
Oracle® Tuxedo
Accessing Mainframe from Java
12c Release 2 (12.2.2)

April 2016

Oracle Tuxedo Accessing Mainframe from Java, 12c Release 2 (12.2.2)

Copyright © 1996, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents
Generating a Java Application with the eGen Application
Generator

Generating a Java Application with the eGen Application Generator.1

Overview. .2

Understanding eGen .2

Working with COBOL Copybooks. .3

Obtaining a COBOL Copybook .4

Limitations of the eGen Utility .5

Writing an eGen Script .6

Writing the DataView Section of an eGen Script .6

Processing eGen Scripts with the eGen Utility. .8

Creating an Environment for Generating and Compiling the Java Code 8

Generating the Java DataView Code .9

Special Considerations for Compiling the Java Code .11

Performing Your Own Data Translation .11

Why Perform Your Own Data Translation? .11

Translating Buffers from Java to Mainframe Representation.12

MainframeWriter Public Interface. .12

Using MainframeWriter to Create Data Buffers .17

Translating Buffers from Mainframe Format to Java .19

MainframeReader Public Interface .19

Using MainframeReader to Translate Data Buffers .22
Accessing Mainframe from Java i

DataView Programming Reference . 24

Field Name Mapping Rules . 25

Field Type Mappings . 25

Group Field Accessors . 26

Elementary Field Accessors. 27

Array Field Accessors . 27

Fields with REDEFINES Clauses . 28

COBOL Data Types . 29

Other Access Methods for Generated DataView Classes . 31

Mainframe Access to DataView Classes . 31

XML Access to DataView Classes . 34

Hashtable Access to DataView Classes . 36

Known Limitations of eGen working with COBOL Copybooks 39

Program Development. 39

Important Areas . 42

A JOLT Example . 44

Tuxedo Mainframe Transaction Publisher
Overview . 1

Using Tuxedo Mainframe Transaction Publisher . 2

Tuxedo Mainframe Transaction Generator . 3

Select COBOL Copybook . 4

Define Code Generation Details . 4

Configure Transaction Input and Output . 5

Enter Transaction Details . 6

Tuxedo Mainframe Transaction Publisher . 8

Pack Artifacts . 8

Publish to OSB . 9
ii Accessing Mainframe from Java

Installing/Uninstalling Tuxedo Mainframe Transaction Publisher 10

Prerequisite . 10

Installing Tuxedo Mainframe Transaction Publisher . 11

Checking Installation Status . 12

Using graphical user interface. 12

Using command lines . 12

Uninstalling Tuxedo Mainframe Transaction Publisher. 13

Installation Notes . 14

Setting up JDeveloper Project . 14

Setting up Oracle Service Bus (OSB) . 16

Installing EGen Libraries for OSB. 16

Importing Shared Resources to OSB . 16
Accessing Mainframe from Java iii

iv Accessing Mainframe from Java

Generating a Java Application with the
eGen Application Generator
This document includes the following topics:

Generating a Java Application with the eGen Application Generator

Performing Your Own Data Translation

DataView Programming Reference

Program Development

A JOLT Example

Generating a Java Application with the eGen Application
Generator

Overview

Understanding eGen

Working with COBOL Copybooks

Writing an eGen Script

Processing eGen Scripts with the eGen Utility
Accessing Mainframe from Java 1

Overview
Oracle Tuxedo supports seamless integration of CICS Transaction Gateway (CTG) application
running on J2EE application servers and JCA based.

With this feature, Oracle Tuxedo provides a tool to

parse COBOL copybooks used to describe CICS transactions/programs interfaces

generate Java bean style classes to populate data

Therefore, users can pass those classes to a CCI (or ECI-wrapped) interface to perform
ART-hosted CICS invocations.

Understanding eGen
eGen Application Generator, also known as the eGen utility, generates Java applications from a
COBOL copybook and a user-defined script file.

The eGen utility generates a Java application by processing a script you create, called an eGen
script. A Java DataView is defined by the first section of the script. This DataView is used by the
application code to provide data access and conversions, as well as to perform other
miscellaneous functions. The actual application code is defined by the second section of the
script.

Figure 1 illustrates how the eGen utility works. This illustration shows the eGen script and
COBOL copybook file being used as input to the eGen utility, and the output that is generated is
the DataView.
2 Accessing Mainframe from Java

Genera t ing a Java App l ica t ion wi th the eGen Appl i cat ion Genera to r
Figure 1 Understanding the eGen utility

Working with COBOL Copybooks
A COBOL CICS or IMS mainframe application typically uses a copybook source file to define
its data layout. This file is specified in a COPY directive within the LINKAGE SECTION of the
source program for a CICS application, or in the WORKING-STORAGE SECTION of an IMS
program. If the CICS or IMS application does not use a copybook file, you will have to create
one from the data definition contained in the program source.

Each copybook's contents are parsed by the eGen utility, producing DataView sub-classes that
provide facilities to:

Convert COBOL data types to and from Java data types. This includes conversions for
mainframe data formats and code pages.
Accessing Mainframe from Java 3

Convert COBOL data structures to and from Java data structures.

Convert the provided data structures into other arbitrary formats.

Obtaining a COBOL Copybook
The eGen utility must have a COBOL Copybook to use as input. There are two methods you can
use to obtain this Copybook:

Creating a New COBOL Copybook

Using an Existing COBOL Copybook

Creating a New COBOL Copybook
If you are producing a new application on the mainframe or modifying one, then one or more new
copybooks may be required. You should keep in mind the COBOL features and data types
supported by eGen as you create these copybooks. See “DataView Programming Reference” for
more information.

Using an Existing COBOL Copybook
When a mainframe application has an existing DPL or APPC interface, the data for that interface
is usually described in a COBOL copybook. Before using an existing COBOL Copybook, verify
that the interface does not use any COBOL features or data types that eGen does not support (see
“Limitations of the eGen Utility”).

See Figure 2 for an example COBOL copybook source file.
4 Accessing Mainframe from Java

Genera t ing a Java App l ica t ion wi th the eGen Appl i cat ion Genera to r
Figure 2 Sample emprec.cpy COBOL Copybook

Limitations of the eGen Utility
The eGen utility is able to translate most COBOL copybook data types and data clauses into their
Java equivalents; however, it is unable to translate some obsolete constructs and floating point
data types. For information on COBOL data types that can be translated by the eGen utility, see
DataView Programming Reference. If the eGen utility is unable to fully support constructs or
data types, it:

Treats them as alphanumeric data types (if reasonable)

Ignores them

Reports them as errors

If the eGen utility reports constructs or data types as errors, you must modify them, so they can
be translated.
Accessing Mainframe from Java 5

Writing an eGen Script
After you have obtained a COBOL Copybook for the mainframe applications, you are ready to
write an eGen script. This eGen script and the COBOL copybook that describes your data
structure will be processed by the eGen utility to generate a DataView which will serve as the
basis for your custom Java application.

An eGen script has this section:

DataView. The DataView section of the script generates Java DataView code from a
COBOL copybook. The class file compiled from the generated code extends the Java
DataView class. Generating DataViews is discussed in detail in the remainder of this
section. See “Writing the DataView Section of an eGen Script” for more information.

Writing the DataView Section of an eGen Script
The eGen utility parses a COBOL copybook and generates Java DataView code that encapsulates
the data record declared in the copybook. It does this by parsing an eGen script file containing a
DataView definition similar to the example shown in Listing 1 (keywords are in bold).

Listing 1 Sample DataView Section of eGen Script

generate view examples.CICS.outbound.gateway.EmployeeRecord from emprec.cpy

Analyzing the parts of this line of code, we see that generate view tells the eGen utility to
generate a Java DataView code file. examples.CICS.outbound.gateway.EmployeeRecord
tells the eGen utility to call the DataView file EmployeeRecord.java. The package is called
examples.CICS.outbound.gateway. The EmployeeRecord class defined in
EmployeeRecord.java is a subclass of the DataView class. The phrase from emprec.cpy tells
the eGen utility to form the EmployeeRecord DataView file from the COBOL copybook
emprec.cpy.

Additional generate view statements may be added to an eGen script in order to produce all the
DataViews required by your application. Also, additional options may be specified in the eGen
script to change details of the DataView generation. For example, the following script will
generate a DataView class that uses codepage cp500 for conversions to and from mainframe
format. If the codepage clause is not specified, the default codepage of cp037 is used.
6 Accessing Mainframe from Java

Genera t ing a Java App l ica t ion wi th the eGen Appl i cat ion Genera to r
Listing 2 Sample DataView Section with Codepage Specified

…

generate view examples.CICS.outbound.gateway.EmployeeRecord from emprec.cpy

codepage cp500

generate view examples.CICS.outbound.gateway.EmployeeRecord from emprec.cpy

codepage ASCII

Listing 3 Sample DataView Section with endian Specified

generate view examples.CICS.outbound.gateway.EmployeeRecord from emprec.cpy

endian little

Note: By default the endian is big.

