

[1] Oracle® Communications
Network Service Orchestration Solution
Implementation Guide

Release 1.1

E65331-02

July 2016

Oracle Communications Network Service Orchestration Solution Implementation Guide, Release 1.1

E65331-02

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface .. vii

Audience.. vii
Related Documentation... vii
Documentation Accessibility ... viii

1 Overview

About Network Service Orchestration Solution .. 1-1
Solution Components.. 1-2
About Network Service Orchestration Entities.. 1-2
About the Sample Network Protection Service.. 1-4

2 Installing and Integrating the Solution Components

Planning Your Implementation... 2-1
Software Requirements... 2-1
Configuring UIM for the Network Service Orchestration Solution .. 2-2
Integrating the Network Service Orchestration Solution Components .. 2-4

Integrating the VIM with the Solution.. 2-4
Registering the VIM.. 2-4
Discovering VIM Resources .. 2-4

Integrating the SDN Controller With the Solution ... 2-5
Supported Southbound Integration ... 2-5

3 Designing and Onboarding Network Services and VNFs

About the Design Components ... 3-1
About the Descriptor Files .. 3-1

About the Network Service Descriptor ... 3-2
About the VNF Descriptor... 3-5
Creating a Descriptor File .. 3-6

About the Technical Actions File ... 3-6
About Technical Actions.. 3-8
Creating a Technical Action File... 3-9

About the VNF Configuration Files .. 3-9
About the Sample Network Protection Service Model.. 3-10

Implementing a Network Service By Using the Sample Cartridges 3-13
Designing New Network Services and VNF Services ... 3-17

iv

4 Working with Network Services and VNFs

Instantiating a Network Service .. 4-1
Upgrading the Software Version of a VNF ... 4-3
Monitoring and Healing a VNF... 4-3
Modifying a Network Service.. 4-4

Adding a VNF to a Network Service .. 4-4
Deleting a VNF from a Network Service .. 4-4

Terminating a Network Service .. 4-5
Retrieving Details About Network Services, VNFs, and Descriptors ... 4-5

5 Extending the Network Service Orchestration Solution

Setting Up Design Studio for the Network Service Orchestration Solution Cartridges 5-1
Designing Cartridges for Custom VNFs and Network Services .. 5-2
Using Extension Points and Java Interface Extensions to Extend the Solution 5-3

Writing a Custom Ruleset Extension Point .. 5-3
Using Java Interface Extensions... 5-4

Implementing a Custom SDN Controller.. 5-5
Implementing a Custom Monitoring Engine.. 5-6
Implementing a Custom VIM ... 5-7
Implementing a Custom VNF Manager .. 5-9
Implementing a Custom VNF Connection Manager... 5-9
Implementing a Custom VNF Configuration Manager ... 5-10

Localizing the Network Service Orchestration Solution... 5-11

6 Contents of the Network Service Orchestration JAR and ZIP Files

Network Service Orchestration Individual JAR Files .. 6-1
Network Service Orchestration Super JAR File ... 6-2
Network Service Orchestration Applications... 6-2
Network Service Orchestration ZIP Files .. 6-3

7 Network Service Orchestration RESTful API Reference

List of Network Service Orchestration Solution RESTful API Resources 7-1
HTTP Response Status Codes.. 7-3
Sample Requests and Responses .. 7-3

Register a VIM .. 7-3
Method.. 7-3
URL ... 7-4
Sample JSON Request .. 7-4
Sample JSON Response.. 7-4

Discover VIM Resources ... 7-4
Method.. 7-4
URL ... 7-4
Sample Request ... 7-5
Sample Response... 7-5

Instantiate a Network Service .. 7-5
Method.. 7-5

v

URL ... 7-5
Sample Request ... 7-5
Sample Response... 7-6

Terminate a Network Service ... 7-7
Method.. 7-7
URL ... 7-7
Sample Request ... 7-7
Sample Response... 7-7

Upgrade the Software Version of a VNF.. 7-7
Method.. 7-7
URL ... 7-7
Sample Request ... 7-7
Sample Response... 7-7

Heal a VNF.. 7-8
Method.. 7-8
URL ... 7-8
Sample Request ... 7-8
Sample Response... 7-8

Add VNFs to a Network Service ... 7-8
Method.. 7-8
URL ... 7-8
Sample Request ... 7-9
Sample Response... 7-9

Delete a VNF from a Network Service.. 7-9
Method.. 7-9
URL ... 7-9
Sample Request ... 7-9
Sample Response.. 7-10

Get Network Service Information... 7-10
Method... 7-10
URL .. 7-10
Sample Response.. 7-10

Get Network Service Descriptors ... 7-12
Method... 7-12
URL .. 7-12
Sample Response.. 7-12

Get Information about a Network Service Descriptor .. 7-12
Method... 7-12
URL .. 7-12
Sample Response.. 7-12

Get VNF Descriptors... 7-13
Method... 7-13
URL .. 7-13
Sample Response.. 7-13

Get Flavors of a Network Service Descriptor ... 7-13
Method... 7-13
URL .. 7-13

vi

Sample Response.. 7-13
Get Information about a VNF Descriptor.. 7-14

Method... 7-14
URL .. 7-14
Sample Response.. 7-14

Get Versions of a VNF Descriptor .. 7-15
Method... 7-15
URL .. 7-15
Sample Response.. 7-15

Get Flavors of a VNF Descriptor... 7-16
Method... 7-16
URL .. 7-16
Sample Response.. 7-16

Get List of Network Services ... 7-16
Method... 7-16
URL .. 7-16
Sample Response.. 7-17

Get Details about a Network Service ... 7-17
Method... 7-17
URL .. 7-17
Sample Response.. 7-17

Get Details about VNFs in a Network Service.. 7-18
Method... 7-18
URL .. 7-18
Sample Response.. 7-18

Get Details about Networks in a Network Service .. 7-19
Method... 7-19
URL .. 7-19
Sample Response.. 7-19

Get Details about Endpoints in a Network Service.. 7-20
Method... 7-20
URL .. 7-20
Sample Response.. 7-20

Get Status Information of a Network Service ... 7-20
Method... 7-20
URL .. 7-20
Sample Response.. 7-20

Get Details about a VNF... 7-21
Method... 7-21
URL .. 7-21
Sample Response.. 7-21

Get Status Information of a VNF .. 7-22
Method... 7-22
URL .. 7-22
Sample Response.. 7-22

vii

Preface

This guide explains how to implement and use Oracle Communications Network
Service Orchestration Solution.

Audience
This document is intended for:

■ Network operations and management personnel who install, configure, and
maintain physical and virtual network infrastructure

■ Data modelers who define specifications for entities that represent Virtual
Network Functions (VNFs), network services, and other related and dependant
items in the inventory

■ Engineers who model resources in Design Studio

■ Systems integrators who implement and integrate Oracle Communications
Unified Inventory Management (UIM) and third-party software as part of the
Network Service Orchestration solution

The guide assumes that you have a working knowledge of UIM and Network
Functions Virtualization (NFV) architecture and concepts.

Related Documentation
For more information, see the following documentation:

■ UIM Installation Guide: Describes the requirements for installing UIM, installation
procedures, and post-installation tasks.

■ UIM System Administrator’s Guide: Describes administrative tasks such as working
with cartridge packs, maintaining security, managing the database, configuring
Oracle Map Viewer, and troubleshooting.

■ Design Studio Installation Guide: Describes the requirements for installing Design
Studio, installation procedures, and post-installation tasks.

■ UIM Security Guide: Provides guidelines and recommendations for setting up UIM
in a secure configuration.

■ UIM Concepts: Provides an overview of important concepts and an introduction to
using both UIM and Design Studio.

■ UIM Developer’s Guide: Explains how to customize and extend many aspects of
UIM, including the data model, life-cycle management, topology, security, rulesets,
user interface, and localization.

viii

■ Design Studio Developer’s Guide: Describes how to customize, extend, and work
with cartridges.

■ UIM Web Services Developer’s Guide: Describes the UIM Web Service operations and
how to use them, and describes how to create custom Web services.

■ UIM Information Model Reference: Describes the UIM information model entities
and data attributes, and explains patterns that are common across all entities.

■ Oracle Communications Information Model Reference: Describes the Oracle
Communications information model entities and data attributes, and explains
patterns that are common across all entities. The information described in this
reference is common across all Oracle Communications products.

■ UIM Cartridge Guide: Provides information about how you use cartridge packs
with UIM. Describes the content of the base cartridges.

For step-by-step instructions to perform tasks, log in to each application to see the
following:

■ Design Studio Help: Provides step-by-step instructions for tasks you perform in
Design Studio.

■ UIM Help: Provides step-by-step instructions for tasks you perform in UIM.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

1

Overview 1-1

1Overview

This chapter provides an overview of Oracle Communications Network Service
Orchestration Solution and describes the solution components and software
requirements.

About Network Service Orchestration Solution
The Network Service Orchestration solution enables you to create, implement, and
manage the life cycles of network services and their deployment as interconnected
virtual network functions (VNFs) on virtual resources.

The Network Service Orchestration solution provides the following functionality:

■ Onboarding of Network Services and VNFs. You can define and model network
services and VNFs based on any network function that you want to virtualize. See
"Designing and Onboarding Network Services and VNFs" for more information.

■ Instantiation, Scaling, and Termination of Network Services. You can quickly
instantiate, scale, or terminate VNFs and network services in response to the
demand on your network. You can manage the life cycles of your VNFs and
network services and control the resources that they use. See "Working with
Network Services and VNFs" for more information.

■ Monitoring and Auto-healing. You can monitor the performance of the VNFs
continuously and configure the solution to heal a failed VNF automatically. See
"Monitoring and Healing a VNF" for more information about monitoring and
healing a VNF.

■ Resource Orchestration. The solution manages the resources across your data
centres to ensure that each network service is allocated the required resources to
meet the needs of the VNFs.

■ Customization and Extension. You can customize and extend the solution to
support integration with third-party VNF Managers, Virtualized Infrastructure
Managers (VIMs), SDN Controllers, and monitoring engines. The solution
provides extension points that enable you to customize and extend the solution’s
core functionality. See "Extending the Network Service Orchestration Solution" for
more information.

The solution includes a VNF Manager that enables you to manage the life cycles of the
VNFs. The solution also supports integration with Oracle and third-party VNF
Managers, VIMs, SDN Controllers, and network monitoring applications. By default,
the solution provides integration to certain applications and supports integration to
additional applications during the implementation. The solution provides RESTful
APIs, which communicate over HTTP, to interact and exchange data with the
solution’s components.

Solution Components

1-2 Network Service Orchestration Solution Implementation Guide

Solution Components
The Network Service Orchestration solution builds on Oracle Communications
Unified Inventory Management (UIM), taking advantage of its inventory and
workflow capabilities to perform run-time orchestration of NFV environments,
including hybrid virtual and physical networks.

Oracle Communications Design Studio provides the design-time environment for
onboarding VNFs and composing network services. The solution is extensible and
allows integration with third-party VNF managers, VIMs, monitoring engines, and
SDN Controllers.

About Network Service Orchestration Entities
The Network Service Orchestration solution uses the Oracle Communications
Information Model to represent inventory items and business practices. The Oracle
Communications Information Model is based on the Shared Information Data (SID)
model developed by the TeleManagement Forum. The information model contains
resource entities, service entities, common patterns, definitions, and common business
entities.

For details about the Oracle Communications Information Model (OCIM), see Oracle
Communications Information Model Reference and UIM Information Model Reference.

Table 1–1 describes the NFV entities and their corresponding OCIM entities.

Table 1–1 NFV Entities and OCIM Entities

NFV Entity OCIM Entity Description

Network Service Service Represents a network service formed by VNFs on the
NFV infrastructure.

Virtual Network Function
(VNF)

Logical Device Represents a virtual network function.

A VNF is a network function capable of running on an
NFV infrastructure and being orchestrated by a NFV
Orchestrator and VNF Manager. A VNF may
implement a single network entity with interfaces and
behavior defined by standardization organizations like
3GPP and IETF, while another VNF may implement
groups of network entities.

NFV Infrastructure Custom Object with the
following characteristics:

■ Host

■ Port

■ Username

■ Password

■ Domain Name

■ Tenant Name

■ VIM Type

Represents a tenant.

Network Functions Virtualization Infrastructure
(NFVI) is the totality of all hardware and software
components that build the environment where VNFs
are deployed.

Network Service
Descriptor (NSD)

Service Describes the deployment requirements, operational
behavior, and policies required by network services
that are created based on this descriptor.

VNF Descriptor (VNFD) ■ Logical Device

■ Service

Describes the deployment requirements, operational
behavior, and policies required by VNFs that are
created based on this descriptor.

About Network Service Orchestration Entities

Overview 1-3

Virtualized Infrastructure
Manager (VIM)

Custom Object with the
following characteristics:

■ Host

■ Port

■ Username

■ Password

■ Domain Name

■ Tenant Name

■ VIM Type

Represents a Virtualized Infrastructure Manager that
controls and manages the compute, storage, and
network resources.

SDN Controller Custom Object Represents a Software Defined Network (SDN)
controller that manages the flow control to enable
intelligent networking.

Virtual Data Center (VDC) Custom Object with the
following characteristics:

■ Disk Total

■ Memory Total

■ VCPU Total

Represents a virtual machine in a data center.

Availability Zone Custom Object with the
following characteristics:

■ Disk Total

■ Memory Total

■ VCPU Total

■ Disk Used

■ Memory Used

■ VCPU Used

In OpenStack, availability zones enable you to arrange
OpenStack compute hosts into logical groups and
provides a form of physical isolation and redundancy
from other availability zones, such as by using a
separate power supply or network equipment.

Host Custom Object with the
following characteristics:

■ Disk Total

■ Memory Total

■ VCPU Total

■ Disk Used

■ Memory Used

■ VCPU Used

Represents the compute host.

IP Network Infrastructure ■ Network Address
Domain

■ IP Network

■ IP Subnet

■ IP Address

Represents the network, subnet, and IP address of the
VNF in the solution.

The networks are either created or referenced in the
service configuration. During activation, the
corresponding network, subnet, and ports are created
in VIM on which the VNF virtual machine is deployed.

Flavor Custom Object Represents a specific deployment of a network service
or VNF supporting specific Key Performance
Indicators (KPIs) such as capacity and performance.

Endpoint Custom Object Describes a termination endpoint for the network
service.

Connection Point Device Interface Represents a port on the VNF.

Table 1–1 (Cont.) NFV Entities and OCIM Entities

NFV Entity OCIM Entity Description

About the Sample Network Protection Service

1-4 Network Service Orchestration Solution Implementation Guide

About the Sample Network Protection Service
The Network Service Orchestration solution includes sample cartridges that you can
use as references for designing and implementing a network protection service.

