Oracle® Agile Product Lifecycle Management for Process

Product Quality Management Extensibility Guide
Feature Pack 4.2
E66822-01

April 2016

ORACLE

Copyrights and Trademarks

Agile Product Lifecycle Management for Process
Copyright © 1995, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end
users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, shall be subject to license terms and license
restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which
may create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe
use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of
Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle

Agile Product Lifecycle Management for Process — PQM Extensibility

Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

© 2016 Oracle Corporation

Agile Product Lifecycle Management for Process — PQM Extensibility

Contents
e e o 6
B Te [T<Y o ol TSP 6
Variability of INSTAIlAtIONScciceiiie e e e e et e e e e e e e s nba e e e e abae e e anees 6
Documentation ACCESSIDIITY......cii e e e e e e e e e e e nanes 6
Yool T (o J O 1 = Lol I T o o Yo o AU RSRRN 6
Y oYV [l Nz 11 - 1 o 11 L SRR 6
CHAPTER L1—0OVERVIEW. ...ttt ettt e e et e e et e e e e rt e e e eaa s 7
CHAPTER 2—CUSTOM READ AND WRITE PERMISSIONS ..ot 8
CUSTOM REAM PEIMMISSION ...iiiiiiiiiiiiiiiee ettt ettt ettt ettt e st e e sttt e s st e e e s s abbe e e s sabbeeessabbeessnbaeesenbaeessnnees 8
CUSTOM WIItE POIMISSION «..eeeeeeeiiiie ettt ettt e e e et e e e e e e e sttt e e e e e s arneeeeeeeeesaanrenaeeeeess 8
CHAPTER 3—WORKFLOW ACTIONS AND GUARD CONDITIONSccooiiiiiiiiiiiiee e, 9
EXisting PQM WOIKfIOW ACLIONSuviiiieeii ettt e e e e et re e e e e e e e ante e e e e e e sesnnrneeeeeeesennnns 9
CHAPTER 4—WORKFLOW EMAIL NOTIFICATIONS ...t 10
CHAPTER 5—RELATED ITEM DISPLAY ..ot e e e s 11
CHAPTER 6—EXTENDED ATTRIBUTE CALCULATION ..ottt 12
PQM Calculation VEto PIUGINc..eveiiiieie ettt ettt e st e e e ae e e et a e e e s saa e e e snnaaeeesnsaeeeennsaeeas 12
CHAPTER 7—VALIDATION ... ottt e e e et e e et e e e e et e e e e et e e e enta e e e eeannas 13
CHAPTER 8—NOTIFICATION PANEL ..ottt e e ee 14
CHAPTER 9—EVENT MODELccoitiiiiiiiii e e e e e e e e et e e s e e e e e e anaaeeeeee 15
CHAPTER 10—SUPPLIERS EXTENSIBILITY e e e e e e 16
N U] oo LT Yo U oY D - - FR USSR 16
o Tor | IY 21 Y R SRR 16
= g I 0121 1Y PP PP PP 16
Alternate SUPPLIEr SOUICE SYSTEMS ...uiiii i iiiiiee et e e e e e e rre e e e e e s e s bt e eeeeeesssennnraaaeaaanans 17
(00 a1 T={U T = 4 Lo IO SRR 22
SCRM Residing on a Different Databaseccuuiiiiiiiiiiiee e 25
Additional Supplier Formatting EXtENSIDilityceeeeiieiiiiiiiiee e 25
CHAPTER 11—AFFECTED ITEMS EXTENSIBILITY ..o 27
Affected ILEM SOUMCE Data....cciiciiiiiiieiee ettt ettt ettt e st e s be e e b e e e s abe e sabeeesaseessteesnbeesneeesanes 27

© 2016 Oracle Corporation

Agile Product Lifecycle Management for Process — PQM Extensibility

[IoTor| G Y PSSP PRSPPI 27
EXEEINAL GSM ettt e e s e et e sr e s e e s eares 27
Alternate Affected ItemM SOUICE SYSTEMSccccuiiii ettt e e e rte e e e erae e e e eabe e e e eaneeas 29

(000 a1 1={U = 4 (o o AP USSR 38
GSM Residing on a Different Database........cccuueiiiiiiiiiie e e 40
Additional Affected Items Formatting EXteNnSibilityccccvueiriiiiiiiiiiie e 41
AFfECted TEM PeISISTENCE ...cuiiiiiiiiieete ettt ettt et e b e sbe e sbeesaeesanesaeesaees 42
CHAPTER 12—PQM WEB SERVICESot ee e 43
CHAPTER 13—UTILITY CLASSES ... ettt e e e eaeeeeenes 44
O A oY i (o N A 1T od S | [T 1 o TSRS 44
PQMUSErCrosSREfErENCEREIIEVENiiuiiiiiiiiieiieete ettt sttt sttt sr e b sreesaeesane e 44
O Y =T a1 oY]\ T o F= T == P P 44

© 2016 Oracle Corporation

Agile Product Lifecycle Management for Process — PQM Extensibility

Preface

Audience

This guide is intended for client programmers involved with integrating Oracle Agile Product Lifecycle
Management for Process. Information about using Oracle Agile PLM for Process resides in application-
specific user guides. Information about administering Oracle Agile PLM for Process resides in the Agile
Product Lifecycle Management for Process Administrator User Guide.

Variability of Installations

Descriptions and illustrations of the Agile PLM for Process user interface included in this manual may not
match your installation. The user interface of Agile PLM for Process applications and the features
included can vary greatly depending on such variables as:

= Which applications your organization has purchased and installed

= Configuration settings that may turn features off or on

= Customization specific to your organization

= Security settings as they apply to the system and your user account

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Software Availability
Oracle Software Delivery Cloud (OSDC) provides the latest copy of the core software. Note the core
software does not include all patches and hot fixes. Access OSDC at:

http://edelivery.oracle.com

© 2016 Oracle Corporation

Agile Product Lifecycle Management for Process — PQM Extensibility

Chapter 1—Overview

The Product Quality Management (PQM) application is a full featured, fully integrated module for
Enterprise Quality Management. It is designed to tightly integrate Issues, Actions, and Audits, with the
rest of the Agile PLM for Process application suite, including GSM, SCRM, and NPD, but is flexible enough
to allow for integrations with external systems from within the user interface. Additionally, a rich set of
PQM web services allows for most of the core PQM functionality to be managed from other systems, if
desired, thus providing many options for deployment and product rollout. Furthermore, PQM provides
many useful extension points found throughout the application suite, such as Validation, Notifications,
Workflow Actions and Guard Conditions, customized emails, and more.

This document discusses the following extensibility points available for the PQM application:

= Custom Read and Write Permissions

= Workflow Actions and Guard Conditions
= Workflow Triggered Email Notifications
= Related Items Display

= Custom Data Calculation

= Validation

= Notification Panel

= Event Model

= Supplier Extensibility

= Affected Items Extensibility

= Related Project Extensibility

= Web Services

= Supplier PQM

Many of the implementation details of the different extensibility points can be found in the Feature
Pack.

Additionally, there are several useful utility classes available for PQM custom code development, as
described in the Appendix.

© 2016 Oracle Corporation

Agile Product Lifecycle Management for Process — PQM Extensibility

Chapter 2—Custom Read and Write Permissions

Basic PQM read, write, and workflow permissions for Issues, Actions, and Audits are based on the
workflow templates set up in Workflow Administration. PQM adds two useful extensibility points to
further customize Read and Write permissions on a PQM Item: Custom Read Permission and Custom
Write Permission.

Custom Read Permission
A Validate Plugin class can be created to extend the Read permission logic of a PQM Item, if desired.

To customize the Read permission checks for PQM, create a new Validate Plugin and add an entry into
the CustomPluginExtensions.xml file in config\Extensions, in the ValidatePlugins node, using the plugin
name “HasPQMReadPermissionPlugin”, like so:

<Plugin name="HasPQMReadPermissionPlugin"
ignorelnheritFromPluginName=""true"

FactoryURL="{Your custom class using ObjectLoaderURL syntax}" />

Custom Write Permission
A Validate Plugin class can be created to extend the Write permission logic of a PQM Item, if desired.

To customize the Write permission checks for PQM, create a new Validate Plugin and add an entry into
the CustomPluginExtensions.xml file in config\Extensions, in the ValidatePlugins node, using the plugin
name “HasPQMWritePermissionPlugin”, like so:

<Plugin name="HasPQMWritePermissionPlugin"

ignoreInheritFromPluginName="true"
FactoryURL="{Your custom class using ObjectLoaderURL syntax}" />

TECHNICAL NOTE

The Validate Plugin class gets passed the current PQM data object (the PQM Issue, Action, or Audit) as a
Xeno.Data.PQM.IPQMItemBase interface, which can be cast as an IPQMActionDO, IPQMAuditDO , or
IPQMIssueDO. The current User is also available to the plugin, via the
Xeno.Prodika.PluginExtensions.Context.ValidatePluginContext User property.

To learn more about Validate Plugins, see the PluginExtensions document in the
\Referencelmplementations\PluginExtensions\Documentation folder. Reference implementations of
Validate Plugins can be found in the
\Referencelmplementations\PluginExtensions\SourceCode\ReferencePlugins\ValidatePlugins folder.

© 2016 Oracle Corporation

Agile Product Lifecycle Management for Process — PQM Extensibility

Chapter 3—Workflow Actions and Guard Conditions

Workflow Actions are extension points that trigger the execution of custom classes when a workflow
transition occurs. Guard conditions are extensibility points that help determine if a workflow transition
can occur. Workflow actions and workflow guard conditions are specified in a configuration file, and are
then assignable to workflow transitions in the WFA user interface.

