the properties that
hold references to sites and site groups in the site repository.

For example, the Commerce Reference Store location repository has a | ocat i on item type that represents
the geographic location of a physical store. This item type does not have a context membership property, but
has si t es and si t eG oups properties that contain references to sites and site groups in the site repository.
Commerce Reference Store indexes | ocat i on items so customers can use guided navigation to find stores in
specific locations. The indexing definition file includes:

<itemitemdescriptor-nane="|ocation" is-docunent="true"
sites-property-nanme="sites" sitegroups-property-nanme="siteG oups">

Note that the specified properties must contain references to the actual site and site group items in the site
repository, not the site ID strings.

Renaming an Output Property

By default, the name of a property in an output record is based on its name in the repository, with
modifications applied based on the values of the r epl aceW t hTypePr ef i xes, pr ef i xRepl acenent Map,
and suf f i xRepl acenment Map properties of the Endecal ndexi ngQut put Conf i g component. (See the
EndecalndexingOutputConfig Components (page 28) section for information about these properties.)

You can instead specify the output property name by using the out put - name attribute of the property
element. For example:

<property nane="material" output-nane="product.fabric"
t ext - sear chabl e="true" is-di mension="true"/>

Note that the exact out put - nane value you specify is used with no modifications. So in this example, the item-
type prefix is explicitly included.

Translating Property Values

In some cases, the property values that you want to include in the index (and therefore in the generated records)
may not be the actual values used in the repository. You may want to normalize values (for example, index the
color values Rose, Vermilion, Crimson, and Ruby all as Red, so they are all treated as the same dimension value).
Or you may want to translate values into another language (for example., index the color value Green as Vert, so
when a customer searches for Vert, green items are returned).

To translate property values for indexing, you use the t r ansl at e child element of the pr oper t y element. The
transl at e element has ani nput attribute for specifying a property value found in the repository, and an
out put attribute for specifying the value to translate this to in the output records. For example:

5 Configuring EndecalndexingOutputConfig Definition Files 57

<property nane="col or" text-searchabl e="true" is-dinension="true">
<transl ate i nput="Rose" output="Red"/>
<transl ate input="Verm lion" output="Red"/>
<transl ate input="Crinmson" output="Red"/>
<transl ate i nput="Ruby" output="Red"/>
</ property>

The pr operty element also has pr ef i x and suf f i x child elements that you can use to append a text string
before or after the output property values. For example, you can use the suf f i x element to add units to the
property values:

<property name="| ength">
<suffix val ue=" cni'/>
</ property>

Note that the pr ef i x and suf fi x values are concatenated to the property values exactly as specified, with no
additional spaces. If you want spaces before the suf f i x string or after the pr ef i x string, include the spaces in
the val ue attribute, as in the example above.

You can use the pref i x, suf fi x,and t r ansl at e elements individually or in combination. The following
example translates the size values S, M, and L to “size small,” “size medium,” and “size large,” to make it easier for
customers to search for specific sizes:

<property nane="size" text-searchabl e="true" is-dinension="true">
<prefix value="size "/>
<transl ate input="S" output="small"/>
<translate input="M output="medi un'/>
<transl ate input="L" output="large"/>
</ property>

Translating Based on Locale

Theprefix,suffix,andtransl at e elements all have optional | ocal e attributes that allow you to specify
different values for different locales. For example:

<property nane="onSal e" is-di nensi on="true">
<transl ate | ocal e="en_US" input="true" output="on sale"/>
<transl ate | ocale="fr_FR' input="true" output="a la vente"/>
</ property>
<property nanme="wei ght">
<suffix | ocal e="en_US" output=" granms"/>
<suffix local e="fr_FR' output=" grames"/>
</ property>

When the records are generated, the Endecal ndexi ngQut put Conf i g component determines which tags to
use based on the current locale. So if the locale is en_US, only the tags that specify that locale are applied.

Multilingual environments typically use the Local eVari ant Pr oducer, which generates multiple records
for each indexed item, one record for each locale specified in its | ocal es array property. (See Using Variant
Producers (page 63) for more information.) If the value of the | ocal es array isen_US, f r _FR two sets of
records are generated, one using the t r ansl at e, pr ef i x, and suf f i x tags whose locale is en_US, and one
using the tags whose locale is f r _FR.

58

5 Configuring EndecalndexingOutputConfig Definition Files

If a tag does not specify a locale, that tag is used as the default when the current locale does not match any of
the other tags. In the following example, Scarlet is translated to Rouge if the locale is f r _FR, but is translated to
Red for any other locale:

<property nanme="col or" text-searchabl e="true" is-dinension="true">
<transl ate input="Scarlet" output="Red"/>
<transl ate | ocal e="fr_FR' input="Scarlet" output="Rouge"/>

</ property>

Using Monitored Properties

By default, the | ncr enent al Loader determines which changes necessitate updates by monitoring the
properties specified in the XML definition file. In some cases, however, the properties you want to monitor
are not necessarily the ones that you want to output. This is especially the case if you are outputting derived
properties, because these properties do not have values of their own.

For example, suppose you are indexing a user item type that hasfi r st Nane and | ast Nane properties, plus a
f ul | Name derived property whose value is formed by concatenating the values of f i r st Name and | ast Nane.
You might want to output the f ul | Name property, but to detect when the value of this property changes, you
need to monitor (but not necessarily output) f i r st Nane and | ast Nane.

You can do this by including a noni t or element in your definition file to specify properties that should be
monitored but not output. For example:

<properties>
<property name="ful | Name" text-searchable="true"/>
</ properties>
<noni t or >
<property name="firstNane"/>
<property nane="| ast Name"/ >
</ nmoni t or >

For information about derived properties, see the Repository Guide.

You can also monitor properties in a different repository from the one being indexed. For example,

if you are using price lists, changes to pri ce items in the price list repository may necessitate

reindexing products or SKUs in the catalog repository that are referenced by these pri ce items. The

at g.repository. search. i ndexi ng. | i stener. Qieuei ngProperti esChangeli st ener class provides a
mechanism for triggering reindexing of items in one repository based on changes to items in another repository.
See QueueingPropertiesChangelListener (page 128) in the Handling Price Lists (page 125) chapter for more
information.

Filtering Properties of Specific Repository Items

In some cases, you may want to output the values of a property for some repository items of a certain type but
not for others of that type. For example, you may want to output the value of the | ongDescri pti on property of
most pr oduct items, but omit this property for a few specific pr oduct items.

5 Configuring EndecalndexingOutputConfig Definition Files 59

The Oracle Commerce Platform includes an interface,
at g. reposi tory. search. i ndexi ng. | ndexi ngPr oper t yFi | t er, for filtering properties of specific
repository items. This interface defines a single method:

filterCQutputProperties(Repositoryltem pltem
Qut put Property[] pQut put Properti es)

This method is used to implement the logic that determines which property values to exclude from output
records.

The Oracle Commerce Platform also includes a class that implements this interface,
atg.repository. search.indexing.filter.GSAPropertyFilter.This class has two properties that are
used to specify the property values to exclude:

idToType
A Map in which the keys are IDs of repository items and the values are their item types.

propsToFilter

A List of the properties of the items specified by i dToType whose values should be excluded
from the output. Note that the property names you supply should be the output names used
in records, after any prefix or suffix replacement or property renaming.

Commerce Reference Store includes a component of this class, / at g/ comrer ce/ endeca/ i ndex/
GSAPr opert yFi | t er, that is configured as follows:

i dToType=r oot Cat egor y=cat egory, \
homeSt or eRoot Cat egor y=cat egory
propsToFi | ter=al | Ancest ors. di spl ayNane

To apply a GSAPr opert yFi | t er component to an item type, you use the fi | t er attribute of thei t em
element in the Endecal ndexi ngQut put Conf i g definition file. For example, Commerce Reference
Store adds this attribute to the ancest or Cat egor i es item specification in the definition file of the
Product Cat al ogQut put Confi g component:

<itemis-multi="true" property-nanme="ancestor Cat egori es"
filter="/atg/ conmerce/ endecal/ i ndex/ GSAPropertyFilter">

The filterQutputProperties() method of the GSAPr opert yFi | t er class examines thei dToType
property to see which repository items to filter. In Commerce Reference Store, the property is configured so

that filtering is done for the cat egor y items whose IDs are r oot Cat egor y and honeSt or eRoot Cat egor y. It
then uses the value of the component’s pr opsToFi | t er property to determine which properties to exclude the
values of. pr opsToFi | t er issettoal | Ancest or s. di spl ayNang, so the value of this property is not output for
the r oot Cat egor y and honeSt or eRoot Cat egor y categories. (This is done to address a problem in Commerce
Reference Store where searching for “root” would return every product in the catalog repository, because that
word appears in the value of the di spl ayNane property of both items, and every product has one of these
categories as an ancestor category.)

You can create other components of class GSAPr opert yFi | t er and configure the i dToType and
pr opsToFi | t er properties to filter different item types and properties, or you can implement different filtering
logic by writing your own class that implements the | ndexi ngPr opert yFi | t er interface.

5 Configuring EndecalndexingOutputConfig Definition Files

6 Customizing the Output Records

This chapter describes interfaces and classes that can be used to customize the records created by the Guided
Search integration. It discusses the following topics:

Using Property Accessors (page 61)
Using Variant Producers (page 63)
Using Property Formatters (page 67)
Using Property Value Filters (page 68)

In addition to the classes described here, the Guided Search integration includes property accessors and variant
producers for accessing price data in price lists. See the Handling Price Lists (page 125) chapter for more
information.

For additional information about the classes and interfaces described in this chapter, see the ATG Platform API
Reference.

Using Property Accessors

Property values are read from the product catalog through an implementation of the

at g. reposi tory. search. i ndexi ng. PropertyAccessor interface. For most properties, the default
istousethe at g. reposi t ory. search. i ndexi ng. PropertyAccessor | npl class, which just invokes
the Reposi t oryl t em get Proper t yVal ue() method. You can write your own implementations of
Propert yAccessor that use custom logic for determining the values of properties that you specify. The
simplest way to do this is to subclass Pr opert yAccessor | npl .

In an Endecal ndexi ngQut put Conf i g definition file, you can specify a custom property accessor for a property
by using the pr oper t y- accessor attribute. For example, suppose you have a Nucleus component named /
nyst uf f/ MyPr oper t yAccessor, of a custom class that implements the Pr opert yAccessor interface. You can
specify it in the definition file like this:

<property name="mnyProperty"
property-accessor="/nystuff/M/PropertyAccessor"/>

The value of the proper t y- accessor attribute is the absolute path of the Nucleus component. To simplify
coding of the definition file, you can map Pr opert yAccessor Nucleus components to simple names, and

6 Customizing the Output Records 61

use those names as the values of pr opert y- accessor attributes. For example, if you map the / nyst uf f/
My Pr opert yAccessor component to the name nyAccessor, the above tag becomes:

<property nanme="nyProperty" property-accessor="myAccessor"/>

You can perform this mapping by setting the pr oper t yAccessor Map property of the
Endecal ndexi ngQut put Conf i g component. This property is a Map in which the keys are the names and the
values are Pr oper t yAccessor Nucleus components that the names represent. For example:

propertyAccessor Map+=\
myAccessor =/ nyst uf f/ MyPr oper t yAccessor

FirstWithLocalePropertyAccessor

The at g. reposi tory. sear ch. i ndexi ng. accessor package includes a subclass of
PropertyAccessor | mpl named Fi r st Wt hLocal ePr opert yAccessor . This property accessor
works only with derived properties that are defined using the f i r st W t hLocal e derivation method.
Fi rst Wt hLocal ePropertyAccessor determines the value of the derived property by looking up
the cur r ent Docunent Local e property of the Cont ext object. Typically, this property is set by the
Local eVari ant Producer, as described in Accessing the Context Object (page 64).

You can specify this property accessor in your definition file using the attribute value fi r st Wt hLocal e. (Note
that you do not need to map this name to the property accessor in the pr opert yAccessor Map.) For example:

<property nanme="di spl ayNane" property-accessor="firstWthLocal e"/>

For information about the fi r st Wt hLocal e derivation method, and about derived properties in general, see
the Repository Guide.

LanguageNameAccessor

The at g. endeca. i ndex. accessor. LanguageNameAccessor class, which is a subclass of

at g. reposi tory. search. i ndexi ng. Propert yAccessor | npl, returns the name of the language that
arecord is in. The Guided Search integration includes a component of this class, / at g/ endeca/ i ndex/
accessor/ LanguageNameAccessor , which the Pr oduct Cat al ogQut put Conf i g uses to obtain the value of
the product . | anguage property:

<property nane="| anguage" is-dinension="true" type="string"
property-accessor ="/ at g/ endeca/ i ndex/ accessor/ LanguageNaneAccessor "
out put - nane="pr oduct . | anguage" is-non-repository-property="true"/>

GenerativePropertyAccessor

The at g. reposi tory. sear ch. i ndexi ng. accessor package includes a subclass of

PropertyAccessor | npl named Gener at i vePr opert yAccessor . This is an abstract class that adds the ability
to generate multiple property names and associated values for a single property tag in the indexing definition
file.

62 6 Customizing the Output Records

You can write your own subclass of Gener at i vePr oper t yAccessor . Your subclass must implement the
get Proper t yNamesAndVal ues method. This method returns a Map in which each key is a property name, and
the corresponding Map value contains the value to be associated with the property name.

Category Dimension Value Accessors

Several property accessors are used by the Cat egor yToDi mensi onQut put Conf i g component to extract the
values of various dimension value attributes from the data structures created by the Cat egor yTr eeSer vi ce
component.

A component of class at g. endeca. i ndex. accessor. Const ant Val ueAccessor,/ at g/ cormer ce/ endeca/
i ndex/ accessor/ Di mensi onSpecPr oper t yAccessor, obtains the value of the di mval . di mensi on_spec
attribute, which is a unique identifier for the dimension (typically pr oduct . cat egory).

Several components of class

at g. conmer ce. endeca. i ndex. di mensi on. Cat egor yNodePr opert yAccessor, also in the/ at g/

commer ce/ endeca/ i ndex/ accessor/ Nucleus folder, obtain the values of various dimension value attributes.
The following table lists these property accessors and describes the attributes they obtain values for. Note that
the property names shown in the table are appropriate for use with CAS-based Guided Search deployment
templates, and assume that the name changes specified in pr oper t yNaneRepl acenent Map property of the

Di mensi onDocunent Subni tt er component have been applied. See RecordStoreDocumentSubmitter (page
37) for more information.

Property Accessor Property

Root Cat al ogPr opert yAccessor cat egory. r oot Cat al ogl d -- The repository ID of the root
catalog the category belongs to (e.g., mast er Cat al og).

SpecPropert yAccessor di mval . spec -- A unique identifier for the dimension
value that includes the path information to distinguish it
from other dimension values for the same category (e.g.,
cat 10016. cat 10014).

Qual i fi edSpecPropertyAccessor Endeca. | d -- A qualified identifier for the dimension
value consisting of the di nval . di mensi on_nane
value and the di nval . spec value (e.g.,

product . cat egory: cat 10016. cat 10014).

Par ent SpecPr opert yAccessor di nval . par ent _spec -- A reference to the category’s parent
category (e.g., cat 10016).

Di spl ayOr der Propert yAccessor di nval . di spl ay_or der -- An integer specifying the order the
category is displayed in, relative to its sibling categories.

Using Variant Producers

By default, for the repository item type designated by the i s- docunent attribute, the
Endecal ndexi ngQut put Conf i g component generates one record per item. In some cases, however, you may

6 Customizing the Output Records 63

want to generate more than one record for each repository item. For example, suppose you have a repository
whose text properties are stored in both French and English, and the language displayed is determined by the
user’s locale setting. In this case you typically want to create two records from each repository item, one with the
text content in French, and the other one in English.

To handle situations like this, the Oracle Commerce Platform provides an interface named

at g. reposi tory. search. i ndexi ng. Vari ant Pr oducer . You can write your own implementations of the
Var i ant Producer interface, or you can use implementations included with the Oracle Commerce Platform.
This interface defines a single method, pr epar eNext Var i ant (), for determining the number and type of
variants to produce. Depending on how your repository is organized, implementations of this method can use a
variety of approaches for determining how to generate variant records.

LocaleVariantProducer

The Guided Search integration includes an implementation of the Var i ant Pr oducer interface,

at g. reposi tory. search. i ndexi ng. producer. Local eVari ant Pr oducer, for generating variant
records for different locales. It also includes a component of this class, / at g/ commer ce/ sear ch/
Local eVari ant Producer.

The Local eVvari ant Producer class has al ocal es property where you specify the list of locales to generate
variants for. By default, this property is linked to the value of the | ocal es property of the/ at g/ endeca/
Appl i cati onConfi gurati on component:

| ocal es™=/ at g/ endecal/ Appl i cati onConfi guration.| ocal es

You specify the Var i ant Pr oducer components to use by setting the vari ant Pr oducer s property of the
Endecal ndexi ngQut put Conf i g component. Note that this property is an array; you can specify any number of
Var i ant Producer components. For example:

vari ant Producer s=/ at g/ comrer ce/ sear ch/ Local eVari ant Producer, \
/ myst uf f/ MyVari ant Producer

If you specify multiple variant producers, the Endecal ndexi ngQut put Conf i g generates a separate variant
for each possible combination of values of the variant criteria. For example, suppose you use the configuration
shown above and MyVar i ant Producer creates three variants (1, 2, and 3). The total number of variants
generated for each repository item is six (French 1, English 1, French 2, English 2, French 3, and English 3).

Accessing the Context Object

Classes that implement the Pr opert yAccessor or Vari ant Producer interface must be stateless, because
they can be accessed by multiple threads at the same time. Rather than maintaining state themselves, these
classes instead use an object of class at g. r eposi t ory. sear ch. i ndexi ng. Cont ext to store state information
and to pass data to each other. The Cont ext object contains the current list of parent repository items that were
navigated to reach the current item, the current URL (if any), the current collected output values (if any), and
status information.

One of the main uses of the Cont ext object is to store information used to determine what variant to generate
next. For example, each time a new record is generated, the Local eVari ant Producer uses the next value in

its | ocal e array to set the cur r ent Docunrent Local e property of the Cont ext object. A PropertyAccessor
instance might read the cur r ent Docunent Local e property and use its current value to determine the locale to
use for the property.

64

6 Customizing the Output Records

Note that classes that implement the Pr opert yFor mat t er or PropertyVal uesFi | t er interface (described
below) are applied after all of the output properties have been gathered, so these classes do not have access to
the Cont ext object.

For more information about the Cont ext object, see the ATG Platform API Reference.

CategoryPathVariantProducer

The/ at g/ commer ce/ endeca/ i ndex/ Cat egor yPat hVar i ant Pr oducer component is used by the

Cat egor yToDi mensi onQut put Conf i g component to produce multiple records per category (one record for
each unique path computed by Cat egor yTr eeSer vi ce). The Cat egor yPat hvar i ant Pr oducer component
is of class at g. cormer ce. endeca. i ndex. di mensi on. Cat egor yPat hvar i ant Pr oducer, which implements
the at g. reposi tory. sear ch. i ndexi ng. Vari ant Pr oducer interface. In each record this variant producer
creates, the value of the record’s di nval . spec property is the unique pathname that the record represents. For
example:

The Cat egor yPat hVari ant Producer component is added to the Cat egor yToDi nensi onQut put Confi g
component’s variantProducers property by default:

vari ant Producer s+=\
Cat egor yPat hVari ant Pr oducer

See the CategoryTreeService Class (page 20) section for more information about how category path variants are
computed.

CustomCatalogVariantProducer

In addition to the cat egory, pr oduct , and sku items, the catalog repository includes cat al og items that
represent different hierarchies of categories and products. Each user is assigned one catalog, and sees the
navigational structure, products and SKUs, and property values associated with that catalog. A given product
may appear in multiple catalogs. The pr oduct repository item type includes a cat al ogs property whose value
is a Set of the catalogs the product is included in.

Depending on how your catalog repository is configured, the property values of individual categories, products,
or SKUs may vary depending on the catalog. If so, when you index the catalog, you may need to generate
multiple records for each product or SKU (one for each catalog the item is included in).

To support creation of multiple records per product or SKU, the Guided Search integration uses the /

at g/ conmer ce/ sear ch/ Cust ontCat al ogVar i ant Pr oducer component. This component is of class

at g. conmer ce. sear ch. producer. Cust onCat al ogVar i ant Pr oducer, which implements the

at g. reposi tory. search. i ndexi ng. Vari ant Pr oducer interface. The variant producer iterates through
each catalog individually, so that each record contains only the property values associated with a single catalog.

The Cust ontat al ogVari ant Producer component is added to the Pr oduct Cat al ogQut put Confi g
component’s variantProducers property by default:

vari ant Producer s+=\
Cust ontat al ogVar i ant Pr oducer

The mechanism used for retrieving catalog-specific property values differs depending on the property. For
cat egory, product, or sku item properties that use the at g. comrmer ce. dp. Cat al ogMapDeri vati on class to
derive catalog-specific values, the correct values are automatically obtained by that class.

6 Customizing the Output Records 65

To get the value of the cat al ogs property of the pr oduct item, the Pr oduct Cat al ogQut put Confi g
component is configured by default to use the / at g/ comrmer ce/ sear ch/

Cust ontCat al ogPr opert yAccessor component. This component is of class

at g. conmer ce. sear ch. producer. Cust onCat al ogPr opert yAccessor, which implements the
atg.repository. search. i ndexi ng. PropertyAccessor interface. This accessor returns, for each record,
only the specific catalog the record applies to. The accessor is specified in the / at g/ commer ce/ endeca/

i ndex/ product - sku- out put - confi g. xm definition file:

<itemis-multi="true" property-nanme="catal ogs"
property-accessor ="cust ontCat al og" >

The Cust ontat al ogPr opert yAccessor component is mapped to the name cust ontCat al og by the
Pr oduct Cat al ogQut put Confi g component’s pr oper t yAccessor Map property:

propertyAccessor Map+=\
cust onCat al og=Cust onCat al ogPr opert yAccessor

UniqueSiteVariantProducer

If you want to create separate records for each site, you can do so by using the/ at g/ sear ch/

reposi t ory/ Uni queSi t eVari ant Producer component. This component is of class

at g. conmer ce. endeca. i ndex. producer . Commer ceUni queSi t eVar i ant Pr oducer, which implements the
atg. reposi tory. sear ch. i ndexi ng. Vari ant Producer interface.

Uni queSi t eVari ant Producer creates a separate record for each site that meets both of these criteria:
« TheID of the site is included in the si t el ds property of the item being indexed.

« Thesite is listed in the si t esTol ndex property of the Endecal ndexi ngQut put Conf i g component that
invokes the variant producer.

For example, if you are indexing by product and the value of a product’s si t el ds property

issiteE, siteF, siteGandthesitesTol ndex property is set to sites B, E,and F,

Uni queSi t eVari ant Producer creates two records, one for site E and one for site F. The records are virtually
identical, except that each one has a different value for the si t el d property.

To use the Uni queSi t eVari ant Producer, add it to the Pr oduct Cat al ogQut put Conf i g component’s
vari ant Producer s property:

vari ant Producer s+=\
| at g/ sear ch/ reposi t ory/ Uni queSi t eVari ant Producer

MultipleSiteVariantProducer

If you are using the Gr oupi ngAppl i cati onRout i ngSt r at egy, as described in the Routing (page 9)chapter,
you need to ensure that separate records are created for each EAC application. For example, if you have a total
of five sites, with one EAC application handling the data from two of the sites and another handling the data for
the other three, two sets of records should be created, each reflecting the group of sites handled by one of the
EAC applications.

66

6 Customizing the Output Records

To create these records, add the / at g/ endeca/ i ndex/ producer/ Ml ti pl eSi t eVari ant Producer
component to the Pr oduct Cat al ogQut put Conf i g component’svari ant Producer s

property. The Mul ti pl eSi t eVari ant Pr oducer component is of class

at g. endeca. i ndex. producer. Mul ti pl eSi t eVari ant Producer, which is a subclass

of the at g. endeca. i ndex. producer . G oupi ngVar i ant Pr oducer abstract class.

Mul ti pl eSi teVari ant Producer creates a separate variant for each grouping listed in the

G oupi ngAppl i cati onRout i ngSt r at egy component’s appl i cati onG oupi ngMap property. For example,
suppose this property is set to:

appl i cati onGr oupi ngMap=\
f oot wear St or es=shoeSi t eUS| shoeSi t eCanada, \
appar el St or es=cl ot hesSi t eUS| cl ot hesSi t eUK| cl ot hesSi t eCanada

Mil ti pl eSiteVari ant Producer will create two sets of records, one for each EAC application listed in the Map
keys.

Using Property Formatters

If a property takes an object as its value, the data loader must convert that object to a string to include it in an
output record. The Pr oper t yFor mat t er interface defines methods for performing this conversion.

By default, the data loaders use the implementation class

at g. endeca. i ndex. f or mat t er . EndecaPr oper t yFor mat t er . This class invokes the object’s get Long()
method for numbers or get Ti ne() method for dates; for booleans, it converts the value to the String

“0" (f al se)or“1” (t r ue). For other objects, it calls the object’st oSt ri ng() method.

You can write your own implementations of Pr oper t yFor mat t er that use custom logic for performing the
conversion. The simplest way to do this is to subclass EndecaPr oper t yFor mat t er .

In an Endecal ndexi ngQut put Conf i g definition file, you can specify a custom property formatter by

using the f or mat t er attribute. For example, suppose you have a Nucleus component named / nyst uf f/

My Pr opert yFor nat t er, of a custom class that implements the Pr oper t yFor mat t er interface. You can specify
it in the definition file like this:

<property name="nyProperty" formatter="/MStuff/MPropertyFormatter"/>

The value of the f or mat t er attribute is the absolute path of the Nucleus component. To simplify coding of
the definition file, you can map Pr oper t yFor mat t er Nucleus components to simple names, and use those
names as the values of f or mat t er attributes. For example, if you map the / nyst uf f/ MyPr oper t yFor mat t er
component to the name nyFor mat t er, the above tag becomes:

<property nane="nyProperty" formatter="nyFormatter"/>

You can perform this mapping by setting the f or nat t er Map property of the Endecal ndexi ngQut put Confi g
component. This property is a Map in which the keys are the names and the values are Pr oper t yFor mat t er
Nucleus components that the names represent.

6 Customizing the Output Records 67

Using Property Value Filters

In some cases, it is useful to filter a set of property values before outputting a record. For example, suppose
each record represents a product whose SKUs all have the same display name. Rather than outputting the

di spl ayNane property value of each SKU, you could include di spl ayName in the record only once, by using a
filter that removes duplicate property values.

The Propert yVal uesFi | t er interface defines a method for filtering property values. The
at g.reposi tory. search. i ndexi ng. filter package includes several implementations of this interface:

+ Uni queFi | t er removes duplicate property values, returning only the unique values.
+ Concat Fi | t er concatenates all of the property values into a single string.

« Uni queWor dFi | t er removes any duplicate words in the property values, and then concatenates the results
into a single string.

* Hm Filter removes any HTML markup from the property values.
This section provides information about what these filters do and when they're appropriate.

In an Endecal ndexi ngQut put Conf i g definition file, you can specify property filters by using the fi | t er
attribute. Note that you can use multiple filters on the same property. The value of the fi | t er attributeisa
comma-separated list of Nucleus components. The component names must be absolute pathnames.

To simplify coding of the definition file, you can map Pr opert yVal uesFi | t er Nucleus components to simple
names, and use those names as the values of f i | t er attributes. You can perform this mapping by setting the
filterMap property of the Endecal ndexi ngQut put Conf i g component. This property is a Map in which the
keys are the names and the values are Pr opert yFi | t er Nucleus components that the names represent.

Note, however, that you do not need to perform this mapping to use the Uni queFi | t er, Concat Fi | ter,
Uni queWor dFi | ter,or Ht ml Fi | t er class. These classes are mapped by default to the following names:

Filter Class Name

Uni queFi | ter uni que
Concat Fil ter concat

Uni queWordFil ter uni quewor d
HmMFilter ht m

So, for example, you can specify Uni queFi | t er like this:

<property nanme="color" filter="unique"/>

UniqueFilter

You may be able to reduce the size of your index by filtering the property values to remove redundant entries.
For example, suppose a record represents a product whose SKUs have a si ze property, with values of small,

68

6 Customizing the Output Records

medium, and large; multiple SKUs have the same si ze value, and are differentiated by other properties (e.g.,
col or). The entries for si ze in a record might be:

<PROP NAME="sku. si ze">
<PVAL>nedi unx/ PVAL>
<PVAL>| ar ge</ PVAL>
<PVAL>nedi unx/ PVAL>
<PVAL>snal | </ PVAL>
<PVAL>nedi unx/ PVAL>
<PVAL>smal | </ PVAL>

</ PROP>

By filtering out redundant entries, you can reduce this to:

<PROP NAME="sku. si ze">
<PVAL>nedi unx/ PVAL>
<PVAL>| ar ge</ PVAL>
<PVAL>snal | </ PVAL>
</ PROP>

To automatically perform this filtering, specify the Uni queFi | t er class in the XML definition file:

<property nanme="size" filter="uni que"/>

As a general rule, it is a good idea to specify the uni que filter for a property if multiple items in a record may
have identical values for that property. If you specify this filter for a property and every value of that property
in a record is unique (or if only one item with that property appears in the record), the uni que filter will have
no effect on the record (either negative or positive). However, executing this filter increases processing time to
create the record, so it is a good idea to specify it only for properties that will benefit from it.

ConcatFilter

You may also be able to reduce the size of your index by concatenating the values of text properties. For
example, suppose each record represents a product whose SKUs have a col or property, with values of red,
green, blue, and yellow. The entries for col or in a record might be:

<PROP NAME="sku. col or" >
<PVAL>r ed</ PVAL>
<PVAL>gr een</ PVAL>
<PVAL>bl ue</ PVAL>
<PVAL>yel | ow</ PVAL>
</ PROP>

By concatenating the values, you can reduce this to:

<PROP NAME="sku. col or">
<PVAL>red green bl ue yel | ow</ PVAL>
</ PROP>

6 Customizing the Output Records 69

To combine these values into a single tag, specify the Concat Fi | t er class in the XML definition file:

<property nane="color" filter="concat"/>

This setting invokes an instance of the at g. r eposi tory. search. i ndexi ng. fil ter. ConcatFi | ter class.
Note that you do not need to create a Nucleus component to use this filter.

You can use both the uni que and concat filters on the same property, by setting the value of thefi | t er
attribute to a comma-separated list. The filters are invoked in the order that they are listed, so it is important to
put the uni que filter first for it to have an effect. For example:

<property nanme="color" filter="uni que, concat"/>

UniqueWordFilter

The at g. reposi tory. search. i ndexi ng. filter.Uni queWor dFi | t er class removes any duplicate words
in the property values, and then concatenates the results into a single string. For example, suppose a product’s
SKUs have a si ze property, and the resulting entries in a record are:

<PROP NAME="sku. si ze" >
<PVAL>mnedi unx/ PVAL>
<PVAL>| ar ge</ PVAL>
<PVAL>x | ar ge</ PVAL>
<PVAL>xx | ar ge</ PVAL>
</ PROP>

By applying Uni queWor dFi | t er, you can reduce this to:

<PROP NAME="sku. si ze">
<PVAL>nedi um | arge x xx</ PVAL>
</ PROP>

Note that Uni queWr dFi | t er converts all Strings to lowercase, so that redundant words are eliminated even if
they do not have identical case.

You can specify Uni queWor dFi | t er in the XML definition file like this:

<property name="size" filter="uni queword"/>

You do not need to create a Nucleus component to use this filter.

Although Uni queWor dFi | t er removes redundancies and concatenates values, it is not equivalent to using
a combination of Uni queFi | t er and Concat Fi | t er.Uni queFi | t er considers the entire string when

it eliminates redundant values, not individual words. In this example, each complete string is unique, so

Uni queFi | t er would not actually eliminate any values, and the result would be:

<PROP NAME="sku. si ze">
<PVAL>nedi um | arge x | arge xx | arge</PVAL>

70 6 Customizing the Output Records

</ PROP>

Note: You should use Uni queWor dFi | t er carefully, as under certain circumstances it can have undesirable
effects. If you use a dictionary that includes multi-word terms, searches for those terms may not return the
expected results, because the filter may rearrange the order of the words in the index.

HtmlFilter

Theat g. repository. search.indexing.filter.Hnl Filter class removes any HTML markup from a
property value. This is useful, for example, if text properties include tags for bolding or italicizing certain words,
asin this| ongDescri pti on property of a product:

You'll love this Italian <i>leather</i> sofal

Because the HTML markup is included in the index, searches may return unexpected results. In this example,
searching for “leather sofa” might not return the product, because that string does not actually appear in the
| ongDescri pti on property.

Using Ht m Fi | t er, this value appears in the index as:

<PROP NAME="product .| ongDescri ption">
<PVAL>You'll love this Italian |eather sofa!</PVAL>
</ PROP>

Now a search for “leather sofa” will find the value in this property and return this product.

6 Customizing the Output Records 71

72

6 Customizing the Output Records

7 Indexing the Content Management
Repository

In addition to the products, SKUs, and other items stored and managed through the product catalog repository,
the Oracle Commerce Platform includes support for storing and managing HTML articles and digital media
through the Web Content Management (WCM) feature. These items are maintained in the content management
repository, as described in the Core Commerce Programming Guide.

This chapter describes Oracle Commerce Platform components that you can use to index the content in this
repository so it can be used for searching and guided navigation. It includes the following sections:

Overview of Indexing Web Content (page 73)

WCM EndecalndexingOutputConfig Components (page 74)
WCM Dimension Exporter Components (page 77)

WCM Schema Exporter Components (page 78)

WCM SimplelndexingAdmin Component (page 79)

For information about creating and editing articles and media items, see the Merchandising Guide for Business
Users.

Overview of Indexing Web Content

To provide robust support for Web content, the Oracle Commerce Platform includes a content
management repository for storing HTML articles and digital media. This repository, / at g/ cont ent /
Cont ent Managenent Reposi t or y, has two main item types:

« articl e -Intended for HTML documents. Text elements are stored in properties of the item (such as the
body, headl i ne, and abst r act properties) and can be used for searching and guided navigation.

+ medi aCont ent -- Intended for binary content, including video, audio, image, and PDF files. The item has a
ur | property that contains a URL that points to an external binary file, and string properties suchastitl e
and descri pti on that can be used for searching and guided navigation.