See "About the Sample Network Protection Service Model" for detailed information
about the service model and instructions for implementing the sample network
protection service.

2

Installing and Integrating the Solution Components 2-1

2Installing and Integrating the Solution
Components

This chapter describes the software requirements and instructions for installing and
integrating Oracle Communications Network Service Orchestration Solution
components.

Planning Your Implementation
Before you implement the Network Service Orchestration solution, you must identify
the required software, ensure that the required network infrastructure is available and
ready, and identify the third-party software that you want to use with the solution.
Your choices are based on the network services you want to deliver on your network.

Use the following list of tasks as a checklist to ensure that you have all the required
components for a successful implementation of the solution:

■ Install the required software. See "Configuring UIM for the Network Service
Orchestration Solution".

■ Integrate the VIM. See "Integrating the Network Service Orchestration Solution
Components".

■ Integrate the SDN Controller. See "Integrating the SDN Controller With the
Solution".

■ Onboard Network Services and VNFs. See "Designing and Onboarding Network
Services and VNFs".

■ Write extensions for extending the core functionality and integrate third-party
software with the solution. See "Using Extension Points and Java Interface
Extensions to Extend the Solution".

■ Integrate client applications with the solution for using the RESTful APIs. For
details about the solution’s RESTful APIs, see "Network Service Orchestration
RESTful API Reference".

Software Requirements
To implement the Network Service Orchestration solution, you require the following
software:

■ Oracle Communications Unified Inventory Management 7.3.2.

See UIM 7.3.2 Installation Guide for installation instructions.

■ Oracle Communications Design Studio 7.3.1.

Configuring UIM for the Network Service Orchestration Solution

2-2 Network Service Orchestration Solution Implementation Guide

See Design Studio 7.3.1 Installation Guide for installation instructions.

Configuring UIM for the Network Service Orchestration Solution
To configure UIM for the Network Service Orchestration Solution:

1. Install UIM on a WebLogic server. See UIM 7.3.2 Installation Guide for UIM
installation instructions.

2. In UIM, deploy the base UIM cartridges in the following order:

■ ora_uim_baseextpts

■ ora_uim_basemeasurements

■ ora_uim_basetechnologies

■ ora_uim_basespecifications

■ (Optional) ora_uim_common. Deploy this cartridge if you want to implement
a network protection service by using the sample cartridges.

See UIM Cartridge Guide for instructions about deploying cartridges into UIM.

3. Download the gson-2.2.4.jar file from the following website and copy it to the
UIM_Home/lib folder, where UIM_Home is the directory into which UIM is
installed:

http://repo1.maven.org/maven2/com/google/code/gson/gson/2.2.4/

4. Open the Domain_Home/bin/setUIMEnv.sh file and add the following entry,
where Domain_Home is the directory that contains the configuration for the
domain into which UIM is typically installed:

CLASSPATH="${CLASSPATH}:${UIM_HOME}/lib/gson-2.2.4.jar"
export CLASSPATH

5. Restart the server on which UIM is installed.

6. In WebLogic server, deploy the WL_
HOME/common/deployable-libraries/jersey-bundle-1.9.war file as a library
and specify the target as the server on which UIM is installed.

7. Go to deploy/individualJarsForSuperJar and deploy the following Network
Service Orchestration solution cartridges into UIM in the order they are listed:

■ OracleComms_NSO_Common

■ OracleComms_NSO_NFVIAdapter

■ OracleComms_NSO_BaseCartridge

8. (Optional) If you want to use the sample cartridges that are provided with the
solution, deploy the following sample cartridges into UIM in the order they are
listed:

■ NPaaS_NetworkService

Note: If you are upgrading to UIM 7.3.2 from UIM 7.3.0 or UIM 7.3.1,
follow the steps for upgrading from UIM 7.3.x to UIM 7.3.2 in the UIM
7.3.2 Installation Guide.

Configuring UIM for the Network Service Orchestration Solution

Installing and Integrating the Solution Components 2-3

This sample cartridge contains the functionality to implement Network
Protection as a network service.

■ Checkpoint_NG_FW_VNF

This sample cartridge contains the Checkpoint firewall VNF to use with the
Network Protection service.

■ Juniper_vSRX_VNF

This sample cartridge contains the Juniper vSRX firewall VNF to use with the
Network Protection service.

9. In the WebLogic server on which UIM is installed, deploy the
deploy/applications/OracleComms_NSO_WebServices.war file as a web
application.

To deploy the .war file into WebLogic server:

a. Copy the custom.ear file from Domain_Home/UIM/app/7_3_2/ to a
temporary directory.

b. Navigate to the temporary directory and expand the custom.ear archive file by
running the following command:

jar xvf custom.ear

c. Delete the custom.ear file and copy the deploy/applications/OracleComms_
NSO_WebServices.war file to the temporary directory.

d. Open the META_INF/application.xml file in a text editor and add the
following text:

<module>
 <web>
 <web-uri>OracleComms_NSO_WebServices.war</web-uri>
 <context-root>/ocnso/1.1</context-root>
 </web>
</module>

e. Rebuild the custom.ear file by running the following command:

jar cvf custom.ear *

f. Log in to Oracle WebLogic Server Console.

g. Click Lock and Edit.

h. Click Deployments.

i. In the Summary of Deployments section, select custom and click Update.

j. Select Redeploy this application using the following deployment files and
click Change Path.

k. Browse and select the custom.ear file, which is created in the temporary
directory.

l. Click Next.

m. Click Finish.

n. Click Activate Changes.

After you install the required software, integrate the solution components. See
"Integrating the Network Service Orchestration Solution Components" for more
information.

Integrating the Network Service Orchestration Solution Components

2-4 Network Service Orchestration Solution Implementation Guide

Integrating the Network Service Orchestration Solution Components
This section describes the steps that you follow to integrate the Network Service
Orchestration solution components.

Integrating the solution components involves the following tasks:

■ Integrating the VIM with the Solution

■ Integrating the SDN Controller With the Solution

Integrating the VIM with the Solution
Before you integrate the VIM with the solution, ensure that you set up and configure
the VIM to use with the solution. After your VIM infrastructure is set up, you register
the VIM and discover the VIM resources into the solution.

Registering the VIM
To register a VIM with the solution:

1. Ensure that UIM is started and running.

2. Ensure that the Network Service Orchestration solution cartridges are deployed
into UIM.

3. Start the VIM and ensure that you have the IP address, username, and password
of the VIM instance.

4. In a RESTful API client, call the following RESTful API using the POST method:

http://nso_host:port/ocnso/1.1/vim

where:

■ nso_host is the IP address of the machine on which UIM is installed

■ port is the port number of the machine on which UIM is installed

5. Specify the VIM details in the request. For details about the request parameters,
see "Register a VIM" in the "Network Service Orchestration RESTful API
Reference" chapter.

The RESTful API client returns a response.

6. In UIM, verify that a custom object with the details of the VIM is created.

Discovering VIM Resources
You discover VIM resources into UIM so that the solution contains information about
the current status and availability of all the required virtual resources on the network.
When you discover a VIM, the details of the virtual resources are populated into UIM.
In UIM, the VIM is represented as a custom object.

To discover VIM resources into UIM:

1. In a RESTful API client, call the following RESTful API using the POST method:

Note: Register your VIM with the solution only once. Do not register
a VIM that you have already registered. In UIM, if there are multiple
VIM custom objects that refer to the same VIM, resource orchestration
may return errors.

Supported Southbound Integration

Installing and Integrating the Solution Components 2-5

http://nso_host:port/ocnso/1.1/vim/discover/vimName

where:

■ nso_host is the IP address or the domain name of the machine on which UIM is
installed

■ port is the port number of the machine on which UIM is installed

■ vimName is the name of the VIM that you registered with the solution and
whose resources you want to discover

For more details about the request parameters, see "Discover VIM Resources" in
the "Network Service Orchestration RESTful API Reference" chapter.

The RESTful API client returns a response.

2. In UIM, verify that the following entities are created as Custom Objects:

■ Availability zone

■ Flavor

■ Host

■ VDC

Integrating the SDN Controller With the Solution
The Network Service Orchestration solution supports OpenDaylight and provides
integration points for integrating other third-party SDN Controllers. See
"Implementing a Custom SDN Controller", for more information about implementing
a custom SDN Controller.

To integrate your SDN Controller with the solution:

1. In UIM, create a custom object based on the SDN specification and specify the
following details about the SDN Controller that you want to use:

■ Host

■ Port number

■ Username of the SDN Controller

■ Password of the SDN Controller

■ Type of the SDN Controller

2. Associate the VIM custom object as a parent custom object to the SDN Controller
custom object.

Supported Southbound Integration
The Network Service Orchestration solution supports the following southbound
integrations:

■ For VNF management:

Note: Whenever you add, upgrade, modify, or delete the compute,
memory, and network resources in your NFV Infrastructure (NFVI),
run the VIM discovery RESTful API to ensure that details about the
currently available resources on your NFVI are reflected correctly in
the solution.

Supported Southbound Integration

2-6 Network Service Orchestration Solution Implementation Guide

– VNF Manager, with the ability to manage VNFs through direct integration or
by integration with an Element Management System (EMS)

– Framework to integrate with external VNF Managers

■ For Virtual Infrastructure Management

– Integration to OpenStack Kilo and Oracle OpenStack for Oracle Linux Release
2

– Sample integration to VMware vCloud Director

– Framework to integrate to other Virtual Infrastructure Managers

■ For Network and SDN Controllers:

– Integration to OpenStack Neutron (Kilo release)

– Sample integration to OpenDaylight

3

Designing and Onboarding Network Services and VNFs 3-1

3Designing and Onboarding Network Services
and VNFs

This chapter provides information about designing and onboarding network services
and VNFs.

About the Design Components
The design components constitute resources that you create in Oracle
Communications Design Studio. The Network Service Orchestration solution uses
different types of files that you create in Design Studio to describe the behavior of your
network services and VNFs.

■ Entity Specifications. You create specifications in Design Studio that you use to
create instances of VNFs and network services in Oracle Communications Unified
Inventory Management (UIM).

See Design Studio Help for information about creating entity specifications in
Design Studio.

■ Descriptor files. The descriptor files describe the attributes of the VNF and
Network Service specifications.

See "About the Descriptor Files" for more information about the descriptor files.

■ Technical action files. The technical action files describe the actions for the VNFs
and Network Services in the VIM. There is one technical action file for each
network service and VNF.

See "About the Technical Actions File" for more information about the descriptor
files.

■ Configuration and template files. The configuration files contain the
configuration and post-configuration details for the VNFs.

See "About the VNF Configuration Files" for more information about the
descriptor files.

■ Custom extensions. See "Extending the Network Service Orchestration Solution"
for information about implementing custom extensions with the solution.

About the Descriptor Files
The descriptor files contain metadata about the network services and VNFs. The
solution defines a number of NFV descriptors in the form of Design Studio
specifications. These specifications are used by the Network Service Orchestration

About the Design Components

3-2 Network Service Orchestration Solution Implementation Guide

solution to create NFV events for managing the life cycles of VNFs and network
services.

VNF descriptors describe the behavior of virtual functions that are defined in the
Network Service Orchestration cartridges. Network services are assembled from the
defined units of behavior provided by the VNFs in the cartridges. Network Service
descriptors structure how these network services are populated in the cartridges.
There is one descriptor file for each network service and VNF.

About the Network Service Descriptor
Network Service descriptor files describe the deployment requirements, operational
behavior, and policies required by network services based on them.

When you instantiate, scale, or terminate a network service, the network service
deploys, scales, and undeploys the constituent VNFs based on the parameters and
policies specified in the descriptor file.

In the network service descriptor file, you:

■ Define the networks by either creating them or by reference existing networks and
specifying network types.

■ For each network, specify the VNFs the network service should use.

■ Specify the flow path for the network traffic.

■ For each VNF in the network service, specify parameters related to CPU utilization
and other factors related to performance of the virtual machine on which the VNF
is deployed.

■ Specify when you want to heal a VNF and scale the network service.

Describing Networks
In the network service descriptor XML file, you define networks by creating them or
by referencing existing networks and specifying their types. You represent networks as
virtual links. You can create or reference any number of networks based on your
service requirements. You can also specify the number of end points the networks can
have.

The following text shows the pattern in which you describe a virtual link descriptor,
which corresponds to a network in the sample NPaaS_NSD.xml network service
descriptor file:

-<virtualLinkDescriptors>
 -<virtualLinkDescriptor name="network_name" type="network_type"
isReferenced="value">
 <numberOfEndPoints>number_of_endpoints</numberOfEndPoints>
 -<connectionPoints>
 <!-- The format is VNFD:ConnectionPoint -->
 <connectionPoint name="vnf_descriptor_name:connection_point_name"
type="connection_point_type" order="connectionPoint_order"/>
 </connectionPoints>
 </virtualLinkDescriptor>
</virtualLinkDescriptors>

where:

■ network_name is the name of the network that you want to create or reference.

■ network_type is the type of the network that you want to create or reference.

About the Design Components

Designing and Onboarding Network Services and VNFs 3-3

■ value indicates whether you want to create or reference the network. Specify true
or false.

■ number_of_endpoints is the number of endpoints that the network provides.

■ vnf_descriptor_name:connection_point_name is the name of the VNF descriptor XML
file and the name of the VNF connection point.

■ connection_point_type is the type of the connection point.

■ connectionPoint_order is the order of the connection points for the VNF.

The following text shows a sample virtual link descriptor element in the sample
NPaaS_NSD.xml network service descriptor file:

-<virtualLinkDescriptors>
 -<virtualLinkDescriptor name="Data_IN" type="Data" isReferenced="false">
 <numberOfEndPoints>20</numberOfEndPoints>
 -<connectionPoints>
 <!-- The format is VNFD:ConnectionPoint -->
 <connectionPoint name="Juniper_vSRX_VNFD:CP01" type="IN" order="2"/>
 </connectionPoints>
 </virtualLinkDescriptor>
</virtualLinkDescriptors>

Describing Forwarding Graphs
The following text shows the pattern in which you describe a forwarding graph in the
NPaaS_NSD.xml network service descriptor file:

-<forwardingGraphDescriptors>
 -<forwardingGraphDescriptor name="ForwardingGraphName" default="default">
 -<networkForwardingPath>
 -<vnfd name="vnf_descriptor_name">
 -<connectionPoints>
 <connectionPoint name="connection_point_name" type="type_of_
connectionPoint"/>
 <connectionPoint name="connection_point_name" type="type_of_
connectionPoint"/>
 </connectionPoints>
 </vnfd>
 </networkForwardingPath>
 </forwardingGraphDescriptor>
</forwardingGraphDescriptors>

where:

■ ForwardingGraphName is the name of the forwarding graph.