If a jolt client calls a COBOL service in Tuxedo on a Linux X86-64 machine, the jolt client should
be compiled with the java code generated by eGen with parameter codepage ASCII and endian
little in Listing 4.

See “A JOLT Example” for more information.

Listing 4 Sample DataView Section with Parameter Codepage and endian Specified

generate view examples.CICS.outbound.gateway.EmployeeRecord from emprec.cpy

codepage ASCII endian little

The following script will generate additional output intended to support use of the DataView class
with XML data:
Accessing Mainframe from Java 7

Listing 5 Sample DataView Section Supporting XML

generate view sample.EmployeeRecord from emprec.cpy support xml

Additional files generated for XML support are listed in Table 1.

Processing eGen Scripts with the eGen Utility
After you have written your eGen script, you must process it to generate the DataView. The same
eGen script usually contains the definitions of the DataView, and these definitions are produced
with a single processing of the script. However, in this document, the script is explained in two
steps, so the actual code generated can be analyzed in greater detail.

Creating an Environment for Generating and Compiling the Java Code

Generating the Java DataView Code

Creating an Environment for Generating and Compiling the Java Code
When you process the eGen scripts and compile Java code, you must have access to the Java
classes and applications used in the code generation and compilation processes. Adding the
correct elements to your CLASSPATH and PATH environment variables provides this access.

For the eGen utility:

– Add <TUXDIR>\udataobj\egen.jar to your CLASSPATH.

– Add <TUXDIR>\bin to your PATH.

For compilation:

– Add <TUXDIR >\udataobj\egen.jar to your CLASSPATH.

Table 1 Additional Files for DataView XML Support

File Name File Purpose

classname.dtd XML DTD for XML messages accepted and produced by this DataView.

classname.xsd XML schema for XML messages accepted and produced by this DataView.
8 Accessing Mainframe from Java

Genera t ing a Java App l ica t ion wi th the eGen Appl i cat ion Genera to r
– Add the path of your DataView class files to your CLASSPATH. You need the access to
these classes when you compile your Java application code.

Note: UNIX users must use "/" instead of "\" when adding directory paths as specified above.

Generating the Java DataView Code
For the eGen script shown in Listing 1, the following shell command parses the copybook file
(see Figure 2) and generates EmployeeRecord.java source file in the current directory:

Listing 6 Sample Copybook Parse Command

java com.bea.jam.egen.EgenCobol emprec.egen

If no error or warning messages are issued, the copybook is compatible with eGen and the source
files are created. Note that no application source files are generated by processing the
emprec.egen script. This is because there are no application generating commands in this script.

The following example illustrates the generated Java source file, EmployeeRecord.java, with
some comments and implementation details removed for clarity.
Accessing Mainframe from Java 9

10 Accessing Mainframe from Java

Per fo rming Your Own Data T rans lat i on
Special Considerations for Compiling the Java Code
You must compile the Java code generated by the eGen utility. However, there are some special
circumstances to consider. Because the application code is dependent on the DataView code, you
must compile the DataView code and make sure that the resulting DataView class files are in your
environment's CLASSPATH before compiling your application code. You must make sure that all
of the DataView class files can be referenced by the application code compilation.

For example, the compilation of EmployeeRecord.java results in four class files:

EmployeeRecord.class

EmployeeRecord$EmpRecord1V.class

EmployeeRecord$EmpRecord1V$EmpName3V.class

EmployeeRecord$EmpRecord1V$EmpAddr7V.class

All of these class files are used when compiling your application code.

Performing Your Own Data Translation
Why Perform Your Own Data Translation?

Translating Buffers from Java to Mainframe Representation

Translating Buffers from Mainframe Format to Java

Why Perform Your Own Data Translation?
The automatic data translation provided by DataViews can usually fill your needs. The
eGen-generated DataViews relieve your application of the burden of translating data between the
mainframe EBCDIC environment and the Java runtime environment. In addition, native
mainframe data types that are not supported in Java (such as packed, zoned decimal, etc.) are
automatically mapped to appropriate Java data types. However, occasionally you may want to
bypass these features and create your own data translation. Following are some advantages of
bypassing the eGen/DataView infrastructure:

Unnecessary data translation may be avoided

If the data has been acquired in the appropriate format, it can simply be transmitted to the
mainframe bypassing the DataView translation overhead.

Contents of data buffer may be dynamically determined at runtime
Accessing Mainframe from Java 11

In some cases, this may be preferable to a DataView generated from a copybook
containing numerous REDEFINES representing various record types.

Simple interfaces are provided for translating data both from and to the mainframe. In addition,
a simple callService() method is available for making mainframe service requests.

Translating Buffers from Java to Mainframe Representation
Support for creating buffers for input to a mainframe service is provided by the
com.bea.base.io.MainframeWriter class. This class functions similar to a Java
java.io.DataOutputStream object. It translates Java data types and all mainframe-native data
types. For numeric data types, this translation service provides a conversion from Java native
numeric types to those available on the mainframe. For string data types, a translation is
performed from UNICODE to EBCDIC by default, although the output codepage used is
configurable.

MainframeWriter Public Interface
Listing 7 shows the public methods that MainframeWriter class provides.

Listing 7 MainframeWriter Class Public Methods

package com.bea.base.io;

public class MainframeWriter

{

 public MainframeWriter();

 public MainframeWriter(String codepage);

 public void setDefaultCodepage(String cp)

 public byte[] toByteArray();

 public void writeRaw(byte[] bytes

throws IOException;

 public void writeFloat(float value)

throws IOException;

 public void writeDouble(double value)
12 Accessing Mainframe from Java

Per fo rming Your Own Data T rans lat i on
throws IOException;

 public void write(char c)

throws IOException;

public void writePadded(String s, char padChar, int length)

throws IOException;

public void write16bit(int value)

throws IOException;

public void write16bitUnsigned(int value)

throws IOException;

public void write16bit(long value, int scale)

throws IOException, ArithmeticException;

public void write16bitUnsigned(long value, int scale)

throws IOException, ArithmeticException;

public void write32bit(int value)

throws IOException;

public void write32bitUnsigned(long value)

throws IOException;

public void write32bit(long value, int scale)

throws IOException, ArithmeticException;

public void write32bitUnsigned(long value, int scale)

throws IOException, ArithmeticException;

public void write64bit(long value)

throws IOException;

public void write64bitUnsigned(long value)

throws IOException;

public void write64bitBigUnsigned(BigDecimal value)
Accessing Mainframe from Java 13

throws IOException;

public void write64bit(long value, int scale)

throws IOException, ArithmeticException;

public void write64bit(BigDecimal value, int scale)

throws IOException, ArithmeticException;

public void write64bitUnsigned(long value, int scale)

throws IOException, ArithmeticException;

public void write64bitUnsigned(BigDecimal value, int scale)

throws IOException, ArithmeticException;

public void writePacked(BigDecimal value, int digits, int precision,

int scale)

throws ArithmeticException, IOException;

public void writePackedUnsigned(BigDecimal value, int digits, int

precision, int scale)

throws ArithmeticException, IOException;

Table 2 MainframeWriter Class Public Method Definitions

Method Description

MainframeWriter() Default constructor. Constructs a MainframeWriter using the
default code page of cp037 (EBCDIC).

MainframeWriter(cp) Constructs a MainframeWriter using the specified codepage
for character field translation.

setDefaultCodepage(cp) Sets the codepage to be used for all future data translations.

toByteArray() Returns the translated buffer constructed by writing data to the
MainframeWriter class as a byte array.

writeRaw(bytes) Writes a raw byte array to the output buffer.
14 Accessing Mainframe from Java

Per fo rming Your Own Data T rans lat i on
writeFloat(num) Converts a floating point number from IEEE Java float data type to
IBM 4 byte floating point format. The equivalent COBOL picture
clause is PIC S9V9 COMP-1.

writeDouble(num) Converts a floating point number from IEEE Java double data type
to IBM 8 byte floating point format. The equivalent COBOL
picture clause is PIC S9V9 COMP-2.

write(c) Translates and writes a single character to output buffer. The
equivalent COBOL picture clause is PIC X.

writePadded(str, pad,
len)

Translate and write a string to a fixed length character field. The
passed pad character is used if the length of the passed string is less
than len. If the length of the passed string is greater than len, it
will be truncated to len characters. The equivalent COBOL
picture clause is PIC X(len).

write16bit(num) Writes a signed 16 bit binary integer to output buffer. The
equivalent COBOL picture clause is PIC S9(4) COMP.

write16bitUnsigned(num) Writes an unsigned 16 bit binary integer to output buffer. The
equivalent COBOL picture clause is PIC 9(4) COMP.

write16bit(num, scale) Writes a signed 16 bit integer to the output buffer after moving the
implied decimal point left by scale digits. For example, the call
write16bit(100, 1) would result in the value 10 being
written. The equivalent COBOL picture clause is PIC S9(4)
COMP.

write16bitUnsigned(num,
scale)

Writes an unsigned 16 bit integer to the output buffer after moving
the implied decimal point left by scale digits. For example, the
call write16bitUnsigned(100, 1) would result in the value
10 being written. The equivalent COBOL picture clause is PIC
9(4) COMP.

write32bit(num) Writes a signed 32 bit binary integer to output buffer. The
equivalent COBOL picture clause is PIC S9(8) COMP.

write32bitUnsigned(num) Writes an unsigned 32 bit binary integer to output buffer. The
equivalent COBOL picture clause is PIC 9(8) COMP.