The repository and its item types are defined in the top-level Cont ent Mynt module of the Oracle
Commerce Platform. This module has a Cont ent Mynt . Endeca. | ndex submodule that configures the
Endecal ndexi ngQut put Conf i g components and related components for indexing arti cl e and
nedi aCont ent items.

7 Indexing the Content Management Repository 73

WCM EndecalndexingOutputConfig Components

The Cont ent Mynt . Endeca. | ndex module contains two components of class
at g. endeca. i ndex. Endecal ndexi ngQut put Confi g:

« The/at g/ content/search/Articl eQut put Confi g component specifies how to create data records that
represent ar ti cl e items in the content management repository.

« The/ at g/ cont ent / sear ch/ Medi aCont ent Qut put Conf i g component specifies how to create data
records that represent medi aCont ent items in the content management repository.

This section describes the default configuration of these components. For more information about
Endecal ndexi ngQut put Conf i g components, see the Overview of Indexing (page 17) and Configuring the
Indexing Components (page 27) chapters.

indexingApplicationConfiguration

The component of class at g. endeca. i ndex. confi gurati on. | ndexi ngAppl i cati onConfi guration
used to configure indexing settings for the integration. For both the Art i cl eQut put Confi g and
Medi aCont ent Qut put Conf i g components, the default setting is:

i ndexi ngAppl i cati onConfi gurati on=\
/ at g/ endecal i ndex/ | ndexi ngAppl i cati onConfi gurati on

definitionFile

The full Nucleus pathname of the XML indexing definition file that specifies the repository item types and
properties to include in the Guided Search records. For the Arti cl eQut put Conf i g component, this property is
set as follows:

definitionFile=/atg/content/endecalindex/article-output-config.xm

This file specifies the properties of the ar t i cl e item type to include in the index. The ar ti cl e. headl i ne,

article.abstract,article.author,article.body,andarticle.tag output properties are specified
as text searchable. Thearticle.siteld,article.author,andarticl e.tag properties are specified as

dimensions.

For the Medi aCont ent Qut put Confi g component:

definitionFile=/atg/content/endecalindex/ medi aCont ent - out put - confi g. xm

This file specifies the properties of the nedi aCont ent item type to include in the index. The

medi aContent . titl e, medi aCont ent . descri pti on, medi aCont ent . medi aType, and medi aCont ent . t ag
output properties are specified as text searchable. The medi aCont ent . si t el d, medi aCont ent . nedi aType,
and nmedi aCont ent . t ag properties are specified as dimensions.

Note that the Medi aCont ent Qut put Conf i g definition file sets the output name of the nedi aCont ent .

$ur | property (which holds the URL of the repository item) to nedi aCont ent . _ur |, to override the default
output name of medi aCont ent . ur | . This is done to avoid a naming conflict with the ur | property of the
medi aCont ent item type, which has a ur| property that holds the URL of the binary media file the item

74

7 Indexing the Content Management Repository

represents. So in output records, medi aCont ent . ur | is used for the URL of the binary media file, while
medi aCont ent . _ur| is used for the URL of the medi aCont ent repository item. For example:

<PROP NAME="nedi aContent. _url">
<PVAL>
at gr ep: / Cont ent Managenent Reposi t ory/ medi aCont ent / n011?| ocal e=en_US
</ PVAL>
</ PROP>
<PROP NAME="nedi aContent.url">
<PVAL>
/ crsdocroot/ content/images/articl es/ banner/ marat hon_nani a. j pg
</ PVAL>
</ PROP>

repository

The full Nucleus pathname of the repository that the definition file applies to. For both the
Articl eQut put Confi g and Medi aCont ent Qut put Conf i g components, this property is set to the content
management repository:

reposi tory=/ at g/ cont ent / Cont ent Managenent Reposi tory

In an ATG Content Administration environment, the repository should be set to the corresponding unversioned
target repository:

reposi tory=/ at g/ cont ent / Cont ent Managenent Reposi t ory_producti on

documentSubmitter

The component (typically of class at g. endeca. i ndex. Recor dSt or eDocunent Submi t t er) to use
to submit records to the appropriate CAS record store. For both the Arti cl eQut put Confi g and
Medi aCont ent Qut put Conf i g components, this property is set as follows:

docunent Subni tt er =/ at g/ endeca/ i ndex/ Dat aDocunent Submi tter

See Document Submitter Components (page 37) for more information.
forceToBaselineOnChange

Ift r ue, a baseline update is performed when a partial update is requested, if a value of a hierarchical dimension
has been changed. For both the Art i cl eCQut put Confi g and Medi aCont ent Qut put Conf i g components, this
property is set to f al se by default, because neither component generates hierarchical dimension values.

bulkLoader

A Nucleus component of class at g. endeca. i ndex. Recor dSt or eBul kLoader I npl . For both the

Articl eQut put Confi g and Medi aCont ent Qut put Conf i g components, this property is set to/ at g/ sear ch/
reposi t ory/ Bul kLoader . This is the same bulk loader used by the Pr oduct Cat al ogQut put Confi g and

Cat egor yToDi nensi onCut put Conf i g components.

See Data Loader Components (page 33) for more information.

7 Indexing the Content Management Repository 75

enablelncrementalLoading

If t r ue, incremental loading is enabled. This property is set to t r ue for both the Ar t i cl eQut put Confi g and
Medi aCont ent Qut put Conf i g components.

incrementalLoader

A Nucleus component of class at g. endeca. i ndex. Recor dSt or el ncr enent al Loader | npl . For both
the Arti cl eQut put Confi g and Medi aCont ent Qut put Conf i g components, this property is set to /
at g/ search/ repository/ I ncrement al Loader . This is the same incremental loader used for the

Pr oduct Cat al ogQut put Conf i g and Cat egor yToDi mensi onQut put Conf i g components.

See Data Loader Components (page 33) for more information.

sitelDsTolndex

A list of site IDs of the sites to include in the index. For both the Ar t i cl eQut put Confi g and

Medi aCont ent Qut put Conf i g components, this property is null by default, which means the si t esTol ndex
property (which is the actual property used to determine which sites to index) is automatically set to all enabled
sites. Set si t el DsTol ndex only if you want to restrict indexing to only a specific subset of the enabled sites.

replaceWithTypePrefixes

A list of the property-name prefixes that should be replaced with the item type the property is

associated with. If this property is null (the default setting for both the Ar t i cl eQut put Confi g and

Medi aCont ent Qut put Conf i g components), the type prefix is added to the names of the output properties
of the top-level item (ar ti cl e for the Arti cl eQut put Conf i g component, medi aCont ent for the

Medi aCont ent Qut put Conf i g component). See the EndecalndexingOutputConfig Components (page 28) of
the Configuring the Indexing Components (page 27) chapter for more information about setting this property.

prefixReplacementMap

A mapping of property-name prefixes to their replacements. This mapping is applied after any type prefixes are
added by r epl aceW t hTypePr ef i xes.

For both the Ar ti cl eQut put Confi g and Medi aCont ent Qut put Conf i g components, this property is null by
default, which means no prefix replacement is performed.

suffixReplacementMap

A mapping of property-name suffixes to their replacements. If this property is null (the default setting for both
the Arti cl eQut put Confi g and Medi aCont ent Qut put Conf i g components), these automatic mappings are
used:

$reposi toryl d=reposi toryld,
$siteld=siteld,

$url =url,

$baseUr | =baselr |

These mappings remove the dollar-sign ($) character from the names of special repository properties, because
this character is not valid in Guided Search property names.

You can exclude the automatic mappings by setting the addDef aul t Qut put NaneRepl acenent s property to
fal se.

76

7 Indexing the Content Management Repository

WCM Dimension Exporter Components

The Cont ent Mynt . Endeca. | ndex module contains two components of class
at g. endeca. i ndex. di nensi on. Reposi t oryTypeH er ar chyExporter:

+ The/at g/ content/endecal i ndex/ Arti cl eDi mensi onExport er component outputs dimension value
records for the ar ti cl e item type and related item types.

« The/ at g/ cont ent/ endeca/ i ndex/ Medi aCont ent Di mensi onExport er component outputs dimension
value records for the medi aCont ent item type and related item types.

These dimension values are added to ther ecor d. t ype dimension, which represents the hierarchy of repository
item types.

This section describes the default configuration of these components. For more information about
Reposi t or yTypeHi er ar chyExport er components, see the Overview of Indexing (page 17) and Configuring the
Indexing Components (page 27) chapters.

dimensionName

The name to give the dimension created from the hierarchy of repository item types. For both the
Articl eDi mensi onExporter and Medi aCont ent Di mensi onExport er components, this property is set by
linking to the r ecor dTypeName property of the/ at g/ endeca/ Appl i cati onConfi gurati on component:

di nensi onNanme”=/ at g/ endeca/ Appl i cati onConfi guration.recordTypeNane

If you want to change the value of the di mensi onName property, you should do so by changing the value of
Appl i cationConfiguration. recordTypeNane to ensure that other properties that link to it are changed as
well.

indexingOutputConfig

The component of class at g. endeca. i ndex. Endecal ndexi ngQut put Conf i g whose definition file
should be used for generating dimension value records from the repository item-type hierarchy. For the
Articl eDi mensi onExporter component, this property is set by default to:

i ndexi ngQut put Confi g=/ at g/ content/search/ Articl eQut put Config

For the Medi aCont ent Di mensi onExpor t er component, this property is set by default to:

i ndexi ngQut put Conf i g=/ at g/ cont ent / sear ch/ Medi aCont ent CQut put Confi g

documentSubmitter

The component (typically of class at g. endeca. i ndex. Recor dSt or eDocunment Subrmi t t er) to use to submit
records to the CAS dimension values record store. (See Document Submitter Components (page 37) for

more information.) For both the Arti cl eDi mensi onExport er and Medi aCont ent Di nensi onExport er
components, this property is set by default to:

docunent Submi tt er =/ at g/ endeca/ i ndex/ Di mensi onDocunent Subni tter

7 Indexing the Content Management Repository 77

WCM Schema Exporter Components

The Cont ent Mgnt . Endeca. | ndex module contains two components of class
at g. endeca. i ndex. schema. SchemaExporter:

« The/at g/ content/endeca/ i ndex/ Arti cl eSchemaExport er component generates schema
configuration for each property of the ar t i cl e item type specified in the Art i cl eQut put Conf i g definition
file.

« The/at g/ cont ent/ endeca/ i ndex/ Medi aCont ent SchemaExport er component generates
schema configuration for each property of the nedi aCont ent item type specified in the
Medi aCont ent Qut put Conf i g definition file.

The schema configuration generated for each repository item-type property specifies whether it should be
treated as a property or a dimension by Guided Search, whether it should be searchable, and the data type of
the property or dimension.

This section describes the default configuration of these components. For more information about
SchemaExport er components, see the Overview of Indexing (page 17) and Configuring the Indexing

Components (page 27) chapters.

This section describes the default configuration of these components.

indexingOutputConfig

The component of class at g. endeca. i ndex. Endecal ndexi ngQut put Confi g whose definition file should
be used for generating schema records. For the Art i cl eSchemaExport er component, this property is set by
default to:

i ndexi ngQut put Confi g=/ at g/ content/search/ Arti cl eQut put Config

For the Medi aCont ent SchemaExpor t er component, this property is set by default to:

i ndexi ngQut put Confi g=/ at g/ cont ent / sear ch/ Medi aCont ent Qut put Confi g

documentSubmitter

The component (typically of class at g. endeca. i ndex. Conf i gl mport Docunent Subni tt er) to use to submit
schema data to the Endeca Configuration Repository. (See Document Submitter Components (page 37) for more
information.) For both the Arti cl eSchemaExport er and Medi aSchenmaDi nensi onExport er components,
this property is set by default to:

docurnent Submi tt er =/ at g/ endeca/ i ndex/ Conf i gl npor t Docunent Submi tter

dimensionNameProviders

An array of components of a class that implements the
at g. endeca. i ndex. schema. Di nensi onNanePr ovi der interface. SchenaExport er uses these components
to create references from attribute names to dimension names.

Forthe Arti cl eSchemaExport er component, di nensi onNanePr ovi der s is set to:

78

7 Indexing the Content Management Repository

di nensi onNanmePr ovi der s+=Arti cl eDi mensi onExporter

For the Medi aCont ent SchenmaExpor t er component, di mensi onNanmePr ovi der s is set to:

di nensi onNanePr ovi der s+=Medi aCont ent Di mensi onExporter

WCM SimplelndexingAdmin Component

The Cont ent Mgnt . Endeca. | ndex module includes a/ at g/ cont ent /

endeca/ i ndex/ Cont ent Mgnt Si npl el ndexi ngAdni n component (of class

at g. endeca. i ndex. admi n. Si npl el ndexi ngAdni n) for managing the process of indexing data from

the content management repository. This component is similar to the / at g/ comrmer ce/ endeca/ i ndex/

Pr oduct Cat al ogSi npl el ndexi ngAdni n component, except that it is configured by default to index
articl e and medi aCont ent items rather than items in the product catalog repository. In addition, the
Cont ent Mynt Si npl el ndexi ngAdni n is configured to use a different EndecaScr i pt Ser vi ce component
(/ at g/ cont ent / endeca/ i ndex/ EndecaScri pt Ser vi ce) to invoke EAC scripts, but this component’s
configuration is identical to that of the / at g/ conmer ce/ endeca/ i ndex/ EndecaScr i pt Ser vi ce component
described in the EndecaScriptService (page 40) section of the Configuring the Indexing Components (page 27)
chapter.

If you prefer, you can configure a single Si npl el ndexi ngAdni n component to manage indexing

of both repositories. Oracle Commerce Reference Store uses this approach, reconfiguring the

Pr oduct Cat al 0ogSi npl el ndexi ngAdni n component to invoke the | ndexabl e components associated with
both repositories.

This section describes the default configuration of Cont ent Mynt Si npl el ndexi ngAdmi n. For more information
about these properties, see the ProductCatalogSimplelndexingAdmin (page 41) section of the Configuring the
Indexing Components (page 27) chapter.

phaseToPrioritiesAndTasks

This property defines the phases and tasks of an indexing job, and the order in which the phases are executed.
By default, this is set to:

phaseToPrioriti esAndTasks=\
Reposi t or yExport =10: \
Articl eSchemaExporter;\
Articl eDi mensi onExporter;\
/ at g/ content/search/ Arti cl eCut put Confi g;\
Medi aCont ent SchemaExporter;\
Medi aCont ent Di nensi onExporter;\
/ at g/ cont ent/ sear ch/ Medi aCont ent Qut put Confi g, \
Endecal ndexi ng=15: EndecaScri pt Servi ce

runTasksWithinPhaselnParallel

A boolean that controls whether to run tasks within a phase in parallel. Set to t r ue by default. If set to f al se,
the tasks are executed in sequence, in the order specified in the phaseToPri ori ti esAndTasks property.

7 Indexing the Content Management Repository 79

enableScheduledindexing

A boolean that controls whether to invoke indexing automatically on a specified schedule. Set to f al se by
default.

baselineSchedule

A String that specifies the schedule for performing baseline updates. Set to null by default. If you set
enabl eSchedul edl ndexi ng totr ue, set basel i neSchedul e to a String that conforms to one of the formats
accepted by classes implementing the at g. ser vi ce. schedul er. Schedul e interface.

partialSchedule

A String that specifies the schedule for performing partial updates. The format for the String is the same as the
format used for basel i neSchedul e. Set to null by default.

retryInMs

The amount of time (in milliseconds) to wait before retrying a scheduled indexing job if the first attempt
to execute it fails. Set by default to -1, which means no retry. If you change this value, you should set it to a
relatively short amount of time to ensure that the indexing job completes before the next scheduled job begins.

If Cont ent Mgnt Si npl el ndexi ngAdni n estimates that the retried job will not complete before the next
scheduled job, it skips the retry.

jobQueue

Specifies the component that manages queueing of index jobs. Set by default to / at g/ endeca/ i ndex/
I nMenor yJobQueue, which is the same component used by Pr oduct Cat al ogSi npl el ndexi ngAdni n.

80 7 Indexing the Content Management Repository

8 Indexing Dynamic ltem Types and
Properties

Creating new item descriptors and properties in a repository typically involves modifying the repository’s
database schema and XML definition file, and then restarting your application to make the changes available.
If you want to avoid restarting, however, the Oracle Commerce Platform provides an alternate mechanism

for dynamically creating subtypes of existing item types and adding properties to static and dynamic item
types. This mechanism involves creating metadata items for the subtypes and properties through a Content
Administration project and deploying these metadata items. The system then generates the new subtypes
and properties from the metadata, and adds them to the repository definition automatically. Data for these
properties is stored in database tables that are included specifically for this purpose in the default schema.

The Oracle Commerce Platform can create Endeca records from these items and properties and submit them to
Oracle Commerce Guided Search for indexing. You can add dynamic item types and properties to the definition
files of your Endecal ndexi ngQut put Conf i g components in the same way that you add static item types and
properties.

However, adding these item types and properties in this way requires restarting the Oracle Commerce Platform
to make the Endecal ndexi ngQut put Conf i g definition file changes available. To avoid restarting, you can
use an alternate approach to specify dynamic item types and properties for indexing without modifying
Endecal ndexi ngQut put Conf i g definition files. Instead, you provide the necessary specifications when you
create the metadata items that the dynamic types and properties are generated from.

This chapter describes how to specify indexing information for dynamic item types and properties without
requiring a restart. It includes the following sections:

Updating the Indexing Components (page 81)
Specifying Dynamic Items and Properties for Indexing (page 82)

Note that this chapter assumes you are already familiar with dynamic item types and properties. See the
Creating Dynamic Item Types and Properties chapter of the Content Administration Programming Guide.

Updating the Indexing Components

To enable specifying dynamic properties for indexing through attributes of the associated

metadata items, you must first change the configuration of some of the indexing components.

The Oracle Commerce Platform includes a subclass of the Endecal ndexi ngQut put Conf i g class,

at g. endeca. i ndex. Dynani cEndecal ndexi ngQut put Conf i g. For repositories that support dynamic item

8 Indexing Dynamic Item Types and Properties 81

types or properties, change the class of the corresponding Endecal ndexi ngQut put Conf i g components to the
Dynani cEndecal ndexi ngQut put Confi g class:

$cl ass=at g. endeca. i ndex. Dynam cEndecal ndexi ngQut put Confi g

The Oracle Commerce Platform also includes a subclass of the SchenmaExpor t er class,

at g. endeca. i ndex. schema. Dynani cSchemaExport er . For each Endecal ndexi ngQut put Confi g
component whose class is set to Dynani cEndecal ndexi ngQut put Conf i g, set the class of the corresponding
SchemaExport er component to Dynani cSchemaExporter:

$cl ass=at g. endeca. i ndex. schema. Dynani cSchenmaExport er

In addition, for repositories that support dynamic item types or properties, you should

set the f or ceToBasel i neOnChange property tot r ue on associated components of the

Reposi t or yTypeHi er ar chyExport er and Dynani cSchemaExport er classes. These settings ensure that a
baseline index is performed when you add or modify dynamic item types or properties. New dynamic item types
and properties do not appear in the MDEX until a baseline index has been performed.

Specifying Dynamic Items and Properties for Indexing

If a static item type is included in an Endecal ndexi ngQut put Conf i g definition file, then any dynamic
item types that are descendants of that item type are automatically available for indexing as well. For
example, if you create an el ect ri cal Product subtype of the pr oduct item type (which is included in the
Pr oduct Cat al ogQut put Conf i g definition file), el ectri cal Product items will be indexed, as will any
subtypes of the el ectri cal Product item type.

To specify that a dynamic property should be included in the index (either a dynamic property of a static item
type or a subtype-specific property of a dynamic subtype), you set the sear chabl e attribute of the property to
t rue. In addition, you need to set at least one of the following attributes to t r ue to specify how the property is
handled in the MDEX:

+ text Sear chabl e - Setting to t r ue specifies that the values of the property should be treated as searchable
text. Equivalent to the t ext - sear chabl e attribute in Endecal ndexi ngQut put Conf i g definition files.

+ wi | dcar dSear chabl e — Setting to t r ue specifies that the values of the property should be treated as
searchable text and support the use of the asterisk (*) as a wildcard in search terms. Equivalent to the
wi | dcar d- sear chabl e attribute in Endecal ndexi ngQut put Conf i g definition files.

+ di mensi on -- Setting to t r ue specifies that the property should be treated as a dimension. Equivalent to the
i s-di mensi on attribute in Endecal ndexi ngQut put Conf i g definition files.

To set these attributes, you create das_gsa_dynani c_at t r metadata items that are associated with

the dynamic property when it is generated. For example, the following XML import file creates a
das_gsa_dynani c_pr op metadata item for a dynamic property, and creates das_gsa_dynamni c_at tr items
that set attributes to specify that the property should be included in the MDEX:

<add-itemitemdescriptor="das_gsa_dynam c_prop" id="wattage"

82

8 Indexing Dynamic Item Types and Properties

reposi tory="/atg/ repository/dynam c/ Dynam cMet adat aReposi t or y"
no- checki n="f al se">
<set-property nane="property_nane"><![CDATA[wat t age]] ></ set - property>
<set-property nanme="item descriptor"><![CDATA[el ectri cal Product]]>
</ set-property>
<set-property nane="data_type"><![CDATA[f| oat]] ></set - property>
<set-property nanme="repository">
<! [CDATA[/ at g/ cormer ce/ cat al og/ Product Cat al og]] ></ set - pr operty>
</ add-itemr

<add-itemitemdescriptor="das_gsa_dynam c_attr" id="wattageAttr1l"
no- checki n="f al se" >
<set-property name="attri bute_nanme"><![CDATA[w it abl e]] ></ set - property>
<set-property nanme="item descriptor"><![CDATAl el ectri cal Product]]>
</ set-property>
<set-property nanme="property_nane"><![CDATA[wat t age]] ></ set - property>
<set-property name="repository">
<! [CDATA[/ at g/ cormer ce/ cat al og/ Product Cat al og]] ></ set - property>
<set-property nanme="is_dynami c_property"><![CDATA[true]] ></ set - property>
<set-property nanme="data_type"><![CDATA[string]]></set-property>
<set-property nanme="val ue"><![CDATA[true]] ></ set - property>
</ add-itenp

<add-itemitemdescriptor="das_gsa_dynam c_attr" id="wattageAttr2"
no- checki n="f al se" >
<set-property nanme="attribute_name"><![CDATA[sear chabl e]] ></ set - property>
<set-property nanme="itemdescriptor"><![CDATA[el ectri cal Product]]>
</ set-property>
<set-property nane="property_nane"><![CDATA[wat t age]] ></ set - pr operty>
<set-property name="repository">
<! [CDATA[/ at g/ conmer ce/ cat al og/ Pr oduct Cat al og]] ></ set - property>
<set-property nanme="is_dynam c_property"><![CODATA[true]] ></set-property>
<set-property nane="data_type"><![CDATA[stri ng]]></set-property>
<set-property nanme="val ue"><![CDATA[true]] ></ set - property>
</ add-itenp

<add-itemitemdescriptor="das_gsa_dynam c_attr" id="wattageAttr3"
no- checki n="fal se">
<set-property nane="attribute_name"><![CDATA[di mensi on]] ></ set - property>
<set-property nanme="item descriptor"><![CDATA[el ectri cal Product]]>
</ set-property>
<set-property nane="property_nane"><![CDATA[wat t age]] ></ set - property>
<set-property nanme="repository">
<! [CDATA[/ at g/ commer ce/ cat al og/ Product Cat al og]] ></ set - pr operty>
<set-property nanme="is_dynam c_property"><![CODATA[true]] ></set-property>
<set-property nane="data_type"><![CDATA[string]]></set-property>
<set-property name="val ue"><![CDATA[true]] ></ set - property>
</ add-itenmr

Indexing settings that are specified through metadata item attributes override equivalent settings specified in
an Endecal ndexi ngQut put Conf i g definition file. In the example above, if the dynamic property is specified
for indexing in the definition file and its i s- di nensi on attribute is set to f al se, this value is overridden by the
di mensi on attribute setting in the das_gsa_dynami c_at t r metadata item. Similarly, if you want to disable
indexing of a property specified in an Endecal ndexi ngQut put Conf i g definition file, you can do this by
creating adas_gsa_dynamni c_at t r metadata item that sets the sear chabl e attribute to f al se.

Note that the available options for configuring indexing settings through repository item attributes are
limited. Equivalent attributes exist only for a subset of the indexing settings that can be configured through
Endecal ndexi ngQut put Conf i g definition files.

8 Indexing Dynamic Item Types and Properties 83

Specifying the Output Property Name

By default, the output name of a dynamic property in generated records is:

itemtype. property-nanme

For example, a wei ght dynamic property of the sku static item type would appear in the MDEX as sku. wei ght .
You can override the default output property name by setting the optional out put Name attribute for the
dynamic property. For example, for a property to appear as sku. wei ght I nG ans:

<add-itemitemdescriptor="das_gsa_dynamc_attr" id="weightAttrl"
no- checki n="f al se" >
<set-property name="attribute_name"><![CDATA[out put Nane]] ></ set - property>
<set-property nane="itemdescri ptor"><![CDATA[sku]] >
</ set-property>
<set-property nanme="property_nane"><![COATA] wei ght]] ></ set - property>
<set-property name="repository">
<! [CDATA[/ at g/ cormer ce/ cat al og/ Product Cat al og]] ></ set - property>
<set-property nanme="is_dynam c_property"><![CODATA[true]]></set-property>
<set-property nane="data_type"><![CDATA[stri ng]]></set-property>
<set-property nanme="val ue"><![CDATA[sku. wei ght | nGrans]] ></ set - property>
</ add-itemnp

The out put Nane attribute is equivalent to the out put - nanme attribute in Endecal ndexi ngQut put Confi g
definition files.

For dynamic properties of dynamic subtypes, be sure to use the out put Name attribute to specify the output
name, even if you are not overriding the default value. Doing this ensures that the correcti t em t ype prefix is
included. For example, if you have an el ectri cal Product subtype of the pr oduct item type, and you add a
wat t age property to el ectri cal Product, you could specify the output name as follows:

<add-itemitemdescriptor="das_gsa dynam c_attr" id="wattageAttr4"
no- checki n="fal se">
<set-property nanme="attribute_nanme"><![CDATA[out put Nane]] ></ set - property>
<set-property nanme="itemdescriptor"><![CDATA[el ectri cal Product]]>
</ set-property>
<set-property nane="property_nane"><![CDATA[wat t age]] ></ set - property>
<set-property name="repository">
<! [CDATA[/ at g/ cormer ce/ cat al og/ Product Cat al og]] ></ set - pr operty>
<set-property nanme="is_dynam c_property"><![CDATA[true]] ></ set-property>
<set-property nane="data_type"><![CDATA[stri ng]]></set-property>
<set-property nane="val ue"><![CDATA[el ectri cal Product. wattage]]></set-property>
</ add-iten>

Adding Properties to a Search Interface

In addition to marking dynamic properties as searchable as described above, you must also add them to a
search interface in Oracle Commerce Guided Search. See the Oracle Commerce Guided Search MDEX Engine
Developer’s Guide for information about search interfaces.

84

8 Indexing Dynamic Item Types and Properties

9 Query Integration

The Oracle Commerce Core Platform provides two options when querying for content served by the Oracle
Commerce Assembler:

+ Invoking the Assembler via a servlet as part of the Core Platform’s request handling pipeline. This option
allows the call to the Assembler to happen early in the page’s life cycle, which is desirable when the bulk of
the page’s content is served by the Assembler.

+ Invoking the Assembler from within a page, using a servlet bean. This option allows the call to the Assembler
to occur on a just-in-time basis for the portion of the page that requires Assembler-served content. This
approach is desirable when only a small portion of the page requires Assembler content.

The remainder of this chapter provides more detail on both configurations and the components that facilitate
them. It includes these sections:

Content Item Classes (page 85)

Invoking the Assembler in the Request Handling Pipeline (page 86)
Invoking the Assembler using the InvokeAssembler Servlet Bean (page 90)
Choosing Between Pipeline Invocation and Servlet Bean Invocation (page 93)
Components for Invoking the Assembler (page 93)

Defining Global Assembler Settings (page 100)

Connecting to the Workbench and MDEX (page 100)

Querying the Assembler (page 106)

Cartridge Handlers and Their Supporting Components (page 107)
Providing Access to the HTTP Request to the Cartridges (page 108)
Controlling How Cartridges Generate Link URLs (page 108)

Retrieving Renderers (page 112)

Configuring Keyword Redirects (page 114)

Content Item Classes

Similar to HTTP requests, requests that are made to the Assembler use the paradigm
of a request object and a response object. Both of these objects are of type

9 Query Integration 85

com endeca. i nfront . assenbl er. Cont ent | t em There are two subclasses of Cont ent | t em depending
on the type of content being requested: com endeca. i nfront . cartri dge. Cont ent I ncl ude and
com endeca. i nfront. cartridge. Cont ent Sl ot Confi g.

Cont ent I ncl ude is used to request pages defined in the Site Pages section of Experience Manager. Invoking
the Assembler for a page request is also referred to as “invoking the Assembler with a Cont ent | ncl ude.” The
handler for the Cont ent | ncl ude component first tries to retrieve the content at the exact URI specified in the
Cont ent I ncl ude. If there is no content at that location, the handler attempts to find the deepest matching
path. For example, assume a br owse page exists in the Experience Manager Site Pages definitions for Si t eA.
Passing in a/ br owse path for Si t eAwill match this br owse page. Passing in a/ br owse/ seo/ ur | path will
also match this page because the deepest matching path that the handler can find for / br owse/ seo/ url is/
br owse (this example assumes that a br owse/ seo/ ur | page does not exist in Experience Manager).

Cont ent Sl ot Conf i g is used to request content from a content folder that has been defined in the Content
section of Experience Manager. Invoking the Assembler for a content folder request is also referred to as
“invoking the Assembler with a Cont ent Sl ot item.” A content folder request must specify the name of the
content folder and the number of items to retrieve from that folder. The handler for Cont ent Sl ot Confi g
uses these parameters to form a content trigger request that fetches the top item (or items) from the folder
by priority. The Assembler then processes the content items from the folder and returns them as part of the
response for rendering.

A third class, com endeca. i nfront. cartri dge. Redi r ect Anar eCont ent I ncl ude, also exists.

Redi r ect Awar eCont ent | ncl ude is a subclass of the Cont ent I ncl ude class and it supports requests
for configurations that use keyword redirects. The remainder of this chapter makes a distinction between
Cont ent I ncl ude, Cont ent Sl ot Conf i g, and Redi r ect Awar eCont ent | ncl ude classes when necessary.
When the distinction is not required, the more general Cont ent | t emis used.

Note: For more information on the Cont ent | ncl ude, Cont ent Sl ot Confi g, and
Redi r ect Awar eCont ent | ncl ude classes and their associated handler classes, refer to the Oracle Commerce
Guided Search Assembler Application Developer’s Guide.

Invoking the Assembler in the Request Handling Pipeline

In this option, the Assembler is invoked early in the page rendering process as part of the Oracle Commerce Core
Platform request handling pipeline. This option is appropriate when the bulk of a page’s content is served by the
Assembler. This guide refers to these pages as “Assembler-driven pages.”

Assembler-driven pages are generally those pages that benefit greatly from increased merchandiser control. For
example, a home page is a good candidate to be Assembler-driven because merchandisers want to customize
their site’s home page based on the season, a current sale, or a customer’s profile. A search results page is also

a good candidate because merchandisers may want to control the order of search results, specify special brand
landing pages for particular searches, and so on. The Oracle Commerce Experience Manager tool, which works
in conjunction with the Assembler API, is designed to facilitate increased merchandiser control, therefore pages
that need a high level of merchandiser control are best served through the Assembler API/Experience Manager
combination.

The content that the Assembler returns to the client browser can take several forms: JSP, XML, or JSON, as
described in the following sections.

86 9 Query Integration

Using a JSP Renderer to Render Content

The request-handling architecture for an Assembler-driven JSP page looks like this:

16, Inclede to path retumed by
ContentltemToRendererPath dsprrenderContentitem

18
HTML output I 14, Recursively invake

dsprenderContentitem
to get renderer paths
for sub-Contentltems

JSP rendering pages

15. Get renderer path for sub-Contentitem

13, Render the page; sel the contentitem
aliribute on the HitpServietRequest

12. Get renderer path for
- . 4 »| ContentitemToRendererPath
Reguest 11— Applicatian f—2—»{ F'.equelsil'_landllng —3—» AssemblerPipelineSarviet root Contentltem
Server pipeline
4. Call AssemblerTools.invokeAssembler|)
11. Return Contentitem
5. Invoke
— | AssemblerTool
MucleusAssemblerFactory 55 rieols
MucleusAssemblerFactory
10. Retum Caontentliem
7. Call Nucleusfssembler.assemble()
¥
&. Retumn a
NucleusAssembler instance | NucleusAssembler
I [

8. Create an initial version of 9a. Call getCartridgeHandler() 9b. Return manipulated (or

the root Contentliem and for each Contentltam replaced) Contentltem
any sub-Contentlitems l
h 4 ¥
XML Oracle Commerce
Conflguration Conﬂgu_ratmn CartridgeHandlers
Repository
(base (Experience
configuration) Menager cha)

In this diagram, the following happens:
1. The application server receives a request.
2. The application server passes the request to the Oracle Commerce Core Platform request handling pipeline.

3. The request handling pipeline does some preliminary work, such as setting up the profile and determining
which Oracle Commerce Platform site the request is for. At the appropriate point, the pipeline invokes the /
at g/ endeca/ assenbl er/ Assenbl er Pi pel i neServl et.

4. The Assenbl er Pi pel i neSer vl et determines if the request is for a page or a content folder in
Experience Manager and creates either a Redi r ect Awar eCont ent I ncl ude object (for a page) or
a Cont ent Sl ot Conf i g object (for a content folder). Then, Assenbl er Pi pel i neSer vl et calls the
i nvokeAssenbl er () method on the/ at g/ endeca/ assenbl er /Assenbl er Tool s component and passes
it the request object it created.

9 Query Integration 87

5. The Assenbl er Tool s component invokes the cr eat eAssenbl er () method on the/ at g/ endeca/
assenbl er /Nucl eusAssenbl er Fact or y component.

