Oracle® Tuxedo
Programming an Oracle Tuxedo Application Using Java

12c Release 2 (12.2.2)

April 2016

ORACLE

Oracle Tuxedo Programming an Oracle Tuxedo Application Using Java, 12c Release 2 (12.2.2)
Copyright © 1996, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to usin writing.

If thisis software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general usein avariety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create arisk of persona injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damagesincurred due to your access to or use of third-party content, products, or services.

Contents

1. Introduction to Oracle Tuxedo Java Programming

OV IV BV . oottt e
Programming GUIElINESt e
Programming ENVIrONmeNt. ot
Tuxedo Java Server Threads and Java Class InstanceModel
Tuxedo Java Server Initialization and Termination Methods.
Tuxedo 12c Release 2 (12.1.3 and Above) Behavior.
Tuxedo 12c Release 1 (12.1.1) Behavior. oo
tpsvrinit) Handling. e
tpsvrdone) Handling e

Tuxedo Java Server tpreturn() Methodo i
Tuxedo Java Server ExceptionHandlingo i

2. ATMI Java Server User Interfaces

TUXEAOJAVASEIVEY . . . oottt e e e e e
Oracle Tuxedo JaVa ConteXt oottt et e e e e
TIATMI Primitives for Tuxedo Java Applications.,

Java APl Programming Examples.
TypedBuffersfor Tuxedo Java Applications,

Limitations for Typedbuffer Support.
Get/Set Service Information

Programming an Oracle Tuxedo Application Using Java

3. Implementing Services in Oracle Tuxedo Java Server

Typical Procedures. 31
Example: Implementing Java Service without Transaction. 32
Defining Java Classes oo vt 32
Creating Java Server ConfigurationFile. L. 35
Updating UBB Configuration File i, 35
Example: Implementing Java Service with Transaction 3-6
Defining JavaClasseso v e e 3-6
Creating Java Server ConfigurationFile. o it 3-10
Updating UBB Configuration File 311
SEE Al . 312

4. Reference

Using FML with Oracle Tuxedo JavaServer., 4-1
Overview Of FML . ..o 4-1
The Oracle WebLogic Tuxedo Connector FML APl 4-2
FML Field Table Administration.t 4-2
Using the DynRdHdr Property for mkfldclass32Class 4-3
Gaining TypedFML 32 Performance Improvements.. 4-5

Using VIEW with Oracle Tuxedo JavaServer. 4-5
Overview of VIEW BUFferS. e 4-5
How to CreateaVIEW DescriptionFile. i 4-6
Example VIEW DescriptionFile.o 4-7
How to Usetheviewj Compiler i 4-8

i Programming an Oracle Tuxedo Application Using Java

How to Pass Information to and fromaVIEW Buffer
How to Use VIEW Buffersin JATMI Applications
How to Get VIEW32 Data In and Out of FML32Buffers

Programming an Oracle Tuxedo Application Using Java

iv

Programming an Oracle Tuxedo Application Using Java

CHAPTERa

Introduction to Oracle Tuxedo Java
Programming

Thistopic includes the following sections:

o Overview

Programming Guidelines

Programming Environment
e Tuxedo Java Server Threads and Java Class Instance M odel

Tuxedo Java Server Initialization and Termination Methods

Tuxedo Java Server tpreturn() Method

e Tuxedo Java Server Exception Handling

Overview

An Oracle Tuxedo service can be devel oped using pure Javalanguage. The service implemented
with Java language functions the same as other Tuxedo services. You can call the services
advertised by the Tuxedo Java server (TMJavasvr) using ATMI interfaces from client/ Tuxedo
server, and similarly, you can call the services advertised by the Tuxedo server using TIATMI
interfaces from the java-implemented service.

Besides, you can call java-implemented services from any type of Tuxedo clients, such as native
clients, /WS clients, and Jolt clients.

Programming an Oracle Tuxedo Application Using Java 1-1

It is supported to use avariety of mainstream Javatechnologieslike TIJATMI interface, JATMI
TypedBuffers, POLO java object, and so on to implement Tuxedo services.

Programming Guidelines

The following guidelines are basic instructions for Java service devel opment.

e Java server class, which implements Java services, should inherit the TuxedoJavaserver
class; Java server class also should have a default constructor.

e In Javaserver class, Java method, which will be advertised as Java service, should take the
TPSVCINFO interface as the only input argument and should be declared to public.

e Java server class should implement tpsvrinit () method, which will be called when
Tuxedo Java server starts up.

e Java server class should implement tpsvrdone () method, which will be called when
Tuxedo Java server shuts down.

e Javaservice could use Tuxedo Java ATMI (e.g, tpcall, tpbegin, €tC).

e Java service could return result to client by using tpreturn and exit by throwing
exception.

Programming Environment

For complete information on programming environment, see Configurationsin UBBCONFIG.

Tuxedo Java Server Threads and Java Class Instance
Model

e In Tuxedo 12c Release 1 (12.1.1), Tuxedo Java server uses traditional Tuxedo multithread
model and must be running in multithread mode.

e Once started, Tuxedo Java server creates one global object (instance) for each class defined
in the configuration file and then the working threads share the global object (instance)
when handling the Java service.

1-2 Programming an Oracle Tuxedo Application Using Java

../javaserv/javaservconfig.html#1083720

Tuxedo Java Server Initialization and Termination Methods

Tuxedo Java Server Initialization and Termination
Methods

The method behavior differ between Tuxedo 12¢c Release 2 (12.1.3 and above) and Tuxedo 12c
Release 1 (12.1.1).

e Tuxedo 12c Release 2 (12.1.3 and Above) Behavior
e Tuxedo 12c Release 1 (12.1.1) Behavior

Tuxedo 12¢ Release 2 (12.1.3 and Above) Behavior

Java server supports the following initialization and termination methods: tpsvrinit (),
tpsvrinit (String []), tpsvrdone (), tpsvrthrinit (), tpsvrthrinit (String []1),and
tpsvrthrdone ().

Note: tpsvrinit() and tpsvrdone () are mandatory; the other four methods are optional.

When |oading application server class, Java server retrieves al these initialization and
termination methods and invokes the corresponding initialization methods under the following
rules.

Table 1-1 Invocation Rules for Standard Initialization Methods

Implemented Initialization Methods Specified <server-clopt> Invoked Method
tpsvrinit () Yes tpsvrinit ()
tpsvrinit () No tpsvrinit ()
tpsvrinit (), Yes tpsvrinit (String [])

tpsvrinit (String [])

tpsvrinit (), No tpsvrinit ()
tpsvrinit (String [])

When being instantiated and activated, Java server invokes corresponding thread level of
initialization method if it isimplemented in user server class. Theinvocation rules are listed as
below.

Programming an Oracle Tuxedo Application Using Java 1-3

1-4

Table 1-2 Invocation Rules for Standard Thread Initialization Methods

Implemented Initialization Methods Specified Invoked Method
<server-clopt>

tpsvrthrinit() Yes tpsvrthrinit ()
tpsvrthrinit () No tpsvrthrinit ()
tpsvrthrinit(), Yes tpsvrthrinit (String [1])

tpsvrthrinit(String [])

tpsvrthrinit(), No tpsvrthrinit ()
tpsvrthrinit (String [])

tpsvrthrinit (String [1]) Yes tpsvrthrinit (String [])

tpsvrthrinit (String []) No No method is invoked.

When a server dispatching thread is inactivated, tpsvrthrdone () method isinvoked if the
server classimplementsiit.

tpsvrthrinit () and tpsvrthrdone () will not beinvoked if Java server isrunning in
single-thread mode.

Note: Users can invoke Java APIsin theinitialization and termination methods.

