

[1] Oracle® Healthcare Master Person Index
Standardization Engine Reference

Release 4.0

E68426-01

February 2016

Oracle Healthcare Master Person Index Standardization Engine Reference, Release 4.0

E68426-01

Copyright © 2011, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documents .. vii
Finding Information and Patches on My Oracle Support ... viii
Finding Oracle Documentation... x
Conventions ... x

1 Master Person Index Standardization Engine Reference

Introducing the OHMPI Standardization Engine ... 1-1
Understanding Standardization Concepts .. 1-1

Data Parsing or Reformatting... 1-2
Data Normalization ... 1-2
Phonetic Encoding ... 1-2

2 Master Person Index Standardization Engine

Learning About the OHMPI Standardization Engine .. 2-1
OHMPI Standardization Engine Data Types and Variants ... 2-1
OHMPI Standardization Engine Standardization Components... 2-2
Finite State Machine Framework ... 2-2

About the Finite State Machine Framework ... 2-3
FSM-Based Configuration ... 2-3

Patterns-based Framework... 2-4
About the Patterns-based Framework ... 2-4
Patterns-based Configuration ... 2-5

Understanding the OHMPI Standardization and Matching Process... 2-5
Internationalizing the OHMPI Standardization Engine .. 2-6

3 Finite State Machine Framework Configuration

Learning About the FSM Framework Configuration.. 3-1
Process Definition File ... 3-2

Standardization State Definitions... 3-2
Input Symbol Definitions... 3-4
Output Symbol Definitions ... 3-5
Data Cleansing Definitions.. 3-6

iv

Data Normalization Definitions ... 3-7
Standardization Processing Rules Reference .. 3-8

Lexicon Files... 3-12
Normalization Files... 3-13

Setting FSM-Based Person Name Configuration.. 3-14
Person Name Standardization Overview.. 3-14
Person Name Standardization Components... 3-14
Person Name Standardization Files ... 3-15

Person Name Lexicon Files... 3-15
Person Name Normalization Files .. 3-15
Person Name Process Definition Files .. 3-16

Person Name Standardization and Oracle Healthcare Master Person Index 3-16
Person Name Processing Fields ... 3-17
Configuring a Normalization Structure for Person Names... 3-18
Configuring a Standardization Structure for Person Names .. 3-19
Configuring Phonetic Encoding for Person Names.. 3-20

Setting FSM-Based Telephone Number Configuration .. 3-21
Telephone Number Standardization Overview ... 3-22
Telephone Number Standardization Components .. 3-22
Telephone Number Standardization Files... 3-22
Telephone Number Standardization and Oracle Healthcare Master Person Index.............. 3-23

Telephone Number Processing Fields .. 3-23
Configuring a Standardization Structure for Telephone Numbers.................................. 3-24

4 Patterns-based Address Data Configuration

Setting Patterns-based Address Data Configuration .. 4-1
Address Data Standardization Overview .. 4-1
Address Data Standardization Components ... 4-2
Address Data Standardization Files .. 4-6

Address Clues File .. 4-6
Address Master Clues File... 4-7
Address Patterns File.. 4-8
Address Pattern File Components... 4-11

Address Standardization and Oracle Healthcare Master Person Index 4-14
Address Data Processing Fields... 4-14
Configuring a Standardization Structure for Address Data.. 4-15
Configuring Phonetic Encoding for Address Data ... 4-17

Setting Patterns-based Business Name Configuration.. 4-17
Business Name Standardization Overview... 4-17
Business Name Standardization Components ... 4-18
Business Name Standardization Files .. 4-18

Business Name Adjectives Key Type File .. 4-19
Business Alias Key Type File ... 4-19
Business Association Key Type File .. 4-20
Business General Terms Reference File .. 4-20
Business City or State Key Type File... 4-21
Business Former Name Reference File.. 4-21

v

Merged Business Name Category File.. 4-22
Primary Business Name Reference File .. 4-22
Business Connector Tokens Reference File .. 4-23
Business Country Key Type File.. 4-23
Business Industry Sector Reference File ... 4-24
Business Industry Key Type File ... 4-24
Business Organization Key Type File ... 4-25
Business Patterns File .. 4-26

Business Name Standardization and Oracle Healthcare Master Person Index 4-28
Business Name Processing Fields.. 4-28
Business Name Standardized Fields ... 4-28
Configuring a Standardization Structure for Business Names ... 4-29
Configuring Phonetic Encoding for Business Names .. 4-30

5 Custom FSM-Based Data Types and Variants

Learning About Custom FSM-Based Data Types and Variants.. 5-1
Learning About the Standardization Packages .. 5-2
Creating Custom FSM-Based Data Types ... 5-2

Creating the Working Directory .. 5-2
To Create the Working Directory ... 5-3

Defining the Service Type... 5-3
To Define the Service Type.. 5-3

Defining the Variants... 5-4
To Define the Variants.. 5-4

Packaging and Importing the Data Type.. 5-4
To Package and Import the Data Type .. 5-4

Service Type Definition File.. 5-4
Creating Custom FSM-Based Variants .. 5-5

Creating the Working Directory .. 5-5
To Create the Working Directory ... 5-5

Defining the Service Instance ... 5-5
To Define the Service Instance .. 5-5

Defining the State Model and Processing Rules.. 5-6
To Define the State Model and Processing Rules... 5-6

Creating Normalization and Lexicon Files... 5-7
To Create Normalization and Lexicon Files.. 5-7

Packaging and Importing the Variant... 5-8
To Package and Import the Variant ... 5-8

Service Instance Definition File.. 5-9

vi

vii

Preface

The Oracle Healthcare Master Person Index (OHMPI) Standardization Engine works
with the OHMPI Match Engine to provide data parsing, data standardization,
phonetic encoding, and record matching capabilities for external applications, such as
OHMPI applications.

Audience
This document is intended for users of OHMPI applications that require data
comparison to evaluate and confirm the possibility of data matches.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information and instructions for implementing and using a Master Person
Index application, see the following documents in the Oracle Healthcare Master
Person Index documentation set:

■ Oracle Healthcare Master Person Index Analyzing and Cleansing Data User’s Guide

■ Oracle Healthcare Master Person Index Australia Patient Solution User’s Guide

■ Oracle Healthcare Master Person Index Command Line Reports and Database
Management User’s Guide

■ Oracle Healthcare Master Person Index Configuration Guide

■ Oracle Healthcare Master Person Index Configuration Reference

■ Oracle Healthcare Master Person Index Data Manager User’s Guide

■ Oracle Healthcare Master Person Index Installation Guide

■ Oracle Healthcare Master Person Index Loading the Initial Data Set User’s Guide

viii

■ Oracle Healthcare Master Person Index Match Engine Reference

■ Oracle Healthcare Master Person Index Message Processing Reference

■ Oracle Healthcare Master Person Index Provider Index User’s Guide

■ Oracle Healthcare Master Person Index Real-time Loader User’s Guide

■ Oracle Healthcare Master Person Index Relationship Management Data Manager User’s
Guide

■ Oracle Healthcare Master Person Index Relationship Management REST APIs Reference
Guide

■ Oracle Healthcare Master Person Index Relationship Management User's Guide

■ Oracle Healthcare Master Person Index Release Notes

■ Oracle Healthcare Master Person Index Security Guide

■ Oracle Healthcare Master Person Index Standardization Engine Reference

■ Oracle Healthcare Master Person Index Third Party Licenses and Notices

■ Oracle Healthcare Master Person Index United Kingdom Patient Solution User’s Guide

■ Oracle Healthcare Master Person Index United States Patient Solution User’s Guide

■ Oracle Healthcare Master Person Index User’s Guide

■ Oracle Healthcare Master Person Index Working With HPD Profile Application User's
Guide

■ Oracle Healthcare Master Person Index Working With IHE Profiles User’s Guide

Finding Information and Patches on My Oracle Support
Your source for the latest information about Oracle Healthcare Master Person Index is
Oracle Support's self-service Web site My Oracle Support (formerly MetaLink).

Before you install and use Oracle Healthcare Master Person Index, always visit the My
Oracle Support Web site for the latest information, including alerts, White Papers,
installation verification (smoke) tests, bulletins, and patches.

Creating a My Oracle Support Account
You must register at My Oracle Support to obtain a user name and password account
before you can enter the Web site.

To register for My Oracle Support:

1. Open a Web browser to https://support.oracle.com.

2. Click the Register here link to create a My Oracle Support account. The
registration page opens.

3. Follow the instructions on the registration page.

Signing In to My Oracle Support
To sign in to My Oracle Support:

1. Open a Web browser to https://support.oracle.com.

Note: These documents are designed to be used together when
implementing a master index application.

ix

2. Click Sign In.

3. Enter your user name and password.

4. Click Go to open the My Oracle Support home page.

Finding Information on My Oracle Support
There are many ways to find information on My Oracle Support.

Searching by Article ID
The fastest way to search for information, including alerts, White Papers, installation
verification (smoke) tests, and bulletins is by the article ID number, if you know it.

To search by article ID:

1. Sign in to My Oracle Support at https://support.oracle.com.

2. Locate the Search box in the upper right corner of the My Oracle Support page.

3. Click the sources icon to the left of the search box, and then select Article ID from
the list.

4. Enter the article ID number in the text box.

5. Click the magnifying glass icon to the right of the search box (or press the Enter
key) to execute your search.

The Knowledge page displays the results of your search. If the article is found,
click the link to view the abstract, text, attachments, and related products.

Searching by Product and Topic
You can use the following My Oracle Support tools to browse and search the
knowledge base:

■ Product Focus — On the Knowledge page under Select Product, type part of the
product name and the system immediately filters the product list by the letters
you have typed. (You do not need to type "Oracle.") Select the product you want
from the filtered list and then use other search or browse tools to find the
information you need.

■ Advanced Search — You can specify one or more search criteria, such as source,
exact phrase, and related product, to find information. This option is available
from the Advanced link on almost all pages.

Finding Patches on My Oracle Support
Be sure to check My Oracle Support for the latest patches, if any, for your product. You
can search for patches by patch ID or number, or by product or family.

To locate and download a patch:

1. Sign in to My Oracle Support at https://support.oracle.com.

2. Click the Patches & Updates tab. The Patches & Updates page opens and displays
the Patch Search region. You have the following options:

■ In the Patch ID or Number is field, enter the number of the patch you want.
(This number is the same as the primary bug number fixed by the patch.) This
option is useful if you already know the patch number.

■ To find a patch by product name, release, and platform, click the Product or
Family link to enter one or more search criteria.

x

3. Click Search to execute your query. The Patch Search Results page opens.

4. Click the patch ID number. The system displays details about the patch. In
addition, you can view the Read Me file before downloading the patch.

5. Click Download. Follow the instructions on the screen to download, save, and
install the patch files.

Finding Oracle Documentation
The Oracle Web site contains links to all Oracle user and reference documentation. You
can view or download a single document or an entire product library.

Finding Oracle Health Sciences Documentation
To get user documentation for Oracle Health Sciences applications, go to the Oracle
Health Sciences documentation page at:

http://www.oracle.com/technetwork/documentation/hsgbu-154445.html

Finding Other Oracle Documentation
To get user documentation for other Oracle products:

1. Go to the following Web page:

 http://www.oracle.com/technology/documentation/index.html

Alternatively, you can go to http://www.oracle.com, point to the Support tab, and
then click Documentation.

2. Scroll to the product you need and click the link.

3. Click the link for the documentation you need.

Conventions
The following text conventions are used in this document:

Note: Always check the Oracle Health Sciences Documentation page
to ensure you have the latest updates to the documentation.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Master Person Index Standardization Engine Reference 1-1

1Master Person Index Standardization Engine
Reference

This chapter provides an overview of the Oracle Healthcare Master Person Index
(OHMPI) Standardization Engine and introduces you to standardization concepts.

This chapter includes the following sections:

■ Introducing the OHMPI Standardization Engine on page 1-1

■ Understanding Standardization Concepts on page 1-1

Introducing the OHMPI Standardization Engine
The OHMPI Standardization Engine works together with the OHMPI Match Engine to
provide data parsing, data standardization, phonetic encoding, and record matching
capabilities for external applications, such as master person index applications. Before
records can be compared to evaluate the possibility of a match, the data contained in
those records must be normalized and in certain cases standardized and phonetically
encoded. Once the data is conditioned, the match engine determines a match weight
for each field defined for matching. The standardization engine is built on a flexible
framework that allows you to customize the standardization process and extend
standardization rules.

The Master Person Index Standardization Engine is designed to work with the master
person index applications created by Oracle Healthcare Master Person Index. The
standardization engine can also be called from other applications, web services, web
applications, and so on. It is highly configurable in the Oracle Healthcare Master
Person Index environment and can be used to standardize various types of data. The
OHMPI Standardization Engine works in conjunction with the OHMPI Match Engine
to improve the quality of your data.

Understanding Standardization Concepts
Data standardization transforms input data into common representations of values to
give you a single, consistent view of the data stored in and across organizations.
Standardizing the data stored in disparate systems provides a common representation
of the data so you can easily and accurately compare data between systems.

Data standardization applies multiple transformations against the data: parsing into
individual components, cleansing, normalization, and data typing. These actions help
cleanse data to prepare it for matching and searching. Some fields might require all the
steps, some just normalization, and other data might only need phonetic encoding that
is performed in tandem with standardization. Typically, data is first parsed,

Understanding Standardization Concepts

1-2 Oracle Healthcare Master Person Index Standardization Engine Reference

normalized, and then typed using patterns analysis, though some cleansing might be
needed prior to parsing.

Standardization can include the following phases.

■ Data Parsing or Reformatting on page 1-2

■ Data Normalization on page 1-2

Phonetic Encoding can also be included to complete the data preparation process for
matching.

Data Parsing or Reformatting
If incoming records contain data that is not formatted properly, it must be reformatted
before it can be normalized. This process identifies and separates each component of a
free-form text field that contains multiple pieces of information. Reformatting can also
include removing characters or strings from a field that are not relevant to the data. A
good example is standardizing free-form text address fields. If you are comparing or
searching on street addresses that are contained in one or more free-form text fields
(that is, the street address is contained in one field, apartment number in another, and
so on), those fields need to be parsed into their individual components, such as house
number, street name, street type, and street direction. Then certain components of the
address, such as the street name and type, can be normalized. Field components are
also known as tokens, and the process of separating data into its tokens is known as
tokenization.

Data Normalization
Normalizing data converts it into a standard or common form. A common use for
normalization is to convert nicknames into their standard names, such as converting
“Rich” to “Richard” or “Meg” to “Margaret.” Another example is normalizing street
address components. For example, both “Dr.” or “Drv” in a street address might be
normalized to “Drive.” Normalized values are obtained from lookup tables. Once a
field value is normalized, that value can be more accurately compared against values
in other records to determine whether they are a match.

Phonetic Encoding
Once data has gone through any necessary reformatting and normalization, it can be
phonetically encoded. In a master person index application, phonetic values are
generally used in blocking queries in order to obtain all possible matches to an
incoming record. They are also used to perform searches from the Master Index Data
Manager (MIDM) that allow for misspellings and typographic errors. Typically, first
names use Soundex encoding and last names and street names use NYSIIS encoding,
but the OHMPI Standardization Engine supports several additional phonetic encoders
as well.

2

Master Person Index Standardization Engine 2-1

2Master Person Index Standardization Engine

This chapter provides conceptual information on how the OHMPI Standardization
Engine works and standardization and matching process. It also describes the
internationalization of the OHMPI Standardization Engine.

This chapter includes the following sections:

■ Learning About the OHMPI Standardization Engine on page 2-1

■ Understanding the OHMPI Standardization and Matching Process on page 2-5

■ Internationalizing the OHMPI Standardization Engine on page 2-6

Learning About the OHMPI Standardization Engine
The OHMPI Standardization Engine uses two frameworks to define standardization
logic. One framework is based on a finite state machine (FSM) model and the other is
based on patterns defined in configurable dictionaries. In the current implementation,
the person names and telephone numbers are processed using the FSM framework,
and addresses and business names are processed using the patterns-based framework.
The OHMPI Standardization Engine includes several sets of files that define
standardization logic for all supported data types. For person data and addresses, one
set of standardization files is provided for the following national variants: Australia,
France, the United Kingdom, Mexico, the People’s Republic of China, Japan, and the
United States. You can customize these files to adapt the standardization and matching
logic to your specific needs or you can create new data types or variants for even more
customized processing. With pluggable standardization sets, you can define custom
standardization processing for most types of data.

The following topics provide information about the OHMPI Standardization Engine,
the standardization frameworks, and data is standardized:

■ OHMPI Standardization Engine Data Types and Variants on page 2-1

■ OHMPI Standardization Engine Standardization Components on page 2-2

■ Finite State Machine Framework on page 2-2

■ Patterns-based Framework on page 2-4

OHMPI Standardization Engine Data Types and Variants
A data type is the primary kind of data you are processing, such as person names,
addresses, business names, automotive parts, and so on. A variant is a subset of a data
type that is designed to standardize a specific kind of data. For example, for addresses
and names, the variants typically define rules for the different countries in which the
data originates. For automotive parts, the variants might be different manufacturers.

Learning About the OHMPI Standardization Engine

2-2 Oracle Healthcare Master Person Index Standardization Engine Reference

Each data type and variant uses its own configuration files to define how fields in
incoming records are parsed, standardized, and classified for processing. Data types
are sometimes referred to as standardization types.

In the default implementation with a master person index application, the engine
supports data standardization on the following types of data:

■ Person Information (described in Setting FSM-Based Person Name Configuration
on page 3-14)

■ Telephone Numbers (described in Setting FSM-Based Telephone Number
Configuration on page 3-21)

■ Street Addresses (described in Setting Patterns-based Address Data Configuration
on page 4-1)

■ Business Names (described in Setting Patterns-based Business Name
Configuration on page 4-17)

In the default configuration, the standardization engine expects street address and
business names to be in free-form text fields that need to be parsed prior to
normalization and phonetic encoding. Person and phone information can also be
contained in free-form text fields, but these types of information can also be processed
if the data is already parsed into its individual components. Each data type requires
specific customization to mefa.xml in the master person index project. This can be
done by modifying the file directly or by using the OHMPI Configuration Editor.

OHMPI Standardization Engine Standardization Components
The OHMPI Standardization Engine breaks down fields into various components
during the parsing process. This is known as tokenization. For example, it breaks
addresses into floor number, street number, street name, street direction, and so on.
Some of these components are similar and might be stored in the same output field. In
the default configuration for a master person index application, for example, when the
standardization engine finds a house number, rural route number, or PO Box number,
the value is stored in the HouseNumber database field. You can customize this as
needed, as long as any field you specify to store a component is also included in the
object structure defined for the master person index application.

The standardization engine uses tokens to determine how to process fields that are
defined for normalization or parsing into their individual standardization
components. For FSM-based data types, the tokens are defined as output symbols in
the process definition files and are referenced in the standardization structures in the
Master Person Index Configuration Editor and in mefa.xml. The tokens determine
how each field is normalized or how a free-form text field is parsed and normalized.
For patterns-based data types, the tokens are defined internally in the Java code. The
tokens for business names specify which business type key file to use to normalize a
specific standardization component. The tokens for addresses determine which
database fields store each standardization component and how each component is
standardized.

