
Oracle® Retail XBRi Cloud Services
Implementation Guide
Release 18.0

E97695-02

November 2019

Oracle® Retail XBRi Cloud Services Implementation Guide, Release 18.0

E97695-01

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Primary Author: Barbara Clemmer-Dunn

Contributors: John Gaitens, Karen Bagdasarian, Bill Warrick

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or
display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S.
Government end users are "commercial computer software" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be
subject to license terms and license restrictions applicable to the programs. No other rights are
granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications,
including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information on content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an
applicable agreement between you and Oracle.

Contents
Send Us Your Comments .. v
Preface .. 6

Audience ... 6
Documentation Accessibility ... 6
Access to Oracle Support ... 6
Related Documents ... 6
Customer Support ... 6
Improved Process for Oracle Retail Documentation Corrections 6
Oracle Retail Documentation on the Oracle Technology Network.................................. 7

Introduction .. 9
Scope of this Document .. 9
Cloud Components ... 9
Cloud Environments .. 9

User Acceptance Testing (UAT) Environment .. 9
Production Environment .. 10

Data Flow ... 11
Integration Components .. 12

The XBRi Data Model ... 13
Transactional File Data ... 13

Transaction Functionality ... 13
Mapping Transactional Data to POS_STAGING Schema ... 14

Header Records .. 14
Detail Records .. 14

XBRi Database Stored Procedures... 15

Internationalization .. 17
Translation ... 17
Multi-Language Setup .. 17

Scenario 1 .. 18
Scenario 2 .. 18
Scenario 3 .. 18

Localizing Currency in XBRi.. 18
Implementing Currency Exchange Rates ... 18
Applying Updates for Currency Metrics .. 19

Data File Delivery ... 23
Introduction .. 23
Core Data Files .. 23

Core ELT and Associated Directory Structure ... 23
ODI XBRI_LOADPLAN .. 23
High Level ELT Description ... 24

iii

Batch Mode ... 25
Real Time Mode ... 27
ELT Directory Structure .. 30
XBRLOADER Directory Structure ... 31

Data File Delivery Options .. 31
ODI ELT – Steps ... 35

Xstore/ XBRi Integration ..
37

Introduction .. 37
XBR Loader Architecture ... 37

File Mode (Default) .. 37
Database Mode ... 38

Components of an Xstore- XBRi Web Service Integration ... 38
Xstore/Xcenter 6.5 or Later .. 38
XBRi Broadcaster Enabled in Xcenter .. 38
XBRi Database ... 38
Tomcat Services Configured to Run XBR Loader Application 40

Submitting Transactions .. 40
Web Services Submission (File Processor) ... 40
POS_STAGING Data Load (Queue Processor) .. 41
Suspending and Resuming Poslog Dataload (CommandProcessor) 42
Purging (PurgeProcessor) ... 42
XSTORE poslogs through Web Service .. 42

Mapping Data through XPath ... 43
Basic Syntax .. 43

Root XML Elements .. 44
XPathAlias .. 44
InsertSet .. 44
Section .. 44
Translator .. 44
String Manipulation .. 47
XPath Resources ... 47

Web Services .. 49
Introduction .. 49
SOAP Based Web Services ... 49

XBR Loader SOAP-Based Web Services ... 49
SOAP-Based Web Services for POSLOG, Queue Processor, and Staging Processor
... 54

REST Based Web Services .. 55
Logging into REST Web Services ... 55
Available Rest Based WebServices .. 55

iv

http://www.oracle.com/

Send Us Your Comments
Oracle Retail XBRi Cloud Services, Implementation Guide, Release 18.0
Oracle welcomes customers' comments and suggestions on the quality and usefulness of
this document.
Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:
§ Are the implementation steps correct and complete?
§ Did you understand the context of the procedures?
§ Did you find any errors in the information?
§ Does the structure of the information help you with your tasks?
§ Do you need different information or graphics? If so, where, and in what format?
§ Are the examples correct? Do you need more examples?
If you find any errors or have any other suggestions for improvement, then please tell us
your name, the name of the company who has licensed our products, the title and part
number of the documentation and the chapter, section, and page number (if available).

Note: Before sending us your comments, you might like to
check that you have the latest version of the document and if
any concerns are already addressed. To do this, access the
Online Documentation available on the Oracle Technology
Network Web site. It contains the most current
Documentation Library plus all documents revised or
released recently.

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com
Please give your name, address, electronic mail address, and telephone number
(optional).
If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.
If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at www.oracle.com.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://support.oracle.com/

Preface
This Implementation Guide describes the requirements and procedures to complete manual post-
installation and configuration of this Oracle Retail XBRi Loss Prevention Cloud Services release.

Audience
This guide is for the following audiences:
§ System administrators and operations personnel
§ Integrators and implementation staff personnel

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following documents in the Oracle Retail XBRi Cloud Services Release 18.0
documentation set:
§ Oracle Retail XBRi Cloud Services Administration Guide
§ Oracle Retail XBRi Cloud Services Release Notes
§ Oracle Retail XBRi Cloud Services Web User Guide
§ Oracle Retail XBRi Cloud Services Administrator User Guide

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:
https://support.oracle.com
When contacting Customer Support, please provide the following:
§ Product version and program/module name
§ Functional and technical description of the problem (include business impact)
§ Detailed step-by-step instructions to re-create
§ Exact error message received
§ Screen shots of each step you take

Improved Process for Oracle Retail Documentation Corrections
To more quickly address critical corrections to Oracle Retail documentation content, Oracle Retail
documentation may be republished whenever a critical correction is needed. For critical corrections, the
republication of an Oracle Retail document may at times not be attached to a numbered software release;
instead, the Oracle Retail document will simply be replaced on the Oracle Technology Network Web site,

6

or, in the case of Data Models, to the applicable My Oracle Support Documentation container where they
reside.
An updated version of the applicable Oracle Retail document is indicated by Oracle part number, as well
as print date (month and year). An updated version uses the same part number, with a higher-numbered
suffix. For example, part number E123456-02 is an updated version of a document with part number
E123456-01.
If a more recent version of a document is available, that version supersedes all previous versions.

Oracle Retail Documentation on the Oracle Technology Network
Oracle Retail product documentation is available on the following web site:
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

(Data Model documents are not available through Oracle Technology Network. You can obtain them
through My Oracle Support.)

Preface 7

1
Introduction

Oracle Retail XBRi Cloud Services offer Business Intelligence (BI) reporting and analysis modules in the
areas of Loss Prevention (LP) and Sales and Productivity (SP). Retailers can purchase just the LP Module,
or have both LP and SP bundled into a single application.
The XBRi LP module is the world’s most widely used loss prevention and store data analysis tool. It uses
exception based reporting methods to easily identify, track, and respond to store events. The intent is to
detect, investigate, and reduce losses from fraud and noncompliance. Using advanced exception based
reporting (EBR) techniques. Oracle’s loss prevention solution analyzes transaction data from many
aspects and identifies patterns that may indicate fraud or theft. The EBR solution issues alerts, and
recommends further exploration based on the likely severity of the wrong doing.
The XBRi SP module offers robust and highly configurable reporting across all levels of the retail
organization hierarchy (Salesperson, Store, District, Region, and so on), merchandise hierarchy (item,
class, dept., and so on) and/or by geographic attributes. Through a comprehensive set of grid and graph
reports, documents and interactive dashboards, users can compare same store sales to past performance
and custom goals, measure sales members’ productivity, and evaluate the impact of merchandise
characteristics on productivity.

Scope of this Document
This document applies to an implementation environment only. Any actions pertaining to staging should
be handed to the Cloud team.

Cloud Components
There are several key components included in an XBRi installation. The business intelligence server, an
application server, an Oracle database, a Secure File Transfer Protocol (SFTP) server and an Extract, Load,
Transform (ELT) server hosing Oracle Data Integrator (ODI) or XBRLoader web service or both. The
XBRLoader Web Service is generally only used for XSTORE- XBRi customers. (XSTORE 7.0 and higher).
In a Cloud implementation, the necessary components are pre-installed.

Cloud Environments
When XBRi is implemented in the Cloud, there are two environments: User Acceptance Testing (UAT)
and Production. All environments are provisioned by the Cloud Team.

Note: The UAT environment will only be available as long as needed for
customers and partners to perform the task requires after Cloud installation.

User Acceptance Testing (UAT) Environment
In the UAT environment, partners code and configure the ELT component to bring in both Point of Sale
(POS) and supplemental data feeds. Partners also configure the database specific to the customer’s
business requirements and configure the business intelligence front end. Unit testing is performed in the
UAT environment before promoting configurations to the Staging Environment .In this environment, the
customer is engaged to perform user acceptance testing. Customer access is limited to the XBRi

application front end. More information on the deployment process and how to address customer issues
in this environment is covered in the Oracle Retail XBRi Cloud Services Administration Guide.

9

Production Environment
Production is the customer’s go live environment.

10 Oracle Retail XBRi Cloud Services Implementation Guide

Data Flow
At a high level, data flows into XBRi from the POS system and other corporate data warehouse
repositories. The customer is responsible for delivering data feeds, both transactional logs and
supplemental files, to a SFTP site. The ELT process, built on Oracle Data Integrator (ODI), extracts and
transforms the files and loads the data to staging tables on the XBRi database server. A set of stored
procedures moves transactional data to historical tables. Supplemental data feeds are loaded to
temporary tables in the XBRi database by the ELT and then moved to the core master file tables through
additional stored procedures. Some stored procedures are responsible for populating the lookup tables as
well. Stored procedures are covered in more detail in Chapter 2, The XBRi Data Model. The workflow for
all this movement is controlled by the ODI ELT framework.

Note: The import data provided by customers is exposed to specified
formats that are provided by Oracle. The ODI ELT framework is not directly
accessible to customers.