Tuxedo 12c¢ Release 1 (12.1.1) Behavior
tpsvrinit() Handling

Users need to implement the tpsvrinit () method. Given that tpsvrinit () will be called
when server startsup, it'srecommended to put the class scopeinitialization in thismethod. If one
class tpsvrinit () fails, awarning message will be reported in user log and the Java server will
continue its execution.

tpsvrdone() Handling

Users need to implement the tpsvrdone () method. Given that tpsvrdone () will be called
when the server shuts down, it's recommended to put the class scope cleanup actionsin this
method.

Programming an Oracle Tuxedo Application Using Java

Tuxedo Java Server tpreturn() Method

Tuxedo Java Server tpreturn() Method

The tpreturn () inJavaservice does not immediately disrupt the Java service method
execution, but provides the return results to Tuxedo Java server.

How tpreturn () behavesin Javaserviceis different from how tpreturn () behavesinthe
existing Tuxedo system.

e When atpreturn () iscaled inthe existing Tuxedo system, the flow control is
transferred to Tuxedo automatically.

e Whenatpreturn () iscalledin Javaservice, statements after tpreturn () will still be
executed. Users must make sure tpreturn () isthe last execution statement in Java
service - if not, it is suggested to use afollowing Java return invocation after
tpreturn () ; otherwise, tpreturn () will not transfer the flow control to the Tuxedo
system automatically.

Note: The use of aJava return Statement in Java service without a previous tpreturn ()

statement isnot suggested - such use will make the Javaserver return Tpra1L with rcode
setting 0 to the corresponding client.

Tuxedo Java Server Exception Handling

e Java service can throw any exception during execution and exit the Java service. In this
case the Java server will return Terat1, with rcode setting to O for this service toits client.

e All the exception information is recorded into the $APPDIR/stderr file.

See Also

TMJAVASVR (5)

Java Server Javadoc

Oracle Tuxedo Java Server Administration

Oracle Tuxedo Java Server Configuration

Appendix: Java Server Configuration File Schema
Programming an Oracle Tuxedo Application Using Java

Programming an Oracle Tuxedo Application Using Java 1-5

../pgj/index.html
../javaserv/javaservadmin.html
../javaserv/javaservconfig.html
../javaserv/javaservappdx.html
../rf5/rf5.html
../javadoc/javasev/overview-summary.html

1-6 Programming an Oracle Tuxedo Application Using Java

CHAPTERa

ATMI Java Server User Interfaces

Thistopic includes the following sections:

TuxedoJavaServer

Oracle Tuxedo Java Context

TJATMI Primitives for Tuxedo Java Applications

TypedBuffers for Tuxedo Java Applications
o Get/Set Service Information

Exception

e Trace

TuxedoJavaServer

TuxedoJavaServer iSan abstract class, which should beinherited by all the user-defined classes
that implement the services.

Programming an Oracle Tuxedo Application Using Java 2-1

Table 2-1 TuxedoJavaServer Interfaces

Function Description

tpsvrinit An abstract method, which should be implemented by child classto do
some initialization works

tpsvrdone An abstract method, which should be implemented by child classto do
some cleanup works

getTuxAppContext Useto retrieve the current attached Tuxedo application Java context.

Oracle Tuxedo Java Context

To access the TJATMI primitives provided by Oracle Tuxedo Java server, you need to get a
TuxAppContext object that implements all the TIATMI primitives.

Becausethe serviceclassinheritsfrom TuxedoJavaserver, you can cal get TuxappContext ()
in the service to get the context object. However, you cannot get TuxappContext in
tpsvrinit () becausethe Tuxappcontext isnot ready at thistime. If you try to get the
TuxAppContext Object in tpsvrinit (), tpsvrinit () will fail and throw an exception.

TJATMI Primitives for Tuxedo Java Applications

2-2

TJATMI isaset of primitivesthat provides communication between clients and servers, such as
calling the services, starting and ending transactions, getting the connection to DataSource,
logging, and etc.

For more information, see Java Server Javadoc.

Table 2-2 TIATMI Primitives

Name Operation

tpcall Use for synchronous invocation of an Oracle Tuxedo service during
reguest/response communication.

tpacall Routine for sending service request and awaiting its reply

tpgetrply Routine for getting areply from a previous request

Programming an Oracle Tuxedo Application Using Java

http://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/javadoc/javasev/com/oracle/tuxedo/tjatmi/package-summary.html
../javadoc/javasev/overview-summary.html

Tahle 2-2 TJATMI Primitives

TJATMI Primitives for Tuxedo Java Applications

Name Operation

tpcancel Routine for canceling a call descriptor for outstanding reply

tpsubscribe Subscribes to an event

tpunsubscribe Unsubscribes to an event

tppost Posts an event

tpbroadcast Routine to broadcast notification by name

tpnotify Routine for sending notification by client identifier

tpbegin Use to begin atransaction.

tpcommit Use to commit the current transaction

tpabort Use to abort the current transaction

tpsuspend Suspends a global transaction

tpresume Resumes a global transaction

tpgetlev Routine for checking if atransaction isin progress

tpscmt Routine for setting when tpcommit () should return

tpenqueue Routine to enqueue a message

tpdequeue Routine to dequeue a message from a queue

tpgblktime Routine for returning a previously set, per second or millisecond
nontransactional blocktime value

tpsblktime Routine for setting nontransactional blocktime values, in seconds or
milliseconds, for the next service call or for all service calls used per
context

tpsprio Routine for setting service request priority

tpgprio Routine for getting a service request priority

tpgetctxt Retrieves a context identifier for the current application association

tpsetctxt Sets a context identifier for the current application association

Programming an Oracle Tuxedo Application Using Java 2-3

2-4

Tahle 2-2 TJATMI Primitives

Name Operation

tpappthrinit Routine for creating and initializing a new Tuxedo context in an
application-created server thread

tpappthrterm Routine for terminating Tuxedo application-created context in a server
process

tpreturn Use to set the return value and datain Tuxedo Java Server.

tpgetlev Useto check if atransaction isin progress

getConnection Use to get a connection to the configured DataSource

userlog Useto print the user log in Tuxedo user log file

Note: The service continues running after tpreturn ends execution. It is recommended put
tpreturn () asthe last executive statement in the service.

Java APl Programming Examples

Most Tuxedo Java APls must beinvoked in avalid Tuxedo context. Before invoking these APIs,
avalid Tuxedo context must be acquired.

The following examples present the ways to program with Java APIs.
e Examplefor Invoking APIsin Server Initialization and Termination Stage
e Example for Invoking APIsin Service Routine
e Example for Forwarding Service Requests

e Examplefor Invoking APIsin an Application Server Thread

Listing 2-1 Example for Invoking APls in Server Initialization and Termination Stage

public int tpsvrinit()
{
TuxAppContext myAppCtxt = null;

try {

Programming an Oracle Tuxedo Application Using Java

}

TJATMI Primitives for Tuxedo Java Applications

int cd;

TypedString rgstData = new TypedString("hello”);
TuxATMIReply rply = null;

myAppCtxt = getTuxAppContext () ;

cd = myAppCtxt.tpacall ("data_process", rgstData, 0);

rply = myAppCtxt.tpgetrply(cd, 0);

} catch (TuxATMITPException ex) {

} catch (Throwable ex) {

}

return

0;

public void tpsvrdone ()

{

TuxAppContext myAppCtxt = null;

try {

TypedString rgstData = new TypedString("hello”);
TuxATMIReply rply = null;
myAppCtxt = getTuxAppContext () ;

rply = myAppCtxt.tpcall ("data_process", rgstData, 0);

} catch (TuxATMITPException ex) {

} catch (Throwable ex) {

}

return;