■ default indicates if the network service should use this forwarding graph by
default or not.

■ vnf_descriptor_name is the name of the VNF descriptor that you want to use with
the network service.

■ connection_point_name is the name of the connection point defined in the VNF
descriptor, that you want to use for the forwarding graph.

■ type_of_connectionPoint is the type of the connection point.

The following text shows a sample forwarding graph element in the NPaaS_NSD.xml
network service descriptor file:

-<forwardingGraphDescriptors>
 -<forwardingGraphDescriptor name="Data" default="true">

About the Design Components

3-4 Network Service Orchestration Solution Implementation Guide

 -<networkForwardingPath>
 -<vnfd name="Checkpoint_NG_FW_VNFD">
 -<connectionPoints>
 <connectionPoint name="CP01" type="IN"/>
 <connectionPoint name="CP02" type="OUT"/>
 </connectionPoints>
 </vnfd>
 </networkForwardingPath>
 </forwardingGraphDescriptor>
</forwardingGraphDescriptors>

Describing Deployment Flavors
The following text shows the pattern in which you describe deployment flavors in the
NPaaS_NSD.xml network service descriptor file:

-<serviceDeploymentFlavors>
 -<serviceDeploymentFlavor name="flavorName">
 -<constituentVNFDs>
 -<vnf>
 <vnfd name="VNFDname"/>
 -<assuranceParameters>
 -<assuranceParameter name="assuranceParameterName" action="action">
 <id>Id</id>
 <value>value</value>
 <condition>condition</condition>
 </assuranceParameter>
 -<assuranceParameter name="assuranceParameterName" action="action">
 <id>Id</id>
 <value>value</value>
 <condition>condition</condition>
 </assuranceParameter>
 </assuranceParameters>
 </vnf>
 </constituentVNFDs>
 </serviceDeploymentFlavor>
</serviceDeploymentFlavors>

where:

■ flavorName is the name of the service deployment flavor.

■ VNFDname is the name of the VNF Descriptor.

■ assuranceParameterName is the name of the assurance parameter.

■ action is the action you want to perform on the VNF. You can specify either to heal
or scale the VNF.

■ Id is the Id of the assurance parameter.

■ value is the threshold value.

■ condition is the condition based on which the action is performed.

The following text shows a sample service deployment flavor element in the NPaaS_
NSD.xml network service descriptor file:

-<serviceDeploymentFlavors>
 -<serviceDeploymentFlavor name="Checkpoint">
 -<constituentVNFDs>
 -<vnf>
 <vnfd name="Checkpoint_NG_FW_VNFD"/>

About the Design Components

Designing and Onboarding Network Services and VNFs 3-5

 -<assuranceParameters>
 -<assuranceParameter name="Low CPU Utilization" action="heal">
 <id>cpu_util</id>
 <value>0.0</value>
 <condition>eq</condition>
 </assuranceParameter>
 -<assuranceParameter name="High CPU Utilization" action="scale">
 <id>cpu_util</id>
 <value>80.0</value>
 <condition>gt</condition>
 </assuranceParameter>
 </assuranceParameters>
 </vnf>
 </constituentVNFDs>
 </serviceDeploymentFlavor>
</serviceDeploymentFlavors>

About the VNF Descriptor
The VNF descriptor files describe the deployment requirements, operational behavior,
and policies required by VNFs that are based on them.

In the VNF descriptor file, you specify:

■ Deployment flavor parameters

■ Connection points for the VNF

■ Software version of the VNF

The following text shows the pattern in which you describe a VNF in the VNF
descriptor file:

-<vnfd name="VNFdescriptorName">
 -<deploymentFlavors>
 <deploymentFlavor name="deploymentFlavorName" disk="diskSpace" memory="memory"
vcpus="vcpus"/>
 <deploymentFlavor name="deploymentFlavorName" disk="diskSpace" memory="memory"
vcpus="vcpus"/>
 </deploymentFlavors>
 -<connectionPoints>
 <connectionPoint name="ConnectionPointName"/>
 <connectionPoint name="ConnectionPointName"/>
 <connectionPoint name="ConnectionPointName"/>
 </connectionPoints>
 <defaultDeploymentFlavor>defaultDeploymentFlavorName</defaultDeploymentFlavor>
 -<versions>
 <version imagePasswd="" imageUserName="" imageName="imageName"
number="versionNumber"/>
 </versions>
</vnfd>

where:

■ VNFdescriptorName is the name of the VNF Descriptor.

■ deploymentFlavorName is the name of the VNF deployment flavor.

■ diskSpace is the disk space that you want to allocate for the VNF.

■ memory is the memory you want to allocate for the VNF.

■ vcpus is the number of virtual CPUs that you want to allocate for the VNF.

About the Design Components

3-6 Network Service Orchestration Solution Implementation Guide

■ ConnectionPointName is the name of the connection point.

■ defaultDeploymentFlavorName is the name of the deployment flavor that you want
to use for the VNF by default.

■ imageName is the name of the VNF image.

■ versionNumber is the version number of the VNF image.

The following text shows sample VNF elements in the Juniper_vSRX_VNFD.xml
VNF descriptor file:

-<vnfd name="Juniper_vSRX_VNFD">
 -<deploymentFlavors>
 <deploymentFlavor name="vsrx.medium" disk="20" memory="4" vcpus="2"/>
 <deploymentFlavor name="m1.medium" disk="40" memory="4" vcpus="2"/>
 </deploymentFlavors>
 -<connectionPoints>
 <connectionPoint name="CP01"/>
 <connectionPoint name="CP02"/>
 <connectionPoint name="CP03"/>
 </connectionPoints>
 <defaultDeploymentFlavor>vsrx.medium</defaultDeploymentFlavor>
 -<versions>
 <version imagePasswd="" imageUserName=""
imageName="vsrx-12.1X47-D20.7-npaas-v0.3" number="1.0"/>
 </versions>
</vnfd>

Creating a Descriptor File
To create a descriptor file:

1. In Design Studio, import all the required cartridges. See "Setting Up Design Studio
for the Network Service Orchestration Solution Cartridges" for more information
about importing the cartridges into Design Studio.

2. Switch to the Navigator view.

3. In the root directory of the cartridge, create the following folder structure:

model\content\product_home\config

4. Right-click on the config folder and create an XML file with the name
ServiceSpecificationName.xml.

5. Copy the sample content from the sample cartridge to the XML file and modify it
according to your solution requirements.

About the Technical Actions File
The technical action files describe the actions for the VNFs and Network Services in
the VIM. There is one technical action file for each network service and VNF.

Figure 3–1 shows a sample VNF service configuration model in Design Studio.

About the Design Components

Designing and Onboarding Network Services and VNFs 3-7

Figure 3–1 VNF Service Configuration Model

The following example shows the elements in the technical actions file:

<technicalActionCalculator
 xmlns="http://xmlns.oracle.com/communications/inventory/actioncalculator"

xmlns:invactcalc="http://xmlns.oracle.com/communications/inventory/actioncalculato
r"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.oracle.com/communications/inventory/actioncalcula
tor schemas/TechnicalActionCalculator.xsd">
 <invactcalc:action>
 <name>DEPLOY_VNF</name>
 <actionCode>DEPLOY_VNF</actionCode>
 <subject>
 <class>LogicalDevice</class>
 </subject>
 <target>
 <class>LogicalDevice</class>
 </target>
 <parameter>
 <name>serviceID</name>
 <type>string</type>
 </parameter>
 <parameter>
 <name>vnfID</name>
 <type>string</type>
 </parameter>
 <parameter>
 <name>vnfName</name>
 <type>string</type>
 </parameter>
 <parameter>
 <name>vnfdName</name>
 <type>string</type>
 </parameter>
 <parameter>
 <name>imageName</name>

About the Design Components

3-8 Network Service Orchestration Solution Implementation Guide

 <type>string</type>
 </parameter>
 </invactcalc:action>

 <invactcalc:match>
 <invactcalc:diff>
 <invactcalc:path>/root/after/vnf/Assignment[@State='PENDING_ASSIGN'
 and /root/service[state!='PENDING_
DISCONNECT']]/..</invactcalc:path>
 </invactcalc:diff>
 <invactcalc:action>DEPLOY_VNF</invactcalc:action>
 <invactcalc:anchor>.</invactcalc:anchor>
 </invactcalc:match>

 <invactcalc:generator>
 <invactcalc:action>DEPLOY_VNF</invactcalc:action>
 <invactcalc:condition>/root/after/vnf/Assignment[@State='PENDING_
ASSIGN']</invactcalc:condition>
 <subject>.</subject>
 <target>.</target>
 <binding>
 <parameter>serviceID</parameter>
 <path>/root/service/id</path>
 </binding>
 <binding>
 <parameter>vnfID</parameter>
 <path>Assignment/id</path>
 </binding>
 <binding>
 <parameter>vnfName</parameter>
 <path>Assignment/name</path>
 </binding>
 <binding>
 <parameter>vnfdName</parameter>
 <path>Assignment/specification</path>
 </binding>
 <binding>
 <parameter>imageName</parameter>
 <path>Assignment/imageName</path>
 </binding>
 </invactcalc:generator>
</technicalActionCalculator>

About Technical Actions
In the technical actions file, for each technical action, you define the following
elements:

■ action: This element declares a technical action, its signature, which contains the
name and type of each parameter, and the type of its subject and target.

■ match: This element declares configuration differences that match an XPath
expression.

■ generator: This element defines all the bindings of the configuration to the
parameters, subject, and target of the action to be generated.

About the Design Components

Designing and Onboarding Network Services and VNFs 3-9

Creating a Technical Action File
In Design Studio, you create a technical action file for each Network Service
specification and VNF Service specification.

To create a technical action file:

1. In Design Studio, switch to the Navigator view.

2. In the root directory of the cartridge, create the following folder structure:

model\content\product_home\config

3. Right-click on the config folder and create an XML file with the name
ServiceSpecificationName_TechnicalActions.xml.

4. Copy the sample content from the sample cartridge to the XML file and modify it
according to your solution requirements.

About the VNF Configuration Files
After a VNF is deployed, you can configure the VNF based on the configuration
requirements of the VNF.

To configure the VNF, the solution requires the following configuration files to be
created:

■ VNFD_NameTemplate.conf

This is a VNF-specific configuration template in which you specify the placeholder
fields for instance-specific parameters.

■ VNFD_NameConfig.xml

This is a configuration file in which you specify the VNF instance-specific
configuration parameter values as name-value pairs.

The solution generates the VNFD_Name.conf configuration file based on the VNFD_
NameTemplate.conf file and the VNFD_NameConfig.xml file.

The solution reads all the name-value pairs in the VNFD_NameConfig.xml file and
replaces the placeholder fields in the VNFD_NameTemplate.conf file and generates the
VNFD_Name.conf file.

The following text shows a sample configuration template for the Juniper vSRX VNF
in the Juniper_vSRX_VNFDTemplate.conf configuration file:

 <rpc>
 <edit-config>
 <target>
 <candidate/>
 </target>
 <config>
 <configuration>
 <security>
 <utm>
 <custom-objects>
 <url-pattern>
 <name>bad-sites</name>

Note: Configuration is not required for all VNFs. Configuration is
required only for those VNFs that need additional configurations
other than the configuration in the VNF’s software image.

About the Sample Network Protection Service Model

3-10 Network Service Orchestration Solution Implementation Guide

 <value>{{site-name}}</value>
 </url-pattern>
 </custom-objects>
 </utm>
 </security>
 </configuration>
 </config>
 </edit-config>
 </rpc>

The following example shows a sample configuration for the Juniper vSRX VNF in the
Juniper_vSRX_VNFDConfig.xml configuration file:

<vnfConfiguration>
 <config>
 <param>
 <name>site-name</name>
 <value>www.example.com</value>
 </param>
 <sbiToPushConfiguration>
 <interface>netconf</interface>
 <interface-script></interface-script>
 </sbiToPushConfiguration>
 <action>null</action>
 </config>
 </vnfConfiguration>

About the Sample Network Protection Service Model
The Network Service Orchestration solution provides the following sample cartridges
that you can use as references for designing and implementing network protection as a
service on your network:

■ NPaaS_NetworkService. This sample cartridge contains functionality to
implement a Network Protection service on your network.

■ Juniper_vSRX_VNF. This sample cartridge contains the functionality to implement
a Juniper vSRX firewall as a VNF.

■ Checkpoint_NG_FW_VNF. This sample cartridge that contains the functionality to
implement a Checkpoint firewall as a VNF.

Figure 3–2 shows how the Network Protection service is modeled in the sample
Network Service cartridge.

About the Sample Network Protection Service Model

Designing and Onboarding Network Services and VNFs 3-11

Figure 3–2 Network Service Model

Figure 3–3 shows how a VNF service is modeled in the sample VNF cartridge.

About the Sample Network Protection Service Model

3-12 Network Service Orchestration Solution Implementation Guide

Figure 3–3 VNF Service Model

The solution includes sample descriptor files for the sample Network Protection
service and the constituent VNFs. The descriptor files enable you to define the
behavior of the network service and the VNFs.

■ NPaaS_NSD.xml. This is the descriptor file for the Network Protection service.

■ Juniper_vSRX_VNFD.xml. This is the descriptor file for the Juniper vSRX firewall
VNF.

■ Checkpoint_NG_FW_VNFD.xml. This is the descriptor file for the Checkpoint
NG firewall VNF.

About the Sample Network Protection Service Model

Designing and Onboarding Network Services and VNFs 3-13

You open the descriptor files in Design Studio and specify the deployment
requirements, operational behavior, and policies required by network services.

In the descriptor file:

■ Specify the networks that you want to create or reference. In the descriptor file,
networks are represented as virtual link descriptors.

■ Specify the VNFs and the flow path that you want the network traffic to pass
through.

■ Specify the CPU utilization and other parameters for each VNF in the network
service.

See "About the Descriptor Files" for more information about the Network Service
descriptor file.

See "About the VNF Descriptor" for more information about the VNF descriptor
file.

The solution includes sample technical action files for the VNFs. The technical action
files enable you to describe the actions for the VNFs in the VIM.

■ NPaaS_NSD_TechnicalActions.xml. This is the technical actions file for the
Network Protection service.

■ Juniper_vSRX_ServiceDescriptor_TechnicalActions.xml. This is the technical
actions file for the Juniper vSRX firewall VNF.

