ORACLE

Oracle® Communications
Convergent Charging Controller

Testing Utilities User's Guide
Release 6.0
E71260-01

May 2016

Oracle Communications Convergent Charging Controller Testing Ultilities User's Guide, Release 6.0
E71260-01
Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Contents

PIrOIACE ...ttt vii
AN S Lo < V< T RR TR Vii
REIATEA DIOCUIMIEIES ...ttt ettt e ettt e e e ae e s e st eestteeeaaeesaseesanseessaseesssasessnssessseeesasneesas Vii
(0] 8723 415 L0 s 1= TR Vii

1 About the Convergent Charging Controller Testing Utilities

Overview of Convergent Charging Controller Testing Utilities..............cccccccocovvniiininnns 1-1
Overview of the sIpit Utility.......ccccoceviiiiiiiiiii s 1-2
Overview of the mipt ULILEYc.cooooiiiiiiiiiic e 1-3
Overview Of the SIMSC TESt TOOL.......cccivieieieieieietee ettt ettt e s ere b e s re s esbessessesaessesensens 1-4

2 Testing Calls and Messages Using the slpit Utility

About the sSIpit UtIlity ... 2-1
Running the slpit Utilitycccooiiiiiiii s 2-1
ComMMANA SYNEAX.....viiiiiiiiiiiiicc e 2-2
Command-Line OPHiONSccccviviiiiiiiiiniiiiiii e 2-2
OUtPUL OPLIONS .ot 2-4
Running slpit in a Separate SLEEccccccciiiiiiiiiiiices e 2-5
EXAt COAES....oviiiiiiciiccc s 2-5
Managing Script File Processing...........cccocvvviiiiniiiiiii s 2-5
USING DISLIDULIONS ... 2-6
Using TCAP PrimitiVescooiiuiioiiiicieeci it 2-7
Receiving Expected Operationscccouoiueiiiiiiiieiicciecic e 2-7
Managing DIalogsccoceuiuiiiiiiiiiiiiiiiicc s 2-8
Specifying a Particular Dialog...........cccouieueioiiiiiiiiicici 2-8

Ending a SLEE Dialogccccoviiiiiiiiniiiiiiiiiins s 2-8
Aborting a SLEE Dialogccooviiiiiiiiiiiiiiiiicccrscs e 2-9
Completing Calls........c.ovieiiiiiice 2-9
Cancelling SIPitoocueiiiieee 2-9
Sending an EITOTccccoiiiiiiiiiiiiic s 2-10
Creating the slpit Script File ... 2-10
SYIUAX ottt s 2-10
COMIMANAS .ttt bbbttt et neas 2-11
Call Definition Commands and MeSSagescccceueueurirurieiiiiirieieiicce e 2-12
The Call SEQUENCEoviiiiii e 2-12

About Expressions and Comparators ... 2-15

Call MESSAGES......coiviiiiiiiiiici s 2-16
Send Message Operations.........c.ccciviiiiiiiiiniiiiii s 2-17
Receive Message Operations.............coucurueiiicicieiiiciciccci s 2-41

EXampPle SCIIPESoviviiiiiiiiiciiici s 2-49
A Standard Call ... 2-49
A Call that Plays an ANNoOuncementcooeieiiiiiiiiiiciciccci s 2-51

3 Testing IP Interactions with the mipt Utility

About the mipt UHLItYccooviiiiiiiiiii 3-1
Running the mipt Utility ... 3-1
COMMANA SYNEAXevviiiiiciiiccece e 3-1
Command-Line OPtioNSccocevieiiiiiiiiiiiiiiiic s 3-2
Logging OPHIONSc.ccveiiieiiiieiieeec s 3-3
Creating the mipt Script File ..., 3-4
Specifying the Test SEqUENCE...........coiiiiiiiiiiii 3-4
Reserved KeyWords ... 3-5

Using mipt as an ASP 0 SMSC.......ccccoiviiiiiiiiii e 3-5
Sending Multiple MESSagES........ccceviiuiirieieiiiiiiecicie et 3-6
Rejecting MESSAEES.covvviriiiriniiiietiicice e 3-6
USING VATIADIES.......ceeiei et 3-7
Controlling the Message FIOW...........c.coooiiiiiiii e 3-7
Providing an Alternate FIOWooooriiiiiiii e 3-7
Controlling the Processing SEQUENCE...........cccocucuiuiuiicuiuiiiieeieieeeicieieieieneteieeeiereneeeeeeeeneeeeeaenes 3-7
Controlling LOOPS ...cvuiuiiicicieteerie ettt 3-8

Using the RADIUS Protocolccciiiiiiiiiiiiiiiic s 3-10
Using mipt as a Diameter CLient OF SEIVer ... 3-11
Connecting as a Diameter CLent ..o 3-11
Accepting a Connection as a Diameter Server...........cooeiiiiiicicccccccc e 3-12
Sending a Diameter Error MeSSage............cccoviuiiviiiiiiiiinininiiicicccnccceesnne 3-12

4 Testing Messaging with the SMSC Test Tool

About the SmSc Test TOOLcccccoveiiiiiiiiii 4-1
Running the smsc Test TOOL ... s 4-1
Configuring SLEE fOI SINSCcccoiiiiiiiiiiiiiiiicc e 4-2
Configuring the smsc Test TOOL ... 4-2
Configuring General Parameters...........cc.couieieiiiiieiiiicieecc e 4-3
Configuring for CAP3 GPRS ..o 4-3
Configuring fOr MAPccccoiiiiiiiceeeeecee et 4-5
Example MAP Configuration............oocrueieiiiiiiiiic e 4-9
Configuring for MAP as HLR ..o 4-9
Example MAP as HLR Configurationcccccccceuciieiiiiieeicceeeeeeeeeeceeeeeenenenenens 4-17

SMSC Sequence for MAP as HLR..........ccccooviiiiiiiiiics 4-17

Map SendUSSDINOtIfICAtioNc.ceueuiiiiiiiiciiiiicicicicicicc s 4-18

XMS tcapInterfaceNAINEc.ccccoiuiuiuiiiiiiiieieieiecceeete ettt aenees 4-19
Configuring fOr IS-4T ... 4-19
Configuring for IS-41 as HLRccccccciiiiiiiiiiiccc s 4-25

SMSC Sequence for MAP as IS-41 ... 4-29

Specifying AccessDeniedReason Valuescooocuiiiiiiiieiiiccisicccces 4-30
tcapInterfaceServiceKey for XIMSccccciiiiiiiiiiiceeeceeeeeeee s 4-30
SMS CauseCode MapPing ...t 4-31

A About the SS7 Protocol Suite

The INAP ProtoColocoioiiiieiee ettt ettt et s e esae s te e be s e b e esa e seesaessaesaessesseesseessassesssessens A-1
The CAP ProtoCO].........oocoioiiiiiiee ettt ettt et sttt be s e e b e e ba et e steeseeseastesseesseessaseesneseas A-2
The MAP ProtoCOo]........coooeieiiiee ettt ettt ettt sse et e s e et e esa e seese e seeseessesneesseensensesnsensens A-2
The IS-41 PrOtOCOLooviiieeiiciee ettt ettt ettt ae s teesaesbe et e s se e b e esaesseessessaesaessesseessesssassenssessens A-2
The TCAP ProtOCOL........coioiiiiieiee ettt ettt et sttt e s et e s ba et e eteesseeseastesrsesseesseseesnenseas A-2
The SCCP ProtoColcoocieiieieieeeeeeeeee ettt ettt e s e be s e esseesa e seeseenseeseessesnsessesssensesnsensens A-2
The MBUA PrOtOCOLc.oooviiiieieie ettt ettt et e s e esaeste e be s e e b e esaessesseesseessessesseessesssessesssessens A-3
The SUA ProtOCOL.........ooiiiiiiiiee ettt ettt et s te et ste e be s e e b e eba e beessesseeseasbesrsasseessasseesnesens A-3
The SCTP PrOtOCO]cooioieiieiee ettt ettt st e s et e st e sseesaessesseenseeseessesnsesseensesesnsensens A-3
The INterNet Protocol...........coooiiiiieieieeeeeeee ettt sttt et e et et e esaesesseesseesnasseesnessens A-3

B Supported Protocol Fields for mipt

Supported Fields for the Diameter Protocol ... B-1
Base AVP Diameter Fields ... B-11
Vendor-Specific Diameter Fields ... B-14

Supported Fields for the EMI Protocolc.cccooiiiiiiiiiiiiiee e B-28

Supported Fields of the M3UA Protocol.............cccccoouiiiiiiiiiiiccenas B-30

Supported Fields of the RADIUS Protocolcccoeoiviiriiininniieeneeeneeeneeeneeeneee e B-31
Supported Vendor-Specific Fields of the RADIUS Protocol...........ccccoveviiiiiniiiniiiiiiiiiiennee, B-36

Supported Fields of the SMPP Protocolccccoiiiiiiiiiias B-38
Supported SMPP TLV Fields........ccccooviiiiiiiiiiiiiiiiicc s B-40

Supported Fields of the SUA Protocolcccoooiiiiiiiiiiiiiic e B-40

Glossary

vi

Preface

This guide describes how to use the Oracle Communications Convergent Charging
Controller testing utilities.

