
Oracle® Tuxedo
Using CORBA Server-to-Server Communication
12c Release 2 (12.2.2)

April 2016

Oracle Tuxedo Using CORBA Server-to-Server Communication, 12c Release 2 (12.2.2)

Copyright © 1996, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents
1. Understanding CORBA Server-to-Server Communication
Overview of CORBA Server-to-Server Communication . 1-1

Joint Client/Server Applications . 1-2

Object Policies for Callback Objects . 1-5

2. Developing C++ Joint Client/Server Applications
Development Process . 2-2

Chat Room Sample Application . 2-2

Step 1: Writing the OMG IDL . 2-4

Step 2: Generating Skeletons and Client Stubs. 2-6

Step 3: Writing the Methods That Implement the Operations for Each Object 2-8

Step 4: Writing the Client Portion of the Joint Client/Server Application 2-11

Step 5: Creating a Callback Object Using the Callbacks Wrapper Object 2-13

Step 6: Invoking Operations on an Object by Passing a Reference to the Callback Object .
2-14

Step 7: Specifying Configuration Information . 2-15

Step 8: Compiling Joint Client/Server Applications. 2-16

Using the POA to Create a Callback Object . 2-16

Creating a Callback Object with a Transient Object Policy 2-17

Creating a Callback Object with a Persistent/User ID Object Policy 2-19

Creating a Callback Object with a Persistent/System ID Object Policy 2-21

Threading Considerations for C++ Joint Client/Server Applications 2-22

Building and Running the Chat Room Sample Application . 2-23
Using CORBA Server-to-Server Communication iii

Copying the Files for the Chat Room Sample Application into a Work Directory 2-23

Changing the Protection Attribute on the Files for the Chat Room Sample Application
2-25

Verifying the Setting of the TUXDIR Environment Variable 2-25

Executing the ChatSetup Command . 2-26

Starting the Server Application . 2-27

Starting the Client Application . 2-28

Stopping the Chat Room Sample Application . 2-28

3. Java Joint Client/Server Applications
Development Process . 3-1

Support for Joint Client/Server Applications . 3-2
iv Using CORBA Server-to-Server Communication

C H A P T E R 1
Understanding CORBA
Server-to-Server Communication
This topic includes the following sections:

Overview of CORBA Server-to-Server Communication

Joint Client/Server Applications

Object Policies for Callback Objects

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Overview of CORBA Server-to-Server Communication
CORBA server-to-server communication allows Oracle Tuxedo applications to invoke CORBA
objects and handle invocations from those CORBA objects (referred to as callback objects). The
CORBA objects can be either inside or outside of an Oracle Tuxedo domain.

The Oracle Tuxedo product offers an implementation of the Internet Inter-ORB Protocol (IIOP)
version 1.2, which provides inbound and outbound communication with the CORBA objects.
Server-to-server communication provides more efficient use of network resources and provides
Using CORBA Server-to-Server Communication 1-1

integration with third-party Object Request Brokers (ORBs). In addition, server-to-server
communication is supported with CORBA objects that are implemented using IIOP versions 1.0
and 1.1.

Joint Client/Server Applications
Server-to-server communication allows client applications to act as server applications for
requests from other client applications. In addition, server-to-server communication allows
Oracle Tuxedo server applications to invoke objects on other ORBs.

Note: In earlier versions of the Oracle Tuxedo and WebLogic Enterprise products, client
applications invoked operations defined in Object Management Group (OMG) Interface
Definition Language (IDL) on a CORBA object. The server applications implemented
the operations of the CORBA object. The CORBA objects in the server application used
Oracle Tuxedo TP Framework and environmental objects to implement state
management, security, and transactions. These CORBA objects are referred to as Oracle
Tuxedo objects. Server applications could act as client applications for other server
applications; however, client applications could not act as server applications for other
client applications.

The server-to-server communication functionality is available through a callback object. A
callback object has two purposes:

It invokes operations on either Oracle Tuxedo or CORBA objects.

It implements the operations of a CORBA object.

Callback objects do not use the TP Framework and are not subject to Oracle Tuxedo
administration. You should use them only when transactional behavior, security, reliability, and
scalability are not important.

Callback objects are implemented in joint client/server applications. A joint client/server
application consists of the following:

Program logic that performs Oracle Tuxedo client application functions, such as initializing
the ORB, using the Oracle Tuxedo environmental objects to establish connections,
resolving initial references to the FactoryFinder object, and using factories to create Oracle
Tuxedo objects

Program logic that creates a servant for a callback object and activates the callback object
using an object ID

Note: Release 8.0 of the CORBA environment in the Oracle Tuxedo CORBA product
continues to include the Oracle client environmental objects provided in earlier releases
1-2 Using CORBA Server-to-Server Communication

Jo in t C l i ent /Se rve r App l i cat ions
of Oracle WebLogic Enterprise for use with the Oracle Tuxedo 8.0 CORBA clients.
Oracle Tuxedo 8.0 clients should use these environmental objects to resolve initial
references to bootstrapping, security, and transaction objects. In this release, support has
been added for using the OMG Interoperable Naming Service (INS) to resolve initial
references to bootstrapping, security, and transaction objects. For information on INS,
see Chapter 4, “CORBA Bootstrapping Programming Reference” in the CORBA
Programming Reference.

Figure 1-1 shows the structure of a joint client/server application.

Figure 1-1 Structure of a Joint Client/Server Application

C++ joint client/server applications are supported.

Joint client/server applications use IIOP to communicate with the Oracle Tuxedo server
applications. IIOP can work in the following ways, depending on the version of the IIOP protocol
you are using:

Bidirectional

Joint client/server applications are always connected to the same IIOP Server Handler
(ISH) in the Oracle Tuxedo domain. That ISH reuses the same connection to send requests
to and receive requests from the joint client/server application.

Dual-paired connection
Using CORBA Server-to-Server Communication 1-3

Joint client/server applications use the register_callback_port method of the Bootstrap
object to register the listening port of the joint client/server application in the ISH.
Invocations from server applications on the callback object in the joint client/server
application are routed through the ISH connected to the joint client/server application. This
ISH uses a second outbound connection to send requests to and receive replies from the
connected joint client/server application. The outbound connection is paired with the
incoming connection. This differs from bidirectional IIOP, which uses only one connection.