■ Checkpoint_NG_FW_ServiceDescriptor_TechnicalActions.xml. This is the
technical actions file for the Checkpoint NG virtual firewall.

Implementing a Network Service By Using the Sample Cartridges
The sample network protection service uses the following software components:

■ UIM 7.3.2 and the Network Service Orchestration Solution 1.1 cartridges

■ OpenStack VIM, with Open vSwitch capability

■ OpenDaylight SDN Controller

■ Software images for the firewall VNFs

To implement the network protection service:

1. In OpenStack, create a tenant or reference an existing tenant with administrator
privileges.

2. Create a management network or reference an existing management network that
can be shared by all the components of the solution.

The management network requires, at a minimum:

■ One IP address for each:

– Virtual machine on which UIM is installed

– Virtual machine on which Open vSwitch is installed

– Virtual machine on which OpenDaylight is installed

■ One IP address for each virtual machine on which you want to bring up the
VNFs

About the Sample Network Protection Service Model

3-14 Network Service Orchestration Solution Implementation Guide

3. Connect the management network and the external network to a virtual router.
This enables you to use floating IP addresses for providing access to the data
center.

4. Create a customer-side network that facilitates the customer’s network traffic to
reach the VNFs.

Table 3–1 shows a sample network and subnet configuration for the customer-side
network.

5. Create an Internet-side network that facilitates the traffic from the customer-side
network to the Internet.

Table 3–2 shows a sample network and subnet configuration for the Internet-side
network.

6. Create packet-in and packet-out networks.

Table 3–3 shows a sample network and subnet configuration for the packet-in
network.

Table 3–4 shows a sample network and subnet configuration for the packet-out
network.

7. Start the OpenDaylight virtual machine on the management network.

8. Start the Open vSwitch virtual machines on the management network,
customer-side network, Internet-side network, packet-in network, and packet-out
network.

Table 3–1 Sample Network and Subnet Configuration for Customer-side Network

CIDR IP Allocation Pool Gateway IP DHCP Enabled
Additional
Routes

DNS Name
Server

192.0.2.0/24 Start 192.0.2.145

End 192.0.2.250

192.0.2.1 Yes None None

Table 3–2 Sample Network and Subnet Configuration for Internet-side Network

CIDR IP Allocation Pool Gateway IP DHCP Enabled
Additional
Routes

DNS Name
Server

192.0.2.0/24 Start 192.0.2.2

End 192.0.2.254

192.0.2.1 No None None

Table 3–3 Sample Network and Subnet Configuration for Packet-in Network

CIDR IP Allocation Pool Gateway IP DHCP Enabled
Additional
Routes

DNS Name
Server

192.0.2.128/24 Start 192.0.2.129

End 192.0.2.140

- Yes None None

Table 3–4 Sample Network and Subnet Configuration for Packet-out Network

CIDR IP Allocation Pool Gateway IP DHCP Enabled
Additional
Routes

DNS Name
Server

192.0.2.0/24 Start 192.0.2.115

End 192.0.2.126

192.0.2.1 Yes None None

About the Sample Network Protection Service Model

Designing and Onboarding Network Services and VNFs 3-15

9. On the Open vSwitch virtual machine, run the following commands:

■ Create a steering bridge:

ovs-vsctl add-br steering

where steering is the name of the integration bridge.

■ Add the interfaces of the networks you created to the steering bridge:

ovs-vsctl add-port steering networkInterface

where networkInterface is the name of the network interface. For example, eth1.

ovs-vsctl add-port steering eth1
ovs-vsctl add-port steering eth2
ovs-vsctl add-port steering eth3
ovs-vsctl add-port steering eth4
ovs-vsctl add-port steering eth5

■ Set the IP address and port number of the OpenDaylight virtual machine as
the controller to the steering bridge:

ovs-vsctl set-controller steering tcp:OpenDaylight_IPAddress

8 ovs-vsctl set bridge steering protocols="OpenFlow13"

where OpenDaylight_IPAddress is the IP address of the OpenDaylight virtual
machine.

■ Get the port numbers:

ovs-vsctl -- --columns=name_of_port list Interface

where name_of_port is the name of the Open vSwitch port.

10. In Design Studio, open the nso.properties file and do the following:

■ Update the corresponding Open vSwitch port numbers of the network
interfaces:

– nso.ovs.pktInToOVSPort = ovsPort

where ovsPort is the Open vSwitch port number of the network interface
that you attached to the steering bridge.

– nso.ovs.pktInToOVSPort = 4

– nso.ovs.pktOutToOVSPort = 1

– nso.ovs.custNetToOVSPort = 5

– nso.ovs.internetToOVSPort = 2

■ Update the following server details:

– NSO_HOST: IPv4address

– NSO_USERNAME: username

where IPV4address is the IP address and username is the username of the
machine on which UIM is installed.

About the Sample Network Protection Service Model

3-16 Network Service Orchestration Solution Implementation Guide

■ Specify the following networks:

– NPaaS_NSD.ManagementNetwork=management_network

where management_network is the name of the management network.

– NPaaS_NSD.Data_IN=packet_in_network

where packet_in_network is the name of the packet-in network.

– NPaaS_NSD.Data_OUT=packet_out_network

where packet_out_network is the name of the packet-out network.

■ Specify the name of the network service descriptor:

ServiceDescriptors = NPaaS_NSD

where NPaaS_NSD is the name of the Network Service descriptor.

11. Open the NPaaS_NSD.xml file and set isReferenced to true.

12. Open the nfvi.properties file and update the odlManager path:

sdnController.ODL=com.oracle.communications.inventory.nso.nfvi.sdn.ODLManager

13. In OpenDaylight, retrieve the OpenFlow ID by calling the following OpenDaylight
REST API:

http://odl_IPaddress:port/restconf/operational/opendaylight-inventory:nodes/

where odl_IPaddress is the IP address and port is the port number of the
OpenDaylight virtual machine.

14. In the nso.properties file, update the OpenFlow ID:

nso.ovs.bridge_id=openflow:OpenFlow_ID

15. Redeploy the cartridges in Design Studio. See "Configuring UIM for the Network
Service Orchestration Solution" for information about deploying the cartridges in
the specified order.

16. Register the VIM by calling the corresponding RESTful API. See "Integrating the
VIM with the Solution" for instructions.

17. Discover the VIM resources. See "Discovering VIM Resources" for instructions.

Note: By default, the nso.properties file displays the username and
password of the Network Service Orchestration solution user in plain
text. You can encrypt the password by running the EncryptText
ruleset in UIM.

To encrypt the password:

1. Create a text file and type the password.

2. Save and close the file.

3. In UIM, run the EncryptText ruleset, and browse and specify the text file
that contains the password in plain text.

UIM displays the encrypted password.

4. Copy the encrypted password and paste it in the nso.properties file.

Designing New Network Services and VNF Services

Designing and Onboarding Network Services and VNFs 3-17

Designing New Network Services and VNF Services
You can define and model network services and VNFs depending on the network
functions that you want to virtualize on your network.

To define and model network services and VNFs, you work in Design Studio. In
Design Studio, you define specifications and properties for your network services,
VNFs, and their hierarchical and related components.

To model a network service with a VNF, you create two cartridges in Design Studio:
one cartridge for the VNF and one cartridge for the network service.

In the cartridge for the Network Service, do the following:

■ Specify the following UIM entity specifications:

– One Service specification for the Network Service

– One Service Configuration specification for the network service

■ Create a technical actions file for the Network Service specification. See "Creating a
Technical Action File" for more information.

■ Create a network service descriptor file for the Network Service specification. See
"Creating a Descriptor File" for more information.

■ Create a custom properties file for the Network Service specification.

■ Create custom code for extension.

In the cartridge for the VNF Descriptor, do the following:

■ Specify the following UIM entity specifications:

– One Service specification for the VNF

– One Service Configuration specification for the VNF

– A Logical Device specification for the VNF

■ Create a technical actions file for the VNF Service specification. See "Creating a
Technical Action File" for more information.

■ Create a VNF descriptor file for the VNF Service specification. See "Creating a
Descriptor File" for more information.

■ Create a configuration file for the VNF.

■ Create a post-configuration template configuration file for the VNF. See "About the
VNF Configuration Files" for more information.

■ Create a template file for the VNF.

■ Create custom code for extension.

Designing New Network Services and VNF Services

3-18 Network Service Orchestration Solution Implementation Guide

4

Working with Network Services and VNFs 4-1

4Working with Network Services and VNFs

This chapter provides instructions for working with network services and VNFs in
Oracle Communications Network Service Orchestration Solution.

You perform the following tasks related to VNFs and network services:

■ Instantiating a Network Service

■ Upgrading the Software Version of a VNF

■ Monitoring and Healing a VNF

■ Modifying a Network Service

■ Terminating a Network Service

■ Retrieving Details About Network Services, VNFs, and Descriptors

Instantiating a Network Service
You instantiate a network service to start a VNF on the network. A network service
can have multiple VNFs that are connected to each other. When you instantiate a
network service that has multiple VNFs, all the VNFs in the network service are
started on the network.

Before you instantiate a network service, ensure that the VIM resources are discovered.
See "Discovering VIM Resources" for information about discovering VIM resources.

To instantiate a network service:

1. In a REST API client, run the following URL using the POST method:

POST http://host:port/ocnso/1.1/ns

where host is the hostname and port is the port number of the machine on which
UIM is installed.

For a sample request and response about the network service instantiation API,
see "Instantiate a Network Service".

2. In the request, specify values for the following parameters by looking in the
network service and VNF descriptor files:

■ nsName

■ nsDescriptorName

■ serviceDeploymentFlavor

■ vnfName

■ deploymentFlavorName

Instantiating a Network Service

4-2 Network Service Orchestration Solution Implementation Guide

■ vnfDescriptorName

■ version

■ name

■ parameters

For details about these parameters, navigate to UIM_Home/config/ and look up
the sample network service and VNF descriptor XML files.

3. Ensure that you receive a success message and a response.

4. In Oracle Communications Unified Inventory Management (UIM), verify the
following:

■ The network service and its configurations are created and are in In Service
status.

■ The VNF service with configurations is created and associated to the network
service.

■ The VNFs, which are represented as logical devices, are created.

■ The specified networks are either created or referenced.

■ The details of the endpoints are updated in the service configuration.

5. In your VIM, verify the following:

■ The VNF instance is up and running.

■ The specified networks are either created or referenced.

■ The VNF is linked to the networks.

Based on the configurations you defined in the network service and the VNF
descriptor files, the solution does the following tasks during the instantiation of a
network service:

■ Finds the best suitable data center for the network service from among the data
centers that you registered.

■ Performs resource orchestration to find the best suitable availability zone where
constituent VNFs can be deployed.

■ Creates new networks or references existing networks that are required for
connectivity among the VNFs.

■ Manages IP addresses of all the resources.

■ Configures the VNFs based on pre-defined parameters. See "About the VNF
Configuration Files" for more information.

■ If you integrated a monitoring engine, configures the monitoring engine to trigger
alarms for VNFs that reach a specified threshold to enable healing of VNFs.

■ If you integrated an SDN Controller, configures routing paths for end-to-end
packet flow.

Note: If the instantiation of a network service fails at any stage of the
transaction due to insufficient ports or other resources on the VIM (or
for any other reason), the solution rolls back the resources completely.

Monitoring and Healing a VNF

Working with Network Services and VNFs 4-3

Upgrading the Software Version of a VNF
To upgrade the software version of a VNF in a network service:

1. In a REST API client, run the following URL using the PUT method:

PUT http://host:port//ocnso/1.1/ns/networkServiceId/upgrade

where networkServiceId is the ID of the network service that the VNF is part of.

For a sample request and response of this API, see "Upgrade the Software Version
of a VNF".

2. In the request, specify the details about the VNF name and the software version of
the VNF image that you want to upgrade to.

3. Ensure that you receive a success message and a response.

4. In UIM, do the following:

■ Verify that the network service is updated with a new service configuration
version.

■ Verify that the version number of the VNF image that you upgraded the VNF
to is listed.

5. In your VIM, verify that the VNF instance displays the name of the VNF image
that you upgraded to.

Monitoring and Healing a VNF
You monitor VNFs in a network service to track their performance and take actions
based on their CPU utilization, number of requests handled, and other KPI
parameters.

To monitor VNFs, you configure and use monitoring engines. You also configure and
specify the relevant parameters in the Network Service descriptor file. When the
monitoring engine identifies a failed VNF in a network service, you can heal the failed
VNF by either rebooting or replacing the virtual machine on which the VNF is
deployed.

By default, the solution supports integration with OpenStack Ceilometer, which
monitors VNFs and reboots failed VNFs automatically based on KPI thresholds
defined in the network service descriptor file.

To heal a VNF:

1. Ensure that you have defined the assurance parameters for the VNFs in the
Network Service descriptor file. See "Describing Deployment Flavors" for
information about defining assurance parameters.

2. In a REST API client, run the following URL using the POST method:

POST http://host:port//ocnso/1.1/vnf/vmId/heal

where vmId is the ID of the VNF virtual machine that you want to heal.

For a sample request and response of this API, see "Heal a VNF".

3. In the request, specify the details of the VNF that you want to heal and specify
whether you want to reboot or replace the VNF.

4. Ensure that you receive a success message and a response.

5. In your VIM, verify that the VNF you rebooted or replaced is listed as active and
running.

Modifying a Network Service

4-4 Network Service Orchestration Solution Implementation Guide

If you use OpenStack Ceilometer, when you heal a failed VNF by replacing it, if the
new VNF comes up in a different host, the solution performs resource orchestration to
deduce the resources from the new host and the availability zone and adds up the
resources count to the host.

You can integrate other third-party monitoring engines by using the extensions
provided in the solution. See "Implementing a Custom Monitoring Engine" for more
information about implementing a third-party monitoring engine.

Modifying a Network Service
You modify a network service to either add or remove VNFs in a network service. You
add a VNF to a network service to enable the network service to deliver additional
service capabilities.

■ Adding a VNF to a Network Service

■ Deleting a VNF from a Network Service

Adding a VNF to a Network Service
To add a VNF to a network service:

1. In a REST API client, run the following URL using the POST method:

POST http://host:port//ocnso/1.1/ns/networkServiceId/vnfs

where networkServiceId is the ID of the network service that you want to modify.

For a sample request and response of this API, see "Add VNFs to a Network
Service".

2. In the request, specify the details about the VNF that you want to add to the
network service.

3. Ensure that you receive a success message and a response.

4. In UIM, verify the following:

■ The network service is updated with a new service configuration version
showing the VNF that you added.

■ The status of the new service configuration version shows completed.

