ORACLE
COMMERCE

Assembler Application Developer's Guide

Version 11.3
April 2017
Document build ID: 2017-04-20T14:55:06-04:00

Assembler Application Developer's Guide

Product version: 11.3
Release date: 4-28-17
Copyright © 2003, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please
report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government,
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or
documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures
to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party
content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and

its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or
services, except as set forth in an applicable agreement between you and Oracle.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support: Oracle customers that have purchased support have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Table of Contents

P O G e e Xi
ADOUL This QUILE ...eitit it e e e et ettt et et e e e e et e et e e e e e e eaaeaeenans Xi
Who should use this QUIAEuieieie e xi
Conventions used iN this QUIAE ... e xii
(@e] o] - Tatd g To O - el ST T o] o Yo & A PP Xii

1. ADOUT the ASSEMDIET et ettt 1
Introduction 10 the ASSEMDIET ... e 1

What is the AssembIler? e 1
Configuring Assembler applications in Experience Managercoevevriiiniiiininieiiieneienennenens 5
Assembler Search and Guided Navigation FEAtUIeSc.vueviitiiinirtiine e 5
Assembler ArchiteCtural OVEIVIEWviiiiii ettt e e e e 7
The Assembler processing MOloinininii e 7
About serialization and de-serializationcocieiiiiiiiiiiiii e 1
The Assembler eventing frameWOrKo.iiiiiiie e aans 12
About Assembler error handlingc.ouiniiiiiii e 13
About cartridges and CONTENT IEEMSuiuit ittt eenene 13
F A o oYU =T 4 e o =T PN 14
Y {0 et (01N |t e o =T 14
2. Designing an Assembler APPlICAtIONc.iuiniriii e e 17
Planning an Assembler ApPliCationo.iii i e 17
About planning your application SItEMAaPeeeiiiiiiii e 17
F e oo LUy o LYo T=IN § Y o = O P 18
ADOUL CONTENT FOIAEIS .eeeeiii e et aans 20
ADOUL SITS ..ttt e e e 23
Creating Experience Manager TEMPIateso.euiuiirt ittt ee et ee e eenanaeanenaenen 26
ADOUL Creating teMIPIATES ...v.e ittt et ettt e e et e 27
Anatomy Of @ tEMPIATE ...ttt 27
I aa] o] = e =T 1 =] Pt 29
About the group of @ teMPIateueiei i e 29
Specifying the description and thumbnail image for a templateccceviviviiiiininininnnnn. 29
Specifying the default name for a cartridgeocveuiiiiiiiiiii e 30
Defining the content properties and editing interfacec.coooiiiiiiiiiiiiiiiiens 31
At {0 - | I o o) o 1T £ [T PN 33
About keyword redir@Cts GrOUDPScueuiuinin ettt ettt e e 35
ADBOUL MUILIPIE TOCAIES ... e e et e e eaeaes 38
Managing Experience Manager TeMPIatesoeiiiiiiiiii e 39

3. Developing an Assembler APPlICAtIONi. ittt et aa s 43

Deploying the ASSemMbIErueiei i e 43
Assembler environMeNt rEQUITEIMENTSc.ueuieinin ittt ettt et eeee e eaeneans 43
Assembler dePeNUENCIESottt e e e et 44
About deploying the Assembler ... 44
Assembler CONfIQUIATIONi.iii e et e e e e e e e e aaaans 45

INVOKING the ASSEMDIETuteeitee e ettt e e e eaeaen 51
Invoking the Assembler in Javao 51
Querying the AssembIler SEIVICEu i i 54
About building an Assembler qUEry STHNG «.....c.cueuinii it 56
About retrieving Assembler results using the packaged Servicesc..ceevveviiiineniineninnenen. 56
About handling the Assembler reSPONSEuuui e 66

Implementing Multichannel APPlICatioNsovuiriiriiii e e e eenaes 68
Overview of multichannel applications with the Assemblerccooviiiiiiiiiiiniiiinenne, 69
About creating templates for mobile channelscooooiiiiii i 69

Assembler Application Developer's Guide iii

Tuning an Assembler @PPlICAtIONouiuieiii e 70

Enabling the preview application for Workbenchc.coiiiiiiiiii e 70
Configuring logging for an Assembler Applicationc.oiiiiiiiiiiiiiiiieee e, 87
Configuring cartridge performance 10ggingveueiniiiiiiiii e enenes 95
Debugging MDEX ENgine QUETY FESUILSo.uiueieie it aaas 95

4. Optimizing APPlICation URLS ... n e et 99
About the URL 0ptimization Classesuuiuiiriitiiitiiiet ettt et e e e e enan e e enenaenes 99
e Ta T ol oo 01 (=] o | & S PPN 99
Introduction to URL OPtimizZationouiuiuiitiriiiti e i e e e e e e e e e eaaaans 929
Overview of URL optimization capabilitiesccoviiiiiiiiii e 100

URL €canonicaliZationc.cuouiuinitiiiii et 101
Working with Application URLSuiuiiitiiii e ettt e e e e e e aeas 102
P o oYU =T o] o] [er=1 u o] o T |2 {3t 102
ADOUL ACLIONS ..ottt 103
WOrking With URL ParameEtersuuiuiieeitiieetetinieten ettt eteereeteeneeaeneneeneaneeneeneanen 107

URL configuration in the reference applicationcccoeviiiiiiiiiiiiiiiii e 108
About working with canonical liNkso 112
Preparing your appliCationo oo e 114
Preparing YOUr diMENSIONS ...c.uin ittt et eeaenes 115
Preparing YOUT PrOPEITIES .. .vuu ettt ettt ettt et ettt et e et a e e e e eeenenenenes 115
Handling images and external JavaScript filescooiiiiiiiiiiiiii e 116

URL TransSitioningcueuue ittt et ettt et ettt et e e e 116
21011 [o [Ta Ve IeT o1 0] =Te B U L2 { K P POt 116
Core URL Optimization ClaSSESuuuuiniititiiiet ittt ettt et e et e eeaeeaneen 117
Overview of building URLs using the URL optimization classescccoeviiiiiiiiinininnnan. 117
Parsing an incoming query and sending it to an MDEX Enginecccoviiiiiiinininininiann.. 118
Informing the UrlState of the navigation Stateccoiviiiiiiiiiiiiiiiie e eeeaes 118
Creating link URLS from @ UrlStateo.iuiuinieiiii ettt e aenes 119
CONFIGUIING URLS ...ttt ettt e et e et et e et ettt e e e e e e e et et e teteaeaans 119
Anatomy of an optimized URL ... e 120
About the URL configuration filecoiiiiiiiiii e e 121
Creating @ URL configuration filecoiiiiiii e 122
About optimizing the MiSC-Pathooiiiiiiii e 125
Configuring the path-param-SeParatorcoceeinin i 145
About optimizing the path-params and query Stringc.cocoviiiniiiiiiinnnnneenene 145

Using the URL configuration file with your applicationccoovviiiiiiinininneeeee, 150
Integrating with the SItemMap GENEIATONuuii it eenens 150
The Sitemap Generator urlconfig.xmlfile ... 151

Using the URL configuration file with the Sitemap Generatorccceeveviiiiiiiiiiininannnnn. 151

5. EXtENdiNg the ASSEMDIET .e. et et et e 153
Extending and Developing Cartridgescueuininininii e 153
Cartridge BasiCs . .uee ettt e 153

First steps With @ NeW Cartridgeovuiuiniiii i e e 153
Adding @ basic FENAEIENeeii e 156
Elements of the example cartridgecooininiiii e 156
Overview of cartridge extension POINTSeiiiiiiriii e 158
Customizing the Experience Manager interfacecovuiviiiiiiiiiiniee e 159
About Cartridge Handlers and the Assemblerc.oeiiiiiiiiiii e 163
About using event listeners to extend the navigation cartridgescocoeviiiiiiiiiiiiiin... 167
SAMPIE CArTIAGES ...t e 169
Developing CUSTOM EAItOrS ... vttt ettt e e et e et et et e e e e e enaerenaneananens 191
The EdITOr SDK ... ettt et 191
EItOr AP .t eaas 192

Assembler Application Developer's Guide

About developing CUSTOM @ditOrsiuininii e 198

BUIldiNg CUSTOM @ItOrS ...cuenininin it 198
Registering CUSTOM EAITOrSttt ittt ettt ettt ettt e e et et e e aeteeneereenaenans 204
Overriding an existing editor with a custom editorcccvviiiiiiiiiiii e 205
Reusing custom editors across multiple applicationsccoooiiiiiiiiiiiiiiiiiieens 206
About creating and uploading a cartridge templatecooiiiiiiiiiii 207
About custom editors in MUItiple 10CalESvvieii i 207

6. Template Property and Editor REfEIENCEvniniii e e 209
Experience Manager editors mapping refer€nCeouiniiiiiiniiii e 209
Editor label configuration referenceoeuiiiiiii e 212
S T Tl oY a1 (=] 0 o] (o] o 1<) ¢ 4 [S PP 212
AddiNg @ STHNG PrOPEITY . euveinititeet ettt ettt e et et e et e e eeateteeneeaenenaanens 213

P oo 10l o 10] o= ¢ el o] o o =T 4TSN 218
Adding @ BooIan Propertyoee it 220
AddiNg @N ITEM PrOPEITYeeei i e ettt ettt e e e 222
Ja¥e Lo [T Te = W 15 d o] (o] o =T o 4 A PPN 223
Adding @ group [abel ... e 224
Complex Property @AItOrSc.u e e 226
ADOUL the MICIODIOWSETeteie ettt eeaeaes 226
About the Select Records dialogo.vueiriuiiiitii e e 228
About the Dynamic SIOt @ditOrouiiii e 229
Adding @ Link BUIlder 232
About the Media @ditOrcuiuini e 234
Adding a Boost-Bury Record €ditOrouiuiiuiniiitiiii i 247
Adding a Guided Navigation €ditorouviiiiii e 249
Adding @ DIMeNSIoN SEIECLONttt 251
Adding a DImension List @ditOrouiuiiitiiiiit e as 253
Adding a Dimension Value Boost-Bury @ditorocvuiiiiiiiiininiiii e 254
Adding a Dimension Value List @ditOrouiuiiiiiiiiiii e 256
Adding an IMage Preview ... 257
Adding @ RiCh TeXt @AITOr «.v.vititit ittt e e e e e e e eenaenans 260
AddiNg @ SOIt @AITON «.enetii e e 261
Adding a Spotlight Selection editorc.viiiiii 263
Application feature property refer€NCeo.uui e 267
Query configuration MAPPINGS «...eueunenieinin ettt et et ea et eneaeeeneanes 267

7. Navigation Cartridge Configuration REFEIENCEuininininiii e enens 271
Navigation cartridge URL parameter referencec.vuiuiuiuiiiii i 271
ADOUL this SECHION ...eeii e ettt 271

Core URL QUETY ParamMETEIS ...uuiitinititiiitit ettt ettt ettt et a et e ee e eaenes 272
Cartridge-specific URL QUETY Parametersuueuinininenetetetereteteteteeeeeeeneneneneneneenenenns 282
About the navigation cartridge configuration modelsc.oooiiiiiiiiiiiiiiiies 291
Overview of the navigation cartridge configuration modelscccoiiiiiiiiiiiiiiii... 292
YT T I T T Lo TS PPN 294
Guided Navigation Cartridgeso.uer ittt ettt ettt e e e e e e aenenaenenes 309
RESUILS CArtridges ... v ettt e ettt 316
Record details Cartridgesot 321
Content and spotlighting cartridgesouviiiiiii e 322
Dynamic triggering Cartridges . ..o e u ittt ittt ettt et e et e e e e e e eanaen 326
REQUEST EVENT AtriDUTES ..ttt et ettt e et e e e et e e e et eeneeaenanaanans 327
Base request eVeNt attribULESouieii e e e 327
Navigation cartridge request event attributescouvuiiiiiiiir e 327

Assembler Application Developer's Guide v

vi

Assembler Application Developer's Guide

List of Tables

TR Yo Fo (@] o (=Y a4 =T 0 0 o I T 10 0 1= =] - J P 74
3.2, INItIAliZE ParamETerS .. v ettt e et et e e aaaaaas 77
T T Yol [@e oY (=] 014 = o T oY =T 0] (T £ N 78
3.4, removeCoNteNtItEM ParamEterso.uiiie ettt e eean 78
BT = 1 =10 1 <] =] €T P 79
3.6. remMOVEHOTSPOLS PArameEterseuuit ittt ettt ettt ettt et ettt et et et e e eeene e eneenerneenennes 79
A o T o7 T = 0 U= (= N 79
Tt T o) i =T 10/ 1=Y =] < S 80
7.1. Configuration Options for the @appFilterState Propertycc.vuiuiiiiiiiiiiiii i 296

Assembler Application Developer's Guide vii

viii Assembler Application Developer's Guide

List of Examples

TR R = '] PPN 53
I . 11101 o L PPN 54
T TR =3 T 1 0] [PPN 62
B - 1 ']) PN 95
LT R = 20T) PP 169
6.1. Specifying the URL by using a configurable String propertycceeveeiiiiiiiiiiiiiiiiiieieeeeeenenenes 259
% TR =5 T 0T L= PP PTPN 273
0 2 =3 1 '] o) =T PP 274
2 T =3 ']) L1 PP 275
Y T 1 110] o] L1 PP PP 276
7.5 EXAMIPIES oottt e ettt ane 277
0T =3 0] o) =T PPt 278
R =2 11101] (=1 PPt 279
AT T 11T o) L PPN 281
7.9 EXAMIPIES ..ttt ettt ane 283
8 KR =T o o =33 284
8 TR 2T 0 o =33 PP 285
28 R 2T 0] o L= PP 285
A 1 R 3T 4o][PP 286
8 3 o= T 0 o =33 287
8 T80 = T4 o 1= PP 288
8 K 2T 0] o] 1= PP 289
707 EXAMPIES ettt et et ettt ens 290
8 = 0 2T a o =33 290
8 SR 2T 0] o =33 PP 291

Assembler Application Developer's Guide ix

Assembler Application Developer's Guide

Preface

Oracle Commerce Guided Search is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided
Navigation solution, Guided Search enables businesses to influence customers in each step of their search
experience. At the core of Guided Search is the MDEX Engine™, a hybrid search-analytical database specifically
designed for high-performance exploration and discovery. The Oracle Commerce Content Acquisition System
provides a set of extensible mechanisms to bring both structured data and unstructured content into the MDEX
Engine from a variety of source systems. The Oracle Commerce Assembler dynamically assembles content from
any resource and seamlessly combines it into results that can be rendered for display.

Oracle Commerce Experience Manager enables non-technical users to create, manage, and deliver targeted,
relevant content to customers. With Experience Manager, you can combine unlimited variations of virtual
product and customer data into personalized assortments of relevant products, promotions, and other content
and display it to buyers in response to any search or facet refinement. Out-of-the-box templates and experience
cartridges are provided for the most common use cases; technical teams can also use a software developer's kit
to create custom cartridges.

About this guide

This guide provides an overview of Assembler application development. It covers the architecture of a typical
Assembler application, as well as the tasks required to enable configuration through Experience Manager in
Workbench.

The Tools and Frameworks package includes a Java implementation of the Assembler, so examples in this
document are Java-based.

Who should use this guide

This guide is intended for developers who are building applications using the Assembler, and are supporting
business users who configure these applications using Workbench. You should familiarize yourself with the
concepts in the Oracle Commerce Guided Search Concepts Guide before reading this guide.

Preface xi

Conventions used in this guide

This guide uses the following typographical conventions:
Code examples, inline references to code elements, file names, and user input are set in nonospace font. In the
case of long lines of code, or when inline monospace text occurs at the end of a line, the following symbol is

used to show that the content continues on to the next line: ~

When copying and pasting such examples, ensure that any occurrences of the symbol and the corresponding
line break are deleted and any remaining space is closed up.

Contacting Oracle Support

Oracle Support provides registered users with answers to implementation questions, product and solution help,
and important news and updates about Guided Search software.

You can contact Oracle Support through the My Oracle Support site at https://support.oracle.com.

xii Preface

https://support.oracle.com

1 About the Assembler

This provides an overview of the various components of the Assembler.

Introduction to the Assembler

This section provides a conceptual overview of the Oracle Commerce Guided Search Assembler.

What is the Assembler?

The Assembler is an Oracle Commerce component that performs the following essential roles in any Oracle
Commerce application:

« It acts as the runtime component of Experience Manager, a tool that enables the business user to configure
the runtime appearance and behavior of the application.

+ It accesses values from a variety of sources, including databases, Digital Asset Management systems, social
media feeds, and the MDEX engine.

+ It creates view-ready application component models known as cartridges. A cartridge is a series of key and
value pairs known as a content item. The key and value pairs contain values accessed by the Assembler. Your
application renders these values visually, in the Ul controls or other components that compose the pages in
your application.

Note

Some content items contain other content items rather than consumer information. These content
items represent different types of content and together form a hierarchical tree that can be
traversed by the application when rendering a page.

Assembler Libraries
The Assembler classes are organized into two Java libraries:

+ Assembler Core, packaged as endeca_assenbl er _cor e- <ver si on>. j ar. This library provides the core
Assembler interfaces and a Spring implementation of the Assembler, along with the core facilities for building
Experience Manager driven applications.

+ Assembler Navigation, packaged as endeca_assenbl er _navi gati on- <ver si on>. j ar. This library
provides the built-in cartridges and facilities for building applications with Search and Guided Navigation.

1 About the Assembler 1

+ A separate javadoc is provided for each JAR file.
The Role of the Assembler in an Oracle Commerce Application

The following diagram illustrates the role of the Assembler in an Oracle Commerce implementation:

Customar Web Page
ﬁ —“ Merchandisar's Web Applicaion (Java)
\ - -
{t'}' B : Contentltes ::-spunu.ﬂ:mtmtltm s sewh] assemble (someContentTtem) ;
'E" = s
MNota: Non-Jiava applicalions
(in languages such as PHP,
sy st Perl, Rubry, or NET) musl
deploy the Assembler as a
REST service. In this mods,
Lhe response value must ba
sarialized to ether JSOMN or
Endeca Assembler e
N b
=
CMS Cartrdge RDEMS Cartricgs RSS Cartridge: Mavigation Carfridge Custom Cartridge
Handlar(s) Handiar{s) Handler(s) Handlars) Handlar(s) [Jawa)
] [
CMs RDEMS RSS MDEX Engine Other source(s)

As shown in the preceding diagram, the following things happen when customers request information through
your application page:

1. Your application invokes the assenbl e() method as follows:
Contentltem contentltem = new Redirect Awar eCont ent | ncl ude("/ nyUrl");
ContentltemresponseContentltem = assenbl er. assenbl e(contentlten)

where/ nmyUr | is the URL to a page that you are assembling in Experience Manager and
r esponseCont ent | t emis a tree of other content items.

2. The assenbl e() method sends r esponseCont ent | t emto the Assembler.

3. The Assembler passes the individual content items in r esponseCont ent | t emto cartridge handlers, each of
which handles a different content type. Each content item specifies a request for information.

4, The cartridge handlers pass the requests on to the appropriate sources of information, such as an MDEX
Engine, a relational database system, a content management system, and so on.

5. The cartridge handlers receive and process information from their respective sources. The handlers contain all
the logic needed to process the information, though they may also process requests without requiring input
from an external data source.

2 1 About the Assembler

6. Each cartridge handler returns to the Assembler a content item that contains the requested information.

7. The Assembler combines the content items that it receives from all of the cartridge handlers into a
r esponseCont ent | t em which is structured as a tree that contains all of the information required by the
front end application.

8. The Assembler returns r esponseCont ent | t emto the front end application.

9. Rendering code in the application converts the information in r esponseCont ent | t eminto a form that
can be displayed in the appropriate cartridges on your application page. Typically, a cartridge renderer (a
separate module of rendering code) processes and displays the information for each content item in the
responseCont ent | t emtree.

Note

The Assembler can return XML or JSON representations of objects for consumption by a variety of
rendering engines, such as .NET, PHP, or Flash-based applications. It can also return model objects as
POJOs (plain old Java objects) when embedded in a native Java application.

The Tools and Frameworks package includes a Java Assembler implementation that uses Spring to resolve
cartridge handlers and services.

You can develop extensions to the framework to interact with your resources, centralizing runtime data retrieval
and manipulation in your application. For these reasons, the Assembler can be integrated with organizations
that use Service-Oriented Architecture.

Basic Assembler concepts

The Assembler stores and manipulates data as sets of key: val ue pairs known as content items. Content items
can represent cartridges, which map to front-end features in an application.

About Content Items

Some content items are structural components such as application pages that contain additional content items.
Other content items map to front-end components in an application, such as image banners.

For example, in the Discover Electronics reference implementation, the entire default "browse" page is
represented by a content item that contains the page template. Each section of the page is also a content item,
nested within the containing "three column page" content item. Within those sections are additional content
items that represent front-end features:

» ThreeColumnPage
+ headerContent
+ Search Box
+ leftContent
+ Breadcrumbs
+ Guided Navigation
+ mainContent
+ SearchAdjustments

» ContentSlotMain

1 About the Assembler 3

* ResultsList
+ rightContent
+ RecordSpotlight

Because the content items are organized as a tree, they are as a group easy to traverse for rendering.
About Cartridges and Cartridge Templates

A cartridge is a content item with a specific role in your application; for example, a cartridge can map to a GUI
component in the front-end application. The Assembler includes a number of cartridges that map to typical GUI
components - for example, a Breadcrumbs cartridge, a Search Box cartridge, and a Results List cartridge. You can
create other cartridges that map to other GUlI components expected by your business users.

Every cartridge is defined by a template. A cartridge template defines:

+ The structure and initial configuration for a content item.

+ A set of configurable properties and the associated editors with which the business user can configure them.
Experience Manager instantiates each content item from its cartridge template. This includes any configuration

made by the business user, and results in a content item with instance configuration that is passed to the
Assembler.

About Cartridge Handlers
A cartridge handler takes a content item as input, processes it, and returns a content item as output.

The input content item typically includes instance configuration, which consists of any properties specified by

a business user using Experience Manager in Workbench. The content item is typically initialized by layering
configuration from other sources: your application may include default values, or URL parameters that represent
end user selections in the front-end application.

A cartridge handler can optionally perform further processing, such as querying a search engine for data. When
processing is finished, the handler returns a completed content item to the application.

Note

Not all cartridges require cartridge handlers. In the case of a content item with no associated cartridge
handler, the Assembler returns the unmodified content item.

For detailed information regarding the Car t ri dgeHandl er interface, see About the CartridgeHandler
interface (page 163), or refer to the Assembler API Reference (Javadoc).

Example: The Results List Cartridge

Consider the Results List cartridge included with Tools and Frameworks in the Assembler Navigation JAR file.
The Resul t sLi st object that backs the cartridge is a content item. The ResultsList cartridge template exposes a
subset of object properties for configuration in Experience Manager. The remaining properties are configurable
through the Ul in the front-end application.

The Results List cartridge handler combines the default, instance, and URL configuration values to create a query
to send to the MDEX Engine. The values in the query response are used to populate the Resul t sLi st content
item and return it to the application for rendering.

4 1 About the Assembler

Configuring Assembler applications in Experience Manager

The Assembler interacts with the Experience Manager tool in Workbench to expose content configuration to
business users.

Experience Manager instantiates each content item from its content XML. In an unconfigured cartridge, this
XML is identical to the cartridge template (including any default values specified in the template). When a
business user opens and modifies a cartridge in Experience Manager, their settings are saved in the content
XML. In an authoring environment, this XML is stored in the Workbench. In a production environment, it is read
from the path configured using configurationPath property of FileStoreFactory.

At runtime, the Assembler deserializes the content XML to create the appropriate content item object, and
passes it to its corresponding cartridge handler for processing.

In addition to creating instances of front-end application components in this manner, the business user can
also use structural content item templates (such as the Three-Column Navigation Page template) to create the
organizational elements of a site. For example, your business user can create an "About Us" page, a "Frequently
Asked Questions" page, and other static elements of a site by selecting and populating suitable cartridge
templates.

Assembler Search and Guided Navigation Features

The Assembler Navigation package provides a set of Search and Guided Navigation cartridges for use with the
MDEX Engine. These cartridges are included in the endeca_assenbl er _navi gati on- <versi on>. j ar file.

The reference application includes templates that use these navigation cartridges to enable configuration in
Experience Manager and render the resulting data in a front end application.

A navigation cartridge exposes MDEX engine features to an Assembler application. It also enables a business
user to configure powerful Guided Navigation features using Ul components that can be customized by an
application developer to fit business needs.

The navigation cartridges include the following:
+ Search Box

+ Auto-Suggest Search Results
+ Dimension Search Results

+ Search Adjustments

* Refinement Menu

+ Breadcrumbs

» Dimension Navigation

* Results List

* Record Details

* Media Banner

+ Record Spotlight and Horizontal Record Spotlight

1 About the Assembler

Example: The Results List cartridge

The Results List cartridge displays MDEX Engine search results for an end user query. It is backed
by acom endeca. i nfront. cartridge. Resul t sLi st content item object, which extends the
com endeca. i nfront. assenbl er. Basi cCont ent | t eminterface.

The input to the Assembler consists of a configuration model -- a content item with MDEX Engine query
information such as the end user's search terms, selected search refinements, sorting options, and records per
page. These are passed in asa com endeca. i nfront. cartri dge. Resul t sLi st Confi g object.

The Resul t sLi st Handl er generates a query from the properties on Resul t sLi st Conf i g, then sends the
query to the MDEX Engine. It instantiates a Resul t sLi st content item using the query response, and copies
over some of the properties from the configuration model (such as records per page and sorting) directly. This
view-friendly Resul t sLi st object is then returned to the application for rendering.

Cartridge configuration comes from the following sources:

+ Default configuration — For Spring-based Assembler implementations, this is specified in the Spring context
file.

+ Instance configuration — Specified by the business user in the Results List cartridge in Experience Manager.

* Request-based configuration — Specified by the application end user; this includes any search terms or
selected dimension refinements, among other things.

Default Cartridge Configuration

This section illustrates the default cartridge configuration of a Spring-based Assembler, using the Discover
Electronics reference application as the example.

The default cartridge configuration is specified in the Spring context file, located at Tool sAndFr amewor ks

\ <ver si on>\r ef er ence\ di scover - el ect r oni cs- aut hori ng\ VEB- | NF\ assenbl er - cont ext . xm for
the authoring instance of the Discover Electronics reference application. This includes values for the following
properties on the Resul t sLi st Confi g content item:

+ sort Opti on — The sorting options available to the end user when viewing the list of query results.

+ rel RankSt r at egy — The Relevance Ranking strategy applied to search results. For more information about
Relevance Ranking, see the MDEX Engine Developer's Guide.

+ recor dsPer Page — The number of records to display per page of results.
Note
The above list is a subset of configured properties and provided as an example.
Instance Configuration

This section illustrates a cartridge instance configuration for a Spring-based Assembler, using the Discover
Electronics reference application as the example.

The cartridge instance configuration comes from the values in the Tool sAndFr anmewor ks\ <ver si on>
\reference\di scover-data\inport\tenpl ates\ Resul t sLi st\ _.j son cartridge template. The template
exposes the following properties to the business user in Experience Manager:

+ boost Strat a— Alist of records to elevate to the top of the Results List.

6 1 About the Assembler

* buryStrata— A list of records to move to the bottom of the Results List.

+ sort Opti on — The business user can override the default sorting options.

« rel RankSt r at egy — The business user can override the default Relevance Ranking strategy.

+ recor dsPer Page — The business user can override the default number of records to display on each page.
Request-Based Configuration

The application end user's configuration in Discover Electronics is passed to the Resul t sLi st Conf i g object as
URL parameters, though you may choose to implement such functionality differently in your own application.

+ of f set — Controls the record offset of the displayed results in order to control record display while paging
through results.

+ rel RankTer ms —The end user's search terms.
+ sort Opti on — The end user can override the default values and the instance configuration.
+ recor dsPer Page — The end user can override the default values and the instance configuration.

The Results List cartridge handler combines the default, instance, and request-based values to create a query to
send to the MDEX Engine. The values are used to populated the Resul t sLi st content item and return it to the
application for rendering.

Assembler Architectural Overview

This section provides an architectural overview of the Assembler.

Related links

+ The Assembler processing model (page 7)

+ About serialization and de-serialization (page 11)
+ The Assembler eventing framework (page 12)

+ About Assembler error handling (page 13)

The Assembler processing model

The core of the Assembler is the assenbl e() method, which takes a content item representing a cartridge
instance configuration and invokes cartridge handlers to process it into a response content item.

The Assembler uses the visitor pattern to traverse the input content item and any child content items, and
invokes the appropriate cartridge handler (if any) for each of them.

The Assembler makes two passes over the input content item:

1. In the first pass, the Assembler calls Car t ri dgeHandl er . i ni ti ali ze() followed by
CartridgeHandl er. preprocess() on each content item in the tree. This is a pre-order traversal of the tree

1 About the Assembler 7

(working from the top of the tree down through its children), so cartridge handlers may add or modify child
content items at this stage.

2. In the second pass, the Assembler calls Car t ri dgeHandl er . process() on each content item, which
returns the response content item for that cartridge. This is a post-order traversal of the tree (working from
the bottom up), so child content items are processed before the parent. The response object for the root
content item of the tree (the content item originally passed in as input to the first assenbl e() call) contains
the response objects for all its child cartridges.

The default implementation of the Assembler uses Spring to map each cartridge to the appropriate handler
based on its content type. This content type corresponds to the template identifier that was used to create the
content item object. If no cartridge handler is defined for a particular content type, the instance configuration is
passed through as the response model.

Example

For example, consider the following content item:

Nest i ngDol | Cont ent | t enSubcl ass nesti ngDol |

This content item represents a Russian Nesting Doll. It includes properties for its name, color, and its child
content item:

nestingDol | .nanme = "Nesting Dol | "
nestingDol | . col or red
nestingDol | .child = secondNesti ngDol |

The secondNest i ngDol | contained within is green. It contains at hi r dNest i ngDol | , which is blue. Assuming
there is no cartridge handler for Nest i ngDol | Cont ent | t enBubcl ass, an assenbl e(nesti ngDol |) call
executes the following:

1. The pre-order traversal starts. There is no cartridge handler for Nest i ngDol | Cont ent | t enSubcl ass, so no
initialize() orpreprocess() callsare made for nesti ngDol | .

2. Similarly, no calls are made for secondNest i ngDol | ort hi r dNest i ngDol | . At this point, the pre-order
traversal is complete.

3. The post-order traversal starts. The t hi r dNest i ngDol | object is returned as-is, since there is no handler to
invoke a pr ocess() method.

4, Similarly, the secondNest i ngDol I and nest i ngDol | objects are returned, unmodified. Serialized to JSON,
the response looks like the following:

@ype": "NestingDoll Tenpl at eType",
"nane": "Nesting Doll",
"color": "red",
"child": [
{
@ype": "NestingDoll Tenpl at eType",
"nane": "Second Nesting Doll",

“color": "green"
"child": [
{

@ype": "NestingDol | Tenpl at eType",
"nanme": "Third Nesting Doll",

8 1 About the Assembler

“color": "blue"
"child"': []

What if you create a cartridge handler for Nest i ngDol | Cont ent | t enBubcl ass that doesn't override the
initialize() orpreprocess() methods, butimplements logic to add a property col or Type of value war m
orcool , based on the col or property? Steps 1-2 above don't change, but Step 3 invokes the new logic, and the
property shows up in the response:

@ype": "NestingDol | Tenpl at eType",
"nane": "Nesting Doll",

"color": "red",
"col or Type": "warnt,
"child": [

{

@ype": "NestingDol | Tenpl at eType",
"nanme": "Second Nesting Doll",

"color": "green",
"col or Type": "cool ",
"child": [

{

@ype": "NestingDol | Tenpl at eType",
"nanme": "Third Nesting Doll",
"color": "blue",

"col or Type": "cool ",

About content items

A content item is a set of key: val ue pairs where the key is a property name and the value may be any primitive
type, or another content item. The com endeca. i nfront . assenbl er Cont ent I t eminterface extends
java. util . Map.

Content items in the Assembler represent either structural components of an application page, or GUI
components on the page itself. A call to the Assenbl er. assenbl e(Cont ent | t en) method accepts as input
a Cont ent | t emcontaining configuration, and returns a content item as output. The response content item can
encompass an entire page in an application, with each sub-section of the page (such as the search box or the
search results list) represented as its own nested content item.

Note

In the default implementation of the Assembler, the Cont ent | t eminterface is implemented by the
com endeca. i nfront. assenbl er. Basi cCont ent | t emclass. The navigation cartridges in the
package extend this implementation for their individual use cases.

About Contentinclude and ContentSlotConfig objects

The default Assembler implementation typically takes a Cont ent | ncl ude or Cont ent Sl ot Conf i g object as
input to the Assembler. The first specifies a content item by URI, while the second retrieves a content item from a
specified folder according to template type and ID restrictions, trigger criteria, and content item priority.

1 About the Assembler 9

Both methods retrieve the associated configuration for the content item in Workbench.

Defining a Contentinclude object

A Cont ent | ncl ude object defines a single content item to pass into the Assembler (though keep in mind that
a content item may contain additional content items as children). It resolves a URI to a content item within a
configured content source (typically the Endeca Configuration Repository).

Defining a ContentSlotConfig object

Unlike a Cont ent I ncl ude object, which explicitly specifies a content item to pass as input to the Assembler,
the Cont ent Sl ot Conf i g object defines a set of criteria for dynamically retrieving one or more content items at
runtime. In most cases the content administrator creates and populates Cont ent Sl ot Conf i g objects through
editors in Experience Manager, although you can still programatically instantiate them if necessary.

The dynamic content slot is populated based on the following restrictions:

+ Content paths — The path or paths to content folders in Experience Manager. Any content items within the
specified folders or within sub-folders are considered valid for retrieval.

+ Template types (Optional) — The types of content item to retrieve, based on the t ype attribute of the
cartridge template used to create it. For example, a Record Spotlight slot in the Discover Electronics reference
application is restricted to content items created from a template with t ype=" Secondar yCont ent ".

+ Template IDs (Optional) — The template IDs to match against. This is a narrower restriction than restricting
by template t ype, and instead restricts based on a unique template i d. For example, a Record Spotlight slot
in the Discover Electronics reference application is restricted to content items created from a template with
i d="RecordSpotlight".

* Rule Limit — The number of matching content items to retrieve. This is applied after the above restrictions,
and after checking for triggered content items.

When the list of possible content items has been narrowed down, the Cont ent Sl ot Handl er issues a content
trigger request. This checks valid content items against any triggers defined in Experience Manager. Trigger
criteria can include:

+ The user's search terms or refinement selections, also referred to as their "navigation state."

+ Characteristics of the user, such as past buying habits or geographical location. This information constitutes

(T}

the user's "user segment.”
+ The current date and time, referred to as "schedule triggers."

The list of results is limited to triggered content items and ordered by the priority assigned to each content
item in Experience Manager. The number of results is truncated to the value specified for the content slot (also
specified on Cont ent Sl ot Conf i g). The Assembler then processes the content items and returns them in its
response.

About nesting content items

Content items may contain other content items, which can include both Cont ent | ncl ude references and
Cont ent Sl ot Conf i g definitions

For example, in Discover Electronics the / br owse path corresponds to a page within the sitemap. The browse
page consists of a content slot that references the Web folder. Most of the pages within the Web Browse Pages
folder contain a mixture of static and dynamic content items. As the Assembler processes the query forht t p: //

10

1 About the Assembler

waw. exanpl e. conl di scover/ br owse (assuming no search terms or refinement selections), the following
steps occur:

1. The Assembler is invoked with a Cont ent | ncl ude item with the URI/ pages/ br owse.

2. The Assembler invokes the Cont ent | ncl udeHandl er to retrieve the configuration for the browse page,
which is a Cont ent Sl ot Conf i g that specifies a single content item from the Three-Column Page collection.

3. The Assembler invokes the Cont ent Sl ot Handl er to retrieve the highest priority content item within the
Three-Column Page collection. In this case, it is the Default Browse Page, which is a Thr eeCol unmPage.

4. There is no cartridge handler configured to process the Thr eeCol unmPage, but it contains child content
items, so the Assembler goes on to process the child content items:

a. It passes the configuration for the search box cartridge through to the response object.
b. It invokes the Br eadcr unbsHandl er to process the breadcrumbs cartridge.

c. Itinvokes the Cont ent Sl ot Handl er to process the navigation slot, which in turn retrieves the
Default Guided Navigation configuration from the Guided Navigation collection and invokes
Di mensi onNavi gat i onHandl er to process it.

d. Itinvokes the Sear chAdj ust ment sHandl er to process the search adjustments cartridge.

e. Itinvokes the Cont ent Sl ot Handl er to process the results list slot, which in turn retrieves the Default
Results List configuration from the Results List collection and invokes Resul t sLi st Handl er to process it.

f. Itinvokes the Recor dSpot | i ght Handl er to process the spotlight records.

About serialization and de-serialization

The Assembler serializes content items, including any Workbench content, as XML in the Workbench (oron a
file system in a production environment). This XML is deserialized during an assenbl e() call when retrieving a
content item to pass it to its cartridge handler.

You can also use the included classes to serialize the Assembler response to a format that is more convenient for
use in your front end application. For example:

/'l Invoke the Assenbler on nyContentltem

Contentltem responseContentltem = assenbl er. assenbl e(nyContentlten);
/'l Serialize the Assenbl er response to JSON

response. set Char act er Encodi ng(" UTF-8") ;

JsonSerializer serializer = new JsonSerializer(response.getWiter());
serializer.wite(responseContentlten);

When Assembler is deployed as a service, the Assembler service web application needs to specify a serializer
that will be used for the response.

Note

The Assembler includes default implementations of a JSONResponseW i t er and an
XM_LResponseW i t er. You can provide your own implementation if you need to output the Assembler
response to a different format (such as a different XML representation).

For detailed information, refer to the documentation for the com endeca. i nfront. seri al i zat i on package
in the Assembler Core APl Reference (Javadoc).

1 About the Assembler 1

The Assembler eventing framework

The Assembler includes an eventing framework that fires events at different points in an assenbl e() call.
Creating listeners for these events enables cartridge handlers to retrieve or modify data at more granular points
in the Assembly process.

Note

The logic included in an event listener is evaluated for every cartridge handler, and that event listeners
do not have access to the current Assembler request or to the navigation state.

Related links
+ Creating an event listener (page 167)
Assembler event framework reference

The Assembler includes an Assenbl er Event Li st ener interface that you can use to create and register event
listeners.

The Assembler fires the following events:

Event Condition

assenbl yStarting Fires when an assenbl e() call starts.

assenbl yConpl et e Fires when an assenbl e() call completes.
assenbl yError Fires when an assenbl e() call is aborted due to an

unrecoverable error.

cartridgelnitializeStarting Fires when a cartridge handler calls the
initialize() method.

cartridgelnitializeConplete Fireswhen acalltotheinitialize() method
completes.
cartridgePreprocessStarting Fires when a cartridge handler calls the

preprocess() method.

cartridgePreprocessConpl ete Fires when a call to the pr epr ocess() method
completes.

cartridgeProcessStarting Fires when a cartridge handler calls the pr ocess()
method.

cartridgeProcessConpl ete Fires when a call to the pr ocess() method
completes.

cartridgeError Fires when a cartridge fails due to a local error. This

stops execution of the cartridge handler workflow,
and prevents any additional events from firing.

12 1 About the Assembler

Event payload
Each Assembler event has an Assenbl er Event payload consisting of three objects:
+ Assenbl er — the Assembler object responsible for servicing the request.
+ Cont ent | t em— the content item currently undergoing processing within the assenbl e() call.

» CartridgeHandl er — the cartridge handler associated with the event.

About Assembler error handling

In case of an error during processing, the Assembler API defines two kinds of exceptions: Assenbl er Except i on
and Car t ri dgeHand! er Except i on.

The exceptions are distinguished as follows:

Exception Description

Assenbl er Excepti on Indicates that an exception occurred while creating or processing an
Assembler request. Exceptions of this type indicate that the entire
assembly process was terminated.

Cartri dgeHandl er Excepti on Indicates that an exception occurred while invoking a single cartridge
handler. Exceptions of this type do not terminate the entire assembly
process.

Both types of exceptions are returned as part of the Assembler response.
Error handling in the Assembler service

The Assembler service returns an HTTP status code of 200 (OK) regardless of whether any exceptions occurred
during Assembler processing. Error conditions are serialized as exceptions in the Assembler response, as with
the following example:

@rror: "comendeca.infront.assenbl er. Cartri dgeHandl er Excepti on"
description: "Detailed cartridge handl er error description”

Unchecked exceptions result in the Assembler service returning HTTP status code 500 (Internal Server Error).

About cartridges and content items

This section describes how cartridges expose content in an application.

1 About the Assembler 13

About cartridges

The component model consists of configurable content items. Cartridges expose these content items in a
rendered format for the front-end application.

A content item is a map of properties or key-value pairs, where the key is a string representing the property
name and the value may be any primitive type (including String, Boolean, List, and Map) or another content
item. This allows for content items to be nested within other content items, forming a content tree that
represents the structure of a Web page and all its components.

There are generally two kinds of content items within an application:

« Container content items are primarily structural components. They define the logical (and sometimes physical)
structure of the content to be rendered by an application. The top-level container typically represents a Web
page with sections that can contain other content items (leaf content items or, occasionally, other containers).
In a Web application, these sections may correspond to areas on the page with certain assumptions about
layout and rendering. In other applications, they may represent logical groupings of related components.

« Leaf content items are typically functional components. They contain information about content to be
displayed in the application, and typically encapsulate the configuration for a particular feature, such as a
Guided Navigation component, spotlight, or results list. Leaf content items are also referred to as cartridges.

A page may contain cartridges directly (in which case the configuration for the cartridges is triggered along
with the page) or the page can contain a dynamic slot, which serves as a placeholder for cartridges that can be
triggered independently of the page in which they display.

Structure of cartridges

A cartridge is a functional component that a content administrator can choose to display on a page.
The basic aspects of a cartridge are the following:

+ The cartridge instance configuration, which consists of a content item created by a business user in
Experience Manager

+ The cartridge handler, which is the Assembler component that contains the processing logic for the
associated feature

+ The response model, which is the content item returned from the Assembler to the application for rendering

The configuration model for a cartridge is defined by a cartridge template, which describes the properties that
can be configured as well as the interface through which the content administrator can specify their values in
Experience Manager. Cartridges typically have configuration options specific to the cartridge's function, such

as the number of refinements to display (and the order in which to display them) for a Dimension Navigation
cartridge; the records to promote for a Spotlight cartridge; or the sort options and records per page for a Results
List cartridge.

1. At query time, the configured values of the cartridge properties become an input to the Assembler.

The Discover Electronics reference application contains several sample templates or cartridges that
demonstrate core functionality. You can customize them for your own application or write your own
templates in order to add or remove configuration options or to pass additional information to the Assembler
or the front-end application.

14

1 About the Assembler

2. At query time, the Assembler invokes the appropriate cartridge handler to process the cartridge
configuration.

The core cartridge handlers also have access to information about the initial request context that triggered
the cartridge. The cartridge handler is responsible for generating a response model based on this
configuration. In most cases this involves fetching content from an ext ernal resource.

In the case where the configuration model is the same as the response model, no cartridge handler is
needed; the default behavior of the Assembler is to pass the configuration properties through to the
response model.

3. The Assembler passes the response model to the corresponding renderer in the application.

As a best practice, the application should contain several modular renderers, each intended to handle the output
model for a particular cartridge or cartridge type. The Discover Electronics application includes reference JSP

pages to render each cartridge. These renderers are intended to be updated for styling or otherwise customized
for your application.

1 About the Assembler 15

16

1 About the Assembler

2 Designing an Assembler Application

This part discusses the steps for designing your Assembler application and the steps for creating templates.

Related links

» Planning an Assembler Application (page 17)

Planning an Assembler Application

This section covers considerations for designing your Assembler application.

About planning your application sitemap

An Assembler application consists of a combination of static pages and dynamic pages that contain content
related to an end user's navigation state. Your planned sitemap helps determine what pages and content folders
you should create for your application.

Consider a site with the following structure:
+ about
+ contact
 faq
* promotions
+ christmas
+ mothersDay
* browse
+ details

In this case, each of the pages maps directly to a set of content. To separate most of the content out from the
site structure and support dynamic triggering, the organization of an Assembler application is divided into the
pages within an application, and the content that populates them:

+ pages

2 Designing an Assembler Application 17

+ about
+ contact
« faq
+ browse
+ details
+ content
+ guided navigation
+ record details
* browse pages
+ default
+ christmas
+ mothers day
+ spotlights
+ top rated
+ best sellers

In the example above, the promotional Christmas and Mother's Day pages no longer exist as explicit pages.
Instead, the content associated with those promotions is stored as available "browse" page configurations that
each trigger during a specified date range.

You can refer to the Discover Electronics reference application for a further example of how content and pages
can be separated. When planning your own application, you should consider which locations in your site are
best represented as pages, and which locations consist of triggered content on an existing page.

About page types

A typical application has several types of pages that are displayed under different circumstances or contain
different content.

For example, a site may have the following three basic page types:

These pages may differ in the following ways:

+ They are intended to be displayed in different contexts. The home page appears before the user has
made any selections. The results page appears only when the user has performed some search or navigation
query. The record detail page appears only when a user has selected a specific product. These conditions are
configured in Experience Manager as triggering criteria.

« They display different types of content. A home page or category page typically displays high-level
promotions and merchandising. A results page displays a list of record results as well as additional controls
for the user to select additional facets or otherwise refine the search. A record detail page displays detailed

18 2 Designing an Assembler Application

product information as well as controls for transactions (such as add to cart, wishlist, and so on). These
differences in content imply differences in layout, which is configured at the template level.

+ They are accessed through different URLs. The home page is accessed at the base URL for the site. Search
results pages may be accessed at a URL that includes the path / br owse/ . Record details pages may be
accessed at a URL that includes the path / det ai | / . These URL mappings are typically achieved by setting up
individual services for each page type.

The Discover Electronics reference application includes servlets for results pages and record details pages.
About page structure and content types

An Experience Manager template defines the logical structure of a page and the types of content that the page
can contain.

Every template defines a content item that can be processed by the Assembler. A content item describes the
logic of how to promote content for display to application users. Content items have several parts: the records in
a data set, the conditions that must be met for those records to display, and the templates that determine how
those records are rendered in the application.

A page template defines a container content item with sections that can be populated with other content items,
such as the following:

Typically, a section represents a physical area on the page, but it can also represent a functional grouping,
including content that may not be visible to an end user. Each section has an associated content type that
determines what kind of content items can be inserted in that section. An application may have multiple
cartridges of each type, providing greater flexibility for the content administrator to configure the content for a
specific page.

You can create templates for different page types within your application and define which content types are
valid for each type of page. You can create templates for high-level page structures and different layouts for a
single page type. Each of the content items that can be inserted into a template is itself defined by a template,
and may be either another container content item or (more commonly) a leaf content item associated with a
front end feature.

About mapping pages to services
You can map the URL paths of pages in your application to specific services.

Services can be used to set attributes on the incoming request before it is processed by the Assembler
depending on the type of page being requested, which can control what content is triggered in response to the
request, and the format in which the response is returned.

When a content administrator defines a new application page in the reference application, requests on that
page are mapped to the/ ser vi ces servlet. Your application should include logic for mapping arbitrary pages
to a controller, though you may also choose to explicitly define additional services for certain pages within your
site. Additionally, your Ul tier must be able to resolve whatever links you expect your content administrators to
create. For more information about handling application URLs, see "Working with Application URLs."

Creating a page

The Content Tree in the left pane of Experience Manager is divided into two sections: Site Pages and Content.
You create pages within the Site Pages section.

2 Designing an Assembler Application 19

You must deploy and provision your application with the EAC in order to modify it in Workbench.
To create a page, follow these steps:
1. Log in to Workbench and navigate to Experience Manager.
2. Mouse over the Site Pages heading in the Content Tree.
The drop-down menu arrow appears on the right.
3. Click the drop-down menu arrow and select Add Page.
The Add Page panel appears.
4. Enter a Name/Path for the new page.
This is the part of the URL path that uniquely identifies the page within your application.
5. Click Create.
The new page is added to your application.

A page exists as a content item in Experience Manager. A content administrator can configure it directly by
selecting a template with included editors, or they can specify a template with a dynamic slot to populate the
page from one or more selected content folders.

About content folders

Before a content administrator can configure dynamic content items within an application, you must create
content folders to contain those items. Content items within the same folder are evaluated against each other
at runtime to determine which item (or items) should be returned to populate a defined section of the current

page.

In Experience Manager, content folders define the top-level organizational structure of an application, in

which the content administrator can browse for content. If a query satisfies the trigger criteria for multiple
content items within a folder, items with higher priority take precedence over those with lower priority. A single
application request may trigger content items from multiple folders

Content folders have the following properties:

+ Template type — Specifies the type of content items that can be created in this collection, as defined by the
t ype attribute of the content template.

+ Template ID — Specifies the type of content items that can be created in this collection, as defined by the | D
attribute of the content template. This is more restrictive than specifying by template type, as an ID is unique
to a single template.

Oracle recommends that you create at least one content folder for pages and one for each slot on the page that
can contain either shared or variable content. This provides a logical organization of content within Experience
Manager. It enables content to be triggered independently of the pages that contain them and also enables
content in one slot to be triggered independently of content in another slot.

For example, the Discover Electronics reference application includes the following content folders :

+ Mobile \ Mobile Browse Pages — Top-level page configuration for pages viewed from a mobile device.
Mobile pages must be more streamlined than Web pages, so they require a different page template.

20

2 Designing an Assembler Application

+ Shared \ Auto-Suggest Panels — Configuration for the auto-suggest panel that is displayed when a user
starts to enter a search query. The Shared collections return the same response model for both the Mobile and
Web versions of the application, but the renderers vary based on the client.

+ Shared \ Detail Pages — Configuration for record details pages within the application.
+ Shared \ Guided Navigation — Configuration for the Guided Navigation menu.
+ Shared \ Results List — Configuration for a list of search results.

« Web \ Spotlights — Category-specific product spotlights that are displayed above the search results when a
user navigates to those products.

+ Web \ General \ Pages — Top-level page configuration for Web pages. These templates are structural and
primarily consist of dynamic slots that pull in content items from other collections to populate the page.

Content folders example

Content folders determine which content items are evaluated and returned when populating a dynamic section
of an application page.

Suppose you have a site where a typical structure for a search and navigation page looks like the following:

Based on this template, the content administrator wants to configure a page for a specific trigger (for example,
Category > Cameras > Digital Cameras) using contextual, shared, and variable content as in this picture:

+ The header and footer are populated as dynamic slots with default triggering criteria, in order to avoid
defining them multiple times for a large number of pages.

+ The Guided Navigation and Results List cartridges are configured specifically for this page and do not need to
vary based on criteria other than the page triggers.

« The Banner area is configured to display a different image depending on the brand that the site visitor has
selected.

+ The Spotlight area displays a mix of promotions based on triggers that are independent of the triggering
criteria for the page itself. For example, a "Holiday Specials" spotlight may display for the date range between
November 1 and January 2.

The configuration for the page (as specified in Experience Manager) looks like this:

The configuration for Guided Navigation (including which dimensions to display and which dimension values to
boost or bury within those dimensions) and for the Results List (including default sort options and record boost
and bury) are specified as part of the page configuration. The other slots on the page contain only placeholders.
The actual Header, Footer, Banner, and Spotlight content items that display when someone visits the site are
defined in their respective content folders.

The mechanism for populating these slots is the same regardless of whether the content that should display in
each slot is shared or variable content. The only difference between the two kinds of content is in the trigger
criteria on the content items within those collections: variable content, such as the Spotlight, has triggers that

2 Designing an Assembler Application 21

are more specific than the page trigger. Reusable content, such as the generic header and footer, has triggers
that are more general than or orthogonal to the page trigger.

When the content administrator has created all the content needed to populate this page (and a few other
pages), the application may include the following content items in the following folders:

The content folders are configured as follows:
« The Browse Page folder contains all the content items representing search and navigation pages in the site.

+ The Brand Banner folder contains cartridges of type Medi unBanner that are appropriate to display in the
Banner slot. This dynamic slot on the Browse page has an evaluation limit of 1, since the page is designed to
display only one banner at a time.

« The Spotlight folder contains cartridges of type Si debar I t embecause items created in this collection are
intended to display in the Spotlight slot in the right column. Because this space is intended to display several
independently triggered spotlight items, the evaluation limit for the dynamic slot on the Browse page is 3.

+ The Header and Footer folders each contain cartridges of type Ful | W dt hCont ent .

Each page or content item within these folders has an associated trigger and priority (relative to the other items
in the same folder) specified by the content administrator in Experience Manager.

When a site visitor refines on Category > Cameras > Digital Cameras and Brand > Sony, the following content
triggers:

+ The Digital Cameras page is returned as a Page, which includes the content administrator's configuration for
Guided Navigation and for Results List. Note that the Default page (with a trigger of "Applies at all locations")
is also eligible to fire, but the Digital Cameras page has a higher priority, therefore it takes precedence and the
Default page does not fire.

« The Banner slot is populated by the highest priority content item in the Brand Banner folder that matches the
user's navigation state. In this case, it is the Sony cameras banner. Again, there is a Default banner but it does
not fire because it has a lower priority.

+ The Spotlight slot is populated by the highest priority content items in the Spotlight folder that match the
user's navigation state. In this case, the Default spotlight does fire because there is room for three spotlights in
this slot and that item has a high enough priority (among those that satisfy the user's context) to be included.
These three content items display in the Spotlight area in order of priority.

+ The Header and Footer folders have only one content item each, which is set to display at all locations,
therefore the same content is returned for this page as for all pages.

In this example, content is returned from five content folders. Priority between items is specified within each
folder. It does not make sense to prioritize the Sony cameras banner against the April spotlight cartridge, for
example, because they are not competing against each other to be displayed on the page. In general, content
items with more specific trigger criteria should have a higher priority than those with more general criteria,
especially if they are used in a dynamic slot with an evaluation limit of 1.

Oracle recommends that you create separate content folders for each area on the page, even if they have the
same content type. For example, if you want to have two banners on the page, each populated via dynamic
slots, they should reference two different folders, or else the same banner (the one with the highest priority for
the current navigation state) is returned for both sections of the page.

2 Designing an Assembler Application

Oracle also recommends that you do not mix reusable and variable content within the same folder. For example,
if a slot (such as the Spotlight slot) can be populated with either reusable or variable content, create two
different folders, Reusable Spotlights and Variable Spotlights. The content administrator can configure a
particular page to populate the Spotlight slot from either folder as applicable. In order to populate the same slot
with a mixture of reusable and variable content, the content administrator can insert two (or more) placeholders
in the Spotlight slot, each referencing the corresponding folder for each type of content.

The final result for the site visitor who is looking at Sony cameras looks something like the following:

Creating a content folder

The Content Tree in the left pane of Experience Manager is divided into two sections: Site Pages and Content.
You create content folders within the Content section.

You must deploy and provision your application with the EAC in order to modify it in Workbench.
To create a content folder:
1. Log in to Workbench and navigate to Experience Manager.
2. Mouse over the Content heading in the Content Tree.
The drop-down menu arrow appears on the right.
3. Click the drop-down menu arrow and select Add Folder.
The Add Content Folder panel appears.
4. Enter the Name of the folder you wish to add.
5. Optionally, select a content type restriction.

The drop-down list is populated based on the available t ype values for the set of templates uploaded to the
application.

This selection restricts the content items within the folder to the specified type.
6. Click Add.
The new content folder is added to the Content Tree in Experience Manager.
About moving content folders
You can move and re-organize content folders in the Content Tree within Experience Manager.

If you move a content folder that includes dynamic content referenced elsewhere in the application, a warning
dialog appears with a list of content items that rely on the content you are moving. You must manually update
these content items if you proceed with the move.

About sites

Oracle Commerce Experience Manager enables you to build an application that can run multiple web sites using
a single index. Business users can use this application to create site-specific pages that use a single index. Even if
you are not building an application that supports multiple sites, your application must contain at least one site.

2 Designing an Assembler Application 23

You can create applications to support multiple web sites that share the same code base, templates, cartridges,
and search configuration. Each web site can have its own unique set of pages that display the site's unique look
or branding.

Note

If you are using Oracle Commerce Guided Search, applications have one site by default, and Oracle
does not support adding additional sites.

Site storage

Individual sites are stored directly under the pages node. This default site root path is configured in the
assenbl er. properti es file. For example, in the Discover reference application, the path looks like the one in
the following example:

previ ew. enabl ed=true

user. state.ref=previ ewlser St ate

medi a. sour ces. r ef =aut hori ngMedi aSour ces

reposi tory. configuration. pat h=./repository/ ${wor kbench. app. nane}
def aul t Si t eRoot Pat h=/ pages

In the following configuration, the Discover application contains three sites: DiscoverAll, DiscoverPrinters and
DiscoverCameras.

| pages
/ Di scover Al |
/ Di scover Camner as
/ Di scoverPrinters

Sites are the top-level content in this application. Each page within a site belongs to exactly one and only one
site. Each site node is a site definition and every application must have at least one site definition. The Assembler
uses properties in these site definitions to facilitate site-specific behavior. Site definitions are stored in the pages
node of the IFCR. Our sample configuration would have three site definitions: one each for Di scover Al |,

Di scover Caner as,and Di scover Printers.

/ pages
/ Di scover Al |
_.json
/ Di scover Caner as
_.json
/ Di scoverPrinters
_.json

The following site definition for DiscoverAll shows a unique display name, DiscoverAll and description, as well
as a unique URL pattern, / Di scover Al | for this site:

{
"ecr:type":"site-home",
"url Pattern" : "/DiscoverAl",
"di spl ayNane" : "DiscoverAl"

24

2 Designing an Assembler Application

"description" : "This site shows all things that are Discover."

}

If only a subset of records within the index are relevant for a specific site, then you must specify site-based filters.
The site-based filter is applied to all queries performed on the site. The filter that is applied is determined by

site context. The following configuration has three site definitions and two sites with site-based filters. One for
DiscoverCameras and one for DiscoverPrinters. The filter for DiscoverCameras would filter out all records except
those that were relevant to cameras, while the DiscoverPrinters filter would filter out all records except those
that were relevant to printers. DiscoverAll includes every record in the index, so that site does not have a filter.

ifcr/
/ pages
/ Di scover Al |
_.json
/ Di scover Caner as
_.json

filterState. xm
/ Di scoverPrinters

_.json

filterState. xm

The following is an example of thefi | t er St at e. xni file for DiscoverCameras:

<l tem cl ass="com endeca. i nfront. navi gati on. nodel . FilterState" xm ns="http://endeca.com
schema/ xavi a/ 2010" >
<Property nane="recordFilters">
<Li st>
<String>product.category: "Caneras"</String>
</ List>
</ Property>
</ltem

Note that Oracle does not support site-based filters in Oracle Commerce Guided Search.
Site Awareness

In a multiple site application, the Assembler must identify the site or the site state for incoming requests. This
identity is included in the request as part of a domain name, a URL, or a request parameter. Resolving this site
state gives the Assembler the ability to retrieve the relevant site definition, the site-based filter and other site
specific information.

The Act i onPat hPr ovi der is an interface that you are free to implement as you see fit. Cartridge handlers

in applications built with Spring can use the Act i onPat hPr ovi der to determine navigation or record detail
action paths. The content paths that prefix navigation and record states are configured as sets of key-value pair
mappings. In a multiple site application, the Act i onPat hPr ovi der can define different mappings for pages on
different sites. The following example shows an Act i onPat hPr ovi der in the assenbl er - cont ext . xni file
with new mappings for the DiscoverCameras site that has been added to navi gat i onAct i onUri Map and the
recor dActi onUri Map:

<bean i d="actionPat hProvi der" scope="request" class="com endeca.infront.re-
f app. navi gati on. Basi cActi onPat hProvi der" >
<constructor-arg i ndex="0" ref="content Source"/>

2 Designing an Assembler Application 25

<constructor-arg i ndex="1" ref="httpServl et Request"/>
<!-- navigationActionUiMp -->
<constructor-arg index="2">
<map>
<entry key=""/pages/ Di scover Caneras/.*$" val ue="/pages/ Di scover Caner as/
caner asbrowse" />
<entry key=""/pages/[~/]*/ nobile/detail $" val ue="/nobil e/ browse" />
<entry key=""/pages/[~/]*/services/recorddetails/.*$" val ue="/services/
gui dedsearch" />
<entry key=""/pages/[~/]*/detail $" val ue="/browse" />
<entry key=""/services/.*$" val ue="/services/gui dedsearch" />
</ map>
</ constructor-arg>
<!-- recordActionUi Mp -->
<constructor-arg index="3">
<map>
<entry key=""/pages/ Di scover Caneras/.*$" val ue="/pages/ Di scover Caner as/
canerasdetail " />
<entry key=""/pages/[~/]*/ mobile/.*$" val ue="/nobile/detail" />
<entry key=""/pages/[~/]*/services/.*$" value="/services/recorddetails" />
<entry key=""/pages/[~/]*/.*$" value="/detail" />
<entry key=""/services/.*$" value="/recorddetails" />
</ map>
</ constructor-arg>
<constructor-arg index="4" ref="siteState"/>
</ bean>

Creating Experience Manager Templates

This section describes the process of creating templates that enable the configuration of content items in
Experience Manager.

Related links

+ Designing an Assembler Application (page 17)

» About creating templates (page 27)

+ Anatomy of a template (page 27)

« Template identifiers (page 29)

+ About the group of a template (page 29)

+ Specifying the description and thumbnail image for a template (page 29)
+ Specifying the default name for a cartridge (page 30)

+ Defining the content properties and editing interface (page 31)

+ Structural properties (page 33)

» About keyword redirects groups (page 35)

26

2 Designing an Assembler Application

+ About multiple locales (page 38)

» Managing Experience Manager Templates (page 39)

About creating templates

Templates define the content structure of a content item as well as the editing interface that content
administrators can use to configure instances of content items in Experience Manager.

In general, you create one or more templates that define the high-level structure of the pages in your
application. These templates define sections that can be populated with other content items, or cartridges.
Cartridge templates specify the properties required to display the content for that component. This may include
values that the client application uses directly to render the information, or inputs into the Assembler for
processing (such as query parameters to the MDEX Engine).

While cartridges and template properties typically determine aspects of the visual appearance of the page,
keep in mind that they can also represent page elements that are not visible in the application. For example, a
property can contain meta keywords used for search engine optimization, or a cartridge can include embedded
code that does not render in the page but enables functionality such as Web analytics beaconing.

The Discover Electronics reference application provides sample page templates for some standard page types,
as well as templates that enable configuration of the core set of cartridges in Experience Manager. These
cartridges cover basic functionality, and are provided as a starting point for your application. You can customize
them to suit your needs.

Note

In some cases, the reference application includes more than one template for the same functional
cartridge. This is in order to enforce the proper constraints on which cartridges are available to insert
in specific template slots. The only difference between the different versions of these templates is the
template type.

This section concentrates on the basic template elements that enable you to create top-level page templates
appropriate to your application. Details about the template configuration for core cartridges are covered in the
"Feature Configuration" section. Reference information about the full range of properties and editors that can be
used in templates is provided in the appendix to this guide.

Anatomy of a template

Top-level templates, which define an entire page, and cartridge templates, which drive the content of individual
components, are JSON documents that share the same structure.

Templates can be broken down into four parts:
+ General information such as the template group, description, and thumbnail image. This information is

used in Experience Manager to help the content administrator select the appropriate template for a page or
section.

"@lescription': "${tenplate. description}",
"@roup": "MinContent",
"ecr:createDate": "2016-09-12T17: 33: 58. 542+05: 30",
"@hunbnail Url": "thunbnail.png",

2 Designing an Assembler Application 27

"ecr:type": "tenplate",

+ Default content item values.Specify the default name of a cartridge and the default values of properties
here.

"defaultContentltent: {

"@ane": "Results List",
"rel RankStrategy": "",
"recordsPer Page": "10",
"sortOption": {
"@l ass": "com endeca.infront.navigation.nodel.SortOption",
"l abel ": "Most Sales",
"sorts": [{
"@lass": "com endeca.infront.navigation.nodel. Sort Spec",
"key": "product.anal ytics.total _sal es",

"descendi ng": false

}
b

+ Editor panel definition. These allow you to define the editing interface in Experience Manager for this
content item. Properties are generally associated with an editor that enables content administrators to
configure the content items that they create within the tool.

"edi torPanel ": {
"editor": "editors/DefaultEditorPanel",
"children": [
{
"editor": "editors/NumericStepperEditor"”,

"l abel ": "${property.recordsPerPage. | abel }",
"maxVal ue": 100,
"m nVal ue": 10,

"propertyNanme": "recordsPerPage"

}

{
"editor": "editors/BoostBuryRecordEditor",
"buryProperty": "buryStrata",
"l abel ": "${property.boostBury.|abel}",
"propertyName": "boostStrata"

}

... CONTENT REMOVED FROM EXAMPLE. . .

+ Property type information. In this part of the template, you explicitly declare all the properties of the
content item that is described by this template. Property types can include Strings, Lists, and Booleans.

"typel nfo": {
"boost Strata": {"@ropertyType": "List"},
"buryStrata": {"@ropertyType": "List"},
"recordsPer Page": {"@ropertyType": "String"},
"rel RankStrategy": {"@ropertyType": "String"},
"sortOption": {"@ropertyType": "ltent}

28 2 Designing an Assembler Application

By defining the properties in the template along with how they can be configured in the tool, you ensure that
the content configured in Experience Manager provides the necessary properties to the corresponding cartridge
handler in the Assembler.

Template identifiers

Templates are saved as JSON files named _. j son that are then uploaded to Experience Manager. Each template
is required to have a unique identifier.

The unique template identifier is the folder name where the _. j son file resides. For example, in

Thr eeCol uimNavi gat i onPage\ _. j son, the folder name, Thr eeCol unmNavi gat i onPage, is the template
identifier. The identifier appears as the name of the cartridge in the cartridge selector in Experience Manager.
The value should be as descriptive as possible to help the user select the appropriate template, for instance,
"ThreeColumnWithLargeBanner" or "HolidaySalePromotion."

Template folder names must be unique within your application. Templates with non-unique identifiers are not
available in Experience Manager. Oracle recommends that you treat templates as part of your application's
configuration and store them in a version control system. It can also be useful to include a template version
number in a property for debugging.

About the group of a template
Each template has a @r oup that indicates where the template fits in an application page.

The group restriction serves two purposes. For top-level container templates, such as those that define a page,
a group restriction can be specified for each section of the page. This limits the cartridges that can be inserted
into that section. For example, if a template that includes a "SecondaryContent" section, only cartridges of the
"SecondaryContent" group are available to insert into that section in Experience Manager.

Additionally, you can specify a template group in a dynamic slot to restrict the content that appears in that slot.
This restriction applies at runtime when content items are evaluated against each other and ranked by priority
for display in the application; any content items that do not match the specified template group for a dynamic
slot are removed from consideration.

Setting a template group

The template @r oup is specified as a required attribute in the template _. j son. For example,
HorizontalBanner:

"ecr:type": "tenplate",
"@roup": "SecondaryContent",
"@lescription": "${tenpl ate. description}",
"@hunbnai l Url": "thunbnail.png",

Specifying the description and thumbnail image for a template

The description and thumbnail image for a template display in the template selector and cartridge selector
dialog boxes in Experience Manager. Adding a description and thumbnail image to a template is required.
Without them, template importation fails.

2 Designing an Assembler Application 29

To specify the description and thumbnail image for a template, insert the following elements within the _. j son:

Element Description

" @lescription” One or two brief sentences to help the content
administrator identify the template in Experience
Manager. This can include information about the
visual layout of the template ("Three-column layout
with large top banner") or its intended purpose
("Back to school promotion").

"@hunbnai l Url " The absolute URL to a thumbnail image that shows
a sample page or section that is based on the
template. The images must be hosted on a Web
server accessible from the Experience Manager
server. Any URL without a protocol or leading slash
will be treated as relative to the root of the template
structure.

If your thumbnail is in the same folder as your
_. j son file, you can omit the path altogether. For
example," @ hunbnai | Url ": "t hunbnai | . png".

For example,

"ecr:type": "tenplate",
"@roup": "Page",

"@lescription": "A page layout with left and right sidebars intended for general
cat egory pages",
"@hunbnail Url": "thurbnail.png",

About using thumbnail images in Experience Manager

Thumbnail images can help the content administrator identify the appropriate template to use for the pages
they create.

The suggested size for thumbnail images is 81 x 81 pixels; smaller images are stretched to fill this size and larger
images are cropped to show only the top left corner.

The images must be hosted on a Web server accessible from the Experience Manager server. If the thumbnail
image for a template is either not specified or not accessible, a default image displays in the dialog box.

Specifying the default name for a cartridge

The value of @ame within the def aul t Cont ent | t emdisplays as a label for the cartridge in the Content Tree in
Experience Manager.

30 2 Designing an Assembler Application

To specify a default name for a cartridge:

1. Insert the @ame element inside def aul t Cont ent | t em In the following example a default name of Results
List is specified:

"@lescription": "${tenplate.description}",
"@roup": "MiinContent",

"ecr:createDate": "2016-09-12T17: 33: 58. 542+05: 30",
"@hunbnai l Url": "thunbnail.png",

"ecr:type": "tenplate",

"defaul tContentltent: {

"@ane": "Results List",
"rel RankStrat egy":
"recordsPer Page": "10",
"sortOption": {
"@l ass": "com endeca.infront.navigation.nodel.SortOption",
"l abel ": "Most Sal es",
"sorts": [{
"@l ass": "com endeca.infront.navi gation. nodel . Sort Spec",
"key": "product.anal ytics.total _sal es",

"descendi ng": false

H
h

@ane is a required element. The value you specify in the template becomes the default name when a
content administrator creates the page or adds a cartridge. If you insert an empty @ane element, an empty
text field displays in Experience Manager and the content administrator can supply a value.

Defining the content properties and editing interface

A template defines the properties of a content item and also the interface that enables a content administrator
to configure the properties.

You define properties within the t ypel nf o element in the template. For each property, you specify a name
and a property type. You can optionally specify a default value for a property within the def aul t Cont ent | t em
element..

You associate editors with properties to enable the content administrator to configure their values within
Experience Manager. Properties are generally primitive types such as Strings, Booleans, or Lists. Another type of
property is a section, which allows content administrators to insert and configure another content item.

You can choose not to expose a particular property in Experience Manager and simply specify a default value
to pass to the Assembler and ultimately to the client application. This is useful for values that do not need to
be configured by the content administrator, but are needed by the Assembler for content processing or by the
client application to determine how to render the content.

Template properties

You can define the properties of a content item within the t ypel nf o element. You can define the default values
for these properties in the def aul t Cont ent | t emelement.

Cartridge properties are typically used for one of the following purposes:

2 Designing an Assembler Application 31

+ The property values may be intended to be used directly by the client application. For example, the content
administrator may be able to enter text to use a heading or link text, or she may supply a URL to an image.
Property values can also contain information such as meta keywords that are part of the page but do not
affect its display.

+ The values may be intended for the relevant cartridge handler in the assembler to use for processing, for
example, parameters for a query to the MDEX Engine (or another external resource) to return the actual
content that the application should display.

+ Occasionally, a cartridge has no properties (and therefore no configuration options in Experience Manager),
but exists only as a placeholder to indicate that a certain functional component should be included on a page.
The Assembiler inserts the necessary information for this cartridge at query time.

Each property must have a name that is unique within the template. If the property is to be passed through
directly to the renderer, this can be any name that makes sense for your application. However, some properties
are part of the configuration model for the cartridge. In this case the associated cartridge handler depends on
the presence of specific properties in the template.

You specify the property type by adding an element of @r oper t yType int ypel nf o.

The following example has three property elements nested within the Results List typelnfo item. The property
elements are boostStrata, buryStrata, and sortOption.

"typel nfo": {
"boost Strata": {"@ropertyType": "List"},
"buryStrata": {"@ropertyType": "List"},
"sortOption": {"@ropertyType": "lteni}

The following example lists the default values for the sortOption property in the Results List defaultContentltem
item.

"defaul t Contentlten: {
"sortQption": {

"@l ass": "com endeca.infront.navigation.nodel.SortOption",
"l abel ": "Most Sal es",
"sorts": [{
"@l ass": "com endeca.infront.navigation.nodel . Sort Spec",
"key": "product.anal ytics.total _sal es",

"descendi ng": false

H
b

Defining the editing interface for properties

After you have defined the content properties in your template, you can define how those properties can be
configured by the content administrator in Experience Manager.

You add content editors inside the edi t or Panel element in the template. The chi | dr en editors under the
"editor":"editors/ Def aul t Edi t or Panel " element let you specify individual property editors that display
in Experience Manager and associate them with a particular property.

For example, this excerpt from a sample template defines a property named boost Str at a:

32

2 Designing an Assembler Application

"editor": "editors/BoostBuryRecordEditor",
"buryProperty": "buryStrata",
"l abel ": "${property. boostBury.|abel}",

"propertyNanme": "boostStrata"

Editors are defined in templates with the edi t or namespace. By convention, the pr oper t yNane is a required
attribute and specifies the property that this editor is associated with. The property must be defined in the
cont ent | t empart of the template, and must be of the appropriate type for that editor. If you define a content
editor for a property that does not exist, or that is of the wrong type, a warning displays in Experience Manager
when a content administrator attempts to configure the content.

Property editors do not have to be defined in the same order as the properties in the template. The
"editor":"editors/ Def aul t Edi t or Panel " renders the editors in a vertical layout in Experience Manager,
in the order in which you define them in the template. If you do not want a property to be exposed in the
Experience Manager interface, do not define an editor associated with it.

Itis possible to create more than one editor associated with the same property. However, be aware that all
editors that you define in the template are displayed in Experience Manager, which may be confusing to the
content administrator. When the value of a property is changed, any other editors associated with that property
are instantly updated with the new value.

Related links
+ Experience Manager editors mapping reference (page 209)
Configuring editor default values

You can configure default values for Experience Manager editors across the entire application by modifying
cartridge templates.

This configuration applies to all instances of a specific editor created based on that template. For details about
configuring the core editors packaged with Oracle Commerce Tools and Frameworks, see the "Template
Property and Editor Reference" Appendix.

Related links
« Template Property and Editor Reference (page 209)

+ Defining the editing interface for properties (page 32)

Structural properties

You can define a section within a template by inserting a cont ent I t emor cont ent | t enLi st element within a
property.