Finite State Machine Framework
A finite state machine (FSM) is composed of one or more states and the transitions
between those states. The OHMPI Standardization Engine FSM framework is designed
to be highly configurable and can be easily extended with no Java coding. The
following sections describe the FSM framework and the configuration files that define
FSM-based standardization.

Learning About the OHMPI Standardization Engine

Master Person Index Standardization Engine 2-3

About the Finite State Machine Framework
In an FSM framework, the standardization process is defined as one or more states. In
a state, only the input symbols defined for that state are recognized. When one of those
symbols is recognized, the following action or transition is based on configurable
processing rules. For example, when an input symbol is recognized, it might be
preprocessed by removing punctuation, matched against a list of tokens, and then
postprocessed by normalizing the input value. Once this has been completed for all
input symbols, the standardization engine determines which token is the most likely
match.

FSM-based processing includes the following steps:

■ Cleansing - The entire input string is modified to make sure it is broken down into
its individual components correctly.

■ Tokenization - The input string is broken down into its individual components.

■ Parsing - The individual field components are processed according to configurable
rules. Parsing can include any combination of the following three stages:

■ Preprocessing - Each token is cleansed prior to matching to make the value
more uniform.

■ Matching - The cleansed token is matched against patterns or value lists.

■ Postprocessing - The matched token is normalized.

■ Ambiguity Resolution - Some input strings might match more than one
processing rule, so the FSM framework includes a probability-based mechanism
for determining the correct state transition.

Using the person data type, for example, first names such as “Bill” and “Will” are
normalized to “William,” which is then converted to its phonetic equivalent.
Standardization logic is defined in the standardization engine configuration files and
in the Master Person Index Configuration Editor or mefa.xml in a master person index
project.

FSM-Based Configuration
The FSM-based standardization configuration files are stored in the master person
index project and appear in the Standardization Engine node of the project. These files
are separated into groups based on the primary data types being processed. Data type
groups have further subsets of configuration files based on the variants for each data
type. FSM-based data types and variants, such as PersonName and PhoneNumber,
include the following configuration file types.

■ Service Definition Files - Each data type and data type variant is defined by a
service definition file. Service type files define the fields to be standardized for a
data type and service instance files define the variant and Java factory class for the
variant. Both files are in XML format and should not be modified unless the data
type is extended to include more output symbols.

■ Process Definition Files - These files define the different stages of processing data
for the data type or variant. It defines the FSM states, input and output symbols,

Note: Several parsing sequences might be performed against one
field component in order to best match it with a token. Each sequence
is carried out until a match is made.

Learning About the OHMPI Standardization Engine

2-4 Oracle Healthcare Master Person Index Standardization Engine Reference

patterns, and data cleansing rules. These files use a domain-specific language
(DSL) to define how the data fields are processed.

■ Lexicon Files - The standardization engine uses these files to recognize input data.
A lexicon provides a list of possible values for a specific field, and one lexicon file
should be defined for each field on which standardization is performed.

■ Normalization Files - The standardization engine uses these files to convert
nonstandard values into a common form. For example, a nickname file provides a
list of nicknames along with the common version of each name. For example,
“Beth” and “Liz” might both be normalized to “Elizabeth.” Each row in the file
contains a nickname and its corresponding normalized version separated by a
pipe character (|).

Patterns-based Framework
In the patterns-based framework, the standardization process is defined configurable
dictionaries and also in the underlying Java code. You can configure several aspects of
the standardization process, such as the detectable patterns for each data type, how
values are normalized, and how the input string is cleansed and parsed. You can
define custom patterns-based data types and variants by creating custom Java
packages that define processing.

About the Patterns-based Framework
In the patterns-based framework, individual field components are recognized by the
patterns defined for each data type and by information provided in configurable files
about how to preprocess, match, and postprocess each field component. The
patterns-based framework processes data in the following stages.

■ Parsing - A free-form text field is separated into its individual components, such
as street address information or a business name. This process takes into account
logic you can customize, such as token patterns, special characters, and priority
weights for patterns.

■ Data-Type Identification - Look up the different locale-specific data dictionaries
to identify related types. In the case of postal address, for example, identify street
directions, street name, apartment number, and so on. Normalization - Once a
field is parsed, individual components of the field are normalized based on the
configuration files. This can include changing the input street name to a common
form or changing the input business name to its official form.

■ Normalization - Once a field is parsed, individual components of the field are
normalized based on the configuration files. This can include changing the input
street name to a common form or changing the input business name to its official
form.

■ Patterns-Resolution - In general, there is more than one pattern for the same input
record, and we associated algorithm need to choose the appropriate pattern in the
pattern dictionary table.

Using the street address data type, for example, street addresses are parsed into their
component parts, such as house numbers, street names, and so on. Certain fields are
normalized, such as street name, street type, and street directions. The street name is
then phonetically converted. Standardization logic is defined in the standardization
engine configuration files and in the Master Person Index Configuration Editor or
mefa.xml in a master person index project.

Understanding the OHMPI Standardization and Matching Process

Master Person Index Standardization Engine 2-5

Patterns-based Configuration
The patterns-based standardization configuration files are stored in the master person
index project and appear as nodes in the Standardization Engine node of the project.
These files are separated into groups based on the primary data types and variants
being processed. Patterns-based data types and variants, such as the default Address
and Business Name types, use the following configuration file types.

■ Service Definition Files - Each data type and data type variant is configured by a
service definition file. Service type files define the fields to be standardized for a
data type, and service instance definition files define the variant and Java factory
class for the variant. Both files are in XML format. These files should not be
modified.

■ Category Files - The standardization engine uses category files when processing
business names. These files list common values for certain types of data, such as
industries and organizations for business names. Category files also define
standardized versions of each term or classify the terms into different categories,
and some files perform both functions. When processing address files, category
files named clues files are used.

■ Clues Files - The standardization engine uses clues files when processing address
data types. These files list general terms used in street address fields, define
standardized versions of each term, and classify the terms into various component
types using predefined address tokens. These files are used by the standardization
engine to determine how to parse a street address into its various components.
Clues files provide clues in the form of tokens to help the engine recognize the
component type of certain values in the input fields.

■ Patterns Files - The patterns files specify how incoming data should be interpreted
for standardization based on the format, or pattern, of the data. These files are
used only for processing data contained in free-form text fields that must be
parsed prior to matching (such as street address fields or business names).
Patterns files list possible input data patterns, which are encoded in the form of
tokens. Each token signifies a specific component of the free-form text field. For
example, in a street address field, the house number is identified by one token, the
street name by another, and so on. Patterns files also define the format of the
output fields for each input pattern.

■ Key Type Files - For business name processing, the standardization engine refers
to a number of key type files for processing data. These files generally define
standard versions of terms commonly found in business names and some classify
these terms into various components or industries. These files are used by the
standardization engine to determine how to parse a business name into its
different components and to recognize the component type of certain values in the
input fields.

■ Reference Files - Reference files define general terms that appear in input fields
for each data type. Some reference files define terms to ignore and some define
terms that indicate the business name is continuing. For example, in business
name processing “and” is defined as a joining term. This helps the standardization
engine to recognize that the primary business name in “Martin and Sons, Inc.” is
“Martin and Sons” instead of just “Martin.” Reference files can also define
characters to be ignored by the standardization engine.

Understanding the OHMPI Standardization and Matching Process
In a default Oracle Healthcare Master Person Index implementation, the master person
index application uses the OHMPI Match Engine and the OHMPI Standardization

Internationalizing the OHMPI Standardization Engine

2-6 Oracle Healthcare Master Person Index Standardization Engine Reference

Engine to cleanse data in real time. The standardization engine uses configurable
pattern-matching logic to identify data and reformat it into a standardized form. The
match engine uses a matching algorithm with a proven methodology to process and
weight records in the master person index database. By incorporating both
standardization and matching capabilities, you can condition data prior to matching.
You can also use these capabilities to review legacy data prior to loading it into the
database. This review helps you determine data anomalies, invalid or default values,
and missing fields.

In a master person index application, both matching and standardization occur when
two records are analyzed for the probability of a match. Before matching, certain fields
are normalized, parsed, or converted into their phonetic values if necessary. The match
fields are then analyzed and weighted according to the rules defined in a match
configuration file. The weights for each field are combined to determine the overall
matching weight for the two records. After these steps are complete, survivorship is
determined by the master person index application based on how the overall matching
weight compares to the duplicate and match thresholds of the master person index
application.

1. In a master person index application, the standardization and matching process
includes the following steps:

2. The master person index application receives an incoming record.

3. The OHMPI Standardization Engine standardizes and/or normalizes the fields.
These fields are defined in mefa.xml and the rules for standardization are defined
in the standardization engine configuration files.

4. The master person index application queries the database for a candidate selection
pool (records that are possible matches) using the blocking query specified in
master.xml. If the blocking query uses standardized or phonetic fields, the criteria
values are obtained from the database.

5. For each possible match, the master person index application creates a match
string (based on the match columns in mefa.xml) and sends the string to the
OHMPI Match Engine.

6. The OHMPI Match Engine checks the incoming record against each possible
match, producing a matching weight for each. Matching is performed using the
weighting rules defined in the match configuration file.

Internationalizing the OHMPI Standardization Engine
By default, the OHMPI Standardization Engine is configured for addresses and names
originating from Australia, France, Great Britain, Mexico, the People’s Republic of
China, and the United States, and for telephone numbers and business names of any
origin. Each national variant for each data type uses a specific subset of configuration
files. In addition, you can define custom national variants for the standardization
engine to support addresses and names from other countries and to support other data
types. You can process with your data using the standardization files for a single
variant or you can use multiple variants depending on how the master person index
application is configured.

3

Finite State Machine Framework Configuration 3-1

3Finite State Machine Framework Configuration

This chapter provides conceptual information about the Finite State Machine (FSM)
framework configuration. It also provides data and examples for you to use when you
set up FSM-based person name and FSM-based telephone number configuration.

This chapter includes the following sections:

■ Learning About the FSM Framework Configuration on page 3-1

■ Setting FSM-Based Person Name Configuration on page 3-14

■ Setting FSM-Based Telephone Number Configuration on page 3-21

Learning About the FSM Framework Configuration
In the FSM framework, the state model definition, along with all the token processing
logic, is provided in configuration files in XML format. In addition, lexicon and
normalization files define logic used by the OHMPI Standardization Engine to
recognize and normalize specific values for each data type or variant. The
standardization configuration files for the OHMPI Standardization Engine must
follow certain rules for formatting and interdependencies. The following topics
provide an overview of the types of configuration files provided for standardization.

The configuration of the finite state machine (FSM) includes defining the various
states, transitions between those states, and any actions to perform during each state.
Each instance of the FSM begins in the start state. In each state, the standardization
engine looks for the next token (or input symbol), optionally performs certain actions
against the token, determines the potential output symbols, and then uses
probability-based logic to determine the output symbol to generate for the state and
how to transition to the next state. Within each state, only the input symbols defined
for that state are recognized. When an input symbol is recognized, the processing
defined for that symbol is carried out and the transition to the next state occurs. Note
that some input symbols might trigger a transition back to the current state. Once the
standardization engine does not recognize any input symbols, the FSM reaches a
terminal state from which no further transitions are made.

You can define specialized processing rules for each input symbol in the state model.
These rules include cleansing and data transformation logic, such as converting data to
uppercase, removing punctuation, comparing the input value against a list of values,
and so on. Both the state model and the processing rules are defined in the process
definition file, standardizer.xml. The lists that you can use to compare and normalize
values for each input symbol are contained in lexicon and normalization files.

The configuration files that configure the standardization engine are stored in the
master person index project and appear as nodes in the Standardization Engine node
of the project. The standardization files are separated into subsets that are each unique

Learning About the FSM Framework Configuration

3-2 Oracle Healthcare Master Person Index Standardization Engine Reference

to a specific data type, which are further grouped into variants on those data types.
You can define additional standardization file subsets to create new variants or even
create new data types, such as automotive parts, inventory items, and so on.

The following topics provide information about the files you can configure or create to
customize how your data is standardized:

■ Process Definition File on page 3-2

■ Lexicon Files on page 3-12

■ Normalization Files on page 3-13

Process Definition File
The process definition file (standardizer.xml) is the primary configuration file for
standardization. It defines the state model, input and output symbol definitions,
preprocessing and postprocessing rules, and normalization rules for any type of
standardization. Using a domain-specific markup language, you can configure any
type of standardization without having to code a new Java package. Each process
definition file defines the different stages of processing data for one data type or
variant. The process definition file is stored in the resource folder under the data type
or variant it defines.

The process definition file is divided into six primary sections, which are described in
the following sections:

■ Standardization State Definitions on page 3-2

■ Input Symbol Definitions on page 3-4

■ Output Symbol Definitions on page 3-5

■ Data Cleansing Definitions on page 3-6

■ Data Normalization Definitions on page 3-7

■ Standardization Processing Rules Reference on page 3-8

The processing flow is defined in the state definitions. The input symbol definitions
specify the token preprocessing, matching, and postprocessing logic. This is the logic
carried out for each input token in a given state. The output symbols define the output
for each state. The data cleansing definitions specify any transformations made to the
input string prior to tokenization. Normalization definitions are used for data that
does not need to be tokenized, but only needs to be normalized and optionally
phonetically encoded. For example, if the input text provides the first name in its own
field, the middle name in its own field, and so on, then only the normalization
definitions are used to standardize the data. The standardization processing rules can
be used in all sections except the standardization state definitions.

Standardization State Definitions
An FSM framework is defined by its different states and transitions between states.
Each FSM begins with a start state when it receives an input string. The first
recognized input symbol in the input string determines the next state based on
customizable rules defined in the state model section of standardizer.xml. The next
recognized input symbol determines the transition to the next state. This continues
until no symbols are recognized and the termination state is reached.

Below is an excerpt from the state definitions for the PersonName data type. In this
state, the first name has been processed and the standardization engine is looking for
one of the following: a first name (indicating a middle name), a last name, an

Learning About the FSM Framework Configuration

Finite State Machine Framework Configuration 3-3

abbreviation (indicating a middle initial), a conjunction, or a nickname. A probability
is given for each of these symbols indicating how likely it is to be the next token.

<stateModel name="start">
 <when inputSymbol="salutation" nextState="salutation"
 outputSymbol="salutation" probability=".15"/>
 <when inputSymbol="givenName" nextState="headingFirstName"
 outputSymbol="firstName" probability=".6"/>
 <when inputSymbol="abbreviation" nextState="headingFirstName"
 outputSymbol="firstName" probability=".15"/>
 <when inputSymbol="surname" nextState="trailingLastName"
 outputSymbol="lastName" probability=".1"/>
 <state name="headingFirstName">
 <when inputSymbol="givenName" nextState="headingMiddleName"
 outputSymbol="middleName" probability=".4"/>
 <when inputSymbol="surname" nextState="headingLastName"
 outputSymbol="lastName" probability=".3"/>
 <when inputSymbol="abbreviation" nextState="headingMiddleName"
 outputSymbol="middleName" probability=".1"/>
 <when inputSymbol="conjunction" nextState="headingFirstName"
 outputSymbol="conjunction" probability=".1"/>
 <when inputSymbol="nickname" nextState="firstNickname"
 outputSymbol="nickname" probability=".1"/>
 </state>
 ...

The following table lists and describes the XML elements and attributes for the
standardization state definitions.

Element Attribute Description

stateModel The primary container element for the state model
that includes the definitions for each state in the
FSM. This element contains a series of when
elements as described below to define the
transitions from the start element to any of the
other states. It also contains a series of state
elements that define the remaining FSM states.

name The name of start state (by default, “start”).

state A definition for one state in the FSM (not
including the start state). Each state element
contains a series of when elements and attributes
as described above to define the processing flow.

name The name of the state. The names defined here are
referenced in the nextState attributes described
below to specify the next state.

when A statement defining which state to transition to
and which symbol to output when a specific input
symbol is recognized in each state. These elements
define the possible transitions from one state to
another.

inputSymbol The name of an input symbol that might occur
next in the input string. This must match one of
the input symbols defined later in the file. For
more information about input symbols and their
processing logic, see Input Symbol Definitions.

Learning About the FSM Framework Configuration

3-4 Oracle Healthcare Master Person Index Standardization Engine Reference

Input Symbol Definitions
The input symbol definitions name and define processing logic for each input symbol
recognized by the states. For each state, each possible input symbol is tried according
to the rules defined here, and then the probability that it is the next token is assessed.
Each input symbol might be subject to preprocessing, token matching, and
postprocessing. Preprocessing can include removing punctuation or other regular
expression substitutions. The value can then be matched against values in the lexicon
file or against regular expressions. If the value matches, it can then be normalized
based on the specified normalization file or on pattern replacement. One input symbol
can have multiple preprocessing, matching, and postprocessing iterations to go
through. If there are multiple iterations, each is carried out in turn until a match is
found. All of these steps are optional.

Below is an excerpt from the input symbol definitions for PersonName processing.
This excerpt processes the salutation portion of the input string by first removing
periods, then comparing the value against the entries in the salutation.txt file, and
finally normalizing the matched value based on the corresponding entry in the
salutationNormalization.txt file. For example, if the value to process is “Mr.”, it is first
changed to “Mr” and then matched against a list of salutations before it is converted to
“Mister” based on the entry in the normalization file.

<inputSymbol name="salutation">
 <matchers>
 <matcher>
 <preProcessing>
 <replaceAll regex="\." replacement=""/>
 </preProcessing>
 <lexicon resource="salutation.txt"/>
 <postProcessing>
 <dictionary resource="salutationNormalization.txt" separator="\|"/>
 </postProcessing>
 </matcher>

nextState The name of the next state to transition to when
the specified input symbol is recognized. This
must match the name of one of the states defined
in the state model section.

outputSymbol The name of the symbol that the current state
produces for when processing is complete for the
state based on the input symbol. Not all transitions
have an output symbol. This must match one of
the output symbols defined later in the file. For
more information, see Output Symbol Definitions

probability The probability that the given input symbol is
actually the next symbol in the input string.
Probabilities are indicated by a decimal between
and including 1 and 0. All probabilities for a given
state must add up to 1. If a state definition
includes the eof element described below, all
probabilities including the eof probability must
add up to 1.

eof probability The probability that the FSM has reached the end
of the input string in the current state.
Probabilities are indicated by a decimal between
and including 1 and 0. The sum of this probability
and all other probabilities for a given state must be
1.

Element Attribute Description

Learning About the FSM Framework Configuration

Finite State Machine Framework Configuration 3-5

 </matchers>
</inputSymbol>

The following table lists and describes the XML elements and attributes for the input
symbol definitions.

Output Symbol Definitions
The output symbol definitions name each output symbol that can be produced by the
defined states. This section can define additional processing for output symbols using
the rules described in Standardization Processing Rules Reference on page 3-8. Each
output symbol defined in the state model definitions must match a value defined here.
Below is an excerpt from the output symbol definitions for PersonName processing.

