

[1] Oracle® Communications
Network Service Orchestration Solution
Implementation Guide

Release 1.1.1

E72585-02

July 2016

Oracle Communications Network Service Orchestration Solution Implementation Guide, Release 1.1.1

E72585-02

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... ix

Audience... ix
Related Documentation.. ix
Documentation Accessibility ... x

1 Overview

About Network Service Orchestration Solution .. 1-1
Solution Components.. 1-2
About Network Service Orchestration Entities.. 1-2
About the Sample Network Protection Service.. 1-4
About the Branding Cartridge ... 1-4

2 Installing and Integrating the Solution Components

Planning Your Implementation... 2-1
Software Requirements... 2-1
Configuring UIM for the Network Service Orchestration Solution .. 2-2

Setting Up Queues in WebLogic Server.. 2-4
Running Scripts to Set Up Queues in WebLogic Server ... 2-4
Setting Up Queues in WebLogic Server Manually .. 2-5

Registering the SDN Controller ... 2-6
Integrating the Solution With Northbound Applications for Asynchronous Communication
2-7

Running Scripts to Set Up Topics in WebLogic Server ... 2-8
Setting Up Topics in WebLogic Server Manually .. 2-9

Integrating the VIM with the Solution .. 2-9
Registering the VIM... 2-9
Discovering VIM Resources .. 2-10

Enabling Logging for the Network Service Orchestration Solution... 2-11
Upgrading the Network Service Orchestration Solution .. 2-11
Supported Southbound Integration .. 2-12

3 Designing and Onboarding Network Services and VNFs

About the Design Components ... 3-1
About the Descriptor Files .. 3-1

About the Network Service Descriptor Files .. 3-2

iv

About the VNF Descriptor Files ... 3-5
Creating a Descriptor File .. 3-7

About the Technical Actions File ... 3-7
Creating a Technical Actions File ... 3-9

About the VNF Configuration Files .. 3-9
About the Sample Network Protection Service Model.. 3-10

Implementing a Network Service By Using the Sample Cartridges 3-19
Designing New Network Services and VNF Services ... 3-22

4 Working with Network Services and VNFs

Instantiating a Network Service .. 4-1
Upgrading the Software Version of a VNF ... 4-3
Monitoring and Healing a VNF... 4-3
Modifying a Network Service.. 4-4

Adding a VNF to a Network Service .. 4-4
Deleting a VNF from a Network Service .. 4-5

Terminating a Network Service .. 4-5
Retrieving Details About Network Services, VNFs, and Descriptors ... 4-5

5 Extending the Network Service Orchestration Solution

Setting Up Design Studio for the Network Service Orchestration Solution Cartridges 5-1
Designing Cartridges for Custom VNFs and Network Services .. 5-2
Using Extension Points and Java Interface Extensions to Extend the Solution 5-3

Writing a Custom Ruleset Extension Point .. 5-3
Using Java Interface Extensions... 5-4

Implementing a Custom SDN Controller.. 5-5
Implementing a Custom Monitoring Engine.. 5-6
Implementing a Custom VIM ... 5-7
Implementing a Custom VNF Lifecycle Manager ... 5-9
Implementing a Custom VNF Connection Manager.. 5-10
Implementing a Custom VNF Configuration Manager ... 5-11
Implementing a Custom Response Manager... 5-13

Localizing the Network Service Orchestration Solution... 5-13
Localizing the NFV Entities in the UIM User Interface... 5-13
Localizing the Responses in RESTful APIs.. 5-14

6 Contents of the Network Service Orchestration JAR and ZIP Files

Network Service Orchestration Individual JAR Files .. 6-1
Network Service Orchestration Super JAR File ... 6-2
Network Service Orchestration Applications... 6-2
Network Service Orchestration ZIP Files .. 6-2

7 Network Service Orchestration RESTful API Reference

List of Network Service Orchestration Solution RESTful API Resources 7-1
HTTP Response Status Codes.. 7-3
Sample Requests and Responses .. 7-3

v

Register a VIM .. 7-3
Method.. 7-4
URL ... 7-4
Sample JSON Request .. 7-4
Sample JSON Response.. 7-5

Discover VIM Resources ... 7-5
Method.. 7-5
URL ... 7-5
Sample Request ... 7-5
Sample Response... 7-5

Update a VIM ... 7-7
Method.. 7-7
URL ... 7-7
Sample Request ... 7-7
Sample Response... 7-7

Instantiate a Network Service .. 7-7
Method.. 7-7
URL ... 7-7
Sample Request ... 7-8
Sample Response... 7-9

Terminate a Network Service ... 7-9
Method.. 7-9
URL ... 7-9
Sample Request ... 7-9
Sample Response... 7-9

Upgrade the Software Version of a VNF... 7-10
Method... 7-10
URL .. 7-10
Sample Request .. 7-10
Sample Response.. 7-10

Heal a VNF... 7-10
Method... 7-10
URL .. 7-10
Sample Request .. 7-11
Sample Response.. 7-11

Add VNFs to a Network Service .. 7-11
Method... 7-11
URL .. 7-11
Sample Request .. 7-11
Sample Response.. 7-12

Scale a VNF .. 7-12
Method... 7-12
URL .. 7-12
Sample Request .. 7-12
Sample Response.. 7-12

Delete a VNF from a Network Service... 7-13
Method... 7-13

vi

URL .. 7-13
Sample Request .. 7-13
Sample Response.. 7-13

Configure VNF Service Capabilities... 7-14
Method... 7-14
URL .. 7-14
Sample Request .. 7-14
Sample Response.. 7-15

Get VIM Details ... 7-15
Method... 7-15
URL .. 7-15
Sample Response.. 7-15

Get List of Network Services ... 7-16
Method... 7-16
URL .. 7-16
Sample Response.. 7-16

