
1

Oracle® Communications Billing and Revenue Management
Elastic Charging Engine 11.3 Extensions

Release 7.5

E70771-03

December 2016

This document describes how to customize the Oracle Communications Billing and
Revenue Management Elastic Charging Engine (ECE) functionality through custom
extension points.

This document is for developers.

Introduction
Use the ECE extensions to customize Diameter Gateway, RADIUS Gateway, pre-rating,
rating, post-rating, and post-charging processes. ECE extensions include sample
implementations that guide you in implementing your custom business logic.

Extension Points
The following sections describe the extension points to customize Diameter Gateway,
RADIUS Gateway, pre-rating, rating, post-rating, and post-charging processes:

■ Diameter-Request Processing Extension Points

■ RADIUS-Request Processing Extension Points

■ Usage-Request Processing Extension Points

Diameter-Request Processing Extension Points
Diameter Gateway provides extension points for Credit Control Request (CCR) and
Credit Control Answer (CCA) flows:

■ RequestReceived extension. The role of the RequestReceived extension is to
manipulate the CCR attribute-value pair (AVP) before the usage request is
processed by Diameter Gateway and to provide an immediate response that
bypasses the online charging system (OCS) completely.

■ PreOCS extension. The role of the PreOCS extension is to manipulate the mapped
ECE usage request payload to perform enrichments that are not possible in the
RequestReceived extension.

■ PostOCS extension. The role of the PostOCS extension is to manipulate the CCA
AVPs before the diameter response is returned to the diameter client.

Figure 1 shows the diameter-request processing extension points.

2

Figure 1 Diameter-Request Processing Extension Points

RADIUS-Request Processing Extension Points
RADIUS Gateway provides extension points for authentication and accounting flows.

Authentication Extension Points
RADIUS Gateway provides extension points for the authentication flow:

■ RequestReceived extension. The role of the RequestReceived extension is to add
or update a custom AVP before the authentication request is processed by
RADIUS Gateway and to provide an immediate response that bypasses the OCS
completely.

■ CustomEAPChallenge extension. The role of the CustomEAPChallenge extension
is to send custom access-challenge request to the RADIUS client when the
Extensible Authentication Protocol (EAP) is used for authentication.

■ PreOCS extension. The role of the PreOCS extension is to perform any actions
related to authentication that are required before the RADIUS request is sent to
ECE.

■ CustomAuth extension. The role of the CustomAuth extension is to implement
the custom EAP authentication methods.

■ CustomEncode extension. The role of the CustomEncode extension is to
implement the custom hashing algorithm that is used on passwords during
authentication when the Password Authentication Protocol (PAP) is used for
authentication.

3

■ PostOCS extension. The role of the PostOCS extension is to add or update a
custom AVP before the authentication response is returned to the RADIUS client.

Figure 2 shows the RADIUS-request processing extension points for EAP
authentication.

Figure 2 Extension Points for EAP Authentication

Figure 3 shows the RADIUS-request processing extension points for PAP and
Challenge-Handshake Authentication Protocol (CHAP) authentication. The solid line
depicts PAP authentication and the dotted line depicts CHAP authentication in this
figure.

4

Figure 3 Extension Points for PAP and CHAP Authentication

Accounting Extension Points
RADIUS Gateway provides extension points for accounting flow:

■ RequestReceived extension. The role of the RequestReceived extension is to add
or update a custom AVP before the accounting request is processed by RADIUS
Gateway and to provide an immediate response that bypasses the OCS completely.

■ PreOCS extension. The role of the PreOCS extension is to enrich the usage request
before the usage request is sent to ECE for accounting purposes.

■ PostOCS extension. The role of the PostOCS extension is to add or update a
custom AVP before the accounting response is returned to the RADIUS client.

Figure 4 shows the RADIUS-request processing extension points for accounting.

5

Figure 4 Extension Points for Accounting

Usage-Request Processing Extension Points
ECE provides extension points in the rating flow: before charge calculation, after
charge calculation (prior to applying a balance impact), and after charging (after
applying a balance impact):

■ Pre-rating extension. The role of the pre-rating extension is to alter the usage
request.

