
[image: Oracle Corporation]

Oracle® Outside In Image Export

Developer's Guide

Release 8.5.3

E12885-10

April 2016

Oracle Outside In Image Export Developer's Guide, Release 8.5.3

E12885-10

Copyright © 2010, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Author: Chaitra Ramaprasad
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

	Audience
	Related Documents
	Conventions

Part I Getting Started with Image Export

1 Introduction

	What's New in this Release
	Architectural Overview
	Definition of Terms
	Directory Structure
	Installing Multiple SDKs

	How to Use Image Export

2 Implementation Issues

	Running in 24x7 Environments
	Running in Multiple Threads or Processes
	Image Export Issues

3 Sample Applications

	Building the Samples on a Windows System
	An Overview of the Sample Applications
	*sample
	export (Windows Only)
	The export Main Window

	exsimple
	exredir
	extract_archive
	ixanno

	Accessing the SDK via a Java Wrapper
	The ExJava Wrapper API
	The C-Based Exporter Application
	Compiling the Executables
	The ExportTest Sample Application
	An Example Conversion Using the ExJava Wrapper

Part II Using the C/C++ API

4 Windows Implementation Details

	Installation
	NSF Support

	Libraries and Structure
	API DLLs
	Support DLLs
	Engine Libraries
	Filter and Export Filter Libraries
	Premier Graphics Filters
	Additional Files

	The Basics
	What You Need in Your Source Code
	Options and Information Storage
	Structure Alignment
	Character Sets
	Runtime Considerations

	Default Font Aliases
	Changing Resources

5 UNIX Implementation Details

	Installation
	NSF Support

	Libraries and Structure
	API Libraries
	Support Libraries
	Engine Libraries
	Filter and Export Filter Libraries
	Premier Graphics Filters
	Additional Files

	The Basics
	What You Need in Your Source Code
	Information Storage

	Character Sets
	Runtime Considerations
	X Server Requirement
	OLE2 Objects
	Machine-Dependent Graphics Context
	Signal Handling
	Runtime Search Path and $ORIGIN

	Environment Variables
	Default Font Aliases
	Changing Resources
	HP-UX Compiling and Linking
	HP-UX on RISC
	HP-UX on RISC (64 bit)

	IBM AIX Compiling and Linking
	Linux Compiling and Linking
	Library Compatibility
	Motif Libraries
	GLIBC and Compiler Versions
	Other Libraries

	Compiling and Linking
	Linux 32-bit
	Linux 64-bit

	Oracle Solaris Compiling and Linking
	Oracle Solaris SPARC
	Oracle Solaris x86
	Oracle Solaris X Server Display Memory Issue

6 Data Access Common Functions

	Deprecated Functions
	DAInitEx
	DADeInit
	DAOpenDocument
	IOSPECLINKEDOBJECT Structure
	IOSPECARCHIVEOBJECT Structure

	DAOpenSubdocumentById
	DAOpenNextDocument
	DACloseDocument
	DARetrieveDocHandle
	DASetOption
	DAGetOption
	DAGetFileId
	DAGetFileIdEx
	DAGetErrorString
	DAGetTreeCount
	DAGetTreeRecord
	SCCDATREENODE Structure

	DAOpenTreeRecord
	DASaveTreeRecord
	DACloseTreeRecord
	DASetStatCallback
	DASetFileAccessCallback

7 Export Functions

	General Functions
	EXOpenExport
	EXCALLBACKPROC
	EXCloseExport
	EXRunExport
	EXExportStatus
	EXGetProperties

	Annotation Functions
	EXHiliteText
	EXInsertText
	EXHideText
	EXANNOHIDETEXT Structure

	EXApplyHilites
	EXRedactText

8 Redirected IO

	Using Redirected IO
	Opening Files
	IOClose
	IORead
	IOWrite
	IOSeek
	IOTell
	IOGetInfo
	IOGENSECONDARY and IOGENSECONDARYW Structures
	File Types That Cause IOGETINFO_GENSECONDARY

	IOSEEK64PROC / IOTELL64PROC
	IOSeek64
	IOTell64

9 Callbacks

	EX_CALLBACK_ID_CREATENEWFILE
	EXURLFILEIOCALLBACKDATA / EXURLFILEIOCALLBACKDATAW Structures

	EX_CALLBACK_ID_NEWFILEINFO
	EX_CALLBACK_ID_PAGECOUNT
	EX_CALLBACK_ID_BEGINPAGE
	EX_CALLBACK_ID_ENDPAGE

10 Image Export C/C++ Options

	Character Mapping
	SCCOPT_DEFAULTINPUTCHARSET
	SCCOPT_UNMAPPABLECHAR

	Output
	SCCOPT_RENDERING_PREFER_OIT

	Input Handling
	SCCOPT_FALLBACKFORMAT
	SCCOPT_FIFLAGS
	SCCOPT_SYSTEMFLAGS
	SCCOPT_LOTUSNOTESDIRECTORY
	SCCOPT_PDF_FILTER_REORDER_BIDI
	SCCOPT_TIMEZONE
	SCCOPT_FORMATFLAGS
	SCCOPT_IGNORE_PASSWORD
	SCCOPT_REORDERMETHOD
	SCCOPT_HTML_COND_COMMENT_MODE
	SCCOPT_ARCFULLPATH
	SCCOPT_PDF_FILTER_MAX_EMBEDDED_OBJECTS
	SCCOPT_PDF_FILTER_MAX_VECTOR_PATHS
	SCCOPT_PDF_FILTER_WORD_DELIM_FRACTION

	Compression
	SCCOPT_FILTERJPG
	SCCOPT_FILTERLZW

	Graphics
	SCCOPT_GIF_INTERLACED
	SCCOPT_GRAPHIC_CROPPING
	SCCOPT_GRAPHIC_HEIGHT
	SCCOPT_GRAPHIC_HEIGHTLIMIT
	SCCOPT_GRAPHIC_OUTPUTDPI
	SCCOPT_GRAPHIC_SIZELIMIT
	SCCOPT_GRAPHIC_SIZEMETHOD
	SCCOPT_GRAPHIC_TRANSPARENCYCOLOR
	SCCOPT_GRAPHIC_WIDTH
	SCCOPT_GRAPHIC_WIDTHLIMIT
	SCCOPT_GRAPHIC_RENDERASPAGE
	SCCOPT_IMAGEX_TIFFOPTIONS
	EXTIFFOPTIONS Structure

	SCCOPT_JPEG_QUALITY
	SCCOPT_QUICKTHUMBNAIL
	 SCCOPT_RENDER_ENABLEALPHABLENDING

	Spreadsheet and Database File Rendering
	SCCOPT_DBPRINTFITTOPAGE
	SCCOPT_DBPRINTGRIDLINES
	SCCOPT_DBPRINTHEADINGS
	SCCOPT_MAXSSDBPAGEHEIGHT
	SCCOPT_MAXSSDBPAGEWIDTH
	SCCOPT_SSPRINTDIRECTION
	SCCOPT_SSPRINTFITTOPAGE
	SCCOPT_SSPRINTGRIDLINES
	SCCOPT_SSPRINTHEADINGS
	SCCOPT_SSPRINTSCALEPERCENT
	SCCOPT_SSPRINTSCALEXHIGH
	SCCOPT_SSPRINTSCALEXWIDE
	SCCOPT_SSSHOWHIDDENCELLS
	SCCOPT_EX_SHOWHIDDENSSDATA
	SCCOPT_FILTERNOBLANK

	Page Rendering
	SCCOPT_DEFAULTPRINTMARGINS
	SCCVWPRINTMARGINS Structure

	SCCOPT_PRINTENDPAGE
	SCCOPT_PRINTSTARTPAGE
	SCCOPT_USEDOCPAGESETTINGS
	SCCOPT_WHATTOPRINT
	SCCOPT_NUMBERFORMAT
	SCCVWNUMBERFORMAT775 and SCCVWNUMBERFORMAT Structures

	SCCOPT_WPEMAILHEADEROUTPUT
	SCCOPT_MAILHEADERVISIBLE
	SCCOPT_MAILHEADERHIDDEN
	SCCOPT_MARGIN_TEXT_FONT_NAME
	SCCOPT_MARGIN_TEXT_FONT_SIZE
	SCCOPT_MARGIN_TEXT_LINE
	SCCOPT_REDACTION_COLOR
	SCCOPT_REDACTION_LABEL_FONT_NAME
	SCCOPT_REDACTION_LABEL_FONT_SIZE
	SCCOPT_REDACTIONS_ENABLED
	SCCOPT_SHOW_REDACTION_LABELS

	Font Rendering
	SCCOPT_DEFAULTPRINTFONT
	SCCVWFONTSPEC Structure

	SCCOPT_PRINTFONTALIAS
	SCCVWFONTALIAS Structure

	SCCOPT_RENDER_EMBEDDED_FONTS
	SCCOPT_STROKE_TEXT

	Watermarks
	SCCOPT_GRAPHIC_WATERMARK_OPACITY
	SCCOPT_GRAPHIC_WATERMARK_PATH
	SCCOPT_GRAPHIC_WATERMARK_SCALETYPE
	SCCOPT_GRAPHIC_WATERMARK_SCALEPERCENT
	SCCOPT_GRAPHIC_WATERMARK_HORIZONTAL_OFFSETFROM
	SCCOPT_GRAPHIC_WATERMARK_VERT_OFFSETFROM

	Callbacks
	SCCOPT_EX_CALLBACKS
	SCCOPT_EX_UNICODECALLBACKSTR

	File System
	SCCOPT_IO_BUFFERSIZE
	SCCBUFFEROPTIONS Structure

	SCCOPT_TEMPDIR
	SCCUTTEMPDIRSPEC Structure

	SCCOPT_DOCUMENTMEMORYMODE
	SCCOPT_REDIRECTTEMPFILE
	SCCOPT_STAMP_IMAGE_FILE

Part III Using the Java API

11 Introduction to the Java API

	Requirements
	Getting Started
	Configure the Environment
	Generate Code
	Create an Exporter Object
	Configure the Output
	Set the Source and Primary Destination Files
	Set the Output Type
	Provide a Callback Handler
	Run the Export

12 Image Export Java Classes

	Annotation Class
	ArchiveNode Class
	Callback Class
	createNewFile
	CreateNewFileResponse Class

	newFileInfo
	prepareNewPage
	NewPageResponse
Class

	pageInfoSlideNotes
	pageInfoVisibility
	openFile
	OpenFileResponse Class

	createTempFile
	CreateTempFileResponseClass

	ColorInfo Class
	Exporter Interface
	Annotatable Interface
	Document Interface
	SeekableByteChannel6 Interface
	OptionsCache Class
	BiDiReorderMethod
	CropToContent
	DefaultInputCharacterSet
	DefaultRenderFont
	DefaultPageMargins
	DocumentMemoryMode
	EmailHeaders
	EnableAlphaBlending
	FallbackFormat
	FitHeightToPages
	FitWidthToPages
	FontAliasList
	GraphicHeight
	GraphicHeightLimit
	GraphicOutputDPI
	GraphicRenderAsPage
	GraphicSizeLimit
	GraphicSizeMethod
	GraphicWidth
	GraphicWidthLimit
	GridMaxPageHeight
	GridMaxPageWidth
	IECondCommentMode
	IgnorePassword
	InternalRendering
	ISODateTimes
	JPEGQuality
	LotusNotesDirectory
	MarginText
	MarginTextFont
	PageDirection
	PageFitMode
	PageRange
	PageScalePercent
	PDFInputMaxEmbeddedObjects
	PDFInputMaxVectorPaths
	PDFReorderBiDi
	PDFWordSpacingFactor
	PerformExtendedFI
	QuickThumbnail
	RedactionColor
	RedactionLabelFont
	RedactionLabelsVisible
	RedactionsEnabled
	RenderEmbeddedFonts
	RenderGridlines
	RenderHeadings
	ShowArchiveFullPath
	ShowHiddenCells
	ShowHiddenSpreadSheetData
	StrictFile
	TIFFByteOrder
	TIFFColorSpace
	TIFFCompression
	TIFFFillOrder
	TIFFMultiPage
	TimeZoneOffset
	TransparencyColor
	UnmappableCharacter
	UseDocumentPageSettings

	ExportStatus
Class
	FileFormat Class
	FontAliases Class
	FontInfo Class
	FontList Class
	HighlightTextAnnotation Class
	MailHeaders Class
	Margins Class
	MarginText Class
	Option Interface
	OutsideIn Class
	OutsideInVersion Class
	OutsideInException Class
	PageInfo Class
	PageRange Class
	Watermark Class

Part IV Using the .NET API

13 Introduction to the .NET API

	Requirements
	Getting Started
	Configuring your Environment
	Generate Code
	Create an Exporter Object
	Configure the Output
	Set the Source and Primary Destination Files
	Set the Output Type
	Provide a Callback Handler
	Run the Export

	Redirected I/O Support in .NET

14 Image Export .NET Classes

	Annotation Class
	ArchiveNode Class
	Callback Class
	OpenFile
	OpenFileResponse Class

	CreateNewFile
	CreateNewFileResponse
Class

	CreateTempFile
	CreateTempFileResponse Class

	NewFileInfo
	PrepareNewPage
	NewPageResponse
Class

	PageInfoSlideNotes
	PageInfoVisibility

	ColorInfo Class
	Exporter Interface
	lAnnotatable Interface
	Document Interface
	OptionsCache Class
	BiDiReorderMethod
	CropToContent
	DefaultInputCharacterSet
	DefaultRenderFont
	DefaultPageMargins
	DocumentMemoryMode
	EmailHeaders
	FallbackFormat
	FitHeightToPages
	FitWidthToPages
	FontAliasList
	GraphicHeight
	GraphicHeightLimit
	GraphicOutputDPI
	GraphicRenderAsPage
	GraphicSizeLimit
	GraphicSizeMethod
	GraphicWidth
	GraphicWidthLimit
	GridMaxPageHeight
	GridMaxPageWidth
	IECondCommentMode
	IgnorePassword
	ISODateTimes
	JPEGQuality
	LotusNotesDirectory
	MarginText
	MarginTextFont
	PageDirection
	PageFitMode
	PageRange
	PageScalePercent
	PDFInputMaxEmbeddedObjects
	PDFInputMaxVectorPaths
	PDFReorderBiDi
	PDFWordSpacingFactor
	PerformExtendedFI
	QuickThumbnail
	RedactionColor
	RedactionLabelFont
	RedactionLabelsVisible
	RedactionsEnabled
	RenderEmbeddedFonts
	RenderGridlines
	RenderHeadings
	SearchMLParaAttributes
	ShowArchiveFullPath
	ShowHiddenCells
	ShowHiddenSpreadSheetData
	StrictFile
	TIFFByteOrder
	TIFFColorSpace
	TIFFCompression
	TIFFFillOrder
	TIFFMultiPage
	TimeZoneOffset
	TransparencyColor
	UnmappableCharacter
	UseDocumentPageSettings

	ExportStatus
Class
	FileFormat Class
	FontAliases Class
	FontInfo Class
	FontList Class
	HighlightTextAnnotation Class
	MailHeaders Class
	Margins Class
	MarginText Class
	Option Interface
	OutsideIn Class
	OutsideInConfig Class
	OutsideInVersion Class
	OutsideInCastException
Class
	OutsideInException Class
	PageInfo Class
	PageRange Class
	Watermark Class

Preface

This document describes the installation and usage of the Outside In Image Export Software Developer's Kit (SDK).

Audience

This document is intended for developers who are integrating Outside In Image Export into Original Equipment Manufacturer (OEM) applications.

Related Documents

For more information, go to:

http://www.oracle.com/technetwork/indexes/documentation/index.html#middleware

and click on Outside In Technology.

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface

	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.

	italic

	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.

	monospace

	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

Part I Getting Started with Image Export

This section provides an introduction to the SDK.

Part I contains the following chapters:

	Introduction

	Implementation Issues

	Sample Applications

1 Introduction

This chapter provides an introduction to Image Export, which allows an Original Equipment Manufacturer (OEM) to translate almost any document, spreadsheet or presentation into one of several image formats.

Image Export's primary goal is to produce a faithful representation of the source file in a raster image format. There are several raster output format options, including JPEG, TIFF, Windows Bitmap, GIF and PNG. Through a C API, the developer can specify what source file should be exported, set various options that affect the content and structure of the output and specify the name and location of the output file(s) produced.

There may be references to other Outside In Technology SDKs within this manual. To obtain complete documentation for any other Outside In product, see:

http://www.oracle.com/technetwork/indexes/documentation/index.html#middleware

and click on Outside In Technology.

This chapter includes the following sections:

	What's New in this Release

	Architectural Overview

	Definition of Terms

	Directory Structure

	How to Use Image Export

What's New in this Release

	The updated list of supported formats is linked from the page http://www.outsideinsdk.com/. Look for the data sheet with the latest supported formats.

	The following new formats are supported:

	Microsoft Word 2016

	Microsoft Excel 2016

	Microsoft PowerPoint 2016

	MS Outlook 2011 for Mac (OLM and EML)

	Corel WordPerfect X7

	Corel Quattro Pro X7

	Corel Presentations X7

	Corel Draw X7

	iWork KeyNote (text only)

	AutoCAD 2015

	The following new options are introduced:

	A new option, SCCOPT_PDF_FILTER_MAX_EMBEDDED_OBJECTS, is added that allows you to limit the number of embedded objects produced in PDF files.

	A new option, SCCOPT_PDF_FILTER_MAX_VECTOR_PATHS, is added that allows you to limit the number of vector paths produced in PDF files.

	A new option, SCCOPT_PDF_FILTER_WORD_DELIM_FRACTION, is added. This allows you to control the spacing threshold in PDF input documents.

	SCCOPT_GRAPHIC_WATERMARK_HORIZONTALPOS and SCCOPT_GRAPHIC_WATERMARK_VERTICALPOS options are deprecated. New options, SCCOPT_GRAPHIC_WATERMARK_HORIZONTAL_OFFSETFROM and SCCOPT_GRAPHIC_WATERMARK_VERT_OFFSETFROMare added to indicate the offsets within target image to adjust watermark position.

	Changes are made to SCCOPT_GRAPHIC_WATERMARK_PATH to be used in conjunction with SCCOPT_GRAPHIC_WATERMARK_IOTYPE.

	Support for the following general accuracy and fidelity features is provided:

	MS Word table styles supported

	MS Office Chart data label styles extended

	Font selection algorithm improvements implemented

	Outlook MSG “best body” algorithm implemented

	PPTX Master slide Transparency provided

	Four Color (CMYK) progressive JPEG supported

	Processing of very large spreadsheets containing large areas of white space are optimized for improved performance supported

	PDF Type 3 embedded font is supported

	Watermark API is now consistent between the Image Export and PDF Export SDKs and support has been added in the .NET and Java APIs

	The following Operating System support is provided:

	Windows 10

	SLES 12

	The following .NET API changes are implemented:

	A new configuration object — OutsideInConfig

	Get method for options

	Redirected IO for temp files

	The following Java API changes are implemented:

	Get method for options

	Redirected IO for temp files

Architectural Overview

The basic architecture of Outside In technologies is the same across all supported platforms:

	Filter/Module	Description
	Input Filter

	The input filters form the base of the architecture. Each one reads a specific file format or set of related formats and sends the data to OIT through a standard set of function calls. There are more than 150 of these filters that read more than 600 distinct file formats. Filters are loaded on demand by the data access module.

	Export Filter

	Architecturally similar to input filters, export filters know how to write out a specific format based on information coming from the chunker module. The export filters generate TIFF, BMP, GIF, JPEG, and PNG.

	Chunker

	The Chunker module is responsible for caching a certain amount of data from the filter and returning this data to the export filter.

	Export

	The Export module implements the export API and understands how to load and run individual export filters.

	Data Access

	The Data Access module implements a generic API for access to files. It understands how to identify and load the correct filter for all the supported file formats. The module delivers to the developer a generic handle to the requested file, which can then be used to run more specialized processes, such as the Export process.

Definition of Terms

The following terms are used in this documentation.

	Term	Definition
	Developer

	Someone integrating this technology into another technology or application. Most likely this is you, the reader.

	Source File

	The file the developer wishes to export.

	Output File

	The file being written: TIFF, BMP, GIF, JPEG, and PNG.

	Page

	A single raster image representation of a page of output. Page sizes will vary depending on the parameters used for an export (maximum size or scaling, etc.) and other options that affect the output type for rendered images.

	Data Access Module

	The core of Outside In Data Access, in the SCCDA library.

	Data Access Submodule (also referred to as "Submodule")

	This refers to any of the Outside In Data Access modules, including SCCEX (Export), but excluding SCCDA (Data Access).

Note: Image Export normally comes with only the SCCEX Submodule.

	Document Handle (also referred to as "hDoc")

	A Document Handle is created when a file is opened using Data Access (see Data Access Common Functions). Each Document Handle may have any number of Subhandles.

	Subhandle (also referred to as "hItem")

	Any of the handles created by a Submodule's Open function. Every Subhandle has a Document Handle associated with it. For example, the hExport returned by EXOpenExport is a Subhandle. The DASetOption and DAGetOption functions in the Data Access Module may be called with any Subhandle or Document Handle. The DARetrieveDocHandle function returns the Document Handle associated with any Subhandle.

Directory Structure

Each Outside In product has an sdk directory, under which there is a subdirectory for each platform on which the product ships (for example, ix/sdk/ix_win-x86-32_sdk). Under each of these directories are the following three subdirectories:

	redist - Contains only the files that the customer is allowed to redistribute. These include all the compiled modules, filter support files, .xsd and .dtd files, cmmap000.bin, and third-party libraries, like freetype.

	sdk - Contains the other subdirectories that used to be at the root-level of an sdk (common, lib (windows only), resource, samplefiles, and samplecode (previously samples). In addition, one new subdirectory has been added, demo, that holds all of the compiled sample apps and other files that are needed to demo the products. These are files that the customer should not redistribute (.cfg files, exportmaps, etc.).

In the root platform directory (for example, ix/sdk/ix_win-x86-32_sdk), there are two files:

	README - Explains the contents of the sdk, and that makedemo must be run in order to use the sample applications.

	makedemo (either .bat or .sh – platform-based) - This script will either copy (on Windows) or Symlink (on Unix) the contents of …/redist into …/sdk/demo, so that sample applications can then be run out of the demo directory.

Installing Multiple SDKs

If you load more than one OIT SDK, you must copy files from the secondary installations into the top-level OIT SDK directory as follows:

	redist – copy all binaries into this directory.

	sdk – this directory has several subdirectories: common, demo, lib, resource, samplecode, samplefiles. In each case, copy all of the files from the secondary installation into the top-level OIT SDK subdirectory of the same name. If the top-level OIT SDK directory lacks any directories found in the directory being copied from, just copy those directories over.

How to Use Image Export

Here's a step-by-step overview of how to export a source file to an image file.

	Call DAInitEx to initialize the Data Access technology. This function needs to be called only once per application. If using threading, then pass in the correct ThreadOption.
	Set any options that require a NULL handle type (optional). Certain options need to be set before the desired source file is opened. These options are identified by requiring a NULL handle type. They include, but aren't limited to:	SCCOPT_EX_CALLBACKS

	SCCOPT_EX_UNICODECALLBACKSTR

	SCCOPT_FALLBACKFORMAT

	SCCOPT_FIFLAGS

	SCCOPT_TEMPDIR

	SCCOPT_UNMAPPABLECHAR

	Open the Source File. DAOpenDocument is called to create a document handle that uniquely identifies the source file. This handle may be used in subsequent calls to the EXOpenExport function or the open function of any other Data Access Submodule, and will be used to close the file when access is complete. This allows the file to be accessed from multiple Data Access Submodules without reopening.
	Set the Options. If you require option values other than the default settings, call DASetOption to set options. Note that options listed in the Options Guide as having "Handle Types" that accept VTHEXPORT may be set any time before EXRunExport is called. For more information on options and how to set them, see DASetOption.
	Open a Handle to Image Export. Using the document handle, EXOpenExport is called to obtain an export handle that identifies the file to the specific export product. This handle will be used in all subsequent calls to the specific export functions. The dwOutputId parameter of this function is used to specify that the output file type should be set to one of the following:	FI_GIF

	FI_JPEGFIF

	FI_JPEG2000

	FI_PNG

	FI_BMP

	FI_TIFF

	Make Any Required Calls to Annotation Functions. This is the point at which any calls to annotation functions (such as EXHiliteText, EXInsertText or EXHideText) should be made.
	Export the File. EXRunExport is called to generate the output file(s) from the source file.
	Close the Handle to Image Export. EXCloseExport is called to terminate the export process for the file. After this function is called, the export handle will no longer be valid, but the document handle may still be used.
	Close the Source File. DACloseDocument is called to close the source file. After calling this function, the document handle will no longer be valid.
	Close Image Export. DADeInit is called to de-initialize the Data Access technology.

2 Implementation Issues

This chapter covers some issues specific to using the Export products.

This chapter includes the following sections:

	Running in 24x7 Environments

	Running in Multiple Threads or Processes

	Image Export Issues

Running in 24x7 Environments

To ensure robust 24x7 performance in server applications embedding the different export products, it is strongly recommended that the technology be run in a process separate from the server's primary process.

The file filtering technology underlying the technology represents almost a quarter of a million lines of code. This code is expected to robustly deal with any stream of bytes, of any length (any file), in all cases. Oracle has dedicated, and continues to dedicate, significant effort into making this technology extremely robust. However, in real world situations, expect that some small number of malformed files may force the filters into unstable states. This generally results in either a memory exception (which can be trapped and recovered from gracefully), infinite loop or a wild pointer that causes the filter to write into memory that is part of the same process but does not belong to the filter. In the latter situation, this wild pointer condition cannot be trapped.

On the desktop this is not a significant problem since the number of files being dealt with is relatively small. In a 24x7 server environment, however, a wild pointer can be extremely disruptive to the server process and produce serious problems. The best solution for dealing with this problem is to run any application that reads complex file formats in a separate process. This solution protects the application from the susceptibility of filtering technology to the unknown quality of input files.

It must be stressed that files that lead to wild pointers or infinite loops occur very infrequently, usually as a result of a third-party conversion process or beta versions of applications. Oracle is committed to addressing these issues and to updating and expanding its testing tools and corpus of documents to proactively minimize this "garbage in-garbage out" problem.

Running in Multiple Threads or Processes

On certain platforms, export products may be run in a multi-threaded or multi-processing application. The thing to remember when doing so is that each thread must go through all the steps listed in Introduction.

Image Export Issues

Four issues have been encountered when using Image Export:

	If a spreadsheet contains embedded graphics, embedded charts, or merged cells that cross page boundaries, Image Export does not clip these objects correctly. The objects appear in the correct position, but they bleed into the margins. In addition, some information may be duplicated on multiple pages as a result of this improper clipping. These errors should never result in information being omitted from the output.

	When processing fonts that are not TrueType fonts, the output graphic will contain text that appears "blocky" as a result of shortcomings in Image Export's smoothing algorithm.

	There is currently no method of specifying how wide a field in a database should be. Occasionally this will lead to situations where information in a database field will not be included in the output graphic, resulting in a loss of content.

	If multiple pages of garbage output occur when exporting images, it is possible that the default setting of the SCCOPT_FALLBACKFORMAT (FallbackFormatEnum on the server version) option (FI_ASCII-8) is forcing the technology to attempt to read files that it cannot identify as text. Setting the pertinent option to the value FI_NONE prevents the software from exporting unidentified binary files as though they were text.

3 Sample Applications

This chapter describes the sample applications included in this SDK. They are each designed to highlight a specific aspect of the technology's functionality. We ship built versions of these sample applications. The compiled executables should be in the root directory where the product is installed.

The following copyright applies to all sample applications shipped with this product:

Copyright © Oracle 1993, 2015

All rights reserved.

You have a royalty-free right to use, modify, reproduce and distribute the Sample Applications (and/or any modified version) in any way you find useful, provided that you agree that Oracle has no warranty obligations or liability for any Sample Application files.

This chapter includes the following sections:

	Building the Samples on a Windows System

	An Overview of the Sample Applications

	Accessing the SDK via a Java Wrapper

Building the Samples on a Windows System

Microsoft Visual Studio 2010 files are provided for building each of the sample applications.

Because .vcxproj files may not pick up the right compiler on their own, you need to make sure that you are building with the correct configuration in Visual Studio 2010 or higher.

The project files for the sample applications can be found in the samplecode\win subdirectory of the Outside In SDK.

For specific information about building the sample applications on your UNIX OS, see UNIX Implementation Details.

An Overview of the Sample Applications

Here's a quick tour of the sample applications provided with this product. Not all of the sample applications are provided for both the Windows and UNIX platforms. See the heading of each application's subsection for clarification.

This section describes the following sample applications.

	*sample

	export (Windows Only)

	exsimple

	exredir

	extract_archive

	ixanno

*sample

The name of this sample application varies according to product (ixsample for Image Export).

The following is a basic implementation that uses the default settings for every option.

ixsample Inputfile Outputfile

This sample is provided for instructional value rather than functionality. The output format is always TIF. As an exercise, you may want to try changing the EXOpenExport() call in the application so that it outputs a different graphic type.

export (Windows Only)

This application was designed to facilitate the testing of the software and should not be assumed to be of commercial quality.

Note:
No default options are set at initial runtime. The time the software is used, click the Options button and set the options. Failure to do this generates export errors.

The application allows the user to run a single source file. The user can select the source file, an output file and set the various options.

The export Main Window

The following figure shows the Main Window for the export application.

Figure 3-1 export Main Window for Image Export
[image: export Main Window for Image Export]

The Main Window is composed of several elements, discussed here.

	Output Format menu: This menu allows the user to select the type of output to generate. An entry for the format(s) you license will appear in this menu.

	Options button: This opens up a new dialog with one or more tabs exposing the options for the selected product.

	Source document field: This is the document to be exported. Click the Browse button to pick the source file, or type in the path name.

	'Export to' field: This is the initial resulting output file. Type in a file name or use the Browse button to select a file. Other output files are named based on the one chosen here.

	Delete button: Clicking this button deletes all files generated by the last export, listed in the Status: field. This is useful when multiple output files are produced because the default naming rules do not overwrite an existing file. If you run Export over and over again with the same output file name, you can produce a large number of files. Clicking Delete before each export solves this problem.

	'After Export, view output file with default application' checkbox: If the export was successful, checking this box launches the initial output file in the application associated with the output flavor's default extension.

	Export button: Click this button to start the export process once you've determined the export settings.

	Exit button: Click to close the Export application.

exsimple

This simple command line driven program allows the user to run a single source file through the software. The user can select the source file and output file and set the various options.

To run the program, type:

exsimple in_file out_file config_file

	in_file is the input file to be converted

	out_file is the output location

	config_file is the configuration file that sets the conversion options. If no configuration file is specified, default.cfg in the current directory is used.

The configuration file is a text file used to set the conversion options. We recommend reading through the configuration file for more information about valid options and their values (use of invalid options results in exsimple not producing output).

Follow these instructions to set configurable options.

	Set the Output ID before running the software. It is required and must not be omitted. It is also recommended that you set SCCOPT_FALLBACKFORMAT to FI_NONE. This prevents the export of unidentified binary files as though they were text, which could generate pages of garbage output.

exredir

This sample application is based on the exsimple sample application. It is designed to demonstrate how to use redirected IO and callbacks when using the software. It takes the same arguments and command line structure as exsimple and the same configuration files can be used. For details, see exsimple.

extract_archive

extract_archive demonstrates using the DATree API to extract all nodes in an archive.

The application is executed from the command line and takes two parameters, the name of the input file and the name of an output directory for the extracted files:

extract_archive input_file output_directory

ixanno

This sample application is provided more for the instructional value its sample code offers than for the functionality it provides when executed. It primarily works as an example of how to integrate Content Access with Image Export. This particular application does search hit highlighting. However, the general principles of how to get ACC text positions from Content Access should be evident from perusing the source code.

This command takes the following parameters:

	InputFile

	OutputFIle

	HiliteString

When using Image Export, the output type is always TIF.

The following sample command line demonstrates this command:

ixanno InputFile OutputFile HiliteString

A license for Content Access or Search Export is required to enable use of any of the annotation features supported by Image Export. Contact your Outside In sales representative for more information.

Accessing the SDK via a Java Wrapper

The ExJava Java wrapper, working in tandem with the exporter sample application, provides a working example of one method of interfacing with Oracle's C-based SDK products from a Java application. Export.jar is a Java API wrapper used by a Java application to control the exporter executable and set conversion options. exporter is a C-based executable which performs conversions using the modules in the Outside In SDK.

The exporter executable should be placed in the root directory of the Outside In SDK being used. If more than one Outside In SDK is being used, the contents of each SDK should be unpacked to the same root directory. Export.jar should be placed somewhere in your classpath.

On UNIX systems this sample application must be run from the directory containing the Outside In technology.Java version 1.6 or higher is required to run this sample application.

The ExJava Wrapper API

The JavaDocs documentation for the Java API is provided in the /sdk//samplecode/ExJava/docs directory. Conversion options are set using the ExportProperties.

Additionally, the appropriate .cfg file for the ExportTest sample application found in the Examples/ExportTest directory may provide further insight as to what properties are available and how they correspond to options and values for options.

The Export.jar and its source code can be found in the Java API directory. Place Export.jar somewhere in your classpath. In order to use the ExportTest sample application (which demonstrates how a Java application can use the ExJava API) without modifying your system configuration or the ExJava sample application, you should place the Export.jar file in the root directory of the Outside In SDK product you are using.

The C-Based Exporter Application

This is a standalone executable that runs out of process from the Java API. The Java API controls the conversion through command line parameters that are passed to the executable. After the conversion completes, the executable returns a conversion status code to the Java API. The command line parameters are base-64 encoded to allow for the use of Unicode encoded paths.

As the exporter executable is a C-based application, you will need to make sure the Java API can find the version of exporter appropriate for the platform you are using. Generally, and specifically for the purpose of using the ExportTest sample application, the correct executable should be copied to the root directory of the Oracle export SDK product you are using.

A compiled version of the C exporter program is included in the SDK with the rest of the Outside In binaries. The source for exporter is located in the /sdk/samplecode/ExJava/exporter directory.

The current implementation of ExJava may not produce an error if it cannot find the exporter application. This known issue may be corrected in a future version of ExJava.

Compiling the Executables

A Microsoft Visual Studio 6.0 project file and a UNIX makefile are provided in Exporter/Win and Exporter/Unix, respectively, so that you can modify the Exporter executable or compile it for a platform other than those for which compiled versions of exporter are provided. If you unpacked the ExJava package into the root directory of one of Oracle's export SDK products, you should be able to use the Visual Studio Project and makefile as is. Otherwise, you will need to edit them in order to provide paths to the Oracle export SDK include and library files.

If you are compiling ExJava for use on the Solaris platform, make sure your LD_LIBRARY_PATH contains the Outside In SDK path before trying to build the Exporter module.

The ExportTest Sample Application

ExportTest is an example of how a Java developer could use the ExJava wrapper to use one of the Outside In SDKs. The following is a list of the components that should be placed in the root directory of the Outside In SDK you are using in order to run this sample application:

	Export.jar (from the Java API directory)

	Exporter module for the platform you wish to use (located in the /sdk/samplecode/ExJava/Exporter/Win or /sdk/samplecode/ExJava/Exporter/Unix directory, depending on which platform you are using)

	ix.cfg file (also in Examples/ExportTest directory)

	If you are running ExportTest on a UNIX system, make sure to edit the .cfg file so it reflects the correct name of the exporter module you renamed.

	ExportTest.jar (also in Examples/ExportTest directory)

	The appropriate batch file to run the ExportTest application (ExportTest.bat for Windows and ExportTest.sh for UNIX, both located in the Examples/ExportTest directory)

Once these files are properly copied, execute the batch file with the name/path of an input file to convert, the name for the base output file and the name of the configuration file to use for setting conversion options.

ExportTest.jar uses the contents of the configuration file to determine what option/value pairs it should use when doing the conversion. It is not necessary to use a configuration file when developing your own application.

An Example Conversion Using the ExJava Wrapper

This is a simple outline of the steps for using the ExJava wrapper on a Windows system to convert a Word document called MyWordDoc.Doc. For information about properly setting up your environment to use the Outside In SDK in a UNIX environment, see: UNIX Implementation Details.

	Edit the .cfg file and make sure outputid is set to the FI* value appropriate for the Outside In product you've licensed. Alter any other parameters in the .cfg file as needed then save the file.

	Execute the following command. The sample command below assumes BMP as the export type. Change this type accordingly:

ExportTest.bat myworddoc.doc output.bmp ix.cfg

Part II Using the C/C++ API

This section provides details about using the SDK with the C/C++ API.

Part II contains the following chapters:

	Windows Implementation Details

	UNIX Implementation Details

	Data Access Common Functions

	Export Functions

	Redirected IO

	Callbacks

	Image Export C/C++ Options

4 Windows Implementation Details

This chapter describes the implementation of the Image Export SDK on the Windows platform. The Windows implementation of this software is delivered as a set of DLLs. For a list of the currently supported platforms, see:

http://www.oracle.com/technetwork/indexes/documentation/index.html#middleware

Click on Outside In Technology, then click the Certification Information PDF.

This chapter includes the following sections:

	Installation

	Libraries and Structure

	The Basics

	Default Font Aliases

	Changing Resources

Installation

To install the demo version of the SDK, copy the contents of the ZIP archive (available on the web site) to a local directory of your choice.

This product requires the Visual C++ libraries included in the Visual C++ Redistributable Package available from Microsoft. There is a version of this package for the appropriate platform (x86 or x64) version of Windows. This can be downloaded from www.microsoft.com, by searching on the site for the following package:

	vcredist_x86.exe, or

	vcredist_x64.exe

The required download version is the "Visual C++ Redistributable Packages for Visual Studio 2013."

Oracle Outside In requires the msvcr120.dll redistributable module.

The installation directory should contain the following directory structure.

	Directory	Description
	\redist

	Contains a working copy of the Windows version of the technology.

	\sdk\common

	Contains the C include files needed to build or rebuild the technology.

	\sdk\demo

	Contains the compiled executables of the sample applications.

	\sdk\lib

	Contains the library (.lib) files needed for the products.

	\sdk\resource

	Contains localization resource files.

	\sdk\samplecode

	Contains a subdirectory holding the source code for a sample application.

	\sdk\samplefiles

	Contains sample input files authored in a variety of popular graphics, word processor, compression, spreadsheet and presentation applications.

NSF Support

Notes Storage Format (NSF) files are produced by the Lotus Notes Client or the Lotus Domino server. The NSF filter is the only Outside In filter that requires the native application to be present to filter the input documents. Due to integration with an outside application, NSF support will not work with redirected I/O, when an NSF file is embedded in another file, or with IOTYPE_UNICODEPATH. Either Lotus Notes version 8 or Lotus Domino version 8 must be installed on the same machine as OIT. A 32-bit version of the Lotus software must be used if you are using a 32-bit version of OIT. A 64-bit version of the Lotus software must be used if you are using a 64-bit version of OIT. On Windows, SCCOPT_LOTUSNOTESDIRECTORY should be set to the directory containing the nnotes.dll. NSF support is only available on the Win32 , Win x86-64, Linux x86-32, and Solaris Sparc 32 platforms.

Libraries and Structure

The following is an overview of the files in the main installation directory for all five Outside In export products.

API DLLs

These libraries implement the API. They should be linked with the developer's application. Files with a .lib extension are included in the SDK.

	Library	Description	HTMLExport	ImageExport	PDF Export	Search Export	XML Export	Web View Export
	sccda.dll

	Data Access module

	X

	X

	X

	X

	X

	X

	sccex.dll

	Export module

	X

	X

	X

	X

	X

	X

	sccfi.dll

	File Identification module (identifies files based on their contents).

	X

	X

	X

	X

	X

	X

The File ID Specification may not be used directly by any application or workflow without it being separately licensed expressly for that purpose.

Support DLLs

The following libraries are used for support.

	Library	Description	HTML Export	ImageExport	PDF Export	Search Export	XML Export	Web View Export
	ccflex.dll

	A data model adapter that converts from stream model utilized by Oracle Outside In filters to the FlexionDoc Tree model used as a basis by XML Export.

	

	

	

	

	X

	

	libexpatw.dll

	A third-part XML parser

	

	

	

	

	X

	

	ocemul.dll

	Output component emulation module

	X

	X

	X

	X

	X

	X

	oswin*.dll

	Interface to the native GDI implementation

oswin32.dll is the 32-bit version, oswin64.dll is the 64-bit version

	X

	X

	X

	X

	X

	

	sccanno.dll

	The annotation module

	X

	X

	

	

	

	X

	sccca.dll

	Content Access module (provides organized chunker data for the developer)

	X

	X

	X

	

	

	X

	sccch.dll

	Chunker (provides caching of and access to filter data for the export engines)

	X

	X

	X

	X

	X

	X

	sccdu.dll

	Display Utilities module (includes text formatting)

	X

	X

	X

	X

	X

	X

	sccexind.dll

	The core engine for all Search Export formats: SearchText, SearchHTML, SearchML and PageML

	

	

	X

	X

	

	

	sccfmt.dll

	Formatting module (resolves numbers to formatted strings)

	X

	X

	

	X

	X

	X

	sccfut.dll

	Filter utility module

	X

	X

	X

	X

	X

	X

	sccind.dll

	Indexing engine. In Search Export, it handles common functionality.

	X

	X

	X

	X

	

	X

	scclo.dll

	Localization library (all strings, menus, dialogs and dialog procedures reside here)

	X

	X

	X

	X

	X

	X

	sccole2.dll

	OLE rendering module

	X

	X

	X

	X

	X

	X

	sccsd.dll

	Schema Definition Module Manager (brokers multiple Schema Definition Modules)

	

	

	X

	

	X

	

	sccut.dll

	Utility functions, including IO subsystem

	X

	X

	X

	X

	X

	X

	sccxt.dll

	XTree module

	

	

	

	

	X

	

	sdflex.dll

	Schema Definition module (handles conversion of XML string names and attribute values to compact binary representations and vice versa)

	

	

	X

	

	X

	

	wvcore.dll

	The GDI Abstraction layer

	X

	X

	

	X

	X

	X

Engine Libraries

The following libraries are used for display purposes.

	Library	Description	HTML Export	Image Export	PDF Export	Search Export	XML Export	Web View Export
	debmp.dll

	Raster rendering engine (TIFF, GIF, BMP, PNG, PCX…)

	

	

	X

	

	X

	

	devect.dll

	Vector/Presentation rendering engine (PowerPoint, Impress, Freelance…)

	X

	X

	X

	

	X

	X

	dess.dll

	Spreadsheet/Database (Excel, Calc, Lotus 123…)

	

	X

	X

	

	X

	

	detree.dll

	Archive (ZIP, GZIP, TAR…)

	

	X

	X

	

	

	

	dewp.dll

	Document (Word, Writer, WordPerfect…)

	

	X

	X

	X

	

	X

Filter and Export Filter Libraries

The following libraries are used for filtering.

	Library	Description	HTML Export	Image Export	PDF Export	Search Export	XML Export	Web View Export
	vs*.dll

	Filters for specific file types (there are more than 150 of these filters, covering more than 600 file formats)

	X

	X

	X

	X

	X

	X

	oitnsf.id

	Support file for the vsnsf filter.

	X

	X

	X

	X

	X

	X

	exgdsf.dll

	Export filter for GIF, JPEG, and PNG graphics files

	X

	

	

	

	X

	X

	eximg.dll

	Extended image conversion module

	

	X

	

	

	

	

	exh5.dll

	Export filter for HTML5 files

	

	

	

	

	

	X

	exhtml.dll

	Export filter for HTML files

	X

	

	

	

	

	

	exihtml.dll

	Export filter for SearchHTML

	

	

	

	X

	

	

	exitext.dll

	Export filter for SearchText

	

	

	

	X

	

	

	exixml.dll

	Export filters for XML files using the SearchML schema

	

	

	

	X

	

	

	expage.dll

	Export filter for XML files using the PageML schema

	

	

	

	X

	

	

	expagelayout.dll

	Page layout module

	

	

	X

	

	

	

	exxml.dll

	XML Export module

	

	

	

	

	X

	

	sccimg.dll

	Image conversion module

	X

	X

	

	

	X

	X

Premier Graphics Filters

The following are graphics filters.

	Library	Description	HTML Export	ImageExport	PDF Export	Search Export	XML Export	Web View Export
	i*2.dll

	Import filters for premier graphics formats

	X

	X

	X

	X

	X

	X

	isgdi32.dll

	Interface to premier graphics filters

	X

	X

	X

	X

	X

	X

Additional Files

The following files are also used.

	Library	Description	HTML Export	ImageExport	PDF Export	Search Export	XML Export	Web View Export
	adinit.dat

	Support file for the vsacad filter

	X

	X

	X

	X

	X

	X

	cmmap000.bin

	Tables for character mapping (all character sets)

	X

	X

	X

	X

	X

	X

	cmmap000.sbc

	Tables for character mapping (single-byte character sets). This file is located in the /sdk/common directory.

	X

	X

	X

	X

	X

	X

	cmmap000.dbc

	Identical to cmmap000.bin, but renamed for clarity (.dbc = double-byte character). This file is located in the /sdk/common directory.

	X

	X

	X

	X

	X

	X

	exbf.dll

	Internal

	

	

	

	X

	

	

	pageml.dtd

	The Document Type Definition for the PageML schema

	

	

	

	X

	

	

	pageml.xsd

	The Extensible Schema Definition for the PageML schema

	

	

	

	X

	

	

	searchml3.dtd

	The Document Type Definitions for the SearchML schema

	

	

	

	X

	

	

	searchml3.xsd

	The Extensible Schema Definitions for the SearchML schema

	

	

	

	X

	

	

	flexiondoc.dtd

	The DTD version of the Flexiondoc schema

	

	

	

	

	X

	

	flexiondoc.xsd

	The schema version of the Flexiondoc schema

	

	

	

	

	X

	

The Basics

The following is a discussion of some basic usage and installation features.

All the steps outlined in this section are used in the sample applications provided with the SDK. Looking at the code for the exsimple sample application is recommended for those wishing to see a real-world example of this process.

What You Need in Your Source Code

Any source code that uses this product should #include the file sccex.h and #define WINDOWS and WIN32 or WIN64. For example, a Windows application might have a source file with the following lines:

#define WINDOWS /* Will be automatically defined if your
 compiler defines _WINDOWS */
#define WIN32
#include <sccex.h>

The developer's application should be linked to the product DLLs through the provided libraries.

Options and Information Storage

This software is based on the Outside In Viewer Technology (or simply "Viewer Technology"). When using the Export products, a list of available filters and a list of available display engines are built by the technology, usually the first time the product runs. You do not need to ship these lists with your application. The lists are automatically recreated if corrupted or deleted.

The files used to store this information are stored in an .oit subdirectory in \Documents and Settings\user name\Application Data.

If an .oit directory does not exist in the user's directory, the directory is created automatically. The files are automatically regenerated if corrupted or deleted.

The files are:

	*.f = Filter lists

	*.d = Display Engine lists

	*.opt = Persistent options

Some applications and services may run under a local system account for which there is no users "application data" folder. The technology first does a check for an environment variable called OIT_DATA_PATH. Then it checks for APPDATA, and then LOCALAPPDATA. If none of those exist, the options files are put into the executable path of the UT module.