5. In your VIM, verify that a new VNF instance is created.

Deleting a VNF from a Network Service
To delete a VNF from a network service:

1. In a REST API client, run the following URL using the DELETE method:

DELETE http://host:port//ocnso/1.1/ns/networkServiceId/vnfs

where networkServiceId is the ID of the network service that you want to modify.

For a sample request and response of this API, see "Delete a VNF from a Network
Service".

2. In the request, specify the details about the VNF that you want to remove from the
network service.

3. Ensure that you receive a success message and a response.

4. In UIM, verify the following:

Retrieving Details About Network Services, VNFs, and Descriptors

Working with Network Services and VNFs 4-5

■ The network service is updated with a new service configuration version
showing that the VNF is deleted.

■ The status of service configuration version shows completed.

5. In your VIM, verify that the VNF instance is removed and the resources that were
assigned to the VNF are freed up.

Terminating a Network Service
You terminate a network service to deactivate all the constituent VNFs in the network
service. When you terminate a network service, all the resources that were allocated to
the VNFs are released and become available for consumption by other network
services.

To terminate a network service:

1. In a REST API client, run the following URL using the DELETE method:

DELETE http://host:port/ocnso/1.1/ns/networkServiceId

where networkServiceId is the service ID of the network service that you want to
terminate.

For details about this API, see "Terminate a Network Service".

2. Specify the details of the network service you want to delete.

3. Ensure that you receive a success message and a response.

4. In UIM, verify the following:

■ The status of the network service and the VNF services is changed to
Disconnected.

■ The status of the logical device corresponding to the associated VNF is
changed to Unassigned.

5. In your VIM, verify that the VNF instance is deleted and all the allocated resources
are released.

Retrieving Details About Network Services, VNFs, and Descriptors
You can retrieve and view details about your network services, VNFs, network service
descriptors, and VNF descriptors.

The solution provides RESTful APIs that you can call to retrieve and view different
types of information about your network services and VNFs.

You can retrieve and view the following details about VNFs, network services, and
descriptors:

■ Information about a specific network service

■ Information about the Network Forwarding Paths for a network service

■ List of available Network Service Descriptors

■ Network Service Descriptor information

■ List of Virtual Network Function Descriptors supported by a Network Service
Descriptor

■ List of flavors of a Network Service Descriptor

■ VNF Descriptor information

Retrieving Details About Network Services, VNFs, and Descriptors

4-6 Network Service Orchestration Solution Implementation Guide

■ List of versions of the VNF Descriptor

■ List of VNF descriptor flavors

For details about the RESTful APIs, see "Network Service Orchestration RESTful API
Reference".

5

Extending the Network Service Orchestration Solution 5-1

5Extending the Network Service Orchestration
Solution

This chapter describes how you can customize and extend Oracle Communications
Network Service Orchestration Solution to meet the business needs of your
organization.

You can extend the functionality of the solution by:

■ Designing cartridges in Oracle Communications Design Studio. See "Designing
Cartridges for Custom VNFs and Network Services".

For more information about designing cartridges:

– See UIM Concepts to understand the concept of extending cartridge packs and
the impact of doing so.

– See UIM Cartridge Guide for information about the leading practices for
extending cartridge packs.

– See UIM Developer's Guide for information about how to extend cartridge
packs.

– See Design Studio Help for instructions on how to extend cartridge packs
through specifications, characteristics, and rulesets.

■ Using extension points and Java interface extensions. See "Using Extension Points
and Java Interface Extensions to Extend the Solution".

Setting Up Design Studio for the Network Service Orchestration Solution
Cartridges

Before you design and work with cartridges for VNFs and Network Services, you
must set up Design Studio.

To set up Design Studio for the Network Service Orchestration solution:

1. From the Oracle Software Delivery Cloud, download the UIM SDK into the UIM_
SDK_Home local directory.

2. Extract the downloaded UIM_SDK.zip file into the UIM_SDK_Home local
directory to get the lib folder.

Important: To ensure that your extensions can be upgraded and
supported, you must follow the guidelines and policies described in
UIM Concepts.

Designing Cartridges for Custom VNFs and Network Services

5-2 Network Service Orchestration Solution Implementation Guide

3. Go to build_folder/designStudio and extract the nso_lib folder.

4. Create a local directory named OTHER_LIB.

5. Copy the following WebLogic libraries from your WebLogic installation into the
OTHER_LIB local directory:

■ WL_Home/oracle_common/modules/groovy-all-2.0.5.jar

■ WL_Home/oracle_common/modules/jersey-client-1.18.jar

■ WL_Home/oracle_common/modules/jettison-1.1.jar

■ WL_Home/wlserver/modules/features/weblogic.server.merged.jar

6. Download the gson-2.2.4.jar file from the following Website and copy it into the
OTHER_LIB local directory:

http://repo1.maven.org/maven2/com/google/code/gson/gson/2.2.4/

7. Copy other UIM-specific JAR files to the OTHER_LIB directory. See UIM
Installation Guide 7.3.2 for information about UIM-specific JAR files.

8. In Design Studio, open a new workspace and import the following base cartridges:

■ ora_uim_baseextpts

■ ora_uim_basemeasurements

■ ora_uim_basespecifications

■ ora_uim_basetechnologies

■ ora_uim_common

■ ora_uim_mds

■ ora_uim_model

9. Import the following Network Service Orchestration Solution cartridges:

■ OracleComms_NSO_BaseCartridge

■ OracleComms_NSO_Common

■ OracleComms_NSO_NFVIAdapter

■ NPaaS_NetworkService

■ Checkpoint_NG_FW_VNF

■ Juniper_vSRX_VNF

10. In Design Studio, for the Network Service Orchestration Solution cartridge
projects, configure the following Java Build Path Library variables:

■ UIM_LIB. Specify the path as UIM_SDK_Home/lib.

■ OTHER_LIB. Specify the directory that you created.

■ NSO_LIB. Specify the path as build_folder/designStudio/nso_lib.

11. Build the inventory project.

Designing Cartridges for Custom VNFs and Network Services
To design cartridges for custom VNFs and network services:

1. In Design Studio, create cartridge projects for the VNFs and the network service
that you want to design.

Using Extension Points and Java Interface Extensions to Extend the Solution

Extending the Network Service Orchestration Solution 5-3

See Design Studio Help for instructions about creating cartridge projects.

2. For each VNF and network service cartridge project, create specifications,
metadata, and technical action files.

3. For each service specification, create a technical action xml file. See "About the
Technical Actions File" for more information.

4. Write the design-and-assign logic for the service configuration.

5. Write the issue logic for the service configuration.

6. Develop the adapter for the monitoring engine. See "Implementing a Custom
Monitoring Engine" for more information.

7. Develop the adapter for the VNF life-cycle manager. See "Implementing a Custom
VNF Manager" for more information.

Using Extension Points and Java Interface Extensions to Extend the
Solution

You can extend the core functionality of the Network Service Orchestration solution
by:

■ Writing a custom rule set extension point. See "Writing a Custom Ruleset
Extension Point".

■ Using Java Interface Extensions. See "Using Java Interface Extensions".

Writing a Custom Ruleset Extension Point
You can extend the solution’s core functionality by writing a custom rule set extension
point and associating the extension point with the rule set in Design Studio.

The solution supports the following extensions with extension points:

■ The Design and Assign extension point for VNF and Network Service service
configurations.

■ The Issue Configuration extension point for VNF and Network Service service
configurations.

■ Data center lookup based on the dynamic property provided in the network
service request.

To extend the solution’s core functionality by using the base extension points:

1. In Groovy or Drools, write a ruleset that provides the additional functionality that
you want to implement.

2. Write a rule set extension point by integrating the extension point and the ruleset
with a placement of BEFORE, INSTEAD, or AFTER.

3. In Design Studio, relate the rule set extension point to the relevant specification.

Table 5–1 describes the Network Service Orchestration solution core APIs that can be
extended by using the extension points in the solution.

Using Extension Points and Java Interface Extensions to Extend the Solution

5-4 Network Service Orchestration Solution Implementation Guide

Using Java Interface Extensions
You can extend the solution’s core functionality by using Java interface extensions. You
write a new Java implementation class for a core interface and implement the core
interface for a specific network service or VNF descriptor.

The solution supports the following functionality through custom Java
implementation classes:

■ Implementation of a custom SDN controller. See "Implementing a Custom SDN
Controller".

■ Implementation of a custom VNF monitoring engine. See "Implementing a
Custom Monitoring Engine".

■ Implementation of a custom VIM. See "Implementing a Custom VIM".

■ Implementation of a custom VNF manager. See "Implementing a Custom VNF
Manager".

Table 5–1 Network Service Orchestration Solution Core APIs and Extension Points

API Extension Point Description

NetworkServiceDesignMana
ger.processCreate

NetworkServiceDesignManager_
processCreate

Implements the design-and-assign logic
for a network service when the network
service is instantiated.

NetworkServiceDesignMana
ger.processDisconnect

NetworkServiceDesignManager_
processDisconnect

Cleans up the network service resources
when the network service is terminated.

NetworkServiceDesignMana
ger.processChange

NetworkServiceDesignManager_
processChange

Implements the design-and-assign logic or
cleans up the resources when a network
service is updated.

VNFServiceDesignManager.p
rocessCreate

VNFServiceDesignManager_
processCreate

Implements the design-and-assign logic
for the VNF service when a network
service is instantiated with a VNF.

VNFServiceDesignManager.p
rocessDisconnect

VNFServiceDesignManager_
processDisconnect

Cleans up the VNF service resources when
a network service is terminated.

VNFServiceDesignManager.p
rocessChange

VNFServiceDesignManager_
processChange

Implements the design-and-assign logic
for a VNF service when the network
service is updated.

VNFServiceManager.process
TechnicalActions

VNFServiceManager_
processTechnicalActions

Activates or removes the resources in a
VIM for each VNF service.

NetworkServiceManager.pro
cessTechnicalActions

NetworkServiceManager_
processTechnicalActions

Activates or removes the resources in a
VIM for each network service.

ConsumerHelper.getDataCen
terForConsumer

ConsumerHelper_
getDataCenterForConsumer

Looks up the data center based on the NS
endpoint.

VNFServiceHelper.createVN
F

VNFServiceHelper_createVNF Creates a VNF.

ConsumerHelper.getDataCen
terLookupIdentifier

ConsumerHelper_
getDataCenterLookupIdentifier

Returns the string representation of the
dynamic property in the JSON request for
NS instantiation.

NetworkServiceManager.desi
gnInstantiate

NetworkServiceManager_
designInstantiate_Global

Used to design the network service for
instantiation.

NetworkServiceManager.desi
gnUpdate

NetworkServiceManager_
designUpdate_Global

Used to design the network service for
update.

Using Extension Points and Java Interface Extensions to Extend the Solution

Extending the Network Service Orchestration Solution 5-5

■ Implementation of a custom VNF connection manager. See "Implementing a
Custom VNF Connection Manager".

■ Implementation of a custom VNF configuration manager. See "Implementing a
Custom VNF Configuration Manager".

Implementing a Custom SDN Controller
By default, the solution supports integration with OpenDaylight, but you can also
implement a custom SDN Controller.

Figure 5–1 shows a model diagram that depicts how you can write an extension for an
SDN Controller in Design Studio.

Figure 5–1 Custom SDN Controller Model

To implement a custom SDN controller:

1. In the custom Network Service descriptor catalog cartridge, create a Java
implementation class for the SDN controller.

2. Configure the custom SDN controller class to implement the
oracle.communications.inventory.nso.nfvi.SDNController interface, which is
provided in the OracleComms_NSO_NFVIAdapter cartridge.

3. Override the following methods in the custom SDN controller Java
implementation class:

public String createFlows(Map request) throws Exception

Using Extension Points and Java Interface Extensions to Extend the Solution

5-6 Network Service Orchestration Solution Implementation Guide

public String deleteFlows(Map request) throws Exception
public String updateFlows(Map request) throws Exception

4. Go to UIM_Home/config and open the nfvi.properties file in a text editor.

5. Update the sdnController.sdnType key with the name of custom SDN controller.

Implementing a Custom Monitoring Engine
By default, the solution supports integration with OpenStack Ceilometer, but you can
also implement a custom monitoring engine.

Figure 5–2 shows a model diagram that depicts how you can write an extension for a
custom VNF monitoring engine in Design Studio.

Figure 5–2 Custom Monitoring Engine Model

To implement a custom monitoring engine:

1. In the custom VNF descriptor cartridge, create a Java implementation class for
VNFMonitoringManager.

2. Configure the VNFMonitoringManager class to implement the
oracle.communications.inventory.nso.nfvi.VNFMonitoringManager interface,
which is provided in the OracleComms_NSO_NFVIAdapter cartridge.

3. Override the following methods in the custom VNF monitoring engine Java
implementation class:

Using Extension Points and Java Interface Extensions to Extend the Solution

Extending the Network Service Orchestration Solution 5-7

public String createAlarms(Map request) throws Exception
public String deleteAlarms(Map request) throws Exception
public String updateAlarms(Map request) throws Exception
public String getAlarms(Map request) throws Exception
public String customCall(Map request) throws Exception

4. Go to UIM_Home/config and open the nfvi.properties file in a text editor.

5. Update the vnfMonitor.vnfdName key with the name of the custom monitoring
engine.

Implementing a Custom VIM
By default, the solution supports integration with OpenStack, but you can also
implement a custom VIM.

Figure 5–3 shows a model diagram that depicts how you can write an extension for a
custom VIM in Design Studio.

Using Extension Points and Java Interface Extensions to Extend the Solution

5-8 Network Service Orchestration Solution Implementation Guide

Figure 5–3 Custom VIM Model

To implement a custom VIM:

1. In the custom Network Service descriptor catalog cartridge, create a Java
implementation class for the NFVIManager interface.

2. Configure the NFVIManager class to implement the
oracle.communications.inventory.nso.nfvi.NFVIManager interface, which is
provided in the OracleComms_NSO_NFVIAdapter cartridge.

3. Override the methods in the custom NFVI manager Java implementation class.

4. Go to UIM_Home/config and open the nfvi.properties file in a text editor.

5. Update the nfviMgr.nfviType key with the name of the custom VIM.

Using Extension Points and Java Interface Extensions to Extend the Solution

Extending the Network Service Orchestration Solution 5-9

Implementing a Custom VNF Manager
The Network Service Orchestration solution uses UIM to manage the lifecycle of the
VNFs. The solution supports integration with third-party VNF managers by using
extensions.

Figure 5–4 shows a model diagram that depicts how you can write an extension for a
custom VNF manager in Design Studio.