■ Rating extension. The role of the rating extension is to alter rated results after each
of the following processes: rating, alteration, sharing, and taxation.

■ Post-rating extension. The role of the post-rating extension is to alter final rated
results (after rating, alteration, sharing, taxation, and item assignment) and add
new tax rating impacts.

■ Post-charging extension. The role of the post-charging extension is to enrich the
usage response and notification.

You cannot customize rating during the rating, alteration, sharing, and taxation
processes, only before and after. Access is provided to a custom data store that
provides low-latency access to data required for the extensions; for example, customer
data, balance data, and ExtensionServiceContext data.

Figure 5 shows the usage-request processing extension points (called hooks in the
figure).

6

Figure 5 Usage-Request Processing Extension Points

Implementing the Extensions Logic
The GyExtension, PreRatingExtension, RatingExtension, PostRatingExtension,
PostChargingExtension, RadiusRequest, and RadiusResponse interfaces expose
initialize() and shutdown() methods that are called by the hook framework when the
server starts up and when it shuts down. Use these methods to configure your own
internal data structures related to the extensions business logic.

For diameter-request processing extension points, the GyExtension interface is
exposed to the extension points through the ExtensionContext methods.

For diameter-request processing extension points, the following methods are called by
the charging flow:

■ handleRequestReceived(). Called for every CCR that is processed by the charging
flow.

7

■ handlePreOCS(). Called for every CCR and usage request that is processed by the
charging flow.

■ handlePostOCS(). Called for every CCA and usage response that is processed by
the charging flow.

All the methods expose relevant ExtensionContext data for accessing the
ExtensionsDataRepository, AppConfigRepository, and other extensions-related
contexts.

Figure 6 shows the data used in the diameter-request processing extension points.

Figure 6 Data Used in Diameter-Request Processing Extension Points

For extension points that process requests from RADIUS clients, the RadiusRequest
and RadiusReply interfaces are exposed to the extension points through the
ExtensionContext methods.

For authentication-related extension points, the following methods are called by the
authentication flow:

■ handleRequestReceived(). Called for every authentication request that is
processed by the authentication flow.

■ handlePreOCS(). Called to perform any actions related to authentication that are
required in the authentication flow.

■ handlePostOCS(). Called for each authentication response that is processed by the
authentication flow.

■ handleCustomEAPChallenge(). Called to send custom access-challenge requests
to the RADIUS client in the EAP authentication flow.

■ handleCustomAuth(). Called to implement a custom EAP authentication method
in the authentication flow.

8

■ handleCustomEncode(). Called to implement the custom hashing algorithm that
is used on passwords in the PAP authentication flow.

Figure 7 shows the data used in the RADIUS-request processing extension points for
authentication.

Figure 7 Data Used in RADIUS-Request Processing Extension Points for Authentication

For accounting-related extension points, the following methods are called by the
accounting flow:

■ handleRequestReceived(). Called for every accounting request that is processed
by the accounting flow.

■ handlePreOCS(). Called for every accounting request and usage request that is
processed by the accounting flow.

■ handlePostOCS(). Called for every accounting response and usage response that
is processed by the accounting flow.

9

Figure 8 shows the data used in the RADIUS-request processing extension points for
accounting.

Figure 8 Data Used in RADIUS-Request Processing Extension Points for Accounting

For usage-request processing extension points, the execute() method is called for every
usage request, rated result, usage response, and notification that is processed by the
charging flow.

For the rating extension point, the following methods are called by the charging flow:

■ handlePostApplyCharge(). Called to alter rated results after calculating charges
(rating).

■ handlePostApplyAlteration(). Called to alter rated results after calculating
discounts (alteration).

■ handlePostApplyDistribution(). Called to alter rated results after calculating
charge distribution (sharing).

■ handlePostApplyTaxation(). Called to alter rated results after calculating taxes
(taxation).

All methods expose relevant ExtensionContext data for accessing the
ExtensionsDataRepository, AppConfigRepository, and other extensions-related
contexts.

Figure 9 shows the data used in the pre-rating extension point.

10

Figure 9 Data Used in Pre-Rating Extension Point

Figure 10 shows the data used in the rating extension point.