Get Network Service Details ... 7-16
Method... 7-16
URL .. 7-16
Sample Response.. 7-16

Get Status Information of a Network Service ... 7-17
Method... 7-17
URL .. 7-17
Sample Response.. 7-17

Get List of Network Service Descriptors ... 7-17
Method... 7-17
URL .. 7-17
Sample Response.. 7-18

Get Information about a Network Service Descriptor .. 7-18
Method... 7-18
URL .. 7-18
Sample Response.. 7-18

Get VNF Descriptors... 7-19
Method... 7-19
URL .. 7-19
Sample Response.. 7-19

Get Flavors of a Network Service Descriptor.. 7-19
Method... 7-19
URL .. 7-19
Sample Response.. 7-20

Get Information about a VNF Descriptor.. 7-21
Method... 7-21
URL .. 7-21
Sample Response.. 7-21

Get Versions of a VNF Descriptor .. 7-22
Method... 7-22
URL .. 7-22

vii

Sample Response.. 7-22
Get Flavors of a VNF Descriptor... 7-22

Method... 7-22
URL .. 7-23
Sample Response.. 7-23

Get Details about VNFs in a Network Service.. 7-23
Method... 7-23
URL .. 7-23
Sample Response.. 7-23

Get Details about Networks in a Network Service .. 7-24
Method... 7-24
URL .. 7-24
Sample Response.. 7-24

Get Details about Endpoints in a Network Service.. 7-25
Method... 7-25
URL .. 7-25
Sample Response.. 7-25

Get Details about a VNF... 7-26
Method... 7-26
URL .. 7-26
Sample Response.. 7-26

Get Status Information of a VNF .. 7-27
Method... 7-27
URL .. 7-27
Sample Response.. 7-27

viii

ix

Preface

This guide explains how to implement and use Oracle Communications Network
Service Orchestration Solution.

Audience
This document is intended for:

■ Network operations and management personnel who install, configure, and
maintain physical and virtual network infrastructure

■ Data modelers who define specifications for entities that represent Virtual
Network Functions (VNFs), network services, and other related and dependant
items in the inventory

■ Engineers who model resources in Design Studio

■ Systems integrators who implement and integrate Oracle Communications
Unified Inventory Management (UIM) and third-party software as part of the
Network Service Orchestration solution

The guide assumes that you have a working knowledge of UIM and Network
Functions Virtualization (NFV) architecture and concepts.

Related Documentation
For more information, see the following documentation:

■ UIM Installation Guide: Describes the requirements for installing UIM, installation
procedures, and post-installation tasks.

■ UIM System Administrator’s Guide: Describes administrative tasks such as working
with cartridge packs, maintaining security, managing the database, configuring
Oracle Map Viewer, and troubleshooting.

■ Design Studio Installation Guide: Describes the requirements for installing Design
Studio, installation procedures, and post-installation tasks.

■ UIM Security Guide: Provides guidelines and recommendations for setting up UIM
in a secure configuration.

■ UIM Concepts: Provides an overview of important concepts and an introduction to
using both UIM and Design Studio.

■ UIM Developer’s Guide: Explains how to customize and extend many aspects of
UIM, including the data model, life-cycle management, topology, security, rulesets,
user interface, and localization.

x

■ Design Studio Developer’s Guide: Describes how to customize, extend, and work
with cartridges.

■ UIM Web Services Developer’s Guide: Describes the UIM Web Service operations and
how to use them, and describes how to create custom Web services.

■ UIM Information Model Reference: Describes the UIM information model entities
and data attributes, and explains patterns that are common across all entities.

■ Oracle Communications Information Model Reference: Describes the Oracle
Communications information model entities and data attributes, and explains
patterns that are common across all entities. The information described in this
reference is common across all Oracle Communications products.

■ UIM Cartridge Guide: Provides information about how you use cartridge packs
with UIM. Describes the content of the base cartridges.

For step-by-step instructions to perform tasks, log in to each application to see the
following:

■ Design Studio Help: Provides step-by-step instructions for tasks you perform in
Design Studio.

■ UIM Help: Provides step-by-step instructions for tasks you perform in UIM.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

1

Overview 1-1

1Overview

This chapter provides an overview of Oracle Communications Network Service
Orchestration Solution and describes the solution components and software
requirements.

About Network Service Orchestration Solution
The Network Service Orchestration solution enables you to create, implement, and
manage the life cycles of network services and deploy the network services as
interconnected virtual network functions (VNFs) on virtual resources.

The Network Service Orchestration solution provides the following functionality:

■ Onboarding of Network Services and VNFs. You can define network services
and VNFs based on any network function that you want to virtualize. See
"Designing and Onboarding Network Services and VNFs" for more information.

■ Instantiation, Scaling, and Termination of Network Services. You can quickly
instantiate, scale, or terminate VNFs and network services in response to the
demand on your network. You can manage the life cycles of your VNFs and
network services and control the resources that they use. See "Working with
Network Services and VNFs" for more information.

The solution supports asynchronous communication with northbound
applications. See "Integrating the Solution With Northbound Applications for
Asynchronous Communication" for more information.

■ Monitoring and Auto-healing. You can monitor the performance of the VNFs
continuously and configure the solution to heal a failed VNF automatically. See
"Monitoring and Healing a VNF" for more information about monitoring and
healing a VNF.

■ Resource Orchestration. The solution manages the resources across your data
centers to ensure that each network service is allocated the required resources to
meet the needs of the VNFs. See "Working with Network Services and VNFs" for
more information.

■ Customization and Extension. You can customize and extend the solution to
support integration with third-party VNF Managers, Virtualized Infrastructure
Managers (VIMs), software-defined networking (SDN) controllers, and monitoring
engines. The solution also provides extension points that enable you to customize
and extend the solution’s core functionality. See "Extending the Network Service
Orchestration Solution" for more information.