Once data has been loaded to the XBRi database, it is available for viewing by the XBRi application.

XBRi Data Flow

Introduction 11

Integration Components
Most of the XBRi integration is performed using XSL and XPATH configuration through web services.
In the diagram below, the integration components are displayed in white boxes with dark font. Note that
only one transactional data mapping component may be required.

XBRi Integration Components

Transactional Log Delivery Method Required Mapping

ASCII File – any POS ODI Map

API POSCanonical.xml N/A (Done outside Cloud)

XStore - Broadcaster XBRLOADERConfig.xml

Setting Non-Standard Master Fiscal and Calendar Date Tables
When a new database is installed, the Fiscal Date Calendar format and date range to create for the master
date tables follows the standard NRF Fiscal Calendar 4-5-4 monthly format, and the default fiscal
calendar that was loaded with the core metadata generates back several years from fiscal year 2005 to
2030.
If the customer needs a different date range or uses the fiscal 4-4-5 format, you must enter an Oracle
support request to have correct fiscal calendar loaded.

12 Oracle Retail XBRi Cloud Services Implementation Guide

2
The XBRi Data Model

Transactional File Data
Transactional file data is the output of the POS system. These files are referred to as TLOGs or POSLogs
depending on the POS vendor. They can be delivered as XML or ASCII files.
The standard format of transactional data can be found in the XBRi Cloud Services Core Field Mapping
Guide, which is available on MOS. The POS Staging Schema Layout section in Appendix A of the XBRi

Cloud Services Core Field Mapping Guide. If mapping XML files, the POSCanonical.xsd file should be
used as the target when creating the appropriate XSL mapping. The purpose of the POSCanonical.xsd file
is to normalize the XML transactional log to an XBRi data model XML file. POSCanonical.xsd will be
provided.

Transaction Functionality
Points of sale are highly customized. Based on the business, certain functionalities are enabled. A grocery
point of sale for instance has more functionality than a retail point of sale. Grocery points of sale usually
allow for bottle slips, food stamps and WIC as tenders, for example. Coupon functionality is more
complex at a grocery store.
Voiding is a functionality shared by points of sale. In some points of sale the fact that a tender, item, or
discount is voided does not show up in the tlog. In these cases, the original item is not present either. In
XBRi, a record that is voided and visible in the tlog requires two records: a voided record and a voiding
record. These records contain the same information, with the exception that the void code is different and
the signage is different. The purpose of the voiding record is to ensure the transaction balances out.
Discounts are an area where the functionality varies even within the same point of sale. Work closely
with the customer to understand their use of discounts, price overrides and coupons. One thing to note is
that the discount amount field is populated at detail in both a LDS/TDS record and the actual item (SKU)
record. Pay attention to selecting the proper field/tag for the reason_type field. In certain points of sale
there is a reason_type and a discount number. For these customers the discount number should be posted
to the accountnum field.
Layaways and Special Order transactions, although they are both Sale transactions, typically involve
multiple transactions to accomplish one sale. There will be a transaction when the Layaway is initiated
“initial,” there may or may not be a fee or a deposit, or there could be multiple transactions each making
partial payments. Eventually the items will be picked up. It is important to understand exactly when the
customer recognizes the revenue on a Layaway transaction.
E-commerce functionality must also be understood. E-commerce transactions commonly have an invoice
number associated with them in addition to a transaction number. E-commerce transactions are best
posted to XBRi at the point the item has shipped. Returns in an e-commerce transaction, if not coded for
properly, will often appear to be Exchanges, since a return in e-commerce has both an item returned and
a shipping fee, which will appear to be a “sold” non-merchandise item. You must consider the special
requirements of each type of business.

Note: It is important to understand the capabilities of the Point of Sale and
how to translate this information into XBRi properly.

Table 2.1: Required TLOG Data Elements

Data Element Description Functionality Provided

1

3

Trans Number POS transaction number Reporting of Transaction details

Trans Date Date of the POS transaction Reporting by date and date range

Trans Time Time of the POS transaction Reporting by time of day

Store Store number where the transaction occurred Reporting by Store

Register Register number that logged the transaction Reporting by Register

Cashier Cashier number that created the transaction Reporting by Employee

Trans type Identifies the type of activity within the transaction* Provide transaction definition

Trans Status Identifies if transaction was completed: Transaction Status
Complete, Canceled, Suspended, Post Voided

Record Type Indicates type of record: header, merchandise, non-
merchandise, line discount, transaction discount,
tax, tender, and so on

TLOG Record and Data Elements
A record consists of one or more fields. An example of a record would be an Item record. An item record
may contain fields such as selling price, list price, quantity, and so on
Within these records you can derive various data elements. Related data elements need not necessarily
reside in the same record. For instance, if a credit card number resides in the next or previous record to
the record containing the amount, you can properly associate that information to the correct dollar value.
However, if there is no logical relationship, either by a cross-reference to line sequence number or a
positional (next record/ previous record) relationship, it would not be possible to make that connection.
In many POS systems there are records that combine disparate data elements. For example, Tax, Tender,
or both might appear on the same total record.
If the value of an amount field is captured as an absolute value, there must be some indicator within the
record or transaction that would define whether it is positive or negative. Otherwise, the sign of the
amount is assumed to be correct as logged.

Mapping Transactional Data to POS_STAGING Schema
All transactional data is mapped to the POS_STAGING schema in the XBRi Database. A set of stored
procedures (see: XBRi Database Stored Procedures) move the data to historical schemas for viewing in the
XBRi application. Detailed mapping instructions are found in the XBRi Cloud Services Core Field
Mapping Guide.

Header Records
Header records contain summary data about a single transaction or contain information and attributes
that apply to the transaction as a whole.
§ The data mapped to a Header record will vary by Transaction Type.
§ The header record type (RecType) for any transaction is always HDR.

Detail Records
The detail level indicates the specific parts or elements within a transaction.
The data mapped to a Detail record will vary by Record Type (RecType) and Transaction Type.
The detail record types are identified as the following:
§ Line Item (SKU, LAYSKU, SOSKU)
§ Non Merchandise (NM, LAYNM, SONM)

14 Oracle Retail XBRi Cloud Services Implementation Guide

§ Line Discount (LDS, LAYLDS, SOLDS)
§ Transaction Discount (TDS, LAYTDS, SOTDS)
§ Sales Tax (TAX, LAYTAX, SOTAX)
§ Tender (TND)
§ Petty Cash (PTC)

XBRi Database Stored Procedures
All data is loaded to staging and temp schemas in the database. There are stored procedures that control
the movement of this data to the appropriate today and historical schemas. An explanation of these
stored procedures is shown in the following schema. The stored procedures are controlled through the
ODI ETL process.

Note: These stored procedures cannot be modified for customers.

Table 2.2 Stored Procedures

Stored Procedure Description

SP_ETL_XSTART_BATCH This procedure clears the pos_staging schema and runs the partitioning
procedure if the ETL Partitioning variable is set to ‘Y’. This procedure runs
once per day by the XBRI_LOADPLAN_BATCH.

SP_ETL_XSTART_REAL This procedure clears the pos_staging schema and runs the partitioning
procedure if the ETL Partitioning variable is set to ‘Y’. This procedure runs
every 15 minutes in the beginning of XBRI_LOADPLAN_REAL

SP_ETL_XFINISH_BATCH This procedure will read a variable in PRO_SP_VARIABLES which will
determine if the customer has selected the LP Module, or both LP and SP
Module. Based on the variable’s value, This procedure will execute the
appropriate procedures based on whether they have, LP or both. This
procedure runs once per day by the XBRI_LOADPLAN_BATCH

SP_ETL_XFINISH_REAL This procedure will read a variable in PRO_SP_VARIABLES which will
determine if the customer has selected the LP Module or both LP and SP
Module. Based on the variable’s value, this procedure will execute the
appropriate procedures based on whether they have, LP, SP or both. This
procedure runs every 15 minutes in the end of XBRI_LOADPLAN_REAL

SP_ETL_XFINISH_EOD This procedure calls the stored procedures responsible for moving data
from today schemas to historical schemas. This procedure will run at the
end of XBRI_LOADPLAN_EOD

SP_PRO_CLEAR_STAGE: Clears the staging schema of transactions that have successfully moved to
downstream systems

SP_PRO _SET_BATCHNO: Creates a batch number for everything in pro_staging that does not have
one; calls sp_pro_sequencer to get the next batch number

SP_PRO _DUP_CHK: Removes duplicate transactions from the staging schema and puts them in
the pos_staging_dups schema

SP_PRO _LOAD_HIST: Copies transactions from the staging schema to the Analytics history
schemas. Calls sp_pro_nomatch_pvcancel and sp_pro_nomatch_returnexch
to populate no match data.

SP_PRO _LOAD_STATS: Loads the pos_statistics_tab schema for use in Analytics

The XBRi Data Model 15

SP_PRO _NOMATCH Matches refunds and exchanges to their original transactions

SP_PRO _TRANSDATE_PURGE: Purges POS historical schemas of old entries

SP_PRO_INVENTORY Updates/Inserts inventory data from the temp schema

SP_PRO_LOAD_SPO_STATS Aggregates data for Sales and Productivity summary schemas

SP_SPO_COMP_POLL Populate comp, no poll flag and also creates no poll estimates

SP_SPO_HRS_WORKED Reads the clock out and time card adjustment transactions from staging
schema and populates the hours worked schema

SP_SPO_UPD_GOALS Updates/Inserts goal data from the temp schema

SP_SPO_UPD_TRAFFIC Updates/Inserts traffic count data from the temp schema

SP_MST_UPD_STORE; Updates/Inserts store data from the temp schema. Adds stores for new
stores in the pos_staging schema

SP_MST_UPD_EMP Updates/Inserts employee data from the temp schema. Adds employees
for new employees in the pos_staging schema

SP_MST_UPD_SKU; Updates/Inserts sku data from the temp schema. Adds skus for new skus
in the pos_staging schema

SP_MST_UPD_REGNUM; Updates/Inserts register data from the temp schema. Adds registers for
new registers in the pos_staging schema

SP_MST_UPD_CUSTOMER; Updates/Inserts customer data from the temp schema. Adds customers for
new customers in the pos_staging schema

SP_MST_UPD_LOOKUPS; Updates and inserts data in the lookup schemas

SP_MST_UPD_TOKEN Updates pos_tnd_tab with token values which were delivered separately
from the pos data

16 Oracle Retail XBRi Cloud Services Implementation Guide

3
Internationalization

Internationalization is the process of creating software that is able to be translated more easily. Changes
to the code are not specific to any particular market. XBRi has been internationalized to support multiple
languages. This section describes configuration settings and features of the software that ensure that the
base application can handle multiple languages.