Figure 5–4 Custom VNF Manager Model

To implement a custom VNF manager:

1. In the custom VNF descriptor cartridge, create a Java implementation class for the
VNF manager.

2. Configure the custom VNF manager class to implement the
oracle.communications.inventory.nso.nfvi.VNFLifeCycleManager interface,
which is provided in the OracleComms_NSO_NFVIAdapter cartridge.

3. Override the methods in the custom VNF manager Java implementation class.

4. Go to UIM_Home/config and open the nfvi.properties file in a text editor.

5. Update the vnflcMgr.vnfdName key with the name of the custom VNF manager.

Implementing a Custom VNF Connection Manager
Figure 5–5 shows a model diagram that depicts how you can write an extension for a
custom VNF connection manager in Design Studio.

Using Extension Points and Java Interface Extensions to Extend the Solution

5-10 Network Service Orchestration Solution Implementation Guide

Figure 5–5 Custom VNF Connection Manager Model

To implement a custom VNF connection manager:

1. In the custom VNF descriptor cartridge, create a Java implementation class for the
custom VNF connection manager.

2. Configure the custom VNF connection manager class to implement the
oracle.communications.inventory.nso.nfvi.VNFConnectionManager interface,
which is provided in the OracleComms_NSO_NFVIAdapter cartridge.

3. Override the methods in the custom VNF connection manager Java
implementation class.

4. Go to UIM_Home/config and open the nfvi.properties file in a text editor.

5. Update the vnfConnectionMgr.vnfdName key with the name of the custom VNF
connection manager.

Implementing a Custom VNF Configuration Manager
Figure 5–6 shows a model diagram that depicts how you can write an extension for a
custom VNF configuration manager in Design Studio.

Localizing the Network Service Orchestration Solution

Extending the Network Service Orchestration Solution 5-11

Figure 5–6 Custom VNF Configuration Manager Model

To implement a custom VNF configuration manager:

1. In the custom VNF descriptor cartridge, create a Java implementation class for the
custom VNF configuration manager.

2. Configure the custom VNF configuration manager class to implement the
oracle.communications.inventory.nso.nfvi.VNFConfigManager interface, which
is provided in the OracleComms_NSO_NFVIAdapter cartridge.

3. Override the methods in the custom VNF configuration manager Java
implementation class.

4. Go to UIM_Home/config and open the nfvi.properties file in a text editor.

5. Update the vnfConfigMgr.vnfdName key with the name of the custom VNF
configuration manager.

Localizing the Network Service Orchestration Solution
You can localize Oracle Communications Unified Inventory Management (UIM) user
interface and the UIM Help. Localizing UIM involves modifying a specific set of files
that UIM uses to display text in the UI and in the Help.

To localize the response messages in the Network Service Orchestration solution
RESTful APIs:

1. Make a copy of the UIM_
Home/config/resources/logging/nsoresourcebundle.properties file in the same

Localizing the Network Service Orchestration Solution

5-12 Network Service Orchestration Solution Implementation Guide

directory and rename it as nsoresourcebundle_localeID.properties, where localeID
is the language code. For example, fr-FR indicates the locale ID for French.

2. Open the nsoresourcebundle_localeID.properties file and localize the messages.

3. (Optional) If you want to implement the sample Network Protection service by
using the sample cartridges, make a copy of the UIM_
Home/config/resources/logging/npassresourcebundle.properties file in the
same directory and name it as npaasresourcebundle_localeID.properties and
localize the messages.

4. Restart the UIM server.

5. In your RESTful API client, update the Accept-Language header with the locale
ID. For example, specify fr-FR for French.

6

Contents of the Network Service Orchestration JAR and ZIP Files 6-1

6Contents of the Network Service Orchestration
JAR and ZIP Files

This chapter describes the contents of Oracle Communications Network Service
Orchestration Solution JAR and ZIP files.

Table 6–1 describes the contents of the Network Service Orchestration JAR and ZIP
files.

Network Service Orchestration Individual JAR Files
The Network Service Orchestration cartridge contains individual JAR files that
comprise the super JAR file. Each individual JAR file is deployable.

Table 6–1 Network Service Orchestration JAR and ZIP File Contents

Directory Directory Content Description

deploy/

individualJarsForSuperJar

Individual JAR files that comprise the super JAR file.

See "Network Service Orchestration Individual JAR Files" for
more information.

deploy/

superJarToDeploy

The super JAR file.

See "Network Service Orchestration Super JAR File" for more
information.

deploy/

applications

Contains applications.

See "Network Service Orchestration Applications" for more
information.

designStudio/

cartridgeZips

Cartridge project ZIP files.

See "Network Service Orchestration ZIP Files" for more
information.

Note: Before deploying the Network Service Orchestration cartridge
JAR files, you must deploy the base cartridges if not previously
deployed. For information about the base cartridges, see "Configuring
UIM for the Network Service Orchestration Solution" and UIM
Cartridge Guide.

Oracle recommends that you deploy the super JAR file. If you deploy
the JAR files individually, you must install them in a specific order.

Network Service Orchestration Super JAR File

6-2 Network Service Orchestration Solution Implementation Guide

The Network Service Orchestration cartridge individual JAR files are located in the
deploy/individualJarsForSuperJar directory and they must be deployed in the
following order:

■ OracleComms_NSO_NFVIAdapter

■ OracleComms_NSO_Common

■ OracleComms_NSO_BaseCartridge

The Network Service Orchestration cartridge also contains individual JAR files for
sample cartridges that comprise the super JAR file. Each individual JAR file is
deployable.

■ NPaaS_NetworkService

■ Juniper_vSRX_VNF

■ Checkpoint_NG_FW_VNF

Network Service Orchestration Super JAR File
The Network Service Orchestration cartridge contains the OracleComms_NSO_*.jar
super JAR file. The solution super JAR is located in the deploy\superJarToDeploy
directory.

The Network Service Orchestration super JAR file contains the entire contents of the
solution and is ready for deployment.

See UIM Cartridge Guide for more information about deploying cartridges into Oracle
Communications Unified Inventory Management (UIM).

Network Service Orchestration Applications
The Network Service Orchestration cartridge contains the following application in the
deploy\applications\ directory:

■ OracleComms_NSO_WebServices.war

The OracleComms_NSO_WebServices.war file contains the implementation of the
Network Service Orchestration solution Web services.

Note: The asterisk in the JAR file name represents a five-segment
release version number followed by a build number. The five-segment
release version numbers represent the following:

■ Major Version Number

■ Minor Version Number

■ Maintenance Pack

■ Generic Patch

■ Customer Patch

Network Service Orchestration ZIP Files

Contents of the Network Service Orchestration JAR and ZIP Files 6-3

Network Service Orchestration ZIP Files
The Network Service Orchestration cartridge contains one project ZIP file for every
cartridge or model project, and each ZIP file contains a project in its pre-compiled state
(the project name is the root directory).

The solution cartridge contains the following cartridge ZIP files, which are located in
the designStudio\cartridgeZips\ directory:

■ NPaaS_NetworkService

■ Juniper_vSRX_VNF

■ Checkpoint_NG_FW_VNF

■ OracleComms_NSO_BaseCartridge

Network Service Orchestration ZIP Files

6-4 Network Service Orchestration Solution Implementation Guide

7

Network Service Orchestration RESTful API Reference 7-1

7Network Service Orchestration RESTful API
Reference

This chapter provides reference information about the Oracle Communications
Network Service Orchestration Solution RESTful APIs.

The Network Service Orchestration RESTful APIs provide the northbound interface to
the Network Service Orchestration solution. Operation Support Systems (OSS) and
VNF managers query data from the solution’s resource inventory.

The solution’s RESTful APIs enable you to perform various functions by using a
RESTful API client.

The root URL for the Network Service Orchestration RESTful API resources is:

■ HTTP Connection: http://nso_host:port/ocnso/1.1

■ SSL Connection: https://nso_host:ssl_port/ocnso/1.1

where:

– nso_host is the host name

– port is the port number of the machine on which Oracle Communications
Unified Inventory Management (UIM) is installed

– ssl_port is the SSL port number of the machine on which UIM is installed

List of Network Service Orchestration Solution RESTful API Resources
Table 7–1 lists the Network Service Orchestration RESTful API resources.

Note: If you use HTTPS-enabled OpenStack Keystone RESTful APIs,
add the Certified Authority certificate to the TrustStore that your
application server uses. If OpenStack Keystone is configured with
self-signed certificate, then add the self-signed certificate to the
TrustStore of the application server. See Oracle WebLogic Server
documentation for information about configuring TrustStore.

List of Network Service Orchestration Solution RESTful API Resources

7-2 Network Service Orchestration Solution Implementation Guide

Table 7–1 Network Service Orchestration Solution RESTful API Resources

Task Method Resource Description

Register a Virtual
Infrastructure Manager (VIM)

POST /ocnso/1.1/vim Registers the IP address, port, username and
password of the VIM with the solution.

Discover VIM resources POST /ocnso/1.1/vim/discover/vi
m_name

Discovers the resources of the registered VIM into
the solution.

Instantiate a network service POST /ocnso/1.1/ns Instantiates a network service and its constituent
VNFs.

Terminate a network service DELETE /ocnso/1.1/ns/networkServic
eId

Terminates a network service and the constituent
VNFs.

Update VNF software version POST /ocnso/1.1/ns/networkServic
eId/upgrade

Updates the software image version of a VNF.

Heal a VNF POST /ocnso/1.1/vnf/vmId/heal

/ocnso/1.1/vnf/heal

Heals a VNF by rebooting or replacing the VM.

 Available values for the action parameter are:

■ Replace

■ Reboot

Add VNFs to a network service POST /ocnso/1.1/ns/networkServic
eId/vnfs

Adds VNFs to a network service.

Delete a VNF from a network
service

DELETE /ocnso/1.1/ns/networkServic
eId/vnfs

Deletes a VNF from a network service.

Get network service
information

GET /ocnso/1.1/nsd/networkServi
ceId

Returns information about a network service.

Get a list of all network service
descriptors that are deployed
in the solution

GET /ocnso/1.1/nsd Returns a list of all network service descriptors
that are deployed in the solution.

Get details about a network
service descriptor

GET /ocnso/1.1/nsd/nsdName Returns details about a network service
descriptor.

Get a list of VNF Descriptors in
a network service descriptor

GET /ocnso/1.1/nsd/nsdName/v
nfds

Returns a list of VNF descriptors in a network
service descriptor.

Get Network Service descriptor
deployment flavors

GET /ocnso/1.1/nsd/nsdName/fl
avors

Returns a list of all constituent service flavors that
are defined for a network service descriptor.

Get details about a VNF
Descriptor

GET /ocnso/1.1/vnfd/vnfdName Returns details about a VNF descriptor.

Get a list of VNF Descriptors in
a network service descriptor

GET /ocnso/1.1/nsd/nsdName/v
nfds

Returns a list of VNF descriptors in a network
service descriptor.

Get a list of supported versions
for a VNF Descriptor

GET /ocnso/1.1/vnfd/vnfdName/
versions

Returns a list of supported versions for a VNF
descriptor.

Get VNF Descriptor
deployment flavors

GET /ocnso/1.1/vnfd/vnfdName/
flavors

Returns a list of deployment flavors that are
defined for a VNF descriptor.

Get a list of all active network
services that are created based
on a specific Network Service
descriptor

GET /ocnso/1.1/ns/nsdName=ns
dName

Returns a list of all active network services that
are created based on the given network service
descriptor.

Get details about a network
service

GET /ocnso/1.1/ns/networkServic
eId

Returns details about a network service.

Get details about VNFs in a
network service

GET /ocnso/1.1/ns/networkServic
eId/vnfs

Returns details about VNFs in a network service.

Get details about networks in a
network service

GET /ocnso/1.1/ns/networkServic
eId/networks

Returns details about networks in a network
service.

Get details about endpoints in
a network service

GET /ocnso/1.1/ns/networkServic
eId/endPoints

Returns details about endpoints in a network
service.

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-3

HTTP Response Status Codes
Table 7–2 describes the HTTP response status codes for the GET (retrieve), POST
(create), PUT (modify), and DELETE operations of the Network Service Orchestration
Solution RESTful APIs.

Sample Requests and Responses
The following sections provide sample JSON requests and responses for the Network
Service Orchestration solution RESTful API resources.

Register a VIM
Registers the following details about the VIM with the Network Service Orchestration
solution:

■ IP address

■ Port

■ Username

■ Password

Method
POST

Get status information of a
network service

GET /ocnso/1.1/ns/networkServic
eId/status

Returns status information of a network service.

Get details about a VNF GET /ocnso/1.1/ns/vnf/vnfId Returns details about a VNF.

Get status information of a
VNF

GET /ocnso/1.1/ns/vnfId/status Returns status information about a VNF.

Table 7–2 HTTP Response Status Codes for the Network Service Orchestration Solution RESTful APIs

Response Code Description

200 OK The request is successful.

The information returned in the response is dependent on the method used in the
request.

For example:

■ GET. An entity corresponding to the requested resource is sent in the response.

■ POST. An entity describing or containing the result of the action.

202 Accepted The request has been accepted for processing, but the processing has not completed. The
request might or might not eventually be acted upon, as it might be disallowed when
processing actually takes place. There is no facility for re-sending a status code from an
asynchronous operation such as this.

400 Bad Request The request could not be understood by the server due to incorrect syntax. Do not repeat
the request without correcting the syntax.

404 Not Found The server has not found a matching request or URI.

500 Internal Server
Error

The server encountered an unexpected condition which prevented it from fulfilling the
request.

Table 7–1 (Cont.) Network Service Orchestration Solution RESTful API Resources

Task Method Resource Description

Sample Requests and Responses

7-4 Network Service Orchestration Solution Implementation Guide

URL
http://nso_host:port/ocnso/1.1/vim

Sample JSON Request
{
"name":"vimDataCenter",
"host":"11.111.111.1",
"port":"12345",
"userName":"nso",
"pswd":"***",
"projectName":"test",
"domainName":"default"
"vimType":"default"
}

Table 7–3 describes the parameters in the request.

Sample JSON Response
vimDataCenter is successfully registered with NSO.

Discover VIM Resources
Discovers the resources that are available on the VIM. In UIM, creates the following
resources as custom objects:

■ Availability zones

■ Flavors

■ Hosts

■ Virtual Data Center (VDC)

Method
POST

URL
http://nso_host:port/ocnso/1.1/vim/discover/vimDataCenter

where vimDataCenter is the name of the VIM whose resources you want to discover

Table 7–3 Request Parameters

Parameter Value Required Description

name String Yes Name of the VIM.

vimType String No Type of the VIM. The default is OpenStack.

host String Yes IP address or host name of the VIM.

port String Yes Port number of the VIM.

userName String Yes Username of the VIM.

pswd String Yes Password of the VIM.

projectName String Yes Name of the project.

domainName String Yes Name of the domain.