6. The Nucl eusAssenbl er Fact or y component returns an at g. endeca. assenbl er. Nucl eusAssenbl er
instance.

7. The Assenbl er Tool s component invokes the assenbl e() method on the Nucl eusAssenbl er
instance and passes it the request object. The handler for the request object (which may be the
Redi r ect Awar eCont ent | ncl udeHandl er or Cont ent Sl ot Conf i gHandl er, depending on the type of
request object passed in) resolves a connection to the Workbench and/or the MDEX. For page requests, the
handler also invokes a series of other components that transform the request URL into a URI that contains the
path to the page in Experience Manager.

8. The Nucl eusAssenbl er instance assembles the content for the request URI. Content, in this case,
corresponds to a hierarchical set of cartridges and their associated data. For each cartridge, the content starts
with any default data that was specified in the Experience Manager cartridge configuration files when the
cartridge was added to the page. That data is further modified and augmented with any data stored in the
Oracle Commerce Configuration Repository (that is, changes made and saved via the Experience Manager Ul).

9. Next, the Nucl eusAssenbl er instance calls the Nucl eusAssenbl er. get Cartri dgehandl er () method,
passing in the cartridge’s Cont ent | t emtype, to retrieve the correct handler for the cartridge. The handler
gets resolved and executed and the results are stored in the cartridge’s associated Cont ent | t em This
process happens recursively so that the assembled content takes the form of a response Cont ent | t emthat
consists of a root Cont ent | t emwhich may have sub-Cont ent I t emobjects as attributes.

Note: If a cartridge handler does not exist for a Cont ent | t em the initial version of the item, created in step 8,
is returned.

10.The Nucl eusAssenbl er instance returns the root Cont ent | t emto the Assenbl er Tool s component.
11.The Assenbl er Tool s component returns the root Cont ent | t emto Assenbl er Pi pel i neServl et .

12.The Assenbl er Pi pel i neSer vl et component calls the / at g/ endeca/ assenbl er/ cartri dge/
render er / Cont ent | t enfToRender er Pat h component to get the path to the renderer (in this case, a JSP
file) for the root Cont ent 1 t em The Cont ent | t enlToRender er Pat h component uses pattern matching to
match the Cont ent | t emtype to a JSP file; for example, in Commerce Reference Store, if the Cont ent I t em
type is Br eadcr unbs, the JSP file is/ cart ri dges/ Br eadcr unbs/ Br eadcr unbs. j sp.

Note: See ContentltemToRendererPath (page 112) for more details on how the renderer path is calculated.

13.The Assenbl er Pi pel i neSer vl et component sets the assembled Cont ent | t emasacontent | tem
parameter on the Ht t pSer vl et Request, then forwards the request to the JSP determined by the
Cont ent | t enToRender er Pat h component

14.Due to the nested nature of Cont ent | t ens, the JSP for the root Cont ent | t emmay have to render
sub-Cont ent | t ens, and those sub-Cont ent | t ems may have their own sub-Cont ent | t ens as well. As such,
each JSP renderer, from the root on down, must include dsp: r ender Cont ent | t emtags for its immediate
sub-Cont ent I t ens. This configuration creates a recursive scenario that allows all sub-Cont ent I t ens to be
rendered.

15.The dsp: r ender Cont ent | t emtag invokes the Cont ent | t enlToRender er Pat h component to retrieve the
JSP renderer for the current sub-Cont ent | t em The retrieved JSP is then included in the rendered page.

The dsp: render Cont ent | t emtag also sets the cont ent | t emattribute on the Ht t pSer vl et Request,
thereby making each sub-Cont ent | t emavailable to its renderer; however, this value lasts only for the
duration of the i ncl ude so that after the i ncl ude is done, the cont ent I t emattribute’s value returns to the
root Content | t em

9 Query Integration

16.The JSPs returned by the Cont ent | t enlToRender er Pat h component are included in the response.

17.The response is returned to the browser.

Rendering XML or JSON Content

The process for handling XML or JSON output is very similar to that for JSPs, with some minor modifications. The
architecture diagram for an XML or JSON response looks like the following (note that this diagram is identical to
the JSP diagram except for steps 13 and 14):

Client browser

13, Retwrn XML or JSON content

licati handii &Enigﬁ:n:;:;izgrm Endeca seralizers
Request |—1—»] APSF":E“U" 2| Requesthanding | 5 ¢ ot o XL JSON—»| AssemblerPipelineServiet | saiatun Gomentitem (XML or JSON]
ver pipeline be—
4. Call AssamblerTools invokedssemblen)
11. Return Contentltem
5. Irmvoke:
N bles Tool
MNucleusAssemblerFactory ssemberioats
MucleusAssemblerFactory
10. Return Contentltam
7. Call Nudleushssembler.assemblel)
Y
6. Retum a

" MucleusAssembler instance NucleusAssembler

8. Create an initial version of 9a. Call gelCariridgeHandler() 8b, Return manipulated (or

the root Cantentliem and for each Cententliem replaced) Contentltem
any sub-Contentltems
l _

¥ ¥
XML Oracle _Comr[uama i
Configuration Configuration CartridgeHandlers
Repository
(base (Experience
configuration) Manager changes)

Serializing the content to XML or JSON is controlled by the Assenbl er Pi pel i neSer vl et . f or mat Par anNane
property. This property specifies the name of the request parameter that must be passed in order to serialize the
content. This property defaults to f or mat , meaning that, in order to serialize output, the request must include
af ormat parameter with an acceptable value. Acceptable values are xm and j son. For example, the following
URL returns j son for a content folder request:

http://1 ocal host: 8080/ assenbl er/ assenbl er ?assenbl er Cont ent Col | ecti on=/ content/
Br owsePageCol | ecti on&f or mat =j son

This example returns j son for a page request:

9 Query Integration 89

http://1 ocal host: 8080/ assenbl er/ br owse?f or mat =j son

If the request specifies the f or mat parameter and either XM or JSON as the value, then after the
Assenbl er Pi pel i neSer vl et component receives the response Cont ent | t emfrom Assenbl er Tool s,
it calls the appropriate serializer to reformat the response into XML or JSON, respectively. The

Assenbl er Pi pel i neSer vl et component then returns the reformatted content to the client browser.

Setting the Assenbl er Pi pel i neSer vl et . f or mat Par anNane property to nul | disables the serializing feature
and suppresses the rendering of the response entirely. This feature allows you to suppress content as needed in
production environments.

When the Assembler Returns an Empty Contentltem

In the case where the Nucl eusAssenbl er instance returns a null response or the response

Cont ent | t emcontains an @r r or key (in other words, the request is not an Assembler request), the
Assenbl er Pi pel i neSer vl et component simply passes the request back to the Core Platform request
handling pipeline for further processing. This scenario is shown in the diagram below:

10, Pass request back
to the reguest
l handling pipeline

Request 1—» Application 2—» Raque:st handllng 3—»| AssemblerPipelineSerdet [«—
Server pipeline

4, Call AssemblerTools invokeAssembler()
¥ 9. Return an empty Contentliem

5. Invoke
— AssemblerTool
MNucleusAssemblerFactory smblerieols
NucleusAssemblerFactary
{

8. Returns an empty Contentitem

7. Call NucleusAssembler. assemble])

l

> MucleusAssembler

6. Retrn a
Mucleusfssembler instance

Note that you can configure an application to bypass the Assenbl er Pi pel i neSer vl et and avoid this scenario.
For more information, see the AssemblerPipelineServlet (page 93) section.

Invoking the Assembler using the InvokeAssembler
Servlet Bean

Invoking the Assembler from within a page, using a servlet bean, allows the call to the Assembler to occur on a
just-in-time basis for the portion of the page that requires Assembler-served content. This approach is desirable

20 9 Query Integration

when only a small portion of the page requires Assembler content. This guide refers to these pages as “Nucleus-

driven pages.”

The request-handling architecture for an Nucleus-driven JSP page looks like this:

JSP

=droplet name="InvokeAssembler” .., =
<%|-- other params --%=
<dsp-oparam name="output*>

=dsprrendarContentliem contantitem="${contentltem)™ >—

</dspoparam=
<fdraplet=

» HTML output
14. Render HTNML
13. Include to path returned by
ContentltemToRendererPath
|11 Invoke dsprrenderContentitemn to | dspirenderContentilem
get renderer path for Cantentltern
x

MucleusAssemblerFactory

4. Retum a

MucleusAssembler instance

1. Call InvokeAssembler

12. Get renderer path for Contentltermn

10. Retum Contentliemn v

InvokeAssembler

GontentltemToRendererPath

2. Call AssemblerTools invokeAssembler()

3. Invoke

MucleusAssemblerFactory

AssamblerTools

8. Return Contentltem

8. Return Contentltem

5. Call NucleusAssembler assemble()

g

Nucleusfssembler

6. Create an initial version of
the root Contentltem and

any sub-Contentltems.

ML
Configuration
(basae
configuration)

Cracle Commerca
Configuraticn
Repository
{Experience
Manager changes)

In this diagram, the following happens:

| &

Ta. Call getCartridgeHandler() 7h. Return manipulated (or

for each Contentltem replaced) Contantltam

CartridgeHandlers

1. The JSP page code calls the | nvokeAssenbl er servlet bean and passes it either the i ncl udePat h
parameter, for a page request, or the cont ent Col | ect i on parameter, for a content folder request.

2. Thel nvokeAssenbl er servlet bean parses thei ncl udePat h or cont ent Col | ect i on parameter
into a request object, in the form of a Redi r ect Awar eCont ent | ncl ude object (for a page) or a
Cont ent Sl ot Conf i g object (for a content folder). Then, the | nvokeAssenbl er servlet bean calls the
i nvokeAssenbl er () method on the/ at g/ endeca/ assenbl er /Assenbl er Tool s component and passes
it the request object it created.

3. The Assenbl er Tool s component invokes the cr eat eAssenbl er () method on the/ at g/ endeca/
assenbl er /Nucl eusAssenbl er Fact ory component.

9 Query Integration

91

8.

9.

. The Nucl eusAssenbl er Fact ory component returns an at g. endeca. assenbl er. Nucl eusAssenbl er

instance.

. The Assenbl er Tool s component invokes the assenbl e() method on the Nucl eusAssenbl er

instance and passes it the request object. The handler for the request object (which may be the

Redi r ect Awar eCont ent | ncl udeHandl er or Cont ent Sl ot Conf i gHandl er, depending on the type of
request object passed in) resolves a connection to the Workbench and/or the MDEX. For page requests, the
handler also invokes a series of other components that transform the request URL into a URI that contains the
path to the page in Experience Manager.

. The Nucl eusAssenbl er instance assembles the correct content for the request URI. Content, in this case,

corresponds to a hierarchical set of cartridges and their associated data. For each cartridge, the content starts
with any default data that was specified in the Experience Manager cartridge configuration files when the
cartridge was added to the page. That data is further modified and augmented with any data stored in the
Oracle Commerce Configuration Repository (that is, changes made and saved via the Experience Manager Ul).

. Next, the Nucl eusAssenbl er instance calls the Nucl eusAssenbl er. get Cartri dgehandl er () method,

passing in the cartridge’s Cont ent | t emtype, to retrieve the correct handler for the cartridge. The handler
gets resolved and executed and the results are stored in the cartridge’s associated Cont ent I t em This
process happens recursively so that the assembled content takes the form of a response Cont ent | t emthat
consists of a root Cont ent | t emwhich may have sub-Cont ent | t emobjects as attributes.

Note: If a cartridge handler does not exist for a Cont ent | t em the initial version of the item, created in step 6,
is returned.

The Nucl eusAssenbl er instance returns the root Cont ent | t emto the Assenbl er Tool s component.

The Assenbl er Tool s component returns the root Cont ent | t emto the | nvokeAssenbl er servlet bean.

10.When the Cont ent | t emis not empty, the | nvokeAssenbl er servlet bean’s out put oparam is rendered.

In this example, we assume that the out put oparam uses a dsp: r ender Cont ent | t emtag to call the

/ at g/ endecal/ assenbl er/ cartridge/ renderer/ Cont ent |t enlToRender er Pat h component to
get the path to the JSP renderer for the root Cont ent | t em However, choosing when and how many
times to invoke dsp: r ender Cont ent | t emdepends on what the application needs to do. It may make
sense to invoke dsp: r ender Cont ent | t emfor the root Cont ent | t em and then recursively invoke

dsp: render Cont ent | t emfor all the sub-Cont ent | t ens via additional dsp: r ender Cont ent | t emtags.
Alternatively, you could take a more targeted approach where you invoke dsp: r ender Cont ent | t emfor
individual sub-Cont ent | t ens as needed.

Note that the dsp: r ender Cont ent | t emtag also sets the cont ent | t emattribute on the
Ht t pSer vl et Request , thereby making the Cont ent | t emavailable to the renderers. This value lasts for the
duration of the i ncl ude only.

11.The Cont ent | t enilToRender er Pat h component returns the correct renderer for the Cont ent I t em

12.The JSP returned by Cont ent | t emToRender er Pat h is included in the response.

13.The response is returned to the browser.

92

9 Query Integration

Choosing Between Pipeline Invocation and Servlet Bean
Invocation

When choosing whether to use pipeline invocation or servlet bean invocation to retrieve content from the
Assembiler, it is useful to keep in mind the following considerations:

+ The pipeline servlet operates at an HTTP request level. HTTP requests often map to entire pages in Experience
Manager, making such pages good candidates for pipeline servlet invocation.

+ The servlet bean is useful when only a portion of a page needs to be managed by the Experience Manager
user. This type of page can use the servlet bean to request that portion’s content from the Assembler.

+ For performance reasons, Oracle recommends minimizing the number of servlet bean invocations on any
given page.

+ Cartridges that are intended to work on the same result set should all be retrieved during the same Assembler
invocation, regardless of the invocation type you use. For example, the search results, breadcrumbs, and
navigation cartridges should all return content that is based on the same results set.

« If your business users need the ability to create their own page URLs, for example, / br owse/ W nt er Sal e,
those pages should be managed in Experience Manager and they should be retrieved via pipeline servlet
invocation to ensure that the URL is recognized as an Assembler URL and properly directed to the Assembler.
Conversely, if you have pages whose URLs must not be edited, you can manage those pages as Nucleus-driven
pages and provide access to any configurable content in Experience Manager through a servlet bean.

Components for Invoking the Assembler

This section provides more details on the components that invoke the Assembler.

AssemblerPipelineServiet

The/ at g/ endeca/ assenbl er/ Assenbl er Pi pel i neSer vl et component is part of Oracle Commerce Core
Platform request handling pipeline and it is of class at g. endeca. assenbl er. Assenbl er Pi pel i neServl et .
Assenbl er Pi pel i neSer vl et ’s primary task is to invoke the Assembler, passing in a Cont ent | ncl ude (for

a page request) or a Cont ent Sl ot Conf i g (for a content folder request). Assenbl er Pi pel i neSer vl et

is started when the Oracle Commerce Platform server is started. The / I ni ti al . properti es file under

DAF. Endeca. Assenbl er configures this behavior by adding Assenbl er Pi pel i neSer vl et to its initial
services.

initial Services+=\
/ at g/ endecal assenbl er/ Assenbl er Pi pel i neSer vl et

On invocation of the Assenbl er Pi pel i neSer vl et . servi ce() method, several items are checked to
determine whether or not the servlet should execute:

+ The Assenbl er Pi pel i neSer vl et . enabl e property: If this property is set to f al se, the servlet is disabled
and the request will be passed. This property defaults to t r ue.

9 Query Integration 93

« The at g. assenbl er context parameter: A web application must explicitly set the at g. assenbl er context
parameter to true in its web. xn file, otherwise the Assenbl er Pi pel i neSer vl et will pass the request. To
set the at g. assenbl er context parameter to t r ue, add the following to the application’s web. xni file:

<cont ext - par an»

<par am name>at g. assenbl er </ par am nanme>
<par am val ue>t r ue</ par am val ue>

</ cont ext - par an

Applications that never have a need to invoke the Assembler, should set at g. assenbl er tof al se to bypass
the servlet and avoid making requests to the Assembler.

« The MIME type of the request: Assenbl er Pi pel i neSer vl et uses the request URI to determine the MIME
type of the request. If Assenbl er Pi pel i neSer vl et is not allowed to process the specified MIME type, it
passes the request. By default, the Assenbl er Pi pel i neSer vl et component passes all known MIME types
and only executes for a null MIME type. See Bypassing or Invoking the Assembler Based On MIME Type (page
95) for more information on customizing the MIME types that the Assenbl er Pi pel i neSer vl et is
allowed to execute.

+ The Assenbl er Pi pel i neSer vl et . i gnor eRequest URI Pat t er n property: This optional property contains
a regular expression that defines a pattern for URIs that should be disallowed. When this property is set, the
request URI is compared against the specified regular expression and, if the current URI matches the regular
expression, the request is passed. Out of the box, this property is not set.

If all of the above checks pass, Assenbl er Pi pel i neSer vl et executes. Its first task is to determine whether the
request is a page request or a content folder request. Assenbl er Pi pel i neSer vl et makes this determination
based on the URL, as described in the following sections.

Content Folder Request Identification and Handling

The URL for a content folder request has some additional requirements that the URL for a page request
does not have. Specifically, the URL for a content folder must have an/ assenbl er sub-path and an
assenbl er Cont ent Col | ect i on request parameter. For example:

/ crs/ storeus/assenbl er/ ?assenbl er Cont ent Col | ecti on=Search Box Auto Suggest Content

The/ assenbl er sub-path can take any of these forms:

» [assenbl er

« <cont ext -r oot >/ assenbl er (for example, cr s/ assenbl er)

+ <site.productionURL>/ assenbl er (for example,/ crs/ st or eus/ assenbl er)

The assenbl er Cont ent Col | ect i on request parameter must specify the name of a content folder. If these
content folder URL conditions are met, Assenbl er Pi pel i neSer vl et creates a Cont ent Sl ot Conf i g object
and passes it to the Assembler:

contentltem = new Content Sl ot Confi g(content, ruleLimt);

A content folder URL may also include the optional assenbl er Rul eLi ri t request parameter. This is an integer
value that is used as an argument to the Cont ent Sl ot Conf i g constructor. It determines the number of items
to return from the content folder. If assenbl er Rul eLi ni t is not set or is an invalid value, then the default value
of 1is used.

94 9 Query Integration

/ crs/ storeus/assenbl er/ ?assenbl er Cont ent Col | ecti on=Search Box Auto Suggest
Cont ent &ssenbl er Rul eLi mi t =3

If the content folder does not exist, the Assembler returns a content item whose cont ent s value is empty. For
example, this URL:

http://1 ocal host: 8080/ assenbl er/ assenbl er ?assenbl er Cont ent Col | ecti on=/ content/
Br owsePageCol | ecti on&f or mat =j son

Results in this data:

{"@ype":"ContentSlot","contents":[],"ruleLimt":1, "contentCollection":"\/content\/
Br owsePageCol | ecti on"}

Page Request Identification and Handling

If the URL does not fit the requirements for a content folder request, the Assenbl er Pi pel i neSer vl et
component assumes that this is a page request. A page request URL must be transformed into a URI that
matches one of the pages defined Experience Manager. See the Calculating the Content Path from the Page
Request URL (page 97) section for details on how the URI is calculated.

Bypassing or Invoking the Assembler Based On MIME Type

By default, the Assenbl er Pi pel i neSer vl et limits its Assembler invocation to request paths that do not
match a known MIME type. It does this via a reference to the / at g/ dynano/ ser vl et / pi pel i ne/ M neTyper
component, which is part of the Oracle Commerce Core Platform system that routes and executes requests
based on matching MIME types. This configuration prevents the Assenbl er Pi pel i neSer vl et from
intercepting requests for JSP, CSS, HTML, and JavaScript files, among others.

You can add allowed MIME types or disable Assembler invocation for unknown MIME types using the following
Assenbl er Pi pel i neSer vl et configurable properties:

Whet her to invoke the Assenbler for a potential match on a request
that doesn't match a known M ME type (typically a directory).

H OH HH

assenbl eUnknownM neTypes=t rue

A String array of allowed MME types. Defaults to null, but
can be set to a MME type if you want to pass certain extensions to
the Assenbler (for exanple, ".asni' or ".endeca").

H OH H H R

al | onedM neTypes=

See the Platform Programming Guide for more information on the M meTyper component.

InvokeAssembler

The/ at g/ endeca/ assenbl er/ dropl et/ | nvokeAssenbl er servlet bean, which is of class
at g. endeca. assenbl er. dropl et . | nvokeAssenbl er, provides a means of invoking the Assembler via
a servlet bean on a page. It is useful on pages that contain mostly Nucleus-driven content, with a section of

9 Query Integration 95

Assembler-based content. Note that, for pages that have multiple sections of Assembler content, you should
consider combining the requests for that content into a single | nvokeAssenbl er call for performance reasons.

Input Parameters

The | nvokeAssenbl er servlet bean has two input parameters, i ncl udePat h and cont ent Col | ecti on,
described below. Note that you must provide either ani ncl udePat h ora cont ent Col | ect i on parameter, but
you cannot provide both.

includePath

Use the i ncl udePat h parameter for a page request. The path you specify must correspond to the name of a
page in Experience Manager and is relative to the current site. For example, if i ncl udePat h is set to/ br onse
and the current site is Site A, the content for Site A’s br owse page is retrieved. | nvokeAssenbl er creates a
Cont ent | ncl ude component and sets its cont ent Uri property from the i ncl udePat h parameter.

contentCollection

Use the cont ent Col | ect i on parameter for a content folder request. The value you provide for

cont ent Col | ecti on must correspond to the name of a content folder in Experience Manager, for example,
Search Box Auto Suggest Content.lnvokeAssenbl er createsa Cont ent Sl ot Conf i g component and
inserts the cont ent Col | ecti on parameter in its cont ent Uri property. Note that the Cont ent Sl ot Confi g
component specifies both the content folder and the number of content items to return from that folder. The
number of items to return is specified using the | nvokeAssenbl er . rul eLi m t parameter, described next.

ruleLimit
This optional parameter is used in conjunction with the cont ent Col | ect i on parameter to specify the number
of items that should be returned from the specified content folder.

Output Parameters

The | nvokeAssenbl er servlet bean has one output parameter, cont ent | t em This parameter contains the
root Cont ent | t emreturned by the Assembler. If this content item is empty, the request was not an Assembler
request.

Open Parameters

The | nvokeAssenbl er has two open parameters.

output
Rendered when the Assembler returns a Cont ent I t em

error
Rendered if the Assembler returns a Cont ent | t emwith an @r r or key. The presence of this key indicates that
the Cont ent | t emdoes not contain any content because the Assembler threw an exception or returned an error.

Example
This code snippet shows how to use the | nvokeAssenbl er servlet bean on a page:
<dsp: i nport bean bean="/at g/ endecal/ assenbl er/ dropl et/ | nvokeAssenbl er"/>
<dsp: dropl et name="| nvokeAssenbl er">
<dsp: param nanme="i ncl udePat h" val ue="/ br owse"/ >
<dsp: opar am name="out put " >
<dsp: get val ueof var="contentltent
vartype="com endeca. i nfront. assenbl er. Content |t ent
paran¥"contentltent />
</ dsp: opar an>
</ dsp: dropl et >
926 9 Query Integration

Accessing Commonly Used Functionality in
AssemblerTools

The/ at g/ endeca/ assenbl er/ Assenbl er Tool s component provides commonly used functionality to other
query integration components. This component’s functionality includes:

+ Making the actual content request to the Assembler by invoking the assenbl e() method on the
Nucl eusAssenbl er instance and passing it the request Cont ent | t em

+ Assisting other components by calculating a content path based on the page request URL. The content path
identifies the page in Experience Manager whose content should be rendered.

« ldentifying the renderer mapping component to use for the request.

The Assenbl er Tool s component is of class at g. endeca. assenber . Assenbl er Tool s and it has the
following core method:

public ContentlteminvokeAssenbl er(Contentltem pContentlten)

Creating the Assembler Instance and Starting Content Assembly

The Assenbl er Tool s component has a configurable property, assenbl er Fact ory, that out of the box
issetto/ at g/ endecal/ assenbl er/ Nucl eusAssenbl er Fact ory. The Nucl eusAssenbl er Fact ory
component is responsible for creating the Assembler instance that collects and organizes

content. The Assenbl er Tool s. i nvokeAssenbl er () method calls cr eat eAssenbl er () on the

Nucl eusAssenbl er Fact ory component to create an Assembler instance and then it calls assenbl e() on that
instance to begin the content assembly process. More details on the Nucl eusAssenbl er Fact ory component
can be found in the Querying the Assembler (page 106) section.

Calculating the Content Path from the Page Request URL

Note: The information in this section applies to page requests processed by the Assenbl er Pi pel i neSer vl et
only. For information about page requests that are processed using the | nvokeAssenbl er servlet bean, see the
InvokeAssembler (page 95) section.

For page requests processed by the Assenbl er Pi pel i neSer vl et, the Assenbl er Tool s. get Cont ent Pat h()
method calculates the content path to pass to the Assembler (for example, / br owse). The content path
identifies the page in Experience Manager whose content should be rendered. The content path is relative to the
current site; for example, if the current site is st or eus and the content path is/ br owse, then the / br owse page
will be retrieved for the st or eus site.

The get Cont ent Pat h() method extracts the content path from the request URL by removing substrings that
match the values of properties of the si t eConf i gur at i on item for the site. For example, if a request is made to
http://1 ocal host: 8080/ crs/storeus/browse/:

1. The get Cont ent Pat h() method gets the request URI using the at g. servl et. Servl et Uil class. In this
case, the request URl is:

/ crs/ storeus/ browse/

9 Query Integration 97

2. Ifthe Assenbl er Tool s. renpveSi t eBaseURL property ist r ue, get Cont ent Pat h() compares the
request URI with the site base URL (the value of the si t eConf i gur at i on item’s pr oduct i onURL
property).Ifthe Assenbl er Tool s. i ncl udeAddi ti onal Producti onURLs property is alsot r ue, the
get Cont ent Pat h() method compares the request URI with the values of the si t eConf i gur ati on item's
addi ti onal Product i onURLs property, as well as with the value of pr oduct i onURL. If one of the URLs
matches a substring of the request URI, get Cont ent Pat h() removes that substring from the request URI.

3. Ifthe Assenbl er Tool s. r enoveCont ext Root property ist r ue and the site base URL has not been
removed, get Cont ent Pat h() compares the request URI with the context root (the value of the
si teConfi gurationitem’s cont ext Root property).Ifthereis a match, get Cont ent Pat h() removes the
context root from the request URI.

So, in this example, if one of the production URLs is/ cr s/ st or eus, the resulting content path is / br owse/ . If
none of the URLs match the request URI and the context root is/ cr s, the resulting content path is/ st or eus/
browse/ .

Identifying the Renderer Mapping Component to Use for the Request

The Assenbl er Tool s. def aul t Cont ent | t emiToRender er Pat h property specifies the default component that
should be used to map a response Cont ent | t emto its correct renderer. Having this default ensures that the
same mapping component is used across all web sites:

Qur default service for mapping froma Contentltemto the path of
its corresponding JSP rendering page
def aul t Cont ent | t eniToRender er Pat h=cartri dge/ renderer/ Cont ent | t enToRender er Pat h

You can override this setting on a web application-specific basis by specifying a cont ext - par amin your
application’s web. xni file. The name of the parameter must be cont ent | t enlToRender er Pat h and the value
must specify the Nucleus path of the mapping component you want to use:

<cont ext - par an>
<par am nanme>cont ent | t eniffoRender er Pat h</ par am name>
<par am val ue>Nucl eus- pat h-t o- mapper </ par am val ue>
</ cont ext - par an>

Creating the SiteState Component

For page requests, a request-scoped / at g/ endeca/ assenbl er/ Si t eSt at e component must be resolved.
This component contains the si t el d for the current request as well as the page URI, or cont ent Pat h, being
requested. Page requests begin when a Cont ent | ncl ude object is passed to the Nucl eusAssenbl er
component, after which the Cont ent | ncl udeHand! er is invoked to resolve the Si t eSt at e component and
the page content.

The Si t eSt at e component has the following properties:

+ sitel d:The Guided Search Site ID for the site that the current request resolves to, for example, /
st or eSi t eUS. Note that the Guided Search Site ID identifies the correct site within the EAC application. This
ID is distinct and different from the site ID that is part of a site’s definition in the Site repository. Each site in

98

9 Query Integration

the Site repository will have a site ID. It may also have a corresponding Guided Search Site ID. The purpose of
the Guided Search Site ID property is to create a mapping between a site definition in the Site repository and
its corresponding site in the EAC application.

+ cont ent Pat h: The path to the page for the current request, for example, / br owse. This path is relative to the
site specified in the si t el d property.

+ properties:This map provides a storage mechanism for additional properties you may want to include with
your Si t eSt at e component. Out of the box, it is empty.

To resolve the Cont ent | ncl udeHandl er component’s reference to the Si t eSt at e component, Nucleus
callsthecreat eSi t eSt at e() method of the com endeca. i nfront. site. SiteStateBuil der class. The
Si t eSt at eBui | der class is a factory class that constructs a Si t eSt at e component for the current request.
To create the Si t eSt at e component, the Si t eSt at eBui | der class determines both the site context and the
cont ent Pat h of the Experience Manager page being requested, as described below.

To establish the site context, the Si t eSt at eBui | der component uses a series of parsers. Each

parser contains logic that determines the Guided Search site ID for the current request and then

returns a Si t eSt at e object with a populated si t el d property. A parser must implement the

at g. endeca. assenbl er. nul ti site. SiteStateParser interface, which has the following core method:

public interface SiteStateParser {
public SiteState parseSiteState(HttpServl et Request request, SiteManager
si t eManager) ;

The Si t eSt at eBui | der . si t eSt at ePar ser s property contains a list of parsers that are executed in the
configured order to resolve the site context. Out of the box, this property is set to a single parser, the / at g/
endeca/ assenbl er/mul tisite/ SiteStateParser component, which looks at the site context for the
request and extracts the Guided Search Site ID from that site’s definition in the Site repository.

In the event that the parsers defined in the si t eSt at ePar ser s property fail to determine a Guided Search site
ID and return a Si t eSt at e object, the Si t eSt at eBui | der . def aul t Si t eSt at ePar ser property references
a default Si t eSt at ePar ser . Out of the box, the def aul t Si t eSt at ePar ser property references the / at g/
endeca/ assenbl er/ mul ti site/Defaul t SiteStateParser component. This component uses the default
site configured for the EAC application to determine the site context. Note that it is the Experience Manager
administrator’s responsibility to specify the default site when creating an EAC application. If a default site is not
specified for an EAC application, one of the following scenarios occurs:

+ Ifthere is only one site, then that site is used as the default.

+ If there are multiple sites in the EAC application, the Si t eSt at e. si t el d property will contain a value of
@rror:siteNot Found, which leads the Assembler to return a Fi | eNot Found error.

Assuming one of the parsers executed successfully, the result is a Si t eSt at e object with the Guided Search site
ID stored in its si t el d property.

After determining the site context, the Si t eSt at eBui | der class invokes the / at g/

endeca/ assenbl er/ mul ti sit e/ Cont ent Pat hTr ans| at or component specified in the

Si t eSt at eBui | der. cont ent Pat hTr ansl| at or property. This component translates the original request
URL into an Experience Manager content path, for example, / br owse. To calculate the content path, the

Cont ent Pat hTr ansl at or component calls the Assenbl er Tool s. get Cont ent Pat h() method. This method
encapsulates the Oracle Commerce Core Platform’s logic for calculating the content path from the request URL
(note that this logic could be replaced by a different application-specific class and method). See the Calculating
the Content Path from the Page Request URL (page 97) section for details on how the get Cont ent Pat h()
method works.

9 Query Integration 99

After the Si t eSt at ePar ser and Cont ent Pat hTr ansl at or components have executed,a Sit eSt at e
component exists for the current request and it has the site context and content path information the
Cont ent I ncl udeHandl er needs to locate the correct content in the Experience Manager pages hierarchy.

Defining Global Assembler Settings

The/ at g/ endecal assenbl er/ cartri dge/ manager/ Assenbl er Set t i ngs component defines global
Assembler settings and is referenced by various components. The Nucl eusAssenbl er Set t i ngs component
is of class at g. endeca. assenbl er. Nucl eusAssenbl er Set t i ngs, which is an extension of the class

com endeca. i nfront. assenbl er. Assenbl er Set t i ngs. It has the following properties:

+ def aul t Experi enceManager Pr ef i x: Defaults to / pages. This value is used by the / at g/ endeca/
assenbl er/ cartri dge/ manager/ Wr kbenchCont ent Sour ce component when it calculates the absolute
path to a page in Experience Manager. All page content in Experience Manager resides under a/ pages root.

« def aul t Gui dedSear chPr ef i x: Defaults to/ ser vi ce. This value is used by the / at g/ endeca/ assenbl er/
cartridge/ manager / Wr kbenchCont ent Sour ce component when it calculates the absolute path to a
page in an application that uses Guided Search only (that is, without the Experience Manager).

« experi enceManager : Defaults to t r ue. Used by the Assenbl er Tool s. i sExperi enceManager () method
to determine if Experience Manager is available.

Connecting to the Workbench and MDEX

Some cartridges need to communicate with the EAC applications managed by the Workbench server while
others need to communicate directly with the MDEX engines to do their work. The Guided Search integration
includes a number of components to facilitate both types of communication.

AssemblerApplicationConfiguration Component

The at g. endeca. assenbl er. confi gurati on. Assenbl er Appl i cati onConfi gur ati on class configures
the following:

» Workbench host information
+ MDEX host and port information

+ The method to use (direct calls to the Workbench versus retrieving content that the Workbench has stored on
the file system) when retrieving content in a multi-EAC application environment.

This information complements the configuration stored the / at g/ endeca/ Appl i cati onConfi gurati on
component, and enables communication with both the EAC applications managed by the Workbench server
and any MDEX instances.

The Guided Search integration includes a component of the Assenbl er Appl i cati onConfi gurati on
class,/ at g/ endeca/ assenbl er/ Assenbl er Appl i cati onConfi gur ati on, that other
components reference to retrieve the Workbench and MDEX connection details. The

100

9 Query Integration

Assenbl er Appl i cati onConfi gur ati on component also has an appl i cati onConfi gur at i on property that
points to the Appl i cati onConfi gur ati on component:

appl i cati onConfi gurati on=/at g/ endecal/ Appl i cati onConfi gurati on

This section provides information on how the Assenbl er Appl i cat i onConf i gur at i on component calculates
these details, while the sections after provide information on the components that use them. The following
chapter, Retrieving Promoted Content (page 115), provides details on the different content retrieval methods
and how to configure them.