Asymmetric

Joint client/server applications can invoke on any callback object, and are not restricted to
invoking callback objects implemented in joint client/server applications connected to an
ISH. Asymmetric IIOP forces the ORB infrastructure to search for an available ISH to
handle the invocation.

Note: Depending on the type of remote object and the desired outbound IIOP configuration,
you may have to perform additional programming tasks.

Table 1-1 lists the requirements for each type of object and outbound IIOP configuration.

Table 1-1 Programming Requirements for Using Outbound IIOP

Types of
Objects

Asymmetric
Requirements

Paired-connection Requirements Bidirectional Requirements

Remote joint
client/servers

Set ISL CLOPT
-O option.

Use the
Tobj_Bootstrap::register
_callback_port method to
register the callback port.

Use the
CORBA::ORB::create_policy
method to set BiDirPolicy on the
POA.

Foreign (non
Oracle-Tuxed
o) ORBs

Set ISL CLOPT
-O option.

Not applicable. If the foreign ORB supports the POA
and BiDirPolicy, use the
CORBA::ORB::create_policy
method to set BiDirPolicy on the
POA.

Remote clients Remote clients are not servers, so outbound IIOP is not possible.

Native joint
client/servers

Outbound IIOP is not used.

Native clients Outbound IIOP is not used.
1-4 Using CORBA Server-to-Server Communication

Objec t Po l i c i es fo r Ca l lback Ob jec ts
For a more detailed description of bidirectional, dual-paired connnection, and asymmetric IIOP,
see the CORBA Programming Reference.

Object Policies for Callback Objects
Callback objects are assigned policies that control how long an object reference is valid and how
an object ID is assigned to the object. Object policies are defined when the reference to the
callback object is created. In addition, they can be defined in the Callbacks Wrapper object, which
simplifies the development of joint client/server applications.

The following object policies are supported for callback objects:

Transient/System ID—the object reference for this type of callback object is valid only for
the life of the joint client/server application. The object ID is assigned by the Oracle
Tuxedo system. This type of object is used for invocations that a joint client/server
application wants to receive only until it terminates.

Persistent/System ID—the object reference for this type of callback object is valid across
multiple invocations in a joint client/server application. The object ID is assigned by the
Oracle Tuxedo system. This type of object is useful in joint client/server applications that
stop and restart over a period of time. When the joint client/server application is running, it
can receive requests on a particular callback object with that object reference. Typically,
the joint client/server application creates the object reference once, saves it in its own
permanent storage area, and reactivates the servant for the object every time the joint
client/server application is started.

Persistent/User ID—this object policy is the same as Persistent/System ID, except that the
object ID is assigned by the joint client/server application.

When creating a callback object with an object policy of transient, the object reference is valid
only until the joint client/server application is terminated or until the stop_all_objects
method is called.

When creating a callback object with an object policy of persistent, the object reference is valid
even after the termination of the joint client/server application. If the joint client/server
application terminates, restarts, and activates a servant for the same object ID, the servant accepts
requests made on that object reference.

Note: If you are creating a native joint client/server application (that is, a joint client/server
application that is located in the same Oracle Tuxedo domain as the server applications
that invoke it), you cannot use the Persistent/System ID or Persistent/User ID object
policies.
Using CORBA Server-to-Server Communication 1-5

1-6 Using CORBA Server-to-Server Communication

C H A P T E R 2
Developing C++ Joint Client/Server
Applications
This topic includes the following sections:

Development Process

Chat Room Sample Application

Step 1: Writing the OMG IDL

Step 2: Generating Skeletons and Client Stubs

Step 3: Writing the Methods That Implement the Operations for Each Object

Step 4: Writing the Client Portion of the Joint Client/Server Application

Step 5: Creating a Callback Object Using the Callbacks Wrapper Object

Step 6: Invoking Operations on an Object by Passing a Reference to the Callback Object

Step 7: Specifying Configuration Information

Step 8: Compiling Joint Client/Server Applications

Using the POA to Create a Callback Object

Threading Considerations for C++ Joint Client/Server Applications

Building and Running the Chat Room Sample Application
Using CORBA Server-to-Server Communication 2-1

Development Process
Table 2-1 outlines the development process for C++ joint client/server applications.

These steps are explained in detail in subsequent topics.

Because the callback object in a joint client/server application is not transactional and has no
object management capabilities, you do not need to create an Implementation Configuration File
(filename.icf) for it. However, you still need to create an ICF file for the Oracle Tuxedo
objects in your Oracle Tuxedo application. For information about writing an ICF file, see
Creating CORBA Server Applications.

Chat Room Sample Application
Throughout this topic, the Chat Room sample application is used to demonstrate the development
steps. A chat room is an application that allows several people at different locations to
communicate with each other. Think of the chat room as a moderator whose job it is to keep track
of client applications that have logged in, and to distribute messages to those client applications.

Table 2-1 Development Process for C++ Joint Client/Server Applications

Step Description

1 Write the OMG IDL for the callback interface and for the
CORBA interfaces you want to use in your Oracle Tuxedo
application.

2 Generate the skeletons and client stubs.

3 Write the methods that implement the operations for each
object.

4 Write the client portion of the joint client/server application.

5 Create a callback object using the Callbacks Wrapper object.

6 Invoke operations on an Oracle Tuxedo object by passing the
object reference for the callback object.

7 Specify configuration information.

8 Compile the joint client/server application.
2-2 Using CORBA Server-to-Server Communication

Chat Room Sample App l i cat ion
A client application logs in to the moderator, supplying a username. When messages are entered
at the keyboard, the client application invokes the moderator, and passes the messages to the
moderator. The moderator then distributes the messages to all the other client applications by
making an invocation on the callback object.

The Chat Room sample application consists of a C++ joint client/server application and an Oracle
Tuxedo server application. The joint client/server application receives keyboard input and makes
invocations on the moderator. The joint client/server application also sets up the callback object
to listen for messages from the moderator (that is, to receive invocations from the moderator).
The Oracle Tuxedo server application in the Chat Room sample application implements the
moderator.

Figure 2-1 illustrates how the Chat Room sample application works.

Figure 2-1 How the Chat Room Sample Application Works

The Chat Room sample application works as follows:
Using CORBA Server-to-Server Communication 2-3

1. The joint client/server application implements the logic for the callback object (the Listener
object), creates a servant for the Listener object, and activates the Listener object.

2. The joint client/server application creates an object reference for the Listener object and
passes it to the Moderator object as part of the signon operation.