Table 2 MainframeWriter Class Public Method Definitions

Method Description
Accessing Mainframe from Java 15

write32bit(num, scale) Writes a signed 32 bit integer to the output buffer after moving the
implied decimal point left by scale digits. For example, the call
write32bit(100L, 1) would result in the value 10 being
written. The equivalent COBOL picture clause is PIC S9(8)
COMP.

write32bitUnsigned(num,
scale)

Writes an unsigned 32 bit integer to the output buffer after moving
the implied decimal point left by scale digits. For example, the
call write32bitUnsigned(100L, 1) would result in the
value 10 being written. The equivalent COBOL picture clause is
PIC 9(8) COMP.

write64bit(num) Writes a signed 64 bit binary integer to output buffer. The
equivalent COBOL picture clause is PIC S9(15) COMP.

write64bitUnsigned(num) Writes an unsigned 64 bit binary integer to output buffer. The
equivalent COBOL picture clause is PIC 9(15) COMP.

write64bit(num, scale) Writes a signed 64 bit integer to the output buffer after moving the
implied decimal point left by scale digits. For example, the call
write64bit(100L, 1) would result in the value 10 being
written. The equivalent COBOL picture clause is PIC S9(15)
COMP.

write64bitUnsigned(num,
scale)

Writes an unsigned 64 bit integer to the output buffer after moving
the implied decimal point left by scale digits. For example, the
call write64bitUnsigned(100L, 1) would result in the
value 10 being written. The equivalent COBOL picture clause is
PIC 9(15) COMP.

writePacked(num,
digits, rec, scale)

Writes a decimal number as an IBM signed packed data type with
digits decimal digits total and prec digits to the right of the
decimal point. Prior to conversion, the number is scaled to the left
scale digits. The equivalent COBOL picture clause is PIC
S9(digits-prec)V9(prec) COMP-3.

writePackedUnsigned(num
, digits, prec, scale)

Writes a decimal number as an IBM unsigned packed data type
with digits decimal digits total and prec digits to the right of
the decimal point. Prior to conversion the number is scaled to the
left scale digits. The equivalent COBOL picture clause is PIC
9(digits-prec)V9(prec) COMP-3.

Table 2 MainframeWriter Class Public Method Definitions

Method Description
16 Accessing Mainframe from Java

Per fo rming Your Own Data T rans lat i on
Using MainframeWriter to Create Data Buffers
As an example of using the MainframeWriter class to create a mainframe data buffer, assume
we have a mainframe service which accepts the data record shown as below.

Listing 8 Data Record

01 INPUT-DATA-REC.

05 FIRST-NAME PIC X(10).

05 LAST-NAME PIC X(10).

05 AGE PIC S9(4) COMP.

05 HOURLY-RATE PIC S9(3)V9(2) COMP-3.

Listing 9 shows a Java test program that creates a buffer matching this record layout using
MainframeWriter translation class:

Listing 9 Java Test Program

import java.math.BigDecimal;

import com.bea.base.io.MainframeWriter;

public class MakeBuffer

{

public static void main(String[] args) throws Exception

{

MainframeWriter mf = new MainframeWriter();

mf.writePadded("Edgar", ' ', 10);//first name

mf.writePadded("Jones", ' ', 10);//last name

mf.write16bit(22);//age

mf.writePacked(new BigDecimal(22.50), 5, 2, 0);//hourly rate
Accessing Mainframe from Java 17

byte[] buffer = mf.toByteArray();

System.out.println(getHexString(buffer));

}

private static String getHexString(byte[] buffer)

{

StringBuffer hexStr = new StringBuffer(buffer.length * 2);

for (int i = 0; i < buffer.length; ++i)

{

int n = buffer[i] & 0xff;

hexStr.append(hex[n >> 4]);

hexStr.append(hex[n & 0x0f]);

}

return(hexStr.toString());

}

private static char[] hex =

{

'0', '1', '2', '3', '4', '5', '6', '7',

'8', '9', 'A', 'B', 'C', 'D', 'E', 'F'

};

}

The output of running this sample program is:

C5848781994040404040D1969585A24040404040001602250C

This buffer breaks down as follows:

FIRST-NAME C5848781994040404040"Edgar" + 5 spaces in EBCDIC

LAST-NAME D1969585A24040404040"Jones" + 5 spaces in EBCDIC

AGE 001622 as 16 bit integer
18 Accessing Mainframe from Java

Per fo rming Your Own Data T rans lat i on
HOURLY-RATE 02250C22.50 positive packed number

(decimal point is assumed)

Translating Buffers from Mainframe Format to Java
Support for translating data received from the mainframe to Java data types is provided by the
com.bea.base.io.MainframeReader class. This class operates in a manner similar to a Java
jam.io.DataInputStream, and performs translations from mainframe data types to equivalent
types usable by a Java program. Like the MainframeWriter class, the codepage used for string
translations may be configured and defaults to EBCDIC.

MainframeReader Public Interface
Listing 10 shows the public methods that MainframeReader class provides.

Listing 10 MainframeReader Class Public Methods

package com.bea.base.io;

public class MainframeReader

{

 public MainframeReader(byte[] buffer);

 public MainframeReader(byte[] buffer, String codepage);

 public void setDefaultCodepage(String cp);

 public byte[] readRaw(int count) throws IOException;

 public float readFloat() throws IOException;

 public double readDouble() throws IOException;

 public char readChar() throws IOException;

 public String readPadded(char padChar, int length)

 throws IOException;

 public short read16bit() throws IOException;

 public int read16bitUnsigned() throws IOException;

 public long read16bit(int scale) throws IOException;
Accessing Mainframe from Java 19

 public int read32bit() throws IOException;

 public long read32bit(int scale)

 throws IOException;

 public long read32bitUnsigned() throws IOException;

 public long read32bitUnsigned(int scale) throws IOException;

 public long read64bit() throws IOException;

 public long read64bitUnsigned()

 throws IOException;

 public long read64bit(int scale)

 throws IOException;

 public BigDecimal read64bitBigUnsigned()

 throws IOException;

 public BigDecimal read64bitBig(int scale)

 throws IOException

 public BigDecimal readPackedUnsigned(int digits, int precision, int

scale)

 throws ArithmeticException, IOException;

 public BigDecimal readPacked(int digits, int precision, int scale)

 throws ArithmeticException, IOException;

}

Following are the definitions of these methods:
20 Accessing Mainframe from Java

Per fo rming Your Own Data T rans lat i on
Table 3 MainframeReader Class Public Method Definitions

Method Description

MainframeReader(buffer) Constructs a MainframeReader for the passed buffer using
the default code page of cp037 (EBCDIC).

MainframeReader(buffer,
cp)

Constructs a MainframeReader for the passed buffer using
the specified codepage for character field translation.

setDefaultCodepage(cp) Sets the codepage to be used for all future character translations.

readRaw(count) Reads count characters from the buffer without any translation
and returns them as a byte array.

readFloat() Reads a four byte IBM floating point number and returns it as a
Java float data type.

readDouble() Reads an eight byte IBM floating point number and returns it as
a Java double data type.

readChar() Reads and translates a single character.

readPadded(pad, len) Reads and translates a fixed length character field and returns it
as a Java String. The length of the field is passed as len and the
field pad character is passed as pad. Trailing instances of the
pad character are removed before the data is returned.

read16bit() Reads a 16 bit binary integer and returns it as a Java short.

read16bitUnsigned() Reads an unsigned 16 bit integer and returns it as a Java int.

read16bit(scale) Reads a 16 bit binary integer and scales the value by 10^scale.
For example, if value 10 is read via read16bit(1), the
returned value would be 100.

read32bit() Reads a 32 bit binary integer and returns it as a Java int.

read32bit(scale) Reads a 32 bit binary integer and scales the value by 10^scale.
For example, if value 10 is read via read32bit(1), the
returned value would be 100.

read32bitUnsigned() Reads an unsigned 32 bit integer and returns it as a Java long.
Accessing Mainframe from Java 21

Using MainframeReader to Translate Data Buffers
As an example of using the MainframeReader, class following is a program that translates and
displays the fields in the mainframe buffer created above. Our input buffer consists of the binary
data:

C5848781994040404040D1969585A24040404040001602250C

Listing 11 shows the sample program used to process this buffer.