The solution includes a VNF Manager that enables you to manage the life cycles of the
VNFs. The solution also supports integration with Oracle and third-party VNF

Solution Components

1-2 Network Service Orchestration Solution Implementation Guide

Managers, VIMs, SDN controllers, and network monitoring applications. By default,
the solution provides integration to certain applications and supports integration to
additional applications during the implementation. The solution provides RESTful
APIs, which communicate over HTTP, to interact and exchange data with the
solution’s components.

Solution Components
The Network Service Orchestration solution builds on Oracle Communications
Unified Inventory Management (UIM), taking advantage of its inventory and
workflow capabilities to perform run-time orchestration of Network Functions
Virtualization (NFV) environments, including hybrid, virtual, and physical networks.

Oracle Communications Design Studio provides the design-time environment for
onboarding VNFs and composing network services. The solution is extensible and
allows integration with third-party VNF managers, VIMs, monitoring engines, and
SDN Controllers.

About Network Service Orchestration Entities
The Network Service Orchestration solution uses the Oracle Communications
Information Model (OCIM) to represent inventory items and business practices. The
Oracle Communications Information Model is based on the Shared Information Data
(SID) model developed by the TeleManagement Forum. The information model
contains resource entities, service entities, common patterns, definitions, and common
business entities.

For details about the Oracle Communications Information Model (OCIM), see Oracle
Communications Information Model Reference and UIM Information Model Reference.

Table 1–1 describes the NFV entities and their corresponding OCIM entities.

Table 1–1 Mapping of NFV Entities and OCIM Entities

NFV Entity OCIM Entity Description

Availability Zone Custom Object with the
following characteristics:

■ Disk Total

■ Memory Total

■ VCPU Total

■ Disk Used

■ Memory Used

■ VCPU Used

Represents a grouping of resources based on
availability characteristics, for example Availability
Zone (OpenStack), Resource Pool (VMware). In
OpenStack, availability zones enable you to arrange
OpenStack compute hosts into logical groups and
provides a form of physical isolation and redundancy
from other availability zones, such as by using a
separate power supply or network equipment.

Connection Point Device Interface Represents a port on the VNF. Connection points
connect Virtual Links to VNFs. They represent the
virtual interfaces and physical interfaces of the VNFs
and their associated properties and other metadata

Deployment Flavor Custom Object Represents a specific deployment of a network service
or VNF supporting specific key performance indicators
(KPIs), such as capacity and performance.

Endpoint Custom Object Describes a service access point for the network
service.

About Network Service Orchestration Entities

Overview 1-3

Flavor Custom Object Defines the compute, memory, and storage capacity of
computing instances. A flavor is an available hardware
configuration for a server. It defines the size of a virtual
server that can be launched.

Host Custom Object with the
following characteristics:

■ Disk Total

■ Memory Total

■ VCPU Total

■ Disk Used

■ Memory Used

■ VCPU Used

Represents a compute host, a physical host dedicated
to running compute nodes.

Infrastructure Domain Network Address Domain Represents the domain within the NFV Infrastructure
that includes all networking that interconnects
compute and storage infrastructure.

IP Network Infrastructure ■ Network Address
Domain

■ IP Network

■ IP Subnet

■ IP Address

Represents the network, subnet, and IP address of the
VNF in the solution.

The networks are either created or referenced in the
service configuration. During activation, the
corresponding network, subnet, and ports are created
in the VIM on which the VNF virtual machine is
deployed.

IP Address IP Address Represents an IPv4Address and an IPv6Address in the
OCIM domain model.

Network Functions
Virtualization
Infrastructure (NFVI)

Custom object with the
following characteristics:

■ Host

■ Port

■ Username

■ Password

■ Domain Name

■ Tenant Name

■ VIM Type

Represents the totality of all hardware and software
components that build the environment where VNFs
are deployed. Represents a tenant.

Network Service Service Represents a composition of network functions.

Network Service
Descriptor

Service Specification Describes a network service in terms of its deployment
and operational behavior. Used in the process of
network service on-boarding and managing the
lifecycle of a network service instance.

NFV Service Request Business Interaction Represents an NFV life-cycle action in UIM. Every time
you perform a life-cycle action, the solution creates a
business interaction for the action in UIM.

SDN Controller Custom Object Centralizes some or all of the control and management
functionality of a network domain. An SDN controller
can also provide an abstract view of its domain to
other functional components through well-defined
interfaces.

Table 1–1 (Cont.) Mapping of NFV Entities and OCIM Entities

NFV Entity OCIM Entity Description

About the Sample Network Protection Service

1-4 Network Service Orchestration Solution Implementation Guide

About the Sample Network Protection Service
The Network Service Orchestration solution includes sample cartridges that you can
use as references for designing and implementing a network protection service.

See "About the Sample Network Protection Service Model" for detailed information
about the service model and instructions for implementing the sample network
protection service.

About the Branding Cartridge
By default, in the UIM user interface, the entities are labeled using the standard UIM
names that are based on Oracle Communications Information Model. For example,
VNFs are displayed as logical devices and VNF descriptors are displayed as Logical
Device specifications. You can customize the UIM user interface to label your entities
using the standard NFV terminology.

Subnet IP Subnet Represents an administrative or functional boundary
on a range of network addresses. A subnet is defined
by a base range whose sequence is often appended to a
fixed prefix.

Virtual Data Center (VDC) Custom Object with the
following characteristics:

■ Disk Total

■ Memory Total

■ VCPU Total

Represents the resources managed by a VIM under a
specific tenant (for example OpenStack) or
Organization Virtual Data Center (VMware).