Translation
Translation is the process of interpreting and adapting text from one language into another. Although the
code itself is not translated, components of the application that are translated may include the following:
§ Graphical user interface (GUI)
§ Error messages
§ Reports
The following components are not translated:
§ Documentation (online help, release notes, implementation guide, administration guide)
§ Batch programs and messages
§ Log files
§ Configuration tools
§ Demonstration data
§ Training materials
The user interface for XBRi has been translated into:
§ English (US)
§ French (France)
§ German
§ Italian
§ Portuguese (Brasil)
§ Spanish

Multi-Language Setup
XBRi data is supported in six languages. This section provides details of various scenarios that you may
come across during implementation. Since multi-language data support in XBRi is dependent on the
availability of the multi-language data in the source system, it is important to understand various
scenarios the user may encounter. Before proceeding review the following facts about multi-language
support:
§ XBRi programs extract multi-language data from source systems.
§ A list of languages for multi-language data support can be chosen during the installation process.
§ Depending on the implementation, the source system may or may not have data for particular

supported languages. For example, XBRi supports Item Descriptions in multiple languages but the
item's description may not be available in the translated languages.

§ For source system released languages, please refer to source system operations guides.
§ You must select XBRi primary language for data purposes to be supported within the source system.

17

Scenario 1
All the supported languages are implemented in XBRi and the same set of languages are supported in the
source system as well.
Multi-lingual data sets are enabled in both XBRi and the source system.

Data Scenario 1a
Translated data exists for all records in the source system: This is an ideal scenario where the source
system supports data for the same set of languages as XBRi, and data for the required columns exists in
all the languages in the source system. In this scenario the attributes that are supported for multi-
languages will get all the multi-language data in XBRi.

Data Scenario 1b
Translated data does not exist for some of the records in the source system.
For the attributes for which data is not available in the source system, XBRi will display the attribute in
source system’s primary language. For example, XBRi requests data in German and English languages. In
XBRi the Item attribute description is not available in the German language but is available in English
language.

Scenario 2
All or a subset of languages are implemented in XBRi and some of these are not supported in the source
system:

Data Scenario 2a
Translated data does not exist for some of the languages in the source system. In this case, the data is
displayed in the XBRi primary language.

Scenario 3
Source system supports more languages than are supported for XBRi. In this case XBRi filters out the
additional languages' data. This data will not be loaded into XBRi tables and cannot be used for reporting.

Localizing Currency in XBRi

If multi-currency reporting is required for an XBRi implementation, the customer needs to provide a
multi-currency exchange rate feed to the XBRi database. The schedule for updating the database with the
customer exchange rate data is implemented by the Oracle Enablement team. The Customer
Administrator can set currency metric defaults in the XBRi Admin interface, as described in the Oracle
Retail XBRi Cloud Services Administration Guide.

Implementing Currency Exchange Rates
You can schedule XBRi to be updated with currency exchange rates on a regular basis. This can be daily,
weekly, or any other interval, depending on how often the currency exchange rate data is provided by
the customer. The customer data feed populates the MST_CURRENCY_RATE_TMP table. The updated
currency data is transferred to the MST_CURRENCY_RATE_TAB table using the
SP_MST_UPD_CURRENCY_RATE update procedure.
The SP_MST_UPD_CURRENCY_RATE procedure begins by inserting all the rows that are new in
MST_CURRENCY_RATE_TMP into MST_CURRENCY_RATE_TAB. Then it inserts any new rows from
MST_CURRENCY_RATE_TMP into MST_CURRENCY_RATE_TAB where TRANSDATE is greater than
the minimum TRANSDATE in MST_CURRENCY_RATE_TAB, filling in any gaps in the transdate range.

18 Oracle Retail XBRi Cloud Services Implementation Guide

It adds these rows with a 0.0 exchange rate. It then finds each of these rows and updates the exchange
rate with the most recent exchange rate for that currency code it can find.
When inserting missing currency rates, it will follow these rules:
If there is no history default rate to 0.
Any rate that comes in tmp table should overwrite what is in mst_currency_rate_tab.
When local = base then set rate to 1.

Applying Updates for Currency Metrics
If you are using multiple currencies in your project, set the defaults applied to currency metrics in the
Project Defaults, Metric Bulk Update page, which lets you set default formats for local, common or all
currency metrics. This includes defaults for symbol, custom mask, position, negative numbers, and
decimal place. The changes are displayed wherever currency is shown in the application, such as in
reports, documents, dashboards, and control points.

Note: XBRi is updated with currency exchange rates on a schedule
determined by the customer. The customer data feed is provided by the
customer. The schedule for updating the database with the customer
exchange rate data is implemented by the Oracle Enablement team.

1. Log in to XBRi as the Customer Administrator.
2. From the Admin menu, choose Project Defaults.
3. Under Settings, choose Metric Bulk Update.

Project Defaults – Metric Bulk Update

Internationalization 19

4. Make selections for the following options:
Scope
Select the group of metrics to which you want to apply bulk updates from the drop-down list.
Available options are:

All Currency Metrics - Applies to both Local and Common Currency Metrics.
Local Metrics only - Applies to the metrics based on amounts that will display a currency except for
those in the Common Currency folder.
Common Metrics only - Applies to the metrics based on amounts that will display a currency only
for those in the Common Currency folder.

Currency Symbol
From the drop-down list, select the symbol associated with the metric currency. The list of symbols is
determined by the languages available for your project.
§ If you choose No Currency Symbol from the list, the currency symbol present in the metric is

removed, and the currency amount is displayed without a symbol.

§ If you choose Custom as the currency symbol, the symbol is based on the selection for Number
and Date Format in User Preferences. For example, if the Number and Date Format is Italian, the
Custom Currency symbol will be for the Euro. See: General Preferences in the XBRi

Administrator online help for more information on setting the Number and Date Format
preferences.

Currency Custom Mask
From the drop-down list, select the characters to use to mask currency amounts. Available options
are:
#,###.## - The currency amount is displayed with thousands separated by a comma, and with
trailing zeroes suppressed in the decimal value. For example: 123456.78 is displayed as 123456.78, but
1234.50 is displayed as 1234.5
#,###.00 - The currency amount is displayed with thousands separated by a comma, and with
trailing zeroes displayed in the decimal value. For example: 1234.50 is displayed as 1234.50
#.###,## - The currency amount is displayed with thousands separated by a period, with the decimal
value separated with a comma, and with trailing zeroes suppressed in the decimal value. For
example: 123.456;78 is displayed as 123.456,78, but 1.234,50 is displayed as 1.234,5

Currency Position
From the drop-down list, select the currency position to apply to the metric currency. Available
options are:
Front - For example, $123.45
Back - For example, 123.45$
Front and space - For example, $ 123.45
Back and space - For example, 123.45 $

Negative Numbers
From the drop-down list, select a format for displaying negative numbers. Available options are:
Minus/Black
Red
Black and parentheses
Red and parentheses

Decimal Place

20 Oracle Retail XBRi Cloud Services Implementation Guide

In the empty box below the Decimal Place label, enter the number of digits to display after the
decimal separator.

Note: This option is ignored if the Currency Symbol is Custom.

Click Apply to apply the settings.

Internationalization 21

4
Data File Delivery

Introduction
This section describes how the core data files are delivered to the XBRi database.

Core Data Files
File Names:

• TRANSACTIONAL LOGS
• STORE
• SKU
• EMPLOYEE
• CUSTOMER
• REGISTER
• CURRENCY
• INVENTORY
• TOKEN
• HOURS_WORKED
• TRAFFIC
• GOALS

Note: The import data provided by customers is exposed to specified
formats that are provided by Oracle. The ODI ELT framework is not directly
accessible to customers.

Core ELT and Associated Directory Structure
The purpose of the ELT is to appropriately load the data files, as discussed in Chapter 2 The XBRi Data
Model, to their corresponding tables in the XBRi database. The ELT is built using Oracle Data Integrator
(ODI). ODI is set up to use the ODI Studio and a standalone agent configuration. In the Oracle XBRi

Cloud, the XBRi ELT is a black box capable of loading Point of Sale (POS) data and supplemental data
feeds into the XBRi database for viewing by the application. All workflows are also handled through ODI:
file movement, stored procedure calls, event logs, and alerting. The original provisioning of ODI in the
XBRi’s Cloud implementation environment requires setting multiple ODI Global Variables. The
information should be provided to the Cloud team. Scheduling is also handled by the ODI studio. ODI
Studio is used during development to test integrations. The ELT black box load plan is called
XBRi_LOADPLAN

ODI XBRI_LOADPLAN
The ODI XBRi_LOADPLAN is the ODI component that is scheduled to run in order to load data to the
XBRi database. It is comprised of several packages/scenarios as shown in the following image.
XBR_GEN_SETUP checks prior status and confirms the ELT is ready to run. XBR_GEN_GATHER moves
files from the landing area, INCOMING_FILES/FILENAME, to the staging

23

TRANSFORMS/FILENAME/tmp directory for processing. XBR_XSTART executes the xstart stored
procedures in the database. All of the data feed packages/scenarios are run in parallel. XBR_XFINISH
executes the xfinish stored procedure in the database. SETSTATUS sets the status flag.