11

Figure 10 Data Used in Rating Extension Point

Figure 11 shows the data used in the post-rating extension point.

12

Figure 11 Data Used in Post-Rating Extension Point

Figure 12 shows the data used in the post-charging extension point.

Figure 12 Data Used in Post-Charging Extension Point

For more information, see the ECE Extension Javadocs in BRM Elastic Charging Engine
Java API Reference.

ECE provides build and deployment capabilities in the form of shell scripts. If any
third-party libraries need to be used inside the custom extensions logic, copy the
third-party JAR files to the ECE_Home/lib directory, where ECE_Home is the directory
in which ECE is installed. After the JAR files have been copied, they need to
synchronize across to the other servers in the cluster. Synchronization is done by

13

running the sync command in Elastic Charging Controller (ECC). For more
information, see the discussion about the ECC sync command in ECE System
Administrator’s Guide.

Custom extensions logic implementation classes that implement the GyExtension,
PreRatingExtension, PostRatingExtension, PostChargingExtension, RadiusRequest,
and RadiusResponse interfaces and their dependencies must be packaged in JAR
format. Ensure the packaged extensions JAR files are available to the ECE runtime
environment in the ECE_Home/lib directory.

RequestReceived Extension
The RequestReceived extension manipulates the CCR, authentication, or accounting
request so that the CCR, authentication, or accounting request can match the business
requirement and provides an immediate response that bypasses the OCS completely.
This extension is called before any rating, discounting, or alteration logic has been
invoked.

Accessible Data
■ Credit Control Request

■ Authentication Request

■ Accounting Request

■ System configuration

■ Extensions data

Modifiable Data
You can modify the CCR, authentication, or accounting request. For example, you can
manipulate AVPs to adapt to non-standard diameter implementations. Certain CCR,
authentication, and accounting request types may not be supported by ECE, Diameter
Gateway, or RADIUS Gateway, so a response can be created in this extension and
returned immediately, bypassing the OCS.

CustomAuth Extension
The CustomAuth extension implements custom EAP authentication methods; for
example, EAP-POTP, EAP-PSK etc.

Accessible Data
■ EAP-Authentication-Request

■ System configuration

Modifiable Data
You can use a custom EAP authentication method if the RADIUS client does not
support EAP-TTLS or EAP-MD5.

CustomEAPChallenge Extension
The CustomEAPChallenge extension sends a custom access-challenge request to the
RADIUS client when custom EAP authentication mechanisms are used for
authentication.

14

Accessible Data
■ Access-Challenge-Request

■ System configuration

■ Extensions data

Modifiable Data
You use the extension point to send the custom access-challenge request to the
RADIUS client when EAP is used for authentication.

PreOCS Extension
The PreOCS extension manipulates usage request payloads before the usage request is
sent to ECE, so that the request can match the business requirement. And, the PreOCS
extension performs any actions related to authentication that are required before the
RADIUS request is sent to ECE. This extension is called before any rating, discounting,
or alteration logic has been invoked.

Accessible Data
■ Credit Control Request

■ Authentication Request

■ Accounting Request

■ ECE Usage Request

■ System configuration

■ Extensions data

Modifiable Data
You can modify the ECE usage request payload. For example, certain usage request
manipulations can be made only when the ECE usage request payload is accessible.
The usage request manipulations are done in this extension.

PostOCS Extension
The PostOCS extension manipulates CCA, accounting, or authentication responses to
match the business requirement before returning the CCA, accounting, or
authentication responses to the diameter client or the RADIUS client. This extension is
called after charging, authentication, and accounting has been completed and
recorded.

Accessible Data
■ Credit Control Request

■ Accounting Response

■ Authentication Response

■ ECE Usage Response

■ Diameter Credit Control Answer

■ System configuration

■ Extensions data

15

Modifiable Data
You can modify the CCA, accounting response, and authentication response. For
example, you can manipulate AVPs to adapt to non-standard diameter and RADIUS
implementations.

CustomEncode Extension
The CustomEncode extension implements the custom hashing algorithm that is used
on passwords for authentication.