<outputSymbols>
 <outputSymbol name="salutation"/>
 <outputSymbol name="firstName"/>
 <outputSymbol name="middleName"/>

Element Attribute Description

inputSymbol A container element for the processing logic
for one input symbol.

name The name of the input symbol against which
the following logic applies.

matchers A list of processing definitions, each of which
define one preprocessing, matching, and
postprocess sequence. Not all definitions
include all three steps.

matcher A processing definition for one sequence of
preprocessing, matching, and postprocessing.
A processing definition might contain only one
or any combination of the three steps.

factor A factor to apply to the probability specified
for the input symbol in the state definition. For
example, if the state definition probability is
0.4 and this factor is 0.25, then the probability
for this matching sequence is 0.1. Only define
this attribute when the probability for this
matching sequence is very low.

preProcessing A container element for the preprocessing
rules to be carried out against an input symbol.
For more information about the rules you can
use, see Standardization Processing Rules
Reference on page 3-8.

lexicon resource The name of the lexicon file containing the list
of values to match the input symbol against.

Note: You can also match against patterns or
regular expressions. For more information, see
matchAllPatterns and pattern in
Standardization Processing Rules Reference on
page 3-8.

postProcessing A container element for the postprocessing
rules to be carried out against an input symbol
that has been matched. For more information
about the rules you can use, see
Standardization Processing Rules Reference on
page 3-8.

Learning About the FSM Framework Configuration

3-6 Oracle Healthcare Master Person Index Standardization Engine Reference

 <outputSymbol name="nickname"/>
 <outputSymbol name="lastName"/>
 <outputSymbol name="generation"/>
 <outputSymbol name="title"/>
 <outputSymbol name="conjunction"/>
</outputSymbols>

The following table lists and describes the XML elements and attributes for the output
symbol definitions.

Data Cleansing Definitions
You can define cleansing rules to transform the input data prior to tokenization to
make the input record uniform and ensure the data is correctly separated into its
individual components. This standardization step is optional.

Common data transformations include the following:

■ Converting a string to all uppercase.

■ Trimming leading and trailing white space.

Element Attribute Description

outputSymbols A list of output symbols for each processing
state.

outputSymbol A definition for one output symbol.

name The name of the output symbol

occurrenceConcatenator An optional class to specify the character that
separates contiguous occurrences of the same
output symbol. For example, this is used in the
PhoneNumber data type to concatenate phone
number components that are separated by
dashes. Components are concatenated using
blanks.

class The name of the occurrence concatenator class.
One concatenator class is predefined.

property A parameter for the occurrence concatenator
class. For the default class, the parameter
specifies a separator character.

name The name of the parameter. For the default
class, the name is “separator”.

value The parameter value.

tokenConcatenator An optional class to specify the character that
separates non-contiguous occurrences of the
same output symbol. For example, this is used
in the PhoneNumber data type to concatenate
phone number components.

class The name of the token concatenator class. one
concatenator class is predefined.

property A parameter for the token concatenator class.
For the default class, the parameter specifies a
separator character.

name The name of the parameter. For the default
class, the name is “separator”.

value The value of the parameter.

Learning About the FSM Framework Configuration

Finite State Machine Framework Configuration 3-7

■ Converting multiple spaces in the middle of a string to one space.

■ Transliterating accent characters or diacritical marks.

■ Adding a space on either side of extra characters (to help the tokenizer recognize
them).

■ Removing extraneous content.

■ Fixing common typographical errors.

The cleansing rules are defined within a cleanser element in the process definition file.
You can use any of the rules defined in Standardization Processing Rules Reference on
page 3-8 to cleanse the data. Cleansing attributes use regular expressions to define
values to find and replace.

The following excerpt from the PhoneNumber data type does the following to the
input string prior to processing:

■ Converts all characters to upper case.

■ Replaces the specified input patterns with new patterns.

■ Removes white space at the beginning and end of the string and concatenates
multiple consecutive spaces into one space.

<cleanser>
 <uppercase/>
 <replaceAll regex="([0-9]{3})([0-9]{3})([0-9]{4})" replacement="($1)$2-$3"/>
 <replaceAll regex="([-(),])" replacement=" $1 "/>
 <replaceAll regex="\+(\d+) -" replacement="+$1-"/>
 <replaceAll regex="E?X[A-Z]*[.#]?\s*([0-9]+)" replacement="X $1"/>
 <normalizeSpace/>
</cleanser>

Data Normalization Definitions
If the data you are standardizing does not need to be parsed, but does require
normalization, you can define data normalization rules to be used instead of the state
model defined earlier in the process definition file. These rules would be used in the
case of person names where the field components are already contained in separate
fields and do no need to be parsed. In this case, the standardization engine processes
one field at a time according to the rules defined in the normalizer section of
standardizer.xml. In this section, you can define preprocessing rules to be applied to
the fields prior to normalization.

Below is an excerpt from the PersonName data type. These rules convert the input
string to all uppercase, and then processes the FirstName and MiddleName fields
based on the givenName input symbol and processes the LastName field based on the
surname input symbol.

<normalizer>
 <preProcessing>
 <uppercase/>
 </preProcessing>
 <for field="FirstName" use="givenName"/>
 <for field="MiddleName" use="givenName"/>
 <for field="LastName" use="surname"/>
</normalizer>

The following table lists and describes the XML elements and attributes for the
normalization definitions.

Learning About the FSM Framework Configuration

3-8 Oracle Healthcare Master Person Index Standardization Engine Reference

Standardization Processing Rules Reference
The OHMPI Standardization Engine provides several matching and transformation
rules for input values and patterns. You can add or modify any of these rules in the
existing process definition files (standardizer.xml). Several of these rules use regular
expressions to define patterns and values. See the Javadoc for java.util.regex for more
information about regular expressions.

The available rules include the following:

■ dictionary on page 3-8

■ fixedString on page 3-9

■ lexicon on page 3-9

■ normalizeSpace on page 3-10

■ pattern on page 3-10

■ replace on page 3-11

■ replaceAll on page 3-11

■ transliterate on page 3-12

■ uppercase on page 3-12

dictionary

This rule checks the input value against a list of values in the specified normalization
file, and, if the value is found, converts the input value to its normalized value. This
generally used for postprocessing but can also be used for preprocessing tokens. The
normalization files are located in the same directory as the process definition file (the
instance folder for the data type or variant).

The syntax for dictionary is:

<dictionary resource="file_name" separator="delimiter"/>

The parameters for dictionary are:

■ resource - The name of the normalization file to use to look up the input value and
determine the normalized value.

Element Attribute Description

normalizer A container element for the normalization rules to
use when field components do not require parsing,
but do require normalization.

preProcessing A container element for any preprocessing rules to
apply to the input strings prior to normalization.
For more information about preprocessing rules,
see Standardization Processing Rules Reference.

for The input symbol to use for a given field. This is
defined in the following attributes.

field The name of a field to be normalized.

use The name of the input symbol to associate with the
field. The processing logic defined for the input
symbol earlier in the file is used to normalize the
data contained in that field.

Learning About the FSM Framework Configuration

Finite State Machine Framework Configuration 3-9

■ separator - The character used in the normalization file to separate the input value
entries from the normalized versions. The default normalization files all use a pipe
(|) as a separator.

Example 3–1 Sample dictionary Rule

The following sample checks the input value against the list in the first column
of the givenNameNormalization.txt file, which uses a pipe symbol (|) to separate
the input value from its normalized version. When a value is matched, the input
value is converted to its normalization version.
<dictionary resource="givenNameNormalization.txt" separator="\|"/>

fixedString

This rule checks the input value against a fixed value. This is generally used for the
token matching step for input symbol processing. You can define a list of fixed strings
for an input symbol by enclosing multiple fixedString elements within a fixedStrings
element. The syntax for fixedString is:

<fixedString>string</fixedString>

The parameter for fixedString is:

■ string - The fixed value to compare the input value against.

Example 3–2 Sample fixedString Rules

The following sample matches the input value against “AND”, “OR” and “AND/OR”
which are fixed values. If one of the fixed values matches the input string,
processing is continued for that matcher definition. If no fixed values match the
input string, processing is stopped for that matcher definition and the next
matcher definition is processed (if one exists).
<fixedStrings>
 <fixedString>AND</fixedString>
 <fixedString>OR</fixedString>
 <fixedString>AND/OR</fixedString>
</fixedStrings>

lexicon

This rule checks the input value against a list of values in the specified lexicon file.
This generally used for token matching. The lexicon files are located in the same
directory as the process definition file (the instance folder for the data type or variant).

The syntax for lexicon is:

<lexicon resource="file_name/>

The parameter for lexicon is:

■ resource - The name of the lexicon file to use to look up the input value to ensure
correct tokenization.

Example 3–3 Sample lexicon Rule

The following sample checks the input value against the list in the givenName.txt
file. When a value is matched, the standardization engine continues to the
postprocessing phase if one is defined.
<lexicon resource="givenName.txt"/>

Learning About the FSM Framework Configuration

3-10 Oracle Healthcare Master Person Index Standardization Engine Reference

normalizeSpace

This rule removes leading and trailing white space from a string and changes multiple
spaces in the middle of a string to a single space. The syntax for normalizeSpace is:

<normalizeSpace/>

Example 3–4 Sample normalizeSpace Rule

The following sample removes the leading and trailing white space from a last name
field prior to checking the input value against the surnames.txt file.
<matcher>
 <preProcessing>
 <normalizeSpace/>
 </preProcessing>
 <lexicon resource="surnames.txt"/>
</matcher>

pattern

This rule checks the input value against a specific regular expression to see if the
patterns match. You can define a sequence of patterns by including them all in order in
a matchAllPatterns element. You can also specify sub-patterns to exclude. The syntax
for pattern is:

<pattern regex="regex_pattern"/>

The parameter for pattern is:

■ regex - A regular expression to validate the input value against. See the Javadocs
for java.util.regex for more information.

The pattern rule can be further customized by adding exceptFor rules that define
patterns to exclude in the matching process. The syntax for exceptFor is:

<pattern regex="regex_pattern"/>
 <exceptFor regex="regex_pattern"/>
</pattern>

The parameter for exceptFor is:

■ regex - A regular expression to exclude from the pattern match. See the Javadocs
for java.util.regex for more information.

Example 3–5 Sample pattern Rule

The following sample checks the input value against the sequence of patterns to
see if the input value might be an area code. These rules specify a pattern that
matches three digits contained in parentheses, such as (310).
<matchAllPatterns>
 <pattern regex="regex="\("/>
 <pattern regex="regex="\[0-9]{3}"/>
 <pattern regex="regex="\)"/>
</matchAllPatterns>

The following sample checks the input value against the sequence of patterns to
see if the input value might be an area code. These rules specify a pattern that
matches three digits contained in parentheses, such as (310).
<pattern regex="[A-Z]{3}">
 <exceptFor regex="regex="THE"/>
 <exceptFor regex="regex="AND"/>

Learning About the FSM Framework Configuration

Finite State Machine Framework Configuration 3-11

</matchAllPatterns>

Example 3–6 Sample pattern Rule

The following sample checks the input value against the sequence of patterns to
see if the input value might be an area code. These rules specify a pattern that
matches three digits contained in parentheses, such as (310).
<matchAllPatterns>
 <pattern regex="regex="\("/>
 <pattern regex="regex="\[0-9]{3}"/>
 <pattern regex="regex="\)"/>
</matchAllPatterns>

The following sample checks the input value to see if its pattern is a series of
three letters excluding THE and AND.
<pattern regex="[A-Z]{3}">
 <exceptFor regex="regex="THE"/>
 <exceptFor regex="regex="AND"/>
</matchAllPatterns>

replace

This rule checks the input value for a specific pattern. If the pattern is found, it is
replaced by a new pattern. This rule only replaces the first instance it finds of the
pattern. The syntax for replace is:

<replace regex="regex_pattern" replacement="regex_pattern"/>

The parameters for replace are:

■ regex - A regular expression that, if found in the input string, is converted to the
replacement expression.

■ replacement - The regular expression that replaces the expression specified by the
regex parameter.

Example 3–7 Sample replace Rule

The following sample tries to match the input value against “ST.”. If a match is
found, the standardization engine replaces the value with “SAINT.”
<replace regex="ST\." replacement="SAINT"/>

replaceAll

This rule checks the input value for a specific pattern. If the pattern is found, all
instances are replaced by a new pattern. The syntax for replaceAll is:

<replaceAll regex="regex_pattern" replacement="regex_pattern"/>

The parameters for replaceAll are:

■ regex - A regular expression that, if found in the input string, is converted to the
replacement expression.

■ replacement - The regular expression that replaces the expression specified by the
regex parameter.

Example 3–8 Sample replaceAll Rule

The following sample finds all periods in the input value and converts them to

Learning About the FSM Framework Configuration

3-12 Oracle Healthcare Master Person Index Standardization Engine Reference

blanks.
<replaceAll regex="\." replacement=""/>

transliterate

This rule converts the specified characters in the input string to a new set of characters,
typically converting from one alphabet to another by adding or removing diacritical
marks. The syntax for transliterate is:

<transliterate from="existing_char" to="new_char"/>

The parameters for transliterate are:

■ from - The characters that exist in the input string that need to be transliterated.

■ to - The characters that will replace the above characters.

Example 3–9 Sample transliterate Rule

The following sample converts lower case vowels with acute accents to vowels with
no accents.
<transliterate from="áéíóú" to="aeiou"/>

uppercase

This rule converts all characters in the input string to upper case. The rule does not
take any parameters. The syntax for uppercase is:

<uppercase/>

Example 3–10 Sample uppercase Rule

The following sample converts the entire input string into uppercase prior to
doing any pattern or value replacements. Since this is defined in the cleanser
section, this is performed prior to tokenization.
<cleanser>
 <uppercase/>
 <replaceAll regex="\." replacement=". "/>
 <replaceAll regex="AND / OR" replacement="AND/OR"/>
 ...
</cleanser>

Lexicon Files
Lexicon files list the possible values for a specific field that the standardization engine
uses to recognize input data. A lexicon file can be defined for each field on which
standardization is performed. These files are referenced from the process definition file
when defining matching or processing rules. The lexicon files are located in the
resource folder for the data type or variant from which they are referenced.

Lexicon files are simply text files with a single column that lists the possible field
values. They are typically given the same name as the token type, or standardization
component, that they define. For example, the lexicon files for first and last names are
givenNames.txt and surnames.txt. You can modify these files as needed to suit your
data requirements and you can create new lexicon files to reference from the process
definition file.

Below is an excerpt of the given names lexicon file:

Learning About the FSM Framework Configuration

Finite State Machine Framework Configuration 3-13

ALIA
ALICA
ALICAI
ALICE
ALICEMARIE
ALICEN
ALICIA
ALICJA
ALID
ALIDA
ALIHAN
ALINA
ALINE
ALIS
ALISA
ALISE
ALISHA
ALISHIA
ALISIA
ALISON

Normalization Files
Normalization files list nonstandard values for a field along with their corresponding
normalized value. The standardization engine uses these files to convert nonstandard
values into a standard form. These files are referenced from the process definition file
when defining normalization rules. The normalization files are located in the resource
folder for the data type or variant from which they are referenced.

The most common example of normalization is a nickname file that provides a list of
nicknames along with the standard version of each name. For example, “Beth” and
“Liz” might both be standardized to “Elizabeth.” Each row in the file contains a
nickname and its corresponding standardized version separated by a pipe character
(|). You can modify these files as needed to suit your data processing needs, or you
can create new normalization files to reference from the process definition file.

Below is an excerpt of the given names normalization file:

BEV|BEVERLY
BIANCA|BLANCHE
BILLIE|WILLIAM
BILLYE|WILLIAM
BILLY|WILLIAM
BILL|WILLIAM
BIRGIT|BRIDGET
BLANCA|BLANCHE
BLANCH|BLANCHE
BOBBIE|ROBERT
BOBBI|ROBERT
BOBBYE|ROBERT
BOBBY|ROBERT
BOB|ROBERT
BONNY|BONNIE
BRADLY|BRADLEY

Setting FSM-Based Person Name Configuration

3-14 Oracle Healthcare Master Person Index Standardization Engine Reference

Setting FSM-Based Person Name Configuration
By default, person name data is standardized using the finite state machine (FSM)
framework. Processing person data might involve parsing free-form data fields, but
normally involves normalizing and phonetically encoding certain fields prior to
matching. The following topics describe the default configuration that defines person
processing logic and provide information about modifying mefa.xml in a master
person index application for processing person data.

■ Person Name Standardization Overview on page 3-14

■ Person Name Standardization Components on page 3-14

■ Person Name Standardization Files on page 3-15

■ Person Name Standardization and Oracle Healthcare Master Person Index on
page 3-16

Person Name Standardization Overview
Processing data with the PersonName data type includes standardizing and matching
a person's demographic information. The OHMPI Standardization Engine can
normalize or standardize values for person data. These values are needed for accurate
searching and matching on person data. Several configuration files designed
specifically to handle person data are included to provide processing logic for the
standardization and phonetic encoding process. The Master Person Index
Standardization Engine can phonetically encode any field you specify.

In addition, when processing person information, you might want to standardize
addresses to enable searching against address information. This requires working with
the address configuration files described in Chapter 4, "Patterns-based Address Data
Configuration.".

Person Name Standardization Components
Standardization engines use tokens to determine how each field is standardized into
its individual field components and to determine how to normalize a field value.
Tokens also identify the field components to external applications like a master person
index application. The following table lists each token generated by the OHMPI
Standardization Engine for person data along with the standardization component
they represent. These correspond to the output symbols in the process definition file
and to the output fields listed in the service type definition file. For names, you can
only specify the predefined field IDs that are listed in this table unless you customize
an existing variant or create a new one.

Token Description

firstName Represents a first name field.

generation Represents a field containing generational information, such as Junior,
II, or 3rd.

lastName Represents a last name field.

middleName Represents a middle name field.

nickname Represents a nickname field.

salutation Represents a field containing prefix information for a name, such as
Mr., Miss, or Mrs.

Setting FSM-Based Person Name Configuration

Finite State Machine Framework Configuration 3-15

Person Name Standardization Files
Several configuration files are used to define standardization logic for processing
person names. You can customize any of the configuration files described in this
section to fit your processing and standardization requirements for person data. There
are three types of standardization files for person data: process definition, lexicon, and
normalization. Seven default variants on the PersonName data type are provided that
are specialized for standardizing data from France, Australia, Mexico, the United
Kingdom, the People’s Republic of China, Japan, or the United States. In a master
person index project, these files appear under PersonName in the Standardization
Engine node. Files for each variant appear within sub-folders of PersonName and each
corresponds to a specific national variant.

You can customize these files to add entries of other nationalities or languages,
including those containing diacritical marks. You can also create new variants to
process data of other nationalities. For more information, see Custom Data Types and
Variants.

The following sections provide information about each type of person name
standardization file:

■ Person Name Lexicon Files on page 3-15

■ Person Name Normalization Files on page 3-15

■ Person Name Process Definition Files on page 3-16

Person Name Lexicon Files
Each PersonName variant contains a set of lexicon files. Each lexicon file contains a list
of possible values for a field. The standardization engine matches input values against
the values listed in these files to recognize input symbols and ensure correct
tokenization. The OHMPI Standardization Engine uses these files when processing
input symbols as defined in the process definition file (standardizer.xml). They are
primarily used during the token matching portion of parsing. You can modify these
files as needed by adding, deleting, or modifying values in the list. You can also create
additional lexicon files.