Audience

This document is intended for Convergent Charging Controller network operators,
system administrators, and system integrators who do functional testing of
applications, load testing, and external interface testing.

Related Documents

For related information, see the following documents in the Convergent Charging
Controller documentation set:

» Convergent Charging Controller System Administrator’s Guide

» Convergent Charging Controller User’s Configuration Guide

» Convergent Charging Controller Service Logic Execution Environment Technical Guide

Conventions

The following text conventions are used in this document:

Convention

Meaning

boldface

Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic

Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace

Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

vii

viii

1

About the Convergent Charging Controller
Testing Utilities

This chapter provides an overview of the Oracle Communications Convergent
Charging Controller testing utilities.

Overview of Convergent Charging Controller Testing Utilities

Convergent Charging Controller communicates internally using a language known as
G8-Intelligent Network Application Protocol (G8-INAP), which is a subset of
Capability Set 1 (CS1) INAP but also includes bits of CS2 INAP and CAMEL
Application Part (CAP). Using this common language allows Convergent Charging
Controller components to perform functions without having to translate the low-level
languages used by the telephony network.

Convergent Charging Controller interfaces communicate with the physical network in
whichever protocol the network demands. The interfaces translate the messages from
the physical network into the G8-INAP messages. The passing of messages between
Convergent Charging Controller and the interfaces takes place in the Convergent
Charging Controller Service Logic Execution Environment (SLEE), where many
interfaces can communicate concurrently. Because they are not tied to low-level
network languages, Convergent Charging Controller components can be portable and
plug into any network as long as an effective interface exists.

The Convergent Charging Controller testing utilities include:
s The Service Logic Program Instance Tester (slpit) utility

The slpit utility allows you to test call processing by Convergent Charging
Controller applications without the need for a physical telephony network.

s The Messaging over Internet Protocol Tester (mipt) utility

The mipt utility allows you to test the sending and receiving of messages over
internet-based protocols.

= The short message service center (smsc) test tool

The smsc test tool emulates various parts of the short message service (SMS)
environment to enable testing of SMS messaging.

The distinction between the smsc test tool and the two utilities is that you initiate smsc
through configuration parameters as part of Convergent Charging Controller startup,
whereas you run the two utilities independently from the command line.

About the Convergent Charging Controller Testing Utilities 1-1

Overview of Convergent Charging Controller Testing Utilities

Overview of the slpit Utility

The slpit utility is a tool that you can use to do functional testing of Convergent
Charging Controller applications, high load testing, and external interface testing
without concern for the protocol of a given network. From the perspective of the test
application, the slpit utility emulates a real interface that converts the network
messages to and from G8-INAP. It communicates with the application by way of the
SLEE, just like a regular interface.

Note: In this context, application or Convergent Charging Controller
application refers to the SLEE process to which the slpit utility is
communicating. Usually, this process is either slee_acs, which is the
main ACS process, or xmsTrigger, which is the main XMS process. But
it can also be m3ualf, which is also a SLEE process. The m3ualf
process is further described in this section.

The slpit utility has the following characteristics:

= It allows you to effectively test Intelligent Network (IN) applications without
requiring a physical telephony network or a low-level network-specific test tool.

= You can use it to do functional testing of Convergent Charging Controller
applications without concern for a particular network protocol. As long as the
application provides the correct functionality in G8-INAP, it will perform the same
way on a particular network with the appropriate interface.

» It acts as a normal TCAP interface to trigger IN platform service logic, emulating a
service switching point (SSP) and specialized resource function (SRF) interactions.

The slpit utility supports the following IN protocols: CAP, MAP, SCCP, CAP3
GPRS and 1S-41.

» It uses a script file in which you define the INAP operations that are sent and
received for one or more types of calls. A single instance of slpit can run many call
instances and many calls can be in-progress at once. The script initiates a call and
you can specify different distributions and throughput rates. Multiple protocols
are supported.

= You can use it to do moderate load testing and external interface testing, in
addition to using it for functional testing of applications.

= You can run it in the same SLEE as the application being tested or in a separate
SLEE using appropriate TCAP interfaces.

On a production Convergent Charging Controller system, the slee_acs process and the
xmsTrigger process communicate with a process called m3ualf, using a TCAP-like
protocol. The m3ualf process is also a SLEE process. The m3ualf process turns the
TCAP-like events into messages that are sent over the IP network in a protocol stack
that consists of one of the following:

» MAP over TCAP over SCCP over M3UA over SCTP over IP
s CAP over TCAP over SCCP over M3UA over SCTP over IP
Figure 1-1 shows slpit running in the same SLEE as the application being tested.

1-2 Convergent Charging Controller Testing Utilities User’s Guide

Overview of Convergent Charging Controller Testing Utilities

Figure 1-1 slpit Testing Application in the Same SLEE

SLC1
Slee_acs xmsTrigger
INAP MAP or
15-41
slpit
SLEE

You can also use slpit to generate INAP, MAP, CAP3 GPRS or IS-41 over a specific set
of protocols if you run it on a different machine than the one where the application is
being tested.

Figure 1-2 shows slpit running in a SLEE on a separate machine from the one where
the application is being tested.

Figure 1-2 slpit Testing Application in a Separate SLEE

SLC1 SLC 2
slee_acs
INAP
m3ua_if
fmmmmmmmmmmmmmmmoo . ’
' f T
i INAP or | INAPIMAP/IS-41 m3ua_if || xmsTrigger
MAP or ' TCAP 15-41
15-41 e}
) H SCCcP
slpit e} MAP or
i M3LA 1S-41 smsc
SLEE x T scre SLEE test tool
H IP
script
file

See "Testing Calls and Messages Using the slpit Utility" for more information.

Overview of the mipt Utility

The mipt utility is a test tool that allows you to send and receive messages. Depending
on the protocol, the mipt utility can act as:

= An application service provider (ASP) or a Short Message Service Center (SMSC)
when the protocol is one of the following:

About the Convergent Charging Controller Testing Utilities 1-3

Overview of Convergent Charging Controller Testing Utilities

— Short Message Peer to Peer (SMPP)
— External Machine Interface (EMI)

= An ASP when the protocol is Media Transfer Protocol (MTP) level 3 User
Adaptation layer (M3UA)

= A Diameter agent or a Diameter server for the Diameter protocol

You can run multiple instances of mipt, acting as ASPs or SMSCs, that communicate
with each other on the same machine.

You can use the following protocols with mipt:
s Remote Authentication Dial-In User Service (RADIUS)

RADIUS is a network protocol that is the predecessor to the Diameter protocol
and, like Diameter, it is used for authentication, authorization, and accounting.

s Diameter

Diameter is an authentication, authorization, and accounting protocol. You can
also use the Diameter protocol for policy control and resource control.

= EMI
EMI connects mobile telephones to SMSCs.
= M3UA

The M3UA protocol enables the SS7 protocol User Part SCCP, as well as others, to
run over the internet protocol instead of telephony equipment. It is generally
transmitted by using the services of Stream Control Transmission Protocol (SCTP).

= SMPP

SMPP transfers short message data between message centers and routing and
messaging facilities. It is commonly used to transfer short messages and it allows
service providers to submit messages in bulk.

= SUA

The SUA protocol facilitates the transfer of SCCP user messages, such as TCAP,
between the signalling gateway and the ASP.

See "Supported Protocol Fields for mipt" for a list of supported fields for each of the
protocols that you can use.

To test messages using these protocols, you create a text file, called the script file, that
contains the operations or messages that you want to test. The mipt utility accepts the
script file as input and processes the operations that you have defined.