Programming an Oracle Tuxedo Application Using Java 2-5

Listing 2-2 Example for Invoking APIs in Service Routine

public void MYSERVICE (TPSVCINFO rgst)
{
TuxAppContext myAppCtxt = null;
try {
TypedFML32 rgstData = (TypedFML32)rgst.getServiceDatal() ;
TuxATMIReply rply = null;
TypedFML32 rplyData = null;
myAppCtxt = getTuxAppContext () ;
rply = myAppCtxt.tpcall ("data_process", rgstData, 0);
rplyData = (TypedFML32)rply.getReplyBuffer();
myAppCtxt.tpreturn (TPSUCCESS, 0, rplyData, 0);
} catch (TuxATMITPException ex) {
} catch (Throwable ex) {
}

return;

Listing 2-3 Example for Forwarding Service Requests

public void MYSERVICE (TPSVCINFO rgst)
{

TuxAppContext myAppCtxt = null;

try {

2-6 Programming an Oracle Tuxedo Application Using Java

TJATMI Primitives for Tuxedo Java Applications

TypedFML32 rgstData = (TypedFML32)rgst.getServiceDatal() ;
TuxATMIReply rply = null;
TypedFML32 rplyData = null;
myAppCtxt = getTuxAppContext () ;
rply = myAppCtxt.tpcall ("data_process", rgstDhata, 0);
rplyData = (TypedFML32)rply.getReplyBuffer();
myAppCtxt.tpforward ("FWD_SVC", rplyData, 0);

} catch (TuxATMITPException ex) {

} catch (Throwable ex) {

}

return;

Listing 2-4 Example for Invoking APIs in an Application Server Thread

public class SimpServTuxAppThread implements Runnable, TuxATMIConstants {
public void run() {
try {

TPINIT tpinfo = null;

int rtn = 0;

rtn = TuxAppContextUtil.tpappthrinit (tpinfo);

TuxAppContext myAppCtxt = null;

myAppCtxt = TuxAppContextUtil.getTuxAppContext () ;

TuxATMIReply rply = null;

TypedString rgStr = new TypedString("Is_is_simple_appThread_test");

rply = myAppCtxt.tpcall("SVC", rqgStr, TPNOTIME|TPSIGRSTRT) ;

Programming an Oracle Tuxedo Application Using Java 2-1

rtn = TuxAppContextUtil.tpappthrterm() ;
} catch (TuxATMITPException ex) {

} catch (Throwable ex) {

Note: Inthe above example, avalid Tuxedo application context can be created by invoking
TuxAppContextUtil.tpappthrinit () inan application created Java server thread.
After theinvocation of TuxaAppContextUtil.tpappthrinit () issuccessfully
completed, you can get avalid Tuxedo application context by invoking
TuxAppContextUtil.getTuxAppContext () method and then Tuxedo Java APIs can
be called in the context.

TypedBuffers for Tuxedo Java Applications

ATMI Java server reuses the Oracle WebL ogic Tuxedo Connector TypedBuffers that
correspondsto Oracle Tuxedo typed buffers. M essages are passed to serversin typed buffers. The
ATMI Java server provides the following buffer typesin Table 2-3:

Table 2-3 TypedBuffers

Buffer Type Description

TypedString Buffer type used when the datais an array of characters that terminates
with the null character. Oracle Tuxedo equivalent: STRING.

TypedCArray Buffer type used when the datais an undefined array of characters (byte
array), any of which can be null. Oracle Tuxedo equivalent: CARRAY.

TypedFML Buffer type used when the datais self-defined. Each datafield carriesits
own identifier, an occurrence number, and possibly alength indicator.
Oracle Tuxedo equivalent: FML.

TypedFML32 Buffer type similar to TypeFML but allows for larger character fields,
morefields, and larger overall buffers. Oracle Tuxedo equivalent: FML32.

2-8 Programming an Oracle Tuxedo Application Using Java

Table 2-3 TypedBuffers

Get/Set Service Information

Buffer Type Description

TypedXML Buffer type used when datais an XML based message. Oracle Tuxedo
equivalent: XML for Tuxedo Release 7.1 and higher.

TypedView Buffer type used when the application uses a Java structure to define the
buffer structure using a view description file. Oracle Tuxedo equivalent:
VIEW

TypedvView32 Buffer type similar to View but allows for larger character fields, more

fields, and larger overall buffers. Oracle Tuxedo equivalent: VIEW32.

For more information, see the Package of "weblogic.wtc.jatmi".

Additionally, "Using FML with Oracle Tuxedo Java Server" and "Using VIEW with Oracle
Tuxedo Java Server" in Reference are useful for you to use TypedFML/TypedFML 32 and/or
TypedView/TypedView32 in Java server class.

Limitations for Typedbuffer Support

e F1did () /Fname () for the Typedrmr.32 which is embedded in another Typedrmr.32 cannot
work. To work around thisissue, you can usethe fieldtable classinstead for name/id

transferring.

e Theweblogic.wtc.gwt.XmlViewCnv/XmlFmlCnv classis not available for the present.

Get/Set Service Information

Use the TpsvcINFo classto get/set service information sent by the Oracle Tuxedo client.

Tahle 2-4 Getter Functions

Function Description

getServiceData Useto return the service data sent from the Oracle Tuxedo Client.
getServiceFlags Use to return the service flags sent from the Oracle Tuxedo Client.
getServiceName Use to return the service name that was called.

Programming an Oracle Tuxedo Application Using Java 2-9

http://docs.oracle.com/cd/E24329_01/apirefs.1211/e24391/index.html
http://docs.oracle.com/cd/E24329_01/apirefs.1211/e24391/index.html
../pgj/pgjref.html

Table 2-4 Getter Functions

Function Description
getAppKey Use to get the application authentication client key.
getClientID Useto get the client identifier for originating client.

Use TuxATMIReply to get the reply data and meta-data from a service invocation.

Table 2-5 Getter Functions for Reply

Function Description
getReplyBuffer Return the (possibly null) typed buffer returned from a service
gettpurcode Return the tpurcode returned from aservice

Exception

Y ou need to catch the exception thrown by JATMI primitivesin the service, such as tpcall ().
There are two types of exceptions that JATMI can throw:

e TuxATMITPException: EXceptionthrown that representsa TIATMI failure.

e TuxATMITPReplyException: Exception thrown if there was a service failure
(TPESVCFAIL Or TPSVCERROR) and user data may be associated with the exception.

For more information, see Java Server Javadoc.

Trace

Y ou also need to export TMTRACE=atmi : ulog asyou have done for traditional Tuxedo ATMI.
The TIATMI API traces are written into ULOG as other ATMI traces.