The PersonName data type includes the following lexicon files:

■ generation.txt

■ givenNames.txt

■ salutation.txt

■ surnames.txt

■ titles.txt

These files are located in the resource folder under each variant name.

Person Name Normalization Files
Each PersonName variant contains a set of normalization files that are used to
normalize input values. The OHMPI Standardization Engine uses these files when
processing input symbols as defined in the process definition file (standardizer.xml).

title Represents a field containing a title, such as Doctor, Reverend, or
Professor.

Token Description

Setting FSM-Based Person Name Configuration

3-16 Oracle Healthcare Master Person Index Standardization Engine Reference

Each normalization file contains a column of unnormalized values, such as nicknames
or abbreviations, and a second column that contains the corresponding normalized
values. The values in each column are separated by a pipe symbol (|). You can modify
these files as needed by adding, deleting, or modifying values in the list. You can also
create additional normalization files to reference from the process definition file.

The PersonName data type includes the following normalization files:

■ generationNormalization.txt

■ givenNameNormalization.txt

■ salutationNormalization.txt

■ surnameNormalization.txt

■ titleNormalization.txt

These files are located in the resource folder under each variant name.

Person Name Process Definition Files
Each variant has its own process definition file (standardizer.xml) that defines the state
model for standardizing free-form person names. Each of these files also includes a
section that defines just normalization without parsing for person names. The process
definition file is located in the resource folder under each variant name. For
information about the structure of this file, see Process Definition File on page 3-2.

Person name standardization has several states, each defining how to process tokens
when they are found in certain orders. The default file defines states for salutations,
first names, middle names, last names, titles, suffixes, and separators. It defines
provisions for instances when the fields do not appear in order or when the input
string does not contain complete data. For example, the current definition handles
instances where the input string is “FirstName, MiddleName, LastName” as well as
instances where the input string is “LastName, FirstName, MiddleName”.

The process definition files for person names define several parsing rules for each field
component. This file defines a set of cleansing rules to prepare the input string prior to
any processing. Then the data is passed to the start state of the FSM. Most fields are
preprocessed and then matched against regular expressions or against a list of values
in a lexicon file (described in Person Name Lexicon Files on page 3-15). Postprocessing
includes replacing regular expressions or normalizing the field value based on a
normalization file (described in Person Name Normalization Files on page 3-15). The
process definition files also define a set of normalization rules, which are followed
when the incoming data already contains name information in separate fields and
does not need to be parsed.

Person Name Standardization and Oracle Healthcare Master Person Index
Master person index applications rely on the OHMPI Standardization Engine to
process person name data. To ensure correct processing of person information, you
need to customize the Matching Service for the master person index application
according to the rules defined for the standardization engine. This includes modifying
mefa.xml to define normalization or standardization and phonetic encoding of the
appropriate fields. You can modify mefa.xml with the Master Person Index
Configuration Editor in the master person index project.

Standardization is defined in the StandardizationConfig section of mefa.xml, which is
described in detail in Oracle Healthcare Master Person Index Configuration Reference. To
configure the required fields for normalization, modify the normalization structure in
mefa.xml. To configure the required fields for parsing and normalization, modify the

Setting FSM-Based Person Name Configuration

Finite State Machine Framework Configuration 3-17

standardization structure. To configure phonetic encoding, modify the phonetic
encoding structure. These tasks can all be performed using the Master Person Index
Configuration Editor.

Generally, the person data type processes data that is parsed prior to processing, so
you should not need to configure fields to parse unless your person data is stored in
free-form text fields with all name information in one field. When processing person
data, you might also want to search on address information. In that case, you need to
configure the address fields to standardize and normalize.

The following sections provide information about the fields used in processing person
data and how to configure person data standardization for a master person index
application. The information provided in these topics is based on the default
configuration.

■ Person Name Processing Fields on page 3-17

■ Configuring a Normalization Structure for Person Names on page 3-18

■ Configuring a Standardization Structure for Person Names on page 3-19

■ Configuring Phonetic Encoding for Person Names on page 3-20

Person Name Processing Fields
When standardizing person data, not all fields in a record need to be processed by the
Master Person Index Standardization Engine. The standardization engine only needs
to process fields that must be standardized, normalized, or phonetically converted. For
a master person index application, these fields are defined in mefa.xml and processing
logic for each field is defined in the standardization engine configuration files.

Person Name Standardized Fields

The OHMPI Standardization Engine can process person data that is provided in
separate fields within a single record, meaning that no parsing is required of the name
fields prior to normalization. It can also process person data contained in one long
free-form field and parse the field into its individual components, such as first name,
last name, title, and so on. Typically, only first and last names are normalized and
phonetically encoded when standardizing person data, but the standardization engine
can normalize and phonetically encode any field you choose. By default, the
standardization engine processes these fields: first name, middle name, last name,
nickname, salutation, generational suffix, and title.

Person Name Object Structure

The fields you specify for person name matching in the Master Person Index wizard
are automatically defined for standardization and phonetic encoding. If you specify
the PersonFirstName or PersonLastName match type in the wizard, the following
fields are automatically added to the object structure and database creation script:

■ field_name_Std

■ field_name_Phon

where field_name is the name of the field for which you specified person name
matching.

For example, if you specify the PersonFirstName match type for the FirstName field,
two fields, FirstName_Std and FirstName_Phon, are automatically added to the
structure. You can also add these fields manually if you do not specify match types in
the wizard. If you are parsing free-form person data, be sure all output fields from the
standardization process are included in the master person index object structure. If

Setting FSM-Based Person Name Configuration

3-18 Oracle Healthcare Master Person Index Standardization Engine Reference

you store additional names in the database, such as alias names, maiden names, parent
names, and so on, you can modify the phonetic structure to phonetically encode those
names as well.

Configuring a Normalization Structure for Person Names
The fields defined for normalization for the PersonName data type can include any
name fields. By default, normalization rules are defined in the process definition file
for first, middle, and last name fields, and you can easily define additional fields. You
only need to define a normalization structure for person data if you are processing
individual fields that do not require parsing. Follow the instructions under “Defining
OHMPI Normalization Rules” in Oracle Healthcare Master Person Index Configuration
Guide to define fields for normalization. For the standardization-type element, enter
PersonName. For a list of field IDs to use in the standardized-object-field-id element,
see Person Name Standardization Components on page 3-14.

A sample normalization structure for person data is shown below. This sample
specifies that the PersonName standardization type is used to normalize the first
name, alias first name, last name, and alias last name fields. For all name fields, both
United States and United Kingdom domains are defined for standardization.

<structures-to-normalize>
 <group standardization-type="PersonName"
 domain-selector="com.sun.mdm.index.matching.impl.MultiDomainSelector">
 <locale-field-name>Person.PobCountry</locale-field-name>
 <locale-maps>
 <locale-codes>
 <value>UNST</value>
 <locale>US</locale>
 </locale-codes>
 <locale-codes>
 <value>GB</value>
 <locale>UK</locale>
 </locale-codes>
 </locale-maps>
 <unnormalized-source-fields>
 <source-mapping>
 <unnormalized-source-field-name>Person.FirstName
 </unnormalized-source-field-name>
 <standardized-object-field-id>FirstName
 </standardized-object-field-id>
 </source-mapping>
 <source-mapping>
 <unnormalized-source-field-name>Person.LastName
 </unnormalized-source-field-name>
 <standardized-object-field-id>LastName
 </standardized-object-field-id>
 </source-mapping>
 </unnormalized-source-fields>
 <normalization-targets>
 <target-mapping>
 <standardized-object-field-id>FirstName
 </standardized-object-field-id>
 <standardized-target-field-name>Person.FirstName_Std
 </standardized-target-field-name>
 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>LastName
 </standardized-object-field-id>
 <standardized-target-field-name>Person.LastName_Std

Setting FSM-Based Person Name Configuration

Finite State Machine Framework Configuration 3-19

 </standardized-target-field-name>
 </target-mapping>
 </normalization-targets>
 </group>
 <group standardization-type="PersonName" domain-selector=
 "com.sun.mdm.index.matching.impl.MultiDomainSelector">
 <locale-field-name>Person.PobCountry</locale-field-name>
 <locale-maps>
 <locale-codes>
 <value>UNST</value>
 <locale>US</locale>
 </locale-codes>
 <locale-codes>
 <value>GB</value>
 <locale>UK</locale>
 </locale-codes>
 </locale-maps>
 <unnormalized-source-fields>
 <source-mapping>
 <unnormalized-source-field-name>Person.Alias[*].FirstName
 </unnormalized-source-field-name>
 <standardized-object-field-id>FirstName
 </standardized-object-field-id>
 </source-mapping>
 <source-mapping>
 <unnormalized-source-field-name>Person.Alias[*].LastName
 </unnormalized-source-field-name>
 <standardized-object-field-id>LastName
 </standardized-object-field-id>
 </source-mapping>
 </unnormalized-source-fields>
 <normalization-targets>
 <target-mapping>
 <standardized-object-field-id>FirstName
 </standardized-object-field-id>
 <standardized-target-field-name>
 Person.Alias[*].FirstName_Std
 </standardized-target-field-name>
 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>LastName
 </standardized-object-field-id>
 <standardized-target-field-name>
 Person.Alias[*].LastName_Std
 </standardized-target-field-name>
 </target-mapping>
 </normalization-targets>
 </group>
</structures-to-normalize>

Configuring a Standardization Structure for Person Names
For free-form name fields, the source fields that are defined for standardization should
include the predefined standardization components. For example, fields containing
person name information can include the first name, middle name, last name, suffix,
title, and salutation. The target fields you define can include any of these parsed
components. Follow the instructions under “Defining OHMPI Standardization Rules”
in Oracle Healthcare Master Person Index Configuration Guide to define fields for
standardization. For the standardization-type element, enter PersonName. For a list of

Setting FSM-Based Person Name Configuration

3-20 Oracle Healthcare Master Person Index Standardization Engine Reference

field IDs to use in the standardized-object-field-id element, see Person Name
Standardization Components on page 3-14.

A sample standardization structure for person name data is shown below. Only the
United States variant is defined in this structure.

free-form-texts-to-standardize>
 <group standardization-type="PERSONNAME"
 domain-selector="com.sun.mdm.index.matching.impl.SingleDomainSelectorUS">
 <unstandardized-source-fields>
 <unstandardized-source-field-name>Person.Name
 </unstandardized-source-field-name>
 </unstandardized-source-fields>
 <standardization-targets>
 <target-mapping>
 <standardized-object-field-id>salutation
 </standardized-object-field-id>
 <standardized-target-field-name>Person.Prefix
 </standardized-target-field-name>
 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>firstName
 </standardized-object-field-id>
 <standardized-target-field-name>Person.FirstName
 </standardized-target-field-name>
 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>middleName
 </standardized-object-field-id>
 <standardized-target-field-name>Person.MiddleName
 </standardized-target-field-name>
 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>lastName
 </standardized-object-field-id>
 <standardized-target-field-name>Person.LastName
 </standardized-target-field-name>
 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>suffix
 </standardized-object-field-id>
 <standardized-target-field-name>Person.Suffix
 </standardized-target-field-name>
 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>title
 </standardized-object-field-id>
 <standardized-target-field-name>Person.Title
 </standardized-target-field-name>
 </target-mapping>
 </standardization-targets>
 </group>
</free-form-texts-to-standardize>

Configuring Phonetic Encoding for Person Names
When you specify a first, middle, or last name field for person name matching in the
Master Person Index wizard, that field is automatically defined for phonetic encoding.
You can define additional names, such as maiden names or alias names, for phonetic
encoding as well. Follow the instructions under “Defining Phonetic Encoding for the

Setting FSM-Based Telephone Number Configuration

Finite State Machine Framework Configuration 3-21

Master Person Index” in Oracle Healthcare Master Person Index Configuration Guide to
define fields for phonetic encoding.

A sample of fields defined for phonetic encoding is shown below. This sample
converts name and alias name fields, as well as the street name.

<phoneticize-fields>
 <phoneticize-field>
 <unphoneticized-source-field-name>Person.FirstName_Std
 </unphoneticized-source-field-name>
 <phoneticized-target-field-name>Person.FirstName_Phon
 </phoneticized-target-field-name>
 <encoding-type>Soundex</encoding-type>
 </phoneticize-field>
 <phoneticize-field>
 <unphoneticized-source-field-name>Person.LastName_Std
 </unphoneticized-source-field-name>
 <phoneticized-target-field-name>Person.LastName_Phon
 </phoneticized-target-field-name>
 <encoding-type>NYSIIS</encoding-type>
 </phoneticize-field>
 <phoneticize-field>
 <unphoneticized-source-field-name>Person.Alias[*].FirstName_Std
 </unphoneticized-source-field-name>
 <phoneticized-target-field-name>Person.Alias[*].FirstName_Phon
 </phoneticized-target-field-name>
 <encoding-type>Soundex</encoding-type>
 </phoneticize-field>
 <phoneticize-field>
 <unphoneticized-source-field-name>Person.Alias[*].LastName_Std
 </unphoneticized-source-field-name>
 <phoneticized-target-field-name>Person.Alias[*].LastName_Phon
 </phoneticized-target-field-name>
 <encoding-type>NYSIIS</encoding-type>
 </phoneticize-field>
 <phoneticize-field>
 <unphoneticized-source-field-name>Person.Address[*].AddressLine1_StName
 </unphoneticized-source-field-name>
 <phoneticized-target-field-name>Person.Address[*].AddressLine1_StPhon
 </phoneticized-target-field-name>
 <encoding-type>NYSIIS</encoding-type>
 </phoneticize-field></phoneticize-fields>

Setting FSM-Based Telephone Number Configuration
By default, telephone number data is standardized using the finite state machine
(FSM) framework. Processing telephone data involves parsing free-form data fields
and normalizing certain field components prior to matching. The following topics
describe the default configuration files that define telephone number processing logic
and provide information about modifying mefa.xml in a master person index
application for processing telephone data.

■ Telephone Number Standardization Overview on page 3-22

■ Telephone Number Standardization Components on page 3-22

■ Telephone Number Standardization Files on page 3-22

■ Telephone Number Standardization Files on page 3-22

Setting FSM-Based Telephone Number Configuration

3-22 Oracle Healthcare Master Person Index Standardization Engine Reference

Telephone Number Standardization Overview
Processing data using the PhoneNumber data type includes standardizing and
matching telephone numbers. The OHMPI Standardization Engine can create the
parsed and normalized values for free-form telephone data. These values are required
for accurate searching and matching. Several configuration files designed specifically
to handle telephone data are included to provide processing logic for the
standardization process.

In addition, when processing telephone information, you might want to standardize
addresses to enable searching against address information. This requires working with
the address configuration files described in Chapter 4, "Patterns-based Address Data
Configuration."

Telephone Number Standardization Components
Standardization engines use tokens to determine how each field is standardized into
its individual field components and to determine how to normalize a field value.
Tokens also identify the field components to external applications, like a master person
index application. The following table lists each token generated by the OHMPI
Standardization Engine for telephone data along with the standardization component
they represent. You can only specify the predefined field IDs that are listed in this table
unless you customize the existing data type or create a new data type or variant.

Telephone Number Standardization Files
Only one configuration file is used to define standardization logic for processing
telephone numbers. The process definition file (standardizer.xml) defines the state
model and logic for processing telephone numbers. There is only one variant for the
PhoneNumber data type that is designed to handle telephone numbers from all
countries. The files that make up the variant are stored in the master person index
project under PhoneNumber/Generic. The process definition file is located in the
resource subdirectory. You can customize this file to fit your processing and
standardization requirements for telephone numbers. For more information about the
structure of this file, see Process Definition File on page 3-2.

Telephone number standardization has several states, each defining how to process
tokens when they are found in certain orders. The default file defines states for
country codes, area codes, phone numbers, and extensions. It defines provisions for
instances when the fields do not appear in order or when the input string does not
contain complete data. For example, the current definition handles instances where the
input string begins with a country code or an area code, where it contains an
extension, where it does not contain an extension, and when it contains multiple
telephone numbers.

Token Description

areaCode Represents a field containing an area code.

phoneNumber Represents a field containing the telephone
number, excluding area code, country code,
and extension.

extension Represents a field containing a telephone
number extension.

countryCode Represents a field containing the country code
for a telephone number.

Setting FSM-Based Telephone Number Configuration

Finite State Machine Framework Configuration 3-23

The process definition file for telephone numbers define several parsing rules for each
field component. This file defines a set of cleansing rules to prepare the input string
prior to any processing. Then the data is passed to the start state of the FSM. Most
fields are matched against regular expressions and then postprocessed by replacing
regular expressions. The output symbols are further processed by concatenating the
digit groups of the actual phone number, separated by a hyphen.

Telephone Number Standardization and Oracle Healthcare Master Person Index
Master person index applications rely on the OHMPI Standardization Engine to
process telephone number data. To ensure correct processing of telephone information,
you need to customize the Matching Service for the master person index application
according to the rules defined for the standardization engine. This includes modifying
mefa.xml to define standardization of the appropriate fields. You can modify mefa.xml
using the Master Person Index Configuration Editor.

Standardization is defined in the StandardizationConfig section of mefa.xml, which is
described in detail in Oracle Healthcare Master Person Index Configuration Reference. To
configure the required fields for parsing, modify the standardization structure in
mefa.xml.

The following topics provide information about the fields used in processing
telephone data and how to configure telephone number standardization for a master
person index application. The information provided in these topics is based on the
default configuration.

■ Telephone Number Processing Fields on page 3-23

■ Configuring a Standardization Structure for Telephone Numbers on page 3-24

Telephone Number Processing Fields
When standardizing telephone data, not all fields in a record need to be processed by
the OHMPI Standardization Engine. The standardization engine only needs to process
fields that must be parsed, normalized, or phonetically converted. For a master person
index application, these fields are defined in mefa.xml and processing logic for each
field is defined in the Standardization Engine node configuration files.

Telephone Number Standardized Fields

The OHMPI Standardization Engine can process telephone data that is contained in
one long free-form field and can parse that field into its individual components. By
default, the standardization engine separates telephone numbers into these field
components: country code, area code, phone number, and extension.

Telephone Number Object Structure

To standardize telephone numbers in a master person index application, you need to
manually define the standardization structure and you need to add the fields that will
store the standardized field components to the object structure. In the default
implementation, you can store any combination of the following telephone number
field components in the master person index database.

■ Country Code

■ Area Code

■ Phone Number

■ Extension

Setting FSM-Based Telephone Number Configuration

3-24 Oracle Healthcare Master Person Index Standardization Engine Reference

The standardization engine has the capability to produce all of the above field
components, but you only need to store the ones you need in the master person index
database.