Listing 11 Sample Program

import java.math.BigDecimal;

import com.bea.base.io.MainframeReader;

read32bitUnsigned(scale) Reads an unsigned 32 bit binary integer and scales the value by
10^scale. For example, if value 10 is read via read32bit(1),
the returned value would be 100.

read64bit() Reads a 64 bit binary integer and returns it as a Java long.

read64bitUnsigned() Reads an unsigned 64 bit integer and returns it as a Java long.

read64bitUnsigned(scale) Reads an unsigned 64 bit binary integer and scales the value by
10^scale. For example, if value 10 is read via read32bit(1),
the returned value would be 100.

read64bitBigUnsigned() Reads an unsigned 64 bit integer and returns it as a Java
BigDecimal.

read64bitBig(scale) Reads a signed 64 bit integer and scales the value by 10^scale.
The value is returned as a Java BigDecimal.

readPackedUnsigned(digits
, prec, scale)

Reads an unsigned packed number consisting of digits numeric
digits with prec digits to the right of the decimal. The value is
scaled by 10^scale and is returned as a Java BigDecimal.

readPacked(digits, prec,
scale)

Reads a signed packed number consisting of digits numeric
digits with prec digits to the right of the decimal. The value is
scaled by 10^scale and is returned as a Java BigDecimal.

Table 3 MainframeReader Class Public Method Definitions

Method Description
22 Accessing Mainframe from Java

Per fo rming Your Own Data T rans lat i on
public class ShowBuffer

{

public static void main(String[] args) throws Exception

{

String data

="C5848781994040404040D1969585A24040404040001602250C";

byte[] buffer = buildBinary(data);

MainframeReader mf = new MainframeReader(buffer);

System.out.println(" First Name: " + mf.readPadded(' ', 10));

System.out.println(" Last Name: " + mf.readPadded(' ', 10));

System.out.println("Age: " + mf.read16bit());

System.out.println("Hourly Rate: " + mf.readPacked(5, 2, 0));

}

private static byte[] buildBinary(String data)

{

byte[] buffer = new byte[data.length() / 2];

for (int i = 0; i < buffer.length; ++i)

 {

 int msb = hex.indexOf(data.charAt(i * 2));

 int lsb = hex.indexOf(data.charAt(i * 2 + 1));

 buffer[i] = (byte) (msb << 4 | lsb);

}

return(buffer);

}

private static final String hex = "0123456789ABCDEF";

}

Accessing Mainframe from Java 23

When running, the program produces the following output:

First Name: Edgar

Last Name: Jones

Age: 22

DataView Programming Reference
This section provides the rules that allow you to identify what form a generated Java class takes
from a given COBOL copybook processed by the eGen Application Generator (eGen utility). An
understanding of the rules facilitates a programmer's ability to correctly code any custom
programs that make use of the generated classes.

The eGen utility maps a COBOL copybook into a Java class. The COBOL copybook contains a
data record description. The eGen utility derives the generated Java class from the
com.bea.dmd.dataview.DataView class (later referred to as DataView).

This section discusses data mapping rules in the following topics:

Field Name Mapping Rules

Field Type Mappings

Group Field Accessors

Elementary Field Accessors

Array Field Accessors

Fields with REDEFINES Clauses

COBOL Data Types

Other Access Methods for Generated DataView Classes

Known Limitations of eGen working with COBOL Copybooks

You should find the COBOL terms in this section easy to understand; however, you may need to
use a COBOL reference book or discuss the terms with a COBOL programmer. Also, you can
process a copybook with the eGen utility and examine the generated Java code in order to
understand the mapping.
24 Accessing Mainframe from Java

DataV iew Programming Refe rence
Field Name Mapping Rules
When you process a COBOL copybook containing field names, they are mapped to Java names
by the eGen utility. All alphabetic characters are mapped to lower case, except in the following
two cases.

All dashes are removed and the character following the dash is mapped to upper case.

When a prefix is added to the name (as when creating a field accessor function name), the first
character of the base name is mapped to upper case.

Table 4 lists some mapping examples.

Field Type Mappings
When you process a COBOL copybook, the data types of fields are mapped to Java data types.
The mapping is performed by the eGen utility according to the following rules:

1. Groups map to DataView subclasses.

2. All alphanumeric fields are mapped to type String.

3. All edited numeric fields are mapped to type String.

4. All SIGN SEPARATE, BLANK WHEN ZERO or JUSTIFIED RIGHT fields are mapped to type
String.

5. SIGN IS LEADING is not supported.

6. The types COMP-1, COMP-2, COMP-5, COMP-X, and PROCEDURE-POINTER fields are not
supported (an error message is generated).

7. All INDEX fields are mapped to Java type int.

8. POINTER maps to Java type int.

Table 4 Example Field Name Mapping from COBOL to Java and Accessor

COBOL Field Name Java Base Name Sample Accessor Name

EMP-REC empRec setEmpRec

500-REC-CNT 500RecCnt set500RecCnt
Accessing Mainframe from Java 25

9. All numeric fields with any digits to the right of the decimal point are mapped to type
BigDecimal.

10. All COMP-3 (packed) fields are mapped to type BigDecimal.

11. All other numeric fields are mapped as shown in Table 5.

Group Field Accessors
Each nested group in a COBOL copybook is mapped to a corresponding DataView subclass. The
generated subclasses are nested exactly as the COBOL groups in the copybook. In addition, the
eGen utility generates a private instance variable of this class type and a get accessor.

For example, the following copybook:

Listing 12 Sample Copybook

10 MY-RECORD.

20 MY-GRP.

30 ALNUM-FIELD PIC X(20).

Produces code similar to the following:

 public MyGrp2V getMyGrp();

public static class MyGrp2V extends DataView

{

// Class definition

}

Table 5 Numeric Field Mapping

Number of Digits Java Type

<= 4 short

> 4 and <= 9 int

> 9 and <= 18 long

> 18 BigDecimal
26 Accessing Mainframe from Java

DataV iew Programming Refe rence
Elementary Field Accessors
Each elementary field is mapped to a private instance variable within the generated DataView
subclass. Access to this variable is accomplished by two accessors that are generated (set and
get).

These accessors have the following forms:

 public void setFieldName(FieldType value);

 public FieldType getFieldName();

Where:

FieldType is described in the Field Type Mappings section.

FieldName is described in the Field Name Mapping Rules section.

For example, the following copybook:

 10 MY-RECORD.

20 NUMERIC-FIELD PIC S9(5).

20 ALNUM-FIELD PIC X(20).

Produces the accessors:

public void setNumericField(int value);

public int getNumericField();

public void setAlnumField(String value);

public String getAlnumField();

Array Field Accessors
Array fields are handled according to the field accessor rules described in Group Field Accessors
and Elementary Field Accessors, with the addition that each accessor takes an additional int
argument that specifies which array entry is to be accessed, for example:

public void setFieldName(int index, FieldType value);

public FieldType getFieldName(int index);
Accessing Mainframe from Java 27

Array fields specified with the DEPENDING ON clause are handled the same as fixed-size arrays
with the following special rules:

The accessors may be used to get or set any instance up to the maximum array index.

The controlling (DEPENDING ON) variable is evaluated when the DataView is converted to
or from an external format, such as a mainframe format. The eGen utility converts only the
array elements with subscripts less than the controlling value.

Fields with REDEFINES Clauses
Fields that participate in a REDEFINES set are handled as a unit. A private byte[] variable is
declared to hold the underlying mainframe data, as well as a private DataView variable. Each of
the redefined fields has an accessor or accessors. These accessors take more CPU overhead than
the normal accessors because they perform conversions to and from the underlying byte[] data.

For example the copybook:

Listing 13 Sample Copybook

 10 MY-RECORD.

20 INPUT-DATA.

30 INPUT-A PIC X(4).

30 INPUT-B PIC X(4).

20 OUTPUT-DATA REDEFINES INPUT-DATA PIC X(8).

Produces Java code similar to the following:

private byte[] m_redef23;

private DataView m_redef23DV;

public InputDataV getInputData();

public String getOutputData();

public void setOutputData(String value);

public static class InputDataV extends DataView
28 Accessing Mainframe from Java

DataV iew Programming Refe rence
{

// Class definition.