3. The server application in the Chat Room sample application checks the keyboard for
messages.

4. When messages are generated at the keyboard, the Chat Room sample application sends the
messages to the Moderator object via the send operation.

5. The Chat Room sample application temporarily passes control over to the ORB to allow the
Listener object in the joint client/server application to receive post invocations from the
Moderator object.

6. The Listener object in the joint client/server application saves the posted messages until a
client application requests them.

The source files for the Chat Room sample application are located in the
TUXDIR\samples\corba\chatroom directory in the Oracle Tuxedo software directory. See
“Building and Running the Chat Room Sample Application” on page -23 for more information.

Step 1: Writing the OMG IDL
You use Object Management Group (OMG) Interface Definition Language (IDL) to describe
available CORBA interfaces to client applications. An interface definition written in OMG IDL
completely defines the CORBA interface and fully specifies each operation’s arguments. OMG
IDL is a purely declarative language. This means that it contains no implementation details. For
more information about OMG IDL, see Creating CORBA Client Applications.

The Chat Room sample application implements the CORBA interfaces listed in Table 2-2.

Table 2-2 CORBA Interfaces for the Chat Room Sample Application

Interface Description Operation

Listener The callback object post()
2-4 Using CORBA Server-to-Server Communication

Step 1 : Wr i t ing the OMG IDL
Listing 2-1 shows the chatclient.idl that defines the Listener interface.

Listing 2-1 OMG IDL for the Listener Interface

module ChatClient{
 interface Listener {
 oneway void post (in string from,
 in string output_line);
 };
};

Listing 2-2 shows the chatroom.idl that defines the Moderator and ModeratorFactory
interfaces for the Chat Room sample application. The #include is used to resolve references to
interfaces in another OMG IDL file. In the Chat Room sample application, the signon method
requires a Listener object as a parameter and its IDL file must #include the OMG IDL file that
defines the Listener interface.

Listing 2-2 OMG IDL for the Moderator and ModeratorFactory Interfaces

#include "ChatClient.idl"

module ChatRoom {

 interface Moderator {
 exception IdAlreadyUsed{};

Moderator Receives input from client applications and
uses the callback object to forward messages
back to the joint client/server application

signon()

send()

signoff()

ModeratorFactory Creates object references to the Moderator
object

get_moderator()

Table 2-2 CORBA Interfaces for the Chat Room Sample Application

Interface Description Operation
Using CORBA Server-to-Server Communication 2-5

 exception NoRoomLeft{};
 exception IdNotKnown{};

 void signon(in string who,
 in ChatClient::Listener callback_ref)
 raises(IdAlreadyUsed, NoRoomLeft);

 void send (in string who,
 in string input_line)
 raises(IdNotKnown);

 void signoff(in string who)
 raises(IdNotKnown);
 };
 interface ModeratorFactory {
 Moderator get_moderator(in string chatroom_name);
 };
};

Step 2: Generating Skeletons and Client Stubs
The interface specification defined in OMG IDL is used by the IDL compiler to generate
skeletons and client stubs. Note that a joint client/sever application uses the client stub for the
Oracle Tuxedo object and the skeleton and client stub for the callback object.

For example, in the Chat Room sample application, the joint client/server application uses the
skeleton and client stub for the Listener object (that is, the callback object) to implement the
object. The joint client/server application also uses the client stubs for the Moderator and
ModeratorFactory interfaces to invoke operations on the objects. The Oracle Tuxedo server
application uses the skeletons for the Moderator and ModeratorFactory objects to implement the
objects and the client stub for the Listener object to invoke operations on the object.

During the development process, use the idl command with the -P and -i options to compile
the OMG IDL file that defines the callback object (for example, the chatclient.idl file in the
Chat Room sample application). The options work as follows:

The -P option creates a skeleton class that inherits directly from the
PortableServer::ServantBase class. Inheriting from
2-6 Using CORBA Server-to-Server Communication

Step 2 : Generat ing Ske l e tons and C l ien t S tubs
PortableServer::ServantBase means the joint client/server application must explicitly
create a servant for the callback object and initialize the servant’s state. The servant for the
callback object cannot use the activate_object and deactivate_object methods as
they are members of the PortableServer::ServantBase class.

The -i option results in the generation of an implementation template file. This file is a
template for the code that implements the interfaces defined in the OMG IDL for the
Listener object.

You then need to compile the OMG IDL file that defines the interfaces in the Oracle Tuxedo
server application (for example, the chatroom.idl file in the Chat Room sample application).
Use the idl command with only the -i option to compile that OMG IDL file.

Table 2-3 lists the files that are created by the idl command.

Note: In the Chat Room sample application, the generated template files for the
ChatClient.idl and ChatRoom.idl files have been renamed to reflect the objects
(Listener and Moderator) they implement. In addition, the template file for the Moderator
object includes the implementation for the ModeratorFactory object.

Table 2-3 Files Produced by the idl Command

File Files in the Chat Room
Sample Application
Created by the idl
Command

Description

Client stub file Listener_c.cpp
Listener_c.h
Moderator_c.cpp
Moderator_c.h

Contains client stubs for each interface specified in the
OMG IDL file. The client stubs are used to send a request
to an object.
Using CORBA Server-to-Server Communication 2-7

Step 3: Writing the Methods That Implement the
Operations for Each Object

After you compile each of the OMG IDL files, you need to write methods that implement the
operations for each object. In a joint client/server application, you write the implementation file
for the callback object (that is, the Listener object). You write the implementation for a callback
object as you would write the implementation for any other CORBA object, except that you use
the POA instead of the TP Framework. You also write implementation files for the Oracle
Tuxedo objects (that is, the Moderator and ModeratorFactory objects) in the Oracle Tuxedo
server application.

An implementation file contains the following:

Method declarations for each operation specified in the OMG IDL file

Business logic for your application

Constructors for each interface implementation (implementing these is optional)

Implementation file Listener_i.cpp
Moderator_i.cpp

Contains signatures for the methods that implement the
operations of the Listener, Moderator, and
ModeratorFactory interfaces specified in the OMG
IDL file. The Listener_i.h file contains
implementation files that inherit from the
POA_ChatClient::Listener class.

Skeleton file Listener_s.cpp
Listener_s.h
Moderator_s.cpp
Moderator_s.h

Contains skeletons for each interface specified in the
OMG IDL file. During run time, the skeleton maps client
requests to the appropriate operation in the server
application. The Listener_s.h file contains
POA_skeleton class definitions (for example,
POA_ChatClient::Listener).