ODI XBRi_LOADPLAN_BATCH

High Level ELT Description
The ELT is a four stage process:
§ The first stage involves Extracting or Gathering data from Retailer. Transforming Point of Sale data to

adhere to prescribed XBRi’s point or sale staging table format as well as transforming core master file
data to prescribed XBRi format.

§ The second stage is to deliver transformed data in stage one to Oracle Cloud through SFTP.
§ The third stage is to load that data to the XBRi database staging table and master tables.
§ The last stage of executing stored procedures in the database to load history tables, that is, header

detail and summary tables, varies based on whether the integration type is Batch or Real-time.

24 Oracle Retail XBRi Cloud Services Implementation Guide

Batch Mode
In Batch Mode, the SP ETL XFINISH BATCH stored procedure loads data from Point of Sale Staging table
to History tables and is responsible for aggregating statistical data by day, store, cashier, salesperson,
item, and so on.

SP_ETL_XFINISH_BATCH diagram

Batch Processing
For customers that deliver data once a day, all data will be moved from the POS_STAGING table to the
history tables at one time. There is an ODI Load Plan to handle this process, XBRI_LOADPLAN_BATCH.
XBRI_LOADPLAN_BATCH will handle the workflow for loading all master and transactional data in
addition to calling sp_xfinish_batch for moving data to the history tables and for data aggregation. The
customer is responsible for selecting a time of day when they feel it is best to do EOD processing. In
general, this is normally done overnight at 3:00 AM of the time zone where their corporate headquarters
is located. See an example of the XBRI_LOADPLAN_BATCH in the image below:

Data File Delivery 25

XBRI_LOADPLAN_BATCH

26 Oracle Retail XBRi Cloud Services Implementation Guide

Real Time Mode
Real-Time Mode uses the SP ETL XFINISH REAL stored procedure to load data from Point of Sale
Staging table to a new set of tables called TODAY tables. These tables have the same structure as the
HISTORY tables, however they contain current data while History tables have older data. SP ETL
XFINISH REAL stored procedure constantly feeds data from staging to TODAY tables in regular
intervals. Once a day SP ETL X FINISH End of Day stored procedure moves data from today tables to
history tables while performing additional adjustments to data for elements like post voids, followed by
no sale flags, No match and so on. ELT and stored procedures rely on the configuration of variable
“PROCESSING TYPE” in “PRO SP VARIBALES” table to process data in near Real-time.

SP_ETL_XFINISH_REAL diagram

Real Time Processing
XBRi provides real-time processing to support intraday sales flow reporting in the new Sales and
Productivity module. This is enabled by processing data in specified time increments throughout the day
rather than once at end of day. Additional business logic supports the inclusion of post voids, no sale,
and no match transactions in real-time processing.
For a customer that is able to deliver data throughout the day, there are two ODI Load Plans.
XBRI_LOADPLAN_REAL and XBRI_LOADPLAN_EOD. XBRI_LOADPLAN_REAL should be
scheduled to run throughout the day. This Load Plan calls the sp_xfinish_real stored procedure in the
database. At a high level, this moves data from the POS_STAGING table to the TODAY_XXXXXX tables.
The customer is responsible for selecting a time of day where they feel it is best to do EOD processing. In
general this is normally in the overnight time frame 3:00AM of the time zone where their corporate
headquarters is located. The second XBRI_LOADPLAN_EOD is executed at this time, and after
processing, any lingering data will run the sp_xfinish_eod stored procedure. At this time data will move
from the today tables to the history tables and process any end of day adjustments. Both today and
history tables are visible to the XBRi front end.

Data File Delivery 27

XBRI_LOADPLAN_REAL

28 Oracle Retail XBRi Cloud Services Implementation Guide

XBRI_LOADPLAN_EOD

Data File Delivery 29

ELT Directory Structure
The workflow of the ODI ELT black box is dependent on the directory structure show in the image that
follows. INCOMING_FILES is the Landing area. There is a subdirectory for each core data feed to be
loaded to the database. The CURRENT_EVENTLOG directory holds the log files generated by the ODI
black box for the latest execution of the XBRi_LOADPLAN. It does not contain ODI generated logs.
PRIOR_EVENTLOGS contains the log files from prior runs of the XBRi_LOADPLAN as the name
implies. The status directory indicates if ODI black box is in an error, running or finished state. Failures of
individual file loads do not affect this status. The TRANSFORMS directory has a subdirectory for each
type of data feed. The subdirectories have subdirectories within them for file movement and any related
configuration files for the particular feed type. Each TRANSFORMS data feed subdirectory also includes
a status directory. This directory reports the status of that particular files load.

ELT Directory Structure

30 Oracle Retail XBRi Cloud Services Implementation Guide

XBRLOADER Directory Structure
The following directory structure is only used for XSTORE-XBRi web service implementations. This type
of implementation is described in the Data File Delivery Options section and in Chapter 6: Xstore/XBRi

Integration.

xbr-loader Directory Structure

Data File Delivery Options

Data File Delivery Options Diagram

Data File Delivery 31

POSCanonical.xml API File Delivery Diagram

POSCanonical.xml API
The ODI black box ELT framework is designed to consume through an API POS transactions. The XBRi
API interface will include an .XSD file (XML Schema Definition). The XML schema definition is used as a
set of rules to which the XML document must conform, thus aiding the customer in validating their XML
file design for the XBRi API.

32 Oracle Retail XBRi Cloud Services Implementation Guide

XML poslogs
The ODI black box ELT framework is designed to consume up to two types of XML files. Files that are
delivered to INCOMING_FILES/TLOGA or INCOMING_FILES/TLOGB are assumed to be XML.

XML poslogs File Delivery Diagram

For point of sale transactional logs that are delivered as XML files (excluding XSTORE poslogs), you must
create an XSL map that converts the customer’s XML file to the XBRi Canonical version defined by
POSCanonical.xsd. The XSL map must be named: xform_to_cncl.xsl. Chapter 4: Data File Delivery
provides additional information on where this file should be placed and the dataflow in this data delivery
scenario. Once this XSL map has been added to the ELT directory structure, XML transactional logs
delivered to the INCOMING_FILES landing area will be processed by the ODI ELT black box framework.

POS Logs for Incoming Files Landing Area

There are fields in POS_STAGING that are difficult to populate using an XSL map. These fields are
aggregated/set in an ODI procedure.

Data File Delivery 33

These are set: MANUAL_KEYED_CODE, MANUAL_AUTH_CODE.
These are summed: QUANTITY, EXTENDED_AMOUNT, TENDER_AMOUNT,TAX_AMOUNT,
LINE_DISCOUNT_AMOUNT, TRANS_DISCOUNT_AMOUNT, COUPON_AMOUNT, FEE_AMOUNT,
OVERRIDE_AMOUNT, OTHER_AMOUNT, DEPOSIT_AMOUNT
The following figure shows the data flow of XML poslogs from the tmp directory to the pos_staging table
in the database. The ODI ELT black box handles file movement from the landing area to the /tmp
directory and runs the stored procedures to move, and aggregate data from the staging table to the
historical tables.

Data Flow: XML poslogs from tmp Directory to POS_STAGING Schema.

34 Oracle Retail XBRi Cloud Services Implementation Guide

ODI ELT – Steps
This section provides descriptions of all the steps performed by the ODI ELT process. For information on
how to manage the settings for these steps, see the Oracle Retail XBRi Cloud Services Administration Guide.

XBR_GEN_SETUP
ODI package that checks the status from the prior run, purges old log files, zips up the log files from the
last run and purges old data files.

SUSPEND_WEBSERVICE
Suspends the XSTORE_XBRi web service from loading data to the pos_staging table.

XBR_XSTART
Executes the sp_xstart stored procedure in the database.

XBR_GEN_GATHER
Gathers files from the landing area (INCOMING_FILES) and delivers them the appropriate
TRANSFORMS/xxxxx/tmp directory. Additionally all data files are archived to OUTPUT_ARCHIVE.

XBR_GEN_SKUMST_LOAD, XBR_GEN_CUSTOMERMST_LOAD….
All master files follow the same process to map data to the _TMP version of the table in the database.

XBR_GEN_API_LOAD
Verifies that the import process is in the correct state, and prepares for the import process.

XBR_GEN_TLOGA_1, XBR_GEN_TLOGA_2, XBR_GEN_TLOGB_1
The package that handles the flow when transforming XML tlogs to a standard canonical format and
ultimately loading to the POS_STAGING table in the database.

XBR_GEN_XFINISH_BATCH, XBR_GEN_XFINISH_REAL, XBR_GEN_XFINISH_EOD
Package that calls the corresponding sp_XFINISH stored procedure in the database.

RESUME_WEBSERVICE
Package that resumes the XSTORE-XBRi web service load to pos_staging.

SETSTATUS
Procedure that sets the DTV/XBR/status to finished.

Data File Delivery 35

5
Xstore/ XBRi Integration

Introduction
The XBR Loader is a web application that uses the Broadcaster web service to extract transaction data
from the Xstore/Xcenter database and transfer it to the XBRi database where it is processed for use in an
XBRi data model. Since a web service is being used, this process occurs automatically once the integration
is complete. The database tables and transaction records of XBRi and Xstore are dissimilar in structure
thus necessitating a configuration file based on XPath to perform the transformation between the
structures.

XBR Loader Architecture
The Following diagrams show the two different modes of XBR Loader architecture.

File Mode (Default)

37

Database Mode

Components of an Xstore- XBRi Web Service Integration
Xstore/Xcenter 6.5 or Later
This implementation option is only available to customers implementing XBRi who have Xstore 6.5 or
later as their point of sale.