Configuring a Standardization Structure for Telephone Numbers
For free-form name fields, the source fields you define for standardization should
include the standardization components predefined for the PhoneNumber data type.
For example, any fields containing telephone number information can include the
country code, area code, phone number, and extension. The target fields you define
can include any of these parsed fields. Follow the instructions under “Defining
OHMPI Standardization Rules” in Oracle Healthcare Master Person Index Configuration
Guide to define fields for standardization. For the standardization-type element, enter
PhoneNumber. For a list of field IDs to use in the standardized-object-field-id
element, see Telephone Number Standardization Components on page 3-22.

A sample standardization structure for telephone number data is shown below. No
variant is defined in this structure because the standardization rules apply to global
numbers.

<free-form-texts-to-standardize>
 <group standardization-type="PHONENUMBER"
 domain-selector="com.sun.mdm.index.matching.impl.MultiDomainSelector">
 <unstandardized-source-fields>
 <unstandardized-source-field-name>Person.Phone[*].PhoneNumber
 </unstandardized-source-field-name>
 </unstandardized-source-fields>
 <standardization-targets>
 <target-mapping>

<standardized-object-field-id>countryCode</standardized-object-field-id>
 <standardized-target-field-name>Person.Phone[*].CountryCode
 </standardized-target-field-name>
 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>areaCode</standardized-object-field-id>
 <standardized-target-field-name>Person.Phone[*].AreaCode
 </standardized-target-field-name>
 </target-mapping>
 <target-mapping>

<standardized-object-field-id>phoneNumber</standardized-object-field-id>
 <standardized-target-field-name>Person.Phone[*].Number
 </standardized-target-field-name>
 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>extension</standardized-object-field-id>
 <standardized-target-field-name>Person.Phone[*].Extension
 </standardized-target-field-name>
 </target-mapping>
 </standardization-targets>
 </group>
</free-form-texts-to-standardize>

4

Patterns-based Address Data Configuration 4-1

4Patterns-based Address Data Configuration

This chapter provides conceptual information and procedures for setting up
patterns-based address configuration and patterns-based business name configuration.

This chapter includes the following sections:

■ Setting Patterns-based Address Data Configuration on page 4-1

■ Setting Patterns-based Business Name Configuration on page 4-17

Setting Patterns-based Address Data Configuration
By default, address standardization is performed using the patterns-based framework.
Processing street addresses involves parsing, normalizing, data typing, and using
advanced patterns rules to map the address fields with their corresponding types,
prior to matching. The following sections describe the configuration files that define
address processing logic and provide instructions for modifying mefa.xml for
processing address fields.

■ Address Data Standardization Overview on page 4-1

■ Address Data Standardization Components on page 4-2

■ Address Data Standardization Files on page 4-6

■ Address Standardization and Oracle Healthcare Master Person Index on page 4-14

Address Data Standardization Overview
Processing data using the Address data type includes both standardizing and
matching on free-form address fields. The OHMPI Standardization Engine can create
the parsed, normalized, and typed values for address data.

 These values are needed for accurate searching and matching on address data. You
can implement street address standardization and matching on its own, or within an
application designed to process person or business information. Standardizing address
information allows you to include address fields as search criteria, even though
matching might not be performed against these fields.

Several configuration files are designed specifically to handle address data and define
processing logic for the standardization process. These include address clues files, a
patterns file, and a constants file. The United States address standardization engine is
based on the work performed at the US Census Bureau. The clues files, in particular,
are based on census bureau statistics.

Setting Patterns-based Address Data Configuration

4-2 Oracle Healthcare Master Person Index Standardization Engine Reference

Address Data Standardization Components
Standardization engines use tokens to determine how each field is standardized into
its individual field components and to determine how to normalize a field value.
Tokens also identify the field components to external applications like a master person
index application. The following table lists each token generated by the OHMPI
Standardization Engine for address data along with the standardization component
they represent. You can only specify the predefined field tokens that are listed in this
table for addresses unless you create a new data type or variant.

Token Description

BoxDescript Represents the P.O. box type from a standardized address
field. By default, this is stored in the field_name_StName
field in a master person index database.

BoxIdentif Represents the parsed P.O. box number from a standardized
address field. By default, this is stored in the field_name_
HouseNo field in a master person index database.

NeighborhoodName Represents the parsed structure street’s block or
neighborhood description from a standardized address field.
This address component is not included in the default master
person index standardization structure, but you can add it if
needed.

NeighborhoodType Represents the parsed structure street’s block or
neighborhood identifier from a standardized address field.
This address component is not included in the default master
person index standardization structure, but you can add it if
needed.

HouseNumber Represents the parsed house number from a standardized
address field. By default, this is stored in the field_name_
HouseNo field in a master person index database.

HouseNumPrefix Represents the parsed house number prefix from a
standardized address field (such as the “A” in “A 1587 4th
Street”). This address component is not included in the
default master person index standardization structure, but
you can add it if needed.

HouseNumSuffix Represents the parsed house number suffix from a
standardized address field (such as the “B” in “5900 B Arnett
Avenue”). This address component is not included in the
default master person index standardization structure, but
you can add it if needed.

MatchPropertyName Represents the parsed match property name from a
standardized address field and is an alternative
representation of the field used by the standardization engine
for blocking and phonetic encoding. This address component
is not included in the default master person index
standardization structure, but you can add it if needed.

MatchStreetName Represents the parsed and standardized street name from a
standardized address field and is an alternative
representation of the field used by the standardization
engine. If you want to store the standardized street name in
the database (recommended), map this field to the street
name field in the database. By default, this is stored in the
field_name_StName field in a master person index database.

Setting Patterns-based Address Data Configuration

Patterns-based Address Data Configuration 4-3

OrigPropertyName Represents the parsed original property name (such as the
name of a complex or business park) from a standardized
address field. This address component is not included in the
default master person index standardization structure, but
you can add it if needed.

PropDesPrefDirection Represents the parsed property direction from a standardized
address field. This field ID handles cases where the direction
is a prefix to the property description. By default, this is
stored in the field_name_StDir field in a master person index
database.

PropDesPrefType Represents the parsed property type from a standardized
address field. This field ID handles cases where the street
type is a prefix to the property description. By default, this is
stored in the field_name_StType field in a master person
index database.

PropertySufDirection Represents the parsed property direction from a standardized
address field. This field ID handles cases where the direction
is a suffix to the property description. By default, this is
stored in the field_name_StDir field in a master person index
database.

PropertySufType Represents the parsed property type from a standardized
address field. This field ID handles cases where the street
type is a suffix to the property description. By default, this is
stored in the field_name_StType field in a master person
index database.

RuralRouteDescript Represents the parsed rural route description from a
standardized address field. By default, this is stored in the
field_name_StName field in a master person index database.

RuralRouteIdentif Represents the parsed rural route identifier from a
standardized address field. By default, this is stored in the
field_name_HouseNo field in a master person index
database.

SecondHouseNumber Represents the parsed second house number prefix from a
standardized address field. This address component is not
included in the default master person index standardization
structure, but you can add it if needed.

SecondHouseNumberPrefix Represents the parsed second house number prefix from a
standardized address field (such as “25” in “25 319 10th
Ave.”). This address component is not included in the default
master person index standardization structure, but you can
add it if needed.

SecondStreetNameSufDirection Represents the parsed second street direction from a
standardized address field. This address component is not
included in the default standardization structure, but you can
add it if needed.

SecondStreetNameSufType Represents the parsed second street type from a standardized
address field. This address component is not included in the
default standardization structure, but you can add it if
needed.

OrigSecondStreetName Represents the parsed second street name from a
standardized address field (for example, an address might
include a cross-street or a thoroughfare and dependent
thoroughfare). This address component is not included in the
default master person index standardization structure, but
you can add it if needed.

Token Description

Setting Patterns-based Address Data Configuration

4-4 Oracle Healthcare Master Person Index Standardization Engine Reference

OrigStreetName Represents the parsed street name from an address field. If
you want to store the original street name in the database,
map this field to the street name field in the database. This
address component is not included in the default
standardization structure, but you can add it if needed.

StreetNamePrefDirection Represents the parsed street direction from a standardized
address field. This field ID handles cases where the direction
is a prefix to the street name. By default, this is stored in the
field_name_StDir field in a master person index database.

StreetNamePrefType Represents the parsed street type from a standardized
address field. This field ID handles cases where the street
type is a prefix to the street name. By default, this is stored in
the field_name_StType field in a master person index
database.

StreetNameSufDirection Represents the parsed street direction from a standardized
address field. This field ID handles cases where the direction
is a suffix to the street name. By default, this is stored in the
field_name_StDir field in a master person index database.

StreetNameSufType Represents the parsed street type from a standardized
address field. This field ID handles cases where the street
type is a suffix to the street name. By default, this is stored in
the field_name_StType field in a master person index
database.

StreetNameExtensionIndex Represents the parsed street name extension from a
standardized address field. This address component is not
included in the default standardization structure, but you can
add it if needed.

WithinStructDescript Represents the parsed internal descriptor (such as “Floor”)
from a standardized address field. This address component is
not included in the default standardization structure, but you
can add it if needed.

WithinStructIdentif Represents the parsed internal identifier (such as a floor
number) from a standardized address field. This address
component is not included in the default standardization
structure, but you can add it if needed.

CityName Represents a city name, within a state or a county, from a
standardized address field. This address component is not
included in the default standardization structure, but you can
add it if needed. In case of the Japanese locale, it represents
the second level of administrative division below the
country's prefecture level in Japan. You can add it to the
default standardization structure if needed.

CityDescriptor Represents a city's description type from a standardized
address field. This address component is not included in the
default standardization structure, but you can add it if
needed. In case of the Japanese locale, it represents the second
level of administrative division below the country's
prefecture level in Japan. You can add it to the default
standardization structure if needed.

PostalCode Represents the location postal code type from a standardized
address field. This address component is not included in the
default standardization structure, but you can add it if
needed.

Token Description

Setting Patterns-based Address Data Configuration

Patterns-based Address Data Configuration 4-5

StateName Represents a given country's state name from a standardized
address field. This address component is not included in the
default standardization structure, but you can add it if
needed.

CountryName Represents a given state's county name from a standardized
address field. This address component is not included in the
default standardization structure, but you can add it if
needed.

CountryCode Represents a 3-digit ISO country name from a standardized
address field. This address component is not included in the
default standardization structure, but you can add it if
needed.

ExtraInfo Represents any extra information that was not included in
any of the other parsed components. This address component
is not included in the default standardization structure, but
you can add it if needed.

BuildingUnit Represents the parsed unit structure within a property name
(such as the name of a building) from a standardized address
field. This address component is not included in the default
master person index standardization structure, but you can
add it if needed.

PrefectureName Represents the second level of administrative division below
the country's state level from a standardized address field.
This address component is mainly used in PRC (Mainland
China). It also represents the first level of administrative
division in Japan. You can add it to the default
standardization structure if needed.

PrefectureDesc Represents a prefecture's description type from a
standardized address field. This address component is not
included in the default standardization structure, but you can
add it if needed.

TownName This field is used in the Japanese locale. It represents the third
level of administrative division below the country's
prefecture and city levels. You can add it to the default
standardization structure if needed.

TownDesc Represents a town's description type from a standardized
address field. This address component is not included in the
default standardization structure. You can add it to the
default standardization structure if needed.

TownshipName This field is used in two different locales with the same
meaning. Represents the fourth level of administrative
division below the country's state, prefecture and county
levels from a standardized address field. This address
component is mainly used in PRC (Mainland China). It also
represents the fourth level of administrative division in Japan.
You can add it to the default standardization structure if
needed.

TownshipDesc Represents a township's description type from a standardized
address field. This address component is not included in the
default standardization structure. You can add it to the
default standardization structure if needed.

DistrictNumber Represents the fifth level of administrative division in Japan.
You can add it to the default standardization structure if
needed.

Token Description

Setting Patterns-based Address Data Configuration

4-6 Oracle Healthcare Master Person Index Standardization Engine Reference

Address Data Standardization Files
Three configuration files define address processing logic for the OHMPI
Standardization Engine. These files provide information about address patterns and
tokens to help the standardization engine determine how to recognize address
components and break them out into their respective tokens. You can customize any of
the configuration files described in this section to fit your processing and
standardization requirements for address data.

The address configuration files are located in the resource folder under each variant
name for the Address data type. The following topics provide information about each
configuration file.

■ Address Clues File on page 4-6

■ Address Master Clues File on page 4-7

■ Address Patterns File on page 4-8

■ Address Pattern File Components on page 4-11

Address Clues File
The address clues file (clues.dat) lists common terms in street addresses, specifies a
normalized value for each common term, and categorizes the terms into street address
component types. A term can be categorized into multiple component types. A
relevance value specifies which of the component types the term is most likely to be.
For example, the term “Junction” is standardized as “Jct” and is classified as a street
type, building unit, and generic term (giving relevance in that order).

This file helps the OHMPI Standardization Engine recognize common terms in street
addresses in order to parse and normalize the values correctly. The syntax of this file
is:

common-term normalized-term ID-number/type-token

DistrictDescc Represents a district's description type from a standardized
address field. This address component is not included in the
default standardization structure. You can add it to the
default standardization structure if needed.

BlockNumber Represents the sixth level of administrative division in Japan.
You can add it to the default standardization structure if
needed.

BlockDesc Represents a block's description type from a standardized
address field. This address component is not included in the
default standardization structure. You can add it to the
default standardization structure if needed.

Note: PrefectureName, PrefectureDesc, TownName, TownDesc,
TownshipName, TownshipDesc, DistrictNumber, DistrictDesc,
BlockNumber, and BlockDesc are new token types. They are
implemented in the Japan standardization locale for this release and
some of them were already implemented in the China standardization
locale for the previous release.

Token Description

Setting Patterns-based Address Data Configuration

Patterns-based Address Data Configuration 4-7

You can modify or add entries in this table as needed. The following table describes
the columns in the address clues file.

Following is an excerpt from the US address clues file.

TRLR VLG Trpk 59BU
TRPK Trpk 59BU
TRPRK Trpk 59BU
VILLA Vlla 305TY 60BU
VLLA Vlla 305TY 60BU
VILLAS Vlla 60BU
VILL Vlg 317TY 61BU 364AU
VILLAG Vlg 317TY 61BU 364AU
VLG Vlg 317TY 61BU 364AU
VILLAGE Vlg 317TY 61BU 364AU
VILLG Vlg 317TY 61BU 364AU
VILLIAGE Vlg 317TY 61BU 364AU
VLGE Vlg 317TY 61BU 364AU
VIVI Vivi 62BU
VIVIENDA Vivi 62BU
COLLEGE Coll 64BU 0AU
CLG Coll 64BU
COTTAGE Cott 65BU 65BP 0AU

Address Master Clues File
The address master clues file (masterClues.dat) lists common terms in street addresses
as defined by the United States Postal Service (USPS), the United Kingdom's Royal
Mail, the Australian Postal Corporation, France's La Poste (depending on the variant
in use), or Mexico’s Postal Service. For each common term, this file specifies a
normalized value, defines postal information, and categorizes the terms into street
address component types. A term can be categorized into multiple component types.

The syntax of this file is:

ID-number common-term normalized-term short-abbrev postal-abbrev CFCCS
type-token usage-flag postal-flag

You can modify or add entries in this table as needed. The following table describes
the columns in the address master clues file.

Column Description

common-term A term commonly found in street addresses.

normalized-term The normalized version of the common term.

ID-number/type-token An ID number and a token indicating the type of address
component represented by the common term. The ID number
corresponds to an ID number in the address master clues file,
and the type token corresponds to the type specified for that
ID number in the address master clues file. One term might
have several ID number and token type pairs. Their order of
appearance indicates their relevance value.

Column Description

ID-number A unique identification number for the address common term.
This number corresponds to an ID number for the same term in
the address clues file.

Setting Patterns-based Address Data Configuration

4-8 Oracle Healthcare Master Person Index Standardization Engine Reference

Following is an excerpt from the US address master clues file.

11Alley Alley Al Aly A TY R U
12Alternate Route Alt Rte Alt Alt A TY R
15Arcade Arcade Arc Arc A TY R U
16Arroyo Arroyo Arryo ArryHA TY R
17Autopista Atpta Apta AptaA TY R
18Avenida Avenida Ava Ava A TY R
19Avenue Avenue Ave Ave A TY R U
26Boulevard Blvd Blvd BlvdA TY R U
32Bulevar Blvr Blv Blv A TY R
33Business Route Bus Rte BusRt BsRtA TY R
34Bypass Bypass Byp Byp A TY R U
36Calle Calle Calle ClleA TY R
37Calleja Calleja Cja Cja A TY R
38Callejon Callej Cjon CjonA TY R
39Camino Camino Cam Cam A TY R
47Carretera Carrt Carr CarrA TY R
48Causeway Cswy Cswy CswyAH TY R U
51Center Center Ctr Ctr DA TY R U

Address Patterns File
The address patterns file (patterns.dat) defines the expected input patterns of each
individual street address field being standardized so the Master Person Index

common-term A common address term, such as Park, Village, North, Route,
Centre, and so on.

normalized-term The normalized version of the common term.

short-abbrev A short abbreviation of the common term.

postal-abbrev The standard postal abbreviation of the common term. This is
less used in other locales.

CFCCS The census feature class code of the term (as defined in the
Census Tiger® database). The following values are used:

■ A - Road

■ B - Railroad

■ C - Miscellaneous

■ D - Landmark

■ E - Physical feature

■ F - Nonvisible feature

■ H - Hydrography

■ X - Unclassified

These are not used in other locales.

type-token The type of address component represented by the common
term. Types are specified by an address token (for more
information, see Address Type Tokens).

usage-flag A flag indicating how the term is used (for more information,
see Pattern Classes on page 4-13).

postal-flag The standard postal code for the term. This is less used in other
countries or locales.

Column Description

Setting Patterns-based Address Data Configuration

Patterns-based Address Data Configuration 4-9

Standardization Engine can recognize and process these values. Tokens indicate the
type of address component in the input and output fields. This file contains two rows
for each pattern. The first row defines the input pattern for each address field and
provides an example. The second row defines the output pattern for each address
field, the pattern type, the relative importance of the pattern compared to other
patterns, and usage flags. Below is an example.

AU A1 TY 01 Oak B Street
NA NA ST T* 75 TX

When an address is parsed, each line of the address is delineated by a pipe (|) and
sent to the parser separately. The output tokens for each line are then concatenated and
the output pattern is processed using the address patterns file to determine whether
the output pattern is listed in the file. If the pattern is found, output patterns are
modified as indicated in the patterns file to resolve any ambiguities that might arise
when two lines of address information contain common elements. The relative
importance determines which pattern to use when the format of the input field
matches more than one pattern. This file should only be modified by personnel with a
thorough understanding of address patterns and tokens.

The syntax of this file is:

input-pattern example output-pattern pattern-class pattern-modifier priority
usage-flag exclude-flag

You can modify or add entries in this table as needed. The following table describes
the columns in the address patterns file.

The following are excerpts from the address patterns files.