See "Testing IP Interactions with the mipt Utility" for more information.

Overview of the smsc Test Tool

The smsc test tool is a multipurpose test tool that runs as a Service Logic Execution
Environment (SLEE) interface.

The SMSC test tool emulates the following parts of a short message service (SMS)
messaging environment:

= Visitor Mobile Switching Center (VMSC)

A mobile switching center (MSC) is a telephone exchange in a GSM mobile
network. The VMSC is the MSC that the destination phone is attached to, which
could be distant from its home network, and, hence, is a visitor.

1-4 Convergent Charging Controller Testing Utilities User’s Guide

Overview of Convergent Charging Controller Testing Utilities

= Short Message Service Center (SMSC)
s Home Location Register (HLR)

Figure 1-3 illustrates how Convergent Charging Controller applications connect to
SMSC, HLR, or VMSC in a production environment.

Figure 1-3 Convergent Charging Controller Connecting to SMSC, HLR, or VMSC in a
Production Environment

SLC

Applications
=
=
o
L

SIGTRAN
Interface

SLEE

000

YNEW
uo
i

Network

SMSC

The SMSC attaches to the SLEE as a Transaction Capabilities Application Part (TCAP)
interface. The simulated SMSC handles both Mobile Application Part (MAP) and 1S-41
(also known as ANSI-41) incoming short message requests. The smsc test tool can
simulate an SMSC, a Home Location Register (HLR), and a messaging service center
(MSC) at MAP levels 1 through 3. It can also perform one CAP 3 GPRS operation,
ActivitytestGPRS.

The smsc test tool can handle the following operations for MAP and 1S-41:
= MAP

FORWARD-SHORT_MESSAGE

MT-FORWARD-SM
SEND-ROUTING-INFO-FOR-SM (HLR operation)
SEND-ROUTING-INFORMATION (HLR operation)
PROCESS-UNSTRUCTURED-SS-REQUEST
UNSTRUCTURED-SS5-NOTIFY

1541

SmsDeliveryPointToPoint (SMDPP)

About the Convergent Charging Controller Testing Utilities 1-5

Overview of Convergent Charging Controller Testing Utilities

— SMSRequest (HLR operation)
- SMSNotification

Figure 1-4 illustrates how the smsc test tool replaces SMSC, HLR, or VMSC in a testing
environment. The diagram illustrates the smsc test tool running on the same SLC
(SLC1) that you are testing on, and running on a remote SLC (SLC2). The latter case is
necessary to test the interaction between the application and the SIGTRAN interface.

Figure 1-4 The smsc Test Tool Environment

SLC1

Applications 4& smsc
MAP Test Tool

SLEE \

SIGTRAN
Interface

F

YNEW
uo
dvi

SLC 2

h

SIGTRAN
Interface

-~

SLEE g
vl

200

Y

sSmMsc
Test Tool

See "Testing Messaging with the SMSC Test Tool" for more information.

1-6 Convergent Charging Controller Testing Utilities User’s Guide

2

Testing Calls and Messages Using the slpit
Utility

This chapter describes how to use the Oracle Communications Convergent Charging
Controller slpit utility.

About the slpit Utility

The slpit utility sends and receives Intelligent Network Application Part (INAP)
operations and acts as an interface to the Transaction Capabilities Application Part
(TCAP) protocol.

Appendix A gives a brief overview of the Signalling System 7 (SS7) protocol suite, of
which INAP and TCAP are a part.

The slpit utility processes operations from an input text file rather than a real network.
The input text file is called the script file and it is a file that you create. In the script file,
you add commands and send and receive operations that define the call sequences
that you want to test. See "Creating the slpit Script File" for more information.

The utility parses the responses from the test application and compares them to the
responses that the script file expects.

There are two ways to run the slpit utility. In the first way, it replaces the m3ualf
process so that slpit communicates with slee_acs and xmsTrigger but does not send
anything over the IP network. This allows you to test the higher layers of a protocol
but does not include any processing that would normally happen inside m3ualf.

The second way to run the slpit utility allows you to test certain functions that happen
in the m3ualf process. To run the utility this way, you must configure two machines.
For example, if you configure machines SLC1 and SLC2, you configure SLC1 exactly
like a production SLC, with slee_acs and xmsTrigger talking to m3ualf. You configure
SLC2 with only m3ualf and the slpit utility on it. See "Running slpit in a Separate
SLEE" for information about running the slpit utility in this configuration.

See "About the Convergent Charging Controller Testing Utilities" for an overview of
the slpit utility.

Running the slpit Utility
The slpit utility is located in the following directory:

/IN/service_packages/TEST _TOOLS/bin

The basic command for running the slpit utility specifies a service and the name of the
script input file. Additional command line options allow you to request validation of

Testing Calls and Messages Using the slpit Utility 2-1

Running the slpit Utility

the script file, define a global variable, specify the debug output, specify output
options, and perform various other actions.

Command Syntax
To run the slpit utility, use one of the following commands:

slpit -k [<option>...] [<script>]
slpit -V
slpit -h

The only command-line option that is typically required to run slpit is -k, which
allows you to specify a service key other than the arbitrary default of 101. The
following example shows the simplest command to run slpit with a script file:

slpit -k 1 <script file>

You can alternatively provide the script on the command line rather than in a file by
using the following syntax where <script> is your script code:

slpit -k 1 < <script>

When you are trying to correct syntax errors in a script, the -c option is useful because
it causes slpit to exit immediately after parsing, without running any calls:

slpit -c <script file>

Command-Line Options

The slpit utility takes the following command-line options:

-A
Constructs ANSI SCCP addresses rather than ITU addresses, which is the default.

-a
Act as an application instead of the default interface. For more information, see
"Running slpit in a Separate SLEE".

-c
Validate the script file and exit.

-C <CSV_file>
Writes the following values to the specified comma-separated values (CSV) file every
ten seconds: the time, calls per second (CPS), and outstanding call count.

-D <name>=<value>

Predefines a global variable with the specified name and value, where <name> is the
name of the variable and <value> can be an integer or a double quoted string.
Defining a global variable could be useful for making a change to the script easier in
the future. For example, you could define the destination phone number and then
refer to it in the call definition using the variable. Then, in the future, when you want
to define a new call with a different number, you would only need to change the
number in one place.

-d <level>
Sets the level of debug output. Valid levels are 0 to 5, with 0 indicating no output and 5
indicating the maximum output.

2-2 Convergent Charging Controller Testing Utilities User's Guide

Running the slpit Utility

-9
Makes the utility more tolerant of errors, causing it to continue, if possible, rather than
abort.

-h
Prints version and build information, like the -V option, plus a summary of the usage
information.

-i <interval>
Report call summary information at the interval specified, which is a number of
seconds.

-l <name>
Adds the value of <name> as a suffix to the interface name. This option is required if
you run more than one instance of slpit simultaneously in the same SLEE.

-k <key>

Initiates calls with the specified service key value rather than 101, which is the default.
The service key values are defined in the /IN/service_packages/SLEE/etc/SLEE.cfg
file.

-M <interval>

Used with the -m option to write average timing information per primitive to the CSV
file at the interval specified by <interval>. If the specified interval is 0, the average
timing information will be written when the script completes. This parameter works
only if the slpit script expects a response because the average durations cannot be
calculated otherwise.

-m <directory>

Enables logging of timestamps per TCAP primitive for messages sent and received.
The utility writes the information by call type to a comma-separated values (CSV) file
in the specified directory.

-N
Instructs slpit not to add itself as an interface to the SLEE as the SLEE has added it
already.

-n
Makes slpit ignore any received TCAP_CANCEL messages.

-0 <flags>
Enables the specified output flags. See "Output Options" for more information.

-0 <level>

Sets the level of normal output. Valid levels are 0 to 5, with 0 indicating no output and
5 indicating the maximum level. The default is 3, which produces a reasonable amount
of output that is not excessive.

-p <protocol>

Sets the preferred TCAP protocol to use when there is a conflict between the
INAP/CAP and MAP tag values, as there is some overlap. Valid values are map, 1s41,
and inap. The default is inap.

-R

Recreates the main dialog, if it no longer exists, using the last received originating
reference as a correlation ID. This is required for the CAP3 GPRS message sequence.
This option does not work if the -a option is also submitted.