Custom workflow actions and guard conditions can be created for PQM Actions, Audits, and Issues.
When configuring the workflow actions and guard conditions in CustomWFAExtensionsConfig, use the:

processTemplateTypes=""PQM"

attribute value.

Existing PQM Workflow Actions
Two workflow actions are available for use for PQM actions:

1. PQM Action - Release Related Issues: For a PQM action, this marks any related Issues as
Released unless the issue is already in a cancelled state. This assumes that statuses in WFA are
assigned the relevant PQM workflow tags.

2. PQM Action - Cancel Related Issues: For a PQM action, this marks any related Issues as
Cancelled. This assumes that statuses in WFA are assigned the relevant PQM workflow tags.

These workflow actions are made available by un-commenting them from the
CustomWFAExtensionsConfig.xml in config\Extensions.

TECHNICAL NOTE

Workflow Action classes are passed an IPQMLinearTransitionContext
(Xeno.Prodika.Services.PQM.Workflow) object which contains the current PQM item business object
(IPQMItemBaseB0O) and the PQM service IPQMItemService.

To learn more about workflow actions and guard conditions, see the Workflow Actions and Guard
Conditions document in the \Referencelmplementations\WorkflowActions\Documentation folder.
Reference implementations of Workflow Actions and Guard Conditions can be found in the
\Referencelmplementations\ WorkflowActions\SourceCode\ReferenceWorkflows folder.

© 2016 Oracle Corporation

Agile Product Lifecycle Management for Process — PQM Extensibility

Chapter 4—Workflow Email Notifications

PLM for Process provides various automated email notifications when PQM actions, issues, and audits,
move from one workflow status to another. Emails can be sent to owners of the PQM items informing
them that the item is now in their action items listing, or that they need to sign off on the item, or as a
simple notification that the item moved from one status to another. The email recipients are specified in
the WFA application, using the Owners, Notifications, and Signature Request grids.

Clients wishing to customize the existing emails may do so by modifying the translation templates used
for the PQM workflows, or by writing custom classes for more fine-grained control.

See the PLM for Process Email Extensibility document for more details.

© 2016 Oracle Corporation

10

Agile Product Lifecycle Management for Process — PQM Extensibility

Chapter 5—Related Item Display

The various PQM Related ltems listings show basic information on the related PQM items. The
information shown can be customized to include additional display data. Clients can create custom
Format Plugins classes for the Related Issues, Related Actions, and Related Audits listings by using the
following Format Plugin extension points:

= PQMRelatedIssues
= PQMRelatedActions
= PQMRelatedAudits

When configuring any of the above FormatPlugins, be sure to include the following XML attribute:
ignoreInheritFromPluginName="true"

See the PluginExtensions documentation, available in the Feature Pack, for details on writing
FormatPlugins.

© 2016 Oracle Corporation

11

Agile Product Lifecycle Management for Process — PQM Extensibility

Chapter 6—Extended Attribute Calculation

Calculated extended attributes (Calculated Numeric/Boolean/Text) on PQM items allow you to create a
read-only extended attribute (EA) that displays results of a calculation to the user. The calculation
(written in JScript), specified in the Data Admin user interface for extended attributes, can access data
from other extended attributes, custom sections, and other data from the PQM item the EA is attached
to. Additionally, the script can execute a call to a custom class to return additional data to the script.

Clients wishing to have more control over calculations, consolidate their calculation logic, or access
other data not directly available through JScript (and the predefined functions), may call out to custom
classes from their scripts. The custom classes get executed and return a result back to the script. They
may optionally receive parameter data from the script. Custom calculation classes have access to the
PQM Item business object (IPQMItemBaseBO) using the Entity property, which provides full access to
the PQM item.

PQM Calculation Veto Plugin

Clients may limit the times when PQM Custom Section calculation should occur by creating a
ValidatePlugin class using the extension name “IsPQMCalculationAllowed”. This plugin can be used to
determine if calculation should be turned on or off. This can be combined with the Format plugin
“IsPQMCalculationAllowedOverrideMessage” to provide a customized message to indicate if the
specification calculation was enabled or disabled.

© 2016 Oracle Corporation

12

Agile Product Lifecycle Management for Process — PQM Extensibility

Chapter 7—Validation

The validation framework allows you to configure custom validation rules to specific Ul events in the
system. For example, when a user selects the Save button on a PQM action, code can be put in place to
make sure specific required fields are properly filled out. If any required fields are left blank, an error
message can be displayed preventing the user from saving the action until all of the data is provided.

Custom validation rules can be written that validate against PQM actions (type=7003),issues
(type=7002), and audits (type=7004) for Save, Copy, and Workflow events. PQM item templates are also
available for validation (7002T, 7003T, & 7004T) for the same events.

See the Validation Training documentation in the Feature Pack for details.

© 2016 Oracle Corporation

13

Agile Product Lifecycle Management for Process — PQM Extensibility

Chapter 8—Notification Panel

Notification Panels are available on the PQM user interface. To create custom notifications that can
show up in PQM, clients can create Notification Plugins and configure them using the
usedIn="PQMItem" XML attribute.

See the PluginExtensions documentation, available in the Feature Pack, for details on writing
NotificationPlugins.

© 2016 Oracle Corporation

14

Agile Product Lifecycle Management for Process — PQM Extensibility

Chapter 9—Event Model

As specific events occur in PQM, their details are captured and recorded in the pgmLifecycleEventLog
database table. Clients can watch for events added to this table to trigger some custom actions.

Each event captured may include the following information:

= Event Type—The type of event that occurred (1: Create, 2: Save, 3: Workflow, 4: Copy)

= Event Source— What caused the event (a PQM Edit, a web service, etc.)

= Actor—User who performed the event

= Timestamp —Date and time stamp of when the event happened

= Affected Object—PQM business object that was acted upon (object that was saved/copied, etc.)
= Related Object—Related object when appropriate (Workflow step)

= Reason—Reason the action occurred when appropriate (ex: Workflow comments)

© 2016 Oracle Corporation

15

Agile Product Lifecycle Management for Process — PQM Extensibility

Chapter 10—Suppliers Extensibility

The source of PQM supplier data (Company and Facility entries in the action, issue, and audit Supplier
grid) can be customized to pull data from the current (local) SCRM instance, some other instance of PLM
for Process SCRM, and/or from entirely different applications.

Supplier Source Data

The out of the box configuration assumes the Agile PLM for Process Supply Chain Relationship
Management (SCRM) application is local and on a shared database. Using an alternate instance of SCRM,
in which PQM and SCRM reside on different databases, can be done by some simple configuration
changes. Pulling in supplier data from other systems requires that a custom ASCX control be created and
deployed into PQM, as well as a class which takes the PQM supplier data and generates the formatted
view for display in the Ul. Multiple configurations of source data are permitted, which allow PQM
supplier data to be pulled from multiple applications.

Additionally, the configuration for PQM suppliers is flexible enough to allow different configurations for
actions, audits, and issues, if needed.

Local SCRM

Assumes the PQM supplier data is populated from SCRM residing on the same database. This is the
default configuration for PQM suppliers, so no configuration changes are required to the out-of-the box
installation.

External SCRM

Agile PLM for Process SCRM that is deployed on a separate database from PQM requires configuration
changes that specify the server URL and database connection. Additionally, this configuration requires
that the Reporting DB connection pool is configured (on the PQM application’s configuration files) to
point to the database connection where SCRM is hosted.

See the Configuration > SCRM Residing on a Different Database section in this document.

Trusted Site

When searching for SCRM companies and facilities on a different server from PQM, users must update
their Internet Explorer browser settings to add that SCRM web site as a Trusted Site. Failing to do so will
result in the Add Suppliers popup and the SCRM EQT Popup being unable to post the results back to
PQM.

SCRM EQT Feature Configuration

When using PQM to search for actions, issues, or audits that have a specific SCRM companies or
facilities, different configurations control whether or not the search options should include a local SCRM
search and/or a remote SCRM search. The following FeatureConfiguration entries enable the behaviors:

© 2016 Oracle Corporation

16

Agile Product Lifecycle Management for Process — PQM Extensibility

<add key="PQM.EQT.Action.SupplierSCRMSearch.Local.Enabled" value="true"
configDescription="Sets PQM Action EQT Search of Suppliers by local SCRM DB"/>
<add key="PQM.EQT.Action.SupplierSCRMSearch.External.Enabled" value="false"

configDescription="Sets PQM Action EQT Search of Suppliers by External SCRM DB"/>

<add key="PQM.EQT.Audit.SupplierSCRMSearch.Local.Enabled" value="true"
configDescription="Sets PQM Audit EQT Search of Suppliers by local SCRM DB"/>
<add key="PQM.EQT.Audit.SupplierSCRMSearch.External.Enabled" value="false"
configDescription="Sets PQM Audit EQT Search of Suppliers by External SCRM DB"/>
<add key="PQM.EQT.Issue.SupplierSCRMSearch.Local.Enabled" value="true"
configDescription="Sets PQM Issue EQT Search of Suppliers by local SCRM DB"/>
<add key="PQM.EQT.Issue.SupplierSCRMSearch.External.Enabled" value="false"

configDescription="Sets PQM Issue EQT Search of Suppliers by External SCRM DB"/>

Alternate Supplier Source Systems

When pulling supplier data from alternate systems, a custom ASCX control must be created and plugged
into PQM that allows for searching and selecting a company or facility. This company or facility is then
added to the Suppliers listing in PQM via the hosting aspx page’s Addltem Javascript function.

v| Suppliers/Facilities
Company Facility
1 ABC Foods (5011699)

2 Grandma Kelly's Homestead (Ann Arbor, MI USA)

3 Bigfoot Breweries (Bend, OR USA)

4 New England Seafood Cannery (Boston, MA USA)

¥ Add New
SCRM
Northwind Supplier

The configured list of possible suppliers is added to the Add New button. Clicking on the external
supplier system launches the custom control.