Column Description

input-pattern Tokens that represent a possible input pattern from an individual
unparsed street address field. Each token represents one component.
For more information about address tokens, see Address Type Tokens
on page 4-11.

example An example of a street address that fits the specified pattern. This file
element is optional.

output-pattern Tokens that represent the output pattern for the specified input pattern.
Each token represents one component of the output of the Master
Person Index Standardization Engine. For more information about
address tokens, see Address Type Tokens on page 4-11.

pattern-class An indicator of the type of address component represented by the
pattern. Possible pattern types are listed in Pattern Classes on
page 4-13.

pattern-modifier An indicator of whether the priority of the pattern is averaged against
other patterns that match the input. Pattern modifiers are listed in
Pattern Modifiers on page 4-14.

priority The priority weight to use for the pattern when the pattern is a
sub-pattern of a larger input pattern. For more information, see Priority
Indicators on page 4-14.

usage-flag A flag indicating how the term is used (for more information, see
Pattern Classes on page 4-13). This file element is optional.

exclude-flag This file element is optional.

Setting Patterns-based Address Data Configuration

4-10 Oracle Healthcare Master Person Index Standardization Engine Reference

For United States Locale:
NU NU FC TY // 123 8 1/2 street
HN NA NA ST H* 90

NU AU FC TY // 123 8th 1/2 street
HN NA NA ST H* 90

NU DR SA TY // 123 South Michigan Street
HN PD NA ST H* 95

NU DR TY NU DR // 123 South Avenida 1 West
HN PD PT NA SD H* 70

For Mexico Locale:
TY NU ND NU // Calle 6 No 1810
PT NA P1 HN H* 75

TY SA NU // Avenida Durango 15
PT NA HN H* 85

TY SC NU // Avenida Tijuana 35
PT NA HN H* 85

TY NU DM NU // AV. 5 DE FEBRERO 2125
PT NA NA HN H* 85

TY AU NU DR // Paseo Alcalde 1810 Norte
PT NA HN SD H* 85

CT ZP SC SA CC // TLALPAN 14330 TLALPAN DISTRITO FEDERAL,
 Mexico
CT ZP CN SN CC S* 96

For Mainland China Locale:
PN BP // (ShenZhen Community)
BI BY B* 65

SC BP // (LinHe Community)
BI BY B* 65

TN BP // (Zhang feng Community)
BI BY B* 65

NU BU NU BU NU WD // 23201 (building #2, unit #3, room #201)
BN TB NB BT WI WD W* 85

NU BU DR BU NU WD // 2201 (building #2, east unit, room #201)
BN TB NB BT WI WD W* 85

NU BU NU BU DR WD // 23 (building #2, unit #3, west room)
BN TB NB BT WI WD W* 85

NU BU DR BU DR WD // 2 (building #2, east unit, west room)
BN TB NB BT WI WD W* 85

For Japan Locale:
DR AU TY NU NU // 東塩小路通 721-1
PD NA ST BI HN T* 70

Setting Patterns-based Address Data Configuration

Patterns-based Address Data Configuration 4-11

DR A1 TY NU NU // 東塩通 721-1
PD NA ST BI HN T* 70

DR NU TY DR NU BP // 北 8 条 西 4 丁目
PD NA ST SD TN TD T* 80

DR NU TY DR // 北 8 条 西
PD NA ST SD T* 80

Address Pattern File Components
The address patterns files use pattern type tokens, pattern classes, pattern modifiers,
and priority indicators to process and parse address data. Before modifying any of the
patterns files, you must have a good understanding of these file components.

Address Type Tokens

The address pattern and clues files use tokens to denote different components in a
street address, such as street type, house number, street names, and so on. These files
use one set of tokens for input fields and another set for output fields. You can use
only the predefined tokens to represent address components; the OHMPI
Standardization Engine does not recognize custom tokens.

The following table lists and describes each input token.

Token Description

A1 Alphabetic value, one character in length

AM Ampersand

AU Generic word

BP Building property

BU Building unit

BX Post office box

CC Country name abbreviation (3-letter ISO code)

CD City descriptor

CT City name

DA Dash (as a starting character)

DR Street direction

EI Extra information

EX Extension

FC Numeric fraction

HR Highway route

MP Mile posts

ND House number prefix or suffix

NL Common words, such as “of”, “the”, and so on

NU Numeric value

OT Ordinal type

Setting Patterns-based Address Data Configuration

4-12 Oracle Healthcare Master Person Index Standardization Engine Reference

The following table lists and describes each output token.

PD Prefecture's descriptor

PN Prefecture's name

PT Prefix type

RR Rural route

SA State name

SC County name

TD Township's descriptor

TN Township's name

TY Street type

WD Descriptor within the structure

WI Identifier within the structure

ZD Postal code description

ZP Postal code

Token Description

1P Building number prefix

2P Second building number prefix

BD Property or building directional suffix

BI Structure (building) identifier

BN Property or building name

BS Building number suffix

BT Property or building type suffix

BX Post office box descriptor

BY Structure (building) descriptor

CC Country name abbreviation (3-letter ISO code)

CD City descriptor

CN County name

CT City name

DB Property or building directional prefix

EI Extra information

EX Extension index

H1 First house number (the actual number)

H2 Second house number (house number suffix)

HN House number

HS House number suffix

N2 Second street name

Token Description

Setting Patterns-based Address Data Configuration

Patterns-based Address Data Configuration 4-13

Pattern Classes

Each pattern defined in the address patterns file must have an associated pattern class.
The pattern class indicates a portion of the input pattern or the type of address data
that is represented by the pattern. You can specify any of the following pattern classes.

■ H - the address pattern represents a house

■ B - the address pattern represents a building

■ W - the address pattern represents a unit within a structure, such as an apartment
or suite number

■ T - the address pattern represents a street type or direction

■ R - the address pattern represents a rural route

■ P - the address pattern represents a Post Office box

■ N - the address pattern is mostly numeric

■ S - the address pattern represents country, state, or county class

These classes are also specified as usage flags in the patterns file and the master clues
file.

NA Street name

NB Building number

NL Conjunctions that connect words or phrases in one component
type (usually the street name)

P1 House number prefix

P2 Second house number prefix

PD Directional prefix to the street name

PN Prefecture's name

PR Prefecture's descriptor

PT Street type prefix to the street name

RR Rural route descriptor

RN Rural route identifier

S2 Street type suffix to the second street name

SD Directional suffix to the street name

SN State name

ST Street type suffix to the street name

TB Property or building type prefix

TD Township's descriptor

TN Township's name

WI Identifier within the structure

WD Descriptor within the structure

XN Post office box identifier

ZP Postal code

Token Description

Setting Patterns-based Address Data Configuration

4-14 Oracle Healthcare Master Person Index Standardization Engine Reference

Pattern Modifiers

Each pattern type must be followed by a pattern modifier that indicates how to handle
cases where one or more defined patterns is found to be a sub-pattern of a larger input
pattern. In this case, the OHMPI Standardization Engine must know how to prioritize
each defined pattern that is a part of the larger pattern. There are two pattern
modifiers.

■ * - An asterisk indicates that the priority weight for the matching pattern is
averaged down equally with the other matching sub-patterns.

■ + - A plus sign indicates that the priority weight for the matching pattern is not
averaged down equally with the other matching sub-patterns.

Priority Indicators

The priority indicator is a numeric value following the pattern modifier that indicates
the priority weight of the pattern. These values work best when defined as a multiple
of five between and including 35 and 95. If a pattern is assigned a priority of 90 or 95
and the pattern matches, or is a sub-pattern of, the input pattern, the standardization
engine stops searching for additional matching patterns and uses the high-priority
matching pattern.

Address Standardization and Oracle Healthcare Master Person Index
Master person index applications rely on the OHMPI Standardization Engine to
process address data. To ensure correct processing of address information, you need to
customize the Matching Service for the master person index application according to
the patterns defined for the standardization engine. This includes modifying mefa.xml
to define parsing and phonetic encoding of the appropriate fields. You can use the
Master Person Index Configuration Editor to modify mefa.xml.

Standardization is defined in the StandardizationConfig section of mefa.xml, which is
described in detail in Oracle Healthcare Master Person Index Configuration Reference. To
configure the required fields for standardization and normalization, modify the
standardization structure in mefa.xml. To configure phonetic encoding, modify the
phonetic encoding structure. You can perform all of these tasks using the Master
Person Index Configuration Editor.

Generally, the address data type processes data that requires standardization prior to
processing. You should not need to configure fields to normalize for addresses. The
following topics provide information about the fields used in processing address data
and how to configure address data standardization for a master person index
application. The information provided in these sections is based on the default
configuration.

■ Address Data Processing Fields on page 4-14

■ Configuring a Standardization Structure for Address Data on page 4-15

■ Configuring Phonetic Encoding for Address Data on page 4-17

Address Data Processing Fields
When standardizing address data, not all fields in a record need to be processed by the
OHMPI Standardization Engine. The standardization engine only needs to process
address fields that might be used in the matching process. For a master person index
application, these fields are defined in mefa.xml and processing logic for each field is
defined in the Standardization Engine node configuration files.

Setting Patterns-based Address Data Configuration

Patterns-based Address Data Configuration 4-15

Address Standardized Fields

The OHMPI Standardization Engine expects that street address data will be provided
in a free-form text field containing several components that must be standardized
(parsed, normalized and typed). By default, the standardized street name is configured
to be phonetically encoded. You can specify additional fields for phonetic encoding.

If you specify the Address match type for any field in the wizard, a standardization
structure for that field is defined in mefa.xml. The fields listed under Address Data
Processing Fields on page 4-14 are automatically defined as the target fields. Each of
these fields has several entries in the standardization structure. This is because
different parsed components can be stored in the same field. For example, the house
number, post office box number, and rural route identifier are all stored in the house
number field. If you do not specify address fields for matching in the wizard but want
to standardize the fields, you can create a standardization structure in mefa.xml using
the Master Person Index Configuration Editor.

Address Object Structure

The address fields specified for standardization are parsed into several additional
fields. If you specify the Address match type in the wizard, the following fields are
automatically added to the object structure and database creation script.

■ field_name_HouseNo

■ field_name_StName

■ field_name_StDir

■ field_name_StType

■ field_name_StPhon

where field_name is the name of the field for which you specified address
matching. For example, if you specify the Address match type for the
AddressLine1 field, the following fields are automatically added to the structure:
AddressLine1_HouseNo, AddressLine1_StName, AddressLine1_StDir,
AddressLine1_StType, and AddressLine1_StPhon.

You can add these fields manually if you do not specify a match type in the wizard.

Configuring a Standardization Structure for Address Data
For free-form address fields, the source fields you define for standardization should
include the associated components that are predefined for parsing, normalization, and
data typing. For example, fields containing address information can include any of the
field components listed in Address Data Standardization Components. The target
fields can include any of these parsed fields. Follow the instructions in Oracle
Healthcare Master Person Index Configuration Guide to define fields for standardization.
For the standardization-type element, enter Address. For a list of field IDs to use in the
standardized-object-field-id element, see Address Data Standardization Components.

Note: In the default configuration, the rules defined for the address
data type assume that all input fields must be parsed as well as
normalized. Thus, there is no need to configure fields only for
normalization.

Setting Patterns-based Address Data Configuration

4-16 Oracle Healthcare Master Person Index Standardization Engine Reference

A sample standardization structure for address data is shown below. This structure
parses the first two lines of street address into the standard street address fields. Only
the United States variant is defined in this structure.

free-form-texts-to-standardize>
 <group standardization-type="ADDRESS"
 domain-selector="com.sun.mdm.index.matching.impl.SingleDomainSelectorUS">
 <unstandardized-source-fields>
 <unstandardized-source-field-name>Person.Address[*].Address1
 </unstandardized-source-field-name>
 <unstandardized-source-field-name>Person.Address[*].Address2
 </unstandardized-source-field-name>
 </unstandardized-source-fields>
 <standardization-targets>
 <target-mapping>
 <standardized-object-field-id>HouseNumber
 </standardized-object-field-id>
 <standardized-target-field-name>Person.Address[*].HouseNumber
 </standardized-target-field-name>
 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>RuralRouteIdentif
 </standardized-object-field-id>
 <standardized-target-field-name>Person.Address[*].HouseNumber
 </standardized-target-field-name>
 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>BoxIdentif
 </standardized-object-field-id>
 <standardized-target-field-name>Person.Address[*].HouseNumber
 </standardized-target-field-name>
 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>MatchStreetName
 </standardized-object-field-id>
 <standardized-target-field-name>Person.Address[*].StreetName
 </standardized-target-field-name>
 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>RuralRouteDescript
 </standardized-object-field-id>
 <standardized-target-field-name>Person.Address[*].StreetName
 </standardized-target-field-name>
 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>BoxDescript
 </standardized-object-field-id>
 <standardized-target-field-name>Person.Address[*].StreetName
 </standardized-target-field-name>
 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>PropDesPrefDirection
 </standardized-object-field-id>
 <standardized-target-field-name>Person.Address[*].StreetDir
 </standardized-target-field-name>
 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>PropDesSufDirection
 </standardized-object-field-id>
 <standardized-target-field-name>Person.Address[*].StreetDir

Setting Patterns-based Business Name Configuration

Patterns-based Address Data Configuration 4-17

 </standardized-target-field-name>
 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>StreetNameSufType
 </standardized-object-field-id>
 <standardized-target-field-name>Person.Address[*].StreetType
 </standardized-target-field-name>
 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>StreetNamePrefType
 </standardized-object-field-id>
 <standardized-target-field-name>Person.Address[*].StreetType
 </standardized-target-field-name>
 </target-mapping>
 </standardization-targets>
 </group>
</free-form-texts-to-standardize>

Configuring Phonetic Encoding for Address Data
When you match or standardize on street address fields, the street name should be
specified for phonetic conversion (this is done by default in a master person index
application). Follow the instructions in Oracle Healthcare Master Person Index
Configuration Guide to define fields for phonetic encoding.

A sample of the phoneticize-fields element is shown below. This sample only converts
the address street name. You can define additional fields for phonetic encoding.

<phoneticize-fields>
 <phoneticize-field>
 <unphoneticized-source-field-name>Person.Address[*].StreetName
 </unphoneticized-source-field-name>
 <phoneticized-target-field-name>Person.Address[*].StreetName_Phon
 </phoneticized-target-field-name>
 <encoding-type>NYSIIS</encoding-type>
 </phoneticize-field>
</phoneticize-fields>

Setting Patterns-based Business Name Configuration
By default, business name standardization is performed using the patterns-based
framework. Processing business name fields involves parsing, normalizing, and
phonetically encoding certain fields prior to matching. The following sections describe
the configuration files that define business name processing logic and provide
instructions for modifying mefa.xml for processing business names.

■ Business Name Standardization Overview on page 4-17

■ Business Name Standardization Components on page 4-18

■ Business Name Standardization Files on page 4-18

■ Business Name Standardization and Oracle Healthcare Master Person Index on
page 4-28

Business Name Standardization Overview
Processing data using the BusinessName data type includes both standardizing and
matching on free-form business name fields. The OHMPI Standardization Engine can

Setting Patterns-based Business Name Configuration

4-18 Oracle Healthcare Master Person Index Standardization Engine Reference

create the parsed, normalized, and phonetic values for business names. These values
are needed for accurate searching and matching on business information. You can
implement business name standardization and matching on its own, or within an
application designed to process person information. Standardizing business name
fields allows you to include these fields as search criteria, even though matching might
not be performed against these fields.

The OHMPI Standardization Engine can create standardized and phonetic values for
business name field components. Several configuration files are designed specifically
to handle business names to define additional logic for the standardization and
phonetic encoding process. These include reference files, a patterns file, and key type
files. The business name standardization files are contained in one generic variant.

Business Name Standardization Components
Standardization engines use tokens to determine how each field is standardized into
its individual field components and to determine how to normalize a field value.
Tokens also identify the field components to external applications like a master person
index application. The following table lists each token generated by the OHMPI
Standardization Engine for business names along with the standardization component
they represent. You can only specify the predefined field tokens that are listed in this
table for business names unless you create a new data type or variant.

Business Name Standardization Files
Several configuration files are used to define business name processing logic for the
OHMPI Standardization Engine. These files provide information about business name
patterns and tokens to help the standardization engine determine how to recognize
business name components and break them out into their respective tokens. You can
customize any of the configuration files described in this section to fit your processing
and standardization requirements for business names.

The following topics described each file used for business name standardization:

■ Business Name Adjectives Key Type File on page 4-19

■ Business Alias Key Type File on page 4-19

■ Business Association Key Type File on page 4-20

■ Business General Terms Reference File on page 4-20

Token Description

PrimaryName Represents the name parsed from a free-form text business name
field.

OrgTypeKeyword Represents the organization type parsed from a free-form text
business name field.

AssocTypeKeyword Represents the association type parsed from a free-form text business
name field.

IndustrySectorList Represents the industry sector parsed a free-form text business name
field.

IndustryTypeKeyword Represents the industry type parsed from a free-form text business
name field (industry type is a subset of the sector).

AliasList Represents the alias parsed from a free-form text business name field.

Url Represents the URL parsed from a free-form text business name field.

Setting Patterns-based Business Name Configuration

Patterns-based Address Data Configuration 4-19

■ Business City or State Key Type File on page 4-21

■ Business Former Name Reference File on page 4-21

■ Merged Business Name Category File on page 4-22

■ Primary Business Name Reference File on page 4-22

■ Business Connector Tokens Reference File on page 4-23

■ Business Country Key Type File on page 4-23

■ Business Industry Sector Reference File on page 4-24

■ Business Industry Key Type File on page 4-24

■ Business Organization Key Type File on page 4-25

■ Business Patterns File on page 4-26

Business Name Adjectives Key Type File
The adjectives key type file (bizAdjectivesTypeKeys.dat) defines adjectives commonly
found in business names so the OHMPI Standardization Engine can recognize and
process these values as a part of the business name. This file contains one column with
a list of commonly used adjectives, such as General, Financial, Central, and so on.

You can modify or add entries in this file as needed. Following is an excerpt from the
adjectives key type file.

DIGITAL
DIRECTED
DIVERSIFIED
EDUCATIONAL
ELECTROCHEMICAL
ENGINEERED
EVOLUTIONARY
EXTENDED
FACTUAL
FEDERAL

Business Alias Key Type File
The alias key type file (bizAliasTypeKeys.dat) lists business name acronyms and
abbreviations along with their standardized names so the standardization engine can
recognize and process these values correctly. You can add entries to the alias key type
file using the following syntax.

alias standardized-name

The following table describes the columns in the alias key type file.

Following is an excerpt from the alias key type file.

BBH BARTLE BOGLE HEGARTY
BBH BROWN BROTHERS HARRIMAN
IBM INTERNATIONAL BUSINESS MACHINE

Column Description

alias An abbreviation or acronym commonly used in place
of a specific business name.

standardized-name The normalized version of the alias name.

Setting Patterns-based Business Name Configuration

4-20 Oracle Healthcare Master Person Index Standardization Engine Reference

IDS INCOMES DATA SERVICES
IDS INSURANCE DATA SERVICES
IDS THE INTEGRATED DECISION SUPPORT GROUP
IDS THE INTERNET DATABASE SERVICE
CAL-TECH CALIFORNIA INSTITUTE OF TECHNOLOGY

Business Association Key Type File
The association key type file (bizAssociationTypeKeys.dat) lists business association
types along with their standardized names so the standardization engine can
recognize and process these values correctly. You can add entries to the association key
type file using the following syntax.

association-type standardized-type

The following table describes the columns in the association key type file.