XBRi Broadcaster Enabled in Xcenter
The broadcaster system in Xcenter is a pluggable component that will allow posting to any third-party
system (such as Relate, Serenade, XBRi, and so on) through platform-independent technologies (such as
Web services), as transactions flow through existing Xcenter servlet for persistence. The XBRi system
requires raw string poslog data, which is exactly the same as what is sent from Xstore to Xcenter. The
partner will need to coordinate with the XSTORE team and the Cloud team to insure the broadcaster is
enabled in Xcenter.

XBRi Database
There are two tables in the XBRi database that are unique to a web service integration that is in Database
Mode. If the web service was installed in File Mode, the tables are not used.

38 Oracle Retail XBRi Cloud Services Implementation Guide

POS_POSLOG_QUEUE
Schema to hold the individual transactions before they are transformed and loaded to the POS_STAGING
table in XBRi.

POS_QUEUE_STATUS
Schema to maintain the processing status of the queue.

XBRLoader Directory Structure and Associated Files
The file structure for XBR Loader is as follows:
§ /usr/local/xbr-loader

– Top level directory structure for the XBRLoader application
§ /usr/local/xbr-loader/config

– Directory containing all configuration files
– Some of the files in this directory should be preconfigured based on the values entered during the

installation performed by the Cloud team. Any file which is manually changed will need to be
delivered to the Cloud team prior to promoting to the Staging or Production environments
.properties files for configuring the application should be properly formatted by the installation.
Email.list contains the e-mail address of the point of contact for alerting when web service errors
occur

– Base/XbrloaderConfig.xml
The XbrLoaderConfig.xml configuration file governs how specific POSLog XML elements map to
the POS_STAGING database table. The file is designed and structured to promote
maintainability and flexibility for users that need to make changes to the base data mappings and
override specific mapping components for client implementations. Most Base XSTORE tags/data
elements that are required to be loaded to XBRi are included in the default XbrloaderConfig.xml.
Since Xstore is highly customizable work will be required to validate the required information is
mapped to XBRi properly.

§ /usr/local/xbr-loader/database
– Scripts for web service database objects.

§ /usr/local/xbr-loader/download
– Directory used for manually loading poslogs

§ /usr/local/xbr-loader/lib
– XBRLoader jar files

§ /usr/local/xbr-loader/log
– xbrloader-fileprocess.log
– xbrloader-webapp.log
– In the Cloud a symbolic link will be set up to the following common log directory

/usr/local/xbr-loader/log/*.log.
§ /usr/local/xbr-loader/out

– Failures and success subdirectories for archiving individual poslogs as they are moved from the
poslog_queue to the pos_staging table

§ /usr/local/xbr-loader/tmp
The xbr-loader.war is the WAR file (Web application Archive) that has been deployed to the Tomcat
application server by the Cloud team during the initial installation of the XBR-Loader application.

Xstore/ XBRi Integration 39

Tomcat Services Configured to Run XBR Loader Application
A Tomcat service for running the XBR Loader is provisioned by the Cloud team.
Each change to any of the XBR Loader configuration files requires the Tomcat service to be restarted. The
Tomcat service can be controlled as follows:
§ To show status of the tomcat02 service:

sudo systemctl status tomcat02.service
§ To see if service is active or inactive:

sudo systemctl is-active tomcat02.service
§ To stop the service:

sudo systemctl stop tomcat02.service
§ To start the service:

sudo systemctl start tomcat02.service

Submitting Transactions
Once The XBR Loader is installed, you must submit transactions, in the form of well formatted XML
poslogs, to the loader from the Xcenter database. You can do this automatically, using a web service or
manually, by copying them to a download directory. The location of this directory is configurable in the
system.properties file but should not be changed in the Cloud.

Web Services Submission (File Processor)
The primary way to submit transactions to the XBR Loader is by invoking a Web service method.
The service responds with a SOAP message indicating the number of successfully queued transactions
(which through the Web service typically will be 0 or 1): The file processor is only responsible for loading
records into the pos_poslog_queue table in the XBR database.
If the producer, XCENTER Broadcaster, is unsuccessful the poslog remains on the producer side and is
reprocessed.
In the event that invalid XML is sent to the service, the service reply contains an exception message which
should be logged by the XCENTER broadcaster. If this occurs, the XML payload is also written to a file in
the configured "failures" directory. The file name is:

/usr/local/xbr-loader/out /failures/bad.malformed.tlog.{Date/Time}.xml

Manual File Submission
In addition to submitting transactions through the Web service, PosLog.xml files generated at the POS
can be manually copied to a configurable download directory. The default download directory is:

/usr/local/xbr-loader/download
XML files placed in this folder may contain any number of transactions, however file names must end in
".xml" to be recognized by the processor. To process XML files in the download directory execute the xbr-
loader.sh batch script:

/usr/local/xbr-loader/xbr-loader.sh
XML files are archived after processing. The default archive directory is:

/usr/local/xbr-loader/archive
In the event that invalid XML is entered, the XML poslog is written to a file in the configured "failures"
directory. The file name is:

/usr/local/xbr-loader/out /failures/bad.malformed.tlog.{Date/Time}.xml

40 Oracle Retail XBRi Cloud Services Implementation Guide

POS_STAGING Data Load (Queue Processor)
This section describes the two modes of data loading.

File Mode
By default, the web service is installed in File Mode. When in file mode, the queue processing is
controlled by threads. Depending on the number configured, a spare thread picks up a pending queued
transaction file from the staging directory:

/usr/local/xbr-loader/staging/)
And transforms them to be processed by the bulk loading tool.

Database Mode
In Database mode, the loader processes records from the queue table at a timed interval. A number of
transactions up to a configurable maximum per cycle are read from POSLOG_QUEUE and mapped into
POS_STAGING. Transactions are processed in the order received.
In both modes, the XBR Loader data mapping engine relies heavily on XPath to map POSLog fields into
POS_STAGING. The format of the XbrLoaderConfig.xml is dictated by its corresponding XML schema
(XSD) file:

/usr/local/xbr-loader/config/base/XbrLoaderConfig.xsd

Note: Any changes to data mapping configuration files are not recognized by
the application until the Tomcat service is restarted.

If mapped successfully, the raw XML for a transaction is written to a file in a configurable "success"
directory.
The default success directory is:

/usr/local/xbr-loader/out/success/success.tlog.{Store#}-{Register#}-{Trans#}.{Date/Time}.xml
If mapping is unsuccessful, the raw XML for a transaction is written to a file in a configurable failures
directory.
The default failures directory is:

/usr/local/xbr-loader/out/failures/bad.transform.tlog.{Store#}-{Register#}-
{Trans#}.{Date/Time}.xml

If the XBR Loader is unable to map the transaction to POS_STAGING due to a "soft failure" (database
offline, and so on.), the transaction XML remains in the POSLOG_QUEUE table/Staging directory, the
RETRY_COUNT column is incremented and the FAILURE_REASON column is updated. Note that
transactions with lower retry counts have precedence when the queue processor determines which
transactions to process.
XBR Loader should not be loading transactions to POS_STAGING during the execution of database
stored procedures XSTART and XFINISH. The “CommandProcessor” application within the web service
handles suspending and resuming execution as described in the following sections. The ODI ELT
framework is responsible for creating the suspend.command and resume.command files at the proper
points in the workflow. Whether the customer is operating in a “Real-Time” or Batch mode model as
described in Chapter 2, The XBRi Data Model, population of pos_staging will be suspended and
transactions will be queued in the poslog_queue table during each ODI ELT execution.

Xstore/ XBRi Integration 41

Suspending and Resuming Poslog Dataload (CommandProcessor)
This section describes suspending and resuming the data loading process.

Suspending
To suspend the queue processor and prevent new data from being inserted to POS_STAGING (in the
event that the table contents need to be frozen for XBRi), place a file named "xbr.command" into the
download directory with "suspend" as the file contents.

Resuming
To resume processing of records from POSLOG_QUEUE into POS_STAGING, place a file named
"xbr.command" into the download directory with "resume" as the file contents.

Note: Restarting the Tomcat service will automatically cause the queue
processor to resume processing.

Purging (PurgeProcessor)
This job controls the interval at which the download and output file directories are purged of old files
based on the "purge.*.days" value in system.properties. This is informational and will be controlled by the
Cloud team. If a customer requires a change to this interval, reach out to the Cloud team.

XSTORE poslogs through Web Service
XSTORE Poslogs delivered by the XCENTER Broadcaster to the XBRLOADER Web Service are
transformed using a configuration. The coding is based on XPATH. The ODI black box framework
handles the workflow. For Xstore - XBRi implementations it is important that the ODI global variable
WEBSERVICE_PATH is set. The value should be DRIVE:/XBRLoader. The purpose of this variable is to
control suspending loading data to the pos_staging table in the database while the database stored
procedures are running.

Xstore poslogs to XBRLOADER Web Service File Delivery Diagram

42 Oracle Retail XBRi Cloud Services Implementation Guide

As part of the Cloud provisioning, if the environment is to be used for an Xstore-XBRi implementation,
the XBRLOADER directory is created. It contains a BASE mapping for XSTORE poslogs. You must
modify this file to account for modifications to the XSTORE poslog. See example below:

XBRLoaderConfig.xml

Mapping Data through XPath
This section describes data mapping through XPath.