Table 2-3 Files Produced by the idl Command (Continued)

File Files in the Chat Room
Sample Application
Created by the idl
Command

Description
2-8 Using CORBA Server-to-Server Communication

Step 3 : Wr i t ing the Methods That Implement the Operat ions fo r Each Ob jec t
Optionally, for Oracle Tuxedo objects, the
com.beasys.Tobj_Servant.activate_object and
com.beasys.Tobj_Servant.deactivate_object methods

Within the activate_object and deactivate_object methods, you write code that
performs any particular steps related to activating or deactivating an object.

Listing 2-3 includes the implemention file for the Listener object, and Listing 2-4 includes the
implementation file for the Moderator and ModeratorFactory objects.

Note: Additional methods and data were added to the implementation file for the Moderator
and ModeratorFactory objects. The template for the implementation file was created by
the idl -i command.

Listing 2-3 Implementation File for the Listener Object

// This module contains the definition of the implementation class
// Listener_i
#ifndef _Listener_i_h
#define _Listener_i_h

#include "ChatClient_s.h"
class Listener_i : public POA_ChatClient::Listener {
 public:

 Listener_i ();
 virtual ~Listener_i();

 void post (
 const char * from,
 const char * output_line);
...
};
#endif
Using CORBA Server-to-Server Communication 2-9

Listing 2-4 Implementation File for Moderator and ModeratorFactory Objects

// This module contains the definitions of the implementation class
// Moderator and ModeratorFactory
#ifndef _Moderator_i_h
#define _Moderator_i_h

#include "ChatRoom_s.h"

const int CHATTER_LIMIT = 5;
// the most chatters allowed

class Moderator_i : public POA_ChatRoom::Moderator {
 public:

 //Define the operations
 void signon (const char* who,
 ChatClient::Listener_ptr callback_ref);
 void send (const char * who,
 const char * input_line);

 void signoff (const char * who);

 //Define the Framework functions
 virtual void activate_object (const char* stroid);
 virtual void deactivate_object(const char* stroid,
 TobjS::DeactivateReasonValue
 reason);
 private:

 // Define function to find name on list
 int find(const char * handle);

 // Define name of the chat room overseen by the Moderator
 char* m_chatroom_name;

 // Data for maintaining list
 // Chatter[n] id
2-10 Using CORBA Server-to-Server Communication

Step 4 : Wr i t ing the C l i ent Po r t i on o f the Jo int C l i ent /Se rve r Appl i cat i on
 CORBA::String chatters[CHATTER_LIMIT];

 // Chatter[n] callback ref
 ChatClient::Listener_var callbacks[CHATTER_LIMIT];
};

class ModeratorFactory_i : public POA_ChatRoom::ModeratorFactory {
 public:
 ChatRoom::Moderator_ptr get_moderator (const char*
 chatroom_name);
};
#endif

Step 4: Writing the Client Portion of the Joint
Client/Server Application

During development of a joint client/server application, you write the client portion of the joint
client/server application as you would write any Oracle Tuxedo client application. The client
application needs to include code that does the following:

1. Initializes the ORB. The Oracle Tuxedo system activates an ORB using the correct protocol
(in this case, IIOP).

2. Uses the Bootstrap object to establish communication with the Oracle Tuxedo domain.

3. Resolves initial references to the FactoryFinder object.

4. Uses a factory to get an object reference for the desired Oracle Tuxedo object (that is, the
Moderator object).

Note: Release 8.0 of the CORBA environment of the Oracle Tuxedo product continues to
include the Oracle client environmental objects provided in earlier releases of Oracle
WebLogic Enterprise for use with the Oracle Tuxedo 8.0 CORBA clients. Oracle Tuxedo
8.0 clients should use these environmental objects to resolve initial references to
bootstrapping, security, and transaction objects. In this release, support has been added
for using the OMG Interoperable Naming Service (INS) to resolve initial references to
bootstrapping, security, and transaction objects. For information on INS, see Chapter 4,
“CORBA Bootstrapping Programming Reference” in the CORBA Programming
Reference.
Using CORBA Server-to-Server Communication 2-11

The client development steps are illustrated in Listing 2-5, which includes code from the Chat
Room sample application. In the Chat Room sample application, the client portion of the joint
client/server application uses a factory to get an object reference to the Moderator object, and then
invokes the signon, send, and signoff methods on the Moderator object.

Listing 2-5 Client Portion of the Chat Room Joint Client/Server Application

...
// Initialize the ORB

orb_ptr = CORBA::ORB_init(argc, argv, "BEA_IIOP");
// Create a Bootstrap object to establish communication with the
// domain

bootstrap = new Tobj_Bootstrap(orb_ptr,"");

// Get a FactoryFinder object, use it to find a Moderator factory,
// and get a Moderator.

// Use the Bootstrap object to find the FactoryFinder object

CORBA::Object_var var_factory_finder_oref =
 bootstrap->resolve_initial_references("FactoryFinder");

// Narrow the FactoryFinder object

Tobj::FactoryFinder_var var_factory_finder =
 Tobj::FactoryFinder::_narrow(var_factory_finder_oref.in());

// Use the FactoryFinder object to find a factory for the Moderator

CORBA::Object_var var_moderator_factory_oref =
 var_factory_finder->find_one_factory_by_id(
 "ModeratorFactory");

// Narrow the Moderator Factory

2-12 Using CORBA Server-to-Server Communication

Step 5 : Creat ing a Ca l lback Ob jec t Us ing the Ca l lbacks Wrapper Ob jec t
ChatRoom::ModeratorFactory_var var_moderator_factory =
 ChatRoom::ModeratorFactory::_narrow(
 var_moderator_factory_oref.in());

// Get a Moderator
// The chatroom name is passed as a command line parameter

var_moderator_oref =
 var_moderator_factory->get_moderator
 (var_chat_room_name.in());
...

Step 5: Creating a Callback Object Using the Callbacks
Wrapper Object

Since the basic steps for creating a callback object are always the same, the Oracle Tuxedo
product provides a Callbacks Wrapper object that simplifies the development of callback objects.

The Callbacks Wrapper object does the following:

Defines the object policy for the callback object. The following object policies are
supported:

– Transient/System ID (_transient)

– Persistent/System ID (_persistent/systemid)

– Persistent/User ID (_persistent/userid)

For a complete description of the object policies for callback objects, see “Object Policies
for Callback Objects” on page -5.