Adding a content item property

A content item property defines a template section by creating a placeholder for a nested content item defined
by a cartridge template.

2 Designing an Assembler Application 33

Content administrators can configure a section in Experience Manager by choosing a cartridge to insert in the

section then configuring the properties of the cartridge.

To add a content item property to a template:

1. Insert a cont ent | t emelement inside a property element.

2. Specify the section @r oup.

Only cartridge templates with a group that matches the section group are presented as options for the
content administrator to choose from in Experience Manager. For example, when a content administrator
inserts a cartridge in a Secondar yCont ent section, only templates of the Secondar yCont ent group display
in the Select Cartridge dialog box. (Recall that the cartridge template is the part of a cartridge that is exposed

in Experience Manager).

The following example defines sections within a template. Note that more than one section in a template can
have the same type, as long as your client application expects this kind of content.

"ecr:type": "tenplate",
"@roup": "Page",
"@lescription": "${tenplate.description}",
"@hunbnai l Url": "thunbnail.png",
"defaul tContentltent: {
" "Thr ee- Col uim Page",

@ane" :

-- additional elenments deleted fromthis exanple --

"leftContent": [],
"rightContent": [],

-- additional elements deleted fromthis exanple --

Adding a content item list property

A content item list allows content administrators to add an arbitrary number of items to a section and to reorder
those items within the list using the Content Tree in Experience Manager.

Using a content item list allows the content administrator to add an arbitrary number of content items to

sections in this page:

"typelnfo": {
"header Content": {
"@ropertyType": "Contentltenlist",
"@roup": "HeaderContent"
}
"l eftContent": {
" @ropertyType": "Contentltenlist",
"@roup": "SecondaryContent"
}s
"mai nContent": {
"@ropertyType": "ContentltenLlist"”,
"@roup": "M nContent"
H
"rightContent": {
"@ropertyType": "Contentltenlist",
"@roup": "SecondaryContent"

34

2 Designing an Assembler Application

To add a content item list to a template:
1. Insertacontent | t enLi st elementinside a property element.
2. Specify the template @r oup.

Only cartridge templates with a group that matches the content item list group are presented as options

for the content administrator to choose from in Experience Manager. In the above example, when a content
administrator inserts a cartridge in ar i ght Col unm section, only templates of the Secondar yCont ent group
display in the Select Cartridge dialog box.

About cartridge selectors

Unlike other types of content properties, section properties are always editable; you do not need to explicitly
specify an editor in the template.

In Experience Manager, content administrators can select cartridges to insert in sections either by clicking

the cartridge Add button in the content detail panel or by right-clicking the section in the Content Tree. Both
options bring up the cartridge selector dialog box and are enabled automatically when you define a section in
the template.

About keyword redirects groups

Business users can configure a keyword redirect in Workbench to direct end users to a specified location in an
application when they enter a specified search term or terms. This lets you display a relevant promotional page
or product category page instead of a typical list of search results.

A keyword redirect triggers on one or more search terms; the target of a keyword redirect is a URL to a page in
your application. This target page in your application is typically a search results page.

Keyword redirects are organized into groups. One is a default group. You can enhance your redirect experience
by categorizing your keyword redirects into multiple keyword redirect groups. One search result page can be

a target for one redirect group, while another search result page can be a target for another redirect group.
Keyword redirect groups are not associated with the pages that have the search box on them; the groups are
associated with the target search results page that the search box uses.

Organize your results pages into redirect groups to meet the needs of your application. Redirect groups are
especially useful if you are creating an application with multiple sites. In a multiple site application, you can
create a keyword redirect group exclusively for pages in each site. If you implement keyword redirect groups for
sites, then the search results page that the end user is sent to can be site-specific and might not be appropriate
for other sites in the application.

For example, an application has two sites: site A and site B. Site A and site B might each have their own contact
information pages. A user shopping at site A that enters "contacts" in the search bar is redirected to a contact
page that is unique to site A rather than a global contact page for the whole application.

Implementing keyword redirects in templates

To enable multiple keyword redirect groups in an application, include a redirect group property,
r edi r ect G oup when you create page templates. If you do not add this property, a default redirect group is
used. In the future, however, if you want to configure search pages to use a specific redirect group, you must add

2 Designing an Assembler Application 35

this property to the template and all content that is based on that template. At a minimum, Oracle recommends
adding this property to your search results page templates and their corresponding content, but you can add
this to any or all page templates as you see fit. If the property is added to a template, it must be added to any
content based on the template, or business users see Updated Template warnings in Experience Manager.

Note

In the Discover reference application, since any page template can be used for a search results page
and any search results page can be configured to use a specific redirect group, all page templates and
corresponding content contain the r edi r ect G- oup property.
The following examples show ar edi r ect G oup property in the typelnfo and defaultConentltem sections of
the template.

"typelnfo": {
"redirect Goup": {"@ropertyType": "String"}
}

"defaul tContentltent: {
"redi rect Goup": ""

This property lets you associate redirect groups with any search results pages created from this template. You
must also edit the page content JSON file to associate a redirect group with pages in the application. If you do
not add any redirect groups to the content JSON file then the page is automatically associated with the default
redirect group. The following section lists the steps to follow to associate a redirect group with a search results
page.

Associating keyword redirect groups with pages

Follow these instructions to associate keyword redirect groups with pages in your application.

Before you begin, verify that the template from which the pages were created has a redirect group property.
1. Export the application to which you want to add a keyword group.
a. Navigate to the <app_di r >\ contr ol \ directory on Windows (<app_di r >/ cont r ol / directory on Unix).

b. From the command line, export the application by entering the following command: r uncommand. <bat |
sh> | FCR export Application <destination> true.

2. In the destination directory, navigate to\ confi g\ i nport\redirect s\ and copy the Def aul t folder.
3. Paste the copied folderinto\ confi g\i nport\redirects\
For example, \ confi g\i nport\redirects\ Def aul t - Copy.
4. Rename the copied folder with the name of your new redirect group.
For example,\ confi g\i nport\redirects\D scoverWst
5. In the new redirect group folder, change the name of the _Def aul t . j sonto_.j son.

6. Use a text editor to update the keyword redirects group JSON with unique information appropriate for your
group. At a minimum, enter a di spl ayNane value and verify that the enabl eSt enmi ng value is appropriate

36

2 Designing an Assembler Application

for the keyword redirect group. You do not need to enter r edi r ect s values since business users can use the
Workbench interface for that activity. See the Oracle Commerce Administrator's Guide for more information on
properties in the redirect-group JSON file.

Be sure that the di spl ayNane property that you enter is meaningful to the business users that add keyword
redirects manage permissions in Workbench.

In the following example, the redirect group has been updated with a unique display name.

"ecr:type": "redirect-group",
"di spl ayNane": "Di scover West",
"enabl eSt enmi ng": true,
"redirects": [
{ "nmatchnode": "MATCHEXACT",
“url": "/browse/west/_/N-1z141lya",
"searchTerns": "west"

7. Navigate to the JSON file for the relevant search results page. For example: \i nport\ pages
\ Di scover El ectroni cs\ browse\ _.json.

8. Use a text editor to update the JSON file with the appropriate keyword redirect group. The group name must
match the folder name where the redirects JSON is stored.

For example, for the DiscoverWest redirects group, the redirects group string has the following value:

"contentlten: {
“ruleLimt": "1",
"@ane": "Desktop Browse Page",
"tenpl ateTypes": ["Page"],
"@ype": "PageSlot",
"contentPaths": ["/content/Wb"],
"redi rect Goup": "/redirects/ D scoverWest"

Note that/ r edi r ect s/ Di scover West matches the folder name where the redirects JSON file is stored.
9. Repeat the previous two steps for every page that you plan on using as a target for search results.
Note
Remember, the templates that these pages are based on must have a redirects group property.
10.Import the content with the new keyword group updates.

a. Navigate to the <app_dir>\control\ directory on Windows (<app_di r>/control / directory on
Unix).

b. From the command line, import the updated content by entering the following commands:
* runconmand. <bat/sh> | FCR i nport Cont ent pages <path to source>

* runconmand. <bat/sh> | FCR i nport Content redirects <path to source>

2 Designing an Assembler Application 37

* runconmand. <bat/sh> | FCR i nport Content tenpl ates <path to source>

For example:

runconmand. bat | FCR i nport Content pages c:\nyexports\Di scover\config\inport\pages

runconmand. bat | FCR i nport Content redirects c:\myexports\Di scover\config\inport
\redirects

and

runconmand. bat | FCR i nport Content tenplates c:\nyexports\Di scover\config\inport
\tenpl at es

If you fail to update either the template or content for the search results page, then business users editing
content in the Experience Manager might see the following warning:

About multiple locales

If your implementation supports multiple locales, you can localize your custom templates.

You can create resource property files for each locale for storing localized strings. Each resource property

file name must follow this format: Resour ces_<I ocal e>. properti es where <locale> is the ISO language
code. For example Resour ces_fr. properti es indicates that French values are stored in it. Place

these files in a locales folder for your custom template: <app dir>\config\cartridge_tenpl ates

\ <tenpl ate_i dentifier>\1ocal es. You can specify values that do not change for locale (thumbnail URLs for
example) in the single Resour ces. propert i es file or directly in the JSON file.

In the template itself, you can use ${ pr oper t y. nane} notation in element content and attributes to
reference a localized string in the Resour ces_<I ocal e>. properti es. Only content in the @escri pti on,
@ hunbnai | URL, and edi t or Panel sections can reference localized strings in the resources properties files.

The following example shows a template that uses notation to reference strings in resource properties files and
two resource property files containing the stings that are being referenced.

"ecr:type": "tenplate",
"@roup": "MinContent",
"@lescription": "${nmy.tenpl ate.description}",
"@hurbnai lUrl": ${ny.tenpl ate.thunbnail}",
"defaul t Contentltent: {

... CONTENT OM TTED FOR EXAMPLE. . .

b
"edi torPanel ": {
"editor": "editors/ DefaultEditorPanel",
"children": [
{

"editor": "editors/NunericStepperEditor",
"label": "${my.tenpl ate.recordsPerPage. | abel }",
"maxVal ue": "100",
"m nVal ue": "10",

38

2 Designing an Assembler Application

"propertyNanme": "recordsPerPage"

b

{
"editor": "editors/BoostBuryRecordEditor",
"buryProperty": "buryStrata",
"label ": "${my.tenpl ate. boostBury. | abel }",
"propertyNanme": "boostStrata"

}

o ENT OM TTED FOR EXAMPLE. . .
]

The English resources property file, Resour ces_en. properti es, for this template contains the following:

Mai n Content

nmy.tenpl ate. description = Container for main content cartridges.
ny. tenpl at e. recordsPer Page. | abel = Records Per Page

my. tenpl at e. boost Bury. | abel = Boost and Bury Records

In the template example, the thumbnail URL is the same for all locales, so the ${ nmy. t enpl at e. t hunbnai | url}
notation is only referenced in the Resour ces. properti es file.

Mai n Cont ent
nmy.tenplate.thunbnailurl = /ifcr/tools/xmgr/inmy/tenplate_thunbnail s/ mai ncontent?2.jpg

Managing Experience Manager Templates
You must upload templates to Workbench before they are available to users in Experience Manager.
Updating Experience Manager templates

All deployment template applications include a set _t enpl at es script in the cont r ol directory to update
Experience Manager templates. You run the script after you locally modify JSON template files and you want the
templates available in Experience Manager. The script also imports locales and thumbnail files.

This script requires that the templates you modify are stored locally in <app di r >\ confi g\i nport
\tenpl ates\.

To send updated templates to Experience Manager:
1. In a command prompt, navigate to the cont r ol directory of your deployed application.

This is located under your application directory. For example: C: \ Endeca\ apps\ <app nane>\control .
2. Runtheset _t enpl at es script.

For example:

C.\ Endeca\ apps\ Di scover\ control >set _t enpl at es. bat

2 Designing an Assembler Application 39

Troubleshooting problems with uploading templates

Template errors are detailed in thei f cr. | og file.

Theifcr. | ogfileislocated in:
* OENDECA TOOLS CONF% | ogs on Windows
+ $ENDECA TOOLS_CONF/ | ogs on UNIX

If any templates fail validation, the upload is canceled, and the previous templates remain in Workbench.

Troubleshooting invalid templates

Some templates may be successfully uploaded to Workbench, but still contain errors that lead to unexpected
behavior in Experience Manager.

The most common scenario is when a property is associated with an editor that has constraints, such as a choice
editor that can only accept certain string properties. If the default value of the property does not meet the
editor's constraints, the editor may discard the value and display the following messsage in the Content Details
Panel when a user adds the cartridge to a page:

Sonme fields or cartridges within this cartridge may have been

updat ed or renoved. Your content has been converted to the new cartridge.
To accept these changes click OK and Save Al Changes fromthe List View.
To reject these changes, click Cancel. For nore information, see

"Troubl eshooti ng pages" in the O acle Wrkbench Hel p.

To avoid this message, ensure that all property defaults are valid options in the associated property editor.
About modifying templates that are used by existing pages

During the development and testing phase of your application deployment, you may need to make adjustments
to your templates and update them in Experience Manager.

When Experience Manager populates the Content Detail Panel for a content item, it checks the content
configuration of the loaded page against the template. If the template has been changed such that it is no
longer compatible with the content, Experience Manager displays a warning and attempts to upgrade existing
content to fit the new template definition.

Note

Existing configurations are not upgraded to the new template until a content administrator edits and
saves the affected content item in Experience Manager.

Experience Manager does the following to ensure that the content and template are in sync:
« If a property has not changed its name or type, the existing values are migrated to the new template.

+ If new properties are added to a template, any corresponding property editors become available in
Experience Manager when a content administrator edits a content item based on the updated template. If
you specify default values for the new properties, they are applied when a content administrator edits and
saves the content item using the updated template.

40 2 Designing an Assembler Application

« If properties are removed from a template, the corresponding property editors no longer display in
Experience Manager when a content administrator edits a content item based on the updated template. The
properties and their values are deleted from the page configuration.

+ If the type of a property has changed (for example from string to list) within a template, the corresponding
property editor (if one is specified) becomes available in the Experience Manager when a content
administrator edits a content item based on the updated template. The existing value for the property does
not display in Experience Manager until the content administrator saves the new value, replacing the previous
value.

+ If a content item or content item list property has changed to specify a different content type, then any
existing cartridge in that section is ejected and its configured properties deleted.

+ If the default value of an existing property has changed, it is only applied to new content items that are
created based on the updated template. In existing pages, the previously saved value of the property (even if
it is an empty string) is preserved regardless of whether it was originally a default or user-specified value.

+ Some editors may implement specific update-handling logic in cases where an existing value does not meet
the editor's constraints.

Note

Changing the nane of a property is equivalent to removing the property with the old name and
adding a property with the new name. Avoid changing the names of properties that are being used
by existing pages. To change the display name of a property on Experience Manager, use the | abel
attribute instead.

Managing template changes

Because existing content is not automatically updated to the new templates, and default values are never
updated in existing pages, any changes that you make to your rendering code to reflect changes to a template
should be backward-compatible. You can trigger the content upgrade process manually by accessing all
affected content, but this approach is not recommended.

For this reason, you should avoid making changes to existing templates that are being used in production. You
should limit updates to templates to the early stages of application development when you have little or no
legacy content to support.

Retrieving the current templates from Experience Manager

If you need to view or edit an existing template on a local machine, you can run the get _t enpl at es script to
download templates from Experience Manager to the local <app dir>\config\cartridge_tenpl at es <app
di r>\config\inport\tenpl at es\ directory.

To get templates from Experience Manager:
1. In a command prompt, navigate to the cont r ol directory of your deployed application.
This is located under your application directory. For example: C: \ Endeca\ apps\ <app di r>\control.

2. Runthe get _t enpl at es script.

2 Designing an Assembler Application 41

42

2 Designing an Assembler Application

3 Developing an Assembler
Application

This part provides information for developing an Assembler application.

Related links

+ Deploying the Assembler (page 43)

Deploying the Assembler

The Assembler can run in process as part of a Java application, or it can be deployed as a standalone servlet. This
section covers both deployment options, as well as environment requirements and Assembler dependencies.

Assembler environment requirements
Review the requirements in this section before you deploy an Assembler.

Port usage

Before you begin your deployment, you might need to request an open port. You must assign a port for the
Assembler client port. If this port is set to - 1, the system uses an ephemeral port. An ephemeral port is allocated
automatically for a short time and is used only for the duration of a communication session. When the session
ends, the ephemeral port is available for another request.

For a complete list of ports used by Oracle Commerce, see the Oracle Commerce Guided Search Administrator's
Guide.

Threads

The Assembler spawns threads to monitor and query various components for updates. This affects how you
manage and prioritize threads.

About authoring and production environments

When designing your application and deploying the Assembler, consider the deployment requirements that
come with maintaining an authoring environment and a live environment.

3 Developing an Assembler Application 43

You should monitor the performance of your application and make adjustments as necessary to handle the
expected load in a production situation.

Note

The Assembler has no dependencies on Workbench in a live environment; rule information is
published to the MDEX Engine, and content items are exported from Workbench and maintained in an
external location accessible from the live server(s). All live Assembler instances for a given application
access the same exported content.

For additional information, including the necessary steps for exporting conent from Workbench, see the Oracle
Commerce Administrator's Guide.

Assembler dependencies

Assembler dependencies are packaged in the %ENDECA_TOOLS_ROOT% assenbl er\ | i b directory. You must
include them in any custom Assembler application that you build.

The Assembler relies on the following libraries:

AOP Alliance 1.0

Apache Commons Logging 1.1.1
Endeca Navigation AP1 6.5.1
Endeca Logging APl 11.1.0
Endeca Rule Engine 11.3
Spring AOP 3.0.1

Spring ASM 3.0.1

Spring Beans 3.0.1

Spring Context 3.0.1

Spring Core 3.0.1

Spring Expression 3.0.1

Spring Web 3.0.1

About deploying the Assembler

The Assembler can run in process as part of a Java application that powers a Web site, or it can be deployed as a
standalone servlet. Non-Java applications must use the Assembler servlet.

The Tools and Frameworks package includes an example of each deployment mode in/ r ef er ence/

di scover - el ect roni cs (for the Assembler running in process) and / r ef er ence/ di scover - servi ce (for
the standalone Assembler servlet). The standalone servlet, or Assembler Service, provides a RESTful interface for
Assembler queries that returns results in either JSON or XML.

44

3 Developing an Assembler Application

Both deployment modes depend on a Spring context file for application-specific configuration. The deployment
descriptor files for the reference implementations specify a context file located in / WEB- | NF/ assenbl er -
cont ext . xni , as follows:

<listener>
<listener-class>
org. spri ngframewor k. web. cont ext . Cont ext Loader Li st ener
</listener-class>
</listener>
<listener>
<l i stener-class>
org. springframewor k. web. cont ext . request . Request Cont ext Li st ener
</listener-class>
</listener>
<cont ext - par an>
<par am nanme>cont ext Conf i gLocat i on</ par am nane>
<par am val ue>/ VEEB- | NF/ assenbl er - cont ext . xml </ par am val ue>
</ cont ext - par an>

Assembler configuration

The Assembler implementation included with Tools and Frameworks is configured through Spring. The
configuration in the Spring context file applies to both the in-process Assembler and the Assembler Service.

This guide assumes an application based around the included Assembler implementations. You can provide
your own implementation if you need to use an alternate means of configuring the Assembler.

In the reference implementations, application-specific Assembler configuration is specified in the Spring context
file located in VEB- | NF\ assenbl er - cont ext . xm .

Assembler factory

The Assenbl er Fact or y is an interface for creating a new Assembler. The reference implementation uses the
Spri ngAssenbl er Fact ory implementation and defines it as follows:

<bean i d="assenbl er Fact ory"
cl ass="com endeca. i nfront. assenbl er. spri ng. Spri ngAssenbl er Fact ory"
scope="si ngl et on" >
<const ruct or - ar g>
<bean cl ass="com endeca. i nfront. assenbl er. Assenbl er Setti ngs">
<property nanme="previ enEnabl ed" val ue="${previ ew. enabl ed}" />
<property nanme="previ ewbdul eUr|l" val ue="http://${wor kbench. host}:
${wor kbench. port}/ifecr" />
</ bean>
</ constructor-arg>
</ bean>

For details about the Assenbl er Fact ory interface and the Spri ngAssenbl er Fact ory implementation, see
the Assembler API Reference (Javadoc).

About configuring cartridge handlers

A cartridge handler is an Assembler component that takes the configuration model for a specific cartridge and
interacts with an external system to produce a response model. Cartridge handler configuration is a subset of
Assembler configuration.

3 Developing an Assembler Application 45

HTTP servlet request access

The ht t pSer vl et Request bean provides access to the HTTPSer vl et Request object for the current request.

<bean i d="httpServl et Request" scope="request"
factory-bean="springUtility"
factory-nethod="get Ht t pSer vl et Request" />

Cartridge handlers that need access to the servlet request can specify a reference to this bean as follows:

<property nane="httpServl et Request" ref="httpServl et Request" />

Search and navigation request configuration

The Assembler provides several utilities for parsing incoming requests and forming MDEX Engine queries.

MDEX resource configuration
The MDEX resource provides access to the MDEX Engine and manages information about the MDEX Engine and
its schema configuration. Cartridge handlers can request data from their MDEX resource during the course of

processing a cartridge.

The MDEX resource has the following properties:

MDEX resource property Description

appNane The name of the application that the MDEX instance is
associated with. Typically there is at least one MDEX per
application.

host The hostname or IP address of your MDEX Engine server.

port The port on which the MDEX Engine server listens.

ssl Enabl ed Enables SSL communication for the MDEX Engine.

r ecor dSpecName The name of the property that serves as the record spec in your
data set.

Navigation state builder configuration

The navigation state builder is responsible for parsing the request URL into a Navi gat i onSt at e object and for
generating URLs based on a Navi gat i onSt at e.

46 3 Developing an Assembler Application

Navigation state builder property

url Formatter

Description

Specifies the Ur | For mat t er object to use for parsing the
request URL into a Navi gat i onSt at e object and for generating
URLs based on a Navi gat i onSt at e.

Note

In the Discover Electronics application, this bean is
configured in endeca- url - confi g. xni .

ndexRequest Bui | der

The MlexRequest Bui | der implementation to use for forming
MDEX Engine requests. For more information, see "About
configuring cartridge handlers that make search and navigation
queries."

cont ent Pat hPr ovi der

Specifies the Cont ent Pat hPr ovi der implementation

that provides the URL path info for a navigation

query or a record query. A reference implementation,

Basi cCont ent Pat hPr ovi der, is included as part of Discover
Electronics. As configured in the example below, it returns /

br owse for navigation queries and / det ai | for record detail
queries.

def aul t Sear chKey

The name of a property, dimension, or search interface against
which searches (using the Search Box cartridge) are performed.

def aul t Mat chMode

The match mode to use for text searches. Valid values for this
property follow the syntax of URL parameters for search mode,
without the mode+mat ch prefix.

siteState

Identifies the current site using the si t eSt at eBui | der
configuration.

si t eManager

Reference to the si t eManager component, which is used by
Navi gat i onSt at eBui | der to look up the site definition for the
currently active site.

removeAl ways

removeOnUpdat eFi l ter State

renmoveOnCl earFilterState

recor dDet ai | sDi mensi onNanes

These properties configure which URL parameters from the
request URL are preserved when generating action strings and
which ones are removed, depending on the type of transition
the action URL represents.

A list of dimensions whose dimension values should be applied
to the navigation state for a record query based on the values
that are tagged on that record. This navigation state can be used
for triggering configuration for the associated record detail page
or for a spotlight cartridge that has the "restrict to refinement
state" option enabled.

3 Developing an Assembler Application

47

Filter state property Description

rol | upKey A rollup key (used for aggregated records) to apply to all queries
made with the default filter state.

aut oPhr aseEnabl ed Specifies whether to apply automatic phrasing to text search
queries. By default, automatic phrasing is enabled. For more
information about automatic phrasing configuration, see "About
implementing automatic phrasing" in this guide.

securityFilter A default record filter to apply to MDEX Engine queries. For
information about the record filter syntax, refer to the MDEX
Engine Development Guide.

| anguagel d The language ID (as a valid RFC-3066 or ISO-639 code) to specify
for MDEX Engine queries. For information about working with
internationalized data, refer to the MDEX Engine Development
Guide.

Filtering requests
The Navi gat i onSt at e object contains two filter states:
« getUr | FilterStat e - The filter state used for generating URL actions.

« getFilterState - Thefilter state used for combining the site-based filter (fi | t er St at e. xnl) and the filter
for generating URL actions. See Combining site-based filters and URL filters.

For more information about filtering syntax, refer to the Assembler API Reference(Javadoc) content for the
Navi gat i onSt at e interface.

Combining site-based filters and URL filters

Using com endeca. i nfront. navi gati on. Navi gati onState. getFi | t er St at e() combines site-based
filters and URL filters.

FilterState feature Filter results
Search (Ntt, Ntk, Ntx) Site and URL
Security (Cannot be security filter with a URL) Site
Nav (N) URL
Record (Nr) Site and URL
Range (Nf) Site and URL
Geo (Nfg) URL
Featured Records (Rsel) Site and URL
EQL Filter (Nrs) URL

48 3 Developing an Assembler Application

FilterState feature Filter results

Rollup Key (Cannot be specified in a URL) Site
Language ID (Ntl) URL
Autophrase Enabled (Ntp) URL

Site state builder configuration

The site state builder is responsible for identifying the current site or Si t eSt at e object. The site state builder
iterates through all si t eSt at ePar ser s and determines the current site or site state. Site state is referenced
in Assembler components that must know the current site, for example, Navi gat i onCart ri dgeHandl er and
Navi gat i onSt at eBui | der.

Si t eSt at eBui | der has the following properties:

Site state builder property Descritption
si t eManager Retrieves site definitions.
siteSt at ePar sers A list of site state parsers that are run in the

configured order to resolve si t eSt at e. Oracle
provides the Request Par anPar ser and
URLPat t er nPar ser.

Request Par anPar ser returns Si t eSt at e if site id
is provided by a request parameter called si t el d.

URLPat t er nPar ser returns Si t eSt at e by
matching patterns configured on each site with the
incoming request.

def aul t Si t eSt at ePar ser Returns the default site for an application. This is
only used if si t eSt at ePar ser s fails to return a
SiteState.

cont ent Pat hTr ansl at or Retrieves the page cont ent Pat h from a request, for

example, / br owse.

About configuring cartridge handlers that make search and navigation queries

Cartridge handlers that need to make MDEX Engine queries can reference the navigation state, record state,
site state, user state, and MDEX request builder beans configured in the cartridge support section of the Spring
context file.

The navigation state and record state represent the query parameters for each type of MDEX Engine query. The
MDEX request builder consolidates requests from all the cartridge handlers in a single Assembler processing

3 Developing an Assembler Application 49

cycle into as few MDEX queries as possible. These beans are defined in terms of previously configured beans;
their configuration should not need to vary between applications.

The Navi gati onCartri dgeHandl er references the navi gat i onSt at e, ndexRequest Bui | der and

si t eSt at e beans for making navigation queries. The Recor dDet ai | sHandl er references therecor dSt at e
for record detail queries. Cartridge handlers (including many of the core cartridges) that need access to

the navigation state, record state, site state or the MDEX request builder typically extend one of these
handlers. Note that Recor dDet ai | sHandl er itself extends Navi gati onCart ri dgeHandl er as shown
below, thereby inheriting the references to the navigation state and MDEX request builder specified in the
Navi gati onCartri dgeHandl er bean.

<bean i d="Navi gationCartridgeHandl er" abstract="true">
<property nanme="navi gationState" ref="navigationState" />
<property nanme="ndexRequestBui |l der" ref="ndexRequestBuilder" />
<property nanme="ndexRequestBuil der" ref="nmdexRequestBuil der" />
<property nane="acti onPat hProvi der" ref="actionPathProvider"/>
<property nane="siteState" ref="siteState"/>
<property nanme="userState" ref="${user.state.ref}"/>

</ bean>

<bean i d="CartridgeHandl er _RecordDet ai | s"
cl ass="com endeca.infront.cartridge. RecordDet ai | sHandl er"
parent =" Navi gati onCartri dgeHandl er" scope="prototype" >
<property nane="recordState" ref="recordState" />
</ bean>

About configuring cartridges to retrieve dynamic content

Cartridge handlers that retrieve dynamic content based on trigger criteria can reference the content manager
bean configured in the cartridge support section of the Spring context file.

The content manager depends on the content trigger state builder and its associated content trigger state,
which perform similar functions to the navigation state builder and navigation state, only for the trigger query
that retrieves dynamic content configuration, rather than the main navigation query.

Application-specific configuration for these beans relates to preview and auditing functionality. For more
information about configuring preview, see "Setting up the Preview Application for Workbench."

The Cont ent Sl ot Handl er references the content manager to make dynamic content queries. Other handlers
that need to retrieve content items from a folder in Experience Manager should extend from this handler.

<bean i d="CartridgeHandl er _ContentS| ot"
cl ass="com endeca. i nfront. content. Cont ent Sl ot Handl er"
scope="pr ot ot ype" >
<property nanme="content Manager" ref="content Manager" />
</ bean>

About configuring the Assembler servlet

The Spring Assembler servlet extends the Abst r act Assenbl er Ser vl et class, which requires a method for
retrieving an Assenbl er Fact or y, and another for retrieving a ResponseW i t er that processes Assembler
output.

The Assembler servlet references the same Spring configuration as the rest of the Assembler, with an additional
dependency on response writer configuration.

50

3 Developing an Assembler Application

Response writers

The Assembler servlet uses JSON or XML response writers to serialize the results of a query. The Assembler
includes default implementations of a JSONResponseW i t er and an XM_LResponseW i t er . You can provide
your own implementation if you need to output the Assembler response to a different format (such as a
different XML representation).

<bean i d="j sonResponseWiter"
cl ass="com endeca. i nfront. assenbl er. servl et. JsonResponseWiter"
scope="si ngl eton"/ >

<bean i d="xm ResponseWiter"
cl ass="com endeca. i nfront. assenbl er. servl et. Xm ResponseWiter"
scope="si ngl eton"/ >

Reference implementations

The reference content includes two Web applications that run the Spring Assembler servlet with the appropriate
configuration for Discover Electronics in either an authoring or a live environment:

+ The implementation for an authoring environment is located at r ef er ence\ di scover - ser vi ce-
aut hori ng.

+ The implementation for a live environment is located at r ef er ence\ di scover - servi ce.

Invoking the Assembler

This section describes how to invoke the Assembler in process or as a service.

Related links

+ Invoking the Assembler in Java (page 51)

* Querying the Assembler Service (page 54)

+ About building an Assembler query string (page 56)

» About retrieving Assembler results using the packaged services (page 56)

» About handling the Assembler response (page 66)

Invoking the Assembler in Java

You invoke the Assembler by passing in a content item object for assembly.

If a cartridge handler exists for the input content item, the Assembler invokes that handler to process it. If not,
the content item is passed through as output. Upon invoking the cartridge handler, the Assembler might in turn
invoke additional cartridge handlers to process child content items. The end result of the processing cycle is an
output content item representing the Assembler response.

3 Developing an Assembler Application 51

Note

If you have purchased Oracle Guided Search, you typically query the Assembler using one of the
packaged services, either with a Cont ent | ncl ude item or via the Assembler service.

The examples in this topic are specific to a Spring implementation of the Assembler.
To invoke the Assembler in Java:
1. Create an Assenbl er Fact or y object.

Note that the example implementation below first fetches configuration via the WebAppl i cat i onCont ext
in the Spring framework:

/Il Get the Spring Web Application Context
Servl et Context servletCix = this.getServletContext();
WebAppl i cati onCont ext webappCtx =
WebAppl i cati onContext Util s. get Requi redWebAppl i cati onCont ext (servl et Ctx);

/1l Get an assenbler factory and create an assenbl er
Assenbl er Fact ory assenbl er Factory =
(Assenbl er Fact ory) webappCt x. get Bean(" assenbl er Fact ory", Assenbl er Factory. cl ass);

2. Use the Assenbl er Fact ory to create an Assenbl er:

Assenbl er assenbl er = assenbl er Factory. creat eAssenbl er () ;

3. Optionally, add event listeners to the newly-created Assenbl er:

assenbl er. addAssenbl er Event Li st ener (new MyLogger ());

4. Pass in the content item object to assemble:

ContentltemresponseContentltem = assenbl er. assenbl e(nmyContentlten);

Note

You can instantiate any content item programmatically and pass it to the Assembler, but typically
an assembly cycle begins with a Cont ent I ncl ude or Cont ent Sl ot Conf i g item. Both of these
methods retrieve content items created in Workbench, the former by URI, and the latter by
triggering content from a folder populated in Experience Manager.

After invoking the Assembler, you may wish to serialize the response:

/1 Serialize the results to JSON
response. set Char act er Encodi ng(" UTF-8");
JsonSeri alizer serializer = new JsonSerializer(response.getWiter());
serializer.wite(responseContentlten;

The Assembler implementation included with Tools and Frameworks comes with two classes for this purpose,
JsonSeri al i zer and Xnl Seri al i zer . See the Assembler APl Reference (Javadoc) for details.

52 3 Developing an Assembler Application

Related links

» About retrieving Assembler results using the packaged services (page 56)
Invoking the Assembler with a Contentinclude item

A Cont ent | ncl ude object specifies the URI from which to retrieve a content item.

In an authoring instance the content configuration is stored in the Endeca Configuration Repository. In a
live instance, the Assembler retrieves content configuration from the live content source, specified in the
configuration for the Cont ent | ncl udeHandl er.

+ In Oracle Experience Manager implementations, the URI begins with the path info from the request URL.

+ In Oracle Guided Search implementations, the URI must begin with / ser vi ces and specify one of the
packaged Assembler services.

The Cont ent | ncl udeHandl er retrieves the content that matches the deepest path in the URI. For example,
if the request URL is ht t p: / / www. exanpl e. cont br owse/ el ect r oni cs/ Caner as, the URI passed to the
Assembler is / br owse/ el ect r oni cs/ Caner as. Suppose that the sitemap for this site looks like the following:

Pages #| ¥
about
browse
glectronics
contact

detail

The cartridge handler first tries to retrieve the content at the exact URI. There is no content at that location,
so it attempts to find the deepest matching path, which in this case is the content configuration at/ br owse/
el ectroni cs. The Assembler then processes the content item at that location and returns the response for
rendering.

Example 3.1. Example

The following example of a content include query retrieves page content for the Discover Electronics application
with Experience Manager:

/1 Construct a content include to query the content source
/1 for content, given the path info of the request
Contentltemcontentltem =

new Content | ncl ude(request. getPathlnfo());

Invoking the Assembler with a ContentSlotConfig item

A Cont ent Sl ot Conf i g object specifies one or more paths to a content folder in Experience Manager. The
Assembler dynamically retrieves content items from the folder based on the trigger criteria and priorities set by
the content administrator. It returns a number of content items equal to the evaluation limit configured for the
specified content folder.

3 Developing an Assembler Application 53

The Endeca Configuration Repository stores all Workbench content configuration for a given application within

acont ent node. For example, the path to a Web - Spotlights content folder in the Discover Electronics
reference application would be cont ent / Web/ Spot | i ght s.

Example 3.2. Example

The following example creates a Cont ent Sl ot Conf i g object that is intended to populate the sidebar of

an application page with three content items pulled from a Web - Spotlights content folder in Experience
Manager:

Content |t em dynani cContentltem = new Cont ent Sl ot Confi g();
dynani cCont ent | t em set Cont ent Pat hs("/ cont ent/ Wb/ Spotlights");
dynam cCont ent | t em set Tenpl at eTypes(" SecondaryContent");
dynam cContentltem set Rul eLimt(3);

It specifies a template type restriction to retrieve only "SecondaryContent" for the sidebar, but does not restrict
results by template ID. This allows the query to pull in content items created from multiple cartridge templates,
as long as those templates have the correct type; for example, it might return a Breadcrumbs cartridge, a Record
Spotlight cartridge, and a Rich Text cartridge.

The call to the Assembler is the same as for any other content item:

Contentltem responseContentltem = assenbl er. assenbl e(dynani cContentlten);

Querying the Assembler Service

The Assembler Service provides a RESTful interface for making Assembler queries and retrieving results in either
JSON or XML.

You query the Assembler Service by making a GET request to a URL that specifies the location of a content item
that you wish to assemble. The URL should be of the following form:

http://[hostnanme: port]/[servl et-path]/[content-URI]?[query-parans]

In the reference deployment of the Assembler Service, the servlet path determines the format of the Assembler
response. The deployment descriptor file (web. xni) in the reference deployment defines two servlets:

Servlet path Servlet description
/j son Returns the Assembler response as JSON.
/xm Returns the Assembler response as XML.

The difference between the servlets is in the ResponseW i t er implementation that they use. It is also possible
to write an Assembler response writer that forwards the results to another servlet rather than serializing them.

The cont ent - URI is the path to the content item to be assembled.

54

3 Developing an Assembler Application

+ In Experience Manager implementations, the URI begins with the path info from the request URL.

+ In Oracle Guided Search-only implementations, the URI must begin with / ser vi ces and specify one of the
Assembler packaged services.

The Assembler servlet request URL ht t p: / / www. exanpl e. cont j son/ br owse is equivalent to passing a
Cont ent I ncl ude item to the Assembler assenbl e() method with the URI/ pages/ [site-1D]/ browse and
retrieving the results in JSON format.

Query parameters in an Assembler servlet request URL are processed the same way as in the embedded Java
Assembler. For example, the URL ht t p: / / www. exanpl e. conl j son/ br owse?N=101022 with the reference

Assembler servlet deployment returns the same results as ht t p: / / www. exanpl e. cont di scover/ br owse?
N=101022 in the reference Java application.

Querying the Assembler Service in a multiple site deployment

If your Experience Manager implementation has multiple sites within an application, you must use a domain
or URL pattern in your Assembler servlet request URL or pass a site ID parameter. For example, if your site
uses a domain pattern for a cameras site, your request URL could be ht t p: / / caner as. di scover . con!

j son/ br owse. If your site uses a URL pattern for a cameras site, your request URL could be ht t p: //

| ocal host: 8006/ j son/ caner as/ br owse where / camer as is the URL pattern.

To pass a site ID parameter, you can use this formatht t p: / /| ocal host : 8006/ j son/ br owse?si t el d=/
Di scover Caner as for a DiscoverCameras site.

Making dynamic content queries to the Assembler servlet

Unlike the Assembler in embedded mode, which allows assembly of any configuration content item, all queries
to the Assembler servlet are treated as content include queries. To request content dynamically from a content
folder based on a set of trigger criteria, you can create a content slot at a location in the sitemap that you can
then specify in your Assembler request URL. In the reference implementation, the br owse page is one example
of a content item that is addressable by URI that then references content items within a specified folder path.

Related links
+ Invoking the Assembler with a Contentinclude item (page 53)
The Assembler serviet response format

The Assembler provides response writer implementations that serialize the Assembler response to JSON or XML.

The Assembler response takes the form of a content item (that is, a map of properties). The properties are key-
value pairs where the key is a string and the value may be one of the following types:

» String

+ Boolean

» Integer

« List (of any property type)

+ Item (a nested map of properties)

This structure makes it straightforward to serialize the response to JSON.

3 Developing an Assembler Application 55

The XML output of the Assembler (using the default Xnml ResponseW i t er) is not SOAP-compliant. The default
XML format has the following characteristics:

+ The root element of the response is <I t en».

+ <l t en> may have either at ype attribute whose value is equivalent to the template i d that defined the
content item, or a cl ass attribute in the case of a strongly typed reponse model for a content item.

» The child elements of <I t en» are <Pr oper t y> elements.

+ Each <Propert y> element has a nane attribute whose value is the property key, and contains either a
<String> <Bool ean>, <l nt eger >, <Li st >, or <I t en> element whose contents represent the property
value.

For convenience, the Discover Electronics reference application provides links to the JSON and XML
representations of the Assembler response, which are identical to the output of the Assembler servlet. This
link can be useful for debugging purposes, but it is not recommended as a primary means of querying the
Assembler for JSON or XML-formatted results.

About building an Assembler query string

Whether you invoke the Assembler programatically in Java or as a service, the content URI that you pass into the
Assembler includes any MDEX Engine query parameters.

For more information about MDEX Engine query parameter syntax, refer to the Assembler API Reference (Javadoc)
content for the Ur | Navi gat i onSt at eBui | der class.

About retrieving Assembler results using the packaged services

If you have purchased Oracle Commerce Guided Search (without Oracle Commerce Experience Manager), you
must retrieve Assembler results via the packaged services.

These services are also available for Experience Manager implementations. In an Experience Manager
implementation, the services must be located in the / pages/ <Def aul t Si t e>/ servi ces/ directory. The
packaged services include the following:

Service URI Description

/ servi ces/ di nensi onsear ch Returns dimension search results based on a text search.

/ services/recorddetails Returns record detail information for a given record.

/ servi ces/ gui dedsear ch Returns search and navigation results including core features such as
Guided Navigation, along with dynamic content returned from content
folders.

You query the services by passing a Cont ent | ncl ude item to the Assembler with the relevant service URI or
making an Assembler servlet request specifying the service URI. The services are configured to return results for
a specific cartridge or set of cartridges.

56

3 Developing an Assembler Application

The cartridges that are returned by the services cannot be configured on a per-instance basis in Experience
Manager, but application-wide default configuration for the cartridges can be specified based on your
configuration framework (such as Spring). The exception is the dynamic content that can be configured in
content folders and that is returned by the Guided Search Service, which can be configured in Experience
Manager.

The services are populated in the Endeca Configuration Repository (for use by the authoring instance) when you
runinitial i ze_servi ces after deploying an application. They are promoted to the live content source when
you promote the site configuration for the live instance.

The Dimension Search Service

The Dimension Search Service returns dimension search results for a keyword search.

The service returns a single Di mensi onSear chResul t s object in a di nensi onSear chResul t s property,
representing the list of dimensions that match the search term.

The default behavior of this cartridge is configured as part of the

Cartri dgeHandl er _Di nensi onSear chResul t s bean in the Spring context file for the Assembler. For
information about the configuration options for the Dimension Search Results cartridge, refer to the Assembler
API Reference (Javadoc) for the Di mensi onSear chResul t sConfi g class.

This service exists for cases where you want to retrieve dimension search results only (such as in the case of an
auto-suggest dimension search feature). Dimension search results are also returned as part of the response from
the Guided Search Service.

The following is an example of the results of a Dimension Search Service query for the URI ht t p: / /
| ocal host : 8006/ assenbl er - aut hori ng/j son/ servi ces/ di mensi onsear ch?Nt t =f | a* &Dy=1, serialized
to JSON:

"@ype": "D nmensionSearchService",
"nanme": "Di mension Search Service",
"di mensi onSear chResul ts": {

"@ype": "D nmensionSearchResults",

"total NunResul ts": 13,

"di mensi onSear chG oups": [

{
"@l ass": "com endeca.infront.cartridge. nodel . D nensi onSear chG oup",
"di mensi onSearchVal ues": [...],
"di mensi onNane": "canera.flash"
H
{
"@l ass": "com endeca.infront.cartridge. nodel. D nensi onSear chG oup",
"di mensi onSear chval ues": [...],
"di mensi onNane": "product. features”
H
{
"@l ass": "com endeca.infront.cartridge. nodel . D nensi onSear chG oup",
"di nensi onSear chval ues": [...],
"di mensi onNanme": "product. category”
}
]
H
"endeca: contentPath": "/services/di mensi onsearch",

3 Developing an Assembler Application 57

"previ embdul eUrl": "http://] ocal host: 8006/ previ ew'

The Record Details Service

The Record Details Service returns record detail information for a given record.

The service returns a single Recor dDet ai | s objectin ar ecor dDet ai | s property, representing the details for a
single record or an aggregate record.

The default behavior of this cartridge is configured as part of the Car t ri dgeHandl er _Recor dDet ai | s bean in
the Spring context file for the Assembler. For information about the configuration options for the Record Details
cartridge, refer to the Assembler APl Reference (Javadoc) for the Recor dDet ai | sConf i g class.

The following is an Experience Manager example of the results of a record details service query for the URI
http://1 ocal host: 8006/ assenbl er - aut hori ng/j son/ servi ces/ recorddet ai | s/ Canon/ Pri na-
Super - 130U Dat e/ _/ A- 266556, serialized to JSON:

{
"@ype": "RecordDetail sService",
"name": "Record Details Service",
"recordDetail s": {
"@ype": "ProductDetail",
"record": {
"@l ass": "com endeca.infront.cartridge. nodel . Record",
"nunRecords": 1,
"attributes": { ..},
"records": [
{
"@l ass": "com endeca.infront.cartridge. nodel.Record",
"nunmRecords": O,
"attributes": { ...}
}
]
}
b
"endeca: si t eRoot Path": "/ pages",
"endeca: content Path": "/services/recorddetails",
"previ ewivbdul eUrl": "http://Iocal host: 8006/ previ ew',
"endeca: assenbl er Request I nformation": { ...}
}

In a Guided Search implementation without Experience Manager, the site root path would be / ser vi ces.

"endeca: siteRoot Path": "/services",
"endeca: contentPath": "/recorddetail s"

The Guided Search Service

The Guided Search Service returns search and navigation results including core features such as Guided
Navigation, along with dynamic content returned for content slots.

58 3 Developing an Assembler Application

The properties returned as part of the response model, as well as their associated configuration, are listed below:

Property name Response model,

Configuration Bean,

Configuration model

navi gati on Gui dedNavi gati on

CartridgeHandl er _Gui dedNavi gati on

Gui dedNavi gati onConfig

br eadcr unbs Br eadcr unbs

CartridgeHandl er _Breadcrunbs

Br eadcr unbsConfi g

resul t sLi st Resul t sLi st

Resul t sLi st Confi g

CartridgeHandl er _Resul t sLi st

sear chAdj ust nent s Sear chAdj ust nent s

Cartri dgeHandl er _Sear chAdj ust ment s

Sear chAdj ust ment sConfi g

di nensi onSear chResul ts Di mensi onSear chResul ts

CartridgeHandl er _Di nensi onSear chResul ts

Di mensi onSear chResul t sConfi g

zones Depends on contents of referenced content folders.

CartridgeHandl er _Cont ent Sl ot Li st

Cont ent Sl ot Confi g

3 Developing an Assembler Application 59

The following is an example of the results of a guided search service query for the URI ht t p: //
| ocal host : 8006/ assenbl er - aut hori ng/ j son/ servi ces/ gui dedsear ch?Nt t =pi nk+camner a, serialized
to JSON:

"@ype": "QuidedSearchService",
"name": "Cui ded Search Service",
"navigation": {
"@ype": "QuidedNavi gation”
H
"breadcrunbs": {
"@ype": "Breadcrunbs",
"renoveAl | Action": "/services/gui dedsearch",
"refinement Crunbs": [],
"searchCrunbs": [...],
"rangeFilterCrunmbs": []
H
"resul tsList": {
"@ype": "ResultsList",
"total NunmRecs": 213,
"sortOptions": [...],
"firstRecNuni: 1,
"l ast RecNuni': 10,
"pagi ngActi onTenpl ate": "/servi ces/gui dedsear ch?No=% Bof f set % D&Nr pp=
%/ Br ecor dsPer Page%/ D&Nt t =pi nk+caner a",
"recsPer Page": 10,
"records": [...]
H
"sear chAdj ustments": {
"@ype": "SearchAdjustnents",
"original Terms": [
"pink canera"

]

H
"zones": {
"@ype": "ContentSlotList"

H

"endeca: content Path": "/services/ gui dedsearch",

"previ ewibdul eUrl": "http://Iocal host: 8006/ previ ew'
}

Note

For details about the contents of the zones property, see "About dynamic content and the Guided
Search Service."

Configuring dynamic content for the Guided Search Service
For each dynamic slot that you wish to populate as part of the response from the Guided Search Service, you
must configure a Cont ent S| ot Conf i g object. Each of these objects is set as a property of the default input

content item for the Cont ent S| ot Handl er.

Specify the following properties for each instance of Cont ent Sl ot Confi g:

60 3 Developing an Assembler Application

Property name

cont ent Pat hs

t enpl at eTypes

Value

A List of String typed paths to the content folders from which you want to
return results.

(Optional) A Li st of Stri ng typed template type restrictions for the
dynamic slot.

tenpl atel ds (Optional) A Li st of Stri ng typed template ID restrictions for the dynamic
slot.
rul eLimt The maximum number of content items to return from this collection. The
Assembler returns up to this number of items that match the trigger criteria,
based on priority.
Note

The content within a folder depends on the template type or ID restrictions configured for that folder
in Experience Manager. While it is possible to configure your default Cont ent Sl ot Conf i g objects
with any restrictions you wish, you should ensure that the type and ID restrictions you enter match
those in Experience Manager. For example, it is possible to create a Cont ent Sl ot Conf i g object that
is restricted by template type "MainContent," while the cont ent Pat hs property points to folders

in Experience Manager that are restricted to "SecondaryContent" (and thus will never contain any
"MainContent" content items).

3 Developing an Assembler Application

61

Example 3.3. Example

In the example below, the input content item to the Cont ent Sl ot Handl er isa Cont ent Sl ot Li st Confi g
object. It is instantiated as "contentSlotList," and contains a Cont ent Sl ot Conf i g object for each dynamic slot
in the application. The cont ent Sl ot Li st is passed in to the Confi gl ni ti al i zer thatinstantiates it as the
input content item for the cartridge handler.

The cont ent Sl ot Li st for the Discover Electronics reference application is configured in the
CartridgeHandl er _Cont ent Sl ot Li st bean in the Spring context file, assenbl er - cont ext . xni . For
each content folder that is enabled for the Guided Search Service, a Cont ent Sl ot Conf i g bean appears in the
cont ent Sl ot Li st as in the example below:

<bean i d="CartridgeHandl er _Content Sl otList"
cl ass="com endeca. i nfront. cont ent. Cont ent Sl ot Li st Handl er"
scope="pr ot ot ype" >
<property nane="contentltem nitializer">
<bean cl ass="com endeca.infront.cartridge. Configlnitializer" scope="request">
<property nanme="defaul ts">
<bean cl ass="com endeca. i nfront. content. Content Sl ot Li st Confi g"
scope="si ngl et on" >
<property nane="content Sl otList">

<list>

<bean cl ass="com endeca. i nfront. content. Content S| ot Confi g"
scope="si ngl et on" >

<property nanme="cont ent Pat hs">

<list>
<val ue>/ content/Ri ght Col umm Spot | i ght s</val ue>
</list>

</ property>
<property nane="tenpl at eTypes" >

<list>
<val ue>Secondar yCont ent </ val ue>
</list>

</ property>
<property nanme="tenpl at el ds" >
<list>
<val ue>Recor dSpot | i ght </ val ue>
<val ue>Ri chText Secondar y</ val ue>
</list>
</ property>
<property name="ruleLimt" value="3"/>

</ bean>
</[list>
</ property>
</ bean>
</ property>
</ bean>
</ property>

</ bean>

For detailed information about the Cont ent Sl ot Conf i g configuration model and its included properties, see
the Assembler API Reference (Javadoc).

Handling the Guided Search Service response

The Assembler returns the matching content items for each configured Cont ent Sl ot Conf i g, so the response
consists of a list of lists of content items:

62 3 Developing an Assembler Application

+ Content Sl ot Li st response content item
+ Tst content item, returned from a Cont ent Sl ot Confi g witharul eLi mit of 3
+ Highest priority matching content item
+ Second highest priority matching content item
+ Third highest priority matching content item
+ 2nd content item, returned from a Cont ent Sl ot Confi g witharul eLi mi t of 2
+ Highest priority matching content item
+ Second highest priority matching content item
Note that the Guided Search Service response is not view-friendly. You must parse it in your application logic to
determine if any of the content items returned in the tree correspond to page sections you wish to populate for

the end user's current location in the application.

Below is a sample JSON response from the Guided Search Service in the Discover Electronics reference
application when the user selects the "Cameras" category:

"zones": {
"@ype": "ContentSlotList",
"contentSlotList": [
{
"@ype": "ContentSlot",
"tenpl ateTypes": [
"RecordSpot |ight"

I
"contents": [
{
"@ype": "RecordSpotlight",
"title": "Most Popul ar Caneras",
"nanme": "Spotlight Records",
"records": [
{ ..}
{1
{ -}
{ ..}
]
H
{
"@ype": "RecordSpotlight",
"title": "Top Rated Products",
"name": "Spotlight Records",
"records": [
{ -}
{ ..}
{ ...}
]
}
I.

"contentPaths": [
"/ content/Ri ght Colum Spotlights"
1,
"ruleLimt": 3,
"tenplatelds": []

3 Developing an Assembler Application 63

b

It populates two sidebar Record Spotlight cartridges, the first with four records, and the second with three.
About retrieving content item properties from packaged services

This topic outlines the logic required for retrieving properties from the Assembler response model for the
included Guided Search Service.

The example below includes processing logic within a renderer JSP file. Oracle recommends including most
of your logic for handling Assembler responses in your cartridge handlers, as this minimizes the amount of
duplicate code required across multiple renderers.

Note

APl documentation for the Assembler packages is available in the assenbl er\ api doc\ assenbl er
directory of your Tools and Frameworks installation.

Retrieving information from the Assembler response

Recall the serialized Assembler response for the URI ht t p: / / | ocal host : 8006/ assenbl er - aut hor i ng/
j son/ servi ces/ gui dedsear ch?Nt t =pi nk+caner a:

"@ype": "Qui dedSearchService",
"name": "CQuided Search Service",
"navi gation": {
"@ype": "Qui dedNavi gation"
H
"breadcrunbs”: {
"@ype": "Breadcrunbs",
"renoveAl | Action": "/services/gui dedsearch",
"refinement Crunbs": [],
"searchCrunmbs": [...],
"rangeFilterCrunbs": []
H
"resul tsList": {
"@ype": "ResultsList",
"total NunRecs": 213,
"sortOptions": [..],
"firstRecNunm': 1,
"l ast RecNuni': 10,
"pagi ngActi onTenpl ate": "/services/ gui dedsear ch?No=% Bof f set % D&Nr pp=
%/ Br ecor dsPer Page%/ D&Nt t =pi nk+caner a",
"recsPer Page": 10,
"records": [..]
H
"sear chAdj ustment s": {
"@ype": "SearchAdjustnents",
"original Terms": [
"pink canera"
]
H
"zones": {
"@ype": "ContentSlotlList"

64 3 Developing an Assembler Application

b
"endeca: content Path": "/services/ gui dedsearch",
"previ ewivbdul eUrl": "http://Iocal host: 8006/ previ ew'

To create a sample JSP file that invokes the Assembler:

1. Import the required packages and create the necessary objects for supporting the Assembler:

<%page | anguage="java" content Type="text/htm ; charset=UTF-8" %
<%@page i nport="com endeca.infront.assenbl er. Assenbl er" %
<%@page i nport="com endeca.infront.assenbl er. Assenbl er Fact ory" %
<% - additional inports renmoved fromthis exanple --%
<%page i nport="org.springfranmework.web. cont ext. \WbAppl i cati onCont ext" %
<U@aglib prefix="discover" tagdir="/WEB-|NF/tags/discover" %
<%
/]l Create the Wb Application Context object
WebAppl i cati onCont ext webappCtx =
WebAppl i cati onContext Utils. get Requi r edWebAppl i cati onCont ext (application);

/] CGet the AssenblerFactory fromthe Spring context file
Assenbl er Factory assenbl er Factory =
(Assenbl er Fact ory) webappCt x. get Bean("assenbl er Factory");

2. Recall that the packaged services invoke the Assembler with a Cont ent | ncl ude item. Create the assenbl er
object and the Cont ent I ncl ude item, and pass it into the Assembler as the configuration model:

/]l Create an Assenbl er object
Assenbl er assenbl er = assenbl er Factory. creat eAssenbl er () ;

/1 Construct a content include itemfor the Cuided Search service
Contentltem contentltem = new Contentl| ncl ude("/services/gui dedsearch");

/'l Assenbl e the content
ContentltemresponseContentltem = assenbl er. assenbl e(contentlten;

The Assembler returns a com endeca. i nfront . assenbl er . Cont ent | t eminterface as the response
model; this extends the Java Map interface. Assign this response to a r esponseCont ent | t emobject.

3. get theresul tsLi st object from ther esponseContent|tem

Contentltemresul tsListltem= (Contentltem
responseContentltemget("resul tsList");

This retrieves the top-level r esul t sLi st object, which is itself an extension of Basi cCont ent | t em from the
Assembler response.

4, You can now retrieve and use the individual values stored on the r esul t sLi st object, for example, the total
number of records:

String total NunRecs = resul tsListltemget("total NunRecs");

3 Developing an Assembler Application 65

This assigns a value of " 213" to the t ot al NunRecs variable (based on the sample response presented at
the start of this topic). Similarly, you could retrieve any other value from the key/value pairs that comprise
resul t sLi st, including other objects that extend the Map interface and are themselves made up of key/
value pairs.

Refer to the Assembler APl documentation for additional information about available Assembler interfaces,
implementations, and methods. Following the pattern described in Steps 3-4, you can continue to retrieve
values from the Assembler response by calling the get method on the response model object to traverse the
nested values.

About handling the Assembler response

As a best practice, your application should have modular renderers to handle the response model for each
content item.

A typical page consists of a content item that contains several child content items representing the individual
feature cartridges. The Discover Electronics application maps each response model to the proper renderer by
convention, based on the @ ype. The model @ ype corresponds to the template identifier (the directory name)
of the template that was used to configure it. (Recall that the template t ype determines where a cartridge can
be placed in another content item, while the template ID uniquely identifies the cartridge and its associated
content definition.) For each cartridge, the associated renderer is located in VEB- | NF/ vi ews/ <channel >/
<Tenpl at el D>/ <Tenpl at el D>. j sp. For example, the renderer for the Br eadcr unbs cartridge is located in
VAEB- | NF/ vi ews/ deskt op/ Br eadcr unbs/ Br eadcr unbs. j sp.

In the Discover Electronics application, this logic is implemented ini ncl ude. t ag. Your application should
implement a similar mapping of response models to their corresponding rendering code.

Source code for the renderers in the Discover Electronics application is provided as an example of how to
work with the model objects returned by the Assembler in Java. The sample rendering code is intentionally
lightweight, enabling it to be more easily customized for your own site. For information about the response
models for the core cartridges, refer to the Assembler API Reference (Javadoc).

Some features in the Discover Electronics application are designed with certain assumptions about the data
set, such as property and dimension names. Mirroring the Discover Electronics data schema for your own data
can facilitate reuse of the reference cartridges, reducing the need to update rendering logic and Assembler
configuration for your data set.

About rendering the Assembler response

As soon as you have retrieved the necessary information for your page, Oracle recommends subdividing your
view logic to correspond to the hierarchy of content items returned by the Assembler.

The renderer for the Three Column Navigation Page content item in Discover Electronics provides an example
of the page rendering process as implemented in the reference application. It is located in your Tools and
Frameworks installation directory under r ef er ence\ di scover - el ect r oni ¢s- aut hor i ng\ VEB- | NF

\ vi ews\ deskt op\ Thr eeCol uimPage\ Thr eeCol unmPage. j sp. You can use this JSP file as a point of
reference for developing your own application pages. While the details are specific to the Discover Electronics
implementation of the Assembler API, your general approach should be similar.

Recall that each of the <di v> elements that make up the page uses a custom <di scover : i ncl ude> tag,
defined in WEB- | NF\ t ags\ di scover\ i ncl ude. j sp, to include the rendering code for the associated page
component:

<I DOCTYPE htm PUBLIC "-//WBC//DTD XHTM. 1.0 Strict//EN' "http://ww. w3. org/ TR xhtnm 1/
DTD/ xht m 1-strict.dtd">

66

3 Developing an Assembler Application

<htm xm ns="http://ww. w3. org/ 1999/ xhtm " xml :1ang="en" |ang="en">
<head>
<l-- Additional elenments renoved fromthis sanple -->
</ head>
<body>
<endeca: pageBody root Cont ent |t em="${r oot Conponent}">
<di v cl ass="PageCont ent">
<% -include user panel --%
<%@i nclude file="/WEB-INF/vi ews/ userPanel . jsp" %
<% -incl ude user page |logo --%
<%@i ncl ude file="/WEB-INF/ vi ews/ pageLogo.jsp" %
<di v cl ass="PageHeader">
<c: forEach var="el ement" itens="${conponent. header Content}">
<di scover:incl ude conponent="%{el enent}"/>
</ c: forEach>
</ div>
<di v cl ass="PageLeft Col um" >
<c:forEach var="el enent" itens="${conponent.|eftContent}">
<di scover:incl ude conponent="${el enent}"/>
</ c: forEach>
</ di v>
<di v cl ass="PageCent er Col utm" >
<c:forEach var="el ement" itens="${conponent. mai nContent}">
<di scover:incl ude conponent="%${el enent}"/>
</ c:forEach>
</ div>
<di v cl ass="PageRi ght Col utm" >
<c:forEach var="el ement" itens="${conponent.rightContent}">
<di scover:incl ude conponent="%${el enent}"/>
</ c: forEach>
</ div>
<di v cl ass="PageFooter">
<% -i ncl ude copyright --%
<9%@ ncl ude file="/WEB-|NF/vi ews/ copyright.jsp" %
</ div>
</ di v>
</ endeca: pageBody>
</ body>
</htm >

For the example above, the JSP is composed as follows:

1. The static<di v cl ass="User Panel ">and <di v cl ass="PageLogo" > elements are included from the
specified JSP files.

2. The<di v cl ass="PageHeader "> element retrieves the list of header Cont ent content items from the
component.

+ Inan Oracle Experience Manager installation, this is the list of content items defined by the content
administrator in Experience Manager:

3 Developing an Assembler Application

67

E Three-Column Page
headerContent
W= Search Box
leftContent
™= Breadcrumbs
"= Second Content Slot
mainContent
B8 Search Adjustments
"= Dimension Search Results
™= Results List
rightContent

= Spotlight Records

+ Inan Oracle Guided Search installation, this is the list of content items specified application-wide under
WEB- | NF\ ser vi ces\ browse. j sp:

<di v cl ass="PageCont ent">
<% -include user panel --%
<%@i ncl ude file="/WEB-INF/vi ews/userPanel .jsp" %
<%@i ncl ude fil e="/WEB-1NF/vi ews/ pageLogo. j sp" %

<di v cl ass="PageHeader" >
<di scover:incl ude conponent ="${searchBox}"/>
</ div>
<di v cl ass="PageLeft Col um">
<di scover:incl ude conponent ="${conponent . breadcrunbs}"/>
<di scover:incl ude conponent ="${conponent. navi gati on}"/>
</ di v>

3. For each of the included content items, the JSP includes the output of the associated renderer.

4, The <div cl ass="PagelLeft Col um">,<di v cl ass="PageCent er Col um" >, and <di v
cl ass="PageRi ght Col um" > elements are included in the same fashion.

5. The static <di v cl ass="Copyri ght "> element is included from the specified JSP file.

Implementing Multichannel Applications

This section covers how to design and implement multichannel applications built on the Assembler and
managed using Workbench with Experience Manager.

68 3 Developing an Assembler Application

Related links

» Overview of multichannel applications with the Assembler (page 69)

+ About creating templates for mobile channels (page 69)

Overview of multichannel applications with the Assembler

The Assembler provides an API for delivering content across an entire site, allowing content configuration to be
shared between channels when appropriate, and also enabling a more targeted channel-specific experience
where desired.

Enabling the full flexibility of the cross-channel experience involves the following:

+ Creating channel-specific templates. Content administrators may wish to configure different features or
cartridges for different channels. For example, pages designed for mobile devices typically have a simpler
structure and present fewer options than pages designed for desktop Web.

+ Writing channel-specific rendering code. Due to the limitations of mobile browsers and device bandwidth,
renderers for mobile Web applications are typically more lightweight than those for desktop Web, while
native applications for mobile devices require platform-specific client code.

+ Enabling device detection. The Ul tier of your Assembler application should include logic for handling
device detection. Typically, this also includes redirecting a client to the appropriate service for their user
agent.

About creating templates for mobile channels

Templates for mobile-specific content in a multichannel application can give content administrators the
flexibility to manage channel-specific content in Experience Manager. When planning the set of templates for
your application, however, use more general templates whenever possible in order to share configuration across
multiple channels.

The following general practices help enable this combination of flexibility and consistency:

+ Create different top-level page templates for channels that have a different high-level structure. For example,
the same range of cartridges may be appropriate for pages designed to be displayed on desktop computers
but not for pages designed to be displayed on mobile devices. Native applications for mobile devices may
display content in simplified "pages" that differ from those intended for Web browsers.

+ Use dynamic slots for configuration that should be shared across channels, because they enable reuse of
content between pages. For example, if the same refinement configuration (such as overall dimension order,
refinement ordering, and boost and bury options) should apply at a specific navigation state regardless
of channel, it may make sense to configure it within a separate content folder and reference it from the
appropriate pages for each channel.

To enable the greatest flexibility in Experience Manager while ensuring that content administrators create
configurations that are appropriate to each channel, you can restrict the cartridges that can be placed on a page
or in a content folder by content type. These content types may vary depending on the intended purpose of a
page or dynamic slot. For example, you may have the following in your application:

+ Page templates for desktop Web, which may define a section of type Secondar yCont ent . This section
may be populated with Guided Navigation cartridges, Spotlight cartridges, or dynamic slots serving as a
placeholder for either type.

3 Developing an Assembler Application 69

+ A content folder designed for Guided Navigation cartridges. This is similar to the Navigation section of the
mobile page, but it should not allow a content administrator to create a dynamic slot within a dynamic slot, so
it should have a third content type (such as Navi gat i on) to enforce this restriction.

In most cases, the set of Dimension Navigation cartridges in an application should be identical. Variance
between different output channels tends to manifest at the page design level, rather than at the level of the
individual components of a page.

Tuning an Assembler application

The Assembler and the MDEX Engine both include logging functionality that you can use to debug and fine
tune your application. In addition, Workbench includes Preview functionality that your Content Administrator
can use to evaluate the results of their changes.

Related links

+ Enabling the preview application for Workbench (page 70)
+ Configuring logging for an Assembler Application (page 87)
+ Configuring cartridge performance logging (page 95)

+ Debugging MDEX Engine query results (page 95)

Enabling the preview application for Workbench

If you are using Experience Manager, you can use a preview application to simulate sets of trigger conditions,
such as time-based triggers, in order to determine which content items are displayed when specific conditions
are met. This section describes how to set up a custom application to function as the preview application in
Workbench.

About the preview application

The preview application enables content administrators to determine whether each content item is or is not
displayed by particular combinations of navigation queries and triggers. This chapter describes how to set up
your own custom application as the Workbench preview application.

You can start the preview application for a specific page or for an individual cartridge. A selected cartridge is
displayed in the context of a page that includes it.

The preview application does not need to be an exact representation of your final front-end application if it uses
the correct data. The business logic that is built into Workbench is not tied to the physical representation of the
front-end application. It is good practice, however, to make sure that your preview application represents your
final application closely enough to enable business users to verify that their changes are correct.

By default, Workbench is configured to use the Discover Electronics reference application as the preview
application. This application is located under “/ENDECA_TOOLS_ROOT% r ef er ence\ di scover - el ectroni cs-
aut hor i ng (BENDECA_TOOLS_ROOT/ r ef er ence/ di scover - el ect roni cs- aut hor i ng on UNIX).

Workbench communicates with the preview application via settings you specify in the Preview Settings tool. The
Preview URL field lets you specify the preview application URL.

70

3 Developing an Assembler Application

Note

The preview application must not use frames, because they are likely to collide with the frames of the
Workbench preview toolbar.

Enabling your Java application for preview

In order to enable auditing and editing in your custom preview application, your JSP file rendering code must
include logic for adding preview frames and buttons for auditing and editing content items.

Your custom preview application should include tags that specify paths to the required JavaScript and CSS
resources, as well as tags for enabling audit and edit functionality. These are provided in the tag library.

These requirements assume an application that uses JSP files for cartridge renderers (as in the case of the
Discover Electronics reference application). If you are using a different technology stack to implement your
Assembler application, you must write your own auditing functionality. See Enabling non-Java applications for
preview (page 72).

Adding Preview resources

All JSP files must include the tag library, as shown below:

<Y@taglib prefix="endeca" uri="/endeca-infront-assenbler/utilityTags"%

Each <head> tag must contain a reference to the pageHead tag. This includes paths to the Preview JavaScript
and CCSfiles:

<head>
<endeca: pageHead root Cont ent | t en" ${r oot Conponent }"/ >
<title><c:out value="${conmponent.title}"/></title>
<neta nane="keywor ds" content="${conponent. net akeywords}" />
<met a nanme="description" content="${conponent. netaDescription}" />
</ head>

Enabling auditing and editing

All slots and content items must include a Pr evi ewAnchor tag that wraps them in a div class that contains
preview information. This tag requires the current content item element and enables audit and edit
functionality. Oracle recommends that instead of including this in every renderer, have a centralized place where
content items are dispatched. In the Discover reference application, this is done in the i ncl ude. t ag:

<% - save the parent's conponent currently in request scope into page scope --%
<c:set var="parent Conponent" scope="page" val ue="${request Scope[' conponent']}"/>
<% - set the content itemthe child will use as this one (the one passed in the tag) --
%
<c:set var="conponent" scope="request" val ue="${conponent}"/>
<c:catch var="inport Exception">

<endeca: previ ewAnchor contentlten="${conponent}">

<c:inmport url="${resourcePath}" charEncodi ng="UTF-8"/>

</ endeca: pr evi ewAnchor >

</c:catch>

Each <body> tag must contain a reference to the pageBody tag. This tag requires the root and current content
item elements and enables audit and edit functionality:

3 Developing an Assembler Application 71

<script type="text/javascript" src="<c:url value='/js/global.js'/>"></script>
</ head>
<body>
<endeca: pageBody root Content|tem="${root Conponent}" contentltem"${conponent}">
<di v cl ass="PageContent">
<% -i ncl ude user panel --%
<%@i nclude file="/WEB-INF/vi ews/ user Panel . jsp" %

Device-specific auditing and editing

In order to handle preview for different devices, you must implement conditional rendering logic for different
user agent strings. The rendering code should include the tags described in the previous section.

You can retrieve the user agent String by getting a reference to the User St at e object and
calling get User Agent () onit. The User St at e class is documented in the Javadoc for the
com endeca. i nfront . cont ent package.

For example, the Discover Electronics reference application includes the following logic in the VEB- | NF
\'servi ces\ assenbl e. j sp page:

User State userState =
webappCt x. get Bean(properties. getProperty("user.state.ref"), UserState.class);

String userAgent = userState.getUserAgent();
/11f the userAgent is null, then no user-agent was specified and we need to get the
user agent fromthe request header.
i f(userAgent == null){
user Agent = request. get Header ("user-agent");
}
Decorating the page

Preview requires a request attribute to decorate the page. For example, the Discover Electronics reference
application includes the following logic in the VEB- | NF\ ser vi ces\ assenbl e. j sp page. The last line retrieves
the value of the pr evi ew. enabl ed property from the assenbl er. properti es file. The value of the constant
Pr evi ewAnchor . ENDECA_PREVI EW ENABLEDs endeca: pr evi ewAnchor sEnabl ed.

/11f the userState has no specified userAgent, use the one fromthe request header.
i f(userAgent == null){
user Agent = request. get Header ("user-agent");

}

request.setAttri bute(Previ ewAnchor. ENDECA_PREVI EW ENABLED,
Bool ean. val ueOf (properties. get Property("preview enabl ed")));

o g g g g
R L L L R R e

Enabling non-Java applications for preview

This section describes how to enable hotspots in any Assembler-based Web application that lets a user audit
and edit cartridges and slots in Experience Manager.

72 3 Developing an Assembler Application

The preview JavaScript framework should be added to the Assembler application's Web pages to enable this
behavior. The framework supports single page applications (SPAs) and the popular module loader RequireJs.
Note that the framework depends on the open source JQuery library. If your application already uses a JQuery
version higher than 1.9, and if its available on the window object, you do not have to include the JQuery version
provided by Oracle Commerce.

Preview CSS

Include the following style sheet in the head of your page:

<link rel ="styl esheet" href="http:// GMORKBENCH HOST@® @MNORKBENCH_PORT/i fcr/t ool s/
xngr/ app/ previ ew css/audit-site.css" />

Standard Web page

If you do not use an AMD module loader, include the following scripts in the head tag of the page or at the
bottom of the body tag - depending on your script loading strategy.

<l-- You can skip inclusion of the following two scripts if your web app al ready uses
jquery version higher than 1.9. If not, make sure jquery is |oaded before |oading the
previ ew script -->

<script type="text/javascript" src="http:// GMWNORKBENCH HOST@® @MORKBENCH PORT/ifcr/

static/oraclejet/js/libs/jquery/jquery-2.1.1. mn.js"></script>

<script type="text/javascript">
ocJQuery = j Query.noConflict(true);

</scri pt>

<l-- Oacle commerce preview framework that enables hotspots in a web page -->
<script type="text/javascript" src="http:// GINORKBENCH HOST@® @@NORKBENCH_PORT/ i fcr/
t ool s/ xngr/ app/ previ ew j s/ previ ew. js"></script>

RequireJS (AMD-based) Web page

<script type="text/javascript">
requirejs.config({
paths: {
jquery: "lifcr/static/oraclejet/js/libs/jquery/jquery-2.1.1. mn",
xmgrPreview. "/ifcr/tool s/ xnmgr/app/ preview js/preview'
}
IOF

</script>

When you develop your application, you must pass the assembled content item (tree) returned by the
Assembler to the preview framework to support editing and auditing a Web page from within Experience
Manager. The content-item is used by Experience Manager to construct the manifest panel. Optionally, preview
framework can add hotspots to slots and cartridges in the page by looking at the data-oc-content-item-id
attribute on all DOM elements in the page.

You initialize the preview framework by calling thei ni ti al i ze() method and passing it the assembled
content item returned by the Assembler. You can instead pass the content-uri that was used to invoke the

3 Developing an Assembler Application 73

Assembler service. In this case, the framework makes a j sonp call to retrieve the content item. Be sure that the
Assembler Service URL is set in Preview Settings in Workbench.

The framework provides an eventing mechanism to let application developers hook into its life cycle. The
available events are hot spot sOn, hot spot sOf f, addCont ent | t em and r enpbveCont ent | t em For example, in
order to be notified when the framework decorates the content items with hotspots, use:

f ramewor k. on(" hot spot sOn", function() {
/'l your code
}, this);

The following preview framework API lists all the public methods and events. The APl enables Assembler
application pages to be decorated with hotspots when a business user previews pages in Experience Manager.
The APl must be used to enable Experience Manager to construct the manifest panel. The manifest panel assists
the user in understanding how the page was assembled and allows the user to audit or edit slots and cartridges.

addContentltemld(pElement, pContentltem)

Adds data-oc-content-item-id attribute to the DOM element. All elements that should be decorated with hot
spots must call this method.