}

COBOL Data Types
This section summarizes the COBOL data types supported by Tuxedo. Table 6 lists the COBOL
data item definitions recognized by the eGen utility. Table 7 lists the syntactical features and data
types recognized by the eGen utility. If a COBOL feature is unsupported and it is not listed as
ignored in the table, an error message is generated.

Table 6 Major COBOL Features

COBOL Feature Support

IDENTIFICATION DIVISION Unsupported

ENVIRONMENT DIVISION Unsupported

DATA DIVISION Partially Supported

WORKING-STORAGE SECTION Partially Supported

Data record definition Supported

PROCEDURE DIVISION Unsupported

COPY Unsupported

COPY REPLACING Unsupported

EJECT, SKIP1, SKIP2, SKIP3 Supported

Table 7 COBOL Data Types

COBOL Type Java Type

COMP, COMP-4, BINARY (integer) Short/Int/Long

COMP, COMP-4, BINARY (fixed) BigDecimal

COMP-3, PACKED-DECIMAL BigDecimal
Accessing Mainframe from Java 29

COMP-5 Unsupported

COMP-X Unsupported

DISPLAY numeric (zoned) BigDecimal

BLANK WHEN ZERO (zoned) String

SIGN IS LEADING (zoned) Unsupported

SIGN IS LEADING SEPARATE (zoned) String

SIGN IS TRAILING (zoned) String

SIGN IS TRAILING SEPARATE (zoned) String

edited numeric String

COMP-1, COMP-2 (float) Unsupported

edited float numeric String

DISPLAY (alphanumeric) String

edited alphanumeric String

INDEX Int

POINTER Int

PROCEDURE-POINTER Unsupported

JUSTIFIED RIGHT Unsupported (ignored)

SYNCHRONIZED Unsupported (ignored)

REDEFINES Supported

66 RENAMES Unsupported

66 RENAMES THRU Unsupported

77 level Supported

88 level (condition) Unsupported (ignored)

Table 7 COBOL Data Types

COBOL Type Java Type
30 Accessing Mainframe from Java

DataV iew Programming Refe rence
Other Access Methods for Generated DataView Classes
eGen allows you to access DataView classes through several methods as described in the
following sections:

Mainframe Access to DataView Classes

XML Access to DataView Classes

Hashtable Access to DataView Classes

Mainframe Access to DataView Classes
This section describes how mainframe format data may be moved into and out of DataView
classes. The eGen Application Generator writes this code for you, so this information is provided
as reference.

Mainframe format data may be extracted from a DataView class through the use of the
MainframeWriter class. Listing 14 shows a sample of code that may be used to perform the
extraction.

Listing 14 Sample Code for Extracting Mainframe Format Data from a DataView Class

import com.bea.base.io.MainframeWriter;

import com.bea.dmd.dataview.DataView;

...

/**

group record Inner Class

OCCURS (fixed array) Array

OCCURS DEPENDING (variable-length array) Array

OCCURS INDEXED BY Unsupported (ignored)

OCCURS KEY IS Unsupported (ignored)

Table 7 COBOL Data Types

COBOL Type Java Type
Accessing Mainframe from Java 31

 * Get mainframe format data from a DataView into a byte[].

 */

byte[] getMainframeData(DataView dv)

{

try

{

MainframeWriter mw = new MainframeWriter();

// To override the DataView's codepage, change the

// above constructor call to something like:

// ...new MainframeWriter("cp1234");

return dv.toByteArray(mw);

}

catch (java.io.IOException e)

{

// Some conversion failure occurred…

}

return null;

}

If you want to override the codepage provided when the DataView was generated, you may
provide another codepage as a String argument to the MainframeWriter constructor, as shown
in the comment in Listing 15.

Loading mainframe data into a DataView is a similar process, in this case requiring the use of the
MainframeReader class. Listing 15 shows a sample of code that may be used to perform the
load.
32 Accessing Mainframe from Java

DataV iew Programming Refe rence
Listing 15 Sample Code for Loading Mainframe Data into a DataView Class

import com.bea.base.io.MainframeReader;

import com.bea.dmd.dataview.DataView;

...

/**

* Put a byte[] containing mainframe format data into a DataView.

 */

MyDataViewputMainframeData(byte[] buffer)

{

 MainframeReader mr = new MainframeReader(buffer);

 // To override the DataView's codepage, change the above

 // constructor call to something like:

 // …new MainframeReader("cp1234", buffer);

 .

 .

 .

MyDataView dv;

 .

 .

 .

try

{

// Construct a new DataView with the mainframe data.

dv = new MyDataView(mr);

// Or, to load a pre-existing DataView with mainframe data.

// dv.mainframeLoad(mr);

}

Accessing Mainframe from Java 33

catch (java.io.IOException e)

{

// Some conversion failure occurred.

}

return dv;

}

XML Access to DataView Classes
Facilities are provided to move XML data into and out of DataView classes. These operations are
performed through the use of the XmlLoader and XmlUnloader classes.

XmlLoader is used to load XML data into a DataView.

XmlUnloader is used to unload data from a DataView into XML.

If the eGen script used to produce the DataView specifies the "support xml" option, then
both a DTD and an XML/Schema that describe the XML format for this DataView are
produced.

The following list shows an example of the code used to load XML data into a DataView.

Listing 16 Sample Code for Loading XML Data into a DataView

import com.bea.dmd.dataview.DataView;

import com.bea.dmd.dataview.XmlLoader;

...

void loadXmlData(String xml, DataView dv)

{

XmlLoader xl = new XmlLoader();

try

{

34 Accessing Mainframe from Java

DataV iew Programming Refe rence
// Load the xml. Note that the xml argument may be

either

// a String or a org.w3c.dom.Element object.

xl.load(xml, dv);

}

catch (Exception e)

{

// Some conversion error occurred.

}

}

The following list shows an example of the code used to unload a DataView into XML.

Listing 17 Sample Code for Unloading a DataView into XML

import com.bea.dmd.dataview.DataView;

import com.bea.dmd.dataview.XmlUnloader;

...

String unloadXmlData(DataView dv)

{

XmlUnloader xu = new XmlUnloader();

try

{

String xml = xu.unload(dv);

return xml;

}

catch (Exception e)

{

Accessing Mainframe from Java 35

// Some conversion error occurred.

}

return null;

}

Hashtable Access to DataView Classes
Oracle Tuxedo also provides facilities to load and unload DataView objects using Hashtable
objects. Hashtable objects are most often used to move data from one DataView to another
similar DataView.

When DataView fields are moved into Hashtables, each field is given a key that is a string
reflecting the location of the field within the original copybook data structure.

Listing 18 shows a sample of a COBOL copybook.

Listing 18 Sample emprec.cpy COBOL Copybook

1 *--

2 * emprec.cpy

3 * An employee record.

4 *--

5

6 02 emp-record.

7

8 04 emp-ssn pic 9(9) comp-3.

9

10 04 emp-name.

11 06 emp-name-last pic x(15).

12 06 emp-name-first pic x(15).

13 06 emp-name-mi pic x.
36 Accessing Mainframe from Java

DataV iew Programming Refe rence
14

15 04 emp-addr.

16 06 emp-addr-street pic x(30).

17 06 emp-addr-st pic x(2).

18 06 emp-addr-zip pic x(9).

19

20 * End

The fields for the COBOL copybook in Listing 18 are stored into a Hashtable as shown in
Table 8.

Code for Unloading and Loading Hashtables
Following is an example of the code used to unload a DataView into a Hashtable.

Hashtable ht = new HashtableUnloader().unload(dv);

Following is an example of the code used to load a Hashtable into an existing DataView.

new HashtableLoader().load(dv);

Table 8 COBOL Copybook Hashtable

Key String Content Type

empRecord.empSsn BigDecimal

empRecord.empName.empNameLast String

empRecord.empName.empNameFirst String

empRecord.empName.empNameMi String

empRecord.empAddr.empAddrStreet String

empRecord.empAddr.empAddrSt String

empRecord.empAddr.empAddrZip String
Accessing Mainframe from Java 37

Rules for Unloading and Loading Hashtables
The basic rules of Hashtable unloading are:

All data elements in the DataView are placed into the Hashtable.

Each data item is stored as an object of its Java type. Elements of int/short/long type
are converted to Integer/Short/Long.

Arrays are mentioned at the appropriate level in the key as an index enclosed in "[", "]"
pairs. For instance, if empAddr was an array, then one key into the Hashtable might be
empRecord.empAddr[2].empAddrStreet.

The basic rules of Hashtable loading are:

All data elements in the DataView attempt to acquire a value from the Hashtable. If no
matching key exists, the element retains its original value.

Hashtable members of the wrong type result in a ClassCastException being thrown.