Creates a servant for the callback object.

Sets the ORB and the POA to the state in which they will accept requests on the callback
object.

Returns an object reference to the activated callback object. The object ID can be
generated by the system or supplied by the user.
Using CORBA Server-to-Server Communication 2-13

Tells the ORB to stop accepting requests on either a single servant or all the active
servants.

For a complete description of the Callbacks Wrapper object and its methods, see the CORBA
Programming Reference.

Listing 2-6 shows how a Callbacks Wrapper object is used in the Chat Room sample application.

Listing 2-6 Using the Callbacks Wrapper Object in the Chat Room Sample Application

...
// Use the Callbacks object to create a servant for the
// Listener object, activate the Listener object, and create an
// object reference for the Listener object.
BEAWrapper::Callbacks* callbacks =
 new BEAWrapper::Callbacks(orb_ptr);
Listener_i * listener_callback_servant = new Listener_i();
CORBA::Object_var v_listener_oref=callbacks->start_transient(
 listener_callback_servant,
 ChatClient::_tc_Listener->id());
ChatClient::Listener_var v_listener_callback_oref =
 ChatClient::Listener::_narrow(
 var_listener_oref.in());
...

Step 6: Invoking Operations on an Object by Passing a
Reference to the Callback Object

Once you have an object reference to a callback object, you can pass the callback object reference
as a parameter to a method of an Oracle Tuxedo object. In the Chat Room sample application, the
Moderator object uses an object reference to the Listener object as a parameter to the signon
method. Listing 2-7 illustrates this step.
2-14 Using CORBA Server-to-Server Communication

Step 7 : Spec i f y ing Conf igura t i on In fo rmat ion
Listing 2-7 Invoking the signon Method

// Sign on to the Chat room using a user-defined handle and a
// reference to the Listener object (the callback object) to receive
// input from other client applications logged into the Chat room.

var_moderator_reference->signon(handle,
 var_listener_callback_oref.in());

Step 7: Specifying Configuration Information
When running remote joint client/server applications that use IIOP, the object references for the
callback object must contain a host and port number, as follows.

For transient callback objects, any valid port number (as defined by TCP/IP) can be used,
and it can be obtained dynamically by the ORB.

For persistent callback objects, the ORB must be configured to accept requests for the
callback object on the same port on which the object reference for the callback object was
created.

The user specifies the port number from the user range of port numbers, rather than from the
dynamic range. Assigning port numbers from the user range prevents joint client/server
applications from using conflicting ports. To specify a particular port for the joint client/server
application to use, include the following on the command line that starts the process for the joint
client/server application:

-ORBport nnn

where nnn is the number of the port to be used by the ORB when creating invocations and
listening for invocations on the callback object in the joint client/server application.

Use this command when you want the object reference for the callback object in a joint
client/server application to be persistent and when you want to stop and restart the joint
client/server application. If this command is not used, the ORB uses a random port. If the joint
client/server application is stopped and then started, invocations to callback objects in the the
joint client/server application will fail.

The port number is part of the input to the argv argument of the CORBA::orb_init member
function. When the argv argument is passed, the ORB reads that information, establishing the
Using CORBA Server-to-Server Communication 2-15

port for any object references created in that process. You can also use the bootstrap object’s
register_callback_port operation for the same purpose.

For a joint client/server application to communicate with an Oracle Tuxedo object in the same
domain, a configuration file for the server application is needed. The configuration file should be
written as part of the development of the server application. The binary version of the
configuration file, the TUXCONFIG file, must exist before the joint client/server application is
started. The TUXCONFIG file is created using the tmloadcf command. For information about
creating a TUXCONFIG file, see Getting Started with Oracle Tuxedo CORBA Applications and
Setting Up an Oracle Tuxedo Application.

If you are using a joint client/server application that uses IIOP version 1.0 or 1.1, the
administrator needs to boot the IIOP Server Listener (ISL) with startup parameters that enable
outbound IIOP to invoke callback objects not connected to an IIOP Server Handler (ISH). The
-O option of the ISL command enables outbound IIOP. Additional parameters allow
administrators to obtain the optimum configuration for their Oracle Tuxedo application. For more
information about the ISL command, see the Oracle Tuxedo Command Reference.

Step 8: Compiling Joint Client/Server Applications
The final step in the development of a joint client/server application is to produce the executable
program. To do this, you need to compile the code and link against the skeleton and client stub.

Use the buildobjclient command with the -P option to construct a joint client/server
application executable. To build an executable program, the command combines the client stub
for the Oracle Tuxedo object, the client stub for the callback object, the skeleton for the callback
object, and the implementation for the callback object with the appropriate POA libraries.

Note: Before you can use the -P option of the buildobjclient command, you must have
used the -P option of the idl command when you created the skeleton and client stub
for the callback object.

Using the POA to Create a Callback Object
You can use the POA directly to create a callback object. You would use the POA directly when
you want to use POA features and object policies not available through the Callbacks Wrapper
object. For example, if you want to use the POA optimization features, you need to use the POA
directly. The following topics describe how to use the POA to create callback objects with the
supported object policies.
2-16 Using CORBA Server-to-Server Communication

Us ing the POA to Create a Ca l lback Ob jec t
Note: Only a subset of the POA interfaces are supported in this version of the Oracle Tuxedo
product. For a list of supported interfaces, see the CORBA Programming Reference.

Creating a Callback Object with a Transient Object Policy
To use the POA to create a callback object with a transient object policy, you need to write code
that does the following:

1. Establishes a connection with a POA.

2. Creates a child POA.

Since the root POA does not allow use of bidirectional IIOP, you need to create a child
POA. The child POA can use the defaults for LifespanPolicy (TRANSIENT) and
IDAssignmentPolicy (SYSTEM). You must specify a BiDirPolicy policy of BOTH.

IIOP version 1.2 supports reuse of the TCP/IP connection for both incoming and outgoing
requests. Allowing reuse of a TCP/IP connection is the choice of the ORB. To allow reuse,
you create an ORB policy object that allows reuse of a TCP/IP connection, and you use
that policy object in the list of policies when initializing an ORB. The policy object is
created using the CORBA::ORB::create_policy operation. For more information about
the CORBA::ORB::create_policy operation, see the CORBA Programming Reference.