ASCX control

The custom control’s responsibility it to provide a mechanism for users to search for supplier data (ex
company or facility data), and then select the entry that will be populated in the Suppliers listing. The
control could, for example, allow users to enter some search criteria, and pass those values to a web
service call to another system, returning any matching suppliers. Alternatively, the control could simply
display a listing of all suppliers from a different database (see example below). Selecting the desired
supplier entry must then call an existing Javascript function, Addltem() to add the entry to the PQM
item. For more details, see the following reference example, and the Configuration section:

© 2016 Oracle Corporation

17

Agile Product Lifecycle Management for Process — PQM Extensibility

P
(=) Oracle - Windows Internet Explorer - =
CustomerID| CompanyName | Contacthame | ContactTitle | City |Region|PostalCode Country, Phone
1 Exotic Liquids Charlotte Cooper Purchasing Manager |London EC1 45D UK 512:213 o
l : f : = INew l [3 |(100) 555-
2 _New Orleans Cajun Delights :Shelley Burke .Order Administrator fOrlea_ms _LA _?0 117 IUSA 4822
3 Grandma Kelly's Homestead |Regina Murphy |Sales Representative [Ann Arbor |MI 43104 USA (53;.;35) ARG
[L ' . ' [[[|(03) 3555-
+ Tokyo Traders Yoshi Nagase Marketing Manager [Tokyo 100 Japan [so11
Cooperativa de Quesos 'Las |Antonio del Valle | " [; | le8) 59876 |
5 Cabras' Saavedra IExport Administrator IOv:edo "Astl.masﬂ3300? :Spaun 54
= : Marketin 06) 431-
6 _Ma yumi's .Ma yumi Ohno fﬁ- i e;“ﬁv - .Osaka _ _545 .Japan 287)7
7 Paviova, Ltd. {Ian Devling Marketing Manager Melbourne |Victoria 3058 Australia 503323
8 Spedalty Biscuits, Ltd. Peter Wilson |Sales Representative Manchester M14 GSD UK m 20
9 PB Knackebrad AB Lars Peterson Sales Agent Géteborg S-34567 (Sweden 3;“937 5
10 Refrescos Americanas LTDA |Carlos Diaz Marketing Manager |Sao Paulo 5442 Brazil Sé:)osss
T I I I I I I

The above screenshot is an example of a control that displays data from a different database, using a
.NET GridView control. This code for this simple GridView control is shown below.

<%@ Control Language="C#" AutoEventWireup="true" CodeBehind="NorthwindSuppliers.ascx.cs" Inherits="Referen
cePQMExtensions.Suppliers.NorthwindSuppliers" %>
<div>

<asp:GridView ID="GridViewl" runat="server" AllowPaging="True"
AllowSorting="True" AutoGenerateColumns="False" DataKeyNames="SupplierID"
DataSourceID="SqlDataSourcel">
<Columns>
<asp:BoundField DataField="SupplierID" HeaderText="CustomerID" ReadOnly="True"
SortExpression="SupplierID" />
<asp:BoundField DataField="CompanyName" HeaderText="CompanyName"
SortExpression="CompanyName" />
<asp:BoundField DataField="ContactName" HeaderText="ContactName"
SortExpression="ContactName" />
<asp:BoundField DataField="ContactTitle" HeaderText="ContactTitle"
SortExpression="ContactTitle" />
<asp:BoundField DataField="City" HeaderText="City" SortExpression="City" />
<asp:BoundField DataField="Region" HeaderText="Region"
SortExpression="Region" />
<asp:BoundField DataField="PostalCode" HeaderText="PostalCode"
SortExpression="PostalCode" />
<asp:BoundField DataField="Country" HeaderText="Country"
SortExpression="Country" />
<asp:BoundField DataField="Phone" HeaderText="Phone" SortExpression="Phone" />
</Columns>
</asp:GridView>
<asp:SqlDataSource ID="SqlDataSourcel" runat="server"
ConnectionString="Data Source=(local);Initial Catalog=northwind;Integrated Security=true"
SelectCommand="SELECT * FROM [Suppliers]"></asp:SqlDataSource>

</div>

In the code-behind, we add an event for when the row is clicked, which calls the AddItem function:

© 2016 Oracle Corporation

18

Agile Product Lifecycle Management for Process — PQM Extensibility

using System;
using System.Web.UI.WebControls;

namespace ReferencePQMExtensions.Suppliers

{
public partial class NorthwindSuppliers : System.Web.UI.UserControl
{
protected void Page_Load(object sender, EventArgs e)
{
GridViewl.RowDataBound += gvSearch_RowDataBound;
}

protected void gvSearch_RowDataBound(object sender, GridViewRowEventArgs e)
{

if (e.Row.RowType == DataControlRowType.DataRow)

{
.Row.Attributes.Add("onmouseover", "this.style.backgroundColor="#ceedfc'");
.Row.Attributes.Add("onmouseout"”, "this.style.backgroundColor=""");
.Row.Attributes.Add("style", "cursor:pointer;");
.Row.Attributes.Add("onclick", "AddItem('" + e.Row.Cells[@].Text + "',"'", 'Nor
orthwind');");

=M ® ® M

thwindCompany', '
}
}
3
3

The control adds the item to the Suppliers listing of the PQM item using only the item’s internal
identifier, some external identifier, an item type, and the SourceSystemID. Next, a new class must be
created to handle displaying data returned by this control. The company and facility names are not
stored in the database, so that there is no issue with keeping multiple data sources in synch. This class is
therefore responsible for retrieving the company (and optionally the facility name), along with an
additional description and an optional URL to link to that company/facility.

View Model Retriever

A custom SupplierRetriever class must be created that creates a ViewModel object for each supplier in
the listing. The View Model is responsible for display of the supplier data in the User Interface.

The PQMSupplierViewModelRetrieverFactory simply creates and returns a
PQMSupplierViewModelRetriever

}}-I

(IPOMSupplierViewModelRetrieverFactory
Interface

i
= Methods
& Create() IPQMSupplierViswMode{Retricver

The PQMSupplierViewModelRetriever’'s GetViewModels method takes a collection of PQMSupplier data
objects which are stored on the PQM item, and takes the PKID of the owning PQM business object. The
owner would be a PQM action, issue, or audit, or alternatively, a PQMIssueAffectedltem data object
which also has a supplier property. The retriever must then return a corresponding list of view models.

© 2016 Oracle Corporation

19

Agile Product Lifecycle Management for Process — PQM Extensibility

Given the list of PQMSupplier data objects, which hold the ItemInternallD, ItemExternallD, etc, those
properties are then used by the retriever to query another system (using web services, for example) and
retrieve the relevant information for display in the view models.

(IPQMSupplierViewModelRetriever E3
Interface
Hd

= Methods
Y GetViswModels(IColiection= IPQMSupplier= pgmauppliers, string kOwrner) : List< IPOQMSupplisriiewMods! >

(ISourceSystemldentifier E3
Interface
HJ
= Properties
f ttemExternalll { get; set; } string
f tteminternalily { get; set: } : string
ﬁ ttemType { gety setr] @ string
f SourceSystemiDy { get; set; } o string

fi

[IPQMSupplierViewModel E3
Interface
=+ ISourceSystemIdentifier
= Properties
Companylrescription { get; | » string
CompanyDescriptionExtended { get; } : string
CompanyURL { get: } : string
DateAdded { get; set: } : DateTime
FacilityDescription { get; } : string
FacilityDescriptionExtended { get; } @ string
FacilityURL { get: } : string
PKID { get; } : string

iy Ly i iy iy iy iy

Custom view model classes can extend the PQMSupplierViewModelBase abstract class, to leverage
some common properties and methods.

Example Code

The following code represents a simple implementation of a supplier view model and retriever class. The
Retriever factory class simply creates a new view model Retriever. The Retriever’'s GetViewModels
method takes the pgmSupplier collection, which holds the internal identifiers of the supplier, and
queries the Northwind database to retrieve the supplier’'s CompanyName and location information.