Name Translator Interface Facility
A name translator interface facility is available to provide Hashtable name mappings. Both
HashtableLoader and HashtableUnloader provide a constructor that accepts an argument of
type com.bea.dmd.dataview.NameTranslator. Table 9 lists the descriptions of the public
interface methods that must be implemented.

You can write classes that implement this interface for your application. These implementations
are used to translate the key strings before the Hashtable is accessed.

Following are some useful implementations that are included in the egen.jar:

Table 9 Name Translator Interface

Method Description

translate(String input) This method received a String object as an input
parameter and returns a String object.
38 Accessing Mainframe from Java

Program Deve lopment
The HashtableLoader, HashtableUnloader, and the various name translator classes are
included in the "com.bea.dmd.dataview" package.

Known Limitations of eGen working with COBOL Copybooks
Following are some of the known limitations of this version of eGen.

Continuation lines are not recognized in COBOL copybooks. This is only a problem for
long character literals occurring within VALUES clauses. Comment out the relevant clause
to fix the problem.

COBOL copybooks with array (table) data items having an OCCURS DEPENDING ON clause
must be structured so that the depending-on counter data item is not contained within the
same group data item as the one containing the array.

USAGE clauses on group data items in COBOL copybooks are not properly propagated to
their subordinated member data items.

Program Development
Program development will be accomplished according to program snippet listed in Listing 19 and
according to class naming rules outlined here, although this can be adjusted depending on
customer requirements.

Listing 19 Program Snippet

try

 {

Table 10 Name Translator Interface

Class Constructor Purpose

NameFlattener() Reduces the key to the portion following
the final period character.

PrefixChanger(String old, String add) Removes an old prefix & adds a new one.

PrefixChanger(String old) Removes a prefix.
Accessing Mainframe from Java 39

 InitialContext context = new InitialContext();

 ECIConnectionSpec connSpec = new ECIConnectionSpec();

 connSpec.setUserName("TESOP01");

 connSpec.setPassword("");

 Connection connection = connectionFactory.getConnection(connSpec);

 Interaction interaction = connection.createInteraction();

 // Create inputBean

 K294Bean inRec = new K294Bean();

 inRec.setI__Entete__TranId("K294");

 inRec.setI__Entete__Vers("0101");

 inRec.setI__Entete__Statut("99");

 inRec.setI__Entete__Nb__Enreg((short)40);

 inRec.setI__Entete__User("TESOP01");

 inRec.setI__Entete__Date("2012-01-16");

 // Data

 inRec.setI__restea__nupy(1);

 inRec.setI__restea__cdea(2);

 inRec.setI__restea__cdea1(1);

 K294Bean outRec = new K294Bean();

 // Create InteractionSpec

 InteractionSpec interactionSpec = new ECIInteractionSpec();
40 Accessing Mainframe from Java

Program Deve lopment
 ((ECIInteractionSpec)interactionSpec).setFunctionName("COMPT294");

 ((ECIInteractionSpec)interactionSpec).setTranName("K294");

 ((ECIInteractionSpec)interactionSpec).setCommareaLength(7132);

((ECIInteractionSpec)interactionSpec).setInteractionVerb(ECIInteractionSpe

c.SYNC_SEND_RECEIVE);

 // execute transaction

 interaction.execute((ECIInteractionSpec)interactionSpec, inRec,

outRec);

 // Close all

 interaction.close();

 connection.close();

 // List Data

 K294bean_output__message_t__o__data__data data[] =

outRec.getT__o__data__data();

 // Load List

 for (int i=0; i<data.length;i++)

 {

 if (data[i].getT__o__data__data__o__restea__cdea()!=0)

 {

 out.println(data[i]);

 }

 }

 }
Accessing Mainframe from Java 41

catch (Exception e)

 {

 System.out.println("Error : " + e.getMessage());

 e.printStackTrace();

 }

Important Areas
The following listings show the important areas for program development. Field name mappings
may vary.

Listing 20, “Setup Connection

Listing 21, “Input Bean Usage

Listing 22, “Service Invocation

Listing 23, “Output Bean Usage

Listing 20 Setup Connection

ECIConnectionSpec connSpec = new ECIConnectionSpec();

 connSpec.setUserName("TESOP01");

 connSpec.setPassword("");

 Connection connection = connectionFactory.getConnection(connSpec);

 Interaction interaction = connection.createInteraction();

 // Create InteractionSpec

 InteractionSpec interactionSpec = new ECIInteractionSpec();

 ((ECIInteractionSpec)interactionSpec).setFunctionName("COMPT294");

 ((ECIInteractionSpec)interactionSpec).setTranName("K294");

 ((ECIInteractionSpec)interactionSpec).setCommareaLength(7132);
42 Accessing Mainframe from Java

Program Deve lopment
((ECIInteractionSpec)interactionSpec).setInteractionVerb(ECIInteractionSpe

c.SYNC_SEND_RECEIVE);

Listing 21 Input Bean Usage

// Create inputBean

 K294Bean inRec = new K294Bean();

 inRec.getDfhcommarea().

 getInputMessage().

 getIEntete().setIEnteteTranId("K294");

 inRec.getDfhcommarea().

 getInputMessage().

 getIEntete().setIEnteteVers("0101");

 inRec.getDfhcommarea().

 getInputMessage().

 getIEntete().setIEnteteStatut("99");

 inRec.getDfhcommarea().

 getInputMessage().

 getIEntete().setIEnteteNbEnreg((short)40);

// reserve outputBean

 K294Bean outRec = new K294Bean();

Listing 22 Service Invocation

// execute transaction

 interaction.execute((ECIInteractionSpec)interactionSpec, inRec,

outRec);
Accessing Mainframe from Java 43

Listing 23 Output Bean Usage

K294bean_output__message_t__o__data__data data[] =

outRec.getDfhcommarea().getOutputMessage().getTODataData();

A JOLT Example
Below is the COBOL copybook emprec.cpy.

Listing 24 Sample COBOL copybook emprec.cpy

01 emp-record.

 04 emp-ssn pic 9(9) comp-3.

 04 emp-name.

 06 emp-name-last pic x(15).

 06 emp-name-first pic x(15).

 06 emp-name-mi pic x.

 04 emp-addr.

 06 emp-addr-street pic x(30).

 06 emp-addr-st pic x(2).

 06 emp-addr-zip pic x(9).

On Linux machine, you could define eGen script emprec.egen as below.

generate view test.EmployeeRecord from emprec.cpy codepage ASCII endian
little

Next, you could process eGen script emprec.egen as below, and then java file
EmployeeRecord.java is generated.

java com.bea.jam.egen.EgenCobol emprec.egen
44 Accessing Mainframe from Java

A JOLT Example
Next, after compiling EmployeeRecord.java, you will get four java class files.

EmployeeRecord$EmpRecord1V$EmpAddr7V.class

EmployeeRecord$EmpRecord1V$EmpName3V.class

EmployeeRecord$EmpRecord1V.class

EmployeeRecord.class

Next, you can write jolt client java code with EmployeeRecord.java. See below for a
simple example.

Listing 25 Sample Java Code

import bea.jolt.*;

import java.math.BigDecimal;

import com.bea.base.io.MainframeWriter;

import com.bea.base.io.MainframeReader;

import java.io.IOException;

import com.bea.sna.jcrmgw.snaException;

import test.*;

public class jc {

public static void main (String[] args) {

JoltSession jses;

try {

JoltSessionAttributes jattr;

JoltRemoteService toupper,addsvc;

JoltTransaction trans;

String name=null;
Accessing Mainframe from Java 45

String pass=null;

String apass=null;

String urole="myapp";

String outstr,addr;

test.EmployeeRecord egenclass;

BigDecimal value;

jattr = new JoltSessionAttributes();

//jattr.setString(jattr.APPADDRESS, "//lcdux2:5555");

jattr.setString(jattr.APPADDRESS, "//"+args[0]);

jattr.setInt(jattr.IDLETIMEOUT, 300);

jattr.setString(jattr.TRUSTSTORE,

"wallet/trust.jks");

jattr.setString(jattr.TSPASSPHRASE, "abcd1234");

jses = new JoltSession(jattr, name, urole, pass,

apass);

String testString = new String("john");

egenclass = new test.EmployeeRecord();

value = new BigDecimal("123456789");

egenclass.getEmpRecord().setEmpSsn(value);

egenclass.getEmpRecord().getEmpName().setEmpNameFirst(testString);

byte[] inputBuffer = egenclass.toByteArray(new

MainframeWriter());
46 Accessing Mainframe from Java

A JOLT Example
toupper = new JoltRemoteService("CSIMPSRV", jses);

toupper.setBytes("DATAFLOW", inputBuffer,

inputBuffer.length);

toupper.call(null);

byte[] rawResult= null;

rawResult = toupper.getBytesDef("DATAFLOW", null);

test.EmployeeRecord result = new

test.EmployeeRecord(new MainframeReader(rawResult));

value = result.getEmpRecord().getEmpSsn();

System.out.println("after call emp-ssn is " +

value.toString());

jses.endSession();

System.exit(0);

 } // end of try block

 catch (SessionException e)

 {

 System.err.println(e);

 System.exit(1);

 } // catch of try block

 catch (IOException ioe)

 {

 System.err.println(ioe);

 System.exit(1);

 }

 } // of main

 } // public class jc
Accessing Mainframe from Java 47

One Tuxedo server site, you can write a Tuxedo COBOL server that uses the same
copybook emprec.cpy. See below for a simple example.