See Also

TMJAVASVR (5)
Java Server Javadoc

Programming an Oracle Tuxedo Application Using Java

../javadoc/javasev/overview-summary.html
../rf5/rf5.html
../javadoc/javasev/overview-summary.html
../javadoc/javasev/overview-summary.html
../javadoc/javasev/overview-summary.html

See Also

Oracle Tuxedo Java Server Administration

Oracle Tuxedo Java Server Configuration

Appendix: Java Server Configuration File Schema
Programming an Oracle Tuxedo Application Using Java

Programming an Oracle Tuxedo Application Using Java 2-11

../pgj/index.html
../javaserv/javaservadmin.html
../javaserv/javaservappdx.html
../javaserv/javaservconfig.html

2-12 Programming an Oracle Tuxedo Application Using Java

CHAPTERa

Implementing Services in Oracle
Tuxedo Java Server

Thistopic includes the following sections:
e Typical Procedures
e Example: Implementing Java Service without Transaction

e Example: Implementing Java Service with Transaction

Typical Procedures

Typical steps of implementing the services in Oracle Tuxedo Java server are as follows.
Define aclass that inherits from TuxedoJavaServer
Provide a default constructor

Implement the tpsvrinit () and tpsvrdone () method

A wo o

Implement the service method which should use TpsvcINFoO asits only argument parameter,
asfollows:

a. Get the TuxappContext Object using getTuxAppContext () method

b. Get the client request data using TPSVCINFO.getServiceData () method from
TPSVCINFO Object

c. If you have configured a DataSource, get a connection to the DataSource using
TuxAppContext .getConnection () method

Programming an Oracle Tuxedo Application Using Java 3-1

d. Dothebusinesslogic, such ascall some other servicesusing TuxAppContext . tpcall (),
manipul ate the database, etc.

e. Allocate anew TypedBuffer and put areply datain the TypedBuffer

f. Cal TuxaAppContext.tpreturn () toreturn the reply datato client

Example: Implementing Java Service without Transaction

Following is a simple exampl e that implements the TourPER service. It includes three steps:
1. Defining Java Classes: Listing 3-1
2. Creating Java Server Configuration File: Listing 3-2

3. Updating UBB Configuration File: Listing 3-3

Defining Java Classes

Listing 3-1 Java Class Definition

import weblogic.wtc.jatmi.TypedBuffer;

import weblogic.wtc.jatmi.TypedString;

import com.oracle.tuxedo.tjatmi.*;

public class MyTuxedoJavaServer extends TuxedoJavaServer {
public MyTuxedoJavaServer ()
{

return;

public int tpsvrinit() throws TuxException
{
System.out.println ("MyTuxedoJavaServer.tpsvrinit()");

return 0;

3-2 Programming an Oracle Tuxedo Application Using Java

Example: Implementing Java Service without Transaction

public void tpsvrdone ()
{
System.out.println ("MyTuxedoJavaServer.tpsvrdone()") ;

return;

public void JAVATOUPPER (TPSVCINFO rgst) throws Exception {
TypedBuffer svcData;
TuxAppContext myAppCtxt = null;
TuxATMIReply myTuxReply = null;

TypedBuffer replyTb = null;

/* Get TuxAppContext first */

myAppCtxt = getTuxAppContext () ;

svcData = rgst.getServiceDatal) ;

TypedString TbString = (TypedString)svcData;
myAppCtxt.userlog("Handling in JAVATOUPPER()") ;
myAppCtxt.userlog("Received string is:" + TbString.toString());
String newStr = TbString.toString() ;

newStr = newStr.toUpperCase() ;

TypedString replyTbString = new TypedString (newStr) ;

/* Return new string to client */

myAppCtxt.tpreturn (TPSUCCESS, 0, replyTbString, 0);

Programming an Oracle Tuxedo Application Using Java 3-3

public void JAVATOUPPERFORWARD (TPSVCINFO rgst) throws Exception ({
TypedBuffer svcData;
TuxAppContext myAppCtxt = null;
TuxATMIReply myTuxReply = null;
TypedBuffer replyTb = null;
long flags = TPSIGRSTRT;
/* Get TuxAppContext first */
myAppCtxt = getTuxAppContext () ;
svcData = rgst.getServiceDatal) ;

TypedString TbString = (TypedString)svcData;

myAppCtxt.userlog("Handling in JAVATOUPPERFORWARD()") ;
myAppCtxt.userlog("Received string is:" + TbString.toString()) ;

/* Call another service "TOUPPER" which may be implemented by another

Tuxedo Server */
try {
myTuxReply = myAppCtxt.tpcall ("TOUPPER", svcData, flags);
/* If success, get reply buffer */
replyTb = myTuxReply.getReplyBuffer () ;
TypedString replyTbStr = (TypedString)replyTb;

myAppCtxt.userlog("Replied string from TOUPPER:" +
replyTbStr.toString()) ;

/* Return the replied buffer to client */
myAppCtxt.tpreturn (TPSUCCESS, 0, replyTb, 0);

} catch (TuxATMITPReplyException tre) {
myAppCtxt.userlog ("TuxATMITPReplyException:" + tre);
myAppCtxt. tpreturn (TPFAIL, 0, null, 0);

} catch (TuxATMITPException te) {

Programming an Oracle Tuxedo Application Using Java

Example: Implementing Java Service without Transaction

myAppCtxt.userlog ("TuxATMITPException:" + te);

myAppCtxt.tpreturn (TPFAIL, 0, null, 0);

Creating Java Server Configuration File

Listing 3-2 shows an configuration example that exports

MyTuxedoJavaServer . JAVATOUPPER () method as Tuxedo service name JAVATOUPPER and
MyTuxedoJavaServer . JAVATOUPPERFORWARD () method as Tuxedo service name
JAVATOUPPERFORWARD.

Listing 3-2 Java Server Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<TJSconfig>
<TuxedoServerClasses>
<TuxedoServerClass name="MyTuxedoJavaServer"></TuxedoServerClass>
</TuxedoServerClasses>

</TJSconfig>

Updating UBB Configuration File

Listing 3-3 UBB Config File Configuration

*GROUPS

TJSVRGRP LMID=simple GRPNO=2

Programming an Oracle Tuxedo Application Using Java 3-5

*SERVERS
TMJAVASVR SRVGRP= TJSVRGRP SRVID=4CLOPT="-- -c TJSconfig.xml"

MINDISPATCHTHREADS=2 MAXDISPATCHTHREADS=2

Example: Implementing Java Service with Transaction

3-6

Listing 3-4 shows an example that implements the WRITEDB_SVCTRN_COMMIT Service which
inserts the user request string into the table: TuxJ_TRAN_TEST.

It includes three steps:

1. Defining Java Classes: Listing 3-4

2. Creating Java Server Configuration File: Listing 3-5
3. Updating UBB Configuration File: Listing 3-6

Defining Java Classes

Listing 3-4 Class Definition

import weblogic.wtc.jatmi.TypedBuffer;
import weblogic.wtc.jatmi.TypedString;
import com.oracle.tuxedo.tjatmi.*;
import java.sqgl.SQLException;
/* MyTuxedoTransactionServer is user defined class */
public class MyTuxedoTransactionServer extends TuxedoJavaServer{
public MyTuxedoTransactionServer ()
{
return;
}

public int tpsvrinit() throws TuxException

Programming an Oracle Tuxedo Application Using Java

Example: Implementing Java Service with Transaction

System.out.println("In MyTuxedoTransactionServer

return 0;

public void tpsvrdone ()
{
System.out.println("In MyTuxedoTransactionServer
return;
}
public void WRITEDB_SVCTRN_COMMIT (TPSVCINFO rgst) throws

TuxAppContext myAppCtxt;

TypedBuffer rplyBuf = null;
String strType = "STRING";
String ulogMsg;

TypedString rgstMsg;

Connection connDB = null;
Statement stmtDB = null;

String stmtSQL;

int trnLvl, trnStrtInSvC;
int trnRtn;

int rc = TPSUCCESS;
rgstMsg = (TypedString)rgst.getServiceDatal() ;

myAppCtxt = getTuxAppContext () ;

myAppCtxt.userlog ("JAVA-INFO: Request Message Is
rgstMsg.toString () + "\"");

.tpsvrinit()");

.tpsvrdone () ") ;