Creating Application-specific Workbench Connections

Note: This section introduces the Wor kbenchCont ent Sour ce and Def aul t Wor kbenchCont ent Sour ce
components, in the context of what the Assenbl er Appl i cati onConfi gur ati on component does with them.
Additional information is provided about these component types in the following sections.

The/ at g/ endeca/ assenbl er/ cartri dge/ manager / Wr kbenchCont ent Sour ce component

holds details for connecting to a particular EAC application managed by the Workbench server

(or, to be more specific, it functions as an alias for other components that calculate the connection

details based on the environment and the current request). It is a requirement that a globally-scoped

com endeca. i nfront. cont ent. sour ce. Wr kbenchCont ent Sour ce object be instantiated for each
EAC application in your environment before any content requests are made. Environments that have
multiple EAC applications (for example, a separate application for each language or site), will need multiple
Wor kbenchCont ent Sour ce components. The Assenbl er Appl i cati onConfi gur ati on component is
responsible for creating these components when necessary.

To create the application-specific Wor kbenchCont ent Sour ce components, the

Assenbl er Appl i cati onConfi gur ati on component resolves a prototype-scoped / at g/ endeca/
assenbl er/ cartridge/ manager/ Pr ot ot ypeWor kbenchCont ent Sour ce component, which is of class
at g. endeca. assenbl er. cont ent . Ext endedWor kbenchCont ent Sour ce, and inserts it into the Nucleus
global scope under a new name that follows this pattern:

Wor kbenchCont ent Sour ce_EAC- appl i cati on- key

Adding the EAC- appl i cat i on- key to the end of the Wor kbenchCont ent Sour ce component name uniquely
identifies the Wor kbenchCont ent Sour ce component as the one to use for a given EAC application.

The Pr ot ot ypeWor kbenchCont ent Sour ce configuration includes a $basedOn property that
references the / at g/ endeca/ assenbl er/ cartri dge/ manager/ Def aul t Wor kbenchCont ent Sour ce
component, where arguments for the Wor kbenchCont ent Sour ce constructor are

provided. The Pr ot ot ypeWor kbenchCont ent Sour ce component gets its settings from

the Def aul t Wor kbenchCont ent component, with the exception of the EAC application

name, which it gets from the Assenbl er Appl i cati onConfi gurati on component’s
currentlnitializi ngWrkbenchCont ent Sour ceAppl i cati onNare property.

Determining Which MDEX to Use

The Assenbl er Appl i cati onConfi gur ati on component determines which host name and port to use
to connect to the correct MDEX engine for any given request. The / at g/ endecal assenbl er/ cartri dge/
manager / MiexResour ce component, which represents the connection to a single MDEX, refers to the
Assenbl er Appl i cati onConf i gur ati on component when creating a connection for a specific request.

The MDEX host and port values are stored in the
Assenbl er Appl i cati onConfi guration. current MlexHost nare and
Assenbl er Appl i cati onConfi guration. current MiexPort properties, respectively. The

9 Query Integration 101

Assenbl er Appl i cati onConfi gur ati on component includes configuration settings that specify how the
current MlexHost and cur r ent Miex port properties are determined.

To direct a request to the correct MDEX, you configure the appl i cat i onKey ToMlexHost AndPort property on
the/ at g/ endeca/ Appl i cati onConfi gurati on component. The Assenbl er Appl i cati onConfi gurati on
component also has an appl i cat i onKeyToMlexHost AndPort property that is set automatically to the value
of the Appl i cati onConfi gurati on. appl i cati onKeyToMlexHost AndPort property.

The appl i cati onKeyToMlexHost AndPor t property is a map where the keys identify each EAC application
and the values specify the host names and port numbers for the MDEX engines associated with each
application.

If you have a single EAC application, the key is def aul t, and you map it to the MDEX as follows:

appl i cati onKeyToMlexHost AndPor t =\
def aul t =host : port

For example:

appl i cati onKeyToMlexHost AndPor t =\
def aul t =myHost . exanpl e. com 15300

Note that if the appl i cat i onKeyToMlexHost AndPort property is not set, the hostname and port are
obtained from the values of the Assenbl er Appl i cati onConfi gur ati on. def aul t MiexHost Nane and
Assenbl er Appl i cati onConfi gurati on. def aul t MiexPort properties . These properties default to

| ocal host and 15000 respectively, but you can explicitly set them to other values. However, if you set
appl i cati onKeyToMlexHost AndPor t, it overrides these properties.

If you have multiple applications (for example, a separate application for each language), the keys depend on
the routing strategy you are using:

+ If you are using Si ngl eAppl i cati onRout i ngSt r at egy and you have a separate MDEX for each language,
the keys are the two-letter codes for the languages (for example, en for English, f r for French, i t for Italian).

+ Ifyou are using Si t eAppl i cati onRout i ngSt r at egy and you have a separate MDEX for each site, the keys
are the site IDs.

« Ifyouare using Si t eAppl i cat i onRout i ngSt r at egy and you have a separate MDEX for each combination
of site and language, each key is formed by concatenating the site ID with the language code, separated by
the underscore character (for example, st or eSi t eUS_fr).

+ If you are using G oupi ngAppl i cat i onRout i ngSt r at egy, the keys are the names of EAC applications.

To determine which MDEX to direct a request to, the component specified by the

Assenbl er Appl i cati onConfi gurati on. routi ngObj ect Adapt er property examines the request and
related objects to find locale and site information. This component, which is of a class that implements the
Request Rout i ngObj ect Adapt er interface, must match the routing strategy you are using. For example, if
your routing strategy is Si t eAppl i cati onRout i ngSt r at egy, the r out i ngObj ect Adapt er property should
be set to Si t eRequest Rout i ngbj ect Adapt er.

Based on the information returned by the Request Rout i ngObj ect Adapt er component, the
Assenbl er Appl i cati onConf i gur at i on component retrieves the key in one of two ways:

« If the routing strategy is Si ngl eAppl i cati onRouti ngStrategy orSiteApplicationRoutingStrategy,
the key is retrieved from the Appl i cat i onConf i gur at i on component.

102

9 Query Integration

+ If the routing strategy is G oupi ngAppl i cat i onRout i ngSt r at egy, the key is retrieved from the
G oupi ngAppl i cati onRout i ngSt r at egy component.

The key is then used to retrieve the host and port values from the appl i cat i onKey ToMiexHost AndPor t map.

For example, if your environment has two EAC applications to support two languages, English and German, and
your routing strategy is Si ngl eAppl i cati onRout i ngSt r at egy, the appl i cat i onKey ToMlexHost AndPor t
setting might be:

appl i cati onKeyToMlexHost AndPort =\
en=l ocal host: 15000, \
de=l ocal host: 15100

For more information about the Appl i cat i onConf i gur at i on component, see the Configuring the
ApplicationConfiguration Component (page 4) section of the Introduction (page 1). For more information about
routing strategies, see the Routing (page 9)chapter.

Connecting to an MDEX

The/ at g/ endeca/ assenbl er/ cartri dge/ manager / MiexResour ce component, of class

com endeca. i nfront. navi gati on. nodel . MlexResour ce, is a request-scoped component that represents a
connection to a single MDEX. The Nucl eusAssenbl er uses this component to connect to the correct MDEX for
content.

The MlexResour ce component has host and port properties that represent the MDEX
host and port to use for the current request. The MlexResour ce component gets the
values for these properties from the Assenbl er Appl i cati onConfi gurati on component,
specifically, the Assenbl er Appl i cati onConfi gur ati on. curr ent MlexHost Nane and
Assenbl er Appl i cati onConfi gurati on. current MlexPort properties.

Connecting to the Workbench Server

Oracle Commerce Core Platform has several components for creating a connection to an EAC application
managed by the Workbench server. The connection components can vary depending on whether your
environment has a single EAC application or multiple applications (for example, to support multiple languages).
Here is a brief overview of the process:

1. On startup, the/ at g/ endeca/ assenbl er/ cartri dge/ manager / Def aul t Wor kbenchCont ent Sour ce
component is instantiated. This component contains details for connecting to a default EAC application.

2. If the environment has more than one EAC application, the Assenbl er Appl i cati onConfi gurati on
component creates globally-scoped, Wor kbenchCont ent Sour ce_EAC- appl i cat i on- key components
for each EAC application. Each component has a suffix that identifies which EAC application the
component is for, for example, Wor kbenchCont ent Sour ce_en and Wr kbenchCont ent Sour ce_de.
These application-specific components have a set of properties that are comparable to those in the
Def aul t Wor kbenchCont ent Sour ce, but contain values that are specific to each individual EAC application.

3. The Nucl eusAssenbl er resolves the/ at g/ endeca/ assenbl er/ cartri dge/ manager/
Wor kbenchCont ent Sour ce component. This component in turn resolves either the / at g/ endeca/
assenbl er/ cartri dge/ manager/ Def aul t Wor kbenchCont ent Sour ce component or the / at g/ endeca/
assenbl er/ cartridge/ manager/ Per Appl i cati onWor kbenchCont ent Sour ceResol ver as the
Wor kbenchCont ent Sour ce to use for the current request.

9 Query Integration 103

4. If the Def aul t Wor kbenchCont ent Sour ce is resolved, the connection details defined by this component are
used when retrieving content.

5. If the Per Appl i cati onWor kbenchCont ent Sour ceResol ver is resolved, the component relies
on the Assenbl er Appl i cati onConfi gur at i on to determine what the current EAC application
is and then it references the correct EAC application-specific Wor kbenchCont ent Sour ce that the
Assenbl er Appl i cati onConfi gur ati on component has already created in step 2.

The remaining sections provide more details on the individual Workbench-related components.

WorkbenchContentSource

The/ at g/ endeca/ assenbl er/ cartri dge/ manager/ Wr kbenchCont ent Sour ce component represents the
connection to a particular EAC application managed by the Workbench server. The Nucl eusAssenbl er class
uses this component to connect to an EAC application and request content, using the content retrieval method
specified.

Out of the box, the Wor kbenchCont ent Sour ce component uses a $hasedOn property set to the / at g/
endeca/ assenbl er/ cartri dge/ manager/ Per Appl i cati onWr kbenchCont ent Sour ceResol ver, which
is a request-scoped component that determines which EAC application-specific Wor kbenchCont ent Sour ce to
use, based on the current request. This default configuration is primarily intended to support environments that
have multiple EAC applications, although it works for single-application environments as well.

The Wor kbenchCont ent Sour ce properties file also includes some configuration, which has been commented
out, that is more efficient for environments that have a single EAC application:

$cl ass=at g. nucl eus. Generi cRef erence
$scope=gl obal
conponent Pat h=Def aul t Wor kbenchCont ent Sour ce

This configuration creates a globally-scoped Wor kbenchCont ent Sour ce component that gets its connection
details from the / at g/ endecal/ assenbl er/ cartri dge/ manager / Def aul t Wor kbenchCont ent Sour ce
component. This approach is more efficient for a single EAC application environment because it avoids having to
resolve the Wor kbenchCont ent Sour ce for every request. If you have a single EAC application environment, you
can use this configuration instead.

The following sections provide some additional details on the Def aul t Wor kbenchCont ent Sour ce and
Per Appl i cat i onWr kbenchCont ent Sour ce components that provide the connection details stored in a
Wor kbenchCont ent Sour ce component.

DefaultWorkbenchContentSource

The/ at g/ endeca/ assenbl er/ cartri dge/ manager/ Def aul t Wor kbenchCont ent Sour ce component, is a
globally-scoped component of class

at g. endeca. assenbl er. cont ent . Ext endedWr kbenchCont ent Sour ce. In a single EAC application
environment, the Def aul t Wr kbenchCont ent Sour ce component provides connection details for the

single EAC application managed by the Workbench server that should be used for all requests. In a multi-
application environment, this component provides connection details to a default EAC application when

the Per Appl i cat i onWor kbenchCont ent Sour ceResol ver cannot resolve an application-specific

Wor kbenchCont ent Sour ce.

Out of the box, this component is included in the i ni ti al Ser vi ces property of the/i ni ti al component, to
ensure that it is created on start up.

initial Services+=\
/ at g/ endecal assenbl er/ Assenbl er Pi pel i neServl et \

104

9 Query Integration

| at g/ endecal assenbl er/ cartri dge/ manager/ Def aul t Wor kbenchCont ent Sour ce

The Def aul t Wor kbenchCont ent Sour ce component has a set of properties that are used

to create the Wor kbenchCont ent Sour ce that is used to connect to the Workbench. The

Def aul t Wor kbenchCont ent Sour ce component gets the values for some of these properties from the

Appl i cati onConfi gurationand Assenbl er Appl i cati onConfi gurati on components. It is the
responsibility of these other two components to calculate the correct EAC application and Workbench server
connection details to use. The Def aul t Wor kbenchCont ent Sour ce properties include:

+ appNane: The EAC application name. Defaults to / at g/ endeca/
Appl i cationConfi guration. def aul t Appl i cati onNane.

* host : The Workbench server host name. Defaultsto. . /. ./
Assenbl er Appl i cati onConfi gurati on. wor kbenchHost Nane.

+ server Port:The port number that Wr kbenchCont ent Sour ce components must use to retrieve content
from the Workbench. Defaults to 8007.

Note that the ser ver Port property refers to the port used for content retrieval (8007, by default), as opposed
to the port used to connect to the Workbench (8006, by default).

+ storeFact ory: A reference to the store factory to use for retrieving content for the default EAC application.
Defaults to/ at g/ endeca/ assenbl er/ cartri dge/ manager/ Def aul t Fi | eSt or eFact ory. See the
Retrieving Promoted Content (page 115) chapter for more information.

» def aul t Si t eRoot Pat h: The site root path to use when calculating the absolute path to the content being
retrieved. Defaults to Assenbl er Set t i ngs. def aul t Experi enceManager Prefi x.

+ siteManager : A reference to the Si t eManager component for retrieving site-based information, such as the
current site, for the request. Defaults to/ at g/ endeca/ assenbl er/ nul ti si t e/ Si t eManager.

PerApplicationWorkbenchContentSourceResolver

In an environment that has multiple EAC applications, it is the / at g/ endeca/ assenbl er/ cartri dge/
manager / Per Appl i cat i onWr kbenchCont ent Sour ceResol ver component’s responsibility to determine
the correct globally-scoped, application-specific Wor kbenchCont ent Sour ce component to use for the

current request. This component also defines a default Wor kbenchCont ent Sour ce component to use if an
application-specific version cannot be found. Per Appl i cat i onWr kbenchCont ent Sour ceResol ver is

of class at g. endeca. assenbl er. confi gur ati on. Per EndecaAppl i cati onGener i cRef er ence, which
extends the at g. nucl eus. Gener i cRef er ence class to calculate the correct component to reference based on
the EAC application key of the current request.

Note that Per Appl i cat i onWr kbenchCont ent Sour ceResol ver is request-scoped. This means that the
globally-scoped Wor kbenchCont ent Sour ce component that it resolves and references gets inserted into the
request scope as an alias. This effectively allows the application to resolve the Wor kbenchCont ent Sour ce
component on a per-request basis.

To perform its tasks, the Per Appl i cat i onWr kbenchCont ent Sour ceResol ver component has the following
properties:

+ def aul t Conponent Pat h: The Nucleus path of the Wor kbenchCont ent Sour ce component to default to if
an EAC application-specific version cannot be resolved. Defaults to / at g/ endeca/ assenbl er/ cartri dge/
manager / Def aul t Wor kbenchCont ent Sour ce.

+ conponent BasePat h: The base path for the application-specific Wor kbenchCont ent Sour ce components.
Per Appl i cat i onWor kbenchCont ent Sour ceResol ver adds the EAC application keys, such as _en and

9 Query Integration 105

_es, as suffixes to this path to resolve the correct Wor kbenchCont ent Sour ce to reference. Defaults to / at g/
endeca/ assenbl er/ cartri dge/ manager/ Wr kbenchCont ent Sour ce.

» assenbl er Appl i cati onConfi gur ati on: The Nucleus path to the
Assenbl er Appl i cati onConfi gur ati on component, where the
Per Appl i cat i onWr kbenchCont ent Sour ceResol ver gets the application keys. Defaultsto. . /. ./
Assenbl er Appl i cati onConfi gurati on.

« useDefaul t1fSingl eApplicati on:Indicates that the
Per Appl i cat i onWr kbenchCont ent Sour ceResol ver should use the
Def aul t Wr kbenchCont ent Sour ce if there is only one EAC application and avoid resolving an application-
specific Wor kbenchCont ent Sour ce.

Manually Adding Application-specific WorkbenchContentSource Components

It is a requirement that the Wor kbenchCont ent Sour ce component used to communicate with any given
EAC application be globally scoped and started up front, before any requests are made. To accommodate this
requirement, the Appl i cati onAssenbl er Conf i gur ati on component automatically creates corresponding
Wor kbenchCont ent Sour ce components for each EAC application on start up.

If the automatically-created Wor kbenchCont ent Sour ce components are not sufficient for your needs, you can
manually create . pr operti es files for other application-specific Wor kbenchCont ent Sour ce components, for
example:

$basedOn=Def aul t Wr kbenchCont ent Sour ce

EAC application nane
appNanme=EAC- appl i cat i on- nane

Wor kbench host
host =Wor kbench- host - nane

Workbench content retrieval port, defaults to 8007
server Port =8007

Note that the ser ver Por t property refers to the port used for content retrieval (8007, by default), as opposed
to the port used to connect to the Workbench (8006, by default).

After creating the EAC application-specific Wor kbenchCont ent Sour ce components, you must add them to the
i ntial Services property of the/i ni ti al component so that they are started on application start-up, for
example:

initial Services+=\
/ at g/ endecal assenbl er/ cartri dge/ manager/ Wr kbenchCont ent Sour ce_EAC- appl i cati on- key

Querying the Assembler

The at g. endeca. assenbl er. Nucl eusAssenbl er Fact or y class is responsible for creating the
at g. endeca. assenbl er. Nucl eusAssenbl er instance that retrieves and organizes content. The

106

9 Query Integration

Nucl eusAssenbl er Fact or y class implements the com endeca. i nfront . assenbl er. Assenbl er Factory
interface and defines a cr eat eAssenbl er () method that the Assenbl er Tool s component invokes to
getaNucl eusAssenbl er instance. Nucl eusAssenbl er is an inner class of Nucl eusAssenbl er Fact ory.

It implements the com endeca. i nfront . assenbl er. Assenbl er interface and defines an assenbl e()
method that the Assenbl er Tool s component invokes to begin a query. The following code excerpt from
Assenbl er Tool s. j ava shows the use of these two methods:

/] Cet the assenbler factory and create an Assenbl er

Assenbl er assenbl er = get Assenbl er Factory(). creat eAssenbl er();

assenbl er . addAssenbl er Event Li st ener (new Assenbl er Event Adapter());
/1 Assenbl e the content

ContentltemresponseContentltem = assenbl er. assenbl e(pContentlten);

In addition to retrieving the base content from the cartridge XML configuration files, the Nucl eusAssenbl er
class also modifies that content as necessary using Car t ri dgeHand| er components. The

Nucl eusAssenbl er Fact or y component provides the Nucl eusAssenbl er class with the configuration it
needs to find the correct Car t ri dgeHandl er components. Cart ri dgeHandl er s can be found either by using
a default naming strategy (that is, looking for a Nucleus component named after the car t ri dgeType in one of
the Nucl eusAssenbl er Fact ory component’s path properties), or via an explicit mapping. To support these
strategies, the Nucl eusAssenbl er Fact or y component provides the following properties:

+ experi enceManager Handl er Pat h: Defaults to the / at g/ endeca/ assenbl er/ cartri dge/ handl er/
exper i encemanager folder.

+ gui dedSear chHandl er Pat h: Defaults to the / at g/ endeca/ assenbl er/ cartri dge/ handl er/
gui dedsear ch folder.

+ def aul t Handl er Pat h: Defaults to the / at g/ endeca/ assenbl er/ cartri dge/ handl er folder.

+ handl er Mappi ng: AMap<Stri ng, String> property that provides a map from the cartri dgeType to the
Nucleus path of the corresponding Car t ri dgeHandl er component. This property can be used to override
the default mapping specified in path properties.

When looking for a cartridge handler, the Nucl eusAssenbl er class first invokes the

Assenbl er Tool s. i sExperi enceManager () method to determine if Experience Manager is present or
not. Ifi sExperi enceManager () returnstr ue, the Nucl eusAssenbl er class tries to locate the correct
handler in the path specified by the Nucl eusAssenbl er Fact or y.experi enceManager Handl er Pat h
property. For example, for the MyCar t ri dge cartridge, the Nucl eusAssenbl er class would look

for the handler called / at g/ endeca/ assenbl er/ cartri dge/ handl er/ experi encenanager/
MyCartridge.Ifi sExperi enceManager () returnsf al se, the Nucl eusAssenbl er class looks for

the handler in the path specified by the Nucl eusAssenbl er Fact ory. gui dedSear chHandl er Pat h
property. If neither path resolves successfully, the Nucl eusAssenbl er class looks for the handler

in the path specified by the Nucl eusAssenbl er Fact ory. def aul t Handl er Pat h. Finally, if the

Nucl eusAssenbl er class still cannot find the correct handler, it looks at the explicit mappings defined in the
Nucl eusAssenbl er Fact ory. handl er Mappi ng property.

Cartridge Handlers and Their Supporting Components

To use cartridges, the Oracle Commerce Core Platform must create Nucleus components for the cartridge
handler classes and any classes that the handlers depend on. The DAF. Endeca. Assenbl er module includes

9 Query Integration 107

Nucleus component configuration for Platform-level cartridge handlers in the / at g/ endeca/ assenbl er/
cartridge/ handl er and/ at g/ endeca/ assenbl er/ cartri dge/ handl er/ confi g Nucleus paths. The

St or e. Endeca. Assenbl er module includes component configuration for Commerce Reference Store-specific
cartridges in those same Nucleus path locations.

In addition to the handler classes, cartridges rely on Experience Manager configuration and application
rendering code. Because Experience Manager configuration and page rendering are both application-specific,
the files that support all cartridges are included in the Commerce Reference Store modules.

The default folder that Nucleus will try to resolve cartridge handlersinis/ at g/ endeca/ assenbl er/
cartridge/ handl er.The/ confi g subdirectory in that same location contains configuration components
associated with the Car t ri dgeHand| er components. Similarly,/ at g/ endeca/ assenbl er/ cartri dge/
handl er/ xngr and/ at g/ endeca/ assenbl er/ cartri dge/ handl er/ gui dedsear ch folders contain
cartridge handlers that are specific to Experience Manager and Guided Search, respectively, and they also have
their own / conf i g sub-paths.

The components in the / at g/ endeca/ assenbl er/ cartri dge/ manager Nucleus folder provide additional
cartridge support outside of what can be found in the cartridge handlers themselves. For example, the

Navi gat i onSt at eBui | der and Navi gat i onSt at e components build and represent the current navigation
state, respectively; the Def aul t Fi | t er St at e component represents the state of any filters; and the
MiexRequest Bui | der component builds MDEX requests.

Note: Currently, the / at g/ endeca/ assenbl er/ cartri dge/ handl er/ xngr and/ at g/ endecal assenbl er/
cartridge/ handl er/ gui dedsear ch folders are empty and function only as placeholders for future
components.

Providing Access to the HTTP Request to the Cartridges

The/ at g/ endeca/ servl et/ request / Nucl eusHt t pSer vl et Request Provi der component, which is of
class at g. endeca. servl et. request. Nucl eusHtt pSer vl et Request Provi der, provides access to the
current request to various components in both the / at g/ endeca/ assenbl er/ cartri dge/ handl er and/
at g/ endeca/ assenbl er/ cartri dge/ manager Nucleus folders.

Controlling How Cartridges Generate Link URLs

If a cartridge needs to provide links to another navigation or record state, the handler for that cartridge store the
necessary information to build those links in com endeca. i nfront. cartri dge. nodel . Navi gati onActi on
objects that are returned as part of the response Cont ent | t em The Navi gat i onAct i on objects have
properties that define:

+ The site context for the link, in the form of a reference to the Si t eSt at e object
+ The site root for the link, for example, / pages
+ The content path for the link, for example, / br owse

« The navigation state query parameters for the link, for example, ?N=4294967263

108

9 Query Integration

For example, this Navi gat i onAct i on object contains the information necessary to create a Remove All
Breadcrumbs link on a page:

removeAl | Action: {@l ass:

"com endeca. infront.cartridge. nodel . Navi gati onAction", navi gationState: "?
format=json", contentPath: "/browse", siteRootPath: "/pages",siteState: {@l ass:
"com endeca.infront.site.nodel.SiteState", contentPath: "/browse",siteld: "/

storeSiteUS", properties: { },mtchedUr| Pattern: ""}},

Thecom endeca. i nfront. cartridge. Navi gati onCartri dgeHandl er class, and its

subclasses, has a reference to the Si t eSt at e object, allowing those classes toadd a Si t eSt at e
reference to the Navi gat i onAct i on objects they create. For the other link-related properties, the

Navi gationCartri dgeHandl er classes rely on two additional components, Basi cUr| For nat t er and
Def aul t Act i onPat hProvi der, described in the sections below.

It is the responsibility of the page code that renders the links to use the Navi gat i onChj ect properties to build
appropriate link URLs.

BasicUrlFormatter

The/ at g/ endecal ur | / basi ¢/ Basi cUr | For mat t er component is of class

com endeca. sol eng. url formatter. basi c. Basi cUr | For mat t er . This class is responsible for serializing
query parameters from a navigation state, for example, ?N=4294967263. It includes properties such as

def aul t Encodi ng and pr ependQuest i onMar ks that control how the query parameters are generated. Out of
the box these properties are set to UTF- 8 and t r ue, respectively.

For more information on the Basi cUr | For mat t er class, refer to the Oracle Commerce Guided Search Assembler
Application Developer’s Guide.

DefaultActionPathProvider

The/ at g/ endeca/ assenbl er/ cartri dge/ manager/ Def aul t Act i onPat hProvi der component, of class
at g. endeca. assenbl er. navi gat i on. Def aul t Act i onPat hPr ovi der, calculates the site root path and the
content path for follow-on links. For example, in the link below, the site root path is / pages and the content
path is / br owse, while the remainder of the URL represents the query parameters that define the request.

/ pages/ br owse?N=4294967263
The combination of the site root path and the content path is called the action path.

To calculate the site root path and the content path, the Def aul t Act i onPat hPr ovi der class implements the
com endeca. i nfront. navi gation. url . Acti onPat hProvi der interface and its four methods:

+ get Def aul t Navi gat i onAct i onCont ent Pat h() : Returns the content path for a navigation action.

+ get Def aul t Navi gati onActi onSi t eRoot Pat h() : Returns the site root path for a navigation action.
+ get Def aul t Recor dAct i onCont ent Pat h() : Returns the content path for a record action.

+ get Def aul t Recor dAct i onSi t eRoot Pat h() : Returns the site root path for a record action.

The Def aul t Act i onPat hPr ovi der component also has the following properties that support site root and
content path generation:

9 Query Integration 109

+ def aul t Experi enceManager Navi gat i onAct i onPat h: The content path to use for navigation requests
when Experience Manager is installed and no other content path can be resolved, defaults to / br owse.

+ def aul t Experi enceManager Recor dAct i onPat h: The content path to use for record requests when
Experience Manager is installed and no other path can be resolved, defaults to / pr oduct .

+ def aul t Gui dedSear chNavi gat i onAct i onPat h: The content path to use for navigation requests when
Guided Search is installed, defaults to / gui dedsear ch.

+ def aul t Qui dedSear chRecor dAct i onPat h: The content path to use for record requests when Guided
Search is installed, defaults to/ r ecor ddet ai | s.

+ navi gationActionUri Map: A map whose keys are navigation request action paths and whose values
are replacement action paths that should be substituted for the key action paths. For example, a/ pages/
[si te]/brand action path can be replaced with a/ pages/ [si t €] / br owse action path. This map can be
used when overriding the action path of the current request is necessary. The keys are in regular expression
form, so things such as query parameters are ignored.

+ recordActi onUri Map: Analogous to navi gat i onActi onUr i Map, this is a map whose keys represent record
request action paths and whose values are replacement action paths that should be substituted for the key
action paths. The keys are in regular expression form.

+ assenbl er Tool s: A reference to the Assenbl er Tool s component. The Assenbl er Tool s component
provides a reference to the Assenbl er Set t i ngs component, where the default site root paths are defined.
Defaults to/ at g/ endeca/ assenbl er / Assenbl er Tool s.

« current Request : Provides access to the current request’s details. Defaults to / Ori gi nati ngRequest .

+ cont ent Sour ce: A reference to the Wor kbenchCont ent Sour ce component used to connect with the
correct Workbench server and application. Defaults to / at g/ endeca/ assenbl er/ cartri dge/ manager/
Wor kbenchCont ent Sour ce. See Connecting to the Workbench and MDEX (page 100) for details on this
component.

Calculating the Content Path

To calculate the content path for a navigation action, the

Def aul t Acti onPat hProvi der . get Def aul t Navi gati onAct i onCont ent Pat h() method is
invoked. This method calls the Assenbl er Tool s. i sExperi enceManager () method to determine
if Experience Manager is in use. If so, the Def aul t Act i onPat hPr ovi der component calculates
the content path to return using the process described in the next paragraph. If Experience
Manager is not in use, the Def aul t Act i onPat hPr ovi der component returns the value of its

def aul t Qui dedSear chNavi gat i onAct i onPat h property, which defaults to / gui dedsear ch.

To calculate the content path for navigation actions when Experience Manager is in use, the

Def aul t Act i onPat hProvi der component retrieves the value of the / at g/ endeca/ assenbl er/ nul ti si te/
Si t eSt at e. cont ent Pat h property and looks for a match in the keys of its navi gat i onActi onUri Map
property. If a match is found, the Def aul t Act i onPat hPr ovi der component returns the content path portion
of the matching entry’s value. If no match is found, the Def aul t Act i onPat hPr ovi der component returns

the content path it retrieved from the Si t eSt at e object. If it cannot resolve a content path from either the

Si t eSt at e object or the navi gati onAct i onUri Map, the Def aul t Act i onPat hPr ovi der component returns
the value specified in its def aul t Exper i enceManager Navi gat i onAct i onPat h property, which defaults to /
browse.

The process for calculating the content path for record actions when Experience Manager is in use is
very similar to that for navigation actions. The Def aul t Act i onPat hPr ovi der component retrieves
the value of the Si t eSt at e. cont ent Pat h property, however, it uses the r ecor dAct i onUri Map
property for the lookup instead. Also, if a content path cannot be resolved from either the

110

9 Query Integration

Si t eSt at e object or the r ecor dAct i onUr i Map, this method returns the value specified in the
Def aul t Act i onPat hPr ovi der . def aul t Exper i enceManager Recor dAct i onPat h property, which defaults
to/ product.

Calculating the Site Root Path

To calculate the site root path for a navigation action, the

Def aul t Act i onPat hPr ovi der . get Def aul t Navi gat i onActi onSi t eRoot Pat h() method uses a
combination of the / at g/ endeca/ assenbl er/ cartri dge/ manager / Wr kbenchCont ent Sour ce
component and com endeca. i nfront. cont ent . sour ce. Cont ent Locat or objects. The

Wor kbenchCont ent Sour ce component provides access to the Cont ent Locat or objects, and the

Cont ent Locat or objects provide the site root path. Specifically, the Def aul t Act i onPat hPr ovi der does the
following:

1. Passes the Si t eSt at e. cont ent Pat h value to the Wor kbenchCont ent Sour ce component to get a
Cont ent Locat or object for that path. This Cont ent Locat or object has two properties:

+ Acont ent Pat h property that contains the absolute path for the associated content, for example, / pages/
[site]/browse.

+ Asit eRoot Pat h property that contains the site root for the associated content.

2. Def aul t Acti onPat hProvi der compares the value of the Cont ent Locat or . cont ent Pat h property to the
keys in its navi gat i onAct i onUri Map map to determine if a replacement is needed.

If a match is found, Def aul t Act i onPat hPr ovi der makes another request to the
Wor kbenchCont ent Sour ce for a new Cont ent Locat or, this time using the value for the matching key. This
new Cont ent Locat or object’s si t eRoot Pat h is then used as the Si t eRoot Pat h for the follow-on links.

If no match is found, Def aul t Act i onPat hPr ovi der uses the si t eRoot Pat h from the Cont ent Locat or
retrieved in step 1.

If step 1 did not return a Cont ent Locat or object, the Def aul t Act i onPat hPr ovi der component calls the
Assenbl er Tool s. i sExperi enceManager () method to determine if Experience Manager is in use. If so,
the Def aul t Act i onPat hPr ovi der component invokes the Assenbl er Tool s. assenbl er Setti ngs()
method to retrieve the default site root prefix. This prefix is dependent on whether or not Experience
Manager or Guided Search is installed and defaults to / pages and / ser vi ce, respectively.

The process for calculating the site root path for record actions is very similar to that for navigation
actions. The get Def aul t Recor dAct i onSi t eRoot Pat h() method is invoked. This method performs
similarly to the get Def aul t Navi gat i onActi onSi t eRoot Pat h() method, however, it uses the
recor dActi onUr i Map property for the lookup instead. The process for retrieving a default site root in
cases where one cannot be resolved from a Cont ent Locat or object is the same; a call is made to the
Assenbl er Tool s. assenbl er Setti ngs() method to retrieve the default site root prefix.

DefaultActionPathProvider and the InvokeAssembler Servlet Bean

When using the / at g/ endecal assenbl er/ dr opl et/ | nvokeAssenbl er servlet bean to retrieve content
from the Assembler, there is no concept of a “current request.” Because the Def aul t Act i onPat hPr ovi der
logic uses the current request’s site root and content path values to do its calculations, the | nvokeAssenbl er
servlet bean provides navAct i onCont ent Pat h and r ecor dAct i onCont ent Pat h parameters for passing

in a value that can function as the current request’s site root and content path. These parameters are used

for navigation requests and record requests, respectively. The code sample below shows the use of the
navAct i onCont ent Pat h.

<dsp: dropl et name="| nvokeAssenbl er" >

9 Query Integration 111

<dsp: param nanme="cont ent Col | ecti on" val ue="/cont ent/ Shar ed/ Gui ded
Navi gation"/>

<dsp: par am nane="navActi onCont ent Pat h" val ue="/browse"/ >

<dsp: opar am name="out put " >

<dsp: get val ueof var="contentltent
vartype="com endeca. i nfront. assenbl er. Content | t enf
param="contentlten />

</ dsp: opar an>

</ dsp: dropl et >

Retrieving Renderers

The Oracle Commerce Core Platform includes one component, Cont ent | t eniToRender er Pat h, and one dsp
tag, dsp: render Cont ent | t em for retrieving the correct renderer for a content item.