Listing 26 Sample on Tuxedo Server Site

*

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CSIMPSRV.

 AUTHOR. TUXEDO DEVELOPMENT.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 *

 SPECIAL-NAMES. CONSOLE IS CRT.

 *

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 copy 'emprec'.

 * Tuxedo definitions

 01 TPSVCRET-REC.

 COPY TPSVCRET.

 *

 01 TPTYPE-REC.

 COPY TPTYPE.

 *

 01 TPSTATUS-REC.

 COPY TPSTATUS.
48 Accessing Mainframe from Java

A JOLT Example
 *

 01 TPSVCDEF-REC.

 COPY TPSVCDEF.

 * Log messages definitions

 01 LOGMSG.

 05 FILLER PIC X(10) VALUE "CSIMPSRV :".

 05 LOGMSG-TEXT PIC X(50).

 01 LOGMSG-LEN PIC S9(9) COMP-5.

 * User defined data records

 01 RECV-STRING PIC X(100).

 01 SEND-STRING PIC X(100).

 *

 LINKAGE SECTION.

 *

 PROCEDURE DIVISION.

 *

 START-FUNDUPSR.

 MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.

 MOVE "Started" TO LOGMSG-TEXT.

 PERFORM DO-USERLOG.

 * Get the data that was sent by the client
Accessing Mainframe from Java 49

 MOVE LENGTH OF RECV-STRING TO LEN.

 CALL "TPSVCSTART" USING TPSVCDEF-REC

 TPTYPE-REC

 emp-record

 TPSTATUS-REC.

 IF NOT TPOK

 MOVE "TPSVCSTART Failed" TO LOGMSG-TEXT

 PERFORM DO-USERLOG

 PERFORM EXIT-PROGRAM

 END-IF.

 IF TPTRUNCATE

 MOVE "Data was truncated" TO LOGMSG-TEXT

 PERFORM DO-USERLOG

 PERFORM EXIT-PROGRAM

 END-IF.

 MOVE emp-ssn TO LOGMSG-TEXT.

 PERFORM DO-USERLOG.

 MOVE 987654321 to emp-ssn.

 MOVE emp-name-first TO LOGMSG-TEXT.

 PERFORM DO-USERLOG.
50 Accessing Mainframe from Java

A JOLT Example
 MOVE "Success" TO LOGMSG-TEXT.

 PERFORM DO-USERLOG.

 SET TPSUCCESS TO TRUE.

 COPY TPRETURN REPLACING

 DATA-REC BY emp-record.

 * Write out a log err messages

 DO-USERLOG.

 CALL "USERLOG" USING LOGMSG

 LOGMSG-LEN

 TPSTATUS-REC.

 * EXIT PROGRAM

 EXIT-PROGRAM.

 MOVE "Failed" TO LOGMSG-TEXT.

 PERFORM DO-USERLOG.

 SET TPFAIL TO TRUE.

 COPY TPRETURN REPLACING

 DATA-REC BY emp-record.

Next, set the correct COBOL compile environment. For example:

export COBDIR=/opt/cobol-it-64

export TM_COBOLIT_VERSION=3.7
Accessing Mainframe from Java 51

export COBOLIT_LICENSE=$COBDIR/citlicense.xml

export PATH=$COBDIR/bin:$PATH

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$COBDIR/lib

export COBCPY=$TUXDIR/cobinclude

Last, the COBOL server is compiled as below.

buildserver -C -o CSIMPSRV -f CSIMPSRV.cbl -f TPSVRINIT.cbl -s CSIMPSRV
52 Accessing Mainframe from Java

Tuxedo Mainframe Transaction
Publisher
This document includes the following topics:

Overview

Using Tuxedo Mainframe Transaction Publisher

Installing/Uninstalling Tuxedo Mainframe Transaction Publisher

Setting up JDeveloper Project

Setting up Oracle Service Bus (OSB)

Overview
Tuxedo Mainframe Transaction Publisher simplifies the process of exposing mainframe
transaction in Oracle Service Bus (OSB) by providing a graphical user interface.

Let us consider this scenario, where users want to expose their mainframe transaction in OSB.
The proxy service uses WSDL and the business service uses WTC.
Accessing Mainframe from Java 1

The tool generates POJO code based on the input COBOL copybook. These generated codes can
be used by users to access mainframe transaction.

Using Tuxedo Mainframe Transaction Publisher
Tuxedo Mainframe Transaction Publisher includes two parts: Generator and Publisher. They are
implemented as JDeveloper extensions and reside in a single JAR file.

Tuxedo Mainframe Transaction Generator

Tuxedo Mainframe Transaction Publisher

Tuxedo Mainframe Transaction Publisher is a project based tool. Users select the project and
right click to bring up context menu.
2 Accessing Mainframe from Java

Us ing Tuxedo Mainf rame T ransact i on Pub l i sher
Note: Users install this extension using JDeveloper's update center mechanism. For more
information, see Installing Tuxedo Mainframe Transaction Publisher.

Tuxedo Mainframe Transaction Generator
Tuxedo Mainframe Transaction Generator is implemented through the JDeveloper hook. Users
access this function by clicking the "Tuxedo Mainframe Transaction Generator" menu item.

By selecting this function, a graphical user interface base wizard window will be brought up to
guide users to do the following things.

1. Select COBOL Copybook

2. Define Code Generation Details

3. Configure Transaction Input and Output

4. Enter Transaction Details

Eventually, Tuxedo Mainframe Transaction Generator generates seven artifacts that are
organized in two parts.
Accessing Mainframe from Java 3

Generated Java code based on the COBOL copybook

OSB related configuration data which includes WSDL, configuration for OSB Business
Service, and configuration information for OSB Proxy Service

Select COBOL Copybook
The following picture shows the wizard page for selecting COBOL copybook.

Define Code Generation Details
The following screenshot shows the wizard page for defining code generation details.

The following fields are used.

Transaction ID
Name of the mainframe transaction. This is used in code and artifacts generation to name
the OSB project, artifacts, and data mapping classes.

POJOs Package
This is used as Java package name for the mapping classes.

Namespace
This is used as WSDL and schema namespace in the WSDL and XSD OSB artifacts.
4 Accessing Mainframe from Java

Us ing Tuxedo Mainf rame T ransact i on Pub l i sher
Configure Transaction Input and Output
The following screenshot shows the wizard page for configuring the input and output fields from
the COBOL copybook.
Accessing Mainframe from Java 5

Enter Transaction Details
The following screenshot shows wizard page for entering information needed by mainframe
transaction.

The following fields are used.

Tuxedo transaction resource name
Name of the generated Tuxedo transport/WTC import that will be generated.

Tuxedo transaction remote name
Name of the Tuxedo service on the remote Tuxedo domain as exported from there.

Tuxedo remote domain
ID of the remote Tuxedo/TMA domain.

Tuxedo network address
Network address for the Tuxedo/TMA remote domain.

OSB local domain
ID of the OSB domain.
6 Accessing Mainframe from Java

Us ing Tuxedo Mainf rame T ransact i on Pub l i sher
OSB network address
Network address of the OSB domain.

WebLogic target server
Name of the WLS server.

Users are allowed to set the defaults value for the mainframe transaction details according to user
needs through the JDeveloper's "Preference" menu item from the "Tools" drop down menu.
Accessing Mainframe from Java 7

Tuxedo Mainframe Transaction Publisher
Tuxedo Mainframe Transaction Publisher is implemented through the UI hook. Users access this
function by selecting the Tuxedo Mainframe Transaction Publisher menu item.

By selecting this function, a welcome wizard page will be displayed to do the following things.

1. Pack Artifacts

2. Publish to OSB

Pack Artifacts
In this step, the artifacts generated by Tuxedo Mainframe Transaction Generator are packed. The
following wizard page tells users the name of the packaged JAR file, and where it will be
generated.
8 Accessing Mainframe from Java

Us ing Tuxedo Mainf rame T ransact i on Pub l i sher
Publish to OSB
The following wizard page helps users to publish the generated artifacts to OSB. This Tuxedo
Mainframe Transaction Publisher function allows users to specify the OSBs URL, administrator's
name, and administrator's password.