Accessible Data
■ Encoded Password

■ System configuration

■ Extensions data

Modifiable Data
You can use the custom hashing algorithm on passwords for authentication. For
example, typically the password from the RADIUS client is hashed (stored in the hash
format) for PAP authentication. However, if the password is hashed in any other
format, you implement the CustomEncode extension point to hash the incoming
password.

Pre-Rating Extension
The pre-rating extension enhances the usage request based on the customer, product,
and balance data so that the usage request can match the business requirement. This
extension is called before any rating, discounting, or alteration logic has been invoked.

Accessible Data
■ ECE Usage Request

■ Calling and called customer (including profile)

■ Product (including profile)

■ Balance information

■ System configuration

■ Extensions

Modifiable Data
■ You can modify usage requests. For example, you modify usage requests to:

- Alter the requested quota. This is implemented in the sample extensions
provided.

- Apply special rates or discounts (such as birthday discounts) for calls based on
the extended rating attributes of both calling customers and called customers.

■ You can modify the values of the pricing attributes with custom logic. This enables
you to override a product price.

16

Rating Extension
The rating extension modifies the rated results after each of the following processes:
rating, alteration, sharing, and taxation.

Accessible Data
■ Customer (including profile)

■ Shared customer (if part of a sharing relationship)

■ Product (including profile)

■ Balance information

■ System configuration

■ Extensions

■ Rated result

Modifiable Data
■ You can alter rated results to modify charges, discounts, charge sharing, taxes, and

item assignments. For example:

- After rating, you can alter charges based on the zones, such as standard and
geographic zones.

- After taxation, you can alter custom item types for the rating impacts
generated from ECE, such as charge, alteration, and distribution rating
impacts.

Post-Rating Extension
The post-rating extension modifies final rated results (after rating, alteration, sharing,
taxation, and item assignment) and creates new tax rating impacts.

Accessible Data
■ Customer (including profiles)

■ Shared customers (if part of a sharing relationship)

■ Product (including profiles)

■ Balance information

■ System configuration

■ Extensions

■ Rated result

Modifiable Data
■ Modify the balance impact amount, GL code, tax code, balance element or invoice

data for rating impacts generated from ECE; for example, charge, alteration, or
distribution rating impacts.

■ Create new tax rating impacts; for example, implement tax on tax.

17

Post-Charging Extension
The post-charging extension enriches the usage response, Diameter notification, and
credit threshold and credit breach notifications. This extension is called after charging
is completed but before the usage response is generated.

Accessible Data
■ Customer (including profiles and subscriber preferences)

■ Shared customers (if part of a sharing relationship, subscriber preferences)

■ Product (including profiles, subscriber preferences, life cycle state)

■ Balance information (including current request impacts)

■ Business profiles

■ System configuration

■ Extensions

■ ExtensionServiceContext

■ Rated result

Modifiable Data
You can modify the usage response, Diameter notification, and credit threshold and
credit breach notifications with custom logic. You can add custom data to the
following:

■ Usage responses and Diameter notifications. You add the data as AVPs. For
example, you can add a custom language preference to a customer’s subscriber
preferences. The custom values are available as diameter hooks for further
propagation.

■ Credit threshold and credit breach notifications. You add the data as key-value
pairs. For example, you can add information such as calling number, called
number, event type, and balance group to these notifications.

You can configure the post-charging extension to reject the current response without
impacting balances.

Extensions Cache
The extensions framework provides a generic repository from which data required for
the pre-rating, rating, post-rating, and post-charging extensions can be uploaded and
used. The data format is described in a specifications file that describes the format of
the data. The extensions specification allows a DataLoader to load the data into the
ECE extensions cache. Example 1 is an example of a specifications file for the
post-rating extension:

Example 1 Sample Tax Table

/*
 * Sample tax table
 */
ExtensionDataSpecification
 Info {
 Name "tax_table_0001"
 }

18

 Payload {
 Block "TAX_ROW" {
 String "TAXCODE"
 String "PKG"
 Decimal "RATE"
 DateTime "START"
 DateTime "END"
 String "LEVEL"
 String "LIST"
 String "DESCRIPTION"
 String "RULE"
 }
 }
}