These file names are intended to be unique enough to avoid conflict for any combination of machine name and install directory. This allows the user to run products in separate directories without having to reload the files above. The file names are built from an 11-character string derived from the directory the Outside In technology resides in and the name of the machine it is being run on. The string is generated by code derived from the RSA Data Security, Inc. MD5 Message-Digest Algorithm.

The software still functions if these lists cannot be created for some reason. In that situation, however, significant performance degradation should be expected.

Structure Alignment

Outside In is built with 8-byte structure alignment. This is the default setting for most Windows compilers. This and other compiler options that should be used are demonstrated in the files provided with the sample applications in samples\win.

Character Sets

The strings passed in the Windows API are ANSI1252 by default.

To optimize performance on systems that do not require DBCS support, a second character mapping bin file, that does not contain any of the DBCS pages, is now included. The second bin file gives additional performance benefits for English documents, but cannot handle DBCS documents. To use the new bin file, replace the cmmap000.bin with the new bin file, cmmap000.sbc. For clarity, a copy of the cmmap000.bin file (cmmap000.dbc) is also included. Both cmmap000.sbc and cmmap000.dbc are located in the \common directory of the technology.

Note:
All of the Search Export flavors produce most text in UTF-8 encoded Unicode. Two exceptions to this are the characters in <unmapped> elements and XMP metadata (which is passed through without character mapping being applied).

Runtime Considerations

The files used by the product must be in the same directory as the developer's executable.

Default Font Aliases

The technology includes the following default font alias map for Windows. The first value is the original font, the second is the alias.

	Chicago = Arial

	Geneva = Arial

	New York = Times New Roman

	Helvetica = Arial

	Helv = Arial

	times = Times New Roman

	Times = Times New Roman

	Tms Roman = Times New Roman

	itc zapfdingbats = Zapfdinbats

	itc zapf dingbats = Zapfdinbats

Changing Resources

Outside In Image Export ships with the necessary files for OEMs to change any of the strings in the technology as they see fit.

Strings are stored in the lodlgstr.h file found in the resource directory. The file can be edited using any text editor.

Note:
Do not directly edit the scclo.rc file. Strings are saved with their identifiers in lodlgstr.h. If a new scclo.rc file is saved, it will contain numeric identifiers for strings, instead of their #define'd names.

Once the changes have been made, the updated scclo.dll file can be rebuilt using the following steps:

	Compile the .res file:rc /fo ".\scclo.res" /i "<path to header (.h) files folder>" /d "NDEBUG" scclo.rc

	Link the scclo.res file you've created with the scclo.obj file found in the resource directory to create a new scclo.dll:link /DLL /OUT:scclo.dll scclo.obj scclo.res

Note:
Developers should make sure they have set up their environment variables to build the library for their specific architecture. For Windows x86_32, when compiling with VS 2005, the solution is to run vsvars32.bat (in a standard VS 2005 installation, this is found in C:\Program Files\Microsoft Visual Studio 8\Common7\Tools\). If this works correctly, you will see the statement, "Setting environment for using Microsoft Visual Studio 2005 x86 tools." If you do not complete this step, you may have conflicts that lead to unresolved symbols due to conflicts with the Microsoft CRT.

	Embed the manifest (which is created in the \resource directory during step 2) into the new DLL:mt -manifest scclo.dll.manifest -outputresource:scclo.dll;2

If you are not using Microsoft Visual Studio, substitute the appropriate development tools from your environment.

Note:
In previous versions of Outside In, it was possible to directly edit the SCCLO.DLL using Microsoft Visual Studio. Outside In DLLs are now digitally signed. Editing the signed DLL is not advisable.

5 UNIX Implementation Details

This chapter describes the implementation of the Image Export SDK on the UNIX platform. The UNIX implementation of the Export product set is delivered as a set of shared libraries.

For a list of the currently supported platforms, see:

http://www.oracle.com/technetwork/indexes/documentation/index.html#middleware

Click on Outside In Technology, then click the Certification Information PDF.

This chapter includes the following sections:

	Installation

	Libraries and Structure

	The Basics

	Character Sets

	Runtime Considerations

	Environment Variables

	Default Font Aliases

	Changing Resources

	HP-UX Compiling and Linking

	IBM AIX Compiling and Linking

	Linux Compiling and Linking

	Oracle Solaris Compiling and Linking

Installation

To install the demo version of the SDK, copy the tgz file corresponding to your platform (available on the web site) to a local directory of your choice. Decompress the tgz file and then extract from the resulting tar file as follows:

gunzip tgzfile
tar xvf tarfile

The installation directory should contain the following directory structure.

	Directory	Description
	/redist

	Contains a working copy of the UNIX version of the technology.

	/sdk/common

	Contains the C include files needed to build or rebuild the technology.

	/sdk/demo

	Contains the compiled executables of the sample applications.

	/sdk/resource

	Contains localization resource files. For details, see Changing Resources.

	/sdk/samplecode

	Contains a subdirectory holding the source code for a sample application. For details, see Sample Applications.

	/sdk/samplefiles

	Contains sample input files authored in a variety of popular graphics, word processor, compression, spreadsheet and presentation applications.

NSF Support

Notes Storage Format (NSF) files are produced by the Lotus Notes Client or the Lotus Domino server. The NSF filter is the only Outside In filter that requires the native application to be present to filter the input documents. Due to integration with an outside application, NSF support will not work with redirected I/O nor will it work when an NSF file is embedded in another file. Lotus Domino version 8 must be installed on the same machine as OIT. The NSF filter is currently only supported on the Win32, Win x86-64, Linux x86-32, and Solaris Sparc 32 platforms. SCCOPT_LOTUSNOTESDIRECTORY is a Windows-only option and is ignored on Unix.

Additional steps must be taken to prepare the system. It is necessary to know the name of the directory in which Lotus Domino has been installed. On Linux, this default directory is /opt/ibm/lotus/notes/latest/linux. On Solaris, it is /opt/ibm/lotus/notes/latest/sunspa.

	In the Lotus Domino directory, check for the existence of a file called "notes.ini". If the file "notes.ini" does not exist, create it in that directory and ensure that it contains the following single line:

[Notes]

	Add the Lotus Domino directory to the $LD_LIBRARY_PATH environment variable.

	Set the environment variable $Notes_ExecDirectory to the Lotus Domino directory.

Libraries and Structure

On UNIX platforms the Outside In products are delivered with a set of shared libraries. All libraries should be installed to a single directory. Depending upon your application, you may also need to add that directory to the system's runtime search path. For more details, see Environment Variables.

The following is a brief description of the included libraries and support files. In instances where a file extension is listed as .*, the file extension varies for each UNIX platform (sl on HP-UX, so on Linux and Solaris).

API Libraries

These libraries implement the API. They should be linked with the developer's application.

	Library	Description	HTML Export	Image Export	PDF Export	Search Export	XML Export	Web View Export
	libsc_da.*

	Data Access module

	X

	X

	X

	X

	X

	X

	libsc_ex.*

	Export module

	X

	X

	X

	X

	X

	X

	libsc_fi.*

	File Identification module (identifies files based on their contents).

	X

	X

	X

	X

	X

	X

The File ID Specification may not be used directly by any application or workflow without it being separately licensed expressly for that purpose.

Support Libraries

The following libraries are used for support.

	Library	Description	HTML Export	Image Export	PDF Export	Search Export	XML Export	Web View Export
	libccflex.*

	A data model adapter that converts from stream model utilized by Outside In filters to the FlexionDoc Tree model used as a basis by XML Export.

	

	

	

	

	X

	

	libexpatw.*

	A third-party XML parser.

	

	

	

	

	X

	

	liboc_emul.*

	Output component emulation module

	X

	X

	X

	X

	X

	X

	libos_gd.*

	The internal rendering GDI implementation. This library is only supported on Linux (32- and 64-bit Intel), Solaris (32-bit SPARC), HP-UX (32-bit RISC), and AIX (32-bit PPC).

	X

	X

	

	X

	X

	

	libos_pdf.*

	PDF generation module

	

	

	X

	

	

	

	libos_xwin.*

	The native GDI implementation

	X

	X

	

	X

	X

	

	libsc_anno.*

	The annotation module

	X

	X

	X

	

	

	X

	libsc_ca.*

	Content Access module (provides organized chunker data for the developer)

	X

	X

	X

	

	

	X

	libsc_ch.*

	Chunker (provides caching of and access to filter data for the export engines)

	X

	X

	X

	X

	X

	X

	libsc_du.*

	Display Utilities module (includes text formatting)

	X

	X

	X

	X

	X

	X

	libsc_fmt.*

	Formatting module (resolves numbers to formatted strings)

	X

	X

	X

	X

	X

	X

	libsc_fut.*

	Filter utility module

	X

	X

	X

	X

	X

	X

	libsc_ind.*

	Indexing engine. In Search Export, it handles common functionality.

	X

	X

	X

	X

	

	X

	libsc_lo.*

	Localization library (all strings, menus, dialogs and dialog procedures reside here)

	X

	X

	X

	X

	X

	X

	libsc_sd.*

	Schema Definition Module Manager (brokers multiple Schema Definition Modules)

	

	

	

	

	X

	

	libsc_ut.*

	Utility functions, including IO subsystem

	X

	X

	X

	X

	X

	X

	libsc_xp.*

	XPrinter bridge

	X

	X

	

	X

	X

	

	libsdflex.*

	Schema Definition module (handles conversion of XML string names and attribute values to compact binary representations and vice versa)

	

	

	

	

	X

	

	libwv_core.*

	The Abstraction layer

	X

	X

	X

	X

	X

	X

	libwv_gdlib.so

	The GDI rendering module. This library is only supported on Linux (32- and 64-bit Intel), Solaris (32-bit SPARC), HP-UX (32-bit RISC), and AIX (32-bit PPC).

	X

	X

	

	X

	X

	

Engine Libraries

The following libraries are used for display purposes.

	Library	Description 	HTML Export	Image Export	PDF Export	Search Export	XML Export	Web View Export
	libde_bmp.*

	Raster rendering engine (TIFF, GIF, BMP, PNG, PCX…)

	

	

	X

	

	X

	X

	libde_vect.*

	Vector/Presentation rendering engine (PowerPoint, Impress, Freelance)

	X

	X

	X

	

	X

	X

	libde_ss.*

	Spreadsheet/Database (Excel, Calc, Lotus 123)

	

	X

	X

	

	X

	

	libde_tree*

	Archive (ZIP, GZIP, TAR…)

	

	X

	X

	

	

	

	libde_wp.*

	Document (Word, Writer, WordPerfect)

	

	X

	X

	X

	

	X

Filter and Export Filter Libraries

The following libraries are used for filtering.

libex_gdsf must be linked with libsc_img.* at compile time. This forces the filter to be dependent on libsc_img.* at runtime, even though that module may not be used directly. If you want to reduce your application's physical footprint, you can experiment with unlinking libsc_img.*.

	Library	Description	HTML Export	Image Export	PDF Export	Search Export	XML Export	Web View Export
	libvs_*.*

	Filters for specific file types (there are more than 150 of these filters, covering more than 600 file formats)

	X

	X

	X

	X

	X

	X

	libex_gdsf.*

	Export filter for GIF, JPEG, and PNG graphics files

	X

	

	

	

	X

	X

	libex_h5.*

	Export filter for HTML5 files

	

	

	

	

	

	X

	libsc_img.*

	Image conversion module

	X

	X

	

	

	X

	X

	libex_itext.*

	Export filter for SearchText

	

	

	

	X

	

	

	libex_html.*

	Export filter for HTML files

	X

	

	

	

	

	

	libex_img.*

	Extended image conversion module

	

	X

	

	

	

	

	libex_xml.*

	Export filter for XML files using the Flexiondoc schema

	

	

	

	

	X

	

	libex_page.*

	Export filter for XML files using the PageML schema

	

	

	

	X

	

	

	libex_pagelayout.*

	Page Layout module

	

	

	X

	

	

	

	libex_ixml.*

	Export filters for XML files using the SearchML schema

	

	

	

	X

	

	

	libex_ihtml.*

	Export filter for SearchHTML

	

	

	

	X

	

	

Premier Graphics Filters

The following are graphics filters.

	Library	Description	HTML Export	Image Export	PDF Export	Search Export	XML Export	Web View Export
	libi*.*

	These files are the import filters for premier graphics formats.

	X

	X

	X

	X

	X

	X

	libis_unx2.*

	Interface to premier graphics filters

	X

	X

	X

	X

	X

	X

Additional Files

The following files are also used.

	Library	Description	HTML Export	Image Export	PDF Export	Search Export	XML Export	Web View Export
	adinit.dat

	Support file for the vsacad and vsacd2 filters

	X

	X

	X

	X

	X

	X

	ccbf.so

	Internal

	

	

	

	X

	

	

	cmmap000.bin

	Tables for character mapping (all character sets)

	X

	X

	X

	X

	X

	X

	cmmap000.sbc

	Tables for character mapping (single-byte character sets). This file is located in the /common directory.

	X

	X

	X

	X

	X

	X

	cmmap000.dbc

	Identical to cmmap000.bin, but renamed for clarity (.dbc = double-byte character). This file is located in the common directory.

	X

	X

	X

	X

	X

	X

	exbf.so

	Internal

	

	

	

	X

	

	

	flexiondoc.dtd

	The DTD version of the Flexiondoc schema

	

	

	

	

	X

	

	flexiondoc.xsd

	The schema version of the Flexiondoc schema

	

	

	

	

	X

	

	libfreetype.so.6

	TrueType font rendering module for the GD output solution. 32-bit Linux and Solaris Sparc only.

	X

	X

	X

	X

	X

	

	oitnsf.id

	Support file for the vsnsf filter.

	X

	X

	X

	X

	X

	X

	pageml.dtd

	The Document Type Definition for the PageML schema

	

	

	

	X

	

	

	pageml.xsd

	The Extensible Schema Definition for the PageML schema

	

	

	

	X

	

	

	searchml3.dtd

	The Document Type Definitions for the SearchML schema

	

	

	

	X

	

	

	searchml3.xsd

	The Extensible Schema Definitions for the SearchML schema

	

	

	

	X

	

	

The Basics

Sample applications are provided with the SDK. These applications demonstrate most of the concepts described in this manual. For a complete description of the sample applications, see Sample Applications.

What You Need in Your Source Code

Any source code that uses this product should #include the file sccex.h and #define UNIX. For example, a 32-bit UNIX application might have a source file with the following lines:

#define UNIX
#include <sccex.h>

and a 64-bit UNIX application might have a source file with the following lines:

#define UNIX
#define UNIX_64
#include <sccex.h>

Information Storage

This software is based on the Outside In Viewer Technology (or simply "Viewer Technology"). A file of default options is always created, and a list of available display engines is also built by the technology, usually the first time the product runs (for UNIX implementations). You do not need to ship these lists with your application.

Lists are stored in the $HOME/.oit directory. If the $HOME environment variable is not set, the files are put in the same directory as the Outside In Technology. If an /.oit directory does not exist in the user's $HOME directory, the .oit directory is created automatically by the technology. The files are automatically regenerated if corrupted or deleted.

The files are:

	*.d: Display engine list

	*.opt: Persistent options

The technology does not actually use the list of default options created by the Viewer Technology.

The filenames are intended to be unique enough to avoid conflict for any combination of machine name and install directory. This is intended to prevent problems with version conflicts when multiple versions of the Viewer Technology and/or other Viewer Technology-based products are installed on a single system. The filenames are built from an 11-character string derived from the directory the Outside In technology resides in and the name of the machine it is being run on. The string is generated by code derived from the RSA Data Security, Inc. MD5 Message-Digest Algorithm.

The products still function if these files cannot be created for some reason. In that situation, however, significant performance degradation should be expected.

Character Sets

The strings passed in the UNIX API are ISO8859-1 by default.

To optimize performance on systems that do not require DBCS support, a second character mapping bin file, that does not contain any of the DBCS pages, is now included. The second bin file gives additional performance benefits for English documents, but cannot handle DBCS documents. To use the new bin file, replace the cmmap000.bin with the new bin file, cmmap000.sbc. For clarity, a copy of the cmmap000.bin file (cmmap000.dbc) is also included. Both cmmap000.sbc and cmmap000.dbc are located in the /sdk/common directory of the technology.

Note:
All of the Search Export flavors produce most text in UTF-8 encoded Unicode. Two exceptions to this are the characters in <unmapped> elements and XMP metadata (which is passed through without character mapping being applied).

Runtime Considerations

The following is information to consider during run-time.

X Server Requirement

Note:
The X Server requirement can be eliminated by setting the SCCOPT_RENDERING_PREFER_OIT option to TRUE.

Access to a running X Windows server and the presence of Motif (or LessTif on Linux) are required to convert from non-raster or vector formats on UNIX systems. Examples of non-raster/vector graphics files include CAD drawings and presentation files such as Power Point 97 files. Bitmap graphic conversion (handled in XML Export by the libde_bmp.* engine) does not require access to a running X Windows server. Examples of bitmap file formats include GIF, JPEG, TIFF, and Windows BMP files.

A runtime check for the presence of X libraries is performed to accommodate system with and without available X servers. This check looks on the system-specific library path variable for the X libraries. If the X libraries are not found, this product does not perform vector graphics conversion.

Be sure to set the $DISPLAY environment variable before running this product when non-raster/vector graphic conversion is needed. This is especially important to remember in situations such as CGI programs that start with a limited environment.

For example, when running the technology from a remote session, setting DISPLAY=:0.0 tells the system to use the X Windows server on the console.

OLE2 Objects

Some documents that the developer is attempting to convert may contain embedded OLE2 objects. There are platform-dependent limits on what the technology can do with OLE2 objects. However, Outside In attempts to take advantage of the fact that some documents accompany an OLE2 embedding with a graphic "snapshot," in the form of a Windows metafile.

On all platforms, when a metafile snapshot is available, the technology uses it to convert the object. When a metafile snapshot is not available on UNIX platforms, the technology is unable to convert the OLE2 object.

Machine-Dependent Graphics Context

The system uses a machine configuration dependent graphics context to render some images. The number of colors available in the systems graphics context is a particularly important limiting factor. For example, if the video driver for a system running Outside In is set up to display 256 colors, images produced on that system would be limited to 256 colors.

	For all vector image formats that HX converts, we require that the X11 display support either 1 bit, 4 bits, 8 bits, 24 bits, or 32 bits.

	If SCCOPT_RENDERING_PREFER_OIT = TRUE on UNIX then we're using internal rendering of vector formats, and we don't use the X11 display.

	Raster image formats when converted do not need the X11 display, so are not sensitive to the bit depth of the display.

Note:
SCCOPT_RENDERING_PREFER_OIT is supported on Linux x86-32, Linux x86-64, Solaris Sparc-32, IBM AIX 32-bit, and HP-UX RISC 32-bit platforms.

Signal Handling

These products trap and handle the following signals:

	SIGABRT

	SIGBUS

	SIGFPE

	SIGILL

	SIGINT

	SIGSEGV

	SIGTERM

Developers who wish to override our default handling of these signals should set up their own signal handlers. This may be safely done after the developer's application has called DAInitEx().

Note:
The Java Native Interface (JNI) allows Java code to call and be called by native code (C/C++ in the case of OIT). You may run into problems if Java isn't allowed to handle signals and forward them to OIT. If OIT catches the signals and forwards them to Java, the JVMs will sometimes crash. OIT installs signal handlers when DAInitEx() is called, so if you call OIT after the JVM is created, you will need to use libjsig. Refer here for more information:

http://www.oracle.com/technetwork/java/javase/index-137495.html

Runtime Search Path and $ORIGIN

Libraries and sample applications are all built with the $ORIGIN variable as part of the binaries' runtime search path. This means that at runtime, OIT libraries will automatically look in the directory they were loaded from to find their dependent libraries. You don't necessarily need to include the technology directory in your LD_LIBRARY_PATH or SHLIB_PATH.

As an example, an application that resides in the same directory as the OIT libraries and includes $ORIGIN in its runtime search path will have its dependent OIT libraries found automatically. You will still need to include the technology directory in your linker's search path at link time using something like -L and possibly -rpath-link.

Another example is an application that loads OIT libraries from a known directory. The loading of the first OIT library will locate the dependent libraries.

Note:
This feature does not work on AIX and FreeBSD.

Environment Variables

Several environment variables may be used at run time. Following is a short summary of those variables and their usage.

	Variable	Description
	$LD_LIBRARY_PATH (FreeBSD, HP-UX Itanium 64, Linux, Solaris)

$SHLIB_PATH (HP-UX RISC 32)

$LIBPATH (AIX, iSeries)

	These variables help your system's dynamic loader locate objects at runtime. If you have problems with libraries failing to load, try adding the path to the Outside In libraries to the appropriate environment variable. See your system's manual for the dynamic loader and its configuration for details.

Note that for products that have a 64-bit PA/RISC, 64-bit Solaris and Linux PPC/PPC64 distributable, they will also go under $LD_LIBRARY_PATH.

	$DISPLAY

	Must be set to point to a valid X Server to render files, unless you plan to use the SCCOPT_RENDERING_PREFER_OIT option. For details, see X Server Requirement.

	$GDFONTPATH

	Must be set if you intend to use the SCCOPT_RENDERING_PREFER_OIT option. This variable includes one or more paths to fonts for use with Outside In's internal graphics rendering code.

	$HOME

	Must be set to allow the system to write the option, filter and display engine lists. For details, see Information Storage.

Default Font Aliases

The technology includes the following default font alias map for UNIX platforms. The first value is the original font, and the second is the alias.

	61 = Liberation Sans

	Andale Mono = Liberation Sans

	Courier = Liberation Sans

	Courier New = Liberation Sans

	Lucida Console = Liberation Sans

	MS Gothic = Liberation Sans

	MS Mincho = Liberation Sans

	OCR A Extended = Liberation Sans

	OCR B = Liberation Sans

	Agency FB = Liberation Sans

	Arial = Liberation Sans

	Arial Black = Liberation Sans

	Arial Narrow = Liberation Sans

	Arial Rounded MT = Liberation Sans

	Arial Unicode MS = Liberation Sans

	Berline Sans FB = Liberation Sans

	Calibri = Liberation Sans

	Frank Gothic Demi = Liberation Sans

	Frank Gothic Medium Cond = Liberation Sans

	Franklin Gothic Book = Liberation Sans

	Futura = Liberation Sans

	Geneva = Liberation Sans

	Gill Sans = Liberation Sans

	Gill Sans MT = Liberation Sans

	Lucida Sans Regular = Liberation Sans

	Lucida Sans Unicode = Liberation Sans

	Modern No. 20 = Liberation Sans

	Tahoma = Liberation Sans

	Trebuchet MS = Liberation Sans

	Tw Cen MT = Liberation Sans

	Verdana = Liberation Sans

	Albany = Liberation Sans

	Franklin Gothic = Liberation Sans

	Franklin Demi = Liberation Sans

	Franklin Demi Cond = Liberation Sans

	Franklin Gothic Heavy = Liberation Sans

	Algerian = Liberation Serif

	Baskerville = Liberation Serif

	Bell MT = Liberation Serif

	Bodoni MT = Liberation Serif

	Bodoni MT Black = Liberation Serif

	Book Antiqua = Liberation Serif

	Bookman Old Style = Liberation Serif

	Calisto MT = Liberation Serif

	Cambria = Liberation Serif

	Centaur = Liberation Serif

	Century = Liberation Serif

	Century Gothic = Liberation Serif

	Century Schoolbook = Liberation Serif

	Elephant = Liberation Serif

	Footlight MT Light = Liberation Serif

	Garamond = Liberation Serif

	Georgia = Liberation Serif

	Goudy Old Style = Liberation Serif

	Lucida Bright = Liberation Serif

	MS Serif = Liberation Serif

	New York = Liberation Serif

	Palatino = Liberation Serif

	Perpetua = Liberation Serif

	Times = Liberation Serif

	times = Liberation Serif

	Times New Roman = Liberation Serif

Changing Resources

All of the strings used in the UNIX versions of Outside In products are contained in the lodlgstr.h file. This file, located in the resource directory, can be modified for internationalization and other purposes. Everything necessary to rebuild the resource library to use the modified source file is included with the SDK.

In addition to lodlgstr.h, the scclo.o object file is provided. This is necessary for the linking phase of the build. A makefile has also been provided for building the library. The makefile allows building on all of the UNIX platforms supported by Outside In. It may be necessary to make minor modifications to the makefile so the system header files and libraries can be found for compiling and linking.

Standard INCLUDE and LIB make variables are defined for each platform in the makefile. Edit these variables to point to the header files and libraries on your particular system. Other make variables are:

	TECHINCLUDE: May need to be edited to point to the location of the Outside In /common header files supplied with the SDK.

	BUILDDIR: May need to be edited to point to the location of the makefile, lodlgstr.h, and scclo.o (which should all be in the same directory).

After these variables are set, change to the build directory and type make. The libsc_lo resource library is built and placed in the appropriate platform-specific directory. To use this library, copy it into the directory where the Outside In product is stored and the new, modified resource strings are used by the technology.

Menu constants are included in lomenu.h in the common directory.

HP-UX Compiling and Linking

The libsc_ex.sl and libsc_da.sl libraries are the only ones that must be linked with your application. They can be loaded when your application starts by linking them directly at compile time or they can be loaded dynamically by your application using library load functions (for example, shl_load).

To use Image Export's annotation functions, you also must link to libsc_ca.sl, requiring a separate license to Outside In Content Access or Search Export. Contact your Outside In sales representative for more information.

The shared libraries are dependent on the presence of the X libraries Xm, Xt and X11 if vector graphics support is required. It is the application developer's responsibility to ensure that the needed functions from these libraries are present before the product libraries are used.

The following is an example command line used to compile the sample application exsimple from the /sdk/samplecode directory. The command lines are separated into sections for HP-UX and HP-UX on Itanium (which requires GCC). This command line is only an example. The actual command line required on the developer's system may vary. The example assumes that the include and library file search paths for the technology libraries and any required X libraries are set correctly. If they are not set correctly, the search paths for the include and/or library files must be explicitly specified via the -I include file path and/or -L library file path options, respectively, so that the compiler and linker can locate all required files.

HP-UX on RISC

cc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c +DAportable -Ae -I/usr/include -I../../common -L../../demo -L/usr/lib -lsc_ex -lsc_da -Wl,+s,+b,'$ORIGIN'

HP-UX on RISC (64 bit)

cc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c +DD64 -I/usr/include -I../../common -L../../demo -L/usr/lib/pa20_64 -DUNIX_64 -lsc_ex -lsc_da -Wl,+s,+b,'$ORIGIN'

IBM AIX Compiling and Linking

All libraries should be installed into a single directory and the directory must be included in the system's shared library path ($LIBPATH). $LIBPATH must be set and must point to the directory containing the Outside In Technology.

Outside In technology has been updated to increase performance, at a cost of using more memory. It is possible that this increased memory usage may cause a problem on AIX systems, which can be very conservative in the amount of memory they grant to processes. If your application experiences problems due to memory limitations with Outside In, you may be able to fix this problem by using the "large page" memory model.

If you anticipate viewing or converting very large files with Outside In technology, we recommend linking your applications with the -bmaxdata flag. For example:

cc -o foo foo.c -bmaxdata:0x80000000

If you are currently seeing "illegal instruction" errors followed by immediate program exit, this is likely due to not using the large data model.

To use the Image Export annotation function, you must also link to libsc_ca.sl, requiring a separate license to Outside In Content Access or Search Export. Contact your Outside In sales representative for more information.

The shared libraries are dependent on the presence of the X libraries Xm, Xt and X11 if vector graphics support is required. It is the application developer's responsibility to ensure that the needed functions from these libraries are present before the product libraries are used.

The following is an example command line used to compile the sample application exsimple from the /sdk/samplecode directory. This command line is only an example. The actual command line required on the developer's system may vary. The example assumes that the include and library file search paths for the technology libraries and any required X libraries are set correctly. If they are not set correctly, the search paths for the include and/or library files must be explicitly specified via the -I include file path and/or -Llibrary file path options, respectively, so that the compiler and linker can locate all required files. Developers need to pass -brtl to the linker to list libraries in the link command as dependencies of their applications.

Developers may need to use the -qcpluscmt flag to allow C++ style comments.

gcc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c -I../../common -L../../demo -lsc_ex -lsc_da -DFUNCPROTO -Wl,-brtl

Linux Compiling and Linking

This section discusses issues involving Linux compiling and linking.

Library Compatibility

This section discusses Linux compatibility issues when using libraries.

Motif Libraries

Problems can be seen when using Export products and trying to convert graphics files. For example, zero-byte graphics files are generated if the technology cannot find the proper Motif library. You can check to see if this is the case by running the following command:

ldd libos_xwin.so

This prints a list of the dependencies that this library has. If the line for the Motif library is similar to the following then your system may not have a compatible Motif library:

libXm.so.3 => not found

The solution is to install a compatible Motif library and use it to build your application. Often, the installation discs for your particular Linux platform have the proper libraries. If your installation discs do not have the libraries, instructions for downloading a binary rpm can be found at http://rpmfind.net/linux/RPM.

If you are doing development, you must use the proper header files, as well.

The following is the Motif library version used by Oracle when building and testing the Outside In binaries.

	x86 Linux - OpenMotif v. 2.2.3

If a directory needs to be specified for the compiler to find the shared libraries, the $LD_LIBRARY_PATH environment variable is recommended. This prevents the compiler from hard-coding the library's current directory into the executable as the only directory to search for the library at run time. Instead, the system first searches the directories specified by $LD_LIBRARY_PATH for the library.

GLIBC and Compiler Versions

The following table indicates the compiler version used and the minimum required version of the GNU standard C library needed for Outside In operation.

	Distribution	Compiler Version	GLIBC Version
	x86 Linux

	3.3.2

	libc.so.6 (2.3.2 or newer)

Other Libraries

In addition to libc.so.6, Outside In is dependent upon the following libraries:

	libXm.so.3 (in particular, libXm.so.3.0.2 or newer, due to issues in OpenMotif 2.2.2)

	libXt.so.6

	libstdc++.so.6

	libgcc_so.1

libgcc_s.so.1 was introduced with GCC 3.0, so any distribution based on a pre-GCC 3.0 compiler does not include libgcc_s.so.1.

Compiling and Linking

The libsc_ex.so and libsc_da.so are the only libraries that must be linked with your applications. They can be loaded when your application starts by linking them directly at compile time or they can be loaded dynamically by your application using library load functions (for example, dlopen).

To use Image Export annotation functions, you must also link to libsc_ca.so, requiring a separate license to Outside In Content Access or Search Export. Contact your Outside In sales representative for more information.

The shared libraries are dependent on the presence of the X libraries Xm, Xt and X11 if vector graphics support is required. It is the application developer's responsibility to ensure that the needed functions from these libraries are present before the product libraries are used.

The following are example command lines used to compile the sample application exsimple from the /sdk/samplecode directory. This command line is only an example. The actual command line required on the developer's system may vary.

The example assumes that the include and library file search paths for the technology libraries and any required X libraries are set correctly. If they are not set correctly, the search paths for the include and/or library files must be explicitly specified via the -I include file path and/or -L library file path options, respectively, so the compiler and linker can locate all required files.

The -L/usr/X11R6/lib option is also available.

Linux 32-bit

gcc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c -I/usr/local/include -I../../common -L../../demo -L/usr/local/lib -lsc_ex -lsc_da -Wl,-rpath,../../demo -Wl,-rpath,'${ORIGIN}'

Linux 64-bit

gcc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c -I/usr/local/include -I../../common -L../../demo -L/usr/local/lib -lsc_ex -lsc_da -DUNIX_64 -Wl,-rpath,../../demo -Wl,-rpath,'${ORIGIN}'

Oracle Solaris Compiling and Linking

Note:
These products do not support the "Solaris BSD" mode.

All libraries should be installed into a single directory. The libsc_ex.so, and libsc_da.so libraries must be linked with your application. It can be loaded when your application starts by linking them directly at compile time or they can be loaded dynamically by your application using library load functions (for example, dlopen).

To use Image Export annotation functions, you must link to libsc_ca.sl, requiring a separate license to Outside In Content Access or Search Export. Contact your Outside In sales representative for more information.

The shared libraries are dependent on the presence of the X libraries Xm, Xt and X11 if vector graphics support is required. It is the application developer's responsibility to ensure that the needed functions from these libraries are present before the product libraries are used.

The following is an example command line used to compile the sample application exsimple from the /sdk/samplecode directory. This command line is only an example. The actual command line required on the developer's system may vary. The example assumes that the include and library file search paths for the technology libraries and any required X libraries are set correctly. If they are not set correctly, the search paths for the include and/or library files must be explicitly specified via the -I include file path> and/or -L library file path options, respectively, so that the compiler and linker can locate all required files.

Developers may need to use the -xcc flag to allow C++ style comments.

Oracle Solaris SPARC

cc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c -I/usr/include -I/usr/dt/share/include -I../../common -L../../demo -L/usr/lib -L/lib -lsc_ex -lsc_da -Wl,-R,../../demo -Wl,-R,'${ORIGIN}'

Note: When running the 32-bit SPARC binaries on Solaris 9 systems, you may see the following error:

ld.so.1: simple: fatal: libm.so.1: version `SUNW_1.1.1' not found
(required by file ./libsc_vw.so)

This is due to a missing system patch. Please apply one of the following patches (or its successor) to your system to correct.

	For Solaris 9 - Patch 111722-04

Oracle Solaris x86

Note:
Your system will require Solaris patch 108436, which contains the C++ library libCstd.so.1.

cc -w -o ../exsimple/unix/exsimple ../exsimple/unix/exsimple.c -I/usr/include -I/usr/dt/share/include -I../../common -L../../demo -L/usr/lib -L/lib -lsc_ex -lsc_da -Wl,-R,../../demo -Wl,-R,'${ORIGIN}'

Oracle Solaris X Server Display Memory Issue

On some Solaris systems, the X Server does not free the memory for a display until the last close display call is made on that display. This problem is limited strictly to the Oracle Solaris OS and does not affect any other platforms, UNIX or otherwise.

This problem is most noticeable when doing large amounts of graphics processing, when system memory usage can grow without bound. This memory can only be freed by shutting down the X Windows display the user pointed the technology to use via the DISPLAY environment variable. If that display is the "console" display, the user must log out of the console in order to free the memory. Users may be able to avoid this problem by choosing a display that they can close periodically.

6 Data Access Common Functions

This chapter describes common Data Access functions. The Data Access module is common to all Outside In technologies. It provides a way to open a generic handle to a source file. This handle can then be used in the functions described in this chapter.

This chapter includes the following sections:

	Deprecated Functions

	DAInitEx

	DADeInit

	DAOpenDocument

	DAOpenSubdocumentById

	DAOpenNextDocument

	DACloseDocument

	DARetrieveDocHandle

	DASetOption

	DAGetOption

	DAGetFileId

	DAGetFileIdEx

	DAGetErrorString

	DAGetTreeCount

	DAGetTreeRecord

	DAOpenTreeRecord

	DASaveTreeRecord

	DACloseTreeRecord

	DASetStatCallback

	DASetFileAccessCallback

Deprecated Functions

DAInit and DaThreadInit have both been deprecated. DAInitEx now replaces these two functions. All new implementations should use DAInitEX, although the other two functions will continue to be supported.

DAInitEx

This function tells the Data Access module to perform any necessary initialization it needs to prepare for document access. This function must be called before the first time the application uses the module to retrieve data from any document. This function supersedes the old DAInit and DAThreadInit functions.

Note:
DAInitEx should only be called once per application, at application startup time. Any number of documents can be opened for access between calls to DAInitEx and DADeInit. If DAInitEx succeeds, DADeInit must be called regardless of any other API calls.

If the ThreadOption parameter is set to something other than DATHREAD_INIT_NOTHREADS, then this function's preparation includes setting up mutex function pointers to prevent threads from clashing in critical sections of the technology's code. The developer must actually code the threads after this function has been called. DAInitEx should be called only once per process and should be called before the developer's application begins the thread.

Note:
Multiple threads are supported for all Windows platforms, the 32-bit versions of Linux x86 and Solaris SPARC, Linux x64 and Solaris SPARC 64. Failed initialization of the threading function will not impair other API calls. If threading isn't initialized or fails, stub functions are called instead of mutex functions.

Prototype

DAERR DAInitEx(VTSHORT ThreadOption, VTDWORD dwFlags);

Parameters

	ThreadOption: can be one of the following values:

	DATHREAD_INIT_NOTHREADS: No thread support requested.

	DATHREAD_INIT_PTHREADS: Support for PTHREADS requested.

	DATHREAD_INIT_NATIVETHREADS: Support for native threading requested. Supported only on Microsoft Windows platforms and Oracle Solaris.

	dwFlags: can be one or more of the following flags OR-ed together

	OI_INIT_DEFAULT: Options Load and Save are performed normally

	OI_INIT_NOSAVEOPTIONS: The options file will not be saved on exit

	OI_INIT_NOLOADOPTIONS: The options file will not be read during initialization.

Return Values

	DAERR_OK: If the initialization was successful. Otherwise, one of the other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

DADeInit

This function tells the Data Access module that it will not be asked to read additional documents, so it should perform any cleanup tasks that may be necessary. This function should be called at application shutdown time, and only if the module was successfully initialized with a call to DAInitEx.

Prototype

DAERR DADeInit();

Return Values

	DAERR_OK: If the de-initialization was successful. Otherwise, one of the other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

DAOpenDocument

Opens a source file to make it accessible by one or more of the data access technologies. If DAOpenDocument succeeds, DACloseDocument must be called regardless of any other API calls.

For IO types other than IOTYPE_REDIRECT, the subdocument specification may be specified as part of the file's path. This is accomplished by appending a question mark delimiter to the path, followed by the subdocument specification. For example, to specify the third item within the file c:\docs\file.zip, specify the path c:\docs\file.zip?item.3 in the call to DAOpenDocument. DAOpenDocument always attempts to open the specification as a file first. In the unlikely event there is a file with the same name (including the question mark) as a file plus the subdocument specification, that file is opened instead of the archive item.

To take advantage of this feature when providing access to the input file using redirected IO, a subdocument specification must be provided via a response to an IOGetInfo message, IOGETINFO_SUBDOC_SPEC. To specify an item in an archive, first follow the standard redirected IO methods to provide a BASEIO pointer to the archive file itself. To specify an item within the archive, a redirected IO object must respond to the IOGETINFO_SUBDOC_SPEC message by copying to the supplied buffer the subdocument specification of the archive item to be opened. This message is received during the processing of DAOpenDocument.

Prototype

DAERR DAOpenDocument(
 VTLPHDOC lphDoc,
 VTDWORD dwSpecType,
 VTLPVOID pSpec,
 VTDWORD dwFlags);

Parameters

	lphDoc: Pointer to a handle that will be filled with a value uniquely identifying the document to data access. The developer uses this handle in subsequent calls to data access to identify this particular source file. This is not an operating system file handle.

	dwSpecType: Describes the contents of pSpec. Together, dwSpecType and pSpec describe the location of the source file.

Note:
The values used within IOTYPE_ARCHIVEOBJECT, IOTYPE_LINKEDOBJECT, and IOTYPE_OBJECT may change if different options are applied, with different versions of the technology, or after patches are applied.

Must be one of the following values:

	IOTYPE_ANSIPATH: Windows only. pSpec points to a NULL-terminated full path name using the ANSI character set and FAT 8.3 (Win16) or NTFS (Win32 and Win64) file name conventions.

	IOTYPE_UNICODEPATH: Windows only. pSpec points to a NULL-terminated full path name using the Unicode character set and NTFS (Win32 and Win64) file name conventions.

	IOTYPE_UNIXPATH: UNIX platforms only. pSpec points to a NULL-terminated full path name using the system default character set and UNIX path conventions. Unicode paths can be accessed on UNIX platforms by using a UTF-8 encoded path with IOTYPE_UNIXPATH.

	IOTYPE_REDIRECT: All platforms. pSpec points to a developer-defined struct that allows the developer to redirect the IO routines used to read the file. For more information, see Redirected IO.

	IOTYPE_ARCHIVEOBJECT: All platforms. Opens an embedded archive object for data access. pSpec points to a structure IOSPECARCHIVEOBJECT (for details, see IOSPECARCHIVEOBJECT Structure) that has been filled with values returned in a SCCCA_OBJECT content entry from Content Access.

	IOTYPE_LINKEDOBJECT: All platforms. Opens an object specified by a linked object for data access. pSpec points to a structure IOSPECLINKEDOBJECT (see IOSPECLINKEDOBJECT Structure) that has been filled with values returned in an SCCCA_BEGINTAG or SCCCA_ENDTAG with a subtype of SCCCA_LINKEDOBJECT content entry from Content Access.

	pSpec: File location specification.

	dwFlags: The low WORD is the file ID for the document (0 by default). If you set the file ID incorrectly, the technology fails. If set to 0, the file identification technology determines the input file type automatically. The high WORD should be set to 0.

Return Values

	DAERR_OK: Returned if the open was successful. Otherwise, one of the other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

IOSPECLINKEDOBJECT Structure

Structure used by DAOpenDocument.

Prototype

typedef struct IOSPECLINKEDOBJECTtag
 {
 VTDWORD dwStructSize;
 VTSYSPARAM hDoc;
 VTDWORD dwObjectId; /* Object identifier. */
 VTDWORD dwType; /* Linked Object type */
 /* (SO_LOCATORTYPE_*) */
 VTDWORD dwParam1; /* parameter for DoSpecial call */
 VTDWORD dwParam2; /* parameter for DoSpecial call */
 VTDWORD dwReserved1; /* Reserved. */
 VTDWORD dwReserved2; /* Reserved. */
} IOSPECLINKEDOBJECT, * PIOSPECLINKEDOBJECT;

IOSPECARCHIVEOBJECT Structure

Structure used by DAOpenDocument.

Prototype

typedef struct IOSPECARCHIVEOBJECTtag
 {
 VTDWORD dwStructSize;
 VTDWORD hDoc; /* Parent Doc hDoc */
 VTDWORD dwNodeId; /* Node ID */
 VTDWORD dwStreamId;
 VTDWORD dwReserved1; /* Must always be 0 */
 VTDWORD dwReserved2; /* Must always be 0 */
} IOSPECARCHIVEOBJECT, * PIOSPECARCHIVEOBJECT;

DAOpenSubdocumentById

Allows an embedding to be opened using the integer value of the object_id attribute from the locator element.

Prototype

DAERR DAOpenSubdocumentById(
 VTHDOC hDoc,
 VTLPHDOC lphDoc,
 VTDWORD pSpec,
 VTDWORD dwFlags);

Parameters

	hDoc: The document handle for the document containing the locator.

	lphDoc: Receives the document handle for the embedding.

	dwSubdocumentId: The integer value of the object_id attribute from the locator.

	dwFlags: Must be set to 0.

DAOpenNextDocument

Allows an existing Export or Data Access document handle to be used or reused when opening a new document, enabling options to be preserved across multiple exports, or allowing multiple documents to be exported to the same output destination.

This function uses an existing "reference" handle as a starting point for opening another document. The reference handle may be either a document handle (obtained through DAOpenDocument) or an export handle (obtained via a call to EXOpenExport). The difference between using these two handle types is that certain document specification types (subdocuments of the original document) will not be successfully opened when a document handle is used as the reference handle. If an Export handle is used as the reference handle, subdocument specifications are allowed.

Since the same handle is used multiple times, only a single call to DACloseDocument is needed. Each document is actually closed when the next document is opened; successive calls to DAOpenNextDocument free the resources used in previous calls.

Using this function allows developers to make multiple calls to the EX functions, without having to re-set options every time. Options can be set once for the original document, and retained for each subsequent document.

Additionally, some export libraries allow exporting multiple source documents to a single output document. Currently, this is supported for PDF and multi-page TIFF output only. To do this, a developer would export the first document normally, then call DAOpenNextDocument to open the subsequent source documents, followed by a call to EXRunExport. EXOpenExport and EXCloseExport should only be called once each for this type of export.

Prototype

DAERR DAOpenNextDocument(
 VTHANDLE hReference,
 VTDWORD dwSpecType,
 VTLPVOID pSpec,
 VTDWORD dwFlags);

Parameters

	hReference: this VTHANDLE value may be either an hDoc, the VTHDOC document handle obtained through a prior call to DAOpenDocument; or an hExport, the VTHEXPORT handle obtained from a prior call to EXOpenExport. This is not an operating system file handle.

	dwSpecType: Describes the contents of pSpec. The dwSpecType values allowed by DAOpenDocument for this parameter are acceptable, with the exceptions that IOTYPE_ARCHIVEOBJECT and IOTYPE_LINKEDOBJECT are only allowed when hReference is an Export handle, obtained via a call to EXOpenExport.

	pSpec: File location specification.

	dwFlags: The low WORD is the file ID for the document (0 by default). If you set the file ID incorrectly, the technology fails. If set to 0, the file identification technology determines the input file type automatically. The high WORD should be set to 0.

Return Values

	DAERR_OK: Returned if the open was successful. Otherwise, one of the other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

	DAERR_FEATURENOTAVAIL: Returned if the value specified by dwSpecType is not one of the supported spec types for this operation.

DACloseDocument

This function is called to close a file opened by the reader that has not encountered a fatal error.

Prototype

DAERR DACloseDocument(
 VTHDOC hDoc);

Parameters

	hDoc: Identifier of open document. Must be a handle returned by the DAOpenDocument function.

Return Value

	DAERR_OK: Returned if close succeeded. Otherwise, one of the other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

DARetrieveDocHandle

This function returns the document handle associated with any type of Data Access handle. This allows the developer to only keep the value of hItem, instead of both hItem and hDoc.

Prototype

DAERR DARetrieveDocHandle(
 VTHDOC hItem,
 VTLPHDOC phDoc);

Parameters

	hItem: Identifier of open document. May be the subhandle returned by the DAOpenDocument or DAOpenTreeRecord functions in the data access submodule. Passing in an hDoc created by DAOpenDocument for this parameter results in an error.

	phDoc: Pointer to a handle to be filled with the document handle associated with the passed subhandle.

Return Value

	DAERR_OK: Returned if the handle in phDoc is valid. Otherwise, one of the other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

DASetOption

This function is called to set the value of a data access option.

Prototype

DAERR DASetOption(
 VTHDOC hDoc,
 VTDWORD dwOptionId,
 VTLPVOID pValue,
 VTDWORD dwValueSize);

Parameters

	hDoc: Identifier of open document. May be a VTHDOC returned by the DAOpenDocument function, or the subhandle returned by the DAOpenDocument or DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, etc.). Setting an option for a VTHDOC affects all subhandles opened under it, while setting an option for a subhandle affects only that handle.

If this parameter is NULL, then setting the option affects all documents opened thereafter. Once an option is set using the NULL handle, this option becomes the default option thereafter. This parameter should only be set to NULL if the option being set can take that value.

	dwOptionId: The identifier of the option to be set.

	pValue: Pointer to a buffer containing the value of the option.

	dwValueSize: The size in bytes of the data pointed to by pValue. For a string value, the NULL terminator should be included when calculating dwValueSize.

Return Value

	DAERR_OK: Returned if DASetOption succeeded. Otherwise, one of the other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

DAGetOption

This function is called to retrieve the value of a data access option. The results of a call to this option are only valid if DASetOption has already been called on the option.