Table 3.1. addContentltemld Parameters

Name Type | Description

pElement Object | Required. The DOM element that is injected with data-oc-
content-item-id attribute. The element maps to the content
item: slot or cartridge.

74

3 Developing an Assembler Application

Name

pContentitem

Type | Description

Object | Required. The content item that represents a slot or cartridge.
Example:
{

@ype: "SearchBox",

endeca: auditlnfo: {

"ecr:resourcePath": "/content/\Wb/ Categories/
Pages/ Cat egory - Bags - Cases",
"ecr:assertedFacts": {

}

"endeca: ancest or Di nval | d: 100972",
"endeca: ancest or Di nval | d: 101022",
"endeca: ancest or Di nval | d: 101024",
"101927",

"endeca: ancest or Di nval | d: 20001",
"4294967266",

"4294967247"

1
"endeca: navAndSear chCount": [
w g
1
"endeca:time": |
"1441745067199"
1

"endeca: wor kspacel d": [

"d826ca36- 80a2- 4278- a09f - 2933dab92d1f"

1
"endeca: path": [

"/ cont ent/\Web"
1

"endeca: tenpl ateType": [

" Page"

1

"endeca: tenplateld": [

1

"endeca: wor kfl owState": [
n e

]

ecr:innerPath: "headerContent[0]"

}

narme: "Search Box",
content Pat hs: ["/content/ Shared/ Aut o- Suggest

t
t

Panel s"],
enpl at eTypes: ["AutoSuggest Panel "],
emplatelds: [],

m nAut oSuggest | nput Lengt h: "3",

r

}

uleLimt: "1"

3 Developing an Assembler Application

75

initialize(pContentltem, pCallback)

Initializes the preview framework, processes the content item tree and opens up a communication channel with
Experience Manager. If Experience Manager responds with a load hot spots message, the framework traverses
the application DOM and decorates the page with hot spots. This method should be invoked at the beginning
of the page construction. Single page applications should use the addContentitemld() method to add data-
oc-content-item-id attribute to the DOM elements that should be decorated with hotspots and then call
addHotspots() to decorate the content items with hot spots.

76 3 Developing an Assembler Application

Table 3.2. initialize Paramete

rs

h
b

name:

1.
"endeca: wor kfl owState": [
W

" About Page",

header Content: [

{
@ype:

" Sear chBox",

endeca: audi tlnfo: {

"ecr:resourcePat h":

about

"/ pages/ Di scover El ectroni cs/
us",

"ecr:assertedFacts": {

}

ecr:innerPat h:

b

name:

"endeca: ancest or Di nval | d: 100972",
"endeca: ancest or Di nval | d: 101022",
"endeca: ancest or Di nval | d: 101024",
"101927",
"endeca: ancest or Di nval | d: 20001",
"4294967266",
"4294967247"
I,
"endeca: navAndSear chCount": [
nan
I,
"endeca:time": |
"1441745067199"
I,
"endeca: wor kspacel d": [
"d826ca36- 80a2- 4278- a09f - 2933dab92d1f "
I,
"endeca: path": [
"/ cont ent/ Wb"

]

ndeca: tenpl ateType": [

" Page"

1.

"endeca:tenplateld": [

1.

"endeca: wor kfl owState": [
nqn

]

"header Content [0] "

" Search Box",

content Pat hs: [
"/ cont ent/ Shar ed/ Aut o- Suggest Panel s"

1.

tenpl at eTypes: [
" Aut oSuggest Panel "

1.

tenpl at el ds:

}
1.

[]

endeca: siteState: {

@l ass:

"com endeca.infront.site.nodel.SiteState",

cont ent Pat h:
siteld:
si teDi spl ayNane:

}
}

"/ about - us",
"/ Di scover El ectroni cs",
"Di scover Electronics"

3 Developing an Assembler Application

77

Name Type | Description

pCallback Function Optional. The callback that is invoked after the framework is
initialized. Always use the callback if the content uri is passed
as the first argument. This ensures that the framework has
been initialized.

addContentltem(pContentitem, pElement, pParentElement)

Add the given content item tree to the Manifest. Optionally turns on hot spots for the dynamically generated
DOM element and its descendants - elements with the data-oc-content-item-id attribute which visually
represent the content item tree. Information about the parent content item is needed in order to add it to the
correct location in the page components area. Page components are uniquely identified by their resourcePath
and innerPath information. This information can be found in the parent DOM element's data-oc-content-
item-id attribute. If there is no parent DOM element, the content item will be added to the end of the page
components tree in the Manifest.

An example of this method can be found in the Sear chBox. j sp page in the Discover Electronics application.
The parent search box DOM element is passed so that the auto suggest results cartridge is added to the correct
location in the page components tree.

This method should be invoked to add dynamic content item trees, such as auto suggest, that are returned by
the Assembler after a page has been constructed.

Table 3.3. addContentitem Parameters

Name Type Description

pContentitem Object | Required. The new content item tree returned by the
Assembler's JSON serializer.

pElement Object | Optional. The new DOM element with data-oc-content-item-id
attribute.
pParentElement Object | Optional. The parent DOM element with data-oc-content-

item-id attribute. Adds the content tree to the correct location
in the page components area of the Manifest.

removeContentitem(pElement)

Removes hot spots from the element and its descendants. The associated content item tree is removed from the
page components area of the Manifest.

Table 3.4. removeContentltem Parameters

Name Type Description

pElement Object | Required. The DOM element with the {@link
CONTENT_ITEM_SELECTOR} attribute whose hot spots and
associated content item tree are to be removed.

addHotspots(pElement, pTraverseDom)

Decorates the element and optionally its descendants with hot spots. An error occurs if the preview framework
has not been prepared yet. You must call the framework's prepare() method before using this method.

78

3 Developing an Assembler Application

Table 3.5. Parameters

Name Type Description

pElement Object | Required. The DOM element that is to be decorated with hot
spots.

pTraverseDom Boolean| Required. Flag indicating whether or not the descendants of

the element have to be decorated.

removeHotspots(pElement, pTraverseDom)

Removes hot spots from the element and optionally removes its descendants. An error occurs if the preview

framework has not been prepared yet.

Table 3.6. removeHotspots Parameters

Name Type | Descripton

pElement Object | Required. The DOM element from which hot spots are to be
removed.

pTraverseDom Boolean Required. Flag indicating whether or not hot spots have to be
removed from the descendants.

on(pEvent, pListener, pScope)

Registers a listener to one of the framework life cycle events. Supported events are:

+ hotspotsOn
+ hotspotsOff
» addContentltem

+ removeContentltem

Table 3.7. on Parameters

Name Type | Description

pEvent String | Required. The name of the event.

pListener Function Required. The listener function that is invoked when the event
fires.

pScope Object | The scope that invokes the listener.

off(pEvent, pListener)

Removes a listener to one of the framework life cycle events.

3 Developing an Assembler Application

79

Table 3.8. off Parameters

Name Type | Description
pEvent String | Required. The name of the event.
pListener Function Required. The listener function to be removed.

Enabling your preview application

After you have finished instrumenting your preview application, you can enable it for use in Workbench.

Ensure that your application has been correctly instrumented before enabling it for preview in Workbench. See
Enabling your Java application for preview (page 71).

All examples shown below are taken from the configuration files for the Discover Electronics authoring
application, located in “ENDECA_TOOLS_ROOT% r ef er ence\ di scover - el ectroni cs- aut hori ng (on
Windows) or SENDECA TOOLS_ROOT/ r ef er ence/ di scover - el ect roni cs- aut hori ng (on UNIX). The exact
mechanisms used for configuring your Assembler and content sources will depend on your implementation
details.

For a full description of the properties described below, see the Assembler APl Javadoc for the
Assenbl er Fact ory and Cont ent Sour ce interfaces and their corresponding implementations.

To enable your custom preview application:

1. In the constructor arguments for your Assenbl er Set t i ngs, set the following:

Property Value
previ ewknabl ed true
previ ewhbdul eUr | http://1 ocal host: 8006/i fcr

In the Discover Electronics reference implementation, these are configured as properties in VEB- | NF
\assenbl er. properties:

wor kbench. host =| ocal host
wor kbench. port =8006

... Additional settings renoved fromthis exanple ...

previ ew. enabl ed=true

These properties are then included in the Assembler context file, WEB- | NF\ assenbl er - cont ext . xni :

<l
HHH R R R
ASSEMBLER FACTORY
#

80

3 Developing an Assembler Application

Required.
#
-->
<bean i d="assenbl er Fact ory"
cl ass="com endeca. i nfront. assenbl er. spri ng. Spri ngAssenbl er Fact ory"
scope="si ngl et on" >
<constructor-arg>
<bean cl ass="com endeca. i nfront. assenbl er. Assenbl er Setti ngs" >
<property nane="previ enEnabl ed" val ue="${previ ew. enabl ed}" />
<property nanme="previ ewvbdul eUr| " val ue="http://${wor kbench. host }:
${wor kbench. port}/ifecr™ />
</ bean>
</ constructor-arg>
<constructor - ar g>
<list>
<bean cl ass="com endeca. i nfront.| ogger. SLF4JAssenbl er Event Logger" />
</list>
</ constructor-arg>
</ bean>

2. In the constructor arguments for your St or eFact or y bean, seti sAut hori ng totr ue.

<bean i d="StoreFactory" class="com endeca.infront.content.source. Fil eStoreFactory"
init-nethod="init" destroy-nethod="destroy">
<property nanme="configurationPath" val ue="${repository.configuration.path}"/>
<property nane="isAut horing" val ue="${previ ew. enabl ed}"/ >
<property nane="appNane" val ue="${wor kbench. app. nane}" />
<property name="host" val ue="${wor kbench. host}" />
<property name="clientPort" val ue="${wor kbench. publishing.clientPort}"/>
<property name="serverPort" val ue="${wor kbench. publi shing. serverPort}"/>
<property nanme="nessageTi neout"” val ue="10000" />

</ bean>

Property name Value

configurationPath Required. The path from which the content and
configuration zip files are retrieved

appName Required. The name of the EAC application

isAuthoring Optional. Default is false. If this is an authoring
server, the value must be set to true.

host Required if the i sAut hor i ng property is set to
true. The name of the server the workbench is
running on. Default is localhost..

serverPort Optional. Used only when the i sAut hori ng
property is set to true. The port the Workbench is
listening on. Default is 8007.

3 Developing an Assembler Application 81

Property name Value

clientPort Optional. Used only when the i sAut hori ng
property is set to true. The port used to initiate
contact to the workbench from this server. If client
port is set to -1, the system will assign an ephemeral
port automatically.

messageTimeout Optional. Used only when the i sAut hori ng
property is set to true. The amount of time in
milliseconds to wait on communications with the
workbench. Default is 10000ms.

3. Configure a link service for your application that returns a preview link as a JSONP response.

This service must construct a link to the page selected for preview; for example, if a content administrator
previews the Brand - Canon Web Browse page in the reference application, the service returns "/ br owse/ _/
N- 25y6" . Additionally, the response from the service is used to construct the links in the Audit Panel.

In Discover Electronics, the link service is configured as a link servlet that uses the
com endeca. i nfront. web. spring. Previ ewLi nkSer vl et class. The servlet is defined in WEB- | NF
\web. xm :

<servl et >
<servl et - name>| i nk</ servl et - name>
<servl et-class>
com endeca. i nfront. assenbl er. servl et. spring. SpringPrevi ewLi nkSer vl et
</ servl et-class>
<i nit-paran>
<descri ption>
The I D of the NavigationStateBuilder in the spring
contextConfig file
</ descri ption>
<par am nane>navi gat i onSt at eBui | der Beanl d</ par am nane>
<par am val ue>navi gat i onSt at eBui | der </ par am val ue>
</init-paranm
<init-paranmr
<descri pti on>
The I D of the MlexResource in the spring
contextConfig file
</ descri ption>
<par am nane>ndexResour ceBeanl d</ par am name>
<par am val ue>ndexResour ce</ par am val ue>
</init-paranr
</servlet>

Changing the preview link service
If you have implemented your own link service for use with preview, you can specify the path to the service.

After you have created your own preview link service, you can specify it for use with preview instead of the
default link service included with the Discover Electronics reference application.

82 3 Developing an Assembler Application

Note

For information about the required inputs and outputs for a link service, see the Javadoc for the
Abst ract Previ ewLi nkSer vl et classinthe com endeca. i nfront. assenbl er. servl et package.

To change the preview link service:
1. Stop the Tools Service.
2. Open your application's deployment descriptor file, web. xni .

For the Discover Electronics reference application, this file is located at “%&ENDECA_TOOLS_ROOT% r ef er ence
\ di scover - el ectroni cs- aut hori ng\ VEB- | NF\ web. xm .

3. Define the link servlet.

The servlet definition for the Discover Electronics reference application is shown below:

<servl et>
<servl et - nane>| i nk</ servl et - name>
<servl et-cl ass>
com endeca. i nfront. assenbl er. servl et. spring. Spri ngPrevi ewLi nkServl et
</ servl et-class>
<i ni t-parane
<descri pti on>
The I D of the NavigationStateBuilder in the spring
contextConfig file
</ descri ption>
<par am nanme>navi gat i onSt at eBui | der Beanl d</ par am nane>
<par am val ue>navi gat i onSt at eBui | der </ par am val ue>
</init-paranr
<init-paranr
<descri pti on>
The 1D of the ContentSource in the spring
contextConfig file
</ descri pti on>
<par am nanme>cont ent Sour ceBeanl d</ par am name>
<par am val ue>cont ent Sour ce</ par am val ue>
</init-paranr
</ servl et>

4. Define the link servlet mapping.

For example:

<servl et - mappi ng>

<servl et - name>| i nk</ servl et - name>

<url -pattern>/servlet/link.json/*</url-pattern>
</ servl et - mappi ng>

5. Save and close the file.
6. Start the Tools Service.
Managing the preview application in Workbench

You can manage the preview URL configuration and the preview devices for an application in Workbench by
using the Preview Settings tool.

3 Developing an Assembler Application 83

After you have instrumented your application and it for preview, it becomes the default preview application
for your initial site or any sites that you add to your application. You can manage preview devices for displaying
content and change the default application preview URLs or site-specific preview URLs.

1. Navigate to the Application Settings — Preview Settings tool.

2. Navigate to the Preview URLs section.

The default preview URL that you set up in Enabling your preview application (page 80) appears

in the Default Preview URL field. The link service URL that you set up in Changing the preview link

service (page 82) appears in the Default Link Service URL field. The URL that exposes the Assembler
Services REST API for non-Java applications appears in the Default Assembler Service URL field. These URLs
also appear by default for the sites listed in the section below the default URLs section.

3. To change the default preview application follow these steps:
a. Enter the fully qualified preview URL of the default preview application in the Default Preview URL field.

b. Enter the URL of the service within the application that constructs links for preview in the Default Link
Service URL.

c. Enter the URL that exposes the Assembler Services REST API for preview in the Default Assembler Service
URL. This field is only required for non-Java applications. It is not required for Java applications. See
Formatting the Assembler Service URL (page 85) for more information.

4. To update the preview URLs and link service URLs for a site follow these steps:

a. In the Preview URL field of the site, enter the fully qualified preview URL of the site that you want to
preview .

b. In the Link Service URL of the site, enter the URL of the service within the site that constructs links for
preview.

If your organization has integrated Oracle Core Commerce Platform with Guided Search, you must include
the pushSi t e parameter in the Link Service URL for each site: pushSi t e=<si t el D>. For example:

http:// <PREVI EW HOST>: <PREVI EW PCORT>/ crs/ | i nk. j son?pushSi t e=npbi | eHoneSi t e

c. Inthe Assembler Service URL of the site, URL that exposes the Assembler Services REST API for preview.
This field is only required for non-Java applications. It is not required for Java applications.

5. Click Save.
6. In the Manage Preview Devices section, enter values for the attributes of each preview device.

All devices can be rotated, so enter the height and width of the page orientation that is previewed more
frequently.

Option Description

Name The name of the device

User Agent Agent types supported as a string

Height The view port height of the device, in pixels

3 Developing an Assembler Application

Option

Width

Description

The view port width of the device, in pixels

Zoom

The Zoom factor can simulate displays on devices
other than the current monitor. For example,

the display on a retina display monitor can be
simulated by setting the Zoom factor to 30 - that is,
30%.

The following table shows example preview settings by device.

Option First Preview Device Second Preview Device
Name | Handheld Tablet
User Mozilla/5.0 (iPhone; U; CPU like Mac OS X; Mozilla/5.0 (iPad; U; CPU OS 3_2 like Mac OS
Agent | en) AppleWebKit/420+ (KHTML, like Gecko) X; en-us) AppleWebKit/531.21.10 (KHTML,
Version/3.0 Mobile/1A537a Safari/419.3 like Gecko) Version/4.0.4 Mobile/7B334b
Safari/531.21.10
Height| 680 1224
Width | 400 848
Zoom | 30 60
7. Click Save.

Formatting the Assembler Service URL

At runtime, the Assembler Service URL is used to build the various URLs for individual content items in your site.

For example, if your site uses the following Assembler Service URL:

http://1 ocal host: 8006/ assenbl er - aut hori ng/j son

The JSON for the / br owse page can be retrieved by concatenating the path at the end of the URL:

http://1 ocal host: 8006/ assenbl er - aut hori ng/j son/ br owse

If the path is not appended at the end of the URL, you can also use a placeholder % to designate where the
path should be inserted at runtime. For example, to retrieve the following / br owse page:

http://1ocal host: 8006/ di scover - aut hori ng/ br owse?f or mat =j son

You can format the Assembler Service URL with a placeholder:

3 Developing an Assembler Application

85

http://1 ocal host: 8006/ di scover - aut hori ng%?f or mat =j son

Note that if you do not use a placeholder, the path is always appended to the end of the Assembler Service URL.

Experience Manager makes a JSONP call to the deployed Assembler Service by using the jsonp query parameter.
For example, to construct the Manifest panel for the browse page, Experience Manager makes a call to the
Assembler Service at the following:

http://1ocal host: 8006/ assenbl er - aut hori ng/j son/ br owse?j sonp=<dynani c_net hod_nanme>

Testing your preview application

After instrumenting and enabling your preview application, you can test the preview and audit functionality in
Workbench.

Your custom preview application must be fully instrumented and enabled in Workbench in order for the preview
option to be displayed.

To test your custom preview application:
1. In Workbench, navigate to the Experience Manager tool.
2. Navigate to a content item of your choosing.
3. Hove the mouse over the content item.
The Action menu button appears.
4. Select Preview from the Action dropdown.

5. Optionally, specify the preview time instead of using the default indicated by the system clock for the MDEX
Engine:

a. Click the arrow beside the selected device in the Preview Toolbar:
The Preview Toolbar expands to show configuration options.
b. Select a device from the Device list and click Apply.
Specifying a preview device lets you see how the application renders on that device.
6. To test audit functionality:
a. Hove the mouse over the cartridge you wish to audit.
b. Click the gear button and select Audit
The Audit Panel appears with a list of all content items considered for the specified content slot.
c. Click any of the listed Locations to navigate to that location in the preview application.

d. Click the name of any of the listed content items and confirm that you return to that item in Experience
Manager.

Disabling preview

You can disable the ability to preview your application in Experience Manager.

86 3 Developing an Assembler Application

To disable preview, you export the preview configuration of your application, replace the preview URL and link

service URL with null values and then import your updated preview configuration, as follows:

1. Export the preview configuration.

The following command exports the Discover preview configuration to the / i mpor t folder in unzipped files:

runconmand. sh | FCR export Cont ent configuration/tool s/ preview /| ocal di sk/ apps/
Di scover/config/inport/configuration/tools/preview true

2. Replace the preview URL and link services URL information with null values in the configuration-preview

JSON file.

{
"ecr:type":"configuration-preview',
"linkServiceUl":"",
"previewdr|":"",

"assenbl er Servi ceURL": "http:/ /| ocal host: 8006// assenbl er - aut hori ng/j son",
"devices": [
{
"userAgent":"Mzillal/5.0 (iPhone; U, CPUIlike Mac OS X; en) Appl eWebKit/ 420+
(KHTM., 1ike Gecko)
Version/ 3.0 Mbile/1A537a Safari/419. 3",
"nanme": "Handhel d (Portrait)",

"hei ght": 1280,
"wi dt h": 960,
"zooni: 50

}

3. Import the updated preview configuration.

The following command imports the Discover preview configuration to the confi gurati on/ t ool s/
pr evi ewfolder:

runcommand. sh | FCR i nport Cont ent configuration/tool s/ preview /| ocal di sk/ apps/
Di scover/config/inport/configuration/tools/preview

Configuring logging for an Assembler Application
The Assembler logs information to the Platform Services Log Server component.

In order to implement this logging feature in an application, you must instantiate a LogSer ver Adapt er

and pass it in to the Assenbl er Fact or y, along with any other Event Listeners. To log front-end

information, you must also register a Cont ent | t emAugnent Adapt er . The LogSer ver Adapt er and

Cont ent | t emAugnent Adapt er require a Request Event I nitial i zer and a MlexQueryl nfol nitializer
to log request event information to the Dgraph request log, so these should also be configured. Registering
aMlexQueryl nfolnitializer letsyou establish the relationship between the Assembler request and its
corresponding MDEX Engine queries in the Dgraph request logs. This helps you to identify and troubleshoot
problems.

3 Developing an Assembler Application

87

Configuring the RequestEventinitializer and the MdexQueryinfolnitializer

The Request Event I nti ai | i zer is used to initialize the RequestEvent thread local variable. Similarly,
MiexQueryl nfol nitializer isused to initialize the MdexQueryInfo thread local variable in the assembly
process. If the MdexQuer yI nf ol ni ti al i zer is notincluded in the assembler configuration, then the additional
request information will not be included in the Dgraph request log.

In the following example of an assenbl er - cont ext . xnm file in a Spring implementation,

note that the Request Event I nti ai | i zer is configured before the LogSer ver Adapt er and

Cont ent | t emAugnent Adapt er so that the request event is logged. The MlexQueryl nfol ni ti al i zer isalso
configured so that query information such as the request id, and the session id is added to the Dgraph request

log.

<bean
cl ass="com endeca. i nfront. assenbl er. event. request. Request EventInitializer">
<property nanme="sessionl dProvider" ref="springUility"/>
<property nane="request!|dProvider" ref="springUility"/>

</ bean>

<bean cl ass="com endeca. i nfront. navi gati on. event. MlexQuerylnfolnitializer">

</ bean>

<bean cl ass="com endeca. i nfront. assenbl er. event. request. Content|temAugnent Adapt er ">
</ bean>

<!-- Renpve the following lines to disable logging to an Oracle Endeca Log Server -->

<bean cl ass="com endeca. i nfront. navi gati on. event. LogServer Adapt er" >
<property nane="|ogServerHost" val ue="${l ogserver. host}"/>
<property nane="| ogServerPort" val ue="${l ogserver.port}"/>
<property nanme="i sSsl Enabl ed" val ue="${| ogserver. ssl Enabl ed}"/ >
</ bean>

The Request Event I ni ti al i zer specifies a Sessi onl dProvi der and a Request | dPr ovi der so you can
associate Assembler requests with MDEX query entries in the Dgraph request log. You specify the following
properties:

+ Aninstance of an object that implements the
com endeca. i nfront. assenbl er. event . request. Sessi onl dProvi der interface, which requires a
String get Sessi onl d() method that returns a user's session ID.

+ Aninstance of an object that implements the
com endeca. i nfront. assenbl er. event . request. Request | dProvi der interface, which requires a
String get Request | d() method that returns a request ID.

The referenced bean is configured as follows:

<bean id="springUtility" class="com endeca.infront.web.spring. SpringUility"
scope="si ngl eton"/ >

Instantiating a ContentitemAugmentAdapter

The Cont ent | t emAugnent Adapt er augments content items with front-end application information, such as
a user's search and navigation state. As a result, the response content item returned from an assenbl e() call
includes cartridge logging information.

<bean cl ass="com endeca. i nfront. assenbl er. event. request. Cont ent | t emAugnent Adapt er" >

88 3 Developing an Assembler Application

</ bean>

Instantiating a LogServerAdapter
The LogSer ver Adapt er logs server-side information. You specify the following properties:
+ Log server host
* Log server port
+ SSL Enabled (optional)

In the Spring implementation, it is configured in the assenbl er - cont ext . xm file as follows:

<bean cl ass="com endeca. i nfront. navi gati on. event. LogServer Adapt er" >
<property nanme="|ogServerHost" val ue="${l ogserver. host}"/>
<property nanme="|ogServerPort" val ue="${l ogserver.port}"/>
<property nane="i sSsl Enabl ed" val ue="${| ogserver. ssl Enabl ed}"/>
</ bean>

Dgraph request logs

The following Dgraph request log shows the request component (reqcom), session ID (sid) , and request ID (rid)
information:

1402522721112 127.0.0.1 - 3 8357 3.13 2.82 200 5684 0 1 /graph?

node=0&of f set =0&nbi ns=0&I og=r eqcon?@dcont ent Request Br oker ¥%26si d

%38dDD2 CAF659BE6 CFDFFDED091F69037113%26r i d%8d140252272098164091&i r ver si on=640 - Accept
YBA+YR AYR FYR AYODYO APr agma%8A+no%2Dcache%®DYOACache¥2DCont r ol ¥8A+no%@2Dcache¥®DYOAUser
9%2DAgent ¥8A+Java%RF19%R2E7YR2E0Y%G F25%0 DYOAHost ¥8A+| ocal host ¥8A15000%0D¥OAConnect i on¥3A
+keep%2Dal i veYODYOA

The request component is the class that made the MDEX Engine query.
Customizing logging information

All key-value pairs in com endeca. i nfront . assenbl er. event . request . MlexQuer yl nf o are logged to the
Dgraph response log. You can extend MiexQuer yl nf ol ni ti al i zer and add the desired key-value pairs. For
example:

public class CustomWexQuerylnfolnitializer extends MiexQuerylnfolnitializer {
public CustomvexQuerylnfolnitializer() {
super () ;
}
public void assenblyStarting(Assenbl er Event event) {
super. assenbl yStarting(event);
String custonkKey = "CUSTOM KEY";
String custonVal ue = " CUSTOM VALUE";
/1 Get the MlexQuerylnfo associated with the current assenbl er request
MiexQueryl nfo info = MlexQueryl nf oFact ory. get MlexQueryl nfo();
//Store the custominfornation
i nf o. put (custonKey , custonVal ue);

3 Developing an Assembler Application 89

Customizing session ID information

Depending on the information you wish to include in a session ID object, you can create a custom
implementation of the Sessi onl dPr ovi der interface. For additional information, refer to the Assembler API
Reference (Javadoc).

Customizing request ID information

Depending on the information you wish to include in a request ID object, you can create a custom
implementation of the Request | dPr ovi der interface. For additional information, refer to the Assembler AP/
Reference (Javadoc).

Configuring the Log4J logger

The logging implementation in the Discover Electronics reference application uses the Log4J logger. Log level
settings are configurable through the properties file located at Tool sAndFr amewor ks\ <ver si on>\r ef er ence
\ di scover - el ectroni cs-[authoring|live]\WEB_I NF\ cl asses\ | og4j . properti es.If you choose to
use this implementation in your own application, you can configure the log level by opening the corresponding
file.

Locate and uncomment the following line:

Uncomment to see Oracle Commerce Assenbl er debug info.
1 0g4j .| ogger.com endeca. i nfront.| ogger =DEBUG

At the DEBUG level, Assembler and cartridge handler entrances and exits are logged, although the details of the
navigation context passed in to the cartridge handler do not appear.

Configuring logging for custom events
You can create custom cartridge handlers to collect and act on any information that is important to your
application.

About request events
Each invocation of the Assembler creates an associated Request Event object that tracks request information.
Information on a Request Event is stored as key/value pairs. You can include arbitrary information about an

Assembler request by extending the Request Event object in a cartridge handler's pr ocess method. For
example:

/**
* Cartridge Handl er process nethod
*/
public void process(ConfigType pContent Type) {

/1 Create a new Request Event from the gl obal Request Event obj ect
Request Event event = Request Event Factory. get Event();

/] Store arbitrary infornation

20 3 Developing an Assembler Application

event. put ("nmyKey","my arbitrary val ue");

The Navi gat i onEvent W apper class

The Navi gat i onEvent W apper class provides convenience methods for getting and setting common search
and navigation information about a request event. It modifies the Request Event object specified in the
constructor, as in the example below:

/)\')\'
* Cartridge Handl er process nethod
*/
public void process(ConfigType pContent Type) {

/1 Create a new Navigati onEvent Wapper around the gl obal RequestEvent object
Navi gat i onEvent W apper navi gati onEvent = new
Navi gat i onEvent W apper (Request Event Fact ory. get Event ());

/1 Store navigation event infornation
navi gat i onEvent . set Aut ocorrect To("aut ocorrected terni);

For additional information about the Request Event and Navi gat i onEvent W apper classes, including a full
list of the convenience methods available for the Navi gat i onEvent W apper, see the Assembler APl Reference
(Javadoc).

About request event adapters
Request event adapter classes perform some action based on information included with a request event.

A request event adapter class implements the handl eAssenbl er Request () method in the abstract
Request Event Li st ener class. This method is invoked at the end of the Assembler's assenbl e() method.

The following is an example of a simple request event adapter:

/**
* Add log information to root content item
*/
public class Sanpl eRequest Event Adapt er extends Request EventLi stener {

| **

* Constructor
* @aram sessi onl dProvi der provides an ID for the current user session

*/
publ i ¢ Sanpl eRequest Event Adapter () {
super () ;
}
/**

* Prints the request event's session id, request id, and search term (if present)
to the console

3 Developing an Assembler Application 91

* @aram assenbl er Request Event the event containing all of the
* information about the Assenbl er request
* @aramrootContentltemthe Assenbl er out put
*/
publ i c void handl eAssenbl er Request Event (Request Event event, Contentltem
rootContentlten) {
Navi gat i onEvent W apper navi gati onEvent = new
Navi gat i onEvent W apper (assenbl er Request Event) ;
/1 Print Session ID - Note that the session Id has already been deternined and
set in the event object
Systemout. println("The current session is: "+event.getSessionld());
/1 Print Request ID - Note that the request Id has already been determ ned and
set in the event object
Systemout. println("The request IDis: "+event.getRequestld());
/1 Print Search Term
if (navigationEvent. getSearchTerns() != null && !
navi gati onEvent. get SearchTernms().trin().isEnpty()) {
Systemout.println("The current search terns are:
"+navi gati onEvent . get SearchTerns());
} else {
Systemout.println("There were no search terns in the current request");

}

The SessionldProvider interface

The example request event adapter registers an implementation of Sessi onl dPr ovi der in the constructor.
This enables it to retrieve the server session ID.

The Tools and Frameworks installation implements this interface in the included Spri ngUti | i ty class.
You can create your own Sessi onl dPr ovi der class by extending the Sessi onl dPr ovi der interface and
implementing the get Sessi onl D() method.

The RequestldProvider interface

The example request event adapter registers an implementation of Request | dPr ovi der in the constructor.
This enables it to retrieve the request ID.

The Tools and Frameworks installation implements this interface in the included Spri ngUti | i ty class. You can
create your own Request | dPr ovi der class by extending the Rquest | dPr ovi der interface and implementing
the get Request | D() method.

Request event adapters in the reference application

The Discover Electronics reference application includes the following implementations of the
Assenbl er Event Li st ener interface:

+ AssemblerEventAdapter

+ ContentltemAugmentAdapter
» LogServerAdapter

* RequestEventListener

For additional information about these classes, see the Assembler APl Reference (Javadoc).

92

3 Developing an Assembler Application

About registering a request event adapter

To use a request event adapter, you must register it with your Assenbl er Fact ory.

You can disable request event adapters by removing them from the Assenbl er Fact or y configuration.
Request event adapter configuration in the reference application

In the reference application, the Assenbl er Fact or y interface is implemented as Spri ngAssenbl er Fact ory,

and the Assenbl er Event Li st ener objects are specified as constructor arguments in the Assembler context
file:

<l--
T MG N I G R G A G I G I B G B M
ASSEMBLER FACTORY
#
Required
#
-->
<bean i d="assenbl er Fact ory"
cl ass="com endeca. i nfront. assenbl er. spri ng. Spri ngAssenbl er Fact ory"
scope="si ngl et on" >
<constructor - ar g>
<bean cl ass="com endeca. i nfront. assenbl er. Assenbl er Setti ngs">
<property nane="previ ewkEnabl ed" val ue="${previ ew. enabl ed}" />
<property nanme="previ ewbdul eUr|" val ue="http://${wor kbench. host}:
${wor kbench. port}/ifcr" />
</ bean>
</ constructor-arg>
<constructor-arg>
<list>
<bean cl ass="com endeca. i nfront.| ogger. SLF4JAssenbl er Event Logger" />
<bean
cl ass="com endeca. i nfront. assenbl er. event. request. Request EventInitializer">
<property name="sessionl dProvider" ref="springUility"/>
<property nanme="request!|dProvider" ref="springUility"/>
</ bean>
<bean
cl ass="com endeca. i nfront. navi gati on. event. MlexQuerylnfolnitializer">
</ bean>
<bean
cl ass="com endeca. i nfront. assenbl er. event.request. Cont ent | t emAugment Adapt er " >
</ bean>
<l-- Renove the following lines to disable logging to an Oracle Endeca Log
Server -->
<bean cl ass="com endeca. i nfront. navi gati on. event. LogSer ver Adapt er" >
<property nanme="|ogServerHost" val ue="${l ogserver. host}"/>
<property nanme="| ogServerPort" val ue="${l ogserver.port}"/>
<property nanme="isSsl Enabl ed" val ue="${| ogserver. ssl Enabl ed}"/ >

</ bean>
</list>
</ constructor-arg>

</ bean>

Request event adapters in the reference application

The Discover Electronics reference application includes two request event adapters,
Cont ent | t emAugnent Adapt er and LogSer ver Adapat er.

3 Developing an Assembler Application 93

Adapter Description

com endeca. i nfront. assenbl er. r equest . Cont enAppemésgeguesoamnrdinformation to the Content
Item returned by the assenbl e() method.
Information is included as a nested Content Item

of type Assenbl er Request Event , with the key
endeca: assenbl er Request | nf or mati on.Fora
list of attributes that are available out-of-the-box, see
Request Event Attributes (page 327).

com endeca. i nfront. navi gati on. event . LogSer|vEokdats @ata from the request event and sends it to
the Log Server, which enables Workbench users to
generate reports using the Report Generator.

The adapter must be configured with the host and
port of the log server. In the reference application,
these values are configured in the VEB- | NF

\ assenbl er. properti es file.

Client side click events

The Oracle log server tracks the following click events from the client side of an Assembler application:

Attribute Key Type Description

IN_DIM_SEARCH | Bool ean | Did the user select a dimension search result.

IN_DYM Bool ean | Did the user select the "did-you-mean" value.
IN_MERCH Bool ean | Did the user select a merch rule (spotlight).
CONVERTED Bool ean | Did an action cause a conversion.

You can include the information collected from these events in your application reports. For more information
about the Log Server and Report Generator components, refer to the Platform Services Log Server and Report
Generator Guide.

94 3 Developing an Assembler Application

Configuring cartridge performance logging

The Assembler tracks performance statistics for registered events; this information is available from the
administrative servlet at ht t p: / / <wor kbench host >: <wor kbench port >/ <appl i cati on>/ adni n using
the / adni n?op=st at s operation.

For example, you can view the performance statistics for the default Discover Electronics application by
navigatingto htt p: / /| ocal host : 8006/ di scover - aut hor i ng/ adni n?op=st at s. For more information
about the administrative servlet, see the Oracle Commerce Administrator's Guide.

Performance logging is enabled for the core cartridges included with Tools and Frameworks. If you create a
custom cartridge handler and wish to track its processing time, you must use the staticPer f Uti | . start ()
method to create a corresponding Event .

Example 3.4. Example

For example:

Event event = PerfUtil.start("com exanpl e. d assNane_M/Met hod");
try {

/* cartridge handler logic */

event . succeed();

} finally {
event. faillfNotConpl eted();
}

Note

AcalltoPerfUtil.start mustinclude a corresponding call to either the Event . succeed()
orEvent . fai | () method of the returned Event instance. Oracle recommends using the
Event . fail | f Not Conpl et ed() helper method withinafi nal | y{} block to ensure proper
resolution.

For more information about the com endeca. i nfront . perf package, see the Assembler APl Reference
(Javadoc).

Debugging MDEX Engine query results

The MDEX Engine provides several methods for understanding why certain results were returned for a query so
that you can determine how to tune search features to provide the desired results.

Query debugging features

The MDEX Engine query debugging features include Why Match, Word Interpretation, Why Rank, and Why
Precedence Rule Fired. Each feature provides information about a different aspect of search results.

Feature Description

Why Match Augments record results with information about which record properties
were involved in search matching.

3 Developing an Assembler Application 95

Feature Description

Why Rank Augments record results with information about which relevance ranking
modules ordered the results and why a particular record was ranked in the
way that it was.

Why Precedence Rule Fired Augments root dimension values with information about how the
precedence rule was triggered (explicitly or implicitly), which dimension ID
and name triggered the precedence rule, and the type of precedence rule
(standard, leaf, or default).

Word Interpretation Reports word or phrase substitutions made during text search processing
due to stemming, thesaurus expansion, or spelling correction.

Enabling query debugging features

You enable the query debugging features on an Assembler application via the debugEnabl ed constructor
argument on your MiexRequest Br oker object. In the Discover Electronics reference application, this is
configured in the MDEX Resource section of the Spring context file for the Assembler.

When debugEnabl ed is set to t r ue, it enables query debugging features to be applied to an Assembler
request. When set to f al se, debugging features are turned off for every request. Debugging features are
disabled by default.

In addition to the corresponding object configuration, Word Interpretation must be enabled via the - -
wor dI nt er p Dgraph flag.

The following shows the default MDEX resource configuration in the Discover Electronics application:

<bean i d="ndexRequest Bui | der" scope="request"
cl ass="com endeca. i nfront. navi gati on. request. MlexRequest Br oker" >
<constructor-arg ref="nlexResource" />
<!-- Debug Enabl ed Paraneter. \Wen set to true, allows debug information to be
returned fromthe Assenbler -->
<constructor-arg val ue="fal se"/>
</ bean>

URL parameters for query debugging features

All query debugging features except for Word Interpretation may be enabled on a per-query basis via URL
parameters.

The following parameters take a value of 1 (for enabled) or 0 (for disabled):
* whymat ch

* whyrank

» whyprecedencerul efired

The Word Interpretation feature can only be enabled at the level of an individual cartridge handler.

96 3 Developing an Assembler Application

Note

If the debug constructor argument on the MDEX resource bean is set to f al se, all debugging features
are disabled on every request regardless of URL parameters.

Query debugging results in the reference application

In Discover Electronics, the results of query debugging can be returned as part of the response model for the
Results List, Search Adjustments, and Refinement Menu cartridges as appropriate. In the Discover Electronics
reference application, these results can be enabled by removing comments from the corresponding properties

in each cartridge handler.

The debugging results are returned as properties on returned records:

Feature Results
Why Match Returns information about why each record matched the query in a
Dgr aph. \hy Mat ch property on the record.
Why Rank Returns information about why each record was ranked the way it was in a

Dgr aph. WhyRank property on the record.

Why Precedence Rule Fired

Returns information about precedence rules that fired on a query in a
DG aph. \hyPr ecedenceRul eFi r ed property on each root dimension
value.

Word Interpretation

Returns information about word or phrase substitutions as a map that can be
accessed viaget I nt er pret edTer ns() on the Sear chAdj ust ment s model.

For details about the format of the debugging results, refer to the MDEX Engine Developer's Guide.

Note

The renderers in the Discover Electronics application do not include rendering logic to display the
query debugging properties, but the information is available from the JSON or XML view.

The relevant configuration for the individual cartridge handlers in the Discover Electronics reference application

is shown below:

* Results List — Why Match, Why Rank

<bean cl ass="com endeca.infront.cartridge. Resul tsListConfig" scope="singleton">

<!-- <property name="whyMat chEnabl ed" val ue="true"/> -->
<l-- <property nane="whyRankEnabl ed" val ue="true"/> -->
<!-- additional elements omtted fromthis exanple -->
</ bean>

Enabling these settings overrides the default values specified for the set WhyMat chEnabl ed and
set WhyRankEnabl ed methods on the com endeca. i nfront. cartri dge. Resul t sLi st Confi g object
when the Tools Service is initialized.

+ Refinement Menu — Why Precedence Rule Fired

3 Developing an Assembler Application

97

<bean cl ass="com endeca.infront.cartridge. Refi nement MenuConfi g" scope="singl eton">

<property name="norelLi nkText" val ue="Mre..."/>
<I-- <property name="whyPrecedenceRul eFired" val ue="true"/> -->
</ bean>

Enabling this setting overrides the default value specified for the set WhyPr ecedenceRul eFi r ed method
onthecom endeca. i nfront. cartridge. Refi nement MenuConf i g object when the Tools Service is
initialized.

Search Adjustments — Word Interpretation

<bean cl ass="com endeca. i nfront.cartridge. Sear chAdj ust nent sConfi g" scope="si ngl eton">
<l-- <property nane="showwordl nterp" value="true"/> -->
</ bean>

Enabling this setting overrides the default value specified for the set Showér dI nt er p method on the
com endeca. i nfront. cartri dge. Sear chAdj ust ment sConf i g object when the Tools Service is
initialized.

98

3 Developing an Assembler Application

4 Optimizing Application URLs

This part provides information on optimizing application URLs.

About the URL optimization classes

This section provides an introduction to the URL optimization classes in the Assembler API.

Related links

« Optimizing Application URLs (page 99)

» Package contents (page 99)

+ Introduction to URL optimization (page 99)

« Overview of URL optimization capabilities (page 100)

+ URL canonicalization (page 101)

Package contents

The com endeca. sol eng. ur| f or mat t er package within Tool sAndFr anmewor ks\ <ver si on>\ assenbl er
\1i b\ endeca_assenbl er - <ver si on>. j ar contains the classes and dependencies necessary for generating
optimized URLs and canoncial links in your application.

To enable the API for the Discover Electronics reference application, the endeca_assenbl er - <ver si on>. j ar
file is also included under the Tool sAndFr amewor ks\ <ver si on>\r ef er ence\ di scover - el ectroni cs-
aut hori ng\ VEB- | NF\ | i b directory.

Introduction to URL optimization

Dynamically created URLs that are composed of meaningless, randomly generated strings can lower your site's
search engine ranking and make it harder for users to recognize your site. The Assembler APl includes classes
that enable you to create site links using directory-style URLs. These URLs include keywords and store the
dynamic information in the base URL rather than in the query string.

The resulting URLs do not contain any URL query parameters. Instead, all of the necessary values are stored in
the URL path, resulting in search engine-friendly URLs.

4 Optimizing Application URLs 929

Note

The examples in this guide assume a sample Web application runningon htt p: / /| ocal host : 8888
against a wine data set.

Overview of URL optimization capabilities

The URL optimization classes are designed to increase your search engine rankings by enabling you to create
search engine-friendly URLs.

Integration of keywords into the URL string

Many search engines evaluate URL strings as part of their relevancy ranking strategy. Generating URLs that
include keywords can increase your natural search engine ranking as well as create visitor-friendly URLs that are
easier for front-end users to understand.

Using the URL optimization classes, you can configure the following strings to appear in the URL:
» Dimensions

+ Dimension values

» Dimension ancestors

* Record properties

+ Text search queries

For example, the base URL for a Merlot page in a wine application configured to include ancestors in the string
could appear as:

http://1 ocal host/ Cont ent Assenbl er Ref App/ Cont ent . aspx/ W ne- Red- Mer | ot /

The optimized URL is more comprehensible to users and more search-engine friendly than the traditional URL,
which contains no keywords:

http://1 ocal host: 8888/ endeca_j spref/controller.jsp?
si d=122C7EA4C912&Ne=6200&enePor t =15000&eneHost =| ocal host &\=8025

Canonicalizing the URL string

Dynamic sites often produce syntactically different URLs for the same page. Multiple variant URLs result in
duplicate content and lower search engine ranking.

For example, users might be able to reach a Napa white wine page by first clicking on “Napa” and then clicking
on “White”, or by first clicking on “White” and then “Napa.” This creates two syntactically unique links pointing to
the same Napa White page:

* http://1ocal host:8888/url formatter_jspref/controller/ W ne-Wite/Region-Gernmany/ _/
N 1z141vcZ66t

* http://local host: 8888/ url formatter_jspref/controller/ Regi on-Germany/ Wne-Wite/ _/
N-1z141vcZ66t

To ensure that only one version of the URL per page is used in links throughout the site, the
com endeca. sol eng. url formatter . NavStateCanonicalizer interface provides options for creating a
single "canonical" URL for a given location.

100

4 Optimizing Application URLs

Configuring the word separator string

It is possible to customize the word separator for each keyword string in the URLs. By default, the word separator
is the dash character "-":

http://1ocal host: 8888/ url formatter_jspref/controller/ W ne-Wite/Region-CGernmany/_/
N-1z141vcZ66t

Moving URL parameters out of the query string

In order to create directory-style URLs, you can limit the number of parameters in the query string by moving
them from the query string and into the path-params section of the URL.

For example, the following URL has the parameters N, Nt k, Nt t , and Nt x in the query string:

http://1 ocal host/ Cont ent Assenbl er Ref App/ Cont ent . aspx/ Bor deaux?
N=4294966952&f r onsear ch=f al se&Nt k=Al | &\t t =r ed&\t x=rode%2bmat chal | parti al

To optimize the URL, you can move parameters into the path-params section of the URL. For example, the
following URL includes the Nand Nt t parameters in the base URL:

http://1 ocal host/ Cont ent Assenbl er Ref App/ Cont ent . aspx/ Bor deaux/ _/ N- 4294966952/ Nt t - red?
fromsear ch=f al se&N\t k=Al | &\t x=rrode%2bmat chal | parti al

Encoding Parameters
In order to shorten URLs, the URL optimization classes allow base-36 encoding of parameters.
For example, the following URL for Vintage > 1996 contains the dimension value ID for 1996 (4294962059):
http://1 ocal host/ Cont ent Assenbl er Ref App/ Cont ent . aspx/ _/ N- 4294962059
By base-36 encoding the N parameter, you can shorten the URL:

http://1 ocal host/ Cont ent Assenbl er Ref App/ Cont ent . aspx/ _/ N-1z213xxn

URL canonicalization

Dynamic sites often produce syntactically different URLs for the same page. Multiple variant URLs can lower
the search engine ranking of a page. Canonicalizing URLs reduces the duplicate content and improves search
engine ranking.

Many search engines base their relevancy ranking algorithms on the number and quality of links that point
to a particular page. The more links there are that point to a particular page, the higher the page rank. Multiple
URLs generated by a dynamic site can lower the ranking of a page because, to the search engine, each version of
the URL appears to point to a different page.

For example, users might be able to reach a Napa Red wine page by first clicking on “Napa” and then clicking on
“Red”, or by first clicking on “Red” and then “Napa.” This creates two syntactically unique links pointing to the
same Napa Red page:

* http://1ocal host:8888/url formatter_jspref/controller/ W ne-Red/ Regi on- Napa/ _/
N-1z141vcZ66t

* http://1ocal host:8888/url formatter_jspref/controller/Regi on- Napa/ W ne- Red/ _/
N-1z141vcZ66t

To the search engine, each version of the URL appears to be its own unique page with identical or near-identical
content, and each page takes a portion of the link references.

4 Optimizing Application URLs 101

To improve quality, search engines try to minimize the appearance of largely similar pages within results sets.
Among other strategies, all indexed pages are evaluated for duplicates and near-duplicates before a page is
selected to be displayed in the search results. In the case of the Napa Red page, only one of the two URLs would
be selected -- and therefore only half of the link references are evaluated. This link dilution of the Napa Red page
may result in a lower position within search results. Multiple parameters in URLs have the same effect.

In order to avoid multiple versions of URLs per page, links throughout the site should be standardized
(canonicalized), and requests for a non-standard version of the URL should be redirected to the canonical
version via a "301" (permanent) redirect.

By design, the URL optimization classes prevent the creation of syntactically different URLs by canonicalizing
keywords, ensuring that equivalent pages have URLs with the same syntax even if they can be navigated to
through different paths. You can choose from a number of configuration options to control the arrangement of
keywords. For example, you can configure your Ur | For nat t er object to arrange dimensions alphabetically in
an ascending order:

* http://1ocal host:8888/url formatter_jspref/controller/Regi on- Napa/ W ne- Red/ _/
N-1z141vcZ66t

Now even if a user navigates to "Red" before "Napa", the link still appears as / Regi on- Napa/ W ne- Red.
Related links

+ Canonicalization configuration options (page 133)

Working with Application URLs

Each of the user-facing pages in an Assembler application exists as a page with a corresponding navigation or
record state; the combination of the page and its state results in a specific set of results or a set of record details.
The Assembler APl includes an Act i on class for storing these URL components and returning them as part of
the output model produced by a cartridge handler.

Related links

« Optimizing Application URLs (page 99)

+ About application URLs (page 102)

+ About Actions (page 103)

« Working with URL parameters (page 107)

+ URL configuration in the reference application (page 108)

+ About working with canonical links (page 112)

About application URLs

Features in a front-end application can provide one or more links to other locations within a site. The
information required for constructing these links is provided on the cartridge response model as an Act i on
object that includes the components of a destination URL.

102

4 Optimizing Application URLs

For example, a dimension refinement in a Refinement Menu cartridge has an associated action to select the
refinement and add it to the end user's navigation state. A record in a Results List cartridge has an action to view
the corresponding record detail page.

The Assembler APl includes an Act i onPat hPr ovi der interface that returns components of an application
URL. For the Discover Electronics reference application, an implementation of this interface is configured in the
Navi gati onCartri dgeHandl er.

Cartridge handlers in the reference application use this implementation to create Navi gat i onAct i on paths
to a certain navigation state (like the modified navigation state created when a user selects a dimension
refinement), or Recor dAct i on paths to specified records (such as a record select from the results list).

About Actions

An Act i on object allows you to construct a link that represents a decision by an end user. The included fields
and values depend on the action that the user wishes to take; they can include the action label, the root site
path, the path to the destination content within the site, and the site state.

The Act i on class does not include a complete URL to the resulting navigation state or record; instead, the URL
resulting from an Action is generally created by combining fields. For details, see "Action fields."

The Assembler splits the class into three subclasses:

» Navi gati onActi on — An Action that represents changing the current navigation state, such as
through a search query or the addition of a dimension refinement. For example, the "See All" link on a
Recor dSpot | i ght object includes a Navi gat i onAct i on for navigating to the refinement state represented
by the spotlight.

+ RecordActi on — An Action that represents selecting a record or aggregate record. The individual records in
aRecordSpot | i ght each include a Recor dAct i on for selecting that record.

+ Url Acti on — An Action that represents following an arbitrary URL. The Media Banner cartridge includes a
Ur | Act i on for URLs that are manually specified in Experience Manager.

Note

For information about the Actions associated with each output model, refer to the Assembler API
Reference (Javadoc) for the corresponding class.

Action fields

All Actions include the following fields:

Field Description

Label The label that displays to the application end-user for the specified action. For example,
you might set this to a product name for a link from a results list to a record detail page, or
it you might set it to a dimension refinement name when displaying a breadcrumb with an
associated Action to remove the refinement and adjust the user's navigation state.

Site root path The path that identifies the EAC application associated with the Action, such as/ si t es/
Di scover.

4 Optimizing Application URLs 103

Field Description

Content path The path that identifies the content associated with the Action within the containing
site. In the Discover Electronics reference application, this is the servlet that handles the
specified content type, such as/ browse or/ det ai | .

Site state Site State is an object that contains the si t el d, mat chedUr | Pat t er n, and cont ent Pat h
used to query the Assembler.

Additionally, certain types of Actions may include additional fields. A Navi gat i onAct i on includes a field for the
navigation state represented by the Action, while a Recor dAct i on action includes a field for the corresponding
record state.

Using action fields

To construct a useable link from an Action, the Ul tier of your application (the cartridge renderers in the Discover
Electronics reference application) must include logic for combining the Action fields. A typical use case consists
of directly concatenating fields, depending on the type of page you wish to link to.

In the reference application, a link to a navigation state typically combines the content path and the desired
navigation state:

String href = action. getContentPath() + action.getNavigationState();

A link to a record details page combines the content path with the appropriate record state:

String href = action.getContentPath() + action.getRecordState();

In an application with multiple sites where your site definition specifies URL pattern matching, a link to a
navigation state combines the site state, the content path and the desired navigation state. In this example,
get Mat chedUr | Pat t er n returns the portion of URL from the incoming request that matches with a pattern
configured on a site.

String href = action.getSiteState().getMatchedUrl Pattern() + action.getContentPath() +
action. get Navi gationState();

If the site definition in this application specifies domain pattern matching, then the link would be:

String href = action. getContentPath() + action.getNavigationState();

If it matches a domain pattern, get Mat chedUr | Pat t er n() is blank so you can use the following for either
domain or URL pattern matching:

String href = action.getSiteState().getMatchedU |l Pattern() + action.getContentPath() +
action. get Navi gati onState();

This does not handle the case where the site ID is passed, such as preview passing the site ID. To handle all these
cases, you can add com endeca. i nfront.site. Siteltils.getSiteUrl toreturn a site-specific URL.

104

4 Optimizing Application URLs

For example:

SiteUtils.getSiteUrl (action.getSiteState(), action.getContentPath() +
action. get Navi gati onState())

Functi onTags also hasaget Si t eUr | method so you can call this from a JSP file as well. For example, in the
user Panel . j spfile:

<a href="<c:url value="${util:getSiteUrl (siteState, '/about-us')}" /> >
About Us
</ a>

A link to an arbitrary URL does not require combining fields, since the Ur | Act i on object includes a method for
directly retrieving a configured URL:

String href = action.getUrl ();

Most of the Discover Electronics cartridge renderers use the <di scover : | i nk> tag, defined in VEB- | NF
\tags\ di scover\ i nk.tag.The tag makes use of the get Ur | For Act i on function declared in VEB- | NF
\tlds\functions.tldanddefinedinWEB- | NF\ cl asses\ com endeca\ i nfront\refapp\ support

\ Functi onTags. j ava.

About using Actions with the packaged services
The packaged services in Oracle Tools and Frameworks return specific actions for the included cartridges.

The following is an Experience Manager example of the results of a guided search service query for the URI
http://1 ocal host: 8006/ assenbl er - aut hori ng/j son/ servi ces/ gui dedsear ch?Nt t =pi nk+caner a,
serialized to JSON:

"@ype": "Qui dedSearchService",
"name": "Cui ded Search Service",
"navigation": { ..},
"breadcrunbs": { ...},
"resultsList": {
"@ype": "Resul tsList",
"total NunRecs": 228,
"sortOptions": [
{
"@l ass":"com endeca.infront.cartridge. nodel . Sort Opti onLabel ",
"sel ected":true,
"navi gati onState": " ?Nt t =pi nk+canera",
"content Pat h": "\ /services\/gui dedsearch",
"siteRoot Path":"\/ pages",
"siteState":{
"@l ass":"com endeca.infront.site.nodel.SiteState",
"content Path": "\ /services\/gui dedsearch",
"siteld":"\/ D scoverEl ectronics",
"properties":{
}
H
"| abel ": " Rel evance"

h

4 Optimizing Application URLs 105

{ ..}
1.
"firstRecNun': 1,
"l ast RecNuni': 12,

"pagi ngActionTenplate": { ... },
"recsPer Page": 12,
"records": [

{

"@l ass":"com endeca.infront.cartridge. nodel . Record",
"detail sAction":{
"@l ass":"com endeca.infront.cartridge. nodel . Recor dActi on",
"recordState":"\/Canon\/Digital -1 XUS-80-1S\/_\/A-1439032",
"contentPath":"\/services\/recorddetails",
"siteRoot Path":"\/pages",
"siteState":{
"@l ass":"com endeca.infront.site.nodel.SiteState",
"content Pat h": "\ /services\/gui dedsearch",
"siteld":"\/D scoverEl ectronics",
"properties":{
}
}
H
"nunRecords": 3,
"attributes":{},
"records":[...]
H
{ content renoved fromthis exanple }
]
H

"content renpoved fromthis exanple"

Note that the sor t Opt i ons returned for the Results List cartridge include the Action fields required to
create a URL for the navigation state resulting from modifying the sort order. Sorting by Price (Ascending)
requires constructing a URL with the appropriate navi gati onSt at e and si t eSt at e, resultinginht tp: //
| ocal host : 8006/ assenbl er - aut hori ng/ j son/ servi ces/ gui dedsear ch?Ns=pr oduct . pri ce|
0&Nt t =pi nk+camer a. Querying this URL returns the JSON response for the re-ordered results.

Similarly, each of the records returned in the Results List includes the Action fields for an associated record
details page. Using the / ser vi ces/ r ecor ddet ai | s content root and the r ecor dSt at e for the Slim

Camera Case resultsinthe URL ht t p: / /| ocal host : 8006/ assenbl er - aut hori ng/ j son/ servi ces/

recor ddet ai | s/ Kodak/ Sl i m Caner a- Case/ _/ A- 2707821. Querying this URL returns the record details for
the Slim Camera Case.

The following is an Oracle Commerce Guided Search (without Experience Manager) example of the results of
the same guided search service query for the URIht t p: / /| ocal host : 8006/ assenbl er - aut hori ng/ j son/
servi ces/ gui dedsear ch?Nt t =pi nk+camer a, serialized to JSON:

"@ype": "CQui dedSearchService",
"name": "Qui ded Search Service",
"navigation": { ..},
"breadcrunbs": { ...},
"resultsList": {
"@ype":"Resul tsList",
"total NunRecs": 228,
"sortOptions":[

{

106 4 Optimizing Application URLs

"@l ass":"com endeca.infront.cartridge. nodel . Sort Opti onLabel ",
"sel ected":true,
"navi gati onState":"?Nt t =pi nk+canera",
"cont ent Pat h": "\ / gui dedsearch",
"siteRoot Path":"\/services",
"siteState":{
"@l ass":"com endeca.infront.site.nodel.SiteState",
"content Pat h": "\ /gui dedsearch",
"siteld":"\/ D scoverEl ectronics",
"properties":{

}
H
"l abel ": " Rel evance"

H

{ ...}
I
"firstRecNum': 1,
"l ast RecNuni': 12,
"pagi ngActi onTenpl ate":{ ... },
"recsPer Page": 12,
"records": [

{

"@l ass":"com endeca.infront.cartridge. nodel . Record",
"detail sAction":{
"@l ass":"com endeca.infront.cartridge. nodel . Recor dActi on",
"recordState":"\/Canon\/Digital -1 XUS-80-1S\/_\/A-1439032",
"contentPath":"\/recorddetail s",
"siteRootPath":"\/services",
"siteState":{
"@l ass":"com endeca.infront.site.nodel.SiteState",
"content Pat h": "\ /gui dedsearch",
"siteld":"\/DiscoverEl ectronics",
"properties":{
}
}
3
"nunRecords": 3,
"attributes":{},
"records":[...]
H
{ content renoved fromthis exanple }
]
H

"content renmoved fromthis exanple"

Note the differences from the Experience Manager example for the cont ent Pat h and si t eRoot Pat h values.

Working with URL parameters

The navi gat i onSt at eBui | der handles both Oracle-specific and non-Oracle URL parameters.

All URL parameters are parsed into the parameters map in the Navi gat i onSt at e object that represents the
user's current navigation state. Oracle-specific parameters are used in constructing MDEX Engine queries. All
other parameters are included in the navigation state or record state fields on the Action object in the output

model. You can change this default behavior by specifying which parameters to remove when generating
Actions:

4 Optimizing Application URLs 107

URL configuration in the reference application

Property

r enoveAl ways

removeOnUpdat eFi l ter State

renmoveOnCl earFilterState

Description

A list of URL parameters that should be removed
from all Actions.

A list of URL parameters that should be removed
from an Action when the Action represents a change
in the filter (search or navigation) state.

A list of URL parameters that should be removed
from an Action when the user clears the filter state of
all search and navigation selections.

URL configuration in the Discover Electronics reference application is located in the Assembler context file, WEB-
I NF\ assenbl er - cont ext . xm . Configuration is divided between the navi gat i onSt at eBui | der and the

Navi gati onCartri dgeHandl er.

The configuration for the navi gat i onSt at eBui | der specifies aur | For mat t er to use when serializing a

Navi gati onSt at e:

<l--

~ Navi gation state (including record state) and related config

-->

<bean i d="navi gati onSt at eBui | der" scope="request"
cl ass="com endeca. i nfront. navi gati on. url . Url Navi gati onSt at eBui | der" >

<property nanme="url Formatter"

ref="seolr| Formatter" />

<property nanme="ndexRequest Broker" ref="ndexRequest Broker"/>
<property name="def aul t Sear chKey" val ue="AIl" />

<property nanme="def aul t Mat chMbde"
<property nane="defaul tFilterState"

val ue="ALLPARTI AL" />
ref="defaultFilterState"/>

<l-- Filter state properties renoved fromthis exanple -->

</ property>

Note

The seoUr | For mat t er bean is defined in the imported endeca- seo- ur| - confi g file.

Configuring URL parameters

The configuration for the navi gat i onSt at eBui | der also lets you specify the URL parameters to remove from
the request URL when serializing a Navi gat i onSt at e or Recor dSt at e:

<property nanme="renoveAl ways" >

<list>

<val ue>cont ent Text </ val ue>
<val ue>Nt y</ val ue>

<val ue>Dy</ val ue>

<val ue>col | ecti on</val ue>

108

4 Optimizing Application URLs

</[list>
</ property>
<property nanme="renpveOnUpdateFilterState">

<list>
<val ue>No</ val ue>
</list>

</ property>
<property name="renoveOnC earFilterState">
<list>
<val ue>Ns</ val ue>
<val ue>Nr pp</ val ue>
<val ue>nor e</ val ue>
</list>
</ property>
</ bean>

Configuration for navigation and record paths

The content paths that prefix navigation and record states when creating Action URLs are configured in the
act i onPat hPr ovi der of the Navi gati onCartri dgeHandl er as sets of key-value pairs:

<bean i d="Navi gationCartridgeHandl er" abstract="true">
<property nane="navi gationState" ref="navigationState" />
<property nanme="ndexRequest Broker" ref="ndexRequest Broker" />
<property nane="acti onPat hProvi der" ref="actionPathProvider"/>
<property nane="siteState" ref="siteState"/>
<property nanme="user State" ref="${user.state.ref}"/>
<bean i d="acti onPat hProvi der" scope="request"
cl ass="com endeca. i nfront. ref app. navi gati on. Basi cActi onPat hProvi der" >
<constructor-arg index="0" ref="content Source"/>
<constructor-arg i ndex="1" ref="httpServl et Request"/>
<!-- pavigationActionUiMp -->
<constructor-arg index="2">
<map>
<entry key=""/pages/[~/]*/nobile/detail $"val ue="/nobil e/ browse"/>
<entry key=""/pages/[~/]*/services/recorddetails/.*$"val ue="/services/
gui dedsearch"/>
<entry key=""/pages/[~/]*/detail $"val ue="/browse"/>
<entry key=""/services/.*$"val ue="/servi ces/ gui dedsearch"/>
</ map>
</ constructor-arg>
<!-- recordActionUi Map -->
<constructor-arg index="3">
<map>
<entry key=""/pages/[~/]*/ mobile/.*$"val ue="/nobil e/ detail"/>
<entry key=""/pages/[~/]*/services/.*$"val ue="/services/recorddetail s"/>
<entry key=""/pages/[~/]*/.*%$"val ue="/detail"/>
<entry key=""/services/.*$"value="/recorddetails"/>
</ map>
</ constructor-arg>
<constructor-arg index="4" ref="siteState"/>
</ bean>

URL formatter configuration

The Discover Electronics reference application serializes Navi gat i onSt at e objects through the use
of aUr | Navi gat i onSt at eBui | der configured with a Ur | For mat t er . By default, the application is

4 Optimizing Application URLs 109

configured for search engine optimized (SEO) URLs using the SeoUr | For mat t er class, but it also includes a
Basi cUr | For mat t er for creating basic URLs.

The basic URL formatter

The following properties can be set on the basi cUr | For mat t er bean:

Property Description

def aul t Encodi ng Specifies the default query encoding, for example, UTF- 8.

pr ependQuest i onMar k Specifies whether a question mark is prepended to the URL
parameter portion of the URL, after the servlet path.

The configuration in VEB- | NF\ endeca- ur | - confi g is shown below:

<l--
BRI E RO HHHE RO T
BEAN. basicUrl Fornatter
#
This is an Ul Fornmatter that generates "classic" URLs.
#

<bean id="basicUr | Fornatter"
cl ass="com endeca. sol eng. url formatter. basic. BasicU | Formatter">
<property nanme="defaul t Encodi ng">
<val ue>UTF- 8</ val ue>
</ property>

<property nane="prependQuesti onMark">
<val ue>t rue</ val ue>
</ property>
</ bean>

The SEO URL formatter

The following properties can be set on the seoUr | For mat t er bean:

Property Description
def aul t Encodi ng Specifies the default query encoding, for example, UTF- 8.
pat hSepar at or Token The separator token used to separate the path section of the URL from the

parameter section.

pat hKeyVal ueSepar at or The character used to separate key/value pairs in the parameter section of
the URL.

110 4 Optimizing Application URLs

Property

pat hPar anKeys

Description
Specifies the URL parameter keys for the following:
+ The parameter key used for record detail links. The default value is R

+ The parameter key used for aggregate record detail links. The default
valueis A

+ The parameter key used for navigation state. The default value is N.

navSt at eFor matt er

ERecFormatter

The Nav St at eFor mat t er that maps navigation state information to URL
path keywords.

The ERecFor mat t er that maps Endeca record attributes to URL path
keywords.

aggr ERecFor mat t er

The Aggr ERecFor mat t er that maps aggregate record attributes to URL
path keywords.

navSt at eCanoni cal i zer

Specifies the canonicalizer used to sort URL parameters to ensure that
included parameters are arranged a specific order.

useNavSt at eCanoni cal i zer

Determines whether or not the canonicalizer specified in
navSt at eCanoni cal i zer is used. The default value is t r ue. This value is
ignored if the canoni cal Li nkBui | der enables canonical links.

ur | Par anEncoder s

A list of Ur | Par anEncoder objects to use for encoding URL parameters.

The configuration in VEB- | NF\ endeca- seo- ur | - confi g is shown below:

<l--

g g g g g

R L L b L R L L L R R R R e

BEAN. seolr| Formatter

#

This is the SEO URL formatter, which is responsible for
transformng Ul State objects into URL strings.

#

<bean i d="seoUr| Formatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoUr| Formatter">

<property nane="defaul t Encodi ng">

<val ue>UTF- 8</ val ue>

</ property>

<property nanme="pat hSepar at or Token" >

<val ue>_</val ue>
</ property>

<property name="pat hKeyVal ueSepar at or ">

<val ue>- </ val ue>
</ property>

<property nane="pat hPar ankeys" >

4 Optimizing Application URLs

<list>
<val ue>R</ val ue>
<val ue>A</ val ue>
<val ue>N</ val ue>
</list>
</ property>

<property name="navStateFormatter">
<ref bean="navStateFormatter"/>
</ property>

<property name="ERecFormatter">
<ref bean="erecFormatter"/>
</ property>

<property name="aggr ERecFormatter">
<ref bean="aggr ERecFormatter"/>
</ property>

<property name="navStateCanonicalizer">
<ref bean="navStat eCanoni cal i zer"/>
</ property>

<property nane="useNavStat eCanoni cal i zer">
<val ue>f al se</ val ue>
</ property>

<property nanme="url| ParanEncoders" >
<list>
<ref bean="N- paranEncoder"/>
</list>
</ property>
</ bean>

About working with canonical links
Configure the Assembler to add canonical link support to the root content item.

The canonical link configuration in the Discover Electronics reference application is located in the Assembler
context file, WEB- | NF\ assenbl er - cont ext . xni . Configuration is handled by the canoni cal Li nkBui | der
which constructs links for navigation state and record state URLs that include the canonical link element.

The Canonical Link Builder

The following properties can be set on the canoni cal Li nkBui | der:

Property Description

obj ect Locat or Allows the retrieval of services without explicit
injection. In this case, it is used to reference the
framework for retrieving the r ecor dSt at e and
navi gat i onSt at e for the current request.

recordStatel d The ID of the r ecor dSt at e being retrieved, not the
actualrecordSt at e.

112 4 Optimizing Application URLs

Property

navi gati onStateld

siteStateld

Description

The ID of the navi gat i onSt at e being retrieved, not
the actual navi gat i onSt at e.

The ID of the si t eSt at e being retrieved, not the
actualsiteState.

i ncl udedPar anet er s

The list of URL parameters that are included in the
canonical link.

The configuration for the canoni cal Li nkBui | der specifies an obj ect Locat or to use when creating

canonical links:

<bean i d="assenbl er Fact ory"

cl ass="com endeca. i nfront. assenbl er. spri ng. Spri ngAssenbl er Fact ory" >

<constructor-arg>
<list>

<bean cl ass="com endeca. i nfront. navi gati on. url.event. Canoni cal Li nkBui | der">

<property
<property
<property
<property
<property

<list>
<val ue>R</ val ue>
<val ue>A</ val ue>
<val ue>N</ val ue>
<val ue>Ntt </ val ue>
</list>
</ property>

name="obj ect Locator" ref="springUility"/>
nane="r ecordSt atel d" val ue="recordState"/>
nane="navi gati onStatel d' val ue="navi gati onState"/>
nane="siteStatel d"
name="i ncl udedPar anet er s" >

val ue="siteState"/>

</ bean>
</[list>
</ constructor-arg>
</ bean>
Output content items

The Assembler API returns navigation state, record state, and site state content items as output from the
CanonicalLinkBuilder. The following examples are JSON representations of the output.

NavigationState

name: "Static Page Slot",

canoni cal Li nk: {

@l ass: "com endeca.infront.cartridge. nodel . Navi gati onActi on",

navi gati onSt at e:

| abel :

"/ Canon/ canmeras/ _/ N-1z141xuZ1z141yaZ25y6Zej 4?f or mat =j son",
contentPath: "/browse",
sit eRoot Pat h: "/ pages",

4 Optimizing Application URLs

113

}
RecordState
{
name: "Static Page Slot",
canoni cal Li nk: {
@l ass: "com endeca.infront.cartridge. nodel . RecordAction",
recordState: "/_/A-1318562?f or mat =j son",
contentPath: "/detail",
siteRoot Pat h: "/ pages",
| abel :
}
}
SiteState

canoni cal Li nk: {
@l ass":"com endeca. i nfront.cartridge. nodel . Navi gati onActi on",
navi gati onState: "\/cameras\/_\/N 25y6",
content Pat h: "\ / browse",
si t eRoot Pat h: "\ / pages”,
siteState": {"@l ass":"com endeca.infront.site.nodel.SiteState",

contentPath":"\/browse\/canmeras\/_\/N 25y6",
siteld:"\/DiscoverEl ectronics",
properties: {}
}
| abel : ""}
}
}

For each of the content items, a JSP file can render output as in this example:

<link rel ="canonical" href="<c:url
val ue=" ${util: get Url For Acti on(r oot Conponent . canoni cal Link)}'/>"/>

Preparing your application

This section describes the basic requirements and recommendations for writing your application.

Related links
+ Optimizing Application URLs (page 99)

+ Preparing your dimensions (page 115)

114 4 Optimizing Application URLs

» Preparing your properties (page 115)

+ Handling images and external JavaScript files (page 116)

» URL transitioning (page 116)

Preparing your dimensions

If you intend to display dimensions or dimension values in your URLs, you must configure each of the
dimensions to Show with record and Show with record list.

You only need to configure the dimensions you intend to include in URLs. Configuring all dimensions to Show
with record and Show with record list may have performance implications.

To configure a dimension to Show with record and Show with record list:

1.

2.

6.

7.

Open your project in Developer Studio.
From the Project Explorer on the left, click Dimensions.

The Dimensions dialog displays.

. Select the dimension you need to edit.
. Select the Show with record list checkbox.

. Select the Show with record checkbox.

Click OK.

Save your changes.

For more information, please refer to the Oracle Developer Studio Help.

Preparing your properties

If you intend to display record properties in your URLs, you must configure each property to Show with record
and Show with record list.

You only need to configure the properties you intend to include in URLs. Configuring all properties to Show
with record and Show with record list may have performance implications.

To configure a property to Show with record and Show with record list:

1.

2.

Open your project in Developer Studio.
From the Project Explorer on the left, click Dimensions.

The Dimensions dialog displays.

. Select the dimension you need to edit.
. Select the Show with record list checkbox.
. Select the Show with record checkbox.

. Click OK.

4 Optimizing Application URLs 115

7. Save your changes.

For more information, please refer to the Oracle Developer Studio Help.

Handling images and external JavaScript files

When you modify your application to produce optimized URLs, it is important to ensure that the server can still
locate resources requested by the application, such as image files, JavaScript files, and CSS files.

Relative URLs are partial URLs that omit host and port information. There are two types of relative URLs:

« "Site-relative" URLs are relative to the root directory on the site that hosts the Web page, for example: /
sitemap. htm

+ "Non-site-relative" URLs are relative to their parent pages, for example: . . / si t emap. ht m

Because relative paths are relative to the URL that is requested, not the URL that is ultimately resolved, optimized
URLs may create unresolved links when external resources are referenced. When using optimized URLs, Endeca
recommends replacing non-site-relative URLs with site-relative URLs to ensure that links resolve properly.

URL transitioning

Managing redirects is an important aspect of search engine optimization. In order to maintain page rank for
resources within your website, you need an effective strategy to manage URL changes.

As you transition from traditional URLs to optimized URLs, or when you change the configuration of your
optimized URLs, it is important to ensure that:

+ Links throughout your Web site are updated
+ Links to external resources (such as image files, CSS, or Javascript files) are updated
+ External links to your Web site are permanently redirected to the new URLs

Links throughout your own Web site and to your own external resources can simply be updated to the new
URLs. However, external references to your site must be redirected in order to prevent unresolved links.