Testing Calls and Messages Using the slpit Utility 2-3

Running the slpit Utility

-T

Enables the use of the SLEE Timer interface for delays between sending new requests,

or between responses to inbound requests. Without this option, delays are handled by

polling. Use of this option is not recommended. The Timer interface is not ideal for this
purpose.

-V
Enables verbose output, setting the output level to the maximum. This is equivalent to
setting the -o option to 5.

=VV OF -V -V
Sets the debug output level to the maximum.

-V
Prints version and build information and then exits.

Output Options

In addition to the overall output level that is controlled by the -o option, you can
enable the following more specific output features with the -O option. Most of these
options are enabled automatically at various numeric output levels.

calldefntrace

Displays a brief summary of the call definition at each step in the call execution,
including an indication of the current step. Automatically enabled at overall output
level 4.

callrate
Displays the average call rate achieved before the slpit utility terminates. It calculates
the call rate by dividing the total run time by the number of calls started.

callsummary

Prints a table summarizing the number of calls run, the number of successful calls, and
the number of partially and totally failed calls. Call types that have at least one aborted
call are marked with four asterisks (****); call types with failed calls are marked with a
single asterisk (*).

fullcallsummary

Prints a more detailed call summary table than the one produced by the callsummary
option. The information is the same as produced by the callsummary option, but the
format of the table produced by callsummary is more concise.

triptiming
Records and displays round-trip message times for each call.

sleecheck

Checks for changes in the count of free resource objects in the SLEE at the end of the
run. If there are any changes, displays a table of the free counts. The resources can be
calls, dialogs, events, and application instances. The rows for resource types that
showed a positive delta are marked with a single asterisk (*); those with a negative
delta, which indicates a potential memory leak, are marked with four asterisks (****). A
positive delta in free resource counts indicates that running one or more calls caused
resources to be freed. This is not uncommon with Advanced Control Services (ACS),
which is prompted to free a SLEE management event when the first call event arrives.

2-4 Convergent Charging Controller Testing Utilities User's Guide

Managing Script File Processing

parsedebug

Enables the extremely verbose debug output for the GNU Bison parser. This option is
not automatically enabled at any output level because it is useful primarily when
debugging the parser.

Running slpit in a Separate SLEE

Exit Codes

When running the slpit utility in a separate SLEE, you must specify the -a and -k
command-line options. The -k option must specify the SLEE service key that is
assigned to the m3ualf process in the /IN/service_packages/SLEE/etc/SLEE.cfg file on
the machine where the m3ualf process is running.

Table 2-1 describes the exit codes that the slpit utility uses to indicate whether the run
was successful. The slpit utility writes the exit code to stdout (standard output), which
you can redirect to a file if you wish.

slpit -k [<option>...] [<script>] > <outfile>

Table 2-1 sipit Exit Codes

Exit Code Description
0 Execution completed successfully
1 General or usage error, which usually indicates that the

command-line options were not valid.

2 Script parsing error. Either slpit could not read the script file or
it encountered a syntax error in the script. The utility displays
diagnostics on stderr (standard error output).

4 The initial connection to the SLEE failed, most likely because no
SLEE is running.
5 A SLEE entity that slpit required could not be contacted. This

can occur when slpit is directed to use the Timer interface for
running timers but the interface could not be found.

6 Call creation failed. From most likely to least likely, the possible
reasons include: the service key for the call being created is not
configured; a resource for a SLEE dialog or for call instances has
been exhausted; the SLEE for the service configured on the
service key never started or has been stopped.

10 At least one call instance failed. There were no errors that
prevented slpit from running to completion, but at least one call
instance ended in the FAILED state.

11 At least one call instance aborted. There were no errors that
prevented slpit from running to completion, but at least one call
instance ended in the ABORTED state.

Managing Script File Processing

The script file is an input file in which you define the call instances that you want the
slpit utility to process. Call instances are defined with a set of commands and INAP
operations that you specify in sets of send and receive messages. The following
example shows the beginning of a call instance definition:

define call assisting ip_pa {
SERVICE_NUMBER ?= "555801"

Testing Calls and Messages Using the slpit Utility 2-5

Managing Script File Processing

send {
initialdp
calledpartynumber SERVICE_NUMBER
callingpartynumber "40002000"
callingpartyscategory 10
locationnumber "40002000"
eventtypebcsm analyzedinformation

}

receive {
establishtemporaryconnection
address "1234"
}

You start call processing by including a startcall command; for example:

startcall assisting_ip_pa using once

The slpit utility can reference the call types that you define in the script file only after
the script file has been parsed. Starting a call creates a call distribution but the
distribution does not start creating new call instances until script processing
completes.

When you run the slpit utility, it processes all distributions and calls in the script file
before stopping.

In general, each call that slpit executes produces one call instance and one or two
dialogs in the SLEE. The first dialog is called the main dialog. The second dialog,
which will exist only for parts of some calls, is referred to as the assisting dialog.

The first message sent for a call must be an InitialDP or an appropriate TC_BEGIN
message. Alternatively, the first action in a call can be a receive message with a
cslInitiateCallAttempt or a capdInitiateCallAttempt operation.

Note: Sending an AssistRequestInstructions message createsa
second dialog on the same call instance to simulate the dialog between
the intelligent peripheral and the service control point (SCP).

When slpit runs in the same SLEE as the application, the correlation
ID for each dialog is not required to match. Normally, the TCAP
interface would resolve the correlation ID to create the second dialog
on the correct call instance.

Note: Receiving a DisconnectForwardConnection operation is not a
special case. The shutdown of the assisting dialog must be explicitly
stated.

The slpit utility does little validation to ensure valid call flow. It primarily ensures that
the dialog is handled correctly. For example, you do not get a warning if you forget to
send an ApplyChargingReport message at the end of a monitored call, but you do get a
warning if you do not explicitly terminate a dialog.

Using Distributions

The slpit utility creates a distribution with a list of call types and other parameters that
control the launching of calls, which is known as the call rate, and the terminating

2-6 Convergent Charging Controller Testing Utilities User's Guide

Managing Script File Processing

condition of the distribution, which is generally the number of calls launched. A
distribution processes the call types in a round-robin fashion until the completion
condition is met. The slpit utility allows you to create the following types of
distributions:

= A uniform distribution has an interval and a total call count. The interval specifies
the number of seconds that are to elapse before launching each call until the total
number of calls is reached. The practical minimum interval is greater than a
microsecond but less than a millisecond. The following startcall line, for
example, would run the call every 0.5 seconds for a total of 10 times:

startcall using uniform 0.5 10
= A Poisson distribution has a lambda value and a total call count. The lambda
value represents the average interval between calls rather than the exact interval.
s The once distribution launches one of each specified call type immediately.

A once distribution will run through the contents of the given call type once and
report a result of SUCCESS, FAILED or ABORT.

The type of distribution is determined by the type of testing that you are performing.
You specify the distribution type in the script file using the startcall command, for
example:

startcall <id> using <distribution>
So for a script in which you wanted to run only one call that was started with define
call 982 {, youwould have to start the call with a line like the following;:

startcall 982 using once

Using TCAP Primitives

All TCAP messages are primitives although some primitives are not messages. That is,
some primitives are transferred only inside the local machine. A TCAP primitive
contains zero or more TCAP components and can be one of the types described in
Table 2-2.

Table 2-2 Types of TCAP Primitives

Primitive Type Description

Unidirectional A single standalone instruction. It is both the start and end of a
dialog.

Begin Begins a dialog with other primitives coming after it.

Continue A subsequent primitive sent on an existing dialog with other
primitives coming after it.

End The last primitive, which closes its dialog.

Abort Closes the dialog, possibly due to an error.

Cancel Closes the dialog when the invoke timer expires without

receiving a response. This is an example of a primitive that is
not a message.

Receiving Expected Operations

Each received message corresponds to a single TCAP primitive and can contain one or
more INAP operations.

Testing Calls and Messages Using the slpit Utility 2-7

Managing Script File Processing

The received message must contain the expected INAP operations in the order
specified in the receive message section of the call definition. See "Call Definition
Commands and Messages" for more information about defining calls.

Note: Operations can come in one primitive but also can sometimes
come in separate primitives, depending on the application or the
service.

If the received operation types do not match the expected operation types, the slpit
utility aborts the call. If the parameters received for each operation do not match the
expected parameters, slpit reports the result of the call as FAILED but continues to
process the remaining operations in the call definition. See "About Expressions and
Comparators" for more information about parameter values.

Receive operations can time out, which prevents slpit from waiting for call completion
when the call has been lost. The global default for timeout is 15 seconds.