TuxException {

o

Programming an Oracle Tuxedo Application Using Java

3-1

3-8

rplyBuf = new TypedString("This Is a Simple Transaction Test from

Tuxedo Java Service");

long trnFlags = 0;

try {

trnStrtInSvC = 0;
trnLvl = myAppCtxt.tpgetlev() ;

if (0 =

trnLvl) {

long trnTime = 6000;

myAppCtxt.userlog ("JAVA-INFO: Start a transaction...");

trnRtn = myAppCtxt.tpbegin(trnTime, trnFlags);

myAppCtxt.userlog ("JAVA-INFO: tpbegin return "

trnStrtInsSvC = 1;
}
connDB = myAppCtxt.getConnection() ;

if (null != connDB) {

myAppCtxt.userlog ("JAVA-INFO: Get connection:

connDB. toString () + ").");
}
stmtDB = connDB.createStatement () ;

if (null != stmtDB) {

+ trnRtn) ;

(n

myAppCtxt.userlog ("JAVA-INFO: Create statement:

StmtDB.toString () + ").");
}
StmtSQL = "INSERT INTO TUXJ_TRAN_TEST VALUES ('"

rgstMsg.toString() + "')";

myAppCtxt.userlog ("JAVA-INFO: Start to execute sqgl

stmtDB.execute (stmtSQL) ;

Programming an Oracle Tuxedo Application Using Java

+

(u

+

(u +

+ stmtSQL

Example: Implementing Java Service with Transaction

myAppCtxt.userlog ("JAVA-INFO: End to execute sgl (" + stmtSQL +

if (1 == trnStrtInSvC) {

myAppCtxt.userlog ("JAVA-INFO: tpcommit current

transaction...");
trnRtn = myAppCtxt.tpcommit (trnFlags) ;
myAppCtxt.userlog ("JAVA-INFO: tpcommit return " + trnRtn);

trnStrtInSvC = 0;

}
} catch (TuxATMIRMException e) {

String errMsg = "ERROR: TuxATMIRMException: (" + e.getMessage()

myAppCtxt.userlog("JAVA-ERROR: " + errMsqg) ;
rc = TPFAIL;
} catch (TuxATMITPException e) {

String errMsg = "ERROR: TuxATMITPException: (" + e.getMessage()

myAppCtxt.userlog ("JAVA-ERROR: " + errMsqg) ;
rc = TPFAIL;
} catch (SQLException e) {
String errMsg = "ERROR: SQLException: (" + e.getMessage() + ").";
myAppCtxt.userlog ("JAVA-ERROR: " + errMsg) ;
rc = TPFAIL;
} catch (Exception e) {

String errMsg = "ERROR: Exception: (" + e.getMessage() + ").";

Programming an Oracle Tuxedo Application Using Java 3-9

myAppCtxt.userlog ("JAVA-ERROR: " + errMsg) ;
rc = TPFAIL;
} catch (Throwable e) {
String errMsg = "ERROR: Throwable: (" + e.getMessage() + ").";
myAppCtxt.userlog ("JAVA-ERROR: " + errMsg) ;
rc = TPFAIL;
} finally {
if (null !'= stmtDB) {
try {
stmtDB.close() ;
} catch (SQLException e) {}
}

myAppCtxt.tpreturn(rc, 0, rplyBuf, 0);

Creating Java Server Configuration File

Listing 3-5 Java Server Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<TJSconfig>

<ClassPaths>

<ClassPath>/home/oracle/app/oracle/product/11.2.0/dbhome_2/ucp/lib/ucp.jar
</ClassPath>

3-10 Programming an Oracle Tuxedo Application Using Java

Example: Implementing Java Service with Transaction

<ClassPath>/home/oracle/app/oracle/product/11.2.0/dbhome_2/jdbc/lib/ojdbcé
.jar</ClassPath>

</ClassPaths>

<DataSources>

<DataSource name="oracle">

<DriverClass>oracle.jdbc.xa.client.OracleXADataSource</DriverClass>

<JdbcDriverParams>

<ConnectionUrl>jdbc:oracle:thin:@//10.182.54.144:1521/javaorcl</Connection
Url>

</JdbcDriverParams>
</DataSource>
</DataSources>
<TuxedoServerClasses>
<TuxedoServerClass name=" MyTuxedoTransactionServer">
</TuxedoServerClass>
</TuxedoServerClasses>

</TJSconfig>

Updating UBB Configuration File

Listing 3-6 UBB Conf File Configuration

*GROUPS

ORASVRGRP LMID=simple GRPNO=1

Programming an Oracle Tuxedo Application Using Java 3-11

OPENINFO="Oracle_XA:Oracle_XA+Acc=P/scott/triger+SesTm=120+MaxCur=5+LogDir
=.+SglNet=javaorcl"

TMSNAME=TMSORA TMSCOUNT=2

*SERVERS

TMJAVASVR SRVGRP=ORASVRGRP SRVID=3
CLOPT="-- -c TJSconfig.xml"

MINDISPATCHTHREADS=2 MAXDISPATCHTHREADS=4

See Also

TMJAVASVR (5)

Java Server Javadoc

Oracle Tuxedo Java Server Administration

Oracle Tuxedo Java Server Configuration

Appendix: Java Server Configuration File Schema
Programming an Oracle Tuxedo Application Using Java

3-12 Programming an Oracle Tuxedo Application Using Java

../pgj/index.html
../javaserv/javaservadmin.html
../javaserv/javaservappdx.html
../javaserv/javaservconfig.html
../rf5/rf5.html
../javadoc/javasev/overview-summary.html

Reference

Thistopic includes the following sections:
e Using FML with Oracle Tuxedo Java Server
e Using VIEW with Oracle Tuxedo Java Server

Using FML with Oracle Tuxedo Java Server
Overview of FML

FML isaset of javalanguage functions for defining and manipulating storage structures called
fielded buffers. Each fielded buffer contains attribute-value pairsin fields. For each field:

e Theattributeisthe field'sidentifier.
e The associated value represents the field's data content.

e An occurrence number.
There are two types of FML:

e FML 16 based on 16-bit values for field lengths and identifiers. It is limited to 8191 unique
fields, individua field lengths of 64K bytes, and atotal fielded buffer size of 64K bytes.

e FML 32 based on 32-hit values for the field lengths and identifiers. It allows for about 30
million fields, and field and buffer lengths of about 2 billion bytes.

Programming an Oracle Tuxedo Application Using Java 4-1

42

For more information about using FML, see Programming a Tuxedo ATMI Application Using
FML.

The Oracle WebLogic Tuxedo Connector FML API

The FML application program interface (API) is documented in the weblogic.wtc.jatmi package
included in the Javadocs for "WebL ogic Server Classes".

FML Field Table Administration

Field tables are generated in amanner similar to Oracle Tuxedo field tables. The field tables are
text files that provide the field name definitions, field types, and identification numbers that are
common between the two systems. To interoperate with an Oracle Tuxedo system using FML,
the following steps are required:

1. Copy thefield tables from the Oracle Tuxedo system to Oracle Tuxedo Java server
environment.

For example: Your Oracle Tuxedo distribution contains a bank application example called
bankapp. It contains afile called bankflds that has the following structure:

name number type flags comments
ACCOUNT_ID 110 long - -
ACCT_TYPE 112 char - -
ADDRESS 109 string - -

2. Converted the field table definition into Java source files. Use the mkfldclass/mkfldclass32
utility supplied in the weblogic.wtc.jatmi package. This classisautility function that reads a
FML/FML32 Field Table and produces a Java file which implements the FIdThl interface.
There are two instances of this utility:

— mkfldclass
— mkfldclass32

Use the correct instance of the command to convert the bankflds field table into FML32
java source. The following example uses mkfldclass.

java weblogic.wtc.jatmi.mkfldclass bankflds
Theresulting fileis caled bankf1ds . java and has the following structure:
import java.io.*;

import java.lang.*;

Programming an Oracle Tuxedo Application Using Java

http://download.oracle.com/docs/cd/E13203_01/tuxedo/tux100/fml/fml01.html
http://download.oracle.com/docs/cd/E13203_01/tuxedo/tux100/fml/fml01.html
http://docs.oracle.com/cd/E24329_01/apirefs.1211/e24391/index.html
http://docs.oracle.com/cd/E24329_01/apirefs.1211/e24391/index.html

Using FML with Oracle Tuxedo Java Server

import java.util.*;

import weblogic.wtc.jatmi.*;

public final class bankflds

implements weblogic.wtc.jatmi.F1dTbl

/** number: 110 type: long */

public final static int ACCOUNT_ID = 33554542;
/** number: 112 type: char */

public final static int ACCT_TYPE = 67108976;
/** number: 109 type: string */

public final static int ADDRESS = 167772269;

/** number: 117 type: float */

}
3. Compile the resulting bankflds.java file using the following command:
javac bankflds.java

Theresult isabankflds.class file. When loaded, the Oracle Tuxedo Java server uses the
classfileto add, retrieve and delete field entries from an FML field.