The URL optimization classes are responsible for transforming URLs into search and navigation queries, and
vice-versa. They do not implement redirect logic. In order to redirect incoming requests, you must include the
appropriate logic in your application controller. By comparing an inbound URL to the canonical (optimized)
form, you can redirect to the canonical URL in cases where the inbound URL is different.

Oracle recommends including HTTP 301 redirects. Unlike HTTP 302 redirects, which collect ranking information
and index content on a site against the source URL, 301 redirects apply this information to the destination URL.

Building optimized URLs

This section describes the basic tasks for using the URL optimization classes to build search engine-optimized
URLs.

116 4 Optimizing Application URLs

Related links

+ Optimizing Application URLs (page 99)

+ Core URL optimization classes (page 117)

« Overview of building URLs using the URL optimization classes (page 117)
+ Parsing an incoming query and sending it to an MDEX Engine (page 118)
+ Informing the UrlState of the navigation state (page 118)

+ Creating link URLs from a UrlState (page 119)

Core URL optimization classes

The primary classes and interfaces of the URL Optimization APl are Ur | St at e, Ur| For nat t er, and
Quer yBui | der.

UrliState

A Ur| St at e instance represents the URL, including any parameters, for a particular navigation state in Your
application. You typically create a Ur | St at e by using a Ur | For mat t er to parse a URL string. You then inform
the Ur | St at e of the navigation state that it represents by passing it a set of query results. When the Ur | St at e
is informed, you can modify it in order to generate URLs representing links to other states in your application,
such as selecting refinements.

UrlIFormatter

AU | Formatt er is responsible for parsing URL strings into Ur | St at e objects and transforming Ur | St at e
objects back into URLs. The SeoUr | For mat t er is a highly configurable implementation of Ur | For mat t er that
parses and generates search engine-optimized URLs.

QueryBuilder

A Quer yBui | der marshals Ur | St at e objects into MDEX Engine queries. The Basi cQuer yBui | der is an
implementation of Quer yBui | der that creates ENEQuer y objects from a given Ur | St at e.

For more information about these and other classes, refer to the Assembler API Reference (Javadoc).

Overview of building URLs using the URL optimization classes

Building optimized URLs with the Assembler API requires passing in the necessary configuration and
instantiating the required objects.

The high-level process is as follows:
1. Set up your basic application configuration with a Basi cQuer yBui | der and SeoUr | For matt er.

How you create and configure the Quer yBui | der and Ur | For mat t er may vary depending on your
application, but they should be should be scoped at a global or application level.

2. Handle requests by parsing the incoming query and sending it to an MDEX Engine.
3. Inform a Ur| St at e object of the navigation state.

4. Modify the Ur| St at e object by adding or removing URL parameters.

4 Optimizing Application URLs 117

5. Generate a URL fromthe Ur | St at e.

Parsing an incoming query and sending it to an MDEX Engine

Because it is possible for optimized URLs not to contain query string parameters (these parameters can be
stored in the path), you cannot rely on the Ur | ENEQuer y class to create an ENEQuer y object from a URL.

Instead, use a Ur | For mat t er to parse the incoming request URL in order to populate the Ur | St at e with the
current URL query parameters, then use a Quer yBui | der to create the ENEQuer y from the Ur| St at e.

To parse an incoming request and query an MDEX Engine, follow these steps:
1. Parse the requestinto a Ur| St at e instance.

For example:

Ul State requestUrl State = url Formatter. parseRequest (request);

2. Build an ENEQuer y based onthe Ur| St at e.

For example:

ENEQuery eneQuery = queryBuil der. buil dQuery(requestUrl State);

3. Execute the request and retrieve the results.

For example:

Ht t pENEConnecti on conn = new Ht t pENEConnecti on(nmdexHost, ndexPort);
ENEQuer yResul t s eneQueryResul ts = conn. query(eneQuery);

Informing the UrIState of the navigation state

Informing is the process of providing the Ur | St at e object with information about the current query results.

From this information, the Ur | St at e object creates either a NavSt at eUr | Par amif the query results
are from a navigation query, an ERecUr | Par amif the query results are from a record detail query, or an
Aggr ERecUr | Par amif the query results are from an aggregated record detail query.

The SeoUr | For mat t er can use the extra information in these objects to generate customized URLs based on
the current navigation state or properties and dimensions associated with these results.

To inform a Ur | St at e of the current navigation state:

1. Add code similar to the following:

url State.inform eneQueryResul ts);

You can generate properly formatted URLs representing either the current navigation state, a record detail link,
or an aggregated record detail link. Note that of these three possiblities, only the record detail link is guaranteed

118

4 Optimizing Application URLs

to be complete when calling i nf or mon an empty Ur | St at e. A navigation URL would be correct but, without
further modification, only reflects the selected dimension values (the N parameter values). An aggregated record
detail URL would not work without adding the required An and Au parameters.

The intent of the i nf or n{) method is to give the Ur | For matt er and Ur | St at e access to property and
dimension information, not to copy your query. In some cases a complete query URL can only be created
through a combination of using Ur | For mat t er . par seRequest () on the initial request and calling

Url St at e. set Par an() as needed in addition to using i nf orn{().

Creating link URLs from a UrlIState

To create link URLs on a particular page to different navigation states within your application, modify the
Ur | St at e and then transform the modified Ur | St at e to a URL string.

This procedure requires that you have an informed Ur | St at e representing the current navigation state of your
page.

To create a link URL, follow these steps:
1. Modify the Ur | St at e to reflect a different navigation state in your application.

For example, the following statement creates a refinement link for a Guided Navigation component in your
application:

Ul State refinedUrl State =
informedUr| State. sel ectRefinenent(refDim refDinVal, true);

The final parameter indicates whether the modification should be performed on a cloned version of the
current Ur | St at e, and should typically be t r ue. For instance, in the case of a Guided Navigation component,
you would loop through the possible refinements and create a modified Ur | St at e based on the current

Ur | St at e for each refinement link. If you wanted to select several refinements in the same URL, you would
pass f al se as the value of this parameter.

For further details about additional methods that can be used to modify a Ur | St at e, please refer to the
Assembler API Reference (Javadoc).

2. Generate the URL string from the modified Ur| St at e.

String refinedUrl = refinedUl State.toString();

Theurl State.toString() method calls the f or mat St ri ng() method of the Ur | For mat t er that
constructed the Ur | St at e instance.

Configuring URLs

The following sections provide information about creating and using a URL configuration file to optimize
your URLs. The information and examples provided in this section relate to basic URL configuration tasks,
and do not cover the entire breadth of URL optimization capabilities. Oracle recommends consulting the API
documentation as you develop your application.

4 Optimizing Application URLs 119

Related links

+ Optimizing Application URLs (page 99)

+ Anatomy of an optimized URL (page 120)

+ About the URL configuration file (page 121)

+ Creating a URL configuration file (page 122)

+ About optimizing the misc-path (page 125)

+ Configuring the path-param-separator (page 145)

+ About optimizing the path-params and query string (page 145)

+ Using the URL configuration file with your application (page 150)

Anatomy of an optimized URL

An optimized Oracle Commerce Guided Search URL is made up of four configurable sections.

General URL References

When referring to URLs in general, the APl documentation may use the terms "base URL" and "URL query
parameters.” The "base URL" is the part of the URL that precedes the question mark.

For example, in the URL:
http://ww. exanpl e. coni pat hpar aml/ pat hpar an®/ pat hpar an8/ r esul t s?quer ypar am=123
the base URL is the string that appears before the question mark:
http://ww. exanpl e. com pat hpar aml/ pat hpar an/ pat hpar anB/ resul ts
Optimized URLs
For reference purposes, the documentation identifies four distinct sections of optimized URLs:
* misc-path
+ path-param-separator
+ path-params
* query string
For example, the following URL is broken down into subsections:
http://1 ocal host: 8888/ control |l er[/ W ne- Red- Mer| ot/ Napa/ Pi ne- Ri dge/ _/ N- 12Zaf Zf d?Ne=123]
The sections of the URL encased in square brackets can be broken down into the following components:
[/ <m sc- pat h>] [/ <pat h- par am separ at or >] [/ <pat h- par ans>] [?<quer y-stri ng>]

The components correspond to the following strings:

120 4 Optimizing Application URLs

Section String

misc-path Wine-Red-Merlot/Napa/Pine-Ridge

path-param-separator

path-params N-12ZafZfd

query string Ne=123

misc-path

This section of the URL incorporates keywords into the URL in order to create user-friendly and search engine-
optimized URLs. The misc-path section of the optimized URL can be generated based on dimension names,
dimension values, ancestor names, and record properties. The misc-path component is largely ignored by the
application.

path-param-separator

The path-param-separator component is used to identify the end of the misc-path and the starting point for
path parameters. This string is configurable.

path-params

Together with the query string, the path-params segment of the URL represents the current state of the
application. This may include the numerical representation of the navigation state or a specific record, as well
as any other parameter key-value pairs that have an effect on the displayed content. This component can

be configured to contain several parameters that would typically be included as part of the query string in
traditional URLs, such as the N, Ne, Nt t , and R parameters.

query string

The query string component of the URL follows the question mark character. The combination of the path-
params and query string represents the current state of the application. parameters that are not configured to
appear in the path-params section of the URL — such as N, Ne, Nt t , and R— appear in the query string.

About the URL configuration file

The example application uses an XML file named ur | confi g. xnl to configure the format of the URLs that it
generates.

The reference application uses the Spring Framework for this configuration file. Although the Assembler

APl does not require the Spring Framework, it supplies a convenient and flexible configuration mechanism.

In addition, if you plan to use the Sitemap Generator with your application, Oracle recommends using a

url confi g. xnl file to configure your optimized URLs, because the Sitemap Generator relies on the same
format for configuration. If you need further information about the Spring Framework syntax, please consult the
documentation provided with the Spring Framework.

The URL configuration file contains basic configurations for the following objects:
+ ABasi cQueryBui | der to transform Ur | St at e objects into ENEQuer y objects

+ An SeoUr| For matt er to transform Ur | St at e objects into optimized URL strings

4 Optimizing Application URLs 121

By specifying settings for additional components in the configuration file, you can configure the following

aspects of your URLs:

+ the dimension values and properties to include in the misc-path

+ canonicalization options for dimensions in the misc-path

+ the path-param-separator

+ parameters to be included in the path-params instead of the query string

+ base-36 encoding for numeric parameters

Creating a URL configuration file

A URL configuration file defines a Basi cQuer yBui | der and a top-level SeoUr | Formatter.

To create a URL configuration file, follow these steps:

1. Create a basic query builder that invokes the

com endeca. sol eng. url formatter. basi c. Basi cQuer yBui | der class:

For example:

<bean i d="queryBuil der"

cl ass="com endeca. sol eng. url formatter. basi c. Basi cQueryBui | der">

</ bean>

2. Add the following properties:

Option

Description

quer yEncodi ng

Specifies the query encoding. For example:
<val ue>UTF- 8</ val ue>

baseUr | ENEQuery

Sets the baseUr LENEQuer y. This query is used to
create the Ur | ENEQuery if the Ur | St at e is not
associated with a record or navigation state. If this
value is <nul | / >, a new query is created.

baseNavi gati onUr | ENEQuery

Sets the baseNavi gat i onUr | ENEQuery. This
query is used to create the Ur | ENEQuer y if the

Ur | St at e is associated with a navigation state (but
not a record or aggregate record). If this value is
<nul I / >, a new query is created.

baseERecUr | ENEQuery

Sets the baseERecUr | ENEQuer y. This query is
used to create the Ur | ENEQuery ifthe Ur| St at e
is associated with a record (but not an aggregate
record). If this value is <nul | / >, a new query is
created.

122

4 Optimizing Application URLs

Option Description

baseAggr ERecUr | ENEQuery Sets the baseAggr ERecUr | ENEQuer y. This query is
used to create the Ur | ENEQuery ifthe Url St at e is
associated with an aggregate record. If this value is
<nul I / >, a new query is created.

def aul t Ur | ENEQuery Sets the det aul t Ur | ENEQuer y. This query is
used to create the Ur | ENEQuery ifthe Ur| St at e
contains no parameters.

For example:

<bean i d="queryBuil der"
cl ass="com endeca. sol eng. url formatter. basi c. Basi cQueryBui | der">

<property nanme="queryEncodi ng">
<val ue>UTF- 8</ val ue>
</ property>

<property nanme="baseUr| ENEQuery" >
<val ue><! [CDATA] N=0&Ns=P_Pri ce| 1&Nr =8020]] ></ val ue>
</ property>

<property nanme="baseNavi gati onUr | ENEQuery" >
<val ue><! [CDATA[N=0&Ns=P_Pri ce| 1&Nr =8020]] ></ val ue>
</ property>

<property nane="baseERecUr| ENEQuery" >
<nul I />
</ property>

<property name="baseAggr ERecUr | ENEQuery" >
<val ue>An=0</ val ue>
<null/>

</ property>

<property nane="defaul t Ur| ENEQuery" >
<val ue>N=0</ val ue>

</ property>

</ bean>

3. Create a top-level seoUr | For mat t er bean to invoke the
com endeca. sol eng. url fornmatter. seo. SeoUr | For mat t er class:

For example:

<bean id="seoUr|l Formatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoUr| Formatter">
</ bean>

4. Add the following properties:

4 Optimizing Application URLs 123

Option Description

def aul t Encodi ng Specifies the default query encoding. For example:
<val ue>UTF- 8</ val ue>

pat hSepar at or Token Specifies the character used to separate the misc-
path from the path-params section in URLs.

pat hKeyVal ueSepar at or Specifies the character used to separate key-value
pairs in the path parameter section of the URL.

For example:

<bean id="seoUr| Formatter"
cl ass="com endeca. sol eng. url formatter.seo. SeoUr| Formatter">

<property nane="defaul t Encodi ng">
<val ue>UTF- 8</ val ue>
</ property>

<property nane="pat hSepar at or Token" >
<val ue>_</val ue>

</ property>

<property nanme="pat hKeyVal ueSepar at or ">
<val ue>- </ val ue>

</ property>

<!-- additional elenents deleted fromthis exanple --!>

</ bean>

5. Set any required properties to specify configuration beans.
Note

The instructions in this chapter explain which of beans are required for each task. You can set these
properties on your SeoUr | Pr ovi der object as you work through the chapter.

For example:

<bean id="seoUr|l Formatter"
cl ass="com endeca. sol eng. url formatter. seo. SeolUr| Formatter">

<property nane="pat hPar ankKeys" >
<list>
<val ue>R</ val ue>
<val ue>A</ val ue>
<val ue>An</ val ue>
<val ue>Au</ val ue>
<val ue>N</ val ue>

124 4 Optimizing Application URLs

<val ue>No</ val ue>
<val ue>Np</ val ue>
<val ue>Nu</ val ue>
<val ue>D</ val ue>
<val ue>Nt t </ val ue>
<val ue>Ne</ val ue>
</list>
</ property>

<property nanme="navStateFormatter">
<ref bean="navStateFormatter"/>
</ property>

<property name="ERecFormatter">
<ref bean="erecFormatter"/>
</ property>

<property name="aggr ERecFormatter">
<ref bean="aggr ERecFormatter"/>
</ property>

<property nanme="navSt at eCanoni cal i zer">
<ref bean="navStateCanonicalizer"/>
</ property>

<property nanme="url ParanEncoders" >
<list>
<ref bean="N- paranEncoder"/>
<ref bean="Ne-parantncoder"/>
<ref bean="An-paranEncoder"/>
</list>
</ property>

</ bean>

After you have created the basic URL configuration file, you create additional beans to specify further
configuration for the misc-path and path-params. Follow the procedures in the sections below to complete your
URL configuration.

Related links

+ Using the URL configuration file with your application (page 150)

About optimizing the misc-path

You can configure dimensions, dimension values, record properties, and aggregate record properties to display
in the misc-path of URLs. You can also specify the order in which dimension and dimension values display. The
url confi g. xnl file provides a simple and convenient method for configuring these options.

navStateFormatter

The navSt at eFor mat t er bean invokes the
com endeca. sol eng. url formatter. seo. SeoNavSt at eFor mat t er class to define
di m_ocat i onFor mat t er s for each dimension that you want to configure.

4 Optimizing Application URLs 125

Using the di nLocat i onFor mat t er s defined in the navSt at eFor mat t er bean, you can configure URLs for
navigation pages to include dimension names, roots, ancestors, and dimension value names in the misc-path of
URLs for navigation pages.

For example, the following URL is for the navigation state Region > Napa:
http://1 ocal host: 8888/ endeca_j spref/control |l er.jsp?&Ne=8&N=4294967160
By optimizing the URL, it can be formatted as follows:

http://1ocal host: 8888/ url formatter_jspref/controller/Napa/_/ N 1z141vc/ Ne-8

navStateCanonicalizer

The navSt at eCanoni cal i zer bean invokes the

com endeca. sol eng. url formatter. seo. SeoNavSt at eCanoni cal i zer to order the dimension and
dimension value names included in the misc-path for navigation pages. For example, an end user can reach the
Wine Type > Red, Region > Napa page by navigating first to Wine Type > Red and then to Region > Napa, or by
navigating to Region > Napa and then Wine Type > Red. To avoid two syntactically different URLs for the same
Wine Type > Red, Region > Napa page, you can use the navSt at eCanoni cal i zer to standardize the order of
dimension and dimension values in the misc-path.

Note

By design, the URL optimization classes prevent the creation of syntactically different URLs by
canonicalizing keywords. You can choose from a number of configuration options to control the
arrangement of keywords, but the URLs are always canonicalized.

erecFormatter

URL optimization for record detail pages is configured separately from navigation

pages and aggregate record details pages. The er ecFor mat t er bean invokes the

com endeca. sol eng. url fornatt er. seo. SeoERecFor mat t er class to define di nLocat i onFor mat t er s for
each dimension that you want to configure.

The same options for including dimension names, roots, ancestors, and dimension value names are available
for record detail pages as are available for navigation pages. While the ur | conf i g. xnl configuration file uses
the same di nLocat i onFor mat t er s for the er ecFor mat t er and the aggEr ecFor nat t er as are used for
the navSt at eFor mat t er, this is not a requirement. You can create separate di nLocat i onFor nat t er s for
navigation pages, record detail pages, and aggregate record detail pages.

aggrERecFormatter

URL optimization for aggregate record detail pages is configured separately from navigation pages

and record details pages as are available for navigation pages. The aggr ERecFor nat t er bean

invokes the com endeca. sol eng. url formatt er. seo. SeoAggr ERecFor mat t er class to define

di nLocat i onFor mat t er s for each dimension that you want to configure. The same options for including
dimension names, roots, ancestors, a nd dimension value names are available for aggregate record detail
pages. While the ur | confi g. xnl configuration file uses the same di m_Locat i onFor nat t er s for the

aggr ERecFor mat t er and the er ecFor mat t er as are used for the navSt at eFor mat t er, this is not a
requirement. You can create separate di mLocat i onFor mat t er s for navigation pages, record detail pages, and
aggregate record detail pages.

Formatting misc-path strings in optimized URLs

The SeoNav St at eFor mat t er, SeoERecFor mat t er, and SeoAggr ERecFor nat t er use Stri ngFor matt er
objects to format dimension and record property strings that display in URLs.

126 4 Optimizing Application URLs

You can format the strings in the misc-path section of a URL by using string formatters that are predefined in
the Assembler API. Formatting may include changing capitalization or applying a regular expression to replace
portions of the string.

There are several St ri ngFor mat t er objects in the Assembler API:

« Lower CaseStri ngFor mat t er — formats path-keyword data into lower case.
+ Upper CaseSt ri ngFor mat t er — formats path-keyword data into upper case.
« Url EncodedsSt ri ngFor mat t er — URL-encodes strings.

+ RegexStringFormatter — You can create a new RegexSt ri ngFor nat t er object and customize the
pattern,repl acenent,andrepl aceAl | properties to perform custom string formatting. For more
information about the properties, please refer to the Assembler API Reference (Javadoc).

To define St ri ngFor mat t er objectsinthe url confi g. xm file:
1. Create a bean to invoke a St ri ngFor mat t er class.

This example shows the configuration for a RegexSt ri ngFor mat t er that replaces all non-word character
sequences with a single "- " character:

<bean cl ass="com endeca. sol eng. urlformatter. seo. RegexStri ngFornatter">
<property nane="pattern">
<val ue><![CDATA[[\ W &&["\ u00CO-\ uOOFF]] +]] ></ val ue>
</ property>

<property nanme="repl acenent" >
<val ue>- </ val ue>
</ property>

<property name="replaceA l">
<val ue>t rue</ val ue>
</ property>
</ bean>

2. Optionally, you can build a St ri ngFor mat t er Chai n to apply more than one St ri ngFor nat t er to a string
in series.

The following example shows the def aul t St ri ngFor mat t er Chai n that is used throughout the sample
url config. xni file.

<bean name="def aul t Stri ngFor mat t er Chai n"
cl ass="com endeca. sol eng. url formatter.seo. Stri ngFor mat t er Chai n" >

<property nane="stringFornatters">
<list>

<l--
HUHBHHBHHBHH BB R H B H R R R R R R R R R
replace all non-word character sequences with a single '-'
#

-->

<bean cl ass="com endeca. sol eng. url formatter. seo. RegexStri ngFormatter">
<property name="pattern">

<val ue><![CDATA[[\ W &&["\ u00CO-\ uO0FF]] +]] ></ val ue>

</ property>

4 Optimizing Application URLs 127

<property nanme="repl acenent" >
<val ue>- </ val ue>
</ property>

<property name="replaceAl">
<val ue>true</val ue>
</ property>
</ bean>

<l--

o g g g gy
R L L L L L L L L L S R R R

trimleading and trailing '-' characters (if any)
#
-->
<bean cl ass="com endeca. sol eng. urlfornmatter.seo. RegexStringFornatter">
<property name="pattern">
<val ue><![CDATA[*- ?([\ WA uO0OCO-\ uOOFF] [\ w-\ u00CO-\ uOOFF] *[\ WA uO0OCO-
\ UOOFF]) - ?$]] ></ val ue>
</ property>

<property nane="repl acenent" >
<val ue>$1</ val ue>
</ property>

<property nanme="repl aceAl | ">
<val ue>f al se</val ue>
</ property>
</ bean>

</[list>
</ property>
</ bean>

Note that because St ri ngFor mat t er Chai n implements St ri ngFor mat t er, you can nest chains. For example:

<bean cl ass="com endeca. sol eng. url formatter. seo. Stri ngFor matter Chai n">
<property nanme="stringFormatters">
<list>

<l-- replace 'Wne Type' with 'Wne' -->

<bean cl ass="com endeca. sol eng. urlformatter. seo. RegexStri ngFormatter">
<property name="pattern">
<val ue>W ne Type</val ue>
</ property>

<property nane="repl acenent" >
<val ue>W ne</ val ue>
</ property>

<property name="repl aceAl | ">
<val ue>f al se</val ue>
</ property>
</ bean>

<l-- execute the default string formatter chain -->

<ref bean="defaultStringFormatterChain"/>

128 4 Optimizing Application URLs

</list>
</ property>
</ bean>

Optimizing URLs for navigation pages

Using URL optimization, you can include dimension and dimension value names in the misc-path of URLs. You
can also choose to canonicalize these dimension and dimension value names in order to avoid duplicate content
and to increase your natural search rankings.

Note

For dimensions to display properly in the URL, they must be enabled for display with the record list.

You must create a URL configuration file before completing this procedure.

To optimize URLs for navigation pages:

1. Open your URL configuration file.

2. Create anavSt at eFor mat t er bean to invoke the

com endeca. sol eng. url formatter. seo. SeoNavSt at eFormatter:

For example:

<bean i d="navStateFornmatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoNavSt at eFormatter">
</ bean>

. Add anavSt at eFor mat t er property to your top-level seoUr | For mat t er bean.

For example:

<bean i d="seoUr| Formatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoUr| Formatter">

<l-- additional elenments deleted fromthis exanple --!>
<property name="navStateFormatter">
<ref bean="navStateFormatter"/>

</ property>

</ bean>

4. Add auseDi nensi onNameAsKey property on the navSt at eFor mat t er .

For example:

<bean i d="navStateFornatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoNavSt at eFormatter">

<property nanme="useDi nensi onNaneAsKey" >
<val ue>t r ue</ val ue>

4 Optimizing Application URLs 129

</ property>
</ bean>

Setting the useDi mensi onNanmeAsKey to f al se creates a key on the dimension ID numbers.

5. Add adi nLocat i onFor nat t er s property and list each di nLocat i onFor mat t er bean you plan to define.

For example:

<bean i d="navStateFormatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoNavSt at eFormatter" >

<property nane="useDi mensi onNaneAsKey" >
<val ue>t rue</ val ue>
</ property>

<property nanme="di mLocati onFormatters">
<list>
<ref bean="wi neTypeFormatter"/>
<ref bean="regi onFormatter"/>
<ref bean="wi neryFormatter"/>
<ref bean="flavorsFormatter"/>
</list>
</ property>

</ bean>

6. Create adi mLocat i onFor mat t er for each of the dimensions in the di nlLocat i onFor mat t er s list.

For example:

<bean i d="regi onFormatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoDi nLocati onFornatter">

</ bean>

Note

The sample ur | confi g. xni file uses the same di mLocat i onFor mat t er for navigation
pages, record detail pages, and aggregate record detail pages. You can choose to create unique
di nLocat i onFor mat t er s for each page type.

7. Add the following properties to each di mLocat i onFor mat ter:

Property Description

In the navSt at eFor mat t er bean, the

useDi nensi onNaneAsKey property sets the key
type. If you set the useDi mensi onNameAsKey to
true, then use the dimension name as the value
for this property (for example <val ue>Regi on</
val ue>). If you set the useDi nensi onNaneAsKey
to false, use the dimension ID number.

key

130 4 Optimizing Application URLs

Property

appendRoot

Description

Specifies whether or not to append root dimension
values to the URL. Set to t r ue to append root
dimension values.

appendAncest ors

Specifices whether or not to append ancestor
dimension values to the URL. Set to t r ue to append
ancestor dimension values.

appendDescri pt or

Specifies whether or not to append the selected or
descriptor dimension values to the URL. Setto t r ue
to append selected or descriptor dimension values.

separ at or

root StringFornmatter

Specifies the character used to separate dimension
roots, ancestors, and descriptor values.

Specifies the bean to format the dimension

name. The reference application uses

adef aul t Stri ngFor matt er Chai n

bean to invoke the

com endeca. sol eng. url formatter. seo. StringFornatterCh

di mval StringFormatter

Specifies the bean to format the dimension

value names. The reference application

usesadefaul t StringFornatterChain

bean to invoke the

com endeca. sol eng. url formatter. seo. StringFornatterCh
The examples below also use a

def aul t St ri ngFor mat t er Chai n bean.

For example:

<bean i d="regi onFormatter"

cl ass="com endeca. sol eng. url formatter. seo. SeoDi nLocati onFormatter">

<property nane="key">
<val ue>Regi on</ val ue>
</ property>

<property nanme="appendRoot" >
<val ue>f al se</val ue>
</ property>

<property nanme="appendAncestors">
<val ue>f al se</val ue>
</ property>

<property nane="appendDescriptor">
<val ue>true</val ue>
</ property>

<property nane="separator">
<val ue>- </ val ue>

4 Optimizing Application URLs

131

</ property>

<property name="root StringFormatter">
<ref bean="defaul t Stri ngFormatter Chain"/>
</ property>

<property nanme="di nVal Stri ngFormatter">
<ref bean="defaultStringFormatterChain"/>

</ property>

</ bean>

8. Create anavSt at eCanoni cal i zer bean to invoke the
com endeca. sol eng. url fornatter. seo. SeoNavSt at eCanoni cal i zer class.

For example:

<bean nane="navSt at eCanoni cal i zer"
cl ass="com endeca. sol eng. url formatter. seo. SeoNavSt at eCanoni cal i zer">
</ bean>

Note

Canonicalizing the dimension and dimension value names in the misc-path also changes the order
in which they appear in the path-params section of the URL. For example, if Napa is configured

to display before Red in the misc-path, the Napa dimension value ID displays before the Red
dimension value ID in the path-params section.

9. Add anavSt at eCanoni cal i zer property to your top-level seoUr | For mat t er bean.

For example:

<bean i d="seolr| Formatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoUr| Formatter">

<!-- additional elenments deleted fromthis exanple --!>
<property nanme="navSt at eCanoni cal i zer">
<ref bean="navStat eCanoni cal i zer"/>

</ property>

</ bean>

10.Configure the navSt at eCanoni cal i zer.

For example, the following configuration creates URLs sorted by dimension ID in descending order:

<bean nane="navSt at eCanoni cal i zer"
cl ass="com endeca. sol eng. url formatter. seo. SeoNavSt at eCanoni cal i zer" >

<property name="sort ByNane">
<val ue>f al se</val ue>

</ property>

<property nanme="sortByDi nensi on">

132 4 Optimizing Application URLs

<val ue>t rue</ val ue>
</ property>

<property nanme="ascendi ng">
<val ue>f al se</val ue>

</ property>

</ bean>

Note
There a number of possible configuration options for canonicalization.

11.Save and close the file.

Related links

» Preparing your properties (page 115)

+ Preparing your dimensions (page 115)

+ URL canonicalization (page 101)

+ Formatting misc-path strings in optimized URLs (page 126)
Canonicalization configuration options

You can customize the canonicalization of URLs for navigation pages by choosing a sort method, for example by
dimension name or dimension ID, and then a sort direction.

The following example configurations use the dimensions:
+ Wine Type (dimension ID: 6200)

+ region (dimension ID: 8)

and the dimension values:

+ red (dimension value ID: 8021)

» Napa (dimension value ID: 4294967160)

Sort direction

Sort Configuration Example base URL (sorted by
Direction dimension ID)
Ascending http://1ocal host/

<property nanme="ascendi ng"> url formatter_jspref/controller/

<val ue>true</ val ue>

regi on- Napa/ W ne- r ed/
</ property>

4 Optimizing Application URLs 133

Sort Configuration Example base URL (sorted by

Direction dimension ID)
Descending http://1ocal host/
<property nane="ascendi ng"> url formatter_jspref/controller/

<val ue>f al se</ val ue>

W ne-r ed/ r egi on- Napa/
</ property>

Sort method
Sort by Configuration Example base URL (sort direction
ascending)
Dimension http://1 ocal host/
name, case <Property name="sortByName"> urlformatter_jspref/controller/
sensitive <val ue>true</val ue> W ne- r ed/ r egi on- Napa/
</ property>
<property name="sortByDi mensi on">
<val ue>t rue</ val ue>
</ property>
<property name="i gnoreCase">
<val ue>f al se</ val ue>
</ property>
| |
Dimension http:/ /1 ocal host/
name, case ~ <Property name="sortByName"> urlformatter_jspref/controller/
insensitive <val ue>true</val ue> regi on- Napa/ W ne- r ed/
</ property>
<property name="sortByD nmensi on">
<val ue>t rue</ val ue>
</ property>
<property name="i gnoreCase">
<val ue>t rue</ val ue>
</ property>
| |
Dimension http:/ /1 ocal host/
ID <property name="sort ByNane" > url formatter_jspref/controller/

<val ue>f al se</val ue> r egi on- Napa/ W ne- r ed/
</ property>
<property name="sortByD nmensi on">
<val ue>true</ val ue>
</ property>

134 4 Optimizing Application URLs

Sort by Configuration Example base URL (sort direction

ascending)
Dimension http:/ /1 ocal host/
value <property name="sortByName"> urlformatter_jspref/controller/
name, case <val ue>true</val ue> r egi on- Napa/ W ne-r ed/
- </ property>
sensitive
<property name="sortByDi nmensi on">
<val ue>f al se</val ue>
</ property>
<property name="i gnoreCase">
<val ue>f al se</val ue>
</ property>
| |
Dimension http:/ /| ocal host/
value <property name="sortByName"> urlformatter_jspref/controller/
name, case <val ue>true</val ue> regi on- Napa/ W ne- r ed/
. . </ property>
insensitive
<property name="sortByD nmensi on">
<val ue>f al se</val ue>
</ property>
<property name="i gnoreCase">
<val ue>t rue</ val ue>
</ property>
| |
Dimension http://| ocal host/
value ID <property name="sort ByNane"> url formatter_jspref/controller/

<val ue>f al se</val ue> W ne-red/ r egi on- Napa/
</ property>
<property nanme="sort ByDi nensi on">
<val ue>f al se</val ue>
</ property>

Example 1: the following code sample creates a canonicalized URL that sorts by dimension name, case sensitive,
in an ascending order:

<bean nane="navSt at eCanoni cal i zer"
cl ass="com endeca. sol eng. url formatter. seo. SeoNavSt at eCanoni cal i zer">

<property nane="sort ByNane">
<val ue>t rue</val ue>
</ property>

<property name="sortByDi nensi on">
<val ue>t rue</ val ue>

</ property>

<property nane="ascendi ng">

4 Optimizing Application URLs 135

<val ue>t rue</ val ue>
</ property>

<property nanme="i gnoreCase">
<val ue>f al se</val ue>

</ property>

</ bean>

The resulting base URL: ht t p: / /| ocal host/url formatter_jspref/control | er/Wne-red/region-
Napa/

Example 2: the following code sample creates a canonicalized URL that sorts by dimension value ID in a
descending order:

<bean nane="navSt at eCanoni cal i zer"
cl ass="com endeca. sol eng. url formatter. seo. SeoNavSt at eCanoni cal i zer" >

<property name="sort ByNane">
<val ue>f al se</val ue>
</ property>

<property nane="sortByDi nensi on">
<val ue>t rue</ val ue>
</ property>

<property nane="ascendi ng">
<val ue>f al se</val ue>

</ property>

</ bean>

The resulting base URL: ht t p: / /| ocal host/url formatter_jspref/controller/regi on- Napa/ W ne-
red/

Note

Canonicalizing the dimension and dimension value names in the misc-path changes the order in
which they appear in the path-params section of the URL. For example, if Napa is configured to display
before Red in the misc-path, the Napa dimension value ID displays before the Red dimension value ID
in the path-params section.

Optimizing URLs for record detail pages

Using the URL optimization classes, you can include dimension names, dimension value names, and record
properties in the misc-path of URLs for record detail pages.

Note
For dimensions to display properly in the URL, they must be enabled for display with the record list.
You must create a URL configuration file before completing this procedure.

To optimize URLs for record detail pages:

136 4 Optimizing Application URLs

1. Open your URL configuration file.

2. Create an er ecFor mat t er bean to invoke the
com endeca. sol eng. url formatter. seo. SeoERecFornatter:

For example:

<bean i d="erecFornatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoERecFormatter" >
</ bean>

3. Add an ERecFor mat t er property to your top-level seoUr | For mat t er bean.

For example:

<bean i d="seolr| Formatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoUr| Formatter">

<!-- additional elements deleted fromthis exanple --!>
<property name="ERecFormatter">
<ref bean="erecFormatter"/>

</ property>

</ bean>

4. Add auseDi nensi onNameAsKey property on the er ecFor mat t er.

For example:

<bean i d="erecFornatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoERecFormatter" >

<property nanme="useDi mensi onNaneAsKey" >
<val ue>t rue</ val ue>

</ property>

</ bean>

Setting useDi mensi onNameAsKey to f al se creates a key on the dimension ID numbers.
5. Add a pr oper t yKeys property to include record properties in the URLs of record details pages.

For example:

<bean i d="erecFormatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoERecFormatter">

<property nanme="useDi mensi onNaneAsKey" >
<val ue>t rue</val ue>
</ property>

<property nanme="propertyKeys">
<list>

4 Optimizing Application URLs 137

<val ue>P_Nane</ val ue>
</list>
</ property>

</ bean>

6. Add a propert yFor mat t er property to format record properties included in the URLs of record details
pages.

For example:

<bean i d="erecFormatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoERecFormatter">

<property nanme="useDi mensi onNaneAsKey" >
<val ue>true</val ue>

</ property>

<property nanme="propertyKeys">

<list>
<val ue>P_Nane</ val ue>
</list>

</ property>
<property name="propertyFormatter">
<ref bean="defaul t Stri ngFormatter Chain"/>

</ property>

</ bean>

7. Add adi nmLocat i onFor mat t er s property and list each di mLocat i onFor mat t er bean you plan to define.

For example:

<bean i d="erecFormatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoERecFormatter" >

<property nanme="useDi mensi onNaneAsKey" >
<val ue>t rue</ val ue>
</ property>

<property nanme="di nLocationFornatters">
<list>
<ref bean="regi onFormatter"/>
<ref bean="w neryFormatter"/>
<ref bean="wi neTypeFormatter"/>
<ref bean="vintageFormatter"/>
</list>
</ property>

<property name="propertyKeys">

<list>
<val ue>P_Nane</ val ue>
</list>

</ property>

<property name="propertyFormatter">

138 4 Optimizing Application URLs

<ref bean="defaul t Stri ngFormatter Chain"/>
</ property>

</ bean>

8. Create adi mLocat i onFor mat t er for each of the dimensions in the di nlLocat i onFor mat t er s list.

For example:

<bean i d="regi onFornmatter"
cl ass="com endeca. sol eng. url formatter.seo. SeoDi nLocati onFormatter">
</ bean>

Note
The sample ur | confi g. xni file uses the same di nLocat i onFor mat t er for navigation
pages, record detail pages, and aggregate record detail pages. You can choose to create unique

di m_ocat i onFor mat t er s for each page type.

9. Add the following properties to each di m_ocat i onFor matt er:

Property Description

key In the navSt at eFor mat t er bean, the

useDi nensi onNaneAsKey property sets the key
type. If you set the useDi mensi onNameAsKey to
true, then use the dimension name as the value
for this property (for example <val ue>Regi on</
val ue>). If you set the useDi nensi onNaneAsKey
to false, use the dimension ID number.

appendRoot Specifies whether or not to append root dimension
values to the URL. Set to t r ue to append root
dimension values.

appendAncestors Specifices whether or not to append ancestor
dimension values to the URL. Set to t r ue to append
ancestor dimension values.

appendDescri pt or Specifies whether or not to append the selected or
descriptor dimension values to the URL. Setto t r ue
to append selected or descriptor dimension values.

separ at or Specifies the character used to separate dimension
roots, ancestors, and descriptor values.

root Stri ngFormatter Specifies the bean to format the dimension

name. The reference application uses

adef aul t StringFormatter Chain

bean to invoke the

com endeca. sol eng. url formatter. seo. StringFornatterCh

4 Optimizing Application URLs 139

Property Description

di nval Stri ngFornat ter Specifies the bean to format the dimension

value names. The reference application

uses adef aul t Stri ngFor mat t er Chai n

bean to invoke the

com endeca. sol eng. url formatter. seo. Stri ngFormatter Chai n.
The examples below also use a

def aul t Stri ngFor mat t er Chai n bean.

For example:

<bean i d="regi onFormatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoDi nLocati onFormatter">

<property nane="key">
<val ue>Regi on</ val ue>
</ property>

<property nanme="appendRoot" >
<val ue>f al se</ val ue>
</ property>

<property nanme="appendAncestors">
<val ue>f al se</val ue>
</ property>

<property nane="appendDescriptor">
<val ue>true</val ue>
</ property>

<property nanme="separator">
<val ue>- </ val ue>
</ property>

<property nanme="root Stri ngFormatter">
<ref bean="default StringFormatterChain"/>
</ property>

<property nanme="dinVal Stri ngFormatter">
<ref bean="defaul t Stri ngFormatterChain"/>
</ property>

</ bean>

10.Save and close the file.

Related links
* Preparing your properties (page 115)
+ Preparing your dimensions (page 115)

+ Formatting misc-path strings in optimized URLs (page 126)

140 4 Optimizing Application URLs

Optimizing URLs for aggregate record detail pages

Using the URL optimization classes, you can include dimension names, dimension value names, and record
properties in the misc-path of URLs for aggregate record detail pages. These are configured separately from the
optimizations for navigation pages.

Note

For dimensions to display properly in the URL, they must be enabled for display with the record list.
You must create a URL configuration file before completing this procedure.
To optimize URLs for aggregate record detail pages:
1. Open your URL configuration file.

2. Create an aggr ERecFor mat t er bean to invoke the
com endeca. sol eng. url formatter. seo. SeoAggr ERecFor mat t er class:

For example:

<bean i d="aggr ERecFornatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoAggr ERecFor matter">
</ bean>

3. Add an aggr ERecFor mat t er property to your top-level seoUr | For mat t er bean.

For example:

<bean id="seoUr| Formatter"
cl ass="com endeca. sol eng. url formatter. seo. SeolUr| Formatter">

<l-- additional elenents deleted fromthis exanple --!>
<property name="aggr ERecFormatter">
<ref bean="aggr ERecFormatter"/>

</ property>

</ bean>

4. Add a useDi mensi onNanmeAsKey property on the aggr ERecFor mat t er.

For example:

<bean i d="aggr ERecFormatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoAggr ERecFormatter">

<property nane="useDi mensi onNaneAsKey" >
<val ue>t rue</ val ue>
</ property>
</ bean>

Setting the useDi mensi onNaneAsKey to f al se creates a key on the dimension ID numbers.

4 Optimizing Application URLs 141

5. Add a pr oper t yKeys property to include record properties in the URLs of record details pages.

For example:

<bean i d="aggr ERecFormatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoAggr ERecFormatter">

<property nanme="useDi mensi onNaneAsKey" >
<val ue>true</ val ue>

</ property>

<property nanme="propertyKeys">

<list>
<val ue>P_Nane</ val ue>
</list>

</ property>

</ bean>

6. Add a propert yFor mat t er property to format record properties included in the URLs of record details
pages.

For example:

<bean i d="aggr ERecFormatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoAggr ERecFormatter">

<property nane="useDi nmensi onNaneAsKey" >
<val ue>t rue</ val ue>

</ property>

<property name="propertyKeys">

<list>
<val ue>P_Nane</ val ue>
</list>
</ property>
<!-- use default string formatter chain -->

<property name="propertyFormatter">
<ref bean="defaul t Stri ngFormatter Chain"/>
</ property>

</ bean>

7. Add adi m_ocat i onFor mat t er s property and list each di m_ocat i onFor mat t er bean you plan to define.

For example:

<bean i d="aggr ERecFormatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoAggr ERecFormatter">

<property nanme="useDi mensi onNaneAsKey" >
<val ue>true</val ue>

</ property>

<property nane="di nLocati onFornatters">

142 4 Optimizing Application URLs

<list>
<ref bean="regi onFormatter"/>
<ref bean="wi neryFormatter"/>
</list>
</ property>

<property name="propertyKeys">

<list>
<val ue>P_Nane</ val ue>
</[list>

</ property>

<property name="propertyFormatter">

<ref bean="defaultStringFormatterChain"/>

</ property>

</ bean>

Note

The sample ur | confi g. xni file uses the same di mLocat i onFor mat t er for navigation
pages, record detail pages, and aggregate record detail pages. You can choose to create unique

di nLocat i onFor mat t er s for each page type.

8. Create adi mLocat i onFor mat t er for each of the dimensions in the di nlLocat i onFor mat t er s list.

For example:

<bean i d="regi onFormatter"

cl ass="com endeca. sol eng. url formatter. seo. SeoDi nLocati onFormatter">

</ bean>

9. Add the following properties to each di m_ocat i onFor mat t er:

Property

key

appendRoot

appendAncest ors

Description

In the navSt at eFor mat t er bean, the

useDi nensi onNaneAsKey property sets the key
type. If you set the useDi mensi onNameAsKey to
true, then use the dimension name as the value
for this property (for example <val ue>Regi on</
val ue>). If you set the useDi nensi onNaneAsKey
to false, use the dimension ID number.

Specifies whether or not to append root dimension
values to the URL. Set to t r ue to append root
dimension values.

Specifices whether or not to append ancestor
dimension values to the URL. Set to t r ue to append
ancestor dimension values.

4 Optimizing Application URLs

143

Property Description

appendDescri pt or Specifies whether or not to append the selected or
descriptor dimension values to the URL. Setto t r ue
to append selected or descriptor dimension values.

separ at or Specifies the character used to separate dimension
roots, ancestors, and descriptor values.

root Stri ngFormat t er Specifies the bean to format the dimension

name. The reference application uses

adef aul t Stri ngFor mat t er Chai n

bean to invoke the

com endeca. sol eng. url formatter. seo. Stri ngFormatter Chai n.

di nval StringFor natter Specifies the bean to format the dimension

value names. The reference application

uses adef aul t Stri ngFor matt er Chai n

bean to invoke the

com endeca. sol eng. url formatter. seo. Stri ngFor mat t er Chai n.
The examples below also use a

defaul t StringFor mat t er Chai n bean.

For example:

<bean i d="regi onFornmatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoDi nLocati onFormatter">

<property name="key">
<val ue>Regi on</ val ue>
</ property>

<property nanme="appendRoot" >
<val ue>f al se</val ue>
</ property>

<property nanme="appendAncestors">
<val ue>f al se</ val ue>
</ property>

<property nane="appendDescriptor">
<val ue>t rue</ val ue>
</ property>

<property nanme="separator">
<val ue>- </ val ue>
</ property>

<property name="root StringFornmatter">
<ref bean="defaultStringFormatterChain"/>
</ property>

<property nanme="di nVal StringFormatter">
<ref bean="defaul t Stri ngFormatter Chain"/>

144 4 Optimizing Application URLs

</ property>

</ bean>

10.Save and close the file.

Related links
» Preparing your properties (page 115)
+ Preparing your dimensions (page 115)

+ Formatting misc-path strings in optimized URLs (page 126)

Configuring the path-param-separator

You can customize the string that displays between the misc-path and the path-params components of URLs.

The sampleur | confi g. xm file uses an underscore to separate the misc-path from the path-params in URLs.
For example:htt p: / /1 ocal host/url formatter_jspref/control | er/ Wne-Red- Pi not-Noir/_/ N 66w

You must create a URL configuration file before completing this procedure.
To change the path-param-separator string:
1. Locate the top-level URL formatter bean in your URL configuration file.

For example:

<bean id="seoUr| Formatter"
cl ass="com endeca. sol eng. url formatter.seo. SeoUr| Formatter">
</ bean>

2. Customize the value of the pat hSepar at or Token property:

For example:

<bean id="seoUr| Formatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoUr| Formatter">
<property nane="pat hSepar at or Token" >
<val ue>separ at or </ val ue>
</ property>
</ bean>

The new URL displays as: ht t p: / /| ocal host/url formatter_j spref/control | er/ W ne- Red- Pi not -
Noi r/ separ at or/ N- 66w

About optimizing the path-params and query string

The URL optimization classes provide functionality for encoding path parameters and moving path parameters
from the query string into the path-params section of the URL.

4 Optimizing Application URLs 145

Moving parameters out of the query string

In order to create directory-style URLs, you can limit the number of parameters in the query string by
configuring a list of parameters to move from the query string and into the path-params section of the URL. For
example, the following URL has the parameters N, Ntk, Ntt, and Ntx in the query string:

http://1ocal host/ Cont ent Assenbl er Ref App/ Cont ent . aspx/ Bor deaux?
N=4294966952&f r onsear ch=f al se&Nt k=Al | &\t t =r ed&N\t x=rrode%@2bmat chal | parti al

Using the URL Optimization API, you can move parameters into the path-params section of the URL. For
example, the following URL includes the N and Ntt parameters in the base URL:

http://1 ocal host/ Cont ent Assenbl er Ref App/ Cont ent . aspx/ Bor deaux/ _/ N- 4294966952/ Nt t - red?
fronsear ch=f al se&Nt k=Al | &\t x=npde%2bmat chal | parti al

Note

To ensure the best possible natural search-engine ranking, it is recommended that you limit the
number of parameters you include in the path-params section.

Encoding parameters
In order to shorten URLs, the Assembler API allows base-36 encoding of parameters.
For example, the following URL for Region > Napa contains the dimension value ID for Napa (4294966952):
http://1 ocal host/ Cont ent Assenbl er Ref App/ Cont ent . aspx/ Napa/ _/ N- 4294966952
By base-36 encoding the N parameter, you can shorten the URL:
http://1 ocal host/ Cont ent Assenbl er Ref App/ Cont ent . aspx/ Napa/ _/ N- 1z141pk
Note
Only the numeric parameters can be encoded:
* N
* Ne
+ An
- Dn
Removing session-scope parameters

In order to simplify the URLs, session-scope parameters should be removed from the URL string and stored as
session objects. This might include any parameters that do not change value during the session, such as the
session ID or MDEX host and port values.

Passing non-parameters to the API
You can add non-parameters to URLs by passing them through the API.
Moving parameters out of the query string

In order to create directory-style URLs, you can limit the number of parameters in the query string by
configuring a list of parameters to move from the query string and into the path-params section of the URL.

You must create a URL configuration file before completing this procedure.

146 4 Optimizing Application URLs

To move parameters out of the query string and into the path-params section of the URL:

1. In your URL configuration file, locate the top-level URL formatter.

For example:

<bean id="seoUr|l Formatter"
cl ass="com endeca. sol eng. url formatter. seo. SeolUr| Formatter">

<property nanme="def aul t Encodi ng" >
<val ue>UTF- 8</ val ue>

</ property>

<property nane="pat hSepar at or Token" >
<val ue>_</val ue>

</ property>

<l-- additional elenments deleted fromthis exanple --!>

</ bean>

2. Add a pat hPar anKeys property.

For example:

<bean i d="seoUr| Formatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoUr| Formatter">

<property nane="pat hPar ankKeys" >
</ property>

</ bean>

3. Add al i st attribute containing all of the parameters you want moved from the query string.

For example:

<bean id="seoUr| Formatter"
cl ass="com endeca. sol eng. url formatter. seo. SeolUr| Formatter">

<property nane="pat hPar ankKeys" >
<list>
<val ue>R</ val ue>
<val ue>A</ val ue>
<val ue>An</ val ue>
</list>
</ property>

</ bean>

Encoding parameters

You can apply base-36 encoding to numeric parameters.

4 Optimizing Application URLs

147

You must create a URL configuration file before completing this procedure.
Only the numeric parameters can be encoded:

« N

* Ne

* An

* Dn

The following procedure provides instructions for applying base-36 encoding to the An parameter. You can
apply base-36 encoding to any numeric parameter, but each parameter requires a separately configured
par anEncoder bean.

To encode numeric parameters:
1. Open your URL configuration file.

2. Create a par anEncoder bean to invoke the
com endeca. sol eng. url formatter. seo. SeoNavSt at eEncoder :

For example:

<bean name="An- par anEncoder"
cl ass="com endeca. sol eng. url for matter. seo. SeoNavSt at eEncoder " >
</ bean>

3. Add a par anKey property to specify which numeric parameter to encode.

For example:

<bean nane=" An- par anEncoder "
cl ass="com endeca. sol eng. url for matter. seo. SeoNavSt at eEncoder " >
<property nanme="paranKey">
<val ue>An</ val ue>
</ property>
</ bean>

4. Repeat steps one and two for each parameter you want to encode.
5. Locate the top-level URL formatter bean in your URL configuration file.

For example:

<bean i d="seolr| Formatter"
cl ass="com endeca. sol eng. url formatter. seo. SeoUr| Formatter">
</ bean>

6. Add a ur | Par anEncoder s property:

<bean id="seoUr| Formatter"
cl ass="com endeca. sol eng. url formatter.seo. SeoUr| Formatter">

148 4 Optimizing Application URLs

<property nanme="url| ParanEncoders" >
</ property>
</ bean>

7. Add al i st attribute and specify each of the parameter encoder beans.

For example:

<bean i d="seoUr| Formatter"
cl ass="com endeca. sol eng. url formatter. seo. SeolUr| Formatter">
<property nane="url ParanEncoders" >
<list>
<ref bean="N- paranEncoder"/>
<ref bean="Ne- paranEncoder"/>
<ref bean="An-paranEncoder"/>
</list>
</ property>
</ bean>

8. Save and close the file.
Removing session-scope parameters

In order to simplify the URLs, session-scope parameters should be removed from the URL string and stored as
session objects.

This might include any parameters that do not change value during the session, such as the session ID or MDEX
host and port values. For example, the following URL contains information about the MDEX host and port:

http://1 ocal host: 8888/ endeca_j spref/control |l er.jsp?N=0&neHost =| ocal host &nePort =15002

You can remove the MDEX host and port values from the URL and store them as session objects. The resulting
URL is simplified:

http://1 ocal host: 8888/ endeca_j spref/controller.jsp

The following procedure provides instructions for removing the MDEX host and port values from the URL, but
this procedure can be adapted as necessary to remove other session-scope parameters.

To remove the MDEX host and port values from the URL and store them as session attribute values:

1. To set the attribute, use the following code:

session.setAttri bute("eneHost", eneHost);

2. To retrieve the attribute value, use the following code:

eneHost = (String)session.getAttribute("eneHost");

About passing non-parameters to the API

You can add non-parameters to URLs by passing them through the API.

4 Optimizing Application URLs 149

For example, you could add information about how many records per page should display in each results set:

In the reference application's cont r ol | er . j sp file, find the following section:

Ul State baseUrl State = url Formatter. par seRequest (request);

ENEQuery usq = queryBuil der. bui | dQuery(baselUr| State);

and add code similar to the following:

baseUr| St at e. set Paran("records_per_page", "25");

Note

Oracle recommends limiting the number of parameters that display in URLs. It is recommended that
session-scope parameters be removed from the URL and stored as session objects.

Using the URL configuration file with your application

Before you can create optimized URLs with your own application, you need to include the URL configuration file
in your application's classpath.

To use the URL configuration file with your application:

1. Stop the HTTP service.

2. Locate your URL configuration file.

3. Copy the URL configuration file into the WEB- | NF subdirectory of your Web application directory.

For example: C: \ Endeca\ Tool sAndFr amewor ks\ <ver si on>\r ef er ence\ di scover - el ectroni cs-
aut hor i ng\ VEEB- | NF

4. Start the HTTP service.

To verify that the URL configurations are working properly, open a Web browser and navigate to your Web
application. Check that the URLs display as you configured them with the URL configuration file.

Related links
+ Creating a URL configuration file (page 122)

+ Creating a URL configuration file (page 122)

Integrating with the Sitemap Generator

The Sitemap Generator creates an index of your Web site based on information stored in your MDEX Engine,
not information stored on your application server. Because of this, you need to ensure that the URLs produced

150 4 Optimizing Application URLs

by the Sitemap Generator match the URLs in your application. To make certain that the URLs match, you need
to configure the Sitemap Generator's ur | confi g. xni file to make the same customizations to URLs as those
configured for the Assembler API.

Related links
+ Optimizing Application URLs (page 99)
+ The Sitemap Generator urlconfig.xml file (page 151)

+ Using the URL configuration file with the Sitemap Generator (page 151)

The Sitemap Generator urlconfig.xml file

The Sitemap Generator uses a URL configuration file that must mirror your URL configurations in order to output
a sitemap that matches your Web application.

The Sitemap Generator creates a site map by issuing a single bulk query against the MDEX Engine to retrieve the
necessary record, dimension, and dimension value data. It uses this information to build an index of pages. The
formatting of the URLs it creates is controlled by the ur | confi g. xn file located in the conf subdirectory of
your Sitemap Generator installation directory. For example: C: \ Endeca\ SEM Si t emapGener at or \ <ver si on>
\ conf

To ensure that the URLs in the sitemap are consistent with the URLs produced by the Assembler, configuration in
the URL configuration file must correspond to the Sitemap Generator's ur | confi g. xmi file.

Because the url confi g. xni file included with the Sitemap Generator uses the same format as the sample
url confi g. xnl file for the Assembler API, you can copy the ur | confi g. xm file for sitemap generation.

Using the URL configuration file with the Sitemap Generator

You can use the same ur | confi g. xm file you created for URL optimization as the URL configuration file for
sitemap generation.

To use the URL configuration file with the Sitemap Generator:
1. Open the conf . xni file located in the conf subdirectory of your Sitemap Generator installation directory.
For example: Tool sAndFr amewor ks\ <ver si on>\ si t enap_gener at or\ conf
2. Locate the URL_FORMAT _FI LE:

For example:

<URL_FORMAT_FI LE>ur | confi g. xm </ URL_FORMAT_FI LE>

3. Edit the <URL_FORMAT_FI LE> value so that it points to the ur | confi g. xm file you created with the URL
Optimization API.

For example:

4 Optimizing Application URLs 151

<URL_FORMAT_FI LE>C: \ Endeca\ Tool sAndFr anewor ks\ <ver si on>\r ef erence\ di scover -
el ectroni cs-aut hori ng\ WEB- | NF\ ur | confi g. xm </ URL_FORMAT_FI LE>

4. Save and close the conf . xni file.

Related links
+ Creating a URL configuration file (page 122)

+ About the URL configuration file (page 121)

152 4 Optimizing Application URLs

5 Extending the Assembler

This part provides information on extending the Assembler.

Extending and Developing Cartridges

If your application requires functionality that is not covered by the core cartridges and navigation cartridges
included in Tools and Frameworks, you can extend the existing cartridges or develop your own.

Related links

+ Extending the Assembler (page 153)

+ Cartridge Basics (page 153)

+ First steps with a new cartridge (page 153)

» Adding a basic renderer (page 156)

+ Elements of the example cartridge (page 156)

« Overview of cartridge extension points (page 158)

+ Customizing the Experience Manager interface (page 159)

+ About Cartridge Handlers and the Assembler (page 163)

+ About using event listeners to extend the navigation cartridges (page 167)

+ Sample Cartridges (page 169)

Cartridge Basics

This section introduces the basic components of a cartridge by examining how they work together in a "Hello,
World" example cartridge.

First steps with a new cartridge

This section describes how to define a new cartridge and use Workbench to configure it to appear on a page.

5 Extending the Assembler 153

To create and configure a basic "Hello, World" cartridge, follow these steps:

1. Navigate to the templates directory of your application, and create a subdirectory named "HelloWorld." This
directory name is the template ID for your template.

For example: C: \ Endeca\ apps\ Di scover\ confi g\i nport\tenpl at es\ Hel | oWor | d.
2. Create a cartridge template JSON file.
a. Open a new plain text file.

b. Type or copy the following into the contents of the file:

{
"ecr:type": "tenplate",
"@roup": "SecondaryContent",
"@lescription": "A sanple cartridge that can display a sinple nmessage”,
"@hunbnai l Url": "thunbnail.jpg",
"defaul tContentltent: {
"@ane": "Hello cartridge",
"message": "",
"messageCol or": ""
H
"editorPanel ": {
"editor": "editors/DefaultEditorPanel",
“children": [
{
"editor": "GoupLabel",
"l abel ": "${group.contents.|abel }"
H
{
"editor": "editors/StringEditor",
"propertyName": "nessage",
"l abel ": "Message"
H
{
"editor": "editors/StringEditor",
"propertyNanme": "messageCol or",
"l abel ": "Col or"
}
]
H
"typelnfo": {
"message": {"@ropertyType": "String"},
"messageCol or": {"@ropertyType": "String"}
}
}

c. Save the file with the name _. j son in the Hel | oWor | d directory of your Discover Electronics application,
for example: C: \ Endeca\ apps\ Di scover\ confi g\i nport\tenpl at es\ Hel | oWor | d.

3. Upload the template to Workbench.

a. Open a command prompt and navigate to the cont r ol directory of your deployed application, for
example, C: \ Endeca\ apps\ Di scover\control .

b. Run the set _t enpl at es command.

154 5 Extending the Assembler

C:.\ Endeca\ apps\ Di scover\control >set _t enpl at es. bat
Renovi ng existing cartridge tenplates for Discover
Setting new cartridge tenplates for Discover

Fi ni shed setting tenplates

C:. \ Endeca\ apps\ Di scover\control >

4. Add the cartridge to a page.

a.

g.
h.

Open Workbench in a Web browser.

The default URL for Workbench is ht t p: / / <wor kbench- host >: 8006.

. From the launch page, select Experience Manager.

. In the tree on the left, select Search and Navigation Pages under the Content section, then select the

Default Page.

. In the Edit Pane on the right, select the right column section from the Content Tree.

. Click Add.

The cartridge selector dialog displays.

Select the Hello cartridge and click OK.

Select the new Hello cartridge from the Content Tree on the left and configure the color as #FF00000.

Click Save Changes.

5. Try to view the cartridge in the Discover Electronics application.

a.

In a Web browser, navigate to ht t p: / / <wor kbench- host >: 8006/ di scover - aut hori ng/ .

An error displays because we have not yet created a renderer for the Hello cartridge.

The following shows the JSON representation of the page with most of the tree collapsed, highlighting the data
for the cartridge that we just added.

"wor kf| owSt ate": " ACTI VE",
"ecr:|lastMdifiedBy": "adm n",
"ecr:lastMdified": "2016-09-12T13: 38: 32. 258+05: 30",
“priority": 100,
"ecr:createDate": "2016-09-12T13: 38: 32. 258+05: 30",
"ecr:type": "content-itent,
"contentlten': {
"@ane": "Three-Col um Page",
"met akeywords": "canera caneras el ectronics",
"@ype": "ThreeCol umPage",
"title": "Discover Electronics",
"met aDescription": "Oracle Commerce reference application.”,
"redirect Group": "",
"header Content": {...},
"leftContent": {...},
"mai nContent": {...},
"rightContent":[

5 Extending the Assembler

155

{ ..}

{ ...}
{

"@ane": "Hello Wrld",
"@ype": "Hellowrld",
"message": "Hello, World",
"messageCol or": "#FF0000"

}

In the next section, we'll create a simple renderer that displays the message based on the values configured in
Experience Manager.

Adding a basic renderer

While there is no one way to write rendering code for an application, in this example we'll write a simple JSP
renderer for our basic cartridge.

To write a basic "Hello, World" renderer:

1. Create a new JSP page and type or copy the following:

<Y%page | anguage="j ava" pageEncodi ng="UTF- 8"
cont ent Type="t ext/htm ; char set =UTF- 8" %

<%@ ncl ude file="/WEB-|NF/views/include.jsp"%
<div style="border-style: dotted; border-w dth: 1px;
border-col or: #999999; paddi ng: 10px 10px">
<div style="font-size: 150%
col or: ${conponent. messageCol or}" >${ conponent . nessage}
</ div>
</div>

2. Save the renderer to di scover - el ect roni cs- aut hori ng/ VEB- | NF/ vi ews/ deskt op/ Hel | o/
Hel l 0. sp.

3. Refresh the Discover Electronics authoring application at ht t p: / / <wor kbench- host >: 8006/ di scover -
aut hori ng/ to see the result.

Elements of the example cartridge

As we have seen, the high-level workflow for creating a basic cartridge is:

1. Create a cartridge template and upload it to Workbench.

156 5 Extending the Assembler

2. Use Experience Manager to create and configure and instance of the cartridge.

3. Add a renderer to the front-end application.

Step 2 is necessary during development in order to have a cartridge instance with which to test. However,
once the cartridge is complete, the business user is typically responsible for creating and maintaining cartridge
instances in Experience Manager.

In the following sections, we'll describe each of these elements of the cartridge in greater detail.

The cartridge template

The template defines the configuration that the business user can specify in Workbench using Experience
Manager.

The template contains these main sections: the def aul t Cont ent | t emelement, the Edi t or Panel element,
and thet ypel nf o element..

The content item is a core concept in Assembler applications that can represent both the configuration model for
a cartridge and the response model that the Assembler returns to the client application. A content item is a map
of properties, or key-value pairs. End users know content items as rules. The def aul t Cont ent | t emelement in
the template contains properties with default values,

The Edi t or Panel defines the interface that can be used in Experience Manager to configure the properties of
the content item. The editor panel is composed of a number of editors. The editors provide the Ul controls that
the business user can use to specify the property values for a particular instance of that cartridge.

Thet ypel nf o element defines property type information.

In our example template, we defined two string properties named nessage and nessageCol or and attached
two simple string editors to those properties.

For more information about creating and managing cartridge templates, see About creating
templates (page 27).

The cartridge instance configuration

The business user creates and configures instances of cartridges in Experience Manager based on a template.
During cartridge development you need to create at least one instance of a cartridge for testing.

Experience Manager writes this cartridge instance configuration as JSON.
The Assembler retrieves this configuration at runtime and uses it to build the response model that it returns to

the client application.

,

g

Template ssesF——1 ‘Workbench Assembler
. i ™,

. b
<greales> <ratrigyas> <ratums=

Cartridge

e Nl Response

instance
config

5 Extending the Assembler 157

For any given cartridge, the default behavior is for the Assembler to do no processing on the configuration and
simply return the configuration content item as a map of properties. That is, the response object is the same as
the configuration object unless specific processing logic is defined in the Assembler for that cartridge.

The cartridge renderer

As a best practice, the client application should be composed of modular rendering components, each
corresponding to a particular cartridge.

Recall the contents of the Assembler response object corresponding to the example cartridge:

"@ane": "Hello World",
"@ype": "HelloWrld",
"message": "Hello, Wrld",
"messageCol or": "#FF0000"

For each cartridge, the @ ype of the response object corresponds to the folder name of the template that was
used to create it. The Discover Electronics application uses this type to identify the appropriate renderer to use

for this content item.

lemplate -

Workbanch

Carridgs
instance

canfig

Assamblar

.\-\.

Cliant Application

Ul renderar

<relurms> RTh

H:;ﬁ Rmfl,.lﬂ'.‘&';: “_'_.
objact

The logic for mapping response objects to the appropriate renderer is contained ini ncl ude. t ag in the

reference application.

Overview of cartridge extension points

Cartridges are made up of several components that may be customized for specific purposes.

The following diagram shows the parts of a cartridge and where they fit within the overall architecture:

158

5 Extending the Assembler

Client Apglication

-
Woorkhench
Responsa
Expenence Manager ohject
I N Assermbler
| . et -
Cartridge Handlers
Templates
™
\
W { “\ ;'l
% - Cartridge -
It | nElance -
configuration

L1 7
The cartridge template defines the configuration options that are available to the business user in Workbench.
The Experience Manager interface is composed of editors that provide Ul controls for specifying property values.
Experience Manager produces the cartridge instance configuration that is consumed by the Assembler. During
the processing of a query, the Assembler may invoke cartridge handlers that define specific processing logic for
particular cartridges. Using these cartridge handlers, the Assembler produces the response object that it returns
to the client application. Typically, the client application includes modular renderers that are intended to handle
a particular cartridge.

We created a basic template and renderer in the example cartridge. We also inspected the cartridge instance
configuration generated in Workbench and the response returned by the Assembler. In the example cartridge,
both the configuration and the response model were generic content items that are simple maps of properties.
Many of the core cartridges have strongly typed configuration models and response objects associated with
them that extend from the basic content item. This makes it easier to understand the expected input to and
output from the core cartridge handlers, and also enables reuse of the models for the core cartridges. Strongly
typed configuration beans also make it possible to configure default values for cartridge properties via Spring.
Creating strongly typed model objects for the Assembler configuration and response is not required when
developing cartridges.

In the following sections, we discuss how to customize the Experience Manager interface using editors, and how
to define custom processing logic in the Assembler using cartridge handlers.

Customizing the Experience Manager interface

Experience Manager provides a set of standard editors that you can use in cartridge templates as well as the
ability to develop custom editors.

Adding embedded user assistance to a cartridge

You can provide embedded assistance for the business user in the Experience Manager interface by specifying it
in the cartridge template.

In our example cartridge, we provided two simple text fields for the business user to enter a message and
the desired color. This user interface makes it unclear what values are allowed or expected for those fields.
The template schema for configuring editors allows you to supply a short descriptive label for each field, but

5 Extending the Assembler 159

sometimes additional context can be helpful. For such cases, you can use the bot t oniLabel attribute to provide
further information.

To add additional guidance for the business user to the example cartridge:
1. Open the template file (Hel | oWor | d\ _. j son) that you previously created.

2. Add abot t onlLabel attribute to each editor in the Edi t or Panel , as in the example below:

"editorPanel ": {
"editor": "editors/DefaultEditorPanel",
“children": [
{
"editor": "G oupLabel ",
"l abel ": "${group.contents.|abel}"
b
{
"editor": "editors/StringEditor",
"propertyNanme": "nessage",
"l abel ": "Message",
"bottonlLabel ": "Enter a nmessage to display. HTM. is allowed."
b
{
"editor": "editors/StringEditor",
"propertyNanme": "messageCol or",
"l abel": "Color"
}
]
b

This additional label text can be configured for all editors built using the Experience Manager SDK, including
all the standard editors. For the full content of the updated template, see the example below. If your
implementation uses multiple locales, see About multiple locales (page 38) for information about localizing
strings.

3. Save and close the template.
4. Upload the template by running the set _t enpl at es script.

The following shows the complete content of the updated template:

"ecr:type": "tenplate",
"@roup": "SecondaryContent",
"@lescription": "A sanple cartridge that can display a sinple nessage",
"@hunbnai l Url": "thunbnail.jpg",
"defaul tContentltent: {
"@ane": "Hello cartridge",
"message": "",
"messageColor": ""

},
"editorPanel ": {
"editor": "editors/DefaultEditorPanel",
"children": [
{

"editor": "G oupLabel",
"l abel ": "${group.contents.|abel}"

160 5 Extending the Assembler

{
"editor": "editors/StringEditor",
"propertyNanme": "nessage",
"l abel ": "Message",
"bottonlLabel ": "Enter a nmessage to display. HTM. is allowed."
b
{
"editor": "editors/StringEditor",
"propertyName": "messageCol or",
"l abel": "Color"
}
]
H
"typelnfo": {
"message": {"@ropertyType": "String"},
"messageCol or": {" @ropertyType": "String"}
}

For more information about label options for Experience Manager editors, see the Editor label configuration
reference (page 212).

Using the core Experience Manager editors

Experience Manager provides a set of editors that can configure primitive property types as well as
Oracle Commerce-specific features. You specify which editor to use to configure which properties in the
<Edi t or Panel > portion of the template.

Even with additional user assistance text, asking the business user to type a hex code into a text field does not
provide a very user-friendly experience. One of the standard editors included with Experience Manager is a
combo box that can be used to specify a set of valid values for a string property. In this example, we provide a
set of colors from which the business user can choose. This not only relieves the business user from typing in a
hex code, but it can also ensure that the selected color matches the site's color scheme.

To update the example cartridge to use a combo box editor:
1. Open the template file, Hel | oWor | d\ _. j son, that you previously created.

2. Replace the string editor configuration for the messageCol or property with the following:

"edi torPanel ": {
"editor": "editors/DefaultEditorPanel",
"children": [
{
"editor": "G ouplLabel",
"l abel ": "${group.contents.|abel}"
H
{
"editor": "editors/StringEditor",
"propertyNanme": "nessage",
"| abel ": "Message",
"bottomnLabel ": "Enter a message to display. HTM. is allowed."
H
{
"editor": "editors/ ChoiceEditor",
"label": "Color",

5 Extending the Assembler 161

"propertyNanme": "messageCol or",
"choi ces": [

{
"l abel ": "Red",
"val ue": "#FF0000"
b
{
"l abel ": "G een",
"val ue": "#00FF00"
}
{
"l abel": "Bl ue",
"val ue": "#0000FF"
}

For the full content of the updated template, see the example below.
3. Upload the template by running the set _t enpl at es script.

Depending on the option that the business user selects, the value of the property is set to the appropriate hex
code. You can change the value and refresh the application to see the change.

The following shows the complete content of the updated template:

"ecr:type": "tenplate",
"@roup": "SecondaryContent",
"@lescription": "A sanple cartridge that can display a sinple nessage",
"@hunbnai l Url": "thurbnail .jpg",
"defaul t Contentlten: {
"@ane": "Hello cartridge",
"message": "",
"messageCol or":

b
"edi torPanel ": {
"editor": "editors/DefaultEditorPanel ",
"children": [

{
"editor": "G oupLabel",
"l abel ": "${group.contents.|abel}"

b

{
"editor": "editors/StringEditor",
"propertyNanme": "nessage",
"l abel ": "Message",
"bottonLabel ": "Enter a message to display. HTML is allowed."
b

{
"editor": "editors/ChoiceEditor"”,
"label": "Color",
"propertyNanme": "messageCol or",
"choi ces": [

{
"l abel ": "Red",

"val ue": "#FF0000"

162 5 Extending the Assembler

{
"l abel ": "Green",
"val ue": "#00FF00"
H
{
"l abel ": "Bl ue",
"val ue": "#00OOFF"
}
]
}
]
H
"typel nfo": {
"message": {"@ropertyType": "String"},
"messageCol or": {"@ropertyType": "String"}
}

For more information about the standard Experience Manager editors and their configuration, refer to the
Template Property and Editor Reference (page 209).

About custom editors

If none of the standard editors meet your needs, you can develop your own editors using the Experience
Manager Editor SDK.

You may want to develop an editor if:

+ You want to allow the business user to configure more advanced properties such as lists or maps of key-value
pairs.

+ You want to provide a more advanced interface for the business user, such as a list that enables drag-and-
drop.

+ You want the editor options to be populated dynamically from an external system rather than configured in
the template.

» You want the behavior of one editor or Ul control to be linked to the state of another.

For more information about the Experience Manager Editor SDK and developing Experience Manager editors,
see Developing Custom Editors (page 191).

About Cartridge Handlers and the Assembler

This section provides an overview of the Assembler. It describes the Assembler processing model and core
interfaces as well as how to implement a cartridge handler.

About the CartridgeHandler interface

A cartridge handler takes a content item representing the cartridge instance configuration as input and is
responsible for returning the response as a content item.

The Cart ri dgeHandl er interface defines three methods:i ni ti al i ze(), preprocess(),and process().

Theinitialize() method provides an opportunity for the cartridge handler to augment the cartridge
instance configuration specified in Experience Manager with configuration from other sources. This can be used

5 Extending the Assembler 163

to define default behavior for a cartridge in the case where there is no Experience Manager configuration, or
to override the Experience Manager configuration for the current query. Thei ni ti al i ze() method should
return a content item containing the complete configuration for the cartridge from all possible configuration
sources. This augmented configuration item can either be the mutated input content item or a new instance of
Cont ent | t em and is used as input to both the pr epr ocess() and pr ocess() methods.

Because the pr epr ocess() method is called on all cartridges before pr ocess() is called on any cartridges, it
provides an opportunity to coordinate processing between cartridges. Many of the core cartridges make use of
this mechanism in order to consoldiate queries to an MDEX Engine among several cartridges during the course
of a single assembly cycle.

The pr ocess() method is responsible for returning a Cont ent | t emthat represents the cartridge response.

A cartridge handler need not define any behavior fori ni ti al i ze() orpreprocess().The

Abst ract Cartri dgeHandl er class exists to simplify the task of implementing the Cart ri dgeHand| er
interface. It provides empty implementations fori ni ti al i ze() and pr eprocess() . Subclasses of
Abstract Cartri dgeHandl er need only implement the pr ocess() method to return the response object.
They can optionally override thei ni ti al i ze() and preprocess() methods.