Prototype

DAERR DAGetOption(
 VTHDOC hItem,
 VTDWORD dwOptionId,
 VTLPVOID pValue,
 VTLPDWORD pSize);

Parameters

	hItem: Identifier of open document. May be a VTHDOC returned by the DAOpenDocument function, or the subhandle returned by the DAOpenDocument or DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, etc.). Getting an option for a VTHDOC gets the value of that option for that handle, which may be different than the subhandle's value.

	dwOptionId: The identifier of the option to be returned.

	pValue: Pointer to a buffer containing the value of the option.

	pSize: This VTDWORD should be initialized by the caller to the size of the buffer pointed to by pValue. If this size is sufficient, the option value is copied into pValue and pSize is set to the actual size of the option value. If the size is not sufficient, pSize is set to the size of the buffer needed for the option and an error is returned.

Return Value

	DAERR_OK: Returned if DAGetOption was successful. Otherwise, one of the other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

DAGetFileId

This function allows the developer to retrieve the format of the file based on the technology's content-based file identification process. This can be used to make intelligent decisions about how to process the file and to give the user feedback about the format of the file they are working with.

Note: in cases where File ID returns a value of FI_UNKNOWN, then this function will apply the Fallback Format before returning a result.

Prototype

DAERR DAGetFileId(
 VTHDOC hDoc,
 VTLPDWORD pdwFileId);

Parameters

	hDoc: Identifier of open document. May be a VTHDOC returned by the DAOpenDocument function, a VTHEXPORT returned by the EXOpenExport function, or the subhandle returned by the DAOpenDocument or DAOpenTreeRecord functions (VTHEXPORT, VTHCONTENT, VTHTEXT, etc.).

	pdwFileId: Pointer to a DWORD that receives a file identification number for the file. These numbers are defined in sccfi.h.

Return Value

	DAERR_OK: Returned if DAGetFileId was successful. Otherwise, one of the other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

DAGetFileIdEx

This function allows the developer to retrieve the format of the file based on the technology's content-based file identification process. This can be used to make intelligent decisions about how to process the file and to give the user feedback about the format of the file they are working with. This function has all the functionality of DAGetFileID and adds the ability to return the raw FI value; in other words, the value returned by normal FI, without applying the FallbackFI setting.

Prototype

DAERR DAGetFileIdEx(
 VTHDOC hDoc,
 VTLPDWORD pdwFileId,
 VTDWORD dwFlags);

Parameters

	hDoc: Identifier of open document. May be a VTHDOC returned by the DAOpenDocument function, or the subhandle returned by the DAOpenDocument or DAOpenTreeRecord functions (VTHEXPORT, VTHCONTENT, VTHTEXT, etc.).

	pdwFileId: Pointer to a DWORD that receives a file identification number for the file. These numbers are defined in sccfi.h.

	dwFlags: DWORD that allows user to request specific behavior.

	DA_FILEINFO_RAWFI: This flag tells DAGetFileIdEx() to return the result of the File Identification operation before Extended File Ident. is performed and without applying the FallbackFI value.

Return Value

	DAERR_OK: Returned if DAGetFileIdEx was successful. Otherwise, one of the other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned. See the following tables for examples of expected output depending on the value of various options.

Values with RAWFI turned off

	Input file type	ExtendedFI	FallbackID	DAGetFileId	DAGetFileIdEx
	true binary

	off

	fallback value

	fallback value

	fallback value

	true binary

	on

	fallback value

	fallback value

	fallback value

	true text

	off

	fallback value

	fallback value

	fallback value

	true text

	on

	fallback value

	40XX

	40XX

Values with RAWFI turned on

	Input file type	ExtendedFI	FallbackID	DAGetFileId	DAGetFileIdEx
	true binary

	off

	fallback value

	fallback value

	1999

	true binary

	on

	fallback value

	fallback value

	1999

	true text

	off

	fallback value

	fallback value

	1999

	true text

	on

	fallback value

	40XX

	1999

DAGetErrorString

This function returns to the developer a string describing the input error code. If the error string returned does not fit the buffer provided, it is truncated.

VTVOID DAGetErrorString(
 DAERR deError,
 VTLPVOID pBuffer,
 VTDWORD dwBufSize);

Parameters

	Error: Error code passed in by the developer for which an error message is to be returned.

	pBuffer: This buffer is allocated by the caller and is filled in with the error message by this routine. The error message will be a NULL-terminated string.

	dwBufSize: Size of what pBuffer points to in bytes.

Return Value

	none

DAGetTreeCount

This function is called to retrieve the number of records in an archive file.

DAERR DAGetTreeCount(
 VTHDOC hDoc,
 VTLPDWORD lpRecordCount);

Parameters

	hDoc: Identifier of open document. May be a VTHDOC returned by the DAOpenDocument function, or the subhandle returned by any of the DAOpenDocument or DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, etc.).

	lpRecordCount: A pointer to a VTLPDWORD that is filled with the number of stored archive records.

Return Value

	DAERR_OK: DAGetTreeCount was successful. Otherwise, one of the other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

	DAERR_BADPARAM: The selected file does not contain an archive section, or the requested record does not exist.

DAGetTreeRecord

This function is called to retrieve information about a record in an archive file.

DAERR DAGetTreeRecord(
 VTHDOC hDoc,
 PSCCDATREENODE pTreeNode);

Parameters

	hDoc: Identifier of open document. May be a VTHDOC returned by the DAOpenDocument function, or the subhandle by any of the DAOpenDocument or DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, etc.).

	pTreeNode: A pointer to a PSCCDATREENODE structure that is filled with information about the selected record.

Return Values

	DAERR_OK: DAGetTreeRecord was successful. Otherwise, one of the other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

	DAERR_BADPARAM: The selected file does not contain an archive section, or the requested record does not exist.

	DAERR_EMPTYFILE: Empty file.

	DAERR_PROTECTEDFILE: Password protected or encrypted file.

	DAERR_SUPFILEOPENFAILS: Supplementary file open failed.

	DAERR_FILTERNOTAVAIL: The file's type is known, but the appropriate filter is not available.

	DAERR_FILTERLOADFAILED: An error occurred during the initialization of the appropriate filter.

SCCDATREENODE Structure

This structure is passed by the OEM through the DAGetTreeRecord function. The structure is defined in sccda as follows:

typedef struct SCCDATREENODEtag{
 VTDWORD dwSize;
 VTDWORD dwNode;
 VTBYTE szName[1024];
 VTDWORD dwFileSize;
 VTDWORD dwTime;
 VTDWORD dwFlags;
 VTDWORD dwCharSet;
 } SCCDATREENODE, *PSCCDATREENODE;

Parameters

	dwSize: Must be set by the OEM to sizeof(SCCDATREENODE).

	dwNode: The number of the record to retrieve information about. The first node is node 0.

	szName: A buffer to hold the name of the record.

	dwFileSize: Returns the file size, in bytes, of the requested record.

	dwTime: Returns the timestamp of the requested record, in MS‐DOS time.

	dwFlags: Returns additional information about the node. It can be a combination of the following:

	SCCDA_TREENODEFLAG_FOLDER: Indicating that the selected node is a folder and not a file.

	SCCDA_TREENODEFLAG_SELECTED: Indicating that the node is selected.

	SCCDA_TREENODEFLAG_FOCUS: Indicating that the node has focus.

	SCCDA_TREENODEFLAG_ENCRYPT: Indicating that the node is encrypted and can not be decrypted.

	SCCDA_TREENODEFLAG_ARCKNOWNENCRYPT: indicating that the node is encrypted with an unknown encryption and can not be decrypted.

	SCCDA_TREENODEFLAG_BUFFEROVERFLOW: the name of the node was too long for the szName field.

	dwCharSet: Returns the SO_* (charsets.h) character set of the characters in szName. The output character set is either the default native environment character set or Unicode if the SCCOPT_SYSTEMFLAGS option is set to SCCVW_SYSTEM_UNICODE.

DAOpenTreeRecord

This function is called to open a record within an archive file and make it accessible by one or more of the data access technologies.

Search Export Only: Search Export's default behavior is to automatically open and process the contents of an archive. Use DAOpenTreeRecord and SCCOPT_XML_SEARCHML_FLAGS to change the default behavior if discrete processing of each document in an archive is desired.

DAERR DAOpenTreeRecord(
 VTHDOC hDoc,
 VTLPHDOC lphDoc,
 VTDWORD dwRecord);

lphDoc is not a file handle.

Parameters

	hDoc: Identifier of open document. May be a VTHDOC returned by the DAOpenDocument function, or the subhandle returned by the DAOpenDocument or DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, etc.).

	lphDoc: Pointer to a handle that is filled with a value uniquely identifying the document to data access. The developer uses this handle in subsequent calls to data access to identify this particular document.

	dwRecord: The record in the archive file to be opened.

Return Value

	DAERR_OK: Returned if DAOpenTreeRecord was successful. Otherwise, one of the other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

DASaveTreeRecord

This function is called to extract a record in an archive file to disk.

DAERR DASaveTreeRecord(
 VTHDOC hDoc,
 VTDWORD dwRecord,
 VTDWORD dwSpecType,
 VTLPVOID pSpec,
 VTDWORD dwFlags);

Parameters

	hDoc: Handle that uniquely identifies the document to data access. This is not an operating system file handle.

	dwRecord: The record in the archive file to be extracted.

	dwSpecType: Describes the contents of pSpec. Together, dwSpecType and pSpec describe the location of the source file to which the file will be extracted. Must be one of the following values:

	IOTYPE_ANSIPATH: Windows only. pSpec points to a NULL-terminated full path name using the ANSI character set and FAT 8.3 (Win16) or NTFS (Win32 and Win64) filename conventions.

	IOTYPE_REDIRECT: Specifies that redirected I/O will be used to save the file.

	IOTYPE_UNICODEPATH: Windows only. pSpec points to a NULL-terminated full path name using the Unicode character set and NTFS (Win32 and Win64) file name conventions.

	IOTYPE_UNIXPATH: UNIX platforms only. pSpec points to a NULL-terminated full path name using the system default character set and UNIX path conventions. Unicode paths can be accessed on UNIX platforms by using a UTF-8 encoded path with IOTYPE_UNIXPATH.

	pSpec: File location specification. See the descriptions for individual dwSpecType values.

	dwFlags: Currently not used. Should be set to 0.

Return Values

	DAERR_OK: Returned if the save was successful. Otherwise, one of the other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

	DAERR_UNSUPPORTEDCOMP: Unsupported Compression Encountered.

	DAERR_PROTECTEDFILE: The file is encrypted.

	DAERR_BADPARAM: The request option is invalid. The record is possibly a directory.

Otherwise, one of the other DAERR_ values in sccda.h is returned.

Currently, only extracting a single file is supported. There is a known limitation where files in a Microsoft Binder file cannot be extracted.

DACloseTreeRecord

This function is called to close an open record file handle.

Search Export Only: Search Export's default behavior is to automatically open and process the contents of an archive. Use DACloseTreeRecord and SCCOPT_XML_SEARCHML_FLAGS to change the default behavior if discrete processing of each document in an archive is desired.

DAERR DACloseTreeRecord(
 VTHDOC hDoc);

Parameters

	hDoc: Identifier of open record document.

Return Value

	DAERR_OK: Returned if DACloseTreeRecord was successful. Otherwise, one of the other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

DASetStatCallback

This function sets up a callback that the technology periodically calls to verify the file is still being processed. The customer can use this with a monitoring process to help identify files that may be hung. Because this function is called more frequently than other callbacks, it is implemented separately.

Use of the Status Callback Function

An application's status callback function will be called periodically by Outside In to provide a status message. Currently, the only status message defined is OIT_STATUS_WORKING, which provides a "sign of life" that can be used during unusually long processing operations to verify that Outside In has not stopped working. If the application decides that it would not like to continue processing the current document, it may use the return value from this function to tell Outside In to abort.

The status callback function has two return values defined:

	OIT_STATUS_CONTINUE: Tells Outside In to continue processing the current document.

	OIT_STATUS_ABORT: Tells Outside In to stop processing the current document.

The following is an example of a minimal status callback function.

VTDWORD MyStatusCallback(VTHANDLE hUnique, VTDWORD dwID, VTSYSVAL
pCallbackData, VTSYSVAL pAppData)
{
 if(dwID == OIT_STATUS_WORKING)
 {
 if(checkNeedToAbort(pAppData))
 return (OIT_STATUS_ABORT);
 }

 return (OIT_STATUS_CONTINUE);
}

Prototype

DAERR DASetStatCallback(DASTATCALLBACKFN pCallback,
 VTHANDLE hUnique,
 VTLPVOID pAppData)

Parameters

	pCallback: Pointer to the callback function.

	hUnique: Handle that may either be an hDoc or an hExport.

	pAppData: User-defined data. Outside In never uses this value other than to provide it to the callback function.

The callback function should be of type DASTATCALLBACKFN. This function has the following signature:

(VTHANDLE hUnique, VTDWORD dwID, VTSYSVAL pCallbackData, VTSYSVAL pAppData)

	hUnique: Handle that may either be an hDoc or an hExport

	dwID: Handle that indicates the callback status.

	OIT_STATUS_WORKING

	OIT_STATUS_CONTINUE

	OIT_STATUS_CANCEL

	OIT_STATUS_ABORT

	pCallbackData: Currently always NULL

	pAppData: User-defined data provided to DASetStatCallback

Return Values

	DAERR_OK: If successful. Otherwise, one of the other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

DASetFileAccessCallback

This function sets up a callback that the technology will call into to request information required to open an input file. This information may be the password of the file or a support file location.

Use of the File Access Callback

When the technology encounters a file that requires additional information to access its contents, the application's callback function will be called for this information. Currently, only two different forms of information will be requested: the password of a document, or the file used by Lotus Notes to authenticate the user information.

The status callback function has two return values defined:

	SCCERR_OK: Tells Outside In that the requested information is provided.

	SCCERR_CANCEL: Tells Outside In that the requested information is not available.

This function will be repeatedly called if the information provided is not valid (such as the wrong password). It is the responsibility of the application to provide the correct information or return SCCERR_CANCEL.

Prototype

DAERR DASetFileAccessCallback (DAFILEACCESSCALLBACKFN pCallback);
 VTHANDLE hUnique,
 VTLPVOID pAppData)

Parameters

	pCallback: Pointer to the callback function.

Return Values

	DAERR_OK: If successful. Otherwise, one of the other DAERR_ values defined in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

The callback function should be of type DAFILEACCESSCALLBACKFN. This function has the following signature:

typedef VTDWORD (* DAFILEACCESSCALLBACKFN)(VTDWORD dwID, VTSYSVAL pRequestData, VTSYSVAL pReturnData, VTDWORD dwReturnDataSize);

	dwID – ID of information requested:

	OIT_FILEACCESS_PASSWORD – Requesting the password of the file

	OIT_FILEACCESS_NOTESID – Requesting the Notes ID file location

	pRequestData – Information about the file.

typedef struct {
 VTDWORD dwSize; /* size of this structure */
 VTWORD wFIId; /* FI id of reference file */
 VTDWORD dwSpecType; /* file spec type */
 VTVOID *pSpec; /* pointer to a file spec */
 VTDWORD dwRootSpecType; /* root file spec type */
 VTVOID *pRootSpec; /* pointer to the root file spec */
 VTDWORD dwAttemptNumber; /* The number of times the callback has */
 /* already been called for the currently */
 /* requested item of information */
} IOREQUESTDATA, * PIOREQUESTDATA;

	pReturnData – Pointer to the buffer to hold the requested information – for OIT_FILEACCESS_PASSWORD and OIT_FILEACCESS_NOTESID, the buffer is an array of WORD characters.

	dwReturnDataSize – Size of the return buffer.

Note:
Not all formats that use passwords are supported. Only Microsoft Office binary (97-2003), Microsoft Office 2007, Microsoft Outlook PST 97-2013, Lotus NSF, PDF (with RC4 encryption), and Zip (with AES 128 & 256 bit, ZipCrypto) are currently supported.

Passwords for PST/OST files must be in the Windows single-byte character set. For example, Cyrillic characters should use the 1252 character set. For PST/OST files, Unicode password characters are not supported.

7 Export Functions

This chapter outlines the basic functions used to initiate the conversion of documents using the Image Export API.

This chapter covers the following types of functions:

	General Functions

	Annotation Functions

General Functions

The following functions are general
functions used in most products.

This section includes
the following functions:

	EXOpenExport

	EXCALLBACKPROC

	EXCloseExport

	EXRunExport

	EXExportStatus

	EXGetProperties

EXOpenExport

This function is used to initiate the export process for a file that has been opened by DAOpenDocument. If EXOpenExport succeeds, EXCloseExport must be called regardless of any other API calls.

Note:
SCCOPT_GRAPHIC_TYPE = FI_NONE must be set (via DASetOption) before the call to EXOpenExport. Otherwise, the SCCUT_FILTEROPTIMIZEDFORTEXT speed enhancement for the PDF filter is not set. This will result in slower exports of PDFs when graphic output is not required.

Prototype

SCCERR EXOpenExport(
 VTHDOC hDoc,
 VTDWORD dwOutputId,
 VTDWORD dwSpecType,
 VTLPVOID pSpec,
 VTDWORD dwFlags,
 VTSYSPARAM dwReserved,
 VTLPVOID pCallbackFunc,
 VTSYSPARAM dwCallbackData,
 VTLPHEXPORT phExport);

phExport is not a file handle.

Parameters

	hDoc: A handle that identifies the source file, created by DAOpenDocument. Knowledge of this should only affect OEMs under the most unusual of circumstances.

	dwOutputId: File ID of the desired format of the output file. This value must be set to the following values:

	FI_GIF

	FI_JPEG2000

	FI_JPEGFIF

	FI_PNG

	FI_BMP

	FI_TIFF

	dwSpecType: Describes the contents of pSpec. Together, dwSpecType and pSpec describe the location of the initial output file. Must be one of the following values:

	IOTYPE_ANSIPATH: Windows only. pSpec points to a NULL-terminated full path name using the ANSI character set and FAT 8.3 (Win16) or NTFS (Win32 and Win64) file name conventions.

	IOTYPE_UNICODEPATH: Windows only. pSpec points to a NULL-terminated full path name using the Unicode character set and NTFS file name conventions.

Note:
If you are using IOTYPE_UNICODEPATH as a file spec type, if the calling application is providing an export callback function, you should set the option SCCOPT_EX_UNICODECALLBACKSTR to TRUE. Refer to the documentation on callbacks such as EX_CALLBACK_ID_CREATENEWFILE and the EXURLFILEIOCALLBACKDATAW structure for details

	IOTYPE_UNIXPATH: UNIX platforms only. pSpec points to a NULL-terminated full path name using the system default character set and UNIX path conventions. Unicode paths can be accessed on UNIX platforms by using a UTF-8 encoded path with IOTYPE_UNIXPATH.

	IOTYPE_REDIRECT: All platforms. pSpec may be NULL, and all file information specified in the callback routine. This allows the developer to redirect the IO routines used to write the files. For more information, see Redirected IO.

	pSpec: Initial output file location specification. This is either a pointer to a buffer or NULL. Usage differs depending on product:

	If the pointer is not NULL, the file referred to by the pSpec is assumed to be already open and the buffer's contents are based on the value of the dwSpecType parameter. See the descriptions for individual dwSpecType values in the preceding list.

	Passing NULL indicates the developer will use the EX_CALLBACK_ID_CREATENEWFILE callback to specify the initial output file instead of specifying it here. When this parameter is NULL, the developer must handle the EX_CALLBACK_ID_CREATENEWFILE callback or EXOpenExport returns an error.

	dwFlags: Must be set by developer to 0.

	dwReserved: Reserved. Must be set by developer to 0.

	pCallbackFunc: Pointer to a function of the type EXCALLBACKPROC. This function is used to give the developer control of certain aspects of the export process as they occur. For more details, see the definition for EXCALLBACKPROC in EXCALLBACKPROC. This parameter may be set to NULL if the developer does not wish to handle callbacks.

	dwCallbackData: This parameter is passed transparently to the function specified by pCallbackFunc. The developer may use this value for any purpose, including passing context information into the callback function.

	phExport: Pointer to a handle that receives a value uniquely identifying the document to the product routines. If the function fails, this value is set to VTHDOC_INVALID.

Return Values

	SCCERR_OK: If the open was successful. Otherwise, one of the other SCCERR_ values in sccerr.h is returned.

EXCALLBACKPROC

Type definition for the developer's callback function.

Prototype

DAERR (DA_ENTRYMODPTR EXCALLBACKPROC)(
 VTHEXPORT hExport,
 VTSYSPARAM dwCallbackData,
 VTDWORD dwCommandOrInfoId,
 VTLPVOID pCommandOrInfoData);

Parameters

	hExport: Export handle for the document. Must be a handle returned by the EXOpenExport function.

	dwCallbackData: This value is passed to EXOpenExport in the dwCallbackData parameter.

	dwCommandOrInfoId: Indicates the type of callback. For information about supported callbacks, see Callbacks.

	pCommandOrInfoData: Data associated with dwCommandOrInfoId. for information about supported callbacks, see Callbacks.

Return Values

	SCCERR_OK: Command was handled by the callback function.

	SCCERR_BADPARAM: One of the function parameters was invalid.

	SCCERR_NOTHANDLED: Callback function did not handle the command. This return value must be the default for all values of dwCommandOrInfoId the developer does not handle.

EXCloseExport

This function is called to terminate the export process for a file.

Prototype

SCCERR EXCloseExport(
 VTHEXPORT hExport);

Parameters

	hExport: Export handle for the document. Must be a handle returned by the EXOpenExport function.

Return Values

	SCCERR_OK: Returned if the close was successful. Otherwise, one of the other SCCERR_ values in sccerr.h is returned.

EXRunExport

This function is called to run the export process.

Prototype

SCCERR EXRunExport(
 VTHEXPORT hExport);

Parameters

	hExport: Export handle for the document. Must be a handle returned by the EXOpenExport function.

Return Values

	SCCERR_OK: Returned if the export was successful. Otherwise, one of the other SCCERR_ values in sccerr.h is returned.

EXExportStatus

This function is used to determine
if there were conversion problems during an export. It returns a structure
that describes areas of a conversion that may not have high fidelity
with the original document.

Prototype

SCCERR EXExportStatus(VTHEXPORT hExport, VTDWORD dwStatusType, VTLPVOID pStatus)

Parameters

	hExport: Export handle for the document.

	dwStatusType: Specifies which status
information should be filled in pStatus.

	EXSTATUS_SUBDOC – fills in the EXSUBDOCSTATUS
structure (only implemented in Search Export and XML Export).

	EXSTATUS_INFORMATION - fills in the
EXSTATUSINFORMATION structure.

	pStatus: Either a pointer to a EXSUBDOCSTATUS
or EXSTATUSINFORMATION data structure depending on the value of dwStatusType.

Return Values

SCCERR_OK: Returned if there
were no problems. Otherwise, one of the other SCCERR_ values in sccerr.h
is returned.

EXSUBDOCSTATUS Structure

The EXSUBDOCSTATUS structure
is defined as follows:

typedef struct EXSUBDOCSTATUStag
{
VTDWORD dwSize; /* size of this structure */
VTDWORD dwSucceeded; /* number of sub documents that were converted */
VTDWORD dwFailed; /* number of sub documents that were not converted */
} EXSUBDOCSTATUS;

EXSTATUSINFORMATION
Structure

The EXSTATUSINFORMATION structure
is defined as follows:

typedef struct EXSTATUSINFORMATIONtag
{
VTDWORD dwVersion; /* version of this structure */
VTBOOL bMissingMap; /* a PDF text run was missing the toUnicode table */
VTBOOL bVerticalText; /* a vertical text run was present */
VTBOOL bTextEffects; /* unsupported text effects applied (i.e.Word Art)*/
VTBOOL bUnsupportedCompression; /* a graphic had an unsupported compression */
VTBOOL bUnsupportedColorSpace; /* a graphic had an unsupported color space */
VTBOOL bForms; /* a sub documents had forms */
VTBOOL bRightToLeftTables; /* a table had right to left columns */
VTBOOL bEquations; /* a file had equations*/
VTBOOL bAliasedFont; /* A font was missing, but a font alias was used */
VTBOOL bMissingFont; /* The desired font wasn't present on the system */
VTBOOL bSubDocFailed; /* a sub document was not converted */
VTBOOL bTypeThreeFont; /* a Type 3 Font was encountered */
VTBOOL bUnsupportedShading; /* an unsupported shading pattern was encountered */
VTBOOL bInvalidHTML; /* An HTML parse error, as defined by the W3C, was encountered. */
VTBOOL bVectorObjectLimit; /* This flag does not apply to Image Export */
VTBOOL bInvalidAnnotationNotApplied; /* Unsupported annotation/redaction wasn't rendered */
} EXSTATUSINFORMATION;

#define EXSTATUSVERSION1
 0X0001

#define EXSTATUSVERSION2 0X0002

Note:
When processing the main document, Search Export, HTML Export, and
XML Export never use fonts, so bAliasedFont and bMissingFont will
never report TRUE; however, when doing graphics conversions XML Export
and HTML Export may use fonts, so bAliasedFont and bMissingFont may
report TRUE.

bVectorObjectLimit applies only to
WebView Export, and bInvalidAnnotationNotApplied applies only to Image
Export, PDF Export, and Web View Export.

EXGetProperties

This function returns information
about page visibility and slide notes.

Prototype
SCCERR EXGetProperties(
 VTHEXPORT hExport,
 VTDWORD dwID,
 EXPROPERTIES* exProperty);

Valid identifiers
are:

	EX_PAGEPROP_ISHIDDEN

Data Type: VTBOOL

	EX_PAGEPROP_SLIDENOTES

Data Type: EXPROPERTYSTRING

The EXPROPERTY data type is defined as follows:

typedef EXPROPERTIEStag {
 VTDWORD dwSize;
 VTBOOL bIsHidden; // page-level property
 EXPROPERTYSTRING slideNotes; // page-level property
} EXPROPERTIES;

The EXPROPERTYSTRING data type is defined
as follows:

typdef EXPROPERTYSTRINGtag {
 VTDWORD dwTextLen; // number of characters in the string
 VTLPWORD lpText; // Unicode string
} EXPROPERTYSTRING;

Annotation Functions

Annotations are a way to highlight,
insert, or delete text in product output, without modifying the original
document. Examples of ways annotations can be used by developers include:

	highlighting search hits

	inserting notes to comment on text
in the original document

	deleting sensitive information not
intended for viewing

Other Outside In products are required to ascertain
the proper character positions where the developer wishes to make
annotations. Currently, only Content Access and the SearchML output
format (available in Search Export) can be used to get these positions.
Although the Content Access module is included with the product, license
to use the Content Access API is not automatically granted with the
purchase of the Export software.

A separate license
for Content Access or Search Export is required to enable use of any
of the annotation features that are supported by Image Export. Contact
your Outside In sales representative for more information.

The following notes should be considered when using annotations:

	Processing annotations slow down
the conversion process to some extent.

	While other products in the Outside
In family support annotations, not all products support all types
of annotations.

	The ACC acronym (Actual Character Count)
is used in the following function descriptions. ACCs represent the
location of text in the source document data stream. They represent
a marker just before the location of text, and this marker is zero-based.

This is why startACC parameters should be set to an
ACC value that represents the position just prior to the first character
and endACC parameters should be set to an ACC value that represents
the position just past the last character in the range. For this reason,
users should make sure endACC values are 1 greater than the ACC of
the last character in the desired range of annotation.

	Calling EXCloseExport causes all annotations
set so far to be cleared.

This section includes the following functions:

	EXHiliteText

	EXInsertText

	EXHideText

	EXApplyHilites

	EXRedactText

EXHiliteText

This function allows the developer to change foreground and background colors of a range of characters from the input document.

The colors set by this option can be overridden by the equivalent settings in the ExInsertText function.

Prototype

DAERR EXHiliteText(
VTHEXPORT hExport,
PEXANNOHILITETEXT pHiliteText);

Parameters

	hExport: Export handle for the document. Must be the handle returned by the EXOpenExport() function.

	pHiliteText: Pointer to a structure containing the information on what to highlight and how to highlight it.

Structure

A C data structure defined in sccex.h as follows:

typedef struct EXANNOHILITETEXTtag
{
 VTDWORD dwSize;
 VTDWORD dwStartACC;
 VTDWORD dwEndACC; /* Last char to highlight +1 */
 VTDWORD dwOptions;
 SCCVWCOLORREF sForeground;
 SCCVWCOLORREF sBackground;
 VTWORD wCharAttr;
 VTWORD wCharAttrMask;
} EXANNOHILITETEXT;

	dwSize: Must be set by the developer to sizeof(EXANNOHILITETEXT).

	dwStartACC: The ACC of the first character to be highlighted.

	dwEndACC: ACC of the last character to be highlighted +1. Ranges for annotations have their end point set one past the ACC of the last character in the range. For example, to highlight a single character at ACC position 5, dwStartACC would be set to 5, and dwEndACC would be set to 5+1=6.

	dwOptions: Flags that provide highlight options. The default is all flags set to off. The valid flags are:

	SCCVW_USEFOREGROUND: Indicates that sForeground defines the foreground text color to apply to highlights.

	SCCVW_USEBACKGROUND: Indicates that sBackground defines the background text color to apply to highlights.

	SCCVW_USECHARATTR: Indicates that wCharAttr defines the character attributes to apply to highlights.

	sForeground: Defines the foreground text color to be used if the SCCVW_USEFOREGROUND flag is set in dwOptions. Set this value with the SCCANNORGB(red, green, blue) macro. The red, green and blue values are percentages of the color from 0-255 (with 255 being 100%). There is no default value for this parameter -- if it is set, the color must be specified.

	sBackground: Defines the background text color to be used if the SCCVW_USEBACKGROUND flag is set in dwOptions. Set this value with the SCCANNORGB(red, green, blue) macro. The red, green and blue values are percentages of the color from 0-255 (with 255 being 100%). There is no default value for this parameter. If it is set, the color must be specified.

	wCharAttr: Defines the character attributes to use if SCCVW_USECHARATTR is set in dwOptions. Only bits with the corresponding bits set in wCharAttrMask are affected. To turn off all character attributes, set this to SCCVW_CHARATTR_NORMAL (the default) and set wCharAttrMask to -1. Otherwise, set this to any of the following character attributes OR-ed together:

	SCCVW_CHARATTR_UNDERLINE

	SCCVW_CHARATTR_ITALIC

	SCCVW_CHARATTR_BOLD

	SCCVW_CHARATTR_STRIKEOUT

	SCCVW_CHARATTR_SMALLCAPS: Not supported.

	SCCVW_CHARATTR_OUTLINE: Not currently supported.

	SCCVW_CHARATTR_SHADOW: Not currently supported.

	SCCVW_CHARATTR_CAPS: Not currently supported.

	SCCVW_CHARATTR_SUBSCRIPT

	SCCVW_CHARATTR_SUPERSCRIPT

	SCCVW_CHARATTR_DUNDERLINE: Currently supported as single underline in Image Export.

	SCCVW_CHARATTR_WORDUNDERLINE

	SCCVW_CHARATTR_DOTUNDERLINE: Currently supported as single underline.

	wCharAttrMask: Defines which character attributes to change based on the settings of the bits in wCharAttr. Uses the same bit flags defined above for wCharAttr. Only attributes whose flag is set in this mask are modified to match the state specified by wCharAttr. This mask provides a way to distinguish between bits being set in wCharAttr because the developer wants to force a change to the character attributes and bits in wCharAttr that the developer would rather set to "inherit from the source document." The following are real-world examples of these interactions (all examples assume that SCCVW_USECHARATTR is set in dwOptions):

	Example 1: wCharAttr is set to SCCVW_CHARATTR_BOLD and wCharAttrMask is set to SCCVW_CHARATTR_BOLD. This results in bold being forced on in the annotation.

	Example 2: wCharAttr is set to SCCVW_CHARATTR_BOLD and wCharAttrMask is set to 0. This results in bold being left the way it was in the source document in the annotation.

	Example 3: wCharAttr is set to 0 and wCharAttrMask is set to SCCVW_CHARATTR_BOLD. This results in bold being forced off in the annotation.

The default value for this is 0, meaning that all the flags in wCharAttr are ignored.

Return Values

	DAERR_OK: Returned if the annotation was successfully added. Otherwise, one of the other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

EXInsertText

This function inserts a text string at a specified point in the document. The developer may also change character attributes or foreground or background colors. These settings override any provided by ExHiliteText.

Prototype

DAERR EXInsertText(
VTHEXPORT hExport,
PEXANNOINSERTTEXT pInsertText);

Parameters

	hExport: Export handle for the document. Must be the handle returned by the EXOpenExport() function.

	pInsertText: Pointer to a structure containing the information on the text to insert.

Structure

A C data structure defined in sccex.h as follows:

typedef struct EXANNOINSERTTEXTtag
{
 VTDWORD dwSize;
 VTDWORD dwTextACC;
 VTLPWORD pText;
 VTDWORD dwOptions;
 SCCVWCOLORREF sForeground;
 SCCVWCOLORREF sBackground;
 VTWORD wCharAttr;
 VTWORD wCharAttrMask;
} EXANNOINSERTTEXT;

	dwSize: Must be set by the OEM to sizeof(EXANNOINSERTTEXT).

	dwTextACC: Place to insert the string pointed to by pText. The string is inserted before the character normally at this ACC position. By default, the inserted string inherits the text attributes of the character at this position in the input document.

	pText: The text to be inserted. Specified as a Unicode string.

	dwOptions: This parameter sets flags that provide highlight options. The default is all flags off. The flags are:

	SCCVW_USEFOREGROUND: Indicates that sForeground defines the foreground text color to apply to highlights.

	SCCVW_USEBACKGROUND: Indicates that sBackground defines the background text color to apply to highlights.

	SCCVW_USECHARATTR: Indicates that wCharAttr defines the character attributes to apply to highlights.

	sForeground: Defines the foreground text color to be used if the SCCVW_USEFOREGROUND flag is set in dwOptions. Set this value with the SCCANNORGB(red, green, blue) macro. The red, green and blue values are percentages of the color from 0-255 (with 255 being 100%). There is no default value for this parameter -- if it is set, the color must be specified.

	sBackground: Defines the background text color to be used if the SCCVW_USEBACKGROUND flag is set in dwOptions. Set this value with the SCCANNORGB(red, green, blue) macro. The red, green and blue values are percentages of the color from 0-255 (with 255 being 100%). There is no default value for this parameter. If it is set, the color must be specified.

	wCharAttr: Defines the character attributes to use if SCCVW_USECHARATTR is set in dwOptions. Only bits with the corresponding bits set in wCharAttrMask are affected. To turn off all character attributes, set this to SCCVW_CHARATTR_NORMAL (the default) and set wCharAttrMask to -1. Otherwise, set this to any of the following character attributes OR-ed together:

	SCCVW_CHARATTR_UNDERLINE

	SCCVW_CHARATTR_ITALIC

	SCCVW_CHARATTR_BOLD

	SCCVW_CHARATTR_STRIKEOUT

	SCCVW_CHARATTR_SMALLCAPS: Not currently supported in Image Export.

	SCCVW_CHARATTR_OUTLINE: Not currently supported.

	SCCVW_CHARATTR_SHADOW: Not currently supported.

	SCCVW_CHARATTR_CAPS: Not currently supported.

	SCCVW_CHARATTR_SUBSCRIPT: SCCVW_CHARATTR_SUPERSCRIPT

	SCCVW_CHARATTR_DUNDERLINE: Currently supported as single underline.

	SCCVW_CHARATTR_WORDUNDERLINE: SCCVW_CHARATTR_DOTUNDERLINE

	wCharAttrMask: Defines which character attributes to change based on the settings of the bits in wCharAttr. Uses the same bit flags defined above for wCharAttr. Only attributes whose flag is set in this mask are modified to match the state specified by wCharAttr. This mask provides a way to distinguish between bits being set in wCharAttr because the developer wants to force a change to the character attributes, and bits in wCharAttr that the developer would rather set to "inherit from the source document."

The following are real-world examples of these interactions (all examples assume that SCCVW_USECHARATTR is set in dwOptions):

	Example 1: wCharAttr is set to SCCVW_CHARATTR_BOLD and wCharAttrMask is set to SCCVW_CHARATTR_BOLD. This results in bold being forced on in the annotation.

	Example 2: wCharAttr is set to SCCVW_CHARATTR_BOLD and wCharAttrMask is set to 0. This results in bold being left the way it was in the source document in the annotation.

	Example 3: wCharAttr is set to 0 and wCharAttrMask is set to SCCVW_CHARATTR_BOLD. This results in bold being forced off in the annotation.

The default value for this is 0, meaning that all the flags in wCharAttr are ignored.

Return Values

	DAERR_OK: The annotation was successfully added. Otherwise, one of the other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

EXHideText

This function removes the selected range of characters in the input document from the output.

The hidden text does not appear in any form in the final converted document.

Prototype

SCCERR EXHideText(
VTHEXPORT hExport,
PEXANNOHIDETEXT pHideText)

Parameters

	hExportL Export handle for the document. Must be the handle returned by the EXOpenExport() function.

	pHideText: Pointer to an EXANNOHIDETEXT structure containing the information on the section of text to hide.

EXANNOHIDETEXT Structure

A C data structure defined in sccex.h as follows:

typedef struct EXANNOHIDETEXTtag
{
 VTDWORD dwSize;
 VTDWORD dwStartACC;
 VTDWORD dwEndACC; /* Last char to hide +1 */
} EXANNOHIDETEXT;

	dwSize: Must be set by the OEM to sizeof(EXANNOHIDETEXT).

	dwStartACC: Position of the first character to be hidden.

	dwEndACC: Position of the last character to be hidden, plus one.

Return Values

	SCCERR_OK: Returned if the annotation was successfully added. Otherwise, one of the other SCCERR_* values in sccerr.h is returned.

EXApplyHilites

DAERR EXApplyHilites(HEXPORT hExport, const VTBYTE * pHilites);

This function applies a set of highlights from a JSON-encoded text stream previously generated from the Web View Export Javascript library. This function may be called multiple times with different sets of highlights.

	hExport: Export handle

	pHilites: Buffer containing a stream of highlight (and comment) information that was obtained via the Web View Export Javascript API function OIT.highlights.serialize.

EXRedactText

This is an API call to redact
text.

Prototype
EXRedactTest
DAERR EXRedactText(VTHEXPORT hExport,
 PEXAANNOREDACTTEXT pRedaction)

Similar to
EXHiliteText, this accepts a data structure that defines the redaction.

typedef struct EXANNOREDACTTEXTtag
{
 VTDWORD dwSize;
 VTDWORD dwStartACC;
 VTDWORD dwEndACC; /* Last char to highlight +1 */
 VTWCHAR dwLabel[EXANNO_MAXLABEL];
} EXANNOREDACTTEXT;

8 Redirected IO

This chapter describes the use of Redirected IO. Anywhere a file specification (dwSpecType and pSpec parameters) is passed to a function in the product, the developer may use Redirected IO to completely take over responsibility for the low level IO calls of that particular file. The source file and all output files can be redirected in this way.

Redirected IO allows the developer great flexibility in the storage of, and access to, converted documents. For example, documents may be stored on file systems not supported natively by the software, or in a unique directory tree structure determined by the type of file.

This chapter includes the following sections:

	Using Redirected IO

	Opening Files

	IOClose

	IORead

	IOWrite

	IOSeek

	IOTell

	IOGetInfo

	IOSEEK64PROC / IOTELL64PROC

Using Redirected IO

A developer can redirect the IO for an input or output file by providing a data structure that contains pointers to custom IO routines for reading and writing. This data structure is passed in place of a typical file specification. The developer must set the dwSpecType parameter of the DAOpenDocument call to IOTYPE_REDIRECT when the DAOpenDocument call is sent.

When dwSpecType is set this way, the pSpec element must contain a pointer to a developer-defined data structure that begins with a BASEIO structure (defined in baseIO.H). The BASEIO structure contains pointers to the basic IO functions for the IO system such as Read, Seek, Tell, etc. The developer must initialize these function pointers to their own functions that perform IO tasks. Beyond the BASEIO element, the developer may place any data he or she likes.

For instance, a developer's structure may be similar to the following:

typedef struct MYFILEtag
{
 BASEIO sBaseIO; /* must be the first element */
 VTDWORD dwMyInfo1;
 VTDWORD dwMyInfo2;
 .
 .
 .
} MYFILE;

Because the pSpec passed is essentially the "file handle" used by the software, the developer can redirect the IO on a file-by-file basis while still exporting "regular" disk-based files.

The BASEIO structure is defined as follows:

typedef struct BASEIOtag
{
 IOCLOSEPROC pClose;
 IOREADPROC pRead;
 IOWRITEPROC pWrite;
 IOSEEKPROC pSeek;
 IOTELLPROC pTell;
 IOGETINFOPROC pGetInfo;
 IOOPENPROC pOpen; /* pOpen *MUST* be set to NULL. */
#ifndef NLM
 IOSEEK64PROC pSeek64;
 IOTELL64PROC pTell64;
#endif
 VTVOID *aDummy[3];
} BASEIO, * PBASEIO;

The developer must implement the Close, Read, Write, Seek, Tell and GetInfo routines. The Open routine must be set to NULL. The first parameter to each of these routines is called hFile and is of the type HIOFILE. HIOFILE is simply the VTLPVOID to your data structure that was passed in the pSpec parameter of the DAOpenDocument call.

The sample source code for a simple implementation of Redirected IO is in the samples directory. This sample redirects the technology's IO through the fopen, fgetc, fseek, ftell and fclose run-time library routines.

Note:
Redirected IO does not cache the whole file. Seeks can occur throughout the file during the course of conversion. If the developer is implementing redirected IO on a slow or sequential link, it is the developer's responsibility to cache the file locally.

Opening Files

The developer does not see a call to pOpen when using redirected IO. When IOTYPE_REDIRECT is used, the structure passed in pSpec is defined to represent a file that is already open. The software can immediately call the pRead, pSeek, pTell and pWrite functions.

Files specified as using redirected IO must be open by the time they are handed off to the software.

IOClose

Closes the file identified by hFile and cleans up all memory associated with the file.

If you dynamically allocate your own file structures (MYFILE in the preceding discussion) it is required that the memory allocated be freed inside the call to IOClose or sometime thereafter.

Prototype

IOERR IOClose(
 HIOFILE hFile);

Parameters

	hFile: Identifies the file to be closed. Should be cast into a pointer to your data structure (MYFILE in the preceding discussion).

Return Values

	IOERR_OK: Close was successful.

	IOERR_UNKNOWN: Some error occurred on close.

IORead

Reads data from the current file position forward and resets the position to the byte after the last byte read.

Prototype

IOERR IORead(
 HIOFILE hFile,
 VTBYTE * pData,
 VTDWORD dwSize,
 VTDWORD * pCount);

Parameters

	hFile: Identifies the file to be read. Should be cast into a pointer to your data structure (MYFILE in the preceding discussion).

	pData: Points to the buffer into which the bytes should be read. Will be at least dwSize bytes big.

	dwSize: Number of bytes to read.

	pCount: Points to the number of bytes actually read by the function. This value is only valid if the return value is IOERR_OK.

Return Values

	IOERR_OK: Read was successful. pCount contains the number of bytes read and pData contains the bytes themselves.

	IOERR_EOF: Read failed because the file pointer was beyond the end of the file at the time of the read.

	IOERR_UNKNOWN: Read failed for some other reason.

IOWrite

Writes data from the current file position forward and resets the position to the byte after the last byte written.

Prototype

IOERR IOWrite(
 HIOFILE hFile,
 VTBYTE * pData,
 VTDWORD dwSize,
 VTDWORD * pCount);

Parameters

	hFile: Identifies the file where the data is to be written. Should be cast into a pointer to your data structure (MYFILE in the preceding discussion).

	pData: Points to the buffer from which the bytes should be written. It must be at least dwSize bytes big. It is good practice to treat the data passed in by pData as "read only." This helps prevent unexpected behavior elsewhere in the system.

	dwSize: Number of bytes to write.

	pCount: Points to the number of bytes actually written by the function. This value is only valid if the return value is IOERR_OK.

Return Values

	IOERR_OK: Write was successful, pCount contains the number of bytes written.

	IOERR_UNKNOWN: Write failed for some reason.

IOSeek

Moves the current file position.

Prototype

IOERR IOSeek(
 HIOFILE hFile,
 VTWORD wFrom,
 VTLONG lOffset);

Parameters

	hFile: Identifies the file to be read. Should be cast into a pointer to your data structure (MYFILE in the preceding discussion).

	wFrom: One of the following values:

	IOSEEK_TOP: Move the file position lOffset bytes from the top (beginning) of the file.

	IOSEEK_BOTTOM: Move the file position lOffset bytes from the bottom (end) of the file.

	IOSEEK_CURRENT: Move the file position lOffset bytes from the current file position.

	lOffset: Number of bytes to move the file pointer. A positive value moves the file pointer forward in the file and a negative value moves it backward. If a requested seek value would move the file pointer before the beginning of the file, the file pointer should remain unchanged and IOERR_UNKNOWN should be returned. Seeking past EOF is allowed. In that case IOERR_OK should be returned. IOTell would return the requested seek position and IORead should return IOERR_EOF and 0 bytes read.

Return Values

	IOERR_OK: Seek was successful.

	IOERR_UNKNOWN: Seek failed for some reason.

IOTell

Returns the current file position.

Prototype

IOERR IOTell(
 HIOFILE hFile,
 VTDWORD * pOffset);

Parameters

	hFile: Identifies the file to be read. Should be cast into a pointer to your data structure (MYFILE in the preceding discussion).

	pOffset: Points to the current file position returned by the function.

Return Values

	IOERR_OK: Tell was successful.

	IOERR_UNKNOWN: Tell failed for some reason.

IOGetInfo

Returns information about an open file.

Prototype

IOERR IOGetInfo(
 HIOFILE hFile,
 VTDWORD dwInfoId,
 VTVOID * pInfo);

Parameters

	hFile: Identifies the file to be read. Should be cast into a pointer to your data structure (MYFILE in the previous discussion).

	dwInfoId: One of the following values:

	IOGETINFO_FILENAME: pInfo points to a string that should be filled with the base file name (no path) of the open file (for example TEST.DOC). If you do not know the file name, return IOERR_UNKNOWN. Certain file types (such as DataEase) must know the original file name in order to open secondary files required to correctly view the original file. If you return IOERR_UNKNOWN, these file types do not convert. For details, see IOGENSECONDARY and IOGENSECONDARYW Structures.

	IOGETINFO_PATHNAME: pInfo points to a string that should be filled with the fully qualified path name (including the file name) of the open file. For example, C:\MYDIR\TEST.DOC. If you do not know the path name, return IOERR_UNKNOWN.

	IOGETINFO_PATHTYPE: pInfo points to a DWORD that should be filled with the IOTYPE of the path returned by IOGETINFO_PATHNAME. For instance, if you return a DOS path name in the Unicode character set, you should return IOTYPE_UNICODEPATH. Even if redirected IO is in use, this should not be set to IOTYPE_REDIRECT. The value should reflect the style of path to be returned or any other values detailed in EXOpenExport..

	IOGETINFO_ISOLE2STORAGE: Must return IOERR_FALSE. pInfo is not used.