ContentitemToRendererPath

The/ at g/ endeca/ assenbl er/ cartri dge/ renderer/ Cont ent | t enilToRender er Pat h component is
responsible for locating the correct renderer for the Cont ent I t emthat has been return by the Assembler

in response to a request. The Cont ent | t enlToRender er Pat h component is an instance of the class

at g. endeca. assenbl er. cartridge. renderer. Cartri dgeRenderi ngPat hMapper I npl , which
implements the at g. endeca. assenbl er. cartri dge. renderer. Cartri dgeRender i ngMapper interface.
The core method of the Car t ri dgeRender i ngMapper interface is:

public String getRendererPat hFor Contentlten{Contentltem pltem;

The get Render er Pat hFor Cont ent | t en() method returns the web-app relative path of the JSP file used to
render the Cont ent I t em

Creating the Path

The Cont ent | t eniToRender er Pat h component provides some configurable properties that control how a
Cont ent | t emis mapped to a JSP path:

« format String: The string that defines the relative path of the JSP file. Defaults to/ cart ri dges/
{cartridgeType}/{cartridgeType}{sel ectorSuffix}.jsp.{cartridgeType} isreplaced by the
type of the current Cont ent I t em which is determined using the car t ri dgeTypePr oper t yName property,
described below. { sel ect or Suf fi x} is provided by the Sel ect or Repl acenent Val uePr oducer, also
described below.

+ cartridgeTypePropertyName: The name of the Cont ent | t emproperty that contains the cart ri dgeType.
Defaults tocartri dgeType.

+ content | tenToRepl acenment Propert yNanmes: A map that creates a relationship between a source
Cont ent | t emattribute’s name and a f or mat St ri ng property name. You can use this map to make
Cont ent | t emproperties available for use in the f or mat St ri ng.

112

9 Query Integration

+ repl acenent Val uePr oducer s: An array of Repl acenent Val uePr oducer s, described below, that makes
additional values available for use in the f or mat St ri ng.

To create the path, get Render er Pat hFor Cont ent | t en() creates a replacement map that gets populated
with values calculated by other components or retrieved from other contexts. The replacement map values are
then used to replace placeholders in the Cont ent | t eniToRender er Pat h.f or mat St ri ng property, resulting in
a string that defines the relative path of the JSP file.

ReplacementValueProducer and SelectorReplacementValueProducer

The at g. endeca. assenbl er. cartri dge. render er. Repl acenent Val uePr oducer interface can be
implemented by components that need to make new, perhaps dynamically-generated, values available for use
in the replacement map and, by extension, the f or mat St r i ng. It contains one method that adds values to the
replacement map.

/** Add any repl acenent values to pMap. Note that a given

* instance may add a single value, multiple values, or none.

*

* @aram pMap--The map to add paraneters to.

* @aram pContentltem-The Contentltem (avail able for reference

* and cal cul ating repl acenent val ues based on the content item
* Contentltem should not be nodified.

* @aram pRequest--The current request. May be null, if invoked
* out si de of a request.
*/

public void addRepl acenent Val ues(Map<String, String> pMap,
Contentltem pContentltem
Ht t pSer vl et Request pRequest);

Out of the box, the Core Platform includes one replacement value producer, the / at g/ endeca/ assenbl er/
cartridge/ renderer/ Sel ect or Repl acenent Val uePr oducer . This component adds a sel ect or and

sel ect or Suf f i x to the replacement map, if needed. A sel ect or represents the type of device being used to
view the web page, for example, a mobile device. The sel ect or Suf fi x is a corresponding suffix—for example,
“_mobile”—that gets added to the end of the JSP renderer path, so that the correct JSP is rendered for that type
of device.

The Sel ect or Repl acenment Val uePr oducer component is of class
at g. endeca. assenbl er. cartridge. render er and its primary configurable properties are:

+ browser TypeToSel ect or Narme: A map where the key is the browser type and the value is the
corresponding type of device (the “selector”). Out of the box, this property is configured to include the entry
i OSMbbi | e=nobi | e, which declares that when the browser type isi OSMbbi | e, the value in the replacement
map for sel ect or is nobi | e. The sel ect or Suf f i x always has the same value as the sel ect or with a
preceding underscore, making the sel ect or Suf fi x in this case _nobi | e. If no matching browser type is
found, sel ect or and sel ect or Suf f i x are not set.

+ sel ect or KeyNane: The name of the key to use when putting the selector value into the replacement map.
Defaults to sel ect or.

+ sel ect or Suf fi xKeyNane: The name of the key to use when putting the selector suffix value into the
replacement map. Defaults to sel ect or Suf f i x.

+ sel ector Overri dePar armet er Nane: The name of a request query parameter that can be used to override
the selector setting in the replacement map. Defaults to ci Sel ect or . This property allows you to force a
selector value of mobi | e by having a ci Sel ect or query parameter value of nobi | e.

9 Query Integration 113

dsp:renderContentitem
The dsp: r ender Cont ent | t emJSP tag has two responsibilities:

+ For a JSP response, it locates and dispatches to a rendering JSP page. The dsp: r ender Cont ent | t emtag uses
the Cont ent | t eniToRender er Pat h component to determine the path of the JSP page to include.

+ Itsetsan Ht t pSer vl et Request . cont ent | t emattribute to the specified cont ent | t em This provides a well-
known attribute for rendering pages to pull data from; however, this attribute is set for the duration of the
i ncl ude only.

The dsp: render Cont ent | t emtag supports the following tag attributes:

+ cont ent | t em(required) - The Cont ent | t emto locate a rendering JSP page for. The value of the
cont ent | t emrequest attribute is also set to this Cont ent | t em for the duration of the i ncl ude.

+ format (optional) - Specifies whether the response should be serialized into JSON or XML. Acceptable values
arej sonorxm .

+ webApp (optional) - The web application that the i ncl ude is relative to. By default, the current web
application is used, but by passing another value in the webApp attribute, you can specify ani ncl ude that
is relative to a different web application. The value of webApp may either be the content root of the target
web application (in which case, it must begin with a slash) or the display name of webApp (in which case, it is
located via Oracle Commerce’s WebAppRegi st r y; see the Platform Programming Guide for more information
on the WebAppRegi stry).

+ var (optional) - The name of the request attribute to set. You can use var to override the default request
attribute name of cont ent I t em

Similar to dsp: i ncl ude, dsp: r ender Cont ent | t emsupports either nested dsp: par amtags or dynamic
attributes for setting additional parameters.

Configuring Keyword Redirects

In order for keyword redirects that have been defined in the Workbench to work in an environment that includes
the Guided Search integration, you may have to do some additional configuration on the Oracle Commerce
Platform side. Specifically, keyword redirects that point to servers other than the one where the Oracle
Commerce Platform application is running require additional configuration. To add this additional configuration,
modify the al | owedHost Names property of the / at g/ dynano/ ser vl et/ pi pel i ne/ Redi r ect URLVal i dat or
component to include the host for the redirected URL. For example, for a keyword redirect that uses or acl e as
itstermand ht t p: // or acl e. comas its link, you must add the host or acl e. comto the al | owedHost Narres

property.

114 9 Query Integration

10 Retrieving Promoted Content

Each Wor kbenchCont ent Sour ce component uses a store factory of class
at g. endeca. assenbl er. cont ent . Ext endedFi | eSt or eFact or y to retrieve promoted content. This class
extends the Guided Search com endeca. i nfront. content. source. Fi | eSt or eFact ory class.

This chapter describes how to configure store factory components and related components to retrieve
promoted content. The configuration required differs depending on whether your environment uses a single
MDEX engine or multiple MDEX engines.

For more information about content promotion, see the Oracle Commerce Guided Search Administrator’s Guide.

Single-MDEX Environment

If your environment includes a single MDEX engine (for example, if all indexed content is in one language,

or content is in multiple languages but all languages are indexed in the same MDEX), the / at g/ endeca/
assenbl er/ cartridge/ manager/ Def aul t Wor kbenchCont ent Sour ce component uses the / at g/ endeca/
assenbl er/cartridge/ manager/ Def aul t Fi | eSt or eFact or y component to retrieve promoted content.
(See the Connecting to the Workbench Server (page 103) section of the Query Integration (page 85) chapter for
information about the Def aul t Wor kbenchCont ent Sour ce component.)

The Def aul t Fi | eSt or eFact or y component includes the following properties:

+ i sAut hori ng: A boolean that specifies whether or not the component is running in an authoring
environment. The value of this property determines which other properties are taken into account.
(For example, connection information such as the ser ver Port property applies only to an authoring
environment.) Defaults to the value of the pr evi ewEnabl ed property of the Assenbl er Set ti ngs
component:

i sAut hori ng”"=Assenbl er Setti ngs. previ ewknabl ed

« appNane: The EAC application name. Defaults to the value of the def aul t Appl i cat i onNane property of the
/ at g/ endeca/ Appl i cat i onConfi gur ati on component:

appName”=/ at g/ endecal/ Appl i cati onConfi gurati on. def aul t Appl i cati onNane

* host : The fully qualified host name of the machine running the Oracle Commerce Workbench. Defaults
to the value of the wor kbenchHost Name property of the / at g/ endeca/ Appl i cati onConfi gurati on
component:

host ~=/ at g/ endeca/ Appl i cat i onConfi gurati on. wor kbenchHost Nane

10 Retrieving Promoted Content 115

+ server Port: The port on the host machine that the Workbench uses to publish Experience Manager content.
Set by default to:

server Port =8007

+ clientPort:The port on the client machine that is used to retrieve Experience Management content from
the Workbench. If cl i ent Port is set to -1 (the default), a port is assigned automatically.

clientPort=-1

« confi gurati onPat h: Set this property to the file-system pathname of the directory to retrieve promoted
content from. For example:

configurationPat h=\
Tool sAndFr amewor ks/ ver si on/ server/wor kspace/ st at e/ reposi tory/ ATG

In addition, the / at g/ endeca/ assenbl er/ cartri dge/ manager / Def aul t Wor kbenchCont ent Sour ce
component and the / at g/ endeca/ assenbl er/ adni n/ EndecaAdni ni st rati onSer vi ce component each
have a st or eFact or y property that is configured by default to point to the Def aul t Fi | eSt or eFact ory
component:

st or eFact ory=\
| at g/ endecal assenbl er/ cartri dge/ manager/ Def aul t Fi | eSt or eFact ory

Multiple-MDEX Environment

If your environment includes multiple MDEX engines (for example, multiple languages with a separate MDEX per
language), configuring the retrieval of content requires a few more steps than in a single-MDEX environment.

As discussed in the Query Integration (page 85) chapter, in a multiple-MDEX environment, the Guided

Search integration uses a separate Wor kbenchCont ent Sour ce for each EAC application. Each

Wor kbenchCont ent Sour ce requires a separate instance of Fi | eSt or eFact or y to retrieve the appropriate
content for the corresponding EAC application.

The/ at g/ endecal assenbl er/ Assenbl er Appl i cati onConfi gurati on component can automatically
createa Fi | eSt or eFact or y for each Wor kbenchCont ent Sour ce it creates and set a reference to that

Fi | eSt or eFact ory on the Wor kbenchCont ent Sour ce. This behavior is enabled by setting the value of the
useFi | eSt or eFact or y property of the Assenbl er Appl i cati onConfi gur ati on componenttotr ue.

In addition, the / at g/ endeca/ assenbl er/ adni n/ EndecaAdni ni strati onSer vi ce component

can manage the updates to the store factories. This behavior is enabled by changing the class of the
component from com endeca. i nfront . assenbl er. servl et. adni n. Adni ni strati onServi ce to

at g. endeca. assenbl er. Mul ti AppAdmi ni strati onServi ce.The Mul ti AppAdni ni strationService
class extends Adni ni st rati onSer vi ce to enable handling of updates to multiple store factory instances.

Two options for configuring content retrieval in a multiple-MDEX environment are described below:
+ Creating Fi | eSt or eFact or y instances automatically from a prototype-scoped component.
+ Creating Fi | eSt or eFact ory instances from properties files.

Note that both sets of instructions assume you have already created all of the EAC applications and configured
the various Oracle Commerce Platform routing components, as discussed in the Routing (page 9)chapter.

116

10 Retrieving Promoted Content

Creating FileStoreFactory Instances from a Prototype-Scoped Component

To create Fi | eSt or eFact or y instances from a prototype-scoped component:

1. Modify the / at g/ endeca/ assenbl er / Assenbl er Appl i cati onConf i gur ati on component in the
local server configuration. Set the useFi | eSt or eFact ory property tot r ue to automatically create a
corresponding Fi | eSt or eFact or y for each EAC application and set a reference to that Fi | eSt or eFact ory
on the application’s Wor kbenchCont ent Sour ce:

useFi | eSt or eFact ory=true

The Assenbl er Appl i cat i onConfi gur ati on component has a pr ot ot ypeFi | eSt or eFact ory property
that points to the / at g/ endeca/ assenbl er/ cartri dge/ manager/ Pr ot ot ypeFi | eSt or eFact ory
component. (The Pr ot ot ypeFi | eSt or eFact ory component’s $hasedOn property is set to the

Def aul t Fi | eSt or eFact or y component described in the Single-MDEX Environment (page 115) section.)
The Fi | eSt or eFact or y instances are created from the Pr ot ot ypeFi | eSt or eFact or y component.

2. Setthe assenbl er Cont ent BaseDi r ect or y property of the Assenbl er Appl i cati onConfi guration
component to the file-system pathname of the directory to retrieve promoted content from. For example:

assenbl er Cont ent BaseDi rect ory=\
Tool sAndFr amewor ks/ ver si on/ server/ wor kspace/ st at e/ repository

For each Fi | eSt or eFact or y created, the corresponding EAC application name is appended
to the assenbl er Cont ent BaseDi r ect or y value to set the Fi | eSt or eFact or y component’s
confi gurati onPat h property. For example, if assenbl er Cont ent BaseDi r ect ory is set as
shown above, the conf i gur at i onPat h property for an application named ATGes would be
Tool sAndFr amewor ks/ ver si on/ server/ wor kspace/ st at e/ reposi t ory/ ATGes.

3. Modify the/ at g/ endeca/ assenbl er/ adnmi n/ EndecaAdni ni str ati onServi ce
component in the local server configuration. Set the $cl ass property to
at g. endeca. assenbl er. Mul ti AppAdmi ni strati onServi ce:

$cl ass=at g. endeca. assenbl er. Mul ti AppAdmi ni strationService
The Mul t i AppAdmi ni strati onServi ce class is able to handle updates to multiple store factory instances.
4. Setthe st or eFact ory property of the EndecaAdni ni st rat i onSer vi ce component to null:

st or eFact or y*=/ Const ant s. NULL

Creating FileStoreFactory Instances from Properties Files

To create Fi | eSt or eFact or y instances from properties files:

1. For each EAC application, create a properties file for the corresponding Fi | eSt or eFact or y component. Set
the $cl ass property to at g. endeca. assenbl er. cont ent . Ext endedFi | eSt or eFact ory:

$cl ass=at g. endeca. assenbl er. cont ent . Ext endedFi | eSt or eFact ory

2. Set the confi gurati onPat h property of each Fi | eSt or eFact or y component to the file-system pathname
of the directory to retrieve promoted content from. For example, the conf i gur at i onPat h property for the
Fi | eSt or eFact ory component associated with an EAC application named ATGde might be:

confi gurationPat h=\
Tool sAndFr amewor ks/ ver si on/ server/wor kspace/ st at e/ reposi t ory/ ATGde

10 Retrieving Promoted Content 117

3. Set the appName property of each Fi | eSt or eFact or y component to the name of the associated EAC
application. For example:

appNanme=ATGde

4. Modify the/ at g/ endeca/ assenbl er/ Assenbl er Appl i cati onConf i gur ati on component in the local
server configuration. Set the useFi | eSt or eFact or y property to t r ue to automatically set a reference to
the corresponding Fi | eSt or eFact or y on the application’s Wor kbenchCont ent Sour ce:

useFi | eSt or eFact ory=true

5. Setthe appl i cat i onKeyToSt or eFact or y property of the Assenbl er Appl i cati onConfi guration
component to map application keys to the Fi | eSt or eFact or y components you created. For example:

appl i cati onKeyToSt or eFact or y=\

en=/ at g/ endeca/ assenbl er/ cartridge/ manager/ Fil eSt oreFactory_en,\
es=/ at g/ endecal/ assenbl er/ cartridge/ manager/ Fil eSt oreFactory_es,\
de=/ at g/ endeca/ assenbl er/ cartridge/ manager/ Fi | eSt or eFact ory_de

6. Modify the / at g/ endeca/ assenbl er/ adni n/ EndecaAdni ni strati onServi ce
component in the local server configuration. Set the $cl ass property to
at g. endeca. assenbl er. Mul ti AppAdmi ni strati onServi ce:

$cl ass=at g. endeca. assenbl er. Mul ti AppAdni ni strati onService
The Mul ti AppAdni ni strati onServi ce class is able to handle updates to multiple store factory instances.
7. Set the st or eFact or y property of the EndecaAdni ni st rati onSer vi ce component to null:

st or eFact or y*=/ Const ant s. NULL

10 Retrieving Promoted Content

11 Record Filtering

Oracle Commerce Guided Search provides a mechanism for filtering the records returned by a query, based
on the values of record properties. For example, for a multi-language application, you can use record filters to
restrict the set of records returned to only those in the current language.

This chapter discusses Oracle Commerce classes you can use to build and apply Guided Search record filters. It
includes these sections:

RecordFilterBuilder Interface and Implementing Classes (page 119)
Enabling Record Filter Builder Components (page 122)

DateRangeFilterBuilder (page 122)

RecordFilterBuilder Interface and Implementing Classes

The Guided Search integration includes the

at g. endeca. assenbl er. navi gation.filter.RecordFilterBuilder interface. Classes that build
Guided Search record filters implement this interface. The Recor dFi | t er Bui | der interface includes a
bui | dRecor dFi | t er () method that is responsible for building the actual record filter.

The Guided Search integration includes a number of classes that implement the Recor dFi | t er Bui | der
interface, for example:

* LanguageFi | t er Bui | der

* Catal ogFil terBuil der

* SiteFilterBuil der

* PricelListPairFilterBuilder

The first three of these classes are described below. See the Handling Price Lists (page 125) chapter for
information about the Pri ceLi st Pai r Fi | t er Bui | der class.

LanguageFilterBuilder

The at g. endeca. assenbl er. navi gation. filter.LanguageFilterBuil der class constructs a filter
that restricts the set of records returned to only those in the current language. LanguageFi | t er Bui | der

11 Record Filtering 119

determines the current customer’s locale, and based on this, constructs a filter that excludes records that are not
in the locale’s language.

languagePropertyName

The name of the language property in Guided Search records to use for filtering. This is typically set to:

| anguagePr oper t yNane=pr oduct . | anguage

Note that the filter assumes that the value of this property was set in the records by the
LanguageNaneAccessor property accessor. See the LanguageNameAccessor (page 62) section for more
information.

CatalogFilterBuilder

The at g. conmer ce. endeca. assenbl er. navi gation.filter. Catal ogFilterBuil der class constructs a
filter that restricts the set of records returned to only those associated with the appropriate catalogs.

catalogTools

The component of class at g. conmer ce. cat al og. cust om Cust onCat al ogTool s used to determine the
catalogs to include. By default, this property is set to:

cat al ogTool s=/ at g/ cormer ce/ cat al og/ Cat al ogTool s

Note that a record associated with an excluded catalog might still be returned if it is also associated with an
included catalog.

catalogldPropertyName

The name of the catalog ID property in Guided Search records to use for filtering. This is typically set to:

cat al ogl dPr opert yName=pr oduct . cat al ogl d

SiteFilterBuilder

The at g. endeca. assenbl er. navi gation.filter. SiteFilterBuil der class constructs a filter that
restricts the set of records returned to only those associated with specified sites. For example, if there are three
sites, site A, site B, and site C, the filter might specify that only records associated with site A or site C should be
returned. (Note that a record associated with site B may still be returned if it is also associated with site A or site
C)

Note that the Si t eFi | t er Bui | der class offers similar functionality to the site filters you can create when
you define a site for an EAC application. A site filter limits the records that are returned for a site to only
those that are specified in the filter. This filtering is applied to all queries made to the site. By contrast, the

Si teFi | terBuil der class provides you with an additional measure of control over the site data that gets
filtered out. For example, your application may need to support off-site spotlights or off-site searches. In this
case, your application needs to query for results from the current site but also from other sites. To support

120

11 Record Filtering

this scenario, your application can request all records from the MDEX and then filter out the records for the
unneeded sites using the Si t eFi | t er Bui | der class.

A second distinction between a site filter and the filters provided by the Si t eFi | t er Bui | der class is that the
site filter is an application filter, while the filters created by the Si t eFi | t er Bui | der class are added to the
request as URL filters. Application filters happen implicitly, at an application level, every time a request is made,
while URL filters are passed along with the request URL and are only executed for the current request. URL filters
are combined with application filters before the results are returned from the MDEX.

Note: For more information on site filters and defining sites, see the Oracle Commerce Guided Search
Administrator’s Guide.

Si t eFi | t er Bui | der has a number of properties that it uses to determine which sites to include when it
constructs the filter, described below.

sitelds
An array of the site IDs of the sites to include. Typically the value of this property is set through a form handler
in a JSP, based on user interface elements, such as a set of checkboxes that the customer selects to indicate the
sites to search.

siteScope

If si t el ds is null, the si t eScope property is used to determine the set of sites to include. It can be any of the
following values:

+ Ifsi teScope is null oris set to cur r ent, only records associated with the current site are returned.
+ Ifsi t eScope is set to any, all records that are associated with any site are returned.

+ IfsiteScopeissettoal |, all records are returned, including ones not associated with any site.

+ Ifsi t eScope is set to none, only records that are not associated with any site are returned.

+ Ifsit eScope is set to a shareable type ID, records are returned for any sites that are in a sharing group that
shares the shareable type with the current site.

includelnactiveSites

If t r ue, any inactive sites specified in the si t el ds property or determined via the si t eScope property are
included. If f al se (the default), inactive sites are omitted.

includeDisabledSites

If t r ue, any disabled sites specified in the si t el ds property or determined via the si t eScope property are
included. If f al se (the default), disabled sites are omitted.

sitePropertyName

The name of the site ID property in Guided Search records to use for filtering. This is typically set to:

si t ePropertyName=product.siteld

siteManager

The component of classat g. mul ti si te. Si t eManager used to determine which sites are enabled and active.
This is typically setto/ at g/ mul ti si t e/ Si t eManager .

11 Record Filtering 121

siteGroupManager

The component of classat g. mul ti si te. Si t eG oupManager used to determine which sites share with the
current site the shareable type specified in the si t eScope property. This is typically setto/ at g/ mul ti si t e/
Si t eG oupManager .

Enabling Record Filter Builder Components

The Guided Search integration includes a number of record filter builder components, such as:

| at g/ endecal assenbl er/ cartridge/ manager/filter/LanguageFilterBuil der

| at g/ endecal assenbl er/ cartri dge/ manager/filter/ Catal ogFilterBuil der

/ at g/ endecal/ assenbl er/ cartridge/ manager/filter/PriceListPairFilterBuilder
[at g/ endecal assenbl er/ cartri dge/ manager/filter/SiteFilterBuilder

To enable a specific record filter builder component, you add it to ther ecor dFi | t er Bui | der s property of the
/ at g/ endeca/ assenbl er/ cartri dge/ manager/ Navi gat i onSt at eBui | der component. This property is an
array of components of classes that implement the Recor dFi | t er Bui | der interface. For example:

recordFil terBuil ders+=\
| at g/ endecal assenbl er/ cartri dge/ manager/filter/PriceListPairFilterBuilder,
/ at g/ endecal/ assenbl er/ cartridge/ manager/fil ter/ Catal ogFil t er Bui |l der

DateRangeFilterBuilder

In addition to the r ecor dFi | t er Bui | der s property, the Navi gat i onSt at eBui | der component has a
rangeFi | t er Bui | der s property that can be set to an array of components of classes that implement the

at g. endeca. assenbl er. navi gation. filter.RangeFilterBuil der interface. Classes that implement this
interface construct range filters that are applied to results returned from MDEX queries.

Commerce Reference Store configures the r angeFi | t er Bui | der s property as follows:

rangeFi | t er Bui | der s+=\
[at g/ endecal assenbl er/ cartri dge/ manager/filter/ Dat eRangeFi | t er Bui | der

The Dat eRangeFi | t er Bui | der component, which is of class

at g. endeca. assenbl er. navi gation. fil ter. Dat eRangeFi | t er Bui | der, builds range filters based
on the st ar t Dat e and endDat e properties of products and SKUs. It has st ar t Dat ePr oper t yNanes and
endDat ePr oper t yNanes properties that are configured like this:

st art Dat ePr oper t yNanes=\
product. startDate,\
sku. startDate

122

11 Record Filtering

endDat ePr oper t yNanmes=\
product . endDat e, \
sku. endDat e

By default, Dat eRangeFi | t er Bui | der uses only the day portion of the st ar t Dat e and endDat e timestamp
values in constructing filters. The granularity of the filters is controlled by the uni t Of Ti me property, which is

set by default to DAYS. You can make the time period more granular by changing the value of this property to
HOURS or M NUTES. Note, however, that this can degrade filtering performance, because query caching becomes
less effective.

11 Record Filtering 123

124 11 Record Filtering

12

Handling Price Lists

If your application stores prices in product or SKU properties in the catalog repository, indexing price data
and accessing it on site pages is handled much like it is for other properties, such as color or brand. If your
application uses price lists, however, the prices are stored in a separate price list repository (/ at g/ comrer ce/
pricing/ priceLi sts/PricelLi st s), so additional mechanisms are required to index the price data and
access it on sites.

This chapter describes how the Guided Search integration handles price data in price lists. It includes these
sections:

Price List Pairs (page 125)

Indexing Price List Data (page 126)
Indexing Time-Based Prices (page 129)
Filtering Records by Price List (page 130)

For more information about price lists, see the Core Commerce Programming Guide.

Price List Pairs

A common configuration used on Commerce sites involves assigning a pair of price lists to each customer, with
one price list containing the list prices for all SKUs in the catalog, and the other price list containing sale prices
for the SKUs that are currently on sale (and empty values for SKUs that are not on sale). The customer profile’s
priceLi st property is set to the price list holding the list prices, and the profile’s sal ePri ceLi st property is
set to the price list holding the sale prices.

When the application looks up the price of an individual SKU, the following logic is applied:
+ If the price list specified in the sal ePri ceLi st property has a price for the SKU, use that price.

« If the price list specified in the sal ePri ceLi st property does not have a price for the SKU, use the price from
the price list specified in the pri ceLi st property.

In other words, use the sale price if there is one, and if there isn't, use the list price. The resulting value is referred
to as the active price.

The Guided Search integration includes classes that support this configuration. These classes assume
each customer is assigned a price list pair. There may be only one price list pair that is assigned to all

12 Handling Price Lists 125

customers, or there may be different price list pairs for each site in a multisite environment. For example, a
multisite environment with multiple country stores might have a different price list pair for each country
store, to handle different currency, catalogs, or pricing; the customer is assigned price lists based on the
def aul t Li st Pri ceLi st and def aul t Sal ePri celLi st site properties for the current site.

When the Guided Search integration generates records for a given SKU, various classes are used to retrieve the
data associated with specific price list pairs:

« The Pri celLi st Pai r Vari ant Producer class produces a separate record for each price list pair.

+ Ineach record, the Pri ceLi st Pai r Accessor class sets the value of the product . pri ceLi st Pai r property
to the price list pair the record applies to.

+ Ineachrecord, the Acti vePri ceAccessor class sets the value of the sku. act i vePr i ce property based on
the price values in the price list pair.

+ After the records are generated and indexed, the Pri ceLi st Pai r Fi | t er Bui | der is used during querying to
construct a filter that returns only the records associated with the price list pair for the current customer.

Note that if your application uses only a single price list pair, the Pri ceLi st Pai r Var i ant Producer and the
Pri ceLi st Pai rFil terBui |l der are not needed and can be disabled. If your application assigns price lists
based on criteria other than site, you may need to write alternative classes (e.g., a different variant producer) to
implement price-handling logic.

Indexing Price List Data

This section describes the variant producer and property accessors used by the Guided Search integration to
index price list data.

PricelListPairVariantProducer

The at g. commer ce. endeca. i ndex. producer. Pri ceLi st Pai r Vari ant Pr oducer class produces
a separate record for each price list pair. It obtains the price list pair for each site from the values of the
def aul t Li st Pri ceLi st and def aul t Sal ePri ceLi st properties of the site’s si t eConf i gur ati on item.

The Guided Search integration includes a component of this class, / at g/

commer ce/ sear ch/ Pri ceLi st Pai r Var i ant Pr oducer, which is added to the

Pr oduct Cat al ogQut put Confi g. vari ant Producer s property by the DCS. Endeca. | ndex module. The
following are key properties of Pri ceLi st Pai r Vari ant Pr oducer .

priceListPairUniqueParamName

The name of the query parameter used to specify the price list pair in the URL identifying a product or SKU. By
default, this property is set to pri ceLi st Pai r. For example, the value of the pr oduct . ur| property in a record
might be:

at grep: / Product Cat al og/ sku/ xsku2099?_pr oduct =xpr od2099&cat al og=
honmeSt or eCat al 0g&l ocal e=en_US&pri ceLi st Pai r =pl i st 3080003_pl i st 3080002

126

12 Handling Price Lists

languagesPropertyName

The name of the property of the si t eConf i gur at i on item that specifies the languages for the site. By default,
this property is null. If this property is set, Pri ceLi st Pai r Var i ant Pr oducer uses the value of the specified
si t eConfi gurati on property to exclude unneeded variants.

For example, in Commerce Reference Store, the CRS Store US and CRS Home sites use the same price list

pair (representing prices in dollars), while CRS Store Germany uses a separate price list pair (representing
prices in euros). Commerce Reference Store sets the value of the | anguagesPr oper t yNane property to

| anguages. For the CRS Store US and CRS Home sites, the si t eConf i gur ati on item’s| anguages property
is set to en, es. So when generating the records for the price list pair used for CRS Store US and CRS Home,

Pri ceLi st Pai r Vari ant Producer excludes the German language variants, since these price lists aren’t used
on any sites that support German.

Note that by default the Oracle Commerce Platform does not have a property for languages on the
si teConfi gurationitem.If the | anguagesPr opert yNane is not set to a valid si t eConfi gurati on
property, records are generated for all possible combinations of language and price list pair.

PriceListPairAccessor

The at g. endeca. i ndex. accessor. Pri ceLi st Pai r Accessor class sets the value of the
product . pri ceLi st Pai r property of a record to the record’s price list pair, which is obtained from
the Pri ceLi st Pai r Vari ant Producer. The product . pri ceLi st Pai r property is specified in the
Pr oduct Cat al ogQut put Conf i g definition file like this:

<property name="priceListPair" is-dinension="true" type="string"
property-accessor="/at g/ endeca/ i ndex/ accessor/ Pri ceLi st Pai r Accessor "
out put - nane="product. priceLi stPair" is-non-repository-property="true"/>

The resulting value has the following format:

sal ePricelList_listPricelist

For example:

<PROP NAME="product. priceli stPair">
<PVAL>
pl i st 3080003_pl i st 3080002
</ PVAL>
</ PROP>

ActivePriceAccessor

The at g. endeca. i ndex. accessor. Acti vePri ceAccessor class sets the value of a record’s
sku. acti vePri ce property based on the prices in the record’s price list pair. The sku. act i vePri ce property
is specified in the Pr oduct Cat al ogQut put Conf i g definition file like this:

<property nanme="price" type="float"
property-accessor="/at g/ conmer ce/ endeca/ i ndex/ accessor/ Acti vePri ceAccessor"

12 Handling Price Lists 127

out put - name="sku. acti vePri ce" is-non-repository-property="true"/>

The actual calculation of the price is performed by a component of class

at g. conmer ce. endeca. i ndex. Acti vePri ceCal cul at or. This class looks up the prices in the price lists and
uses the sale price if there is one, or uses the list price if there is no sale price. The Act i vePri ceCal cul at or
component is specified through the act i vePri ceCal cul at or property of the Act i vePri ceAccessor
component. By default, this property is set to:

activePriceCal cul at or =/ at g/ conmer ce/ endeca/ i ndex/ Acti vePri ceCal cul at or

QueueingPropertiesChangelListener

The I ncr enent al Loader component monitors when changes are made to the values of properties specified
in an Endecal ndexi ngQut put Conf i g component’s definition file, and adds the modified items to the
incremental item queue. So, for example, if the col or property of a SKU in the product catalog is modified, that
SKU is added to the incremental item queue for reindexing.

Prices in price lists, however, are not referenced directly by catalog items; instead, pri ce items in the price
list repository have references to the products or SKUs they apply to. So changes to pri ce items do not
automatically trigger reindexing of the corresponding product or SKU.

The at g. reposi tory. search. i ndexi ng. | i st ener. Queuei ngPropert i esChangelLi st ener class
addresses this issue by providing a mechanism for triggering reindexing of items in one repository based on
changes to items in another repository. Oracle Commerce includes a component of this class, / at g/ cormer ce/
sear ch/ Pri ceLi st Properti esChangedLi st ener, that is configured to monitor changes to pri ce items in
the price list repository and add products and SKUs that they reference to the incremental item queue.