3. Creates a servant for the callback object.

4. Informs the POA that the servant is ready to accept requests for the callback object.

In this step, the joint client/server application activates the callback object in the POA
using an object ID.

5. Activates the POA.

6. Creates an object reference for the callback object.

7. Makes an invocation on an Oracle Tuxedo object using the object reference for the callback
object as a parameter to one of the methods of the Oracle Tuxedo object.

Listing 2-8 shows the portion of the Chat Room sample application that uses the POA to create
the Listener object.

Listing 2-8 Using the POA to Create the Listener Object

// Establish communication with the POA

Using CORBA Server-to-Server Communication 2-17

orb_ptr = CORBA::ORB_init(argc, argv, "BEA_IIOP");
CORBA::PolicyList policy_list(1);
CORBA::Any val;

CORBA::Object_ptr o_init_poa;
o_init_poa = orb_ptr->resolve_initial_references("RootPOA");
// Narrow to get the Root POA

root_poa_ptr = PortableServer::POA::_narrow(o_init_poa);
CORBA::release(o_init_poa);

// Specify an IIOP Policy of Bidirectional for the POA

val <<= BiDirPolicy::BOTH;
CORBA::Policy_ptr bidir_pol_ptr = orb_ptr->create_policy(
 BiDirPolicy::BIDIRECTIONAL_POLICY_TYPE, val);
policy_list.length (1);
policy_list[0] = bidir_pol_ptr;

// Create the BiDirectional POA

bidir_poa_ptr = root_poa_ptr->create_POA("BiDirPOA",
 root_poa_ptr->
 the_POAManager(),
 policy_list);
// Activate the POA

root_poa_ptr->the_POAManager()->activate();

// Create the Listener object

ChatClient::Listener_var v_listener_callback_ref;

// Create a servant for Listener object and activate it

listener_callback_servant = new Listener_i();
 CORBA::Object_var v_listener_oref;
 PortableServer::ObjectId_var temp_OId =
2-18 Using CORBA Server-to-Server Communication

Us ing the POA to Create a Ca l lback Ob jec t
 bidir_poa_ptr ->activate_object(listener_callback_servant);

// Create object reference for the Listener object with a

// system generated Object Id

v_listener_oref = bidir_poa_ptr->create_reference_with_id
 (temp_OId,
 ChatClient::_tc_Listener->id());
v_listener_callback_ref = ChatClient::Listener::_narrow
 (v_listener_oref.in());

Creating a Callback Object with a Persistent/User ID Object
Policy
To use the POA to create a callback object with a Persistent/User ID object policy, you must write
code that does the following:

1. Uses a string to store the user ID and converts the string to the object ID.

2. Creates a child POA with a LifespanPolicy set to PERSISTENT and
IDAssignmentPolicy set to USERID.

3. Creates a servant for the Listener object.

4. Creates an object reference for the Listener object using the stringified object ID and the
repository ID of the Listener object.

5. Activates the Listener object.

Note: The Persistent/User ID object policy is only used with remote joint client/server
applications (that is, a joint client/server application that is not in an Oracle Tuxedo
domain).

Listing 2-9 shows code that performs these steps.

Note: The code example does not use bidirectional IIOP.
Using CORBA Server-to-Server Communication 2-19

Listing 2-9 Example Code for Listener Object with Persistent/User ID Object Policy

// Declare a string and convert it to an object Id.
const char* oid_string = "783";
PortableServer::ObjectID_var oid=
 PortableServer::string_to_ObjectId(oid_string);
// Find the root POA
CORBA::Object_var oref =
 orb_ptr->resolve_initial_references("RootPOA");
PortableServer::POA_var root_poa =
 PortableServer::POA::_narrow(oref);

// Create and activate a Persistent/UserID POA
CORBA::PolicyList policies(2);
policies.length(2);
policies[0] = root_poa->create_lifespan_policy(
 PortableServer::PERSISTENT);
policies[1] = root_poa->create_id_assignment_policy(
 PortableServer::USER_ID);
PortableServer::POA_var poa_ref =
 root_poa->create_POA("poa_ref",
 root_poa->the_POAManager(),policies);
root_poa->the_POAManager()->activate();

// Create object reference for the Listener object.
oref = poa_ref->create_reference_with_id(oid,
 ChatClient::_tc_Listener->id());
ChatClient::Listener_ptr Listener_oref =
 ChatClient::Listener::_narrow(oref);

// Create Listener_i servant and activate the Listener object
Listener_i* my_Listener_i = new Listener_i();
poa_ref->activate_object_with_id(oid, my_Listener_i);

// Make call passing the reference to the Listener object
v_moderator_ref->signon(handle, Listener_oref);
2-20 Using CORBA Server-to-Server Communication

Us ing the POA to Create a Ca l lback Ob jec t
Creating a Callback Object with a Persistent/System ID
Object Policy
To use the POA to create a callback object with a Persistent/System ID object policy, you need
to write code that does the following:

1. Creates a child POA with a LifespanPolicy set to PERSISTENT and
IDAssignmentPolicy set to the default.

2. Creates a servant for the Listener object.

3. Creates an object reference for the Listener object using a system generated object ID (the
repository ID of the Listener object).

4. Activates the Listener object.

Note: The Persistent/System ID object policy is only used with remote joint client/server
applications (that is, a joint client/server application that is not in an Oracle Tuxedo
domain).

Listing 2-10 shows code that performs these steps.

Listing 2-10 Example Code for Listener Object with Persistent/System ID Object Policy

// Find the root POA
CORBA::Object_var oref=
 orb_ptr->resolve_initial_references("RootPOA")
PortableServer::POA_var root_poa =
 PortableServer::POA::_narrow(oref);

// Create and activate a Persistent/System ID POA
CORBA::PolicyList policies(1);
policies.length(1);
policies[0] = root_poa->create_lifespan_policy(
 PortableServer::PERSISTENT);

//IDAssignmentPolicy is the default so you do not need to specify it
PortableServer::POA_var poa_ref = root_poa->create_POA(
 "poa_ref", root_poa->the_POAManager(), policies);
root_poa->the_POAManager()->activate();
Using CORBA Server-to-Server Communication 2-21

// Create Listener_i servant and activate the Listener object
Listener_i* my_Listener_i = new Listener_i();
PortableServer::ObjectId_var temp_OId =
 poa_ref->activate_object (my_Listener_i);

// Create object reference for Listener object with returned
// system object Id
oref = poa_ref->create_reference_with_id(
 temp_OId, ChatClient::_tc_Listener->id());
ChatClient::Listener_var Listener_oref =
 ChatClient::Listener::_narrow(oref);

// Make the call passing the reference to the Listener object
v_moderator_ref->signon(handle, Listener_oref);

Threading Considerations for C++ Joint Client/Server
Applications

A joint client/server application can first function as a client application and then switch to
functioning as a server application. To do this, the joint client/server application gives complete
control of the thread to the ORB by invoking the following:

orb -> run();

If a method in the server portion of a joint client/server application invokes ORB::shutdown(),
all server activity stops and control is returned to the statement after ORB::run() is invoked in
the server portion of the joint client/server application. Only under this condition does control
return to the client functionality of the joint client/server application.