	IOGETINFO_GENSECONDARY: pInfo points to a structure of type IOGENSECONDARY. Some file types require supporting files to be opened. These supporting files may contain formatting information or extra data. When using HTML Export, templates may link to other templates, and the paths to those templates must be resolved. Correct handling of IOGETINFO_GENSECONDARY is critical to the operation of the Outside In technology. For a list of these file types, see File Types That Cause IOGETINFO_GENSECONDARY.

Because the developer is in total control of the IO for the primary file, the technology does not know how to generate a path to these secondary files or even if the secondary files are accessible through the regular file system. The IOGETINFO_GENSECONDARY call gives the developer a chance to resolve this problem by generating a new IO specification for the secondary file in question. The developer gets just the base file name (often embedded in the original document or generated from the primary file's name) of the secondary file.

The developer may either use one of the standard Outside In IO types or totally redirect the IO for the secondary file, as well. For more details, see IOGENSECONDARY and IOGENSECONDARYW Structures..

	IOGETINFO_SUBDOC_SPEC: This message should be handled only if the currently open file is an archive and a particular item within the archive is intended to be specified as the input file in a call to DAOpenDocument. In this case, pInfo points to a single-byte character string that should be filled with the subdocument specification of an item within the open file. For example, item.2 specifies item 2 within the archive file. When specifying a subdocument specification, return IOERR_OK. Any other return values cause the results of this message to be ignored.

	IOGETINFO_64BITIO: For redirected I/O that wishes to use 64-bit seek/tell functions, your IOGetInfo function must respond IOERR_TRUE to this dwInfoId. In addition, the pSeek64/pTell64 items in the baseio structure must be valid pointers to the proper function types.

	IOGETINFO_DPATHNAME: pInfo points to a structure of type DPATHNAME, which should be filled with the fully qualified path name (including the file name) of the open file, for example, C:\MYDIR\TEST.DOC. If you do not know the path name, return IOERR_UNKNOWN. The dwPathLen element contains the size of the buffer pointed to by the pPath element. If the buffer size is too small to contain the full path, modify dwPathLen to be the correct size of the buffer required to hold the path name in its IOTYPE character width including the NULL terminator and return IOERR_INSUFFICIENTBUFFER.

The following is a C data structure defined in SCCIO.H:

typedef struct DPATHNAMEtag
{
 VTDWORD dwPathLen;
 VTVOID *pPath;
} DPATHNAME, * PDPATHNAME;

Parameters

dwPathLen: Will be set to the number of bytes in the buffer pointed to by pPath. If the size of the buffer is insufficient, reset this element to the number of bytes required and return IOERR_INSUFFICIENTBUFFER.

pPath: Points to the buffer to be filled with the path name.

	IOGETINFO_GENSECONDARYDP: pInfo points to a structure of type IOGENSECONDARYDP. The dwSpecLen element contains the size of the buffer pointed to by the pSpec element. If the buffer size is too small to contain the spec, modify dwSpecLen to be the correct size of the buffer required to hold the path in its IOTYPE character width including the NULL terminator and return IOERR_INSUFFICIENTBUFFER.

The following is a C data structure defined in SCCIO.H:

typedef struct IOGENSECONDARYDPtag
{
 VTDWORD dwSize;
 VTVOID * pFileName;
 VTDWORD dwSpecType;
 VTVOID * pSpec;
 VTDWORD dwSpecLen;
 VTDWORD dwOpenFlags;
} IOGENSECONDARYDP, * PIOGENSECONDARYDP;

Parameters

dwSize: Will be set to sizeof (IOGENSECONDARYDP)

pFileName: A pointer to a string representing the file name of the secondary file that the technology requires. It is usually a name stored in the primary file (such as MYSTYLE.STY for a Word for DOS file) or a name generated from the primary file name. The primary file for a DataEase database has a .dba extension. The secondary name is the same file name but with a .dbm extension.

dwSpecType: The developer must fill this with the IOSPEC for the secondary file.

pSpec: On entry, this pointer points to an array of bytes or may be NULL (see dwSpecLen below). If the dwSpecType is set a regular IOTYPE such as IOTYPE_ANSIPATH, the developer may fill this array with the path name or structure required for that IOTYPE. If the developer is redirecting access to the secondary file, then dwSpecType will be IOTYPE_REDIRECT and the developer should replace pSpec with a pointer to a developer-defined structure that begins with the BASEIO structure (see Using Redirected IO).

The file is supposed to be opened by the OEM's redirected IO code by the time they return the BASEIO struct. This is because the pOpen routine in the BASEIO struct is supposed to be NULL.

dwSpecLen: On entry, this is set to the size of the pSpec buffer. If the size of the buffer is insufficient, replace the value with the number of bytes required and return IOERR_INSUFFICIENTBUFFER.

dwOpenFlags: Set by the technology. A set of bit flags describing how the secondary file should be opened. Multiple flags may be used by bitwise OR-ing them together. The following flags are currently used:

 - IOOPEN_READ: The secondary file should be opened for read.

 - IOOPEN_WRITE: The secondary file should be opened for write. If the specified file already exists, its contents are erased when this flag is set.

 - IOOPEN_CREATE: The secondary file should be created (if it does not already exist) and opened for write.

Any other value should return IOERR_BADINFOID.

	pInfo: The size of the pInfo buffer depends on the dwInfoId selected. For IOGETINFO_FILENAME and IOGETINFO_PATHNAME, the buffer is of size MAX_PATH characters (each character is either one byte or two, depending on PATHTYPE). The IOGETINFO_PATHTYPE buffer is the size of a VTDWORD.

Return Values

	IOERR_OK: GetInfo was successful.

	IOERR_TRUE: Affirmative response from a true or false GetInfo.

	IOERR_FALSE: Negative response from a true or false GetInfo.

	IOERR_BADINFOID: dwInfoId can not be handled by this file type.

	IOERR_INVALIDSPEC: The file spec is bad for this type.

	IOERR_UNKNOWN: GetInfo failed for some other reason.

IOGENSECONDARY and IOGENSECONDARYW Structures

These structures are passed to the developer through the IOGetInfo function. They allow the developer to tell the technology where a secondary file, needed by the conversion process, is located.

The SpecType of the original file determines which of these two structures is used. If the SpecType is IOTYPE_UNICODEPATH, IOGENSECONDARYW is used. pFileName points to a Unicode string terminated with a NULL WORD. For all other SpecTypes, IOGENSECONDARY is used and pFileName points to a string terminated with a NULL BYTE.

When using HTML Export, consider the situation where the software must access a secondary template file. In that case, the SpecType of the original template specified by the option SCCOPT_EX_TEMPLATE determines which of the two structures is used.

The following is a C data structure defined in SCCIO.H:

typedef struct
{
 VTDWORD dwSize;
 VTLPBYTE pFileName;
 VTDWORD dwSpecType;
 VTLPVOID pSpec;
 VTDWORD dwOpenFlags
} IOGENSECONDARY, * PIOGENSECONDARY;

typedef struct
{
 VTDWORD dwSize;
 VTLPWORD pFileName;
 VTDWORD dwSpecType;
 VTLPVOID pSpec;
 VTDWORD dwOpenFlags
} IOGENSECONDARYW, * PIOGENSECONDARYW;

Parameters

	dwSize: Will be set to sizeof (IOGENSECONDARY) or sizeof (IOGENSECONDARYW) (both of these values are the same).

	pFileName: A pointer to a string representing the file name of the secondary file that the technology requires. It is usually a name stored in the primary file (such as MYSTYLE.STY for a Word for DOS file) or a name generated from the primary file name. The primary file for a DataEase database has a .dba extension. The secondary name is the same file name but with a .dbm extension.

	dwSpecType: The developer must fill this with the IOSPEC for the secondary file.

	pSpec: On entry, this pointer points to an array of 1024 bytes. If the dwSpecType is set a regular IOTYPE such as IOTYPE_ANSIPATH, the developer may fill this array with the path name or structure required for that IOTYPE. If the developer is redirecting access to the secondary file, then dwSpecType will be IOTYPE_REDIRECT and the developer should replace pSpec with a pointer to a developer-defined structure that begins with the BASEIO structure (see Using Redirected IO).

The file is supposed to be opened by the OEM's redirected IO code by the time they return the BASEIO struct. This is because the pOpen routine in the BASEIO struct is supposed to be NULL.

	dwOpenFlags: Set by the technology. A set of bit flags describing how the secondary file should be opened. Multiple flags may be used by bitwise OR-ing them together. The following flags are currently used:

	IOOPEN_READ: The secondary file should be opened for read.

	IOOPEN_WRITE: The secondary file should be opened for write. If the specified file already exists, its contents are erased when this flag is set.

	IOOPEN_CREATE: The secondary file should be created (if it does not already exist) and opened for write.

File Types That Cause IOGETINFO_GENSECONDARY

The following file types cause IOGETINFO_GENSECONDARY:

	Microsoft Word for DOS Versions 4, 5 and 6: Used to open and read the style sheet file associated with the document. The filter degrades if the style sheet is not present.

	Harvard Graphics DOS 3.x: Used to open and read the individual slides within ScreenShow and palette files. Files with the extension .ch3 are individual graphics or slides that can be opened using no secondary files. Files with the extension .sy3 are ScreenShows that reference a list of .ch3 files via the secondary file mechanism. There is also an optional palette file that can be referenced from a .ch3 file, but the filter degrades if the palette file is not present.

	R:Base: Used to open and read required schema file. The R:Base data files are named ????2.rbf but the data is useless without the schema file named ????1.rbf. There is also a ????3.rbf file associated with each database, but it is not used.

	Paradox 4.0 and Above: Used to open and read memo field data file. Paradox uses a separate file for all memo field data larger than 32 bytes.

	DataEase: Used to open and read the data file. DataEase databases include a .dba file that contains the schema (the file that the technology can identify as DataEase) and a .dbm file that contains the actual data.

	Templates (HTML Export): Any template that contains a {## link} will need to open the linked files. Additionally, when the root template is opened using redirected IO, each {## copy} macro in the template will result in a IOGETINFO_GENSECONDARY call, as well.

IOSEEK64PROC / IOTELL64PROC

These functions are for seek/tell using 64-bit offsets. These functions are not used by default. Rather, they are used if the IOGETINFO_64BITIO message returns IOERR_TRUE. This is so redirected I/O using strictly 32-bit I/O is unaffected.

IOSeek64

Moves the current file position.

Prototype

IOERR IOSeek64(
HIOFILE hFile,
VTWORD wFrom,
VTOFF_T offset);

Parameters

The parameter information is the same as for IOSeek(). However, the size of the VTOFF_T offset for IOSeek64() is 64-bit unlike the 32-bit offset in IOSeek().

IOTell64

Returns the current file position.

Prototype

IOERR IOTell64(
HIOFILE hFile,
VTOFF_T * pOffset);

Parameters

The parameter information is the same as for IOTell(). The only change is the use of a pointer to a 64-bit parameter for returning the offset.

9 Callbacks

This chapter describes
the use of callbacks in Image Export. Callbacks allow the developer
to intervene at critical points in the export process

Read more about the callback procedure and the EXOpenExport
function call in EXOpenExport. Each heading in this chapter is a possible value
for the dwCommandOrInfoId parameter passed to the developer's callback.

The new SCCOPT_EX_CALLBACKS option allows developers
to enable or disable some or all of these callbacks. See the Options
documentation for details.

This section describes callbacks set in EXOpenExport.
A second callback function, DASetStartCallback, can provide information
about the progress of a file conversion. For more details, see Data Access Common Functions.

This chapter describes the following callbacks:

	EX_CALLBACK_ID_CREATENEWFILE

	EX_CALLBACK_ID_NEWFILEINFO

	EX_CALLBACK_ID_PAGECOUNT

	EX_CALLBACK_ID_BEGINPAGE

	EX_CALLBACK_ID_ENDPAGE

EX_CALLBACK_ID_CREATENEWFILE

This callback is made any time a new output file needs to be generated. This gives the developer the chance to execute routines before each new file is created.

It allows the developer to override the standard naming for a file or to redirect entirely the IO calls for a file. This callback is made for all output files that are created.

If redirected IO is being used on output files, this callback must be implemented.

For this callback, the pCommandOrInfoData parameter points to a structure of type EXFILEIOCALLBACKDATA:

typedef struct EXFILEIOCALLBACKDATAtag
{
 HIOFILE hParentFile;
 VTDWORD dwParentOutputId;
 VTDWORD dwAssociation;
 VTDWORD dwOutputId;
 VTDWORD dwFlags;
 VTDWORD dwSpecType;
 VTLPVOID pSpec;
 VTLPVOID pExportData;
 VTLPVOID pTemplateName;
} EXFILEIOCALLBACKDATA;

	hParentFile: Handle to the initial output file with which the new file is associated. The dwAssociation describes the relationship. This handle is not intended for use by the developer. Set by caller.

	dwParentOutputId: Set by caller. The type of the parent file. This value is as used in the original ExOpenExport in the dwOutputId field. For example, for JPEG this value should be FI_JPEGFIF.

	dwAssociation: One of the following values:

	CU_ROOT: For the initial output file.

	CU_SIBLING: For new files that are not somehow owned by the parent file.

	dwOutputId: The type of the new file. This value should be the same as the value in dwParentOutputID.

	dwFlags: Reserved

	dwSpecType: IO specification type. For details about IO specifications, see DAOpenDocument.

This member in conjunction with pSpec allows the developer to select any location for the new file or even redirect its IO calls entirely. For more details, see Redirected IO. When the developer receives this callback, the value of this element is undefined. Must be set by developer if this callback returns SCCERR_OK.

	pSpec: This field holds the IO specification of the output file to be created. pSpec points to a buffer that is 1024 bytes in size. If your application needs to set the specification of the output file, it may do so by either writing new data into this buffer, or by changing the value of pSpec to point to memory owned by your application. If pSpec is set to a new value, then your application must ensure that this memory stays valid for an appropriate length of time, at least until the next callback message is received, or EXRunExport returns.

If the current export operation is using redirected IO, your application must create a redirected IO data structure for the new file and set pSpec to point to it. This pointer must stay valid until the structure's pClose function is called.

If your application sets dwSpecType to IOTYPE_UNICODEPATH, the specification must contain UCS-2 encoded Unicode characters.

When your application receives this callback, the contents of the buffer pointed to by pSpec are undefined. A specification must be defined by your application if this callback returns SCCERR_OK.

	pExportData: Pointer to data specific to the individual export. In this case, always a pointer to either an EXURLFILEIOCALLBACKDATA structure or an EXURLFILEIOCALLBACKDATAW structure. The EXURLFILEIOCALLBACKDATAW struct is only used when the SCCOPT_UNICODECALLBACKSTR option is set to TRUE. These two structures are defined in EXURLFILEIOCALLBACKDATA / EXURLFILEIOCALLBACKDATAW Structures. Set by caller.

	pTemplateName: NULL

EXURLFILEIOCALLBACKDATA / EXURLFILEIOCALLBACKDATAW Structures

The EXURLFILEIOCALLBACKDATA and EXURLFILEIOCALLBACKDATAW structures are defined as follows:

typedef struct EXURLFILEIOCALLBACKDATAtag
{
 VTDWORD dwSize;
 VTBYTE szURLString[VT_MAX_URL];
 VTDWORD dwFileID;
} EXURLFILEIOCALLBACKDATA;

typedef struct EXURLFILEIOCALLBACKDATAWtag
{
 VTDWORD dwSize;
 VTWORD wzURLString[VT_MAX_URL];
 VTDWORD dwFileID;
} EXURLFILEIOCALLBACKDATAW;

	dwSize: Set by Image Export to sizeof(EXURLFILEIOCALLBACKDATA) or sizeof(EXURLFILEIOCALLBACKDATAW).

	szURLString / wzURLString: This parameter can be set by the developer to a new URL that references the newly created file. This parameter is optional unless the pSpec provided by the developer points to something that cannot be used as a URL (as when using redirected IO, for example). In that case, this parameter must be set.

This string is written into any output file that needs to reference the newly created file, with appropriate conversions between single and double byte output. Because this parameter is a URL, it is assumed to be URL encoded. When used in conjunction with dwSpecType and pSpec, this parameter can be used to generate almost any structure or location for the output files, including things like writing the output files into a database and then using a CGI mechanism to retrieve them.

The current size limitation is 2048 characters. If the size exceeds this limit, the URL will be truncated and rendered useless.

	dwFileID: Set by the product. This is used as a unique identifier for each output file generated. It may be used for an OEM-specific purpose. When using HTML Export, this identifier is always set to zero when this callback is made as the result of a {## copy} statement in the template.

Return Value

	SCCERR_OK: dwSpecType, pSpec and szURLString (or wzURLString) have been populated with valid values.

	SCCERR_NOTHANDLED: Default naming should be used.

	SCCERR_FILEOPENFAILED: Some error was encountered creating a new output.

EX_CALLBACK_ID_NEWFILEINFO

This informational callback is made just after each new file has been created. Like the EX_CALLBACK_ID_CREATENEWFILE callback, the pExportData parameter points to an EXURLFILEIOCALLBACKDATA or an EXURLFILEIOCALLBACKDATW structure, but in this case the structure should be treated as read-only and the dwSpecType, pSpec and szURLString (or wzURLString) will be filled in.

This callback occurs for every new file. If the developer has used the EX_CALLBACK_ID_CREATENEWFILE notification to change the location of (or to set up redirected IO for) the new file, the data structure echoes back the information set by the developer during the EX_CALLBACK_ID_CREATENEWFILE callback.

Return Value

Must be either SCCERR_OK or SCCERR_NOTHANDLED. Return value is currently ignored.

EX_CALLBACK_ID_PAGECOUNT

Image Export uses this callback message to return a count of all of the output pages produced during an export operation. This count reflects the number of pages created by Outside In's processing of the input document; which in some cases may differ slightly from the number of pages as seen in the document's original application. The page count is not necessarily the same as the number of output files produced. For example, exporting to TIFF images will result in the same page count regardless of whether a single multi-page file was created or multiple individual TIFF files were created.

This callback occurs during the execution of EXRunExport.

Data Type

VTDWORD

EX_CALLBACK_ID_BEGINPAGE

This callback message allows
the margin text to be supplied for each page. This callback indicates
that a new page of output is about to be created. Within the scope
of this callback, the host application is able to set margin text
to new values for the current page. For this callback, the pCommandOrInfoData
parameter points to a zero-based count of the page about to be created.

Data Type
VTDWORD

Return Value
Must be either SCCERR_OK or
SCCERR_NOTHANDLED

EX_CALLBACK_ID_ENDPAGE

This callback allows the communication
of page-level information via a callback/API call combination. It
is called upon the completion of each page that is exported and gives
the zero-based page number of the page exported. Information on whether
or not a page is hidden or if a page has slide notes, as specified
in the input document, can be retrieved when this callback is received.
You can retrieve this information with the API call EXGetProperties.

Data Type
VTDWORD

Return Value
SCCERR_OK or SCCERR_NOTHANDLED
should be returned

10 Image Export C/C++ Options

Options are parameters affecting the behavior of an export or transformation. These options are available to the developer when using Image Export. This chapter presents the C/C++ options relevant to the Image Export product.

While default values are provided, users are encouraged to set all options for a number of reasons. In some cases, the default values were chosen to provide backwards compatibility. In other cases, the default values were chosen arbitrarily from a range of possibilities.

One reason that users may want to avoid using the default value for an option is that the default value may change from one release to the next. This is because as standards evolve over time, defaults may be updated to reflect the current status of the technology.

Options are set using the DASetOption call. It is recommended that developers familiarize themselves with all of the options available.

Options may be Local, in which case they only affect the handle for which they are set, or Global, in which case they automatically affect all handles associated with the hDoc and must be set before the call to DAOpenDocument.

The following types of options are covered:

	Character Mapping

	Output

	Input Handling

	Compression

	Graphics

	Spreadsheet and Database File Rendering

	Page Rendering

	Font Rendering

	Watermarks

	Callbacks

	File System

Character Mapping

This section discusses character mapping options.

SCCOPT_DEFAULTINPUTCHARSET

This option is used in cases where Outside In cannot determine the character set used to encode the text of an input file. When all other means of determining the file's character set are exhausted, Outside In will assume that an input document is encoded in the character set specified by this option. This is most often used when reading plain-text files, but may also be used when reading HTML or PDF files. The possible character sets are listed in charsets.h.

When "extended test for text" is enabled (see SCCOPT_FIFLAGS), this option will still apply to plain-text input files that are not identified as EBCDIC or Unicode.

This option supersedes the SCCOPT_FALLBACKFORMAT option for selecting the character set assumed for plain-text files. For backwards compatibility, use of deprecated character-set -related values is still currently supported for SCCOPT_FALLBACKFORMAT, though internally such values will be translated into equivalent values for the SCCOPT_DEFAULTINPUTCHARSET. As a result, if an application were to set both options, the last such value set for either option will be the value that takes effect.

Handle Types

NULL, VTHDOC

Scope

Global

Data Type

VTDWORD

Default

	CS_SYSTEMDEFAULT: Query the operating system.

Data

The data types are listed in charsets.h.

SCCOPT_UNMAPPABLECHAR

This option selects the character used when a character cannot be found in the output character set. This option takes the Unicode value for the replacement character. It is left to the user to make sure that the selected replacement character is available in the output character set.

Handle Types

VTHDOC

Scope

Local

Data Type

VTWORD

Data

The Unicode value for the character to use.

Default

	0x002a = "*"

Output

This section discusses output options.

SCCOPT_RENDERING_PREFER_OIT

This option is valid on 32-bit Linux (Red Hat and Suse), Linux x86-64, Solaris Sparc, IBM AIX 32-bit, and HP-UX RISC 32-bit platforms.

When this option is set to TRUE, the technology will attempt to use its internal graphics code to render fonts and graphics. When set to FALSE, the technology will render images using the operating system's native graphics subsystem (X11 on UNIX/Linux platforms). This requires that there be an X11 display and a valid DISPLAY variable, regardless of the type of input document.

It is important for the system to be able to locate usable fonts when this option is set to TRUE. Only TrueType fonts (*.ttf or *.ttc files) are currently supported. To ensure that the system can find them, make sure that the environment variable GDFONTPATH includes one or more paths to these files. If fonts cannot be found, Image Export will exit with an error. Oracle does not provide fonts with any Outside In product.

Note:
Note that the maximum total path size for paths included in GDFONTPATH is 256 characters - paths longer than this will be truncated and will result in fonts not being discovered by Image Export.

Handle Types

NULL, VTHDOC

Scope

Global

Data Type

VTBOOL

Data

One of the following values:

	TRUE: Use the technology's internal graphics rendering code to produce bitmap output files whenever possible.

	FALSE: Use the operating system's native graphics subsystem.

Default

FALSE

Input Handling

This section discusses input handling options.

SCCOPT_FALLBACKFORMAT

This option controls how files are handled when their specific application type cannot be determined. This normally affects all plain-text files, because plain-text files are generally identified by process of elimination, for example, when a file isn't identified as having been created by a known application, it is treated as a plain-text file.

It is recommended that FI_NONE be set to prevent Image Export from exporting unidentified binary files as though they were text, which could generate many pages of "garbage" output.

This option must be set for an hDoc before any subhandle has been created for that hDoc.

A number of values that were formerly allowed for this option have been deprecated. Specifically, the values that selected specific plain-text character sets are no longer to be used. Instead, applications should use the SCCOPT_DEFAULTINPUTCHARSET option for such functionality.

Handle Types

NULL, VTHDOC

Scope

Global

Data Type

VTDWORD

Data

The high VTWORD of this value is reserved and should be set to 0, and the low VTWORD must have one of the following values:

	FI_TEXT: Unidentified file types will be treated as text files.

	FI_NONE: Outside In will not attempt to process files whose type cannot be identified. This will include text files. When this option is selected, an attempt to process a file of unidentified type will cause Outside In to return an error value of DAERR_FILTERNOTAVAIL (or SCCERR_NOFILTER).

Default

	FI_TEXT

SCCOPT_FIFLAGS

This option affects how an input file's internal format (application type) is identified when the file is first opened by the Outside In technology. When the extended test flag is in effect, and an input file is identified as being either 7-bit ASCII, EBCDIC, or Unicode, the file's contents will be interpreted as such by the export process.

The extended test is optional because it requires extra processing and cannot guarantee complete accuracy (which would require the inspection of every single byte in a file to eliminate false positives.)

Handle Types

NULL, VTHDOC

Scope

Global

Data Type

VTDWORD

Data

One of the following values:

	SCCUT_FI_NORMAL: This is the default value. When this is set, standard file identification behavior occurs.

	SCCUT_FI_EXTENDEDTEST: If set, the File Identification code will run an extended test on all files that are not identified.

Default

	SCCUT_FI_EXTENDEDTEST: The technology will attempt an extra test after the file is first opened to see if it is 7-bit text or EBCDIC.

SCCOPT_SYSTEMFLAGS

This option controls a number of miscellaneous interactions between the developer and the Outside In Technology.

Handle Type

VTHDOC

Scope

Local

Data Type

VTDWORD

Data

	SCCVW_SYSTEM_UNICODE: This flag causes the strings in SCCDATREENODE to be returned in Unicode.

Default

0

SCCOPT_LOTUSNOTESDIRECTORY

This option allows the developer to specify the location of a Lotus Notes or Domino installation for use by the NSF filter. A valid Lotus installation directory must contain the file nnotes.dll.

Note:
Please see section 2.1.1 for NSF support on Win x86-32 or Win x86-64 or section 3.1.1 for NSF support on Linux x86-32 or Solaris Sparc 32.

Handle Types

NULL

Scope

Global

Data Type

VTLPBYTE

Data

A path to the Lotus Notes directory.

Default

If this option isn't set, then OIT will first attempt to load the Lotus library according to the operating system's PATH environment variable, and then attempt to find and load the Lotus library as indicated in HKEY_CLASSES_ROOT\Notes.Link.

SCCOPT_PDF_FILTER_REORDER_BIDI

This option controls whether or not the PDF filter will attempt to reorder bidirectional text runs so that the output is in standard logical order as used by the Unicode 2.0 and later specification. This additional processing will result in slower filter performance according to the amount of bidirectional data in the file.

Handle Types

VTHDOC, NULL

Scope

Global

Data Type

VTDWORD

Data

	SCCUT_FILTER_STANDARD_BIDI

	SCCUT_FILTER_REORDERED_BIDI

Default

SCCUT_FILTER_STANDARD_BIDI

SCCOPT_TIMEZONE

This option allows the user to define an offset to GMT that will be applied during date formatting, allowing date values to be displayed in a selectable time zone. This option affects the formatting of numbers that have been defined as date values. This option will not affect dates that are stored as text.

Note:
Daylight savings is not supported. The sent time in msg files when viewed in Outlook can be an hour different from the time sent when an image of the msg file is created.

Handle Types

NULL, VTHDOC

Scope

Global

Data Type

VTLONG

Data

Integer parameter from -96 to 96, representing 15-minute offsets from GMT. To query the operating system for the time zone set on the machine, specify SCC_TIMEZONE_USENATIVE.

Default

	0: GMT time

SCCOPT_FORMATFLAGS

This option allows the developer to set flags that enable options that span multiple export products.

Handle Types

VTHDOC

Scope

Local

Data Type

VTDWORD

Data

	SCCOPT_FLAGS_ISODATETIMES: When this flag is set, all Date and Time values are converted to the ISO 8601 standard. This conversion can only be performed using dates that are stored as numeric data within the original file.

	SCCOPT_FLAGS_STRICTFILEACCESS: When an embedded file or URL can't be opened with the full path, OIT will sometimes try and open the referenced file from other locations, including the current directory. When this flag is set, it will prevent OIT from trying to open the file from any location other than the fully qualified path or URL.

Default

0: All flags turned off

SCCOPT_IGNORE_PASSWORD

This option can disable the password verification of files where the contents can be processed without validation of the password. If this option is not set, the filter should prompt for a password if it handles password-protected files.

As of Release 8.4.0, only the PST and MDB Filters support this option.

Scope

Global

Data Type

VTBOOL

Data

	TRUE: Ignore validation of the password

	FALSE: Prompt for the password

Default

FALSE

SCCOPT_REORDERMETHOD

This option controls how the technology reorders bidirectional text.

Data Type

VTDWORD

Data

One of the following values:

	SCCUT_REORDER_UNICODE_OFF: This disables any processing for bidirectional characters. This option is the default.

	SCCUT_REORDER_UNICODE_LTOR: Characters displayed using the Unicode bidirectional algorithm assuming a base left-to-right order. Use this option to enable bidirectional rendering.

	SCCUT_REORDER_UNICODE_RTOL: Characters displayed using the Unicode bidirectional algorithm assuming a base right-to-left order. Use this option to force starting bidirectional rendering in the right-to-left order.

SCCOPT_HTML_COND_COMMENT_MODE

Some HTML includes a special type of comment that will be read by particular versions of browsers or other products. This option allows you to control which of those comments are included in the output.

Handle Type

VTHDOC

Scope

Local

Data Type

VTDWORD

Data

One or more of the following values OR-ed together:

	HTML_COND_COMMENT_NONE: Don't output any conditional comments. Note: setting any other flag will negate this.

	HTML_COND_COMMENT_IE5: include the IE 5 comments

	HTML_COND_COMMENT_IE6: include the IE 6 comments

	HTML_COND_COMMENT_IE7: include the IE 7 comments

	HTML_COND_COMMENT_IE8: include the IE 8 comments

	HTML_COND_COMMENT_IE9: include the IE 9 comments

	HTML_COND_COMMENT_ALL: include all conditional comments including the versions listed above and any other versions that might be in the HTML.

Default

HTML_COND_COMMENT_NONE

SCCOPT_ARCFULLPATH

In the Viewer and rendering products, this option tells the archive display engine to show the full path to a node in the szNode field in response to a SCCVW_GETTREENODE message. It also causes the name fields in DAGetTreeRecord and DAGetObjectInfo to contain the full path instead of just the archive node name.

Data Type

VTBOOL

Data

	TRUE: Display the full path.

	FALSE: Do not display the path.

Default

FALSE

SCCOPT_PDF_FILTER_MAX_EMBEDDED_OBJECTS

PDF files sometimes have a very large number of embedded objects. This option allows the user to limit the number of embedded objects that are produced in a PDF file. Setting this option to 0 produces an unlimited number of embedded objects.

Handle Types

VTHDOC

Scope

Local

Data Type

VTDWORD

Data

The maximum number of embedded objects to produce in PDF output.

Default

0

SCCOPT_PDF_FILTER_MAX_VECTOR_PATHS

PDF files sometimes have a very large number of vector paths. This option allows the user to limit the number of vector paths that are produced in a PDF file. Setting this option to 0 produces an unlimited amount of vector paths.

Handle Types

VTHDOC

Scope

Local

Data Type

VTDWORD

Data

The maximum number of vector paths to produce in PDF output.

Default

0

SCCOPT_PDF_FILTER_WORD_DELIM_FRACTION

This option controls the spacing threshold in PDF input documents. Most PDF documents do not have an explicit character denoting a word break. The PDF filter calculates the distance between two characters to determine if they are part of the same word or if there should be a word break inserted. The space between characters is compared to the length of the space character in the current font multiplied by this fraction. If the space between characters is larger, then a word break character is inserted into the text stream. Otherwise, the characters are considered to be part of the same word and no word break is inserted.

Handle Types

NULL, VTHDOC

Scope

Local

Data Type

VTFLOAT

Data

A fraction representing the percentage of the space character used to trigger a word break. Valid values are 0<value<=2.

Default

0.85

Compression

This section describes compression options.

SCCOPT_FILTERJPG

This option can disable access to any files using JPEG compression, such as JPG graphic files or TIFF files using JPEG compression, or files with embedded JPEG graphics. Attempts to read or write such files when this option is enabled will fail and return the error SCCERR_UNSUPPORTEDCOMPRESSION if the entire file is JPEG compressed, and grey boxes for embedded JPEG-compressed graphics.

The following is a list of file types affected when this option is disabled:

	JPG files

	Postscript files containing JPG images

	PDFs containing JPEG images

Note that the setting for this option overrides the requested output graphic format when there is a conflict.

Handle Types

VTHDOC, HEXPORT

Scope

Global

Data Type

VTDWORD

Data

	SCCVW_FILTER_JPG_ENABLED: Allow access to files that use JPEG compression

	SCCVW_FILTER_JPG_DISABLED: Do not allow access to files that use JPEG compression

Default

SCCVW_FILTER_JPG_ENABLED

SCCOPT_FILTERLZW

This option can disable access to any files using Lempel-Ziv-Welch (LZW) compression, such as .GIF files, .ZIP files or self-extracting archive (.EXE) files containing "shrunk" files. Attempts to read or write such files when this option is enabled will fail and return the error SCCERR_UNSUPPORTEDCOMPRESSION if the entire file is LZW compressed, and grey boxes for embedded LZW-compressed graphics.

The following is a list of file types affected when this option is disabled:

	GIF files

	TIF files using LZW compression (note that TIF files will still be created when LZW compression is used and this option is enabled, but the resulting images will be large, uncompressed TIF files)

	PDF files that use internal LZW compression

	ZIP and self-extracting archive (.EXE) files containing "shrunk" files

	Postscript files using LZW compression

Image Export will not be affected by this option when processing formats that compress subfile contents but not subfile names, such as TAR and ZIP.

Although this option can disable access to files in ZIP or EXE archives stored using LZW compression, any files in such archives that were stored using any other form of compression will still be accessible.

The setting for this option overrides the requested output graphic format when there is a conflict.

Handle Types

VTHDOC, HEXPORT

Scope

Global

Data Type

VTDWORD

Data

	SCCVW_FILTER_LZW_ENABLED: LZW compressed files will be read and written normally.

	SCCVW_FILTER_LZW_DISABLED: LZW compressed files will not be read or written.

Default

SCCVW_FILTER_LZW_ENABLED

Graphics

This section discusses graphics options.

SCCOPT_GIF_INTERLACED

This option allows the developer to specify interlaced or non-interlaced GIF output. Interlaced GIFs are useful when graphics are to be downloaded over slow Internet connections. They allow the browser to begin to render a low-resolution view of the graphic quickly and then increase the quality of the image as it is received. There is no real penalty for using interlaced graphics.

This option is only valid if the dwOutputID parameter of the EXOpenExport function is set to FI_GIF.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTBOOL

Data

One of the following values:

	TRUE: Produce interlaced GIFs.

	FALSE: Produce non-interlaced GIFs.

Default

TRUE

SCCOPT_GRAPHIC_CROPPING

When set to SCCGRAPHIC_CROPTOCONTENT, this option forces Image Export to crop whitespace from the edge of each output image. This includes margins and any unused space at the end of a page. This results in smaller output files without any loss of original input document content.

If there is no content, then no cropping is performed.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

	SCCGRAPHIC_CROPTOCONTENT: Files are cropped to smallest bounding rectangle.

	SCCGRAPHIC_NOCROPPING: Files are not cropped.

Default

SCCGRAPHIC_NOCROPPING

SCCOPT_GRAPHIC_HEIGHT

This option defines the absolute height in pixels to which exported graphics will be resized. If this option is set and the SCCOPT_GRAPHIC_WIDTH option is not, the width of the image will be calculated based on the aspect ratio of the source image. The developer should be aware that very large values for this option or SCCOPT_GRAPHIC_WIDTH could produce images whose size exceeds available system memory, resulting in conversion failure.

If you are exporting a non-graphic file (word processing, spreadsheet or archive) and the settings for SCCOPT_GRAPHIC_HEIGHT and SCCOPT_GRAPHIC_WIDTH do not match the aspect ratio of the original document, the exported image will have whitespace added so that the original file's aspect ratio is maintained.

The settings for the SCCOPT_GRAPHIC_HEIGHTLIMIT and SCCOPT_GRAPHIC_WIDTH options can override the setting for SCCOPT_GRAPHIC_HEIGHT.

Handle Types

VTDWORD

Scope

Local

Data Type

VTDWORD

Data

The desired absolute height of the output image, in pixels.

Default

	0: No absolute height specified.

SCCOPT_GRAPHIC_HEIGHTLIMIT

Note that this option differs from the behavior of setting the height of graphics in that it sets an upper limit on the image height. Images larger than this limit will be reduced to the limit value. However, images smaller than this height will not be enlarged when using this option. Setting the height using SCCOPT_GRAPHIC_HEIGHT causes all output images to be reduced or enlarged to be of the specified height.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

The maximum height of the output graphic in pixels. A value of zero is equivalent to SCCGRAPHIC_NOLIMIT, which causes this option to be ignored.

Default

	SCCGRAPHIC_NOLIMIT: No absolute height limit specified.

SCCOPT_GRAPHIC_OUTPUTDPI

This option allows the user to specify the output graphics device's resolution in DPI and only applies to images whose size is specified in physical units (in/cm). For example, consider a 1" square, 100 DPI graphic that is to be rendered on a 50 DPI device (SCCOPT_GRAPHIC_OUTPUTDPI is set to 50). In this case, the size of the resulting TIFF, BMP, JPEG, GIF, or PNG will be 50 x 50 pixels.

In addition, the special #define of SCCGRAPHIC_MAINTAIN_IMAGE_DPI, which is defined as 0, can be used to suppress any dimensional changes to an image. In other words, a 1" square, 100 DPI graphic will be converted to an image that is 100 x 100 pixels in size. This value indicates that the DPI of the output device is not important. It extracts the maximum resolution from the input image with the smallest exported image size.

Setting this option to SCCGRAPHIC_MAINTAIN_IMAGE_DPI may result in the creation of extremely large images. Be aware that there may be limitations in the system running this technology that could result in undesirably large bandwidth consumption or an error message. Additionally, an out of memory error message will be generated if system memory is insufficient to handle a particularly large image.

Also note that the SCCGRAPHIC_MAINTAIN_IMAGE_DPI setting will force the technology to use the DPI settings already present in raster images, but will use the current screen resolution as the DPI setting for any other type of input file.

For some output graphic types, there may be a discrepancy between the value set by this option and the DPI value reported by some graphics applications. The discrepancy occurs when the output format uses metric units (DPM, or dots per meter) instead of English units (DPI, or dots per inch). Depending on how the graphics application performs rounding on meters to inches conversions, the DPI value reported may be 1 unit more than expected. An example of a format which may exhibit this problem is PNG.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

The DPI to use when exporting graphic images. The maximum value allowed is SCCGRAPHIC_MAX_SANE_BITMAP_DPI, which is currently defined to be 2400 DPI.

Default

	SCCGRAPHIC_DEFAULT_OUTPUT_DPI: Currently defined to be 96 dots per inch.

SCCOPT_GRAPHIC_SIZELIMIT

This option is used to set the maximum size of the exported graphic in pixels. It may be used to prevent inordinately large graphics from being converted to equally cumbersome output files, thus preventing bandwidth waste.

SCCOPT_GRAPHIC_SIZELIMIT takes precedence over all other options and settings that affect the size of a converted graphic.

When creating a multi-page TIFF file, this limit is applied on a per page basis. It is not a pixel limit on the entire output file.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

The total number of pixels in the output graphic. A value of zero ("0"), which is equivalent to SCCGRAPHIC_NOLIMIT, causes this option to be ignored.

Default

	SCCGRAPHIC_NOLIMIT: Option is turned off.

SCCOPT_GRAPHIC_SIZEMETHOD

This option determines the method used to size graphics. The developer can choose among three methods, each of which involves some degree of trade off between the quality of the resulting image and speed of conversion.

Using the quick sizing option results in the fastest conversion of color graphics, though the quality of the converted graphic will be somewhat degraded. The smooth sizing option results in a more accurate representation of the original graphic, as it uses anti-aliasing. Antialiased images may appear smoother and can be easier to read, but rendering when this option is set will require additional processing time. The grayscale only option also uses antialiasing, but only for grayscale graphics, and the quick sizing option for any color graphics.

The smooth sizing option does not work on images which have a width or height of more than 4096 pixels.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

One of the following values:

	SCCGRAPHIC_QUICKSIZING: Resize without antialiasing

	SCCGRAPHIC_SMOOTHSIZING: Resize using antialiasing

	SCCGRAPHIC_SMOOTHGRAYSCALESIZING: Resize using antialiasing for grayscale graphics only (no antialiasing for color graphics)

Default

SCCGRAPHIC_SMOOTHSIZING

SCCOPT_GRAPHIC_TRANSPARENCYCOLOR

This option allows the user to set the color used as the "transparency color" in the output graphic file. Naturally, this option is only used when the selected output graphic file format supports transparency (GIF and PNG only). If the option is not set, the default behavior is to use the same color value that the input file used as the transparency color.

Use the SCCVWRGB(r, g, b) macro to create the color value to pass to this option. The red, green and blue values are percentages of the color from 0-255 (with 255 being 100%). Note that this macro should be used to set a variable of type SCCVWCOLORREF and that variable should then be passed to the set option routine (instead of trying to use the macro as part of the set option call directly).

Since there is no way to "unset" an option once it has been set, the developer may set the option to SCCGRAPHIC_DEFAULTTRANSPARENCYCOLOR if they wish to revert to the default behavior.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

SCCVWCOLORREF

Data

An RGB color value created with the SCCVWRGB(r, g, b) macro.

Default

	SCCGRAPHIC_DEFAULTTRANSPARENCYCOLOR: Use the same transparency color as the source document.

SCCOPT_GRAPHIC_WIDTH

This option defines the absolute width in pixels to which exported graphics will be resized. If this option is set and the SCCOPT_GRAPHIC_HEIGHT option is not, the height of the image will be calculated based on the aspect ratio of the source image. The developer should be aware that very large values for this option or SCCOPT_GRAPHIC_HEIGHT could produce images whose size exceeds available system memory, resulting in conversion failure.

If you are exporting a non-graphic file (word processing, spreadsheet or archive) and the settings for SCCOPT_GRAPHIC_HEIGHT and SCCOPT_GRAPHIC_WIDTH do not match the aspect ratio of the original document, the exported image will have whitespace added so that the original file's aspect ratio is maintained.

The settings for the SCCOPT_GRAPHIC_HEIGHTLIMIT and SCCOPT_GRAPHIC_WIDTHLIMIT options can override the setting for SCCOPT_GRAPHIC_WIDTH.

Handle Types

VTDWORD

Scope

Local

Data Type

VTDWORD

Data

The desired absolute width of the output image, in pixels.

Default

	0: No absolute width specified.

SCCOPT_GRAPHIC_WIDTHLIMIT

This option allows a hard limit to be set for how wide in pixels an exported graphic may be. Any images wider than this limit will be resized to match the limit. It should be noted that regardless whether the SCCOPT_GRAPHIC_HEIGHTLIMIT option is set or not, any resized images will preserve their original aspect ratio.

Note that this option differs from the behavior of setting the width of graphics by using SCCOPT_GRAPHIC_WIDTH in that it sets an upper limit on the image width. Images larger than this limit will be reduced to the limit value. However, images smaller than this width will not be enlarged when using this option. Setting the width using SCCOPT_GRAPHIC_WIDTH causes all output images to be reduced or enlarged to be of the specified width.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

The maximum width of the output graphic in pixels. A value of zero is equivalent to SCCGRAPHIC_NOLIMIT, which causes this option to be ignored.

Default

	SCCGRAPHIC_NOLIMIT: No absolute width limit specified.

SCCOPT_GRAPHIC_RENDERASPAGE

SCCOPT_GRAPHIC_RENDERASPAGE affects the way raster (bitmapped) images such as TIFF, JPG, and PNG are handled. The default behavior for Image Export is to export such images as copies of the input document, scaled according to the width and height options set by the caller. If SCCOPT_GRAPHIC_RENDERASPAGE is enabled, the output produced by Image Export will look like a printed page, with the image placed on a white rectangle representing a "virtual page." As usual, the dimensions of the entire image, including the virtual page, will be controlled by the normal Image Export output width and height settings. The margins into which the image will be placed will be controlled by existing Outside In print margin options. The image itself will be attempted to be scaled to its true (physical) size, or scaled down to fit within the margins if necessary.

Data Type

VTBOOL

Data

	TRUE: Raster file images are fit to page.

	FALSE: Raster file images are not fit to page.

Default

FALSE

SCCOPT_IMAGEX_TIFFOPTIONS

This option allows the developer to specify sub-options unique to the TIFF output file type, in order to control color depth, byte structure and rendering method.

This option is only required if the dwOutputId in the EXOpenExport call is set to FI_TIFF.

When any of the CCITT compression models are used, the color space must be black and white (SCCGRAPHIC_TIFF1BITBW).

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

The EXTIFFOPTIONS structure.

EXTIFFOPTIONS Structure

This structure is used by the SCCOPT_IMAGEX_TIFFOPTIONS option to set various options related to TIFF conversion.

EXTIFFOPTIONS is a C data structure defined in sccop.h as follows:

typedef struct
{
 VTDWORD dwSize;
 VTDWORD dwColorSpace;
 VTDWORD dwCompression;
 VTDWORD dwByteOrder;
 VTDWORD dwTIFFFlags;
 VTDWORD dwFillOrder;
} EXTIFFOPTIONS, * LPEXTIFFOPTIONS;

Parameters

	dwSize: Must be set to sizeof(EXTIFFOPTIONS).

	dwColorSpace: This option will specify the TIFF color depth and color options. The following settings are valid:

	SCCGRAPHIC_TIFF1BITBW: 1 bit black and white

	SCCGRAPHIC_TIFF8BITPAL: 8 bit palette

	SCCGRAPHIC_TIFF24BITRGB: 24 bit RGB (this is the default value for this parameter)

	dwCompression: This option will specify the type of compression used in the TIFF file that is generated. The following settings are valid:

	SCCGRAPHIC_TIFFCOMPNONE: No compression

	SCCGRAPHIC_TIFFCOMPPB: Packbits compression (this is the default value for this parameter)

	SCCGRAPHIC_TIFFCOMPLZW: LZW compression

	SCCGRAPHIC_TIFFCOMP1D: CCITT – 1D. Please note that when setting this type of compression, dwColorSpace must be set to SCCGRAPHIC_TIFF1BITBW.

	SCCGRAPHIC_TIFFCOMPGRP3: CCITT – Group 3 Fax. Please note that when setting this type of compression, dwColorSpace must be set to SCCGRAPHIC_TIFF1BITBW.

	SCCGRAPHIC_TIFFCOMPGRP4: CCITT – Group 4 Fax. Please note that when setting this type of compression, dwColorSpace must be set to SCCGRAPHIC_TIFF1BITBW.

	dwByteOrder: This option determines the byte order used within the file:

	SCCGRAPHIC_TIFFBOBIGE: This will use "big-endian" (Motorola) byte ordering.

	SCCGRAPHIC_TIFFBOLITTLEE: This will use "little-endian" (Intel) byte ordering (this is the default value for this parameter).

	dwTIFFFlags: These are additional flags for setting other options in a TIFF file:

	SCCGRAPHIC_TIFFFLAGS_NONE: No flags are used (this is the default value for this parameter).

	SCCGRAPHIC_TIFFFLAGS_ONEFILE: When this flag is set, the output of multiple pages from one input document will generate a single file with a separate image for each page converted.

	dwFillOrder: This option determines the fill order used within the file. The value of this element only affects TIFF output when the dwCompression element is set to SCCGRAPHIC_TIFFCOMPGRP3 and the dwColorSpace element is set to SCCGRAPHIC_TIFF1BITBW.