When a timeout occurs, you can execute a sequence of messages to finish the call. The
default action is to abort the call, which closes any open dialogs. Aborting the call is
not likely to be the most desirable behavior, however, because it does not cause a
TCAP ABORT message to be sent to the application when it is running in the same
SLEE. Therefore, if you expect a timeout, you should override the default with a more
appropriate action.

Managing Dialogs

The send message includes options that allow you to specify a particular dialog on
which to send and also to end a SLEE dialog. You can also use the abort primitive to
abort a dialog and use other messages to send an error to ACS.

Specifying a Particular Dialog

To send operations specifically on either the main or assisting dialog, specify the
dialog in the send primitive. For example, the following send primitive sends the
operations on the assisting dialog:

send assisting {

<operations>

}

To send on the main dialog, specify main instead of assisting. If you do not specify a
dialog, the main dialog is assumed.

Ending a SLEE Dialog

The easiest way to end a SLEE dialog is to include the end option in the last send
message in the dialog, as shown in the following example:

send end {

}

When a call completes, whether it is successful or aborted, the slpit utility
automatically closes any open dialogs. If the slpit utility runs in the same SLEE as the
application, the application receives only an indication that the dialog is closed and
might not handle it in the same way that it does the shutdown of a real TCAP dialog.
Therefore, if a call ends with a status of Failed or Okay, and it has dialogs open, the

2-8 Convergent Charging Controller Testing Utilities User's Guide

Managing Script File Processing

slpit utility displays a warning message. If a call was aborted, you can assume it might
have an open dialog.

The slpit utility terminates a dialog when the application sends or receives a
terminating event. When the slpit utility ends a dialog, it writes a line of output that
indicates the number of messages that are still in the queue. Usually, you can ignore
these messages because only internal SLEE messages will be left.

Aborting a SLEE Dialog

You can also explicitly abort a dialog by using the abort message. Specify the open
option to abort any open dialogs.

abort [main | assisting | open]

Completing Calls
Each call instance finishes in one of the following states:

s Aborted

Execution of the call was interrupted because something was sufficiently wrong
that the call could not or should not continue. For example, an attempt was made
to send an event when a dialog was no longer available, or a run-time error
occurred.

s Failed

The call was not completely successful but the errors were not sufficient to
interrupt the call. The most likely cause is a discrepancy between the received and
expected parameters for an operation. The call is failed but allowed to continue
because the difference might not be significant.

s Okay
The call completed without errors.
A call can finish for the following reasons:

s The call execution reaches the end of the call definition; the final call state will be
either Failed, or Okay depending on whether there were errors in the run.

= A finish call command is executed: The call run is immediately finished either
with its current state or the override state that is specified in the finish call
command.

» The slpit utility encounters a serious error: The utility aborts the call immediately.

Cancelling slpit

You can run multiple calls with slpit, either by specifically defining each call in the
script input or by using the uniform or Poisson distribution models.

By default, the slpit utility does not stop generating calls if any call aborts or fails. You
can change this behavior by using the cancel after command. You can place this
command anywhere outside a call definition in a slpit script. The command has the
following forms, each of which is self explanatory:

cancel after none

cancel after abort

cancel after failure

cancel after abort or failure

Testing Calls and Messages Using the slpit Utility 2-9

Creating the slpit Script File

See "The Call Sequence" for more information about these commands.

You can also allow the slpit utility to continue after an abort or failure until a specified
limit is reached.

You can use the following form of the cancel command to cancel a run after a specified
number of failures or aborts occurs.

cancel after <number> [abort|failure]
If the number of specified aborts or failures occurs for the call, this command causes

the slpit utility to stop call processing and exit. The program accepts either abort or
aborts. It also accepts either failure or failures.

The following command specifies a time limit, in seconds, on the number of failed or
aborted calls that the slpit utility can receive before it cancels call processing and exits:

cancel after <number> [aborts\failures]in <number> seconds

The program accepts either second or seconds.

Sending an Error

You can send an error to ACS or the application that you are testing by using either the
tcapReject message or the error message. See "tcapreject” and "error" for more
information.

Creating the slpit Script File

Syntax

The slpit utility processes a script file that consists of a few commands and a set of
INAP send and receive operations, which define the progress of one or more call
instances.

The following syntax conventions are used to describe the commands and operations
that appear in the script file.

[l

Square brackets indicate that the enclosed items are optional. For example, the
correlationalid parameter in the following operation is optional.

establishtemporaryconnection
address <digits>
[correlationid <digits>]

I
A pipe separates one or more choices. For example, in the following finish call
operation, you can optionally specify a final state of aborted, failed, or okay.

finish call [aborted|failed|okay]

An ellipsis indicates that an item can be repeated one or more times. In the following
example, part must occur at least once but the ellipsis indicates that it can be repeated
one or more times.

[variableparts <part> [<part>...]]

2-10 Convergent Charging Controller Testing Utilities User's Guide

Creating the slpit Script File

Commands

<
Angle brackets indicate a placeholder that you replace with a specific value. The
placeholder typically specifies the value's atomic token or basic data type such as
<integer>, <string>, or <bcd>.

The slpit utility supports the following three styles of comments, which can appear
anywhere in the script file:

s //

Two forward slashes indicate C++ style comments that can extend to the end of a
line. The following line illustrates a full line comment:

//This is a full line comment
calledpartynumber "049393520" // This is an in-line comment

s #
A pound character indicates shell-style comments that can extend to the end of a
line.

LR A

Text enclosed by asterisks and then forward slashes indicate C-style comments
that can extend multiple lines between the beginning and ending delimiters.

You can include the following commands in the script file in addition to the messages
and operations that define a call:

include <file>

Includes the named file in the slpit script, enabling you to include a call sequence that
is defined in a separate file. The value of <file> includes the directory path to the
file’s location.

define call <ID> { <call sequence> }

Defines a set of call sequence messages and operations. The <ID> is an identifier you
assign to the call and use to reference the call in other commands. See "The Call
Sequence" for more information about <call sequence>.

startcall <ID> [<ID>...] using <distribution> [<seed>] maxconcurrent <limit>] \

[after <wait_seconds>]

Defines the call types, the number of calls, and the call rate at which to start generating
calls. You can start multiple call types and call rates by including multiple startcall
commands in the script file.

For all distribution types, you can specify a random seed, which is a number that will
be used to initialize the call rate. If not specified, the current clock time is used.

For all distribution types, you can also specify a maximum concurrent number of calls
to hold open. This overrides any calls-per-second (CPS) rate and causes a lower CPS
rate to be used. This is useful for specifying the maximum load that can be supported
for the test system.

For all distribution types, you can specify that the block of calls are to be run after a
wait time of a specified number of seconds. This is useful for specifying a stepped call
rate, in which you define one startcall for each step, with each one timed to begin
after the preceding one has finished.

After the keyword using, you can use the following forms of the command:

uniform <delay> <count>

Testing Calls and Messages Using the slpit Utility 2-11

Creating the slpit Script File

once
poisson <delay> <count>
poisson <delay> <ramp> <count>

The <delay>, <count>, and <ramp> values must be defined as a number with a decimal
point.

The <delay> parameter is the average interval between calls. You can alternatively
express this value as calls per second and you can do so by using the cps keyword. For
example 10.0 cps is equivalent to a <delay> value of 0.1.

The first form of the poisson command generates calls at random with the average
interval between calls specified by the <delay> parameter.

The second form of the poisson command ramps up from zero calls per second to
1/<delay> calls per second, taking about <ramp> seconds to reach the maximum call
rate. It then flattens off at that rate.

Call Definition Commands and Messages
The basic format of a call definition looks like this:

define call <ID> {
<call sequence>

}

Each call type is identified by an ID that can be either a number or a name that starts
with a letter and contains only letters, digits, and underscores.

The <call sequence> consists of a set of call definition messages that describe the
progress of a call.

The Call Sequence

The call sequence consists of one or more of the following call definition messages:

send [end] [assisting|main] { <message details> ... }
receive [assisting|main] { <reponse details> ... }
allow receive abort assisting

[send] abort [assisting|main|open]

wait <delay>

<ID> = <expression>

<ID> ?= <expression>

waitforcalls <delay> seconds|calls

finish call [aborted|failed|okay]

default timeout none

default timeout <expression> [{ <new call sequence> }]
close [assisting|main|open]

cancel after [none|abort|fail] [or [abort|fail]]

send

The slpit send message sends an event containing one or more operations, as
determined by the message details, which you can modify through the use of various
flags.

send [end] [assisting|main] { <message details> ... }

The end flag causes the messages to be sent as the final event on the dialog. You can
use the assisting or main flag to override the dialog on which the message is sent. See
"Managing Script File Processing" for more information.