About initializing the cartridge configuration

Theinitialize() phasein the cartridge processing life cycle enables the cartridge handler to synthesize the
complete configuration for the cartridge from several sources.

The configuration content item that is passed in to the assembly process is the cartridge instance configuration
from Experience Manager, however, any given cartridge may also have other configuration sources.

In a typical scenario, a cartridge has some default behavior that can be specified as a property value in a Spring
context file. A business user can specify a value for a specific instance of a cartridge using Experience Manager.
The site visitor may also have the ability to override either the default or the cartridge instance setting from the
client application. For example, in the Results List cartridge, the default value for records per page is 10. The
business user can set this value to 25 in Experience Manager, and the site visitor can choose to display 50 records
by selecting the appropriate option on the site.

The Assembler APl includes the Confi gl ni ti al i zer utility class with the method i ni ti al i ze() . The default
implementation of i ni ti al i ze() layers the cartridge configuration in the following order (from lowest to
highest):

1. Default configuration, typically defined in the Spring configuration for the cartridge handler

2. Cartridge instance configuration, typically created in Experience Manager and passed in as the
configuration content item

3. Request-based configuration parsed from the HTTP request parameters, using the
Request Par amvar shal | er helper class

The Confi gl nitializer class also provides methods for additional layering of configuration. Subclasses can
override Confi gl ni tializer to define custom layering behavior, for example, to incorporate configuration
saved in the session state.

About the NavigationCartridgeHandler class

The core cartridges that make queries to an MDEX Engine use cartridge handlers that extend from
Navi gati onCartri dgeHandl er.

The Navi gat i onCar t ri dgeHandl er makes use of the two-pass Assembler processing model to consolidate
MDEX Engine queries across cartridges.

164

5 Extending the Assembler

In the pr epr ocess() phase, the cartridge handler calls cr eat eMlexRequest () but does not execute

the request. In subsequent calls to cr eat eMlexRequest () by other handlers, the MDEX resource broker
determines whether the new request can be consolidated with an existing request in order to minimize the
number of queries to the MDEX Engine for a single assembly cycle.

During the process() phase, the handler calls execut eMlexRequest () to retrieve the results.

The actual query to the MDEX Engine is executed when the first handler in the assembly cycle calls

execut eMlexRequest () and the results are cached for all subsequent handlers that try to execute the same
request.

You can use a similar approach if you have multiple cartridges that need to make requests to the same external
resource and can achieve efficiencies by consolidating requests across cartridges.

For further information about the Navi gat i onCart ri dgeHandl er class, refer to the Assembler APl Reference
(Javadoc).

Implementing a cartridge handler

You add a cartridge handler by writing a Java class that implements the Car t ri dgeHand! er interface and
configuring the Assembler to use the new handler in the Spring context file.

In this example, we update our "Hello, World" cartridge to do some simple string manipulation on the message
that was specified in Experience Manager. Because this cartridge does not use any configuration other than the
cartridge instance configuration from Experience Manager and does not need to do any preprocessing, we can
extend Abst ract Cartri dgeHandl er.

To add a cartridge handler to the example cartridge:

1. Create a new Java class in the package com endeca. sanpl e. cartri dges and type or copy the following:

package com endeca. sanpl e. cartri dges;

import com endeca.infront.assenbl er. Abstract Cartri dgeHandl er;
i mport com endeca. i nfront. assenbl er. Cartri dgeHandl er Excepti on;
import com endeca.infront.assenbl er. Contentltem

public class UppercaseCartridgeHandl er extends AbstractCartridgeHandl er

{
11

/1 The cartridge handl er 'process' nethod
public Contentltem process(Contentltem pContentlten) throws
Cartri dgeHandl er Excepti on

{
/1 Get the nmessage property off of the content item
final String nessage = (String) pContentltem get("message");
/1 If the nessage is non-null, uppercase it.
if (null !'= nessage) {
pContent|tem put ("nessage", message.toUpperCase());
}
return pContentltem
}

2. Compile the cartridge handler and add the compiled class to your application, for example, by saving it in
YENDECA TOOLS ROOT% r ef er ence\ di scover - el ectroni cs-aut hori ng\ VEB- | NF\ cl asses.

3. Configure the Assembler to use the Upper caseCart ri dgeHandl er for the Hello cartridge.

5 Extending the Assembler 165

Cartridge handler development scenarios

a. Navigate to the VEB- | NF directory of your application, for example, YENDECA TOOLS_ROOT% r ef er ence
\ di scover - el ectroni cs- aut hori ng\ VEB- | NF.

b. Open the assenbl er - cont ext . xni file.

¢. Add the following in the CARTRI DGE HANDLERS section:

<l --

~ BEAN: CartridgeHandl er_Hello

-->

<bean i d="CartridgeHandl er _Hel | 0"
cl ass="com endeca. sanpl e. cartri dges. Upper caseCartri dgeHandl er"

scope="prototype" />

d. Save and close the file.

4. Restart the Tools Service.

5. Refresh the authoring instance of the application.

The message now appears in all-uppercase letters.

You should write a cartridge handler in cases where you need to perform some processing on the cartridge
instance configuration before sending the response to the client application.

It is always possible to do processing in the client application, but encapsulating the business logic in an
extension to the Assembler provides several advantages:

+ It makes the rendering code cleaner and easier to maintain.

« It centralizes the processing in one place so that the results can be consumed by multiple client applications
including across multiple channels such as desktop, mobile, and others.

« It provides an opportunity for coordinating processing across multiple cartridges before returning the

response to the client application.

Depending on what the cartridge handler needs to accomplish, your implementation approach may vary.
Cartridge handlers must always implement the pr ocess() method to return the response model.

Scenario

Implementation approach

Example cartridge

Update properties from the
cartridge instance configuration
in place (data cleansing or
manipulation scenario)

Extend Abst r act Cart ri dgeHandl er
and override process() to update the
property values in the input content item

"Hello, World" with
UppercaseCartridgeHandler

Use information from the
cartridge instance configuration
to query an external resource for
the information to display

Extend Abst r act Cart ri dgeHandl er
and override pr ocess() to query the
resource and insert the results in the
output content item

RSS Feed cartridge

166

5 Extending the Assembler

Scenario

Query an external resource,
consolidating queries between
cartridges within a single
assembly cycle for improved
performance

Implementation approach

Take advantage of the two-pass assembly
model with pr epr ocess() and
process() and implement a resource
broker that can consolidate queries and
manage their execution

Example cartridge

NavigationCartridgeHandler

Augment the results from a
core cartridge with additional
information from a non-MDEX
resource

Extend the core cartridge and override
process() to query the resource and
add additional properties to the MDEX
query results before returning the
response

Custom Record Details
with availability
information

Customize a core cartridge to
modify the MDEX Engine query
parameters

Extend the core cartridge and override
eitherinitialize() orpreprocess()
to modify the query before it is executed

Custom Results List with
recommendations

Combine multiple sources of
cartridge configuration before
processing results

Extend Abst r act Cart ri dgeHandl er
orimplement the Cart ri dgeHand! er
interface and overrideiniti al i ze(),
making use of the Confi gl ni tial i zer
and Request Par anivar shal | er

helper classes to generate the complete
configuration model

"Hello, World" with layered
color configuration

About using event listeners to extend the navigation cartridges

You can use the Assembler eventing framework as an extension point for navigation cartridges in cases where
extending an existing cartridge handler is insufficient.

If you are making modifications to the navigation cartridges, you can trigger processing logic based on
Assembler events instead of subclassing the core cartridge handlers.

Using an event listener instead of extending a cartridge handler introduces the following considerations:

+ Unlike extending a cartridge handler, logic included in an event listener is evaluated for every cartridge

handler.

+ Event listeners do not have access to the current Assembler request or to the navigation state.

« Event listeners must be thread safe.

Related links

+ Assembler event framework reference (page 12)

Creating an event listener

The Assembler provides an empty implementation of the Assenbl er Event Li st ener,
Assenbl er Event Adapt er . You can extend this implementation to create a listener that triggers on an

Assembler event.

To create an event listener:

5 Extending the Assembler

167

1. Create a new Java class that extends the Assenbl er Event Adapt er.

For example:

public class ResultsListListener extends Assenbl er Event Adapter {

}

2. Override the methods that correspond to the events for which you wish to trigger custom processing logic:

public class ResultsListListener extends Assenbl er Event Adapter {

@verride

public void cartridgePreprocessStarting(Assenbl er Event event) {

@verride
public void cartridgeProcessConpl et e(Assenbl er Event event) {

For a list of Assembler events, see the Assembler event framework reference (page 12) or refer to the
Assembler APl Reference (Javadoc).

3. Add conditional logic to restrict processing to a specific cartridge handler:

public class Resul tsListListener extends Assenbl er Event Adapter {

@verride
public void cartridgeProcessConpl et e(Assenbl er Event event) {
if(event.getContentltem() != null &&

"Resul tsList". equal s(event.getContentlten().getType()){

4, Add processing logic.

The example below prefixes the max_pri ce property on a record with a dollar sign:

public class Resul tsListListener extends Assenbl er Event Adapter {

@verride
public void cartridgeProcessConpl et e(Assenbl er Event event) {
if(event.getContentlten() != null &&

"Resul tsList". equal s(event. get Contentlten().get Type()){
Resul t sLi st resultsList = (ResultsList) event.getContentlten();
for(Record record : resultsList.getRecords()){
Attribute price = record. getAttributes().get("product.nax_price");

168 5 Extending the Assembler

if(price !'=null){
for(int i =0 ; i < price.size(); i++){
price.set(i, "$" + price.get(i).toString());
}

After creating a new listener, you must register it by including it in the list of listeners for the
assenbl er Fact or y object.

About registering an event listener
You must register all event listeners with the Assenbl er Fact or y object.

The Assenbl er Fact or y takes event listeners as constructor arguments. These listeners are instantiated with
each Assenbl er object created by the factory class.

Optionally, you may also choose to use the Assenbl er . addAssenbl er Event Li st ener () method toadd a
listener for a single assembly request.

Example 5.1. Example

The example below uses the Resul t sLi st Li st ener defined in the previous topic, registered in the Discover
Electronics reference application.

The reference application uses the Assembler context file to configure global application properties. The
configuration bean for the Assenbl er Fact or y includes a list of listeners as constructor arguments:

<bean i d="assenbl er Fact ory"
cl ass="com endeca. i nfront. assenbl er. spri ng. Spri ngAssenbl er Fact ory"
scope="si ngl et on" >
<constructor-arg>

</ constructor-arg>
<constructor - ar g>
<l-- List of listeners registered in the assenbler -->
<list>
<bean cl ass="com endeca. i nfront. Resul tsLi stListener" />
<bean cl ass="com endeca. i nfront. | ogger. SLF4JAssenbl er Event Logger" />
<bean
cl ass="com endeca. i nfront. assenbl er. event . request. Cont ent | t emAugnent Adapt er " >
<constructor-arg ref="springUility"/>
</ bean>

</list>
</ constructor-arg>
</ bean>

Sample Cartridges

This section contains sample cartridge customizations that demonstrate how to use the various cartridge
extension mechanisms to address different use cases.

5 Extending the Assembler 169

About using the sample cartridges

The sample cartridges are intended to demonstrate the cartridge extension mechanisms and provide a model
for your own cartridge customizations.

The sample code provided is written to be generic and easy to follow, rather than production-quality code.
Oracle recommends that you follow a few best practices when working with the examples:

+ Set up a new instance of the Discover Electronics application to use as a sandbox for deploying the sample
cartridges. This isolates the samples from the out-of-the-box configuration for Discover Electronics as well as
your own application.

+ Within your sandbox application, create a separate Spring context file for the custom cartridge handlers
described in this guide.

» When copying and pasting examples from this guide, pay attention to the end-of-line marker (=) that
indicates that a long line of text has been wrapped. Ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

The steps described for creating and deploying the components of the sample cartridges correspond to the
steps described in previous sections for the "Hello, World" cartridge. If you need additional information to
complete a particular step in deploying one of the sample cartridges, refer to the more detailed procedures for
the "Hello, World" example.

Setting up a test application based on Discover Electronics

Oracle recommends that you use a test application to test the sample cartridges instead of deploying them in
Discover Electronics or your own application.

Because a test application is for development use only, we do not need to deploy a live instance of the
application.

To deploy a copy of Discover Electronics to use as a test for the sample cartridges:
1. Deploy a new test application using the Deployment Template.

a. From a command prompt, navigate to %ENDECA_TOOLS_ROOT% depl oynment _t enpl at e\ bi n (on
Windows) or SENDECA TOOLS_ROOT/ depl oynent _t enpl at e/ bi n (on UNIX).

b. Run the deploy script:
+ On Windows: depl oy. bat --app ..\..\reference\di scover-data\depl oy. xni
*+ OnUNIX:depl oy.sh --app ../../reference/discover-datal/depl oy. xn

c. Specify the application name Test and specify the following ports when prompted:

Port Recommended value
Live Dgraph 15100
Authoring Dgraph 15102

170

5 Extending the Assembler

Port Recommended value

LogServer 15110

2. Provision the test application.
a. Ensure that the HTTP Service and Tools Service are running.

b. From a command prompt, navigate to <APP- DI R>\ cont r ol (on Windows) or <APP- DI R>/ cont r ol (on
UNIX).

c. Runinitialize_services.
d. Runl oad_basel i ne_test data.
e. Runbasel i ne_updat e.
3. Deploy a copy of the authoring instance of the Discover Electronics application.

a. Navigate to %ENDECA_TOOLS_ROOT% r ef er ence (on Windows) or $ENDECA_TOOLS_ROOT/ r ef er ence
(on UNIX).

b. Make a copy of the directory di scover - el ect r oni cs- aut hor i ng and save the copy with the name
sandbox in the same parent directory.

c. Navigate to thet est directory and then to the VEB- | NF subdirectory.
d. Open assenbl er - cont ext . xnl in a text editor.

e. Locate the CARTRI DGE SUPPORT section:

<l--
BRI HE RO HE ST
CARTRI DGE SUPPORT
#
The foll owi ng section configures managers and other supporting objects.
#

f. Inthe mdexResour ce bean, update the Dgraph port:

<bean i d="ndexResource" scope="request"

cl ass="com endeca. i nfront. navi gati on. nodel . MlexResour ce" >
<property nanme="appNane" val ue="${wor kbench. app. nane}" />
<property nane="host" val ue="| ocal host" />
<property nanme="port" val ue="15102" />
<property nane="ssl| Enabl ed" val ue="${ndex. ssl Enabl ed}" />
<property nane="recordSpecNane" val ue="comon.id" />

</ bean>

g. Locate the Cont ent Sour ces section:

<l--

~ Content Sources

5 Extending the Assembler 171

h. In the Cont ent Sour ce bean, update the application name:

<bean i d="Cont ent Sour ce""
cl ass="com endeca. i nfront. cont ent. sour ce. Wr kbenchCont ent Sour ce"

scope="si ngl eton" init-nethod="init" destroy-nmethod="destroy">
<property nane="storeFactory" ref="storeFactory"/>
<property nanme="defaul t Si t eRoot Pat h" ref="defaul t SiteRoot Path" />
<property nanme="appNane" val ue="${wor kbench. app. nane}"/>
<property nane="siteManager" ref="siteManager"/>

</ bean>

i. Intheaut hori ngMedi aSour ces bean, update the application name:

<bean i d="aut hori ngMedi aSour ces" class="java.util.ArrayList" lazy-init="true">
<constructor - ar g>
<list>
<bean cl ass="com endeca. i nfront. cartri dge. nodel . Medi aSour ceConfi g">
<property nanme="sour ceNane" val ue="I|FCRSource" />
<property nane="sourceVal ue" value="http://|ocal host:8006/ifcr/
sites/ Test/nmedia/" />
</ bean>
<bean cl ass="com endeca. i nfront. cartri dge. nodel . Medi aSour ceConfi g">
<property nanme="sourceNane" val ue="default" />
<property nanme="sourceVal ue" value="http://| ocal host:8006/ifcr/
sites/ Test/nmedia/" />

</ bean>
</list>
</ constructor-arg>

</ bean>

j. Save and close the file.

k. Navigate to YENDECA TOOLS_CONF% conf \ St andal one\ | ocal host (on Windows) or
$ENDECA_TOOLS_CONF/ conf / St andal one/ | ocal host (on UNIX).

I. Make a copy of di scover - aut hori ng. xm and save the copy with the name t est in the same directory.
m.Opentest. xnl in atext editor.

n. Change the value of docBase as follows:

docBase="${catal i na. base}/../../reference/test"

o. Restart the Tools Service.
4. Validate your new sandbox application:

a. Navigateto htt p: // <Wor kbenchHost >: 8006/ | ogi n and verify that Test displays as an option in the
Application drop-down.

b. Select the Test application and verify that the sample page content from Discover Electronics is available
in Experience Manager.

172 5 Extending the Assembler

c. In aseparate browser window, navigate to the newly deployed sandbox application, atht t p: / /
<Wor kbenchHost >: 8006/ t est and verify that it displays.

5. Optionally, update the Workbench configuration to use the test Web application for preview.
a. Ensure that you are logged in to the Test application in Workbench.
b. Select Application Configuration.

c. Specify the URL to the sandbox application (for example, ht t p: / / <Wr kbenchHost >: 8006/ t est) as the
Preview URL.

d. Preview a page from Experience Manager by selecting a page or content item and clicking Preview in the
upper right.

Creating a Spring context file for sample cartridges

Oracle recommends that you specify the configuration for the sample cartridges in a separate Spring context file
from the core cartridges.

To create a Spring context file for the sample cartridges:

1. Navigate to “ENDECA_TOOLS_ROOT% r ef er ence\ sandbox\ VEB- | NF (on Windows) or
$ENDECA_TOOLS_ROOT/ r ef er ence/ sandbox/ VEEB- | NF (on UNIX).

2. Open assenbl er - cont ext . xn in a text editor.

3. At the top of the file, add the following i nport:

<beans xm ns="http://ww. springfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocat i on="
http://ww. springfranmewor k. or g/ schema/ beans
http://wwm. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
">
<bean
cl ass="org. springframewor k. beans. fact ory. confi g. PropertyPl acehol der Confi gurer">
<property nane="| ocati ons">
<list>
<val ue>WEB- | NF/ assenbl er. properti es</val ue>
</list>
</ property>
</ bean>

<i mport resource="endeca-url-config.xm"/>
<import resource="perf-I|ogging-config.xm"/>
<i nport resource="sanple-cartridge-config.xm" />

4. Delete the configuration for the "Hello, World" sample cartridge that we added in an earlier example.

<l--

~ BEAN: CartridgeHandl er_Hell o

-->

<bean i d="CartridgeHandl er _Hel | 0"

cl ass="com endeca. sanpl e. cartri dges. UppercaseCartri dgeHandl er"

5 Extending the Assembler 173

scope="prototype" />

5. Save and close the file.

6. Create a new file named sanpl e- cartri dge- confi g. xnl in the same directory with the following
contents:

<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schenmalLocati on="http://ww. spri ngfranmewor k. or g/ schena/ beans
http://ww. springfranmewor k. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd" >

<l--

~ BEAN: CartridgeHandl er_Hell o
-->

<bean i d="CartridgeHandl er _Hel | o"
cl ass="com endeca. sanpl e. cartri dges. Upper caseCartri dgeHandl er"
scope="prototype" />

</ beans>

7. Save and close the file.
8. Validate the new configuration by adding the "Hello, World" cartridge to your new sandbox application.

a. Copy the "Hello, World" directory and its contents (Hel | oWor | d\) from the Discover Electronics
application (<APP- DI R>\ confi g\ cartri dge_t enpl at es) to the sandbox application.

b. Upload the template to Workbench using the set _t enpl at es script.

¢. Using Experience Manager, add the cartridge to the default page of the sandbox application and save your
changes.

d. Verify that the Hel | 0. j sp renderer and Upper caseCart ri dgeHandl er are present in the sandbox
Web application. (These should have been included when you copied the Discover Electronics authoring
application.)

e. Refresh the sandbox application (ht t p: / / <Wr kbenchHost >: 8006/ sandbox) and verify that the text
you entered in Experience Manager displays, and has been converted to all-uppercase letters.

RSS Feed cartridge

In this example, we build a cartridge that displays items from an RSS feed.

This cartridge enables a business user to specify some basic information about an existing RSS feed in
Experience Manager. The cartridge handler fetches the RSS results and returns an output model to the client
suitable for rendering.

It demonstrates the following use cases:
+ Using a cartridge handler to fetch information from a source other than an MDEX Engine.

+ Using the business user configuration from Experience Manager as input into the assembly process and
returning a different output model from the configuration model.

In this cartridge, we create the following components:

174

5 Extending the Assembler

Component Description

cartridge template Enables the business user to specify the URL to an RSS feed and the number of
entries to display.

cartridge handler Fetches results from the RSS feed and returns a number of entries up to the value
specified by the business user or the number of entries in the feed, whichever is
lower.

cartridge renderer Displays the name of the feed with a link to the channel URL, and the title and

description of each entry with a link to the entry on the original site.

Creating the cartridge template
The business user needs to be able to configure the RSS Feed with a URL and the number of entries to display.
To create the RSS Feed template and add it to your application:
1. Create a new template based on the example below.

Since the number of entries is expected to be an integer, the example uses a Nuner i ¢St epper Edi t or for
this property. In the example, we specify a default value of 5 for the number of entries.

2. Create a directory with the name RssFeed in the templates directory of your application.
3. Save the template with the name _. j son to the RssFeed directory of your application.
4. Upload the template using the set _t enpl at es script.
5. Add the cartridge to the default search and navigation page.

Note

The sample renderer for this cartridge works best with RSS feeds that have brief descriptions with
no images or advertisements in the description field. A possible enhancement to this cartridge
would be to make displaying the description configurable.

6. Save your changes to the page.

The cartridge instance configuration is saved as JSON. At this point, because there is no cartridge handler
specified for this cartridge, the same configuration is passed to the client as the response from the Assembler.

The following shows the sample template for the RSS Feed cartridge:

"ecr:type": "tenplate",
"@roup": "SecondaryContent",
"@lescription":"A cartridge that displays entries froman RSS feed.",
"@hunbnai l Url":"/ifcr/tool s/xmgr/ing/tenplate_thunbnail s/sidebar_content.jpg",
"def aul t Contentlten':{
"@ane":"RSS cartridge",
"feedUrl": "",
"nunEntries": "5"
H
"edi tor Panel ": {
"editor":"editors/ Defaul t EditorPanel ",
"children":[

5 Extending the Assembler 175

"editor": "G oupLabel",

"l abel ": "${group.contents.|abel}"
H

{
"editor":"editors/StringEditor",
"l abel ": " Feed URL",
"propertyName":"feedU ",
"boot onLabel ": " The address of the RSS feed, such as http://ww.oracle.com

us/ cor por at e/ press/rss/rss-pr.xm"

b

{
"editor":"editors/NumericStepperEditor",
"l abel ": " Nunmber of entries to display",
"m nVal ue": 1,
"maxVal ue": 15,
"propertyNanme": "nunkntries"”

}

]
b
"typelnfo": {
"feedUrl": {"@ropertyType": "String"},
"nunEntries": {"@ropertyType": "String"}
}

Creating the cartridge handler
The cartridge handler fetches the RSS results and returns an output model to the client suitable for rendering.
To create the RSS Feed cartridge handler and add it to the application:

1. Create a new Java class in the package com endeca. sanpl e. cart ri dges based on the example below,
which extends Abst ract Cart ri dgeHandl er.

2. Compile the cartridge handler and add the compiled class to your application.

3. Configure the Assembler to use the RssFeedHandl er for the RSS Feed cartridge by adding the following to
the Spring context file:

<l--

~ BEAN. CartridgeHandl er _RssFeed

-->

<bean i d="CartridgeHandl er _RssFeed"

cl ass="com endeca. sanpl e. cartri dges. RssFeedHandl er"
scope="prototype" />

4. Restart the Tools Service.
5. Refresh the application.

The RSS feed does yet appear because we have not created the renderer. Nevertheless, you can validate that the
response model has been populated with the information that we want to display in the JSON view:

"@ype": "RssFeed",

176 5 Extending the Assembler

"nane": "RSS cartridge",

"feedUrl": "http://ww.w red.confreviews/feed/",
"nunEntries": "5",
"chanTitle": "Product Reviews",
“chanUrl": "http://ww.w red. confreviews",
"entries": [
{
"@ype": "rsskEntry",
"itenDesc": "(description text omtted fromthis exanple)",
"itenlitle": "(title text omtted fromthis exanple)"”,
"itemrl": "(url omtted fromthis exanple)"
b
{
"@ype": "rsskEntry",
"itenDesc": "(description text omtted fromthis exanple)",
"itenlitle": "(title text omtted fromthis exanple)"”,
"itemrl": "(url omtted fromthis exanple)"
b
{
"@ype": "rsskEntry",
"itenmDesc": "(description text omtted fromthis exanple)",
"itenlitle": "(title text omtted fromthis exanple)"”,
"itemrl": "(url omtted fromthis exanple)"
b
{
"@ype": "rsskEntry",
"itenmDesc": "(description text omtted fromthis exanple)",
"itenlitle": "(title text omtted fromthis exanple)"”,
"itemrl": "(url omtted fromthis exanple)"
b
{
"@ype": "rsskEntry",
"itenDesc": "(description text omtted fromthis exanple)",
"itenlitle": "(title text omtted fromthis exanple)"”,
"itemrl": "(url omtted fromthis exanple)"
}

The following shows the code for the sample RSS Feed cartridge handler:

package com endeca. sanpl e. cartri dges;

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

public

com endeca. i nfront. assenbl er. Abstract Cartri dgeHandl er;
com endeca. i nfront. assenbl er. Cartri dgeHandl er Excepti on;
com endeca. i nfront. assenbl er. Contentltem

com endeca. i nfront. assenbl er. Basi cContent|tem

j ava. net . URL;

java.util.Arrayli st;

javax. xm . par sers. Docunent Bui | der Fact ory;

javax. xm . par sers. Docunment Bui | der ;

org.w3c. dom Char act er Dat a;

org. w3c. dom Docunent ;

org.w3c. dom El enent ;

org. w3c. dom NodelLi st ;

org. w3c. dom Node;

cl ass RssFeedHandl er extends Abstract CartridgeHandl er {

5 Extending the Assembler

177

public Contentltem process(Contentltem pContentltem
throws CartridgeHandl er Exception {

final String urlString = (String) pContentltemget("feedUl");
final int nunEntries =
I nt eger. parsel nt ((String)pContentltemget("nunEntries"));

try {
URL url = new URL(url String);
Document Bui | der Factory factory = Docunent Bui | der Fact ory. newl nst ance() ;
Docurent Bui | der docBui |l der = factory. newDocunent Bui | der () ;
Docunent RssContents = docBuil der. parse(url.openStrean());

/'l get the channel info
El enent channel =

(El enent) RssCont ent s. get El ement sByTagNane(" channel ") .iten(0);
pContentltem put ("chanTitle", getEl enmentVal ue(channel, "title"));
pContentltem put ("chanUrl", getEl ementVal ue(channel, "link"));

/1 get the entries and add themto a list
ArraylLi st<Contentltenr entries = new ArraylLi st<Contentlten»(nunEntries);
NodeLi st nodes = RssContents. get El ement sByTagNane("itenl);
for(int i=0; i<nunEntries; i++) {
El erent el ement = (El enent)nodes.iten(i);
if (element!=null) {
Contentltementry = new BasicContentlten("rssEntry");
entry.put("itenfitle", getEl ementValue(el emrent, "title"));
entry.put("itenmrl", getEl enentVal ue(el enent, "link"));
entry. put ("itenmDesc", getEl ementVal ue(el ement, "description"));
entries.add(entry);

}
}
pContentltem put("entries", entries);
}
catch (Exception e) {
throw new CartridgeHandl er Exception(e);

}

return pContentltem
}

private static String getCharacterDat aFronEl enent (El enent e) {
try {
Node child = e.getFirstChild();
if(child instanceof CharacterData) {
CharacterData cd = (CharacterData) child;
return cd.getData();
}
}
cat ch(Exception ex) {
}

return)

}

private static String getEl ement Val ue(El ement parent, String |abel) {
return get Charact er Dat aFr onEl enent (
(El ement) par ent . get El enent sByTagNane(| abel).iten(0));

178 5 Extending the Assembler

Creating the cartridge renderer

The renderer displays a summary of the results with links that take the site visitor to the site that originated the
RSS feed.

To create a renderer for the RSS feed:

1. Create a new JSP page based on the example below.

2. Save the renderer to / VEB- | NF/ vi ews/ deskt op/ RssFeed/ RssFeed. j sp.
3. Refresh the application to see the result.

The results from the RSS feed display in the right sidebar.

The following shows the code for the sample RSS Feed renderer in JSP:

<%page | anguage="j ava" pageEncodi ng="UTF- 8"
cont ent Type="t ext/ htnl ; char set =UTF- 8" %

<%@ ncl ude file="/WEB-|NF/views/include.jsp"%

<di v styl e="paddi ng: 2ex 0">
${conponent. chanTi tl e} </ a>
<c:forEach var="rssEntry" itens="${conponent.entries}">
<p>${rssEntry.itentitle}

${rssEntry.itenDesc}</p>
</ c: forEach>
</ div>

Custom Record Details cartridge with availability information

In this example, we extend the Record Details cartridge to display information about the availability of a
product.

It demonstrates the following use cases:
+ Extending one of the core cartridges

+ Combining results from the MDEX Engine with information from another source during the pr ocess() phase
of the assembly cycle

+ Configuring a third-party service through Spring

In this cartridge, we create the following components:

Component Description

cartridge handler Extends the Recor dDet ai | sHandl er to add a property to the response model
containing availability information.

5 Extending the Assembler 179

Component Description

mock "availability Stands in for a real source of availability information such as an inventory system.
service"

Because this cartridge does not introduce any change in the configuration options for the business user, there
are no template changes for this cartridge. To enable the full functionality of this cartridge, the renderer should
be updated to display the availability information, however that is not demonstrated in this guide.

Creating the cartridge handler and supporting classes

The Avai | abi | i t yRecor dDet ai | sHandl er extends the core Recor dDet ai | sHandl er to call a simple mock
availability service to retrieve availability information about a particular record.

To create a cartridge handler that calls an availability service:

1. Create the following classes: Avai | abi | i ty, Avai | abilityService,andFi xedAvai | abi |l ityService
based on the examples below.

The Avai | abi |i t yServi ce defines an interface that returns availability information based on a record
identifier, and Fi xedAvai | abi | i t ySer vi ce provides a basic implementation of the interface.

2. Create a new Java class in the package com endeca. sanpl e. cartri dges based on the example below,
which extends Recor dDet ai | sHandl er.

The handler takes the results of the MDEX Engine query and adds an additional property that represents the
product availability.

3. Compile the classes and add them to your application.

4. Configure the Assembler to use the Avai | abi | i t yRecor dDet ai | sHandl er for the Record Details cartridge
by editing the Spring context file as in the following example.

Note

If you have created a sanpl e- cartri dge- confi g. xnl file for configuring the example cartridges,
copy the Cart ri dgeHandl er _Resul t sLi st bean from assenbl er - cont ext . xm to your sample
context file, comment out the version in assenbl er - cont ext . xn , and then modify the version in
your sample context file as indicated below.

<bean i d="CartridgeHandl er _RecordDet ai | s"
cl ass="com endeca. sanpl e. cartri dges. Avai | abi | i t yRecor dDet ai | sHandl er"
parent =" Navi gati onCartri dgeHandl er" scope="prototype" >
<property nane="recordState" ref="recordState" />
<property nane="avail abilityService" ref="availabilityService" />
<property nanme="recordSpec" val ue="common.id" />
<property nanme="avail abilityPropertyNane"
val ue="product.availability" />
</ bean>

<bean i d="avail abilityService"
cl ass="com endeca. sanpl e. cartri dges. Fi xedAvai |l abi | i tyServi ce"
scope="si ngl eton" >
<l-- Inplenentation-specific configuration for the service
coul d be specified here -->

180 5 Extending the Assembler

</ bean>

5. Restart the Tools Service.
6. Refresh the application and then click on any record to view its details page.

The availability property is now returned as part of the record details information:

{
"@ype": "RecordDetail sPageSl ot",
"nane": "Record Details Page",
"contentCol l ection": "Record Details Pages",
"ruleLimt": "1",
"contents": [
{
b
"recordDetails": {
"@ype": "RecordDetails",
"record": {
"@l ass": "com endeca.infront.cartridge. nodel.Record",
"nunmRecords": 1,
"attributes": {
"product.availability": [
" BACKORDER'
1.
b
"records": [...]
b
"nane": "Record Details"
}
}
I
}

The renderer can now be updated to display availability information based on the value of this property.

The following shows the code for the availability service and its supporting classes:

package com endeca. sanpl e. cartri dges;

public enum Avail ability {
| MVEDI ATE,
VEEK,
DROP_SHI P,
BACKORDER;

package com endeca. sanpl e. cartri dges;

public interface AvailabilityService {

5 Extending the Assembler 181

Avail ability getAvailabilityFor(String identifier);

package com endeca. sanpl e. cartri dges;

public class FixedAvail abilityService inplenents AvailabilityService {

public Availability getAvailabilityFor(String identifier) {
try {
return Availability.valueO(identifier);
} catch (111 egal Argunent Exception e) {
return Avail ability. BACKORDER;

}

The following shows the code for the custom cartridge handler:

package com endeca. sanpl e. cartri dges;

i mport com endeca. i nfront. assenbl er. Cartri dgeHandl er Excepti on;
import com endeca.infront.cartridge. RecordDetails;

import com endeca.infront.cartridge. RecordDetail sConfig;

i mport com endeca.infront.cartridge. RecordDetai | sHandl er;
import com endeca.infront.cartridge. nodel.Attribute;

import org. springframework. beans. factory. annot ati on. Requi r ed;

public class Avail abilityRecordDetail sHandl er extends RecordDet ai |l sHandl er {

private AvailabilityService availabilityService;
private String recordSpec;
private String avail abilityPropertyNane;

@Rrequi r ed
public void setAvail abilityService(
Avail abilityService availabilityService) {
avail abilityService = availabilityService_;

}

@Rrequi r ed
public void setRecordSpec(String recordSpec_) {
recordSpec = recordSpec_;

}

@Requi red
public void setAvail abilityPropertyNang(
String availabilityPropertyName_) {
avail abi lityPropertyNane = avail abilityPropertyNane_;

}
@verride

public RecordDetails process(RecordDetail sConfig detail sConfig)

throws CartridgeHandl er Exception {
RecordDet ai | s details = super. process(detail sConfig);
if (null == details) return null;
Attribute attr =
details.getRecord().getAttributes().get(recordSpec);

182

5 Extending the Assembler

if (null == attr || 1 != attr.size()) {
t hrow new Cartri dgeHandl er Excepti on("No record spec
avail abl e on record, or spec is multiassign");
}
Attribute<Availability> availability =
new Attribute<Availability>();
avail abi lity. add(
avail abilityService.getAvailabilityFor(attr.toString()));
details.getRecord().getAttributes().put(availabilityPropertyNane,
avail ability);
return details;

Custom Results List with recommendations

In this example, we extend the Results List cartridge to boost certain products based on information from a
recommendation engine.

It demonstrates the following use cases:
+ Extending one of the core cartridges

+ Using data from another source to modify the query to the MDEX Engine created during the pr epr ocess()
phase of the assembly cycle

+ Configuring a third-party service through Spring

In this cartridge, we create the following components:

Component Description

cartridge handler Extends the Resul t sLi st Handl er to retrieve a set of items to boost from a
recommendations engine and add a boost stratum to the MDEX Engine query.

mock recommendations | Stands in for a real source of recommendations.
service

Because this cartridge does not introduce any change in the configuration options for the business user, there
are no template changes for this cartridge. Additionally, the response model for the customized cartridge is the
same as the default Results List (only with the records in a different order), so there is no need for changes to the
default renderer.

Creating the cartridge handler and supporting classes

The Recomendat i onsResul t sLi st Handl er extends the core Resul t sLi st Handl er to call a simple mock
recommendations service and boosts the recommended products.

To create a cartridge handler that boosts recommended records:

1. Create the interface Recormendat i onSer vi ce and the concrete implementation
Test Recommendat i onSer vi ce based on the examples below.

5 Extending the Assembler 183

As a proof of concept, the recommendations service always returns the same recommendations from the
Discover Electronics data set.

2. Create a new Java class in the package com endeca. sanpl e. cartri dges based on the example below,
which extends Resul t sLi st Handl er.

The handler retrieves a list of recommended records from the service and adds them to a boost stratum for
the MDEX Engine query. If the records are present in the results set, they are boosted to the top of the results
list.

3. Compile the classes and add them to your application.

4. Configure the Assembler to use the Reconmendat i onsResul t sLi st Handl er for the Results List cartridge
by editing the Spring context file as follows:

Note

If you have created a sanpl e- cartri dge- confi g. xm file for configuring the example cartridges,
copy the Car t ri dgeHand! er _Resul t sLi st bean from assenbl er - cont ext . xn to your sample
context file, comment out the version in assenbl er - cont ext . xn , and then modify the version in
your sample context file as indicated below.

<bean i d="CartridgeHandl er _Resul tsList"
cl ass="com endeca. sanpl e. cartri dges. Recormendat i onsResul t sLi st Handl er"
par ent =" Navi gati onCartri dgeHandl er" scope="prototype">
<property nanme="contentltem nitializer">
<l-- additional elenments onmtted fromthis exanple -->
</ property>
<property nanme="sort Opti ons">
<l-- additional elenments onmtted fromthis exanple -->
</ property>
<property nanme="reconmmendati onServi ce" ref="recomendati onService" />
<property nane="recordSpec" val ue="comon.id"/>
</ bean>

<bean i d="recommendat i onSer vi ce"
cl ass="com endeca. sanpl e. cartri dges. Test Recommendat i onSer vi ce"
scope="si ngl eton" >
<l-- Inplenentation-specific configuration for the service
coul d be specified here -->
</ bean>

5. Restart the Tools Service.
6. Refresh the application.
The recommended records are boosted to the top of the results.

The following shows the code for the recommendations service interface and concrete implementation:

package com endeca. sanpl e. cartri dges;
import java.util.List;

public interface Recomendati onService {
public List<String> get RecormendedProduct|ds();

184 5 Extending the Assembler

package com endeca. sanpl e. cartri dges;

inmport java.util.Arrays;
inmport java.util.List;

public class Test Reconmendati onService
i mpl enments Recommendat i onServi ce {
public static final List<String> |IDS =
Arrays. asLi st ("5891932", "6001963", "1438066", "1581692",
"2708142", "1235424", "3422480");

public List<String> get RecommrendedProduct!ds() {
return | DS;

}

The following shows the code for the custom cartridge handler:

package com endeca. sanpl e. cartri dges;

inmport java.util.Arraylist;
import java.util.List;

i mport com endeca. i nfront. assenbl er. Cartri dgeHandl er Excepti on;
i mport com endeca.infront.cartridge. Resul tsLi st Config;

import com endeca.infront.cartridge. Resul tsLi st Handl er;

i mport com endeca.infront. navigation.nodel.CollectionFilter;

i mport com endeca. i nfront. navi gati on. nodel . PropertyFilter;

public class Recommendati onsResul t sLi st Handl er ext ends Resul t sLi st Handl er {
private Recommendati onServi ce reconmendati onServi ce;
private String recordSpec;

public String getRecordSpec() {
return recordSpec;

}

public void setRecordSpec(String recordSpec_) {
this.recordSpec = recordSpec_;

}

public void set Reconmendati onServi ce(
Recommendat i onServi ce reconmendati onService_) {
reconmmendat i onServi ce = recomrendati onServi ce_;

}

| **

* This cartridge will get the list of recomrended products
* (by record spec) and explicitly boost each one of them using
* a PropertyFilter.
*/
@verride
public void preprocess(Resul tsListConfig pContentltemn
throws CartridgeHandl er Exception {

5 Extending the Assembler 185

List<String> ids =

recommendat i onSer vi ce. get RecormendedPr oduct | ds() ;
Li st<Col I ectionFilter> boostFilters =

new ArraylLi st<Col | ectionFilter>(

ids.size());
for (String s : ids) {
boost Fi | ters. add(new Col | ectionFilter(new PropertyFilter(
recordSpec, Ss)));

}

pContent |t em set Boost Strat a(boostFilters);
super . preprocess(pContentlten;

"Hello, World" cartridge with layered color configuration

In this example, we extend the "Hello, World" example cartridge to demonstrate the layering of configuration
from several sources.

In this scenario, we can define a default color for the message in our "Hello, World" cartridge, which the business
user can override on a per-instance basis in Experience Manager. The site visitor can also select a preferred color
from the client application.

It demonstrates the following use cases:

+ Combining the default cartridge configuration, cartridge instance configuration, and request-based
configuration using the Confi gl ni ti al i zer and Request Par anivar shal | er helper classes

+ Using a cartridge configuration bean

In this cartridge, we create the following components:

Component Description

cartridge handler Uses the Col or Confi gl ni tial i zer to layer multiple sources of configuration
for message color.

cartridge configuration Provides a means of specifying default values for this cartridge via Spring.

bean

cartridge renderer Provides a drop-down list from which the site visitor can choose a color for the
message.

Because this cartridge does not introduce any change in the configuration options for the business user, there
are no template changes for this cartridge.

Creating the cartridge handler and supporting classes

The cartridge handler combines the various sources of configuration for message color using the
Configlnitializer and Request Par anMar shal | er helper classes.

To create the "Hello, World" cartridge handler with color configuration and add it to the application:

186 5 Extending the Assembler

1. Create a new Java class in the package com endeca. sanpl e. cartri dges based on the example below,
which extends Abst r act Cartri dgeHandl er.

2. Create a configuration bean for this cartridge based on the example below. This enables us to define default
values for the cartridge properties in the Spring context file.

3. Compile the cartridge handler and configuration bean and add them to your application.

4. Configure the Assembler to use the Col or Conf i gHandl er for the "Hello, World" cartridge by editing the
Spring context file as follows:

<bean i d="CartridgeHandl er _Hel | 0"
cl ass="com endeca. sanpl e. cartri dges. Col or Confi gHandl er"
scope="pr ot ot ype" >
<property name="contentltem nitializer">
<bean cl ass="com endeca.infront.cartridge.Configlnitializer"
scope="si ngl et on" >
<property name="defaul ts">
<bean cl ass="com endeca. sanpl e. cartri dges. Col or Confi g"
scope="si ngl et on" >
<property nanme="nmessageCol or" val ue="#FF6600"/ >
</ bean>
</ property>
<property nanme="request Paramvarshal | er">
<bean
cl ass="com endeca. i nfront. cartri dge. Request Par amvar shal | er"
scope="si ngl et on" >
<property nanme="httpServl et Request" ref="httpServl et Request"/>
<property nanme="request Map">
<n"ap>
<entry key="col or" val ue="nessageCol or"/ >
</ map>
</ property>
</ bean>
</ property>
</ bean>
</ property>
<property nanme="col or Opti ons">
<n"ap>
<entry key="Red" val ue="#FF0000"/>
<entry key="Green" val ue="#00FF00"/ >
<entry key="Bl ue" val ue="#0000FF"/ >
<entry key="Bl ack" val ue="#000000"/>
</ map>
</ property>
</ bean>

5. Restart the Tools Service.
6. Refresh the application.

The color options do not display yet because we have not updated the renderer, but you can validate that the
response model has been populated with the information that we want the renderer to use in the JSON view:

"@ype": "Hello",
"nane": "Hello cartridge",

5 Extending the Assembler 187

"message”: "Hell
"messageCol or":

"col orOptions":

{
"@ype":
"hexCode":
"| abel ":

}

{
"@ype":
"hexCode":
"l abel ":

}

{
"@ype":
"hexCode":
"l abel ":

}

{
"@ype":
"hexCode":
"| abel ":

}

o, color world!"
" #0000FF",

[

"col or Option",
" #FF0000",
" Red"

"col or Option",
"#00FFOO0",
"G een"

"col or Option",
" #0000FF",
"Bl ue"

"col or Option",
"#000000",
"Bl ack"

The following shows the code for the sample "Hello, World" cartridge handler with color configuration:

package com endeca. sanpl e. cartri dges;

i mport com endeca. i nfront. assenbl er.
i mport com endeca. i nfront. assenbl er

i mport com endeca. i nfront.assenbl er.
i nport com endeca. i nfront. assenbl er.
i mport com endeca. i nfront. assenbl er.
i mport com endeca. sanpl e. cartri dges.

inmport java.util.Arraylist;
import java.util.Map;

Abstract CartridgeHandl er;

. CartridgeHandl er Excepti on;

Contentltem

Basi cContentltem
Contentltem nitializer;
Col or Confi g;

public class Col or Confi gHandl er extends AbstractCartridgeHandl er {

private Contentltem nitializer mnitializer;
String> nCol or Opti ons;

private Map<String,

public void setContentltem nitializer(Contentltem nitializer initializer) {

mnitializer =i

}

public void setCol orOpti ons(Map<Stri ng,

nCol or Options =
}

| **

* Returns the nmerged configuration based on Spring defaults,
* Experi ence Manager configuration,

*/
@verride

nitializer;

col or Opti ons;

and request paraneters

public Contentlteminitialize(Contentltem pContentlten) {

String> col orOptions) {

188

5 Extending the Assembler

/1 If any configuration from Experi ence Manager is enpty, renove
/1 that property so we can use the default val ue
for (String key: pContentltem keySet()) {
if (((String)pContentltem get(key)).isEmpty())
pContentltem renove(key);

}
return minitializer == null ? new Col orConfig(pContentltemn)
mnitializer.initialize(pContentltem;
}
/**

* Returns the merged configuration and information about the col or options
* available to the site visitor.
*/
@verride
public Contentltem process(Contentltem pContentlten)
throws CartridgeHandl er Exception {
int nunCol ors = nCol or Opti ons. si ze();
ArraylLi st<Contentltenr colors =
new ArraylLi st <Contentltenr(nunCol ors);
if (nmColorOptions != null && !nCol orOptions.isEnpty()) {
for (String key: nCol or Options. keySet()) {
Contentltem col or = new Basi cContentlten("col orOption");
color.put("label", key);
col or. put ("hexCode", nCol or Opti ons. get (key));
col ors. add(col or);
}
pContent!ltem put ("col orOptions", colors);

}

return pContentltem

The following code implements a basic bean that enables us to specify a default value for the message color in
the Spring configuration:

package com endeca. sanpl e. cartri dges;

i mport com endeca. i nfront. assenbl er. Basi cContentltem
import com endeca.infront.assenbl er. Contentltem

public class Col orConfig extends BasicContentltem {

public Col orConfig() {
super ();

}

public ColorConfig(final String pType) {
super (pType) ;
}

publ i c Col or Config(Contentltem pContentltem {
super (pContentlten);
}

public String get MessageCol or() {
return get TypedProperty("messageCol or");
}

5 Extending the Assembler 189

public void set MessageCol or (String color) {
thi s. put ("messageCol or", color);
}
}

Creating the cartridge renderer

In this example we update the "Hello, World" renderer to add a control for the site visitor to select a color for the
message.

To add a drop-down for the site visitor to select a message color based on the options configured for this
cartridge:

1. Create a new JSP page based on the example below, or update the renderer you previously created by adding
the section in bold.

2. Save the renderer to/ VEB- | NF/ vi ews/ deskt op/ Hel | o/ Hel | 0. j sp.

3. Refresh the application to verify that the drop-down menu displays.

Hello, color
world!

Selectacolor -

The following shows the code for the sample "Hello, World" renderer with color choice drop-down in JSP:

<%page | anguage="j ava" pageEncodi ng="UTF- 8"
cont ent Type="t ext/ htnl ; char set =UTF- 8" %

<% ncl ude file="/WEB-INF/vi ews/i ncl ude.jsp"%
<div style="border-style: dotted; border-w dth: 1px
border-col or: #999999; paddi ng: 10px 10px">
<div style="font-size: 150%
col or: ${conponent. messageCol or}" >${ conponent . nessage}
</ div>
<div style="font-size: 80% padding: 5px Opx">
<sel ect onchange="location = this.options[this.selectedlndex].val ue">
<option val ue="">Sel ect a col or</option>
<c: forEach var="col orOpti on" itenms="${conponent. col or Opti ons}">
<c:url value="<% request.getPathlnfo() %" var="col orAction">
<c: param nanme="col or" val ue="${col or Opti on. hexCode}" />
</c:iurl>
<option val ue="${col or Acti on}">${col or Opti on. | abel } </ opti on>
</ c: forEach>
</ sel ect>
</ div>
</ div>

Testing the "Hello, World" cartridge with layered color configuration

We can validate that the cartridge handler applies the different sources of configuration properly by
incrementally populating each source of the configuration.

190 5 Extending the Assembler

To test the "Hello, World" cartridge:
1. In Experience Manager, remove any previously created instance of the Hello cartridge.

2. Insert a new instance of the cartridge on the default page and specify a message string, but do not select a
color.

3. Save the page.
4. Refresh the application.
The message displays using the default color, orange.
5. Going back to Experience Manager, now select a message color for this instance of the cartridge.
6. Refresh the application.
The message displays using the color configured in Experience Manager.
7. Using the drop-down list on the cartridge, select another color.

The drop-down control adds a col or parameter to the URL, which is parsed by the
Request Par anmvar shal | er into the messageCol or property.

Developing Custom Editors

This chapter covers steps for developing your own Experience Manager editors using the Editor SDK.

The Editor SDK

The Editor SDK is included with your Tools and Frameworks installation. It provides a framework for developing
Experience Manager custom editors.

The Editor SDK is based on Oracle JavaScript Extension Toolkit (JET) and Knockout.

+ Oracle JET is a modular open source toolkit based on modern JavaScript, CSS and HTML design and
development principles. Oracle Jet contains a collection of open source JavaScript libraries and Oracle-
contributed JavaScript libraries that make it as simple as possible to build Experience Manager editors.

To learn more about Oracle JET, see http://www.oracle.com/webfolder/technetwork/jet/index.html.

+ Knockout is a JavaScript library that helps you to create editor user interfaces. It is based on the Model-View-
ViewModel (MVVM) architecture pattern. Knockout provides data binding between your data model and the
editor user interface. Changes to the data model are automatically reflected in the editor user interface and
any changes to the editor user interface are automatically reflected to the data model.

To learn more about Knockout, see http://knockoutjs.com/.
The custom editors that you build using this SDK consist of the following components:

+ editor.js,akKnockout view model that defines the business logic. This is where you extend the base Editor
class and implement required life cycle methods.

5 Extending the Assembler 191

http://www.oracle.com/webfolder/technetwork/jet/index.html
http://knockoutjs.com/

« editor.htm,aHTML template that defines the editor user interface using Oracle JET components.

+ _.j son, aresource node definition file with an ecr : t ype of edi t or . This file lets you register editors with the
system by importing editor.js,editor.htnl along with any configuration.

Editor API

The Editor SDK provides Editor, an abstract base JavaScript extension. The Editor extension defines the life cycle
for executing a custom editor.

Custom editors extend the base Editor class.
Editor(pConfig) constructor

The Edi t or (pConfi g) constructor is invoked when a cartridge template corresponding to an asset is loaded
into Experience Manager. The framework instantiates every editor in the order that they are mapped in the
template's editor panel. The framework passes the configuration object that is built from various configurations
defined at the cartridge template and editor levels to the editor's constructor.

The Edi t or (pConfi g) constructor instantiates all the editor-level properties and helper objects.

pConfig is the editor's configuration that is supplied in a specific EAC application context. This is the
configuration that you define in the editor's _.json file using conf i g attribute.

Life cycle methods
This section describes the following life cycle methods. Note that override is optional for all of them.
initialize(pTemplateConfig, pContentitem)

The framework invokes the initialize life cycle method immediately after the instantiation of the editor that
passes the template configuration object and content item.

+ Parses meta information configured in the cartridge template and populates the same into the editor object.
This meta information can be specific to:

+ Label. For example, localized label name, label position, localized tool-tip information and so on.
+ Generic validations. For example, whether or not the property is required, or the editor is enabled.

+ Validation meta information specific to editor. For example, the NumericStepperEditor might have a
number range validator that can be turned on based on minimum or maximum values.

+ Additional information specific to the editor. For example, the ChoiceEditor has a list of choices to be
displayed.

+ Subscribes to notifications that are pertinent to the editor.
« Initializes custom controllers if there are any specific to editor.

+ The initialize method in the base Editor parses Tenpl at eConf i g and populates attributes like localized
label text, tool tips, or enabl edExpr essi on that are common for all Experience Manager editors.

+ If a custom editor needs any additional meta information specific to that editor, it must override the
initialize method and populate the same.

+ If overridden, this method must explicitly call its initialize method from its super class Editor.

Editor.prototype.initialize.call(this, pTenplateConfig, pContentltemn)

192 5 Extending the Assembler

Parameter Description

pTemplateConfig Object that holds the cartridge template-level
configuration associated with the editor.

pContentltem Cont ent | t emobject that has the property objects
that work with this editor.

Cont ent | t emthat has the property instances

created using the property API

For more information on the property API, see
Property API (page 195).

When initialization is finished, the framework binds editors to the view and moves them to Loading phase. The
actual data binding occurs in the edi t or Ready method.

editorReady(pProperty)

Once initialization is successful, the framework invokes the edi t or Ready life cycle method and passes the
appropriate property instance created by the framework.

An editor can override this method, if it needs to wrap the property using any custom extension to the
property APl or any computations regarding the property value. If overridden, this method must explicitly call
edi t or Ready from it's super class Editor: Edi t or . pr ot ot ype. edi t or Ready. cal | (this, pProperty)

Parameter Description

pProperty Property object from the content item which is
mapped to this editor in the cartridge template's
editor panel.

An editor can work with multiple properties, but at
any given time, only one property can be mapped
against attribute pr oper t yNane in the editor panel
of a cartridge template. Only that property instance
whose name has been mapped would be passed to
the edi t or Ready method.

Based on the property's value type, the framework
wraps the property in the appropriate class provided
by the framework.

For more information on the property API, see Property API (page 195).

In the edi t or Ready method of an editor, you can load any data needed by an editor asynchronously. For
example, DimensionListEditor needs to load dimension names from MDEX. You should ensure that the

5 Extending the Assembler 193

edi t or Ready method in the super class is called only when all asynchronous calls have completed. This
allows the framework to call edi t or Ready on individual editors asynchronously. When an editor is ready, the
framework removes the Loading phase and renders the user interface using the editor's own HTML template.

editorError(pLocalizedMessage)

dispose()

The framework invokes the edi t or Er r or life cycle method when there are errors during thei ni ti al i ze()
and edi t or Ready () life cycle phases. This method can also be explicitly invoked to handle error scenarios.

+ Binds the error template to the editor that displays the localized error message with default styling.
« Editor must unsubscribe for notifications (if any), that it has subscribed to in the i ni ti al i ze() phase.

There is no need for an editor to override edi t or Er r or until a different error template must be bound to the
editor in error scenarios.

Parameter Description

pLocalizedMessage String value of the localized error message

The framework invokes this method before de-referencing (marking) this editor instance for garbage collection.
+ All the subscriptions made by this editor are un-subscribed here.

« If a subclass extending this editor does it's own subscriptions, it must override this method to un-subscribe it's
own subscriptions and invoke the dispose method of it's superclass.

handleAttached()

The framework invokes this method internally by Oracle JET when a workbench user re-visits a previously visited
mini-tree node. The method is invoked on each editor instance mapped to that particular node content.

When a page or rule is edited, and after loaded editor instances are cached (when a Workbench user clicks a
specific mini-tree node for the first time), all the editors that are mapped to the node's content are instantiated
and cached. From this point forward, whenever a Workbench user attempts to revisit the same node, editors are
loaded from cache. This action happens because any form errors or modifications to a rule's or page's properties
should be retained, even when a user navigates through the mini-tree's nodes.

This is a hook method to perform any post activities once an editor has been reloaded from cache. For example,
you might want to re-subscribe for any topics at the editor level. In such a scenario, a specific editor can override
this method and implement the appropriate post processing logic.

Note: This will not be called when editor is instantiated and loaded for the first time.

handleDetached()

The framework invokes this method internally by Oracle JET when a workbench user exits or switches from the
current mini-tree node. The method is invoked on each editor instance mapped to that particular node content.

When a page or rule is edited, and after loaded editor instances are cached (when a Workbench user clicks a
specific mini-tree node for the first time), all the editors that are mapped to the node's content are instantiated
and cached. From this point forward, whenever a workbench user attempts to revisit the same node editors are

194

5 Extending the Assembler

loaded from cache. This action happens because any form errors or modifications to a rule's or page's properties
should be retained, even when a user navigates through the mini-tree's nodes. However, there might be some
events that can trigger changes in a rule's or page's property even when not in view.

This is a hook method to perform any post activities, once an editor has been removed from the document
DOM. For example, you might want to unsubscribe any topics at the editor level. In such a scenario, a specific
editor can override this method and implement the appropriate logic.

Property API

This JavaScript-based property APl is used for the following functions:

+ Binding a content item property to an editor.

+ Wrapping property raw data (this how a property is stored in the ECR) in a property instance which is easily
consumed by an editor's Knockout view model and html template.

+ When editing is complete, converting property instance back into a format in which it has to be stored into

the ECR.

+ Notifying other JavaScript components about changes to property values. This can be used in reevaluating
enable expressions when a dependent property value changes, for example, enabling/disabling user interface

controls and so on.

Class Description Methods
Property The core property class that wraps the copyFrom (pProperty) -
property's raw JSON data. Accepts raw the JSON object that
represents a valid property with a
It also defines custom Knockout subscriptions name, type, and an optional value.
to track changes made to a property value.
Whenever there is a change in a property value,
a EditorEvents.PROPERTY_CHANGED event Used to update any bindings that
is triggered.. The property reference that was are needed by the user interface.
modified is passed as the event payload. Basic functionality is to set value
as a Knockout observable or
observableArray.
Every editor has an observable property that is
set to the property reference that editor works
with. toJSON() - Converts the property
instance to JSON, in a format to be
stored in the ECR.
For example, a property
instance will have observable or
observableArray to bind value
to the editor, which has to be
converted to normal value.
StringProperty A subclass of Property class. Deals with property

objects. Value type is a String.

5 Extending the Assembler

195

Class

BooleanProperty

Description

A subclass to Property class. Deals with property
objects. Value type is a Boolean.

Methods

Overrides the copyFrom method,
and wraps property's value in a
Boolean.

JSONProperty

A subclass to Property for Item and List types.
This is used to wrap properties whose values
are either JSONObject or JSONArray. When the
framework parses a content item, in case of

a list, it would not be possible to distinguish
whether the value is a primitive list or an object
list. Also in case of Item, it is not possible to
determine value is of which object type.

In these scenarios, the framework wraps

a property in JSSONProperty and passes

it to the editorReady method of the
corresponding editor. Within the editorReady
method, the corresponding property

instance (ObjectProperty, ListProperty,
ObjectListProperty, or any extension to Property
that customers might develop and plug in) can
be created as an editor will know about the
value type that it is working with.

This is also used when there is no type specified
for a property.

Overrides copyFrom method
and sets property's value as an
observable or observableArray
based on the type.

Overrides toJSON method and
converts the property instance to
JSON, in a format to be stored in
ECR.

196

5 Extending the Assembler

Class

ObjectProperty

Description

A subclass to Property class for property objects
whose value is an object. This is needed to
manipulate internal attributes of the object.
Otherwise JSONProperty works with Object.

For example in case of media property in
MediaBanner cartridge, whose value is an
object, there are attributes which are computed
based on some other attributes in the object.

"medi a": {
"@l ass":
"com endeca. i nfront.

cartridge. nodel . Medi aCbj ect ",
“uri":

"banner _bags_761x225. j pg",
"contentWdth": "761",
"content Hei ght": "225",
"contentBytes": "3546313",
"content Type": "I nage",
"content SrcKey": "default"

Methods
Overrides the following methods:

copyFrom: Copies property's
value into corresponding
ObjectValue instance.

toJSON: Converts the property's
value into JSON format, in a format
to be stored in ECR.

In this object, based on the image that we
select, for example the uri attribute, other
attributes like contentWidth, contentHeight,
contentBytes, contentType are computed. We
can define a Image.js model object that uses
a Knockout computed observables concept
to compute these attributes based on the uri
attribute. This Image must be wrapped using
ObjectProperty.

ObjectListProperty

A subclass to Property for property objects
whose value is an array or a list built from
objects. As described for ObjectProperty,
this is needed only when performing custom
manipulations on an object's attributes.
Otherwise use JSONProperty.

Overrides the following methods:

copyFrom: Copies each object
in the list into corresponding
ObjectValue instance.

toJSON: Converts each object in
the value list into JSON format, in a
format to be stored in ECR.

ContentltemProperty

A subclass to ObjectProperty for property
objects whose value is an object of type
Contentltem.

5 Extending the Assembler

197

Class Description Methods

ContentltemListProperté subclass to ObjectListProperty for property
objects whose value is an array or a list built
from objects, of type Contentltem. This also
stores data in a tree structure.

ObjectValue A wrapper to property value which is an object. | copyFrom(pPropertyValue):
Provides method signatures to be implemented | Copies plain JSON object into
by any object values. the ObjectValue. For example,

in SortOption, there can be an
observable label, which would be
populated under the copyFrom(..)
method.

toJSON(): In Experience Manager,
the implementation converts the
Knockout object back to a plain
JSON object.

About developing custom editors

Keep in mind the following information as you develop your custom editors:

+ Editors must be placed in the following directory:

<app dir>/config/inport/editors/<optional namespace>/<editor nane>

For example:

Di scover/config/inport/editors/custom StringEditor

+ Editors must refer to a Property object which holds primitive or complex property values.
» The Editor SDK uses r equi r eJSto resolve and load dependent JavaScript modules.

+ The Editor SDK provides Tenpl at eEngi ne. j s, an extension to the Knockout native template engine to refer
templates dynamically from the view model.

Building custom editors
Follow these instructions to build your custom editor:

1. Load dependencies using the r equi r eJSlibrary

For example:

198 5 Extending the Assembler

Di scover/config/inmport/editors/custom StringEditor/editor.js

JavaScript libraries are resolved relative to the following path mappings:

Library Path mapping Example
jQuery jquery //In editor.js ... var $ = require("jquery"); ...
Knockout knockout //In editor.js ... var ko = require("knockout"); ... this.min =

ko.observable(); ...

Hammer JS hammerjs // In editor.js var lib = require("hammerjs");

Oracle JET ojs // In editor.js // Load OJET component for input text

require("ojs/ojcomponents");

require("ojs/ojinputtext");

Underscore | underscore // In editor.js var _ = require("underscore");
JS
Promise promise // in editor.js var p = require("promise");

JavaScript modules provided by the framework must be loaded according to the JavaScript documentation
installed with Tools and Frameworks.

define(["app/ xngr/vi ew edi tors/Editor",

"cor e/ Tenpl at eEngi ne",

"tenpl ate! editors/custonm StringEditor/editor.htm"
function(Edi tor, Tenpl at eEngi ne, EditorTenplate) {

}
}

In addition to edi t or . j s, if a custom editor depends on any other custom JavaScript extensions, then these
extensions can be resolved within edi t or . j s using the relative paths from the current editor context or the
paths relative to the editors folder. For example, if a custom editor needs three more JavaScript extensions
that are available at these locations:

» Discover/config/inport/editors/Mdi aEdi tor/ nodel / Medi a.js,,
« Discover/config/import/editors/MediaEditor/model/Image.js

* Di scover/config/inport/editors/MdiaEditor/nodel/Video.js

The edi t or . j s references them like in the following example:

5 Extending the Assembler 199

define(["app/ xmgr/view editors/Editor",
"cor e/ Tenpl at eEngi ne",
"tenpl ate! editors/custoni StringEditor/editor.htm",
"editors/ Medi aEditor", edi t ors/ Medi aEdi t or/ nodel / | nage"],
function(Editor, Tenpl ateEngi ne, EditorTenpl ate, MediaEditor, | mage) {
IOF

(R

define(["app/ xmgr/view editors/Editor",

"cor e/ Tenpl at eEngi ne",

"tenpl ate! editors/custoni StringEditor/editor.htm",

"editors/ Medi aEditor", ./ nodel /1 mage"],

function(Editor, Tenpl ateEngi ne, EditorTenpl ate, Medi aEditor, | mage) {
IOF

2. The custom editor must extend the base Editor class.

According to the JavaScript module pattern, to extend the Editor, the custom editor must define a
constructor method with Configuration as a parameter and invoke the super class constructor. You must
create an Editor object using a prototypical instance and copy this Editor prototype to the custom editor
prototype. For example:

var StringEditor = function(pConfig) {
var self = this;
Editor.call (self, pConfig);
}
StringEditor. prototype = Object.create(Editor. prototype);

3. Optional. Override thei ni ti al i ze() life cycle method to implement any additional parsing that is specific
to the custom editor.

For example, ChoiceEditor would have an array of choices. In this case, parse the cartridge template
and populate choices under the initialize method. If overridden, this method should explicitly call the
Editor::initialize() superclass method.

Choi ceEditor.prototype.initialize = function(pTenpl ateConfig, pContentltem {
var self = this;
/] Popul ate choices fromthe pTenpl at eConfi g obj ect
Editor.prototype.initialize.call(self, pTenplateConfig);

4. Optional. Override the edi t or Ready() life cycle method to implement any additional manipulations
regarding a property or properties within which an editor works.

5. Defineanedi t or. ht M template. In the following example, Di scover/confi g/inport/editors/
custoni StringEditor/editor.htnl usesojl nput Text, the Oracle JET component, and oj - f | ex, the
default Oracle JET responsive layout. To ensure uniqueness generate a unique ID for each of the editor form
controls.

200 5 Extending the Assembler

<l-- Copyright (c) 2013, 2017, Oracle and/or its affiliates. Al rights reserved. -->
<div class="oj-flex">

<l -- To ensure uniqueness, generated unique id for |abel and input tags. -->
<l-- Exanple: Generated Id will be in the format editor_<nunber> -->
<div class="0j-flex-item custonlLabel custonEditorlLabel">
<l abel data-bind="attr:{for: editorld}"><span data-bind="text : |abel Text"/
></ | abel >
</ div>
<div class="0j-flex-itemeditorlnput">
<!-- invalidConponent Tracker is required in case of any validation needed for

editor. So if an editor has validations defined, then
add invalidConponent Tracker: $parents[3].tracker as a property of
oj Conponent - - >
<input title="" data-bind="attr : {'id: editorld ,'aria-I|abel’
edi t or Bundl e. get Message(' editor.aria.label')}, ojConponent: { conponent:
"0j Input Text', value : property().value , disabled : !isEnabled() || isReadOnly(),
hel p :
{definition :hel pText},

rootAttributes: {style:' max-w dth: 68.5rem },
di spl ayOptions: {messages: 'inline'},

opti onChange: handl el nput Key. bi nd($dat a) ,

val idators :
[
{
type :
'regExp',
options :
{
pattern : requiredPattern
}
}
I
i nval i dConponent Tracker: $parents[3].tracker
" >

</ div>
</div>
</ div>

6. Once a template is defined, it can be loaded using the TemplateEngine JavaScript module provided by the
framework.

In the following example, Di scover/confi g/inport/editors/custon StringEditor/editor.js,the
template can be loaded by specifying a path relative to the editors folder. The template can also be resolved
by specifying a path relative toedi t or . j s, for example, require("tenpl ate! . /editor. htn").

var Tenpl at eEngi ne = require("corel/ Tenpl at eEngi ne");

var TEMPLATE_TEXT = require("tenplate!editors/custom StringEditor/editor.htm");

5 Extending the Assembler 201

var StringEditor = function(pConfig) {
var self = this;

sel f. tenpl at e(Tenpl at eEngi ne. addSour ce(TEMPLATE_TEXT)) ;

7. Definea_. j sonwithanecr: type of edi t or. If you need a configuration for this editor, that can be defined
in the conf i g property. See the following example of Di scover/ confi g/ i mport/ edi t or s/ cust om
StringEditor/_.json:

{
"ecr:type": "editor",
"config":{
"pattern":"[A-Za-z0-9_]{5,}"
}
}

8. If you need to define a custom CSS for your editor, place at the following location: <app di r>/ edi t ors/
custonf <edi t or nane>/ css/ <nane>. css file.

9. If you created a custom CSS in the previous step, add a link to the CSS in your custom editor. For example:

<link rel ="styl esheet" href="sites/Di scover/editors/custonl StringEditor/css/
styles.css"/>
<div class="o0j-flex">
<div class="editorLabel ">
<l abel data-bind="attr:{for: uniqueld}"><span data-bind="text : |abel Text"/

></ | abel >

</ div>

<div class="editorlnput">
<i nput >
</ di v>
<di v>

Example: StringEditor editor.js file

Here is an example of the completed edi t or . j s for the String Editor used in the previous topics:

/1 Copyright (c) 2013, 2016, Oacle and/or its affiliates. Al rights reserved.
define(["app/ xmgr/view editors/Editor", "core/ Tenpl ateEngi ne", "tenplate!editors/

custonm StringEditor/editor.htm ", "ojs/ojconponents”, "ojs/ojknockout", "ojs/
ojinputtext"], function (Editor, TenplateEngine, EditorTenplate) {
"use strict";

var TOOL_TIP = "tooltip";

* @lias StringEditor

* @l assdesc Special Editor for editing properties whose value is a String.
* Editor allows values only those which are in a specific pattern.

* This pattern can be configured using a regular expression in editor's

* configuration file i.e. _.json.

* @xtends app/ xnmgr/vi ew edi tors/Editor

* @onstructor

202

5 Extending the Assembler

*/
var StringEditor = function (pConfig) {
var self = this;
Editor.call (self, pConfig);
/**
* Pattern allowed to enter through editor. Default is null.
* @ype {null}
*/
sel f.requiredPattern = pConfig. editorConfig.pattern;

sel f. tenpl at e(Tenpl at eEngi ne. addSour ce(Edi t or Tenpl ate));
s

StringEditor. prototype = Object.create(Editor. prototype);

/**
* This method initializes the editor instance. This should not be called explicitly,
* as framework internally calls the same as part of editor's life cycle.
* Should call initialize method of it's super class, passing the configuration
obj ect .
* WIIl override this nethod to instantiate and initialize any customcontrollers,
* subscribe for any customnotifications etc.
* @aram pTenpl at eConfi g Configuration object that holds configuration specified in
cartridge tenplate for this editor.
* @aram pContentltem Contentltem object which has the property that this editor
wor ks with.
*/
StringEditor.prototype.initialize = function (pTenpl ateConfig, pContentlten) {
var self = this;
pTenpl at eConfi g[TOOL_TIP] = sel f. editorBundl e. get Message("tool tip.information",
sel f.requiredPattern);
Editor.prototype.initialize.call(this, pTenplateConfig, pContentltemn);

}

/**

* This method binds the property object, whose value will be edited through this
editor.

* This should not be called explicitly, as framework internally calls the same as
part of

* editor's life cycle. Based on the type that you give for a property in cartridge
tenpl at e,

* framework wraps property in an appropriate property class :

* Allowed types are String, Boolean, Item List, Contentltem ContentltenList.
Corresponding to these types framework w aps property using

* StringProperty, Bool eanProperty, JSONProperty (for both Itemand List),
ContentltenProperty, ContentltenlistProperty.

* Can override this method, if there is a need to a wap property in a custom
extension to the Property API.

* For exanple in case of NumericStepperEditor, StringProperty can be w apped using
Nunber Property in editorReady.

* | f overridden, should call editorReady nethod of it's super class, passing the
property object.

*/

StringEditor. prototype. editorReady = function (pProperty) {

var self = this;

Edi t or. prot ot ype. edi t or Ready. cal | (sel f, pProperty);

b

return StringEditor;

5 Extending the Assembler 203

1)

Registering custom editors

You register new editors with your Experience Manager application by adding your custom editor to the editor
registry of the application. The registry is located in the <app di r>/ confi g/i nport/ edit ors directory.

When you complete your custom editor, you must place it in the <app dir>/config/inport/editors
directory in a folder with the custom editor's name. For example, if you want to register a custom editor

named TextAreaEditor, then you must create a folder named <app di r>/ confi g/i nport/editors/

Text Ar eaEdi t or . Place a JSON file the with the ecr : t ype of editor in this folder. If a custom editor needs any
configuration, that can be specified in the JSON file, too. The folder must also contain the following files:

« editor.js -the knockout view model for the editor.

« editor.htm -thetemplate file that defines user interface layout for the editor using one or more OJET
components.

If the custom editor has the same name as an existing editor in your application, you can create a unique
namespace for your custom editor, see Overriding an existing editor with a custom editor.

To register a custom editor:

1. Run the following command to export the editor registry of your deployed application: r unconmand. bat |
sh | FCR export Content editors <directory>, where<direct ory>indicates the directory on the file
system to which the editors registry should be exported.

For example:

runconmand. bat | FCR export Content editors D:\backup\editors

2. Navigate to the directory where you exported the editor registry.

For example:

D: \ backup\ editors

3. Create a folder for your custom editor. Remember the folder must have the custom editor's name.

For example:

D: \ backup\ edi t or s\ Text Ar eaEdi t or

4. Add a JSON file, _. IJSONwith your editor's configuration to the folder. The ecr : t ype must be editor; confi g
is optional.

For example:

"ecr:type":"editor",

204

5 Extending the Assembler

5. Addtheeditor.jsandeditor. htm filesforyour editor to the folder.

6. Run the following command to import the updated editor registry of your deployed application:

runcommand. bat | sh 1 FCR i nport Content editors <directory>, where<directory>indicates the
directory on the file system from which editors registry should be imported.

For example:

runconmand. bat | FCR i nport Content editors D:\backup\editors

Overriding an existing editor with a custom editor

If the custom editor that you need to add to your editor registry has the same name as an existing editor in your
application, you can create a unique namespace for your custom editor. This lets you override an existing editor
in the Experience Manager installation with a custom editor.

You do not need to edit every occurrence of the existing editor in cartridge templates to refer to the custom
editor. Once the existing Experience Manager editor is overridden with a custom editor, all the mappings that
exist in cartridge templates work as if the custom editor has been mapped in place of an editor in the Experience
Manager installation.

Follow these steps to override an existing editor.

1.

Run the following command to export the editor registry of your deployed application: r unconmand. bat |
sh I FCR export Content editors <directory> where<direct ory>indicates the directory on the file
system to which the editors registry should be exported.

For example:

runcommand. bat | FCR export Content editors D:\backup\editors

. Navigate to the D: \ backup\ edi t or s directory.

. If you have not done so already, create a namespace folder for your custom editors that have the same names

as existing editors in your registry.