	SCCGRAPHIC_TIFF_FILLORDER1: Selects TIFF fill order 1, which is the default for this parameter and is recommended for most TIFF files intended for file stores.

	SCCGRAPHIC_TIFF_FILLORDER2: Selects TIFF fill order 2, which is the recommended fill order for TIFF files intended for electronic transmission (for example, fax).

SCCOPT_JPEG_QUALITY

This option allows the developer to specify the lossyness of JPEG compression. The option is only valid if the dwOutputID parameter of the EXOpenExport function is set to FI_JPEGFIF.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

A value from 1 to 100, with 100 being the highest quality but the least compression, and 1 being the lowest quality but the most compression.

Default

100

SCCOPT_QUICKTHUMBNAIL

When the SCCOPT_QUICKTHUMBNAIL option is set to true the technology will render scaled images with a focus on speed and reduced overall memory usage. This focus on speed and memory usage, in some cases, will cause the resulting images to be less readable than when this option is set to false.

Scope

Local

Data Type

VTBOOL

Default

TRUE

 SCCOPT_RENDER_ENABLEALPHABLENDING

This option allows the user to enable alpha-channel blending (transparency) in rendering vector images when using an X-Windows output solution. This may improve fidelity on documents that use these transparent images, but will result in performance degradation. This option does not affect Microsoft Windows or Unix implementations where SCCOPT_RENDERING_PREFER_OIT is set to TRUE.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTBOOL

Default

False

Spreadsheet and Database File Rendering

This section discusses spreadsheet and database options.

SCCOPT_DBPRINTFITTOPAGE

This option scales a spreadsheet file to a certain percent or to a page width or height. However, in an effort to preserve readability after scaling, Image Export will not shrink a database document to under approximately one-third of its original size.

It should be noted that when this option is set to SCCVW_DBPRINTFITMODE_NOMAP, the pages of the database file are printed down first and then across.

Please note that any margins applied as a result of settings for the SCCOPT_DEFAULTPRINTMARGINS option will be included in any scaling that is applied to the output image as a result of settings for this option.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

One of the following values:

	SCCVW_DBPRINTFITMODE_NOMAP: This will not do any scaling of the database image. It will render in its original size onto as many pages as are required to fit the data.

	SCCVW_DBPRINTFITMODE_FITTOPAGES: This will fit the database to one page, scaling to the image width or height depending on the page size and database size.

	SCCVW_DBPRINTFITMODE_FITTOWIDTH: This will scale the database on the rendered image so it is no larger than one page wide.

	SCCVW_DBPRINTFITMODE_FITTOHEIGHT: This will scale the database on the rendered image so it is no larger than one page high.

Default

SCCVW_DBPRINTFITMODE_FITTOPAGES

SCCOPT_DBPRINTGRIDLINES

If this option is TRUE, lines are generated between cells in the rendered images.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTBOOL

Default

TRUE

SCCOPT_DBPRINTHEADINGS

If this option is TRUE, field headings will be generated along with the data.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTBOOL

Default

TRUE

SCCOPT_MAXSSDBPAGEHEIGHT

Normally, the size of images generated from spreadsheet worksheets and database tables is limited to the size of the page defined by the input document's page size information and how the SCCOPT_USEDOCPAGESETTINGS, SCCOPT_GRAPHIC_WIDTH and SCCOPT_GRAPHIC_HEIGHT options are set. If, after scaling is factored in, the resulting image is too large to fit on a single page, it is split up into multiple pages.

The SCCOPT_MAXSSDBPAGEWIDTH and SCCOPT_MAXSSDBPAGEHEIGHT options are used to change the size of a page to match the scaled size of the page being rendered - within limits. The key reason for those limits is that rendering very large pages can easily overwhelm the memory available on the system. When using this feature, a calculation should be made to be sure that the values passed in work within said memory limits. The values for these two options will override the current page dimensions if necessary.

The memory needed may be calculated based on the following:

memory = [max. worksheet/table height (in inches)] x [max. worksheet/table width (in inches)] x [dpi setting]2 x 3 bytes/pixel + a bit extra for the needs of the rest of the conversion

By default, these options are set to the current page dimensions. Users may choose to set only one of the two options if desired. If, for example, only the SCCOPT_MAXSSDBPAGEWIDTH is set, then the height of the page will be based on the normal page height.

When a worksheet or table is larger than the maximum values specified by these options, then the file is rendered on multiple pages, with the requested (larger) page dimensions.

These new options grow the page size (if needed) to match the size of the worksheet or table. This differs from the SCCOPT_GRAPHIC_WIDTH and SCCOPT_GRAPHIC_HEIGHT options, which set an absolute page size without regard to the size of the worksheet or table.

If text in cells ends up extending past the edge of the cell and beyond the edge of the page, Image Export writes one or more additional pages for the overflow text.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

The maximum page height (including margins) specified in twips (1440 twips are in 1 inch). If the value specified is smaller than the page height, then Image Export will return a SCCERR_INVALIDMAXSSDBPAGE error.

Default

	0: Use the page height defined by the input document's page size information and by the SCCOPT_USEDOCPAGESETTINGS, SCCOPT_GRAPHIC_HEIGHTLIMIT and SCCOPT_GRAPHIC_HEIGHT options.

Figure 10-1 Logic Flow for Determining Page Size of Spreadsheet and Database Pages
[image: Logic flow to determine page size.]

SCCOPT_MAXSSDBPAGEWIDTH

See the documentation for SCCOPT_MAXSSDBPAGEHEIGHT for a full discussion of how this option works and interacts with other options affecting the page size of images generated from spreadsheet and database pages.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Size

VTDWORD

Data

The maximum page width (including margins) specified in twips (1440 twips are in 1 inch). If the value specified is smaller than the page width, then Image Export will return a SCCERR_INVALIDMAXSSDBPAGE error.

Default

	0: Use the page width defined by the input document's page size information and by the SCCOPT_USEDOCPAGESETTINGS, SCCOPT_GRAPHIC_WIDTHLIMIT and SCCOPT_GRAPHIC_WIDTH options.

SCCOPT_SSPRINTDIRECTION

This option controls the pattern in which the pages are rendered, either across first and then down, or down first and then across.

This option is overridden when the SCCOPT_USEDOCPAGESETTINGS option is set to TRUE and print direction is specified in the input document.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

One of the following values:

	SCCVW_SSPRINTDIRECTION_ACROSS: Specifies that pages are printed across first and then down.

	SCCVW_SSPRINTDIRECTION_DOWN: Specifies that pages are printed down first and then across.

Default

SCCVW_SSPRINTDIRECTION_DOWN

SCCOPT_SSPRINTFITTOPAGE

This option requests that the spreadsheet file be fit to one page.

Please note that any margins applied as a result of settings for the SCCOPT_DEFAULTPRINTMARGINS option will be included in any scaling that is applied to the output image as a result of settings for this option.

This option is overridden when the SCCOPT_USEDOCPAGESETTINGS option is set to TRUE and fitting the page to the printer's image limits is specified in the input document.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

One of the following values:

	SCCVW_SSPRINTFITMODE_NOMAP: No scaling is performed on the spreadsheet image. It will render in its original size onto as many pages as are required to fit the data.

	SCCVW_SSPRINTFITMODE_FITTOPAGES: Will scale the spreadsheet in the rendered image to fit to the number of pages specified in the SCCOPT_SSPRINTSCALEXHIGH and SCCOPT_SSPRINTSCALEXWIDE options. Since aspect ratio is maintained, the lesser of the two dimensions (width or height) will determine the scale factor. Note that if either SCCOPT_SSPRINTSCALEXHIGH or SCCOPT_SSPRINTSCALEXWIDE is set to 0, the value in the other option will be nullified.

	SCCVW_SSPRINTFITMODE_FITTOWIDTH: Will scale the spreadsheet in the rendered image so it is no larger than one page wide.

	SCCVW_SSPRINTFITMODE_FITTOHEIGHT: Will scale the spreadsheet in the rendered image so it is no larger than one page high.

	SCCVW_SSPRINTFITMODE_SCALE: Will scale the spreadsheet in the rendered image using the scale value stored in the SCCOPT_SSPRINTSCALEPERCENT option.

Default

	SCCVW_SSPRINTFITMODE_SCALE; Scales the rendered image of the spreadsheet using the scale value stored in the SCCOPT_SSPRINTSCALEPERCENT option (which is 100 by default).

SCCOPT_SSPRINTGRIDLINES

If this option is TRUE, a line is generated between cells in the rendered image.

This option is overridden when the SCCOPT_USEDOCPAGESETTINGS option is set to TRUE and printing grid lines between cells is specified in the input document.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTBOOL

Default

TRUE

SCCOPT_SSPRINTHEADINGS

If this option is TRUE, row and column headings will be rendered along with the data.

This option is overridden when the SCCOPT_USEDOCPAGESETTINGS option is set to TRUE and printing column and row headers is specified in the input document.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTBOOL

Default

FALSE

SCCOPT_SSPRINTSCALEPERCENT

This option will scale spreadsheet pages by the percentage specified. The option has no effect unless the SCCOPT_SSPRINTFITTOPAGE option is set to SCCVW_SSPRINTFITMODE_SCALE.

This option must take a value between 1 and 100. If any value outside of this range is used, the option will be ignored.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Default

100

SCCOPT_SSPRINTSCALEXHIGH

This option will fit the spreadsheet image to the number of vertical pages specified. The setting for this option will have no effect unless the SCCOPT_SSPRINTFITTOPAGE option is set to SCCVW_SSPRINTFITMODE_FITTOPAGES.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Default

1

SCCOPT_SSPRINTSCALEXWIDE

This option will fit the spreadsheet image to the number of horizontal pages specified. The setting for this option will have no effect unless the SCCOPT_SSPRINTFITTOPAGE option is set to SCCVW_SSPRINTFITMODE_FITTOPAGES.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Default

1

SCCOPT_SSSHOWHIDDENCELLS

This option lets you determine whether or not to show hidden rows or columns when rendering spreadsheets. It is used to expand the widths of cells that are hidden by virtue of having their row height or column width reduced to 0. This is a BOOLEAN option that will leave the data hidden when it is FALSE, and show all hidden rows and columns when it is TRUE, displayed using the default row width or default column height.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTBOOL

Data

	TRUE: Displays hidden cells.

	FALSE: Does not display hidden cells.

Default

FALSE

SCCOPT_EX_SHOWHIDDENSSDATA

The setting for this option determines whether or not hidden sheets in a spreadsheet will be included in the output. When set to FALSE (the default), the hidden elements are not written. When set to TRUE, they are placed in the output in the same manner as regular spreadsheet data.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTBOOL

Data

	TRUE: Allow hidden data to be placed in the output.

	FALSE: Prevent hidden data from being placed in the output.

Default

FALSE

SCCOPT_FILTERNOBLANK

If this option is TRUE, blank spreadsheet pages will not be produced when printing a file or rendering it.

Data Type

VTBOOL

Default

FALSE

Page Rendering

This section discusses page rendering options.

SCCOPT_DEFAULTPRINTMARGINS

This option specifies the top, left, bottom and right margins in twips from the edges of the image. For instance, setting all the values to 1440 creates a 1-inch margin on all sides. Page margins will only be applied when formatting word processing, database and spreadsheet files.

Please note all margins are applied before scaling with the SCCOPT_DBPRINTFITTOPAGE, SCCOPT_SSPRINTFITTOPAGE, SCCOPT_GRAPHIC_HEIGHT, SCCOPT_GRAPHIC_WIDTH, or SCCOPT_GRAPHIC_SIZELIMIT options.

This option is overridden when the SCCOPT_USEDOCPAGESETTINGS option is set to TRUE and print margins are specified in the input document.

This option does not affect the output of bitmap, presentation, vector or archive files.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

The SCCVWPRINTMARGINS structure.

SCCVWPRINTMARGINS Structure

This structure is used by the SCCOPT_DEFAULTPRINTMARGINS option to specify margin settings.

SCCVWPRINTMARGINS is a C data structure defined in sccvw.h as follows:

typedef struct SCCVWPRINTMARGINStag
 {
 VTDWORD dwTop;
 VTDWORD dwBottom;
 VTDWORD dwLeft;
 VTDWORD dwRight;
} SCCVWPRINTMARGINS, * PSCCVWPRINTMARGINS;

Parameters

	dwTop: Margin from the top edge of the image (in twips). Default is 1 inch.

	dwBottom: Margin from the bottom edge of the image (in twips). Default is 1 inch.

	dwLeft: Margin from the left edge of the image (in twips). Default is 1 inch.

	dwRight: Margin from the right edge of the image (in twips). Default is 1 inch.

SCCOPT_PRINTENDPAGE

This option indicates the page that rendering should end on. It is only valid if the option SCCOPT_WHATTOPRINT has the value SCCVW_PRINT_PAGERANGE.

Note that page range settings are one-based and inclusive. Therefore, specifying a range with SCCOPT_PRINTENDPAGE equal to 5 and SCCOPT_PRINTSTARTPAGE equal to 3 would export any of the three pages that follow, if they exist: 3, 4 and 5.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Default

	0: The last page at the end of the document.

SCCOPT_PRINTSTARTPAGE

This option indicates the page rendering should start on. It is only valid if the option SCCOPT_WHATTOPRINT has the value SCCVW_PRINT_PAGERANGE.

Note that page range settings are one-based and inclusive. Therefore, specifying a range with SCCOPT_PRINTENDPAGE equal to 5 and SCCOPT_PRINTSTARTPAGE equal to 3 would export any of the three pages that follow, if they exist: 3, 4 and 5.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Default

	0: Printing will begin with the first page of the document.

SCCOPT_USEDOCPAGESETTINGS

This option is used to select the document's page layout information when rendering.

If TRUE the document's native (or author selected) page margins, paper size, page scaling and page orientation are used when available from the filter.

The values of the SCCOPT_DEFAULTPRINTMARGINS, SCCOPT_SSPRINTGRIDLINES, SCCOPT_SSPRINTHEADINGS, SCCOPT_SSPRINTDIRECTION, and SCCOPT_SSPRINTFITTOPAGE options are overridden if this option is set to TRUE and the properties associated with those options are specified in the input document. Additionally, print area and page breaks in spreadsheet documents are ignored unless this option is set to TRUE.

If FALSE, the page margins, size, orientation and scaling are set to specific values rather than those in the native document. The page size is forced to 8 1/2" x 11" in portrait orientation, but this may be changed by setting the SCCOPT_GRAPHIC_HEIGHT and/or SCCOPT_GRAPHIC_WIDTH options. The margins are forced 1" all around, but may be changed by setting the defaultMargins option. The scaling for the document will be set to 100%, although this may be changed by setting any of the various scaling options.

It should be noted that this option also affects page orientation for both input spreadsheets and word processing documents.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTBOOL

Default

TRUE

SCCOPT_WHATTOPRINT

This option indicates whether the whole file or a selected range of pages should be rendered.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

One of the following values:

	SCCVW_PRINT_PAGERANGE: The pages in the one-based, inclusive range from SCCOPT_PRINTSTARTPAGE to SCCOPT_PRINTENDPAGE will be printed.

	SCCVW_PRINT_ALLPAGES: The entire document will be printed.

Default

SCCVW_PRINT_ALLPAGES

SCCOPT_NUMBERFORMAT

This option is used to control the formatting of numbers. It is useful for setting environment dependent variables related to international support. The default values are retrieved from the operating system for the Windows platform, and are set to logical U.S. defaults on all other platforms.

Data Type

SCCVWNUMBERFORMAT and SCCVWNUMBERFORMAT775 structures

SCCVWNUMBERFORMAT775 and SCCVWNUMBERFORMAT Structures

These structures are used to set the SCCID_NUMBERFORMAT option. The fields of the structures allow the developer to control variables related to international support. Please note that the SCCVWNUMBERFORMAT775 structure always assumes 2-digit year data, whereas the SCCVWNUMBERFORMAT structure allows for both 2- and 4-digital year data.

These are C data structures defined in sccvw.h as follows:

typedef struct SCCVWNUMBERFORMAT775tag
 {
 VTTCHAR cDecimalSep;
 VTTCHAR cThousandSep;
 VTTCHAR cDateSep;
 VTTCHAR cTimeSep;
 VTTCHAR szCurrencySymbol[8];
 VTTCHAR szAM[8];
 VTTCHAR szPM[8];
 VTDWORD dwNumBytesAM;
 VTDWORD dwNumBytesPM;
 VTWORD wCurrencyPosition;
 VTWORD wShortDateOrder;
 } SCCVWNUMBERFORMAT775, * PSCCVWNUMBERFORMAT775;

typedef struct SCCVWNUMBERFORMATtag
 {
 VTTCHAR cDecimalSep;
 VTTCHAR cThousandSep;
 VTTCHAR cDateSep;
 VTTCHAR cTimeSep;
 VTTCHAR szCurrencySymbol[8];
 VTTCHAR szAM[8];
 VTTCHAR szPM[8];
 VTDWORD dwNumBytesAM
 VTDWORD dwNumBytesPM;
 VTWORD wCurrencyPosition
 VTWORD wShortDateOrder;
 VTWORD wShortDateYearDigits;
 VTWORD wShortDateMonthDigits;
 VTWORD wShortDateDayDigits;
 VTWORD wShortDateFlags;
 } SCCVWNUMBERFORMAT, * PSCCVWNUMBERFORMAT;

Parameters

	cDecimalSep: The character used for the decimal separator when formatting currency.

	cThousandSep: The character used for the thousands separator when formatting currency.

	cDateSep: The character used to separate years, months, and days when formatting dates. This option only works on variable formats. For example, only one of the several date formats in Microsoft Excel is variable.

	cTimeSep: The character used to separate hours, minutes, and seconds when formatting times. This option only works on variable formats. For example, only one of the several time formats in Microsoft Excel is variable.

	szCurrencySymbol: The string used for the currency symbol when formatting currency.

	szAM: The string used to indicate "AM" when formatting times.

	szPM: The string used to indicate "PM" when formatting times.

	dwNumBytesAM: Number of bytes of the string stored in szAM.

	dwNumBytesPM: Number of bytes of the string stored in szPM.

	wCurrencyPosition: Flags that indicate the positioning of the currency symbol when formatting currency. Only six specific filters are supported: SOC6, WG2, WK4, WK6, WPW, and VISO.

	SCCVW_CURRENCY_LEADS: The currency symbol is placed before the amount.

	SCCVW_CURRENCY_TRAILS: The currency symbol is placed after the amount.

	SCCVW_CURRENCY_SPACE: A space is placed between the currency and the amount.

	SCCVW_CURRENCY_NOSPACE: A space is not placed between the currency and the amount.

	wShortDateOrder: Indicates the order used when formatting short dates (numeric dates). This option only works on variable formats. For example, only one of the several date formats in Microsoft Excel is variable. One of the following:

	SCCVW_DATEORDER_MDY: Month, Day, Year

	SCCVW_DATEORDER_DMY: Day, Month, Year

	SCCVW_DATEORDER_YMD: Year, Month, Date

	wShortDateYearDigits: This parameter is specific to the SCCVWNUMBERFORMAT structure. This is the number of digits in the year as specified by the Windows registry entry sShortDate. This option only works on variable formats. For example, only one of the several date formats in Microsoft Excel is variable.

	wShortDateMonthDigits: This parameter is specific to the SCCVWNUMBERFORMAT structure. This is the number of digits in the month as specified by the Windows registry entry sShortDate.

	wShortDateDayDigits: This parameter is specific to the SCCVWNUMBERFORMAT structure. This is the number of digits in the day as specified by the Windows registry entry sShortDate.

	wShortDateFlags: This parameter is specific to the SCCVWNUMBERFORMAT structure. It is reserved for internal use.

SCCOPT_WPEMAILHEADEROUTPUT

The former option SCCOPT_WPMIMEHEADEROUTPUT has been deprecated. This option controls rendering of email headers.

Scope

Global

Data Type

VTDWORD

Data

One of these values:

	SCCUT_WP_EMAILHEADERSTANDARD: Displays a standardized set of headers based on the type of document being viewed. These are:

	Emails - "To", "From", "Subject", "CC", "BCC", "Date Sent", "Importance", and "Attachments"

	Journal Entries - "Entry Type", "Subject", "Start", "Duration", "Company", "Categories", and "Attachments"

	Tasks - "Subject", "Start Date", "Due Date", "Status", "Priority", "Percent Complete", "Owner", "Categories", and "Attachments"

	Contacts - "First Name", "Family Name", "Middle Name", "Title", "Suffix", "Job Title", "File As", "Email", "Business Phone", "Home Phone", "Business Address", "Home Address", "Mobile Phone", "Business Fax", "IM Address", "Company", "Webpage", and "Attachments"

	Appointments - "To", "Location", "Subject", "Start Time", "End Time", "Required Attendee", "Optional Attendee", "Importance", "Categories", and "Attachments"

	Posts - "From", "Creation Time", "Subject", "Conversation Topic", and "Attachments"

	Notes - "Creation Time", "Categories", and "Attachments"

	Distribution Lists - "Subject" and "Attachments"

	SCCUT_WP_EMAILHEADERNONE: Displays no email header fields.

	SCCUT_WP_EMAILHEADERALL: Displays all available email headers.

Default

SCCUT_WP_EMAILHEADERSTANDARD

SCCOPT_MAILHEADERVISIBLE

Along with SCCOPT_MAILHEADERHIDDEN, these options exist to allow the developer fine-grained control over what email headers are rendered. These options modify which email headers are displayed, and are based on the most recent setting of SCCOPT_WPEMAILHEADEROUTPUT. To implement a fully customized set of email headers for display, your code should first set the SCCOPT_WPEMAILHEADEROUTPUT option to select a baseline set of headers, then use these options to selectively add or remove headers from that set.

Setting a header to be visible means that it will be rendered when that header is found in a document of the appropriate type. Selected headers that are not present in the input file will not have any corresponding output created for them (no 'empty' headers will be created). Setting a header to be hidden means that it will not be rendered for the document types specified.

Scope

Global

Data Type

SCCUTEMAILHEADERINFO structure

SCCUTEMAILHEADERINFO structure

This structure is used by the SCCOPT_WPMAILHEADERVISIBLE/SCCOPT_WPMAILHEADERHIDDEN options to specify the headers to show or hide.

typedef struct SCCUTEMAILHEADERINFOtag
{
 VTDWORD dwHeaderID;
 VTDWORD dwSubtypeID;
 VTWORD wsMimeHeaderName[SCCUT_MAIL_NAMELENGTH];
 VTWORD wsMimeHeaderLabel[SCCUT_MAIL_NAMELENGTH];
} SCCUTEMAILHEADERINFO, *PSCCUTEMAILHEADERINFO;

Parameters:

	dwHeaderID

Either the ID of a predefined email header field, found in sccca.h (for example SCCCA_MAIL_TO), or an identifier between NONSTANDARD_HEADER_ID_BASE and NONSTANDARD_HEADER_ID_TOP for tracking a user-defined header.

	dwSubTypeID

The type(s) of documents in which to either show or hide this header. These can be joined with a bitwise OR operator. Available subtypes are:

	SCCUT_MAILTYPE_EMAIL

	SCCUT_MAILTYPE_JOURNAL

	SCCUT_MAILTYPE_CONTACT

	SCCUT_MAILTYPE_NOTE

	SCCUT_MAILTYPE_APPOINTMENT

	SCCUT_MAILTYPE_TASK

	SCCUT_MAILTYPE_POST

	SCCUT_MAILTYPE_DISTROLIST

	wsMimeHeaderName

A Unicode string containing the value of a user-specified MIME header name. This value is only used when the dwHeaderId field contains a user-defined ID value between NONSTANDARD_HEADER_ID_BASE and NONSTANDARD_HEADER_ID_TOP.

	wsMimeHeaderLabel

Unicode string that will be used as the label for a user-defined MIME header. This value is only used for user-defined headers.

Note:
Support for user-defined MIME headers is intended to allow Outside In to selectively display MIME headers that are not included in the predefined set of email headers known to Outside In. It is likely that most developers using Outside In will not need to specify user-defined MIME headers. Knowledge of the particular MIME headers present in the input email files is necessary in order to take advantage of this capability.

Default

Not used

SCCOPT_MAILHEADERHIDDEN

Along with SCCOPT_MAILHEADERVISIBLE, these options exist to allow the developer fine-grained control over what email headers are rendered. These options modify which email headers are displayed, and are based on the most recent setting of SCCOPT_WPEMAILHEADEROUTPUT. To implement a fully customized set of email headers for display, your code should first set the SCCOPT_WPEMAILHEADEROUTPUT option to select a baseline set of headers, then use these options to selectively add or remove headers from that set.

Setting a header to be visible means that it will be rendered when that header is found in a document of the appropriate type. Selected headers that are not present in the input file will not have any corresponding output created for them (no 'empty' headers will be created). Setting a header to be hidden means that it will not be rendered for the document types specified.

Scope

Global

Data Type

See SCCUTEMAILHEADERINFO structure under SCCOPT_MAILHEADERVISIBLE

Default

Not used

SCCOPT_MARGIN_TEXT_FONT_NAME

This option lets you set the font to use for margin text.

Data Type
VTCWSTR (string for any valid CSS font name)

Default
Arial

SCCOPT_MARGIN_TEXT_FONT_SIZE

This option lets you set the font size to use for margin text.

Data Type
VTDWORD (increments of one-half point)

Default
9 pt.

SCCOPT_MARGIN_TEXT_LINE

This option lets you specify a text string to use for margin text.

Data Type
SCCEX_MARGINTEXTLINE

Default
None

SCCOPT_REDACTION_COLOR

This option provides the ability to specify the color used for a redaction rectangle (black or white) as well as the color used (black or white) for the redaction code. When the colors match, the redaction code will effectively be invisible. Settings should default to Black redactions with White codes if not explicitly set. The values may be set on each redaction individually, both in the UI and in the rendered output.

Data Type
SCCVWCOLORREF

Data
Any valid CSS color

SCCOPT_REDACTION_LABEL_FONT_NAME

This option sets the font name to be used for the redaction label.

Data Type
VTCWSTR (string for any valid CSS font name)

Default
Default display font

SCCOPT_REDACTION_LABEL_FONT_SIZE

This option lets you set the size of font to use for redaction labels. The font size may be reduced to allow text to fit within a redaction rectangle.

Data Type
DWORD (size in half points)

Default
9 pts.

SCCOPT_REDACTIONS_ENABLED

This option tells the export to format the output to be redaction-capable. In practical terms what this means is that all embeddings will be rasterized (routed through sccimg) so that a rectangle in an embedding is consistent across all output formats.

Data Type
Boolean

Default
False

SCCOPT_SHOW_REDACTION_LABELS

This option allows you to display redaction labels in your output.

Data Type
VTBOOL

Default
False (no labels)

Font Rendering

This section discusses font rendering options.

SCCOPT_DEFAULTPRINTFONT

This option sets the font to use when the chunker-specified font is not available on the system. It is also the font used when the font in source file is not available on the system performing the conversion.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

SCCVWFONTSPEC Structure

SCCVWFONTSPEC Structure

This structure is used by various options to specify a font.

SCCVWFONTSPEC is a C data structure defined in sccvw.h as follows:

typedef struct
 {
 VTTCHAR szFace[40];
 VTWORD wHeight;
 VTWORD wAttr;
 VTWORD wType;
 } SCCVWFONTSPEC, * LPSCCVWFONTSPEC;

Parameters

	szFace: The name of the font. For example, "Helvetica Compressed." The default is "Arial", however this default is constrained by the fonts available on the system.

	wHeight: Size of the font in half points. For example, a value of 24 will produce a 12-point font. This size is only applied when the font size is not known. The default is 10-point, however this default is constrained by the font sizes available on the system.

	wAttr: The attributes of the font. This parameter is used primarily by the Outside In Viewer Technology and is currently ignored by ImageExport.

	wType: Should be set to 0.

SCCOPT_PRINTFONTALIAS

This option sets or gets printer font aliases according to the SCCVWFONTALIAS structure.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

The SCCVWFONTALIAS structure.

SCCVWFONTALIAS Structure

This structure is used in the SCCOPT_PRINTFONTALIAS option.

SCCVWFONTALIAS is a C data structure defined in sccvw.h as follows:

typedef struct SCCVWFONTALIAStag
{
 VTDWORD dwSize;
 VTDWORD dwAliasID;
 VTDWORD dwFlags;
 VTWORD szwOriginal[SCCVW_FONTNAMEMAX];
 VTWORD szwAlias[SCCVW_FONTNAMEMAX * SCCVW_MAXALIASES]
} SCCVWFONTALIAS, * PSCCVWFONTALIAS;

Parameters

	dwSize: Must be set by the developer to sizeof(SCCVWFONTALIAS).

	dwAliasID: ID of the aliasing in the current list of aliases. In Image Export, the default is that no alias is applied.

	dwFlags: The usage of these flags depends on whether this structure is being used with the DASetOption or DAGetOption message. It should be set to one of the following:

	SCCVW_FONTALIAS_COUNT (DAGetOption): dwAliasID will be filled with the count of current font aliases for that device.

	SCCVW_FONTALIAS_ALIASNAME (DASetOption): The alias of szwAlias for szwOriginal will be used when szwOriginal is not available on the device. When a font alias is added to the list, this can affect the alias count. If an alias already exists for szwOriginal, the new szwAlias will replace it.

	SCCVW_FONTALIAS_ALIASNAME (DAGetOption): szwAlias will be filled if there is an alias in the alias list for the font in szwOriginal on that device.

	SCCVW_FONTALIAS_GETALIASBYID (DAGetOption): szwAlias and szwOriginal will be filled by the technology for the alias in the numbered slot identified by the ID.

	SCCVW_FONTALIAS_GETALIASID (DAGetOption): dwAliasID will be set for the font in szwOriginal. If none exists, the dwAliasID will be 0xFFFFFFF.

	SCCVW_FONTALIAS_REMOVEALIASBYID (DASetOption): The alias in that slot will be removed if one exists. When a font alias is removed from the list, this can affect the other alias IDs.

	SCCVW_FONTALIAS_REMOVEALIASBYNAME (DASetOption): The alias for the font szwOriginal will be removed from the alias list if one exists. When a font alias is removed from the list, this can affect the other alias IDs.

	SCCVW_FONTALIAS_REMOVEALL (DASetOption): The alias list will be cleared out and the count will be zero.

	SCCVW_FONTALIAS_USEDEFAULTS (DASetOption): This clears the existing alias list and sets it to a list of default aliases that is variable by platform.

	szwOriginal: This represents the original name of a font that will be mapped when this font is not available. This name should be a Unicode string.

	szwAlias: This represents the new name of a font that will be used as a replacement for the unmapped font named in szwOriginal. This name should be a Unicode string.

Data

The technology assumes the following default mappings. The first value is the szwOriginal Value, the second is the szwAlias Value.

	Chicago = Arial

	Geneva = Arial

	New York = Times New Roman

	Helvetica = Arial

	Helv = Arial

	times = Times New Roman

	Times = Times New Roman

	Tms Roman = Times New Roman

	Symbol = Symbol

	itc zapfdingbats = Zapfdingbats

	itc zapf dingbats = Zapfdingbats

SCCOPT_RENDER_EMBEDDED_FONTS

This option allows you to disable the use of embedded fonts in PDF input files. If the option is set to TRUE, the embedded fonts in the PDF input will be used to render text; if the option is set to FALSE, the embedded fonts will not be used and the fallback is to use fonts available to Outside In to render text.

Handle Type

VTHDOC, VTHEXPORT

Scope

local

Data Type

VTBOOL

Data

A Boolean value indicating if embedded fonts should be rendered.

Default Value

TRUE

SCCOPT_STROKE_TEXT

This option is used to stroke out (display as graphical primitives) text in an AutoCAD file. Setting this option to FALSE would improve performance, but the visual fidelity may be compromised.

	If the export for the conversion is text only, text is never stroked out.

	If the export is not text only, and the drawing is perspective, text will always be stroked out (regardless of this option). This is due to the fact that in non-text only situations visual fidelity is of importance, and handling of textual objects in perspective drawings is more accurate with stroked out text. If the conversion is non-text only and the drawing is not perspective, this option determines if text should be stroked.

Note that when this option is TRUE, some special characters appear as asterisks or question marks due to limited support of characters for stroking out text.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTBOOL

Default

TRUE

Watermarks

This section discusses watermark options.

By default, the watermark image is centered in the middle of the target image.

SCCOPT_GRAPHIC_WATERMARK_OPACITY

This option must be set and defined to turn on watermarking support. A value of 0 is default and turns watermarking off. Values (1 to 255) specify a level of transparency. 255 is fully opaque. 1 is very transparent.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

A value between 1 and 255. The value of 0 turns watermarking off.

Default

0

SCCOPT_GRAPHIC_WATERMARK_PATH

This option needs to be set to specify a watermark file and path.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTLPVOID

Data

The value set using SCCOPT_GRAPHIC_WATERMARK_PATH will be treated as a 256-byte buffer. Its handling is determined by the value set by SCCOPT_GRAPHIC_WATERMARK_IOTYPE. Valid values are:

	IOTYPE_ANSIPATH

	IOTYPE_UNIXPATH

	IOTYPE_UNICODEPATH

	IOTYPE_REDIRECT

Default

There is no default. If you intend to use watermarks, you must set this option.

SCCOPT_GRAPHIC_WATERMARK_SCALETYPE

Indicates whether to scale the watermark image or not. A value of SCCGRAPHIC_WATERMARK_SCALETYPE_NONE means that we blend the watermark onto the original graphic with the original watermark height and width. This is the default value. A value of SCCGRAPHIC_WATERMARK_SCALETYPE_PERCENT means that we will scale the watermark to be a certain percentage of the output page size.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

	SCCGRAPHIC_WATERMARK_SCALETYPE_NONE: When set means no scaling of the watermark image is to be done.

	SCCGRAPHIC_WATERMARK_SCALETYPE_PERCENT: When set means that the watermark image is to be scaled to a percentage of its size. The percentage that is used is set by the SCCOPT_GRAPHIC_WATERMARK_SCALEPERCENT option.

Default

SCCGRAPHIC_WATERMARK_SCALETYPE_NONE

SCCOPT_GRAPHIC_WATERMARK_SCALEPERCENT

Active when SCCOPT_GRAPHIC_WATERMARK_SCALETYPE is set to SCCGRAPHIC_WATERMARK_SCALETYPE_PERCENT. Values (1 to 100) scale the watermark to be a specified percent of its original size. A value of 100 (default) overlays the target image with the watermark image at its original size; e.g., if the original graphic watermark is 4x4 and the target image is 6x8, the graphic watermark will be scaled to 4x4 to overlay the target image.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

Values of 1 to 100 scale the watermark image to a percentage of the watermark image's size.

Default

100

SCCOPT_GRAPHIC_WATERMARK_HORIZONTAL_OFFSETFROM

Indicates offset within target image to adjust watermark position.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

	SCCOPT_GRAPHIC_WATERMARK_HORIZONTAL_OFFSETFROM_LEFT: Positive offset value moves the watermark to the right.

	SCCOPT_GRAPHIC_WATERMARK_HORIZONTAL_OFFSETFROM_CENTER: Positive offset value moves the watermark to the right.

	SCCOPT_GRAPHIC_WATERMARK_HORIZONTAL_OFFSETFROM_RIGHT: Positive offset value moves the watermark to the left.

The offset values are in terms of % of document size, with valid values from -100 to 100 (default is 0), and is specified by SCCOPT_GRAPHIC_WATERMARK_HORIZONTAL_OFFSET.

Default

SCCOPT_GRAPHIC_WATERMARK_HORIZONTAL_OFFSETFROM_CENTER

SCCOPT_GRAPHIC_WATERMARK_VERT_OFFSETFROM

Indicates offset within target image to adjust watermark position.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type

VTDWORD

Data

	SCCOPT_GRAPHIC_WATERMARK_VERT_OFFSETFROM_TOP: Positive offset value moves the watermark down.

	SCCOPT_GRAPHIC_WATERMARK_VERT_OFFSETFROM_CENTER: Positive offset value moves the watermark down.

	SCCOPT_GRAPHIC_WATERMARK_VERT_OFFSETFROM_BOTTOM: Positive offset value moves the watermark up.

The offset values are in terms of % of document size, with valid values from -100 to 100 (default is 0), and is specified by SCCOPT_GRAPHIC_WATERMARK_VERTICAL_OFFSET.

	

Default

SCCOPT_GRAPHIC_WATERMARK_HORIZONTAL_OFFSETFROM_CENTER

Callbacks

This section discusses callback options.

SCCOPT_EX_CALLBACKS

This is an advanced option that casual users of Image Export may ignore.

This option is used to disable callbacks being made from Image Export. Callbacks that are disabled will behave as if they were made and the developer had returned SCCERR_NOTHANDLED.

The option takes a VTDWORD field of flags. When the flag is set, the callback is enabled. By default, all callbacks are enabled. You can activate multiple callbacks by bitwise OR-ing them together. You can also disable multiple callbacks by bitwise &-ing the SCCEX_CALLBACKFLAG_ALLENABLED value with the one's complement of the corresponding callback flags. The following #defines are to be used for enabling the various callbacks:

	Flag	Associated Callbacks
	SCCEX_CALLBACKFLAG_CREATENEWFILE

	EX_CALLBACK_ID_CREATENEWFILE

	SCCEX_CALLBACKFLAG_NEWFILEINFO

	EX_CALLBACK_ID_NEWFILEINFO

In addition, the following two special values are available:

	SCCEX_CALLBACKFLAG_ALLDISABLED: Disables the receipt of all callbacks. Additionally, bitwise OR-ing this value with one or more flags enables the corresponding callbacks. For example, SCCEX_CALLBACKFLAG_ALTLINK | SCCEX_CALLBACKFLAG_CREATENEWFILE enables the ALTLINK and CREATENEWFILE callbacks, but disables all others.

	SCCEX_CALLBACKFLAG_ALLENABLED: Enables the receipt of all callbacks. Additionally, bitwise &-ing this value with the one's complement of one or more flags disables the corresponding callbacks. For example, SCCEX_CALLBACKFLAG_ALLENABLED& (~SCCEX_CALLBACKALTLINK & ~SCCEX_CALLBACKFLAG_CREATENEWFILE) disables the ALTLINK and CREATENEWFILE callbacks, but enables all others.

Handle Types

VTHDOC

Scope

Local

Data Type

VTDWORD

Data

One or more of the valid flags, bitwise OR-ed together

Default

	SCCEX_CALLBACKFLAG_ALLENABLED: All callbacks are available to the developer.

SCCOPT_EX_UNICODECALLBACKSTR

This option determines the format of strings used in the callback functions. For those structures that contain a field of type BYTE or LPBYTE, a comparable structure has been added which has a similar field of type WORD or LPWORD. These structures will have the same name as the original structure, with the addition of a "W" at the end.

When this option is set to TRUE, any time a callback uses a structure with a string, it will use the new structure. Also, any strings that the callback function returns will be expected to follow the same guidelines. If the option is set to FALSE, all callbacks will use single-byte character strings.

For example, if this option is set to TRUE, and the EX_CALLBACK_ID_CREATENEWFILE callback is called, the pExportData parameter to the callback will point to an EXURLFILEIOCALLBACKDATAW structure. If the option is set to FALSE, the pCommandOrInfoData parameter will point to an EXURLFILEIOCALLBACKDATA structure.

This option should be set before EXOpenExport is called.

Handle Types

VTHDOC

Scope

Local

Data Type

VTBOOL

Data

One of the following values:

	TRUE: Use Unicode strings in callbacks.

	FALSE: Do not use Unicode strings in callbacks.

Default

FALSE

File System

This section discusses file system options.

SCCOPT_IO_BUFFERSIZE

This set of three options allows the user to adjust buffer sizes to tailor memory usage to the machine's ability. The numbers specified in these options are in kilobytes. These are advanced options that casual users of Image Export may ignore.

Handle Type

NULL, VTHDOC

Scope

Global

Data Type

SCCBUFFEROPTIONSstructure

Data

A buffer options structure

SCCBUFFEROPTIONS Structure

typedef struct SCCBUFFEROPTIONStag
{
 VTDWORD dwReadBufferSize; /* size of the I/O Read buffer
 in KB */
 VTDWORD dwMMapBufferSize; /* maximum size for the I/O
 Memory Map buffer in KB */
 VTDWORD dwTempBufferSize; /* maximum size for the memory-
 mapped temp files in KB */
 VTDWORD dwFlags; /* use flags */
} SCCBUFFEROPTIONS, *PSCCBUFFEROPTIONS;

Parameters

	dwReadBufferSize: Used to define the number of bytes that will read from disk into memory at any given time. Once the buffer has data, further file reads will proceed within the buffer until the end of the buffer is reached, at which point the buffer will again be filled from the disk. This can lead to performance improvements in many file formats, regardless of the size of the document.

	dwMMapBufferSize: Used to define a maximum size that a document can be and use a memory-mapped I/O model. In this situation, the entire file is read from disk into memory and all further I/O is performed on the data in memory. This can lead to significantly improved performance, but note that either the entire file can be read into memory, or it cannot. If both of these buffers are set, then if the file is smaller than the dwMMapBufferSize, the entire file will be read into memory; if not, it will be read in blocks defined by the dwReadBufferSize.

	dwTempBufferSize: The maximum size that a temporary file can occupy in memory before being written to disk as a physical file. Storing temporary files in memory can boost performance on archives, files that have embedded objects or attachments. If set to 0, all temporary files will be written to disk.

	dwFlags

	SCCBUFOPT_SET_READBUFSIZE 1

	SCCBUFOPT_SET_MMAPBUFSIZE 2

	SCCBUFOPT_SET_TEMPBUFSIZE 4

To set any of the three buffer sizes, set the corresponding flag while calling dwSetOption.

Default

The default settings for these options are:

	#define SCCBUFOPT_DEFAULT_READBUFSIZE 2: A 2KB read buffer.

	#define SCCBUFOPT_DEFAULT_MMAPBUFSIZE 8192: An 8MB memory-map size.

	#define SCCBUFOPT_DEFAULT_TEMPBUFSIZE 2048: A 2MB temp-file limit.

Minimum and maximum sizes for each are:

	SCCBUFOPT_MIN_READBUFSIZE 1: Read one Kbyte at a time.

	SCCBUFOPT_MIN_MMAPBUFSIZE 0: Don't use memory-mapped input.

	SCCBUFOPT_MIN_TEMPBUFSIZE 0: Don't use memory temp files

	SCCBUFOPT_MAX_READBUFSIZE 0x003fffff, SCCBUFOPT_MAX_MMAPBUFSIZE 0x003fffff, SCCBUFOPT_MAX_TEMPBUFSIZE 0x003fffff: These maximums correspond to the largest file size possible under the 4GB DWORD limit.

SCCOPT_TEMPDIR

From time to time, the technology needs to create one or more temporary files. This option sets the directory to be used for those files.

It is recommended that this option be set as part of a system to clean up temporary files left behind in the event of abnormal program termination. By using this option with code to delete files older than a predefined time limit, the OEM can help to ensure that the number of temporary files does not grow without limit.

Note:
This option will be ignored if SCCOPT_REDIRECTTEMPFILE is set.

Handle Types

NULL, VTHDOC

Scope

Global

Data Type

SCCUTTEMPDIRSPEC structure

SCCUTTEMPDIRSPEC Structure

This structure is used in the SCCOPT_TEMPDIR option.

SCCUTTEMPDIRSPEC is a C data structure defined in sccvw.h as follows:

typedef struct SCCUTTEMPDIRSPEC
{
 VTDWORD dwSize;
 VTDWORD dwSpecType;
 VTBYTE szTempDirName[SCCUT_FILENAMEMAX];
} SCCUTTEMPDIRSPEC, * LPSCCUTTEMPDIRSPEC;

There is currently a limitation. dwSpecType describes the contents of szTempDirName. Together, dwSpecType and szTempDirName describe the location of the source file. The only dwSpecType values supported at this time are:

	IOTYPE_ANSIPATH: Windows only. szTempDirName points to a NULL-terminated full path name using the ANSI character set and FAT 8.3 (Win16) or NTFS (Win32 and Win64) file name conventions.

	IOTYPE_UNICODEPATH: Windows only. szTempDirName points to a NULL-terminated full path name using the Unicode character set and NTFS file name conventions. Note that the length of the path name is limited to SCCUT_FILENAMEMAX bytes, or (SCCUT_FILENAMEMAX / 2) double-byte Unicode characters.

	IOTYPE_UNIXPATH: UNIX platforms only. szTempDirName points to a NULL-terminated full path name using the system default character set and UNIX path conventions. Unicode paths can be accessed on UNIX platforms by using a UTF-8 encoded path with IOTYPE_UNIXPATH.

Specifically not supported at this time is IOTYPE_REDIRECT.

Users should also note that temporary files created by the technology are not subject to callbacks (such as EX_CALLBACK_ID_CREATENEWFILE) normally made when files are created.

Parameters

	dwSize: Set to sizeof(SCCUTTEMPDIRSPEC).

	dwSpecType: IOTYPE_ANSIPATH, IOTYPE_UNICODEPATH, or IOTYPE_UNIXPATH

	szTempDirName: The path to the directory to use for the temporary files. Note that if all SCCUT_FILENAMEMAX bytes in the buffer are filled, there will not be space left for file names.

Default

The system default directory for temporary files. On UNIX systems, this is the value of environment variable $TMP. On Windows systems, it is the value of environment variable %TMP%.

SCCOPT_DOCUMENTMEMORYMODE

This option determines the maximum
amount of memory that the chunker may use to store the document's
data, from 4 MB to 1 GB. The more memory the chunker has available
to it, the less often it needs to re-read data from the document.

Handle Types

NULL, VTHDOC

Scope

Global

Data Type

VTDWORD

Parameters

	SCCDOCUMENTMEMORYMODE_SMALLEST 1
- 4MB

	SCCDOCUMENTMEMORYMODE_SMALL 2 - 16MB

	SCCDOCUMENTMEMORYMODE_MEDIUM 3 -
64MB

	SCCDOCUMENTMEMORYMODE_LARGE 4 - 256MB

	SCCDOCUMENTMEMORYMODE_LARGEST 5 -
1 GB

Default

SCCDOCUMENTMEMORYMODE_LARGE 4
- 256MB

SCCOPT_REDIRECTTEMPFILE

This option is set when the developer wants to use redirected IO to completely take over responsibility for the low level IO calls of the temp file.

Handle Types

NULL, VTHDOC

Scope

Global (not persistent)

Data Type

VTLPVOID: pCallbackFunc

Function pointer of the redirect IO callback.

Redirect call back function:

typedef
{
 VTDWORD (* REDIRECTTEMPFILECALLBACKPROC)
 (HIOFILE *phFile,
 VTVOID *pSpec,
 VTDWORD dwFileFlags);

There is another option to handle the temp directory, SCCOPT_TEMPDIR. Only one of these two can be set by the developer. The SCCOPT_TEMPDIR option will be ignored if SCCOPT_REDIRECTTEMPFILE is set. These files may be safely deleted when the Close function is called.

SCCOPT_STAMP_IMAGE_FILE

Image stamp annotations are bitmap images that are "stamped" onto the rendition of a file generated by Outside In when using EXApplyHilites to apply annotations.

The source of the image may be a PNG, JPG, or GIF image. They may be considered special types of rectangular annotation.