2-12 Convergent Charging Controller Testing Utilities User's Guide

Creating the slpit Script File

receive

The slpit utility expects to receive an event containing one or more operations as
determined by the response details in a receive message, including
CSlInitiateAttempt and CAP4InitiateCallAttempt operations. You can use either the
assisting or the main flag to override the dialog on which the message is expected to
arrive.

receive [assisting|main] { <reponse details> ... }

See "Managing Script File Processing" for more information.

allow receive abort

An allow receive abort message indicates that the slpit utility should expect an
abort to arrive from TCAP on the specified dialog at some time in the future. This is
different from receive in that the slpit utility does not stop and wait for the abort, but
continues processing.

allow receive abort assisting

abort

An abort message causes the slpit utility to send a TCAP abort on the specified dialog
or dialogs (the default is the main dialog). Specifying open dialogs causes the slpit
utility to abort any dialogs still open for the call.

[send] abort [assisting|main|open]

wait

The wait message causes the slpit utility to pause its processing of the call for a
specified delay or until it is interrupted by a received event. You can specify the delay
as an integer value representing microseconds or as a floating point value representing
seconds. In other words, if the value contains a decimal point, the unit value is
seconds. If it does not contain a decimal point, the unit value is microseconds. The
following example illustrates the format of the message:

wait <delay>

<ID> = <expression>

The slpit utility uses the <ID> = <expression> definition to evaluate an expression
and assign its value to a named variable. You can always assign an expression to ID
using <ID> = <expression> but <ID> ?= <expression> only assigns an expression to
ID if ID has not been already defined in the script.

<ID> = <expression>
<ID> ?= <expression>

waitforcalls

The waitforcallsmessage causes the slpit utility to pause its processing for a
specified number of seconds or until the specified number of new calls started by
TCAP_BEGIN requests have finished. You specify the number of seconds to wait or
the number of calls to process. The following example illustrates the format of the
message:

wait <delay> seconds|calls

Testing Calls and Messages Using the slpit Utility 2-13

Creating the slpit Script File

finish call

The finish call message finishes the call. You can specify a final state of
aborted, failed, or okay to override the established state. For example, finish
call okay causes a failed call to be recorded as successful.

finish call [aborted|failed|okay]

default timeout

The default timeout message specifies the default timeout that the slpit utility uses
when waiting for a message. If you specify the {<new call sequence>} section, slpit
will run the new call sequence when the timeout occurs rather than the lines that
follow in the main call definition. If you specify none, it turns off the timeout
altogether.

default timeout <expression> [{<new call sequence>}]
default timeout none

close

The close message closes the SLEE dialog by way of a DIALOG CLOSED event on the
given dialog. If you use the open option, the slpit utility closes all open dialogs.

close [assisting|main]|open]

cancel

The cancel after message forces the slpit utility to exit any call immediately when
the call fails or is aborted. This feature is most useful when running multiple calls in
one slpit run, as when using the uniform and Poisson call distribution models.

This message has the following four formats:
m cancel after none

This format prevents the slpit utility from exiting the run on the abort or failure of
the call.

m cancel after abort

This format causes the slpit utility to stop processing or generating calls and exit if
the call aborts. You can substitute the word aborts for abort.

m cancel after fail

This format causes the slpit utility to stop call processing and exit if the call fails.
You can substitute the words failure, failures, and fails for fail.

m cancel after abort or fail

This format causes the slpit utility to stop processing or generating calls and exit if
the call aborts or fails. You can substitute words as described in the other formats
of the cancel message.

You can use multiple cancel messages like this in the same call definition to handle
calls that might not fail before a certain command, but could fail after another
command.

You can also define a global cancellation strategy outside of a call definition. See
"Cancelling slpit" for more information.

2-14 Convergent Charging Controller Testing Utilities User's Guide

Creating the slpit Script File

About Expressions and Comparators

An expression generates a value that you can use, for example, as the parameter value
for a send operation. The simplest form of an expression is a constant value. For
example, "5551234" appearing in a slpit script is usually an expression that generates a
digit string. More complex expressions are supported:

= Expressions that use the value of a variable by name.

= Expressions that use limited integer arithmetic: subtraction, addition, and
multiplication. Integer arithmetic expressions may also contain parentheses for

grouping.
For example:
callConnectedElapsedTime (talktime - 20) * 10
You can also specify ranges of numbers as an expression, including the Nature of

Address of the generated numbers, which defaults to 3, if not specified. The syntax
looks like this:

CLI = RANGE [(<integer: NoA>)] "<start of range>" "<end of range>"
SEQUENTIAL | RANDOM
For example,

CLI = RANGE(4) "49900010001" "49900020001" SEQUENTIAL

or
CLI = RANGE "49900010001" "49900020001" RANDOM
You can obtain values from a text file, such as one for vouchers. For example, the

following expression will take a line from vouchers.txt and use that value wherever
VOUCHERNUM is used:

VOUCHERNUM=FROM_FILE "vouchers.txt"
If you want to randomly use rows from vouchers.txt, you need to randomize the file
before you pass it to the slpit utility. Not having enough rows in your file to match the

number of calls causes the slpit utility to produce an error and stop once the numbers
have run out.

You can obtain INAP numbers from a text file. For example, the APARTY expression
will take a line from the APARTY_INAP.txt. file and use the value wherever APARTY
is used:

APARTY = FROM_INAP_FILE "APARTY_INAP.txt"
If sufficient rows are not available in your file to match the number of calls, the split
utility produces an error and stops once the numbers have run out. For example:

(5) 111121 screening 1 presind 2 numberplan 3 innorni 0

section of the split:

define call deciseconds_camel {
APARTY = FROM_INAP_FILE "APARTY INAP.txt"
BPARTY = FROM_INAP_FILE "BPARTY_ INAP.txt"

send {
initialdp
appContext "0,4,0,0,1,0,50,1"
calledpartynumber BPARTY

callingpartynumber APARTY

Testing Calls and Messages Using the slpit Utility 2-15

Creating the slpit Script File

locationNumber "111144"
}
}

A comparator is a pattern for checking received values such as the parameters in
received operations. There are three comparators:

] any

n [=] <expression>

[<comparator> -> <ID>

The any comparator matches any value.

The simplest comparator is an expression that tests for equality. You can optionally
precede the expression with = to make the equality test explicit. Because the simplest
expression is a constant value, comparators usually test for equality with a simple
constant value. It might also be useful to compare to the value of a variable.

The last comparator generates a match or a mismatch based on the result of the
comparator, which can be any other comparator. It stores the value being checked in
the variable named by <ID>. This allows you to store a received parameter value for
later use.

In the syntax description, <integer comparator> indicates that you can include any
comparator at that point, but the comparison should be for an integer, so the
expression or expressions underlying the comparison should generate integers. The
same thing applies for other comparator types like <number comparator>.

<number>:

[(<noa>)] <digits>
[screening <integer>]
[presind <integer>]
[numberplan <integer>]
[innorni <integer>]

For outgoing numbers, the following default values are substituted for any field not
specified:

noa=3 screening=0 presind=1 numberplan=1 innorni=0

For incoming numbers, any value is allowed for fields that have not been specified
except <digits>.

Call Messages

Call messages are divided into send message operations and receive message
operations.

This chapter does not explain the semantics of INAP, MAP, or CAP operations, except
where the mapping from the parameters in the script to those in the actual operations
is not obvious. Please refer to the relevant standards documentation for the
descriptions and procedures for particular operations. See the following standards
documents for more information:

» Intelligent Network (IN); Intelligent Network Capability Set 1 (CS1); Core Intelligent
Network Application Protocol (INAP); Part 1: Protocol specification. European
Telecommunication Standard, ETS 300-374-1, September 1994.

2-16 Convergent Charging Controller Testing Utilities User's Guide

Creating the slpit Script File

» 3rd Generation Partnership Project; Technical Specification Group Core Network;
Customized Applications for Mobile network Enhanced Logic (CAMEL) Phase 4; CAMEL
Application Part (CAP) specification (Release 5). 3GPP 29.978 5.4.0 (2003-06).