Virtual Link IP Network Describes the basic topology of connectivity between
VNFs and target parameters, such as bandwidth,
latency, and QoS. Virtual links connect to VNFs using
Connection Points (CPs).

Virtual Network Function
(VNF)

Logical Device Represents an implementation of a network function
that can be deployed on a Network Function
Virtualization Infrastructure (NFVI). A network
function is a functional building block within a
network infrastructure that has well-defined external
interfaces and a well-defined functional behavior.

Virtualized Infrastructure
Manager (VIM)

Custom Object with the
following characteristics:

■ Host

■ Port

■ Username

■ Password

■ Domain Name

■ Tenant Name

■ VIM Type

Represents a functional component that is responsible
for controlling and managing the NFVI compute,
storage and network resources, usually within an
operator's infrastructure domain.

VNF Descriptor ■ Logical Device
Specification

■ Service Specification

Describes a VNF in terms of its deployment and
operational behavior. The VNF Descriptor is used in
the process of VNF onboarding and managing the
lifecycle of a VNF instance.

Table 1–1 (Cont.) Mapping of NFV Entities and OCIM Entities

NFV Entity OCIM Entity Description

About the Branding Cartridge

Overview 1-5

The Network Service Orchestration solution provides a branding sample cartridge that
you can deploy into UIM to display a separate group of links and pages. The group
display your resource entities in the NFV-standard terminology. The cartridge
provides NFV-specific label names for links, field names, and entities in the UIM user
interface. The cartridge also filters entities in the search results pages to display only
the solution-specific entities that you work with in the solution.

When you deploy the branding cartridge into UIM, UIM does the following:

■ Displays the Network Service Orchestration Solution banner at the top of the UIM
screens.

■ Displays the Network Service Orchestration group in the navigation section that
includes the following expandable and collapsible subgroups of links:

In the Orchestration subgroup:

– NFV Service Requests. Clicking this link displays the Search page for service
requests. The search page returns service requests that are based on your NFV
service request specifications.

– Network Services. Clicking this link displays the Search page for network
services. The search page returns a list of network services that are based on
your network service descriptors.

– Virtual Network Functions. Clicking this link displays the Search page for
VNFs. The search page returns a list of VNFs that are based on your VNF
descriptors.

In the Catalog group:

– Network Service Descriptors. Clicking this link displays the Search page for
Network Service descriptors. The search page returns a list of network service
descriptors.

– VNF Descriptors. Clicking this link displays the Search page for VNF
descriptors. The search page returns a list of VNF descriptors.

■ Filters the entities that are displayed in the search results pages to retrieve only
those entities that are created based on your VNF and network service descriptors
that you use in the solution.

See "Configuring UIM for the Network Service Orchestration Solution" for instructions
about branding the UIM user interface.

About the Branding Cartridge

1-6 Network Service Orchestration Solution Implementation Guide

2

Installing and Integrating the Solution Components 2-1

2Installing and Integrating the Solution
Components

This chapter describes the software requirements and instructions for installing and
integrating Oracle Communications Network Service Orchestration Solution
components.

Planning Your Implementation
Before you implement the Network Service Orchestration solution, you must identify
the required software, ensure that the required network infrastructure is available and
ready, and identify the third-party software that you want to use with the solution.
Your choices are based on the network services you want to deliver on your network.

Use the following list of tasks as a checklist to ensure that you have all the required
components for a successful implementation of the solution:

■ Install and configure the required software. See "Configuring UIM for the
Network Service Orchestration Solution".

■ Integrate the Virtual Infrastructure Manager (VIM). See "Integrating the VIM with
the Solution".

■ Integrate the SDN controller if your network service requires configuration of
network flows. See "Registering the SDN Controller".

■ Onboard Network Services and VNFs. See "Designing and Onboarding Network
Services and VNFs".

■ Write extensions for extending the core functionality and integrate third-party
software with the solution. See "Using Extension Points and Java Interface
Extensions to Extend the Solution".

■ Integrate client applications with the solution for using the RESTful APIs. For
details about the solution’s RESTful APIs, see "Network Service Orchestration
RESTful API Reference".

Software Requirements
To implement the Network Service Orchestration solution, you require the following
software:

■ Oracle Communications Unified Inventory Management 7.3.3.

See UIM 7.3.3 Installation Guide for installation instructions.

■ Oracle Communications Design Studio 7.3.2.

Configuring UIM for the Network Service Orchestration Solution

2-2 Network Service Orchestration Solution Implementation Guide

See Design Studio 7.3.2 Installation Guide for installation instructions.

Configuring UIM for the Network Service Orchestration Solution
To configure UIM for the Network Service Orchestration solution:

1. Install UIM on a WebLogic server. See UIM 7.3.3 Installation Guide for installation
instructions.

2. Download and set up the gson library:

a. Download the gson-2.2.4.jar file from the following website and copy it to the
UIM_Home/lib folder, where UIM_Home is the directory into which UIM is
installed:

http://repo1.maven.org/maven2/com/google/code/gson/gson/2.2.4/

b. Open the Domain_Home/bin/setUIMEnv.sh file and add the following entry,
where Domain_Home is the directory that contains the configuration for the
domain into which UIM is typically installed:

CLASSPATH="${CLASSPATH}:${UIM_HOME}/lib/gson-2.2.4.jar"
export CLASSPATH

3. In the WebLogic server on which UIM is installed, deploy the WL_
HOME/common/deployable-libraries/jersey-bundle-1.9.war file as a library
and specify the target as the server on which UIM is installed.