In the Export API, image stamps are applied in the following way:

	Names are defined for the source images. In the C API, this is accomplished via calling DAAddOptionItem as many times as necessary, with the option SCCOPT_STAMP_IMAGE_URL (for Web View Export output files) or SCCOPT_STAMP_ IMAGE_FILE (for Image Export output files.)

	A stamp is applied by specifying its destination rectangle and the name of its source image. In the C API, this is accomplished by populating an EXANNOSTAMP data structure and specifying it as a parameter to EXAddStampAnnotation.

The EXANNOSTAMPIMAGE data structure has the following definition:

typedef struct EXANNOSTAMPIMAGE
 {
 VTLPCTSTR szStampName;
 VTLPVOID pStampImage;
 VTDWORD dwSpecType;
 } EXANNOSTAMPIMAGE ;

	szStampName is a null-terminated UTF8 string that specifies the name of a stamp.

	pStampImage is the IO spec of the stamp image.

	dwSpecType is the type of IO spec provided by pStampImage.

When setting the SCCOPT_STAMP_IMAGE_FILE option, pStampImage must be a location of a PNG, JPG, or GIF image.

dwSpecType should be set to one of the following IO specification types: IOTYPE_ANSIPATH, IOTYPE_UNICODEPATH, IOTYPE_UNIXPATH and IOTYPE_REDIRECT.

For details about IO specifications, see DAOpenDocument.

If the name specified by szStampName has already been used in a previous call to SCCOPT_STAMP_IMAGE_FILE, its file path will be updated with the new value.

Data Type

pointer to EXANNOSTAMPIMAGE structure

Default

none

Part III Using the Java API

This section provides details about using the SDK with the Java API.

Part III contains the following chapters:

	Introduction to the Java API

	Image Export Java Classes

11 Introduction to the Java API

This chapter provides an introduction to the Java API. The Java API is an add-on to the Outside In Export SDKs that enables developers to use Java to create applications using Outside In Technology.

The following topics are covered:

	Requirements

	Getting Started

Requirements

To use the API, the following set of modules and tools are required:

	Java JDK 6 or later

	The Outside In developer's redistributable modules for your product(s)

	The API libraries:

	oilink.jar - The Java library to access the Outside In technologies

	oilink (on Unix)/oilink.exe (on Windows) - The bridge modules between Java and the C-APIs.

All of the Outside In modules should be in the same directory as oilink.jar.

The SDK includes sample source code to demonstrate how such web applications may be written. These sample applications are written as simply and generically as possible, and will not fill all of the needs of your particular application. They are intended for instructional purposes only.

Getting Started

There are two steps in developing applications using the APIs. In the first step, you configure the environment to create your application (typical programming tasks not directly related to these APIs); and in the second step, you generate code to utilize the functionality of these libraries.

Configure the Environment

To set up the environment to create a Java application, you need to add the oilink.jar library to your project. (This can be done in Eclipse in the Project Properties dialog by selecting Java Build Path properties > Libraries tab > Add external JARs > browse to oilink.jar.)

Generate Code

Sample application code included with the SDK, OITSample, is a minimal demonstration of how to use this API.

All the functionality required to perform a conversion is provided in an Exporter object. The basic process of exporting a file involves the following tasks:

	Create an Exporter object.
	Configure the export.
	Set the source and primary destination files.
	Set the output type.
	(Optional) Provide a callback handler.
	Run the export.

Tasks 2 through 5 can be done in any order between the first and last task.

Create an Exporter Object

To obtain access to the Outside In functionality, you should call the utility function in the "OutsideIn" class. This will provide you an instance of an Exporter Object.

Exporter exporter = OutsideIn.newLocalExporter();

Configure the Output

The Outside In API is highly configurable, and presents numerous options to fine-tune the way a document is exported. Each option has a "set" and "get" method to set or retrieve the currently set value.

exporter.setPerformExtendedFI(true);
int timezoneOffset = exporter.getTimeZoneOffset();

Set the Source and Primary Destination Files

You are required to specify the source file and the destination file. This is done similarly to setting options using "set" methods.

exporter.setSourceFile(inputFile);
exporter.setDestinationFile(outputFile);

There are other options that can be set at this time to specify the way to handle the input file, such as providing a SourceFormat to provide a mechanism to handle the input file in a different format than that which it is identified as.

The API also supports opening certain types of embedded documents from within an input file. For example, a .zip file may contain a number of embedded documents; and an email message saved as a .msg file may contain attachments. The API provides the means of opening these types of embedded documents. This can be done by opening the parent document and then the embedded document can be opened through this exporter object.

// subdocId is the sequential number of the node in the archive file
Exporter exporterNode = exporter.newArchiveNodeExporter(subdocId);

Set the Output Type

In this step, you specify the output format.

exporter.setDestinationFormat(FileFormat.FI_JPEG);

Provide a Callback Handler

Outside In Technology provides callbacks that allow the developer to intervene at critical points in the export process. To respond to these callbacks, you have to subscribe to any messages that you are interested in by overriding the message handlers from the Callback class. After creating an object of this class, set the callback option to this object and the messages will be passed to your object.

class CallbackHandler extends Callback
{
 … // implementation of messages to handle - described in the API documentation
}
CallbackHandler callback = new CallbackHandler();
exporter.setCallbackHandler(callback);

Run the Export

After all the previous steps are completed, you can produce the desired output.

exporter.export();

12 Image Export Java Classes

This chapter describes the Image Export Java classes.

The following classes are covered:

	Annotation Class

	ArchiveNode Class

	Callback Class

	ColorInfo Class

	Exporter Interface

	ExportStatus Class

	FileFormat Class

	FontAliases Class

	FontInfo Class

	FontList Class

	HighlightTextAnnotation Class

	MailHeaders Class

	Margins Class

	MarginText Class

	Option Interface

	OutsideIn

	OutsideInException Class

	PageInfo Class

	PageRange Class

Annotation Class

Annotation is an abstract base class for the Annotation objects.

Namespace

com.oracle.outsidein.annotations

Accessors

	Height (long) Height of area in coordinates or rows

void setHeight(long)
long getHeight()

	Left (long) Leftmost coordinate or column

void setLeft(long)
long getLeft()

	Opacity (float) Opacity of the annotation. Range 0.0 - 1.0; setting opacity to 0 makes the annotation invisible

void setOpacity(float) throws OutsideInException
float getOpacity()

	SectionIndex (long) 0-based page/sheet/image/slide index

void setSectionIndex(long)
long getSectionIndex()

	Top (long) Top coordinate or row

void setTop(long)
long getTop()

	Units (Annotation.UnitTypeValue) Unit type

void setUnits(Annotation.UnitTypeValue)
Annotation.UnitTypeValue getUnits()

	UserId (long) User Data

void setUserId(long)
long getUserId()

	Width (long) Width of area in coordinates or columns

void setWidth(long)
long getWidth()

Annotation.UnitTypeValue Enumeration

The UnitTypeValue is an enumeration of the various unit types that annotation positions can be described in.

	Pixels: Units specified in Pixels

	Twips: Units specified in Twips (1/1440th of an inch)

	Cells: Units specified in cell positions

ArchiveNode Class

ArchiveNode provides information about an archive node. This is a read-only class where the technology fills in all the values.

Namespace

com.oracle.outsidein

Accessors

	boolean isFolder() - A value of true indicates that the record is an archive node.

	int getFileSize() - File size of the archive node

	java.util.Date getTime() - Time the archive node was created

	int getNodeNum() - Serial number of the archive node in the archive

	String getNodeName() - The name of the archive node

Callback Class

Callback messages are notifications that come from Outside In during the export process, providing information and sometimes the opportunity to customize the generated output.

Namespace

com.oracle.outsidein

To access callback messages, your code must create an object that inherits from Callback and pass it through the API's SetCallbackHandler method. Your object can implement methods that override the default behavior for whichever methods your application is interested in.

Callback has two methods that you can override: createNewFile and newFileInfo.

createNewFile

CreateNewFileResponse createNewFile(FileFormat parentOutputId, FileFormat outputId,
 AssociationValue association, String path) throws IOException

This callback is made any time a new output file needs to be generated. This gives the developer the chance to affect where the new output file is created, how it is named, and the URL (if any) used to reference the file.

Parameters

	parentOutputId: File format identifier of the parent file

	outputId: File format identifier of the file created

	association: An AssociationValue that describes relationship between the primary output file and the new file.

	path: Full path of the file to be created

Return Value

To take action in response to this notification, return a CreateNewFileResponse object with the new file information. If you wish to accept the defaults for the path and URL, you may return null.

CreateNewFileResponse Class

This is a class to define a new output file location in response to a CreateNewFile callback. If you do not wish to change the path to the new output file, you may use the path as received. If you do not wish to specify the URL for the new file, you many specify it as null.

Constructor

CreateNewFileResponse(File file, String url) throws IOException

	file: File object containing the full path to the new file

	url: A new URL that references the newly created file. This parameter can be null.

CreateNewFileResponse(SeekableByteChannel6 redirect, String url) throws IOException

	redirect: Object that will be written to as the destination of the transform

	url: A new URL that references the newly created file.This parameter can be null.

AssociationValue Enumeration

This enumeration defines, for a new file created by an export process, the different possible associations between the new file and the primary output file. Its value may be one of the following:

	ROOT - indicates the primary output file

	CHILD - a new file linked (directly or indirectly) from the primary output file

	SIBLING - indicates new files not linked from the primary output file

	COPY - the file was copied as a part of a template macro operation.

	REQUIREDNAME - not used

Note that some of these relationships will not be possible in all Outside In Export SDKs.

newFileInfo

void newFileInfo(FileFormat parentOutputId, FileFormat outputId,
 AssociationValue association, String path, String url) throws IOException

This informational callback is made just after each new file has been created.

Parameters

	parentOutputId: File format identifier of the parent file

	outputId: File format identifier of the file created

	association: An AssociationValue that describes relationship between the primary output file and the new file.

	path: Full path of the file created

	url: URL that references the newly created file

Example

Here is a basic callback handler that notifies an application that it has received newFileInfo notifications.

 public static class CallbackHandler extends Callback
 {
 myApplication m_theApp;

 public CallbackHandler(myApplication app)
 {
 m_theApp = app;
 }

 public void newFileInfo(FileFormat parentOutputId,
 FileFormat outputId, AssociationValue association,
 String path, String url) throws IOException
 {
 if(association == AssociationValue.ROOT)
 m_theApp.primaryOutputIsReady(true);

 m_theApp.newOutputFile(path);
 }
 }

prepareNewPage

NewPageResponse PrepareNewPage(long PageNumber)

This callback is made at the beginning of processing
a new output page. This gives the developer the chance to add or modify
the Margin Text to be placed on the page.

Parameters
	PageNumber: the zero-based index of
the page about to be rendered.

Return Value
To add or modify the Margin Text, respond to this
notification with a NewPageResponse object with the margin text information.
If you wish to not change the currently set values, you may return
null.

NewPageResponse
Class

This is a class to define the
new margin text to use in response to a prepareNewPage callback.

Constructor
NewPageResponse(MarginText marginText)

	marginText: A MarginText object with
the Margin text for all the different margin locations.

pageInfoSlideNotes

void pageInfoSlideNotes(long PageNumber, string[] SlideNotes)

This informational callback is made after each slide
if the last processed slide has any notes (such as speaker notes)
associated with it. (Note that a request for this callback should
be made through setPageInformationRequired.)

Parameters
	PageNumber: The zero-based index of
the page about to be rendered.

	SlideNotes: The notes associated with
this slide.

pageInfoVisibility

 void PageInfoVisibility(long PageNumber, bool IsVisible)

This informational callback is made when the current
page being processed has information about the visibility of the page.
(Note that a request for this callback should be made through setPageInformationRequired.)

openFile

OpenFileResponse openFile(FileTypeFalue fileType, String fileName) throws IOException

This callback is made any time a new file needs to be opened.

Parameters

	fileType: Type of file being requested to be opened

	fileName: Name of the file to be opened

Return Value

To take action in response to this method, return an OpenFileResponse object.

FileTypeValue Enumeration
This enumeration defines the type of file being requested to be opened. Its value may be one of the following:

	INPUT: File to be opened (path unknown)

	TEMPLATE: Template file to be opened

	PATH: Full file name of the file to be opened

	OTHER: Not used

OpenFileResponse Class

This is a class to define a new file or redirected I/O object in response to an openFile() callback.

Constructors

OpenFileResponse(File file)

	file: File object with full path to the new file

OpenFileResponse(SeekableByteChannel6 redirect)

	redirect: A redirected I/O object to which the file data will be written

createTempFile

CreateTempFileResponse createTempFile() throws IOException

This callback is made any time a new temporary file needs to be generated. This gives the developer the chance to handle the reading and writing of the temporary file.

Return Value

To take action in response to this notification, return a CreateTempFileResponse object with the temporary file information.

CreateTempFileResponseClass

This is a class to define a new redirected I/O object in response to a createTempFile() callback.

Constructors

CreateTempFileResponse(SeekableByteChannel6 redirect)

	redirect: A redirected I/O object to which the file data will be written and read from

ColorInfo Class

ColorInfo is a class to define a color or to use a default color in appropriate cases.

Namespace

com.oracle.outsidein

Constructors

ColorInfo()

Initializes a ColorInfo object to use the default color.

public ColorInfo(byte red,
 byte green,
 byte blue)

Initializes a ColorInfo object with the specified RGB values.

Accessors

	byte getBlue() - Blue component of the color

	byte getGreen() - Green component of the color

	byte getRed() - Red component of the color

	boolean isDefaultColor() - Returns true if the default color is used

Exporter Interface

This section describes the properties and methods of Exporter.

All of Outside In's Exporter functionality can be accessed through the Exporter Interface. The object returned by OutsideIn class is an implementation of this interface. This class derives from the Document Interface, which in turn is derived from the OptionsCache Interface.

Namespace

com.oracle.outsidein

Methods

	getExportStatus

ExportStatus getExportStatus()

This function is used to determine if there were conversion problems during an export. The ExportStatus object returned may have information about sub-document failures, areas of a conversion that may not have high fidelity with the original document. When applicable the number of pages in the output is also provided.

	newSubDocumentExporter

Exporter newSubDocumentExporter(
 int SubDocId,
 SubDocumentIdentifierTypeValue idType
) throws OutsideInException

Create a new Exporter for a subdocument.

SubDocId: Identifier of the subdocument

idType: Type of subdocument

SubDocumentIdentifierTypeValue: This is an enumeration for the type of subdocument being opened.

	XMLEXPORTLOCATOR: Subdocument to be opened is based on output of XML Export (SubdocId is the value of the object_id attribute of a locator element.)

	ATTACHMENTLOCATOR: Subdocument to be opened is based on the locator value provided by the one of the Export SDKs.

	 EMAILATTACHMENTINDEX: Subdocument to be opened is based on the index of the attachment from an email message. (SubdocId is the zero-based index of the attachment from an email message file. The first attachment presented by OutsideIn has the index value 0, the second has the index value 1, etc.)

Returns: A new Exporter object for the subdocument

	newSubObjectExporter

Exporter newSubObjectExporter(
 SubObjectTypeValue objType,
 int data1,
 int data2,
 int data3,
 int data4
) throws OutsideInException

Create a new Exporter for a subobject.

objType: Type of subobject

data1: Data identifying the subobject from SearchML

data2: Data identifying the subobject from SearchML

data3: Data identifying the subobject from SearchML

data4: Data identifying the subobject from SearchML

Returns: A new Exporter object for the subobject

SubObjectTypeValue: An enumeration to describe the type of SubObject to open.

	LinkedObject

	EmbeddedObject

	CompressedFile

	Attachment

	newArchiveNodeExporter

Exporter newArchiveNodeExporter(
 int dwRecordNum
) throws OutsideInException

Create a new Exporter for an archive node. You may get the number of nodes in an archive using getArchiveNodeCount. The nodes are numbered from 0 to getArchiveNodeCount -1.

dwRecordNum: The number of the record to retrieve information about. The first node is node 0 and the total number of nodes may be obtained from getArchiveNodeCount.

Returns: A new Exporter object for the archive node

	newArchiveNodeExporter with Search Export Data

Exporter newArchiveNodeExporter(
 int flags,
 int params1,
 int params2
) throws OutsideInException

Create a new Exporter for an archive node. To use this function, you must first process the archive with Search Export and save the Node data for later use in this function.

Flags: Special flags value from Search Export

Params1: Data1 from Search Export

Params2: Data2 from Search Export

Returns: A new Exporter object for the archive node

	export

void export() throws OutsideInException

Perform the conversion and close the export process keeping the source document open.

void export(boolean bLeaveSourceOpen) throws OutsideInException

Perform the conversion and keep the source document open or close it based on the value of bLeaveSourceOpen.

bLeaveSourceOpen: If set to true, keeps the source document open for next export process.

Note:
Before Release 8.5.3, calling Export() with no parameters, would leave the source document open. The default behavior starting with Release 8.5.3 is to close the document after exporting the file. If you would like to keep the file open for other conversions, use this method with "bLeaveSourceOpen" set to true.

setDestinationFile

OptionsCache setDestinationFile(
 String filename
) throws OutsideInException

Set the location of the destination file

filename: Full path to the destination file

Returns: The updated options object

	setExportTimeout

OptionsCache setExportTimeout(int millisecondsTimeout)

This method sets the time that the export process should wait for a response from the Outside In export engine to complete the export of a document, setting an upper limit on the time that will elapse during a call to export(). If the specified length of time is reached before the export has completed, the export operation will be terminated and an OutsideInException will be thrown. If this option is not set, the default timeout is 5 minutes.

	newLocalExporter

static Exporter newLocalExporter(Exporter source)

This method creates and returns an instance of an Exporter object based on the source Exporter. All the options of source are copied to the new Exporter. The source and destination file information will not be copied.

Annotatable Interface

All of the Outside In annotation-related methods are accessed through the Annotatable Interface.

NameSpace

com.oracle.outsidein.annotations

Methods

	addStampImageFile

void addStampImageFile(
 Map<String, File> stamps
)throws OutsideInException

This method maps a stamp name to an image file.

stamps: Key value pairs of stamp names and image files

	applyHighlights

void applyHighlights(
 String HighlightJsonData
)

This method applies a set of highlights from a JSON-encoded text stream previously generated from the Web View Export Javascript library.

HighlightJsonData: stream of highlight (and comment) information that was obtained via the Web View Export Javascript API function OIT.highlights.serialize.

Document Interface

All of the Outside In document-related methods are accessed through the Document Interface.

Namespace

com.oracle.outsidein

Methods

	close

void close()

Closes the currently open document.

	getArchiveNodeCount

int getArchiveNodeCount() throws OutsideInException

Retrieves the number of nodes in an archive file.

Returns the number of nodes in the archive file or 0 if the file is not an archive file.

	getFileId

FileFormat getFileId(FileIdInfoFlagValue dwFlags) throws OutsideInException

Gets the format of the file based on the technology's content-based file identification process.

dwFlags: Option to retrieve the file identification pre-Extended or post-Extended Test

Returns the format identifier of the file.

	getArchiveNode

ArchiveNode getArchiveNode(int nNodeNum) throws OutsideInException

Retrieves information about a record in an archive file. You may get the number of nodes in an archive using getArchiveNodeCount.

nNodeNum: The number of the record to retrieve information about. The first node is node 0.

Return Value: An ArchiveNode object with the information about the record

	saveArchiveNode

void saveArchiveNode(
 int nNodeNum,
 File file) throws OutsideInException

Extracts a record in an archive file to disk.

nNodeNumType: The number of the record to retrieve information about. The first node is node 0.

file: The destination file to which the file will be extracted.

	setSourceFile

OptionsCache setSourceFile(String filename) throws OutsideInException

Set the source document.

filename: Full path of the source document

Returns: The options cache object associated with this document

SeekableByteChannel6 Interface

Enables API users to handle I/O for the source and destination documents. Implement this interface to control I/O operations such as reading, writing, and seeking. This interface mimics the java.nio.channels.SeekableByteChannel interface which is only available in Java 7 and later. Note that SeekableByteChannel6 will be removed in favor of java.nio.channels.SeekableByteChannel if support for Java 6 is dropped in a future release of the Outside In Java API. Until then, this interface must be used if redirected I/O is required.

Namespace

com.oracle.outsidein

Methods

	Get position

long position()

Returns this channel's position.

	Set position

SeekableByteChannel6 position(long newPosition)

Sets this channel's position.

	read

int read(java.nio.ByteBuffer dst)

Reads a sequence of bytes from this channel into the given buffer. Bytes are read starting at this channel's current position, and then the position is updated with the number of bytes actually read.

	size

long size()

Returns the current size of the entity to which this channel is connected.

	truncate

SeekableByteChannel6 truncate(long size)

Truncates the entity, to which this channel is connected, to the given size. Never invoked by Outside In and may be implemented by just returning this.

	write

int write(java.io.nio.ByteBuffer src)

Writes a sequence of bytes to this channel from the given buffer. Bytes are written starting at this channel's current position. The entity to which the channel is connected is grown, if necessary, to accommodate the written bytes, and then the position is updated with the number of bytes actually written.

	close

void close()

Closes this channel. If this channel is already closed then invoking this method has no effect.

	isOpen

boolean isOpen()

Tells whether or not this channel is open.

OptionsCache Class

This section describes the OptionsCache class.

The options that configure the way outputs are generated are accessed through the OptionsCache class.

All of the options described in the following subsections are available through this interface. Other methods in this interface are described below.

Namespace

com.oracle.outsidein.options

Methods

	OptionsCache setSourceFile(File file) throws OutsideInException

Sets the source document to be opened.

file: Full path to source file

	OptionsCache setSourceFile(SeekableByteChannel6 redirect) throws OutsideInException

Sets an object that implements SeekableByteChannel6 to be used as the source document. Exporting a file using this method may have issues with files that require the original name of the file (examples: if the extension of the file is needed for identification purposes or if the name of a secondary file depends on the name/path of the original source file).

redirect: Object implementing SeekableByteChannel6 to be used to read the source data containing the input file

	OptionsCache setSourceFile(SeekableByteChannel6 redirect, String filename) throws OutsideInException

Sets an object that implements SeekableByteChannel6 to be used as the source document and provides information about the filename.

redirect: Object implementing SeekableByteChannel6 to be used to read the source data containing the input file

filename: A fully qualified path or file name that may be used to derive the extension of the file or name of a secondary file that is dependent on the name/path of the source file

	OptionsCache addSourceFile(File file) throws OutsideInException

Sets the next source document file to be exported in sequence. This allows multiple documents to be exported to the same output destination.

file: Full path to source file

	OptionsCache addSourceFile(SeekableByteChannel6 redirect)

Set a redirected channel as the next source document to be exported to the original destination file. This method has the same limitations as the similar setSourceFile(SeekableByteChannel6 redirect) method.

	OptionsCache addSourceFile(SeekableByteChannel6 redirect, String Filename)

Set a redirected channel as the next source document to be exported to the original destination file. The file name provided is used as in the method setSourceFile(SeekableByteChannel6 redirect, String Filename)

	OptionsCache setSourceFormat(FileFormat fileId)

Sets the source format to process the input file as, ignoring the algorithmic detection of the file type.

fileId: the format to treat the input document as.

	OptionsCache setDestinationFile(File file) throws OutsideInException

Sets the location of the destination file.

file: Full path to the destination file

	OptionsCache setDestinationFile(SeekableByteChannel6 redirect) throws OutsideInException

Sets an object that implements SeekableByteChannel6 to be used as the destination document. An Exporter.export() operation will write the output data to the provided SeekableByteChannel6 object.

redirect: Object implementing SeekableByteChannel6 to be used as the destination document written during an Exporter.export() operation

	OptionsCache setDestinationFormat(FileFormat fileId)

Sets the destination file format to which the file should be converted.

fileId: the format to convert the input document(s) to.

	OptionsCache setCallbackHandler(Callback callback)

Sets the object to use to handle callbacks.

callback: the callback handling object.

	OptionsCache setPasswordsList(List<String> Passwords)

Provides a list of strings to use as passwords for encrypted documents. The technology will cycle through this list until a successful password is found or the list is exhausted.

Passwords: List of strings to be used as passwords.

	OptionsCache setLotusNotesId(String NotesIdFile)

Sets the Lotus Notes ID file location.

NotesIdFile: Full path to the Notes ID file.

	OptionsCache setOpenForNonSequentialAccess(boolean bOpenForNonSequentialAccess)

Setting this option causes the technology to open archive files in a special mode that is only usable for non-sequential access of nodes.

bOpenForNonSequentialAccess : If set to true would open the archive file in the special access mode. Note that turning this flag on a non-archive file will throw an exception at RunExport time.

BiDiReorderMethod

OIT Option ID: SCCOPT_REORDERMETHOD

This option controls how the technology reorders bidirectional text.

Data Type

	BiDiReorderMethodValue

BiDiReorderMethodValue Enumeration

One of the following values:

	UNICODEOFF: This disables any processing for bidirectional characters. This option is the default.

	UNICODELTOR: Characters displayed using the Unicode bidirectional algorithm assuming a base left-to-right order. Use this option to enable bidirectional rendering.

	UNICODERTOL: Characters displayed using the Unicode bidirectional algorithm assuming a base right-to-left order. Use this option to force starting bidirectional rendering in the right-to-left.

Default

UNICODEOFF

CropToContent

OIT Option ID: SCCOPT_GRAPHIC_CROPPING

When set to True, this option forces Image Export to crop whitespace from the edge of each output image. This includes margins and any unused space at the end of a page. This results in smaller output files without any loss of original input document content.

If there is no content, then no cropping is performed.

Data Type

boolean

DefaultInputCharacterSet

OIT Option ID: SCCOPT_DEFAULTINPUTCHARSET

This option is used in cases where Outside In cannot determine the character set used to encode the text of an input file. When all other means of determining the file's character set are exhausted, Outside In will assume that an input document is encoded in the character set specified by this option. This is most often used when reading plain-text files, but may also be used when reading HTML or PDF files.

Data Type

DefaultInputCharacterSetValue

DefaultInputCharacterSetValue Enumeration

DefaultInputCharacterSetValue can be one of the following enumerations:

SYSTEMDEFAULT

UNICODE

BIGENDIANUNICODE

LITTLEEENDIANUNICODE

UTF8

UTF7

ASCII

UNIXJAPANESE

UNIXJAPANESEEUC

UNIXCHINESETRAD1

UNIXCHINESEEUCTRAD1

UNIXCHINESETRAD2

UNIXCHINESEEUCTRAD2

UNIXKOREAN

UNIXCHINESESIMPLE

EBCDIC37

EBCDIC273

EBCDIC274

EBCDIC277

EBCDIC278

EBCDIC280

EBCDIC282

EBCDIC284

EBCDIC285

EBCDIC297

EBCDIC500

EBCDIC1026

DOS437

DOS737

DOS850

DOS852

DOS855

DOS857

DOS860

DOS861

DOS863

DOS865

DOS866

DOS869

WINDOWS874

WINDOWS932

WINDOWS936

WINDOWS949

WINDOWS950

WINDOWS1250

WINDOWS1251

WINDOWS1252

WINDOWS1253

WINDOWS1254

WINDOWS1255

WINDOWS1256

WINDOWS1257

ISO8859_1

ISO8859_2

ISO8859_3

ISO8859_4

ISO8859_5

ISO8859_6

ISO8859_7

ISO8859_8

ISO8859_9

MACROMAN

MACCROATIAN

MACROMANIAN

MACTURKISH

MACICELANDIC

MACCYRILLIC

MACGREEK

MACCE

MACHEBREW

MACARABIC

MACJAPANESE

HPROMAN8

BIDIOLDCODE

BIDIPC8

BIDIE0

RUSSIANKOI8

JAPANESEX0201

Default

SYSTEMDEFAULT

DefaultRenderFont

OIT Option ID: SCCOPT_DEFAULTPRINTFONT

This option sets the font to use when the chunker-specified font is not available on the system. It is also the font used when the font in source file is not available on the system performing the conversion.

Class members:

 string strFaceName

 UInt16 FontHeight

DefaultPageMargins

This option specifies the top, left, bottom and right margins in twips from the edges of the page. For instance, setting all the values to 1440 creates a 1-inch margin on all sides. Page margins will only be applied when formatting word processing, database and spreadsheet files.

Please note all margins are applied before scaling with the PageFitMode option. This option is overridden when the UseDocumentPageSettings option is set to true and print margins are specified in the input document. This option does not affect the output of bitmap, presentation, vector or archive files.

Data Type

Margins

Data

A Margins object with the margins on the 4 sides defined.

Default

1 inch for all margins (1440, 1440, 1440, 1440)

DocumentMemoryMode

OIT Option ID: SCCOPT_DOCUMENTMEMORYMODE

This option determines the maximum amount of memory
that the chunker may use to store the document's data, from 4 MB to
1 GB. The more memory the chunker has available to it, the less often
it needs to re-read data from the document.

Data

	SMALLEST: 1 - 4MB

	SMALL: 2 - 16MB

	MEDIUM: 3 - 64MB

	LARGE: 4 - 256MB

	LARGEST: 5 - 1 GB

Default

LARGE: 4 - 256MB

EmailHeaders

OIT Option ID: SCCOPT_WPEMAILHEADEROUTPUT

This option controls rendering of email headers.

Data

	ALL: Displays all available email headers.

	STANDARD: Displays "To," "From," "Subject," "CC," "BCC," "Date Sent," and "Attachments" header fields only. The filter outputs any fields not listed above as hidden fields, so they will not display.

	NONE: Displays no email header fields.

	CUSTOM

Default

STANDARD

EnableAlphaBlending

This option allows the user to enable alpha-channel blending (transparency) in rendering vector images. This is primarily useful to improve fidelity when rendering with a slower graphics engine, such as X-Windows over a network when performance is not an issue.

Data

Boolean

Default

False

FallbackFormat

This option controls how files are handled when their specific application type cannot be determined. This normally affects all plain-text files, because plain-text files are generally identified by process of elimination, for example, when a file isn't identified as having been created by a known application, it is treated as a plain-text file. It is recommended that None be set to prevent the conversion from exporting unidentified binary files as though they were text, which could generate many pages of "garbage" output.

Data Type

FallbackFormatValue

FallbackFormatValue Enumeration

	TEXT: Unidentified file types will be treated as text files.

	NONE: Outside In will not attempt to process files whose type cannot be identified

Default

TEXT

FitHeightToPages

OIT Option ID: SCCOPT_SSPRINTSCALEXHIGH

This option will fit the spreadsheet image to the number of vertical pages specified. The setting for this option will have no effect unless the SSPrintFitToPage option is set to FitToPages.

Data Type

long

Default

1

FitWidthToPages

OIT Option ID: SCCOPT_SSPRINTSCALEXWIDE

This option will fit the spreadsheet image to the number of horizontal pages specified. The setting for this option will have no effect unless the SSPrintFitToPage option is set to FitToPages.

Data Type

long

Default

1

FontAliasList

This option enables the capability to specify which font on the system should be used when a specific font referenced in the original file is not available. A different alias can be set for each font desired to be mapped.

Data Type

FontAliases

Data

A FontAliases object with a list of font matchings.

Default

Windows and Unix PrintAlias defaults

GraphicHeight

OIT Option ID: SCCOPT_GRAPHIC_HEIGHT

This option defines the absolute height in pixels to which exported graphics will be resized. If this option is set and the GraphicWidth option is not, the width of the image will be calculated based on the aspect ratio of the source image. The developer should be aware that very large values for this option or GraphicWidth could produce images whose size exceeds available system memory, resulting in conversion failure.

If you are exporting a non-graphic file (word processing, spreadsheet or archive) and the settings for GraphicHeight and GraphicWidth do not match the aspect ratio of the original document, the exported image will have whitespace added so that the original file's aspect ratio is maintained.

The settings for the GraphicHeightLimit and GraphicWidth options can override the setting for GraphicHeight.

Data Type

long

GraphicHeightLimit

OIT Option ID: SCCOPT_GRAPHIC_HEIGHTLIMIT

Note that this option differs from the behavior of setting the height of graphics in that it sets an upper limit on the image height. Images larger than this limit will be reduced to the limit value. However, images smaller than this height will not be enlarged when using this option. Setting the height using GraphicHeight causes all output images to be reduced or enlarged to be of the specified height.

Data Type

long

GraphicOutputDPI

OIT Option ID: SCCOPT_GRAPHIC_OUTPUTDPI

This option allows the user to specify the output graphics device's resolution in DPI and only applies to images whose size is specified in physical units (in/cm). For example, consider a 1" square, 100 DPI graphic that is to be rendered on a 50 DPI device (GraphicOutputDPI is set to 50). In this case, the size of the resulting TIFF, BMP, JPEG, GIF, or PNG will be 50 x 50 pixels.

In addition, the special #define of SCCGRAPHIC_MAINTAIN_IMAGE_DPI, which is defined as 0, can be used to suppress any dimensional changes to an image. In other words, a 1" square, 100 DPI graphic will be converted to an image that is 100 x 100 pixels in size. This value indicates that the DPI of the output device is not important. It extracts the maximum resolution from the input image with the smallest exported image size.

Setting this option to SCCGRAPHIC_MAINTAIN_IMAGE_DPI may result in the creation of extremely large images. Be aware that there may be limitations in the system running this technology that could result in undesirably large bandwidth consumption or an error message. Additionally, an out of memory error message will be generated if system memory is insufficient to handle a particularly large image.

Also note that the SCCGRAPHIC_MAINTAIN_IMAGE_DPI setting will force the technology to use the DPI settings already present in raster images, but will use the current screen resolution as the DPI setting for any other type of input file.

For some output graphic types, there may be a discrepancy between the value set by this option and the DPI value reported by some graphics applications. The discrepancy occurs when the output format uses metric units (DPM, or dots per meter) instead of English units (DPI, or dots per inch). Depending on how the graphics application performs rounding on meters to inches conversions, the DPI value reported may be 1 unit more than expected. An example of a format which may exhibit this problem is PNG.

The maximum value that can be set is 2400 DPI; the default is 96 DPI.

Data Type

long

GraphicRenderAsPage

OIT Option ID: SCCOPT_GRAPHIC_RENDERASPAGE

GraphicRenderAsPage affects the way raster (bitmapped) images such as TIFF, JPG, and PNG are handled. The default behavior for Image Export is to export such images as copies of the input document, scaled according to the width and height options set by the caller. If GraphicRenderAsPage is enabled, the output produced by Image Export will look like a printed page, with the image placed on a white rectangle representing a virtual page. As usual, the dimensions of the entire image, including the virtual page, will be controlled by the normal Image Export output width and height settings. The margins into which the image will be placed will be controlled by existing Outside In print margin options. The image itself will be attempted to be scaled to its true (physical) size, or scaled down to fit within the margins if necessary.

Data Type

boolean

Data

	true: Raster file images are fit to page.

	false: Raster file images are not fit to page.

Default

false

GraphicSizeLimit

OIT Option ID: SCCOPT_GRAPHIC_SIZELIMIT

This option is used to set the maximum size of the exported graphic in pixels. It may be used to prevent inordinately large graphics from being converted to equally cumbersome output files, thus preventing bandwidth waste.

This setting takes precedence over all other options and settings that affect the size of a converted graphic.

When creating a multi-page TIFF file, this limit is applied on a per page basis. It is not a pixel limit on the entire output file.

Data Type

long

GraphicSizeMethod

OIT Option ID: SCCOPT_GRAPHIC_SIZEMETHOD

This option determines the method used to size graphics. The developer can choose among three methods, each of which involves some degree of trade off between the quality of the resulting image and speed of conversion.

Using the quick sizing option results in the fastest conversion of color graphics, though the quality of the converted graphic will be somewhat degraded. The smooth sizing option results in a more accurate representation of the original graphic, as it uses anti-aliasing. Antialiased images may appear smoother and can be easier to read, but rendering when this option is set will require additional processing time. The grayscale only option also uses antialiasing, but only for grayscale graphics, and the quick sizing option for any color graphics.

The smooth sizing option does not work on images which have a width or height of more than 4096 pixels.

Data

	QUICKSIZING

	SMOOTHSIZING

	SMOOTHGRAYSCALESIZING

GraphicWidth

OIT Option ID: SCCOPT_GRAPHIC_WIDTH

This option defines the absolute width in pixels to which exported graphics will be resized. If this option is set and the GraphicHeight option is not, the height of the image will be calculated based on the aspect ratio of the source image. The developer should be aware that very large values for this option or GraphicHeight could produce images whose size exceeds available system memory, resulting in conversion failure.

If you are exporting a non-graphic file (word processing, spreadsheet or archive) and the settings for GraphicHeight and GraphicWidth do not match the aspect ratio of the original document, the exported image will have whitespace added so that the original file's aspect ratio is maintained.

The settings for the GraphicHeightLimit and GraphicWidthLimit options can override the setting for GraphicWidth.

Data Type

long

GraphicWidthLimit

OIT Option ID: SCCOPT_GRAPHIC_WIDTHLIMIT

This option allows a hard limit to be set for how wide in pixels an exported graphic may be. Any images wider than this limit will be resized to match the limit. It should be noted that regardless whether the GraphicHeightLimit option is set or not, any resized images will preserve their original aspect ratio.

Note that this option differs from the behavior of setting the width of graphics by using GraphicWidth in that it sets an upper limit on the image width. Images larger than this limit will be reduced to the limit value. However, images smaller than this width will not be enlarged when using this option. Setting the width using GraphicWidth causes all output images to be reduced or enlarged to be of the specified width.

Data Type

long

GridMaxPageHeight

OIT Option ID: SCCOPT_MAXSSDBPAGEHEIGHT

Normally, the size of images generated from spreadsheet worksheets and database tables is limited to the size of the page defined by the input document's page size information and how the UseDocumentPageSettings, GraphicWidth and GraphicHeight options are set. If, after scaling is factored in, the resulting image is too large to fit on a single page, it is split up into multiple pages.

The GridMaxPageWidth and GridMaxPageHeight options are used to change the size of a page to match the scaled size of the page being rendered - within limits. The key reason for those limits is that rendering very large pages can easily overwhelm the memory available on the system. When using this feature, a calculation should be made to be sure that the values passed in work within said memory limits. The values for these two options will override the current page dimensions if necessary.

Data Type

long

Data

The maximum page height (including margins) specified in twips (1440 twips are in 1 inch). If the value specified is smaller than the page height, then an error will be returned.

GridMaxPageWidth

OIT Option ID: SCCOPT_MAXSSDBPAGEWIDTH

See the documentation for GridMaxPageHeight for a full discussion of how this option works and interacts with other options affecting the page size of images generated from spreadsheet and database pages.

Data Type

long

Data

The maximum page width (including margins) specified in twips (1440 twips are in 1 inch). If the value specified is smaller than the page width, then Image Export will return an error.

IECondCommentMode

OIT Option ID: SCCOPT_HTML_COND_COMMENT_MODE

Some HTML input files may include "conditional comments", which are HTML comments that mark areas of HTML to be interpreted in specific versions of Internet Explorer, while being ignored by other browsers. This option allows you to control how the content contained within conditional comments will be interpreted by Outside In's HTML parsing code.

Data

	NONE: Don't output any conditional comment

	IE5: Include the IE5 comments

	IE6: Include the IE6 comments

	IE7: Include the IE7 comments

	IE8: Include the IE8 comments

	IE9: Include the IE9 comments

	ALL: Include all conditional comments

IgnorePassword

OIT Option ID: SCCOPT_IGNORE_PASSWORD

This option can disable the password verification of files where the contents can be processed without validation of the password. If this option is not set, the filter should prompt for a password if it handles password-protected files.

Data Type

boolean

InternalRendering

OIT Option ID: SCCOPT_RENDERING_PREFER_OIT

This option is valid on 32- and 64-bit Linux, 32-bit SunOS SPARC, 32-bit HP-UX RISC, and 32-bit AIX PPC.

When this option is set to TRUE, the technology will attempt to use its internal graphics code to render fonts and graphics. When set to FALSE, the technology will render images using the operating system's native graphics subsystem (X11 on UNIX/Linux platforms). This requires that there be an X11 display and a valid DISPLAY variable, regardless of the type of input document.

It is important for the system to be able to locate usable fonts when this option is set to TRUE. Only TrueType fonts (*.ttf or *.ttc files) are currently supported. To ensure that the system can find them, make sure that the environment variable GDFONTPATH includes one or more paths to these files. If the variable GDFONTPATH can't be found, the current directory is used. If fonts are called for and cannot be found, Image Export will exit with an error. Oracle does not provide fonts with any Outside In product.

Note:
Note that the maximum total path size for paths included in GDFONTPATH is 256 characters - paths longer than this will be truncated and will result in fonts not being discovered.

Data Type

boolean

ISODateTimes

OIT Option ID: SCCOPT_FORMATFLAGS

When this flag is set, all Date and Time values are converted to the ISO 8601 standard. This conversion can only be performed using dates that are stored as numeric data within the original file.

Data Type

boolean

Default

false

JPEGQuality

OIT Option ID: SCCOPT_JPEG_QUALITY

This option allows the developer to specify the lossyness of JPEG compression. The option is only valid if the dwOutputID parameter of the EXOpenExport function is set to FI_JPEGFIF, FI_PDF, FI_PDFA, or FI_PDFA_2.

Data Type

long

Data

A value from 1 to 100, with 100 being the highest quality but the least compression, and 1 being the lowest quality but the most compression.

Default

100

LotusNotesDirectory

OIT Option ID: SCCOPT_LOTUSNOTESDIRECTORY

This option allows the developer to specify the location of a Lotus Notes or Domino installation for use by the NSF filter. A valid Lotus installation directory must contain the file nnotes.dll.

Type (Common): String

Data

A path to the Lotus Notes directory.

Default

If this option isn't set, then OIT will first attempt to load the Lotus library according to the operating system's PATH environment variable, and then attempt to find and load the Lotus library as indicated in HKEY_CLASSES_ROOT\Notes.Link.

MarginText

This option lets you specify a text string for margin text.

Data Type
MarginText

Default
None

MarginTextFont

This option lets you set the font and font size for margin text.

Data Type
FontInfo

Default
Arial, 9 pt.

PageDirection

OIT Option ID: SCCOPT_SSPRINTDIRECTION

This option controls the pattern in which the pages are rendered, either across first and then down, or down first and then across.

This option is overridden when the UseDocumentPageSettings option is set to TRUE and print direction is specified in the input document.

Data

	PageDirectionValue.ACROSS: Specifies that pages are printed across first and then down.

	PageDirectionValue.DOWN: Specifies that pages are printed down first and then across.

Default

PageDirectionValue.DOWN

PageFitMode

OIT Option ID: SCCOPT_DBPRINTFITTOPAGE

OIT Option ID: SCCOPT_SSPRINTFITTOPAGE

This option scales a spreadsheet file or database image to a certain percent or to a page width or height. However, in an effort to preserve readability after scaling, Image Export will not shrink a database document to under approximately one-third of its original size.

It should be noted that when this option is set to NOMAP, the pages of the database file are printed down first and then across.

Please note that any margins applied as a result of settings for the DefaultPageMargins option will be included in any scaling that is applied to the output image as a result of settings for this option.

This option is overridden when the UseDocumentPageSettings option is set to TRUE and fitting the page to the printer's image limits is specified in the input document.

Data

	NOMAP: No scaling is performed on the spreadsheet or database image. It will render in its original size onto as many pages as are required to fit the data.

	FITTOWIDTH: Scale the spreadsheet or database image in the rendered image so it is no larger than one page wide.

	FITTOHEIGHT: Scale the spreadsheet or database image in the rendered image so it is no larger than one page high.

	SCALE: Scale the spreadsheet or the database image in the rendered image using the scale value stored in the PageScalePercent option.

	FITTOPAGES: Scale the spreadsheet or the database image in the rendered image to fit to the number of pages specified in the FitHeightToPages and FitWidthToPages options. Since aspect ratio is maintained, the lesser of the two dimensions (width or height) will determine the scale factor. Note that if either FitHeightToPages or FitWidthToPages is set to 0, the value in the other option will be nullified.

Default

	SCALE: Scales the rendered image of the spreadsheet or database image using the scale value stored in the PageScalePercent option (which is 100 by default).

PageRange

OIT Option ID: SCCOPT_WHATTOPRINT

OIT Option ID: SCCOPT_PRINTSTARTPAGE

OIT Option ID: SCCOPT_PRINTENDPAGE

This option indicates whether the whole file or a selected range of pages should be rendered. When selecting a range, the start and ending pages are specified.

Data Type

PageRange

Data

The page range to be exported.

Default

All pages are printed

PageScalePercent

OIT Option ID: SCCOPT_SSPRINTSCALEPERCENT

This option will scale spreadsheet pages by the percentage specified. The option has no effect unless the SSPrintFitToPage option is set to Scale.

This option must take a value between 1 and 100. If any value outside of this range is used, the option will be ignored.

Data Type

long

Default

100

PDFInputMaxEmbeddedObjects

This option allows the user to limit the number of embedded objects that are produced in a PDF file.

Data Type
long

Data
The maximum number of embedded objects to produce in PDF output. Setting this to 0 would produce an all embedded objects in the input document.

Default
0 – produce all objects.

PDFInputMaxVectorPaths

This option allows the user to limit the number of vector paths that are produced in a PDF file.

Data Type
long

Data
The maximum number of paths to produce in PDF output. Setting this to 0 would produce an all vector objects in the input document.

Default
0 – produce all vector objects.

PDFReorderBiDi

OIT Option ID: SCCOPT_PDF_FILTER_REORDER_BIDI

This option controls whether or not the PDF filter will attempt to reorder bidirectional text runs so that the output is in standard logical order as used by the Unicode 2.0 and later specification. This additional processing will result in slower filter performance according to the amount of bidirectional data in the file.

PDFReorderBiDiValue Enumeration

This enumeration defines the type of Bidirection text reordering the PDF filter should perform.

	STANDARDBIDI: Do not attempt to reorder bidirectional text runs.

	REORDEREDBIDI: Attempt to reorder bidirectional text runs.

PDFWordSpacingFactor

This option controls the spacing threshold in PDF input documents. Most PDF documents do not have an explicit character denoting a word break. The PDF filter calculates the distance between two characters to determine if they are part of the same word or if there should be a word break inserted. The space between characters is compared to the length of the space character in the current font multiplied by this fraction. If the space between characters is larger, then a word break character is inserted into the text stream. Otherwise, the characters are considered to be part of the same word and no word break is inserted.

Data Type
float

Data
A value representing the percentage of the space character used to trigger a word break. Valid values are positive values less than 2.

Default
0.85

PerformExtendedFI

OIT Option ID: SCCOPT_FIFLAGS

This option affects how an input file's internal format (application type) is identified when the file is first opened by the Outside In technology. When the extended test flag is in effect, and an input file is identified as being either 7-bit ASCII, EBCDIC, or Unicode, the file's contents will be interpreted as such by the export process.

The extended test is optional because it requires extra processing and cannot guarantee complete accuracy (which would require the inspection of every single byte in a file to eliminate false positives.)

Data Type

boolean

Data

One of the following values:

	false: When this is set, standard file identification behavior occurs.

	true: If set, the File Identification code will run an extended test on all files that are not identified.

Default

	true

QuickThumbnail

OIT Option ID: SCCOPT_QUICKTHUMBNAIL

When this option is set to true the technology will render scaled images with a focus on speed and reduced overall memory usage. This focus on speed and memory usage, in some cases, will cause the resulting images to be less readable than when this option is set to false.