For example, \ edi t or s\ cust om

. In the namespace folder, create a folder for your custom editor. Remember the folder must have the custom

editor's name.

For example if you want to override StringEditor in Experience Manager (edi t or s\ St ri ngEdi t or) with a
custom StringEditor then create a folder named edi t or s\ cust om St ri ngEdi t or

. Add a JSON file, _. JSONwith your editor's configuration to the folder. The ecr : t ype must be editor; confi g

is optional.

For example:

5 Extending the Assembler 205

"ecr:type":"editor",

6. Addtheeditor.jsandeditor. htni filesfor your editor to the custom editor folder.

7. Copytheeditor.js,editor. htnl,and_.j son files from the custom editor folder edi t or s/
<namespace>/ <cust om edi t or > and paste them into the existing editor folder edi t or s/ <edi t or >.

For example, copy theeditor.js,editor. htnm,and_.j son files from the <app dir>/config/import/
edi tors/custon StringEditor foldertothe<app dir >/ config/inport/editors/StringEditor
folder.

8. Run the following command to import the updated editor registry of your deployed application:
runconmmand. bat | sh 1 FCR i nport Content editors <directory>, where<directory>indicates the
directory on the file system from which editors registry should be imported.

For example:

runconmand. bat | FCR i nport Content editors D:\backup\editors

9. Clear the browser cache and restart Experience Manager. The system begins using the custom editor in place
of the existing editor.

For example, the system starts picking custom StringEditor in place of the existing StringEditor.

Reusing custom editors across multiple applications

You can use a custom editor that you have developed for an application in multiple applications.

Reuse the custom editor by copying an editor's folder in the editor registry from one application to one or more
other applications. Next, import the updated editor registries into their applications.

Follow these steps to reuse custom editors.

1. Navigate to the editor-registry of the application that contains the custom editor that you want to reuse:
<app-one dir>/config/inport/editors/<custom editor>.

2. Copy the folder of the custom editor

3. Run the following command to export the editor registry of the deployed application to which you want
to add the custom editor: r uncommand. bat | sh | FCR export Content editors <directory> where
<di r ect or y> indicates the directory on the file system to which the editors registry should be exported.

For example:

runcommand. bat | FCR export Content editors D:\backup2\editors

4. Navigate to the D: \ backup2\ edi t or s directory.
5. Paste the folder of the custom editor that you previously copied into the editors directory.

6. Run the following command to import the updated editor registry of the application to which you added
the custom editor::r uncomrand. bat | sh 1 FCR i nport Content editors <directory>, where
<di r ect or y> indicates the directory on the file system from which the editors registry should be imported.

206

5 Extending the Assembler

For example:

runconmand. bat | FCR i nport Content editors D:\backup2\editors

7. Map the custom editor in the required cartridge templates of the application.

About creating and uploading a cartridge template

To use your custom editors in Experience Manager, you need to create and upload a cartridge template that
includes the new editors. You can choose to create a new cartridge, or to modify an existing cartridge template.

After creating or modifying a cartridge to include your custom editors, you must upload it to your application.
You can accomplish this by moving the template to your deployed application's\ confi g\i nport\t enpl at es
directory and running the cont r ol \ set _t enpl at es batch or shell script.

About custom editors in multiple locales
If your implementation supports multiple locales, you can localize your custom editors.
You must do the following:
+ Create resource properties files that contain localized strings
* Retrieve localized content from from the resource property files for your custom editors.
Creating resources properties files
You can create resource property files for each locale for storing localized strings.

Each resource property file name must follow this format: Resour ces_<I ocal e>. properti es where

<l ocal e>is the ISO language code. For example Resour ces_fr. properti es indicates that French values are
stored in it. Place these files in a locales folder for your custom editor: <app di r>\ confi g\i nport\editors

\ <edi tor nanme>\l ocal es or<app dir>\config\inport\editors\custom <editor nanme>\local es.

Here is an example of the contents of the Resour ces_en. properti es file in the under <app dir>/confi g/
i nport/editors/custon StringEditor/l ocal es directory.

sanpl e. mressage = This nmessage is | oaded fromresource bundle
error. message. sunmary = |Incorrect format for the input text
error. message. detail = Value nust match this pattern: {0}

Retrieving localized content for your custom editor

Your custom editor obtains localized content using the jQuery.i18n.properties plugin to retrieve the content
from the resource properties file.

When a custom editor has property-based resource bundles in it's locales folder, the system loads the bundle
corresponding to the Workbench user's locale during editor instantiation and makes the localized content
available in a data attribute, edi t or Bundl e, defined within the editor instance. This bundle provides a method,
get Message(resour ceKey, argunents...),toload localized text.

5 Extending the Assembler 207

To retrieve localized content from resource properties files, follow these steps

1. Load localized messages for the custom editor, using the following syntaxin youredi tor.j s:

var nessagel = this. editorBundl e. get Message(' <resour ce-key-to-I|ocal i zed- nessage>');

/1 Loading a paraneterized nessage.
var nessage2 = this. editorBundl e. get Message(' <resour ce-key-to-I|ocal i zed- nessage>',
<paranl>, <paran2>);

For example:

var nmessagel = this. editorBundl e. get Message(' error. message. sunmary');

/1 Loading a paraneterized nessage.
var nmessage2 = this.editorBundl e. get Message(' error. nessage.detail', '[a-b0-9]\{6}");

2. Load localized messages for the custom editor, use the following syntax in youredi t or . ht i :

<l abel data-bind="text: editorBundle.getMessage(' editor.proeprty.|label")"/>

/1 Loading a paraneterized nessage.
<span dat a- bi nd="text: editorBundle.get Message(' error. message.detail', '[a-
b0-9]1\{6}")"/>

208 5 Extending the Assembler

6 Template Property and Editor
Reference

This section describes how to define basic content properties and associated editing interfaces in Experience

Manager templates.

Experience Manager editors mapping reference

The following editors are included in the Oracle Experience Manager:

Editor Property Functionality
Type
Bool eanEdi t or Bool ean Displays as a checkbox that the content administrator selects or
de-selects. Optionally, the editor may be set to a read-only state.
Boost Bur yEdi t or Li st Displays as a three-pane, drag-and-drop interface consisting

of a central pane that lists available dimension refinements, a
left pane for boosted refinements, and a right pane for buried
refinements. The content administrator can filter the list of
available dimensions by searching against a text string.

The editor populates two Li st properties, one for boosted
dimension refinements and one for buried dimension
refinements.

6 Template Property and Editor Reference

209

Editor Property Functionality
Type

Boost Bur yRecor dEdi t or| Li st Displays as two panes, Boosted Records and Buried Records,
each with an Edit List button that launches the Select Records
dialog. The content administrator uses the Select Records
dialog to populate the lists of boosted and buried records.

The editor populates two Li st properties, one for boosted
records and one for buried records.

Choi ceEdi tor String Displays as a dropdown with an optional default value. The
content administrator selects from a set of pre-defined values.

Di nensi onLi st Edi t or Li st Displays as two panels, one with a list of available dimensions
and one with a list of selected dimensions. The content
administrator can drag values back and forth between the two
lists.

Di nensi onSel ect or Edi t|oBt ri ng Displays as a dropdown. The content administrator selects a
value from the list of available dimensions retrieved from the
MDEX Engine.

The editor populates two St r i ng properties, one for the
dimension name and one for the ID.

Di nval Li st Edi t or Li st Displays as two panels, one with a list of available dimension
refinements and one with a list of selected refinements. The
content administrator can drag values back and forth between
the two lists. Additionally, the list of available refinements
includes a search box for finding specific refinements in a large
data set.

Dynani ¢Sl ot Editor String Displays as a drop-down list for specifying a valid content
collection, and a numeric stepper for setting the evaluation
limit for that collection.

Cui dedNavi gat i onEdi t grCont ent | t enLi Risplays as a button for launching the Generate Guided
Navigation wizard, which allows a content administrator to
select and order a set of dimensions in order to create multiple
Refinement Menu cartridges at once.

| magePr evi ew (None) Displays an image from a specified URL.

210 6 Template Property and Editor Reference

Editor Property Functionality
Type

Li nkBui | der Edi t or Item Displays two radio buttons, one for specifying an External link
via a text field, and one for specifying an Internal (Relative) link.
The content administrator specifies a relative link by selecting a
servlet from a dropdown list, then launching the Select Records
dialog to navigate to a specific record or a navigation state.

The editor populates a class

com endeca. i nfront. cartridge. nodel . Li nkBui | der
item property. For more information, see "Adding a Link
Builder."

Medi aEdi t or Item Displays as a Media URL field, with an associated preview box
and Select and Clear buttons for launching the media editor

or clearing the current URL. The content administrator can
browse through media in the configured source repository, and
generate a link to a selected asset.

Numer i cSt epper Edi tor | String Displays as a one-line text field with a pair of arrow buttons for
increasing or decreasing the value by a set amount. The content
administrator inputs or adjusts the value to any number within
the minimum and maximum boundaries defined in the editor.

Ri chText Edi t or String Displays as a text area with a configurable formatting toolbar.
The content administrator enters arbitrary string values and can
include markup to add text formatting and hyperlinks.

Sor t Edi t or Item Displays as a dropdown. The content administrator selects a
sort order from those configured in the editor.

The editor includes multiple class

com endeca. i nfront. navi gati on. nodel . Sort Opti on
item properties that each specify an available sort option. For
more information, see "Adding a Sort editor."

Spot | i ght Sel ect i onEdi|t brem Displays as a button that launches the Select Records

dialog and allows the content administrator to select the

navigation state or list of records that populates a class

com endeca. i nfront.cartridge. RecordSpot|i ght Sel ection
record selection property.

StringEditor String Displays as a text field or text area. The content administrator
enters arbitrary string values. Optionally, the editor may be set
to a read-only state to display a fixed, default value.

6 Template Property and Editor Reference 211

Related links
+ Basic content properties (page 212)

» Complex property editors (page 226)

Editor label configuration reference

All editors share a set of common attributes that can be used to configure the appearance of the editor in
Experience Manager.

When adding an editor to a template, you can configure its appearance by setting the following attributes:

Attribute Description

| abel This attribute enables you to specify a more descriptive label for the editor
in Experience Manager. If no label is specified, the value of the associated
propert yNane is used by default.

| abel Position The position of the label text. Valid values are " | ef t " (the default) and
“top".

bot t onLabel This attribute allows you to specify a descriptive label that appears below the
editor.

tooltip This attribute allows you to specify mouseover text for the editor.

Basic content properties

Content items properties must be one of several basic types. All configuration models are composed of the
same primitive property types.

The basic content property types are:
= String

* Bool ean

» List

c ltem

The following example shows a several properties of various types.

212 6 Template Property and Editor Reference

"typelnfo": {
"boost Strata": {"@ropertyType": "List"},
"buryStrata": {"@ropertyType": "List"},
"recordsPerPage": {"@ropertyType": "String"},
"rel RankStrategy": {"@ropertyType": "String"},
"sortOption": {"@ropertyType": "lteni}

Adding a string property

String properties are very flexible and can be used to specify information such as text to display on a page, URLs

for banner images, or meta keywords for search engine optimization.

To add a string property to a template:

1. In thet ypel nf o section, inserta St ri ng element inside a @r oper t yType element.

2. Indef aul t Cont ent | t em specify the default value for the property for the content for each element that you

specified int ypel nf o.

The following example shows a variety of string properties:

"@lescription": "${tenplate.description}",

"@roup": "Navigation",

"ecr:createDate": "2016-09-12T17: 33: 58. 404+05: 30",

"@hunbnai l Url": "thunbnail.jpg",

"ecr:type": "tenplate",

"defaul tContentltent: {
"l essLi nkText": "Show Less Refinenments...",
"nunRefi nements": "10",
"@ane": "Dinmension Navigation",
"di mensionld": "",
"noreLi nkText": "Show Mire Refinements...",
"maxNunRef i nement s": "200",
"sort": "default",
"showMor eLi nk": fal se,
"di nensi onNare": ""

b

<l-- additional elenments onmtted fromthis exanple -->
"typel nfo": {

"boost Ref i nement s": {" @ropertyType": "List"},
"buryRefinements": {"@ropertyType": "List"},
"di nensionld": {"@ropertyType": "String"},
"di mensi onNanme": {" @ropertyType": "String"},
"l essLinkText": {"@ropertyType": "String"},
"maxNunRef i nements": {" @ropertyType": "String"},
"moreLi nkText": {" @ropertyType": "String"},
"nunRefinements": {"@ropertyType": "String"},
"showMor eLi nk": {" @ropertyType": "Bool ean"},
"sort": {"@ropertyType": "String"}

6 Template Property and Editor Reference

213

Adding a string editor

You add a string editor to enable configuration of string properties. The string editor displays in the Experience
Manager interface as a text field or text area depending on the configuration.

String editors enable content administrators to supply arbitrary values for a string property. If you want to
constrain the input to a specific enumeration of values, use a choice editor.

To add a string editor to a template:
1. Insertan edi t or s/ St ri ngEdi t or element within edi t or s/ Def aul t Edi t or Panel .

2. Specify label attributes and additional attributes for the editor:

Attribute Description

pr opert yName Required. The nane of the string property that this
editor is associated with. This property must be
declared in the same template as the string editor.

| abel The label for the editor.

enabl ed If set to f al se, this attribute makes the property
read-only so that the value of the property displays
in the Content Details Panel in Experience Manager,
but cannot be edited. Set this to f al se only if you
specify a default value in the definition of the string
property. Editors are enabled by default.

The following example shows a variety of editing options for string properties:

{
"@lescription": "${tenplate.description}",
"@roup": "Navigation",
"ecr:createDate": "2016-09-12T17: 33: 58. 404+05: 30",
"@hunbnai l Url": "thunbnail.jpg",
"ecr:type": "tenplate",
"defaul tContentltent: {
"l essLi nkText": "Show Less Refinenments...",
"nunRefi nenents": "10",
"@ane": "Dinmension Navigation",
"di mensionld": "",
"mor eLi nkText": "Show More Refinenents..."
"maxNunRef i nements": "200",
"sort": "default",
"showor eLi nk": fal se,
"di mensi onNanme": ""
H
"edi torPanel ": {
"editor": "editors/DefaultEditorPanel",
"children": [
<l-- additional elements onmtted fromthis exanple -->
{
"editor": "editors/StringEditor",

214 6 Template Property and Editor Reference

"propertyName": "noreLi nkText",
"l abel ": "${property. noreLi nkText. | abel }",
"enabl ed": true

"editor": "editors/StringEditor",
"propertyName": "l essLinkText",
"l abel ": "${property.|essLinkText.|abel}",
"enabl ed": true
}
]
<l-- additional elenments onmitted fromthis exanple -->
}
"typel nfo": {
"boost Ref i nement s": {" @ropertyType": "List"},
"buryRefinements": {"@ropertyType": "List"},
"di mensionld": {"@ropertyType": "String"},
"di nensi onNane": {" @ropertyType": "String"},
"l essLinkText": {"@ropertyType": "String"},
"maxNunmRef i nement s": {" @ropertyType": "String"},
"moreLi nkText": {" @ropertyType": "String"},
"nunRefinements": {"@ropertyType": "String"},
"showMor eLi nk": {" @ropertyType": "Bool ean"},
"sort": {"@ropertyType": "String"}

Note

Neither Experience Manager nor the Assembler applies HTML escaping to strings. This enables
content administrators to specify HTML formatted text in Experience Manager and have it rendered
appropriately. If you intend to treat a string property as plain text, be sure to add HTML escaping to
your application logic in order to avoid invalid characters and non-standards-compliant HTML.

Adding a choice editor

A choice editor enables the user to select from predefined string values for a property that are presented in a
drop-down list. Choice editors affect the value of a string property.

To add a choice editor:
1. Insert an edi t or s/ Choi ceEdi t or element within edi t or s/ Def aul t Edi t or Panel .

2. Specify additional attributes for the editor:

Attribute Description

propert yNanme Required. The nane of the string property that this
editor is associated with. This property must be
declared in the same template as the choice editor.

editable If set to t r ue, this attribute allows Experience
Manager users to specify custom string values. By
default, choice editors are not editable.

6 Template Property and Editor Reference 215

Attribute Description

enabl ed If set to f al se, the choice editor displays in
Experience Manager but the value cannot be
changed by the user. By default, choice editors are
enabled.

pr onpt Specifies a custom prompt. The default prompt is
an empty string. It is enabled only when editable is
settotrue.

tooltip If present, specifies optional help text to display in a
tool tip window. The default behavior is no tool tip.

wi dth The width, in pixels, of the choice editor. By default,

the width of the editor adjusts to fit the longest
choice in the editor. Use this attribute if you want to
set a fixed width for the editor.

3. Insert an choi ces element within the edi t ors/ Choi ceEditor el enent.

4. Specify one or more menu options for the choice editor by adding elements that takes the following

attributes:
Attribute Description
val ue Required. The string value to assign to the
associated property if this choice is selected.
| abel This attribute allows you to specify a more

descriptive label for this option in the drop down
list. If no label is specified, the val ue is used by
default. You must either specify a | abel for all
of the choices or none of them. You cannot have
labels for some choices and not others.

Note

If you choose to make a choice editor
editable (so that users can enter arbitrary
strings), you should not use the | abel
attribute for choices. Instead, the choice
editor should display the raw value of
the string so that users entering custom
values can see the expected format of the
string property.

5. Optionally, set a default value in the corresponding def aul t Cont ent | t emproperty.

For example,:

"defaul t Contentlten:

216

6 Template Property and Editor Reference

"sort": "default",

Note

Ensure that the default value for the property is one of the options defined for the choice editorin a

element.

The following example shows a choice editor configured with a default value.

{
"@lescription": "${tenpl ate.description}",
"@roup": "Navigation",
"ecr:createDate": "2016-09-12T17: 33: 58. 404+05: 30",
"@hunbnai l Url": "thunbnail.jpg",
"ecr:type": "tenplate",
"defaul tContentltent: {
"l essLinkText": "Show Less Refinenents...",
"nunRefi nenents": "10",
"@ane": "Dimension Navigation",
"di mensionld": "",
"moreLi nkText": "Show More Refinenments...",
"maxNunRef i nenents": "200",
"sort": "default",
"showor eLi nk": fal se,
"di mensi onNanme" :
},
"editorPanel ": {
"editor": "editors/DefaultEditorPanel",
"children": [
<!-- additional elenments omtted fromthis exanple -->
{
"editor": "editors/ ChoiceEditor",
"propertyNane": "sort",
"l abel ": "${property.sort.|abel}",
"choi ces": [
{
"label ": "${property.sort.default.|abel}",
"val ue": "default"
b
{
"label ": "${property.sort.static.label}",
"value": "static"
b
{
"label ": "${property.sort.dynRank.|abel }",
"val ue": "dynRank"
}
]
b
]
<!-- additional elenments omtted fromthis exanple -->
}
"typel nfo": {

"boost Ref i nenents": {" @ropertyType": "List"},
"buryRefinements": {"@ropertyType": "List"},
"di nmensionld": {"@ropertyType": "String"},

"di nensi onNane": {" @ropertyType": "String"},
"l essLi nkText": {" @ropertyType": "String"},

6 Template Property and Editor Reference

217

"maxNunRef i nements": {"@ropertyType": "String"},
"moreLi nkText": {" @ropertyType": "String"},
"nunRefinements": {"@ropertyType": "String"},
"showMor eLi nk": {" @ropertyType": "Bool ean"},
"sort": {"@ropertyType": "String"}

About numeric properties
Numeric properties should be specified as string properties in the template.

Properties that are expected to have numeric values can be associated with editors that are designed to work
with numbers. These editors guarantee that the property is assigned a numeric value.

Adding a numeric stepper

A numeric stepper enables content administrators to select a numeric value from a set of possible values by
stepping through values or typing into an input field.

The numeric stepper provides a single-line input text field and a pair of arrow buttons for stepping through
values. If a user enters number that is not a multiple of the st epSi ze property or is not in the range between
the maximum and minimum properties, this property is set to the nearest valid value.

To add a numeric stepper to a template:
1. Insertan edi t or s/ Nuner i cSt epper Edi t or element within edi t or s/ Def aul t Edi t or Panel .

2. Specify additional attributes for the editor:

Attribute Description

pr opert yNane Required. The nane of the string property that this
editor is associated with. This property must be
declared in the same template as the string editor.

enabl ed If set to false, the numeric stepper editor displays
in Experience Manager but the value cannot be
changed by the user. By default, numeric stepper
editor are enabled.

wi dt h The width, in pixels, of the editor. The default width
is 60.

hei ght The height, in pixels, of the editor. The default
height is 24.

mi nval ue The minimum value of the property bound to this

editor. The ni nVal ue can be any number, including
a fractional value. The default minimum value is 0.

218 6 Template Property and Editor Reference

Attribute Description

maxVal ue The maximum value of the property bound to this
editor. The maxVal ue can be any number, including
a fractional value. The default maximum value is 10.

st epSi ze The increment by which the property value is
increased or decreased when a user clicks on the
up or down arrows. The value must be a multiple of
this number. The default step size is 1.

The following example shows the configuration for a numeric stepper:

{
"ecr:type":"tenpl ate",
"@roup": " Navigation",
"@lescription":"${tenpl ate. description}",
"@hunbnai |l Url":"thunbnai l . j pg",
"typel nfo":{
<l-- additional elements omtted fromthis exanple -->
"nunRef i nenents": {
" @ropertyType":"String"
H
<!-- additional elenments omtted fromthis exanple -->
H
"defaul tContentlten':{
" @ane": "D mension Navigation",
"di mensi onNanme": " ",
"di nensionld":"",
"sort":"defaul t",
"showMor eLi nk": f al se,
"mor eLi nkText": " Show More Refinements...",
"l essLi nkText": " Show Less Refinements...",
"nunRef i nements": " 10",
"maxNurRef i nement s": " 200",
"boost Ref i nement s": [

]

uryRefinements": [

]
H
"edi tor Panel ": {
"editor":"editors/ Defaul t EditorPanel",
“children":[
<l-- additional elements omtted fromthis exanple -->
{
"editor":"editors/NunmericSt epper Editor",
"enabl ed": true,
"l abel ":"${property. nunRefi nenents. | abel }",
"maxVal ue": 10000,
"propertyName": " nunRef i nement s"
H
]
}
<l-- additional elenments omtted fromthis exanple -->

}

6 Template Property and Editor Reference 219

Adding a Boolean property

Boolean properties represent a true or false value and can be used to enable or disable features in your
application.

To add a Boolean property to a template:

1. Int ypel nf o element, insert a Bool ean element inside a @r opert yType element.

"typelnfo": {
"showor eLi nk": {
" @ropertyType": "Bool ean"

}

2. Specify the default value for the property.

"defaul t Contentltent: {
"showMor eLi nk": f al se

I

Any value other than the string "f al se" (case insensitive) defaults to a value of t r ue.

The following example shows the configuration of a Boolean property:

{
"ecr:type":"tenpl ate",
" @roup": " Navigation",
"@lescription":"${tenpl ate. description}",
"@hunbnai |l Url":"thunbnail . j pg",
"typelnfo":{
"di mensi onNane" : {
" @ropertyType":"String"
}
"di mensi onl d": {
"@ropertyType":"String"
}
"sort":{
"@ropertyType":"String"
}
"showVor eLi nk": {
" @ropertyType": "Bool ean"
}
"mor eLi nkText ": {
" @ropertyType":"String"
}
"l essLi nkText": {
" @ropertyType":"String"
}
"nunRef i nenents”: {
" @ropertyType":"String"
}
"maxNurRef i nerment s": {
"@ropertyType":"String"

220 6 Template Property and Editor Reference

3

"boost Ref i nement s": {
"@ropertyType": "List"

}

uryRefinement s": {
" @ropertyType":"List"
}
}
"defaul t Contentltent:{
" @ane": "D mensi on Navigation",
"di mensi onNane": "",
"di mensionld":"",
"sort":"default",
"showMor eLi nk": f al se,
"noreLi nkText": " Show More Refinenents...",
"l essLi nkText": " Show Less Refinenents...",
"nunRef i nenents": " 10",
"maxNunRef i nenent s": " 200",
"boost Refi nenents": [

I

"buryRefinenments": [

]
b,

Adding a Boolean editor

A Boolean editor provides a checkbox for Experience Manager users to specify the value of a Boolean property.

To add a Boolean editor:
1. Insert a edi t or s/ Bool eanEdi t or element within edi t or s/ Def aul t Edi t or Panel .

2. Specify additional attributes for the editor:

Attribute Description

pr opert yNanme Required. The nane of the Boolean property that
this editor is associated with. This property must
be declared in the same template as the Boolean
editor.

enabl ed If set to f al se, the checkbox displays in Experience
Manager but the value cannot be changed by the
user. By default, checkboxes are enabled.

The following example illustrates a checkbox Boolean editor:

{
"ecr:type":"tenpl ate",
" @roup": " Navigation",
"@lescription":"${tenpl ate. description}",

6 Template Property and Editor Reference 221

"@hunbnai |l Url":"thunbnail . j pg",
"typel nfo":{

<l-- additional elenments onmtted fromthis exanple -->

"showor eLi nk": {

" @ropertyType": " Bool ean"

b

<l-- additional elenments onmtted fromthis exanple -->
b
"defaul t Contentltent:{

" @ane": "D mensi on Navigation",

"di mensi onNane": "",

"di mensionld":"",

"sort":"default",

"showMor eLi nk": f al se,

"noreLi nkText": " Show More Refinenents...",

"l essLi nkText": " Show Less Refinenents...",

"nunRef i nenents": " 10",

"maxNurrRef i nement s": " 200",

"boost Refi nenents": [

I

"buryRefinements": [

]
H
"editorPanel ": {
"editor": "editors/DefaultEditorPanel",
"children": [
<!-- additional elements omtted fromthis exanple -->
{
"editor":"editors/Bool eanEdi tor",
"enabl ed": true,
"1 abel ": " ${property. showhor eLi nk. | abel }",
"propertyNanme": " show\or eLi nk"
b
<l-- additional elements onmtted fromthis exanple -->
}
}

Adding an item property

A property can consist of a collection of properties (key-value pairs) of any valid type.

Because item properties can be used for a variety of purposes, Experience Manager does not include any generic
editors for working with items. However, editors intended for specific purposes may store their values in item
properties.

To add an item property to a template:

1. Int ypel nf o section, insert an | t emelement inside a @r oper t yType element.

"typelnfo": {
"sortOption": {"@ropertyType": "lteni}
}

222 6 Template Property and Editor Reference

2. Indef aul t Content It em nsert,add asort Opti on element with asort s element and specify the @I ass
attribute with the fully qualified class name of the configuration model class that corresponding to this item

property.

"defaul tContentltent: {
"sortOption": {

"@l ass": "com endeca.infront.navigation.nodel.SortOption",
"l abel ": "Mst Sal es",
"sorts": [{
"@l ass": "com endeca.infront.navigation.nodel . Sort Spec",
"key": "product.anal ytics.total _sal es",

"descending": false

H

3. Optionally, specify other attributes within the sor t Opt i on element.

Following is an example of a template that uses an item:

"@lescription": "${tenplate.description}",
"@roup": "MiinContent",
"ecr:createDate": "2016-09-12T17: 33: 58. 542+05: 30",
"@hunbnai | Url": "thunbnail . png",
"ecr:type": "tenplate",
"defaul t Contentltent: {

"@uanme": "Results List",

"rel RankStrategy": "",

"boost Strata": [],

"buryStrata":[],

"recordsPer Page": "10",
"sortOption": {
"@l ass": "com endeca.infront.navigation.nodel.SortOption",
"l abel ": "Most Sal es”,
"sorts": [{
"@l ass": "com endeca.infront.navigation.nodel . Sort Spec",
"key": "product.anal ytics.total _sal es",
"descendi ng": false
}H
}
}
<l-- additional elements omtted fromthis exanple -->
"typel nfo": {

"boost Strata": {"@ropertyType": "List"},
"buryStrata": {"@ropertyType": "List"},
"recordsPerPage": {"@ropertyType": "String"},
"rel RankStrategy": {"@ropertyType": "String"},
"sortOption": {"@ropertyType": "lteni}

Adding a list property

A property can consist of an ordered list of strings, Booleans, items, or other lists.

6 Template Property and Editor Reference 223

Because lists can be used for a variety of purposes, Oracle Guided Search does not include any generic editors
for working with lists. However, editors intended for specific purposes may store their values in list properties.

To add a list property to a template:
1. Insert a Li st element inside a @r opert yType" elementint ypel nf o.

2. Optionally, specify a default value by inserting either St ri ng, Bool ean, Li st, or | t emelements in
defaul t Content|tem

Following is an example of a template that uses lists both with and without default values:

"@lescription": "${tenpl ate.description}",
"@roup": "MiinContent",
"ecr:createDate": "2016-09-12T17: 33: 58. 542+05: 30",
"@hunbnai l Url": "thunbnail.png",
"ecr:type": "tenplate",
"defaul tContentltent: {
"@ane": "Results List",
"rel RankStrategy": "",
"recordsPer Page": "10",
"sortOption": {
"@l ass": "com endeca.infront.navigation.nodel.SortOption",
"l abel ": "Most Sal es”,
"sorts": [{
"@l ass": "com endeca.infront.navigation.nodel . Sort Spec",
"key": "product.anal ytics.total _sal es",
"descendi ng": false
}
}
}

<l-- additional elenments onmtted fromthis exanple -->
"typel nfo": {
"boost Strata": {"@ropertyType": "List"},
"buryStrata": {"@ropertyType": "List"},
"recordsPer Page": {"@ropertyType": "String"},
"rel RankStrategy": {"@ropertyType": "String"},
"sortQption": {"@ropertyType": "lteni'}

Adding a group label

In the Experience Manager interface, group labels can serve as a visual cue that several properties are related.

Group labels are only used to provide additional context in the editing interface of Experience Manager and do
not affect rendering in the front-end application. Group labels are optional.

One use of group labels is to give the content administrator information about properties that they need to
configure the cartridge. For example, if a template defines properties that are required in order to render the

224 6 Template Property and Editor Reference

content properly, you can indicate these with a descriptive group label so that the content administrator can

easily identify the required fields in Experience Manager.

The editor panel in Experience Manager includes a default heading of "Section settings." This heading includes
the required Name field and the read-only group of a template, as well as any properties that are defined before

the first group label.

To add a group label to the editor panel:

1. Insert the Gr oupLabel element inside edi t or s/ Def aul t Edi t or Panel as in the following example:

"@lescription": "${tenpl ate.description}",
"@roup": "SecondaryContent",
"ecr:createDate": "2016-09-12T17: 33: 58. 290+05: 30",
"@hunbnai l Url": "thunbnail.png",
"ecr:type": "tenplate",
"defaul tContentltent: {

"@ane": "Spotlight Records",

"maxNunmRecords": "10",

"seeAl | Li nkText": "",

"showSeeAl | Li nk": fal se,

"title": "Featured Items",

"recordSel ection": {"@l ass":

"com endeca.infront.cartridge. RecordSpot|ight Sel ecti on"}

b
"editorPanel ": {

"editor": "editors/ DefaultEditorPanel",

"children": [

{
"editor": "GroupLabel",
"l abel ": "${group.spotlight.label}"
b

"editor": "editors/StringEditor",
"propertyName": "title",

"l abel ": "${property.title.label}",
"enabl ed": true 1,

"editor": "editors/ SpotlightSel ectionEditor",

"maxNunmRecor ds": "maxNumRecords",
"propertyName": "recordSel ection",

"seeAl | Li nkText": "seeAl |l Li nkText",
"showSeeAl | Li nk": "showSeeAl | Li nk",

"l abel ": "${property.recordSel ection.|abel}"

]
}

ypel nfo": {
"maxNunmRecords": {" @ropertyType": "String"},
"recordSel ection": {"@ropertyType": "lteni},
"seeAl | Li nkText": {"@ropertyType": "String"},
"showSeeAl | Li nk": {" @ropertyType": "Bool ean"},
"title": {"@ropertyType": "String"}

G ouplLabel is an empty tag that allows you to specify the label text with the | abel

attribute.

6 Template Property and Editor Reference

225

Complex property editors

This section describes editors that are designed for specific aspects of feature configuration.

About the microbrowser

The microbrowser is used in several editors in the core cartridges to enable a content administrator to specify a
set of records. It is deprecated in this release; use the Select Records dialog instead.

The microbrowser is a lightweight search and Guided Navigation application that enables a content
administrator to browse to a particular location in the data set (which may include search terms, dimension
refinements, or a combination of both). The content administrator can then do one of two things:

+ Save the current filter state to designate a dynamic set of records.

+ Select specific records from that filter state (or other filter states) to designate a set of specific featured
records.

An instance of a microbrowser is usually bound to a list property, which contains items that represent either
refinements or record IDs.

The microbrowser communicates with the MDEX Engine to retrieve search and navigation results.
Note

In order to enable the microbrowser, ensure that you have enabled communication between
Experience Manager and the MDEX Engine. For instructions, see "Communicating with the MDEX
Engine" in the Tools and Frameworks Installation Guide.

Data service configuration reference

The microbrowser uses a data service to access MDEX Engine information. By default, the service is configured to
provide relevant record properties for the Discover Electronics reference application.

The data service is configured in the file <app di r>confi g\i mport\ confi guration\tool s\xngr_.json,
as shown below:

"nane": "dataservice",

"host": "nyhost. nydomai n. cont',
"port": "15002",
"recordSpecNanme": "comon.id",
"aggregationKey": "product.code",
"recordFilter": "",

"wi | dcar dSear chEnabl ed": fal se,
"recordNaneField": "",

"fields": {
"product.id": "",
"product.nanme": "plain",
"product.price": "currency",

"product . short_desc":

226 6 Template Property and Editor Reference

It specifies the following:

Key Value
name The name of the service, "dataservice".
host The hostname or IP address of your MDEX Engine server. By default, this is populated

with the same host as the authoring MDEX Engine when you deploy the Discover
Electronics reference application and run thei niti al i ze_servi ces script.

port The port that the MDEX Engine server listens on. By default, this is populated with the
same port as the authoring MDEX Engine.

r ecor dSpecName The dimension used as the record specifier. This must be a unique identifier.

aggr egat i onKey Optional. Enables aggregated records mode in the microbrowser, using the specified
property or dimension as the aggregation key when displaying and sorting records.
All records with the same value in the selected dimension or property are treated as a
single record.

recordFilter Optional. The property used to filter records for record boost and bury.

wi | dcar dSear chEnakDptional. Wildcard search is enabled by default. If your configuration does not index
dimensions by wildcard index, you must explicitly set this property to f al se.

recor dNaneFi el d | Optional. The property that should be used to represent the name of a record.

fields Each key in the array of key/value pairs specifies a property or dimension to display
as a column in the microbrowser. Optionally, you may specify a formatting value from
among the following:

+ pl ai n — no formatting. Used as the default if no format value is present.
« currency — adds a dollar ($) symbol before the value.

+ integer — removes the decimal point and any trailing digits, if present. This setting
does not round the integer value.

« html — attempts to handle markup tags within the content returned from the
MDEX Engine.

Running <app dir>\control\set_editors_configpushes changes to the Discover Electronics reference
application.

6 Template Property and Editor Reference 227

About the Select Records dialog

The Select Records dialog is used in several editors in the core cartridges to enable a content administrator to
specify a set of records.

The Select Records dialog is a lightweight search and Guided Navigation application that enables a content
administrator to browse to a particular location in the data set (which may include search terms, dimension
refinements, or a combination of both). The content administrator can then do one of two things:

+ Save the current filter state to designate a dynamic set of records.

+ Select specific records from that filter state (or other filter states) to designate a set of specific featured
records.

An instance of a Select Records dialog is usually bound to a <Li st > property in a cartridge template,
which contains <I t em> properties that represent either dimension refinements or record IDs. The dialog
communicates with the MDEX Engine to retrieve search and navigation results.

Note

In order to enable the Select Records dialog, ensure that you have enabled communication between
Experience Manager and the MDEX Engine. For instructions, see "Communicating with the MDEX
Engine" in the Tools and Frameworks Installation Guide.

The following editors launch the Select Records dialog:
+ Link Builder editor
+ Boost-Bury Record editor

+ Spotlight Selection editor

Select Records data service configuration reference

The Select Records dialog in Experience Manager communicates with the MDEX Engine through a configurable
data service. By default, the service is configured to provide relevant record properties for the Discover
Electronics reference application.

The service endecaBrowserService in configured in the file, <app di r>\confi g\i nport\confi guration
\'t ool s\ xngr\ _. j son, as shown below:

{
"name" : "endecaBrowser Service"
"host": "nyhost. nydomai n. cont',
"port": "15002",
"recDi spl ayNanmeProp" : "product.name",
"recSpecProp": "common.id",
"recAggregati onKey": "product.code",
"recFilter": "",
"recl mgUrl Prop" : "product.ing_url _thunbnail",
"recDi spl ayProps": ["product.nanme", "product.price", "product.short_desc"],
"t ext SearchKey": "Al",
"t ext Sear chMat chMbde" : " ALLPARTI AL"

}

It specifies the following:

228

6 Template Property and Editor Reference

Key Value

name The name of the service, "endecaBrowserService".

host The hostname or IP address of your MDEX Engine server. By default, this is populated
with the same host as the authoring MDEX Engine when you deploy the Discover
Electronics reference application and run thei niti al i ze_servi ces script.

port The port that the MDEX Engine server listens on. By default, this is populated with
the same port as the authoring MDEX Engine.

recDi spl ayNamePr op The dimension used as the record display name in the editor that launches the
dialog.

r ecSpecPr op The dimension used as the record specifier. This must be a unique identifier.

recAggr egati onkey Optional. Enables aggregated records mode in the Select Records dialog using the
specified property or dimension as the aggregation key when displaying and sorting
records. All records with the same value in the selected dimension or property are
treated as a single record.

recFilter Optional. The property used to filter records for record boost and bury.

recl ngUr | Prop Optional. The property used to retrieve the URL for the record thumbnail image.

recDi spl ayPr ops An array of record properties to display in the dialog.

t ext Sear chKey Optional. Specifies the search key to apply to text searches in the Select Records
dialog.

t ext Sear chMat chMbde Optional. Specifies the match mode to apply to text searches in the Select Records
dialog.

You can modify these values as necessary for your own application. Running <app di r >\ control
\ set _edi t ors_confi g pushes changes to the Discover Electronics reference application.

About the Dynamic Slot editor

The Dynamic Slot editor enables the content administrator to configure a section of an application page at
query time by specifying one or more folders from which to return content.

The editor has no associated template configuration, although it launches a configuration dialog in Experience
Manager. When the content administrator edits the cartridge in Experience Manager, the editor queries the
Endeca Configuration Repository for a list of folders. These results are refined based on the template group or
template ID restrictions entered by the content administrator.

6 Template Property and Editor Reference 229

Creating a cartridge template with a dynamic slot

You should configure a separate cartridge template for each template group that requires dynamic slot
functionality.

To create a cartridge template with a dynamic slot:

1. Insert at ypel nf o that includes the following properties:
s ruleLimt
+ cont ent Pat hs — Include a nested Li st element.
+ tenpl at eTypes — Include a nested Li st element.

+ tenpl at el ds — Include a nested Li st element.

For example:

"typelnfo": {
"contentPaths": {"@ropertyType": "List"},
"ruleLimt": {"@ropertyType": "String"},
"tenplatelds": {"@ropertyType": "List"},
"tenpl ateTypes": {"@ropertyType": "List"}

These properties are sent in as configuration to a Cont ent S| ot Conf i g object that dynamically
populates the page with a suitable content item. For more information, see About Contentinclude and
ContentSlotConfig objects (page 9).

2. Add any default values to the def aul t Cont ent | t em

For example:

"defaul tContentltent: {
"@ane": "Secondary Content Slot",
"ruleLimt": "1",
"tenpl ateTypes": ["SecondaryContent"]

3. Inthe Edi t or Panel , insert an edi t or s/ Dynamni ¢Sl ot Edi t or element within a edi t or s/
Def aul t Edi t or Panel :

"edi torPanel ": {
"editor": "editors/DefaultEditorPanel",
"children": [{"editor": "editors/Dynam cSlotEditor"}]

4. Save and close the template.
5. Upload the template to your application:

a. Navigate to your <app dir>\control directory.

230 6 Template Property and Editor Reference

For the Discover Electronics reference application, this is C: \ Endeca\ apps\ Di scover\ control on
Windows, or/ usr/ | ocal / endeca/ apps/ di scover/control on UNIX.

b. Run the set _t enpl at es batch or shell script.
Note

You must configure a cartridge handler for your template in order to use it in Experience
Manager.

The following shows the sample template in the Discover Electronics application for a dynamic slot cartridge.
The slot is restricted to cartridges of the Secondar yCont ent group.

{

"@lescription": "${tenplate.description}",

"@roup": "SecondaryContent",

"ecr:createDate": "2016-09-12T17: 33:56. 623+05: 30",

"@hunbnai l Url": "thunbnail.png",

"ecr:type": "tenplate",

"defaul t Contentltent: {
" @ane": "Secondary Content Slot",
“ruleLimt": "1",
"tenpl at eTypes": ["SecondaryContent"]

H

"editorPanel ": {
"editor": "editors/DefaultEditorPanel ",
"children": [{"editor": "editors/Dynam cSlotEditor"}]

H

"typelnfo": {
"contentPaths": {"@ropertyType": "List"},
"ruleLimt": {"@ropertyType": "String"},
"tenplatelds": {"@ropertyType": "List"},
"tenpl ateTypes": {"@ropertyType": "List"}

}

}

You must specify a cartridge handler for each cartridge template that you configure as a dynamic slot.
Specifying a cartridge handler for a dynamic slot template

All dynamic slot cartridges can share the same cartridge handler, but each unique cartridge must be explicitly
configured to do so.

As soon as you have created a cartridge template that uses a dynamic slot, you must register a cartridge handler
for that template. This cartridge handler should inherit the Car t r i dgeHandl er _Cont ent Sl ot handler.

To specify a cartridge handler for a dynamic slot template:
1. Open the configuration file for your application framework.

In the Discover Electronics reference application, this is the Spring context configuration file located in
YENDECA TOOLS ROOT% r ef er ence\ di scover - el ectroni cs-aut hori ng\ VEB- | NF\ assenbl er -
cont ext. xni.

2. Configure a cartridge handler for your template that inherits or extends the Cont ent Sl ot Handl er.

In the Spring implementation of the Assembiler, this consists of adding a new Car t r i dgeHandl| er bean for
your dynamic slot cartridge:

6 Template Property and Editor Reference 231

a. Setthei d attribute to Cartri dgeHandl er _<t enpl ate_i d>.
b. Set the par ent attribute to the Cart ri dgeHandl er _Cont ent Sl ot handler.

c. Setthe scope attribute to pr ot ot ype to instantiate a new handler each time one is required.

This results in configuration similar to the following:

<bean i d="CartridgeHandl er _M/PageSl ot" parent="Cartri dgeHandl er _Content Sl ot"
scope="prototype"/>

3. Repeate as necessary for any other dynamic slot templates in your application.

4. Save and close the file.

Adding a Link Builder

The Link Builder editor allows the content administrator to specify a link to a static page, a single selected record,
or a navigation state.

The Link Builder uses the Select Records dialog to enable the content administrator to browse to a single record
or a particular navigation state in the data set (which may include search terms, dimension refinements, or a
combination of both). Alternately, the Link Builder also supports entering an absolute URL to a static resource.

To add a Link Builder to a template:

1. Intypel nf o, insert an | t emproperty named I i nk as in the following example:

"typelnfo": {
"link": {"@ropertyType": "lteni}
}

2. In defaultContentltem, insert a link class of com endeca. i nfront. cartri dge. nodel . Li nkBui | der, asin
the following example:

"defaul tContentltent: {
"@ane": "Media Banner",

"imgeA t": "",
"link": {"@lass": "comendeca.infront.cartridge. nodel . LinkBuilder"},
"medi a": {"@l ass": "comendeca.infront.cartridge. nodel . Medi albj ect"}

I

3. Insert a corresponding edi t or s/ Li nkBui | der Edi t or element within edi t or s/ Def aul t Edi t or Panel .

4. Specify the pr oper t yNarme attribute and any additional label attributes for the editor:

{
"editor": "editors/LinkBuilderEditor",
"propertyName": "link",
"l abel ": "${property.link.label}",

232 6 Template Property and Editor Reference

"enabl ed": true

The following shows an example of a template that includes a link builder editor:

"@lescription": "${tenpl ate. description}",
"@roup": "MinContent",
"ecr:createDate": "2016-09-12T17:33:57.427+05: 30",
"@hunbnail Url": "thunbnail.png",
"ecr:type": "tenplate",
"defaul tContentltent: {
"@uane": "Media Banner",
"imageAl t": "",
"link": {"@lass": "comendeca.infront.cartridge.nodel.LinkBuilder"},
"media": {"@l ass": "comendeca.infront.cartridge. nodel.Mdi albj ect"}
H
"editorPanel ": {
"editor": "editors/DefaultEditorPanel",
“children": [
<l-- additional elements omtted fromthis exanple -->
{
"editor": "editors/LinkBuilderEditor",
"propertyName": "link",
"label": "${property.link.|abel}",
"enabl ed": true

]
}

ypel nfo": {
"imageAlt": {"@ropertyType": "String"},
"link": {"@ropertyType": "lten},
"media": {"@ropertyType": "lteni}

About configuring the Link Builder
The Link Builder must be configured with a path to a data service.

Below is the configuration for the Link Builder in the editor JSON file for the Discover Electronics reference
application, located at <app di r>\ confi g\i nport\ edi t or s\ Li nkBui | der Edi t or\ _. j son:

{
"ecr:type":"editor",
"config":{
"resourcePath":"/configuration/tool s/ xngr/services/ endecaBr owser Servi ce. j son"
}
}

Related links
+ Select Records data service configuration reference (page 228)

+ About the Select Records dialog (page 228)

6 Template Property and Editor Reference 233

About the Media editor

The Media editor allows the content administrator to select and link to media assets stored in a content
repository.

The media editor consists of an Experience Manager editor and a lightweight Web application that enables the
content administrator to browse and navigate across a set of media assets in order to more easily find specific
files.

The default Discover Electronics reference application stores media directly in the Endeca Configuration
Repository and uses a built-in asset browser to present these assets to the content administrator. You may also
initialize an MDEX Engine to index media asset metadata and URIs as records, making them available for Guided
Navigation in an enhanced Media Browser.

Note

The configuration repository provides an acceptable store for media files when used for preview
purposes in an authoring environment, but Oracle recommends serving media assets from a media or
content delivery server for production environments.

About the Media Browser

The default asset browser for the Media editor can only be configured to browse media assets in the Endeca
Configuration Repository. If you are using another system for managing media assets, you must stand up a
corresponding media MDEX Engine and enable the Media Browser in the editor configuration file.

Adding a Media editor

A Media editor allows a content administrator to link media into a cartridge. It can be combined with the Link
Builder in order to create images that link to destinations in your application, such as those used in site banners.

To add a Media editor to a template:

1. Intypel nf o, insert an | t emproperty named medi a as in the following example:

"typel nfo": {
"medi a": {"@ropertyType": "lteni}
}

2. Indef aul t Cont ent | t em insert a media element with a of class
com endeca. i nfront.cartridge. nodel . Medi aObj ect, as in the following example:

"defaul t Contentlten: {
"medi a": {"@lass": "comendeca.infront.cartridge. nodel . Medi albj ect"}

1,

3. Insert a corresponding edi t or s/ Medi aEdi t or element within edi t or s/ Def aul t Edi t or Panel .

4. Specify the pr oper t yName attribute and any additional label attributes for the editor:

234 6 Template Property and Editor Reference

"editor": "editors/MediaEditor",
"propertyNanme": "media",

"l abel ": "${property.nedia.label}",
"enabl ed": true

I

The following shows an example of a template that includes a media editor as part of a media banner cartridge:

{
"@lescription": "${tenplate.description}",
"@roup": "MiinContent",
"ecr:createDate": "2016-09-12T17:33:57.427+05: 30",
"@hunbnai l Url": "thunbnail.png",
"ecr:type": "tenplate",
"defaul t Contentlten: {
"@ane": "Media Banner",
"imgeA t": "",
"link": {"@lass": "comendeca.infront.cartridge. nodel . Li nkBuil der"},
"media": {"@lass": "comendeca.infront.cartridge. nodel.Mdi aCbj ect"}
b
"edi torPanel ": {
"editor": "editors/DefaultEditorPanel",
"children": [
{
"editor": "G oupLabel",
"l abel ": "${group. nedia.label }"
H
{
"editor": "editors/MediaEditor",
"propertyName": "media",
"l abel ": "${property. nedia.l abel }",
"enabl ed": true
H
<!-- additional elements omtted fromthis exanple -->
]
H
"typel nfo": {
"imageAlt": {"@ropertyType": "String"},
"link": {"@ropertyType": "lten'},
"media": {"@ropertyType": "lteni}
}
}

In order to use the Media editor, if you are using the Endeca Configuration Repository as your media store, you
must upload any media files to the repository. If you are using an external digital asset management system
with a corresponding MDEX Engine, the matching application must be configured and running and the Media
Browser must be enabled.

Related links
+ Uploading media to the Endeca Configuration Repository (page 237)
About Media editor configuration

You can specify allowable media formats in the editor JSON file. You can also enable or disable the Media
Browser, and specify the MDEX Engine that it should query for media records.

6 Template Property and Editor Reference 235

The Discover Electronics reference application uses the Endeca Configuration Repository to store media and
accesses these resources through a default asset browser, rather than relying on the Media Browser and an
accompanying media MDEX Engine.

Below is the configuration for the Media editor in the editor JSON file, located at <app di r >\ confi g\i nport
\ edi t or s\ Medi aEdi tor\ _.j son:

"ecr:type":"editor",
"config":{
"useMedi aBrowser": "fal se",
"medi aRoot s": {
"defaul t":"http://EXAMPLE: 8006/ifcr/sites/ D scover/medial",
"Medi aSource": "http://EXAMPLE: 8006/ di scover - aut hori ng/ i mages/ "
H
"mdexPort":"17000",
"nmdexHost " : " EXAMPLE",
"vi deoFor mat s": " np4| ogg| ogv| webni',
"imageFormats":"j pg| png|gif",
"medi aURI ":"/ifcr/sites/D scover/nedial"

This sets the following properties across all instances of the media editor in the application:

Property Description
useMedi aBr owser This property enables or disables the media browser. By default, it is set to f al se.
medi aRoot s This property specifies the absolute URLs to available media repositories. It includes

anested def aul t property that points to the Endeca Configuration Repository, and
an additional property for each repository indexed by the media MDEX Engine. For
more information, see "About resolving media paths in content items."

def aul t The absolute URL to the Endeca Configuration Repository, used by the default asset
browser. The specified host and port should match those used by Workbench.

content source An absolute URL to a media content source. In the reference data application,
(medi aSour ce) records are assigned a nedi a. r eposi t ory_i d property with a value of
nmedi aSour ce.

Your own data ingest process may assign different values for media served from
varying locations. In this case, each nedi a. r eposi t ory_i d value should have
a corresponding element in the editor JSON file that identifies the URL for that
content source.

ndexPor t For applications using the Media Browser, this is the hostname or IP address of the
media MDEX Engine server.

ndexHost For applications using the Media Browser, this is the port on which the specified
media MDEX Engine server listens.

236 6 Template Property and Editor Reference

Property Description

vi deoFor mat s A pipe-delineated list of valid video formats. Videos do not display in either
the default asset browser or Media Browser. The Discover Electronics reference
application is configured to use mp4, ogg, ogv, and webm, formats.

Note that Internet Explorer only supports the mp4 format. If you attempt to view
an ogg, ogv, or webm format video in the Media Editor using Internet Explorer, an
invalid source error message appears.

i mageFor mat s A pipe-delineated list of valid image formats. Any images not matching a listed
format do not display in either the default asset browser or Media Browser. The
Discover Electronics reference application is configured to use jpg, png, and gif
formats.

medi aURI The location of the media node within the Endeca Configuration Repository. This is
only used by the default asset browser.

Note the following:

+ If you store media in the Endeca Configuration Repository, you can only preview media in the jpg, png, or gif
formats.

+ The Media MDEX browser can only display thumbnails that have the jpg, png, or gif formats.
Working with videos and images

The JSON examples of video and image formats in this guide include only those that are supported by
the renderers for the Discover Electronics reference application. If you wish to extend this list for your own
application, ensure that your cartridge renderers can handle additional formats, and that your application
includes logic for displaying them. If you want to display a video on your site, the renderer needs to let the
browser determine the size.

The ability to store media in the Endeca Configuration Repository has been deprecated in Oracle Commerce
11.3. The Endeca Configuration Repository is not intended for serving any media in a production environment.
If you store media in the Endeca Configuration Repository, the Media browser might have problems displaying
videos. For example the video might display without controls or as a static image. The appearance of videos is
affected by many factors, such as the browser that you are using and the operating system.

The Media MDEX browser only lists media with formats listed in the <app di r >\ confi g\ cas\ medi a-
craw . xm file for the Media MDEX. You can add other formats to this file.

<regex>"(?i:.*\.(?:gif|avi|flv]|nmpe?g?|flalflr]|sol]|miv|nov|wmn|ogg|ogv|webn bnp|ico|
tiff?|png|jpgljpe?g|bnp|mpd| np3)) $</regex>

Use the cas-cmd createCrawls command to set that crawl. For more information on creating crawls, see the
Oracle Commerce Content Acquisition System Developer's Guide.

Uploading media to the Endeca Configuration Repository

The ability to store media in the Endeca Configuration Repository has been deprecated in Oracle Commerce
11.3. Oracle Commerce Strongly recommends against storing any media in the Endeca Configuration
Repository.

6 Template Property and Editor Reference 237

If you wish to use the Endeca Configuration Repository as your media content source, you can upload assets
directly to Experience Manager. It might be useful in a development environment, where a separate media
server may not be worth the effort of maintaining.

All applications created using the Deployment Template include a set _nedi a script in the <app dir>
\ control directory. This script uploads media content from the <app di r >\ confi g\ nedi a directory to the

Endeca Configuration Repository. After uploading content, it becomes available for use in Experience Manager.

In general, you can store moderate amounts of media content in the Endeca Configuration Repository. Very
roughly speaking, a moderate amount of media content is approximately thousands of media files but not tens
of thousands of media files. This storage mechanism is intended as a convenience when you build an application
in a development environment.

If you have larger amounts of media content, Oracle recommends employing a digital asset management
system rather than uploading the media content into the Endeca Configuration Repository.

Here are a few specific guidelines to keep in mind before you upload media content to the Endeca Configuration
Repository:

+ Do not upload more than approximately 1 GB of media content per transaction. In this context, a transaction
isonerun of set _nedi a.

+ Do not upload more than approximately 5000 files in one transaction. This guideline essentially means
you should not have more than approximately 5000 files stored in <app di r >\ confi g\ nedi a and its

subdirectories.

+ If you have more than approximately 1000 files to upload, create subdirectories under <app di r>\config
\ medi a and distribute the media files among the subdirectories. (One run of set _nedi a uploads all content
in all subdirectories.)

To upload media content for use in Experience Manager:
1. Ensure any new media content is stored locally in <app di r >\ confi g\ nedi a.
This may include image files, video files, and so on.
2. Ina command prompt, navigate to the <app di r >\ control directory of your deployed application.
This is located under your application directory. For example: C: \ Endeca\ apps\ Di scover\ control .
3. Runthe set _nedi a script.
4. To verify that your media assets are available:
a. Log in to Workbench.
b. Open Experience Manager.
c. Select a cartridge that includes the Media editor.
d. Click the Select button to launch the Media editor and confirm that your media assets display.
About resolving media paths in content items

Links to media assets are resolved in the Media editor by combining configuration in the editor configuration
file with the medi a. pat h property on the selected record. At runtime, these links are resolved against the media
sources specified in the Assembler context file.

238 6 Template Property and Editor Reference

About media root elements

You identify authoring content sources as nested elements within the <medi aRoot s> element in the editor
configuration file. The name of each such element corresponds to the value of the nedi a. repository_i d
property assigned to each record in your media MDEX Engine. The value of each element identifies the root
location of the authoring content source.

When a content administrator opens the Media Browser in Experience Manager, media assets are retrieved
for preview by appending the value of the nedi a. pat h property on the record to the corresponding content
source element within <medi aRoot s>. The nedi a. pat h is then saved to the content item when the content
administrator saves the cartridge configuration.

By keeping the relative location of your media assets consistent across environments, you can maintain separate
content sources for authoring and live environments without requiring content administrators to reconfigure
content items.

For example, assume the following element within <nedi aRoot s> in the editor configuration file:

<myMedi aSour ce>ht t p: // myhost . mydomai n. com 8006/ myCMs/ Di scover/ nedi a/ </ nyMedi aSour ce>

A media record with a nedi a. r eposi t ory_i d value of "myMedi aSour ce" and a medi a. pat h value of
"i mages/ f 0o. j pg" would resolve to:

http:// myhost. mydonai n. com 8006/ myCMS/ Di scover/ medi a/ i mages/ f 0o. j pg

At runtime, the value of the nedi a. pat h property is instead appended to the appropriate media source
configured in assenbl er - cont ext . xni :

<l--

~ Medi a Sources
-->

<bean i d="aut hori ngMedi aSour ces" class="java.util.ArrayList" lazy-init="true">
<constructor-arg>
<list>
<bean cl ass="com endeca. i nfront. cartridge. nodel . Medi aSour ceConfi g">
<property nane="sour ceNane" val ue="M/Medi aSource" />
<property nanme="sourceVal ue" val ue="http://${wor kbench. host}:
${wor kbench. port}/ifcr/sites/
${wor kbench. app. nane}/ medi a/" />
</ bean>
<bean cl ass="com endeca. i nfront. cartri dge. nodel . Medi aSour ceConfi g">
<property nane="sour ceNane" val ue="default" />
<property nanme="sourceVal ue" val ue="http://${wor kbench. host}:
${wor kbench. port}/ifcr/sites/
${wor kbench. app. nane}/ medi a/" />

</ bean>
</list>
</ constructor-arg>

</ bean>

6 Template Property and Editor Reference 239

<bean i d="I|iveMedi aSources" class="java.util.ArrayList" lazy-init="true">
<constructor-arg>
<list>

<bean cl ass="com endeca. i nfront. cartridge. nodel . Medi aSour ceConfi g">
<property name="sourceNane" val ue="M/Medi aSource" />
<property nane="sourceVal ue" val ue="/inmages/" />

</ bean>

<bean cl ass="com endeca. i nfront. cartridge. nodel . Medi aSour ceConfi g">
<property nane="sourceNane" val ue="default" />
<property nanme="sourceVal ue" val ue="/i mages/" />

</ bean>
</list>
</ constructor-arg>

</ bean>

In a live environment, the aforementioned media record would resolve to:

http:// myhost. mydomai n. com 8006/ myBi gger Fast er CMS/ Di scover/ medi a/ asset s/ i mages/ f 0o. j pg

Note

While the tooling, authoring, and live content sources can all differ, Oracle recommends configuring
the Media Browser to use the authoring content source.

Enabling the Media Browser

The default browser for the Media editor can only be configured to browse media assets in the Endeca
Configuration Repository. If you are serving media assets from an external content source, you must enable the
Media Browser and configure it to use your media MDEX Engine.

Follow these steps to configure the Media Browser in the MediaEditor JSON file for the Discover Electronics
reference application, located at <app di r>\confi g\i nport\ edi t or s\ Medi aEdi t or\ _. j son:

1. Change the value of the useMedi aBr owser to true.

"useMedi aBrowser": "true",

2. Include a content source element under nedi aRoot sthat points to your media host.

The element name is a unique key that identifies a media host. Each record has a corresponding
medi a. reposi t ory_i d property that identifies its content source. The relevant content source property
maps that source to a URL.

For example, in the CAS crawl configuration for the reference data application, each record is assigned a
medi a. reposi tory_i d property with a value of medi aSour ce. The medi aSour ce property in the editor
configuration file specifies the URL:

"medi aRoot s": {
"default": "http://Exanpl e- LAP: 8006/ifcr/sites/Discover/nedial",
"medi aSource": "http://Exanpl e-LAP: 8006/ifcr/sites/ D scover/ medial"
},

240 6 Template Property and Editor Reference

Note

The def aul t value is only used by the default asset browser. For more information, see "About
Media editor configuration" and "Media MDEX Engine schema definition."

3. Modify the ndexPor t and ndexHost elements to point to the host and port of the MDEX Engine backing
your media host.

"mdexPort": "17000",
"nmdexHost ": " Exanpl e- LAP",

4. Save and close the file.

"ecr:type":"editor",
"config": {
"useMedi aBrowser": "true",
"medi aRoot s": {
"default": "http://Exanpl e- LAP: 8006/ifcr/sites/Di scover/nedial",
"medi aSource": "http://Exanpl e- LAP: 8006/i fcr/sites/D scover/nedial"
H
"mdexPort": "17000",
"nmdexHost ": " Exanpl e- LAP",
"vi deoFor mat s": " nmp4| ogg| ogv| webnt',
"i mageFormats": "jpg|png|gif",
"medi aURI": "/ifcr/sites/D scover/nedial"

}

5. Navigate to the <app di r>\control directory.

6. Run the set _edi t ors_confi g script to publish your changes to the Endeca Configuration Repository.

Related links
+ Using an MDEX Engine to index media assets (page 241)

Using an MDEX Engine to index media assets

If you are storing media resources in an independent content store, you can set up an MDEX Engine where
records represent media assets and include asset metadata and URIs. Storing this information as records allows
content administrators to navigate assets based on image size, modification date, or other attributes when
selecting media assets for a content item.

Tools and Frameworks includes a reference media MDEX application, including a CAS pipeline and Deployment
Template configuration.

Interaction between Experience Manager and the media MDEX Engine

The interactions between a media MDEX Engine, Experience Manager, and an Assembler application are
summarized below.

6 Template Property and Editor Reference 241

Interaction between a media MDEX Engine and Experience Manager

Experience Manager retrieves media asset information as follows:

T— ——f'j—b Media MDEX
Media Content Source 1 | Engife

-, -

S—

~— -

it
| Media Content Saurce 2{'

_' F Y

Waorkbench

¥

Experience
Manager

Assuming that an MDEX Engine exists with media records that adhere to the required data schema:

1. In Experience Manager, the Media Browser queries the media MDEX Engine for media records. This allows the
content administrator to select media assets by navigating across them with Guided Navigation.

2. The content administrator's configuration changes are published to the application each time a content item
is saved.

Interaction between the media content source and an Assembler application

In a production environment, the Assembler application can be configured to retrieve media assets from a
content delivery network or another media delivery server:

242 6 Template Property and Editor Reference

Content Delivery
Metwark

Web
Application

1. Media assets are uploaded from the media content source to the runtime content delivery network.
2. The application retrieves media from this content delivery network.

Note

The server hosting media assets can differ between authoring and live environments, as long as

the media path relative to the media root is consistent. In the case of the reference pipeline, the

authoring Discover Electronics Web application serves as the content source. For more information on
configuring content sources, see About Media editor configuration (page 235).

Overview of the reference data application

The Tools and Frameworks package includes a reference implementation of a media MDEX Engine that includes
a CAS crawl and Forge pipeline for crawling resources on the file system and indexing the corresponding
metadata and URIs. The Experience Manager can then query the MDEX Engine for record information.

The reference media application illustrates the schema requirements and configuration that you should use
when building your own media pipeline.

Software requirements

In addition to the hardware and software required for Oracle Tools and Frameworks, the data ingest process for
the reference data application requires the Oracle Content Acquisition System. You must have CAS installed on
the machine on which you are running the ITL process for the data application.

Reference CAS crawl
The crawl uses the following manipulators:

1. Directory Filter: Filters out directory records, so that only media files are output to the MDEX Engine.

6 Template Property and Editor Reference 243

2. Image Property Generator: Analyzes image binaries to determine their width and height. It adds
corresponding i mage. wi dt h and i mage. hei ght properties to each record.

3. Application Property Generator: Assigns a nedi a. appl i cat i on property based on the application
specified when running the Deployment Template. This allows the Media Browser to display only those
media assets that are relevant to the application that the content administrator is currently modifying in
Workbench.

4. Path Manipulator: Creates a nedi a. pat h property that contains the path to given asset with respect to the
media root.

Media MDEX Forge pipeline
The Forge pipeline for the reference data application reads data from the Record Store populated by the CAS
crawl and runs manipulators against the data to generate the required MDEX Engine schema.

Deploying the reference data application for Discover Electronics

The reference media MDEX Engine data application assumes an environment where all required Oracle
components are running on the same machine.

You must have the Oracle Content Acquisition System and Oracle Tools and Frameworks installed on the
machine onto which you wish to deploy the media MDEX Engine.

The reference data application runs an MDEX Engine with indexed media resources, and integrates with the
Discover Electronics reference application to expose the media records to a business user in the Media editor in
Experience Manager. The records include properties for metadata, such as image dimensions, making it easier to
narrow down a large quantity of media assets to those that fit the requirements for a cartridge in the front-end
application.

To deploy the reference data application:

1. Include the CAS manipulators for the reference data application as server plugins:
a. Navigate to the UCAS_ROOT% | i b\ cas- ser ver - pl ugi ns.
b. Create a directory named nedi aMDEX.

c. Navigate to the YENDECA_TOOLS_ROOT% r ef er ence\ nedi a- ndex- cas\ cas\ medi a- ndex-
mani pul at or s directory.

d. Copy the following JAR files to the “CAS_ROOT% | i b\ cas- ser ver - pl ugi ns\ nedi aMDEX directory you
created in step 1b:

» nedi a- mdex- mani pul at or s- <versi on>.j ar
* guava-14.0.jar
e. Navigate to the %ENDECA_TOOLS_ROOT% r ef er ence\ nedi a- ndex- cas\ | i b directory.

f. Copy the conmons-i o- 1. 4. j ar file to the UCAS_ROOT% | i b\ cas- ser ver - pl ugi ns\ nedi aMDEX
directory you created in step 1b.

2. Restart the CAS Service.
3. Deploy the reference data application:

a. Open a command prompt or command shell.

244 6 Template Property and Editor Reference

Note

If you are running the Tools and Frameworks from the included batch files, you must run
Tool sAndFr amewor ks/ <ver si on>/ server/ bi n/ set env. bat to set the environment
variables for the current command window.

b. Navigate to the Tool sAndFr amewor ks\ <ver si on>\ depl oynent _t enpl at e\ bi n directory.

c. Rundepl oy. bat ordepl oy. sh with the following options:

depl oy --app <Endeca Directory>/ Tool sAndFr amewor ks/ <ver si on>/ r ef er ence/ nedi a- ndex-
cas/ depl oy. xm

d. Confirm the Platform Services installation directory.
e. Enter n to skip installation of a base application.
f. Specify medi a as the application name.

g. Specify the application directory.

Typically, this is C: \ Endeca\ apps on Windows, or/ usr/ | ocal / endeca/ apps on UNIX.
h. Specify the EAC port previously used for the Discover Electronics reference application.
By default, this is port 8888.

i. Specify the port that Workbench runs on.

By default, this is port 8006.
j. Specify a Dgraph port.
Note

This must be a different port from any other Dgraphs used for other applications.

By default, this is port 17000. If you change this value, you must also update the configuration for the
Medi aEdi t or inthe\ confi g\i nport\ editors\Medi aEdi t or\ _. j son file after deploying the
application.

k. Specify the CAS installation directory.

I. Specify the CAS version.

m. Enter the port that CAS runs on.
By default, this is port 8500.

n. Enter the name of the application in which you wish to enable media browsing.

For the Discover Electronics reference application this should be Di scover.

o. Enter the absolute path to the location on disk where media assets are stored.

6 Template Property and Editor Reference 245

This is the file path that the Content Acquisition System crawls to index the files. In a default Discover
Electronics deployment it is C: \ Endeca\ apps\ Di scover\ confi g\ nedi a on Windows, or usr /| ocal /
endeca/ apps/ Di scover/ confi g/ medi a on Unix.

4. Provision the application with the EAC and run a baseline update:
a. Navigate to the cont r ol directory of the deployed media application.
b. Runtheinitialize_services scriptto provision the application in the EAC.

c. Runthebasel i ne_updat e script to crawl the directory specified in Step 4 and index the assets in the
MDEX Engine.

Pipeline configuration for a media crawl

In order for the Media Browser in Experience Manager to have sufficient information for forming content XML,
any pipeline that you configure for a media MDEX Engine must define specific properties and dimensions.

Required properties

The following properties are required for the Media Browser to function correctly:

Field Description

record.id A unique identifier for each of the media items.

medi a. nane The filename of the media asset.

nmedi a. pat h The file path, relative to the root of the content source.

nmedi a.repository_id The logical host of the content source. The value of this property is mapped

to configuration elements for the Media editor in the editor configuration
file, which in turn contain the path to the content source. For additional
information, see "About Media editor configuration.”

medi a. appl i cation The EAC application that the specified media asset is associated with. The
Media editor in Experience Manager filters entries in the Media Browser based
on which application the content administrator is currently editing.

medi a. si ze The binary size of the media asset, in bytes.

i mage. hei ght The height of the media asset, if it is an image. The renderer for the Media
editor uses this information to scale images appropriately.

i mage. wi dth The width of the media asset, if it is an image. The renderer for the Media
editor uses this information to scale images appropriately.

Properties and dimensions provided in the reference data application

Optionally, additional properties and dimensions can be displayed in the Media Browser. The reference
implementation of a media MDEX Engine includes the following such fields:

246 6 Template Property and Editor Reference

Field Type Description

nedia.file_type Propertire MIME type of the media asset. This enables
filtering by media type and file extension in the
Media Browser.

nedi a. | ast _nodi fication_date Propertie date and time that the file was last modified
prior to being crawled by the Content Acquisition
System.

fileType DimenAisearchable dimension based on

nedi a. fil e_type values.

hei ght,wi dth DimenSaanchable dimensions based on i mage. hei ght
and i mage. wi dt h values.

application DimenBisearchable dimension based on
nedi a. appl i cati on values.

If you configure your own media MDEX Engine that includes properties or dimensions not listed above, they
become available for Guided Navigation in the Media Browser. However, any such properties are not saved to
content XML once a media asset has been selected.

Search interface requirements
The Media Browser requires a defined search interface named "All" that includes all searchable properties

and dimensions in the data set. Additionally, the Media Browser in the reference application uses the
"MatchAllPartial" search mode.

Adding a Boost-Bury Record editor

The Boost-Bury Record editor enables a content administrator to specify certain records to display either at the
top or bottom of the list of results for a page.

The Boost-Bury Record editor uses the Select Records dialog to enable the content administrator to specify
either an ordered list of record IDs or a set of refinements that define the set of records to be boosted or buried.

Note

The Boost-Bury Record editor communicates with the MDEX Engine. In order to enable the editor,
ensure that you have enabled communication between Experience Manager and the MDEX Engine.

To add a Boost-Bury Record editor:

1. Intypel nf o, insert boost St r at a and bur ySt r at a with property types of list.

"typel nfo": {
"boost Strata": {"@ropertyType": "List"},
"buryStrata": {"@ropertyType": "List"}

6 Template Property and Editor Reference 247

2. Insertan edi t or s/ Boost Bur yRecor dEdi t or element within edi t or s/ Def aul t Edi t or Panel .

3. Specify additional attributes for the editor:

Attribute Description

pr opert yNane Required. The name of the item property that
represents the records to be boosted to the top of
the results. This property must be declared in the
same template as the Record Stratification editor.

buryProperty Required. The name of the list property that
represents the records to be buried at the bottom
of the results. This property must be declared in the
same template as the Record Stratification editor.

"editor": "editors/BoostBuryRecordEditor",
"buryProperty": "buryStrata",
"propertyName": "boostStrata",
"l abel": "${property. boostBury.|abel}"

H

The following shows an example of a template that includes a Boost-Bury Record editor:

"@lescription": "${tenpl ate.description}",
"@roup": "MiinContent",
"ecr:createDate": "2016-09-12T17: 33: 58. 542+05: 30",
"@hunbnai l Url": "thunbnail.png",
"ecr:type": "tenplate",
"defaul t Contentltenm': {
"@ane": "Results List",
"rel RankStrategy": "",
"recordsPer Page": "10",
"sortOption": {
"@l ass": "com endeca.infront.navigation.nodel.SortOption",
"l abel ": "Most Sal es”,
"sorts": [{
"@l ass": "com endeca.infront.navigation.nodel . Sort Spec",
"key": "product.anal ytics.total _sal es",
"descendi ng": fal se
}H
}
b
"edi torPanel ": {
"editor": "editors/DefaultEditorPanel",
"children": [

{

248 6 Template Property and Editor Reference

"editor": "editors/BoostBuryRecordEditor",
"buryProperty": "buryStrata",
"propertyName": "boostStrata",
"l abel ": "${property.boostBury.|abel}"
H
<l-- additional elements onmtted fromthis exanple -->
]
H
"typelnfo": {
"boost Strata": {"@ropertyType": "List"},
"buryStrata": {"@ropertyType": "List"},
"recordsPerPage": {"@ropertyType": "String"},
"rel RankStrategy": {"@ropertyType": "String"},
"sortOption": {"@ropertyType": "lteni}

Related links
+ Select Records data service configuration reference (page 228)
» About the Select Records dialog (page 228)
About configuring the boost-bury record editor
The boost-bury record editor must be configured with a path to a data service.

Below is the configuration for the boost-bury editor in the editor JSON file for the Discover Electronics reference
application, located at <app di r>\ confi g\i nport\ edi t or s\ Boost Bur yRecor dEdi t or\ _. j son:

{
"ecr:type":"editor",
"config" : {
"resourcePath": "/configuration/tool s/ xnmgr/services/endecaBrowser Servi ce.json"
}
}

Adding a Guided Navigation editor

The Guided Navigation editor enables a content administrator to quickly create a navigation menu through the
use of the Generate Guided Navigation wizard.

Note

The Guided Navigation editor communicates with the MDEX Engine. In order to enable the editor,
ensure that you have enabled communication between Experience Manager and the MDEX Engine.

A content administrator can use the Generate Guided Navigation button to trigger the Generate Guided
Navigation wizard. The wizard allows them to select and order a set of dimensions to add as Refinement Menu
cartridges. Alternately, they can choose to add, order, and configure the cartridges manually.

To add a Guided Navigation editor:

6 Template Property and Editor Reference 249

1. Insert an edi t or s/ Qui dedNavi gat i onEdi t or element within edi t or s/ Def aul t Edi t or Panel .
2. SetapropertyNanme attribute on the edi t or s/ Gui dedNavi gat i onEdi t or element.