Example 2 shows the associated data to load into the cache using the specification file
above:

Example 2 Example Data File

This is a sample csv file containing typical tax configuration data.
#
#TaxCode |Pkg |Rate |Start |End |Level |List |Description |Rule
 usage |U |0.05 |01/01/2013 |12/31/2014 |Fed |US |USF |Std
 usage |U |0.08 |01/01/2013 |12/31/2014 |Sta |CA |USTA |Std
 usage |U |0.06 |01/01/2013 |12/31/2014 |Fed |US |USF |Std
 usage |U |0.085 |01/01/2013 |12/31/2014 |Sta |CA,AZ |USTA |Std
 purchase|V |0.08525 |01/01/2013 |12/31/2014 |Sales |CA |PSLS |Std

Extensions Cache API
The extensions repository provides the following APIs for managing extensions data:

■ putExtensionsData(). Takes a single key-value pair of string as a key and value
being an ExtensionsData object.

■ putExtensionsDataCollection(). Takes a map of key-value pairs of string keys and
value being ExtensionsData objects.

■ findExtensionsData(). Returns an ExtensionsData object for a given key.

■ getAllExtensionsData(). Returns a read-only collection of all extensions data from
the repository.

Extensions Repository Constraints
■ You must generate a unique key as a string for one ExtensionsData object (entry in

the extensions cache) at the time of retrieval of the extensions data from the cache.

■ Because the extensions data is replicated across the whole cluster, the amount and
size of data is limited to what a given Java heap can manage; you can also adjust
the Java heap size. Refer to the Java provisioning guidelines.

■ Changes made to the extensions data after it is loaded are expensive to make due
to its cache topology. Avoid frequent updates to the extensions data, especially in a
larger cluster.

■ The framework does not dictate the type of data source that extensions data are
loaded from. The provided SampleExtensionsDataLoader SDK demonstrates
loading the data from a comma-separated-value (CSV) file using extensions

19

domain-specific language APIs. This sample is a recommended design, but it
should not be used as a reference about how to store data.

Sample Extensions
This section documents the sample extensions.

Diameter Gateway Extension - Service
The sample program SampleDiameterGyExtension shows how to use the
immediate-response feature based on an incoming AVP value.

Logic:

If Service-Context-Id is OFFLINE:

Then respond with Diameter Code DIAMETER_REDIRECT_INDICATION and set the
Redirect-Host AVP value

Pre-Rating Extension - Dynamic Quota Management and Retrieving
Function Values
The sample program SamplePreRatingExtension shows pre-rating custom logic. It
illustrates sample logic for the following pre-rating scenarios:

■ Dynamic Quota Management

■ Retrieving Function Values for Discount Expressions

Dynamic Quota Management
The SamplePreRatingExtension program shows how to modify the input request
quantity based on input network type where the customer balance is greater than a
predefined amount.

Logic:

If ORIGIN_NETWORK network field is:

"3G_UTRAN" and USD balance greater than 50 then set quota to 10 MB

or

"4G_UTRAN" and USD balance greater than 50 then set quota to 100 MB

Retrieving Function Values for Discount Expressions
The SamplePreRatingExtension program shows how to retrieve the value referenced
by the function in a discount expression. You create a custom function in ECE that
defines an event profile attribute. You can use the SamplePreRatingExtension
program to call the custom function. ECE then adds the defined event profile attribute
and its value to the usage request.

Logic:

If the PDC rate plan specifies a 10% discount for all accounts active less than 12
months, then the logic is the following:

If customerActiveMonths value is:

< 12 then apply a discount of 10%

20

or

> 12 then apply a discount of 0%

Rating Extension - Custom Item Assignment
The sample program SampleRatingExtension shows how to use the ECE extensions
API to alter the custom item type for rating impacts.

It alters custom item types for the rated results based on the data accessible through
the rating extension. The default configuration for the custom item type used in the
extension must exist in the ECE configuration.