4. Set up queues in the WebLogic server. See "Setting Up Queues in WebLogic
Server" for detailed instructions.

5. Restart the server on which UIM is installed.

6. Navigate to the UIM_Home/cartridges directory and deploy the following base
UIM cartridges into UIM in the order they are listed:

■ ora_uim_baseextpts

■ ora_uim_basemeasurements

■ ora_uim_basetechnologies

■ ora_uim_basespecifications

■ (Optional) ora_uim_common. Deploy this cartridge if you want to implement
a network protection service by using the sample cartridges.

See UIM Cartridge Guide for instructions about deploying cartridges into UIM.

7. Create a local directory (NSO_Software_Home).

8. In the UIM software pack, locate the OracleComms_NSO_1.1.1.0.0.build_
number.zip file and extract it into the NSO_Software_Home directory.

Note: If you are upgrading to UIM 7.3.3 from UIM 7.3.1 or UIM 7.3.2,
follow the steps for upgrading from UIM 7.3.x to UIM 7.3.2 in the UIM
7.3.3 Installation Guide.

If you are upgrading the solution from 1.1 to 1.1.1, see "Upgrading the
Network Service Orchestration Solution".

Configuring UIM for the Network Service Orchestration Solution

Installing and Integrating the Solution Components 2-3

9. Navigate to the NSO_Software_Home/deploy/individualJarsForSuperJar
directory and deploy the following Network Service Orchestration solution
cartridges into UIM in the order they are listed:

■ OracleComms_NSO_NFVIAdapter

■ OracleComms_NSO_Common

■ OracleComms_NSO_BaseCartridge

10. (Optional) If you want to use the sample cartridges that are provided with the
solution, navigate to the NSO_Software_Home/designStudio/cartridgeZips
directory and deploy the following sample cartridges into UIM in the order they
are listed:

■ NPaaS_NetworkService

This sample cartridge contains the functionality to implement Network
Protection as a network service.

■ Checkpoint_NG_FW_VNF

This sample cartridge contains the Checkpoint firewall VNF to use with the
Network Protection service.

■ Juniper_vSRX_VNF

This sample cartridge contains the Juniper vSRX firewall VNF to use with the
Network Protection service.

11. (Optional) By default, in the UIM user interface, your entities are labeled using the
standard UIM names that are based on the Oracle Communications Information
Model. To label your entities using the standard NFV terminology, extract and
deploy the NSO_Software_Home/designStudio/cartridgeZips/NSOBranding
sample cartridge into UIM.

12. In the WebLogic server on which UIM is installed, deploy the NSO_Software_
Home/deploy/applications/OracleComms_NSO_WebServices.war file as a web
application.

To deploy the .war file into WebLogic server:

a. Copy the custom.ear file from Domain_Home/UIM/app/7_3_3/ to a
temporary directory.

b. Navigate to the temporary directory and expand the custom.ear archive file by
running the following command:

jar xvf custom.ear

c. Delete the custom.ear file and copy the deploy/applications/OracleComms_
NSO_WebServices.war file to the temporary directory.

d. Open the META_INF/application.xml file in a text editor and add the
following text:

<module>
 <web>
 <web-uri>OracleComms_NSO_WebServices.war</web-uri>
 <context-root>/ocnso/1.1</context-root>

Note: After you deploy the branding cartridge into UIM, you cannot
undeploy it or return UIM to its previous state.

Configuring UIM for the Network Service Orchestration Solution

2-4 Network Service Orchestration Solution Implementation Guide

 </web>
</module>

e. Rebuild the custom.ear file by running the following command:

jar cvf custom.ear *

f. Log in to Oracle WebLogic Server Console.

g. Click Lock and Edit.

h. Click Deployments.

i. In the Summary of Deployments section, select custom and click Update.

j. Select Redeploy this application using the following deployment files and
click Change Path.

k. Browse and select the custom.ear file, which is created in the temporary
directory.

l. Click Next.

m. Click Finish.

n. Click Activate Changes.

13. (Optional) If you want to use an SDN controller to control data flows for your
network service, register the SDN controller with the solution. See "Registering the
SDN Controller" for instructions.

14. (Optional) Integrate the solution with northbound applications for asynchronous
communication. See "Integrating the Solution With Northbound Applications for
Asynchronous Communication".

After you install the required software and configure UIM, integrate the VIM with the
solution. See "Integrating the VIM with the Solution" for more information.

Setting Up Queues in WebLogic Server
You set up queues in the WebLogic server to maintain fault tolerance when there is an
issue in the activation of resources after a lifecycle action is performed.

To set up queues in WebLogic server, do any one of the following:

■ Run the scripts to set up queues in the WebLogic server automatically. See
"Running Scripts to Set Up Queues in WebLogic Server" for instructions.

■ Configure the WebLogic server manually. See "Setting Up Queues in WebLogic
Server Manually" for instructions.

Running Scripts to Set Up Queues in WebLogic Server
The Network Service Orchestration solution includes scripts that you can run to set up
queues in the WebLogic server.

Before you run the scripts, do the following:

■ Specify the WebLogic server details in the following files:

– For standalone server, specify the server details in the NSO_Software_
Home/tools/jmsWlstScripts/nso_jms_configuration_standalone.properties
file.

– For cluster setup, specify the server details in the NSO_Software_
Home/tools/jmsWlstScripts/nso_jms_configuration_cluster.properties file.

Configuring UIM for the Network Service Orchestration Solution

Installing and Integrating the Solution Components 2-5

■ If SSL is enabled for secure communication, open all the script files and change the
protocol from t3 to t3s:

For example, change:

URL="t3://"+AdminServerListenAddress+":"+AdminServerListenPort

to

URL="t3s://"+AdminServerListenAddress+":"+AdminServerListenPort.