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-5

Sample Request
This API does not require any request parameters.

Sample Response
VIM resources are discovered successfully.

Instantiate a Network Service
Creates networks and the constituent resources and starts the VNFs in the network
service.

Method
POST

URL
http://nso_host:port/ocnso/1.1/ns

Sample Request
{
 "nsName":"NSO_NPassService_1",
 "nsDescriptorName":"NPaaS_NSD",
 "serviceDeploymentFlavorName":"Checkpoint",

 "vnfs":[
 {
 "vnfName":"NSO_CheckPointVNF_1",
 "deploymentFlavorName":"checkpoint",
 "vnfDescriptorName":"Checkpoint_NG_FW_VNFD",
 "version":"1.0"
 }

],
 "endPoints":[
 {
 "name":"NSO_SGPcnsmr2",
 "flowPath":"Red",
 "parameters":
[
 {
"name": "ipAddress",
"value": "207.123.34.2"
},

{
"name": "vlanId",
"value": "101"
},

{
"name": "serviceLocation",
"value": "CityPQ03"
}
]
 }
]
}

Sample Requests and Responses

7-6 Network Service Orchestration Solution Implementation Guide

Table 7–4 describes the parameters in the request.

Sample Response
{
 "networkServiceName": "24_11.6_AMns_Service",
 "networkServiceId": "975022",
 "networkServiceStatus": "PENDING",
 "message": "Network Service Instantiation is in progress",
 "status": 202,
 "vnfs": [
 {
 "vnfId": "1050008",
 "vnfName": "24_11.6_AMvnf",
 "vnfStatus": "INSTALLED",
 "vnfDescriptor": "Juniper_vSRX_VNFD",
 "vnfServiceId": "975021",
 "vnfServiceName": "24_11.6_AMvnf_Juniper_vSRX_VNFD_Service",
 "vnfServiceStatus": "PENDING_ASSIGN",
 "vnfServiceDescriptor": "Juniper_vSRX_ServiceDescriptor",
 "message": null,
 "status": 0,
 "capabilities": []
 }
]
}

Table 7–4 Request Parameters

Parameter Name Value Required Description

nsName String Yes Name of the network service that you want to
instantiate.

nsDescriptorName String Yes Name of the network service descriptor.

serviceDeployment
FlavorName

String Yes Name of the Network Service deployment flavor.

vnfs:[vnfName String Yes Name of the VNF in the network service that
you want to instantiate.

vnfs:[
deploymentFlavorN
ame

String Yes Name of the deployment flavor of the VNF
service.

vnfs:[
vnfDescriptorName

String Yes Name of the VNF descriptor that contains the
descriptor of the VNF.

vnf:[version String Yes Version number of the VNF image.

endPoints:[name String Yes Name of the endpoint.

endPoints:[
forwardingGraphDe
scriptorName

String Yes Name identifier that is defined in the Network
Service meta-data descriptor for which a
sequence of VNFDs is defined for flow.

endPoints:[
parameters:[name

String Yes Dynamic parameter that can be sent from the
request to implement custom logic by using the
extensions in the solution.

endPoints:[
parameters:[value

String Yes Actual value of the customer-side end point
termination points.

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-7

Terminate a Network Service
Terminates a network service. Undeploys the constituent VNFs in the network service
and releases all the resources that were allocated to the service.

Method
DELETE

URL
http://nso_host:port/ocnso/1.1/ns/networkServiceId

Sample Request
This API does not require parameters. Specify the network service ID in the URL.

Sample Response
{
 "networkServiceId": "975022",
 "message": "Terminate request is under process.",
 "status": 202
}

Upgrade the Software Version of a VNF
Upgrades the software version of a VNF image in a network service.

Method
POST

URL
http://nso_host_name:port/ocnso/1.1/ns/networkService_Id/upgrade

Sample Request
 {
 "vnfName":"01.9_vSRXA_002",
 "upgradeToVersion":"1.6" // Upgrades to the version defined in VNF descriptor
}

Table 7–5 describes the parameters in the request.

Sample Response
{
 "networkServiceId": "975022",
 "interactionId": "975028",

Table 7–5 Request Parameters

Parameter Name Value Required Description

vnfName String Yes Name of the VNF whose image you want to
upgrade.

upgradeToVersion String Yes Version number of the VNF image that you want
to upgrade to. This version number should
already be defined in the VNF descriptor file.

Sample Requests and Responses

7-8 Network Service Orchestration Solution Implementation Guide

 "message": "Network Service upgrade is under process.",
 "status": 202
}

Heal a VNF
Heals a VNF by either rebooting or replacing a VNF in the VIM.

Method
POST

URL
http://nso_host_name:port/ocnso/1.1/vnf/vnfExternalId/heal

where vnfExternalId is the VNF external ID

Sample Request
{
 "action":"reboot"
}

Table 7–6 describes the parameters in the request.

Sample Response

reboot
VNF is rebooted successfully.

replace
VNF has been replaced successfully. The new VM Id is
84068628-9d4b-415c-9d63-181cadc9b20d.

Add VNFs to a Network Service
Adds VNFs to an existing network service.

Method
POST

URL
http://nso_host_name:port/ocnso/1.1/ns/networkServiceId/vnfs

Table 7–6 Request Parameters

Parameter Name Value Required Description

action String Yes Specify whether you want to reboot or replace
the VNF.

Values are:

■ reboot

■ replace

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-9

Sample Request
[
 {
 "vnfName":"VNF1",
 "deploymentFlavorName":"checkpoint",
 "vnfDescriptorName":"Checkpoint_NG_FW_VNFD",
 "version":"1.0"
 },
 {
 "vnfName":"VNF2",
 "deploymentFlavorName":"checkpoint",
 "vnfDescriptorName":"Checkpoint_NG_FW_VNFD",
 "version":"1.0"
 }
]

Table 7–7 describes the parameters in the request.

Sample Response
{
 "status": 202,
 "message": "[INV-992903] Adding VNF...",
 "networkServiceId": "30"
}

Delete a VNF from a Network Service
Deletes a VNF from an existing network service and undeploys it in the VIM.

Method
DELETE

URL
http://nso_host_name:port/ocnso/1.1/ns/networkServiceId/vnfs

Sample Request
[
{
"vnfId":"11"
}
]

where vnfId is the ID of the VNF in UIM. The VNF is represented as a logical device in
UIM.

Table 7–7 Request Parameters

Parameter Name Value Required Description

vnfName String Yes Name of the VNF that you want to add.

deploymentFlavorN
ame

String Yes Name of the VNF deployment flavor.

vnfDescriptorName String Yes Name of the VNF descriptor.

version String Yes Version number of the VNF image.

Sample Requests and Responses

7-10 Network Service Orchestration Solution Implementation Guide

Sample Response
 {
 "status": 202,
 "message": "[INV-992904] Deleting VNF...",
 "networkServiceId": "33"
}

Get Network Service Information
Retrieves the details of a network service.

Method
GET

URL
http://nso_host_name:port/ocnso/1.1/ns/networkServiceId

where networkServiceId is the network service ID

Sample Response
{
 "nsID": "975022",
 "nsName": "24_11.6_AMns_Service",
 "status": "IN_SERVICE",
 "aIPAddress": null,
 "zIPAddress": null,
 "aIPDomain": null,
 "zIPDomain": null,
 "vimName": "datacntr_test_2",
 "biID": "975023",
 "networks": [
 {
 "networkName": "nfvo-poc3-pkt-in",
 "networkID": "nfvo-poc3-pkt-in",
 "externalID": "cf8d4e3d-2775-4b8a-b38a-25410e8bbba4",
 "subnets": [
 {
 "startIP": "192.0.2.0",
 "prefix": "24",
 "externalID": "576a7110-d628-455c-932b-9586f688c22c"
 }
]
 },
 {
 "networkName": "nfvo-poc3-mgmt",
 "networkID": "nfvo-poc3-mgmt",
 "externalID": "109ae4cf-3cea-4729-a24f-957c4ed6d3c6",
 "subnets": [
 {
 "startIP": "192.0.2.0",
 "prefix": "24",
 "externalID": "fb791563-7c8b-454c-a1eb-87399e6837dc"
 }
]
 },
 {
 "networkName": "nfvo-poc3-pkt-out",

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-11

 "networkID": "nfvo-poc3-pkt-out",
 "externalID": "14403e50-4f3d-484c-9743-82cdde768ece",
 "subnets": [
 {
 "startIP": "192.0.2.0",
 "prefix": "24",
 "externalID": "a0790554-6a67-42c4-a2f4-c1b1ddfa5800"
 }
]
 }
],
 "vnfs": [
 {
 "vnfId": "1050008",
 "vnfName": "24_11.6_AMvnf",
 "vnfStatus": "INSTALLED",
 "vnfDescriptor": "Juniper_vSRX_VNFD",
 "vnfServiceId": "975021",
 "vnfServiceName": "24_11.6_AMvnf_Juniper_vSRX_VNFD_Service",
 "vnfServiceStatus": "ASSIGNED",
 "vnfServiceDescriptor": "Juniper_vSRX_ServiceDescriptor",
 "biID": "975024",
 "deploymentFlavorInfo": {
 "name": "m1.medium",
 "vcpus": 2,
 "memory": "4 MB",
 "disk": "40 GB"
 },
 "connectionPoints": [
 {
 "id": "1050008-1",
 "name": "CP01",
 "ipAddress": {
 "address": "111.111.1.11",
 "network": "nfvo-poc3-pkt-in",
 "externalID": "3ffdad5d-83cb-42cb-a389-179bae00b255"
 }
 },
 {
 "id": "1050008-2",
 "name": "CP02",
 "ipAddress": {
 "address": "111.111.1.11",
 "network": "nfvo-poc3-pkt-out",
 "externalID": "07249a45-4c18-4f01-9c6b-8c61bc5ae4e2"
 }
 },
 {
 "id": "1050008-3",
 "name": "CP03",
 "ipAddress": {
 "address": "111.111.1.11",
 "network": "nfvo-poc3-mgmt",
 "externalID": "f6e17f07-d956-4c97-b036-60777df8a429"
 }
 }
],
 "capabilityServices": null
 }
],

Sample Requests and Responses

7-12 Network Service Orchestration Solution Implementation Guide

 "consumers": [
 {
 "name": "24_11.6_AMcnsmr",
 "ipAddress": "111.111.11.1",
 "ipDomain": null,
 "flowPathName": "",
 "flowPath": "24_11.6_AMvnf",
 "status": "REFERENCED"
 }
]
}

Get Network Service Descriptors
Retrieves a list of network service descriptors.

Method
GET

URL
http://nso_host_name:port/ocnso/1.1/nsd

Sample Response
{
 "NPaaS_NSD",
 "CustomerName_NPaaS_NSD"
}

Get Information about a Network Service Descriptor
Retrieves details about a specified network service descriptor.

Method
GET

URL
http://nso_host_name:port/ocnso/1.1/nsd/nsdName

where nsdName is the name of the Network Service descriptor

Sample Response
{
 "referencedVnfds": [
 "Juniper_vSRX_VNFD",
 "Checkpoint_NG_FW_VNFD"
],
 "serviceFlavors": [
 {
 "name": "S1",
 "constituentVNFDs": [
 {
 "name": "Juniper_vSRX_VNFD",
 "maxInstances": "5",
 "maxConsumersServed": "2"
 },

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-13

 {
 "name": "Checkpoint_NG_FW_VNFD",
 "maxInstances": "5",
 "maxConsumersServed": null
 }
]
 },
 {
 "name": "S2",
 "constituentVNFDs": [
 {
 "name": "Juniper_vSRX_VNFD",
 "maxInstances": "5",
 "maxConsumersServed": "2"
 }
]
 }
]
}

Get VNF Descriptors
Retrieves a list of VNF descriptors that a network service descriptor references.

Method
GET

URL
http://nso_host_name:port/ocnso/1.1/nsd/nsdName/vnfds

where nsdName is the name of the network service descriptor

Sample Response
{
 "Juniper_vSRX_VNFD",
 "Checkpoint_NG_FW_VNFD"
}

Get Flavors of a Network Service Descriptor
Retrieves a list of deployment flavors for a specified network service descriptor.

Method
GET

URL
http://nso_host_name:port/ocnso/1.1/nsd/nsdName/flavors

where nsdName is the name of the network service descriptor

Sample Response
 {
 "name": "S1",
 "constituentVNFDs": [

Sample Requests and Responses

7-14 Network Service Orchestration Solution Implementation Guide

 {
 "name": "Juniper_vSRX_VNFD",
 "maxInstances": "5",
 "maxConsumersServed": "2"
 },
 {
 "name": "Checkpoint_NG_FW_VNFD",
 "maxInstances": "5",
 "maxConsumersServed": null
 }
]
 },
 {
 "name": "S2",
 "constituentVNFDs": [
 {
 "name": "Juniper_vSRX_VNFD",
 "maxInstances": "5",
 "maxConsumersServed": "2"
 }
]
 }

Get Information about a VNF Descriptor
Retrieves details about a specified VNF descriptor.

Method
GET

URL
http://nso_host_name:port/ocnso/1.1/vnfd/vnfdName

where vnfdName is the name of the VNF descriptor

Sample Response
 {
 "deploymentFlavours": [
 {
 "vcpus": 2,
 "memory": 4,
 "disk": 20,
 "name": "vsrx.medium"
 },
 {
 "vcpus": 2,
 "memory": 4,
 "disk": 40,
 "name": "m1.medium"
 }
],
 "connectionPoints": [
 {
 "name": "CP01",
 "isExternal": false
 },
 {

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-15

 "name": "CP02",
 "isExternal": false
 },
 {
 "name": "CP03",
 "isExternal": false
 }
],
 "versions": [
 {
 "number": "1.0",
 "imageName": "npaas-srx-poc3-nso",
 "imageUserName": "",
 "imagePasswd": ""
 },
 {
 "number": "1.1",
 "imageName": "npaas-srx-poc3-nso2",
 "imageUserName": "",
 "imagePasswd": ""
 },
 {
 "number": "1.3",
 "imageName": "vsrx-12.1X47-D20.7-npaas-v0.3",
 "imageUserName": "",
 "imagePasswd": ""
 },
 {
 "number": "1.4",
 "imageName": "vsrx-npaas-v0.4",
 "imageUserName": "",
 "imagePasswd": ""
 }
]
}

Get Versions of a VNF Descriptor
Retrieves details about the versions of a specified VNF descriptor.