Following is an excerpt from the bizAssociationTypeKeys.dat file.

ASSOCIATES 0
BANCORP 0
BANCORPORATION BANCORP
COMPANIES 0
GP GROUP
GROUP 0
PARTNERS 0

Business General Terms Reference File
The general terms reference file (bizBusinessGeneralTerms.dat) lists terms commonly
used in business names. This file is used to identify terms that indicate a business,
such as bank, supply, factory, and so on, so the OHMPI Standardization Engine can
recognize and process the business name.

This file contains one column that lists common terms in the business names you
process. You can add entries as needed. Below is an excerpt from the general terms
reference file.

BUILDING
CITY
CONSUMER
EAST
EYE
FACTORY
LATIN
NORTH
SOUTH

Column Description

association-type A common association type for businesses, such as
Partners, Group, and so on.

standardized-type The standardized version of the association type. If
this column contains a name instead of a zero, that
name must also be listed in a different entry as an
association type with a standardized form of “0”.

Setting Patterns-based Business Name Configuration

Patterns-based Address Data Configuration 4-21

Business City or State Key Type File
The city or state key type file (bizCityorStateTypeKeys.dat) lists various cities and
states that might be used in business names. It also classifies each entry as a city (CT)
or state (ST) and indicates the country in which the city or state is located. This enables
the standardization engine to recognize and process these values correctly. You can
add entries to the city or state key type file using the following syntax.

city-or-state type country

The following table describes the columns in the file.

Following is an excerpt from the city or state key type file.

ADELAIDE CT AU
ALABAMA ST US
ALASKA ST US
ALGIERS CT DZ
AMSTERDAM CT NL
ARIZONA ST US
ARKANSAS ST US
ASUNCION CT PY
ATHENS CT GR

Business Former Name Reference File
The business former name reference file (bizCompanyFormerNames.dat) provides a
list of common company names along with names by which the companies were
formerly known so the standardization engine can recognize a business when
processing a record containing a previous business name. You can add entries to the
business former name table using the following syntax.

former-name current-name

The following table describes each column in the business former name reference file.

Below is an excerpt from the business former name reference file.

HELLENIC BOTTLING COCA-COLA HBC
INTERNATIONAL PRODUCTS THE TERLATO WINE
ORGANIC FOOD PRODUCTS SPECTRUM ORGANIC PRODUCTS
SUTTER HOME WINERY TRINCHERO FAMILY ESTATES

Column Description

city-or-state The name of a city or state used in business names.

type An indicator of whether the value is a city or state. “CT”
indicates city and “ST” indicates state.

country The country code of the country in which the city or state is
located.

Column Description

former-name One of the company's previous names.

current-name The company's current name.

Setting Patterns-based Business Name Configuration

4-22 Oracle Healthcare Master Person Index Standardization Engine Reference

Merged Business Name Category File
The merged business name category file (bizCompanyMergerNames.dat) provides a
list of companies whose name changed because of a merger along with the name of the
company after the merge. It also classifies the business names into industry sectors
and sub-sectors. This enables the standardization engine to recognize the current
company name and determine the sector of the business. You can add entries to the
business merger name file using the following syntax.

former-name/merged-name sector-code

The following table describes each column in the merged business name category file.

Below is an excerpt from the merged business name category file.

DUKE/FLUOR DANIEL 20005
FAULTLESS STARCH/BON AMI 09004
FIND/SVP 10013
FIRST WAVE/NEWPARK SHIPBUILDING 27005
GUNDLE/SLT 19020
HMG/COURTLAND 23004
J BROWN/LMC 10014
KORN/FERRY 10020
LINSCO/PRIVATE LEDGER 14005

Primary Business Name Reference File
The primary business name reference file (bizCompanyPrimaryNames.dat) provides a
list of companies by their primary name. It also classifies the business names into
industry sectors and sub-sectors. This enables the standardization engine to determine
the correct value of the sector field when parsing the business name. You can add
entries to the primary business name file using the following syntax.

primary-name sector-code

The following table describes the columns in the primary business name reference file.

Below is an excerpt from the primary business name reference file.

BROTHER INTERNATIONAL 12006
BRYSTOL-MYERS SQUIBB 11005
BURLINGTON COAT FACTORY 24003
BURLINGTON NORTHERN SANTA FE 27005
BV SOLUTIONS 06012

Column Description

former-name The name of the company whose name was not kept
after the merger.

merged-name The name of the company whose name was kept after
the merger.

sector-code The industry sector code of the business. Sector codes
are listed in the bizIndustryCategoriesCode.dat file.

Column Description

primary-name The primary name of the company.

sector-code The industry sector code of the business. Sector codes are listed
in the bizIndustryCategoriesCode.dat file.

Setting Patterns-based Business Name Configuration

Patterns-based Address Data Configuration 4-23

CABLEVISION 26001
CABOT 04006
CADENCE 06010
CAMPBELL 22006
CAPITAL BLUE CROSS 17001

Business Connector Tokens Reference File
The connector tokens reference file (bizConnectorTokens.dat) defines common values
(typically conjunctions) that connect words in business names. For example, in the
business name “Nursery of Venice”, “of” is a connector token. This helps the
standardization engine recognize and process the full name of a business by indicating
that the token connects two parts of the full name.

This file contains one column that lists the connector tokens in the business names you
process. You can add entries as needed. Below is an excerpt from the connector tokens
reference file.

AN
DE
DES
DOS
LA
LAS
LE
OF
THE

Business Country Key Type File
The country key type file (bizCountryTypeKeys.dat) lists countries and continents,
along with their abbreviations and assigned nationalities. For continents, the
abbreviation is “CON” to separate them from countries. This enables the
standardization engine to recognize and process these values as countries or
continents. You can add entries to the country key type file using the following syntax.

country abbreviation nationality

The following table describes the columns in the country key type file.

Following is an excerpt from the country key type file.

AMERICA CON AMERICAN
AFRICA CON AFRICAN
EUROPE CON EUROPEAN
ASIA CON ASIAN
AFGHANISTAN AF AFGHAN
ALBANIA AL ALBANIAN
ALGERIA DZ ALGERIAN

Column Description

country The name of a country or continent.

abbreviation The common abbreviation for the specified country. The
abbreviation for a continent is always “CON”.

nationality The nationality assigned to a person or business originating
in the specified country.

Setting Patterns-based Business Name Configuration

4-24 Oracle Healthcare Master Person Index Standardization Engine Reference

Business Industry Sector Reference File
The industry sector reference file (bizIndustryCategoryCode.dat) lists and groups
various industry sectors and sub-sectors, and includes an identification code for each
type so the standardization engine can identify and process the industry sectors for
different businesses. You can add entries to the industry sector reference file using the
following syntax.

sector-code industry-sector

The following table describes each column in the industry sector reference file.

Following is an excerpt from the industry sector reference file.

02006 Automotive & Transport Equipment - Recreational Vehicles
02007 Automotive & Transport Equipment - Shipbuilding & Related Services
02008 Automotive & Transport Equipment - Trucks, Buses & Other Vehicles
03001 Banking - Banking
04001 Chemicals - Agricultural Chemicals
04002 Chemicals - Basic & Intermediate Chemicals & Petrochemicals
04003 Chemicals - Diversified Chemicals
04004 Chemicals - Paints, Coatings & Other Finishing Products
04005 Chemicals - Plastics & Fibers
04006 Chemicals - Specialty Chemicals
05001 Computer Hardware - Computer Peripherals
05002 Computer Hardware - Data Storage Devices
05003 Computer Hardware - Diversified Computer Products

Business Industry Key Type File
The industry key type file (bizIndustryTypeKeys.dat) is used to standardize the value
of the Industry field into common industries to which businesses belong so the
standardization engine can recognize and process the industry types for different
businesses. You can add entries to the industry key type file using the following
syntax.

industry-type standardized-form sectors

The following table describes each column in the industry key type file.

Column Description

sector-code The identification code of the specified sector. The first two
numbers of each code identify the general industry sector; the
last three numbers identify a sub-sector.

industry-sector A description of the industry category. This is written in the
format “sector - sub-sector”, where sector is a general
category of industry types, and sub-sector is a specific
industry within that category.

Column Description

industry-type The original value of the industry type in the input record.

standardized-form The normalized version of the industry type. If this column
contains a name instead of a zero, that name must also be listed in a
different entry as an industry type with a standardized form of “0”.

Setting Patterns-based Business Name Configuration

Patterns-based Address Data Configuration 4-25

Below is an excerpt from the industry key type file.

TECH TECHNOLOGY 05001-05007
TECHNOLOGIES TECHNOLOGY 05001-05007
TECHNOLOGY 0 05001-05007
TECHSYSTEMS 0 05001-05007
TELE PHONE TELEPHONE 16005
TELE PHONES TELEPHONES 16005
TELEVISION TV 11013 21014
TELECOM 0 16005 26006 26009 26010
TELECOMM TELECOMMUNICATION 16005 26006 26008
TELECOMMUNICATION 0 16005 26006 26008

Business Organization Key Type File
The organization key type file (bizOrganizationTypeKeys.dat) is used to standardize
the value of the Organization field into common organizations to which businesses
belong. This helps the standardization engine recognize and process the organization
types for different businesses. You can add entries to the organization key type file
using the following syntax.

original-type standardized-form

The following table describes each column in the organization key type file.

Below is an excerpt from the organization key type file.

INC INCORPORATED
INCORPORATED 0
KG 0
KK 0
LIMITED 0
LIMITED PARTNERSHIP 0
LLC 0
LLP 0
LP LIMITED PARTNERSHIP
LTD LIMITED

sectors The industry categories of the specified industry type. These values
correspond to the sector codes listed in the industry sector file
(bizIndustryCategoryCode.dat). You can list as many categories as
apply for each type, but they must be entered with a space between
each and no line breaks, and they must correspond to an entry in
the industry sector file.

Column Description

original-type The original value of the organization field in an input record.

standardized-form The normalized version of an organization type. A zero (0) in
this field indicates that the value in the first column is already
in its standardized form. If this column contains a name instead
of a zero, that name must also be listed in a different entry as an
original type with a standardized form of “0”.

Column Description

Setting Patterns-based Business Name Configuration

4-26 Oracle Healthcare Master Person Index Standardization Engine Reference

Business Patterns File
The business patterns file (bizpatterns.dat) defines multiple formats expected from the
business name input fields along with the standardized output of each format. The
patterns and output appear in two-row pairs in this file, as shown below.

4 PNT AST SEP-GLC ORT
PNT AST DEL ORT

The first line describes the input pattern and the second describes the output pattern
using tokens to denote each component. The supported tokens are described in
Business Name Tokens. A number at the beginning of the first line indicates the
number of components in the given business name format. You can modify this file
using the following syntax.

length input-pattern
output-pattern

The following table lists and describes the components in the above syntax.

Below is an excerpt from the business patterns file.

4 PNT AST SEP-GLC ORT
PNT AST DEL ORT

4 NFG AJT SEP-GLC ORT
PNT PNT DEL ORT

4 NF AJT SEP-GLC ORT
PNT PNT DEL ORT

4 CST IDT NF ORT
PNT PNT PNT ORT

4 PNT AJT SEP-GLC ORT
PNT PNT DEL ORT

Business Name Tokens

The business patterns file uses tokens to denote different components in a business
name, such as the primary name, alias type key, URL, and so on. The file uses one set
of tokens for input fields and another set for output fields. The tokens indicate the type
key files to use to determine the appropriate values for each output field. You can use
only the predefined tokens to represent business name components; the
standardization engine does not recognize custom tokens.

The following table lists and describes each input token.

Component Description

length The number of business name components in the input field.

input-pattern Tokens that represent a possible input pattern from the unparsed
business name fields. Each token represents one component. For more
information about address tokens, see Business Name Tokens.

output-pattern Tokens that represent the output pattern for the specified input
pattern. Each token represents one component. For more information
about business name tokens, see Business Name Tokens.

Setting Patterns-based Business Name Configuration

Patterns-based Address Data Configuration 4-27

The following table lists and describes each output token.

Pattern Identifier Description

CTT A connector token

PNT A primary name of a business

PN-PN A hyphenated primary name of a business

BCT A common business term

URL The URL of a business web site

ALT A business alias type key (usually an acronym)

CNT A country name

NAT A nationality

CST A city or state type key

IDT An industry type key

IDT-AJT Both an industry and an adjective type key

AJT An adjective type key

AST An association type key

ORT An organization type key

SEP A separator key

NFG Generic term, not recognized as a specific business
name component, with an internal hyphen

NF Generic term, not recognized as a specific business
name component

NFC A single character, not recognized as a specific business
name component

SEP-GLC A joining comma (a glue type separator)

SEP-GLD A joining hyphen (a glue type separator)

AND The text “and”

GLU A glue type key, such as a forward slash, connecting
two parts of a business name component

PN-NF A business primary name followed by a hyphen and a
generic term that is not recognized as a specific
business name component

NF-PN A generic term that is not recognized as a specific
business name component, followed by a hyphen and a
recognized business primary name

NF-NF Two generic terms, not recognized as specific business
name components and separated by a hyphen

Pattern Identifier Description

PNT The primary name of the business

URL The URL of the business

ALT The alias type key of the business (usually an acronym)

IDT The industry type key of the business

Setting Patterns-based Business Name Configuration

4-28 Oracle Healthcare Master Person Index Standardization Engine Reference

Business Name Standardization and Oracle Healthcare Master Person Index
Master person index applications rely on the OHMPI Standardization Engine to
process business data. To ensure correct processing of business information, you need
to customize the Matching Service for the master person index application according
to the rules defines for the standardization engine. This includes modifying mefa.xml
to define parsing and phonetic encoding of the appropriate fields. You can modify
mefa.xml using the Master Person Index Configuration Editor.

Standardization is defined in the StandardizationConfig section of mefa.xml, which is
described in detail in Oracle Healthcare Master Person Index Configuration Reference. To
configure the required fields for parsing and normalization, modify the
standardization structure in mefa.xml. To configure phonetic encoding, modify the
phonetic encoding structure.

Generally, the BusinessName data type processes data that requires parsing prior to
processing. You should not need to configure fields to normalize for business names.
The following topics provide information about the fields used in processing business
names and how to configure standardization for a master person index application.
The information provided in these sections is based on the default configuration.

■ Business Name Processing Fields on page 4-28

■ Business Name Standardized Fields on page 4-28

■ Configuring a Standardization Structure for Business Names on page 4-29

■ Configuring Phonetic Encoding for Business Names on page 4-30

Business Name Processing Fields
When standardizing free-form business names, not all fields in a record need to be
processed by the OHMPI Standardization Engine. The standardization engine only
needs to process fields that must be parsed, normalized, or phonetically converted. For
a master person index application, these fields are defined in mefa.xml, and processing
logic for each field is defined in the Standardization Engine node configuration files.

Business Name Standardized Fields
The OHMPI Standardization Engine expects that business name data will be provided
in a free-form text field containing several components that must be parsed. By
default, the match engine is configured to parse these components, and to normalize
and phonetically encode the business name. You can specify additional fields for
phonetic encoding.

If you specify the BusinessName match type for any field in the wizard, a
standardization structure for that field is defined in mefa.xml. The fields listed under
Business Name Object Structure on page 4-28 are automatically defined as the target
fields. If you do not specify business name fields for matching in the wizard but want
to standardize the fields, you can create a standardization structure in mefa.xml

Business Name Object Structure

AST The association type key of the business

ORT The organization type key of the business

NF A generic term not recognized as a business name component

Pattern Identifier Description

Setting Patterns-based Business Name Configuration

Patterns-based Address Data Configuration 4-29

For the default configuration of the BusinessName data type, the name field specified
for standardization is parsed into several additional fields, one of which is also
normalized. If you specify the BusinessName match type in the wizard, the following
fields are automatically added to the object structure and database creation script.

■ field_name_Name

■ field_name_NamePhon

■ field_name_OrgType

■ field_name_AssocType

■ field_name_Industry

■ field_name_Sector

■ field_name_Alias

■ field_name_Url

where field_name is the name of the field for which you specified business name
matching. For example, if you specify the BusinessName match type for the
Company field, the fields automatically added to the structure include Company_
Name, Company_NamePhon, Company_OrgType, and so on.

You can add these fields manually if you do not specify a match type in the wizard.

Configuring a Standardization Structure for Business Names
For free-form business name fields, the source fields you define for parsing should
include the standardization components that are predefined for parsing and
normalization. For example, fields containing business information can include any of
the field components listed in Business Name Standardization Components on
page 4-18. The target fields can include any of these parsed fields. Follow the
instructions under “Defining OHMPI Standardization Rules” in Oracle Healthcare
Master Person Index Configuration Guide to define fields for standardization. For the
standardization-type element, enter BusinessName. For a list of field IDs to use in the
standardized-object-field-id element, see Business Name Standardization Components
on page 4-18.

A sample standardization structure for business names is shown below. This structure
parses a business name field into these standard business name fields: name,
organization type, association type, sector, industry, and URL. Note that there is no
domain selector specified, which would normally default to the United States domain;
however, since business names are not variant dependent, it is irrelevant here.

<free-form-texts-to-standardize>
 <group standardization-type="BusinessName">
 <unstandardized-source-fields>
 <unstandardized-source-field-name>Company.Name
 </unstandardized-source-field-name>
 </unstandardized-source-fields>
 <standardization-targets>
 <target-mapping>
 <standardized-object-field-id>PrimaryName

Note: In the default configuration, the rules defined for the address
data type assume that all input fields must be parsed as well as
normalized. Thus, there is no need to configure fields only for
normalization.

Setting Patterns-based Business Name Configuration

4-30 Oracle Healthcare Master Person Index Standardization Engine Reference

 </standardized-object-field-id>
 <standardized-target-field-name>Company.Name_Name
 </standardized-target-field-name>
 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>OrgTypekeyword
 </standardized-object-field-id>
 <standardized-target-field-name>Company.Name_OrgType
 </standardized-target-field-name>
 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>AssocTypeKeyword
 </standardized-object-field-id>
 <standardized-target-field-name>Company.Name_AssocType
 </standardized-target-field-name>
 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>IndustrySectorList
 </standardized-object-field-id>
 <standardized-target-field-name>Company.Name_Sector
 </standardized-target-field-name>
 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>IndustryTypeKeyword
 </standardized-object-field-id>
 <standardized-target-field-name>Company.Name_Industry
 </standardized-target-field-name>
 </target-mapping>
 <target-mapping>
 <standardized-object-field-id>Url
 </standardized-object-field-id>
 <standardized-target-field-name>Company.Name_URL
 </standardized-target-field-name>
 </target-mapping>
 </standardization-targets>
 </group>
</free-form-texts-to-standardize>

Configuring Phonetic Encoding for Business Names
When you match or standardize on business name fields, the business name field
should be specified for phonetic conversion (by default, the wizard defines this for
you). Follow the instructions under “Defining Phonetic Encoding for the Master
Person Index” in Oracle Healthcare Master Person Index Configuration Guide to define
fields for phonetic encoding.