4. Addthefield table class to <Resources> section in Tuxedo Java server's configuration file
(Also make sureit isalso included in <ClassPath> of Tuxedo Javaserver's configurationfile).

For example:
<Resources>
<FieldTablelé6Classes>bankflds</FieldTablel6Classes>

</Resources>

5. Restart your Tuxedo Java server to load the field table class definitions.

Using the DynRdHdr Property for mkfldclass32 Class

Y ou may need to use the DynRdHdr utility if:

Programming an Oracle Tuxedo Application Using Java 4-3

e You are using very large FML tables and the .java method created by the mkfldclass32
class exceeds the internal Java Virtual Machine limit on the total complexity of asingle
class or interface.

e You are using very large FML tables and are unable to load the class created when
compiling the .java method.

Use the following steps to use the DynRdHdr property when compiling your FML tables:
1. Convert the field table definition into Java source files.

2. java -DDynRdHdr=Path_to_Your_ FML_Table
weblogic.wtc.jatmi.mkfldclass32 userTable

The arguments for this command are defined as follows:

Table 4-1 Arguments for the Commend to Use the DynRdHdr Property

Attribute Description

-DDynRdHdAr Oracle WebL ogic Tuxedo Connector property used to compile an FML
table.

Path_to_Your_ FML_Ta Path name of your FML table. Thismay be either afully qualified path or

ble arelative path that can be found as aresource file using the server's
CLASSPATH.

weblogic.wtc.jatmi. Thisclassisauutility function that readsan FML32 Field Table and

mkfldclass32 produces a Java file which implements the FIdThl interface.

userTable Name of the .java method created by the mkfldclass32 class.

3. Compilethe userTable file using the following command:

javac userTable.java

4. Addthefield table class to <Resources> section in Tuxedo Java server's configuration
file(Also make sureit isalso included in <ClassPath> of Tuxedo Java server's configuration
file).

For example:
<Resources>
<FieldTable32Classes>userTable</FieldTable32Classes>

</Resources>.

4-4 Programming an Oracle Tuxedo Application Using Java

Using VIEW with Oracle Tuxedo Java Server

5. Restart your Tuxedo Java server to load the field table class definitions.

Onceyou have created theuserTable. class file, you can modify the FML table and deploy the
changeswithout having to manually create an updated userTable.class. Whenthe Javaserver
is started, Java server will load the updated FML table.

If the Path_to_vour FML_Table éttribute changes, you will need to use the preceding
procedure to update your userTable.java and userTable.class files.

Gaining TypedFML32 Performance Improvements

Two new constructors for TypedFML 32 are available to improve performance. The following
topic provides explanation as to when to use these constructors.

The constructors are defined in the Javadocs for "WebL ogic Server Classes'.
To gain TypedFML 32 performance improvements, you can choose to give size hintsto
TypedFML 32 constructors. There are two parameters that are available to those constructor:

e A parameter that hints for maximum number of fields. Thisincludes all the occurrences.

e A parameter for the total number of field IDs used in the buffer.

For instance, afield table used by the buffer contains 20 field I Ds, and each field can occur 20
times. In this case, the first parameter should be 400 for the maximum number of fields. The
second parameter should be 20 for the total number of field IDs.

TypeFML32 mybuffer = new TypeFML32 (400, 20);

Note: Thisusually works well with any size of buffer; however, it does not work well with
extremely small buffers.

If you have an extremely small buffer, use those constructor without hints. An example
of an extremely small buffer is a buffer with less than 16 total occurrences. If the buffer
isextremely large, for example contains more than 250000 total field occurrences, then
the application should consider splitting it into several buffers smaller than 250000 total
field occurrences.

Using VIEW with Oracle Tuxedo Java Server
Overview of VIEW Buffers

Oracle Tuxedo Java server allows you to use a Java view buffer type analogous to an Oracle
Tuxedo view buffer type derived from an independent C structure. This allows Oracle Tuxedo

Programming an Oracle Tuxedo Application Using Java 4-5

Java server classes and Oracle Tuxedo applications to pass information using acommon
structure.

For more information on Oracle Tuxedo view buffers, see"Using aVIEW Typed Buffer” in
Programming a Tuxedo ATMI Application Using C.

How to Create a VIEW Description File

Y our Oracle Tuxedo Java server class and your Oracle Tuxedo application must share the same
information structure as defined by the view description. The following format is used for each
structure in the view description file:

$ /* VIEW structure */
VIEW viewname
type cname fbname count flag size null

where
e Thefile nameisthe same as the view name.
e You can have only one view description per file.

e Theview description fileisthe samefile used for both the viewj compiler and the Oracle
Tuxedo viewc compiler.

e viewname is the name of the information structure.
e You can include acomment line by prefixing it with the # or s character.

e The following table describes the fields that must be specified in the view description file
for each structure.

Table 4-2 VIEW Description File Fields

Field Description
type Datatype of thefield. Can be set to short, long, float, double,
char, string, carray, or dec_t (packed decimal).
cname Name of the field as it appears in the information structure.
fbname Ignored.
count Number of times field occurs.
4-6 Programming an Oracle Tuxedo Application Using Java

http://download.oracle.com/docs/cd/E13203_01/tuxedo/tux100/pgc/pgbuf.html

Using VIEW with Oracle Tuxedo Java Server

Tahle 4-2 VIEW Description File Fields

Field Description

flag Specifies any of the following optional flag settings:
e N-zero-way mapping
* C-generate additional field for associated count member (ACM)
e L-hold number of bytestransferred for STRING and CARRAY

size For STRING and CARRAY buffer types, specifies the maximum length of
thevalue. Thisfield isignored for all other buffer types.

null User-specified NULL value, or minus sign (-) to indicate the default value
for afield. NULL values are used in VIEW typed buffers to indicate empty
C structure members.

The default NULL value for all numeric typesis 0 (0.0 for dec_t). For
character types, the default NULL valueis'\ 0'. For STRING and CARRAY
types, the default NULL valueis" "

Constants used, by convention, as escape characters can also be used to
specify aNULL value. The vIEW compiler recognizesthe following escape
constants: \ddd (whered isan octal digit), \ 0, \n, \t, \v, \r, \ £, \\,
\',and \".

Y ou may enclose STRING, CARRAY, and char NULL valuesin double or
singlequotes. ThevIEwW compiler does not accept unescaped quoteswithin
auser-specified NULL value.

Y ou can also specify the keyword NONE in the NULL field of avIEW
member description, which means that there is no NULL value for the
member. The maximum size of default valuesfor string and character array
membersis 2660 characters.

Example VIEW Description File

The following provides an example viEw description which uses view buffersto send
information to and receiveinformation from an Oracle Tuxedo application. Thefile namefor this
VIEW IS infoenc.