Method
GET

URL
http://nso_host_name:port/ocnso/1.1/vnfd/vnfdName/versions

where vnfdName is the name of the VNF descriptor

Sample Response
{
 "number": "1.0",
 "imageName": "npaas-srx-poc3-nso",
 "imageUserName": "",
 "imagePasswd": ""
 },
 {
 "number": "1.1",

Sample Requests and Responses

7-16 Network Service Orchestration Solution Implementation Guide

 "imageName": "npaas-srx-poc3-nso2",
 "imageUserName": "",
 "imagePasswd": ""
 },
 {
 "number": "1.3",
 "imageName": "vsrx-12.1X47-D20.7-npaas-v0.3",
 "imageUserName": "",
 "imagePasswd": ""
 },
 {
 "number": "1.4",
 "imageName": "vsrx-npaas-v0.4",
 "imageUserName": "",
 "imagePasswd": ""
 }

Get Flavors of a VNF Descriptor
Retrieves the list of flavors of a specified VNF descriptor.

Method
GET

URL
http://nso_host_name:port/ocnso/1.1/vnfd/vnfdName/flavors

where vnfdName is the name of the VNF descriptor

Sample Response
 {
 "vcpus": 2,
 "memory": 4,
 "disk": 20,
 "name": "vsrx.medium"
 },
 {
 "vcpus": 2,
 "memory": 4,
 "disk": 40,
 "name": "m1.medium"
 }

Get List of Network Services
Retrieves the list of active network services that are defined in a network service
descriptor.

Method
GET

URL
http://nso_host_name:port/ocnso/1.1/ns?nsdName=nsdName

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-17

where nsdName is the name of the network service descriptor file

Sample Response
[
 {
 "nsID": "17",
 "nsdName": "NPaaS_NSD",
 "nsName": "NSO_QA_NPaaS_mgf_1_Service",
 "status": "IN_SERVICE"
 },
 {
 "nsID": "23",
 "nsdName": "NPaaS_NSD",
 "nsName": "NSO_QA_NPaaS_mgf_3_Service",
 "status": "IN_SERVICE"
 }
]

Get Details about a Network Service
Retrieves the details about a network service.

Method
GET

URL
http://nso_host_name:port/ocnso/1.1/ns/networkServiceId

where networkServiceId is the ID of the network service

Sample Response
{
 "nsID": "375005",
 "nsdName": "NPaaS_NSD",
 "nsName": "29_1.3_AMns_Service",
 "status": "IN_SERVICE",
 "vimName": "OpenStack",
 "networks": [
 {
 "networkName": "nfvo-poc3-mgmt"
 },
 {
 "networkName": "nfvo-demo-pkt-in-v2"
 },
 {
 "networkName": "nfvo-demo-pkt-out-v2"
 }
],
 "vnfs": [
 {
 "vnfServiceId": "375006",
 "vnfServiceName": "29_1.3_AMvnf_Juniper_vSRX_VNFD_Service",
 "vnfServiceDescriptor": "Juniper_vSRX_ServiceDescriptor",
 "vmId": "3479b080-6341-425c-b242-ecd14b1dcef8"
 }
],
 "endPoints": [

Sample Requests and Responses

7-18 Network Service Orchestration Solution Implementation Guide

 {
 "name": "29_1.3_AMcnsmr"
 }
]
}

Get Details about VNFs in a Network Service
Retrieves the details about the VNFs in a network service.

Method
GET

URL
http://nso_host_name:port/ocnso/1.1/ns/networkServiceId/vnfs

where networkServiceId is the ID of the network service

Sample Response
{
 "nsID": "375005",
 "nsdName": "NPaaS_NSD",
 "nsName": "29_1.3_AMns_Service",
 "vnfs": [
 {
 "vnfId": "300003",
 "vnfName": "29_1.3_AMvnf",
 "vnfStatus": "INSTALLED",
 "vnfDescriptor": "Juniper_vSRX_VNFD",
 "vnfServiceId": "375006",
 "vnfServiceName": "29_1.3_AMvnf_Juniper_vSRX_VNFD_Service",
 "vnfServiceStatus": "IN_SERVICE",
 "vnfServiceDescriptor": "Juniper_vSRX_ServiceDescriptor",
 "vmId": "3479b080-6341-425c-b242-ecd14b1dcef8",
 "biID": "375006",
 "deploymentFlavorInfo": {
 "name": "m1.medium",
 "vcpus": 2,
 "memory": "4 MB",
 "disk": "40 GB"
 },
 "connectionPoints": [
 {
 "id": "300003-1",
 "name": "CP01",
 "ipAddress": {
 "address": "192.0.2.132",
 "network": "nfvo-demo-pkt-in-v2",
 "externalID": "8f2468de-c4b1-4656-b23f-ccd5c26b9d83"
 }
 },
 {
 "id": "300003-2",
 "name": "CP02",
 "ipAddress": {
 "address": "192.0.2.120",
 "network": "nfvo-demo-pkt-out-v2",
 "externalID": "8ab6b415-b04a-458c-97bc-d4ef2eb550c3"

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-19

 }
 },
 {
 "id": "300003-3",
 "name": "CP03",
 "ipAddress": {
 "address": "192.0.2.8",
 "network": "nfvo-poc3-mgmt",
 "externalID": "9e32e48a-439c-4292-a308-9eafa0beeb78"
 }
 }
]
 }
]
}

Get Details about Networks in a Network Service
Retrieves the details about the networks in a network service.

Method
GET

URL
http://nso_host_name:port/ocnso/1.1/ns/networkServiceId/networks

where networkServiceId is the ID of the network service

Sample Response
{
 "nsID": "375005",
 "nsdName": "NPaaS_NSD",
 "nsName": "29_1.3_AMns_Service",
 "networks": [
 {
 "networkName": "nfvo-poc3-mgmt",
 "networkID": "nfvo-poc3-mgmt",
 "externalID": "109ae4cf-3cea-4729-a24f-957c4ed6d3c6",
 "subnets": [
 {
 "startIP": "192.0.2.0",
 "prefix": "24",
 "externalID": "fb791563-7c8b-454c-a1eb-87399e6837dc"
 }
]
 },
 {
 "networkName": "nfvo-demo-pkt-in-v2",
 "networkID": "nfvo-demo-pkt-in-v2",
 "externalID": "2277b6e2-eb2d-4cc2-b80c-6d6c38f35ab0",
 "subnets": [
 {
 "startIP": "192.0.2.128",
 "prefix": "25",
 "externalID": "d47bf43a-57bd-4b17-b559-505a426d7359"
 }
]
 },

Sample Requests and Responses

7-20 Network Service Orchestration Solution Implementation Guide

 {
 "networkName": "nfvo-demo-pkt-out-v2",
 "networkID": "nfvo-demo-pkt-out-v2",
 "externalID": "3b45febc-4531-4751-ac55-9e43bd53897a",
 "subnets": [
 {
 "startIP": "192.0.2.0",
 "prefix": "25",
 "externalID": "c04bb488-73cc-4e93-bcab-156030a63a0c"
 }
]
 }
]
}

Get Details about Endpoints in a Network Service
Retrieves the details about the endpoints in a network service.

Method
GET

URL
http://nso_host_name:port/ocnso/1.1/ns/networkServiceId/endPoints

where networkServiceId is the ID of the network service

Sample Response
{
 "nsID": "375005",
 "nsdName": "NPaaS_NSD",
 "nsName": "29_1.3_AMns_Service",
 "endPoints": [
 {
 "name": "29_1.3_AMcnsmr",
 "ipAddress": "207.123.34.2"
 }
]
}

Get Status Information of a Network Service
Retrieves the status information about a network service.

Method
GET

URL
http://nso_host_name:port/ocnso/1.1/ns/networkServiceId/status

where networkServiceId is the ID of the network service

Sample Response
{
 "nsID": "375005",

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-21

 "nsdName": "NPaaS_NSD",
 "nsName": "29_1.3_AMns_Service",
 "status": "IN_SERVICE"
}

Get Details about a VNF
Retrieves the details about a VNF.

Method
GET

URL
http://nso_host_name:port/ocnso/1.1/vnf/vnfId

where vnfId is the ID of the VNF

Sample Response
{
 "vnfId": "300003",
 "vnfName": "29_1.3_AMvnf",
 "vnfStatus": "INSTALLED",
 "vnfDescriptor": "Juniper_vSRX_VNFD",
 "vnfServiceId": "375006",
 "vnfServiceName": "29_1.3_AMvnf_Juniper_vSRX_VNFD_Service",
 "vnfServiceStatus": "IN_SERVICE",
 "vnfServiceDescriptor": "Juniper_vSRX_ServiceDescriptor",
 "biID": "375006",
 "deploymentFlavorInfo": {
 "name": "m1.medium",
 "vcpus": 2,
 "memory": "4 MB",
 "disk": "40 GB"
 },
 "connectionPoints": [
 {
 "id": "300003-1",
 "name": "CP01",
 "ipAddress": {
 "address": "192.0.2.132",
 "network": "nfvo-demo-pkt-in-v2",
 "externalID": "8f2468de-c4b1-4656-b23f-ccd5c26b9d83"
 }
 },
 {
 "id": "300003-2",
 "name": "CP02",
 "ipAddress": {
 "address": "192.0.2.120",
 "network": "nfvo-demo-pkt-out-v2",
 "externalID": "8ab6b415-b04a-458c-97bc-d4ef2eb550c3"
 }
 },
 {
 "id": "300003-3",
 "name": "CP03",
 "ipAddress": {
 "address": "192.0.2.8",

Sample Requests and Responses

7-22 Network Service Orchestration Solution Implementation Guide

 "network": "nfvo-poc3-mgmt",
 "externalID": "9e32e48a-439c-4292-a308-9eafa0beeb78"
 }
 }
]
}

Get Status Information of a VNF
Retrieves the status information of a VNF.

Method
GET

URL
http://nso_host_name:port/ocnso/1.1/vnf/vnfId/status

where vnfId is the ID of the VNF

Sample Response
{
 "vnfServiceId": "375006",
 "vnfServiceName": "29_1.3_AMvnf_Juniper_vSRX_VNFD_Service",
 "vnfServiceStatus": "IN_SERVICE",
 "vnfServiceDescriptor": "Juniper_vSRX_ServiceDescriptor",
 "vmStatus": "ACTIVE"
}

	Contents
	Preface
	Audience
	Related Documentation
	Documentation Accessibility

	1 Overview
	About Network Service Orchestration Solution
	Solution Components
	About Network Service Orchestration Entities
	About the Sample Network Protection Service

	2 Installing and Integrating the Solution Components
	Planning Your Implementation
	Software Requirements
	Configuring UIM for the Network Service Orchestration Solution
	Integrating the Network Service Orchestration Solution Components
	Integrating the VIM with the Solution
	Registering the VIM
	Discovering VIM Resources

	Integrating the SDN Controller With the Solution

	Supported Southbound Integration

	3 Designing and Onboarding Network Services and VNFs
	About the Design Components
	About the Descriptor Files
	About the Network Service Descriptor
	About the VNF Descriptor
	Creating a Descriptor File

	About the Technical Actions File
	About Technical Actions
	Creating a Technical Action File

	About the VNF Configuration Files

	About the Sample Network Protection Service Model
	Implementing a Network Service By Using the Sample Cartridges

	Designing New Network Services and VNF Services

	4 Working with Network Services and VNFs
	Instantiating a Network Service
	Upgrading the Software Version of a VNF
	Monitoring and Healing a VNF
	Modifying a Network Service
	Adding a VNF to a Network Service
	Deleting a VNF from a Network Service

	Terminating a Network Service
	Retrieving Details About Network Services, VNFs, and Descriptors

	5 Extending the Network Service Orchestration Solution
	Setting Up Design Studio for the Network Service Orchestration Solution Cartridges
	Designing Cartridges for Custom VNFs and Network Services
	Using Extension Points and Java Interface Extensions to Extend the Solution
	Writing a Custom Ruleset Extension Point
	Using Java Interface Extensions
	Implementing a Custom SDN Controller
	Implementing a Custom Monitoring Engine
	Implementing a Custom VIM
	Implementing a Custom VNF Manager
	Implementing a Custom VNF Connection Manager
	Implementing a Custom VNF Configuration Manager

	Localizing the Network Service Orchestration Solution

	6 Contents of the Network Service Orchestration JAR and ZIP Files
	Network Service Orchestration Individual JAR Files
	Network Service Orchestration Super JAR File
	Network Service Orchestration Applications
	Network Service Orchestration ZIP Files

	7 Network Service Orchestration RESTful API Reference
	List of Network Service Orchestration Solution RESTful API Resources
	HTTP Response Status Codes
	Sample Requests and Responses
	Register a VIM
	Method
	URL
	Sample JSON Request
	Sample JSON Response

	Discover VIM Resources
	Method
	URL
	Sample Request
	Sample Response

	Instantiate a Network Service
	Method
	URL
	Sample Request
	Sample Response

	Terminate a Network Service
	Method
	URL
	Sample Request
	Sample Response

	Upgrade the Software Version of a VNF
	Method
	URL
	Sample Request
	Sample Response

	Heal a VNF
	Method
	URL
	Sample Request
	Sample Response

	Add VNFs to a Network Service
	Method
	URL
	Sample Request
	Sample Response

	Delete a VNF from a Network Service
	Method
	URL
	Sample Request
	Sample Response

	Get Network Service Information
	Method
	URL
	Sample Response

	Get Network Service Descriptors
	Method
	URL
	Sample Response

	Get Information about a Network Service Descriptor
	Method
	URL
	Sample Response

	Get VNF Descriptors
	Method
	URL
	Sample Response

	Get Flavors of a Network Service Descriptor
	Method
	URL
	Sample Response

	Get Information about a VNF Descriptor
	Method
	URL
	Sample Response

	Get Versions of a VNF Descriptor
	Method
	URL
	Sample Response

	Get Flavors of a VNF Descriptor
	Method
	URL
	Sample Response

	Get List of Network Services
	Method
	URL
	Sample Response

	Get Details about a Network Service
	Method
	URL
	Sample Response

	Get Details about VNFs in a Network Service
	Method
	URL
	Sample Response

	Get Details about Networks in a Network Service
	Method
	URL
	Sample Response

	Get Details about Endpoints in a Network Service
	Method
	URL
	Sample Response

	Get Status Information of a Network Service
	Method
	URL
	Sample Response

	Get Details about a VNF
	Method
	URL
	Sample Response

	Get Status Information of a VNF
	Method
	URL
	Sample Response