Data Type

boolean

Data

	true: Render scaled images as quick thumbnails.

	false: Render scaled images completely.

Default

true

RedactionColor

This option provides the ability to specify the color used for a redaction rectangle (black or white) as well as the color used (black or white) for the redaction code. When the colors match, the redaction code is effectively invisible. Settings should default to Black redactions with White codes if not explicitly set. The values may be set on each redaction individually, both in the UI and in the rendered output.

Value
ColorInfo

Data
Any valid CSS color

RedactionLabelFont

This option sets the name and size of font to use for redaction labels. The font size may be reduced to allow text to fit within a redaction rectangle.

Data Type
FontInfo

Default
Default display font, 9 pt.

RedactionLabelsVisible

This option allows you to display redaction labels in your output.

Data Type
boolean

Default
False (no labels)

RedactionsEnabled

This option tells the export to format the output to be redaction-capable. In practical terms what this means is that all embeddings will be rasterized (routed through sccimg) so that a rectangle in an embedding is consistent across all output formats.

Data Type
boolean

Default
False

RenderEmbeddedFonts

This option allows you to disable the use of embedded fonts in PDF input files. If the option is set to true, the embedded fonts in the PDF input are used to render text; if the option is set to false, the embedded fonts are not used and the fallback is to use fonts available to Outside In to render text.

Data Type

boolean

Default

true

RenderGridlines

OIT Option ID: SCCOPT_DBPRINTGRIDLINES

OIT Option ID: SCCOPT_SSPRINTGRIDLINES

If this option is TRUE, a line is generated between cells in the rendered image.

This option is overridden when the UseDocumentPageSettings option is set to TRUE and printing grid lines between cells is specified in the input document.

Data Type

boolean

Default

true

RenderHeadings

OIT Option ID: SCCOPT_DBPRINTHEADINGS

OIT Option ID: SCCOPT_SSPRINTHEADINGS

If this option is TRUE, field, row and column headings will be generated along with the data.

This option is overridden when the UseDocumentPageSettings option is set to TRUE and printing column and row headers is specified in the input document.

Data Type

boolean

Default

true

ShowArchiveFullPath

OIT Option ID: SCCOPT_ARCFULLPATH

This option causes the full path of a node to be returned in "GetArchiveNodeInfo" and "GetObjectInfo".

Data Type

boolean

Data

	true: Provide the full path.

	false: Do not provide the path.

Default

false

ShowHiddenCells

OIT Option ID: SCCOPT_SSSHOWHIDDENCELLS

This option lets you determine whether or not to show hidden rows or columns when rendering spreadsheets. It is used to expand the widths of cells that are hidden by virtue of having their row height or column width reduced to 0. This is a Boolean option that will leave the data hidden when it is FALSE, and show all hidden rows and columns when it is TRUE, displayed using the default row width or default column height.

Data Type

boolean

Default

false

ShowHiddenSpreadSheetData

The setting for this option determines whether or not hidden data (hidden columns, rows or sheets) in a spreadsheet will be included in the output. When set to false (the default), the hidden elements are not written. When set to true, they are placed in the output in the same manner as regular spreadsheet data.

Data Type

boolean

Default

false

StrictFile

When an embedded file or URL can't be opened with the full path, OutsideIn will sometimes try and open the referenced file from other locations, including the current directory. When this option is set, it will prevent OutsideIn from trying to open the file from any location other than the fully qualified path or URL.

Data Type

boolean

Default

false

TIFFByteOrder

This option determines the byte order used within the file.

Data

	BIGENDIAN: This will use big-endian (Motorola) byte ordering.

	LITTLEENDIAN: This will use little-endian (Intel) byte ordering (this is the default value for this parameter).

TIFFColorSpace

This option allows the developer to control the TIFF color depth and color options.

Data Type

TIFFColorSpaceValue

TIFFColorSpaceValue Enumeration

	BLKWHITE: 1 bit black and white

	PALETTE8BIT: 8 bit palette

	RGB24BIT: 24 bit RGB (this is the default value for this parameter)

TIFFCompression

 This option will specify the type of compression used in the TIFF file that is generated.

Data

	NONE

	PACKBITS

	LZW

	CCITT_1D

	CCITT_GROUP3

	CCITT_GROUP4

TIFFFillOrder

This option determines the fill order used within the file. The value of this element only affects TIFF output when the TIFFCompression option is set to CCITT_GROUP3 and the TIFFColorSpace element is set to BLKWHITE.

Data Type

TIFFFillOrderValue

TIFFFillOrderValue Enumeration

The following set of flags:

	FILESTORE: TIFF files intended for file stores

	TRANSMISSION: TIFF files intended for electronic transmission (example fax)

Default

FILESTORE

TIFFMultiPage

This allows the developer to specify whether the output creates a single multi-page TIFF file or individual single page files. When this flag is true, the output of multiple pages from one input document will generate a single file with a separate image for each page converted.

Data Type

boolean

Default

false

TimeZoneOffset

OIT Option ID: SCCOPT_TIMEZONE

This option allows the user to define an offset to GMT that will be applied during date formatting, allowing date values to be displayed in a selectable time zone. This option affects the formatting of numbers that have been defined as date values. This option will not affect dates that are stored as text.

Note:
Daylight savings is not supported. The sent time in msg files when viewed in Outlook can be an hour different from the time sent when an image of the msg file is created.

Data Type

long

Data

Integer parameter from -96 to 96, representing 15-minute offsets from GMT. To query the operating system for the time zone set on the machine, specify SCC_TIMEZONE_USENATIVE.

Default

	0: GMT time

TransparencyColor

OIT Option ID: SCCOPT_GRAPHIC_TRANSPARENCYCOLOR

This option allows the user to set the color used as the "transparency color" in the output graphic file. Naturally, this option is only used when the selected output graphic file format supports transparency (GIF and PNG only). If the option is not set, the default behavior is to use the same color value that the input file used as the transparency color.

Use the (r, g, b) macro to create the color value to pass to this option. The red, green and blue values are percentages of the color from 0-255 (with 255 being 100%). Note that this macro should be used to set a variable and that variable should then be passed to the set option routine (instead of trying to use the macro as part of the set option call directly).

Since there is no way to "unset" an option once it has been set, the developer may set the option to DefaultTransparencyColor if they wish to revert to the default behavior.

Class members:

 byte Red

 byte Green

 byte Blue

Data

ColorInfo

Default

	new ColorInfo(): Use the same tranparency color as the source document.

UnmappableCharacter

OIT Option ID: SCCOPT_UNMAPPABLECHAR

This option selects the character used when a character cannot be found in the output character set. This option takes the Unicode value for the replacement character. It is left to the user to make sure that the selected replacement character is available in the output character set.

Data Type

int

Data

The Unicode value for the character to use.

Default

	0x002a = "*"

UseDocumentPageSettings

OIT Option ID: SCCOPT_USEDOCPAGESETTINGS

This option is used to select the document's page layout information when rendering.

If true, the document's native (or author selected) page margins, paper size, page scaling and page orientation are used when available from the filter.

The values of the DefaultPageMargins, RenderGridlines, RenderHeadings, PageDirection, and PageFitMode options are overridden if this option is set to TRUE and the properties associated with those options are specified in the input document. Additionally, print area and page breaks in spreadsheet documents are ignored unless this option is set to true.

If false, the page margins, size, orientation and scaling are set to specific values rather than those in the native document. The page size is forced to 8 1/2" x 11" in portrait orientation, but this may be changed by setting the GraphicHeight and/or GraphicWidth options. The margins are forced 1" all around, but may be changed by setting the defaultMargins option. The scaling for the document will be set to 100%, although this may be changed by setting any of the various scaling options.

It should be noted that this option also affects page orientation for both input spreadsheets and word processing documents.

Data Type

boolean

Default

true

ExportStatus
Class

The ExportStatus class provides
access to information about a conversion. This information may include
information about sub-document failures, areas of a conversion that
may not have high fidelity with the original document. When applicable
the number of pages in the output is also provided.

Namespace

com.oracle.outsidein

Accessors

	long getPageCount() - A count of all
of the output pages produced during an export operation.

	EnumSet<ExportStatusFlags> getStatusFlags()
- Gets the information about possible fidelity issues with the original
document.

	long getSubDocsFailed() - Number
of sub documents that were not converted.

	long getSubDocsPassed() - Number
of sub documents that were successfully converted.

ExportStatusFlags Enumeration

This enumeration is the set of
possible known problems that can occur during an export process.

	NoInformationAvailable: No Information
is available

	MissingMap: A PDF text run was missing
the toUnicode table

	VerticalText: A vertical text run
was present

	TextEffects: A run that had unsupported
text effects applied. One example is Word Art

	UnsupportedCompression: A graphic
had an unsupported compression

	UnsupportedColorSpace: A graphic
had an unsupported color space

	Forms: A sub documents had forms

	RightToLeftTables: A table had right
to left columns

	Equations: A file had equations

	AliasedFont: The desired font was
missing, but a font alias was used

	MissingFont: The desired font wasn't
present on the system

	SubDocFailed: a sub-document was not
converted

	TypeThreeFont: A type 3 font was encountered.

	UnsupportedShading: An unsupported
shading pattern was encountered.

	InvalidHTML: An HTML parse error, as
defined by the W3C, was encountered.

	bInvalidAnnotationNotApplied: Unsupported
annotation/redaction wasn't rendered.

FileFormat Class

This class defines the identifiers for file formats.

Namespace

com.oracle.outsidein

Methods

	GetDescription

String GetDescription()

This method returns the description of the format.

	GetId

int GetId()

This method returns the numeric identifier of the format.

	ForId

FileFormat ForId(int id)

This method returns the FileFormat object for the given identifier.

id: The numeric identifier for which the corresponding FileFormat object is returned.

FontAliases Class

FontAliases is a class for providing font matching of unknown fonts.

Namespace

com.oracle.outsidein.options

Constructor

FontAliases(boolean clearDefaults, Map<String, String> aliasList)
 useDefaults Option whether to initialize the list to a set of platform-specific default aliases (true) or to an empty list (false)
 aliasList Aliases list as a key-value pair with original name as key

Accessors

	Map<String, String> getAliasList() - List of font aliases set.

	Map<String, String> getDefaultAliases() - List of platform-specific default font aliases that are applied when "true" is passed as the first argument of the constructor.

FontInfo Class

FontInfo is a class to define a font for use in the OutsideIn API.

Namespace

com.oracle.outsidein.options

Constructors

FontInfo(String fontface, int height)
 fontface The name of the font
 height Size of the font in half points

FontInfo()

Constructs a FontInfo object with a 10 point Arial Font.

Accessors

	String getFontface() - The name of the font

	int getHeight() - Size of the font in half points

FontList Class

FontList is a class for inclusion or exclusion of fonts in exported documents.

Namespace

com.oracle.outsidein.options

Constructor

FontList(boolean isExclusion, String[] fonts)
 IsExclusion If set then accompanying list is an exclusion list
 fonts List of fonts to include or exclude

Accessors

	boolean isExcludeList() - If set, then accompanying list is an exclusion list.

	String[] getFontsList - List of fonts to include or exclude.

HighlightTextAnnotation Class

HighlightTextAnnotation is a class for defining Text highlighted Annotations. This class derives from the Annotation class.

Namespace

com.oracle.outsidein.annotations

Constructors

HighlightTextAnnotation(long StartCharCount,
 long EndCharCount,
 EnumSet<CharAttributeValues> CharAttrs,
 Enumset<CharAttributeValues> CharMask)
HighlightTextAnnotation(long StartCharCount,
 long EndCharCount,
 ColorInfo Foreground,
 ColorInfo Background)
HighlightTextAnnotation(long StartCharCount,
 long EndCharCount,
 ColorInfo Foreground,
 ColorInfo Background,
 EnumSet<CharAttributeValues> CharAttrs,
 EnumSet<CharAttributeValues> CharMask)
StartCharCount The character count of the starting position
EndCharCount The character count of the end position
Foreground The text color of the highlight
Background The background color of the highlight
CharAttrs the character attributes to use
CharMask character attributes to change

Initializes a new instance of the HighlightTextAnnotation class.

Accessors

	StartCharCount: The character count of the starting position

	EndCharCount: The character count of the end position

	Foreground: The text color of the highlight

	Background: The background color of the highlight

	CharAttrs: The character attributes to use

	CharMask: Character attributes to change

CharAttributeValues Enumeration

This enumeration is the list of all character attributes to apply for the text highlight.

	NORMAL: Normal text - All attributes off

	UNDERLINE: Underline attribute

	ITALIC: Italic attribute

	BOLD: Bold attribute

	STRIKEOUT: Strike out text

	SMALLCAPS: Small caps

	OUTLINE: Outline Text

	SHADOW: Shadow text

	CAPS: All Caps

	SUBSCRIPT: Subscript text

	SUPERSCRIPT: Superscript text

	DUNDERLINE: Double Underline

	WORDUNDERLINE: Word Underline

	DOTUNDERLINE: Dotted Underline

	DASHUNDERLINE: Dashed Underline

	ALL: All attributes

MailHeaders Class

MailHeaders class is a class describing the Mail Headers to be displayed, hidden or modified.

Namespace

com.oracle.outsidein.options

Constructors

MailHeaders()

Constructs a MailHeaders object with standard headers only.

MailHeaders(MailHeaders.BaselineValue baseline)
 baseline The starting point to add or delete headers.

Accessors	

void setBaseline(MailHeaders.BaselineValue)
MailHeaders.BaselineValue getBaseline()

The starting point to add or delete headers.

Methods

MailHeaders excludeHeader(MailHeaders.MailTypeValue mtype, MailHeaders.MailHeaderValue mhdr)

This method adds a standard header to the hidden list.

	mtype: The type of documents in which to hide this header

	mhdr: The header to hide

This method returns a reference to the updated MailHeaders object.

MailHeaders excludeHeader(MailHeaders.MailTypeValue mtype, String Exclusion)

This method adds a custom header to be the hidden list.

	mtype: The type of documents in which to hide this header

	Exclusion: User-specified MIME header name to be excluded

This method returns a reference to the updated MailHeaders object.

MailHeaders includeHeader(MailHeaders.MailTypeValue mtype, MailHeaders.MailHeaderValue mhdr)

This method adds a standard header to the visible list.

	mtype: The type of documents in which to show this header

	mhdr: The header to hide

This method returns a reference to the updated MailHeaders object.

MailHeaders includeHeader(MailHeaders.MailTypeValue mtype, String Original, String Replacement)

This method adds a custom header to the visible list.

	mtype: The type of documents in which to show this header

	Original: User-specified MIME header name

	Replacement: String that will be used as the label for the user-defined MIME header

This method returns a reference to the updated MailHeaders object.

void setVisibleHeaders(Map<MailHeaders.MailTypeValue, Map<String, String>> headers)

This method sets a series of custom headers to the visible headers list.

	headers: A key value pair of user-specified MIME headers and their replacement strings

void setHiddenHeaders(Map<MailHeaderValue.MailTypeValue, List<String>> headers)

This method sets a series of custom headers to the hidden headers list.

	headers: A list of user-specified MIME headers to be hidden

MailHeaders.BaselineValue Enumeration

The BaselineValue is an enumeration of the possible baselines (starting points to add or exclude headers).

MailHeaders.MailTypeValue Enumeration

The MailTypeValue is an enumeration of the types of mail documents.

Margins Class

The Margins Class is used to describe the page margins.

Namespace

com.oracle.outsidein.options

Constructors

Margins()

Constructs a Margins object with a 1 inch margins for top, bottom, left and right margins.

Margins(long top,
 long bottom,
 long left,
 long right)
top Margin from the top edge of the page (in twips)
bottom Margin from the bottom edge of the page (in twips)
left Margin from the left edge of the page (in twips)
right Margin from the right edge of the page (in twips)

Accessors

	long getTop() - Margin from the top edge of the page (in twips)

	long getBottom() - Margin from the bottom edge of the page (in twips)

	long getLeft() - Margin from the left edge of the page (in twips)

	long getRight() - Margin from the right edge of the page (in twips)

MarginText Class

This class provides a mechanism
to define the Margin text to be applied to a page/document.

Namespace
OutsideIn

Constructors
MarginText(Map<MarginText.Location, String>)

Constructs a Margin text object with a list of lines.

MarginText(MarginText.Location, String)

Constructs a Margin text object with a single line.

Methods
void addMarginText(Map<MarginText.Location, String>)

Adds a set of Margin text lines.

void addMarginText(MarginText.Location, String)

Adds a line of Margin text.

Location Enumeration
This enumeration is the list of all the locations
margin text can be applied to.

	TOPLEFTLINE1 : Line 1 of Top Left
Corner of page

	TOPLEFTLINE2 : Line 2 of Top Left
Corner of page

	TOPLEFTLINE3 : Line 3 of Top Left Corner
of page

	TOPCENTERLINE1 : Line 1 of Top Center
of page

	TOPCENTERLINE2 : Line 2 of Top Center
of page

	TOPCENTERLINE3 : Line 3 of Top Center
of page

	TOPRIGHTLINE1 : Line 1 of Top Right
Corner of page

	TOPRIGHTLINE2 : Line 2 of Top Right
Corner of page

	TOPRIGHTLINE3 : Line 3 of Top Right
Corner of page

	BOTTOMLEFTLINE1 : Line 1 of Bottom
Left Corner of page

	BOTTOMLEFTLINE2 : Line 2 of Bottom
Left Corner of page

	BOTTOMLEFTLINE3 : Line 3 of Bottom
Left Corner of page

	BOTTOMCENTERLINE1 : Line 1 of Bottom
Center of page

	BOTTOMCENTERLINE2 : Line 2 of Bottom
Center of page

	BOTTOMCENTERLINE3 : Line 3 of Bottom
Center of page

	BOTTOMRIGHTLINE1 : Line 1 of Bottom
Right Corner of page

	BOTTOMRIGHTLINE2 : Line 2 of Bottom
Right Corner of page

	BOTTOMRIGHTLINE3 : Line 3 of Bottom
Right Corner of page

Option Interface

The Option Interface provides the methods and properties to retrieve information about an Outside In Option.

Package
com.oracle.outsidein.options

Accessors
	String getName() — Gets the name of the option

	String getDescription() — Gets the description of the option

	Class<?> getDataType() — Gets the type of the option value.

	Class<?>[] getItemTypes() — Gets the type parameters for option values that are generics

	EnumSet<Option.OutsideInProducts> getSupportingProducts() — Gets the list of products that support this option

Methods
void set(OptionsCache exporter, Object objValue) throws OutsideInException;

This method sets the option to the exporter object and returns the exporter object itself.

	exporter — The exporter object

	objValue — Value of the option

Note:
If the type of objValue cannot be converted to the data type the option is expecting, an OutsideInException is thrown.

Object get(OptionsCache exporter)

This method gets the currently set value for the option.

	exporter: The exporter object who’s option value is requested.

OutsideInProducts Enumeration
	HTMLEXPORT — Outside In HTML Export

	IMAGEEXPORT — Outside In Image Export

	PDFEXPORT — Outside In PDF Export

	SEARCHEXPORT — Outside In Search Export

	WEBVIEWEXPORT — Outside In Web View Export

	XMLEXPORT — Outside In XML Export

OutsideIn Class

This is a utility class that creates an instance of an Exporter object on request.

Namespace
com.oracle.outsidein

Methods
static Exporter newLocalExporter()

This method creates an instance of an Exporter object. It returns a newly created Exporter object.

static Exporter newLocalExporter(Exporter source)

This method creates and returns an instance of an Exporter object based on the source Exporter. All the options of source are copied to the new Exporter. The source and destination file information will not be copied.

OutsideInVersion getCoreVersion()

This static method returns an OutsideInVersion object with information describingthe Outside In Core Technology used.

void setLocation(File oilinkDir)

Sets an explicit path to the native Outside In libraries and oilink.exe. If used, this method must be called prior to any other Outside In method or this method will throw an exception. If setLocation() is not used, the location will be determined by searching for the Outside In libraries in the following order:

	the location specified in the 'OILinkLocation' Java property

	the 'oit' subdirectory under the directory containing oilink.jar

	the directory containing oilink.jar

OutsideInVersion Class

The OutsideIn Class is used to describe the version of the Outside In Core Module.

Namespace
com.oracle.outsidein

Methods
String GetVersion()

This method returns the version information as a string in the format of “MajorVersion.MinorVersion.DotVersion”.

int getMajorVersion()

The major version component.

int getMinorVersion()

The minor version component.

int getDotVersion()

The dot version component.

OutsideInException Class

This is the exception that is thrown when an Outside In Technology error occurs.

This class derives from the Exception class. This class has no public methods or properties except those of the parent Exception class.

Namespace

com.oracle.outsidein

PageInfo Class

PageInfo is a class for defining page dimensions.

Namespace

com.oracle.outsidein.options

Constructor

PageInfo(PageInfo.PageSizeUnitsValue units,
 float width,
 float height)
units Units used to specify width and height
width Width of the page
height Height of the page

Accessors

	PageInfo.PageSizeUnitsValue getUnits() - Units used to specify width and height

	float getWidth() - Width of the page

	float getHeight() - Height of the page

PageInfo.PageSizeUnitsValue Enumeration

PageSizeUnitsValue is an enumeration of the various units that can be used to specify the width and height of a page.

	Inches: Units are in Inches

	 Points: Units are in Points (1/72th of an inch)

	 Centimeters: Units are in Centimeters

	 Picas: Units are in Picas (1/6th of an inch)

PageRange Class

PageRange is a class for defining page ranges for exporting purposes.

Namespace

com.oracle.outsidein.options

Constructors

PageRange()

Creates an instance of the PageRangeObject for printing all pages.

PageRange(long StartPage)
StartPage Starting page number of the print range

Creates an instance of the PageRangeObject for printing from a page until end of document.

PageRange(
 long StartPage,
 long StopPage) throws OutsideInException
StartPage Starting page number of the print range
StopPage End page number of the print range

Creates an instance of the PageRangeObject for printing a range of pages.

Accessors

	boolean getPrintAll() - If set to true, all pages of the document will be printed

	long getStartPage() - The start page of the print range. 0 indicates printing will begin with the first page of the document.

	long getStopPage() - The last page of the print range. 0 indicates the last page at the end of the document.

Watermark Class

This class describes the watermark to be applied to a document.

Namespace

com.oracle.outsidein.options

Constructors

Watermark(File file) throws OutsideInException

Creates a watermark object with the image to be used.

file: A File object with the image file to be used as a watermark.

Watermark(SeekableByteChannel6 redirect) throws OutsideInException

Creates a watermark object with the image to be used.

redirect: A redirected I/O object with the image to be used as a watermark.

Watermark(File file, int opacity, int percent, AnchorPosition anchor, int vertOffset, int horzOffset) throws OutsideInException

file: A File object with the image file to be used as a watermark.

opacity: The opacity of the watermark. Opacity is in the range of 1-255.

percent: The percentage the watermark image is scaled by. A value of 0 indicates no scaling.

anchor: The position from which the watermark image is offset.

vertOffset: The vertical offset to shift the image by

horzOffset: The horizontal offset to shift the image by.

Watermark(SeekableByteChannel6 redirect, int opacity, int percent, AnchorPosition anchor, int vertOffset, int horzOffset) throws OutsideInException

redirect: A redirected I/O objectwith the image to be used as a watermark.

opacity: The opacity of the watermark. Opacity is in the range of 1-255.

percent: The percentage the watermark image is scaled by. A value of 0 indicates no scaling.

anchor: The position from which the watermark image is offset.

vertOffset: The vertical offset to shift the image by.

horzOffset: The horizontal offset to shift the image by

Methods
AnchorPosition getAnchorPosition()

Retrieves the Watermark's Anchor position. This is the position from which the horizontal and vertical offsets are applied.

void setAnchorPosition(AnchorPosition position)

Sets the Watermark's Anchor position. This is the position from which the horizontal and vertical offsets are applied.

int getHorzOffset()

Gets the horizontal offset to shift the image by.

void setHorzOffset(int offset)

Sets the horizontal offset to shift the image by.

int getOpacity()

Gets the opacity of the watermark. Opacity is in the range of 1-255. 0 disables the watermark.

void setOpacity(int opacity)

Sets the opacity of the watermark. Opacity is in the range of 1-255. 0 disables the watermark.

int getPercent()

Gets the percentage amount by which the image is to be scaled. A value of 0 indicates no scaling.

void setPercent(int percent)

Sets the percentage amount by which the image is to be scaled. A value of 0 indicates no scaling.

int getVertOffset()

Gets the vertical offset to shift the image by.

void setVertOffset(int offset)

Sets the vertical offset to shift the image by.

Part IV Using the .NET API

This section provides details about using the SDK with the .NET API.

Part IV contains the following chapters:

	Introduction to the .NET API

	Image Export .NET Classes

13 Introduction to the .NET API

This chapter is an introduction to the .NET API for Image Export. Outside In .NET is a set of class libraries and Windows DLLs that provides developers an easy interface to create .NET applications using Outside In Technology.

The following topics are covered:

	Requirements

	Getting Started

Requirements

To develop applications using the .NET APIs, the following set of modules and tools are required:

	The Outside In Technology (OIT) developer's redistributable modules for your product

	Visual Studio 2010 or later

	NET Framework 4.0 or later

	The API libraries:

outsidein.dll - The .NET libraries to access the Outside In technologies

oilink.dll and oilink.exe- The bridge modules between .NET and the C-APIs.

Google.ProtocolBuffers.dll - The cross language binary serialization provider.

Getting Started

There are two steps in developing applications using the APIs. In the first step, you would need to configure the environment to create your application (typical programming tasks not directly related to these APIs) and in the second step you would generate code to utilize the functionality of these libraries.

Configuring your Environment

To setup the environment to create a .NET application, you would need to add references to all the libraries. In order to use the Outside In components in your application, the following component should be referenced: outsidein.dll. (This can be done by using the Add Reference dialog box in Visual Studio.)

Generate Code

The sample application included with the SDK, OITsample, is a minimal demonstration of how to use this API.

All the functionality required to perform a conversion is provided in an Exporter object. The basic process of exporting a file involves the following tasks:

	Create an Exporter object. To obtain access to the Outside In functionality, you should call the utility function in the "OutsideIn" class. This will provide you an instance of an Exporter Object.
	Configure the export. The Outside In API is highly configurable, and presents numerous options to fine-tune the way a document is exported. Each option has a "set" and "get" method to set or retrieve the currently set value.
	Set the source and primary destination files. You are required to specify the source file and the destination file. This is done similar to setting options using "set" methods.
	Set the output type. In this step, you specify the output format.
	(Optional) Provide a callback handler. The Outside In Technology provides callbacks that allow the developer to intervene at critical points in the export process. To respond to these callbacks, you would have to subscribe to any messages that you are interested in by overriding the message handlers from the "Callback" class. After creating an object of this class, set the callback option to this object and the messages will be passed to your object.
	Run the export. After all the previous steps are completed, you can produce the desired output.

Create an Exporter Object

To obtain access to the Outside In functionality, you should call the utility function in the "OutsideIn" class. This will provide you an instance of an Exporter Object.

Exporter exporter = OutsideIn.OutsideIn.NewLocalExporter();

Configure the Output

The Outside In API is highly configurable, and presents numerous options to fine-tune the way a document is exported. Each option has a "set" and "get" method to set or retrieve the currently set value.

exporter.SetPerformExtendedFI(true);
int timezoneOffset = exporter.GetTimeZoneOffset();

Set the Source and Primary Destination Files

You are required to specify the source file and the destination file. This is done similarly to setting options using "set" methods.

exporter.SetSourceFile(inputFilename);

exporter.SetDestinationFile(outputFilename);

There are other options that can be set at this time to specify the way to handle the input file, such as providing a SourceFormat to provide a mechanism to handle the input file in a different format than that which it is identified as.

The API also supports opening certain types of embedded documents from within an input file. For example, a .zip file may contain a number of embedded documents; and an email message saved as a .msg file may contain attachments. The API provides the means of opening these types of embedded documents. This can be done by opening the parent document and then the embedded document can be opened through this exporter object.

// subdocId is the sequential number of the node in the archive file

Exporter exporterNode = exporter.NewTreeNodeExporter(subdocId);

Set the Output Type

In this step, you specify the output format.

exporter.SetDestinationFormat(FileFormat.FI_JPEG);

Provide a Callback Handler

Outside In Technology provides callbacks that allow the developer to intervene at critical points in the export process. To respond to these callbacks, you have to subscribe to any messages that you are interested in by overriding the message handlers from the Callback class. After creating an object of this class, set the callback option to this object and the messages will be passed to your object.

class CallbackHandler : Callback

{

 … // implementation of messages to handle - described in the next section

}

CallbackHandler callback = new CallbackHandler();

exporter.SetCallbackHandler(callback);

Run the Export

After all the previous steps are completed, you can produce the desired output.

exporter.Export();

Redirected I/O Support in .NET

Support for redirected I/O is supported through .NET Streams. Streams that are readable and seekable can be used as input files, while streams that are readable, writable and seekable can be used for output.

Using streams is very similar to using standard I/O in the .NET API. To use streams, the stream object is passed as a parameter to the "SetSourceFile" or "SetDestinationFile". When using Output streams, handling callbacks is mandatory when secondary files are expected to be generated.

14 Image Export .NET Classes

This chapter describes the Image Export .NET classes.

The following classes are covered:

	Annotation Class

	ArchiveNode Class

	Callback Class

	ColorInfo Class

	Exporter Interface

	ExportStatus Class

	FileFormat Class

	FontAliases Class

	FontInfo Class

	FontList Class

	HighlightTextAnnotation Class

	MailHeaders Class

	Margins Class

	MarginText Class

	Option Interface

	OutsideIn Class

	OutsideInException Class

	PageInfo Class

	PageRange Class

Annotation Class

Annotation is an abstract base class for the Annotation objects.

Namespace

OutsideIn.Annotations

Properties

	Height (Int64) Height of area in coordinates or rows

	Left (Int64) Leftmost coordinate or column

	Opacity (Single) Opacity of the annotation. Range 0.0 - 1.0; setting opacity to 0 makes the annotation invisible

	SectionIndex (Int64) 0-based page/sheet/image/slide index

	Top (Int64) Top coordinate or row

	Units (Annotation.UnitTypeValue) Type of units in which Height, Width, Left and Top are described

	UserId (Int64) User Data

	Width (Int64) Width of area in coordinates or columns

Annotation.UnitTypeValue Enumeration

The UnitTypeValue is an enumeration of the various unit types that annotation positions can be described in.

	Pixels: Units specified in Pixels. This Unit type should be used for Graphic files.

	Twips: Units specified in Twips (1/1440th of an inch). This Unit type should be used for Word Processing documents.

	Cells: Units specified in cell positions. This Unit type should be used for Spreadsheets.

ArchiveNode Class

ArchiveNode provides information about an archive node. This is a read-only class where the technology fills in all the values.

Namespace

OutsideIn

Properties

	IsDirectory (Boolean) A value of true indicates that the record is an archive node.

	FileSize (Int32) File size of the archive node

	NodeTime (Int32) Time the archive node was created

	NodeNum (Int32) Serial number of the archive node in the archive

	NodeName (String) The name of the archive node

Callback Class

Callback messages are notifications
that come from Outside In during the export process, providing information
and sometimes the opportunity to customize the generated output.

Namespace

OutsideIn

To
access callback messages, your code must create an object that inherits
from Callback and pass it through the API's SetCallbackHandler method.
Your object can implement methods that override the default behavior
for whichever methods your application is interested in.

Callback has five methods: OpenFile, CreateNewFile, NewFileInfo,
PageInfoSlideNotes, and PageInfoVisibility.

OpenFile

OpenFileResponse OpenFile(
 FileTypeValue fileType,
 string fileName
)

This callback is made any time a new file needs to be opened.

Parameters

	fileType: Type of file being requested to be opened.

	filename: Name of the file to be open

Return Value

To take action in response to this method, return an OpenFileResponse object.

FileTypeValue Enumeration

This enumeration defines the type of file being requested to be opened. Its value may be one of the following:

	Input: File to be opened (path unknown)

	Template: Template file to be opened

	Path: Full file name of the file to be opened.

	Other: Not used.

OpenFileResponse Class

This is a class to define a new file or stream object in response to an OpenFile callback.

Constructor
OpenFileResponse(FileInfo file)

File: File object with full path to the new file.

OpenFileResponse(Stream file)

File: A stream to which the file data will be written.

CreateNewFile

CreateNewFileResponse CreateNewFile(FileFormat ParentOutputId, FileFormat OutputId,
 Association Association, string Path)

This callback is made any time a new output file needs to be generated. This gives the developer the chance to affect where the new output file is created, how it is named, and the URL (if any) used to reference the file.

Parameters

	ParentOutputId: File format identifier of the parent file.

	OutputId: File format identifier of the file created.

	Association: An Association that describes relationship between the primary output file and the new file.

	Path: Full path of the file to be created.

Return Value

To take action in response to this notification, return a CreateNewFileResponse object with the new file information. If you wish to accept the defaults for the path and URL, you may return null.

CreateNewFileResponse
Class

This is a class to define a new output file location
in response to a CreateNewFile callback. If you do not wish to change
the path to the new output file, you may use the path as received.
If you do not wish to specify the URL for the new file, you may specify
it as null.

Constructor

CreateNewFileResponse(FileInfo File, string URL)

	File: File object with full path to
new file.

	URL: A new URL that references the
newly created file. This parameter can be null.

Association Enumeration

This enumeration defines, for a new file created by
an export process, the different possible associations between the
new file and the primary output file. Its value may be one of the
following:

	Root - indicates the primary output
file

	Child - a new file linked (directly
or indirectly) from the primary output file

	Sibling - indicates new files not linked
from the primary output file

	Copy - the file was copied as a part
of a template macro operation.

	RequiredName - not used

Note that some of these relationships will not be possible
in all Outside In Export SDKs.

CreateTempFile

CreateTempFileResponse CreateTempFile()

This callback is made any time a new temporary file needs to be generated. This gives the developer the chance to handle the reading and writing of the temporary file.

Return Value

To take action in response to this notification, return a CreateTempFileResponse object with the temporary file information.

CreateTempFileResponse Class

This is a class to define a new file or stream object in response to an CreateTempFile callback.

Constructor
CreateTempFileResponse (Stream file)

File: A stream to which the file data will be written and read from.

NewFileInfo

void NewFileInfo(FileFormat ParentOutputId, FileFormat OutputId,
 Association Association, string Path, string URL)

This informational callback is made just after each new file has been created.

Parameters

	ParentOutputId: File format identifier of the parent file

	OutputId: File format identifier of the file created

	Association: An Association that describes relationship between the primary output file and the new file.

	Path: Full path of the file created

	URL: URL that references the newly created file

PrepareNewPage

NewPageResponse PrepareNewPage(long PageNumber)

This callback is made at the beginning of processing
a new output page. This gives the developer the chance to add or modify
the Margin Text to be placed on the page.

Parameters
	PageNumber: the zero-based index of the page about to be rendered.

Return Value
To add or modify the Margin
Text, respond to this notification with a NewPageResponse object with
the margin text information. If you wish to not change the currently
set values, you may return null.

NewPageResponse
Class

This is a class to define the
new margin text to use in response to a PrepareNewPage callback.

Constructor
NewPageResponse(MarginText marginText)

	marginText: A MarginText object with the Margin text for all
the different margin locations.

PageInfoSlideNotes

void PageInfoSlideNotes(long PageNumber, string[] SlideNotes)

This informational callback is made after each slide
if the last processed slide has any notes (such as speaker notes)
associated with it. (Note that a request for this callback should
be made through SetPageInformationRequired.)

Parameters
	PageNumber: The zero-based index of
the page about to be rendered.

	SlideNotes: The notes associated with
this slide.

PageInfoVisibility

 void PageInfoVisibility(long PageNumber, bool IsVisible)

This informational callback is made when the current
page being processed has information about the visibility of the page.
(Note that a request for this callback should be made through SetPageInformationRequired.)

ColorInfo Class

ColorInfo is a class to define a color or to use a default color in appropriate cases.

Namespace

OutsideIn

Constructors

ColorInfo()

Initializes an ColorInfo object to use the default color.

public ColorInfo(Byte red,
 Byte green,
 Byte blue)

Initializes a ColorInfo object with the specified RGB values.

Properties

	Blue (Byte) - Blue component of the color

	Green (Byte) - Green component of the color

	Red (Byte) - Red component of the color

	UseDefault (Byte) - Set to true if the default color is used

Exporter Interface

This section describes the properties and methods of Exporter.

All of Outside In's Exporter functionality can be accessed through the Exporter Interface. The object returned by OutsideIn class is an implementation of this interface. This class derives from the Document Interface, which in turn is derived from the OptionsCache Interface.

Namespace

OutsideIn

Methods

	GetExportStatus

ExportStatus GetExportStatus()

This function is used to determine if there were conversion problems during an export. The ExportStatus object returned may have information about sub-document failures, areas of a conversion that may not have high fidelity with the original document. When applicable the number of pages in the output is also provided.

	GetPageCount

int GetPageCount(FileFormat Format)

This method will supply the count of pages that would be produced for a specified format.

Note:
If you are retrieving page counts for more than one output format, you can minimize the amount of time this method consumes by calling it while a particular input document is still open.

Example

// (Exception handling ignored for simplicity's sake)

exporter.SetSourceFile(...)
exporter.SetDestinationFile(...)
exporter.SetDestinationFormat(FileFormat.FI_HTML5);
ExportStatus status = exporter.GetExportStatus();
int h5Count = status.PageCount;

int pdfCount = exporter.GetPageCount(FileFormat.FI_PDF);
int tiffCount = exporter.GetPageCount(FileFormat.FI_TIFF);

	NewSubDocumentExporter

Exporter NewSubDocumentExporter(
 int SubDocId,
 SubDocumentIdentifierTypeValue idType
)

Create a new Exporter for a subdocument.

SubDocId: Identifier of the subdocument

idType: Type of subdocument

SubDocumentIdentifierTypeValue: This is an enumeration for the type of subdocument being opened.

	IDTYPE_XX: Subdocument to be opened is based on output of XML Export (SubdocId is the value of the object_id attribute of a locator element.)

	IDTYPE_ATTACHMENT_LOCATOR: Subdocument to be opened is based on the locator value provided by the one of the Export SDKs.

	 IDTYPE_ATTACHMENT_INDEX: Subdocument to be opened is based on the index of the attachment from an email message. (SubdocId is the zero-based index of the attachment from an email message file. The first attachment presented by OutsideIn has the index value 0, the second has the index value 1, etc.)

Returns: A new Exporter object for the subdocument

	NewSubObjectExporter

Exporter NewSubObjectExporter(
 SubObjectTypeValue objType,
 uint data1,
 uint data2,
 uint data3,
 uint data4
)

Create a new Exporter for a subobject.

objType: Type of subobject

data1: Data identifying the subobject from SearchML

data2: Data identifying the subobject from SearchML

data3: Data identifying the subobject from SearchML

data4: Data identifying the subobject from SearchML

Returns: A new Exporter object for the subobject

SubObjectTypeValue: An enumeration to describe the type of SubObject to open.

	LinkedObject

	EmbeddedObject

	CompressedFile

	Attachment

	NewArchiveNodeExporter

Exporter NewArchiveNodeExporter(
 int dwRecordNum
)

Create a new Exporter for an archive node. You may get the number of nodes in an archive using getArchiveNodeCount. The nodes are numbered from 0 to getArchiveNodeCount -1.

dwRecordNum: The number of the record to retrieve information about. The first node is node 0 and the total number of nodes may be obtained from GetArchiveNodeCount.

Returns: A new Exporter object for the archive node

	Export

void Export()

Perform the conversion and close the Export process keeping the source document open.

void Export(bool bLeaveSourceOpen)

Perform the conversion and close the Export process keep the source document open or close it based on the value of bLeaveSourceOpen.

bLeaveSourceOpen: If set to true, keeps the source document open for next export process.

Note:
Before Release 8.5.3, calling Export() with no parameters, would leave the source document open. The default behavior starting with Release 8.5.3 is to close the document after exporting the file. If you would like to keep the file open for other conversions, please use this method with "bLeaveSourceOpen" set to true.

	SetExportTimeout

OptionsCache SetExportTimeout(int millisecondsTimeout);

This method sets the time that the export process should wait for a response from the Outside In export engine to complete the export of a document, setting an upper limit on the time that will elapse during a call to Export(). If the specified length of time or the default timeout amount is reached before the export has completed, the export operation is terminated and an OutsideInException is thrown. If this option is not set, the default timeout is 5 minutes.

	Close

Close()

This function closes the current Export process.

	SetPageInformationRequired

void SetPageInformationRequired(PageInformationValues InfoRequirements);

This method sets the Page/Slide level information to be retrieved. The information when available is provided through callbacks "PageInfoVisibility" and "PageInfoSlideNotes."

	InfoRequirements: One or more enumerations of the PageInformationValues.

	PageInformationValues: This enumeration defines the possible page level information that can be retrieved. These enumerations can be ORed. Possible values are:	None: No information

	Visibility: Request Page Visibility information

	SlideNotes: Request Slide Notes

NewLocalExporter

static Exporter NewLocalExporter(Exporter source)

This method creates and returns an instance of an Exporter object based on the source Exporter. All the options of source are copied to the new Exporter. The source and destination file information will not be copied.

lAnnotatable Interface

All of the Outside In annotation-related methods are accessed through the IAnnotatable Interface.

NameSpace

OutsideIn.Annotations

Methods

	AddStampImage

void AddStampImage(
 Dictionary<string, FileInfo> stamps
)

This method maps a stamp name to an image file.

stamps: Key value pairs of stamp names and image files

	ApplyHighlights

void ApplyHighlights(
 string HighlightJsonData
)

This method applies a set of highlights from a JSON-encoded text stream previously generated from the Web View Export Javascript library.

HighlightJsonData: stream of highlight (and comment) information that was obtained via the Web View Export Javascript API function OIT.highlights.serialize.

Document Interface

All of the Outside In document-related methods are accessed through the Document Interface.

Namespace

OutsideIn

Methods

	Close

void Close()

Closes the currently open document

	GetArchiveNodeCount

Int32 GetArchiveNodeCount()

Retrieves the number of nodes in an archive file.

Returns the number of nodes in the archive file or 0 if the file is not an archive file.

	GetFileId

FileFormat GetFileId(FileIdInfoFlagValue dwFlags)

Gets the format of the file based on the technology's content-based file identification process.

dwFlags: Option to retrieve the file identification pre-Extended or post-Extended Test

Returns the format identifier of the file.

	GetArchiveNode

TreeRecord GetArchiveNode(Int32 nNodeNum)

Retrieves information about a record in an archive file. You may get the number of nodes in an archive using getArchiveNodeCount.

nNodeNum: The number of the record to retrieve information about. The first node is node 0.

Return Value: An ArchiveNode object with the information about the record

	SaveArchiveNode

void SaveArchiveNode(
 Int32 nNodeNum,
 FileInfo fileinfo)
void SaveArchiveNode(
 Int32 nNodeNum,
 string strFileName)

Extracts a record in an archive file to disk.

nNodeNumType: The number of the record to retrieve information about. The first node is node 0.

strFileNameType/fileinfo: Full path of the destination file to which the file will be extracted

	SaveArchiveNode with ArchiveNode

void SaveArchiveNode(
 ArchiveNode arcNode,
 FileInfo fileinfo)
void SaveArchiveNode(
 ArchiveNode arcNode,
 string strFileName)

Extracts a record in an archive file to disk.

arcNode: An ArchiveNode object retrieved from GetArchiveNodeInfo with information about the node to extract

strFileNameType/fileinfo: Full path of the destination file to which the file will be extracted

OptionsCache Class

This section describes the OptionsCache class.

The options that configure the way outputs are generated are accessed through the OptionsCache class.

All of the options described in the following subsections are available through this interface. Other methods in this interface are described below.

Namespace

OutsideIn.Options

Methods

	OptionsCache SetSourceFile(FileInfo file)

Sets the source document to be opened.

file: Full path to source file

	OptionsCache SetSourceFile(string filename)

Set the source document.

filename: Full path of the source document

Returns: The options cache object associated with this document

	OptionsCache AddSourceFile(FileInfo file)

Sets the next source document file to be exported in sequence. This allows multiple documents to be exported to the same output destination.

file: Full path to source file

	OptionsCache AddSourceFile(string filename)

Set the next source document file to be exported in sequence. This allows multiple documents to be exported to the same output destination.

filename: Full path to the source file

returns: The updated options object

	OptionsCache SetSourceFormat(FileFormat fileId)

Sets the source format to process the input file as, ignoring the algorithmic detection of the file type.

fileId: the format to treat the input document as.

	OptionsCache SetDestinationFile(FileInfo file)

Sets the location of the destination file.

file: Full path to the destination file

	OptionsCache SetDestinationFile(string filename)

Set the location of the destination file.

filename: Full path to the destination file

returns: The updated options object

	OptionsCache SetDestinationFormat(FileFormat fileId)

Sets the destination file format to which the file should be converted to.

fileId: the format to convert the input document(s) to.

	OptionsCache SetCallbackHandler(Callback callback)

Sets the object to use to handle callbacks.

callback: the callback handling object.

	OptionsCache SetPasswordsList(List<String> Passwords)

Provides a list of strings to use as passwords for encrypted documents. The technology will cycle through this list until a successful password is found or the list is exhausted.

Passwords: List of strings to be used as passwords.

	OptionsCache SetLotusNotesId(String NotesIdFile)

Sets the Lotus Notes ID file location.

NotesIdFile: Full path to the Notes ID file.

	OptionsCache SetOpenForNonSequentialAccess(bool bOpenForNonSequentialAccess)

Setting this option causes the technology to open archive files in a special mode that is only usable for non-sequential access of nodes.

bOpenForNonSequentialAccess : If set to true would open the archive file in the special access mode. Note that turning this flag on a non-archive file will throw an exception at RunExport time.

	OptionsCache SetSourceFile(Stream file)

Set an input stream as the source document. Exporting a file using this method may have issues with files that require the original name of the file (example: extension of the file for identification purposes or name of a secondary file dependent on the name/path of this file).

	OptionsCache SetSourceFile(Stream file, String Filename)

Set an input stream as the source document and provide information about the filename (fully qualified path or file name that may be used to derive the extension of the file or name of a secondary file dependent on the name/path of this file).

	OptionsCache SetNextSourceFile(Stream file)

Set an input stream as the next source document to be exported to the original destination file. This method has the same limitations as the similar SetSourceFile(Stream file) method.

	OptionsCache SetNextSourceFile(Stream file, String Filename)

Set an input stream as the next source document to be exported to the original destination file. The file name provided is used as in the method SetSourceFile(Stream file, String Filename)

	OptionsCache SetNextSourceFile(FileInfo file)

Set an input stream as the next source document to be exported to the original destination file.

	OptionsCache SetDestinationFile(Stream file)

Set an output stream as the destination for an export.

BiDiReorderMethod

OIT Option ID: SCCOPT_REORDERMETHOD

This option controls how the technology reorders bidirectional text.

Data Type

	BiDiReorderMethodValue

BiDiReorderMethodValue Enumeration

One of the following values:

	UnicodeOff: This disables any processing for bidirectional characters. This option is the default.