Listing 4-1 Example VIEW Description

VIEW infoenc

Programming an Oracle Tuxedo Application Using Java 4-1

4-8

#type cname fbname count flag size null

float amount AMOUNT 2 - - 0.0

short status STATUS 2 - - 0

int term TERM 2 - - 0

char mychar MYCHAR 2 - - -

string name NAME 1 - 16 -

carray carrayl CARRAY1 1 - 10 -

dec_t decimal DECIMAL 1 - 9 - #size ignored by viewj/viewj32
END

Note: fbname and null fields are not relevant for independent Java and C structures and are

ignored by the Javaand C view compiler. Y ou must include avalue (for example, adash)
How to Use the viewj CompilerHow to Use the viewj Compileras a placeholder in these

fields.

How to Use the viewj Compiler

To compile aview typed buffer, run the viewj command, specifying the package name and the
name of the view description file as arguments. The output fileiswritten to the current directory.

To usetheviewj compiler, enter the following command:

java weblogic.wtc.jatmi.view]j

[options]

[package] viewfile

To usethe viewj32 compiler, enter the following command:

java weblogic.wtc.jatmi.viewj32

[options]

[package] viewfile

The arguments for this command are defined as follows:

Programming an Oracle Tuxedo Application Using Java

Using VIEW with Oracle Tuxedo Java Server

Table 4-3 Arguments for the Commands for viewj Compiler

Argument

Description

options

e -associated_fields:

Usetoset AssociatedFieldHandling totrue. Thisalowsset and get
accessor methodsto use the val ues of the associated length and count fields
if they are specified in the vIEw description file. If not specified, the
default valuefor AssociatedFieldHandling isfalse.

¢ -bean_names:

Useto create set and get accessor names that follow JavaBeans naming
conventions. Thefirst character of thefield name is changed to upper case
before the set or get prefix isadded. The signature of indexed set accessors
for array fields changes from the default signature of void setafield (T
value, int index) to void setafield (intindex, T value).

¢ -—compat_names:

Useto create set and get accessor namesthat are formed by taking thefield
name from the vIEw description file and adding a set or get prefix.
Provides compatibility with releases prior to WebL ogic Server 8.1 SP2.
Default valueis -compat_names if ~-bean_names or
-compat_names is not specified.

e -modify_strings:

Use to generate different Java code for encoding strings sent to Oracle
Tuxedo and decoding stringsreceived from Oracle Tuxedo. Encoding code
adds a null character to the end of each string. Decoding code truncates
each string at the first null character received.

. —Xcommon :

Use to generate output class as extending TypedXCommon instead of
TypedView.

¢« -—xtype:

Use to generate output class as extending TypedXCType instead of
TypedView.

Note: -compat_names and -bean_names are mutually
exclusive options.

Programming an Oracle Tuxedo Application Using Java 4-9

Table 4-3 Arguments for the Commands for viewj Compiler

Argument Description

package The package name to be included in the .java source file.

Example: examples.wtc.atmi.simpview

viewfile Name of the VIEW description file.

Example: Infoenc

4-10

For example:

e A vIEw buffer is compiled asfollows:

java weblogic.wtc.jatmi.viewj -compat_names
examples.javaserver.atmi.simpview infoenc

e A view32 buffer is compiled asfollows:
java weblogic.wtc.jatmi.viewj32 -compat_names -modify_strings

examples.javaserver.atmi.simpview infoenc

How to Pass Information to and from a VIEW Buffer

The output of the viewj and viewj32 command is a.javasource file that contains set and get
accessor methods for each field in the view description file. Use these set and get accessor
methods in your Java applications to pass information to and from aview buffer.

TheassociatedFieldHandling flagisused to specify if the set and get methods usethe values
of the associated length and count fields if they are specified in the view description file.set
methods set the count for an array field and set the length for a string or carray field.

e Array get methods return an array that is at most the size of the associated count field.

e String and carray get methods return data that is at most the length of the associated length
field.

Use one of the following to set or get the state of the AssociatedFieldHandling flag:

e Usethe -associated fields option for theviewj and view]32 compiler to set the
AssociatedFieldHandling flag to true

e Invokethevoid setAssociatedFieldHandling (boolean state) method in your Java
application to set the state of the AssociatedFieldHandling flag.

Programming an Oracle Tuxedo Application Using Java

Using VIEW with Oracle Tuxedo Java Server

— If false, the set and get methods ignore the length and count fields.

— If true, the set and get methods use the val ues of the associated length and count fields
if they are specified in the view description file.

— Thedefault stateis false.

e Invoke the boolean getassociatedFieldHandling () method in your Java application to

return the current state of AssociatedFieldHandling.

How to Use VIEW Buffers in JATMI Applications

Use the following steps when incorporating view buffersin your gatm1 applications:

1
2.
3.

7.

Create aview description file for your application as described above.
Compile the view description file as described above.

Use the set and get accessor methods to pass information to and receive information from a
view buffer as described above.

Import the output class of the view compiler into your source code.

If necessary, compile the view description file for your Oracle Tuxedo application and
include the output in your C source file as described in "Using aVIEW Typed Buffer” in
Programming a Tuxedo ATMI Application Using C.

Configure the fully qualified class name of the compiled Javaview description filein
<Resources> section in Tuxedo Java server configuration. The class of the compiled Java
view description file should also be included in <ClassPath> of your configuration file.

For example: (for view32)

<Resources>

<ViewFile32Classes>
examples.javaserver.atmi.simpview</ViewFile32Classes>

</Resources>

Launch your Oracle Tuxedo Java Server.

How to Get VIEW32 Data In and Out of FML32 Buffers

A helper classisavailableto add and get view32 datain and out of an FML 32 buffer. The class
nameiswtc.jatmi.FviewFld. This class assists programmersin developing JATMI-based
applications that use view32 field type for FML32 buffers.

Programming an Oracle Tuxedo Application Using Java 4-1

http://download.oracle.com/docs/cd/E13203_01/tuxedo/tux100/pgc/pgbuf.html
http://download.oracle.com/docs/cd/E13203_01/tuxedo/tux100/pgc/pgbuf.html

4-12

No change to configuration is required. Y ou still configure the view32 class using the
ViewFile32Classes attribute in the <Resources> section of the Tuxedo Java server
configuration file.

The following access methods are available in this helper class.
® FViewFld (String vname, TypedView32 vdata) ;

® FviewFld (FviewFld to_b_clone);

® void setViewName (String vname)

® String getViewName () ;

® void setViewData (TypedView32 vdata)

® void TypedView32 getViewDatal() ;

Listing 4-2 Example: How to Add and Retrieve an Embedded TypedView32 Buffer in a TypedFML32 Buffer

String toConvert = new String("hello world");
TypedFML32 MyData = new TypedFML32 (new MyFieldTable()) ;
Long dl = new Long(1234);

Float d2 = new Float(12.32);

MyView data = new myView() ;

FviewFld vfld;

data.setamount ((float)100.96) ;
data.setstatus((short)3);

vfld = new FviewFld("myView", data);

try {
myData.Fchg (MyFieldTable.FLDO, 0, toConvert);
myData.Fchg (MyFieldTable.FLD1, 0, 1234);
myData.Fchg (MyFieldTable.FLD2, 0, d2);
myData.Fchg (MyFieldTable.myview, 0, vfld);

} catch (Ferror fe) {

Programming an Oracle Tuxedo Application Using Java

Using VIEW with Oracle Tuxedo Java Server

log("An error occurred putting data into the FML32 buffer. The error is

"+ fe);

try {
myRtn = myTux.tpcall ("FMLVIEW", myData, O0);

} catch(TPReplyException tre) {

}
TypedFML32 myDataBack = (TypedFML32)myRtn.getReplyBuffer();
Integer myNewlLong;

Float myNewFloat;

myView View;

String myNewString;

try {
myNewString = (String)myDataBack.Fget (MyFieldTable.FLDO, 0);
myNewLong = (Integer)myDataBack.Fget (MyFieldTable.FLD1l, 0);
myNewFloat = (Float)myDataBack.Fget (MyFieldTable.FLD2, O0);
vild = (FviewFld)myDataBack.Fget (MyFieldTable.myview, 0);
view = (myView)vfld.getViewData () ;

} catch (Ferror fe) {

The following code listing is an example FML Description (MyFieldTable) related to the
examplein Listing 4-2.