Basic Syntax
XPath, the XML Path Language, is a query language for selecting nodes from an XML document. As such,
it is designed around XML structure. Here are some basic operators:

self::node() refers to the XML node currently being operated on
parent::node() refers to parent of the current XML node
./xxxxxx refers to child xxxxxx of the current XML node
../xxxxxx refers to child xxxxxx of the parent of the current XML node
xxxxxx[] square brackets immediately after a node enclose a conditional statement which determines
if that node is to be used
@xxxxxx refers to an attribute of an XML node
xpath="..." means a path to some XML node, usually starting with / (top node of an XML file), ./
(current node), or ../ (parent of the current node).
literal="..." means literal string to be assigned or otherwise used
${xxxxxx} means evaluate macro xxxxxx ; XPath term for a macro is “XpathAlias”
ifExists and ifNotExists are custom conditional operators used in our Webservice to evaluate
expressions if some node exists (or does not exist)
negateIf="..." is a custom functions used in our Webservice to reverse the sign of a numerical value if
condition within quotes is met
negateOnVoidRecord is a custom functions used in our Webservice to indicate that a value going
into Pos_Staging must be included with reversed sign if a voiding record gets generated for the
Pos_Staging detail row currently being constructed.
= sign is used for both assignment and checking equality. To check for inequality, one must use !=
sign; <> is not valid in xpath.

Xstore/ XBRi Integration 43

Root XML Elements
These are the root XML elements for XPath:

XPathAlias
<XPathAlias>
The XPathAlias element is used to define XPath expressions that need to be referenced many times
throughout the configuration file. XPath expressions defined as aliases can be utilized elsewhere in
XbrLoaderConfig.xml using the ${expression} syntax. The intent is to eliminate the need for complex
definitions throughout the file and minimize typing.
Attributes of <XPathAlias>:

name (required)
the name of the alias value (required)
the XPath expression that the alias defines

InsertSet
<InsertSet>
The InsertSet element defines a set of insert statements (table rows) for POS_STAGING. Typically, a
single POSLog transaction will only qualify for one specific insert set, and that insert set will determine
how many and what types of records to load into the XBR database.
Each <InsertSet> node is designed to identify in the tlog a particular type of transaction, and to convert it
into Pos_Staging format. XbrLoaderConfig.xml has following <InsertSet>’s:
§ <InsertSet name="RETAIL_TRANS">
§ <InsertSet name="NO_SALE">
§ <InsertSet name="PAID_IN">
§ <InsertSet name="PAID_OUT">
§ <InsertSet name="STORE_OPEN">
§ <InsertSet name="STORE_CLOSE">
§ <InsertSet name="TENDER_EXCHANGE">
§ <InsertSet name="TENDER_EXCHANGE_GIFTCARD_RETURN">

Section
<Section>
The Section element defines set of <Field> tags that belong to a single, logical grouping. For example, a
section might define all fields common to a non-merchandise item record or a line item discount record.

Translator
The Translator element defines a value translator that can be used within the data mapping sections of
the file. Simple translators are used to map input data to POS_STAGING values on a one-to-one basis;
complex translators are driven by custom Java classes and used for less straightforward mappings.
Translators are XPath equivalents of SELECT statement – a function which returns one of many set
choices depending on as many sets of conditions.

44 Oracle Retail XBRi Cloud Services Implementation Guide

Custom Translator Classes
All custom translator classes reside in the "dtv.xbr.translator" Java package. Fully-qualified class names
must be supplied in the <Translator> "class" attribute (for example
"dtv.xbr.translator.CoalesceTranslator") when using custom translators.

CoalesceTranslator
This translator selects the first non-null value from a list of configurable XPath expressions. Parameters
for this class must begin with the string "xpath." to be evaluated by the translator, whose name is derived
from the popular COALESCE SQL function.
DateTranslator
This date translator requires input data and formats the supplied input data (which must be a date value)
according to the format string defined by the "format” parameter. The supported date format pattern
characters are:

Letter Date or Time Component Presentation Examples

G Era Designator Text AD

y Year Year 1996;96

M Month in Year Month July;Jul;07

w Week in Year Number 27

W Week in Month Number 2

D Day in Year Number 189

d Day in Month Number 10

F Day of Week in Month Number 2

E Day in Week Text Tuesday; Tue

a am/pm marker Text PM

H Hour in Day (0-23) Number 0

k Hour In Day (0-24) Number 24

K Hour in am/pm (0-11) Number 0

h Hour in am/pm (1-12) Number 12

m Minute in Hour Number 30

s Second in Minute Number 55

S Millisecond Number 978

z Time Zone General Time Zone Pacific Standard
Time;PST;GMT-0800

Z Time Zone RFC822 Time Zone 0800

Xstore/ XBRi Integration 45

http://www.w3.org/TR/xpath/

DiscountRecCodeTranslator
This translator requires input data and resolves a supplied discount reason code to an XBR- appropriate
discount rec code value based on the discount type. The supported parameters are:
§ lineDiscountExpr

XPath expression used to qualify the current root node as a line item discount.
§ transDiscountExpr

XPath expression used to qualify the current root node as a transaction discount lineDiscountPrefix
Character string to prepend to the supplied discount reason code for line item discounts

§ transDiscountPrefix
Character string to prepend to the supplied discount reason code for transaction discounts

DurationTranslator
This translator calculates the duration (in minutes) between a start time value ("beginTime" parameter)
and corresponding end time value ("endTime" parameter). Parameters are configured as XPath
expressions relative to the current root node.

PriceOverrideTranslator
This translator calculates the aggregate price override amount for a specific XML node set. The supported
parameters are:

– nodeList
– the XPath expression defining the node set to aggregateFor example, header-level price override

amounts aggregate all non-void price override modifiers for an entire transaction; item-level
price override amounts aggregate non-void modifiers for a single line item

oldPrice
The XPath expression relative to each node in the node set used to determine the "old price" (pre-
override) for the price modifier.

newPrice
The XPath expression relative to each node in the node set used to determine the "new price" (post-
override) for the price modifier.

Multiplier
XPath expression indicating the factor by which to multiply the difference between the new and old price
amounts in order to obtain the desired value for POS_STAGING.

SignedValueTranslator
This translator requires input data and returns a different literal value depending on whether the
supplied input data (which must be numeric) is positive, negative, or zero. The supported parameters
are:

– positive
– the literal value to use if the input data is positive
– negative
– the literal value to use if the input data is negative zero
– the literal value to use if the input data is zero

46 Oracle Retail XBRi Cloud Services Implementation Guide

XpathTranslator
This translator evaluates a set of XPath expressions and returns a value based on the first expression that
matches the transaction being processed. XPath expressions to evaluate are configured using parameter
names beginning with "xpath." and each "xpath.[suffix]" parameter must have a matching "value.[suffix]"
parameter. XPath expressions are evaluated in alphabetical order by suffix.

String Manipulation
Xpath has a function string-length(X) which returns the length of parameter X, and function
substring(X,Y,Z) which returns the substring of X starting at Y, and Z characters long. If Y is 1, becomes
equivalent to left() function; if Z is omitted, returns substring(X,Y) returns the rest of X starting at Y.
There is no direct equivalent of right() function, but it can be done by combining string-length() and
substring().
Example 1: To check whether last 4 characters of <TenderId> is “CARD”, you use this construction:

substring(TenderId, string-length(TenderId)-3, 4) = "CARD"
Example 2: To looking for a particular pattern in the string and do not care where exactly it occurs, there
is function contains(), which returns true/false:

contains(TenderId, "CARD")

XPath Resources
XPath is a robust query language used to select elements and attribute values from XML files. The XBR
Loader data mapping engine makes substantial use of XPath expressions in order to provide a flexible,
extensible, and powerful mapping framework to its users. The following link is helpful for learning
XPath syntax and applying it effectively:

http://www.w3.org/TR/xpath/

Xstore/ XBRi Integration 47

6
Web Services

Introduction
There are two styles of web service in v18.0
§ Soap based web services
§ REST based services

SOAP Based Web Services
You can analyse the SOAP based services by reviewing the WSDL, found on the ETL system with a
relative path of: https://<ETL system hostname>/xbr-loader/PosLogServices?wsdl

XBR Loader SOAP-Based Web Services
You can use SOAP-Based web services to execute XBR Loader calls. The files in XBR-Loader’s base/cust
folders are not used if they have been executed using the web service APIs. You can confirm that API
uploads were used by checking the data in ETL_Profile table in the XBRi Data Warehouse. The
ETL_Profile table has an XPATH config base/cust column for any date being used. If APIs were used, the
column will contain non-null fields.
The calls should be run from a Linux command or in a Windows sh environment.

Parameter Values
<odi server> - Replace with the ODI
<username> - Replace with XBRi user account
<password> – Replacing with XBRi account

[data] – Replace with the data being uploaded. This must be converted with a escaping tool such as:
https://www.freeformatter.com/xml-escape.html#ad-output

Example base configuration download:
curl -i -X POST \
-H "SOAPAction:" \
-H "Content-Type:text/xml;charset=UTF-8" \
-H "javax.xml.ws.security.auth.username:<username>" \
-H "javax.xml.ws.security.auth.password:<password>" \
-d \
'<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://ws.xbr.dtv/">

<soapenv:Header/>
<soapenv:Body>

<ws:downloadBaseXbrLoaderConfig/>
</soapenv:Body>

</soapenv:Envelope>' \
'https://<odi server>/xbr-loader/PosLogServices'

Example download customer configuration:
curl -i -X POST \
-H "SOAPAction:" \
-H "Content-Type:text/xml;charset=UTF-8" \
-H "javax.xml.ws.security.auth.username:<username>" \

4

9

-H "javax.xml.ws.security.auth.password:<password>" \
-d \
'<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://ws.xbr.dtv/">

<soapenv:Header/>
<soapenv:Body>

<ws:downloadCustXbrLoaderConfig/>
</soapenv:Body>

</soapenv:Envelope>' \
'https://<odi server>/xbr-loader/PosLogServices'

STOP XBR LOADER
curl -i -X POST \

-H "SOAPAction:" \
-H "Content-Type:text/xml;charset=UTF-8" \
-H "javax.xml.ws.security.auth.username:<username>" \
-H "javax.xml.ws.security.auth.password:<password>" \
-d \