To set up queues in the WebLogic server:

■ If SSL is not enabled, do the following:

– For standalone server, run the following script:

WebLogic_Home/oracle_common/common/bin/wlst.cmd nso_jms_queue_
standalone.py

– For cluster setup, run the following script:

WebLogic_Home/oracle_common/common/bin/wlst.cmd nso_jms_queue_
cluster.py

■ If SSL is enabled, do the following:

1. Set the WebLogic server environment by running the following command:

WebLogic_Home/wlserver/server/bin/setWLSEnv.sh

2. For standalone server, run the following script:

java -Dweblogic.security.SSL.ignoreHostnameVerification=true
-Dweblogic.security.CustomTrustKeyStoreType="JKS"
-Dweblogic.security.TrustKeyStore=DemoTrust
-Dweblogic.security.CustomTrustKeyStoreFileName="Weblogic_
Home/wlserver/server/
 lib/DemoTrust.jks" weblogic.WLST nso_jms_queue_standalone.py

For cluster setup, run the following script:

java -Dweblogic.security.SSL.ignoreHostnameVerification=true
-Dweblogic.security.CustomTrustKeyStoreType="JKS"
-Dweblogic.security.TrustKeyStore=DemoTrust
-Dweblogic.security.CustomTrustKeyStoreFileName="Weblogic_
Home/wlserver/server/
 lib/DemoTrust.jks" weblogic.WLST nso_jms_queue_cluster.py

Setting Up Queues in WebLogic Server Manually
To set up queues in WebLogic server manually:

1. In the WebLogic server on which UIM is installed, create a JDBC Store with the
following parameters:

■ Name: inventoryNSOStore

■ Target: Specify AdminServer or the managed server on which UIM is
installed.

■ Datasource: InventoryDatSource

If you use cluster setup, create a JDBC Store for each managed server and specify a
unique prefix name. For example, if you use managed server 1 (MS1) and
managed server 2 (MS2), create a JDBC Store with the name inventoryNSOStore-0

Configuring UIM for the Network Service Orchestration Solution

2-6 Network Service Orchestration Solution Implementation Guide

targeting MS1 and another JDBC Store with the name inventoryNSOStore-1
targeting MS2 with unique prefix names.

2. Create a JMS Server with the following parameters:

■ Name: NSOJMSServer

■ Persistent Server: Specify the persistent store that you created earlier.

■ Target: Specify AdminServer or the managed server on which UIM is
installed.

If you use cluster setup, create a JMS Server for each managed server and associate
the JMS servers to the JDBC stores that you created earlier. For example, if you use
managed server 1 (MS1) and managed server 2 (MS2), create a JMS Server with the
name NSOJMSServer-0 targeting MS1 and associate it to the
inventoryNSOStore-0 JDBC Store. Create another JMS Server with the name
NSOJMSServer-1 targeting MS2 and associate it to the inventoryNSOStore-1
JDBC Store.

3. Activate the changes.

4. Create a JMS Module with the following parameters:

■ Name: NSOModule

■ Target: Specify the AdminServer or select all the servers if you use cluster
setup.

5. For the NSOModule that you created, create a Connection Factory with the
following parameters:

■ Name: NSORequestQueueConnFactory

■ JNDI Name: NSORequestQueueConnFactory

■ Select Advanced Targeting

■ Create a new sub-deployment with the name NSOJMSServer

■ For the sub-deployment that you created, specify NSOJMServer as the target.
If you use cluster setup, specify all the JMS servers that you created.

6. For the NSOModule, create a JMS Queue for a standalone server setup or create a
Distributed JMS Queue for a cluster setup with the following parameters:

■ Name: NSORequestQueue

■ JNDI Name: NSORequestQueue

■ Select Advanced Targeting.

■ Select NSOJMSServer as the sub-deployment.

■ Select NSOJMSServer as target. If you use cluster setup, specify all the JMS
servers.

7. Activate the changes.

Registering the SDN Controller
If your network service requires implementation of network flows, then you can set up
the solution to use an SDN controller. SDN controllers are based on protocols, such as
OpenFlow, that enable servers to instruct switches where to send network traffic. You
should register the SDN controller with the solution to manage flow control in the
network. The Network Service Orchestration solution supports OpenDaylight and

Configuring UIM for the Network Service Orchestration Solution

Installing and Integrating the Solution Components 2-7

provides integration points for integrating other third-party SDN controllers. See
"Implementing a Custom SDN Controller" for more information about implementing a
custom SDN controller.

To register your SDN controller with the solution:

1. In UIM, create a custom object based on the SDN specification and specify the
following details about the SDN controller that you want to use:

■ Host

■ Port number

■ Username of the SDN controller

■ Password of the SDN controller

■ Type of the SDN controller

2. Associate the VIM custom object as a parent custom object to the SDN controller
custom object.

Integrating the Solution With Northbound Applications for Asynchronous
Communication

Some VNF and network service lifecycle operations perform long-running processes.
The Network Service Orchestration solution supports integration with northbound
applications in asynchronous communication for such lifecycle operations.

With this integration, the solution provides the final and actual status of the following
network service life-cycle actions so that northbound systems can perform and
complete service fulfillment:

■ Instantiate a network service

■ Terminate a network service

■ Add one or more VNFs to network service

■ Delete one or more VNFs from a network service

■ Scale a VNF

■ Configure a VNF

■ Upgrade the software version of a VNF

To integrate the solution with northbound systems for asynchronous communication,
you must set up a topic in the WebLogic server. After you set up the topic in the
WebLogic server, you can configure your client applications to subscribe to the topic.

To set up topics in the WebLogic server, do any one of the following:

■ Run the scripts to set up topics in the WebLogic server automatically. See
"Running Scripts to Set Up Topics in WebLogic Server" for instructions.

■ Configure the WebLogic server manually. See "Setting Up Topics in WebLogic
Server Manually" for instructions.