The following describes key properties of the Queuei ngPr oper t i esChangelLi st ener class, and their default
settings in the Pri celLi st Properti esChangedLi st ener component.

incrementalLoader

The I ncr enent al Loader component to use. This component is responsible for queueing changes in the
incremental item queue. This property is set to:

i ncrenent al Loader =/ at g/ sear ch/ reposi tory/ | ncrenment al Loader

repository

The repository whose items are monitored for changes. This property is set to the price list repository:

reposi tory=/at g/ conmerce/ pricing/ pricelLists/PriceLists

itemDescriptorName

The item type of the repository items to monitor for changes. This property is set to:

i temDescri pt or Nane=pri ce

128

12 Handling Price Lists

referencingPropertyTolndexedRepositoryAndType

A Map in which each key is the name of a property of the monitored item type, and the corresponding

value is the Nucleus pathname and item type of the item descriptor in the indexed repository that the
monitored properties reference. The values are of the form r eposi t or yPat hName: i t enDescr i pt or Name. For
Pri celLi st Properti esChangedLi st ener, the keys are pr oduct | d and skul d properties of pri ce items in
the price list repository, and the values represent pr oduct and sku item descriptors in the catalog repository:

ref erenci ngPropertyTol ndexedReposi t or yAndType=\
product | d=/ at g/ conmer ce/ cat al og/ Pr oduct Cat al og: pr oduct, \
skul d=/ at g/ comrer ce/ cat al og/ Pr oduct Cat al og: sku

monitoredPropertyNames

A list of properties of the item type specified by the i t enDescri pt or Nane property. If the value of

nmoni t or edPr oper t yNanes is null (the default), all properties of the item type are monitored, and
changes to the values of any of them triggers reindexing of the associated products or SKUs. If the value of
nmoni t or edPr oper t yNanes is not null, only the listed properties are monitored.

Indexing Time-Based Prices

If your sites use time-based pricing, a price list may have multiple prices for a given product or SKU, with the
active price differing depending on when the item is purchased. For example, a product may sell for $100.00
until December 25, and then sell for $50.00 after that.

To control which price values appear in indexed records, the Act i vePri ceCal cul at or class enables you to
specify a time in the future to use as the effective time for determining prices. For instance, in the example
mentioned above, if you run an indexing job on December 24 that uses an effective time of noon on December
26 for pricing, the record generated for the product will include a price value of $50.00.

You can specify the effective time for determining prices either as an explicit time or as an offset from the
indexing start time. The / at g/ sear ch/ r eposi t or y/ Bul kLoader and/ at g/ sear ch/ reposi tory/

I ncrement al Loader components determine the time when an indexing job is started, and store this value
inthe at g. reposi t ory. sear ch. i ndexi ng. Cont ext object. The effective time for determining prices is
calculated relative to this indexing start time. The indexing start time remains unchanged throughout the entire
indexing job, to ensure that the prices in all of the generated records reflect the same effective time, regardless
of how long the indexing job takes.

Acti vePri ceCal cul at or provides two properties for specifying the effective time for determining the prices
in an indexing job:

indexingTimeOffsetinHours

Specifies the effective time as a number of hours after the time when the indexing job is
started. For example, if the value of this property is 53.5, the effective time for pricing will be
two days plus five and a half hours later than the start time of the indexing job.

indexingTimeCalendarString

Specifies the effective time for pricing as an explicit time (for example, January 6, 2056, at
3:00 am) or series of times (for example, the 1st and 15th of each month, at 5:00 pm). The
value of this property is a string that uses the Cal endar Schedul e syntax described in the

12 Handling Price Lists 129

Scheduler Services section of the Platform Programming Guide. For example, the following
specifies the effective times as the 1st and 15th of each month, at 3:05 pm:
i ndexi ngTi neCal endar String=* 1,15 . . 15 5

Note that if i ndexi ngTi meCal endar St ri ng is set to a series of times, the effective time used for pricing for

an individual indexing job is the first time in the series after the indexing start time. For example, if you use the

i ndexi ngTi meCal endar St ri ng value above and you start an indexing job on the 8th of a month, the effective
time will be the 15th of that month at 3:05 pm. If you start an indexing job on the 16th of a month, the effective
time will be the 1st of the following month at 3:05 pm.

Thei ndexi ngTi meCf f set | nHour s and i ndexi ngTi meCal endar St ri ng properties are mutually
exclusive. If both properties are set, the value of i ndexi ngTi neCal endar St ri ng is used, and

i ndexi ngTi neCf f set | nHour s is ignored. If neither property is set, the indexing start time is used as the
effective time for determining prices.

For more information about time-based pricing, see the Core Commerce Programming Guide.

Filtering Records by Price List

The at g. commer ce. endeca. assenbl er. navi gation.filter.PriceListPairFilterBuilder class
constructs a filter that restricts the set of records returned to only those associated with the price list pair used
for the current customer. The Guided Search integration includes a component of this class, / at g/ endeca/
assenbl er/cartridge/ manager/filter/PricelListPairFilterBuilder.

The name of the price list pair property in Guided Search records to use for filtering is specified through the
priceLi st Pai r Proper t yName property. This is typically set to:

pri ceLi st Pai r Propert yNane=pr oduct . pri ceLi st Pai r

See the Record Filtering (page 119) chapter for more information about configuring and using record filters.

130 12 Handling Price Lists

13 Dimension Value Caching

This chapter discusses dimension value caching, which the Guided Search integration uses to map GSA
repository items to the Guided Search dimension values that represent them in the MDEX. The discussion in
this chapter focuses on categories, but the feature is implemented in a general way so it can work with other
repository items.

This chapter includes the following sections:
Mapping Categories to Dimension Values (page 131)
Managing the Cache (page 132)

DimensionValueCacheDroplet (page 133)

Mapping Categories to Dimension Values

A key aspect of the Guided Search integration involves treating product categories both as cat egor y items
in the product catalog repository and as Guided Search dimension values. In some contexts categories are
accessed via their category IDs, while in other contexts they are accessed via their dimension value IDs.

To manage the relationship between categories and dimension values, the Guided Search integration
maintains a cache that maps each Oracle Commerce Platform category ID to the equivalent Guided Search
product . cat egor y dimension value ID. The cache supports two-way lookup, so either value can be obtained
if the other one is known. Commerce Reference Store makes extensive use of this cache in both directions. For
example, to create a link from an Nucleus-driven page to an Assembler-driven category page, it can use the
cache to obtain the dimension value ID from the category ID; to provide the current category context to an
Oracle Commerce Platform scenario running in a cartridge on a category page, it can use the cache to find the
category ID associated with the current category dimension value.

If your Guided Search environment includes multiple MDEX engines (for example, if you use a separate MDEX for
each language), a separate dimension value cache is maintained for each MDEX. This avoids any collisions that
might be caused by multiple MDEX engines using the same dimension value IDs.

DimensionValueCache and DimensionValueCacheObject

The dimension value cache is implemented by the at g. cormer ce. endeca. cache. Di mensi onVal ueCache
class. This class uses objects of class at g. conmer ce. endeca. cache. Di nensi onVal ueCachebj ect

for storing cache entries. The cache is a Concur r ent HashMap, where each key is an category ID, and the
corresponding map value is an instance of Di nensi onVal ueCacheQbj ect .

The Di nensi onVal ueCacheQbj ect class stores the following information about a dimension value:

13 Dimension Value Caching 131

« di nval I d - the dimension value ID for the category; e.g., 1245
+ repositoryl d-the GSA repository ID for the category; e.g., cat 50087
« url --the Guided Search URL for the dimension value; e.g., / br owse?N=1245

« ancest or Reposi t oryl ds - a List of repository IDs for the category’s ancestor categories; e.g.,
cat 10016, cat 10014

Note that a single key can be associated with multiple Di mensi onVal ueCachebj ect instances,
because a category can have multiple parent categories. Therefore when a Di mensi onVal ueCache is
used to look up the dimension value for a specific repository ID, the results are returned as a Li st of

Di mensi onVal ueCachebj ect instances (although in many cases the Li st may have only one entry).

Managing the Cache

The / at g/ commer ce/ endeca/ cache/ Di nensi onVal ueCacheTool s component (of class
at g. conmer ce. endeca. cache. Di mensi onVal ueCacheTool s) provides methods used to access the caches.
These include methods for:

+ Retrieving a Li st of Di mensi onVal ueCacheQbj ect instances that correspond to a particular category ID.
*+ Retrieving the Di mensi onVal ueCacheObj ect associated with a particular dimension value ID.

+ Creating a new cache.

+ Refreshing an existing cache.

In an environment with multiple MDEX engines, a single Di mensi onVal ueCacheTool s component
performs these operations on all caches. Di mensi onVal ueCacheTool s has a get Cache() method
which retrieves the appropriate cache to access for a given request, based on the value returned by the
get Current Appl i cat i onKey() method of the Assenbl er Appl i cati onConfi gurati on component.

Populating and Refreshing the Cache

The/ at g/ endeca/ assenbl er/ cartri dge/ handl er/ Di mensi onVal ueCacheRef r esh component (of class
at g. conmer ce. endeca. assenbl er. cartri dge. handl er. Di mensi onVal ueCacheRef r eshHandl er) is
responsible for accessing the MDEX to populate the associated cache. If an attempt is made to access a cache
that does not exist, the Di nensi onVal ueCacheTool s. cr eat eEnpt yCache() method is invoked to create an
empty Di nensi onVal ueCache. The Di nensi onVal ueCacheRef r esh component then accesses the MDEX

to populate the cache. For each dimension value of the specified dimension, Di mensi onVal ueCacheRef r esh
creates a new Di nensi onVal ueCacheQbj ect that stores the dimension value ID, the repository ID, the URL,
and the repository IDs of the item’s ancestor items.

If a cache lookup fails to find an entry, this may be because the cache is out of date. When this happens,

Di mensi onVal ueCacheRef r esh attempts to refresh the cache by recreating all of the entries. However, to
prevent unnecessary refreshes (such as when an entry is not found because it has not been indexed, which
means a refresh will not fix the failed lookup), the cache is not refreshed if any of the following conditions exist:

» The number of seconds since the last refresh is less than the value of the
Di mensi onVal ueCacheTool s. mi ni nunCacheRef r eshl nt er val Secs property (default value is 600).

« Arefresh is already in progress.

132

13 Dimension Value Caching

+ The MDEX has not been updated since the last time the cache was refreshed.

To ensure that the caches do not become stale, Di nensi onVal ueCacheTool s has a property,
checkMDEXUpdat edEver yNHour s, for specifying a time interval in hours. (The default value is 24.) When an
attempt is made to access a cache, if the number of hours since the last refresh of the cache is greater than this
value, Di nensi onVal ueCacheRef r esh attempts to refresh the cache. However, the cache is not refreshed if
any of the conditions listed above exist.

Key properties of the Di nensi onVal ueCacheRef r esh component include:

dimensionName
The name of the dimension in the MDEX. Set by default to pr oduct . cat egory.

repositoryldProperty
The name of the property in the MDEX that represents the repository ID of the category. Set
by default to cat egory. reposi toryl d.

dimensionValueCacheTools
The Di nensi onVal ueCacheTool s component used to access the cache. Set by default to /
at g/ commer ce/ endecal/ cache/ Di mensi onVal ueCacheTool s.

navigationState

The component representing the Guided Search Navi gat i onSt at e to use to access the
MDEX. By default, this is set to the / at g/ endeca/ assenbl er/ cartri dge/ manager /
UnfilteredNavi gati onSt at e component, which creates a Navi gat i onSt at e object
without any refinements or filters applied. This is done so that the set of dimension values
returned is not restricted based on the navigational context.

Populating the DimensionValueCacheObject.url Property

To populate the ur | property of a Di mensi onVal ueCachebj ect with an appropriate link, the

Di nensi onVal ueCacheTool s component invokes the Assembler. These links must always begin with

the / br owse content path and, as such, they require the Di mensi onVal ueCacheTool s component

to perform an extra step. Specifically, before the invocation, the Di nensi onVal ueCacheTool s

component modifies the request it passes to the Assembler to add a new request attribute,

Def aul t Act i onPat hPr ovi der . ALMWAYS USE DEFAULT_NAVI GATI ON_CONTENT _PATH, and sets it to

t r ue. This request attribute forces the Assembler to use the Def aul t Act i onPat hPr ovi der component'’s
def aul t Exper i enceManager Navi gat i onAct i onPat h property when setting the content path for the

ur |, instead of going through the normal Def aul t Act i onPat hPr ovi der calculations to derive the content
path. Because this property is set to / br owse by default, forcing the Assembler to use it ensures that the links
returned to the Di nensi onVal ueCacheTool s component are correct. The Di nensi onVal ueCacheTool s
object subsequently removes the additional request attribute after the links are retrieved, so any other
invocations of the Assembler proceed as normal.

Note: For more details on Assembler invocation and the Def aul t Act i onPat hPr ovi der component, see the
Query Integration (page 85) chapter.

DimensionValueCacheDroplet

On a JSP page, you can use the / at g/ conmrer ce/ endecal cache/ Di nensi onVal ueCacheDr opl et
component (of class at g. conmer ce. endeca. cache. Di mensi onVal ueCacheDr opl et) to obtain the
dimension value associated with a specific category. This servlet bean takes the following input parameters:

13 Dimension Value Caching 133

repositoryld
The repository ID of the category to retrieve the corresponding
Di mensi onVal ueCacheQbj ect for.

ancestors

A list of the repository IDs of the category’s ancestor categories, delimited by colons. This
value helps determine the correct Di nensi onVal ueCacheQbj ect to retrieve for a category
that has more than one path in the catalog hierarchy.

Di nensi onVal ueCacheDr opl et returns the Di nensi onVal ueCachebj ect entry that matches these
parameters. For example:

<dsp: dropl et nane="Di nensi onVal ueCacheDr opl et" >
<dsp: param nane="reposi toryl d" val ue="${categoryld}"/>
<dsp: param nane="ancest ors" val ue="${topLevel Cat egoryl d}"/>
<dsp: opar am nanme="out put " >
<dsp: get val ueof var="cat egoryCacheEntry" paranm="di nensi onVal ueCacheEntry" />
</ dsp: opar an®>
</ dsp: dropl et >

The ur| property of the Di mensi onVal ueCachebj ect can be used to render a link to an Assembler-driven
category page. For example:

<dsp: a page="${categoryCacheEntry.url}">
<dsp: val ueof val ue="$%{cat egoryDi spl ayNane} ">
<fmt : nessage key="conmon. cat egor yNaneDefaul t" />
</ dsp: val ueof >
</ dsp: a>

134 13 Dimension Value Caching

14 User Segment Sharing

This chapter discusses the user segment sharing feature that allows a content administrator to choose a user
segment that has been defined in the Business Control Center as a trigger for a cartridge in Experience Manager.

This chapter includes the following sections:
About User Segment Sharing (page 135)
Configuring User Segment Sharing (page 136)
Avoiding Duplicate User Segment Names in the Business Control Center (page 142)

Renaming a User Segment in the Business Control Center (page 142)

About User Segment Sharing

The user segment sharing feature automatically populates the Add/Modify User Segments dialog box in
Experience Manager with any user segments that have been defined in the Business Control Center. This is the
dialog box that is used to define triggers for a cartridge, an example of which is shown below:

Add/Modify User Segments »

Search user segments + Add User Segments
Boe S|

CategoryOnly
Fashognista

MenOnky
HoPncarange

st homeSite
ske.mobdeHomeSite
site mobdeStoreSeeDE
ste.mobdeStoreStels
ste storesdelE

she stoneSdells

Cancel oK

14 User Segment Sharing 135

User segments can be created in both the Business Control Center and in the Workbench, and Experience
Manager will show both in the Add/Modify User Segments dialog box. In general, to reduce the possibility for
duplication, user segments should be defined in the Business Control Center and then automatically populated
in the Add/Modify User Segments dialog box.

User segment sharing is a one-way relationship. When configured to do so, user segments created in the
Business Control Center are shared with Experience Manager. However, user segments created in Workbench are
not shared with the Business Control Center.

Configuring User Segment Sharing

When configuring the user segment sharing feature, you must specify an Oracle Commerce Platform server to
act as the user segment server. This server responds to Workbench requests for the list of user segments defined
in the Business Control Center. In general, Oracle recommends using the Content Administration server as the
user segment server.

If your environment does not have a Content Administration server, you can use the Production server instead
but additional configuration is required. Note that using the Production server as the user segment server is
less than ideal because typically the most up-to-date user segment data resides on the Content Administration
server, and you want a merchandiser to have access to that up-to-date data in Experience Manager. Also, calls
made to a live, customer-accessible Production server will typically have to go through a firewall. For these
reasons, you should only use the Production server as your user segment server in development environments
that do not use a Content Administration server.

Note: The Content Administration server is also referred to as the Publishing server in CIM.

To query for Business Control Center user segments, the Workbench sends a call to the user segment

server using the REST Service provided by the REST module. This REST call must be secure to prevent
unwanted access to the user segment data. By default, user segment security is enabled via the

Request Credent i al AccessControl | er component that is included with the REST module. However,

you must add security credentials to both the user segment server and the Workbench to complete

the security configuration. Also, you must configure each EAC application with the correct URL for the

REST request. To request user segments, the Workbench sends its security credential in a header with

the EAC application’s REST request to the user segment server. On the user segment server side, the

Request Credent i al AccessCont rol | er component compares the security credential in the request to the
security credentials configured on the user segment server. If a match is found, the request is allowed. If not, it is
denied.

Additional Configuration Required for the Production Server

If your environment does not have a Content Administration server, you can use the Production server as the
user segment server instead. Note that this configuration is recommended for development environments only
(see Configuring User Segment Sharing (page 136) for more information on why). To use the Production server
as the user segment server, you must make sure it includes the REST module. You can do this in CIM by choosing
the Oracle Commerce REST - RESTful Web Services option in the Product Selection menu. Alternatively, you can
include the REST module when running the r unAssenbl er command to assemble your Production server’s
EAR file:

runAssenbl er earfil ename —m REST ot her - nodul es

136 14 User Segment Sharing

In addition to including the REST module, you must also add the Get Al | Prof i | eG oups URL to the/ at g/
rest/regi stry/ Actor Chai nRest Regi stry. regi steredUr | s property. To do this, create an/ at g/ r est /
regi st ry/ Act or Chai nRest Regi st ry. properti es file in the Production server's| ocal conf i g directory
with the following property, then restart the Production server:

regi steredUr| s+=/atg/userprofiling/Profil eG oupsActor/getAllProfil eG oups

About the RequestCredentialAccessController Component

In order to make the REST calls for user segments secure, the REST module includes a component, / at g/ r est /
security/ Request Credenti al AccessControl | er, that enables and enforces access control for these
calls. Out of the box, the Request Cr edent i al AccessControl | er component’s enabl e property is set to

t r ue. If you need to disable security for the REST calls, you can set this value to f al se, although this is not a
configuration that Oracle recommends.

To determine if a user segment request should be fulfilled, the Request Cr edent i al AccessControl | er
component compares the security credential passed in an HTTP header of the request with the credentials
stored in a credential store map. If a matching credential exists in the credential store map, the request

is fulfilled. If no match exists, access to the user segment data is denied. To support this functionality, the
Request Cr edent i al AccessControl | er componentincludes the properties listed below, in addition to the
enabl ed property. Note that these properties must not be changed or user segment security will cease to work:

» credenti al St or eMap: The credential store map under which valid REST security credentials are stored. User
segment server requests must include a credential that matches a credential stored in this map in order to be
fulfilled. The default value for this property is r equest Cr edent i al Map and must not be changed.

« fi el dNane: The name of the HTTP header that contains the credential for user segment server REST requests.
This setting defaults to Request - Cr edent i al , which is the field that the Workbench uses to pass the
credential header, and it must not be changed.

Managing Credentials
In order for user segment security to work, you must add credentials in two places:

+ Tothecredenti al St or eMap. The Request Cr edent i al AccessControl | er component references this
map when determining if a request includes a valid credential.

» To the Workbench so that it can pass a valid credential along with the user segment request.

Modifications to REST security credentials stored in the cr edent i al St or eMap are effective immediately after
they are saved. Modifications to the Workbench security credential require a restart before those changes
become available for use.

Managing Credentials in the credentialStoreMap

You can add a credential to the cr edent i al St or eMap using either CIM or Dynamo Server Admin. Follow the
instructions below to add a security credential to the cr edent i al St or eMap using CIM.

1. In the CIM MAIN MENU, select [2] Configure OPSS Security.
2. In the SECURITY DEPLOYMENT MENU, choose [1] Enter the location to deploy OPSS files.
3. Press Enter to accept the default location for OPSS files.

4. In the SECURITY DEPLOYMENT MENU, choose [2] Enter the security credential for REST Services.

14 User Segment Sharing 137

. Enter the new credential at the prompt. The credential can be any text, similar to a password, however it

should correspond to your organization’s OPSS security platform requirements.

. Re-enter the credential to confirm it.
. Inthe SECURITY DEPLOYMENT MENU, choose [3] Deploy configuration files.

. In the COPY CREDENTIALS TO SHARED DIRECTORY menu, choose [D] Deploy to / <ATGL1di r >/ hone/ . ./

hone/ security.

. In the VERIFY WHETHER TO OVERWRITE CURRENT DIRECTORY CONTENTS menu, choose [D] Deploy OPSS

configuration files.

10.In the SECURITY DEPLOYMENT MENU, choose [D] Done.

Alternatively, you can add or delete security credentials using Dynamo Server Admin.

To enter security credentials in Dynamo Server Admin:

1.

In a browser, navigate to the instance of Dynamo Server Admin that is running on the user segment server:

http://<user_segnent _server_host >: <user _segnent _server _HTTP_port >/ dyn/ adm n

. In the authentication dialog box, enter the Dynamo Server Admin username and password click OK.

. (WebLogic only) Depending on how you configured your environment, WebLogic may require an additional

login for the WebLogic server. If necessary, enter your WebLogic username and password, and then click OK.

You see the Administration home page.

. Click the Component Browser link.

. Navigate to/ at g/ dynano/ securi ty/ opss/ csf/ Credenti al St or eManager.

. From the Action drop-down menu, choose Create Generic Credential and then click Select.
. In the Map Name field, enter r equest Cr edent i al Map.

. Enter a key name in the Credential Key Name field, for example, key 1. Use a unique key name to enter a new

credential. Use an existing key name to replace the credential for that key name.

. Enter the new credential in the Enter Credential area. The credential can be any text, similar to a password,

however it should correspond to your organization’s OPSS security platform requirements.

10.Click Submit Credentials.

To delete an existing REST security credential:

1.

In a browser, navigate to the instance of Dynamo Server Admin that is running on the user segment server.
See the previous section for detailed instructions on how to do this.

. Click the Component Browser link.

. Navigate to/ at g/ dynano/ securi ty/ opss/ csf/ Credenti al St or eManager.

. From the Action drop-down menu, choose Delete Credential and then click Select.
. Select the credential you want to delete.

. Click Delete Credential.

138

14 User Segment Sharing

Managing Credentials in the Workbench

To manage credentials in the Workbench, you use the manage_cr edent i al s scriptin the/
credenti al _st or e/ bi n directory under Tool sAndFr anewor ks.

To add a credential to the Workbench:

1. In a UNIX shell or command prompt, navigate to the ENDECA_TOOLS _ROOT/ cr edenti al _store/bin
directory, for example, / usr/ | ocal / endeca/ Tool sAndFr amewor ks/ ver si on/ credenti al _st ore/ bin
or C:\ Endeca\ Tool sAndFr amewor ks\ ver si on\ cr edenti al _st or e\ bi n.

2. Enter one of the following commands.
On UNIX, enter:

./ manage_credenti al s. sh add --user adnmin --config [path to jps-config.xm] --type
generic --mapNane restService --key clientCredenti al

For example:

./ manage_credential s. sh add --user admin --config $ENDECA TOOLS ROOT/ server/
wor kspace/ credenti al _store/jps-config.xm --type generic --nmapNane restService --key
clientCredenti al

On Windows, enter:

manage_credential s. bat add --user adnmin --config [path to jps-config.xm] --type
generic --nmapNane restService --key clientCredenti al

For example:

manage_credential s. bat add --user admn --config YENDECA TOOLS ROOT% ser ver
\wor kspace\ credential _store\jps-config.xm --type generic --mapNane restService --
key clientCredenti al

3. Enter the new credential at the prompt.

4. Re-enter the credential to confirm the addition.

5. Follow the instructions below to restart the ToolsAndFrameworks service.
To restart the ToolsAndFrameworks service:

1. In a UNIX shell or command prompt, navigate to the ENDECA_TOOLS ROOT/ ser ver/ bi n directory,
for example, / usr/ | ocal / endeca/ Tool sAndFr anewor ks/ ver si on/ server/ bi nor C:\ Endeca
\ Tool sAndFr anewor ks\ ver si on\ server\ bi n.

2. Execute the shut down script.
On UNIX, enter:
./ shut down. sh
On Windows, enter:
shut down. bat
3. Execute the st art up script.

On UNIX, enter:

14 User Segment Sharing 139

./ startup.sh
On Windows, enter:
startup. bat

To delete a credential:

1. In a UNIX shell or command prompt, navigate to the ENDECA_TOOLS _ROOT/ cr edenti al _store/bin
directory, for example, / usr /| ocal / endeca/ Tool sAndFr amewor ks/ ver si on/ credenti al _st ore/ bin
or C:\ Endeca\ Tool sAndFr amewor ks\ ver si on\ cr edenti al _st or e\ bi n.

2. Enter one of the following commands.
On UNIX, enter:

./ manage_credentials delete --user adnmin --config [path to jps-config.xm] --napName
restService --key clientCredential

For example:

./ manage_credentials delete --user admn --config $ENDECA TOOLS ROOT/ server/
wor kspace/ credenti al _store/jps-config.xm --mapName restService --key
clientCredential

On Windows, enter:

manage_credential s. bat delete --user admn --config [path to jps-config.xm] --
mapName rest Service --key clientCredenti al

For example:

manage_credential s. bat delete --user admn --config %ENDECA TOOLS ROOT%
\ server\wor kspace\credential _store\jps-config.xm --nmapNanme restService --key
clientCredenti al

You are notified when the credential is successfully deleted.

Configuring the EAC Application

For the EAC application, you must specify the hostname and port of the URL that is used to connect to the REST
Service (the remainder of the URL after the port is well known and cannot be changed). You can create this
configuration in either of the following ways:

+ By directly modifying the at gSer vi ces. j son file for the EAC application that needs access to Business
Control Center user segment data. With this approach, you are making a one-time change that will have to be
repeated if you re-create the EAC application in the future.

+ By modifying the deployment template used to create your EAC application to add the necessary hostname
and port prompts and then store the responses in the application’s configuration. With this approach, every
EAC application that is created using the modified deployment template will include the proper user segment
sharing configuration.

Modifying the EAC Application Directly

To specify the REST Service hostname and port directly in the EAC application:

140 14 User Segment Sharing

1. Navigate tothe confi g/i fcr/confi guration/tool s/ xmgr directory of your deployed EAC application on
disk, for example, / usr /| ocal / endeca/ Apps/ CRS/ confi g/ifcr/configuration/tools/xngr.

2. Open at gSer vi ces. j son in a text editor.

3. Setthe profil eG oupsConnecti onUr| property to the JSON response for the get Al | Profi | eG oups
operation on the Content Administration server.

For example:

{

profil eG oupsConnectionUrl:"http://<Content Admi nistration
host >: <Content Admi ni stration server HITP port>

/rest/ model / at g/ user profiling/ Profil eG oupsActor/

get Al | Profil eGroups?at g-r est - out put =j son&at g- pr evi ew=f al se"

}

4. Save and close the file.

5. Navigate to the cont r ol directory of your deployed EAC application on disk, for example, / usr/ | ocal /
endecal/ Apps/ CRS/ control .

6. Run the set _edi t ors_confi g script, for example:
.Iset_editors_config.sh
Modifying the Deployment Template
To modify the deployment template:
1. Locate the depl oy. xni file you will use to configure your EAC application.
2. Add two <t oken> elements to the <cust om t okens> element with the following configuration:

<cust omt okens>

<!-- Other tokens -->

<t oken nanme="USER SEGVENTS_ HOST" >

<pronpt - questi on>Enter the hostnanme of user segment server.
This server will respond to user segnent requests fromthe

Wor kbench. [Defaul t: | ocal host] </ pronpt - questi on>

<instal |l -config-opti on>user Segnent sHost </ i nstal | -confi g-opti on>
<def aul t - val ue>l ocal host </ def aul t - val ue>

</t oken>

<t oken nane="USER _SEGVENTS_ PORT" >

<pronpt-questi on>Enter the HTTP port of the user segnent server.
This server will respond to user segnment requests fromthe

Wor kbench. </ pr onpt - questi on>

<install-config-opti on>user Segnent sPort</install-config-option>
</ t oken>

</ cust om t okens>

3. In the same directory as the depl oy. xn file,addan/i fcr/confi gurati on/tool s/ xngr/
at gSer vi ces. j son file with the following content:

{
profil eG oupsConnectionUrl =

"http:// @WSER_SEGVENTS HOST@® @ARJSER_SEGVENTS_PORT@@

14 User Segment Sharing 141

rest/ nodel / at g/ userprofiling/Profil eGoupsActor/getAl | Profil eGoups?
at g- r est - out put =j son&at g- pr evi ew=f al se"

}

4. Save and close the file.

Note about Configuring Commerce Reference Store

If you are installing and configuring Commerce Reference Store, the URL connection prompts are incorporated
into the CIM script that Commerce Reference Store uses, via the following two options in the DEPLOY CRS EAC
APP menu:

Enter the hostname of the user segment server. Oracle recommends using the

Publ i shing server for this purpose. |f your environnent does not have a Publi shing
server, enter the Production server host name and refer to the Cui ded Search
Integration CGuide for additional configuration requirenments. [[local host]] >

Enter the hostnane of the user segnent server. Oracle recommends using the

Publ i shing server for this purpose. |f your environnent does not have a Publishing
server, enter the Production server host nane and refer to the Cuided Search
Integration CQuide for additional configuration requirenents. [[7003]]>

When CIM executes the deployment template, it uses the values specified for these two menu options to
populate the deployment template prompts.

Avoiding Duplicate User Segment Names in the Business
Control Center

The Business Control Center allows you to create folders for user segments. The user segment sharing feature
in Experience Manager, however, does not differentiate by folder, so the following two segments would both
appear as YoungMales in the Add/Modify User Segments dialog box:

/| Reposi t or yGr oups/ YoungMal es
/ Reposi t or yGr oups/ nySegmnent s/ YounghMal es

For this reason, it is important to use a unique name for every user segment you create in the Business Control
Center, regardless of its location in the user segment folder structure.

Renaming a User Segment in the Business Control Center

If the name of a user segment is changed in the Business Control Center, it is treated in Experience Manager as
if a new segment with a new name has been added. For example, assume you have created a user segment in
the Business Control Center called MySegment and, in Experience Manager, you have configured a cartridge

142 14 User Segment Sharing

called MyCar t ri dge to be triggered when MySegnent is part of the current query. If you subsequently
change the name of MySegnent to RenamedSegment , when you return to Experience Manager, the trigger for
MyCar t ri dge remains MySegnent but this cartridge will never be triggered because MySegnent no longer
exists.

Also, if you look at the Add/Modify User Segments dialog box for MyCar t ri dge, it will show RenamedSegnent
in the left hand pane, where segments that are available for selection are displayed, but it will continue to
show MySegnent in the right pane, where the currently selected segments are displayed. To reconfigure
MyCartri dge to use RenanmedSegnent as a trigger, you must remove MySegnent from the currently selected
segments list and add RenanedSegnent to the list of triggers.

14 User Segment Sharing 143

144 14 User Segment Sharing

15 Using Sites and Site Groups as
Content Item Triggers

In Experience Manager, content folders, unlike pages, are not site-specific, meaning a content folder’s items may
be shared by multiple sites. For organizational reasons, you may want to group a set of content items under the
same content folder but have some of those items only trigger for particular sites or site groups. For example,
you may want to organize all of your promotional banner content items in the same content folder, keeping
them together and easy to locate, but one of those promotional banners would only be triggered when a
particular site is the current site. For this site-specific promotional banner, you would specify the site as a trigger
when you add the banner’s content item to the content folder in Experience Manager. Note that a content item
can have one or more sites or site groups as a trigger.

Enabling the use of sites and site groups as triggers in Experience Manager requires some additional
configuration on the part of the Workbench administrator. Specifically, to incorporate sites and site groups in
content item triggers, the following happens:

+ An administrator or business user manually adds a set of user segments to Workbench that correspond to the
sites and site groups that have been defined in Site Administration. This allows the sites and site groups to be
used in the user segment triggers configured by business users.

+ Experience Manager business users configure triggering rules for the content items using the manually added
user segments.

+ Every time the Core Platform calls the Assembler, it passes site context information (the current site and its site
groups) for the current request and shopper.

+ The passed information allows the Assembler to return the correct content for the request, based on the
configuration set in Experience Manager.

The following sections provide more detail on these general steps.

Adding Sites and Site Groups to Experience Manager

An administrator or business user must manually add user segments to Workbench that correspond to the sites
and site groups that are defined in Site Administration before they can be referred to in triggering rules. When
adding the new Workbench user segments, business users must use the correct syntax. Site and site group IDs
are unique within a type but can, in theory, collide across types. Because these names are passed as a single list
to Workbench, a prefix scheme is used to ensure a unique identifier for each site and site group that is passed.
For more details on these prefixes, see the next section, Constructing the Segment List (page 146).

15 Using Sites and Site Groups as Content Item Triggers 145

Constructing the Segment List

The DAF module is responsible for adding sites and site groups to the user segment list that is

sent to the Assembler. The DAF module includes the request-scoped / at g/ endeca/ assenbl er/

cartridge/ manager/ user/ Li veUser St at e component. This component is of class

at g. endeca. assenbl er. navi gati on. Li veUser St at e. The Li veUser St at e class is an extension of the
com endeca. i nfront. navi gati on. User St at e class that overrides the get User Segment s() method with
acalltoaLi veUser St at e. conput eSegnent s() method that computes the list of sites and site groups to
be added to the segment list that is sent to the Assembler. Segment names are added to the user Segnent s
property via the addUser Segnent s() method.

The DAF module contains the following configuration for the Li veUser St at e component:

sitePrefix=site
siteG oupPrefix=sitegroup
prefixDelimter=.

This configuration specifies that, when the Li veUser St at e component adds a site to the segment list, it
prefixes the site’s ID (as defined in the Site Manager Ul) with the word si t e and a period, for example:

site.WSite
A similar situation exists for site groups. Site group IDs are prefixed with si t egr oup and a period, for example:
sitegroup. WSi teG oup

It is important to remember that any segments added in the Workbench must also follow these naming
conventions.

146 15 Using Sites and Site Groups as Content Item Triggers

16 Commerce Single Sign-On

The Oracle Commerce Business Control Center and the Oracle Commerce Workbench are both used for
managing content and its presentation on sites built with the integration of the Oracle Commerce Platform and
Oracle Commerce Guided Search. To simplify working in both environments, the Guided Search integration
includes the Commerce Single Sign-On (SSO) feature. Commerce Single Sign-On ensures that when a user logs
into either the Business Control Center or the Workbench, that user is automatically also logged into the other
environment. Logging out of one environment automatically logs the user out of the other one as well.