Logic:

1. After taxation, determine the custom item type to be used based on the data
accessible through the rating extension.

2. Assign the rating impacts to the custom bill items based on the new custom item
type.

Post-Rating Extension - Complex Taxation
The sample program SamplePostRatingComplexTaxationExtension shows how to
use the ECE extensions API to override or augment post-rating results using complex
taxation as an example. The program iterates over the tax rating periods and overrides
tax impacts by modifying the rating periods for federal tax and then generates new tax
periods for the state tax.

It applies the tax rate based on the pre-loaded tax configuration data in the extensions
cache. The tax rate is determined based on tax code, tax time, and validity, which are
all based on the request start time. The default configuration for the tax code used in
the extension must exist in the ECE configuration.

Logic:

1. Determine the federal tax rate from the tax configuration table using the tax code,
request start time.

2. Calculate the federal tax based on this tax rate.

3. Modify the original impact in the tax rating period based on the taxable impact
from the linked charge, alteration, or distribution rating period.

4. Determine the state tax rate from the tax configuration table using the tax code,
request start time.

5. Calculate state tax based on this tax rate.

6. Create new tax rating period for the state tax and link it to the original
charge/alteration/distribution rating period.

This program also shows how to use the extensions API to override the invoice data in
the rating result. The overridden value is saved into the CDR output file.

Post-Charging Extension - Adding Custom Data to Usage Responses and
Notifications
The sample program SamplePostChargingExtension shows how to add custom data
to the following:

21

■ Usage responses and Diameter notifications. You add the data as name-value
pairs. Diameter extensions can then access the data by translating the name-value
pairs into AVPs.

■ Credit threshold and credit limit notifications. You add the data as name-value
pairs. ECE then accesses the data and updates the notifications for credit threshold
breach and credit limit breach.

Extensions Data Load Sample
The sample program SampleExtensionsDataLoader demonstrates how the extensions
data repository can be used and how to load data into the repository.

The data loader used for extensions is located in the ECE_
Home/ocecesdk/source/oracle/communication/brm/charging/sdk/extensions
directory.

The following SDK artifacts are provided:

■ tax_configuration.spec

- This is a specification for tax codes. The specification expects a single block
with a cardinality of 1 per ExtensionsData.

- Contains the following attributes:

* Tax code (String)

* Pkg (String)

* Rate (Decimal)

* Start (DateTime)

* End (DateTime)

* Level (String)

* List (String)

* Description (String)

* Rule (String)

■ tax_configuration_data.csv

- A pipe-delimited CSV file. This file acts as a data source for tax codes.

■ SampleExtensionsDataLoader

- A class that reads the CSV file, prepares the payload as per tax specifications,
and uses the extensions repository to add a collection of ExtensionsData.

- Asserts if the number of extensions data added to the repository are the same
as the total being read.

How to Use the Sample Extensions
The following procedure shows how to use the sample extensions:

1. ECE SDK is installed under $SDK_HOME. The directory listing is shown below:

$ ls -l
total 124
drwxr-xr-x 2 ecsuser ecsuser 4096 Jun 21 10:47 bin

22

drwxr-xr-x 2 ecsuser ecsuser 4096 Jun 21 10:47 bin
drwxr-xr-x 3 ecsuser ecsuser 4096 Jun 21 10:47 config
-rw-r--r-- 1 ecsuser ecsuser 5 Jun 21 10:47 VERSION

2. Under the source directory, create a pre-extensions or post-extensions Java Class
using the Extensions API and other libraries (samples are provided as a part of the
ECE SDK.)

$ cd source
$ cd oracle/communication/brm/charging/sdk/extensions
$ ls -l
total 28
-rw-r--r-- 1 ecsuser ecsuser 6427 Jun 21 10:47
SampleExtensionsDataLoader.java
-rw-r--r-- 1 ecsuser ecsuser 12194 Jun 21 10:47 SamplePostRatingComplexTaxation
-rw-r--r-- 1 ecsuser ecsuser 6066 Jun 21 10:47 SamplePreRatingExtension.java
-rw-r--r-- 1 ecsuser ecsuser XXXXX Jun 21 10:47
SamplePostChargingExtension.java

3. Write custom logic in Java and copy it under the directory. The Java source is
under the package oracle.communication.brm.charging.sdk.extensions:

$SDK_HOME/source/oracle/communication/brm/charging/sdk/extensions

4. Change ECE_HOME in the script build_deploy_extension.sh file under $SDK_
HOME/bin/extensions:

configuration begin
ECE_HOME=$ECE_HOME
configuration end

5. Compile the extensions class using the shell script: build_deploy_extension.sh.

a. Each extensions file has to be compiled individually (similar to SDK
programs).

b. Any additional ECE or third-party library required for the extensions needs to
be added to the CLASSPATH in the build_deploy_extension.sh. script

$sh $SDK_HOME/bin/extensions/build_deploy_extension.sh build
SampleDiameterGyExtension
$sh $SDK_HOME/bin/extensions/build_deploy_extension.sh build
SamplePostRatingComplexTaxationExtension
$sh $SDK_HOME/bin/extensions/build_deploy_extension.sh build
SamplePreRatingExtension
$sh $SDK_HOME/bin/extensions/build_deploy_extension.sh build
SamplePostChargingExtension

Do the following optional step if external data needs to be loaded. To compile
the sample extensions loader use the sample_extensions_loader.sh shell
script:

$sh $SDK_HOME/bin/extensions/sample_extensions_loader.sh build
SampleExtensionsDataLoader
$sh $SDK_HOME/bin/extensions/sample_extensions_loader.sh run

6. Deploy creates a single JAR ece.extensions-VERSION-SNAPSHOT.jar with all
the extensions classes and copies the JAR under $ECE_HOME/lib. The JAR file is
copied only to the driver node. It has to be propagated to other ECE nodes in the
grid manually or use a rolling upgrade.

23

$sh $SDK_HOME/bin/extensions/build_deploy_extension.sh deploy

7. Define the pre-rating, rating, post-rating, and post-charging extensions fully
qualified class names in the application configuration file charging-settings.xml
under $ECE_HOME/config/management (the configuration can also be changed
using the Extensions MBeans):

<extensions>
config-class="oracle.communication.brm.charging.appconfiguration.beans.
extensions.ExtensionsConfig"
preRatingExtension="oracle.communication.brm.charging.sdk.extensions.
SamplePreRatingExtension"
RatingExtension="oracle.communication.brm.charging.sdk.extensions.
SampleRatingExtension"
postRatingExtension="oracle.communication.brm.charging.sdk.extensions.
SamplePostRatingComplexTaxationExtension”
postChargingExtension="oracle.communication.brm.charging.sdk.extensions.SampleP
ostChargingExtension"
diameterGyExtension="oracle.communication.brm.charging.sdk.extensions.
SampleDiameterGyExtension"
</extensions>

8. Start/restart the ECE server node(s) and enable logging for the extensions by
setting oracle.communication.brm.charging.extensions.client to DEBUG via JMX
and verify that the custom extensions are executed as a part of rating logic. You
can also turn on debug logging for the RATING module using the JMX console.

Validating Sample Extensions
After the server nodes are brought up initially or by using a rolling upgrade, send a
sample SDK usage request. Enable debug for the RATING module and verify the
server log contains the "SamplePreRatingExtension invoked" and
"PostRatingComplexTaxationSampleExtension executed" messages.

Operational Considerations
This section includes information about using the ECE extensions.

Configuration
You configure implementation classes for the diameter-request processing and
usage-request processing extension points through JMX management by using a JMX
editor.

To configure the implementation classes for the diameter-request processing and
usage-request processing extension points:

1. Access the ECE MBeans:

a. Log on to the driver machine.

b. Start the ECE charging servers (if they are not started).

24

c. Start a JMX editor, such as JConsole, that enables you to edit MBean attributes.

d. Connect to the ECE charging server node set to start CohMgt = true in the
ECE_home/oceceserver/config/eceTopology.conf file.

The eceTopology.conf file also contains the host name and port number for
the node.

e. In the editor's MBean hierarchy, expand the ECE Configuration node.

2. Expand charging.extensions.

3. Expand Attributes.

4. Specify values for the following attributes as needed:

■ diameterGyExtension

■ postRatingECEExtension

■ preRatingECEExtension

■ radiusAuthExtension

■ radiusAccountingExtension

Performance
If extensions are activated, they are called for during every usage request. Always
consider performance for the code you execute in the extensions.