Note: You can also customize the solution’s asynchronous
communication functionality. For information about writing your own
implementation for asynchronous communication, see "Implementing
a Custom Response Manager".

Configuring UIM for the Network Service Orchestration Solution

2-8 Network Service Orchestration Solution Implementation Guide

Running Scripts to Set Up Topics in WebLogic Server
The Network Service Orchestration solution includes scripts that you can run to
configure the WebLogic server for asynchronous communication with northbound
applications.

Before you run the scripts, do the following:

■ Specify the WebLogic server details in the following files:

– For the standalone server, specify the server details in the NSO_Software_
Home/tools/jmsWlstScripts/nso_jms_configuration_standalone.properties
file.

– For cluster setup, specify the server details in the NSO_Software_
Home/tools/jmsWlstScripts/nso_jms_configuration_cluster.properties file.

■ If SSL is enabled for secure communication, open all the script files and change the
protocol from t3 to t3s:

For example, change

URL="t3://"+AdminServerListenAddress+":"+AdminServerListenPort

to

URL="t3s://"+AdminServerListenAddress+":"+AdminServerListenPort.

To set up topics in the WebLogic server:

■ If SSL is not enabled, do the following:

– For a standalone server, run the following script:

WebLogic_Home/oracle_common/common/bin/wlst.cmd nso_jms_topic_
standalone.py

– For a cluster setup, run the following script:

WebLogic_Home/oracle_common/common/bin/wlst.cmd nso_jms_topic_
cluster.py

■ If SSL is enabled, do the following:

1. Set the WebLogic server environment by running the following command:

WebLogic_Home/wlserver/server/bin/setWLSEnv.sh

2. For standalone server, run the following script:

java -Dweblogic.security.SSL.ignoreHostnameVerification=true
-Dweblogic.security.CustomTrustKeyStoreType="JKS"
-Dweblogic.security.TrustKeyStore=DemoTrust
-Dweblogic.security.CustomTrustKeyStoreFileName="Weblogic_
Home/wlserver/server/
 lib/DemoTrust.jks" weblogic.WLST nso_jms_topic_standalone.py

For cluster setup, run the following script:

java -Dweblogic.security.SSL.ignoreHostnameVerification=true
-Dweblogic.security.CustomTrustKeyStoreType="JKS"
-Dweblogic.security.TrustKeyStore=DemoTrust
-Dweblogic.security.CustomTrustKeyStoreFileName="Weblogic_
Home/wlserver/server/
 lib/DemoTrust.jks" weblogic.WLST nso_jms_topic_cluster.py

Integrating the VIM with the Solution

Installing and Integrating the Solution Components 2-9

Setting Up Topics in WebLogic Server Manually
To set up topics in the WebLogic server:

1. In the WebLogic server on which UIM is installed, for the NSOModule, create a
Connection Factory with the following parameters:

■ Name: NSOResponseTopicConnFactory

■ JNDI Name: NSOResponseTopicConnFactory

■ Select Advanced Targeting

2. For the sub-deployment that you created, specify NSOJMSServer as the target. If
you use cluster setup, specify all the JMS servers that you created.

3. Create a JMS topic for a standalone server setup or create a Distributed JMS topic
for a cluster setup with the following parameters:

■ Name: NSOResponseTopic

■ JNDI Name: NSOResponseTopic

■ Select NSOJMSServer as the sub-deployment.

■ Select NSOJMSServer as target. If you use cluster setup, specify all the JMS
servers that you created.

4. Activate the changes.

Integrating the VIM with the Solution
The Network Service Orchestration solution supports OpenStack and provides
integration points for integrating other third-party VIMs. See "Implementing a Custom
VIM" for more information about implementing a custom VIM.

Before you integrate the VIM with the solution, ensure that you set up and configure
the VIM to use with the solution. After your VIM infrastructure is set up, you register
the VIM and discover the VIM resources into the solution.

Integrating the VIM with the solution involves the following tasks:

■ Registering the VIM

■ Discovering VIM Resources

Registering the VIM
To register a VIM with the solution:

1. Ensure that UIM is started and running.

2. Ensure that the Network Service Orchestration solution cartridges are deployed
into UIM.

3. Start the VIM and ensure that you have the IP address, username, and password
of the VIM instance.

4. In a RESTful API client, call the following RESTful API using the POST method:

POST http://nso_host:port/ocnso/1.1/vim

where:

■ nso_host is the IP address of the machine on which UIM is installed

■ port is the port number of the machine on which UIM is installed

Integrating the VIM with the Solution

2-10 Network Service Orchestration Solution Implementation Guide

5. Specify the VIM details in the request. For details about the request parameters,
see "Register a VIM" in the "Network Service Orchestration RESTful API
Reference" chapter.

The RESTful API client returns a response.

6. In UIM, verify that a custom object with the details of the VIM is created.

Discovering VIM Resources
You discover VIM resources into UIM so that the solution contains information about
the current status and availability of all the required virtual resources on the network.
In UIM, the VIM is represented as a custom object.

When you discover a VIM, the details of the following resources are populated into
UIM:

■ Availability zone (OpenStack)

■ Flavor

■ Host

■ VDC

To discover VIM resources into UIM:

1. In a RESTful API client, call the following RESTful API using the POST method:

POST http://nso_host:port/ocnso/1.1/vim/vimId/discovery?infoLevel=vim_
information

where:

■ nso_host is the IP address or the domain name of the machine on which UIM is
installed

■ port is the port number of the machine on which UIM is installed

■ vimId is the Id of the VIM that you registered with the solution and whose
resources you want to discover

■ vim_information is the level of information about the VIM that you want to
retrieve and view in the response. The available values are:

– summary. Retrieves and displays a summary of the VIM resources.

– details. Retrieves and displays complete details about all the VIM
resources.