© 2016 Oracle Corporation

20

Agile Product Lifecycle Management for Process — PQM Extensibility

Note that the URL links for the company link to a non-existent web site. In this example, the supplier
data represents a company only, and not a facility.

public class NorthwindSupplierViewModelRetrieverFactory :IPQMSupplierViewModelRetrieverFactory

{
public IPQMSupplierViewModelRetriever Create()

{
X

return new NorthwindSupplierViewModelRetriever();

public class NorthwindSupplierViewModelRetriever : IPQMSupplierViewModelRetriever

{

private const string _queryString = "SELECT CompanyName, City, Region, Country FROM dbo.Suppliers
where SupplierID = @SupplierID;";

public List<IPQMSupplierViewModel> GetViewModels(ICollection<IPQMSupplier> pgmSuppliers, string fk

Owner)
{
List<IPQMSupplierViewModel> supplierViewModels = new List<IPQMSupplierViewModel>();
foreach (var pgmSupplier in pgmSuppliers)
{
var supplier = LoadSupplier(pgmSupplier, fkOwner);
if (supplier != null)
supplierViewModels.Add(supplier);
¥
return supplierViewModels;
}
private IPQMSupplierViewModel LoadSupplier(IPQMSupplier pgmSupplier, string fkOwner)
{
IPQMSupplierViewModel northwindSupplier = null;
using (var connection = new SqlConnection(NorthwindDBHelper.ConnectionString))
{
var command = new SqlCommand(_queryString, connection);
command.Parameters.AddWithValue("@SupplierID", pgmSupplier.ItemInternallD);
try
{
connection.Open();
SqlDataReader reader = command.ExecuteReader();
if (reader.Read())
{
string companyDescription = reader.GetString(®);
string companyURL = "http://somenorthwind.com/supplier/" + pgmSupplier.ItemInterna
11D;
string city = reader.IsDBNull(1) ? String.Empty : reader.GetString(1);
string region = reader.IsDBNull(2) ? String.Empty : reader.GetString(2);
string country = reader.IsDBNull(3) ? String.Empty : reader.GetString(3);
string companyDescriptionExtended = String.Format("{@}, {1} {2}", city, region, co
untry);

northwindSupplier = new NorthwindSupplierViewModel(pgmSupplier
, fkOwner
, companyDescription
, companyDescriptionExtended
, companyURL);

reader.Close();

}

catch (Exception ex)

{
northwindSupplier = new NorthwindSupplierViewModel(pgmSupplier

© 2016 Oracle Corporation

21

Agile Product Lifecycle Management for Process — PQM Extensibility

, TkOwner
, "Error Occurred"
, String.Format("Northwind record # {0} -
{1}", pgmSupplier.ItemInternallID, ex.Message)
, "http://somenorthwind.com/supplier/" + pgmSupplier.ItemInternallD);
}

return northwindSupplier;

The sample View Model class extends the PQMSupplierViewModelBase abstract class. It sets the
company information, and marks the facility information as blank (the suppliers table used only has a
single entity, so only a company is used here). In other scenarios, both the company and the facility can
be used.

using System;
using Xeno.Data.PQM;
using Xeno.Prodika.Services.PQM.Models.Suppliers;

namespace ReferencePQMExtensions.Suppliers
{
public class NorthwindSupplierViewModel : PQMSupplierViewModelBase
{
public NorthwindSupplierViewModel(IPQMSupplier pgmSupplier, string fkOwner, string com
panyName, string companylLocation, string homepage) : base(pgmSupplier, fkOwner)

{
CompanyDescription = companyName;
CompanyDescriptionExtended = companylLocation;
CompanyURL = homepage;
FacilityDescription = String.Empty;
FacilityDescriptionExtended = String.Empty;
FacilityURL = String.Empty;

}

Configuration

In the CustomerSettings.config file, the PQM node has individual nodes for each PQM business object
(action/audit/issue). The SupplierRetrievers node contains PQMItemRetrieverConfig child nodes, which
specify each data source.

The following configuration entry shows the default supplier configuration (where supplier data is
retrieved from a local SCRM instance), and is followed by the configuration used by the example shown
above (SourceSystemID="Northwind”):

<PQM>
<Action>

<SupplierRetrievers configChildKey="SourceSystemID">
<PQMItemRetrieverConfig
SourceSystemID="SCRM"
SourceSystemTranslationID="1b1SCRM"
ItemRetrieverObjectURL="Class:Xeno.Prodika.Services.PQM.Models.Suppliers.SCRM.SCRMSuppl
ierViewModelRetrieverFactory,PQMLib$SCRM"

© 2016 Oracle Corporation

22

UseEQT="true"

Agile Product Lifecycle Management for Process — PQM Extensibility

EQTBaseURL="@@VAR:Prodika.PQM.URL@@"

EQTConfiguration="SearchableView:Config:ProdikaSettings/EQTConfiguration/SearchableMult
iSelectViewsSCRM, CompanyFacilitySingleViewPopup"

ItemViewBaseURL="@@VAR:Prodika.SCRM.URL@@"

ItemAddControl="" />

<PQMItemRetrieverConfig

SourceSystemID="Northwind"
SourceSystemTranslationID="1blNorthwind"

ItemRetrieverObjectURL="Class:ReferencePQMExtensions.Suppliers.NorthwindSupplierViewMod
elRetrieverFactory,ReferencePQMExtensions"

UseEQT="false"
EQTBaseURL=""
EQTConfiguration=

ItemViewBaseURL="http://northwinddb.com/suppliers/"
ItemAddControl="NorthwindSuppliers.ascx" />

The configuration details are as follows:

Attribute Description

SourceSystemID

Identifies where the supplier data comes from. This value should be
unique within the individual item type (action/audit/issue) — that is, the
action SupplierRetrievers node should not contain 2
PQMItemRetrieverConfig entries with the same SourceSystemID values.

SourceSystemTranslationID

Will be used to display the name in the supplier section of the user
interface if there is more than one entry configured for the PQM item
type.

When adding new translations, add a new entry into the
commonXLAExtensionCacheItem table, where the fkParent value is the
pkid of the “frmPQM/Extension”’ entry in the commonXLAExtensionCache

table. For example:

insert into commonXLAExtensionCacheItem values
("1059"+UPPER(NEWID()), '10586A177FC6-F446-4FC2-885D-
788B8C89AAF3', O, 'lblNorthwind', 'Northwind Supplier');

ltemRetrieverObjectURL

This customizable class is a factory
(IPQMSupplierViewModelRetrieverFactory) that, given a list of supplier
data objects (IPQMSupplier) stored in PQM, retrieves the related view
models (IPQMSupplierViewModel), which are classes that are used to
generate the Ul details.

Custom classes can leverage the abstract base view model class,
PQMSupplierViewModelBase, when creating their own view models.

UseEQT true if using Agile PLM for Process SCRM; false otherwise

EQTBaseURL Required if using SCRM; app location of the SCRM company/facility
selection popup.

EQTConfiguration Required if using SCRM; can be customized to specify different EQT views

when searching for SCRM Companies and Facilities.

© 2016 Oracle Corporation

23

Agile Product Lifecycle Management for Process — PQM Extensibility

Attribute Description

ItemViewBaseURL

Supplier company and facility entries in the user interface can be links —
this setting specifies the base URL of SCRM based links, and can be used by
the ViewModel retriever to create the URL links.

ItemAddControl

Required when supplier data is coming from a non-SCRM source. This
value specifies the ASCX control that should be loaded in a PQM pop and
that can manage the display of Suppliers from external systems. This value
is ignored if the UseEQT attribute value is set to true.

The custom control’s responsibility is to provide a mechanism for users to
search for company and/or facility supplier data, and select the entry that
will be populated in the Suppliers listing. The control could, for example,
allow users to enter some search criteria, and pass those values to a web
service call to another system, returning any matching suppliers. Selecting
the desired supplier entry must then call an existing javascript function,
AddItem() to add the entry to the PQM item. The AddItem function takes
the following parameters:

= internallD — the internal unique identifier of the entry. This will
not be visible to users.

= ExternallD - a visible identifier. This can be modified by providing
additional ExternallD options in the ItemRetriever class, if needed.

= [temType — a value that can be used to distinguish companies
from facilities.

= SourceSystemlID — a value that should match the SourceSystemID
entry in the configuration, telling the system where the data came
from. For PLM for Process SCRM, the value “SCRM” is used.

The ASCX control must pass specific data to the main PQM window by
calling the PQMSupplierltemAdd.aspx’s AddItem() javascript function.

The .ascx file must be placed in the PQMItemControls\Extensions folder in
PQM. The compiled DLL for this control must be included in the PQM\bin
directory.

The @ @VAR:Prodika.SCRM.URL@ @ value gets automatically replaced by the value in
environmentvariables.config, but a different value can be specified here if needed.

© 2016 Oracle Corporation

Agile Product Lifecycle Management for Process — PQM Extensibility

SCRM Residing on a Different Database
If SCRM data resides in a different database, the configuration entry of the IltemRetrieverObjectURL
must be changed by appending the following, starting with the pipe (|) symbol:

| Class:Xeno.Prodika.Services.PQM.Models.DataManagerStrategy.ReportingDBDataManagerStrategy,PQMLib
So the attribute would be:

ItemRetrieverObjectURL="Class:Xeno.Prodika.Services.PQM.Models.Suppliers.SCRM.SCRMSupplierViewModelRetr
ieverFactory,PQMLibSSCRM | Class:Xeno.Prodika.Services.PQM.Models.DataManagerStrategy.ReportingDBDataMa
nagerStrategy,PQMLib"

This configuration requires that the Reporting DB connection pool is configured (on the PQM
application’s configuration files) to point to the database connection where SCRM is hosted.

Additionally, the ItemViewBaseURL and EQTBaseURL must point to that separate SCRM web application.

Additional Supplier Formatting Extensibility
When using SCRM for facility and company supplier data, the user interface display in the Supplier listing
can be customized by implementing any of the following Format Plugins.

v| Suppliers/Facilities
Company Facility

1 ABC Foods[(5011699)

2 Grandma Kelly's Homestead (Ann Arbor, MI USA)

3 Bigfoot Breweries (Bend, OR USA)

4 New England Seafood Cannery (Boston, MA USA)

v Add New
SCRM
Northwind Supplier

= PQMActionSupplierFacility

= PQMActionSupplierCompany
= PQMAuditSupplierFacility

= PQMAuditSupplierCompany
= PQMilissueSupplierFacility

= PQMilssueSupplierCompany

The output of each plugin is used to display additional facility or company information. By default, these
plugins will display the equivalent value of the user’s SCRM preferred cross reference, if available;
otherwise, the company or facility number is displayed.

When configuring any of the above FormatPlugins, be sure to include the following XML attribute:

© 2016 Oracle Corporation

25

Agile Product Lifecycle Management for Process — PQM Extensibility

ignoreInheritFromPluginName="true"

See the PluginExtensions documentation, available in the Feature Pack, for details on writing
FormatPlugins.