A sample of the phoneticize-fields element is shown below. This sample only converts
the business name. You can define additional fields for phonetic encoding.

<phoneticize-fields>
 <phoneticize-field>
 <unphoneticized-source-field-name>Company.Name_Name
 </unphoneticized-source-field-name>
 <phoneticized-target-field-name>Company.Name_NamePhon
 </phoneticized-target-field-name>
 <encoding-type>NYSIIS</encoding-type>
 </phoneticize-field>
</phoneticize-fields>

5

Custom FSM-Based Data Types and Variants 5-1

5Custom FSM-Based Data Types and Variants

This chapter provides conceptual information and procedures for creating custom
FSM-based data types and variants.

This chapter includes the following sections:

■ Learning About Custom FSM-Based Data Types and Variants on page 5-1

■ Learning About the Standardization Packages on page 5-2

■ Creating Custom FSM-Based Data Types on page 5-2

■ Creating Custom FSM-Based Variants on page 5-5

Learning About Custom FSM-Based Data Types and Variants
The finite state machine framework of the OHMPI Standardization Engine is very
flexible, allowing you to define new data types and variants so you can standardize
any type of data. This process requires no Java coding; all processing rules and logic
are defined in XML files using predefined rules. The new data types and variants can
be imported into NetBeans for use in master person index projects. The following
sections provide information and instructions for creating custom data types and
variants.

Creating a custom FSM data type or variant for the OHMPI Standardization Engine
requires defining the processing logic for the data type in an XML file. No Java coding
is required in order to incorporate the comparators into a master person index
application. The processing logic is based in the files described in Finite State Machine
Framework Configuration.

You define the following information for each data type or variant you create.

■ The state model that defines each state, its input and output symbols, and
transitions

■ Any preprocessing, matching, or postprocessing logic for input and output
symbols

■ Any cleansing rules to be applied to the data prior to parsing

■ Optionally, lists of non-standard values and the standard values to which they
should be converted (such as a nickname table)

■ Optionally, lists of possible values for a field component that helps the
standardization engine identify and parse the component

After you create the package, you can import the custom data type or variant into
NetBeans using the easy import function of Oracle Healthcare Master Person Index.

Learning About the Standardization Packages

5-2 Oracle Healthcare Master Person Index Standardization Engine Reference

You can then define standardization and normalization structures for the master
person index using the new data type or variant.

Learning About the Standardization Packages
After you create a custom data type or variant you need to package the files in a ZIP
file so they are available for import into NetBeans. Create a single package for each
data type or variant.

For a custom data type, the ZIP file includes the following:

■ A service type definition file

■ One or more service instance definition files (depending on how many variants
you include)

■ One or more process definition files (standardizer.xml)

■ Normalization files (optional)

■ Lexicon files (optional)

For a custom variant, the ZIP file includes the following:

■ One service instance definition file

■ One process definition file (standardizer.xml)

■ Normalization files (optional)

■ Lexicon files (optional)

Creating Custom FSM-Based Data Types
You can define new data types and their corresponding variants using the flexible FSM
framework of the standardization engine. Data types are easily incorporated into a
master person index project and can be made globally available to all projects. Perform
the following steps to define a custom data type for the standardization engine.

■ Creating the Working Directory on page 5-2

■ Defining the Service Type on page 5-3

■ Defining the Variants on page 5-4

■ Packaging and Importing the Data Type on page 5-4

■ Service Type Definition File on page 5-4

Creating the Working Directory
The working directory for custom data types requires a specific structure. At a
minimum, the working directory will look similar to the following:

/WorkingDir
 serviceType.xml
 /lib
 /instance
 /Generic
 serviceInstance.xml
 /resource
 standardizer.xml

Creating Custom FSM-Based Data Types

Custom FSM-Based Data Types and Variants 5-3

If the data type has several variants, the directory structure will not include the
Generic folder, but will contain several folders named by the variants name in its
place. Each variant folder must be of the same structure as the Generic folder shown
above. The resource directory might also contain several normalization and lexicon
files.

To Create the Working Directory
1. Create a working directory and add a lib and an instance directory at the top level.

2. Copy the files standardizer-api.jar and standardizer-impl.jar from /NetBeans_
Home/soa2/modules/ext/mdm/standardizer/lib to the lib directory.

3. Do one of the following:

■ If the data type only has one variant, create the following directory structure
in the instance directory:

/Generic/resource/

■ If the data type has several variants, create the following directory structure in
the instance directory for each variant:

/VariantName/resource/

4. Continue to Defining the Service Type.

Defining the Service Type
The serviceType.xml file defines information about the data type, and is a required file
for each data type.

To Define the Service Type
1. Create a file named serviceType.xml in your working directory.

2. Enter text similar to the following, where description is the name of the data type
and the value elements list the tokens, or standardization components, of the data
type.

<serviceType configurationResource="standardizer.xml">
 <description>My Data Type Standardization</description>
 <parameter name="fields">
 <list>
 <value>Data Field1</value>
 <value>Data Field2</value>
 ...
 </list>
 </parameter>
</serviceType>

3. Save and close the file.

Note: You can copy the service type file from an existing data type
and modify it for your use.

Note: For more information about the elements in this file, see
Service Type Definition File on page 5-4.

Creating Custom FSM-Based Data Types

5-4 Oracle Healthcare Master Person Index Standardization Engine Reference

4. Continue to Defining the Variants.

Defining the Variants
For each data type you create, you need to create one or more variants that define the
logic for processing a specific type of data.

To Define the Variants
Perform the following steps for each variant that will be used for the data type you are
creating.

1. Define the service instance, as described in Defining the Service Instance on
page 5-5.

Create the serviceInstance.xml file in /WorkingDir/instance/VariantName.

2. Define the state model and processing logic, as described in Defining the State
Model and Processing Rules on page 5-6.

Create the standardizer.xml file in /WorkingDir/instance/VariantName/resource.

3. If needed, create normalization and lexicon files, as described in Creating
Normalization and Lexicon Files on page 5-7.

Create the files in /WorkingDir/instance/VariantName/resource.

4. Continue to Packaging and Importing the Variant.

Packaging and Importing the Data Type
Once you have created all the files for the data type, you need to package them into a
ZIP file to be imported into a master person index application.

To Package and Import the Data Type
1. In the working directory, select the folders and files at the top level and add them

to a ZIP file.

2. Name the ZIP file the same name as the data type.

The ZIP file structure should look similar to the following:

3. Import the file into a master person index application as described in Oracle
Healthcare Master Person Index Configuration Guide.

Service Type Definition File
Each data type is configured by a service type definition file, serviceType.xml. Service
type files define the fields to be standardized for a data type. The following table lists
and describes the elements in the service type file.

Element Description Attribute

serviceType A description and any parameters for the data type.

configurationResource The name of the standardization process file that defines the states
and processing for the data type.

description A brief description of the data type, such as “Address
Standardization”.

Creating Custom FSM-Based Variants

Custom FSM-Based Data Types and Variants 5-5

Creating Custom FSM-Based Variants
The flexible framework of the OHMPI Standardization Engine allows you to define
new FSM-based variants on existing FSM-based data types so you can standardize
different categories of the same type of data. For example, you might need to
standardize names from several different countries. Variants are easily incorporated
into a master person index project and can be made globally available to all projects.
Perform the following steps to create a custom variant.

■ Creating the Working Directory on page 5-5

■ Defining the Service Instance on page 5-5

■ Defining the Service Instance on page 5-5

■ Creating Normalization and Lexicon Files on page 5-7

■ Packaging and Importing the Variant on page 5-8

■ Service Instance Definition File on page 5-9

Creating the Working Directory
The working directory for custom variants requires a specific structure. At a
minimum, the working directory will look similar to the following:

/WorkingDir
 serviceInstance.xml
 /resource
 standardizer.xml

The resource directory might also contain several normalization and lexicon files.

To Create the Working Directory
1. Create a working directory for the new variant.

2. In the new working directory, create a resource directory.

3. Continue to Defining the Service Instance.

Defining the Service Instance
The serviceInstance.xml file for each variant defines the name of the variant, the data
type it modifies, and additional Java class information.

To Define the Service Instance
1. Create a file named serviceInstance.xml at the top level of your working directory.

parameter A parameter for the configuration resource. By default, “fields” is the
name of the parameter, and it is populated with a list of standardized
field component names.

name The name of the parameter.

value One or more values for the parameter.

Element Description Attribute

Creating Custom FSM-Based Variants

5-6 Oracle Healthcare Master Person Index Standardization Engine Reference

2. Define values for the elements and attributes described in Service Instance
Definition File.

This example defines a new Spanish variant to the PersonName data type.

<serviceInstance type="PersonName">
 <description>Person Name Standardization: Spain</description>
 <parameter name="dataType" value="PersonName" />
 <parameter name="variantType" value="SP" />
 <componentManagerFactory
 class="com.sun.inti.components.component.BeanComponentManagerFactory">
 <property name="stylesheetURL"
 value="classpath:/com/sun/mdm/standardizer/impl/standardizer.xsl"/>
 <property name="urlSource" >
 <bean class="com.sun.inti.components.url.ResourceURLSource">
 <property name="resourceName" value="standardizer.xml />
 </bean>
 </property>
 </componentManagerFactory>
</serviceInstance>

3. Save and close the file.

4. Continue to Defining the State Model and Processing Rules.

Defining the State Model and Processing Rules
The state model defines how the data is read, tokenized, parsed, and modified during
standardization. The state model and processing rules are all defined in the
standardizer.xml file.

Before you begin this step, determine the different forms in which the data to be
standardized can be presented and how it should be standardized for each form. For
example, name data might be in the form “First Name, Last Name, Middle Initial” or
in the form “First Name, Middle Name, Last Name” and you need to account for each
possibility. Determine each state in the process, and the input and output symbols
used by each state. It might be useful to create a finite state machine model, as shown
below. The model shows each state, the transitions to and from each state, and the
output symbol for each state.

For more information about the FSM model, see Learning About Custom FSM-Based
Data Types and Variants on page 5-1.

To Define the State Model and Processing Rules
1. In /WorkingDirectory/resource, create a new XML file named standardizer.xml.

Tip: You can copy a service instance file from an existing variant in
the data type to which you will add the new variant, and then modify
it for the new variant.

Note: The value you enter for the variantType parameter must match
the name you want the variant to display in the Standardization folder
of the master person index project.

Creating Custom FSM-Based Variants

Custom FSM-Based Data Types and Variants 5-7

2. If the data you are processing does not need to be parsed, but only needs to be
normalized, define normalization rules in the normalizer section of the file.

For more information, see Data Normalization Definitions on page 3-7 and
Standardization Processing Rules Reference on page 3-8.

3. If the data you are processing needs to be parsed and normalized, define the state
model in the upper portion of the file.

For information about the state model and the elements that define it, see
Standardization State Definitions on page 3-2.

The next several steps use the processing rules described in Standardization
Processing Rules Reference on page 3-8. Some of these rules might require that
you create normalization and lexicon files.

4. In the inputSymbols section of the file, define each input symbol along with any
processing rules.

For more information, see Input Symbol Definitions on page 3-4.

5. In the outputSymbols section of the file, define each output symbol along with any
processing rules.

For more information, see Output Symbol Definitions on page 3-5.

6. In the cleanser section of the file, define any cleansing rules that should be
performed against the data prior to tokenization.

For more information, see Data Cleansing Definitions on page 3-6.

7. If you created any rules that reference normalization or lexicon files, continue to
Creating Normalization and Lexicon Files on page 5-7.

Creating Normalization and Lexicon Files
Lexicon files list the possible values for a field so the standardization engine can
quickly and accurately recognize different field components. Normalization files list
the nonstandard values that might be found in a field along with the standard version
so the standardization engine can present a common form for the data. You need to
create a file for each lexicon or normalization file you referenced from
standardizer.xml.

For more information about normalization and lexicon files, see Lexicon Files on
page 3-12 and Normalization Files on page 3-13.

To Create Normalization and Lexicon Files
1. For each normalization file you referenced in standardizer.xml, do the following:

1. Create a text file in /WorkingDirectory/resource.

Tip: You can copy the file from an existing variant in the data type to
which you are adding the custom variant. Then you can modify the
file for the new variant.

Note: The next several steps use the processing rules described in
Standardization Processing Rules Reference on page 3-8. Some of
these rules might require that you create normalization and lexicon
files.

Creating Custom FSM-Based Variants

5-8 Oracle Healthcare Master Person Index Standardization Engine Reference

2. Save the file under the name you used to reference it from standardizer.xml.

3. In the file, enter a list of nonstandard values along with their standardized
values, separating the nonstandard value from the standard value with a pipe
(|) as shown below.

COR|COURT
CRT|COURT
CR.|COURT
CT|COURT
CT.|COURT
DR|DRIVE
DR.|DRIVE
DRV|DRIVE
...

4. When you are finished, save and close the file.

2. For each lexicon file you referenced in standardizer.xml, do the following:

1. Create a text file in /WorkingDirectory/resource.

2. Save the file under the name you used to reference it from standardizer.xml.

3. In the file, enter a list of all possible values for the field as shown below.

E
EAST
ET
N
NO
NORTH
NTH
S
SO
SOUTH
...

4. When you are finished, save and close the file.

3. Continue to Packaging and Importing the Variant.

Packaging and Importing the Variant
Once you have created all the files for the variant, you need to package them into a
ZIP file to be imported into a master person index application.

To Package and Import the Variant
1. In the working directory, select the folder and file at the top level and add them to

a ZIP file.

2. Name the ZIP file the same name as the variant. This is the value you entered for
the variantType parameter in Defining the Service Instance on page 5-5.

The ZIP file structure should be similar to the following. Note that this variant
includes several normalization and lexicon files. Your variant might not contain
any.

3. Import the file into a master person index application as described in Oracle
Healthcare Master Person Index Configuration Guide.

Creating Custom FSM-Based Variants

Custom FSM-Based Data Types and Variants 5-9

Service Instance Definition File
Each data type variant is configured by a service definition file. Service type files
define the fields to be standardized for a data type, and service instance definition files
define the variant and Java factory class for the variant. Both files are in XML format.

Element Description Attribute

serviceInstance A container element for the description and any parameters for
the variant.

type The name of the data type to which the variant belongs.

description A brief description of the variant, such as “Person Names:
Spain”.

parameter One parameter for the variant. The default variants contain
two parameters, dataType, and variantType. The dataType
parameter specifies the name of the data type to which the
variant belongs. The variantType parameter specifies the name
of the variant. For a master person index application, these are
the names of the nodes that appear under the Standardization
Engine node.

name The name of the parameter.

value The value of the parameter.

componentManagerFactory The component manager factory class for the variant.

class The name of the component manager factory class. The default
class is
com.sun.inti.components.component.BeanComponentManager
Factory.

property A property of the component manager factory class. The
default class has two properties. The stylesheetURL property
defines the location of the stylesheet, standardizer.xml.

The urlSource property defines the process definition file. Its
value is a bean (by default,
com.sun.inti.components.url.ResourceURLSource), which has
a property called resourceName. The value for this property is
standardizer.xml.

name The name of the property.

value The value for the property.

Creating Custom FSM-Based Variants

5-10 Oracle Healthcare Master Person Index Standardization Engine Reference

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Finding Information and Patches on My Oracle Support
	Finding Oracle Documentation
	Conventions

	1 Master Person Index Standardization Engine Reference
	Introducing the OHMPI Standardization Engine
	Understanding Standardization Concepts
	Data Parsing or Reformatting
	Data Normalization
	Phonetic Encoding

	2 Master Person Index Standardization Engine
	Learning About the OHMPI Standardization Engine
	OHMPI Standardization Engine Data Types and Variants
	OHMPI Standardization Engine Standardization Components
	Finite State Machine Framework
	About the Finite State Machine Framework
	FSM-Based Configuration

	Patterns-based Framework
	About the Patterns-based Framework
	Patterns-based Configuration

	Understanding the OHMPI Standardization and Matching Process
	Internationalizing the OHMPI Standardization Engine

	3 Finite State Machine Framework Configuration
	Learning About the FSM Framework Configuration
	Process Definition File
	Standardization State Definitions
	Input Symbol Definitions
	Output Symbol Definitions
	Data Cleansing Definitions
	Data Normalization Definitions
	Standardization Processing Rules Reference

	Lexicon Files
	Normalization Files

	Setting FSM-Based Person Name Configuration
	Person Name Standardization Overview
	Person Name Standardization Components
	Person Name Standardization Files
	Person Name Lexicon Files
	Person Name Normalization Files
	Person Name Process Definition Files

	Person Name Standardization and Oracle Healthcare Master Person Index
	Person Name Processing Fields
	Configuring a Normalization Structure for Person Names
	Configuring a Standardization Structure for Person Names
	Configuring Phonetic Encoding for Person Names

	Setting FSM-Based Telephone Number Configuration
	Telephone Number Standardization Overview
	Telephone Number Standardization Components
	Telephone Number Standardization Files
	Telephone Number Standardization and Oracle Healthcare Master Person Index
	Telephone Number Processing Fields
	Configuring a Standardization Structure for Telephone Numbers

	4 Patterns-based Address Data Configuration
	Setting Patterns-based Address Data Configuration
	Address Data Standardization Overview
	Address Data Standardization Components
	Address Data Standardization Files
	Address Clues File
	Address Master Clues File
	Address Patterns File
	Address Pattern File Components

	Address Standardization and Oracle Healthcare Master Person Index
	Address Data Processing Fields
	Configuring a Standardization Structure for Address Data
	Configuring Phonetic Encoding for Address Data

	Setting Patterns-based Business Name Configuration
	Business Name Standardization Overview
	Business Name Standardization Components
	Business Name Standardization Files
	Business Name Adjectives Key Type File
	Business Alias Key Type File
	Business Association Key Type File
	Business General Terms Reference File
	Business City or State Key Type File
	Business Former Name Reference File
	Merged Business Name Category File
	Primary Business Name Reference File
	Business Connector Tokens Reference File
	Business Country Key Type File
	Business Industry Sector Reference File
	Business Industry Key Type File
	Business Organization Key Type File
	Business Patterns File

	Business Name Standardization and Oracle Healthcare Master Person Index
	Business Name Processing Fields
	Business Name Standardized Fields
	Configuring a Standardization Structure for Business Names
	Configuring Phonetic Encoding for Business Names

	5 Custom FSM-Based Data Types and Variants
	Learning About Custom FSM-Based Data Types and Variants
	Learning About the Standardization Packages
	Creating Custom FSM-Based Data Types
	Creating the Working Directory
	To Create the Working Directory

	Defining the Service Type
	To Define the Service Type

	Defining the Variants
	To Define the Variants

	Packaging and Importing the Data Type
	To Package and Import the Data Type

	Service Type Definition File

	Creating Custom FSM-Based Variants
	Creating the Working Directory
	To Create the Working Directory

	Defining the Service Instance
	To Define the Service Instance

	Defining the State Model and Processing Rules
	To Define the State Model and Processing Rules

	Creating Normalization and Lexicon Files
	To Create Normalization and Lexicon Files

	Packaging and Importing the Variant
	To Package and Import the Variant

	Service Instance Definition File