	UnicodeLToR: Characters displayed using the Unicode bidirectional algorithm assuming a base left-to-right order. Use this option to enable bidirectional rendering.

	UnicodeRToL: Characters displayed using the Unicode bidirectional algorithm assuming a base right-to-left order. Use this option to force starting bidirectional rendering in the right-to-left.

Default

UnicodeOff

CropToContent

OIT Option ID: SCCOPT_GRAPHIC_CROPPING

When set to True, this option forces Image Export to crop whitespace from the edge of each output image. This includes margins and any unused space at the end of a page. This results in smaller output files without any loss of original input document content.

If there is no content, then no cropping is performed.

Data Type

bool

DefaultInputCharacterSet

OIT Option ID: SCCOPT_DEFAULTINPUTCHARSET

This option is used in cases where Outside In cannot determine the character set used to encode the text of an input file. When all other means of determining the file's character set are exhausted, Outside In will assume that an input document is encoded in the character set specified by this option. This is most often used when reading plain-text files, but may also be used when reading HTML or PDF files.

Data Type

DefaultInputCharacterSetValue

DefaultInputCharacterSetValue Enumeration

DefaultInputCharacterSetValue can be one of the following enumerations:

SystemDefault

Unicode

BigEndianUnicode

LittleEndianUnicode

Utf8

Utf7

Ascii

UnixJapanese

UnixJapaneseEuc

UnixChineseTrad1

UnixChineseEucTrad1

UnixChineseTrad2

UnixChineseEucTrad2

UnixKorean

UnixChineseSimple

Ebcdic37

Ebcdic273

Ebcdic274

Ebcdic277

Ebcdic278

Ebcdic280

Ebcdic282

Ebcdic284

Ebcdic285

Ebcdic297

Ebcdic500

Ebcdic1026

Dos437

Dos737

Dos850

Dos852

Dos855

Dos857

Dos860

Dos861

Dos863

Dos865

Dos866

Dos869

Windows874

Windows932

Windows936

Windows949

Windows950

Windows1250

Windows1251

Windows1252

Windows1253

Windows1254

Windows1255

Windows1256

Windows1257

Iso8859_1

Iso8859_2

Iso8859_3

Iso8859_4

Iso8859_5

Iso8859_6

Iso8859_7

Iso8859_8

Iso8859_9

MacRoman

MacCroatian

MacRomanian

MacTurkish

MacIcelandic

MacCyrillic

MacGreek

MacCE

MacHebrew

MacArabic

MacJapanese

HPRoman8

BiDiOldCode

BiDiPC8

BiDiE0

RussianKOI8

JapaneseX0201

Default

SystemDefault

DefaultRenderFont

OIT Option ID: SCCOPT_DEFAULTPRINTFONT

This option sets the font to use when the chunker-specified font is not available on the system. It is also the font used when the font in source file is not available on the system performing the conversion.

Class members:

 string strFaceName

 int FontHeight

DefaultPageMargins

This option specifies the top, left, bottom and right margins in twips from the edges of the page. For instance, setting all the values to 1440 creates a 1-inch margin on all sides. Page margins will only be applied when formatting word processing, database and spreadsheet files.

Please note all margins are applied before scaling with the PageFitMode option. This option is overridden when the UseDocumentPageSettings option is set to true and print margins are specified in the input document. This option does not affect the output of bitmap, presentation, vector or archive files.

Data Type

Margins

Data

A Margins object with the margins on the 4 sides defined.

Default

1 inch for all margins (1440, 1440, 1440, 1440)

DocumentMemoryMode

OIT Option ID: SCCOPT_DOCUMENTMEMORYMODE

This option determines the maximum amount of memory
that the chunker may use to store the document's data, from 4 MB to
1 GB. The more memory the chunker has available to it, the less often
it needs to re-read data from the document.

Data

	SMALLEST: 1 - 4MB

	SMALL: 2 - 16MB

	MEDIUM: 3 - 64MB

	LARGE: 4 - 256MB

	LARGEST: 5 - 1 GB

Default

LARGE: 4 - 256MB

EmailHeaders

OIT Option ID: SCCOPT_WPEMAILHEADEROUTPUT

This option controls rendering of email headers.

Data

	ALL: Displays all available email headers.

	STANDARD: Displays "To," "From," "Subject," "CC," "BCC," "Date Sent," and "Attachments" header fields only. The filter outputs any fields not listed above as hidden fields, so they will not display.

	NONE: Displays no email header fields.

	CUSTOM

Default

STANDARD

FallbackFormat

This option controls how files are handled when their specific application type cannot be determined. This normally affects all plain-text files, because plain-text files are generally identified by process of elimination, for example, when a file isn't identified as having been created by a known application, it is treated as a plain-text file. It is recommended that None be set to prevent the conversion from exporting unidentified binary files as though they were text, which could generate many pages of "garbage" output.

Data Type

FallbackFormatValue

FallbackFormatValue Enumeration

	Text: Unidentified file types will be treated as text files.

	None: Outside In will not attempt to process files whose type cannot be identified

Default

Text

FitHeightToPages

OIT Option ID: SCCOPT_SSPRINTSCALEXHIGH

This option will fit the spreadsheet image to the number of vertical pages specified. The setting for this option will have no effect unless the SSPrintFitToPage option is set to FitToPages.

Data Type

Int32

Default

1

FitWidthToPages

OIT Option ID: SCCOPT_SSPRINTSCALEXWIDE

This option will fit the spreadsheet image to the number of horizontal pages specified. The setting for this option will have no effect unless the SSPrintFitToPage option is set to FitToPages.

Data Type

Int32

Default

1

FontAliasList

This option enables the capability to specify which font on the system should be used when a specific font referenced in the original file is not available. A different alias can be set for each font desired to be mapped.

Data Type

FontAliases

Data

A FontAliases object with a list of font matchings

Default

Windows PrintAlias default

GraphicHeight

OIT Option ID: SCCOPT_GRAPHIC_HEIGHT

This option defines the absolute height in pixels to which exported graphics will be resized. If this option is set and the GraphicWidth option is not, the width of the image will be calculated based on the aspect ratio of the source image. The developer should be aware that very large values for this option or GraphicWidth could produce images whose size exceeds available system memory, resulting in conversion failure.

If you are exporting a non-graphic file (word processing, spreadsheet or archive) and the settings for GraphicHeight and GraphicWidth do not match the aspect ratio of the original document, the exported image will have whitespace added so that the original file's aspect ratio is maintained.

The settings for the GraphicHeightLimit and GraphicWidth options can override the setting for GraphicHeight.

Data Type

Int32

GraphicHeightLimit

OIT Option ID: SCCOPT_GRAPHIC_HEIGHTLIMIT

Note that this option differs from the behavior of setting the height of graphics in that it sets an upper limit on the image height. Images larger than this limit will be reduced to the limit value. However, images smaller than this height will not be enlarged when using this option. Setting the height using GraphicHeight causes all output images to be reduced or enlarged to be of the specified height.

Data Type

Int32

GraphicOutputDPI

OIT Option ID: SCCOPT_GRAPHIC_OUTPUTDPI

This option allows the user to specify the output graphics device's resolution in DPI and only applies to images whose size is specified in physical units (in/cm). For example, consider a 1" square, 100 DPI graphic that is to be rendered on a 50 DPI device (GraphicOutputDPI is set to 50). In this case, the size of the resulting TIFF, BMP, JPEG, GIF, or PNG will be 50 x 50 pixels.

In addition, the special #define of SCCGRAPHIC_MAINTAIN_IMAGE_DPI, which is defined as 0, can be used to suppress any dimensional changes to an image. In other words, a 1" square, 100 DPI graphic will be converted to an image that is 100 x 100 pixels in size. This value indicates that the DPI of the output device is not important. It extracts the maximum resolution from the input image with the smallest exported image size.

Setting this option to SCCGRAPHIC_MAINTAIN_IMAGE_DPI may result in the creation of extremely large images. Be aware that there may be limitations in the system running this technology that could result in undesirably large bandwidth consumption or an error message. Additionally, an out of memory error message will be generated if system memory is insufficient to handle a particularly large image.

Also note that the SCCGRAPHIC_MAINTAIN_IMAGE_DPI setting will force the technology to use the DPI settings already present in raster images, but will use the current screen resolution as the DPI setting for any other type of input file.

For some output graphic types, there may be a discrepancy between the value set by this option and the DPI value reported by some graphics applications. The discrepancy occurs when the output format uses metric units (DPM, or dots per meter) instead of English units (DPI, or dots per inch). Depending on how the graphics application performs rounding on meters to inches conversions, the DPI value reported may be 1 unit more than expected. An example of a format which may exhibit this problem is PNG.

The maximum value that can be set is 2400 DPI; the default is 96 DPI.

Data Type

Int32

GraphicRenderAsPage

OIT Option ID: SCCOPT_GRAPHIC_RENDERASPAGE

GraphicRenderAsPage affects the way raster (bitmapped) images such as TIFF, JPG, and PNG are handled. The default behavior for Image Export is to export such images as copies of the input document, scaled according to the width and height options set by the caller. If GraphicRenderAsPage is enabled, the output produced by Image Export will look like a printed page, with the image placed on a white rectangle representing a virtual page. As usual, the dimensions of the entire image, including the virtual page, will be controlled by the normal Image Export output width and height settings. The margins into which the image will be placed will be controlled by existing Outside In print margin options. The image itself will be attempted to be scaled to its true (physical) size, or scaled down to fit within the margins if necessary.

Data Type

bool

Data

	true: Raster file images are fit to page.

	false: Raster file images are not fit to page.

Default

false

GraphicSizeLimit

OIT Option ID: SCCOPT_GRAPHIC_SIZELIMIT

This option is used to set the maximum size of the exported graphic in pixels. It may be used to prevent inordinately large graphics from being converted to equally cumbersome output files, thus preventing bandwidth waste.

This setting takes precedence over all other options and settings that affect the size of a converted graphic.

When creating a multi-page TIFF file, this limit is applied on a per page basis. It is not a pixel limit on the entire output file.

Data Type

Int32

GraphicSizeMethod

OIT Option ID: SCCOPT_GRAPHIC_SIZEMETHOD

This option determines the method used to size graphics. The developer can choose among three methods, each of which involves some degree of trade off between the quality of the resulting image and speed of conversion.

Using the quick sizing option results in the fastest conversion of color graphics, though the quality of the converted graphic will be somewhat degraded. The smooth sizing option results in a more accurate representation of the original graphic, as it uses anti-aliasing. Antialiased images may appear smoother and can be easier to read, but rendering when this option is set will require additional processing time. The grayscale only option also uses antialiasing, but only for grayscale graphics, and the quick sizing option for any color graphics.

The smooth sizing option does not work on images which have a width or height of more than 4096 pixels.

Data Type

	GRAPHICSIZEMETHOD_VALUES

GraphicWidth

OIT Option ID: SCCOPT_GRAPHIC_WIDTH

This option defines the absolute width in pixels to which exported graphics will be resized. If this option is set and the GraphicHeight option is not, the height of the image will be calculated based on the aspect ratio of the source image. The developer should be aware that very large values for this option or GraphicHeight could produce images whose size exceeds available system memory, resulting in conversion failure.

If you are exporting a non-graphic file (word processing, spreadsheet or archive) and the settings for GraphicHeight and GraphicWidth do not match the aspect ratio of the original document, the exported image will have whitespace added so that the original file's aspect ratio is maintained.

The settings for the GraphicHeightLimit and GraphicWidthLimit options can override the setting for GraphicWidth.

Data Type

Int32

GraphicWidthLimit

OIT Option ID: SCCOPT_GRAPHIC_WIDTHLIMIT

This option allows a hard limit to be set for how wide in pixels an exported graphic may be. Any images wider than this limit will be resized to match the limit. It should be noted that regardless whether the GraphicHeightLimit option is set or not, any resized images will preserve their original aspect ratio.

Note that this option differs from the behavior of setting the width of graphics by using GraphicWidth in that it sets an upper limit on the image width. Images larger than this limit will be reduced to the limit value. However, images smaller than this width will not be enlarged when using this option. Setting the width using GraphicWidth causes all output images to be reduced or enlarged to be of the specified width.

Data Type

Int32

GridMaxPageHeight

OIT Option ID: SCCOPT_MAXSSDBPAGEHEIGHT

Normally, the size of images generated from spreadsheet worksheets and database tables is limited to the size of the page defined by the input document's page size information and how the UseDocumentPageSettings, GraphicWidth and GraphicHeight options are set. If, after scaling is factored in, the resulting image is too large to fit on a single page, it is split up into multiple pages.

The GridMaxPageWidth and GridMaxPageHeight options are used to change the size of a page to match the scaled size of the page being rendered - within limits. The key reason for those limits is that rendering very large pages can easily overwhelm the memory available on the system. When using this feature, a calculation should be made to be sure that the values passed in work within said memory limits. The values for these two options will override the current page dimensions if necessary.

Data Type

Int32

Data

The maximum page height (including margins) specified in twips (1440 twips are in 1 inch). If the value specified is smaller than the page height, then an error will be returned.

GridMaxPageWidth

OIT Option ID: SCCOPT_MAXSSDBPAGEWIDTH

See the documentation for GridMaxPageHeight for a full discussion of how this option works and interacts with other options affecting the page size of images generated from spreadsheet and database pages.

Data Type

Int32

Data

The maximum page width (including margins) specified in twips (1440 twips are in 1 inch). If the value specified is smaller than the page width, then Image Export will return an error.

IECondCommentMode

OIT Option ID: SCCOPT_HTML_COND_COMMENT_MODE

Some HTML input files may include "conditional comments", which are HTML comments that mark areas of HTML to be interpreted in specific versions of Internet Explorer, while being ignored by other browsers. This option allows you to control how the content contained within conditional comments will be interpreted by Outside In's HTML parsing code.

Data

	NONE: Don't output any conditional comment

	IE5: Include the IE5 comments

	IE6: Include the IE6 comments

	IE7: Include the IE7 comments

	IE8: Include the IE8 comments

	IE9: Include the IE9 comments

	ALL: Include all conditional comments

IgnorePassword

OIT Option ID: SCCOPT_IGNORE_PASSWORD

This option can disable the password verification of files where the contents can be processed without validation of the password. If this option is not set, the filter should prompt for a password if it handles password-protected files.

Data Type

bool

ISODateTimes

OIT Option ID: SCCOPT_FORMATFLAGS

When this flag is set, all Date and Time values are converted to the ISO 8601 standard. This conversion can only be performed using dates that are stored as numeric data within the original file.

Data

bool

Default

false

JPEGQuality

OIT Option ID: SCCOPT_JPEG_QUALITY

This option allows the developer to specify the lossyness of JPEG compression. The option is only valid if the dwOutputID parameter of the EXOpenExport function is set to FI_JPEGFIF, FI_PDF, FI_PDFA, or FI_PDFA_2.

Data Type

Int32

Data

A value from 1 to 100, with 100 being the highest quality but the least compression, and 1 being the lowest quality but the most compression.

Default

100

LotusNotesDirectory

OIT Option ID: SCCOPT_LOTUSNOTESDIRECTORY

This option allows the developer to specify the location of a Lotus Notes or Domino installation for use by the NSF filter. A valid Lotus installation directory must contain the file nnotes.dll.

Data

A path to the Lotus Notes directory.

Default

If this option isn't set, then OIT will first attempt to load the Lotus library according to the operating system's PATH environment variable, and then attempt to find and load the Lotus library as indicated in HKEY_CLASSES_ROOT\Notes.Link.

MarginText

This option lets you specify a text string for margin text.

Data Type
MarginText

Default
None

MarginTextFont

This option is used to set the margin text font and font size.

Data Type
FontInfo

Default
Arial, 9 pt.

PageDirection

OIT Option ID: SCCOPT_SSPRINTDIRECTION

This option controls the pattern in which the pages are rendered, either across first and then down, or down first and then across.

This option is overridden when the UseDocumentPageSettings option is set to true and print direction is specified in the input document.

Data Type

PAGEDIRECTION_VALUES

Default

PageDirectionDown

PageFitMode

OIT Option ID: SCCOPT_DBPRINTFITTOPAGE

OIT Option ID: SCCOPT_SSPRINTFITTOPAGE

This option scales a spreadsheet file or database image to a certain percent or to a page width or height. However, in an effort to preserve readability after scaling, Image Export will not shrink a database document to under approximately one-third of its original size.

It should be noted that when this option is set to NoMap, the pages of the database file are printed down first and then across.

Please note that any margins applied as a result of settings for the DefaultPrintMargins option will be included in any scaling that is applied to the output image as a result of settings for this option.

This option is overridden when the UseDocumentPageSettings option is set to true and fitting the page to the printer's image limits is specified in the input document.

Data

	NoMap: No scaling is performed on the spreadsheet or database image. It will render in its original size onto as many pages as are required to fit the data.

	FitToWidth: Scale the spreadsheet or database image in the rendered image so it is no larger than one page wide.

	FitToHeight: Scale the spreadsheet or database image in the rendered image so it is no larger than one page high.

	Scale: Scale the spreadsheet or the database image in the rendered image using the scale value stored in the PageScalePercent option.

	FitToPages: Scale the spreadsheet or the database image in the rendered image to fit to the number of pages specified in the FitHeightToPages and FitWidthToPages options. Since aspect ratio is maintained, the lesser of the two dimensions (width or height) will determine the scale factor. Note that if either FitHeightToPages or FitWidthToPages is set to 0, the value in the other option will be nullified.

Default

	Scale: Scales the rendered image of the spreadsheet or database image using the scale value stored in the PageScalePercent option (which is 100 by default).

PageRange

OIT Option ID: SCCOPT_WHATTOPRINT

OIT Option ID: SCCOPT_PRINTSTARTPAGE

OIT Option ID: SCCOPT_PRINTENDPAGE

This option indicates whether the whole file or a selected range of pages should be rendered. When selecting a range, the start and ending pages are specified.

Data Type

PageRange

Data

The page range to be exported.

Default

All pages are printed

PageScalePercent

OIT Option ID: SCCOPT_SSPRINTSCALEPERCENT

This option will scale spreadsheet pages by the percentage specified. The option has no effect unless the SSPrintFitToPage option is set to Scale.

This option must take a value between 1 and 100. If any value outside of this range is used, the option will be ignored.

Data Type

Int32

Default

100

PDFInputMaxEmbeddedObjects

This option allows the user to limit the number of embedded objects that are produced in a PDF file.

Data Type

UInt32

Data
The maximum number of embedded objects to produce in PDF output. Setting this to 0 would produce an all embedded objects in the input document.

Default

0 – produce all objects.

PDFInputMaxVectorPaths

This option allows the user to limit the number of vector paths that are produced in a PDF file.

Data
The maximum number of paths to produce in PDF output. Setting this to 0 would produce an all vector objects in the input document.

Default

0 – produce all vector objects.

PDFReorderBiDi

OIT Option ID: SCCOPT_PDF_FILTER_REORDER_BIDI

This option controls whether or not the PDF filter will attempt to reorder bidirectional text runs so that the output is in standard logical order as used by the Unicode 2.0 and later specification. This additional processing will result in slower filter performance according to the amount of bidirectional data in the file.

PDFReorderBiDiValue Enumeration

This enumeration defines the type of Bidirection text reordering the PDF filter should perform.

	StandardBiDi: Do not attempt to reorder bidirectional text runs.

	ReorderedBiDi: Attempt to reorder bidirectional text runs.

PDFWordSpacingFactor

This option controls the spacing threshold in PDF input documents. Most PDF documents do not have an explicit character denoting a word break. The PDF filter calculates the distance between two characters to determine if they are part of the same word or if there should be a word break inserted. The space between characters is compared to the length of the space character in the current font multiplied by this fraction. If the space between characters is larger, then a word break character is inserted into the text stream. Otherwise, the characters are considered to be part of the same word and no word break is inserted.

Data Type

float

Data
A value representing the percentage of the space character used to trigger a word break. Valid values are positive values less than 2.

Default

0.85

PerformExtendedFI

OIT Option ID: SCCOPT_FIFLAGS

This option affects how an input file's internal format (application type) is identified when the file is first opened by the Outside In technology. When the extended test flag is in effect, and an input file is identified as being either 7-bit ASCII, EBCDIC, or Unicode, the file's contents will be interpreted as such by the export process.

The extended test is optional because it requires extra processing and cannot guarantee complete accuracy (which would require the inspection of every single byte in a file to eliminate false positives.)

Data Type

bool

Data

One of the following values:

	false: When this is set, standard file identification behavior occurs.

	true: If set, the File Identification code will run an extended test on all files that are not identified.

Default

true

QuickThumbnail

OIT Option ID: SCCOPT_QUICKTHUMBNAIL

When this option is set to true the technology will render scaled images with a focus on speed and reduced overall memory usage. This focus on speed and memory usage, in some cases, will cause the resulting images to be less readable than when this option is set to false.

Data Type

bool

Data

	true: Render scaled images as quick thumbnails.

	false: Render scaled images completely.

Default

true

RedactionColor

This option provides the ability to specify the color used for a redaction rectangle (black or white) as well as the color used (black or white) for the redaction code. When the colors match, the redaction code is effectively invisible. Settings should default to Black redactions with White codes if not explicitly set. The values may be set on each redaction individually, both in the UI and in the rendered output.

Value
ColorInfo

Data
Any valid CSS color

RedactionLabelFont

This option sets the name and size of font to use for redaction labels. The font size may be reduced to allow text to fit within a redaction rectangle.

Data Type
FontInfo

Default
Default display font, 9 pt.

RedactionLabelsVisible

This option allows you to display redaction labels in your output.

Data Type
Boolean

Default
False (no labels)

RedactionsEnabled

This option tells the export to format the output to be redaction-capable. In practical terms what this means is that all embeddings will be rasterized (routed through sccimg) so that a rectangle in an embedding is consistent across all output formats.

Data Type
Boolean

Default
False

RenderEmbeddedFonts

This option allows you to disable the use of embedded fonts in PDF input files. If the option is set to true, the embedded fonts in the PDF input are used to render text; if the option is set to false, the embedded fonts are not used and the fallback is to use fonts available to Outside In to render text.

Data Type

bool

Default

true

RenderGridlines

OIT Option ID: SCCOPT_DBPRINTGRIDLINES

OIT Option ID: SCCOPT_SSPRINTGRIDLINES

If this option is true, a line is generated between cells in the rendered image.

This option is overridden when the UseDocumentPageSettings option is set to true and printing grid lines between cells is specified in the input document.

Data Type

bool

Default

true

RenderHeadings

OIT Option ID: SCCOPT_DBPRINTHEADINGS

OIT Option ID: SCCOPT_SSPRINTHEADINGS

If this option is true, field, row and column headings will be generated along with the data.

This option is overridden when the UseDocumentPageSettings option is set to true and printing column and row headers is specified in the input document.

Data Type

bool

Default

true

SearchMLParaAttributes

This option allows the developer to track paragraph attributes contained in the input document and, optionally, include them in the XML output. This option only affects SearchML output. The option is not valid for the SearchHTML, SearchText and PageML output flavors.

Data Type

SearchMLParaAttributeValues

Enumeration
SearchMLParaAttributeValues can be one or more of the following enumerations ORed together:

	ParagraphSpacing: Track paragraph spacing
	CharacterHeight: Track Character Height
	LeftIndent: Track left indent (in twips)
	RightIndent: Track right indent (in twips)
	FirstIndent: Track first line indent (in twips)
	AllOff: All tracking turned off

Default

AllOff

ShowArchiveFullPath

OIT Option ID: SCCOPT_ARCFULLPATH

This option causes the full path of a node to be returned in "GetArchiveNodeInfo" and "GetObjectInfo".

Data Type

bool

Data

	true: Provide the full path.

	false: Do not provide the path.

Default

false

ShowHiddenCells

OIT Option ID: SCCOPT_SSSHOWHIDDENCELLS

This option lets you determine whether or not to show hidden rows or columns when rendering spreadsheets. It is used to expand the widths of cells that are hidden by virtue of having their row height or column width reduced to 0. This is a Boolean option that will leave the data hidden when it is false, and show all hidden rows and columns when it is true, displayed using the default row width or default column height.

Data Type

bool

Default

false

ShowHiddenSpreadSheetData

The setting for this option determines whether or not hidden data (hidden columns, rows or sheets) in a spreadsheet will be included in the output. When set to false (the default), the hidden elements are not written. When set to true, they are placed in the output in the same manner as regular spreadsheet data.

Data Type

bool

Default

false

StrictFile

When an embedded file or URL can't be opened with the full path, OutsideIn will sometimes try and open the referenced file from other locations, including the current directory. When this option is set, it will prevent OutsideIn from trying to open the file from any location other than the fully qualified path or URL.

Data Type

bool

Default

false

TIFFByteOrder

This option determines the byte order used within the file.

Data

	BigEndian: This will use big-endian (Motorola) byte ordering.

	LittleEndian: This will use little-endian (Intel) byte ordering (this is the default value for this parameter).

TIFFColorSpace

This option allows the developer to control the TIFF color depth and color options.

Data Type

TIFFColorSpaceValue

TIFFColorSpaceValue Enumeration

This enumeration defines the type of Color model to use in the exported TIFF File.

	BlackWhite 1 bit black and white

	Palette8Bit 8 bit palette

	RGB24Bit 24 bit RGB

TIFFCompression

 This option will specify the type of compression used in the TIFF file that is generated.

Data Type

TIFFCOMP_VALUES

TIFFFillOrder

This option determines the fill order used within the file. The value of this element only affects TIFF output when the TIFFCompression option is set to CCITT_GROUP3 and the TIFFColorSpace element is set to BLKWHITE.

Data Type

TIFFFillOrderValue

TIFFFillOrderValue Enumeration

The following set of flags:

	FileStore: TIFF files intended for file stores

	Transmission: TIFF files intended for electronic transmission (example fax)

	AllOff

Default

AllOff

TIFFMultiPage

This allows the developer to specify whether the output creates a single multi-page TIFF file or individual single page files. When this flag is true, the output of multiple pages from one input document will generate a single file with a separate image for each page converted.

Data Type

bool

Default

false

TimeZoneOffset

OIT Option ID: SCCOPT_TIMEZONE

This option allows the user to define an offset to GMT that will be applied during date formatting, allowing date values to be displayed in a selectable time zone. This option affects the formatting of numbers that have been defined as date values. This option will not affect dates that are stored as text. To query the operating system for the time zone set on the machine, specify TimeZoneOffset_UseNative.

Note:
Daylight savings is not supported. The sent time in msg files when viewed in Outlook can be an hour different from the time sent when an image of the msg file is created.

Data Type

Int32

Data

Integer parameter from -96 to 96, representing 15-minute offsets from GMT. To query the operating system for the time zone set on the machine, specify SCC_TIMEZONE_USENATIVE.

Default

	0: GMT time

TransparencyColor

OIT Option ID: SCCOPT_GRAPHIC_TRANSPARENCYCOLOR

This option allows the user to set the color used as the "transparency color" in the output graphic file. Naturally, this option is only used when the selected output graphic file format supports transparency (GIF and PNG only). If the option is not set, the default behavior is to use the same color value that the input file used as the transparency color.

Use the (r, g, b) macro to create the color value to pass to this option. The red, green and blue values are percentages of the color from 0-255 (with 255 being 100%). Note that this macro should be used to set a variable and that variable should then be passed to the set option routine (instead of trying to use the macro as part of the set option call directly).

Since there is no way to "unset" an option once it has been set, the developer may set the option to DefaultTransparencyColor if they wish to revert to the default behavior.

Class members:

 byte Red

 byte Green

 byte Blue

UnmappableCharacter

OIT Option ID: SCCOPT_UNMAPPABLECHAR

This option selects the character used when a character cannot be found in the output character set. This option takes the Unicode value for the replacement character. It is left to the user to make sure that the selected replacement character is available in the output character set.

Data Type

UShort

Data

The Unicode value for the character to use.

Default

	0x002a = "*"

UseDocumentPageSettings

OIT Option ID: SCCOPT_USEDOCPAGESETTINGS

This option is used to select the document's page layout information when rendering.

If true, the document's native (or author selected) page margins, paper size, page scaling and page orientation are used when available from the filter.

The values of the DefaultPrintMargins, RenderGridlines, RenderHeadings, PageDirection, and PageFitMode options are overridden if this option is set to true and the properties associated with those options are specified in the input document. Additionally, print area and page breaks in spreadsheet documents are ignored unless this option is set to true.

If false, the page margins, size, orientation and scaling are set to specific values rather than those in the native document. The page size is forced to 8 1/2" x 11" in portrait orientation, but this may be changed by setting the GraphicHeight and/or GraphicWidth options. The margins are forced 1" all around, but may be changed by setting the defaultMargins option. The scaling for the document will be set to 100%, although this may be changed by setting any of the various scaling options.

It should be noted that this option also affects page orientation for both input spreadsheets and word processing documents.

Data Type

bool

Default

true

ExportStatus
Class

The ExportStatus class provides
access to information about a conversion. This information may include
information about sub-document failures, areas of a conversion that
may not have high fidelity with the original document. When applicable
the number of pages in the output is also provided.

Namespace

OutsideIn

Properties

	PageCount (Int32) - A count of all
of the output pages produced during an export operation.

	StatusFlags (ExportStatusFlags) -
Gets the information about possible fidelity issues with the original
document.

	SubDocsFailed (Int32) - Number of
sub documents that were not converted.

	SubDocsPassed (Int32) - Number of
sub documents that were successfully converted.

ExportStatusFlags Enumeration

This enumeration is the set of
possible known problems that can occur during an export process.

	NoInformationAvailable: No Information
is available

	MissingMap: A PDF text run was missing
the toUnicode table

	VerticalText: A vertical text run
was present

	TextEffects: A run that had unsupported
text effects applied. One example is Word Art

	UnsupportedCompression: A graphic
had an unsupported compression

	UnsupportedColorSpace: A graphic had
an unsupported color space

	Forms: A sub documents had forms

	RightToLeftTables: A table had right
to left columns

	Equations: A file had equations

	AliasedFont: The desired font was
missing, but a font alias was used

	MissingFont: The desired font wasn't
present on the system

	SubDocFailed: a sub-document was
not converted

	TypeThreeFont: A type 3 font was encountered.

	UnsupportedShading: An unsupported
shading pattern was encountered.

	InvalidHTML: An HTML parse error, as
defined by the W3C, was encountered.

	bInvalidAnnotationNotApplied: Unsupported annotation/redaction
wasn't rendered.

FileFormat Class

This class defines the identifiers for file formats.

Namespace

OutsideIn

Methods

	getDescription

String getDescription()

This method returns the description of the format.

	getId

int getId()

This method returns the numeric identifier of the format.

	forId

FileFormat forId(int id)

This method returns the FileFormat object for the given identifier.

id : The numeric identifier for which the corresponding FileFormat object is returned.

FontAliases Class

FontAliases is a class for providing font matching of unknown fonts.

Namespace

OutsideIn.Options

Constructor

FontAliases(Dictionary<string, string> aliasList)
 aliasList Aliases list as a key-value pair with original name as key

Properties

	AliasList (Dictionary<String, String>) - List of font aliases set.

FontInfo Class

FontInfo is a class to define a font for use in the OutsideIn API.

Namespace

OutsideIn.Options

Constructor

FontInfo()

Constructs a FontInfo object with a 10 point Arial Font.

FontInfo(String fontface, Int16 height)
 fontface The name of the font
 height Size of the font in half points

Properties

	Fontface (String) - The name of the font

	Height (Int16) - Size of the font in half points

FontList Class

FontList is a class for inclusion or exclusion of fonts in exported documents.

Namespace

OutsideIn.Options

Constructor

FontList(Boolean IsExclusion, String[] fonts)
 IsExclusion If set then accompanying list is an exclusion list
 fonts List of fonts to include or exclude

Properties

	IsExclusion (Boolean) - If set, then accompanying list is an exclusion list.

	FontsList (String[]) - List of fonts to include or exclude.

HighlightTextAnnotation Class

The HighlightTextAnnotation class applies to characteristics of a highlighted text annotation. This class derives from the Annotation class.

Namespace

OutsideIn.Annotations

Constructors

HighlightTextAnnotation(Int64 StartCharCount,
 Int64 EndCharCount,
 CharAttributeValues CharAttrs,
 CharAttributeValues CharMask)
HighlightTextAnnotation(Int64 StartCharCount,
 Int64 EndCharCount,
 ColorInfo Foreground,
 ColorInfo Background)
HighlightTextAnnotation(Int64 StartCharCount,
 Int64 EndCharCount,
 ColorInfo Foreground,
 ColorInfo Background,
 CharAttributeValues CharAttrs,
 CharAttributeValues CharMask)

Initializes a new instance of the HighlightTextAnnotation class.

Parameters

	StartCharCount: The character count of the starting position

	EndCharCount: The character count of the end position

	Foreground: The text color of the highlight

	Background: The background color of the highlight

	CharAttrs: The character attributes to use

	CharMask: Character attributes to change

CharAttributeValues Enumeration

This enumeration is the list of all character attributes to apply for the text highlight.

	Normal: Normal text - All attributes off

	Underline: Underline attribute

	Italic: Italic attribute

	Bold: Bold attribute

	StrikeOut: Strike out text

	SmallCaps: Small caps

	Outline: Outline Text

	Shadow: Shadow text

	Caps: All Caps

	Subscript: Subscript text

	Superscript: Superscript text

	DoubleUnderline: Double Underline

	WordUnderline: Word Underline

	DottedUnderline: Dotted Underline

	DashedUnderline: Dashed Underline

	All: All attributes

MailHeaders Class

MailHeaders class is a class describing the Mail Headers to be displayed, hidden or modified.

Namespace

OutsideIn.Options

Constructors

MailHeaders()

Constructs a MailHeaders object with a standard headers only.

MailHeaders(MailHeaders.BaselineValue baseline)

baseline: The starting point to add or delete headers.

Properties	

Baseline (MailHeaders.BaselineValue) The starting point to add or delete headers.

Methods

MailHeaders ExcludeHeader(MailHeaders.MailTypeValue mtype, MailHeaders.MailHeaderValue mhdr)

This method adds a standard header to the hidden list.

	mtype: The type of documents in which to hide this header

	mhdr: The header to hide

This method returns a reference to the updated MailHeaders object.

MailHeaders ExcludeHeader(MailHeaders.MailTypeValue mtype, String Exclusion)

This method adds a custom header to be the hidden list.

	mtype: The type of documents in which to hide this header

	Exclusion: User-specified MIME header name to be excluded

This method returns a reference to the updated MailHeaders object.

MailHeaders IncludeHeader(MailHeaders.MailTypeValue mtype, MailHeaders.MailHeaderValue mhdr)

This method adds a standard header to the visible list.

	mtype: The type of documents in which to show this header

	mhdr: The header to hide

This method returns a reference to the updated MailHeaders object.

MailHeaders IncludeHeader(MailHeaders.MailTypeValue mtype, String Original, String Replacement)

This method adds a custom header to the visible list.

	mtype: The type of documents in which to show this header

	Original: User-specified MIME header name

	Replacement: String that will be used as the label for the user-defined MIME header

This method returns a reference to the updated MailHeaders object.

void SetHeader(Dictionary<MailHeaders.MailTypeValue, Dictionary<String, String>> headers)

This method sets a series of custom headers to the visible headers list.

	headers: A key value pair of user-specified MIME headers and their replacement strings

void SetHeader(Dictionary<MailHeaders.MailTypeValue, List<String>> headers)

This method sets a series of custom headers to the hidden headers list.

	headers: A list of user-specified MIME headers to be hidden

MailHeaders.BaselineValue Enumeration

The BaselineValue is an enumeration of the possible baselines (starting points to add or exclude headers).

MailHeaders.MailTypeValue Enumeration

The MailTypeValue is an enumeration of the types of mail documents.

Margins Class

The Margins Class is used to describe the page margins.

Namespace

OutsideIn.Options

Constructors

Margins()

Constructs a Margins object with a 1 inch margins for top, bottom, left and right margins.

Margins(Int64 top,
 Int64 bottom,
 Int64 left,
 Int64 right)
top Margin from the top edge of the page (in twips)
bottom Margin from the bottom edge of the page (in twips)
left Margin from the left edge of the page (in twips)
right Margin from the right edge of the page (in twips)

Properties

	Top (Int64) Margin from the top edge of the page (in twips)

	Bottom (Int64) Margin from the bottom edge of the page (in twips)

	Left (Int64) Margin from the left edge of the page (in twips)

	Right (Int64) Margin from the right edge of the page (in twips)

MarginText Class

This class provides a mechanism to define the Margin text to be applied to a page/document.

Namespace
OutsideIn

Constructors
MarginText(Map<MarginText.Location, String>)

Constructs a Margin text object with a list of lines.

MarginText(MarginText.Location, String)

Constructs a Margin text object with a single line.

Methods
void AddMarginText(Map<MarginText.Location, String>)

Adds a set of Margin text lines.

void AddMarginText(MarginText.Location, String)

Adds a line of Margin text.

Location Enumeration
This enumeration is the list of all the locations margin text can be applied to.

	TopLeftLine1: Line 1 of Top Left Corner of page

	TopLeftLine2: Line 2 of Top Left Corner of page

	TopLeftLine3: Line 3 of Top Left Corner of page

	TopCenterLine1: Line 1 of Top Center of page

	TopCenterLine2: Line 2 of Top Center of page

	TopCenterLine3: Line 3 of Top Center of page

	TopRightLine1: Line 1 of Top Right Corner of page

	TopRightLine2: Line 2 of Top Right Corner of page

	TopRightLine3: Line 3 of Top Right Corner of page

	BottomLeftLine1: Line 1 of Bottom Left Corner of page

	BottomLeftLine2: Line 2 of Bottom Left Corner of page

	BottomLeftLine3: Line 3 of Bottom Left Corner of page

	BottomCenterLine1: Line 1 of Bottom Center of page

	BottomCenterLine2: Line 2 of Bottom Center of page

	BottomCenterLine3: Line 3 of Bottom Center of page

	BottomRightLine1: Line 1 of Bottom Right Corner of page

	BottomRightLine2: Line 2 of Bottom Right Corner of page

	BottomRightLine3: Line 3 of Bottom Right Corner of page

Option Interface

The Option Interface provides the methods and properties to retrieve information about an Outside In Option.

Namespace
Outside In

Properties
	Name — Name of the option

	Description — Description of the option

	DataType — The type of the option value

	SupportingProducts — The list of products that support this option

Methods
void Set(OptionsCache exporter, Object objValue);

This method sets the option to the exporter object.

	exporter — The exporter object

	objValue — Value of the option

Note:
If the type of objValue cannot be converted to the data type the option is expecting, an OutsideInCastException is thrown.

void Get(OptionsCache exporter)

This method gets the currently set value for the option.

	exporter — The exporter object who’s option value is requested.

OutsideInProducts Enumeration
	HTMLExport — Outside In HTML Export

	ImageExport — Outside In Image Export

	PDFExport — Outside In PDF Export

	SearchExport — Outside In Search Export

	WebViewExport — Outside In Web View Export

	XMLExport — Outside In XML Export

	AllExports — All Outside In export products

OutsideIn Class

This is a utility class that creates an instance of an Exporter object on request.

Namespace

OutsideIn

Methods
static Exporter NewLocalExporter() 	

This method creates an instance of an Exporter object. It returns a newly created Exporter object.

static Exporter NewLocalExporter(Exporter source)

This method creates and returns an instance of an Exporter object based on the source Exporter. All the options of source are copied to the new Exporter. The source and destination file information will not be copied.

OutsideInVersion GetCoreVersion()

This static method returns an OutsideInVersion object with information of the Outside In Core Technology used.

OutsideInConfig Class

The OutsideInConfig Class is used to describe the Outside In Configuration Options.

Namespace

OutsideIn

Constructors
OutsideInConfig()

Creates a OutsideInConfig instance with default values.

OutsideInConfig(DirectoryInfo InstallLocation, UInt32 IdleWorkerTimeout, UInt32 MinimumWorkerCount)

Creates a OutsideInConfig instance with specified values.

Properties
DirectoryInfo InstallLocation: The Location of the technology directory.

UInt32 IdleWorkerTimeout: value indicating the number of milliseconds that an idle process in excess of the minimum worker count is kept alive before being terminated. This timeout only applies to worker processes created beyond the number of MinimumWorkerCount processes.

UInt32 MinimumWorkerCount: Specifies the minimum number of running worker processes kept available for export operations. If there is a higher number of exporter objects performing simultaneous export operations, additional worker processes will be created. Those additional worker processes will be terminated according to the IdleWorkerTimeout setting. If any of these processes are terminated due to errors, they will be replaced by a new process to maintain this minimum count of loaded worker processes.

OutsideInVersion Class

The OutsideIn Class is used to describe the version of the Outside In Core Module.

Namespace

OutsideIn

Methods
String GetVersion() 	

This method returns the version information as a string in the format of “MajorVersion.MinorVersion.DotVersion”.

Properties
	int MajorVersion: The major version component

	int MinorVersion: The minor version component

	int DotVersion: The dot version component

OutsideInCastException
Class

This exception is thrown when
an invalid value is provided as an option value.

This class derives from the OutsideInException class. This class
has no public methods or properties except those of the parent Exception
class.

Namespace
OutsideIn

OutsideInException Class

This is the exception that is thrown when an Outside In Technology error occurs.

This class derives from the Exception class. This class has no public methods or properties except those of the parent Exception class.

Namespace

OutsideIn

PageInfo Class

PageInfo is a class for defining page dimensions.

Namespace

OutsideIn.Options

Constructor

PageInfo(PageInfo.PageSizeUnitsValue units,
 Single width,
 Single height)
units Units used to specify width and height
width Width of the page
height Height of the page

Properties

	Units: Units used to specify width and height

	Width: Width of the page

	Height: Height of the page

PageInfo.PageSizeUnitsValue Enumeration

PageSizeUnitsValue is an enumeration of the various units that can be used to specify the width and height of a page.

	Inches: Units are in Inches

	 Points: Units are in Points (1/72th of an inch)

	 Centimeters: Units are in Centimeters

	 Picas: Units are in Picas (1/6th of an inch)

PageRange Class

PageRange is a class for defining page ranges for exporting purposes.

Namespace

OutsideIn.Options

Constructors

PageRange()

Creates an instance of the PageRangeObject for printing all pages.

PageRange(Int32 StartPage)
StartPage Starting page number of the print range

Creates an instance of the PageRangeObject for printing from a page until end of document.

PageRange(
 Int32 StartPage,
 Int32 StopPage)
StartPage Starting page number of the print range
StopPage End page number of the print range

Creates an instance of the PageRangeObject for printing a range of pages.

Properties

	PrintAll (Boolean) - If set to true, all pages of the document will be printed

	StartPage (Int32) - The start page of the print range. 0 indicates printing will begin with the first page of the document.

	StopPage (Int32) - The last page of the print range. 0 indicates the last page at the end of the document.

Watermark Class

This class describes the watermark to be applied to a document.

Namespace

OutsideIn.Options

Constructors

Watermark (FileInfo file)

Creates a watermark object with the image to be used.

	file: A FileInfo object with the image file to be used as a watermark

Watermark (String filename)

Creates a watermark object with the image to be used.

	filename: The name of the image file to be used as a watermark

Watermark (Stream stream)

Creates a watermark object with the image to be used.

	stream: A stream with the image to be used as a watermark

Watermark (FileInfo file, int Opacity, int Percent, ANCHORPOSITION Anchor, int VerticalOffset, int HorizontalOffset)

	file: A FileInfo object with the image file to be used as a watermark

	Opacity: The Opacity of the watermark. Opacity is in the range of 1-255

	Percent: The Percentage the watermark image is scaled by. A value of 0 indicates no scaling

	Anchor: The position from which the watermark image is offset

	VerticalOffset: vertical offset to shift the image by

	HorizontalOffset: horizontal offset to shift the image by

Watermark (String filename, int Opacity, int Percent, ANCHORPOSITION Anchor, int VerticalOffset, int HorizontalOffset)

	filename: The name of the image file to be used as a watermark

	Opacity: The Opacity of the watermark. Opacity is in the range of 1-255

	Percent: The Percentage the watermark image is scaled by. A value of 0 indicates no scaling

	Anchor: The position from which the watermark image is offset

	VerticalOffset: vertical offset to shift the image by

	HorizontalOffset: horizontal offset to shift the image by

Watermark (Stream stream, int Opacity, int Percent, ANCHORPOSITION Anchor, int VerticalOffset, int HorizontalOffset)

	stream: A stream with the image to be used as a watermark

	Opacity : The Opacity of the watermark. Opacity is in the range of 1-255

	Percent: The Percentage the watermark image is scaled by. A value of 0 indicates no scaling

	Anchor: The position from which the watermark image is offset

	VerticalOffset: vertical offset to shift the image by

	HorizontalOffset: horizontal offset to shift the image by

Properties

	AnchorPosition: Watermark's Anchor position. This is the position from which the Horizontal and Vertical offsets are applied

	HorzOffset: Gets or sets the horizontal offset to shift the image by

	Opacity: Gets or sets the Opacity of the watermark. Opacity is in the range of 1-255. 0 disables the watermark

	Percent: Gets or sets the percentage amount by which the image is to be scaled. A value of 0 indicates no scaling

	VertOffset: Gets or sets the vertical offset to shift the image by

Oracle Legal Notices
Copyright Notice
Copyright © 1994-2016, Oracle and/or its affiliates. All rights reserved.
License Restrictions Warranty/Consequential Damages Disclaimer
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
Restricted Rights Notice
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
Hazardous Applications Notice
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Trademark Notice
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
Third-Party Content, Products, and Services Disclaimer
This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.
Alpha and Beta Draft Documentation Notice
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.
Private Alpha and Beta Draft Documentation Notice
If this document is in private preproduction status:
The information contained in this document is for
informational sharing purposes only and should be considered in your
capacity as a customer advisory board member or pursuant to your beta
trial agreement only. It is not a commitment to deliver any material,
code, or functionality, and should not be relied upon in making
purchasing decisions. The development, release, and timing of any
features or functionality described in this document remains at the
sole discretion of Oracle.
This document in any form, software or printed matter, contains proprietary information that is the exclusive property
of Oracle. Your access to and use of this confidential material is
subject to the terms and conditions of your Oracle Master Agreement, Oracle License and Services Agreement, Oracle PartnerNetwork Agreement, Oracle distribution agreement, or other license agreement which has been executed by you and Oracle and with which you agree to
comply. This document and information contained herein may not be
disclosed, copied, reproduced, or distributed to anyone outside Oracle
without prior written consent of Oracle. This document is not part of
your license agreement nor can it be incorporated into any contractual
agreement with Oracle or its subsidiaries or affiliates.
Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.
Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.
[image: Oracle Logo]
OEBPS/img/GUID-991B8A20-4F36-4C72-ACF4-E384CB62CF3E-default.gif
=10l x|
<] opins Lo]

Ext
Source Document
[CAGrant_Guideines pdi Browse.
Expot o
€ terphgant_guideines Browse.
Status:

Delete

[V lter Expor, view output fle with default application

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Outside In Image
Export Developer's
Guide

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Outside In Image
Export Developer's
Guide

OEBPS/dcommon/oracle.gif

OEBPS/img/GUID-89E334E4-0734-42EC-BE4A-C85C4F6DF634-default.gif