» Digital cellular telecommunications system (Phase 2+); Mobile Application Part (MAP)
specification (GSM 09.02 version 7.5.0 Release 1998). ETSI TS 100 974 V7.5.0 (2000-07).

In the syntax descriptions in this section, <integer expression> indicates that an
expression should appear at that point and the expression should produce an integer.
Likewise for the syntax <number expression>. The syntax <integer comparator>
indicates that you can include any comparator at that point, but the comparison
should be for an integer, so the expression or expressions underlying the comparison
should generate integers. Likewise for the syntax <number comparator>. See "About
Expressions and Comparators" for more information.

Send Message Operations
You can use the following operations in the send message portion of a call definition.

alertServiceCentre [<parameters>]

You can use this operation for MAP handling. It sends alerts between MSC and HLR
and it has the following parameters in any order:

Table 2-3 alertServiceCenter Parameters

Parameter Value
msisdn <number expression>
serviceCentreAddress <number expression>

alertServiceCenterWithoutResult [<parameters>]

You can use this operation for MAP handling. It sends alerts between MSC and HLR
and it has the following parameter in any order:

Table 2-4 alertServiceCenterWithoutResult Parameters

Parameter Value
msisdn <number expression>
serviceCentreAddress <number expression>

anyTimelnterrogation [<parameters>]

This operation queries for information between GSM SCF and HLR. It has the
following parameters:

Table 2-5 anyTimelnterrogation Parameters

Parameter Value Min. Max

requestedInfo (locationInformation | subscriberState) N/A N/A
imsi <bcd> N/A N/A
msisdn <bcd> N/A N/A
qmScf <bcd> N/A N/A
sccp_orig_pc <integer> 0 65535
sccp_orig_ssn <integer> 0 255

Testing Calls and Messages Using the slpit Utility 2-17

Creating the slpit Script File

Table 2-5 (Cont.) anyTimelnterrogation Parameters

Parameter Value Min. Max
sccp_orig_tt <integer> 0 255
sccp_orig_np <integer> N/A N/A
sccp_orig_noa <integer> 0 127
sccp_orig_rti <integer> 0 1
sccp_orig_digits <digits> 0 15
sccp_dest_pc <integer> 0 65535
sccp_dest_ssn <integer> 0 255
sccp_dest_tt <integer> 0 255
sccp_dest_np <integer> 0 15
sccp_dest_noa <integer> 0 127
sccp_dest_rti <integer> 0 1
sccp_dest_digits <digits> N/A N/A

Table 2-6 lists the valid combinations of the fields that make up a global title:

Table 2-6 Fields that make up a global title

Global Title Type Fields

1 noa, digits

2 tt, digits

3 tt, np, digits

4 tt, np, noa, digits

For global title types 3 and 4, the encoding is always binary coded decimal (BCD) that
is 1 when there is an odd number of digits and 2 when there is an even number of
digits.

applychargingreport
This operation provides feedback from the service switching function (SSF) to the
service control function (SCF). It has the following format:

applychargingreport
thresholdtime <integer>
endofcallindicator <integer>
[freecallindicator <integer>]

The following format is available for use with INAP CAMEL extensions:

applychargingreport
receivingSide <number>
(timeNoTariffSwitch <number> |
timeSinceTariffSwitch <number> |
timeSinceTariffSwitch <number> tariffSwitchInterval <number>)
[callActive <number>]
[callReleaseAtTcpExpiry <number>]

2-18 Convergent Charging Controller Testing Utilities User's Guide

Creating the slpit Script File

applychargingreportGprs
This operation provides a report from the GPRS SCF to the GSM SSF. It has the
following format:

applyChargingReportGprs
(gprsvolumeifnotariffswitch <integer> |
gprsvolumesincelasttariffswitch <integer> [gprstariffswitchinterval
<integer>] |
gprstimeifnotariffswitch <integer> |
gprstimesincelasttariffswitch <integer> [gprstariffswitchinterval <integer>

<gos-list>

gprsActive <integer>

[gprsPdPid <integer>]
[<ChargingRollover>]

The <gos-1ist> section is one or more of the following in any order:

gprsrequestedgos <gprs-info>
gprsnegotiatedgos <gprs-info>
gprssubscribedgos <gprs-info>

The <gprs-info> data is the same as defined in intialDpGprs. See "Initial DpGprs" for
more information.

The <ChargingRollover> section is optional, consisting of either:

<TransferredVolumeRollOver> | <ElapsedTimeRollOver

The <TransferredvolumeRollOver> parameter consists of a choice of:
gprsrovolumeifnotariffswitch <integer> |
<ro-VolumeIfTariffSwitch>

Where <ro-VolumeIfTariffSwitch> consists of a sequence of:

gprsrovolumesincelasttariffswitch <integer> (optional)
gprsrovolumetariffswitchinterval <integer> (optional)

The <ElapsedTimeRollOver> consists of a choice of:
gprsrotimeifnotariffswitch <integer> |
<ro-TimeIfTariffSwitch>

Where <ro-TimeIfTariffSwitch> consists of a sequence of:

gprsrotimesincelasttariffswitch <integer> (optional)
gprsrotimetariffswitchinterval <integer> (optional)

applyChargingReportAckGprs
This operation has no parameters.

applyChargingReportAckGprs

assistrequestinstructions

This operation is used by the SSF to report a specific charging event to the SCF in
response to the ApplyCharging operation. It has the following format:

assistrequestinstructions
[correlationid <digits>]

Testing Calls and Messages Using the slpit Utility 2-19

Creating the slpit Script File

The message generated by this operation causes the event that contains it to be sent
automatically as the first event on a new assisting dialog.

Although you can include the correlationid parameter in the script, it is ignored and
overwritten with the value from the most recently received
EstablishTemporaryConnectioin operation.

callinformationreport
This operation sends specific call information to the SCF as requested by a previous
callinformationrequest operation. This operation has the following format:

callinformationreport [<parameters>]

A callinformationreport operation should have one or more of the following
parameters, appearing in any order, matching the information requested in the
relevant callinformationrequest operation:

callattemptelapsedtime <integer expression>
callstoptime <digits>
callconnectedelapsedtime <integer expression>
calledaddress <number expression>
releasecause <cause expression>

The callattemptelapsedtime parameter is measured in seconds while the
callconnectedelapsedtime parameter is measured in deciseconds. The callstoptime
parameter is a string in the format: YYMMDDHHMMSS.

capdlinitiateCallAttemptResult
This operation sends a response to a cap4dInitiateCallAtempt request and has the
following format:

cap4InitiateCallAttemptResult [<parameters>]

A capd4IniateCallAttemptResult operation can have one or more of the following
parameters, appearing in any order:

offeredCamel4Functionalities <integer expression>
supportedCamelPhases <integer expression>
releaseCallArgExtensionAllowed

The of feredCamel4Functionalities and supportedCamelPhases parameters are
16-bit string values.

collecteduserinformation
This operation has the following format:
collecteduserinformation

digits <digits>

This is not a distinct operation. It represents the result form of the INAP operation,
promptAndCollectUserOperation. The digits parameter corresponds to the
digitsResponse tag in the result.

entityReleasedGprs

Use this operation when the GPRS session is detached or a PDP context is
disconnected and the related event is not equipped for reporting. This operation has
the following format:

entityReleasedGprs

2-20 Convergent Charging Controller Testing Utilities User's Guide

Creating the slpit Script File

gprsReleaseCause <integer>
[gprsPdPid <integer>]

entityReleasedAckGprs
This operation has no parameters. It is the returned result for entityReleasedGprs.

error
An error operation has the following format:

error <name> [invokeId <invoke-ID>]

An error operation generates a U-ERROR component in the outgoing message. The
name parameter determines the error code used. The following values are valid:

cancelled
cancelfailed
etcfailed
impropercallerresponse
missingcustomerrecord
missingparameter
parameteroutofrange
requestedinfoerror
systemfailure
taskrefused
unavailableresource
unexpectedcomponentsequence
unexpecteddatavalue
unexpectedparameter
unknownlegid

Some errors would typically have additional error codes, but the slpit utility supports
only the ones listed here.

The <invoke-ID> value is from the last received INVOKE component, unless you
specifically define it with the invokeId parameter.

eventreportbcsm

This operation notifies the SCF of a call-related event that was requested by the SCF in
a previous RequtestReportBCSMEvent operation. Examples of call-related events are
busy and no answer. This operation has the following format:

eventreportbcsm [<event>...]