Note that in the above screenshot, the entries that came from an external system (Northwind) are
specifying the extended description on the ViewModelRetriever class, rather than pulling in the format
plugins, while the data from SCRM is using the default FormatPlugin.

© 2016 Oracle Corporation

26

Agile Product Lifecycle Management for Process — PQM Extensibility

Chapter 11—Affected Items Extensibility

The source of PQM Affected Items data for PQM actions, issues, and audits can be customized to pull
data from the current/local GSM instance, some other instance of PLM for Process GSM, or from
entirely different applications.

Affected Item Source Data

The out of the box configuration assumes the Agile PLM for Process GSM application is local and on a
shared database. Using an alternate instance of GSM, in which PQM and GSM reside on different
databases, can be done by some simple configuration changes. Pulling in Affected Item data from other
systems requires that a custom ASCX control be created and deployed into PQM, as well as a class which
takes the PQM affected item data and generates the formatted view for display in the Ul. Multiple
configurations of affected item data are permitted, which allow PQM affected item data to be pulled
from multiple applications.

Additionally, the configuration for PQM Affected Items is flexible enough to allow different
configurations for actions, audits, and issues, if needed.

Local GSM
Assumes the PQM Affected Item data is populated from GSM residing on the same database. This is the
default configuration for PQM Affected Items, so no configuration changes are required.

External GSM

Agile PLM for Process GSM that is deployed on a separate database from PQM, configuration changes
are required that specify the server URL and database connection. The configuration setting changes
indicate the GSM server URL. Additionally, this configuration requires that the Reporting DB connection
pool is configured (on the PQM application’s configuration files) to point to the database connection
where GSM is hosted.

See the Configuration > GSM Residing on a Different Database section in this document.

Trusted Site

Additionally, when searching for GSM specification data in another server from PQM, users must update
their Internet Explorer browser settings to add that GSM web site as a Trusted Site. Failing to do so will
result in the GSM EQT Popup being unable to post the search results back to PQM.

GSM EQT Feature Configuration

When adding a GSM Specifications to the affected items listing, the search popup includes all
specification types.

© 2016 Oracle Corporation

27

Agile Product Lifecycle Management for Process — PQM Extensibility

(2 Oracle - Windows Internet Explorer (o] @ ==
Done || Cancel | *
Search Source: Material Specifications EJ
Activities -

Delivered Material Packing Spedification

~| Search CritelEquipment Spedification [Recent Items
Formulation Spedfications
Spec Name Labeling Specification &

_S = ‘:'criat' Reset Search
Menu Item Spedfications

Nutrient Profile

Packaging Material Spedfications

Packing Configuration Spedfication

Product Spedfications

Trade Spedification

To limit which specification types should be available, configuration entries can be configured separately
for actions, audits, and issues. The following FeatureConfiguration entries control this access, where the
4 digit number represents the specification types:

Action

PQM.Action.Affectedltem.1004.Enabled
PQM.Action.Affectedltem.1005.Enabled
PQM.Action.Affectedltem.1006.Enabled
PQM.Action.Affectedltem.1009.Enabled
PQM.Action.Affectedltem.1010.Enabled
PQM.Action.Affectedltem.2076.Enabled
PQM.Action.Affectedltem.2121.Enabled
PQM.Action.Affectedltem.2147.Enabled
PQM.Action.Affectedltem.2280.Enabled
PQM.Action.Affectedltem.2283.Enabled
PQM.Action.Affectedltem.5750.Enabled
PQM.Action.Affectedltem.5816.Enabled
PQM.Action.Affectedltem.6500.Enabled
PQM.Action.Affectedltem.6501.Enabled

Audit

PQM.Audit.Affectedltem.1004.Enabled
PQM.Audit.Affectedltem.1005.Enabled
PQM.Audit.Affectedltem.1006.Enabled
PQM.Audit.Affectedltem.1009.Enabled
PQM.Audit.Affectedltem.1010.Enabled
PQM.Audit.Affectedltem.2076.Enabled
PQM.Audit.Affecteditem.2121.Enabled
PQM.Audit.Affecteditem.2147.Enabled
PQM.Audit.Affectedltem.2280.Enabled
PQM.Audit.Affectedltem.2283.Enabled
PQM.Audit.Affectedltem.5750.Enabled
PQM.Audit.Affectedltem.5816.Enabled
PQM.Audit.Affectedltem.6500.Enabled
PQM.Audit.Affectedltem.6501.Enabled

Issue

PQM.Issue.Affectedltem.1004.Enabled
PQM.Issue.Affectedltem.1005.Enabled
PQM.Issue.Affectedltem.1006.Enabled
PQM.Issue.Affectedltem.1009.Enabled
PQM.Issue.Affectedltem.1010.Enabled
PQM.Issue.Affectedltem.2076.Enabled
PQM.Issue.Affectedltem.2121.Enabled
PQM.Issue.Affectedltem.2147.Enabled
PQM.Issue.Affectedltem.2280.Enabled
PQM.Issue.Affectedltem.2283.Enabled
PQM.Issue.Affectedltem.5750.Enabled
PQM.Issue.Affectedltem.5816.Enabled
PQM.Issue.Affectedltem.6500.Enabled
PQM.Issue.Affectedltem.6501.Enabled

Also, when using PQM to search for actions, issues, or audits that have a specific GSM specification,

different configurations control whether or not the search options should include a local (same DB) GSM
specification search and/or a remote/external GSM specification search. The following
FeatureConfiguration entries enable the behaviors:

<add key="PQM.EQT.Action.AffectedItemGSMSearch.Local.Enabled" value="true"
configDescription="Sets PQM Action EQT Search of Affected Items by local GSM DB"/>
<add key="PQM.EQT.Action.AffectedItemGSMSearch.External.Enabled" value="false"
configDescription="Sets PQM Action EQT Search of Affected Items by External GSM DB"/>

<add key="PQM.EQT.Audit.AffectedItemGSMSearch.Local.Enabled" value="true"
configDescription="Sets PQM Audit EQT Search of Affected Items by local GSM DB"/>

© 2016 Oracle Corporation

28

Agile Product Lifecycle Management for Process — PQM Extensibility

<add key="PQM.EQT.Audit.AffectedItemGSMSearch.External.Enabled" value="false"
configDescription="Sets PQM Audit EQT Search of Affected Items by External GSM DB"/>

<add key="PQM.EQT.Issue.AffectedItemGSMSearch.Local.Enabled" value="true"
configDescription="Sets PQM Issue EQT Search of Affected Items by local GSM DB"/>
<add key="PQM.EQT.Issue.AffectedItemGSMSearch.External.Enabled" value="false"
configDescription="Sets PQM Issue EQT Search of Affected Items by External GSM DB"/>

Alternate Affected Item Source Systems

When pulling Affected Item data from alternate systems, a custom ASCX control must be created and
plugged into PQM that allows for searching and selecting an affected item such as a specification. This
item is then added to the Affected Items listing in PQM via the hosting aspx page’s AddIltem Javascript
function.

v| Affected Items

System # Equivalent # Description Rev Found Rev Fixed
1 — |2 12 - 11b pkags. Uncle Bob's Organic Dried Pears [Produce] 7 b
2 & 5098021 16915 Pizza Dough [Draft] 001 s
[~ Addwew]
GSM
Northwind Products fas

The configured list of possible Affected Item sources is added to the Add New button. Clicking on the
external system launches the custom control.

ASCX control

The custom control’s responsibility is to provide a mechanism for users to search for affected item data
and then select the entry that will be populated in the Affected Items listing. The control could, for
example, allow users to enter some search criteria, and pass those values to a web service call to
another system, returning any matching suppliers. Alternatively, the control could simply display a
listing of all products from a different database (see the following example). Selecting the desired
affected item entry must then call an existing Javascript function, AddItem() to add the entry to the
PQM item. For more details, see the following reference example, and the Configuration section.

© 2016 Oracle Corporation T

Agile Product Lifecycle Management for Process — PQM Extensibility

[@ Cracle - Windows Internet Explorer - 'L‘:' s =) 1
ProductID ProductName \Categorylame CategoryDescription | QuantityPerUnit UnitPrice|
i1 Chai Beverages _S_oft drinks, coffees, teas, beers, and ales |10 boxes x 20 bags 18,0000
2 Chang [Beverages [Soft drinks, coffees, teas, beers, and ales |24 - 12 oz bottles |19.0000
Hi 3 |Aniseed Syrup Condiments |Sweet and savory sauces, relishes, spreads, and seasonings|12 - 550 ml bottles 10,0000
4 \Chef Anton's Cajun Seasoning |Condiments |Sweet and savory sauces, relishes, spreads, and seasonings 48 - 6 oz jars |22.0000
[_Grandma's Boysenberry Spread ICoﬂduments |Sweet and savory sauces, relishes, spreads, and seasonings| 12 - 8 oz jars 125.0000
7 Undle Bob’s Organic Dried Pears Produce \Dried fruit and bean curd 112 - 11b pkgs. 30.0000
8 Northwoods Cranberry Sauce Condiments |Sweet and savory sauces, relishes, spreads, and seasonings|12 - 12 oz jars 40.0000
10 Tkura Seafood |Seaweed and fish |12-200mljars |31.0000
11 Queso Cabrales [Dairy Products |Cheeses |1kg pkg. 121.0000
12 Queso Manchego La Pastora |Dairy Products |Cheeses 10 - 500 g pkgs. |38.0000
1234567

The above screenshot is an example of a control that displays data from a different database, using a
.NET GridView control. The example code for this simple GridView control is shown below.