This must be set to the nanme of the Cont ent I t enli st property that represents the list of Refinement Menu
content items. The property must be declared in the same template.

3. Insertan cont ent | t emMVappi ng element within the editor.
4. Map the content item name to the dimension property that should populate it.

This determines the name of the Refinement Menu content items created by the Generate Guided Navigation
wizard.

a. Include a nanmes element within cont ent | t emVappi ng:

"content | tenvappi ng": {
"names": [],

}

b. Specify the dimension property to use for the content item name in a di mensi onPr oper t y attribute, and
specify the dimension name as a fallback value.

The Generate Guided Navigation wizard uses the first non-nul | value when naming a newly-created
content item.

"content|tenvappi ng": {

"names": [
{"di mensi onProperty": "display_nane"},
{"di mensi onProperty": "endeca: nane"}

1

5. Map the di nensi onNane and di mensi onl D properties to the dimension properties that populate them:

"propertys": [

{
"di mensi onProperty": "endeca: nanme",
"name": "di mensi onNane"
}
{
"di mensi onProperty": "endeca:identifier",
"name": "di mensionld"
}

The following shows an example of a template that includes a guided navigation editor:

"@lescription": "${tenpl ate. description}",
"@roup": "SecondaryContent",

"ecr:createDate": "2016-09-12T17: 33:57. 044+05: 30",
"@hunbnail Url": "thunbnail.png",

"ecr:type": "tenplate",

250 6 Template Property and Editor Reference

"defaul tContentltent: {"@uane": "Navigation Container"},
"editorPanel ": {
"editor": "editors/DefaultEditorPanel",
"children": [{
"editor": "editors/ GuidedNavi gati onEditor",

"propertyNanme": "navigation",
"content!temnmVappi ng": {
"names": [
{"di mensi onProperty": "display_nanme"},
{"di mensi onProperty": "endeca: nane"}

1.
"propertys": [

{
"di mensi onProperty": "endeca: name",
"nane": "di mensi onName"
b
{
"di mensi onProperty": "endeca:identifier",
"nane": "dimensionld"
}
]
}
}
H
"typelnfo": {"navigation": {
" @ropertyType": "Contentltenilist",
"@roup": "Navigation"
H}

Adding a Dimension Selector

A Dimension Selector enables a content administrator to specify a dimension by name.

Note

The Dimension Selector communicates with the MDEX Engine. In order to enable the Dimension
Selector, ensure that you have enabled communication between Experience Manager and the MDEX
Engine.

To add a Dimension Selector:
1. Insert an edi t or s/ Di nensi onSel ect or Edi t or element within edi t or s/ Def aul t Edi t or Panel .

2. Specify additional attributes for the editor:

Attribute Description

pr opert yNane Required. The name of the string property that
represents the dimension name. This property must
be declared in the same template as the Dimension
Selector.

6 Template Property and Editor Reference 251

Attribute Description

i dProperty Required. The name of the string property that
represents the dimension id. This property must be
declared in the same template as the Dimension
Selector.

enabl ed If set to f al se, this attribute makes the property
read-only so that the value of the property displays
in the Content Details Panel in Experience Manager,
but cannot be edited. Use this option only if you
specify a default value in the definition of the
dimension name and dimension ID properties.
Editors are enabled by default.

The following shows an example of a template that includes a dimension selector:

"@lescription": "${tenpl ate.description}",
"@roup": "Navigation",
"ecr:createDate": "2016-09-12T17: 33: 58. 404+05: 30",
"@hunbnail Url": "thurbnail.jpg",
"ecr:type": "tenplate",
"defaul t Contentltent: {
"l essLi nkText": "Show Less Refinements...",
"nunRef i nenents": "10",
"@ane": "D nmension Navigation",
"di mensionld": "",
"moreLi nkText": "Show Mdre Refinements...",
"maxNurmRef i nement s": " 200",
"sort": "default",
"showor eLi nk": fal se,
"di nensi onNane": "" },
"edi torPanel ": {
"editor": "editors/ DefaultEditorPanel",
"children": [
{
"editor": "editors/Di nensionSel ectorEditor",
"idProperty": "dinmensionld",
"propertyNanme": "di mensi onNane",
"l abel ": "${property.di nensi onNanre. | abel }",
"enabl ed": true
H
<l-- additional elements omtted fromthis exanple -->
]
}

ypel nfo": {
"boost Refi nements": {"@ropertyType": "List"},
"buryRefinements": {"@ropertyType": "List"},
"di mensionld": {"@ropertyType": "String"},
"di nensi onNane": {" @ropertyType": "String"},
"l essLinkText": {"@ropertyType": "String"},
"maxNunmRef i nement s": {" @ropertyType": "String"},
"moreLi nkText": {"@ropertyType": "String"},
"nunRefinements": {"@ropertyType": "String"},
"showMor eLi nk": {" @ropertyType": "Bool ean"},
"sort": {"@ropertyType": "String"}

252 6 Template Property and Editor Reference

Related links
+ Select Records data service configuration reference (page 228)

+ About the Select Records dialog (page 228)

Adding a Dimension List editor

The Dimension List editor enables a content administrator to select a list of dimensions from the application
data set. The templates included with the reference application use this editor to specify which dimensions
should be available for display in a dimension search auto-suggest panel or a dimension search results panel.

Note

The Dimension List editor communicates with the MDEX Engine. In order to enable the editor, ensure
that you have enabled communication between Experience Manager and the MDEX Engine.

To add a Dimension List editor:
1. Insert an edi t or s/ Di nensi onLi st Edi t or element within edi t or s/ Def aul t Edi t or Panel .

2. Specify additional attributes for the editor:

Attribute Description

pr opert yNane Required. The name of the List property that
represents the selected dimension values. The
property must be declared in the same template.

The following shows an example of a template that includes a dimension list editor:

"@lescription": "${tenpl ate. description}",
"@roup": "MinContent",
"ecr:createDate": "2016-09-12T17:33:56. 937+05: 30",
"@hunbnai l Url": "thunbnail.png",
"ecr:type": "tenplate",
"defaul tContentltent: {

"@uane": "D mension Search Results",

"maxResul t sPer Di mensi on": "3",

"showCount senabl ed": fal se,

"di spl ayl mage": true,

"maxResul ts": "8",

"title": "Wt also found the foll owi ng Categories:"
H
"edi torPanel ": {

"editor": "editors/ DefaultEditorPanel",

"children": [

<l-- additional elenments onmtted fromthis exanple -->

{

6 Template Property and Editor Reference 253

"editor": "editors/Di nensionListEditor",

"propertyName": "di mensionList",
"l abel ": "${property.di nensionList.|abel}",
"enabl ed": true
H
{
"editor": "editors/NumericStepperEditor"”,
"m nVal ue": 1,
"propertyName": "nmaxResul t sPer Di nensi on",
"l abel ": "${property. maxResul t sPer Di nensi on. | abel }"
}
]
b
"typel nfo": {
"di mensionList": {"@ropertyType": "List"},
"di spl ayl mage": {"@ropertyType": "Bool ean"},
"maxResul ts": {" @ropertyType": "String"},
"maxResul t sPer Di mensi on": {"@ropertyType": "String"},
"showCount sEnabl ed": {" @ropertyType": "Bool ean"},
"title": {"@ropertyType": "String"}
}

Adding a Dimension Value Boost-Bury editor

The boost-bury editor enables a content administrator to specify certain dimension values to display either at
the top or bottom of the list of refinements for a particular dimension.

In order to enable a Dimension Value Boost-Bury editor, the cartridge template must include a di mensi onl d
property with an associated editor or a default value. This specifies the dimension to which the boost-bury
editor applies.

Note

The Dimension Value Boost-Bury editor makes use of an auto-suggest dimension search component
to enable the content administrator to quickly find the relevant dimension values. In order for this
component to display partial matches as the user types in the search box, ensure that wildcard search
is enabled for dimension searches in your MDEX Engine configuration.

To add a Dimension Value Boost-Bury editor:
1. Insert an edi t or s/ Boost Bur yEdi t or element within edi t or s/ Def aul t Edi t or Panel .

2. Specify additional attributes for the editor:

Attribute Description

pr opert yName Required. The name of the list property that
represents the list of dimension values to be
boosted to the top of the list of refinements. This
property must be declared in the same template as
the boost-bury editor.

254 6 Template Property and Editor Reference

Attribute Description

di mensi onl d Required. The ID of the dimension that contains the
dimension refinements to boost or bury.

boost Property Required. The name of the list property that
represents the list of dimension values to be
boosted to the top of the refinement list. This
property must be declared in the same template as
the boost-bury editor.

bur yProperty Required. The name of the list property that
represents the list of dimension values to be
buried at the bottom of the list of refinements. This
property must be declared in the same template as
the boost-bury editor.

enabl ed If set to false, this attribute makes the property
read-only so that the value of the property displays
in the Content Details Panel in Experience Manager,
but cannot be edited. Use this option only if you
specify a default value for the boost Li st and
buryLi st properties. Editors are enabled by
default.

The following shows an example of a template that includes a dimension value boost-bury editor:

"@lescription": "${tenpl ate.description}",
"@roup": "Navigation",

"ecr:createDate": "2016-09-12T17: 33: 58. 404+05: 30",
"@hunbnai l Url": "thunbnail .jpg",

"ecr:type": "tenplate",

"defaul tContentltent: {

"l essLinkText": "Show Less Refinenents...",
"nunRef i nenents": "10",

"@ane": "D mension Navigation",

"di mensionld": "",

"moreLi nkText": "Show More Refinenents...",
"maxNunRef i nenents": "200",

"sort": "default",

"showor eLi nk": fal se,

"di mensi onNanme": "" },

torPanel ": {

"editor": "editors/ DefaultEditorPanel",
"children": [

<l-- additional elements onmtted fromthis exanple -->

{

" ed

"editor": "editors/BoostBuryEditor",
"buryProperty": "buryRefinenments",
"propertyNanme": "boostRefinements",

"l abel ": "${property.boostBury.|abel}",
"di mensi onl dProperty": "di mensionld",
"enabl ed": true

1,

<l-- additional elenments onmtted fromthis exanple -->

6 Template Property and Editor Reference 255

]

H

"typelnfo": {
"boost Refinements": {"@ropertyType": "List"},
"buryRefinements": {"@ropertyType": "List"},
"dimensionld": {"@ropertyType": "String"},
"di mensi onNanme": {"@ropertyType": "String"},
"l essLi nkText": {"@ropertyType": "String"},
"maxNunRef i nements": {" @ropertyType": "String"},
"moreLi nkText": {"@ropertyType": "String"},
"nunRefi nements": {"@ropertyType": "String"},
"showMor eLi nk": {" @ropertyType": "Bool ean"},
"sort": {"@ropertyType": "String"}

Adding a Dimension Value List editor

The Dimension Value List editor enables a content administrator to select a list of dimension values from the
application data set.

Note

The Dimension Value List editor communicates with the MDEX Engine. In order to enable the editor,
ensure that you have enabled communication between Experience Manager and the MDEX Engine.

To add a Dimension Value List editor:
1. Insertan edi t or s/ Di nval Li st Edi t or element within edi t or s/ Def aul t Edi t or Panel .

2. Specify additional attributes for the editor:

Attribute Description

propert yNanme Required. The name of the List property that
represents the selected dimension values. The
property must be declared in the same template.

di mensi onl d Required. The ID of the dimension that the editor
applies to.

The following shows an example of a Refinement Menu template that uses two Dimension Value List editors to
specify boosted and buried refinements, instead of a Dimension Value Boost-Bury editor:

"@lescription": "${tenpl ate. description}",
"@roup": "Navigation",

"ecr:createDate": "2016-09-12T17: 33: 58. 404+05: 30",
"@hunbnai l Url": "thurbnail.jpg",

256 6 Template Property and Editor Reference

"ecr:type": "tenplate",
"defaul tContentltent: {

"l essLinkText": "Show Less Refinenents...",
"nunRefinenents": "10",
"@ane": "D mension Navigation",
"di mensionld": "",
"noreLi nkText": "Show Mre Refinements...",
"maxNunRef i nements”: "200",
"sort": "default",
"showMor eLi nk": fal se,
"di mensi onNanme": "" },
"edi torPanel ": {
"editor": "editors/DefaultEditorPanel ",
"children": [
{
"editor": "G oupLabel",
"l abel ": "Boost and Bury D nension Refinenents”
H
{
"editor": "editors/Dinval ListEditor",
"di mensi onl dProperty": "di mensionld",
"l abel ": "Boost Records",
"propertyName": "boostRefinenents"
H
{
"editor": "editors/Dinval ListEditor",
"di mensi onl dProperty": "di mensionld",
"l abel": "Bury Records",
"propertyName": "buryRefinements"
H
<l-- additional elenments onmtted fromthis exanple -->
]
H
"typelnfo": {
"boost Ref i nement s": {" @ropertyType": "List"},
"buryRefinements": {"@ropertyType": "List"},
"dimensionld": {"@ropertyType": "String"},
"di mensi onNanme": {" @ropertyType": "String"},
"l essLinkText": {"@ropertyType": "String"},
"maxNunRef i nements": {"@ropertyType": "String"},
"moreLi nkText": {" @ropertyType": "String"},
"nunRefinements": {"@ropertyType": "String"},
"showMor eLi nk": {" @ropertyType": "Bool ean"},
"sort": {"@ropertyType": "String"}
}

Adding an Image Preview
An image preview retrieves an image from a URL and displays it in the Experience Manager interface.

You can construct an image preview URL from a hard-coded value, or from any number of String properties.
Image preview supports JPEG, GIF, and PNG image formats.

To add an image preview to a template:

1. Insert an edi t or s/ | magePr evi ewelement within edi t or s/ Def aul t Edi t or Panel .

6 Template Property and Editor Reference 257

2. Specify attributes for the image preview:

Attribute

Description

ur | Expressi on

Required. The source of the image URL. You can
construct ur | Expr essi on from any number of
string properties, or you can enter a static value.

maxHei ght

The height in pixels of the image preview presented
in the Experience Manager interface. The default
value is 100.

maxW dt h

The width in pixels of the image preview presented
in the Experience Manager interface. The default
value is 300.

di splayurl

A Boolean indicating whether to display the
resolved URL. The default value is t r ue.

If you are using more than one string property to compose the URL, you may want to use a G oupLabel to
indicate to Experience Manager users that these properties are related.

The following examples show options for constructing an image preview.

258

6 Template Property and Editor Reference

"ecr:createDate": "2016-09-12T17: 33:57. 256+05: 30",
"@hunbnail Url": "thurbnail.png",
"ecr:type": "tenplate",
"defaul t Contentltent: {
"@ane": "lmage Banner",
"url": "category_caneras_gen_1004x225.j pg",
"server URL": "http:// TRAGHAVA- LAP: 8006/ fcr/sites/Di scover/ medi a"

{
"@lescription": "${tenplate.description}",
"@roup": "l mageBanner",
"ecr:createDate": "2016-09-12T17:33:57.256+05: 30",
"@hunbnai l Url": "thunbnail.png",
"ecr:type": "tenplate",
"defaul tContentlten: {
"@ane": "l mage Banner",
"url": "category_caneras_gen_1004x225.j pg",
"server URL": "http:// TRAGHAVA- LAP: 8006/ i fcr/sites/Di scover/ medi a"
b
"editorPanel ": {
"editor": "editors/ DefaultEditorPanel",
"children": [
{
{
"@lescription": "${tenplate.description}",
"@roup": "lmageBanner",
"ecr:createDate": "2016-09-12T17: 33:57. 256+05: 30",
"@hunbnai l Url": "thurbnail . png",
"ecr:type": "tenplate",
"defaul tContentltent: {
"@ane": "lnmage Banner",
"url": "category_caneras_gen_1004x225.jpg",
"server URL": "http:// TRAGHAVA- LAP: 8006/ fcr/sites/Di scover/ medi a"
b
"editorPanel ": {
"editor": "editors/ DefaultEditorPanel",
"children": [
{
"editor": "G oupLabel",
"l abel ": "${group.inmage. | abel }"
b
{
"editor": "editors/StringEditor",
"enabl ed": true,
"l abel ": "${property.serverURL. | abel }",
"propertyName": "server URL"
b
{
"editor": "editors/StringEditor",
"label": "${property.url.label}",
"propertyName": "url"
b
{
"editor": "editors/|magePreview',
"enabl ed": true,
"maxW dth": 700,
"maxHei ght": 100,
"url Expression": "{serverURL}/{url}",
"label ": "${property.inmageBanner.|abel}"
}
]
b
"typelnfo": {"url": {"@ropertyType": "String"},
"serverURL": {"@ropertyType": "String"}}
}

6 Template Property and Editor Reference

259

Adding a Rich Text editor

The Rich Text editor provides a text field and formatting toolbar that allows a content administrator to include
formatted text and hyperlinks in a content item.

To add a Rich Text editor to a template:

1. Intypel nf o, inserta Stri ng elementinside a @r opert yType element.

2. Indef aul t Cont ent | t em specify the default value for the property as the content of the St ri ng element.
3. Insert a corresponding edi t or s/ Ri chText Edi t or element within edi t or s/ Def aul t Edi t or Panel .

4. Specify the pr oper t yNane attribute and any additional label attributes for the editor:

{
"editor": "editors/Ri chTextEditor",
"propertyNanme": "content",
"l abel ": "${property.content.|abel}",
"enabl ed": true,
"hei ght": 200

5. Specify the toolbar configuration for the editor:

"tool bar": "[
{ nane: 'docunent', items : ['Source'] },
{ name: 'clipboard', itens :
['PasteText','PasteFrom\rd' ,'-"',"'Undo','Redo'] },
{ nane: 'insert', items :
['Table', ' Horizontal Rule',"' Special Char'] },
{ nane: 'paragraph', itens :
[" NunmberedList','BulletedList','-","Qutdent',"'Indent',"'-","JustifyLeft','JustifyCenter',"'JustifyRight'
{ name: 'links', items : ['Link',"Unlink'," Anchor'] },
e
{ nane: 'basicstyles', itens :
["Bold,'Italic',"Underline',"Strike',"'Subscript','Superscript'] },
{ nanme: 'styles', itens :
["Styles','Format',' Font',' FontSize'] },
{ nanme: 'colors', items : ['TextColor'] } 1",
Note

The Rich Text editor is an implementation of the open source CKEditor WYSIWYG Rich Text editor.
For more information about toolbar buttons and their functionality, see the documentation for
version 4.x of the CKEditor at http://docs.ckeditor.com/#%21/guide/dev_toolbar.

The following shows an example of a template that includes a rich text editor:

"@lescription": "${tenplate.description}",
"@roup": "MiinContent",

260 6 Template Property and Editor Reference

http://docs.ckeditor.com/#%21/guide/dev_toolbar

"ecr:createDate": "2016-09-12T17: 33: 58. 681+05: 30",
"@hunbnai l Url": "thunbnail.png",
"ecr:type": "tenplate",
"defaul t Contentlten: {
"@ane": "Rich Text",

"content": "" },
"edi torPanel ": {
"editor": "editors/DefaultEditorPanel",
"children": [
{
"editor": "G oupLabel",
"l abel ": "${group.contents.|abel }"
b
{
"tool bar": "[
{ name: 'document', items : ['Source'] },
{ name: 'clipboard', itens :
['PasteText','PasteFrom\rd','-"',"'Undo','Redo'] },
{ name: 'insert', itens :
[' Table', ' Horizontal Rule',' Special Char'] },
{ nane: 'paragraph', items :
["NumberedList','BulletedList','-","Qutdent',"'Indent',"'-","JustifyLeft', ' JustifyCenter','JustifyF
{ name: 'links', items : ['Link',"Unlink',"Anchor'] },
e
{ name: 'basicstyles', items :
["Bold,'Italic',"Underline',"Strike',"'Subscript','Superscript'] },
{ nanme: 'styles', items :
["Styles','Format',' Font',' FontSize'] },
{ name: 'colors', items : ['TextColor'] } 1",
"editor": "editors/RichTextEditor",
"propertyNanme": "content",
"l abel ": "${property.content.|abel}",
"enabl ed": true,
"hei ght": 200
}
]
b
"typelnfo": {"content": {"@ropertyType": "String"}}
}
Adding a Sort editor

A Sort editor enables the content administrator to choose a sort order (sort key and direction) to apply to a list of
records.

Within the results list cartridge, this sort order (along with any boost/bury that is configured for the page)

is applied to the results list by default when the end user first arrives at a page. If additional sort options are
specified for this cartridge, the end user can select an alternate sort order and later return to the default ord
ering as specified by the content administrator.

To add a Sort editor:
1. Insertan edi t or s/ Sort Edi t or element within edi t or s/ Def aul t Edi t or Panel .

2. Specify additional attributes for the editor:

6 Template Property and Editor Reference 261

Attribute Description

propert yNanme Required. The name of the item property that
represents the default sort option. This property
must be declared in the same template as the Sort
editor.

3. Specify one or more items of class com endeca. i nfront . navi gati on. nodel . Sort Qpt i on from which
the content administrator can select.

The following shows an example of a template that includes a sort editor:

{
"@lescription": "${tenpl ate.description}",
"@roup": "MiinContent",
"ecr:createDate": "2016-09-12T17: 33: 58. 542+05: 30",
"@hunbnai l Url": "thunbnail.png",
"ecr:type": "tenplate",
"defaul t Contentltenm': {
"@ane": "Results List",
"rel RankStrategy": "",
"recordsPer Page": "10",
"sortOption": {
"@l ass": "com endeca.infront.navigation.nodel.SortOption",
"l abel ": "Most Sal es”,
"sorts": [{
"@l ass": "com endeca.infront.navigation.nodel. Sort Spec",
"key": "product.anal ytics.total _sal es",
"descendi ng": false
}H
}
H
"edi torPanel ": {
"editor": "editors/DefaultEditorPanel",
"children": [
<l-- additional elenments onmtted fromthis exanple -->
{

"editor": "editors/SortEditor",
"propertyNanme": "sortOption",

"l abel ": "${property.sortQOption.|abel}",
"sortQptions": [
{
"@l ass": "com endeca.infront.navi gati on. nodel . Sort Opti on",
"l abel ": "${property.sortOption.default.label}"
H
{
"@l ass": "com endeca.infront.navigation.nodel.SortOption",
"l abel": "${property.sortQption.sales.|abel}",
"sorts": [{
"@l ass": "com endeca.infront.navigation.nodel . Sort Spec",
"key": "product.anal ytics.total _sal es",
"descendi ng": true
}
H
{

262 6 Template Property and Editor Reference

"@l ass": "com endeca.infront.navi gati on. nodel . Sort Opti on",

"l abel ": "${property.sortOption.conversionRate.|abel}",
"sorts": [{
"@l ass": "com endeca.infront.navi gati on. nodel . Sort Spec",
"key": "product.anal ytics.conversion_rate",
"descendi ng": true
H
H
{
"@l ass": "com endeca.infront.navi gati on. nodel . Sort Opti on",
"l abel ": "${property.sortOption.priceAscendi ng.|abel}",
"sorts": [{
"@l ass": "com endeca.infront.navi gati on. nodel . Sort Spec",
"key": "product.price",
"descendi ng": false
H
H
{
"@l ass": "com endeca.infront.navi gati on. nodel . Sort Opti on",
"l abel ": "${property.sortOption. priceDescending.|abel}",
"sorts": [{
"@l ass": "com endeca.infront.navi gati on. nodel . Sort Spec",
"key": "product.price",
"descendi ng": true
H
}
]
}
]
H
"typelnfo": {
"boost Strata": {"@ropertyType": "List"},
"buryStrata": {"@ropertyType": "List"},
"recordsPer Page": {"@ropertyType": "String"},
"rel RankStrategy": {"@ropertyType": "String"},
"sortQption": {"@ropertyType": "lteni'}
}

Adding a Spotlight Selection editor

The Spotlight Selection editor uses the Select Records dialog to enable a content administrator to designate
specific records to spotlight in a section, or to specify a query to return a dynamic list of records.

Note

The Spotlight Selection editor communicates with the MDEX Engine. In order to enable the editor,
ensure that you have enabled communication between Experience Manager and the MDEX Engine.

A Spotlight Selection editor is bound to ar ecor dSel ect i on property, which can contain either a list of record
IDs (for featured records) or a set of dimension refinements (for dynamic records).

To add a Spotlight Selection editor to a template:

1. Insertan | t emproperty of class com endeca. i nfront. cartri dge. Recor dSpot | i ght Sel ecti on.

6 Template Property and Editor Reference 263

In the following t ypel nf o example, this is the r ecor dSel ect i on property:

"typel nfo": {
"recordSel ection": {"@ropertyType": "lteni'}
}

In the corresponding def aul t Cont ent | t emexample, this is the class:

"defaul tContentltent: {
"recordSel ection": {"@l ass":
"com endeca.infront.cartridge. RecordSpot|ight Sel ecti on"}

I

2. Inserta St ri ng property that stores the maximum number of records to display in the spotlight.

In the following t ypel nf oexample, this is the maxNunRecor ds property:

"typelnfo": {
"maxNumRecords": {" @ropertyType": "String"},
"recordSel ection": {"@ropertyType": "lteni},
}

In the corresponding def aul t Cont ent | t emexample, this is the maxNumRecords:

"defaul t Contentltenm': {
"maxNumRecor ds": "10",
"recordSel ection": {"@l ass":
"com endeca.infront.cartri dge. RecordSpot| i ght Sel ecti on"}

I

3. Insert a Bool ean property that controls the display of the "See All" link.

In the following t ypel nf oexample, this is the showSeeAl | Li nk property:

"typel nfo": {
"maxNurmRecords": {" @ropertyType": "String"},
"recordSel ection": {"@ropertyType": "ltent},
"showSeeAl | Li nk": {" @ropertyType": "Bool ean"},
}

In the corresponding def aul t Cont ent | t emexample, this is the showSeeAllLink:

"defaul t Contentltent: {
"maxNunmRecords": "10",
"showSeeAl | Li nk": fal se,
"recordSel ection": {"@l ass":
"com endeca.infront.cartri dge. RecordSpot| i ght Sel ecti on"}

I

264 6 Template Property and Editor Reference

4. Inserta St ri ng property to contain the text for the "See All" link.

In the following t ypel nf o example, this is the seeAl | Li nkText property:

"typel nfo": {
"maxNurmRecords": {" @ropertyType": "String"},
"recordSel ection": {"@ropertyType": "lteni},

"seeAl | Li nkText": {" @ropertyType": "String"},
"showSeeAl | Li nk": {" @ropertyType": "Bool ean"}

In the corresponding def aul t Cont ent | t emexample, this is the seeAllLinkText:

"defaul tContentltent: {
"@ane": "Spotlight Records",
"maxNumRecor ds": "10",
"seeAl | Li nkText": "",
"showSeeAl | Li nk": fal se,
"recordSel ection": {"@l ass":
"com endeca.infront.cartridge. RecordSpot|ight Sel ecti on"}

I

5. Insertan edi t or s/ Spot | i ght Sel ect i onEdi t or element within edi t or s/ Def aul t Edi t or Panel .

6. Specify label attributes and map the editor to the associated properties:

Attribute Description

pr opert yName Required. The name of the record selection
property that represents the selected records or
navigation state. This property must be declared in
the same template as the record selection editor.

maxNunRecor ds Required. Specifies the maximum number of
records to display in the spotlight.

showSeeAl | Li nk Required. Controls the display of the "See All" link.

seeAl | Li nkText Required. Specifies the text for the "See All" link.

The following shows an example of a template that includes a spotlight selection editor:

"@lescription": "${tenpl ate.description}",
"@roup": "SecondaryContent",
"ecr:createDate": "2016-09-12T17: 33: 58. 290+05: 30",
"@hunbnail Url": "thunbnail.png",
"ecr:type": "tenplate",
"defaul t Contentltent: {

"@uane": "Spotlight Records",

"maxNunmRecords": "10",

"seeAl | Li nkText": "",

6 Template Property and Editor Reference 265

"showSeeAl | Li nk": fal se,
"title": "Featured Itens",
"recordSel ection": {"@l ass":
"com endeca.infront.cartridge. RecordSpot|ightSel ection"}

b
"edi torPanel ": {
"editor": "editors/ DefaultEditorPanel",
"children": [
{
"editor": "G oupLabel",
"l abel ": "${group.spotlight.label}"
b
{
"editor": "editors/StringEditor",
"propertyName": "title",
"l abel": "${property.title.label}",
"enabl ed": true 1,
{
"editor": "editors/SpotlightSelectionEditor",
"maxNumRecor ds": " maxNunRecor ds",
"propertyName": "recordSel ection",
"seeAl | Li nkText": "seeAllLi nkText",
"showSeeAl | Li nk": "showSeeAl | Li nk",
"l abel ": "${property.recordSel ection.|abel}"
}
]
b
"typelnfo": {
"maxNumRecords": {" @ropertyType": "String"},
"recordSel ection": {"@ropertyType": "lteni},
"seeAl | Li nkText": {"@ropertyType": "String"},
"showSeeAl | Li nk": {" @ropertyType": "Bool ean"},
"title": {"@ropertyType": "String"}
}

Related links
+ Select Records data service configuration reference (page 228)
» About the Select Records dialog (page 228)

About configuring the spotlight selection editor

The spotlight selection editor must be configured with a path to a data service in order to display the Select
Records dialog.

Below is the configuration for the spotlight selection editor in the editor JSON file for the Discover Electronics
reference application, located at <app di r>\ confi g\i nport\ editors\ Spot|ight Sel ecti onEdi t or

_.json:
{
"ecr:type":"editor",
"config" : {
"resourcePath": "/configuration/tool s/ xnmgr/services/endecaBr owser Servi ce.json"
}

266 6 Template Property and Editor Reference

Application feature property reference

This is an overview of the mappings between features in a front-end application and their associated
configuration properties.

Query configuration mappings

Global configuration for the features below is typically set in the Assembler context file on the class and
property specified in the table.

Feature URL Global Configuration <cl ass>. <property> Cartridge Handl er(s)
Parameter

Navigation N FilterState.navigationFilters Url Navi gat i onSt at eBui | der

query

Refinement Nr rc Ref i nemrent MenuConfi g. ref i nement sShown Refi nenent Menu

display in

menu

Enable Ref i nement MenuConf i g. showivbr e Ref i nement Menu

"Show More

Refinements"

link

"Show Navi gat i onCont ai ner. show\br el ds Navi gat i onCont ai ner

More"

dimension

IDs

Record R Def aul t Resul t sLi st Confi g Ur | Navi gat i onSt at eBui | der

details

Record No Resul t sLi st Confi g. of f set Resul t sLi st

offset

Records to - - Resul t sLi st Confi g. subRecor dsPer Aggr egatieseibt dLi st

show per

aggregate

record

Record filter | Nr FilterState.recordFilters Ur| Navi gat i onSt at eBui | der

Records per | Nrpp Resul t sLi st Confi g. recor dsPer Page Resul t sLi st

page

Record Nt k FilterState. SearchFilters. key Resul t sLi st,

search key Di nensi onSear chResul t

6 Template Property and Editor Reference 267

Feature URL Global Configuration <cl ass>. <property> Cartridge Handl er(s)
Parameter
Aggregate A - - Ur |l Navi gati onSt at eBui | der
record
selection
Aggregate Nao Resul t sLi st Confi g. of f set Resul t sLi st
record offset
Aggregate - - FilterState.rol | upKey Ur | Navi gat i onSt at eBui | der
record rollup
key
Why Rank whyr ank Resul t sLi st Confi g. whyRankEnabl ed Resul t sLi st
Why Match whymat ch Resul t sLi st Confi g. whyMat chEnabl ed Resul t sLi st
Why whypr ecedeiredi ulegfeint dénu. whyPr ecedenceRul eFi r ed, Refi nement Menu,
Precedence Navi gat i onCont ai ner. whyPr ecedenceRul eFiNa&d gat i onCont ai ner
Rule Fired
Range filter Nf FilterState.rangeFilters Ur |l Navi gat i onSt at eBui | der
Geocode Nf g FilterState.rangeFilters Url Navi gat i onSt at eBui | der
range filter
Set preview Endeca_Ti mJser St at e. dat e - -
time
Relevance Nrm FilterState. SearchFilters. Mat chMode Resul t sLi st
ranking
Match Mode
Relevance - - Resul t sLi st Confi g. rel RankStr at egy, Resul t sLi st
ranking Di mensi onSear chResul t sConfi g. rel RankSt r at egy
strategy
Relevance Nr t - - - -
ranking
search terms
Relevance Nr k - - Resul t sLi st
ranking
search key
EQL filter Nrs FilterState.eql Filter Ur | Navi gati onSt at eBui | der
Sort key Ns Resul t sLi st Confi g. sort Opti on, Resul t sLi st,
Ref i nement Menu. sort Ref i nement Menu
Sort order
Compute Nt p Sear chAdj ust ment sConf i g. phr aseSuggest i ainEMNalvii @@t i onSt at eBui | der
phrasings

268

6 Template Property and Editor Reference

Feature URL Global Configuration <cl ass>. <property> Cartridge Handl er(s)
Parameter

Rewrite
query with
alternate
phrasing

Search Nt t FilterState. SearchFilters.terns Url Navi gati onSt at eBui | der
terms

Search Nt x FilterState. SearchFilters. mat chMode Ur | Navi gat i onSt at eBui | der
mode

"Did You Nty Sear chAdj ust ment sConf i g. spel | Suggest i otEh&Nalvédjat i onSt at eBui | der
Mean"

Signal Dy
dimension
search

Dimension Nt t with See Nt t See Nt t
searchterm | Dy=1

Dimension Nf with See Nf See Nf
search range | Dy=1
filter

Enable - - Di mensi onSear chResul t Confi g. r el Rank Di mensi onSear chResul t Handl er
dimension
search
relevance
ranking

Dimension Nwith See N See N
search scope | Dy=1

Dimension - - - - - -
search result
offset

Dimension - - Di mensi onSear chResul t Confi g. maxResul t sERmBinsemsiSear chResul t Handl er
search
dimVal
count

Dimension Nr with See Nr See Nr
search Dy=1
record filter

6 Template Property and Editor Reference 269

Feature URL Global Configuration <cl ass>. <property> Cartridge Handl er(s)
Parameter

Dimension - - Di mensi onSear chResul t Confi g. showCount s Enafeinsd onSear chResul t Handl er
search
refinement
configuration

Dimension Nr s with SeeNrs SeeNrs
search EQL Dy=1
filter

Dimension - - - - .-
search
options

270 6 Template Property and Editor Reference

7 Navigation Cartridge Configuration
Reference

This appendix provides an overview of the configuration models for the included navigation cartridges. You
should review this information if you use these cartridges in your Assembler application to communicate with
an MDEX Engine.

Related links
+ Navigation cartridge URL parameter reference (page 271)
+ About the navigation cartridge configuration models (page 291)

+ Request Event Attributes (page 327)

Navigation cartridge URL parameter reference

This section provides a reference to URL parameters in the navigation cartridges. The documented parameter
names are configured in the Assembler, and your application can include additional parameters if you choose to
extend the Request Par anMar shal | er class or its cartridge-specific subclasses.

About this section

The tables in this section describe the Endeca navigation cartridge query parameters. They include the following
information:

URL parameter description format

Parameter The query parameter, which is case-sensitive.

Name The common name for the query parameter.

Type and format The valid value type for the query parameter, as well as the format for listing
multiple parameters, if applicable.

7 Navigation Cartridge Configuration Reference 271

Object

The associated object in the Assembler API.

Description

A description of the parameter's functionality.

Dependencies

Additional query parameters that are required to give this parameter context.

Core URL query parameters

The URL query parameters that define the search and navigation objects passed into the MDEX Engine
Navigation API are configured on the Ur | Navi gat i onSt at eBui | der object. By default, the Assembler is
configured to use the following parameters:

URL Parameter

Feature

N Navigation filter

Nt t Record search terms

Nt k Record search key

Nt x Record search match mode
Nf Range filter

Nf g Geocode filter

Nr Record filter

Nrs EQL filter

Rsel Featured Records selector
R Record

A Aggregate record

Nt p Auto-phrasing

Nt | Language ID

Note

To execute an aggregate record query using the A parameter, you must specify an aggregated record
rollup key. Oracle recommends setting this key in your global application configuration; for example, in
the Discover Electronics reference application, it is configured in the Assembler context file.

These parameters are described in detail in the following sections. The examples provided are for the Discover
Electronics reference application.

272

7 Navigation Cartridge Configuration Reference

N (Navigation)

The N parameter sets the navigation field for a query.

Parameter N

Name Navigation

Type and format <di nensi on val ue id>+<di mensi on val ue id>+<di nensi on val ue id>..
Object FilterState

Description A unique combination of dimension value IDs. A value of zero indicates the root

navigation object.

Dependencies

(none)

Example 7.1. Examples

The following example is for an all-inclusive search, as it does not refine the results by any dimension value:

N=0

The following example returns products with an average review rating of 5:

N=100021

Note

The Discover Electronics reference application has Search Engine Optimization enabled by default,
which encodes the above URL value to N- 256d. For more information about creating optimized URLs,
see Building optimized URLs (page 116)and the Sitemap Generator Developer's Guide.

Ntt (Record Search Terms)

The Nt t parameter sets the actual terms of a record search for a navigation query.

Parameter Nt t

Name Record Search Terms

Type and format <string>+<string> | <string> | <string>+<string>+<string>..
Object FilterState. SearchFilter

7 Navigation Cartridge Configuration Reference

273

Description Sets the terms of the record search for a navigation query. Each term is delimited by a
plus sign (+). Each set of terms is delimited by a pipe (|).
Note

There is no explicit text search descriptor APl object, so your application
logic must extract search terms from the query if you wish to display them
in Breadcrumbs or a similar search tracker.

Dependencies NNt k; Nt t should have the same number of terms as Nt k has keys.

Example 7.2. Examples

The following example returns records with a match for the term "zoom":

N=0&Nt t =zoom

The following example returns records with a match for the terms "cameras" and "silver" in the
product . descri pti on record property. Note that the combined terms count as a single "search term" for the
purposes of query syntax:

N=0&Nt k=pr oduct . descri pti on&\t t =caner as+si | ver

Note

The Discover Electronics reference application is configured to use a default search key of "All" in the
Spring context definition file for the Assembler, so it will accept a Record Search terms URL parameter
(Nt t) without an accompanying Record Search key (Nt k) parameter.

Ntk (Record Search Key)

The Nt k parameter sets which dimension, property, or search interface is evaluated for a record search query.

Parameter Nt k

Name Record Search Key

Type and format <search key> | <search key>..

Object FilterState. SearchFilter

Description Sets the keys of the record search for the navigation query. Multiple keys are
delimited by a vertical pipe (|). A search key can be a search interface defined in the
MDEX Engine, a valid dimension name, or the name of a property enabled for record
search in the data set.

274 7 Navigation Cartridge Configuration Reference

Dependencies

N, Nt t ; Nt k should have the same number of keys as Nt t has terms.

Example 7.3. Examples

The following example returns records with a match for the terms "cameras" and "silver" in the
product . descri pti on record property. Note that the combined terms count as a single "search term" for the

purposes of query syntax:

N=0&Nt k=pr oduct . descri pti on&\t t =caner as+si | ver

The following example returns records with a match for the term "cameras” in the pr oduct . descri pti on
record property OR a match for the term "silver" in the camer a. col or record property. Note that these are
evaluated as separate terms, and that each search term is associated with the search key that appears in the

same location in the sequence:

N=0&Nt k=pr oduct . descri pti on| canmer a. col or &\t t =caner as| si |l ver

Note

The Discover Electronics reference application is configured to use a default search key of "All" in the
Spring context definition file for the Assembler, so it will accept a Record Search terms URL parameter
(Nt t) without an accompanying Record Search key (Nt k) parameter.

Ntx (Record Search Match Mode)

The Nt x parameter sets the options for record search in the navigation query.

Parameter Nt x

Name Record Search Mode

Type and format <string> | <string>..

Object FilterState. SearchFilter

Description Sets the options for record search in the navigation query. Multiple values are

Dependencies

separated with a vertical pipe (|) character.

N, Nt t, Ntk

7 Navigation Cartridge Configuration Reference

275

Example 7.4. Examples

The following example returns records with a match for the terms "cameras" and "silver" in the
product . descri pti on record property. It overrides the default match mode with "MatchAllAny":

N=0&Nt k=pr oduct . descri pti on&\t t =caner as+si | ver &\t x=nat chal | any

Nf (Range Filter)

The Nf parameter sets the range filters for the navigation query.

Parameter Nf
Name Range Filter
Type and format <search key>|[LT| LTEQ GT| GTEQ +<nuneric val ue> || [Anot her range

filter]..

<search key>| BTWA+<nuneri c val ue>+<nuneric val ue>...

Object FilterState. RangeFilter

Description Sets the range filters for the navigation query on properties or on dimensions.
Multiple range filters are separated with a double vertical pipe (||) delimiter.

Accepts property and dimension values of Numeric type (Integer, Floating point,
DateTime). For values of type Floating point, you can specify values using both
decimal (0.00...68), and scientific notation (6.8e-10).

Dependencies N

276 7 Navigation Cartridge Configuration Reference

Example 7.5. Examples

The following example returns products with a price below $25:

N=0?Nf =pr oduct . pri ce| LT+25

The following example returns products with a price between $50 and $100 (inclusive):

N=0?Nf =pr oduct . pri ce| BTW+50+100

It is equivalent to specifying a "greater than or equal to" filter in combination with a "less than or equal to" filter:

N=0?Nf =pr oduct . pri ce| GTEQ+50]| | product . pri ce| LTEQ+100

Nfg (Geocode Filter)

The Nf g parameter sets a geocode filter for the navigation query, with radius in kilometers.

Parameter Nf g

Name Geocode Filter

Type and format <key>| <l ati t ude>| <l ongi t ude>| <r adi us>

Object FilterState. GeoFilter

Description Filters records by evaluating the geocode location contained in the key property

to see if it falls within the circular area defined by a central point at | at i t ude,
| ongi t ude with the specified r adi us in kilometers.

Positive | at i t ude values are interpreted as °N of the equator, and positive
| ongi t ude values are interpreted as °E of the Prime Meridian.

Dependencies

Examples

The following example checks store geocodes within 10 km of the Statue of Liberty in NYC, NY:

N=0&Nf g=st or e. geocode| 40. 6893| - 74. 0446]| 10

Nr (Record Filter)

The Nr parameter sets a record filter on a navigation query.

7 Navigation Cartridge Configuration Reference 277

Parameter Nr

Name Record Filter

Type and format <string>

Object FilterState. RangeFilter

Description This parameter can be used to specify a record filter expression that restricts the
results of a navigation query. Record filter syntax is described in the MDEX Engine
Development Guide.

Dependencies N

Example 7.6. Examples

A general syntax example is given below:

N=0&Nr =AND(132831, pr opert yA: val ueX, OR(pr opert yB: val ueY, propertyC: val uez))

The following example only includes records that are tagged as products, and it excludes any products that are
not in stock:

N=0&Nr =AND((conmon. r ecor d_t ype: product), NOT(product . i nventory. count: 0))

Nrs (Endeca Query Language Filter)

The Nr s parameter sets an EQL record filter on a navigation query. Using EQL enables you to specify multiple
filters (such as a geocode range filter, a dimension value filter, and a record search filter) as part of the same
query parameter.

Parameter Nrs

Name Endeca Query Language Filter
Type and format <string>

Object FilterState. RangeFilter

278 7 Navigation Cartridge Configuration Reference

Description

Dependencies

Sets the Endeca Query Language expression for the navigation query. The expression
acts as a filter to restrict the results of the query. Endeca Query Language syntax is
documented in the MDEX Engine Development Guide.

Note

The Nr s parameter must be URL-encoded. For clarity’s sake, however, the
examples below are not URL-encoded.

Example 7.7. Examples

Consider the sample Geocode Filter discussed earlier, which matches records at stores within 10 km of the
Statue of Liberty in NYC, NY:

N=0&Nf g=st or e. geocode| 40. 6893| - 74. 0446]| 10

Combining the above with a record filter that excludes out-of-stock records results in the following:

N=0&Nf g=st or e. geocode| 40. 6893| - 74. 0446] 10&Nr =NOT(pr oduct . i nvent ory. count: 0))

The above functionality can be duplicated with a single EQL query parameter by using the following expression:

N=0&Nr s=col | ecti on()/record[product.inventory.count!=0 and
endeca: di st ance(st ore. geocode, endeca: geocode(40. 6893, - 74. 0446)) <10]

R (Record)

The Rparameter specifies a single Endeca record to return from the MDEX Engine.

Parameter R

Name Record

Type and format <record id>

Object RecordSt ate

Description Query to obtain a single record from the MDEX Engine.

Dependencies

(none)

7 Navigation Cartridge Configuration Reference 279

Examples

The following example specifies the IXUS 85 IS camera in the Discover Electronics data set; however, because the
application is configured with a global aggregate record rollup key, all records are treated as aggregated records,
so the RURL query parameter has no effect:

R=1469273

Rsel (Featured Records Selector)

Examples

The Rsel parameter restricts the search results list to a set of records specified by record ID.

Parameter Rsel

Name Featured Records Selector

Type and format <record | D> <record | D> <record |D>..

Object FilterState

Description A comma-delineated list of record IDs. Search results are restricted to only those

records specified as values for this query parameter.

Dependencies

R

The following example restricts the results list to the Z980 and Digital IXUS 85 IS cameras:

R=0?Rsel =1469273, 1980692

A (Aggregated Record)

The A parameter specifies a single aggregated record to return from the MDEX Engine.

Parameter A

Name Aggregated Record

Type and format <aggregated record id>

Object RecordSt at e

Description Query to obtain a single aggregated record from the MDEX Engine.

280

7 Navigation Cartridge Configuration Reference

Dependencies

(none)

Example 7.8. Example

The following example specifies the IXUS 85 IS camera in the Discover Electronics data set; however, because the
application serves record detail pages using the / det ai | servlet with a record-specific path, it has no effect:

A=1469273

Ntp (Auto-Phrasing)

The Nt p parameter sets whether the MDEX Engine applies computed alternative phrasings for the current query.

Parameter Nt p

Name Auto-Phrasing

Type and format [0] 1]

Object FilterState

Description Set to 1 to enable auto-phrasing, or 0 to disable it. If enabled, the MDEX Engine

both computes and applies alternate query phrasings. If disabled, the MDEX
Engine does not apply alternate query phrasings, but may compute them if
Sear chSuggest i onMlexQuery. phr aseSuggest i onEnabl ed=t r ue.

Dependencies

NLNE £, NE k

Examples

The following example searches the product description field for "auto focus" as a phrase, rather than searching
the terms "auto" and "focus":

N=0?Nt k=pr oduct . descri pti on&Nt t =aut o+f ocus&Nt p=1

Ntl (Language ID)

The Nt | parameter sets the language ID to pass in to the MDEX Engine.

Parameter

Name

Nt |

Language ID

7 Navigation Cartridge Configuration Reference 281

Type and format <l SO 639 | anguage code>

Object FilterState

Description Specifies a language to cause the MDEX Engine to perform language-specific
operations, such as invoking the correct stemming and phrasing dictionaries. For a
list of supported languages, see the MDEX Engine Development Guide.

Dependencies N

Examples

The following example specifies British English:

Nt | =en- GB

Cartridge-specific URL query parameters
For some cartridges, it is appropriate for aspects of their configuration to be overridden at query time. Typically,
request-based configuration is specified as URL query parameters. This section covers the URL query parameters

for the core cartridges included with Tools and Frameworks.

By default, the Assembler is configured to use the following parameters:

URL Cartridge Feature
Parameter
Dy Dimension Search Results | Enables or disables the display of returned dimension

refinements.

Nt p Search Adjustments Specifies whether to display automatic phrasing; core
parameter, see Ntp (Auto-Phrasing) (page 281).

Nty Search Adjustments Specifies whether to display automatic spelling correction / "Did
You Mean"

Nr nc Refinement Menu, The Nr nt parameter takes multiple arguments allow you to
Navigation Container configure dimension refinement behavior in a cartridge.

Nr pp Results List Records per page

Ns Results List Sort key and sort order

No Results List Record offset (used for paging)

Nr t Results List Relevance Ranking search terms

Nr k Results List Relevance Ranking search key

282 7 Navigation Cartridge Configuration Reference

URL Cartridge Feature

Parameter

Nrm Results List Relevance Ranking strategy

whymat ch Results List Includes record matching information if query debugging is
enabled

whyr ank Results List Includes record ranking information if query debugging is
enabled

These parameters are described in detail in the following sections. For additional information about the

URL query parameters for the core cartridges, refer to the Assembler APl Reference (Javadoc) for the relevant
Request Par amMar shal | er subclass. These classes define the URL parameters that each cartridge accepts, and
their mappings to properties on the cartridge configuration model.

Dy (Dimension Search)

The Dy parameter controls the display of the Dimension Search Results cartridge.

Parameter Dy

Name Dimension Search

Type and format [0] 1]

Object Di mensi onSear chResul t sConfi g

Description Set to 1 to enable cartridge display, or 0 to disable it.
Dependencies NN t

Example 7.9. Examples

The following example returns records with a match for the term "Silver," with the Dimension Search Results
cartridge enabled:

N=0&Nt t =Si | ver &Dy=1

Nty (Auto-Correct / DYM)

The Nt y parameter controls the display of auto-correct and "Did You Mean" results in the Search Adjustments
cartridge.

7 Navigation Cartridge Configuration Reference 283

Parameter Nty

Name Auto-Correct / "Did You Mean"

Type and format [0] 1]

Object Sear chAdj ust nent sConfi g

Description Set to 1 to enable display, or 0 to disable it.

Dependencies NNt t

Example 7.10. Examples

The following example returns records with a match for the term "Sliver," with auto-correct enabled to correct
the query to "silver":

N=0&Nt t =Sl i ver &Nt y=1

Nrmc (Refinement Menu Config)

The Nr nt parameter takes multiple arguments that configure dimension refinement behavior in the Refinement
Menu cartridge.

Because the Navigation Container cartridge returns a list of Ref i nement Menu objects, it takes the same Nr nt
URL parameter as the Refinement Menu cartridge.

Parameter Nr nc

Name Refinement Menu Config

Type and format <Di mensi on | D>+show. [al | | some| none] | <di mension | D>+show [all|
sone| none] ...

Object Ref i nement MenuConfi g

Description The Nr nt parameter takes the following values:

Dependencies

+ <Di mensi on | D> — Required. The ID of the dimension you wish to configure.

« +show [al | | sone| none] — Required; the value is passed to the
r ef i nement sShown property on the Ref i nenment MenuConf i g object, and
controls how many dimension refinements to display.

Configuration for multiple dimensions is separated with a vertical pipe (|) character.

7 Navigation Cartridge Configuration Reference

Example 7.11. Examples

The following modifies the Refinement Menu to display all of the dimension refinements for the "Features”
dimension, and hides all refinements for the "Color" dimension:

N=0?Nr nt=100031+show: al | | | 101908+show. hone

Results List cartridge URL query parameters

The following URL query parameters determine the display of search results in the Results List cartridge. They
are typically set in the front-end application by the end user.

Nrpp (Records Per Page)

The Nr pp parameter limits the records returned from the MDEX Engine.

Parameter Nr pp

Name Records Per Page

Type and format <i nt eger >

Object Resul t sLi st Confi g

Description Sets the maximum number of records to include in the Resul t sLi st object.

Dependencies

N

Example 7.12. Examples

The following example shows ten records per page:

N=0&Nr pp=10

Ns (Sort Key and Sort Order)

The Ns parameter controls sorting options for the current query. It enables the end user to override default
sorting behavior on a per-query basis.

Parameter Ns

Name Sort Key and Sort Order

Type and format <sort key>[<geocode reference>]|[0]1] || <sort key>|[0]1]..
Object Resul t sLi st Config

7 Navigation Cartridge Configuration Reference 285

Description

The <sort key> specifies the property or dimension to sort by. Optionally, each
key can be followed by a suffix of "| 1" to indicate descending sort order, or "| 0" to
indicate ascending order (the default).

Multiple entries are separated with a double vertical pipe (| |), and each entry after
the first applies its sorting within the strata created by preceding entries.

To sort records by a geocode property, add the optional geocode argument to the
parameter (the <sort key> must be a geocode property). Records are sorted by the
distance from the geocode reference point to the geocode point indicated by the
<sort key>value.

Dependencies

Example 7.13. Examples

The following settings sort query results by product rating in descending order (higher rated products first). For
each rating, it then sorts by price in ascending order (cheaper products first):

N=0&Ns=pr oduct . rati ng| 0| | product. pri ce

The following example sorts records with a st or e. geocode property based on proximity to the Statue of

Liberty in NYC, NY:

N=0&Ns=st or e. geocode| 40. 6893, - 74. 0446

No (Record Offset)

The No parameter sets the record offset in the query results list.

Parameter No

Name Record Offset

Type and format <i nt eger >

Object Resul t sLi st Config

Description Offsets the results set by the number of records specified. The offset is applied to a

zero-based index; If No=20, the list of records starts at record 21. If an offset is greater
than the number of items in a navigation object’s record list, an empty record list is
returned.

Dependencies

NN pp

286

7 Navigation Cartridge Configuration Reference

Example 7.14. Examples

The following example displays the second page of a results set (since the results list is configured to display 36
records per page, and is offset by that amount to start at the 37th record):

N=0&Nr pp=36&No=36

Nrt (Relevance Ranking Search Terms)
The Nrt parameter optionally sets search terms for a Relevance Ranking enabled record search query.

You can apply Relevance Ranking to a subset of your MDEX Engine query by specifying the desired terms in the
Nrt parameter.

Note

If you specify a Relevance Ranking strategy on the cartridge without specifying Relevance Ranking
search terms and a search key (Nrt and Nr k), the MDEX Engine evaluates the query using the Record
Search Terms and Record Search Key (Nt t and Nt k) parameters. For additional information about
relevance ranking strategies, see the MDEX Engine Development Guide.

Parameter Nr t

Name Relevance Ranking Search Terms

Type and format <string>+t<string>+<string>..

Object Resul t sLi st Config

Description Sets the terms of the record search for a navigation query with relevance ranking.

Each term is delimited by a plus sign (+).

Note

Unlike the Nt t parameter, Nrt does not support using multiple sets of
terms.

Dependencies N, Nr k. Additionally, you must set the r el Rank St r at egy on the cartridge.

7 Navigation Cartridge Configuration Reference 287

Example 7.15. Examples

Because the Discover Electronics application uses Spring as a configuration mechanism, the cartridge-wide
default values for Relevance Ranking in the Results List cartridge are specified in the r ef er ence\ di scover -
el ect roni cs- aut hor i ng\ WEB- | NF\ assenbl er - cont ext . xni file:

<bean i d="CartridgeHandl er _Resul tsList"
cl ass="com endeca. infront.cartridge. Resul t sLi st Handl er"
par ent =" Navi gati onCartri dgeHandl er" scope="pr ot otype">
<property nane="contentltem nitializer">
<bean cl ass="com endeca.infront.cartridge. Configlnitializer" scope="request">
<property nanme="defaul ts">
<bean cl ass="com endeca. infront.cartridge. Resul tsLi st Confi g"
scope="si ngl et on" >
<l-- additional configuration onmtted fromthis exanple -->
<property nanme="rel RankKey" val ue="All" />
<property nanme="rel RankMat chMbde" val ue="ALLPARTI AL" />
<property nane="rel RankStrat egy"
val ue="nterns, maxfi el d, exact, stati c(product. anal ytics. conversion_rate, descending)" />

<!-- additional configuration omtted fromthis exanple -->
</ bean>
</ property>
<!-- additional configuration omtted fromthis exanple -->
</ bean>
</ property>
<!-- additional configuration omtted fromthis exanple -->

</ bean>

The following example returns records with a match for the terms "cameras" and "silver" in the
product . descri pti on record property, and applies the Relevance Ranking strategy specified at the cartridge
level:

N=0&Nt k=pr oduct . descri pti on&\t t =camner as+si | ver

Nrk (Relevance Ranking Search Key)

The Nr k parameter sets which dimension, property, or search interface is evaluated for a Relevance Ranking
enabled record search query.

Note

If you specify a Relevance Ranking strategy on the cartridge without specifying Relevance Ranking
search terms and a search key (Nrt and Nr k), the MDEX Engine evaluates the query using the Record
Search Terms and Record Search Key (Nt t and Nt k) parameters. For additional information about
relevance ranking strategies, see the MDEX Engine Development Guide.

Parameter Nr k

Name Relevance Ranking Search Key

288 7 Navigation Cartridge Configuration Reference

Type and format

<search key>

Object

Resul t sLi st Confi g

Description

Dependencies

Sets the search key for the record search query. This must be a navigable dimension,
property name, or search interface defined in the MDEX Engine.

N, Nr t . Additionally, you must set the r el RankSt r at egy on the cartridge.

Example 7.16. Examples

The following example returns records with a match for the terms "cameras" and "silver" in the
product . descri pti on record property, and applies the Relevance Ranking strategy specified at the cartridge

level:

N=0&Nt k=pr oduct . descri pti on&\t t =caner as+si |l ver

Nrm (Relevance Ranking Match Mode)

The Nr mparameter sets the relevance ranking strategy for ranking the results of the record search.

You can override the default Relevance Ranking strategy on a per-query basis by using the Nr mparameter. For
additional information about match modes, see the MDEX Engine Basic Development Guide.

Parameter Nr m

Name Relevance Ranking Strategy

Type and format <string>

Object Resul t sLi st Config

Description Sets the options for record search in a relevance ranking enabled query.

Note

Unlike the Nt x parameter, Nr mdoes not support using multiple match
modes.

Dependencies

N, both Nrt and Nr k, OR both Nt t and Nt k. Additionally, you must set the
rel RankSt r at egy on the cartridge.

7 Navigation Cartridge Configuration Reference 289

Example 7.17. Examples

The following example returns records with a match for the terms "cameras" and "silver" in the
product . descri pti on record property, and applies the Relevance Ranking strategy specified at the cartridge
level. It overrides the default "MatchAllPartial" match mode with "MatchAllAny":

N=0&Nt k=pr oduct . descri pti on&N\t t =caner as+si | ver &\r memat chal | any

whymatch (Record Match Info)
The whymat ch parameter controls the logging of record match information about a per-query basis.

This property enables you to include record matching information about a per-query basis, rather than at the
cartridge handler level.

Parameter whymat ch
Name Record match debugging information
Type and format [0] 1]
Object Resul t sLi st Config
Description Set to 1 to include record matching information, or 0 to disable it.
Dependencies N, as well as either Nt t and Nt k or Nrt and Nr k.
Additionally, you must have query debugging enabled in your application.

Example 7.18. Examples

The following example returns record matching information for a search against "silver cameras.":

N=0&Nt k=pr oduct . descri pti on&N\t t =si | ver +caner as&whynat ch=1

A portion of the response (serialized to JSON) is shown below. The DG aph. WayDi dI t Mat ch key contains the
relevant debugging information:

" DG aph. WhyDi dl t Mat ch": [
"product.long_desc: The high-quality 10.0 Megapi xel Digital I XUS 870 IS -
finished in gold or silver -
commands attention.

Advanced conpression technol ogi es reduce file size, to free up valuable extra
menmory. (Stenm ng)"

I

whyrank (Record Rank Info)

The whyr ank parameter controls the logging of relevance ranking information about a per-query basis.

290 7 Navigation Cartridge Configuration Reference

This property enables you to include record relevance ranking information about a per-query basis, rather than
at the cartridge handler level.

Parameter whyr ank
Name Record ranking debugging information
Type and format [0] 1]
Object Resul t sLi st Confi g
Description Set to 1 to include record ranking information, or 0 to disable it.
Dependencies N, as well as either Nt t and Nt k or Nrt and Nr k.
Additionally, you must have query debugging enabled in your application.

Example 7.19. Examples

The following example returns record ranking information for a search against "silver cameras."

N=0&Nt k=pr oduct . descri pti on&N\t t =si | ver +caner as&whyr ank=1

A portion of the response (serialized to JSON) is shown below. The DG aph. Wy Rank key contains the relevant
debugging information:

" DG aph. WhyRank": [
"stratify": [
eval uationTi me: "0.00048828125"
stratunmRank: "3"
stratunmDesc: "no match"

About the navigation cartridge configuration models

This section describes the configuration models for the navigation cartridges.

You can use these models as a reference when developing your own cartridges and cartridge handlers.
Generally, Oracle recommends adhering to a similar approach and dividing configuration inputs to a cartridge
across the following categories (ordered from lowest to highest priority):

+ Application-wide default configuration — For the navigation cartridges, these values are configured in the
Spring context file.

+ Template-specific default configuration — These values are included in the cartridge template XML.

7 Navigation Cartridge Configuration Reference 291

+ Instance configuration — These values are configured by the business user in Experience Manager.

+ End user inputs — For the navigation cartridges, these values are passed in as URL parameters.

Overview of the navigation cartridge configuration models

The behavior of the navigation cartridges depends on multiple sources of configuration. The data from these
source is combined into a configuration model within the i ni ti al i ze() method of each associated cartridge
handler in the Assembler.

Navigation cartridge configuration falls into the following categories, in ascending order of priority:

+ Default cartridge configuration, which is specified in the Spring context file for the Assembler application
+ Cartridge instance configuration, which is specified by the content administrator in Experience Manage

+ Request-based configuration, which is specified by the end user in the client application

Additionally, while it is not represented in the cartridge configuration model, configuration in the MDEX Engine
impacts the behavior of the navigation cartridges.

Request-based configuration overrides the cartridge instance configuration, which overrides the cartridge-level
defaults, which override default feature behavior configured in the MDEX Engine.

The core cartridges typically consist of a strongly typed configuration model, a response model, and a cartridge
handler that processes the configuration model into the response model. By convention, they are named as
follows:

Class name Description

<CartridgeName>Config The configuration model for the cartridge. For the core cartridges, the
properties of this class represent all the configuration parameters that
the cartridge handler needs to do its processing. It does not include
configuration that can only be specified in the MDEX Engine or pass-
through properties that are used by the reference application renderers
without any modification by the cartridge handler.

<Cartri dgeNane>Handl er The handler that processes a cartridge. The core cartridge handlers
are responsible for layering the default configuration, instance
configuration, and request-based configuration during processing.

<Cartri dgeNane> The response model produced by the cartridge handler. Cartridge
response models may include objects that are reused among cartridges.
For example, the Resul t sLi st and Recor dSpot | i ght both contain
Recor d objects.

For details about the implementations of these classes for specific cartridges, refer to the Assembler API Reference
(Javadoc).

Default cartridge configuration

You can specify default configuration settings for the navigation cartridges in the reference implementation by
adding values to the cartridge handler configuration in the Spring context file.

292

7 Navigation Cartridge Configuration Reference

Cartridge handler configuration (including default configuration values) is specified as part of the Spring
context file for the Assembler. In the Discover Electronics application, this is defined in WEB- | NF/ assenbl er -
context.xml .

You specify the cartridge handler for a specific cartridge by defining a bean whose ID follows the format
CartridgeHandl er _<Cartri dgeType>, where the <Car t ri dgeType> is thei d of the corresponding
cartridge template. For example, the cartridge handler for the Breadcrumbs cartridge is defined in the

Cartri dgeHandl er _Br eadcr unbs bean. You can map more than one cartridge to the same cartridge handler.

Typically, you specify the default configuration for a cartridge by definingacontent I tem ni ti al i zer
property within the cartridge handler. The value of this property is a bean whose class implements the
ContentItem nitializer interface. The core cartridges use the Confi gl ni ti al i zer class, which provides
a default implementation for merging the default, instance, and request-based configuration for a cartridge.
Within thecontent I tem niti al i zer bean, the def aul t s property (if defined) must be a bean whose class is
a Cont ent | t emrepresenting the cartridge configuration model to use as a default.

For information about the properties available in the configuration model for the core cartridges, refer to the
Assembler APl Reference (Javadoc) for the relevant configuration model class.

The following shows an example of default configuration for a Record Spotlight cartridge. The def aul t s
property of the Confi gl niti al i zer bean is an instance of Recor dSpot | i ght Conf i g that has been initialized
with a set of default values for the f i el dNames property.

<bean i d="CartridgeHandl er _RecordSpotlight"
cl ass="com endeca.infront.cartri dge. RecordSpot|i ght Handl er"
par ent =" Navi gati onCartri dgeHandl er"
scope="pr ot ot ype">
<property nanme="contentltem nitializer">
<bean cl ass="com endeca.infront.cartridge. Configlnitializer" scope="request">
<property name="defaul ts">
<bean cl ass="com endeca. i nfront. cartri dge. RecordSpot| i ght Confi g"
scope="si ngl eton">
<property name="fi el dNanes" >
<list>
<val ue>product . nane</ val ue>
<val ue>pr oduct . br and. nane</ val ue>
<val ue>product . pri ce</ val ue>
<val ue>product. m n_pri ce</val ue>
<val ue>pr oduct . max_pri ce</val ue>
<val ue>product.ing_url _t hunbnail </ val ue>
<val ue>product . revi ew. avg_rati ng</val ue>

</[list>
</ property>
</ bean>
</ property>
</ bean>
</ property>

</ bean>

Feature configuration in the MDEX Engine

There are two subcategories of MDEX Engine-level feature configuration: dynamic configuration that can be
updated in a running MDEX Engine without re-indexing, and static configuration that must be specified at index
time.

Dynamic configuration includes search interfaces, thesaurus, and automatic phrasing. Static configuration
includes features such as such as stop words or precedence rules. Updating static configuration requires that

7 Navigation Cartridge Configuration Reference 293

you re-run the data ingest process before the changes can take effect. For detailed information about feature
configuration in the MDEX Engine, refer to the MDEX Engine Basic Development Guide and the MDEX Engine
Development Guide.

In addition, some features depend on certain Dgraph and Dgidx flags to enable or configure their functionality.
For information about Dgraph and Dgidx flags, refer to the Oracle Commerce Administrator's Guide.

Cartridge instance configuration

The content administrator can configure each instance of a cartridge using Experience Manager in Workbench.
The cartridge instance configuration is passed in as the argument to thei ni ti al i ze() method of the
cartridge handler.

You define which aspects of a cartridge are configurable in Workbench via the cartridge template. Typically this
is a subset of the properties in the configuration model. The sample templates provided as part of the Discover
Electronics application are intended to cover the majority of use cases.

Cartridge templates for the reference application are included in the r ef er ence\ di scover - dat a
\cartridge_tenpl at es directory, or <app dir>\config\cartridge_tenpl at es directory for a deployed
application.

You can customize the templates for the core cartridges by adding properties to a template in addition to
those required by the configuration model. These additional properties can either be processed by a custom
cartridge handler implementation or passed through directly to the response model. Some of the templates in
the Discover Electronics application define pass-through properties; these are described in the sections on the
specific cartridges.

For details about configuring properties and editors in a cartridge template, refer to the "Template Property and
Editor Reference" appendix in this guide.

Related links

« Template Property and Editor Reference (page 209)

Request-based configuration

For some cartridges, it is appropriate for aspects of their configuration to be overridden at query time. Typically,
request-based configuration is specified as URL query parameters.

To enable per-request configuration based on URL parameters, the cont ent I tem ni ti al i zer bean of the
cartridge handler can specify ar equest Par amvar shal | er bean whose class is Request Par amvar shal | er or
a subclass. Request Par amvar shal | er is a helper class that parses request parameters into properties of the
cartridge configuration model.

For information about the URL query parameters that apply to the core cartridges, refer to the Assembler
API Reference (Javadoc) for the relevant Request Par amivar shal | er subclass. These classes define the URL
parameters that the cartridge accepts and their mappings to properties on the configuration model.

Search cartridges

Search box

The Discover Electronics application includes reference implementations of several commonly-used search
features. The configuration models for these features are described in the following section.

The Search Box cartridge enables the site visitor to enter search terms and view record results. If dimension
search is enabled, dimension search results may also be displayed. A content administrator can configure Search
Box behavior such as whether to apply search adjustments or display auto-suggest search results.

294

7 Navigation Cartridge Configuration Reference

The response model for this cartridge is Sear chBox.

The Search Box cartridge does not make use of a configuration model or a cartridge handler; properties
specified in the cartridge template and in the end user's search request are passed through to the renderer.

MDEX Engine configuration for the Search Box cartridge

Because the Search Box enables keyword search for records and dimension values, most search configuration
affects the behavior of this cartridge. This section focuses on record search configuration.

Dynamic configuration

The main aspects of search-related configuration that can be updated without re-indexing are the search
interfaces for an application. Search interfaces specify a collection of properties and dimensions against which
text searches are performed, and may also specify a default relevance ranking strategy.

The properties and dimensions within a search interface must be enabled for record search as part of the data
ingest process.

Search results are also affected by thesaurus configuration that a content administrator can specify in
Workbench.

For information about creating search interfaces, and enabling properties and dimensions for search, refer to the
Oracle Commerce Workbench User's Guide.

Static configuration

Aspects of search behavior that must be specified at index time include stop words, stemming, and search
characters.

« stop words are commonly occurring words (like "the") that are ignored for keyword search.
« stemming broadens search results to include root words and variants of root words.

« search characters configuration enables you to designate certain non-alphanumeric characters as significant
for search.

For information about configuring these features, refer to the Oracle Commerce MDEX Engine Developer's Guide.
Template configuration for the Search Box cartridge

The Search Box cartridge does not include a configuration model or a cartridge handler; instead, template
configuration is passed through to the cartridge renderer.

The Search Box cartridge template calls the typeahead service, which is configured separately.

The Search Box cartridge template includes the following configurable pass-through property:

Property name Description

m nAut oSuggest | nput Lengt h This property specifies how many characters a user must type before
the typeahead service is started.

7 Navigation Cartridge Configuration Reference 295

Note

If you do not want to provide the option of enabling auto-suggest search results in Experience
Manager, remove the properties and editors from the template, and remove the JavaScript module
from the component.

Related links

+ Auto-suggest search results (page 296)

Auto-suggest search results

Auto-suggest search results display as the site visitor types in the search box, rather than displaying after the
visitor has completed the search. In the Discover Electronics reference application, the Search Box cartridge calls
the typeahead service to display auto-suggest search results. The typeahead service must be configured by a
content administrator.

A cartridge configuration class "ApplicationFilterStateConfig" represents a dynamic application filter state.
This dynamic application filter state should be specified in the service or page definition as a property named
"@appFilterState".

Table 7.1. Configuration Options for the @appFilterState Property

Name Description

| anguagel d The language id to be used by the request while querying MDEX

aut oPhr aseEnabl ed Auto phrase flag used to tell MDEX whether alternate phrasing should be applied.
t ypeAhead Specifies whether typeahead should be turned on in the engine for record and

dimension searches. If true, dgraph will treat this query as a typeahead use case,
and rewrites the query based on the language id of the query.

rol | upKey The key to be used by MDEX for aggregate records

securityFilter Sets a security filter, which is specified using an MDEX record filter string.
recordFilters The List of record filters to be applied by MDEX

geoFi l ter The geo filter to be applied by MDEX

eql Filter The EQL expression to be passed to MDEX.

Sample content.xml

<Contentltem type="Page" xm ns:xsi="http://ww.w3. org/ 2001/ XM_Schena- i nst ance"
xm ns="http://endeca. conl schena/ cont ent/2008"
xm ns: xavi a="http://endeca. com schema/ xavi a/ 2010" >
<Tenpl at el d>TypeaheadSer vi ce</ Tenpl at el d>
<Nane>Typeahead Servi ce</ Name>
<Property nane="@ppFilterState">
<Contentltemtype="ApplicationFilterStateConfig">
<Property nanme="typeAhead" >
<Bool ean>t r ue</ Bool ean>

296

7 Navigation Cartridge Configuration Reference

</ Property>

<Property name="recordFilters">

<xavi a: Li st>

<String>product. active: 1</ Stri ng>

</ xavi a: Li st >
</ Property>
</ Contentltenr
</ Property>

<Property nane="resul tsList">
<Contentltemtype="Resul tsList">
<Tenpl at el d>Resul t sLi st </ Tenpl at el d>
<Property nane="recor dsPer Page" >
<String>3</String>

</ Property>
</ Contentlten>
</ Property>
</ Contentlten

Dimension search results

The Dimension Search Results cartridge displays refinement links based on the names of dimension values that
match the search keywords entered by the site visitor.

The dimension search results display in a panel after the site visitor performs the search. These results provide
suggestions for additional navigation refinements based on the search terms.

The response model for this cartridge is Di mensi onSear chResul t s. It contains a list of
Di mensi onSear chG oup objects that in turn contain di mensi onSear chVal ues that provide refinement links.

Configuration model for the Dimension Search Results cartridge

The Dimension Search Results cartridge configuration model controls the number, ranking, and display of

returned results.

The configuration model for this cartridge is Di mensi onSear chResul t sConf i g. It includes the following

properties:

Property name

Description

enabl ed

Enables or disables the display of returned dimension refinements. By
default, this property is f al se. It is enabled via URL request by setting
the Dy URL parameter to 1.

maxResul ts

Specifies the maximum number of dimension value results across all
dimensions to display.

maxResul t sPer Di nensi on

Specifies the maximum number of dimension values to display per
dimension.

di mensi onlLi st

Specifies the dimensions on which to perform dimension search.
The results display based on the order in which the dimensions are
specified, up to the maximum number of suggestions.

showCount sEnabl ed

Specifies whether to display refinement counts in dimension search
results.

7 Navigation Cartridge Configuration Reference

297

Property name Description

r el Rank Optional. Specifies a relevance ranking string to use for dimension
search, such as "first,static(nbins,desc)". If you do not set this property,
dimension value relevance ranking is set to the default (alpha, numeric,
or manual) defined in the application's eval uat or . properti es file,

MDEX Engine configuration for dimension search results

Different aspects of dimension search can be configured on a global or per-dimension basis.

Dynamic configuration

You can specify global dimension search behavior in the Dimension Search Configuration editor in the Oracle
Commerce Workbench. Oracle recommends enabling wildcard search for dimensions, especially if you are
using the Auto-Suggest Dimension Search cartridge or the Dimension Value Boost-Bury editor. Wildcard search
enables partial matches to be returned for searches in addition to full word matches (for example, a search for
"pink" would also return "gray/pink") which is useful for displaying suggestions while the user is typing search
terms.

Additional options include whether to return only the highest ancestor dimension value, and whether to return
inert dimension values in dimension search results. For more information about global dimension configuration,
refer to the Oracle Commerce Workbench User's Guide.

Static configuration

You can configure dimension-specific search behavior in the Dimension editor in Oracle Commerce Workbench.
This includes whether to search across the entire dimension hierarchy rather than only individual dimension
values and also enables you to specify dimension value synonyms to be used for search. For more information
about per-dimension configuration, refer to the Oracle Commerce Workbench User's Guide.