The event parameter has the following format:

eventtypebcsm <type>

[misccallinfo <misccallinfo> \ monitormode <mode>]
[legid <legid> | (<integer>)]

[eventspecificinfo <info>]

The <mode> parameter has one of the following values:

interrupted
notifyAndContinue
transparent

The <legid> parameter has one of the following values:

[sendingsideid] <legtype>
[receivingsideid] <legtype>

Testing Calls and Messages Using the slpit Utility 2-21

Creating the slpit Script File

The <legtype> parameter has one of the following values:

ltlegl
1tleg2

Event-specific information includes the following:

busycause <cause>
releasecause <cause>
failurecause <cause>
calledpartynumber <number>

eventReportGprs
This operation notifies the GSM SCF of a GPRS session or PDP context related events:

eventReportGprs
gprsEventType <number>
[gprsPdPid <integer>]

eventReportAckGprs
This operation has no parameters.

eventReportSms

This operation notifies the GSM service control function (gsmSCF) of a previously
requested short message related event. This message has no parameters.

informServiceCentre

This operation is required for SMS gateway procedures between MSC and HLR. This
message has the following format:

informServiceCentre [<parameters>]

The parameters consist of the following values:

storedMSISDN <number expression>

initialdp
This operation is used after a trigger detection point (TDP) to issue a request for
service. This message has the following format:

initialdp [<parameters>]

An initialdp message can have any of the following parameters, specified in any
order:

calledpartynumber <number expression>
originalcalledpartynumber <number expression>
callingpartynumber <number expression>
redirectingpartynumber <number expression>
locationnumber <number expression>
additionalcallingpartynumber <number expression>
callingpartyscategory <categoryvalue or number>
callingpartyspin <digits>

origredirreason <integer> redirindicator <integer>
eventtypebcsm <type>

appcontext <string>

extension <integer> <type> <integer> <digits> <integer>
extension <integer> <type> <integer> <digits>
idp_sccp_orig_pc <integer> // 0 - 65535

2-22 Convergent Charging Controller Testing Utilities User's Guide

Creating the slpit Script File

idp_sccp_orig_ssn <integer> // 0 - 255
idp_sccp_orig_tt <integer> // 0 - 255
idp_sccp_orig np <integer> // 0 - 15
idp_sccp_orig_noa <integer> // 0 - 127
idp_sccp_orig rti <integer> // 0 or 1
idp_sccp_orig digits <digits>
idp_sccp_dest_pc <integer> // 0 - 65535
idp_sccp_dest_ssn <integer> // 0 - 255
idp_sccp_dest_tt <integer> // 0 - 255
idp_sccp_dest_np <integer> // 0 - 15
idp_sccp_dest_noa <integer> // 0 - 127
idp_sccp_dest_rti <integer> // 0 or 1
idp_sccp_dest_digits <digits>

The following parameter is available for UCP handling:

AspID <string>

The following parameters are available for use with INAP CAMEL extensions:

iMSTI <bcd>

countryCode <digits> networkCode <digits> locationAreaCode <integer> [cellID
<integer>]

[bearerCapCodingStandard <number> bearerCapITC <number> [bearerCapTransferMode
<number> bearerCapITR <number> bearerCapUIProtol <number>]]
hlCharacteristicsId <number>

calledPartyBCDNumber [(<integer>)] "number" [numberPlan <integer>]
vlirNumber [(<integer>)] "number" [numberPlan <integer>]
ageoflocationinfo <digits>

subscriberstate <digits>

locationnumberlocationinfo [(<integer>)] "number" [numberPlan <integer>]
extBearerService <hex digits>

extTeleService <hex digits>

callreference <string>

[callForwardingSSPending]

iMEI <bcd>

The countryCode and networkCode values can be only three digits long.

Bearer capability fields are optional and are divided in two stages as shown above. If
the second stage is not present, the following default values are assigned:
bearerCapTransferMode = BC_TM_CIRCUIT (0x0), bearerCapITR = BC_ITR_64_KBIT S
(0x10) and bearerCapUIProtol = BC_UIL1_NOT_PRESENT (Oxff)

The following values are available for Bearer Capability fields:

Table 2-7 Bearer Capability Values

Bearer Capability Name Constants Value

bearerCapcodingStandard BC_CS_ITU_T 0x00
BC_CS_ISO_IEC 0x01
BC_CS_NATIONAL 0x02
BC_CS_NETWORK 0x03

bearerCapITC BC_ITC_SPEECH 0x00
BC_ITC_UDI 0x08
BC_ITC_RDI 0x09
BC_ITC_3_1_KHZ_AUDIO 0x10

Testing Calls and Messages Using the slpit Utility 2-23

Creating the slpit Script File

Table 2-7 (Cont.) Bearer Capability Values

Bearer Capability Name Constants Value
BC_ITC_UDI_TA 0x11
BC_ITC_7_KHZ_ AUDIO 0x11
BC_ITC_VIDEO 0x18
bearerCapTransferMode BC_TM_CIRCUIT 0x0
BC_TM_PACKET 0x2
bearerCapITR BC_ITR_PACKET 0x00
BC_ITR_64_KBIT_S 0x10
BC_ITR_2_64_KBIT_S 0x11
BC_ITR_384_KBIT_S 0x13
BC_ITR_1536_KBIT_S 0x15
BC_ITR_1920_KBIT_S 0x17
BC_ITR_MULTIRATE 0x18
bearerCapUIProtol BC_UIL1_ITU_V110_1460_X30 | 0x01
BC_UIL1_G711_U_LAW 0x02
BC_UIL1_G711_A_LAW 0x03
BC_UIL1_G721_32 _KBIT_S 0x04
BC_UIL1_H221_H242 0x05
BC_UIL1_H223_H245 0x06
BC_UIL1_NON_ITU_SRA 0x07
BC_UIL1_ITU_V120 0x08
BC_UIL1_X31_HDLC 0x09
BC_UIL1_NOT_PRESENT Oxff
InitialDpGprs

When a trigger is detected at a detection point in the general GPRS state machines, this
operation requests instructions from the GSM SCF. This message has the following
format:

initialDpGprs

gprsEventType <integer>

gprsMsisdn <number expression>

gprsImsi <number expression>
gprsOriginatingReferenceNumber <number expression>
[gprsEndUserAddress <PdpTypeOrganisation> <PdpTypeNumber> [<address byte>]]
gprsrequestedgos <gos-info>]

gprssubscribedgos <gos-info>]

gprsnegotiatedgos <gos-info>]
gprsaccesspointname <string>]

gprschargingid <integer>]
gprslocationinformation

gprsmobilecountrycode <bcd>

gprsmobilenetworkcode <bcd>
gprsmobilelocationareacOde <bcd>

gprscellidentity <integer>

gprspdpinitiationtype <integer>]

[
[
[
[
[
[

2-24 Convergent Charging Controller Testing Utilities User's Guide

Creating the slpit Script File

[gprsggsnaddress <integer> [<integer>]]
[sgsnNumber <number expression>]

The <gos-info> variable can have one of the following parameter values, all of which
are integers:

Table 2-8 InitialDpGprs

Parameter Min Max
gprsqosprioritylevel 0 255
gprsqosdeloferrsdu 0 7
gprsqosdelorder 0 3
gprsqostrafficclass 0 7
gprsqosmaxsdusize 0 255
gprsqosmaxbrforuplink 0 255
gprsqosmaxbrfordownlink 0 255
gprsqossduerrratio 0 15
gprsqosresidualber 0 15
gprsqostrafthlingpri 0 3
gprsqostransferdelay 0 63
gprsqosguabrforuplink 0 255
gprsqosguabrfordownlink 0 255

InitialDpSms

After it detects a TDP-R, the SMS SSF uses this operation to request instructions from
the GSM SCF to complete the short-message submission to the SMSC or the short
message delivery to the served subscriber. This message has the following format:

initialDpSms
[<parameters>]

An initialDpSms message can have the following parameters in any order:

callingPartyNumber <number expression>
destinationSubscriberNumber <number expression>
idp_sccp_orig pc <integer> // 0 - 65535

idp_sccp_orig_ssn <integer> // 0 - 255

idp_sccp_orig tt <integer> // 0 - 255

idp_sccp_orig np <integer> // 0 - 15

idp_sccp_orig noa <integer> // 0 - 127

id