Note: Tuxedo Mainframe Transaction Publisher allows users to manually install the OSB
project by not selecting "Publish to Oracle Service Bus (OSB)?".
Accessing Mainframe from Java 9

Installing/Uninstalling Tuxedo Mainframe Transaction
Publisher

Prerequisite
To ensure successful installation of the Tuxedo Mainframe Transaction Publisher, a pristine
JDeveloper should be used. Users should install the pristine JDeveloper at a new location; they
should neither import any preference from other installations nor use JDeveloper to start from
installer.

After installation, users use the following commands to start the JDeveloper.

cd $ORACLE_HOME

jdeveloper/jdev/bin/jdev -clean -console

Note: JDeveloper Studio is available for download from Oracle Technology Network.
10 Accessing Mainframe from Java

Ins ta l l ing/Un insta l l ing Tuxedo Mainf rame T ransact i on Pub l i sher
Installing Tuxedo Mainframe Transaction Publisher
The Tuxedo Mainframe Transaction Publisher is distributed in a single zip file named
"tuxedo.mtp.update.<version>.zip". Its current version is 12.1.2.0.

Do the following steps to complete the Tuxedo Mainframe Transaction Publisher installation.

1. Select "Install From Local File" and enter the zip file location in "File Name:" text field.

2. Click the "Next" button (and the "Summary" page shows up).

3. Click the "Finish" button to complete the installation.

After completing the installation, jar files will be installed in
MW_HOME/JDeveloper/jdev/extension/tuxedo directory.

Note: The zip file is located in $TUXDIR/udataobj. To find out
"tuxedo.mtp.update.12.1.2.0.zip", open the JDeveloper and click the "Help"
menu item in the menu bar, and select "Check for Updates" from the drop down menu
that is brought up.
Accessing Mainframe from Java 11

Checking Installation Status
After the installation, when the updater asks to restart JDeveloper, choose not to. Then users go
to the command line and re-enter jdeveloper/jdev/bin/jdev -clean -console to verify
whether the installation is successful.

Users can check the installation status using any of the following ways.

Using graphical user interface

Using command lines

Using graphical user interface
Click "Help"- "About" - "Extension".

Using command lines

Listing 1 Using Command Lines to Check Installation Status

D:\oracle\jdeveloper\12.1.2_2>jdeveloper\jdev\bin\jdev -su -clean -console
12 Accessing Mainframe from Java

Ins ta l l ing/Un insta l l ing Tuxedo Mainf rame T ransact i on Pub l i sher
osgi>

osgi> ss tuxedo

Framework is launched.

id State Bundle

927 RESOLVED com.oracle.tuxedo.mtp_12.1.2

Uninstalling Tuxedo Mainframe Transaction Publisher
Do the following steps to uninstall the Tuxedo Mainframe Transaction Publisher from
JDeveloper's menu bar.

1. Click the "Tools" menu item (and a drop down menu shows up).

2. Select the "Features" (and the "Manage Features and Updates" page shows up.

3. Select the "Installed Updates".

4. Select "Tuxedo MF Transaction Publisher".

5. Click "Uninstall" button to complete the uninstallation.
Accessing Mainframe from Java 13

Installation Notes
Tuxedo Mainframe Transaction Publisher requires

Oracle JDeveloper 12.1.2 extension

Oracle Service Bus (OSB) 11.1.1.7

JDK 1.7 or above on both Oracle JDeveloper and Oracle Service Bus (OSB)

Note: When users install Tuxedo Mainframe Transaction Publisher on Oracle JDeveloper
12.1.2 extension, a matisse related exception will be reported. This exception has no
impact on the use of Tuxedo Mainframe Transaction Publisher.

Setting up JDeveloper Project
Users must set up the "Library and Classpath" for every project before using Tuxedo Mainframe
Transaction Publisher; otherwise, the compilation of the generated class fails.

To do the setup, right click the project to bring up context menu and select "Project Properties".
Then select "Add JAR/Directory" and add the eGen libraries.
14 Accessing Mainframe from Java

Se t t ing up JDeve loper P ro jec t
Accessing Mainframe from Java 15

Setting up Oracle Service Bus (OSB)

Installing EGen Libraries for OSB
It is required for users to add eGen libraries to OSB's classpath by doing the following steps.

1. Create or use an existing Oracle Service Bus Domain.

2. Edit <domain_path>/bin/setDomainEnv.sh and eGen libraries to the classpath.

3. Restart OSB to reflect these changes in the classpath.

The eGen libraries can be extracted from the updated zip file.

Users should add the followings to setDomainEnv.sh.

Listing 2 Adding Information to setDomainEnv.sh

#

EGen Classpath for MTP

#

BASE_EGEN_LIBS_PATH=<location of the libraries>

EGEN_CLASSPATH=${BASE_EGEN_LIBS_PATH}/com.bea.core.xml.xmlbeans_2.2.0.0.ja

r${CLASSPATHSEP}${BASE_EGEN_LIBS_PATH}/weblogic_apache.jar${CLASSPATHSEP}$

{BASE_EGEN_LIBS_PATH}/xmltoolkit.jar${CLASSPATHSEP}${BASE_EGEN_LIBS_PATH}/

egen.jar

CLASSPATH="${CLASSPATH}${CLASSPATHSEP}${EGEN_CLASSPATH}"

export CLASSPATH

Importing Shared Resources to OSB
An OSB project with some shared resources is used by Tuxedo Mainframe Transaction Publisher
generated OSB resources. The file with complete OSB project is in
$TUXDIR/udataobj/mtp_shared_sbconfig.jar.

1. Use OSB's console to import this JAR.
16 Accessing Mainframe from Java

Se t t ing up Orac le Se rv i ce Bus (OSB)
System Administration > Import Resources

2. Enter the mtp_shared_sbconfig.jar location.
Accessing Mainframe from Java 17

3. Click "Next>>" button.
18 Accessing Mainframe from Java

Se t t ing up Orac le Se rv i ce Bus (OSB)
4. Select "Import".
Accessing Mainframe from Java 19

5. Click "Activate" button.

6. Click "Submit" button.

7. Check for any error or conflict and resolve them.
20 Accessing Mainframe from Java

	Oracle® Tuxedo
	12c Release 2 (12.2.2)

	Oracle Tuxedo Accessing Mainframe from Java, 12c Release 2 (12.2.2)
	Generating a Java Application with the eGen Application Generator
	Generating a Java Application with the eGen Application Generator
	Overview
	Understanding eGen
	Working with COBOL Copybooks
	Obtaining a COBOL Copybook
	Limitations of the eGen Utility

	Writing an eGen Script
	Writing the DataView Section of an eGen Script

	Processing eGen Scripts with the eGen Utility
	Creating an Environment for Generating and Compiling the Java Code
	Generating the Java DataView Code
	Special Considerations for Compiling the Java Code

	Performing Your Own Data Translation
	Why Perform Your Own Data Translation?
	Translating Buffers from Java to Mainframe Representation
	MainframeWriter Public Interface
	Using MainframeWriter to Create Data Buffers

	Translating Buffers from Mainframe Format to Java
	MainframeReader Public Interface
	Using MainframeReader to Translate Data Buffers

	DataView Programming Reference
	Field Name Mapping Rules
	Field Type Mappings
	Group Field Accessors
	Elementary Field Accessors
	Array Field Accessors
	Fields with REDEFINES Clauses
	COBOL Data Types
	Other Access Methods for Generated DataView Classes
	Mainframe Access to DataView Classes
	XML Access to DataView Classes
	Hashtable Access to DataView Classes

	Known Limitations of eGen working with COBOL Copybooks

	Program Development
	Important Areas

	A JOLT Example

	Tuxedo Mainframe Transaction Publisher
	Overview
	Using Tuxedo Mainframe Transaction Publisher
	Tuxedo Mainframe Transaction Generator
	Select COBOL Copybook
	Define Code Generation Details
	Configure Transaction Input and Output
	Enter Transaction Details

	Tuxedo Mainframe Transaction Publisher
	Pack Artifacts
	Publish to OSB

	Installing/Uninstalling Tuxedo Mainframe Transaction Publisher
	Prerequisite
	Installing Tuxedo Mainframe Transaction Publisher
	Checking Installation Status
	Using graphical user interface
	Using command lines

	Uninstalling Tuxedo Mainframe Transaction Publisher
	Installation Notes

	Setting up JDeveloper Project
	Setting up Oracle Service Bus (OSB)
	Installing EGen Libraries for OSB
	Importing Shared Resources to OSB