'<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://ws.xbr.dtv/">

<soapenv:Header/>
<soapenv:Body>

<ws:stopQueueProcessor/>
</soapenv:Body>

</soapenv:Envelope>' \
'https://<odi server>/xbr-loader/PosLogServices'

START XBR LOADER
curl -i -X POST \

-H "SOAPAction:" \
-H "Content-Type:text/xml;charset=UTF-8" \
-H "javax.xml.ws.security.auth.username:<username>" \
-H "javax.xml.ws.security.auth.password:<password>" \
-d \

'<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://ws.xbr.dtv/">

<soapenv:Header/>
<soapenv:Body>

<ws:startQueueProcessor/>
</soapenv:Body>

</soapenv:Envelope>' \
'https://<odi server>/xbr-loader/PosLogServices'

Upload Customer Configuration:
curl -i -X PUT \

-H "SOAPAction:" \
-H "Content-Type:text/xml;charset=UTF-8" \
-H "javax.xml.ws.security.auth.username:<username>" \
-H "javax.xml.ws.security.auth.password:<password>" \
-d \

'<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://ws.xbr.dtv/">

<soapenv:Header/>
<soapenv:Body>

<ws:uploadCustXbrLoaderConfig>
<custXbrLoaderConfig>[data]</custXbrLoaderConfig>

</ws:uploadCustXbrLoaderConfig>
</soapenv:Body>

</soapenv:Envelope>' \
'https://<odi server>/xbr-loader/PosLogServices'

50 Oracle Retail XBRi Cloud Services Implementation Guide

Upload a New Configuration:
curl -i -X POST \

-H "SOAPAction:" \
-H "Content-Type:text/xml;charset=UTF-8" \
-H "javax.xml.ws.security.auth.username:<username>" \
-H "javax.xml.ws.security.auth.password:<password>" \
-d \

'<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://ws.xbr.dtv/">

<soapenv:Header/>
<soapenv:Body>

<ws:uploadBaseXbrLoaderConfig>
<baseXbrLoaderConfig>[data]</baseXbrLoaderConfig>

</ws:uploadBaseXbrLoaderConfig>
</soapenv:Body>

</soapenv:Envelope>
' \
'https://<odi server>/xbr-loader/PosLogServices'

Download XPATH Config – Customer Override
curl -i -X POST \

-H "SOAPAction:" \
-H "Content-Type:text/xml;charset=UTF-8" \
-H "javax.xml.ws.security.auth.username:<username>" \
-H "javax.xml.ws.security.auth.password:<password>" \
-d \

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://ws.xbr.dtv/">

<soapenv:Header/>
<soapenv:Body>

<ws:downloadCustXbrLoaderConfig/>
</soapenv:Body>

</soapenv:Envelope>

Upload XPATH Config – Base
curl -i -X POST \

-H "SOAPAction:" \
-H "Content-Type:text/xml;charset=UTF-8" \
-H "javax.xml.ws.security.auth.username:<username>" \
-H "javax.xml.ws.security.auth.password:<password>" \
-d \

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://ws.xbr.dtv/">

<soapenv:Header/>
<soapenv:Body>

<ws:uploadBaseXbrLoaderConfig>
<baseXbrLoaderConfig>?DATA?</baseXbrLoaderConfig>

</ws:uploadBaseXbrLoaderConfig>
</soapenv:Body>

</soapenv:Envelope>
--?DATA? would need swapping out for XPATH configuration. Because it is XML data, it must be
escaped, for example: https://www.freeformatter.com/xml-escape.html#ad-output

Update XPATH Config – Customer Override
curl -i -X POST \

-H "SOAPAction:" \
-H "Content-Type:text/xml;charset=UTF-8" \
-H "javax.xml.ws.security.auth.username:<username>" \
-H "javax.xml.ws.security.auth.password:<password>" \

Web Services 51

-d \
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://ws.xbr.dtv/">

<soapenv:Header/>
<soapenv:Body>

<ws:uploadCustXbrLoaderConfig>
<custXbrLoaderConfig>?DATA?</custXbrLoaderConfig>

</ws:uploadCustXbrLoaderConfig>
</soapenv:Body>

</soapenv:Envelope>
--?DATA? would need swapping out for XPATH configuration. Because it is XML data, it must be
escaped, for example: https://www.freeformatter.com/xml-escape.html#ad-output

Stop XBR Loader
curl -i -X POST \

-H "SOAPAction:" \
-H "Content-Type:text/xml;charset=UTF-8" \
-H "javax.xml.ws.security.auth.username:<username>" \
-H "javax.xml.ws.security.auth.password:<password>" \
-d \

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://ws.xbr.dtv/">

<soapenv:Header/>
<soapenv:Body>

<ws:stopQueueProcessor/>
</soapenv:Body>

</soapenv:Envelope>

Start XBR Loader
curl -i -X POST \

-H "SOAPAction:" \
-H "Content-Type:text/xml;charset=UTF-8" \
-H "javax.xml.ws.security.auth.username:<username>" \
-H "javax.xml.ws.security.auth.password:<password>" \
-d \

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://ws.xbr.dtv/">

<soapenv:Header/>
<soapenv:Body>

<ws:startQueueProcessor/>
</soapenv:Body>

</soapenv:Envelope>

Suspend or Resume XBR Loader
curl -i -X POST \

-H "SOAPAction:" \
-H "Content-Type:text/xml;charset=UTF-8" \
-H "javax.xml.ws.security.auth.username:<username>" \
-H "javax.xml.ws.security.auth.password:<password>" \
-d \

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://ws.xbr.dtv/">

<soapenv:Header/>
<soapenv:Body>

<ws:suspendQueueProcessor>
<argSuspend>false</argSuspend>

</ws:suspendQueueProcessor>
</soapenv:Body>

</soapenv:Envelope>

52 Oracle Retail XBRi Cloud Services Implementation Guide

--false would need swapping out for true or false

Suspend or Resume XBR Loader Staging Only
curl -i -X POST \

-H "SOAPAction:" \
-H "Content-Type:text/xml;charset=UTF-8" \
-H "javax.xml.ws.security.auth.username:<username>" \
-H "javax.xml.ws.security.auth.password:<password>" \
-d \

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://ws.xbr.dtv/">

<soapenv:Header/>
<soapenv:Body>

<ws:suspendStagingProcessor>
<argSuspend>false</argSuspend>

</ws:suspendStagingProcessor>
</soapenv:Body>

</soapenv:Envelope>
--false would need swapping out for true or false

Is XBR Loader Stopped?
curl -i -X POST \

-H "SOAPAction:" \
-H "Content-Type:text/xml;charset=UTF-8" \
-H "javax.xml.ws.security.auth.username:<username>" \
-H "javax.xml.ws.security.auth.password:<password>" \
-d \

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://ws.xbr.dtv/">

<soapenv:Header/>
<soapenv:Body>

<ws:isQueueProcessorStopped/>
</soapenv:Body>

</soapenv:Envelope>

Is XBR Loader Suspended?
curl -i -X POST \

-H "SOAPAction:" \
-H "Content-Type:text/xml;charset=UTF-8" \
-H "javax.xml.ws.security.auth.username:<username>" \
-H "javax.xml.ws.security.auth.password:<password>" \
-d \

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://ws.xbr.dtv/">

<soapenv:Header/>
<soapenv:Body>

<ws:isQueueProcessorSuspended/>
</soapenv:Body>

</soapenv:Envelope>

Is XBR Loader Staging Suspended?
curl -i -X POST \

-H "SOAPAction:" \
-H "Content-Type:text/xml;charset=UTF-8" \
-H "javax.xml.ws.security.auth.username:<username>" \
-H "javax.xml.ws.security.auth.password:<password>" \
-d \

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://ws.xbr.dtv/">

Web Services 53

<soapenv:Header/>
<soapenv:Body>

<ws:isStagingProcessorSuspended/>
</soapenv:Body>

</soapenv:Envelope>

Additional XBR Loader Services
In addition to those above, the following services, which perform similar functions are available:

downloadBaseXbrLoaderConfig - Download the base system XBR-LOADER XPATH mapping
configuration. Returns the XPATH configuration in the downloadBaseXbrLoaderConfigResponse
tag.
downloadXbrLoaderConfig - Download the XBR-LOADER XPATH mapping configuration, takes
one parameter base, which can be true/false to say you want the base or customer configurations.
uploadXbrLoaderConfig- Upload the XBR-LOADER XPATH mapping configuration, within the
body of the upload requires base - true/false, xbrLoaderConfig – XML XPATH configuration.

SOAP-Based Web Services for POSLOG, Queue Processor, and Staging Processor
downloadPOSLogSchemas - Download any configured XSDs for the XBR-LOADER processing. The
response provides two tags, posLogSchema and posLogDTVSchema. The posLogSchema is the
primary/base XSD. posLogDTVSchema is the optional child schema. The XStore import uses this
secondary schema for the DTV add-ons.
uploadPOSLogSchemas – Provides the ability to associate an XML XSD
isQueueProcessorStopped – Checks to see if the POSLOG queue processing is stopped.
isQueueProcessorSuspended - Checks to see if the POSLOG queue is suspended
isStagingProcessorSuspended - Checks to see if the Staging processor is suspended
startQueueProcessor - Start the queue processor.
stopQueueProcessor- Stop the queue processor.
suspendQueueProcessor - Suspend the queue processor. Takes one parameter, argSuspend which
can be true/false.
suspendStagingProcessor - Suspend the staging processor. Takes one parameters, argSuspend
which can be true/false.
processPosLog- Submit a POSLOG into the XBRi system. Takes one parameter under the tag name,
argPosLog which is the POSLOG XML schema. Keep in mind that submitting this data is best done
via a CDATA block as the data is XML inside XML. The inner XML should really be encoded to
allow it to fit within an XML tag. The response provides the number of POSLOG transactions it
found in the request body. If zero, the data couldn’t be processed.