<%@ Control Language="C#" AutoEventWireup="true" CodeBehind="NorthwindProducts.ascx.cs" Inherits="Referenc
ePQMExtensions.AffectedItems.NorthwindProducts" %>
<div>
<asp:GridView ID="GridViewl" runat="server" AllowPaging="True"
AllowSorting="True" AutoGenerateColumns="False" DataKeyNames="ProductID"
DataSourceID="SqlDataSourcel">
<Columns>
<asp:BoundField DataField="ProductID" HeaderText="ProductID" ReadOnly="True"
SortExpression="ProductID" />
<asp:BoundField DataField="ProductName" HeaderText="ProductName"
SortExpression="ProductName" />
<asp:BoundField DataField="CategoryName" HeaderText="CategoryName"
SortExpression="CategoryName" />
<asp:BoundField DataField="Description" HeaderText="CategoryDescription"
SortExpression="Description" />
<asp:BoundField DataField="QuantityPerUnit" HeaderText="QuantityPerUnit" SortExpression="Quant
ityPerUnit" />
<asp:BoundField DataField="UnitPrice" HeaderText="UnitPrice"
SortExpression="RegionUnitPrice" />

</Columns>
</asp:GridView>
<asp:SqlDataSource ID="SqlDataSourcel"” runat="server"
ConnectionString="Data Source=(local);Initial Catalog=northwind;Integrated Security=true"
SelectCommand="SELECT p.*, c.CategoryName, c.Description FROM Products p inner join Categories c o
n p.CategoryID = c.CategoryID where discontinued = 0"></asp:SqlDataSource>
</div>

In the code-behind, we add an event for when the row is clicked, which calls the AddItem function:

using System;
using System.Web.UI.WebControls;

namespace ReferencePQMExtensions.AffectedItems

{
public partial class NorthwindProducts : System.Web.UI.UserControl
{
protected void Page_Load(object sender, EventArgs e)
{
Gridviewl.RowDataBound += gvSearch_RowDataBound;
}

© 2016 Oracle Corporation

30

Agile Product Lifecycle Management for Process — PQM Extensibility

protected void gvSearch_RowDataBound(object sender, GridViewRowEventArgs e)
{
if (e.Row.RowType == DataControlRowType.DataRow)
{
e.Row.Attributes.Add("onmouseover"”, "this.style.backgroundColor="#ceedfc'");
e.Row.Attributes.Add("onmouseout"”, "this.style.backgroundColor=""");
e.Row.Attributes.Add("style", "cursor:pointer;");
e.Row.Attributes.Add("onclick", "AddItem('" + e.Row.Cells[@].Text + "','" + e.
Row.Cells[2].Text + "', 'NorthwindProduct',"'" + e.Row.Cells[@].Text + "',"'" + e.Row.Cells[0@].Te
xt + "', "'Northwind"');");
}
}
}
}

The control adds the item to the Affected Items listing of the PQM item using only the item’s internal
identifier, some external identifier, an item type, and the SourceSystemID. Next, a new class must be
created to handle displaying data returned by this control. The affected item’s name is not stored in the
database, so that there is no issue with keeping multiple data sources in synch. This class is therefore
responsible for retrieving the product name, along with an additional description and an optional URL to
link to that product.

View Model Retriever

A custom Affected Item Retriever class must be created that creates a view model object for each
Affected Item in the listing. The view model is responsible for display of the affected item data in the
User Interface. Affected Items for Issues have slightly different retriever and view model interfaces.

The PQMAffectedltemViewModelRetrieverFactory simply creates and returns a
PQMAffectedltemViewModelRetriever

public interface IPQMAffectedltemViewModelRetrieverFactory<TViewModel, TDataObject>
where TViewModel : IPQMAffecteditemViewModel
where TDataObject : IPQMAffectedltem

{
IPQMAffecteditemViewModelRetriever<TViewModel, TDataObject> Create();

}

public interface IPQMAffectedltemViewModelRetrieverActionFactory :
IPQMAffectedltemViewModelRetrieverFactory<IPQMAffectedltemViewModel, IPQMAffectedltem> { }

public interface IPQMAffectedltemViewModelRetrieverAuditFactory :
IPQMAffectedltemViewModelRetrieverFactory<IPQMAffectedltemViewModel, IPQMAffectedltem> { }

public interface IPQMAffectedltemViewModelRetrieverlssueFactory :
IPQMAffectedltemViewModelRetrieverFactory<IPQMlIssueAffecteditemViewModel,
IPQMiIssueAffectedltem> { }

© 2016 Oracle Corporation

Agile Product Lifecycle Management for Process — PQM Extensibility
Each retriever returns a list of view models via the GetViewModels method.

| IPQMAffectedltemViewModelRetriever<TViewModel, TDataObject > b
GenericInterface

= Methods
& GetViswModeis(iCollection< TDataObject > pgmAffectediterns) @ List< TViewMods] >

The retriever’s GetViewModels method takes a collection of PQMAffectedltem data objects (or

PQMIssueAffectedltem data objects for PQM issues) which are stored on the PQM item. The retriever
must then return a corresponding list of view models. Given the list of PQMAffectedltem data objects,
which hold the IteminternallD, ltemExternallD, etc, those properties are then used by the retriever to

query another system (using web services or SQL queries for example) and retrieve the relevant
information for display in the view models.

© 2016 Oracle Corporation

32

Agile Product Lifecycle Management for Process — PQM Extensibility

View models of actions and audits must implement the IPQMAffectedltemViewModel:

; ™y
ISourceSystemldentifier E3
Interface

= Properties
ﬁ ItemExternalil { get; set; } » string
ﬁ IteminternallD { get: set; } : string
ﬁ ItemType { getl; set; }: siring
ﬁ SourceSystemiD { get: sef:) » string

4 g
IPQMAffecteditemViewModel E3
Interface
= [SourceSystemIdentifier

= Properties

Affecteditem { get; } : IPQMA[fectaditemn
AvailableRevisionFound { get; set; } : List< KeyValuePair< string, string » »
Comments { get; set; } » string

Description { get: set; } : string
ExtendedDescription { get; sel; } . string
ItemExternallDs { get; sefr] List < KeyValuePair< string, string» >
ItemiconCS5S | get; set; }: string

ItemNumber { get; set: } : string

ItemURL { get: set;] : string

PKID { get; } » string

PQMitem { get; set; } : IPQMIternBase
RevisionFixedDescription { get; } : string
RevisionFivedDispiayiNumber { get: } @ string
RevisionFixedExternalll { get; set; }: string
RevisionFivedginternallD { get; set: } ! string
RevisionFixeditemNumber { gat; set:] @ string
RevisionFiveditemiNumberRev { get; set; } : string
RevisionFixed URL { get; sei;] : string
RevisionFound { get; set; } : string
SupportedUOMs { get; } ICollection

o e o i o o o 6

© 2016 Oracle Corporation

Agile Product Lifecycle Management for Process — PQM Extensibility

PQM issue view models must implement the IPQMIssueAffecteditemViewModel:

| IPQMAffectedltemViewModel (¥
Interface
=+ [SourceSystemldentifier

| IPQMIssueAffecteditemViewModel E3
Interface
=+ IPOMAffectedItemViewModel

= Properties

-

= AdditionalDisplayidentifier { get: } ! siring

-

Conformanceltem { get: sei: } 1 IPQMConformanceltemViswModel

-

ConformingMaterigiDate { get; set; } » DateTime

-

ContainmentActions { getr set; } : string

-

FailureType { get: set: } ! ICommonLookup

-

FailureTypeMName { get; | : string

-

FailureTypePKID { get; § & siring
HasNCRinfo { get: } » bool

IsMCR { get; }: bool

QuiantityAffected { get; set: } : IMeasurement

-

-

-

-

QuantityAffectedsiring { get: sel; j ! siring
QuantityAffected UOMAbEBreviation { get; set; } : string
QuiantityAfectedUOMPKID { get; sel; } ! siring
QuantityChecked { gety sel; | ! IMegsurement

-

-

-

-

QuantitySuspected { getr set! } » IMeasurement

-

RMANumBer { get; sei; j o siring

-

-2 SeriglilotMNumber { get; st} string

o SiteAffected { get: setr] 1 IPQMSupplierViewiMode!
= Methods

W SetfailureTypefsiring pkid) @ void

-

Custom AffectedltemViewModel classes can extend the PQMAffectedltemViewModelBase abstract
class. Note that the view model has a property named ItemlconCSS, which is used to display custom
icons representing the affected item type.