The extensions framework provides an extensions cache mechanism that provides the
lowest latency access to the extensions data. Oracle recommends that you use the
extensions cache mechanism rather than external data sources.

You can use the PerformanceMonitor MBean to monitor CPU usage of server nodes
and client nodes. When building your charging extensions, the methods of the
PerformanceMonitor MBean enable you to monitor the performance impacts of your
extensions. For example, you can run ECE without your extensions and use the
methods to see how much CPU time is used. You can then run ECE with your
extensions, and use the methods again to see how much CPU time is used. By
comparing the CPU times, you can derive the additional time spent by your extension.

Logging
Logging is available in the extensions using the log4j logger to server node log file; for
example:

extensionContext.getLogger().debug("Hello World!" + extensionContext);

Note: Ensure that the extension code is provided in Classpath,
typically under the $ECE_HOME/lib directory, when the ECE Server
running the JMX Management console is started. See "Sample
Extensions" for more information.

Note: Ensure that the extension code is provided in Classpath,
typically under the $ECE_HOME/lib directory, when the ECE Server
running the JMX Management console is started. See "Sample
Extensions" for more information.

25

Exceptions
If there is a need to have the usage request rejected by ECE, it is possible to throw an
ExtensionsException, which will cause the usage request to be rejected and report a
"CUSTOM_EXTENSION_ERROR" reason code in the response.

For more information on the ExtensionsException, see the ECE Extensions JavaDocs
in BRM Elastic Charging Engine Java API Reference.

Security
The following are the recommended best practices to ensure security for the
extensions:

■ Enable JMX security

■ Enable ECE cluster node security

■ Ensure strict governance of OS accounts

■ Follow secure Java coding practices

■ Implement string code review process

■ Run latency-sensitive performance tests on the extensions hooks

■ Use JAR signing

Best Practices
All pre-rating, rating, post-rating, and post-charging extensions must be implemented
in a single class respectively. This class can delegate to additional implementations if
multiple extensions are being implemented.

Extensions data is loaded into a replicate cache in Coherence, and the amount of data
loaded into the cache will need to be taken into consideration when doing the sizing
for Java.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Oracle Communications Billing and Revenue Management Elastic Charging Engine 11.3 Extensions, Release 7.5
E70771-03

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them
to us in writing.

26

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition
Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs,
including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license
terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use
in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in
dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered
trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

	Introduction
	Extension Points
	Diameter-Request Processing Extension Points
	RADIUS-Request Processing Extension Points
	Authentication Extension Points
	Accounting Extension Points

	Usage-Request Processing Extension Points

	Implementing the Extensions Logic
	RequestReceived Extension
	Accessible Data
	Modifiable Data

	CustomAuth Extension
	Accessible Data
	Modifiable Data

	CustomEAPChallenge Extension
	Accessible Data
	Modifiable Data

	PreOCS Extension
	Accessible Data
	Modifiable Data

	PostOCS Extension
	Accessible Data
	Modifiable Data

	CustomEncode Extension
	Accessible Data
	Modifiable Data

	Pre-Rating Extension
	Accessible Data
	Modifiable Data

	Rating Extension
	Accessible Data
	Modifiable Data

	Post-Rating Extension
	Accessible Data
	Modifiable Data

	Post-Charging Extension
	Accessible Data
	Modifiable Data

	Extensions Cache
	Extensions Cache API
	Extensions Repository Constraints

	Sample Extensions
	Diameter Gateway Extension - Service
	Pre-Rating Extension - Dynamic Quota Management and Retrieving Function Values
	Dynamic Quota Management
	Retrieving Function Values for Discount Expressions

	Rating Extension - Custom Item Assignment
	Post-Rating Extension - Complex Taxation
	Post-Charging Extension - Adding Custom Data to Usage Responses and Notifications
	Extensions Data Load Sample
	How to Use the Sample Extensions
	Validating Sample Extensions

	Operational Considerations
	Configuration
	Performance
	Logging
	Exceptions
	Security

	Best Practices
	Documentation Accessibility