Commerce SSO consists of three pieces:

+ An Oracle Commerce Platform SSO server instance that is responsible for managing the SSO sessions shared
by the Business Control Center and the Workbench.

+ An Oracle Commerce Platform plug-in that is responsible for communication between the Business Control
Center and the SSO server.

+ A Oracle Commerce Guided Search plug-in that is responsible for communication between the Workbench
and the SSO server.

The Guided Search plug-in is discussed in the Oracle Commerce Guided Search Administrator’s Guide. This chapter
discusses the SSO server and the Oracle Commerce Platform plug-in, and includes the following sections:

Commerce Single Sign-On Server (page 147)
Oracle Commerce Platform Plug-In (page 148)
Maintaining User Accounts (page 150)

LDAP Authentication (page 150)

Commerce Single Sign-On Server

Commerce SSO is managed by a dedicated Oracle Commerce Platform server instance. When you set up your
environment in CIM, it gives you the option of setting up this server. The server includes the SSOmodule and the
DPS. | nt er nal User s module (which the SSOmodule has a dependency on), and uses the same datasources

as the ATG Content Administration server, so it can access the Oracle Commerce Platform internal profile
repository.

When an unauthenticated user attempts to access the Business Control Center or the Workbench, he or she is
redirected to the SSO server’s login page. The login is authenticated against either the internal profile repository

16 Commerce Single Sign-On 147

or the LDAP server, depending on which configuration is used. If the login succeeds, the requested application is
displayed.

The SSOmodule includes a web application that manages the single-sign on process. The application, whose
context root is sso, provides six main functions that can be accessed via plug-ins by client applications: login,
validate, keep alive, query, control, and logout.

To perform these tasks, the Commerce SSO makes use of ticket granting tickets and service tickets. A ticket
granting ticket is like a global flag that indicates the user has been successfully authenticated. When a user is
authenticated successfully, a service ticket is issued to the user. The service ticket is a short-term object that is
used to perform validation. The first time the user attempts to access a URL, the service ticket is passed to the
SSO server along with the URL to validate that the user is permitted to access the URL. The SSO server responds
either “yes” or “no” to the request based on the status of the ticket.

The SSO application adds the / at g/ sso/ ser vl et / SSODi spat cher Ser vl et component, of class

atg. servl et. pi pel i ne. Servl et Pat hDi spat cher Pi pel i neSer vl et to the Oracle Commerce Platform
request-handling pipeline on the SSO server. This servlet dispatches requests to other servlets that provide
the SSO server functions. The servlet that SSODi spat cher Ser vl et dispatches the request to depends on the
servlet path of the request:

+ /1 ogi n - Dispatches the request to the / at g/ sso/ ser vl et/ Logi nSer vl et component, of class
at g. sso. servl et. Logi nSer vl et . This servlet manages the process of authenticating the user and issuing
a service ticket.

+ /val i dat e -- Dispatches the request to the / at g/ sso/ ser vl et/ Val i dat eSer vl et component, of class
at g. sso. servl et. Val i dat eSer vl et . This servlet manages the process of validating requests based on the
status of service tickets.

+ [keepAl i ve -- Dispatches the request to the / at g/ sso/ ser vl et/ KeepAl i veSer vl et component, of
class at g. sso. servl et. KeepAl i veSer vl et . This servlet ensures that an SSO session remains active as
long as there is activity in either the Business Control Center or the Workbench. For example, if the user logs
into Commerce SSO and accesses the Workbench for several hours without accessing the Business Control
Center, the keep alive function ensures that subsequent attempts to access the Business Control Center do
not require logging in again.

« [/ query -- Dispatches the request to the / at g/ sso/ servl et/ Quer ySer vl et component, of class
at g. sso. servl et. QuerySer vl et . This servlet is responsible for issuing RQL queries against the internal
profile repository. This function is accessed only by the Guided Search plug-in.

« /control - Dispatches the request to the/ at g/ sso/ ser vl et/ Cont r ol Ser vl et component, of class
at g. sso. servl et. Cont rol Servl et.This servlet handles configuration of the client logout URL. This
function is accessed only by the Guided Search plug-in.

« /1 ogout - Dispatches the request to the / at g/ sso/ ser vl et / Logout Ser vl et component, of class
at g. sso. servl et . Logout Ser vl et . This servlet manages the process of deleting any tickets associated
with the session and then redirecting to the login page.

Oracle Commerce Platform Plug-In

The Oracle Commerce Platform plug-in consists of extensions to the Business Control Center that provide
access to four of the SSO server functions discussed above: login, validate, keep alive, and logout. (The
other two functions, control and query, are accessed only by the Guided Search plug-in.) These extensions

148 16 Commerce Single Sign-On

include the / at g/ dynano/ ser vl et / daf pi pel i ne/ Li ght wei ght SSOSer vl et component (of class

at g. userprofiling. sso. Li ght wei ght SSOSer vl et), which is inserted in the request-handling pipeline on
the ATG Content Administration server. This component manages much of the communication between the ATG
Content Administration server and the SSO server.

CIM includes options for configuring the SSO server instance. In addition, the CIM Commerce Add-Ons screen
has a Single Sign-On option for configuring the ATG Content Administration server with information that
enables it to communicate with the SSO server, such as the SSO server’s host name and port number.

The login, validate, keep alive, and logout functions are discussed below.

Login

When a user who is not logged in attempts to access the Business Control Center, the user is redirected to
the SSO login page, and is prompted to authenticate using Commerce SSO. If the authentication succeeds
on the SSO server, the user is then redirected to the ATG Content Administration server, which retrieves the
corresponding user profile from the internal profile repository and associates the current session with the
profile. If authentication fails, the user remains at the Commerce SSO login page.

The/ at g/ dynano/ ser vl et / daf pi pel i ne/ AccessCont rol Servl et and/ at g/ web/ asset nanager /

user profiling/ NonTransi ent AccessCont rol | er components are reconfigured by the plug-in to delegate
control of the Business Control Center login process to Commerce SSO. The NonTr ansi ent AccessControl | er
component is responsible for redirecting the user to the SSO server login URL, which it constructs by invoking
methods on the / at g/ user profi | i ng/ comrer cesso/ Commer ceSSOTool s component.

Note: To enable redirection of requests from the ATG Content Administration server to the Commerce SSO
server, add the hostname of the SSO server to the al | owedHost Nanes property of the / at g/ dynano/
servl et/ pi pel i ne/ Redi rect URLVal i dat or component on the ATG Content Administration server. For
example:

al | onedHost Names+=ssohost . exanpl e. com

Validation

When a user first attempts to access the Business Control Center, a validation request is sent to the Commerce
SSO server. This request contains both the ticket parameter and a service parameter containing the value of the
original URL being requested. (The request also contains a logout parameter to enable SSO logout, as discussed
below.) If the SSO server indicates it is valid for the user associated with the ticket to access the URL in the
service parameter, the Pr of i | eRequest Ser vl et loads the associated user profile.

Keep Alive

The Li ght wei ght SSCSer vl et component handles keep-alive calls to the SSO server. After a user’s login is
authenticated, Li ght wei ght SSOSer vl et periodically polls the KeepAl i veSer vl et on the SSO server, and
continues polling as long as it receives a “yes” reply each time. If a “no” reply is received, the Core Commerce
session is terminated. If the SSO server cannot be reached, additional attempts are made to contact the server
before ending the Core Commerce session.

The polling behavior of the Li ght wei ght SSCSer vl et component is specified through the following
properties:

16 Commerce Single Sign-On 149

Logout

keepAlivePollingFrequency
The amount of time in minutes between keep-alive calls. Default is 10.

keepAliveAttempts
The number of keep-alive calls to make, if there is no response from the Commerce SSO
server, before ending the Core Commerce session. Default is 3.

The way logout is handled depends on whether it is initiated from the Business Control Center or the
Workbench.

If a user logs out from the Business Control Center, the standard Core Commerce logout process is

invoked, and the current Core Commerce session is terminated. The user request is then redirected to the
Commerce SSO logout URL, so that the Commerce SSO session is also terminated. To accomplish this, the

I nt er nal Profil eFor nHandl er. | ogout SuccessURL and Cont r ol Cent er Ser vi ce. | ogout SuccessURL
properties are configured to hold the Commerce SSO logout URL. If the SSO session includes a Workbench
session, the Commerce SSO server terminates the Workbench session by sending a callback URL.

If a user logs out of the Workbench, the Commerce SSO session is terminated. The Core Commerce logout
process must then be triggered as well. As part of the initial request to validate the service ticket and request
URL (see above), the Commerce SSO Server is sent a logout parameter populated with a logout callback URL.
This parameter is used by the SSO Server to initiate a logout from the Core Commerce session after the SSO
session has been terminated by the user logging out of the Workbench. The Li ght wei ght SSOSer v et
detects such logout requests and invokes the | ogout User () method of the/ at g/ user profiling/

Prof i | eSer vi ces component to handle logging out the user.

Maintaining User Accounts

User accounts and authentication credentials for Commerce SSO can be implemented in either of two ways:

+ The Oracle Commerce Platform internal profile repository (used for storing Business Control Center accounts)
can be implemented as a standard SQL repository. In this case, the authentication information for Commerce
SSO is stored in the repository database.

« The internal profile repository can be implemented as a composite repository, where the authentication
information is stored in an LDAP directory.

The next section discusses using an LDAP server for authentication.

LDAP Authentication

Using LDAP authentication allows Commerce SSO to make use of an existing corporate LDAP server to control
access to the Business Control Center and the Workbench. In the Oracle Commerce Platform, the internal profile
repository is configured as a composite repository that accesses authentication data stored in an LDAP directory.
This configuration is described below.

150

16 Commerce Single Sign-On

Setting up a Composite Profile Repository

A composite profile repository is a variant of a standard profile repository in which some user data is stored

in a database and accessed through a SQL repository, while authentication information is stored in an LDAP
directory and accessed through an LDAP repository. The composite repository provides a unified view of all of
the data, regardless of its source. See the Personalization Programming Guide for information about composite
profile repositories. For more general information about composite repositories, see the Repository Guide.

You can use CIM to set up the internal profile repository as a composite repository. As mentioned above, CIM
includes options for configuring the SSO server instance, and the CIM Commerce Add-Ons screen has a Single
Sign-On selection for configuring SSO. If you select the Single Sign-On option, CIM will also display a Commerce
SSO Add-Ons screen which has a selection for configuring LDAP authentication settings.

If you select LDAP authentication, both the ATG Content Administration server and the Commerce SSO

server will include the DPS. | nt er nal User s. LDAP module. This module changes the class of the / at g/

user profiling/lnternal Profil eRepositorycomponentfrom atg. adapt er. gsa. GSAReposi tory to
at g. adapt er . conposi t e. Mut abl eConposi t eReposi t ory, and includes a SQL repository component (/

at g/ userprofiling/lnternal GSAProfil eRepository)to serve as the primary view for the composite
repository. It also includes configuration for / at g/ adapt er / | dap/ LDAPReposi t or y (the LDAP repository that
provides the contributing view) and related components.

CIM prompts you for LDAP connection settings and to provide mappings between repository properties
and LDAP attributes. Each user item in the internal profile repository is linked to an LDAP user by the

| ogi n property. Repository properties such as f i r st Nang, | ast Nane, and enmai | can be mapped to LDAP
user attributes such as gi venName, sn, and mai | . If an attribute value is changed on the LDAP server, the
corresponding repository property is immediately updated automatically; no re-login is necessary for the
change to take effect.

CIM configures the user item type as a composite item with the primary item being in the SQL repository and a
contributing item being in the LDAP repository. Based on the information you provide, it creates or modifies the
following configuration files:

« [atg/userprofiling/conposite.xn - configuration file for the composite repository
(I nternal Profil eRepository)

« /atg/userprofiling/internal UserProfile.xm - definition file for the SQL repository
(I nt er nal GSAPr of i | eReposi tory)

« /atg/adapter/|dap/ | dapUser Profile.xm - definition file for the LDAP repository (LDAPReposi t ory)

+ [atg/adapter/ldap/Initial ContextEnvironment. properties - properties file for the component
that specifies the environment settings for the JNDI initial context for the LDAP server

Note that in this configuration, the LDAP directory is not writable by the Oracle Commerce Platform. The LDAP
data should be maintained through your LDAP software, and be available to other systems for reading but not
modifying. Therefore, the LDAP repository is configured as read-only. This means that for Commerce SSO, unlike
other uses of LDAP by the Oracle Commerce Platform, you do not need to set up a password hasher component.
Password hashing should be handled through the LDAP software itself.

Mapping Organizations to LDAP Groups

After you specify the mapping of user properties to LDAP user attributes, CIM prompts you to link Business
Control Center LDAP organizations to LDAP groups by mapping organization properties to LDAP group
attributes. A Business Control Center organization is considered an LDAP organization if the organization'’s

i sLdap property is set to t r ue. An LDAP organization links to the LDAP group whose group ID matches the
name of the organization.

16 Commerce Single Sign-On 151

The value of the i sLdap property can be set in the Organizations interface in the Access Control area of the
Business Control Center:

Ganaral Mefmbeds

Basics

_) Commerce (=) LDAP

User Authentication

As mentioned above, the LDAP directory is not writable by the Oracle Commerce Platform. Therefore, before a
user can log into Commerce SSO, an account must exist for that user in the LDAP directory.

When a user who has an LDAP account but does not have an account in the internal profile repository

attempts to log into Commerce SSO, an account for that user is automatically created in the

I nt er nal GSAPr of i | eReposi t ory (assuming that the LDAP authentication succeeds). Once the user is logged
in, user properties that are not linked to the LDAPReposi t or y can be updated.

In order for Commerce SSO to automatically create an internal user in this way, the user must belong to at least
one LDAP group whose group ID matches the name of an LDAP organization defined in the Business Control
Center. The new user is automatically assigned to this organization (and to any other LDAP organizations that
match existing LDAP groups). For each subsequent successful login, the user’s organization memberships are
resynchronized with the user’s current LDAP group memberships.

Validating a login against the LDAP directory on the Commerce SSO server is handled through
the/ at g/ dynano/ securi t y/ LDAPAut henti cat i onSer vi ce component, which is of class
atg.security.| dap. LDAPAut henti cati onServi ce.

Creating Users and Organizations in the Business Control Center

As discussed in the previous section, if a user who has an LDAP account but does not have an account in the
internal profile repository attempts to log into Commerce SSO, an account for that user is automatically created
inthe | nt er nal GSAPr of i | eReposi t ory. Profile properties that are linked to LDAP attributes are read-only
and cannot be modified through the Business Control Center.

An administrator can create accounts in the internal profile repository for users who have not yet logged into
Commerce SSO. Because the LDAP repository is not writable, a new user must already have an LDAP account
with the same user name. The page in the Business Control Center for creating a new user has a Validate button
next to the Username field that you can click to verify that the account exists in the LDAP directory:

Ganaral Organiration & Roke Sie Access User Praferences

Login

Uszer demo is a valid LDAP user

e '~"E|I\.TE1'ELE
| S

152 16 Commerce Single Sign-On

Note that this restriction means that a user account cannot be created by duplicating an existing account and
then changing the user name, since this would require writing to the LDAP directory. Therefore, the Duplicate
option is disabled in the Users interface in the Access Control area.

Organizations

An administrator can create organizations in the Business Control Center that are stored in the Commerce SSO
composite profile repository. There are two types of organizations supported: LDAP (which is linked to an LDAP
group) and Commerce (which is stored entirely in the | nt er nal GSAPr of i | eReposi t ory and is not linked to
an LDAP group).

The name of an LDAP organization must match the group ID of the corresponding LDAP group. The page in the
Business Control Center for creating a new LDAP organization has a Validate button next to the Name field that
you can click to verify that the group exists in the LDAP directory.

Once you create an organization, you cannot change its name. This is true for Commerce organizations as well as
for LDAP organizations.

16 Commerce Single Sign-On 153

154 16 Commerce Single Sign-On

17 Data Logging for Search Reporting

Oracle Commerce can use Oracle Business Intelligence to generate reports about how customers use Guided
Search to navigate sites and access products. To make data available for use in reports, it must be collected in
the form of log files, which are periodically loaded into the data warehouse.

This chapter discusses the specifics of logging search data for reporting. There are two main types of search data
logging:

+ Recording the content of search requests and responses, in order to generate reports about general search
questions such as the most common search terms or the average number of searches per session.

+ Recording when customers click on search results or dimension values to view items, and whether or not
those items are subsequently purchased, in order to generate conversion reports about how customers use
search and guided navigation to find and purchase items.

This chapter describes the components, processes, and configuration involved in logging the data. It includes
the following sections:

Recording Search Requests and Responses (page 155)
Recording Search Results Selected (page 157)
Recording Search Results Placed in Shopping Carts (page 159)

The data logging and loading processes are described in the Business Intelligence Installation and Configuration
Guide. Search reports are created from data stored in the data warehouse, which is described in the Business
Intelligence Data Warehouse Guide.

Recording Search Requests and Responses

To record Assembler data for use in reporting, the / at g/ endeca/

assenbl er/ event / Sear chRequest Event Li st ener component (of class

at g. endeca. assenbl er. event . Sear chRequest Event Li st ener) is included in the list of Assembler
event listeners specified by the assenbl er Event Li st ener s property of the / at g/ endeca/ assenbl er/
Nucl eusAssenbl er Fact ory component. When Sear chRequest Event Li st ener detects an Assembler
request:

1. It constructs a JMS message of IMSType at g. endeca. assenbl er. message. Sear chMessage, containing
data from the Cont ent | t emreturned by the Assembler.

2. Sear chRequest Event Li st ener usesthe/ at g/ endeca/ assenbl er/ nessage/ Sear chMessageSour ce
component to send the JMS message.

17 Data Logging for Search Reporting 155

3. The message is received by the / at g/ r epor ti ng/ dat acol | ecti on/ endeca/ Sear chMessageLi st ener
component, which processes the JMS message and passes the data to the components that generate the log
entries for the search data.

The actual log files are written by the / at g/ r epor t i ng/ dat acol | ecti on/ endeca/ Sear chFi | eLogger
component, which is of class at g. servi ce. dat acol | ecti on. Rot at i onAwar eFor mat ti ngFi | eLogger.
This component’s f or mat Fi el ds property specifies the JMS message properties to be logged. By default, this
property is set to:

format Fi el ds=ti mest anpAsDat e: MM dd/ yyyy HH mm ss, searchl d, profileld,
sessi onl d, reposi t oryNane, | anguageCode, segnent Li st, searchType,
sear chTer m aut oCor r ect To, suggest i ons, suggesti onSel ect ed, spot Li ght s,
responseTi ne, nunmRecor ds, si t el d, di mensi onNanes, di mensi onVal ues, wor dCount

For more information about configuring a Rot at i onAwar eFor mat t i ngFi | eLogger component, see the
Business Intelligence Installation and Configuration Guide

SearchldProvider

When the Sear chRequest Event Li st ener component construct a JMS message from the Cont ent I t em
returned by the Assembler, it assigns a unique ID to the search request.

The component that generates these search IDs is specified by the Sear chRequest Event Li st ener
component’s sear chl dPr ovi der property. This property must be set to a component of a class that
implements the at g. endeca. assenbl er. event . Sear chl dPr ovi der interface. By default, the property is set
to:

sear chl dProvi der =/ at g/ endecal/ assenbl er/ event / Sear chl dPr ovi der

The Sear chl dPr ovi der component is of class at g. endeca. assenbl er. event . Sear chl dProvi der | npl ,
which constructs the search ID using hashed values of the session ID, the search term, and the dimensions
selected by the user. If you want to use different parameters for generating search IDs, you can write your
own implementation of the Sear chl dPr ovi der interface, create a component of this class, and set the

sear chl dProvi der property to your new component.

EndecaReporting Segment List

Search reporting adds the EndecaRepor t i ng segment list to the Personalization Repository (/ at g/
user profiling/ Personalizati onRepository). You can edit this segment list in the Business Control Center
to specify the user segments that are of interest for search reporting.

The/at g/ reporting/ dat acol | ecti on/ endecal/ Sear chLogEnt r yGener at or component is configured to
use this segment list when generating log entries:

reposi t oryG oupli st Manager =/ at g/ user profil i ng/ User Segrment Li st Manager
reposi t oryG oupli st ds+=EndecaReporti ng

For more information about segment lists, see the Personalization Programming Guide.

156

17 Data Logging for Search Reporting

Recording Search Results Selected

In order to generate reports that associate search terms with items that are viewed or purchased, your sites must
record “click-through” events. These occur when a customer clicks on a product or SKU returned by a search, to
view it or purchase it. The recording of these events works like this:

1. For each result returned by Guided Search, the Get Sear chd i ckThr oughl d servlet bean generates
a click-through ID, which you can append to the URL for that result using a query parameter named
sear chd i ckl d. The servlet bean also adds the record to a cache.

2. When a customer clicks a link to view a search result, the Sear chd i ckThr oughSer vl et examines the
request URL, finds the value of the sear chC i ckl d query parameter, and uses it to look up the record in
the cache. If it finds the record, the servlet fires a JMS event containing data from the search request and
response. This event is logged to be used for reporting.

This section discusses how click-through events are used to associate search results with views of specific
products. The Recording Search Results Placed in Shopping Carts (page 159) section discusses how click-
through events are used to associate search results with sales of specific products.

Using the GetSearchClickThroughld Serviet Bean

The/ at g/ endecal cl i ckt hr ough/ dr opl et / Get Sear chCl i ckThr oughl d servlet bean is typically used in

a loop that renders a list of search results. For each result, it adds the item to a cache, and generates a click-
through ID to be included in the URL for viewing that item. The click-through ID consists of the search ID and the
record ID, separated by a delimiter.

Input Parameter

record
The record to generate the click-through ID for.

Output Parameter

searchClickid
The click-though ID for retrieving the record from the cache.

Open Parameter

output
The open parameter for rendering the click-though ID.

Example

You can use this servlet bean in pages that render a list of search results. For example, the following JSP code
creates a hyperlink to a product page and appends the sear chd i ckl d query parameter to the URL:

<c:forEach var="record" itens="${contentltemrecords}" >
<dsp: dropl et nanme="/at g/ endecal cl i ckt hrough/ dropl et/ Get Sear chCl i ckThr oughl d" >
<dsp: param nane="record" val ue="${searchResult}"/>

<dsp: opar am name="out put " >

<dsp:a href="/nmystore/ browse/ productDetail.jsp">
<dsp: par am nane="sear chd i ckl d" par an¥"${searchd i ckld}"

</ dsp: a>

</ dsp: opar an®

17 Data Logging for Search Reporting 157

</ dsp: dropl et >
</c:foreach>

Configuring the Cache

The/ at g/ endeca/ assenbl er/ cache/ Sear chRequest Cache component, of class

at g. endeca. assenbl er. cache. Sear chRequest Cache, is a session-scoped component that manages
cached search results. Each cache entry includes a search ID and the associated records for that search.
Rather than storing complete records (which may use a lot of memory), the entries are objects of class

at g. endeca. assenbl er. cache. Sear chRecor d, which include only a subset of the record properties.

The Sear chRequest Cache component’s r ecor di dPr oper t y specifies a record property to use as a unique
key for storing and retrieving the Sear chRecor d objects in the record cache. The key can be any property that
uniquely identifies the record. By default, this is set to:

recordl dPropertyNanme=product . repositoryld

Note that you must ensure that the record property is included in the Cont ent I t emreturned by the Assembler.
To do this, the property must be listed in the f i el dNames property of the / at g/ endeca/ assenbl er/
cartridge/ handl er/ confi g/ Resul t sLi st Confi g component. By default, this property is set to:

fiel dNanes=record.id, record.type.raw, product.repositoryld

If you use a record property that is not in this list as your key, be sure to add that property to f i el dNanes.

The cache is designed as a Least Recently Used (LRU) cache, so if the cache is full and another entry is received,
the oldest entry is deleted to make room. To optimize the tradeoff between reporting accuracy and resource
use, you can tune the number of request objects in the cache and the number of records that should be cached
per request by setting the following properties of the Sear chRequest Cache component:

+ request Count -- Specifies the maximum number of search request/response objects to store. Default is 10.
To specify no maximum, set this value to -1.

+ recordCount -- Specifies the maximum number of records to store per search request/response. Default is
1000. To specify no maximum, set this value to -1.

SearchClickThroughServlet

The/ at g/ endeca/ cl i ckt hr ough/ servl et/ Sear chd i ckThr oughSer vl et is inserted into the DAF
servlet pipeline after the Si t eSessi onEvent Tri gger . When a user clicks a link to view a search result,

Sear chd i ckThr oughSer vl et reads the click-through ID from the request URL and looks up the record in
the Sear chRequest Cache. If it finds the record, it triggers a Sear chd i ckThr oughMessage JMS event, which
includes the search ID, the record ID, and data about the search request.

To configure this servlet, set the following properties:

enabled
If t r ue, the servlet processes the request. Default is f al se.

searchClickldQueryArgs

158

17 Data Logging for Search Reporting

An array of the query arguments to read to find the click-through ID for a viewed item.
One of the values in this array must match the name of the output parameter set by
Get d i ckThr oughl d. Defaultis sear chd i ckl d.

Limiting the Pages to Examine

By default, this servlet examines all URLs to look for click-through IDs. This process can be inefficient,

because only product detail pages will typically have these IDs. Therefore Sear chd i ckThr oughSer vl et

has a cl i ckThr oughPages property that you can use to limit the pages to examine. This property is an

array of URLs, which can include asterisk (*) characters as wildcards. If cl i ckThr oughPages is not null,

Sear chd i ckThr oughSer vl et examine only the URLs that match one of the cl i ckThr oughPages entries. For
example, you could set cl i ckThr oughPages to:

cl i ckThr oughPages=\
/*]*/productDetail.jsp,\
/*/*/product Detai | WthPi cker.jsp,\
/*/*/giftCertificateProduct.jsp

Recording Search Results Placed in Shopping Carts

To associate click-through events with items placed in shopping carts, the/ at g/ r epor ti ng/
dat acol | ecti on/ comer ce/ | t emAddedToOr der Li st ener message sink responds to JMS messages of type
at g. conmer ce. order . | t emAddedToOr der . | t emAddedToOr der Li st ener passes the message to the / at g/
reporting/ datacol | ecti on/ commer ce/ Conmer cel t envar ker Handl er component, which adds a marker
to the commerce item. The marker key is at g. endeca, and the marker value is the search ID.

When submitted orders are loaded into the data warehouse, the Or der Subni t Loader uses the at g. endeca
markers to track which purchased items are associated with searches. This information is used to generate
search conversion reports.

See the Core Commerce Programming Guide for more information about the Or der Subni t Loader .

Configuring CommerceltemMarkerHandler

In order to add a marker to a commerce item placed in a shopping cart, the Commrer cel t emvar ker Handl er
component is configured to track the type of repository item it is (typically pr oduct , sku, or

a subtype of pr oduct or sku). To enable this tracking, Cormer cel t emvar ker Handl er has a

recordl t enDescri pt or Propert yName property that is set to the name of a record property that holds the
name of the item type.

Therecordl t enDescri pt or Propert yName property is set by default tor ecor d. t ype. r aw. This is a special
property created by the / at g/ endeca/ i ndex/ accessor/ |t enDescri pt or NaneAccessor component. By
default, the Pr oduct Cat al ogQut put Conf i g component’s XML definition file is configured to use this property
accessor to include the r ecor d. t ype. r awproperty in the indexed records:

<property nane="recordtyperaw' is-dinension="false" type="string"
property-accessor="/at g/ endecal i ndex/ accessor/ |t enDescri pt or NaneAccessor"
out put - nane="record. type.raw' is-non-repository-property="true"
text-searchabl e="fal se"/>

17 Data Logging for Search Reporting 159

The value of ther ecor d. t ype. r awrecord property is the name of an item type for the record. Typically it has
multiple values. For example:

<PROP NAME="record.type.raw'>
<PVAL>pr oduct </ PVAL>

</ PROP>

<PROP NAME="record.type.raw'>
<PVAL>sku</ PVAL>

</ PROP>

When an item is added to the cart, the record is checked to see if any of the values of r ecor d. t ype. r awmatch
the item type. If so, a marker is added to the item. In the example above, if the item type is pr oduct orsku, a
marker is added to the item.

The Commer cel t emvar ker Handl er component’s r ecor dl t enReposi t or yl dPr oper ty property should be
set to the name of the record property that holds the repository ID of the document-level item for the record. By
default, r ecor dl t enReposi t oryl dProperty is set to product . reposi toryl d.

As with the record property used for storing and retrieving items in the record cache, the record properties
specified by r ecor dl t enDescri pt or Propert yNanme and r ecor dl t enReposi t or yl dPr operty must be
listed in the fi el dNanes property of the Resul t sLi st Conf i g component to ensure they are included in the
Cont ent | t emreturned by the Assembler. If you change the value of recor dI t enDescri pt or Proper t yNane
orrecordltenRepositoryl dProperty, be sure to modify f i el dNarmes accordingly.

160

17 Data Logging for Search Reporting

18 Data Loading for Search Reporting

Data logging for search reporting occurs in the Core Commerce production environment. Much of the logging
occurs in real time as customers use the site. Loading data into the data warehouse is performed in a separate
Core Commerce environment, typically (but not necessarily) running on a different group of physical servers.
These data loader instances do not handle customer requests; their primary purpose is to process data from the
log files and load it into the data warehouse. Unlike logging, the loading process is not performed in real time. It
is run on a regular schedule, typically once a day.

This chapter describes the data loading and processor components used for search reporting. It includes the
following sections:

Data Warehouse Tables (page 161)
Loader and Processor Components for Search Reports (page 163)
Processor Components for Search Conversion Reports (page 168)

For detailed information about configuring data loading, see the Business Intelligence Installation and
Configuration Guide.

Data Warehouse Tables

The search reporting modules add tables to the data warehouse for storing search data, and modify existing
Core Commerce tables to add properties for associating order data with search data. The following is a list of the
tables that store data used in search reporting:

* ARF_SEARCH

* ARF_SEARCH_TYPE

* ARF_SEARCH_TERM

* ARF_FACET_SEL

* ARF_FACET_SEL_GROUP
* ARF_FACET_SEL_MBRS
* ARF_MERCH_RULE

* ARF_MERCH_RULE_GROUP

18 Data Loading for Search Reporting 161

* ARF_MERCH_RULE_ MBRS
* ARF_PROF_TYPE

* ARF_LINE_ITEM

ARF_LINE_ITEM_SEARCH

Aggregated Data

The data warehouse includes aggregated data that is calculated using the data stored in the data warehouse
tables. Components running on the data warehouse loader server refresh the calculated data at regular intervals
so that it is available for reports. Performing intensive calculations before they are needed improves the speed of
the queries that use the calculated data.

In Oracle database schemas, the aggregated data calculations are presented as virtual tables using materialized
views. Other supported database products provide views or other comparable functions to make aggregated
data available.

The virtual tables used for search reporting are:
+ ARF_SEARCH_MV_TYPE -- Aggregates search information based on search type, language, site, and date.

+ ARF_SEARCH_MV_HOUR -- Aggregates search information based on date and time, search type, site, and
language.

« ARF_SEARCH_MV_VISIT -- Aggregates information about the average number of search requests per site visit.

+ ARF_SEARCH_MV_SEARCH_TERM -- Aggregates search information based on search term, search type, site,
and language.

+ ARF_SEARCH_MV_FACET_GROUP -- Aggregates search information based on facet group, search type,
language, and site.

Refresh Services

To refresh the aggregated data used for search reporting, the ARF. DW Endeca module adds the /
at g/ repor ti ng/ dat awar ehouse/ r ef r esh/ sear ch/ Sear chRef r eshLauncher component to the
ref r eshabl es property of the / at g/ r epor t i ng/ dat awar ehouse/ r ef r esh/ Ref r eshSer vi ce component:

ref reshabl es+=\
sear ch/ Sear chRef r eshLauncher

The Sear chRef r eshLauncher component is of class

atg. reporting. dat awar ehouse. r ef resh. Ref r eshLauncher Ser vi ce. This class has ar ef r eshabl es
property that specifies a list of components that are responsible for refreshing the calculated data. By default,
this property is set to:

ref reshabl es=\
Si t eSear chAggr egat eType, Si t eSear chAggr egat eHour , \
Si t eSear chAggregat eVi sit, Si t eSear chAggr egat eSear chTer m \

162

18 Data Loading for Search Reporting

Si t eSear chAggr egat eFacet Gr oup

Each of these components is responsible for refreshing one of the virtual tables listed above. For example, the
Si t eSear chAggr egat eFacet G oup component refreshes the ARF_SEARCH_MV_FACET_GROUP virtual table.

For more information about data warehouse tables, aggregated data, and services for refreshing views, see the
Business Intelligence Data Warehouse Guide.

Loader and Processor Components for Search Reports

The ARF. DW Endeca module adds the / at g/ r epor t i ng/ dat awar ehouse/ | oader s/ Sear chLoader
data loader component, of class at g. r epor ti ng. dat awar ehouse. | oader . Loader . The Sear chLoader
component initiates the data loading process, but the actual processing of the data is performed by the
sear chQuery processor pipeline chain.

The Sear chLoader component accesses the search log file in the at g. r eporti ng. endecaQuery queue and
passes it to the/ at g/ r epor t i ng/ dat awar ehouse/ | oader s/ Sear chPi pel i neDri ver component, of class
at g. reporting. dat awar ehouse. | oader . Fi | ePi pel i neDri ver. Sear chPi pel i neDri ver reads the file
line by line and invokes the sear chQuer y pipeline chain. The processors in the pipeline perform such tasks

as looking up data in the data warehouse, looking up data in repositories on the production site, performing
calculations, and writing data to the data warehouse.

The tables below summarize the processor components in the sear chQuer y pipeline chain.
lookupQueryDay

Reads the search timestamp and extracts the date.

Transactional Mode TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchDayLookupProcessor

Object atg.reporting.datawarehouse.process.DayLookupProcessor

Transitions Return value of 1 executes lookupQueryTime.
lookupQueryTime

Reads the search timestamp and extracts the time.

Transactional Mode TX_MANDATORY
Component /atg/reporting/datawarehouse/process/SearchTimeLookupProcessor
Object atg.reporting.datawarehouse.process.TimeLookupProcessor

18 Data Loading for Search Reporting 163

Transitions Return value of 1 executes limitQueryPropertiesLength.

limitQueryPropertiesLength

Reads the length limits specified for input properties and reduces the output length of properties that exceed
the specified limits.