Cartridge handler configuration for Dimension Search Results

The Dimension Search Results cartridge handler extends the Navi gat i onCar t ri dgeHandl er.

The cartridge handler uses the Di nensi onSear chResul t sConfi gl ni ti al i zer to merge the layered
configuration. The included r equest Par anivar shal | er bean enables URL request-based configuration for the
cartridge, which is required for dynamically enabling the feature.

Template configuration for the Dimension Search Results cartridge

The Dimension Search Results cartridge template allows a content administrator to configure how many results
should be displayed to the end user, and how they should display. The cartridge template also includes two
pass-through properties that are passed directly to the cartridge renderer.

The Dimension Search Results cartridge template allows a content administrator to configure the following
properties on the configuration model:

« maxResults
« di mensi onLi st

* maxResul t sPer Di nensi on

298

7 Navigation Cartridge Configuration Reference

* showCount sEnabl ed

In addition, the cartridge template includes the following pass-through properties:

Property name

Description

title

Optional. A header that displays above the dimension search results.

di spl ayl mage

If set to true, a thumbnail image displays next to each dimension value.
The URL of the image must be the value of a dimension value property
named i ng_t hunbnai | _url.

Note

If there is no such property on dimension values in the data
set, remove this option and its associated editor from the
template to disable this feature.

URL request parameters for the Dimension Search Results cartridge

The display of the Dimension Search Results cartridge on a page is controlled by setting the value of the
enabl ed property on the cartridge configuration model at runtime via the Dy URL parameter.

The cartridge renderer in the reference implementation sets the Dy parameter to 1 in all cases. While this is
equivalent to setting the property to t r ue in the cartridge handler configuration, or as a non-editable property
in the cartridge template, the intent is to demonstrate where the logic belongs in the application.

Property name URL Description
Parameter
enabl ed Dy Enables or disables the display of returned dimension refinements.

Setting Dy=1 sets the property tot r ue.

Search adjustments

Search adjustments include automatic spelling correction, automatic phrasing, and Did You Mean functionality.

The response model for this cartridge is Sear chAdj ust nent s.

The behavior of the spelling correction and Did You Mean features are configured at the MDEX Engine level.
The Search Adjustments cartridge enables content administrators to specify whether or not search adjustments
messaging displays on a page; it does not have any configuration options in Experience Manager.

Configuration model for the Search Adjustments cartridge

The Search Adjustments cartridge configuration model enables you to enable or disable automatic phrasing and
automatic spelling correction. If query debugging features are enabled in your application, you can also enable
or disable debugging information about Word Interpretation.

7 Navigation Cartridge Configuration Reference 299

The configuration model for this cartridge is Sear chAdj ust ermt sConf i g. It includes the following properties:

Property name Description

phr aseSuggest i onEnab| &pecifies whether to enable automatic phrasing. Defaults to t r ue. Set via URL
request by setting the Nt p URL parameter to 1.

spel | Suggest i onEnabl e8pecifies whether to enable automatic spelling correction. Defaults to f al se. Set
via URL request by setting the Nt y URL parameter to 1.

showwerdl nterp If query debugging features are enabled, this property enables debugging
information about word or phrase subsitutions as a map that can be accessed via
Sear chAdj ust ment s. get | nt er pr et edTer ms() . For additional information,
see "About query debugging results in the reference application."

MDEX Engine configuration for the Search Adjustments cartridge

Search adjustments features are configured at indexing and at Dgraph startup.

Dynamic configuration

You can specify a list of phrases to be automatically applied to text search queries in the Oracle Commerce
Workbench. For more information about configuring automatic phrasing, refer to the MDEX Engine Development
Guide.

Static configuration

Dgidx flags

You can configure the constraints on the spelling dictionaries for record search and dimension search in the
Spelling editor in Oracle Commerce Workbench. These settings determine the size of the spelling dictionary
that is generated at indexing time. Larger spelling dictionaries lead to slower performance of spelling correction
at query time; setting more restrictive constraints on the contents of the spelling dictionary can lead to
improved query performance. For more information about tuning the size of the spelling dictionary, refer to the
Performance Tuning Guide.

You specify the spelling mode as a flag to Dgidx. Generally, applications that only need to correct normal English
words can enable just the default Aspell module. Applications that need to correct international words, or other
non-English/non-word terms (such as part numbers) should enable the Espell module. For more information
about spelling modes and the associated Dgidx flags, refer to the MDEX Engine Development Guide.

The Deployment Template application configuration for the Discover Electronics reference application has
spelling correction and Did You Mean enabled as in the following example:

<I--
HRHHHHHHHHHHHHHHHHH
Dgi dx
#

>

<dgi dx id="Dgi dx" host-id="1TLHost" >
<properties>

300

7 Navigation Cartridge Configuration Reference

<property nanme="nunlLogBackups" val ue="10" />
<property nanme="num ndexBackups" val ue="3" />
</ properties>
<args>
<ar g>-v</ arg>
<ar g>- - conpoundDi nSear ch</ ar g>
</ args>
<l og-di r>./1 ogs/ dgi dxs/ Dgi dx</| og-di r>
<i nput-dir>./datal/forge_output</input-dir>
<out put - di r >. / dat a/ dgi dx_out put </ out put-dir>
<tenp-dir>./datal/tenp</tenp-dir>
<run-aspel | >t rue</run-aspel | >
</ dgi dx>

Dgraph flags

You enable spelling correction and Did You Mean through Dgraph flags. Additional Dgraph flags provide
advanced tuning options for the spelling adjustment features that affect performance and behavioral
characteristics, such as the threshold for the number of hits at or above which spelling corrections or Did You
Mean suggestions are not generated. For more information on Dgraph flags for search adjustment tuning, refer
to the MDEX Engine Development Guide.

Note

Auto-correct should be relatively conservative. You only want the engine to complete the correction
when there is a high degree of confidence. For more aggressive suggestions, it is best to use Did You
Mean.

The Deployment Template application configuration for the Discover Electronics reference application has
spelling correction and Did You Mean enabled as in the following example:

E L e e L L e T L

d obal Dgraph Settings - inherited by all dgraph conponents
#
-->
<dgr aph- def aul t s>
<properties>
<!-- additional elenments renoved fromthis exanple -->
</ properties>
<directories>
<!-- additional elenments renoved fromthis exanple -->
</directories>
<args>
<ar g>--threads</ arg>
<ar g>2</ arg>
<ar g>- - whymat ch</ ar g>
<ar g>--spl </ ar g>
<ar g>- - dynx/ ar g>
<ar g>--dym_ht hr esh</ ar g>
<ar g>5</ ar g>
<ar g>- - dym nsug</ ar g>
<arg>3</arg>
<ar g>- - st at - abi ns</ ar g>
</ args>
<startup-timeout>120</startup-ti meout >
</ dgr aph- def aul t s>

7 Navigation Cartridge Configuration Reference 301

Cartridge handler configuration for Search Adjustments

The Search Adjustments cartridge handler extends the Navi gat i onCar t ri dgeHandl er . The application-
wide default configuration in the Assembler context file allows you to enable or disable the word interpretation
debugging feature.

The cartridge handler usesacont ent I t em ni ti al i zer to merge the layered configuration. The included
request Par anmvar shal | er bean enables URL request-based configuration for the cartridge, which is required
for dynamically disabling or enabling automatic phrase suggestions and spelling correction.

Related links

» About implementing automatic phrasing (page 302)

Template configuration for the Search Adjustments cartridge

The cartridge template for the Search Adjustments cartridge does not include any configurable properties. A
content administrator can add the cartridge to a page in order to enable the display of Search Adjustments, but
cannot otherwise configure cartridge behavior.

URL request parameters for the Search Adjustments cartridge

Automatic phrasing and spelling correction are controlled by setting the value of their respective properties on
the cartridge configuration model at runtime via the Nt p and Nt y URL parameters.

The cartridge renderer in the reference implementation sets both parameters to 1 in all cases. While this is
equivalent to setting the properties in the cartridge handler configuration, or in the cartridge template, the
intent is to demonstrate where the logic belongs in the application.

Property name URL Description
Parameter
phr aseSuggest i onEnabl ed Nt p Specifies whether to enable automatic phrasing.
spel | Suggest i onEnabl ed Nty Specifies whether to enable automatic spelling
correction.

About implementing automatic phrasing

You can configure the MDEX Engine to consider certain combinations of words in a text search as a phrase
search and specify whether to apply phrasing automatically to a site visitor's text search queries.

The high level steps for enabling automatic phrasing are:
+ Enabling the MDEX Engine to compute phrases

+ Configuring the default behavior of the Assembler application as to whether or not to automatically apply
computed phrases

+ Adding application logic to enable Did You Mean suggestions or override the default automatic phrasing
behavior in certain situations

302

7 Navigation Cartridge Configuration Reference

You enable the MDEX Engine to compute phrases that can be applied to a site visitor's text search by creating a
phrase dictionary. For information about creating a phrase dictionary, refer to the section on Automatic Phrasing
in the MDEX Engine Developer's Guide.

You can configure the default behavior of the Assembler application as to whether to automatically rewrite a
text search as a phrase search or keep it as a search for individual keywords using the following property on the
Filter State object:

Property Description

aut oPhr aseEnabl ed If set to t r ue, instructs the MDEX Engine to compute phrases that can
be applied to a text search and automatically rewrite the query using
the phrased version. Automatic phrasing is enabled by default.

The aut oPhr aseEnabl ed setting on the default Filter State can be overridden at query time using the URL
parameter aut ophr ase. If the value of aut ophr ase is 1, then computed phrases are automatically applied to
the query. If the value is 0 then phrases may still be computed, but are not automatically applied to the query.

The Filter State configuration in the Assembler context file for the Discover Electronics reference application is
shown below:

<bean i d="navi gationStateBuil der" scope="request"
cl ass="com endeca. i nfront. navi gati on. url . Url Navi gati onSt at eBui | der" >
<l-- additional elenents renoved fromthis exanple -->
<property nane="defaultFilterState">
<bean scope="si ngl et on"
cl ass="com endeca. i nfront. navi gati on.nodel . FilterState">
<property name="rol | upKey" val ue="product.code" />
<property nanme="aut oPhraseEnabl ed" val ue="true" />

<!-- <property name="securityFilter" value="" /> -->
<! -- <property name="|anguagel d* val ue="en" /> -->
</ bean>
</ property>
<!-- additional elenments renoved fromthis exanple -->

</ bean>

For Oracle Commerce Experience Manager, if your application contains multiple sites, Oracle recommends using
afilterState. xnl fileinstead of the Filter State configuration in the Assembler context file. For example, a
filterState. xnl filein/pages/DiscoverElectronics/ might contain the following aut ophr ase property:

<l tem cl ass="com endeca. i nfront. navi gati on. nodel . FilterState" xm ns="http://endeca.com
schema/ xavi a/ 2010" >
<Property nane="aut oPhr aseEnabl ed" >
<Bool ean>t r ue</ Bool ean >
</ Property>
</ltem

Interaction with the Did You Mean feature

Whether automatic phrasing is applied or not, you can specify whether to return a "Did You Mean" link for the
alternate version using the Nt y URL parameter. For example, if phrasing was automatically applied, the Did You
Mean suggestion would provide a link to the unphrased version of the query, and vice versa. If the value of Nt y

7 Navigation Cartridge Configuration Reference 303

is 1, then the Assembler returns suggestions for the alternate form of the query. If the value is 0, no suggestions

are returned.

Note

The Nt y parameter controls Did You Mean suggestions for regular text search as well as for automatic

phrasing.

Phrase search scenario: Automatically applying phrases

In the Discover Electronics application, the default behavior is to automatically apply phrases to text search
queries and to return the unphrased version as a search suggestion.

Your Selections

earch
manual focus "manual

focus™

Chear All

Your search for manual focus was adjusted to
Did you mean manual focus (497 results) ?

10 perpage -

Showing 1 =10 of 120 tems

Redevance -

2

In this scenario, aut oPhr aseEnabl ed is set to t r ue on the default Filter State object, and the Search Box
cartridge sets Nt y=1 on the text search query. The user has two choices:

+ Select the Did You Mean suggestion to search for the keywords separately, rather than as a phrase. This link

o

4

sends the same query with the URL parameter Nt p=0 to override the Filter State configuration, and also sets

Nt y=0 since we do not need to suggest the phrased version of the query after the user has decided to use the

unphrased version.

» Make another selection on the page, such as clicking on a refinement or advancing to the next page of results.
This signifies acceptance of the automatically applied phrase, so we keep aut oPhr aseEnabl ed=t r ue from
the Default Filter State and suppress further suggestions by setting Nt y=0.

These outcomes are summarized in the following table:

User action Autophrase Did You Mean Result
setting (Nt p) setting (Nt y)

Initial search true Nty=1 Phrase is automatically applied to the
text search. A Did You Mean suggestion is
offered for the unphrased version.

Select Did You Mean | Nt p=0 Nt y=0 Phrase is not applied to the search. No

suggestion suggestion is offered.

Make another follow- | true Nt y=0 Phrase continues to be automatically

on selection

applied. Suggestions are no longer

offered.

Phrase search scenario: Phrases as a search suggestion

You can configure the application not to apply phrases by default, but to return phrases as a search suggestion.

304

7 Navigation Cartridge Configuration Reference

Your Selections Did you mean “"manual focus” (120 results) 7

aarrh

Showing 1 - 10 of 487 items 2345
manual focus

Clear &

10 per page - Relevance -

In this scenario, aut oPhr aseEnabl ed is set to f al se on the default Filter State object, and the Search Box
cartridge sets Nt y=1 on the text search query. The user has two choices:

+ Select the Did You Mean suggestion to consider the text search as a phrase. This link sends the same query
with the URL parameter Nt p=1 to override the default Filter State configuration, and also sets Nt y=0 since
we do not need to suggest the unphrased version of the query after the user has decided to use the phrased
version.

+ Make another selection on the page, such as clicking on a refinement or advancing to the next page of
results. This signifies acceptance of the unphrased query, so we keep aut oPhr aseEnabl ed set to f al se and
suppress further suggestions by setting Nt y=0.

These outcomes are summarized in the following table:

User action Autophrase setting Did You Mean Result
(Nt p) setting (\t y)
Initial search fal se Nty=1 Phrase is not applied to the

text search. A Did You Mean
suggestion is offered for the
phrased version.

Select Did You Mean Nt p=1 Nt y=0 Phrase is automatically applied

suggestion to the search. No suggestion is
offered.

Make another follow- | fal se Nt y=0 Text search continues to

on selection be treated as individual

keywords instead of as a phrase.
Suggestions are no longer offered.

Keyword redirects

Content administrators can configure keyword redirects that redirect a front-end user to a new page if the user's
search terms match the set keyword.

When an end user enters a search term that matches a keyword redirect, the Assembler returns the redirect URI
with the response model. The Assembler response can be limited to the redirect URI, or it can also return the
results for the user's search term.

The content administrator specifies a search term, match mode, and redirect URI on the Keyword Redirects page
in Workbench.

7 Navigation Cartridge Configuration Reference 305

Cartridge handler configuration for keyword redirects

The Assembler APl includes a Redi r ect Awar eCont ent | ncl udeHand! er that implements keyword redirect
functionality.

The cartridge handler takes the following two properties:

+ defaul t Ful | Assenbl eOnRedi rect — A Boolean that specifies whether to return search results in addition
to the redirect URI when making an assenbl e() call. Defaults to f al se. If you do not necessarily wish to
execute a redirect (for cases where the redirect URI is displayed as a link, or may be skipped entirely if the user
is not on a specific device), you must set this property to t r ue.

+ def aul t Redi rect Col | ecti on — A string that contains the name of the keyword redirect collection in the
Endeca Configuration Repository. Setting a null or empty value for this property disables keyword redirect
functionality.

The cartridge handler configuration in the Assembler context file for Discover Electronics is shown below:

<l--

~ BEAN: CartridgeHandl er _Contentl ncl ude
~ Used by the assenbl er service when keyword redirects are not enabl ed
-->
<bean i d="CartridgeHandl er _Contentl ncl ude"
cl ass="com endeca. i nfront. content. Content| ncl udeHandl er"
scope="pr ot ot ype" >
<property nanme="content Source" ref="content Source" />
<property nanme="siteState" ref="siteState"/>
<property nanme="user State" ref="%${user.state.ref}"/>
</ bean>

<l--

~ BEAN: CartridgeHandl er _Redi r ect Anar eCont ent | ncl ude
~ For root calls to the assenbl er when keyword redirects are desired
-->
<bean i d="CartridgeHandl er _Redi r ect Awar eCont ent | ncl ude"
cl ass="com endeca.infront.cartridge. Redi rect Awar eCont ent | ncl udeHandl er"
scope="pr ot ot ype">
<property nanme="content Source" ref="content Source" />
<property nane="content Broker" ref="content Request Broker" />
<property name="navi gationState" ref="navigationState" />
<property nanme="defaul t Ful | Assenbl eOnRedi rect" val ue="fal se"/>
<property nane="siteState" ref="siteState"/>
<property nanme="userState" ref="${user.state.ref}"/>
</ bean>

Note

The redirect-aware version of the cartridge is included in the Navigation JAR rather than the core
Assembler JAR because it relies on keyword redirects, which are interpreted by the MDEX Engine. The
standard Content Include cartridge and classes do not have this dependency, and are packaged with
the core JAR file.

Content XML for keyword redirects

You can override the default settings for the f ul | Assenbl eOnRedi r ect orredirect Col | ecti on properties
by setting new values in the content XML that is retrieved by the Redi r ect Awar eCont ent | ncl udeHandl er.

306

7 Navigation Cartridge Configuration Reference

The primary use case for setting these properties on content XML is for deployments running the Assembler
service. Keyword redirects are programatically enabled in the service, so by default the feature is explicitly
disabled for services where it does not apply (Dimension Search and Record Details) by including an element in
the content XML that sets r edi r ect Col | ect i on to a null value.

Note

If you are creating your Assembler application in Java, you can disable keyword redirects by using the
Cont ent I ncl ude class instead of Redi r ect Awar eCont ent | ncl ude for those services where you
wish to disable the feature.

About using keyword redirects with the Assembler service

The Assembler service in the Discover Electronics application implements the
com endeca. i nfront. assenbl er. servl et. Abstract Assenbl er Ser vl et abstract class. Keyword redirect
configuration is configured in the application's web. xni file.

The JSON and XML servlets in the Discover Electronics reference application are configured inr ef er ence
\ di scover - servi ce\ VEB- | NF\ web. xm :

<servl et>
<servl et - name>JsonAssenbl er Ser vi ceSer vl et </ servl et - name>
<servl et-cl ass>com endeca. i nfront. assenbl er. servl et. spring. Spri ngAssenbl er Servl et </
servl et -cl ass>
<init-paranmr
<par am nane>assenbl er Fact oryl D</ par am nane>
<par am val ue>assenbl er Fact or y</ par am val ue>
</init-paranm
<init-paranmr
<par am nanme>r esponseWi t er | D</ par am name>
<par am val ue>j sonResponseW i t er </ par am val ue>
</init-paranm
<i nit-paranp
<par am nanme>enabl eKeywor dRedi r ect s</ par am nane>
<par am val ue>t r ue</ par am val ue>
</init-paranr
</ servlet>

When the application queries the Assembler service, the redirect URI is returned as part of the response.

About handling keyword redirects in an application

In order to execute a redirect, an application must include logic for handling the URI components returned from
the Assembler. You must use the Redi r ect Awar eCont ent | ncl ude class for any content items that require
keyword redirect functionality.

The assenbl e. j sp service uses the Redi r ect Awar eCont ent | ncl ude class to enable keyword redirects, as
shown below:

<Y%page
i nport="com endeca. i nfront. cartridge. Redi rect Awar eCont ent | ncl ude" %

7 Navigation Cartridge Configuration Reference 307

Assenbl er Factory assenbl er Factory =
(Assenbl er Fact ory) webappCt x. get Bean("assenbl er Factory");
Assenbl er assenbl er = assenbl er Factory. creat eAssenbl er () ;

//Retrieve the content for the given content uri
Contentltem contentltem = new Redi rect Awar eCont ent | ncl ude("/ browse" + contentUri);

/1 Assenbl e the content
ContentltemresponseContentltem = assenbl er. assenbl e(contentlten);

The Assembler response

When an end user enters a search term that matches a keyword redirect configured in Workbench, the
Assembler response includes a Cont ent | t emwith the necessary information for creating a destination URI.

The following example shows a JSON response in an Experience Manager implementation from the Guided
Search service when f ul | Assenbl eOnRedi rect isfal se:

{

endeca: si t eRoot Pat h: "/ pages",

endeca: content Path: "/servi ces/ gui dedsearch",

endeca: assenbl er Request | nf or mati on:

{
@ype: "Assenbl er Request Event",
endeca: assenbl yStart Ti nest anp: 1341943119538,
endeca: assenbl yFi ni shTi mest anp: 1341943119546,
endeca: cont ent Pat h: "/ gui dedsearch",
endeca: request | d":"140252272098164091",
endeca: sessionld: "FF9D21355A3CBB9DFF75614DD7D2948D",
endeca: siteRoot Path: "/services"

b

endeca: redirect:

{
@ype: "Redirect",
link: {

@l ass: "com endeca.infront.cartridge. nodel. Ul Action",
url: "/browse/ caneras/_/ N-25y6"

}

}

}

The keyword redirect information is included in the Cont ent | t emwith the key endeca: r edi r ect . The value
specifies an Act i on object with the destination URI, which may be either relative or absolute.

In an Oracle Commerce Guided Search implementation (without Experience Manager), the site root path and
content path in the JSON response would be the following:

endeca: si teRoot Path: "/services",
endeca: cont ent Pat h: "/ gui dedsearch",

Using the Assembler response

You must retrieve and use the information from the Assembler response in your application to execute a
keyword redirect. In the Discover Electronics reference application, this is accomplished in the assenbl e. j sp
service:

308

7 Navigation Cartridge Configuration Reference

<Y@taglib prefix="util" uri="/WEB-1NF/tlds/functions.tld"
%
<U@taglib prefix="c" uri="http://java.sun.conljsp/jstl/core" %

/1 Assenbl e the content
ContentltemresponseContentltem = assenbl er. assenbl e(contentlten);

request.setAttribute("conponent"”, responseContentlten);
request.setAttribute("root Component”, responseContentlten);

Map nmap = (Map) request.getAttribute("conponent");
i f (map. contai nsKey("endeca:redirect")) {
request.setAttribute("action", ((Contentltemn
map. get ("endeca: redirect")).get("link"));
%
<c:redirect url="8%{util:getUrl ForAction(action)}"/>
<%

For more information about Act i on objects in an Assembler application, see "Working with Application URLs,"
or consult the Assembler APl Reference (Javadoc).

Guided Navigation cartridges

The following sections provide an overview of the configuration models for Guided Navigation features included
with Tools and Frameworks and implemented in Discover Electronics.

Refinement menu

The Refinement Menu cartridge displays dimension values within a single dimension for Guided Navigation. It
supports dimension value boost and bury.

The response model for this cartridge is Ref i nenent Menu, which contains a list of Ref i nement objects.

Dimension value boost and bury

Dimension value boost and bury is a feature that enables re-ordering of dimension values within a particular
dimension for Guided Navigation. With dimension value boost, you can assign specific dimension values to
ranked strata, with those in the highest stratum being shown first, those in the second-ranked stratum shown
next, and so on. With dimension value bury, you can assign specific dimension values to strata that are ranked
much lower relative to others. This boost/bury mechanism therefore lets you manipulate ranking of returned
dimension values in order to promote or push certain refinements to the top or bottom of the navigation menu.

The Refinement Menu cartridge enables the content administrator to specify an ordered list of dimension values
to boost and an ordered list of dimension values to bury. Each dimension value is translated into its own stratum
in the query that returns refinements so as to preserve the exact order of refinements specified by the content
administrator.

For more information about dimension value boost and bury, refer to the MDEX Engine Basic Development Guide.

7 Navigation Cartridge Configuration Reference 309

Configuration model for the Refinement Menu cartridge

The Refinement Menu cartridge configuration model allows you to configure sorting, "Show More..." link
behavior, and boosted and buried refinements. Additionally, it includes a whyPr ecedenceRul eFi r ed property
that can be used for debugging precedence rule behavior in your application.

The configuration model for this cartridge is Ref i nement MenuConf i g. It includes the following properties:

Property name

Description

di nensi onld

A string representing the id of the dimension being configured.

boost Ref i nenent s

buryRefi nenent s

An ordered list of dimension value refinements to display at the top of
the list.

An ordered list of dimension value refinements to display at the bottom
of the list.

sort

The base sort order of dimension values within this dimension. This
property should have one of the following values:

+ defaul t — Sort dimension values according to the application
configuration for this dimension.

+ static — Sortdimension values in alphabetic or numeric order,
depending on the dimension configuration.

« dynRank — Sort dimension values so that the refinements with the
highest number of records display first.

showivbr eLi nk

A Boolean indicating whether to enable a link to show more
refinements than are displayed by default.

nor eLi nkText

| essLi nkText

nunRef i nenent s

A string representing the text to use for the "show more refinements"
link.

A string representing the text to use for the "show fewer refinements"”
link.

A string representing the number of refinements to display by default,
or when a user clicks the "show fewer refinements" link.

maxNunRef i nenent s

A string representing the maximum number of refinements to display
when a user clicks the "show more refinements" link.

r ef i nement sShown

A string that sets the amount of refinements to return, from the
following values:

* none — returns no refinements.
+ sone — returns nunRef i nenent s refinements.

« all — returns maxNunRef i nenent s refinements.

7 Navigation Cartridge Configuration Reference

Property name

showMor e

Description

(Deprecated) A Boolean indicating whether to display the

maxNunRef i nement s number of menu items. When this value

is f al se, the number of menu items generated is limited by

nunRef i nenent s, and a "show more refinements" link is generated.
This value should be set using showibr el ds URL parameter when the
"show more refinements" link is selected.

useShowivbr el dsPar am

(Deprecated) A Boolean that sets whether to use the showbr el ds

URL parameter when determining how many refinements to display. If
f al se, the showMbr e property on the Ref i nement MenuConf i g object
is used instead. If this property is set to t r ue, refinements cannot be
collapsed. Defaults to t r ue.

whyPr ecedenceRul eFi red

If query debugging features are enabled, this property enables
debugging information about why precedence rules fired on a
query in a DG aph. WayPr ecedenceRul eFi r ed property for each
root dimension value. For additional information, see "About query
debugging results in the reference application.”

Notes on sorting

The st at i ¢ sort option is described as "Alphanumeric” sorting in the Experience Manager user interface for
the default Refinement Menu cartridge. Dimension values are ordered alphanumerically within a dimension by
default, however it is possible to manually specify a dimension order (for example, using the Dimension Values
editor in the Oracle Commerce Workbench). This custom dimension value order is used when st at i ¢ sorting is
specified. To ensure alphanumeric sorting of dimension values, do not specify a custom dimension value order.

Dynamic refinement ranking is incompatible with displaying disabled refinements for a dimension. In the
default Refinement Menu cartridge, the option to show disabled refinements is not available unless the content
administrator has explicitly selected st at i ¢ sorting.

MDEX Engine configuration for Guided Navigation

No special configuration is necessary to enable Guided Navigation, however, there is some static configuration

that affects the display of refinements.

Static configuration

In the Dimension editor in Developer Studio, you can configure dimensions to be:

« multiselect — A multiselect dimension enables a user to select more than one refinement at the same time.
You can specify whether the navigation results when multiple refinements are selected are treated as a
Boolean AND or Boolean OR on a per-dimension basis.

* hidden — A hidden dimension does not display in Guided Navigation; however, users can still search for
records based on their dimension values in a hidden dimension.

You can also configure the following refinement behavior on a per-dimension basis:

7 Navigation Cartridge Configuration Reference

311

+ dynamic refinement ranking — Dynamic ranking returns refinements based on their popularity (number of
associated record results for each refinement). This is a default setting that can be overridden by the content
administrator in Experience Manager.

- refinement statistics — Enabling refinement statistics returns the number records (or aggregated records) are
associated with each refinement so that this information can be displayed in the application.

Additionally, you can designate specific dimension values as inert. For more information about these
configuration options, refer to the MDEX Engine Basic Development Guide.

Cartridge handler configuration for the Refinement Menu cartridge

The Refinement Menu cartridge handler extends the Navi gat i onCar t ri dgeHandl er . The application-wide
default configuration in the Assembler context file determines the behavior of collapsed dimensions and "show
more" and "show less" links, and can be set to enable or disable the precedence rule debugging feature if query

debugging features are enabled.

The cartridge handler usesacontent | t eml ni ti al i zer to merge the layered configuration. The included
r equest Par amvar shal | er bean enables URL request-based configuration for the cartridge, which is required
for disabling or enabling the full list of refinement results returned when the end user clicks the "show more
refinements" link.

Template configuration for the Refinement Menu cartridge

The Refinement Menu cartridge template allows a content administrator to configure which dimension to query
for the cartridge and how many results should display. It also allows control over boosted and buried dimension
refinements, in order to modify the order in which dimensions display to the end user.

The Refinement Menu cartridge template allows a content administrator to configure the following properties

on the configuration model:

di nensi onl d

sort

showivbr eLi nk

nor eLi nkText

| essLi nkText
nunRef i nement s
maxNunRef i nenent s
boost Ref i nenent s

buryRefi nenent s

In addition, the cartridge template includes the following pass-through property:

Property name

Description

di nensi onNane

The nane of the string property that represents the dimension name. This is
required by the Dimension Selector editor to enable a content administrator
to select a dimension by name, rather than by ID.

312

7 Navigation Cartridge Configuration Reference

URL request parameters for the Refinement Menu cartridge

You can configure the Refinement Menu cartridge at runtime by setting the value of the
DYNAM C_REFI NEMENT_MENU_CONFI Gproperty on the Refi nenent MenuRequest Par amvar shal | er via the
Nr e URL parameter.

The sample cartridge renderer includes logic for displaying the maxNunRef i nement s number of results when a
user clicks on the "show more refinements" link.

Property name URL Description
parameter
DYNAM C_REFI NEMENT_NMENU_CONFI G Nr ¢ The Nr nt parameter takes multiple arguments

allow you to configure dimension refinement
behavior in the cartridge.

showhor e Showhbr el ds (Deprecated) A Boolean indicating whether
to display the maxNunRef i nenent s number
of menu items. Use the r ef i nement sShown
property if you are refactoring your code or
developing a new application.

About Nr nt URL parameter syntax
The Nr nt parameter takes the following values:
+ Dimension ID — Required. The ID of the dimension you wish to configure.

+ +show <val ue> — Required; <val ue> is the value to pass to ther ef i nenment sShown property on the
configuration object.

The configuration for each dimension is separated by a vertical pipe, as in the example below:

20001+show: al | | 20002+show: sone

Note

You can also use the notation used with the Presentation API, for example: Nr c=i d+10074+expand
+t r ue+nor e+t r ue. For more information about this notation, see the MDEX Engine Basic Development
Guide.

Navigation Container

The Navigation Container is provided as an alternative the refinement menu cartridge for implementations
using Oracle Guided Search with the packaged services. It enables you to retrieve the full list of available
dimension refinements for a dimension query.

The response model for the Navigation Container includes a list of Ref i nement Menu objects that each include
the records within a dimension refinement. The Navi gat i onCont ai ner Handl er handles the "show more
refinements" link and associated link Action for each of these refinements, and also controls whether to display
debugging information.

7 Navigation Cartridge Configuration Reference 313

Configuration model for the Navigation Container

The Navigation Container configuration model includes the Li st <St r i ng> property of dimension
IDs that are returned with the response model. Since it is a dimension navigation feature, it includes a
whyPr ecedenceRul eFi r ed property that can be used for debugging precedence rule behavior in your

application.

The configuration model for this cartridge is Navi gat i onCont ai ner Conf i g. It includes the following

properties:

Property name

showMor el ds

Description

A List of dimension IDs to return as expanded lists of
available refinements. Any dimension refinements not
included in this List are returned in the default, shorter
form output by the MDEX Engine.

nor eLi nkText

A string representing the text to use for the "show
more refinements” link. The same string is used for
each of the included dimension refinements.

| essLi nkText

A string representing the text to use for the "show
fewer refinements" link. The same string is used for
each of the included dimension refinements.

r ef i nement sShownByDef aul t

A Boolean indicating whether the refinement menus
should be fully expanded. Defaults to t r ue. When

using a dataset that includes dimensions with a large
number of refinements, you should set this to f al se.

r ef i nement sShown

useShowibr el dsPar am

A string that sets the amount of refinements to return
on each refinement menu, from the following values:

* none — returns no refinements.
+ sone — returns nunRef i nenent s refinements.

(Deprecated) A Boolean that sets whether to use the
showMor el ds URL parameter when determining
how many refinements to display. If f al se, the
showhor e property on the Ref i nement MenuConfi g
object is used instead. If this property is set tot r ue,
refinements cannot be collapsed. Defaults to t r ue.

whyPr ecedenceRul eFi red

If query debugging features are enabled, this
property enables debugging information about

why precedence rules fired on a query ina

DG aph. Wy Pr ecedenceRul eFi r ed property for
each root dimension value. For additional information,
see "About query debugging results in the reference
application."

314

7 Navigation Cartridge Configuration Reference

Cartridge handler configuration for the Navigation Container

The Navigation Container handler extends the Navi gat i onCart ri dgeHandl er . The application-wide default
configuration in the Assembler context file determines the behavior of collapsed dimensions and "show more"
and "show less" links, and can be set to enable or disable the precedence rule debugging feature if query
debugging features are enabled.

The cartridge handler usesacont ent I t em ni ti al i zer to merge the layered configuration. The included
request Par amvar shal | er bean enables URL request-based configuration for the cartridge, which is required
for modifying the properties on the response model through URL parameters.

URL request parameters for the Navigation Container

Because the Navigation Container returns a list of Ref i nement Menu objects, it takes the same Nr nt URL
parameter as the Refinement Menu cartridge.

Property name URL parameter Description

DYNAM C_REFI NEMENT_MENU_CONFI G| Nrnt The Nr nt parameter takes multiple
arguments allow you to configure
dimension refinement behavior in the
cartridge.

whyPr ecedenceRul eFired whyPr ecedenceRul eFi|r Edjuery debugging is enabled

for the reference application, this
property allows you to include
debugging information about why
precedence rules fired on a query in a
DG aph. WhyPr ecedenceRul eFi red
property for each dimension value.

For details on configuring the Nr nt parameter, see "URL request parameters for the Refinement Menu
cartridge."

Breadcrumbs

The Breadcrumbs cartridge displays the parameters defining the search or navigation state for the current set of
search results.

The response model for this cartridge is Br eadcr unbs, which may contain Sear chBr eadcr unb,

Ref i nement Br eadcr unb,RangeFi | t er Br eadcr unb, and GeoFi | t er Br eadcr unb objects as appropriate.
Each breadcrumb contains information about search or navigation selections that the end user has made, and
provides links to remove that selection from the filter state.

The Breadcrumbs cartridge does not have any associated Experience Manager configuration options or MDEX
Engine configuration.

Cartridge handler configuration for Breadcrumbs

The Breadcrumbs cartridge handler extends the Navi gat i onCart ri dgeHandl er, but otherwise does not
require any additional configuration.

7 Navigation Cartridge Configuration Reference 315

Results cartridges

Results list

The following sections provide an overview of the configuration models for features that display search results

in the reference implementation.

The Results List cartridge displays search and navigation results in a list view.

The response model for this cartridge is Resul t sLi st , which contains a list of Recor d objects and
Sort Opt i onLabel objects that enable the end user to select from a set of pre-defined sort orders.

About the order of records in the record list

The order of records returned by the MDEX Engine is determined by a sort key or relevance ranking strategy
depending on the type of query that returns the results.

Relevance ranking is applied when the query includes a text search. Record sorting is applied to all other queries
including navigation queries. The sort options that are available to the end user in the application represent
static sort orders that are not based on relevance to any search terms.

Record boost and bury

Record boost and bury is a feature that enables fine-grained re-ordering of records within search or navigation
results. With record boost, you can assign records to ranked strata, with those in the highest stratum being
shown first, those in the second-ranked stratum shown next, and so on. With record bury, you can assign
records to strata that are ranked much lower relative to others. This boost/bury mechanism therefore lets you
manipulate ranking of returned record results in order to promote or push certain records to the top or bottom
of the results list. The records in each stratum are defined as a set of specific records or a navigation state that
the records must satisfy. A record is assigned to the highest stratum whose definition it matches, so boosting
takes precedence over burying. Record boost and bury apply regardless of whether the records returned are the
results of a search or navigation query.

The core Results List cartridge enables the content administrator to specify one set of records to boost and one
set of records to bury. Boost and bury are applied to the result list before any additional sorting or relevance
ranking modules. For more information about record boost and bury, refer to the MDEX Engine Developer's Guide.

Configuration model for the Results List cartridge

The Results List configuration model allows you to configure the number and sorting of records returned by a
search or navigation query. Additionally, it includes why Mat chEnabl ed and whyRankEnabl ed properties that
can be used for debugging the set of records returned for a query.

The configuration model for this cartridge is Resul t sLi st Conf i g. It includes the following properties:

Property name Description

r ecor dsPer Page An integer that controls the number of results to display per
page. This value can be set using Nr pp URL parameter.

recor dDi spl ayFi el dNanme A String that specifies the field that stores the record's logical
name.

316

7 Navigation Cartridge Configuration Reference

Property name

sort Option

sort Request Par anet er

Description

An enumerated list of sort options on the results list available
to the site visitor. Each item in this list is a Sor t Opt i onConfi g
with the following properties:

+ | abel — A descriptive label that displays to the site visitor in
the client application

+ val ue — A sort order specified in the format <key>|
<di r ect i on>, where key is the name of the property
or dimension on which to sort, and the direction is 0 for
ascending and 1 for descending. An empty string represents
the default sort order specified by the content administrator
in Experience Manager.

You can set this value via the Ns URL parameter.

A String that specifies the selected Sort.

i ncl udePr econput edSort s

A Boolean that specifies whether to return precomputed sorts.
Defaults to f al se. If you do not set this to t r ue, any calls to the
get Preconput edSor t s() method return an empty list.

rel RankStr at egy

r el RankKey

(Optional) The Relevance Ranking Strategy. If you specify a
Relevance Ranking Strategy without setting r el RankTer ns,

r el RankKey, or r el RankMat chMbde, your Relevance Ranking
strategy will apply to the results from the current search filter.
This setting is ignored if an end user explicitly selects a sort.

(Optional) The Relevance Ranking key to use with the selected
Relevance Ranking strategy. This can be a search interface,
dimension, or property set in the MDEX Engine. You must set a
rel RankSt r at egy and r el RankTer ns if you specify a value
for this property.

r el RankTer ns

(Optional) Relevance Ranking terms, delimited by a + sign.
These can be different from the terms in the search filter. You
must set ar el RankSt r at egy and r el RankKey if you specify a
value for this property.

r el RankMat chbde

boost Strata

buryStrata

(Optional) The match mode that determines the subset
of results to apply Relevance Ranking to. You must set a
rel RankSt r at egy if you specify a value for this property.

An ordered list of Col | ecti onFi | t er s that enable items to be
boosted to the top of the results list. This setting is ignored if an
end user explicitly selects a sort.

An ordered list of Col | ecti onFi | t er s that enable items to be
buried at the bottom of the results list. This setting is ignored if
an end user explicitly selects a sort.

7 Navigation Cartridge Configuration Reference

317

Property name

subRecor dsPer Aggr egat eRecor d

Description

The number of sub-records to return for any aggregated
records in the results list. This property should have one of the
following values:

+ ZERO— Sub-records are not returned.
+ ONE— A single representative record is returned.
* ALL — All sub-records are returned.

The default value is ONE. For best performance, Oracle
recommends that you use ZEROor ONE.

of f set

An integer record offset for the result list. This property defaults
to 0 and is used for paging. This value can be set using No URL
parameter.

i ncl udeDeri vedProperties

For aggregated records, returns all derived properties to the
end user. Defaults to t r ue.

i ncl udeSni ppet edProperties

i ncl udeGeoDi st anceProperties

For aggregated records, returns all snippeted properties to the
end user. Defaults to t r ue.

For aggregated records, returns all geodistance properties

to the end user. Defaults to t r ue. Geocode properties are

not calculated by default by MDEX . You must specify one or
more geo location filters(Nf) or geo distance sorts(Ns) for these
properties to be calculated. For information about geocode
properties, see the MDEX Engine Developer's Guide.

fi el dNanes

A list of record fields to pass through from each record to the
Recor d output model of the Resul t sLi st Handl er.

subRecor dFi el dNanes

For aggregated records, a list of sub-record fields to pass
through from each sub-record to the Recor d output model of
the Resul t sLi st Handl er.

whyMat chEnabl ed

whyRankEnabl ed

If query debugging features are enabled, this property enables
debugging information about why each record matched the
search and navigation state. For additional information, see
"About query debugging results in the reference application."

If query debugging features are enabled, this property enables
debugging information about why each record was ranked in
the given order. For additional information, see "About query
debugging results in the reference application.”

Note

You only need to set the r el RankKey, r el RankTer ns and r el RankMat chMbde properties if you wish
to apply relevance ranking to values other than those specified in the search filter, or to the results of

an EQL expression.

318

7 Navigation Cartridge Configuration Reference

MDEX Engine configuration for the Results List cartridge

Your MDEX Engine configuration for your application allows you to configure which properties and dimensions
should display in the results list view, optimize certain properties to use for sorting records, and specify a default
sort order.

Dynamic configuration

In the Property and Dimension editors in Developer Studio, you can specify which properties and dimensions
are returned for the record with the record list. This configuration can be overridden in the cartridge handler
configuration. For more information about configuring the display of properties and dimensions for the record
list, refer to the Developer Studio Help.

Static configuration

Although you can sort on any property or dimension at query time, it is also possible to optimize a property
or dimension for sorting in Developer Studio. This controls the generation of a precomputed sort, which you
can retrieve on the Resul t sLi st Conf i g object by using the get Pr econput edSor t s() method. For more
information about precomputed sorts, refer to the MDEX Engine Developer's Guide.

Dgidx flags

You can specify the default sort order for records as a flag in Dgidx. For more information about Dgidx flags and
sorting, refer to the MDEX Engine Developer's Guide.

The Deployment Template configuration for the Discover Electronics reference application does not specify a
default sort key.

Cartridge handler configuration for the Results List cartridge

The Results List cartridge handler extends the Navi gat i onCar t ri dgeHandl er . The application-wide default
configuration in the Assembler context file specifies default sort options, relevance ranking strategy, and record
and sub-record properties to pass through to the cartridge handler response model. It also allows you to enable
or disable debugging features if query debugging features are enabled.

The cartridge handler usesacont ent I t em ni ti al i zer to merge the layered configuration. The included
request Par amvar shal | er bean enables URL request-based configuration for the cartridge.

Template configuration for the Results List cartridge

The Results List template allows a content administrator to configure the main results of a search or navigation
query based on the site visitor's filter state. Configuration options include sort order, boost/bury, and number of
records to display per page.

The Results List cartridge template allows a content administrator to configure the following properties on the
configuration model:

» recordsPer Page
* sortOption
* rel Rank

* boostStrata

7 Navigation Cartridge Configuration Reference 319

* buryStrata

URL request parameters for the Results List cartridge

End user configuration is passed to the configuration model as URL parameters. This allows application end
users to specify how records should be displayed and sorted in order to customize their navigation experience.

For most of the properties on the configuration model, the cartridge renderer in the reference implementation
respects the values set at the cartridge handler or template level. The of f set value is used to control paging

display.
Property URL Description
Parameter

r ecor dsPer Page Nr pp The cartridge renderer uses this property to enable an application end
user to set their own limit on records to display per page.

sort Option Ns This parameter enables you to override sort options on a per-query
basis.

of f set No This parameter enables you to control record display when paging.

r el RankKey Nr k (Optional) The Relevance Ranking key. You must set a
r el RankSt r at egy on the cartridge to use this parameter. You must
also specify r el RankTer ns.

rel RankTer ns Nr t (Optional) Relevance Ranking terms, delimited by a + sign. You must set
arel RankSt r at egy on the cartridge to use this parameter. You must
also specify a r el RankKey.

r el RankMat chMode | Nrm (Optional) The match mode that determines the subset of results
to apply Relevance Ranking to. You must set ar el RankSt r at egy,
r el RankKey, and r el RankTer ns if you specify a value for this
property.

whyMat chEnabl ed | whymat ch If query debugging is enabled for the reference application, this
property enables you to include record matching information about a
per-query basis, rather than at the cartridge handler level.

whyRankEnabl ed whyr ank If query debugging is enabled for the reference application, this

property enables you to include record ranking information about a
per-query basis, rather than at the cartridge handler level.

Note

The Nr k, Nr t, and Nr mparameters take precedence over any relevance ranking declaration in the Nt k,
Nt t, and Nt x parameters.

Enabling snippeting in record results

The Assembler can return snippets (an excerpt from a record property that contains the user's search terms and
the surrounding context) for display in results lists.

320

7 Navigation Cartridge Configuration Reference

Snippeting is configured as part of a search interface. You can enable snippeting on one or more properties in a
search interface, typically properties that contain multiple lines of text.

To enable snippeting in record results:
1. Enable snippeting on one or more properties in the relevant search interface.
For more information about configuring snippeting, see the MDEX Engine Developer's Guide.

2. In the Results List response model configuration, specify the property i ncl udeSni ppet edPr operti es,asin
the following example:

<bean i d="resul tsLi st Def aul t Confi g" scope="pr ot otype"
cl ass="com endeca.infront.cartri dge. Resul tsLi st Confi g">
<property nanme="incl udeSni ppet edProperties" val ue="true" />
<property nanme="incl udeDeri vedProperties
<property name="fi el dNanes" >
<list>
<val ue>pr oduct . i d</val ue>
<val ue>pr oduct . code</ val ue>
<val ue>product . nane</ val ue>
<val ue>pr oduct . br and. nane</ val ue>
<val ue>product. short_desc</val ue>
<val ue>product . pri ce</ val ue>
<val ue>product.ing_url _t hunbnail </ val ue>
<val ue>product. revi ew. avg_rati ng</val ue>
<val ue>product. revi ew. count </ val ue>
</[list>
</ property>
<l-- additional elenments onmtted fromthis exanple -->
</ bean>

val ue="true" />

The snippet is returned as a string property on the response model for each record for display by the renderer.

Record details cartridges

The following section provides an overview of the configuration model for record detail features in the reference
implementation.

Record details page
The Record Details page displays detailed information about a specific record.
The response model for this cartridge is Recor dDet ai | s, which contains a single Recor d.

The rendering logic for a record details page is expected to be highly customized for each site, in order to
display the relevant record information and provide additional functionality such as bookmarking or initiating a
purchase transaction.

Configuration model for the Record Details cartridge

The Record Details configuration model allows you to configure which properties on the record should be
passed through to the output model of the cartridge handler, so that the renderer can display them.

The configuration model for this cartridge is Recor dDet ai | sConf i g. It includes the following properties:

7 Navigation Cartridge Configuration Reference 321

Property name Description

fiel dNanes A list of record fields to pass through from the record to the Recor d output model
of the Recor dDet ai | sHandl er.

subRecor dFi el dNames For aggregated records, a list of sub-record fields to pass through from each sub-
record to the Recor d output model of the Recor dDet ai | sHandl er.

MDEX Engine configuration for the Record Details page

No special configuration is required the display of record details, but you can specify what information you want
to display on the record page.

Dynamic configuration

You can specify which properties and dimensions are returned with the record for a record details page in
Developer Studio. For more information about configuring the display of properties and dimensions for record
details, refer to the Developer Studio Help.

Cartridge handler configuration for the Record Details cartridge

The Record Details cartridge handler extends the Navi gat i onCar t ri dgeHandl er, but otherwise does not
require any additional configuration.

Template configuration for the Record Details cartridge

The Record Details cartridge in the Discover Electronics application does not require any configuration in
Experience Manager. The cartridge can be placed on a Record Details page to display detailed information about
arecord.

Content and spotlighting cartridges

The following sections provide an overview of the configuration models for features that enable content
spotlighting in the reference implementation.

Record Spotlight

The Record Spotlight cartridge can promote either specific featured records or a set of dynamic records based
on a navigation state.

The response model for this cartridge is Recor dSpot | i ght, which includes a list of Recor d objects and an
optional action to show all records (in the case of a dynamic record spotlight).

Configuration model for the Record Spotlight cartridge

The Record Spotlight configuration model allows you to configure the selected records and "See All" link within
a record spotlight, as well as the record fields to pass through to the cartridge response model.

322 7 Navigation Cartridge Configuration Reference

The configuration model for this cartridge is Recor dSpot | i ght Conf i g. It includes the following properties:

Property name

Description

maxNunRecor ds

A string representing the maximum number of records that this
spotlight can contain. If the content administrator designates
specific records in the Experience Manager, the number of records
cannot exceed the value of maxNunRecor ds. If the content
administrator specifies a query, the Assembler returns no more
than this number of records.

recor dSel ecti on

A Recor dSpot | i ght Sel ect i on object that represents the
records selected for spotlighting. This includes the specified filter
state, sort options, and result limit.

showSeeAl | Li nk

A Boolean that determines whether to display the "See All" link.
The link requires a value for seeAl | Li nkText in order to display.

seeAl | Li nkText

A string representing the display text for a link that represents the
navigation state of a dynamic record spotlight. If this string is not
configured, no link is generated for the client application.

i ncl udeDeri vedProperties

For aggregated records, returns all derived properties to the end
user. Defaults to t r ue.

i ncl udeSni ppet edProperties

i ncl udeGeoDi st anceProperties

For aggregated records, returns all snippeted properties to the
end user. Defaults to t r ue.

For aggregated records, returns all geodistance properties to the
end user. Defaults tot r ue. Geocode properties are not calculated
by default by MDEX . You must specify one or more geo location
filters(Nf) or geo distance sorts(Ns) for these properties to be
calculated. For information about geocode properties, see the
MDEX Engine Developer's Guide.

fi el dNanes

A list of record fields to pass through from the record to the
Recor d output model of the Recor dSpot | i ght Handl er.

subRecor dFi el dNanes

For aggregated records, a list of sub-record fields to pass through
from each sub-record to the Recor d output model of the
Recor dSpot | i ght Handl er.

MDEX Engine configuration for a spotlight

You can configure which properties and dimensions can be displayed in a spotlight.

Dynamic configuration

Although the content administrator can designate the records for a spotlight either by specifying a search
and navigation query or by specifying individual record IDs, the Assembler query that fetches the spotlighted

7 Navigation Cartridge Configuration Reference

323

records is always a navigation query (using records in the specific record case). Therefore, the configuration that
determines which properties and dimensions are returned with the record for spotlighting is "show with record
list." This configuration can be overridden in the cartridge handler configuration. For more information about
configuring the display of properties and dimensions for the record list, refer to the Developer Studio Help.

Related links

+ MDEX Engine configuration for the Results List cartridge (page 319)

Cartridge handler configuration for the Record Spotlight cartridge

The Record Spotlight cartridge handler extends the Navi gat i onCart ri dgeHandl er . The application-wide
default configuration in the Assembler context file specifies record properties to pass through to the cartridge
handler response model.

Template configuration for a record spotlight

A Record Spotlight cartridge enables a content administrator to specify a set of contextually relevant records to
spotlight on a particular page.

The Record Spotlight cartridge template allows a content administrator to configure the following properties on
the configuration model:

* maxNunRecor ds

* recordSel ection

* showSeeAl | Li nk

* seeAll Li nkText

These properties are configured using the Spotlight Selection editor.

In addition, the cartridge template includes the following pass-through property:

Property name Description

title A title that the content administrator can specify to display for this cartridge
in the front-end application.

Media Banner

The Media Banner cartridge displays video or images to the site user and can be configured to link to a static
page, a single record, or a specified navigation state.

The response model for this cartridge is Medi aBanner, which includes a Medi aCbj ect and an Act i onLabel
that contains a destination link.

Configuration model for the Media Banner cartridge

The configuration model for the Media Banner cartridge includes a media object and an associated link.

324

7 Navigation Cartridge Configuration Reference

The configuration model for this cartridge is Medi aBanner Conf i g. It includes the following properties:

Property name Description

nedi a The Medi aObj ect representing the image or video asset to display in the
application.

l'i nk The Li nkBui | der object used to construct a link to a navigation state or a static
page within the application.

MDEX Engine configuration for a media banner

No special configuration is required for the media banner, but your MDEX Engine configuration will affect the
display of records in the link selector when setting a navigation state or choosing a specified record.

Dynamic configuration

You can specify how records are sorted and which properties and dimensions are returned with a record in
Developer Studio. For more information about configuring record sorting and display, refer to the Developer
Studio Help.

Cartridge handler configuration for the Media Banner cartridge

The Media Banner cartridge handler extends the Navi gat i onCar t ri dgeHandl er, but otherwise does not
require any additional configuration.

Template configuration for the Media Banner cartridge

The Media Banner enables the content administrator to use the media selector and link editor to create a media
banner that links to a specified page, selected record, or dynamic navigation state.

The Media Banner cartridge template allows a content administrator to configure the following properties on
the configuration model:

* media
« link

In addition, the cartridge template includes the following pass-through property:

Property name Description

i mageAl t (Optional) The alt-text to display when the end user hovers over the media asset in
the application.

For detailed information about the properties within the medi a and | i nk properties, consult the Javadoc for the
Medi atbj ect and Li nkBui | der classes.

7 Navigation Cartridge Configuration Reference 325

Dynamic triggering cartridges

The following sections contain information about features related to triggering content items based on the
user's context.

The dynamic slot feature is typically used to trigger a cartridge independently from the page that contains
it, although the Discover Electronics application uses the same mechanism to trigger entire pages by
programmatically creating a content slot configuration and passing it to the Assembler.

About dynamic slots

A dynamic slot is a generic mechanism that enables content administrators to manage the content for specific
sections of an Experience Manager-driven page independently from the overall page.

There two main scenarios for using dynamic slots:

+ To share content across different pages. In this case, the triggers on the content items that populate the
slot are more general or orthogonal to the trigger criteria for the page. For example, a header cartridge may
be shared across an entire site if it is referenced from every page and has an "Applies at all locations" trigger.
A promotion may be configured with a user segment trigger and display when a site visitor who belongs
to the specified user segment browses to any of the pages that references the collection that contains the
promotion.

+ To create variants of a page. In this case, the triggers on the content items that populate the slot are more
specific than the trigger criteria for the page. (Typically, they would "inherit" the parent content item's triggers
and add additional criteria for the variable content.)

Following are some specific use cases for dynamic slots:

+ A brand manager needs to control the banner images that display throughout the site. This is a different
person from the merchandiser who typically manages pages in Experience Manager.

+ A brand manager needs to be able to specify the images that display at a particular navigation state (for
example, Digital Cameras > Samsung) even if there is no specific landing page for that navigation state.

+ A merchandiser wishes to display promotions in the menu area based on more specific trigger criteria than
those that apply to the page as a whole. For example, one could create a page to use as a base for all "Digital
Cameras" pages, and populate the menu sections with more specific content based on the brand, price range,
or other dimensions. This model enables content reuse for most of the content within a page with page-
specific overrides for subsections as needed. It removes the need to create many individual pages for each
specific combination of triggers.

+ A merchandiser wishes to display promotions in the menu area based on trigger criteria that are simply
different from those on the page as a whole. For example, there might be a "Back to School" special for a
particular time frame that applies to all pages within a category or even the entire site. This model enables
content reuse for individual sections across a variety of pages. The reusable sections are managed in a central
location so that updates immediately take effect across all the pages that include the reused content, rather
than having to edit each one manually.

Dynamic slot prerequisites
The dynamic slot feature enables content administrators to populate a section of a content item with content

from a different collection in Experience Manager. As a prerequisite, your application must include a collection
with the appropriate content type for populating an administrator's dynamic slot cartridge.

326 7 Navigation Cartridge Configuration Reference

Note
If a content administrator attempts to populate a dynamic slot in a given collection with a content item

from the same collection and creates a circular reference, the Assembler detects the conflict during
preprocessing and returns the content item with an @r r or property.

Request Event Attributes

The Request Event and Navi gat i onEvent W apper classes support getting and setting common search
and navigation information about a request event. This Appendix provides a reference table of out-of-the-box
attributes that you can retrieve or set on a Request Event object.

Base request event attributes
The following describes the base schema for an Assembler request event.

The Request Event class includes getter and setter methods for each of these attributes.

Attribute Type Description

endeca: request | d String The unique identifier for a request. To retrieve this
information, you must register an implementation of
Request | dProvi der in the request event adapter
constructor.

endeca: sessi onld String The unique identifier for a browser session. To retrieve
this information, you must register an implementation
of Sessi onl dPr ovi der in the request event adapter
constructor.

endeca: assenbl ySt art Ti mest anp | ong The time (in milliseconds from POSIX Epoch) that the
assenbl e() method started

endeca: assenbl yFi ni shTi mestanp | | ong The time (in milliseconds from POSIX Epoch) that the
assenbl e() method finished

Navigation cartridge request event attributes

The following describes the schema for an Assembler navigation cartridge request event. These fields are in
addition to those described for the base request.

The Navi gat i onEvent W apper class includes getter and setter methods for each of these attributes.

7 Navigation Cartridge Configuration Reference 327

Attribute Type Description

endeca: aut ocorrect To String The suggested auto-correct term, if it triggers for the request.
endeca: cont ent Pat h String The content path of the page corresponding to the request.
endeca: di dYouMeanTo Li st The suggested "Did You Mean" term, if it triggers for the

<String> | request.

endeca: di nensi ons Li st The dimension names selected for navigation.
<String>

endeca: di mensi onval ues | Li st The dimension value names selected for navigation.
<String>

endeca: eneTi ne Long The time, in milliseconds, that it takes the MDEX Engine to run

the query.

endeca: nunRecor ds Long The number of records returned for the request.

endeca: nunRef i nenent s I nt eger The number of selected refinements.

endeca: r ecor dNanes Li st The names of the records returned by the request.
<String>

To populate this attribute, the r ecor dDi spl ayFi el dNane
property on the Resul t sLi st Conf i g object must be set to
the name of the field that contains record names.

endeca: r ecor dSpec String The record specifier for a selected record.

endeca: r equest Type Request TypeThe type of request. Possible values are:
* T-Root navigation
+ N-Navigation only
+ S-Search only
+ SN - Search, then navigation
R - Record detail

« UNKNOWN - Unknown

endeca: sear chKey String The search key for the current navigation state.

328 7 Navigation Cartridge Configuration Reference

Attribute Type Description
endeca: sear chMbde String The search mode for the request.
endeca: sear chTer ns String The search terms for the request.
endeca: si t eRoot Pat h String The site root path of the page corresponding to the request.
endeca: sort Key Li st The sort keys for the request. Each key is a St r i ng with the
<String> | formatfi el dNane| <Descendi ng| Ascendi ng> .
endeca: spotlights Li st The list of spotlights triggered for the request.
<String>

7 Navigation Cartridge Configuration Reference

329

330 7 Navigation Cartridge Configuration Reference

	Assembler Application Developer's Guide
	Table of Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	1 About the Assembler
	Introduction to the Assembler
	What is the Assembler?
	Assembler Libraries
	The Role of the Assembler in an Oracle Commerce Application
	Basic Assembler concepts
	About Content Items
	About Cartridges and Cartridge Templates
	About Cartridge Handlers
	Example: The Results List Cartridge

	Configuring Assembler applications in Experience Manager
	Assembler Search and Guided Navigation Features
	Example: The Results List cartridge
	Default Cartridge Configuration
	Instance Configuration
	Request-Based Configuration

	Assembler Architectural Overview
	The Assembler processing model
	Example
	About content items
	About ContentInclude and ContentSlotConfig objects
	Defining a ContentInclude object
	Defining a ContentSlotConfig object

	About nesting content items

	About serialization and de-serialization
	The Assembler eventing framework
	Assembler event framework reference
	Event payload

	About Assembler error handling
	Error handling in the Assembler service

	About cartridges and content items
	About cartridges
	Structure of cartridges

	2 Designing an Assembler Application
	Planning an Assembler Application
	About planning your application sitemap
	About page types
	About page structure and content types
	About mapping pages to services
	Creating a page

	About content folders
	Content folders example
	Creating a content folder
	About moving content folders

	About sites
	Site storage
	Site Awareness

	Creating Experience Manager Templates
	About creating templates
	Anatomy of a template
	Template identifiers
	About the group of a template
	Setting a template group

	Specifying the description and thumbnail image for a template
	About using thumbnail images in Experience Manager

	Specifying the default name for a cartridge
	Defining the content properties and editing interface
	Template properties
	Defining the editing interface for properties
	Configuring editor default values

	Structural properties
	Adding a content item property
	Adding a content item list property
	About cartridge selectors

	About keyword redirects groups
	Implementing keyword redirects in templates
	Associating keyword redirect groups with pages

	About multiple locales
	Managing Experience Manager Templates
	Updating Experience Manager templates
	Troubleshooting problems with uploading templates
	Troubleshooting invalid templates

	About modifying templates that are used by existing pages
	Managing template changes

	Retrieving the current templates from Experience Manager

	3 Developing an Assembler Application
	Deploying the Assembler
	Assembler environment requirements
	Port usage
	Threads
	About authoring and production environments

	Assembler dependencies
	About deploying the Assembler
	Assembler configuration
	Assembler factory
	About configuring cartridge handlers
	HTTP servlet request access
	Search and navigation request configuration
	MDEX resource configuration
	Navigation state builder configuration
	Filtering requests
	Combining site-based filters and URL filters
	Site state builder configuration

	About configuring cartridge handlers that make search and navigation queries
	About configuring cartridges to retrieve dynamic content

	About configuring the Assembler servlet
	Response writers
	Reference implementations

	Invoking the Assembler
	Invoking the Assembler in Java
	Invoking the Assembler with a ContentInclude item
	Invoking the Assembler with a ContentSlotConfig item

	Querying the Assembler Service
	Querying the Assembler Service in a multiple site deployment
	Making dynamic content queries to the Assembler servlet
	The Assembler servlet response format

	About building an Assembler query string
	About retrieving Assembler results using the packaged services
	The Dimension Search Service
	The Record Details Service
	The Guided Search Service
	Configuring dynamic content for the Guided Search Service
	Handling the Guided Search Service response

	About retrieving content item properties from packaged services
	Retrieving information from the Assembler response

	About handling the Assembler response
	About rendering the Assembler response

	Implementing Multichannel Applications
	Overview of multichannel applications with the Assembler
	About creating templates for mobile channels

	Tuning an Assembler application
	Enabling the preview application for Workbench
	About the preview application
	Enabling your Java application for preview
	Adding Preview resources
	Enabling auditing and editing
	Device-specific auditing and editing
	Decorating the page
	Enabling non-Java applications for preview
	Preview CSS
	Standard Web page
	RequireJS (AMD-based) Web page
	addContentItemId(pElement, pContentItem)
	initialize(pContentItem, pCallback)
	addContentItem(pContentItem, pElement, pParentElement)
	removeContentItem(pElement)
	addHotspots(pElement, pTraverseDom)
	removeHotspots(pElement, pTraverseDom)
	on(pEvent, pListener, pScope)
	off(pEvent, pListener)

	Enabling your preview application
	Changing the preview link service
	Managing the preview application in Workbench
	Formatting the Assembler Service URL

	Testing your preview application
	Disabling preview

	Configuring logging for an Assembler Application
	Configuring the RequestEventInitializer and the MdexQueryInfoInitializer
	Instantiating a ContentItemAugmentAdapter
	Instantiating a LogServerAdapter
	Dgraph request logs
	Customizing logging information
	Customizing session ID information
	Customizing request ID information
	Configuring the Log4J logger
	Configuring logging for custom events
	About request events
	The NavigationEventWrapper class

	About request event adapters
	The SessionIdProvider interface
	The RequestIdProvider interface
	Request event adapters in the reference application
	About registering a request event adapter
	Request event adapter configuration in the reference application

	Request event adapters in the reference application

	Client side click events

	Configuring cartridge performance logging
	Debugging MDEX Engine query results
	Query debugging features
	Enabling query debugging features
	URL parameters for query debugging features
	Query debugging results in the reference application

	4 Optimizing Application URLs
	About the URL optimization classes
	Package contents
	Introduction to URL optimization
	Overview of URL optimization capabilities
	Integration of keywords into the URL string
	Canonicalizing the URL string
	Configuring the word separator string
	Moving URL parameters out of the query string
	Encoding Parameters

	URL canonicalization

	Working with Application URLs
	About application URLs
	About Actions
	Action fields
	Using action fields

	About using Actions with the packaged services

	Working with URL parameters
	URL configuration in the reference application
	Configuring URL parameters
	Configuration for navigation and record paths
	URL formatter configuration
	The basic URL formatter
	The SEO URL formatter

	About working with canonical links
	The Canonical Link Builder
	Output content items

	Preparing your application
	Preparing your dimensions
	Preparing your properties
	Handling images and external JavaScript files
	URL transitioning

	Building optimized URLs
	Core URL optimization classes
	UrlState
	UrlFormatter
	QueryBuilder

	Overview of building URLs using the URL optimization classes
	Parsing an incoming query and sending it to an MDEX Engine
	Informing the UrlState of the navigation state
	Creating link URLs from a UrlState

	Configuring URLs
	Anatomy of an optimized URL
	General URL References
	Optimized URLs
	misc-path
	path-param-separator
	path-params
	query string

	About the URL configuration file
	Creating a URL configuration file
	About optimizing the misc-path
	navStateFormatter
	navStateCanonicalizer
	erecFormatter
	aggrERecFormatter
	Formatting misc-path strings in optimized URLs
	Optimizing URLs for navigation pages
	Canonicalization configuration options
	Sort direction
	Sort method

	Optimizing URLs for record detail pages
	Optimizing URLs for aggregate record detail pages

	Configuring the path-param-separator
	About optimizing the path-params and query string
	Moving parameters out of the query string
	Encoding parameters
	Removing session-scope parameters
	Passing non-parameters to the API
	Moving parameters out of the query string
	Encoding parameters
	Removing session-scope parameters
	About passing non-parameters to the API

	Using the URL configuration file with your application

	Integrating with the Sitemap Generator
	The Sitemap Generator urlconfig.xml file
	Using the URL configuration file with the Sitemap Generator

	5 Extending the Assembler
	Extending and Developing Cartridges
	Cartridge Basics
	First steps with a new cartridge
	Adding a basic renderer
	Elements of the example cartridge
	The cartridge template
	The cartridge instance configuration
	The cartridge renderer

	Overview of cartridge extension points
	Customizing the Experience Manager interface
	Adding embedded user assistance to a cartridge
	Using the core Experience Manager editors
	About custom editors

	About Cartridge Handlers and the Assembler
	About the CartridgeHandler interface
	About initializing the cartridge configuration
	About the NavigationCartridgeHandler class

	Implementing a cartridge handler
	Cartridge handler development scenarios

	About using event listeners to extend the navigation cartridges
	Creating an event listener
	About registering an event listener

	Sample Cartridges
	About using the sample cartridges
	Setting up a test application based on Discover Electronics
	Creating a Spring context file for sample cartridges

	RSS Feed cartridge
	Creating the cartridge template
	Creating the cartridge handler
	Creating the cartridge renderer

	Custom Record Details cartridge with availability information
	Creating the cartridge handler and supporting classes

	Custom Results List with recommendations
	Creating the cartridge handler and supporting classes

	"Hello, World" cartridge with layered color configuration
	Creating the cartridge handler and supporting classes
	Creating the cartridge renderer
	Testing the "Hello, World" cartridge with layered color configuration

	Developing Custom Editors
	The Editor SDK
	Editor API
	Editor(pConfig) constructor
	Life cycle methods
	initialize(pTemplateConfig, pContentItem)
	editorReady(pProperty)
	editorError(pLocalizedMessage)
	dispose()
	handleAttached()
	handleDetached()
	Property API

	About developing custom editors
	Building custom editors
	Example: StringEditor editor.js file

	Registering custom editors
	Overriding an existing editor with a custom editor
	Reusing custom editors across multiple applications
	About creating and uploading a cartridge template
	About custom editors in multiple locales
	Creating resources properties files
	Retrieving localized content for your custom editor

	6 Template Property and Editor Reference
	Experience Manager editors mapping reference
	Editor label configuration reference
	Basic content properties
	Adding a string property
	Adding a string editor
	Adding a choice editor

	About numeric properties
	Adding a numeric stepper

	Adding a Boolean property
	Adding a Boolean editor

	Adding an item property
	Adding a list property

	Adding a group label
	Complex property editors
	About the microbrowser
	Data service configuration reference

	About the Select Records dialog
	Select Records data service configuration reference

	About the Dynamic Slot editor
	Creating a cartridge template with a dynamic slot
	Specifying a cartridge handler for a dynamic slot template

	Adding a Link Builder
	About configuring the Link Builder

	About the Media editor
	About the Media Browser
	Adding a Media editor
	About Media editor configuration
	Working with videos and images

	Uploading media to the Endeca Configuration Repository
	About resolving media paths in content items
	About media root elements

	Enabling the Media Browser
	Using an MDEX Engine to index media assets
	Interaction between Experience Manager and the media MDEX Engine
	Interaction between a media MDEX Engine and Experience Manager
	Interaction between the media content source and an Assembler application

	Overview of the reference data application
	Software requirements
	Reference CAS crawl
	Media MDEX Forge pipeline
	Deploying the reference data application for Discover Electronics

	Pipeline configuration for a media crawl
	Required properties
	Properties and dimensions provided in the reference data application
	Search interface requirements

	Adding a Boost-Bury Record editor
	About configuring the boost-bury record editor

	Adding a Guided Navigation editor
	Adding a Dimension Selector
	Adding a Dimension List editor
	Adding a Dimension Value Boost-Bury editor
	Adding a Dimension Value List editor
	Adding an Image Preview
	Adding a Rich Text editor
	Adding a Sort editor
	Adding a Spotlight Selection editor
	About configuring the spotlight selection editor

	Application feature property reference
	Query configuration mappings

	7 Navigation Cartridge Configuration Reference
	Navigation cartridge URL parameter reference
	About this section
	URL parameter description format

	Core URL query parameters
	N (Navigation)
	Ntt (Record Search Terms)
	Ntk (Record Search Key)
	Ntx (Record Search Match Mode)
	Nf (Range Filter)
	Nfg (Geocode Filter)
	Examples

	Nr (Record Filter)
	Nrs (Endeca Query Language Filter)
	R (Record)
	Examples

	Rsel (Featured Records Selector)
	Examples

	A (Aggregated Record)
	Ntp (Auto-Phrasing)
	Examples

	Ntl (Language ID)
	Examples

	Cartridge-specific URL query parameters
	Dy (Dimension Search)
	Nty (Auto-Correct / DYM)
	Nrmc (Refinement Menu Config)
	Results List cartridge URL query parameters
	Nrpp (Records Per Page)
	Ns (Sort Key and Sort Order)
	No (Record Offset)
	Nrt (Relevance Ranking Search Terms)
	Nrk (Relevance Ranking Search Key)
	Nrm (Relevance Ranking Match Mode)
	whymatch (Record Match Info)
	whyrank (Record Rank Info)

	About the navigation cartridge configuration models
	Overview of the navigation cartridge configuration models
	Default cartridge configuration
	Feature configuration in the MDEX Engine

	Cartridge instance configuration
	Request-based configuration

	Search cartridges
	Search box
	MDEX Engine configuration for the Search Box cartridge
	Dynamic configuration
	Static configuration

	Template configuration for the Search Box cartridge

	Auto-suggest search results
	Dimension search results
	Configuration model for the Dimension Search Results cartridge
	MDEX Engine configuration for dimension search results
	Dynamic configuration
	Static configuration

	Cartridge handler configuration for Dimension Search Results
	Template configuration for the Dimension Search Results cartridge
	URL request parameters for the Dimension Search Results cartridge

	Search adjustments
	Configuration model for the Search Adjustments cartridge
	MDEX Engine configuration for the Search Adjustments cartridge
	Dynamic configuration
	Static configuration
	Dgidx flags
	Dgraph flags

	Cartridge handler configuration for Search Adjustments
	Template configuration for the Search Adjustments cartridge
	URL request parameters for the Search Adjustments cartridge
	About implementing automatic phrasing
	Interaction with the Did You Mean feature

	Phrase search scenario: Automatically applying phrases
	Phrase search scenario: Phrases as a search suggestion

	Keyword redirects
	Cartridge handler configuration for keyword redirects
	Content XML for keyword redirects
	About using keyword redirects with the Assembler service
	About handling keyword redirects in an application
	The Assembler response
	Using the Assembler response

	Guided Navigation cartridges
	Refinement menu
	Dimension value boost and bury
	Configuration model for the Refinement Menu cartridge
	Notes on sorting

	MDEX Engine configuration for Guided Navigation
	Static configuration

	Cartridge handler configuration for the Refinement Menu cartridge
	Template configuration for the Refinement Menu cartridge
	URL request parameters for the Refinement Menu cartridge
	About Nrmc URL parameter syntax

	Navigation Container
	Configuration model for the Navigation Container
	Cartridge handler configuration for the Navigation Container
	URL request parameters for the Navigation Container

	Breadcrumbs
	Cartridge handler configuration for Breadcrumbs

	Results cartridges
	Results list
	About the order of records in the record list
	Record boost and bury
	Configuration model for the Results List cartridge
	MDEX Engine configuration for the Results List cartridge
	Dynamic configuration
	Static configuration
	Dgidx flags

	Cartridge handler configuration for the Results List cartridge
	Template configuration for the Results List cartridge
	URL request parameters for the Results List cartridge
	Enabling snippeting in record results

	Record details cartridges
	Record details page
	Configuration model for the Record Details cartridge
	MDEX Engine configuration for the Record Details page
	Dynamic configuration

	Cartridge handler configuration for the Record Details cartridge
	Template configuration for the Record Details cartridge

	Content and spotlighting cartridges
	Record Spotlight
	Configuration model for the Record Spotlight cartridge
	MDEX Engine configuration for a spotlight
	Dynamic configuration

	Cartridge handler configuration for the Record Spotlight cartridge
	Template configuration for a record spotlight

	Media Banner
	Configuration model for the Media Banner cartridge
	MDEX Engine configuration for a media banner
	Dynamic configuration

	Cartridge handler configuration for the Media Banner cartridge
	Template configuration for the Media Banner cartridge

	Dynamic triggering cartridges
	About dynamic slots
	Dynamic slot prerequisites

	Request Event Attributes
	Base request event attributes
	Navigation cartridge request event attributes