© 2016 Oracle Corporation

Agile Product Lifecycle Management for Process — PQM Extensibility

Example Code

The following code represents a simple implementation of an Affected Items view model retriever. The
retriever factory simply creates a new retriever class. The retriever class delegates the load of
Northwind product data to the view model.

using System.Collections.Generic;
using Xeno.Data.PQM;
using Xeno.Prodika.Services.PQM.Models;

namespace ReferencePQMExtensions.AffectedItems

{
public class NorthwindProductsAffectedItemViewModelRetrieverActionFactory : IPQMAffectedIt

emViewModelRetrieverActionFactory

{
public IPQMAffectedItemViewModelRetriever<IPQMAffectedItemViewModel
, IPQMAffectedItem> Create()

{
}

return new NorthwindProductsAffectedItemViewModelRetriever();

}

public class NorthwindProductsAffectedItemViewModelRetriever : IPQMAffectedItemViewModelRe
triever<IPQMAffectedItemViewModel, IPQMAffectedItem>

{
public List<IPQMAffectedItemViewModel> GetViewModels(ICollection<IPQMAffectedItem> pgm
AffectedItems)
{
List<IPQMAffectedItemViewModel> viewModels =new List<IPQMAffectedItemViewModel>();
foreach (var pgmAffectedItem in pgmAffectedItems)
{
viewModels.Add(new NorthwindProductsAffectedItemViewModel(pgmAffectedItem));
}
return viewModels;
}
}

The sample view model class extends the PQMAffectedltemViewModelBase abstract class. It loads and
assigns the product information from the Northwind database, and if the Revision Fixed internallD is set,
retrieves and assigns that from the database.

using System.Collections.Generic;
using Xeno.Data.PQM;
using Xeno.Prodika.Services.PQM.Models;

namespace ReferencePQMExtensions.AffectedItems
{
public class NorthwindProductsAffectedItemViewModel : PQMAffectedItemViewModelBase
{
private IPQMAffectedItem PgmAffectedItem { get; set; }
private string _revisionFixedDescription;
private string _revisionFixedDisplayNumber;

© 2016 Oracle Corporation

35

Agile Product Lifecycle Management for Process — PQM Extensibility

public NorthwindProductsAffectedItemViewModel(IPQMAffectedItem pgmAffectedItem) : base
(pgmAffectedItem)
{

PgmAffectedItem = pgmAffectedItem;

LoadProduct();
¥
private void LoadProduct()
{

//Load Revision Found
var itemDesc = RevisionDescriptionlLoader.GetDescriptionForProduct(PgmAffectedItem.
ItemInternallD);

Description = itemDesc.Description;
ExtendedDescription = itemDesc.DescriptionExtended;
ItemExternalID = itemDesc.ExternallD;

ItemURL = itemDesc.ItemURL;

AvailableRevisionFound = new List<KeyValuePair<string, string>>() { new KeyValuePa
ir<string, string>(ItemInternalID, ItemInternallD) };

ItemExternalIDs = new List<KeyValuePair<string, string>>() { new KeyValuePair<stri
ng, string>(ItemExternalID, ItemExternallID) };

//Load Revision Fixed

var revisionItem = RevisionDescriptionLoader.GetDescriptionForProduct(RevisionFixe
dInternallD);

_revisionFixedDescription = revisionItem.Description;

_revisionFixedDisplayNumber = RevisionFixedInternallD;

RevisionFixedItemNumberRev = RevisionFixedInternallD;

RevisionFixedURL = revisionItem.ItemURL;

}

public override string RevisionFixedDisplayNumber { get { return _revisionFixedDisplay
Number; } }
public override string RevisionFixedDescription {get { return _revisionFixedDescriptio

n; }}
public override string RevisionFixedURL { get; set; }
public override string ItemIconCSS { get; set; }
public override string ItemURL { get; set; }
public override string ExtendedDescription { get; set; }
public override List<KeyValuePair<string, string>> AvailableRevisionFound { get; set;
}
public override List<KeyValuePair<string, string>> ItemExternalIDs { get; set; }
public override string Description { get; set; }
}
)

© 2016 Oracle Corporation

36

Agile Product Lifecycle Management for Process — PQM Extensibility

The RevisionDescriptionLoader queries a database for product information to display for the affected
item.

internal class RevisionDescriptionLoader
{
private const string _queryString = @"SELECT p.ProductName, c.CategoryName, p.Quantity
PerUnit FROM Products p inner join Categories c on p.CategoryID = c.CategoryID
where p.ProductID = @ProductID;";

internal static RevisionDescription GetDescriptionForProduct(string productID)
{
if (String.IsNullOrEmpty(productID))
return new RevisionDescription() {Description = String.Empty};

RevisionDescription item = new RevisionDescription();
using (var connection = new SqlConnection(NorthwindDBHelper.ConnectionString))
{
var command = new SqlCommand(_queryString, connection);
command.Parameters.AddWithValue("@ProductID", productID);

try
{
connection.Open();
SqlDataReader reader = command.ExecuteReader();

if (reader.Read())
{

item.Description = reader.IsDBNull(@) ? String.Empty : reader.GetStrin
2(0);

item.DescriptionExtended = reader.IsDBNull(1) ? String.Empty : String.
Format("[{@}]", reader.GetString(1)); //category name

item.ExternalID = reader.IsDBNull(2) ? String.Empty : reader.GetString
(2); //quantityperunit

item.ItemURL = "http://somenorthwind.com/product/" + productID;

}
reader.Close();
)
catch (Exception ex)
{

item.Description = "Error Occurred";
item.DescriptionExtended = String.Format("Northwind Product record # {0} -
{1}", productID, ex.Message);

}

return item;

Remember that affected items for a PQM issue have additional fields if the Issue is a Non-Conformance
report (NCR) issue type. Therefore, the view model and retriever interfaces are different than for the
affected items of an action or audit. See the previous class diagram.

© 2016 Oracle Corporation

37

Agile Product Lifecycle Management for Process — PQM Extensibility

Configuration

In the CustomerSettings.config file, the PQM node has individual nodes for each PQM business object
(action/audit/issue). Like the PQM Suppliers configuration, the AffecteditemRetrievers node contains
PQMItemRetrieverConfig child nodes, which specify each data source.

The following configuration entry shows the default affected item configuration (where Affected Item
data is retrieved from a local GSM instance), and is followed by the configuration used by the example
shown above (SourceSystemID="Northwind”):

<PQM>
<Action>

<AffectedItemRetrievers configChildKey="SourceSystemID">

<PQMItemRetrieverConfig

SourceSystemID="GSM"

SourceSystemTranslationID="1b1lGSM"
ItemRetrieverObjectURL="Class:Xeno.Prodika.Services.PQM.Models.GSM.GSMSpecAffectedItemViewMode
1RetrieverActionFactory,PQMLib$GSM"

UseEQT="true"

EQTBaseURL="@@VAR:Prodika.PQM.URL@@"
EQTConfiguration="SearchableView:Config:ProdikaSettings/EQTConfiguration/SearchableMultiSelect
ViewsGSM, PQMActionSpecSummaryView"

ItemViewBaseURL="@@VAR:Prodika.GSMView.URL@@"

ItemAddControl="" />

<PQMItemRetrieverConfig
SourceSystemID="Northwind"
SourceSystemTranslationID="1blNorthwindProducts"

ItemRetrieverObjectURL="Class:ReferencePQMExtensions.AffectedItems.NorthwindProductsAff
ectedItemViewModelRetrieverActionFactory,ReferencePQMExtensions™

UseEQT="false"

EQTBaseURL=""

EQTConfiguration="SearchableView:Config:ProdikaSettings/EQTConfiguration/SearchableMult

iSelectViewsGSM,PQMActionSpecSummaryViewMultiSelect"
ItemViewBaseURL="http://northwinddb.com/products/"
ItemAddControl="NorthwindProducts.ascx" />

Due to a bug, the EQTConfiguration entry is required even for external systems, though it is not
used.

Attribute Description

SourceSystemID Identifies where the Affected Item data comes from. This value should be
unique within the individual item type (Action/Audit/Issue) — that is, the
Action AffectedltemRetrievers node should not contain 2
PQMItemRetrieverConfig entries with the same SourceSystemID values.

© 2016 Oracle Corporation

38

Attribute Description

SourceSystemTranslationID

Agile Product Lifecycle Management for Process — PQM Extensibility

The translation value will be used to display the name in the Affected Item
section of the user interface if there is more than one entry configured for
the PQM item type.

When adding new translations, add a new entry into the
commonXLAExtensionCacheItem table, where the fkParent value is the
pkid of the “frmPQM/Extension”’ entry in the commonXLAExtensionCache

table. For example:

insert into commonXLAExtensionCacheItem values
("1059"+UPPER(NEWID()), '10586A177FC6-F446-4FC2-885D-
788B8C89AAF3', @, 'lblNorthwindProducts', 'Northwind
Products');

ltemRetrieverObjectURL

This customizable class is a factory
(IPQMAffectedlitemViewModelRetrieverFactory) that, given a list of
Affected Item data objects (IPQMAffectedltem or IPQMIssueAffectedltem)
stored in PQM, retrieves the related View Models
(IPQMAffecteditemViewModel or IPQMIssueAffectedltemViewModel),
which are classes that are used to generate the Ul details.

Custom classes can leverage the abstract base view model class,
PQMAffectedltemViewModelBase, when creating their own view models.

UseEQT true if using GSM data; false otherwise

EQTBaseURL Required if using GSM; app location of the GSM specification selection
popup.

EQTConfiguration Required if using GSM; can be customized to specify different EQT views

when searching for GSM Specifications.
** Note that due to a bug, the EQTConfiguration entry is required even for

external systems, though it is not used.

ItemViewBaseURL

Affected Item entries in the user interface can be links — this setting
specifies the base URL of GSM Spec-based links, and can be used by the
ViewModel retriever to create the URL links.

© 2016 Oracle Corporation

39

Agile Product Lifecycle Management for Process — PQM Extensibility

Attribute Description

ltemAddControl Only required when supplier data is coming from a non-GSM data source.
This value specifies the ASCX control that should be loaded in a PQM pop
and that can manage the display of Affected Item data from external

systems. This value is ignored if the UseEQT attribute value is set to true.

The custom control’s responsibility is to provide a mechanism for users to
search for affected item data, and select the entry that will be populated
in the Affected Items listing. The control could, for example, allow users to
enter some search criteria, and pass those values to a web service call to
another system, returning any matching items. Selecting the desired
affected item entry must then call an existing javascript function,
AddItem() to add the entry to the PQM item. The AddItem function takes
the following parameters:

= internallD — the internal unique identifier of the entry. This will
not be visible to users

= ExternallD - a visible identifier. This can be modified by providing
additional ExternallD options in the ItemRetriever class, if needed.