Header Properties
In order to use these web service methods, two header properties are required in order to authenticate
into the service. These settings are configurable so they may change, but out of the box they are:

javax.xml.ws.security.auth.username – header property that would be set with the services
username.
javax.xml.ws.security.auth.password – header property that would be set with the services
password.

XBR Loader Stages
The XBR Loader breaks out into two stages:

54 Oracle Retail XBRi Cloud Services Implementation Guide

1. Queue - Every time a user submits a POSLOG into the system, the submission gets placed in this
queue. From there the queue entries will be picked up, validated and then transformed based on any
pre-defined XSD or XPATH configuration. To note, the XBR-LOADER application has built in
validation so doesn’t need an XSD to be defined. If one is supplied it will load that and use
it. Further note, if an XSD is provided instead of using the internal validation it will slow down the
processing via a small amount due to the additional time needed to perform the external validation.
Once the validation and transformations have occurred, they output is placed on a staging queue.
Note: the conversion of the raw data into the staging format is a very CPU intensive process, and
may impact performance

2. Staging Queue - Once the data gets into the staging queue the hard work is done, the data pending
here is pushed into the data storage when and only when the storage is ready to accept it.

With the above information, the web service commands offer two types of suspend. Queue suspend and
Staging suspend. The XBRi application uses the staging suspended service calls to stop data from coming
into the data storage while it’s busy doing some maintenance. Blocking only the stating allows the hard
work done by the queue to continue. If you suspend the queue, the staging is also suspended. This
effectively stops the entire chain of processing. Any further submissions will simply build up on the
queue until such as time as the processing is resumed.
If any configuration changes are made to the XSD or XPATH configuration, the changes won’t be picked
up until a call to the stopQueueProcessor & startQueueProcessor is called.

REST Based Web Services
Before you are allowed to use any of the defined REST services, you must first log in.

Logging into REST Web Services
The Login web service is REST based and requires the following:
Protocol -HTTPS
Method - GET
URL - <XBRi Application system hostname>/analytics/rest/ext/v1/login?project=XBRI
Headers - Authorization – Basic <Base64 Encoded username:password>

The username and password are from an XBRi account. The username and password must be
delimited by a colon before encoding with base64.

Response - Assuming a HTTP 200 status comes back, the response body will contain one of two things: If
the user details are invalid, the message: “Error connecting to object” Or, a plain text version of the access
token. Any further communications with XBRi web services will require this token to verify access.

Getting back an HTTP 500 generally means the format of the submission is incorrect, or there’s a
problem with the server.

Available Rest Based WebServices
Delete an ETL imported staging batch
Get an XSD from the ODI system hierarchy
Replace an XSD from the ODI system hierarchy

Delete a ETL imported staging batch
This rest service requires the following information:
Protocol - HTTPS
Method - DELETE

Web Services 55

URL - <XBRi ETL system hostname>/xbr-odi/v1/batch/<batch#>
Where the <batch#> will be replaced with a numeric batch number previously submitted.

Headers - xbri-mst-token – <token>
The token that was generated during login.

Response
HTTP 200 - status comes back meaning the request was successful.
HTTP 401, 403 - status means that access was denied or the token given has expired.
HTTP 500 – problem occurred on the server, contact support is the problem persists.

Result Example: {"success": true, "serverOutput": "...audit of what occurred during delete process…"}

Get an XSD from the ODI system hierarchy
This rest service requires the following information:
Protocol - HTTPS
Method - GET
URL - <XBRi ETL system hostname>/xbr-odi/v1/xsd/<logType>

Where <logType> will be replaced by the ODI type, available options are:
TLOGA_1
TLOGA_2
TLOGB_1

Headers
xbri-mst-token – <token>
The token that was generated during login.
filename – Optional parameter, if not provided will assume POSCanonical.xsd
It can only be one of the following POSCanonical.xsd or POSCanonical.validate.xsd
Anything else will be rejected.
Accept - Optional parameter stating what format the output should be written in. If not provided,
will assume “application/json”. The other available option is “application/xml”.

Note: The formatting of the output will depend on this option. There may be some conversion
needed depending on the output chosen.

Response
HTTP 200 - status means the contents of the request will be placed in the response body.
HTTP 401, 403 - status means that access was denied or the token given has expired.
HTTP 500 – problem occurred on the server, contact support is the problem persists.

Body - The response will appear in a downloadXSResponse -> xsd tag if the format expected in XML, for
JSON the root tag is skipped and the conents appear under the xsd tag.

Result Example (JSON):
{"xsd": "….XSD contents…"}

Replace an XSD from the ODI system hierarchy
This rest service requires the following information:
Protocol - HTTPS
Method - POST
URL - <XBRi ETL system hostname>/xbr-odi/v1/xsd/<logType>

56 Oracle Retail XBRi Cloud Services Implementation Guide

Where <logType> will be replaced by the ODI type, available options are:
TLOGA_1
TLOGA_2
TLOGB_1

Headers
xbri-mst-token – <token> - The token that was generated during login.
filename - Optional parameter, if not provided will assume POSCanonical.xsd
It can only be one of the following POSCanonical.xsd or POSCanonical.validate.xsd
Anything else will be rejected.

Body - The body contents of the POST will be the XSD contents, there are no wrapper tags around it.
Response

HTTP 200 - status means the contents of the request will be placed in the response body.
HTTP 401, 403 - status means that access was denied or the token given has expired.
HTTP 500 – problem occurred on the server, contact support is the problem persists.

Web Services 57

	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Access to Oracle Support
	Related Documents
	Customer Support
	Improved Process for Oracle Retail Documentation Corrections
	Oracle Retail Documentation on the Oracle Technology Network

	Introduction
	Scope of this Document
	Cloud Components
	Cloud Environments
	User Acceptance Testing (UAT) Environment
	Production Environment

	Data Flow
	Integration Components
	Setting Non-Standard Master Fiscal and Calendar Date Tables

	The XBRi Data Model
	Transactional File Data
	Transaction Functionality
	TLOG Record and Data Elements

	Mapping Transactional Data to POS_STAGING Schema
	Header Records
	Detail Records

	XBRi Database Stored Procedures

	Internationalization
	Translation
	Multi-Language Setup
	Scenario 1
	Data Scenario 1a
	Data Scenario 1b

	Scenario 2
	Data Scenario 2a

	Scenario 3

	Localizing Currency in XBRi
	Implementing Currency Exchange Rates
	Applying Updates for Currency Metrics

	Data File Delivery
	Introduction
	Core Data Files
	File Names:
	Core ELT and Associated Directory Structure
	ODI XBRI_LOADPLAN
	High Level ELT Description
	Batch Mode
	Batch Processing

	Real Time Mode
	Real Time Processing

	ELT Directory Structure
	XBRLOADER Directory Structure

	Data File Delivery Options
	POSCanonical.xml API
	XML poslogs
	ODI ELT – Steps
	XBR_GEN_SETUP
	SUSPEND_WEBSERVICE
	XBR_XSTART
	XBR_GEN_GATHER
	XBR_GEN_SKUMST_LOAD, XBR_GEN_CUSTOMERMST_LOAD….
	XBR_GEN_API_LOAD
	XBR_GEN_TLOGA_1, XBR_GEN_TLOGA_2, XBR_GEN_TLOGB_1
	XBR_GEN_XFINISH_BATCH, XBR_GEN_XFINISH_REAL, XBR_GEN_XFINISH_EOD
	RESUME_WEBSERVICE
	SETSTATUS

	Xstore/ XBRi Integration
	Introduction
	XBR Loader Architecture
	File Mode (Default)
	Database Mode

	Components of an Xstore- XBRi Web Service Integration
	Xstore/Xcenter 6.5 or Later
	XBRi Broadcaster Enabled in Xcenter
	XBRi Database
	POS_POSLOG_QUEUE
	POS_QUEUE_STATUS
	XBRLoader Directory Structure and Associated Files

	Tomcat Services Configured to Run XBR Loader Application

	Submitting Transactions
	Web Services Submission (File Processor)
	Manual File Submission

	POS_STAGING Data Load (Queue Processor)
	File Mode
	Database Mode

	Suspending and Resuming Poslog Dataload (CommandProcessor)
	Suspending
	Resuming

	Purging (PurgeProcessor)
	XSTORE poslogs through Web Service

	Mapping Data through XPath
	Basic Syntax

	Root XML Elements
	XPathAlias
	<XPathAlias>

	InsertSet
	<InsertSet>

	Section
	<Section>

	Translator
	Custom Translator Classes
	CoalesceTranslator
	DurationTranslator
	PriceOverrideTranslator
	oldPrice
	newPrice
	Multiplier
	SignedValueTranslator
	XpathTranslator

	String Manipulation
	XPath Resources

	Web Services
	Introduction
	SOAP Based Web Services
	XBR Loader SOAP-Based Web Services
	Parameter Values
	Example base configuration download:
	Example download customer configuration:
	STOP XBR LOADER
	START XBR LOADER
	Upload Customer Configuration:
	Upload a New Configuration:
	Download XPATH Config – Customer Override
	Upload XPATH Config – Base
	Stop XBR Loader
	Start XBR Loader
	Suspend or Resume XBR Loader
	Suspend or Resume XBR Loader Staging Only
	Is XBR Loader Stopped?
	Is XBR Loader Suspended?
	Is XBR Loader Staging Suspended?
	Additional XBR Loader Services

	SOAP-Based Web Services for POSLOG, Queue Processor, and Staging Processor
	Header Properties
	XBR Loader Stages

	REST Based Web Services
	Logging into REST Web Services
	Available Rest Based WebServices
	Delete a ETL imported staging batch
	Get an XSD from the ODI system hierarchy
	Replace an XSD from the ODI system hierarchy

	Word Bookmarks
	RANGE!A1