Since a client application has only a single thread, the client functionality of the joint client/server
application must share the central processing unit (CPU) with the server functionality of the joint
client/server application. This sharing is accomplished by occasionally checking with the ORB
to see if the joint client/server application has server application work to perform. Use the
following code to perform the check with the ORB:

if (orb->work_pending()) orb->perform_work();
2-22 Using CORBA Server-to-Server Communication

Bui ld ing and Runn ing the Chat Room Sample App l i cat ion
After the ORB completes the server application work, the ORB returns to the joint client/server
application, which then performs client application functions. The joint client/server application
must remember to occasionally check with the ORB; otherwise, the joint client/server application
will never process any invocations.

The ORB cannot service callbacks while the joint client/server application is blocking on a
request. If a joint client/server application invokes an object in another Oracle Tuxedo server
application, the ORB blocks while it waits for the response. While the ORB is blocking, it cannot
service any callbacks, so the callbacks are queued until the request is completed.

Building and Running the Chat Room Sample Application
Perform the following steps to build and run the Chat Room sample application:

1. Copy the files for the Chat Room sample application into a work directory.

2. Change the protection attribute on the files for the Chat Room sample application.

3. Verify the settings of the environment variables.

4. Execute the ChatSetup command.

The following sections describe these steps.

Copying the Files for the Chat Room Sample Application into
a Work Directory
You need to copy the files for the Chat Room sample application into a work directory on your
local machine. The files for the Chat Room sample application are located in the following
directories:

Windows

drive:\TUXDIR\samples\corba\chatroom

UNIX

/usr/local/TUXDIR/samples/corba/chatroom

Use the files listed in Table 2-4 to build and run the Chat Room sample application.
Using CORBA Server-to-Server Communication 2-23

Table 2-4 Files Included in the Chat Room Sample Application

File Description

ChatRoom.idl The OMG IDL code that declares the Moderator
and ModeratorFactory interfaces.

ChatClient.idl The OMG IDL code that declares the Listener
interface.

Listener_i.h
Listener_i.cpp

The C++ source code for method implementations of
the Listener object in the joint client/server
application.

Moderator_i.h
Moderator_i.cpp

The C++ source code for method implementations of
the Moderator and ModeratorFactory objects in the
Oracle Tuxedo server application.

ChatClientMain.cpp The C++ source code for the joint client/server
application.

ChatRoomServer.cpp The C++ source code for the Oracle Tuxedo server
application.

KeyboardManager.h
KeyboardManager.cpp

The C++ source code that handles input from the
keyboard in the Chat Room sample application. This
code is used by ChatClientMain.cpp.

ChatRoom.icf The Implementation Configuration File (ICF) for the
Moderator and ModeratorFactory objects in the
Oracle Tuxedo server application in the Chat Room
sample application.

ChatRoom.ksh For UNIX systems, a script that sets the environment
variables and builds the Chat Room sample
application.

ChatRoom.cmd For Windows systems, a command procedure that
sets the environment variables and builds the Chat
Room sample application.

ChatRoom.mk The UNIX operating system makefile for the Chat
Room sample application.
2-24 Using CORBA Server-to-Server Communication

Bui ld ing and Runn ing the Chat Room Sample App l i cat ion
Changing the Protection Attribute on the Files for the Chat
Room Sample Application
During the installation of the Oracle Tuxedo software, the sample application files are marked
read-only. Before you can edit or build the files in the Chat Room sample application, you need
to change the protection attribute of the files you copied into your work directory, as follows:

Windows

prompt> attrib /S -r drive:\workdirectory*.*

UNIX

prompt> /bin/ksh

ksh prompt> chmod u+w /workdirectory/*.*

On UNIX operating system platforms, you also need to change the permission of ChatRoom.ksh
to give execute permission to the file, as follows:

ksh prompt> chmod +x ChatRoom.ksh

Verifying the Setting of the TUXDIR Environment Variable
Before building and running the Chat Room sample application, you need to ensure that the
TUXDIR environment variable is set on your system. In most cases, this environment variable is
set as part of the installation procedure. The TUXDIR environment variable defines the directory
path where you installed the Oracle Tuxedo software. For example:

Windows

TUXDIR=C:\TUXDIR

UNIX

ChatRoom.nt The Windows operating system makefile for the
Chat Room sample application.

Readme.txt The file that provides the latest information about
building and running the Chat Room sample
application.

Table 2-4 Files Included in the Chat Room Sample Application (Continued)

File Description
Using CORBA Server-to-Server Communication 2-25

TUXDIR=/usr/local/TUXDIR

To verify that the information for the environment variables defined during installation is correct,
perform the following steps:

Windows

1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.

The Control Panel appears.

3. Click the System icon.

The System Properties window appears.

4. Click the Environment tab.

The Environment page appears.

5. Check the setting for TUXDIR.

UNIX

ksh prompt>printenv TUXDIR

To change the settings, perform the following steps:

Windows

1. On the Environment page in the System Properties window, click the TUXDIR environment
variable.

2. Enter the correct information for the environment variable in the Value field.

3. Click OK to save the changes.

UNIX

ksh prompt>export TUXDIR=directorypath

Executing the ChatSetup Command
The ChatSetup command automates the following steps:

1. Sets the system environment variables.

2. Creates and loads the configuration file.
2-26 Using CORBA Server-to-Server Communication

Bui ld ing and Runn ing the Chat Room Sample App l i cat ion
3. Compiles the code for the client application.

4. Compiles the code for the server application.

Before running the ChatSetup command, you need to check the following:

Ensure that you have the appropriate administrative privileges to build and run
applications.

On Windows, make sure nmake is in the path of your machine.