Programming an Oracle Tuxedo Application Using Java 4-13

Listing 4-3 Example FML Description

*base 20000

#name number type flags comments

FLDO 10 string - -

FLD1 20 long - -

FLD2 30 float - -

myview 50 view32 - defined in View description file

See Also

TMJAVASVR (5)

Java Server Javadoc

Oracle Tuxedo Java Server Administration

Oracle Tuxedo Java Server Configuration

Appendix: Java Server Configuration File Schema
Programming an Oracle Tuxedo Application Using Java

4-14 Programming an Oracle Tuxedo Application Using Java

../pgj/index.html
../javaserv/javaservadmin.html
../javaserv/javaservconfig.html
../javaserv/javaservappdx.html
../rf5/rf5.html
../javadoc/javasev/overview-summary.html

	Oracle® Tuxedo
	12c Release 2 (12.2.2)

	Oracle Tuxedo Programming an Oracle Tuxedo Application Using Java, 12c Release 2 (12.2.2)
	Contents
	Introduction to Oracle Tuxedo Java Programming
	Overview
	Programming Guidelines
	Programming Environment
	Tuxedo Java Server Threads and Java Class Instance Model
	Tuxedo Java Server Initialization and Termination Methods
	Tuxedo 12c Release 2 (12.1.3 and Above) Behavior
	Table 1-1 Invocation Rules for Standard Initialization Methods
	Table 1-2 Invocation Rules for Standard Thread Initialization Methods

	Tuxedo 12c Release 1 (12.1.1) Behavior
	tpsvrinit() Handling
	tpsvrdone() Handling

	Tuxedo Java Server tpreturn() Method
	Tuxedo Java Server Exception Handling
	See Also
	ATMI Java Server User Interfaces

	TuxedoJavaServer
	Table 2-1 TuxedoJavaServer Interfaces

	Oracle Tuxedo Java Context
	TJATMI Primitives for Tuxedo Java Applications
	Table 2-2 TJATMI Primitives
	Java API Programming Examples
	Listing 2-1 Example for Invoking APIs in Server Initialization and Termination Stage
	Listing 2-2 Example for Invoking APIs in Service Routine
	Listing 2-3 Example for Forwarding Service Requests
	Listing 2-4 Example for Invoking APIs in an Application Server Thread

	TypedBuffers for Tuxedo Java Applications
	Table 2-3 TypedBuffers
	Limitations for Typedbuffer Support

	Get/Set Service Information
	Table 2-4 Getter Functions
	Table 2-5 Getter Functions for Reply

	Exception
	Trace
	See Also
	Implementing Services in Oracle Tuxedo Java Server

	Typical Procedures
	1. Define a class that inherits from TuxedoJavaServer
	2. Provide a default constructor
	3. Implement the tpsvrinit() and tpsvrdone() method
	4. Implement the service method which should use TPSVCINFO as its only argument parameter, as follows:
	a. Get the TuxAppContext object using getTuxAppContext() method
	b. Get the client request data using TPSVCINFO.getServiceData() method from TPSVCINFO object
	c. If you have configured a DataSource, get a connection to the DataSource using TuxAppContext.getConnection() method
	d. Do the business logic, such as call some other services using TuxAppContext.tpcall(), manipulate the database, etc.
	e. Allocate a new TypedBuffer and put a reply data in the TypedBuffer
	f. Call TuxAppContext.tpreturn() to return the reply data to client

	Example: Implementing Java Service without Transaction
	1. Defining Java Classes: Listing 3-1
	2. Creating Java Server Configuration File: Listing 3-2
	3. Updating UBB Configuration File: Listing 3-3
	Defining Java Classes
	Listing 3-1 Java Class Definition

	Creating Java Server Configuration File
	Listing 3-2 Java Server Configuration File

	Updating UBB Configuration File
	Listing 3-3 UBB Config File Configuration

	Example: Implementing Java Service with Transaction
	1. Defining Java Classes: Listing 3-4
	2. Creating Java Server Configuration File: Listing 3-5
	3. Updating UBB Configuration File: Listing 3-6
	Defining Java Classes
	Listing 3-4 Class Definition

	Creating Java Server Configuration File
	Listing 3-5 Java Server Configuration File

	Updating UBB Configuration File
	Listing 3-6 UBB Conf File Configuration

	See Also
	Reference

	Using FML with Oracle Tuxedo Java Server
	Overview of FML
	The Oracle WebLogic Tuxedo Connector FML API
	FML Field Table Administration
	1. Copy the field tables from the Oracle Tuxedo system to Oracle Tuxedo Java server environment.
	2. Converted the field table definition into Java source files. Use the mkfldclass/mkfldclass32 utility supplied in the weblogic.wtc.jatmi package. This class is a utility function that reads a FML/FML32 Field Table and produces a Java file which imp...
	3. Compile the resulting bankflds.java file using the following command:
	4. Add the field table class to <Resources> section in Tuxedo Java server's configuration file (Also make sure it is also included in <ClassPath> of Tuxedo Java server's configuration file).
	5. Restart your Tuxedo Java server to load the field table class definitions.

	Using the DynRdHdr Property for mkfldclass32 Class
	1. Convert the field table definition into Java source files.
	2. java -DDynRdHdr=Path_to_Your_FML_Table
	Table 4-1 Arguments for the Commend to Use the DynRdHdr Property
	3. Compile the userTable file using the following command:
	4. Add the field table class to <Resources> section in Tuxedo Java server's configuration file(Also make sure it is also included in <ClassPath> of Tuxedo Java server's configuration file).
	5. Restart your Tuxedo Java server to load the field table class definitions.

	Gaining TypedFML32 Performance Improvements

	Using VIEW with Oracle Tuxedo Java Server
	Overview of VIEW Buffers
	How to Create a VIEW Description File
	Table 4-2 VIEW Description File Fields

	Example VIEW Description File
	Listing 4-1 Example VIEW Description

	How to Use the viewj Compiler
	Table 4-3 Arguments for the Commands for viewj Compiler

	How to Pass Information to and from a VIEW Buffer
	How to Use VIEW Buffers in JATMI Applications
	1. Create a VIEW description file for your application as described above.
	2. Compile the VIEW description file as described above.
	3. Use the set and get accessor methods to pass information to and receive information from a VIEW buffer as described above.
	4. Import the output class of the VIEW compiler into your source code.
	5. If necessary, compile the VIEW description file for your Oracle Tuxedo application and include the output in your C source file as described in "Using a VIEW Typed Buffer" in Programming a Tuxedo ATMI Application Using C.
	6. Configure the fully qualified class name of the compiled Java VIEW description file in <Resources> section in Tuxedo Java server configuration. The class of the compiled Java VIEW description file should also be included in <ClassPath> of your con...
	7. Launch your Oracle Tuxedo Java Server.

	How to Get VIEW32 Data In and Out of FML32 Buffers
	Listing 4-2 Example: How to Add and Retrieve an Embedded TypedView32 Buffer in a TypedFML32 Buffer
	Listing 4-3 Example FML Description

	See Also