Transactional TX_MANDATORY

Mode

Component /atg/reporting/datawarehouse/process/calculators/SearchQueryLimitLengthCalculator
Object atg.reporting.datawarehouse.process.calculators.LimitLengthCalculator

Transitions Return value of 1 executes lookupQueryExternalProfile.

lookupQueryExternalProfile

Looks up external user profile information associated with the query.

Transactional Mode TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchExternalProfileLookupProcessor
Object atg.reporting.datawarehouse.process.SearchSwitchedLookupProcessor
Transitions Return value of 1 or 2 executes lookupQueryInternalProfile.

lookupQueryinternalProfile

Looks up internal user profile information associated with the query.

Transactional Mode TX_MANDATORY
Component /atg/reporting/datawarehouse/process/SearchinternalProfileLookupProcessor
Object atg.reporting.datawarehouse.process.RepositoryltemLookupProcessor
Transitions Return value of 1 executes lookupQuerySite.

lookupQuerysSite

Looks up the site associated with the query.

164 18 Data Loading for Search Reporting

Transactional Mode

TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchSiteLookupProcessor
Object atg.reporting.datawarehouse.process.RepositoryltemLookupProcessor
Transitions Return value of 1 executes lookupQuerySiteVisit.

lookupQuerySiteVisit

Looks up site visit information by session ID, date, and site.

Transactional Mode

TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchSiteVisitLookupProcessor

Object atg.reporting.datawarehouse.process.SiteVisitLookupProcessor

Transitions Return value of 1 executes lookupQuerylLanguage.
lookupQueryLanguage

Looks up the language code for the search query.

Transactional Mode

TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchLanguageLookupProcessor
Object atg.reporting.datawarehouse.process.LanguageLookupProcessor
Transitions Return value of 1 executes lookupQuerySegmentCluster.

lookupQuerySegmentCluster

Looks up the segment cluster for the search query.

Transactional Mode

TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchSegmentClusterLookupProcessor
Object atg.reporting.datawarehouse.process.GroupLookupProcessor
Transitions Return value of 1 executes lookupQueryDemographic.

18 Data Loading for Search Reporting 165

lookupQueryDemographic

Looks up demographic information for the user associated with the search query.

Transactional Mode TX_MANDATORY
Component /atg/reporting/datawarehouse/process/SearchDemographicLookupProcessor
Object atg.reporting.datawarehouse.process.DemographicLookupProcessor
Transitions Return value of 1 executes lookupQueryType.

lookupQueryType

Looks up the search query type.

Transactional Mode TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchTypelLookupProcessor
Object atg.reporting.datawarehouse.process.RepositoryltemLookupProcessor
Transitions Return value of 1 executes lookupQuerySearchTerm.

lookupQuerySearchTerm

Looks up the search term of the query.

Transactional Mode TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchTermLookupProcessor

Object atg.reporting.datawarehouse.process.RegularRepositoryltemLookupProcessor
Transitions Return value of 1 executes lookupQueryFacetGroup.

lookupQueryFacetGroup

Looks up the facet group of the query.

Transactional Mode TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchFacetGroupLookupProcessor

166 18 Data Loading for Search Reporting

Object

atg.reporting.datawarehouse.process.GroupLookupProcessor

Transitions

Return value of 1 executes lookupQuerySpotlightGroup.

lookupQuerySpotlightGroup

Looks up the spotlight group of the query.

Transactional Mode

TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchSpotlightGroupLookupProcessor
Object atg.reporting.datawarehouse.process.GroupLookupProcessor
Transitions Return value of 1 executes lookupQueryProfileType.

lookupQueryProfileType

Looks up the profile type associated with the query.

Transactional Mode

TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchProfileTypeLookupProcessor
Object atg.reporting.datawarehouse.process.RepositoryltemLookupProcessor
Transitions Return value of 1 executes searchFactCalculator.

searchFactCalculator

Updates the autocorrect and suggestion properties based on values in the log file.

Transactional Mode

TX_MANDATORY

Component /atg/reporting/datawarehouse/process/calculators/SearchFactCalculator
Object atg.reporting.datawarehouse.process.calculators.SearchFactCalculator
Transitions Return value of 1 executes logQuery.

logQuery

Inserts the record in the ARF_SEARCH table.

18 Data Loading for Search Reporting

167

Transactional Mode

TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchLoggerProcessor
Object atg.reporting.datawarehouse.process.RepositoryLoggerProcessor
Transitions Last processor in the pipeline chain.

Processor Components for Search Conversion Reports

To enable creation of search conversion reports, the search data loader modules modify the Core Commerce

I'i nel t empipeline to add several processors. These processors are used to link purchased items with the search
terms, facet groups, and spotlight groups that customers use to navigate to the items. They create these links by
processing the markers that are added to the order items by the Conmer cel t emvar ker Handl er component, as
described in the Data Logging for Search Reporting (page 155) chapter.

The tables below summarize the processor components that search reporting adds to the Core Commerce

|'i nel t empipeline.

getSearchid

Fetches the search ID using the marker key.

Transactional Mode

TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchldProcessor
Object atg.reporting.datawarehouse.process.CommerceltemMarkerProcessor
Transitions Return value of 1 executes lookupSearch.

lookupSearch

Looks up the search record in the fact table using the search ID.

Transactional Mode

TX_MANDATORY

Component /atg/reporting/datawarehouse/process/SearchFactLookupProcessor
Object atg.reporting.datawarehouse.process.RepositoryltemLookupProcessor
Transitions Return value of 1 executes lookupSearchTerm.

168

18 Data Loading for Search Reporting

lookupSearchTerm

Associates the search term with the line item.

Transactional Mode

TX_MANDATORY

Component /atg/reporting/datawarehouse/process/LineltemSearchTermProcessor
Object atg.reporting.datawarehouse.process.PropertyAssignmentProcessor
Transitions Return value of 1 executes lineltemSearchFacetGroup.

lineltemSearchFacetGroup

Associates the search facet group with the line item.

Transactional Mode

TX_MANDATORY

Component /atg/reporting/datawarehouse/process/LineltemSearchFacetGroupProcessor
Object atg.reporting.datawarehouse.process.PropertyAssignmentProcessor
Transitions Return value of 1 executes lineltemSpotlightGroup.

lineltemSpotlightGroup

Associates the search spotlight group with the line item.

Transactional Mode

TX_MANDATORY

Component /atg/reporting/datawarehouse/process/LineltemSearchSpotlightGroupProcessor
Object atg.reporting.datawarehouse.process.PropertyAssignmentProcessor
Transitions Return value of 1 executes logLineltem.

logLineltemSearch

Updates the search-related information for the line item.

Transactional Mode

TX_MANDATORY

Component

/atg/reporting/datawarehouse/process/LineltemSearchLoggerProcessor

18 Data Loading for Search Reporting 169

Object atg.reporting.datawarehouse.process.LineltemSearchRepositoryLoggerProcessor

Transitions Last processor in the pipeline chain.

Maintenance Services

If search data is loaded into the data warehouse after order data has been loaded, the order data in the data
warehouse must be updated to associate purchased items with the search data. The order line items are
updated to link them to the search terms, facet groups, and spotlight groups that customers used to navigate to
those items.

To ensure that the search data and order data are linked properly, the search data loader modules include

the/ at g/ reporting/ dat awar ehouse/ pr ocess/ j obs/ Sear chMai nt enanceSer vi ce component, of
classat g. reporting. dat awar ehouse. process. j ob. Mai nt enanceSer vi ce. This service is responsible
for executing jobs specified in its mai nt enanceJobs property. This property is an array of components that
implement the at g. r eporti ng. dat awar ehouse. pr ocess. j ob. Mai nt enanceJob interface. By default, it is
set to:

mai nt enanceJobs=\
[at g/ reporti ng/ dat awar ehouse/ process/j obs/ Sear chLi nel t em\vai nt enanceJob

The Sear chMai nt enanceSer vi ce component is registered with the Sear chLoader component
as a listener. Sear chMai nt enanceSer vi ce detects when search data is loaded and invokes the
Sear chLi nel t emVai nt enanceJob component to update the associated order data in the data warehouse.

170

18 Data Loading for Search Reporting

19 Search Reporting Dashboards

Search reporting adds the Search Performance Dashboard to the Oracle Business Intelligence user interface. This
dashboard displays a variety of analyses of Oracle Commerce Guided Search data. In addition, search reporting
adds search-related analyses to the ATG Web Commerce Performance Dashboard.

This chapter summarizes the search analyses available in these dashboards. It includes the following sections:
Search Performance Dashboard (page 171)
ATG Web Commerce Performance Dashboard (page 172)

For more information about accessing Oracle Commerce reports and analyses in Oracle Business Intelligence,
see the Reports Guide.

Search Performance Dashboard

The Search Reporting Dashboard consists of four pages of analyses:

+ Search Activity -- statistical breakdowns of the way Guided Search has been used, including searches per visit
and per site, search types, and response times for search queries

+ Keyword Analysis -- information about search terms used, such as top search terms, terms that returned no
results, and terms that were autocorrected or returned alternate suggestions

+ Search Merchandising -- information about the relationships between search queries and items sold

+ Dimension Analysis -- information about how often specific search dimensions or groups of dimensions were
selected

Search Activity
The Search Activity page includes the following reports:
+ Key Search Indicators
* Response Time Analysis
+ Searches Per Visit by Site
+ Search Type Breakdown

+ Request and Site Visit Summary

19 Search Reporting Dashboards 171

Keyword Analysis
The Keyword Analysis page includes the following reports:
+ Top Search Terms
+ Search Terms with No Results
+ Spell Correction and Alternate Suggestions Summary
+ Top Autocorrected Search Terms

+ Top Search Terms without Spotlight

Search Merchandising

The Search Merchandising page includes the following reports:

» Searches Resulting in Most Purchases, which also contains links to:
+ Top Products Associated with Search
+ Top Dimensions Associated with Search

+ Search Conversion Funnel

+ Search Conversion Analysis

+ Conversion Rate for Spotlights

+ Top Spotlights Triggered

Dimension Analysis
The Dimension Analysis page includes the following reports:
» Top Single Dimensions Selected
» Top Single Dimension Values Selected
» Top Dimension Pairs Selected
+ Top Two Dimension Values Selected
+ Top Dimension Triple Selected
+ Top Three Dimension Values Selected

+ Top Dimension Values without Spotlight

ATG Web Commerce Performance Dashboard

Search reporting adds a Key Search Indicator report to the Traffic page on the ATG Web Commerce Performance
Dashboard. It also adds a Search page to the dashboard that includes the following reports:

172 19 Search Reporting Dashboards

+ Key Search Indicators

* Response Time Analysis

+ Search Conversion Analysis

+ Top Search Terms

+ Search Terms with No Results

» Searches Resulting in Most Purchases

19 Search Reporting Dashboards 173

174 19 Search Reporting Dashboards

20

Appendix A: Support for Older
Deployment Templates

This manual assumes you are using a CAS-based deployment template for your EAC applications, as described
in the Oracle Commerce Guided Search Administrator’s Guide. If you are creating new EAC applications, it is highly
recommended that you use this type of deployment template.

If you have EAC applications created in an earlier release, they may be using an older Forge-based deployment
template such as the one described in the Oracle Endeca Commerce Deployment Template Module for Product
Catalog Integration Usage Guide in the Oracle Endeca Commerce Tools and Frameworks 11.0 documentation.
You can either recreate your EAC applications with a CAS-based deployment template or continue to use

your existing applications based on the older-style template. If you choose the latter option, you will need

to reconfigure several Oracle Commerce Platform components, because the default configuration of these
components now assumes the use of a CAS-based template.

This appendix describes the configuration changes needed for Oracle Commerce Platform components to work
with EAC applications that use an older Forge-based Oracle Commerce Guided Search deployment template. It
discusses the following topics:

Record Store Naming (page 175)
Schema Export (page 176)

Hierarchical Dimension Export (page 176)

Record Store Naming

For a CAS-based deployment template, the record store names have the format
appl i cati onName-r ecor dSt or eType. For example, for an EAC application named ATGen, the dimension
values record store is named ATGen- di nval s.

For a Forge-based deployment template, the format of the record store names is
appl i cati onName_| anguageCode_r ecor dSt or eType. So, for an EAC application named ATGen that indexes
records in English, the dimension values record store is named ATGen_en_di nval s.

The format of the record store names is configured by the r ecor dSt or eNaneFor mat St ri ng property of the

/ at g/ endeca/ i ndex/ | ndexi ngAppl i cat i onConfi gur ati on component. The value of this property is a
format string in which 0 is the EAC application name, 1 is the two-character language code, and 2 is the type of
record store. By default, this is set to:

20 Appendix A: Support for Older Deployment Templates 175

recor dSt or eNameFor mat Stri ng={ 0} - { 2}

Note that the 1 does not appear, because record store names for CAS-based applications do not include the
language code.

For EAC applications that use Forge-based deployment templates, set the value of this property to:

recor dSt oreNaneFor mat String={0} _{1} {2}

Schema Export

For a CAS-based deployment template, an application’s schema definition is created as Configuration

Import APl objects, which are submitted to the Endeca Configuration Repository. These objects are created

and submitted by the / at g/ endeca/ i ndex/ Confi gl npor t Docunent Subni tt er component. The

docunent Subnmi t t er property of components of class at g. endeca. i ndex. schema. SchemaExport er
(including the SchemaExpor ter, Arti cl eSchemaExport er, and Medi aCont ent SchenaExport components)
is set by default to:

docunent Submi tt er =/ at g/ endeca/ i ndex/ Conf i gl npor t Docunent Submi tter

For a Forge-based deployment template, an application’s schema definition is created as schema records, which
are written to the schema record store. To configure this behavior, change the value of each SchenaExport er
component’s docunent Subni tt er property to:

docunent Submi tt er =/ at g/ endeca/ i ndex/ SchemaDocunent Subni tter

Hierarchical Dimension Export

There are a number of differences in how the names and the values of hierarchical dimension value properties
are represented in applications that use a CAS-based deployment template versus applications that use a Forge-
based template. These differences are discussed below.

Root Node Naming and Export

In a CAS-style application, the name of the root node in a dimension hierarchy is the forward slash (/). So, for
example, the forward slash is the name of the root node of the category dimension.

The following example is part of a record created by the Cat egor yToDi nensi onCQut put Conf i g component
that represents a top-level category. The value of this category’s di mval . par ent _spec property is the root
node:

176

20 Appendix A: Support for Older Deployment Templates

<PROP NAME="di nval . parent _spec">
<PVAL>/ </ PVAL>
</ PROP>

In a Forge-based application, the name of the root node of a hierarchical dimension is the name of the
dimension. For example, the root node of the category dimension hierarchy is pr oduct . cat egor y. So a record
representing a top-level category includes this instead:

<PROP NAME="di nval . parent _spec">
<PVAL>pr oduct . cat egor y</ PVAL>
</ PROP>

The value for the name of the root node is configured separately for the category hierarchy and the
repository item type hierarchy. For the repository item type hierarchy, the r oot Par ent Speci fi er property
of components of class at g. endeca. i ndex. di mensi on. Reposi t or yTypeHi er ar chyExport er
(including the Reposi t or yTypeDi nensi onExporter,Articl eDi mensi onExporter,and

Medi aCont ent Di mensi onExport er components) is set by default to:

r oot Par ent Speci fi er=/

For a Forge-based application, set the r oot Par ent Speci fi er property of each
Reposi t or yTypeHi er ar chyExport er component to null so it uses its default value, which is the dimension
name:

r oot Par ent Speci fi er~=/ Const ants. nul |

For the category hierarchy, the name of the root node is configured through the def aul t Val ue property of the
/ at g/ commer ce/ endecal i ndex/ accessor / Par ent SpecPr oper t yAccessor component. (See Category
Dimension Value Accessors (page 63) for information about this component.) This property is set by default to:

def aul t Val ue=/

In a Forge-based application, change the value of this property to the name of the dimension:

def aul t Val ue=pr oduct . cat egory

Root Node Export

For a CAS-based application, the Oracle Commerce Platform does not create a record representing the root
node of a dimension hierarchy. Instead, Oracle Commerce Guided Search automatically creates the root node
and names it “/ ”. For a Forge-based application, however, the Oracle Commerce Platform does create a record
representing the root node, and gives the node the name of the dimension.

This behavior is configured separately for the category hierarchy and the repository item type hierarchy. For
the repository item type hierarchy, the cr eat eRoot Node property of Reposi t or yTypeHi er ar chyExport er
components (including Reposi t or yTypeDi nensi onExporter,Articl eDi mensi onExporter,and

Medi aCont ent Di mensi onExport er) is set by default to:

20 Appendix A: Support for Older Deployment Templates 177

cr eat eRoot Node=f al se

In a Forge-based application, set the cr eat eRoot Node property of all Reposi t or yTypeHi er ar chyExpor t er
componentstotrue.

For the category hierarchy, creation of a record for the root node is controlled through the

i ndexi ngSynchr oni zat i ons property of the Cat egor yToDi mensi onQut put Confi g

component. This property accepts an array of components of classes that implement the

at g. reposi tory. search. i ndexi ng. | ndexi ngSynchr oni zat i on interface. The default configuration
of this property includes the / at g/ conmrer ce/ endeca/ i ndex/ Cat egor yRoot NodeSynchr oni zat i on
component, which is responsible for creating the root node for Forge-based applications.

Configuring for Preview

To support previewing your sites in Experience Manager preview and Business Control Center preview, the
Cat egor yRoot NodeSynchr oni zat i on component includes the following properties:

+ root NodePar ent Spec -- specifies the value of the di mval . par ent _spec property of the root node of the
category hierarchy

+ dumyNodePar ent Spec -- specifies the value of the di nval . par ent _spec property of the dummy node
used for previewing unindexed categories

These properties are configured by default to support a CAS-based application:

dummyNodePar ent Spec=/
r oot NodePar ent Spec=/

For a Forge-based application, set these properties to the name of the dimension:

dummyNodePar ent Spec=pr oduct . cat egory
r oot NodePar ent Spec=pr oduct . cat egory

Dimension Value Property Names

There are a number of differences in the names of dimension value properties in Forge-based and CAS-based
applications:

+ In a Forge-based application, the ID property of a dimension is named di nval . qual i fi ed_spec.In a CAS-
based application, the property is named Endeca. I d.

+ In a Forge-based application, the property specifying the name of a dimension must be named
di nval . di mensi on_spec.In a CAS-based application, the property is named di nval . di nensi on_nane.

+ In a Forge-based application, custom properties on dimension nodes must have names that begin with
di mval . prop. In a CAS-based application, no prefix is required.

By default, the components that produce dimension value records (including the

Cat egor yToDi nensi onCut put Confi g, Reposi t or yTypeDi mensi onExporter,

Articl eDi mensi onExporter,and Medi aCont ent Di nensi onExport er components) output records whose
property names reflect the older Forge-based deployment template. To support the naming conventions

178 20 Appendix A: Support for Older Deployment Templates

used with CAS-based deployment templates, the pr oper t yNameRepl acenment Map property of the
Di mensi onDocunent Subni tt er component is used to map the older-style names to the new ones. By default,
this property is set as follows:

pr opert yNaneRepl acenent Map=\

di nval
di nval
di mval
di nval
di nval
di mval
di nval
di nval
di mval
di nval

.qualified_spec=Endeca. ld,\

. di nensi on_spec=di nval . di nensi on_nang, \
. prop.
. prop.
. prop.
. prop.
. prop.
. prop.
. prop.
. prop.

cat egory. ancest or Cat al ogl ds=cat egory. ancest or Cat al ogl ds, \

cat egory. root Cat al ogl d=cat egory. r oot Cat al ogl d, \

di spl ayNane_es=di spl ayNane_es, \

di spl ayNane_en=di spl ayNanme_en, \

di spl ayNane_de=di spl ayNane_de, \

category. repositoryl d=category. repositoryld,\

cat egory. cat al ogs. reposi toryl d=cat egory. cat al ogs. repositoryld,\
category.siteld=category.siteld

So, for example, di mval . qual i fi ed_spec is renamed to Endeca. | d in the output
records, di nval . di mensi on_spec is renamed to di nval . di nensi on_nane, and
di nval . prop. cat egory. reposi toryl disrenamed tocat egory. repositoryld.

For a Forge-based application, set the pr oper t yNameRepl acenent Map property to null to restore the older-
style names:

propertyNaneRepl acenent Map”~=/ Const ant s. nul |

And set the i dPr oper t yNane property of the Di mensi onDocunent Subni tt er component to
di mval . qual i fi ed_spec:

i dPropert yNane=di nval . qual i fi ed_spec

20 Appendix A: Support for Older Deployment Templates 179

180 20 Appendix A: Support for Older Deployment Templates

Index

A

Assembler classes
ContentInclude, 85
ContentSlotConfig, 85
Assembler-driven pages, 86
AssemblerPipelineServlet, 93
AssemblerSettings, 100
AssemblerTools, 97
creating the Assembler instance, 97
identifying the renderer mapping component, 98
starting content assembly, 97
transforming the request URL, 97
ATG Content Administration components, 44

BasicUrlFormatter, 109
bulk loading, 33
bypassing the Assembler, 95

C

cartridge handlers

generating URLs, 108

locating, 106

providing access to the HTTP request to, 108

supporting components, 108, 108
cartridge manager components, 108
category dimension value accessors, 63
CategoryNodePropertyAccessor, 63
CategoryPathVariantProducer, 65
CategoryTreeService, 20, 34
Commerce Single Sign-On, 147

LDAP authentication, 150

Oracle Commerce Platform plug-in, 148
composite profile repository, 151
ConcatFilter, 69
connecting to an MDEX, 103
connecting to the Workbench, 103
ConstantValueAccessor, 63
content folder requests, 85, 94
ContentlInclude, 85

ContentltemToRendererPath, 112
ContentSlotConfig, 85

Credential Security Framework (CSF), 5
CustomCatalogPropertyAccessor, 66
CustomCatalogVariantProducer, 65
customizing record output, 61

D

data loading, 33
data loading for reporting, 161

processor pipelines, 163
data logging for reporting, 155
default property values, 55
DefaultActionPathProvider, 109
DefaultMdexResource, 103
DefaultWorkbenchContentSource, 103
definition file format, 49

locale attribute, 58

prefix element, 58

schema attributes, 51

suffix element, 58
deployment templates, 175
dimension values

caching, 131

mapping categories to, 131
document submitters, 24, 37
dynamic item types and properties, 81
Dynamo Server Admin, 138

EAC applications
creating, 2
deployment templates, 175
determining how many to create, 2
provisioning, 3
supporting one language per MDEX, 13
empty Contentltem, 90
endeca_jspref, 25
EndecalndexingOutputConfig, 18, 28
EndecaScriptService, 40

F

filtering records, 119
FirstWithLocalePropertyAccessor, 62

G

GenerativePropertyAccessor, 62
GetSearchClickThroughld, 157
global settings for the Assembler, 100

H

HtmlFilter, 71

Index

181

incremental loading, 33
monitored properties, 59
tuning, 34

Indexable classes, 18

indexing
increasing data source connection pool maximum, 6
increasing transaction timeout, 6
monitoring progress,
viewing indexed data, 25

installation and configuration
creating EAC applications, 2
requirements, 1

InvokeAssembler, 95

invoking the Assembler
bypassing based on MIME type, 95
identifying content folder requests, 94
identifying page requests, 95
InvokeAssembler, 95
using AssemblerPipelineServlet, 86, 93
using the InvokeAssembler servlet bean, 90, 95

item subtypes
indexing, 54

L

LanguageNamePropertyAccessor , 62
LDAP authentication for single sign-on, 150
loading data, 33
LocaleVariantProducer, 64
logging

configuration, 39
logging data for search reports, 155

M

Map properties

indexing, 53
MdexResource, 103
MIME type, using to bypass the Assembler, 95
modules for Guided Search integration, 7
monitored properties, 59
multi-language configurations, 103, 103
multi-value properties

indexing, 52

record output, 18
multisite catalogs

indexing, 56

N

non-repository properties
indexing, 55

normalizing property values, 57

Nucleus-driven pages, 90

NucleusAssembler, 106
NucleusAssemblerFactory, 97, 106

(0

Oracle Commerce Platform server instances
configuring in CIM, 3
Oracle Platform Security Services (OPSS), 5

P

page requests, 85

identifying, 95

transforming a URL into, 97
PerLanguageMdexResourceResolver, 103
PerLanguageWorkbenchContentSourceResolver, 103
price lists, 125

filtering records, 130

indexing price data, 126

pairs, 125

time-based prices, 129
processor pipelines

data loading, 163
ProductCatalogSimpleIndexingAdmin,
property accessors, 61

CustomCatalogPropertyAccessor, 66

FirstWithLocalePropertyAccessor, 62

GenerativePropertyAccessor, 62

LanguageNamePropertyAccessor, 62
property values

default for indexing, 55

normalizing, 57

translating, 57
PropertyFormatter, 67
PropertyValuesFilter, 68

Q

querying the Assembler, 106

R

range filtering, 122
record filtering, 119
record output
customizing, 61
format, 18
viewing in Component Browser, 47
records
creating, 18
submitting, 24, 37
submitting to files, 39
renaming index properties, 57
renderContentltem tag, 114
renderers
ContentltemToRendererPath, 112

,41,79

182

Index

creating the path to, 112

locating the correct renderer, 112, 114

renderContentltem tag, 114
rendering

JSON, 89, 114

JSP, 87

XML, 89, 114
ReplacementValueProducer, 113
reports, 171

data loading, 161

data logging, 155
repository indexing, 17

ConcatfFilter, 69

customizing output, 61

default property values, 55

definition file format, 49

HtmlFilter, 71

item subtypes, 54

loading data, 33

Map properties, 53

multi-value properties, 52

multisite catalogs, 56

non-repository properties, 55

property accessors, 61

PropertyFormatter, 67

PropertyValuesFilter, 68

renaming output properties, 57

suppressing properties, 56

translating property values, 57

UniquefFilter, 68

UniqueWordFilter, 70

variant producers, 63
RepositoryTypeDimensionExporter, 35
RepositoryTypeHierarchyExporter, 22, 35

S

schema attributes, 51
SchemaExporter, 22, 36
search reporting, 171

data loading, 161

data logging, 155
SelectorReplacementValueProducer, 113
servlet beans

GetSearchClickThroughld, 157
SimplelndexingAdmin, 25, 41, 79
single sign-on, 147

LDAP authentication, 150

Oracle Commerce Platform plug-in, 148
submitting records, 24, 37
submitting records to files, 39
subtypes

indexing, 54
suppressing properties from indexes, 56

T

time-based prices, 129
translating property values, 57

U

UniquefFilter, 68
UniqueSiteVariantProducer, 66
UniqueWordFilter, 70

user segment sharing, 135

Vv

variant producers, 63
CategoryPathVariantProducer, 65
CustomCatalogVariantProducer, 65
LocaleVariantProducer, 64
UniqueSiteVariantProducer, 66

w

WorkbenchContentSource, 103

Index

183

184 Index

	Platform-Guided Search Integration Guide
	Table of Contents
	1 Introduction
	Installation Requirements
	Creating the EAC Applications
	Using an Older Deployment Template
	Determining the Number of EAC Applications to Create
	Provisioning the EAC Applications

	Configuring the Oracle Commerce Platform Server Instances in CIM
	Product Selection
	Oracle Commerce Platform Server Instance Creation

	Configuring the ApplicationConfiguration Component
	Configuring Sites in a Multisite Environment
	Transaction Timeout and Datasource Connection Pool Settings
	Increasing the Transaction Timeout
	Increasing the Datasource Connection Pool

	Oracle Commerce Platform Modules

	2 Routing
	Overview of Routing
	ApplicationRoutingStrategy
	RoutingObjectAdapter

	Configuring Routing
	SingleApplicationRoutingStrategy
	SiteApplicationRoutingStrategy
	GroupingApplicationRoutingStrategy

	3 Overview of Indexing
	Indexable Classes
	EndecaIndexingOutputConfig Class
	CategoryTreeService Class
	RepositoryTypeHierarchyExporter Class
	SchemaExporter Class

	Indexing Multiple Languages
	Submitting the Records
	Managing the Process
	Viewing the Indexed Data

	4 Configuring the Indexing Components
	IndexingApplicationConfiguration Component
	EndecaIndexingOutputConfig Components
	Data Loader Components
	Tuning Incremental Loading

	CategoryTreeService
	RepositoryTypeDimensionExporter
	SchemaExporter
	Document Submitter Components
	RecordStoreDocumentSubmitter
	ConfigImportDocumentSubmitter
	FileDocumentSubmitter

	EndecaScriptService
	ProductCatalogSimpleIndexingAdmin
	Queueing Indexing Jobs

	ATG Content Administration Components
	Specifying the Deployment Target
	Enabling Local Indexing
	Enabling Remote Indexing
	Triggering Indexing on Deployment

	Viewing Records in the Component Browser

	5 Configuring EndecaIndexingOutputConfig Definition Files
	Definition File Format
	Automatically Included Properties

	Specifying Guided Search Schema Attributes
	Specifying Properties for Indexing
	Specifying Multi-Value Properties
	Specifying Map Properties
	Specifying Properties of Item Subtypes
	Specifying a Default Property Value
	Specifying Non-Repository Properties
	Suppressing Properties
	Including siteId Properties
	Renaming an Output Property
	Translating Property Values
	Using Monitored Properties

	Filtering Properties of Specific Repository Items

	6 Customizing the Output Records
	Using Property Accessors
	FirstWithLocalePropertyAccessor
	LanguageNameAccessor
	GenerativePropertyAccessor
	Category Dimension Value Accessors

	Using Variant Producers
	LocaleVariantProducer
	CategoryPathVariantProducer
	CustomCatalogVariantProducer
	UniqueSiteVariantProducer
	MultipleSiteVariantProducer

	Using Property Formatters
	Using Property Value Filters
	UniqueFilter
	ConcatFilter
	UniqueWordFilter
	HtmlFilter

	7 Indexing the Content Management Repository
	Overview of Indexing Web Content
	WCM EndecaIndexingOutputConfig Components
	WCM Dimension Exporter Components
	WCM Schema Exporter Components
	WCM SimpleIndexingAdmin Component

	8 Indexing Dynamic Item Types and Properties
	Updating the Indexing Components
	Specifying Dynamic Items and Properties for Indexing
	Specifying the Output Property Name
	Adding Properties to a Search Interface

	9 Query Integration
	Content Item Classes
	Invoking the Assembler in the Request Handling Pipeline
	Using a JSP Renderer to Render Content
	Rendering XML or JSON Content
	When the Assembler Returns an Empty ContentItem

	Invoking the Assembler using the InvokeAssembler Servlet Bean
	Choosing Between Pipeline Invocation and Servlet Bean Invocation
	Components for Invoking the Assembler
	AssemblerPipelineServlet
	InvokeAssembler

	Accessing Commonly Used Functionality in AssemblerTools
	Creating the Assembler Instance and Starting Content Assembly
	Calculating the Content Path from the Page Request URL
	Identifying the Renderer Mapping Component to Use for the Request

	Creating the SiteState Component
	Defining Global Assembler Settings
	Connecting to the Workbench and MDEX
	AssemblerApplicationConfiguration Component
	Connecting to an MDEX
	Connecting to the Workbench Server

	Querying the Assembler
	Cartridge Handlers and Their Supporting Components
	Providing Access to the HTTP Request to the Cartridges
	Controlling How Cartridges Generate Link URLs
	BasicUrlFormatter
	DefaultActionPathProvider

	Retrieving Renderers
	ContentItemToRendererPath
	dsp:renderContentItem

	Configuring Keyword Redirects

	10 Retrieving Promoted Content
	Single-MDEX Environment
	Multiple-MDEX Environment
	Creating FileStoreFactory Instances from a Prototype-Scoped Component
	Creating FileStoreFactory Instances from Properties Files

	11 Record Filtering
	RecordFilterBuilder Interface and Implementing Classes
	LanguageFilterBuilder
	CatalogFilterBuilder
	SiteFilterBuilder

	Enabling Record Filter Builder Components
	DateRangeFilterBuilder

	12 Handling Price Lists
	Price List Pairs
	Indexing Price List Data
	PriceListPairVariantProducer
	PriceListPairAccessor
	ActivePriceAccessor
	QueueingPropertiesChangeListener

	Indexing Time-Based Prices
	Filtering Records by Price List

	13 Dimension Value Caching
	Mapping Categories to Dimension Values
	DimensionValueCache and DimensionValueCacheObject

	Managing the Cache
	Populating and Refreshing the Cache

	DimensionValueCacheDroplet

	14 User Segment Sharing
	About User Segment Sharing
	Configuring User Segment Sharing
	Additional Configuration Required for the Production Server
	About the RequestCredentialAccessController Component
	Managing Credentials
	Configuring the EAC Application
	Note about Configuring Commerce Reference Store

	Avoiding Duplicate User Segment Names in the Business Control Center
	Renaming a User Segment in the Business Control Center

	15 Using Sites and Site Groups as Content Item Triggers
	Adding Sites and Site Groups to Experience Manager
	Constructing the Segment List

	16 Commerce Single Sign-On
	Commerce Single Sign-On Server
	Oracle Commerce Platform Plug-In
	Login
	Validation
	Keep Alive
	Logout

	Maintaining User Accounts
	LDAP Authentication
	Setting up a Composite Profile Repository
	User Authentication
	Creating Users and Organizations in the Business Control Center

	17 Data Logging for Search Reporting
	Recording Search Requests and Responses
	SearchIdProvider
	EndecaReporting Segment List

	Recording Search Results Selected
	Using the GetSearchClickThroughId Servlet Bean
	Configuring the Cache
	SearchClickThroughServlet

	Recording Search Results Placed in Shopping Carts

	18 Data Loading for Search Reporting
	Data Warehouse Tables
	Aggregated Data
	Refresh Services

	Loader and Processor Components for Search Reports
	Processor Components for Search Conversion Reports
	Maintenance Services

	19 Search Reporting Dashboards
	Search Performance Dashboard
	Search Activity
	Keyword Analysis
	Search Merchandising
	Dimension Analysis

	ATG Web Commerce Performance Dashboard

	20 Appendix A: Support for Older Deployment Templates
	Record Store Naming
	Schema Export
	Hierarchical Dimension Export
	Root Node Naming and Export
	Dimension Value Property Names

	Index