On UNIX, make sure the make executable program is included in the PATH variable.

To build and run the sample application, enter the ChatSetup command, as follows:

Windows

prompt>cd workdirectory

prompt> ChatSetup.cmd

UNIX

ksh prompt> cd workdirectory

ksh prompt> ./ChatSetup.ksh

Starting the Server Application
Start the server application and the system server processes in the Chat Room sample application
by entering the following command:

prompt> tmboot -y

This command starts the following server processes:

TMSYSEVT

The system EventBroker. This server process is used only by the Oracle Tuxedo system.

TMFFNAME

The following three TMFFNAME server processes are started:

– The TMFFNAME server process started with the -N and -M options is the Master
NameManager service. The NameManager service maintains a mapping of the
application-supplied names to object references. This server process is used only by the
Oracle Tuxedo system.
Using CORBA Server-to-Server Communication 2-27

– The TMFFNAME server process started with only the -N option is the Slave
NameManager service.

– The TMFFNAME server process started with the -F option contains the FactoryFinder
object.

ChatRoom

The server application process for the Chat Room sample application.

ISL

The IIOP Listener/Handler process.

Starting the Client Application
Start the client application in the Chat Room sample application by entering the following
command:

prompt> ChatClient chatroom_name -ORBport nnn

where chatroom_name is the name of a chat room to which you want to connect. You can enter
any value. You will be prompted for a handle to identify yourself. You can enter any value. If the
handle you chose is in use, you will be prompted for another handle.

To optimize the usefulness of the Chat Room sample application, you should run a second client
application using the same chat room name.

To exit the client application, enter \.

Stopping the Chat Room Sample Application
Before using another sample application, enter the following commands to stop the Chat Room
sample application and to remove unnecessary files from the work directory:

Windows

prompt> tmshutdown -y

prompt> Admin\setenv

prompt> nmake -f ChatRoom.nt superclean

prompt> nmake -f ChatRoom.nt adminclean

UNIX

ksh prompt> tmshutdown -y
2-28 Using CORBA Server-to-Server Communication

Bui ld ing and Runn ing the Chat Room Sample App l i cat ion
ksh prompt> . ./Admin/setenv.ksh

ksh prompt> make -f ChatRoom.mk superclean

ksh prompt> make -f ChatRoom.nt adminclean
Using CORBA Server-to-Server Communication 2-29

2-30 Using CORBA Server-to-Server Communication

C H A P T E R 3
Java Joint Client/Server Applications
This topic includes the following sections:

Development Process

Support for Joint Client/Server Applications

Notes: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported. All Oracle Tuxedo CORBA
Java client and Oracle Tuxedo CORBA Java client ORB text references, associated code
samples, should only be used to help implement/run third party Java ORB libraries, and
for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Development Process
Table 3-1 outlines the development process for Java joint client/server applications.
Using CORBA Server-to-Server Communication 3-1

Because the callback object in a joint client/server application is not transactional and has no
object management capabilities, you do not need to create a Server Description File
(filename.xml) for it. However, you still need to create a Server Description File for the Oracle
Tuxedo objects in your Oracle Tuxedo application.

Support for Joint Client/Server Applications
Notes: Release 8.0 of the CORBA environment of the Oracle Tuxedo product does not support

Java servers. Support for Java servers was included in versions 5.0 and 5.1 of the Oracle
WebLogic Enterprise product. That support was removed when Oracle WebLogic
Enterprise was merged with Oracle Tuxedo in release 8.0.

An implementation of a joint client/server employs a callback object. Figure 3-1 illustrates the
concept of a joint client/server application using a callback object.

Table 3-1 Development Process for Java Joint Client/Server Applications

Step Description

1 Write the OMG IDL for the callback interface and the CORBA
interfaces you want to use in your Oracle Tuxedo application.

2 Generate the skeletons and client stubs.

3 Write the methods that implement the operations for each
interface.

4 Initialize the ORB.

5 Write the client main portion of the joint client/server
application.

6 Create a callback object using the Callbacks Wrapper object.

7 Establish communication with an ISH.

8 Invoke operations on the Oracle Tuxedo object by passing an
object reference for the callback object.

9 Specify configuration information.

10 Compile the joint client/server application.
3-2 Using CORBA Server-to-Server Communication

Suppor t fo r J o in t C l ient /Se rve r App l i cat ions
Figure 3-1 The Concept of a Joint Client/Server Application

For a complete example of a joint client/server application, see Chapter 6, “Building the
Advanced Sample Application,” in Using the CORBA Notification Service. The subscriber
component in the Advanced sample application implements a joint client/server application.
Using CORBA Server-to-Server Communication 3-3

3-4 Using CORBA Server-to-Server Communication

	Oracle® Tuxedo
	12c Release 2 (12.2.2)

	Oracle Tuxedo Using CORBA Server-to-Server Communication, 12c Release 2 (12.2.2)
	Contents
	Understanding CORBA Server-to-Server Communication
	Overview of CORBA Server-to-Server Communication
	Joint Client/Server Applications
	Object Policies for Callback Objects

	Developing C++ Joint Client/Server Applications
	Development Process
	Chat Room Sample Application
	Step 1: Writing the OMG IDL
	Step 2: Generating Skeletons and Client Stubs
	Step 3: Writing the Methods That Implement the Operations for Each Object
	Step 4: Writing the Client Portion of the Joint Client/Server Application
	Step 5: Creating a Callback Object Using the Callbacks Wrapper Object
	Step 6: Invoking Operations on an Object by Passing a Reference to the Callback Object
	Step 7: Specifying Configuration Information
	Step 8: Compiling Joint Client/Server Applications
	Using the POA to Create a Callback Object
	Creating a Callback Object with a Transient Object Policy
	Creating a Callback Object with a Persistent/User ID Object Policy
	Creating a Callback Object with a Persistent/System ID Object Policy

	Threading Considerations for C++ Joint Client/Server Applications
	Building and Running the Chat Room Sample Application
	Copying the Files for the Chat Room Sample Application into a Work Directory
	Changing the Protection Attribute on the Files for the Chat Room Sample Application
	Verifying the Setting of the TUXDIR Environment Variable
	Executing the ChatSetup Command
	Starting the Server Application
	Starting the Client Application
	Stopping the Chat Room Sample Application

	Java Joint Client/Server Applications
	Development Process
	Support for Joint Client/Server Applications