= [temType — a value that can be used to distinguish affected item
types. For GSM specifications, for instance, this represents the 4
digit specification type (e.g. 1004 for Material Specs)

= [temNumber —the main user interface identifier for the item. For
GSM specifications, for instance, this value is the specification
number (without the issue number).

= [temRevision — the version number for the item. For GSM
specifications, for instance, this value is the specification’s issue
number.

= SourceSystemID — a value that should match the SourceSystemID
entry in the configuration, telling the system where the data came
from. For PLM for Process GSM, the value “GSM” is used.

The ASCX control must pass specific data to the main PQM window by
calling the PQMCustomAffectedltemAdd.aspx’s AddItem() javascript
function.

The .ascx file must be placed in the PQMItemControls\Extensions folder in
PQM. The compiled DLL for this control must be included in the PQM\bin
directory.

The @ @VAR:Prodika.GSM.URL@ @ value gets automatically replaced by the value in

environmentvariables.config, but a different value can be specified here if needed.

GSM Residing on a Different Database
If GSM data resides in a different database, the configuration entry of the ItemRetrieverObjectURL must
be changed by appending the following, starting with the pipe (|) symbol:

| Class:Xeno.Prodika.Services.PQM.Models.DataManagerStrategy.ReportingDBDataManagerStrategy,PQMLib

© 2016 Oracle Corporation

40

Agile Product Lifecycle Management for Process — PQM Extensibility

So the attribute would be:

ItemRetrieverObjectURL="Class:Xeno.Prodika.Services.PQM.Models.GSM.GSMSpecAffectedltemViewModelRetrie
verActionFactory,PQMLibSGSM | Class:Xeno.Prodika.Services.PQM.Models.DataManagerStrategy.ReportingDBData
ManagerStrategy,PQMLib"

This configuration requires that the Reporting DB connection pool is configured (on the PQM
application’s configuration files) to point to the database connection where GSM is hosted.

Additional Affected Items Formatting Extensibility

When using GSM for affected item data, the user interface display in the Affected Items listing can be
customized by implementing format plugins. By default, the GSM specifications listed here use the
SpecStatusldentityPlugin to append the specification’s status to the description.

v| Affected Items

System # Equivalent # Description
1 — 7 12 - 1lb pkgs. Uncle Bob's Organic Dried Pears [Produce]
2 @& 5098021 16915 Pizza Dough [Draft]
LY Add New

The following format plugins are used:

= PQMActionAffectedltems

= PQMActionAffectedltemsRevFixed
= PQMAuditAffectedltems

= PQMAuditAffectedltemsRevFixed
= PQMiIssueAffecteditems

= PQMiIssueAffectedltemsRevFixed

The affected items for an Issue have an additional format plugin (plugin name is
PQMissueAffectedltemsAdditionalldentifier) available used for the SKU/GTIN column. By default, the
GSM specifications listed here use a plugin which shows the GTIN number.

v| Affected Items

System # Equivalent # Description Rev Found | Failure Type | Qty Rev Fixed SKU /GTIN S
1 | i 5080156 Orange Juice - 001
Concentrated [Draft]
2 i@ 5080158 Mango Juice [Draft] 001
3 |l 5077539 BBQ Beef and Vegetable 004 1234557890

Dinner - 11 0z [Approved]

The output of each plugin is used to display any additional desired information.

When configuring any of the above FormatPlugins, be sure to include the following XML attribute:

© 2016 Oracle Corporation

41

Agile Product Lifecycle Management for Process — PQM Extensibility

ignoreInheritFromPluginName="true"

See the PluginExtensions documentation, available in the Feature Pack, for details on writing
FormatPlugins.

Note that in the above screenshot, the entries that came from an external system (Northwind) are
specifying the extended description on the ViewModelRetriever class, rather than pulling in the format
plugins, while the data from GSM is using the default FormatPlugins.

Affected Item Persistence

When Affected Items data pulled into PQM, it is saved in the pgmAffectedltem table for PQM actions
and audits and in the pgmlssueAffectedltem table for PQM issues. The following core data is saved from
the source system, and is then passed to the retriever classes to generate a view model for displaying
user friendly information.

= SourceSystemID — name of the source system, as configured in the PQMItemRetrieverConfig
xml entries. When data is retrieved from the table for display, the retriever class with a
matching SourceSystemlID is used to generate the view models.

= |temlinternallD — internal, non-display, unique identifier for the affected item. For GSM
specifications, this field contains the Spec ID (PKID). This is used by the retriever classes to load
relevant details for display.

= [temRevisionFound — the revision of the Affected Item. For GSM Specs, this field contains the
issue number.

= [temType — an identifier to specify the affected item type. For GSM specifications, this
represents the specification type (1004: material specifications, 2147: trade specifications, etc.)

= [temNumber — the primary identifier of the affected item. For GSM specifications, this
represents the specification number (without the issue number)

= [temExternallD — an alternate identifier for the affected item, displayed in the user interface.
The retriever class can provide a list of possible selections for the user to choose from.

© 2016 Oracle Corporation

42

Agile Product Lifecycle Management for Process — PQM Extensibility

Chapter 12—PQM Web Services

A comprehensive set of web services are available for integration with PQM. See the Agile Product
Lifecycle Management for Process Web Services Guide for details.

© 2016 Oracle Corporation

43

Agile Product Lifecycle Management for Process — PQM Extensibility

Chapter 13—Utility Classes

Several useful utility classes are available to assist external developers with Agile PLM for Process PQM
extensibility development. Custom validators, workflow actions and workflow guard conditions, plugins,
calculation extensions, and other extensibility points can leverage these utility classes by referencing the
PQMLib.dIl.

The following utility classes are available:

PQMWorkflowTagEvaluator

Provides methods to help determine which workflow status a PQM item is in. The
EnumPQMWorkflowTaglID enum can be passed in as a parameter, to check for predefined workflow
tags, such as IsReleased.

-1 PQMWorkflowTagEvaluator (in Xeno.Prodika.Services.PQM.Workflow)
@ IsPQMItemInStatus(IPQMItemBase basePQMIitem, EnumPQMWorkflowTagID tagID):bool
@ IsPQMItemInStatus(IPQMItemBase basePQMItem, ICollection<int> taglDs):bool
@ IsPQMItemInStatus(IPQMSummary pgmSummary, ICommonWorkflowStatus status, EnumPQMWorkflowTaglD taglD):bool

PQMUserCrossReferenceRetriever
Provides methods to retrieve the list of (a user’s preferred) cross references assigned to a PQMItem.

=4$ PQMUserCrossReferenceRetriever (in Xeno.Prodika.Services.PQM.Utilities)
@ GetFirstEquivalentFor(IPQMSummary pgmSummary):string
@ 9@ GetFirstEquivalentFor(IXDataObjectCollection legacyProfiles):string
@ GetAliCrossReferencesFor(IPQMSummary pgmSummary):string
@ 1@ GetAllCrossReferencesFor(IXDataObjectCollection legacyProfiles):string
] HasEquivalentFor(IPQMSummary pgmSummary):bool
& 9@ HasEquivalentFor(IXDataObjectCollection legacyProfiles):bool

PQMPermissionManager
Available via the PQMItemService, provides permission-related information for PQM.

© 2016 Oracle Corporation

44

Agile Product Lifecycle Management for Process — PQM Extensibility

=0 IPQMPermissionManager (in Xeno.Prodika.Services.PQM.Security)
f_:] CanCreatelssue:bool
2] CanCreateAction:bool
£ CanCreateAudit:bool
:| CanCopy:bool
3 CanRead:bool
3 Cankdit:bool
f_—=] CanWorkflow:bool
- @ CanCreate(EnumPQMItemTypes type, bool isTemplate):bool
- @ CanCreate(EnumPQMItemTypes type):bool
‘g CanCreate(IPQMItemBase itemBase):bool

© 2016 Oracle Corporation

45

© 2016 Oracle Corporation

Agile Product Lifecycle Management for Process — PQM Extensibility

46

	Oracle® Agile Product Lifecycle Management for Process Product Quality Management Extensibility Guide
	Copyrights and Trademarks
	Contents
	Preface
	Audience
	Variability of Installations
	Documentation Accessibility
	Access to Oracle Support

	Software Availability

	Chapter 1—Overview
	Chapter 2—Custom Read and Write Permissions
	Custom Read Permission
	Custom Write Permission

	Chapter 3—Workflow Actions and Guard Conditions
	Existing PQM Workflow Actions

	Chapter 4—Workflow Email Notifications
	Chapter 5—Related Item Display
	Chapter 6—Extended Attribute Calculation
	PQM Calculation Veto Plugin

	Chapter 7—Validation
	Chapter 8—Notification Panel
	Chapter 9—Event Model
	Chapter 10—Suppliers Extensibility
	Supplier Source Data
	Local SCRM
	External SCRM
	Trusted Site
	SCRM EQT Feature Configuration

	Alternate Supplier Source Systems
	ASCX control
	View Model Retriever
	Example Code

	Configuration
	SCRM Residing on a Different Database

	Additional Supplier Formatting Extensibility

	Chapter 11—Affected Items Extensibility
	Affected Item Source Data
	Local GSM
	External GSM
	Trusted Site
	GSM EQT Feature Configuration

	Alternate Affected Item Source Systems
	ASCX control
	View Model Retriever
	Example Code

	Configuration
	GSM Residing on a Different Database

	Additional Affected Items Formatting Extensibility
	Affected Item Persistence

	Chapter 12—PQM Web Services
	Chapter 13—Utility Classes
	PQMWorkflowTagEvaluator
	PQMUserCrossReferenceRetriever
	PQMPermissionManager