For more details about the request parameters, see "Discover VIM Resources" in
the "Network Service Orchestration RESTful API Reference" chapter.

The RESTful API client returns a response.

2. In UIM, verify that the following entities are created as Custom Objects:

■ Availability zone

■ Flavor

■ Host

■ VDC

Upgrading the Network Service Orchestration Solution

Installing and Integrating the Solution Components 2-11

Enabling Logging for the Network Service Orchestration Solution
You enable logging for the solution to log debug messages.

For more information about logging, see the chapter about improving UIM
performance in UIM System Administrator’s Guide.

To enable logging for the Network Service Orchestration solution:

1. Open the UIM_Home/config/loggingconfig.xml file in a text editor.

2. Add the following text:

<logger name="oracle.communications.inventory.nso" additivity="false">
 <level value="debug" />
 <appender-ref ref="stdout"/>
 <appender-ref ref="rollingFile"/>
</logger>

3. Save and close the file.

Upgrading the Network Service Orchestration Solution
If you are using Network Service Orchestration Solution 1.1, you can upgrade to
Network Service Orchestration Solution 1.1.1.

To upgrade to Network Service Orchestration Solution 1.1.1:

1. Upgrade UIM to UIM 7.3.3. See UIM 7.3.3 Installation Guide for instructions.

2. Follow steps from 4 to 12 in the "Configuring UIM for the Network Service
Orchestration Solution" section.

3. In your network service properties file, add or update the following parameters
and specify values for the parameters:

■ NSD_Name.default.serviceArea.default_service_area

where:

– NSD_Name is the name of your network service descriptor file.

– default_service_area is the name of the default service area

■ NSD_Name.default.dataCenter.default_data_center

where default_data_center is the name of the default data center

■ sdnController.NSD_Name

4. Update your VIM by running the following RESTful API:

PUT http://nso_host:port/ocnso/vim/vimId

where vimId is the Id of the VIM that you want to update

Note: Whenever you add, upgrade, modify, or delete the compute,
memory, and network resources in your NFV Infrastructure (NFVI),
run the VIM discovery RESTful API to ensure that details about the
currently available resources on your NFVI are reflected correctly in
the solution.

Supported Southbound Integration

2-12 Network Service Orchestration Solution Implementation Guide

For more details about the request parameters, see "Update a VIM" in the
"Network Service Orchestration RESTful API Reference" chapter.

Specify values for the following parameters:

■ version. For OpenStack Keystone version 2.0, specify 2. For OpenStack
Keystone version 3.0, specify 3.

■ cpuOvercommitRatio. Specify the ratio of overcommitted vCPU.

■ memoryOverCommitRatio. Specify the ratio of overcommitted memory.

■ diskOverCommitRatio. Specify the ratio of overcommitted disk.

5. Discover the VIM resources by running the following RESTful API:

POST http://nso_host:port/ocnso/vim/discover/vimId?infoLevel=vim_information

where:

■ vimId is the Id of the VIM whose resources you want to discover

■ vim_information is the level of information about the VIM that you want to
retrieve and view in the response. The values are:

– summary. Retrieves and displays a summary of the VIM resources.

– details. Retrieves and displays complete details about all the VIM
resources.

For more details about the request parameters, see "Discover VIM Resources" in
the "Network Service Orchestration RESTful API Reference" chapter.

Supported Southbound Integration
The Network Service Orchestration solution supports the following southbound
integrations:

■ For VNF management:

– VNF Manager, with the ability to manage VNFs through direct integration or
by integration with an Element Management System (EMS)

– Integration with external VNF Managers

■ For virtual infrastructure management:

– Integration to OpenStack Kilo with Keystone version 2 and version 3, and
Oracle OpenStack for Oracle Linux Release 2

– Sample integration to VMware vCloud Director

– Integration with other Virtual Infrastructure Managers

■ For network and SDN controllers:

– Integration to OpenStack Neutron (Kilo release)

– Sample integration to OpenDaylight

3

Designing and Onboarding Network Services and VNFs 3-1

3Designing and Onboarding Network Services
and VNFs

This chapter provides information about designing and onboarding network services
and VNFs.

About the Design Components
The design components constitute resources that you create in Oracle
Communications Design Studio. The Network Service Orchestration solution uses
different types of files that you create in Design Studio to describe the behavior of your
network services and VNFs.

■ Entity Specifications. You create specifications in Design Studio that you use to
create instances of VNFs and network services in Oracle Communications Unified
Inventory Management (UIM).

See Design Studio Help for information about creating entity specifications in
Design Studio.

■ Descriptor files. The descriptor files describe the attributes of the VNF and
Network Service specifications.

See "About the Descriptor Files" for more information about the descriptor files.

■ Technical actions files. The technical actions files describe the actions for the
VNFs and Network Services in the VIM. There is one technical actions file for each
network service and VNF.

See "About the Technical Actions File" for more information about the technical
actions files.

■ Configuration and template files. The configuration files contain the
configuration and post-configuration details for the VNFs.

See "About the VNF Configuration Files" for more information about the
descriptor files.

■ Custom extensions. See "Extending the Network Service Orchestration Solution"
for information about implementing custom extensions with the solution.

About the Descriptor Files
The descriptor files contain metadata about the network services and VNFs. The
solution defines network service and VNF descriptors in the form of Design Studio
specifications.The Network Service Orchestration solution uses these specifications to
manage the life cycles of network services and VNFs.

About the Design Components

3-2 Network Service Orchestration Solution Implementation Guide

Network services are assembled from the defined units of behavior provided by the
VNFs in the cartridges. Network Service descriptors structure how these network
services are populated in the cartridges. VNF descriptors describe the behavior of
virtual functions that are defined in the Network Service Orchestration cartridges.
There is one descriptor file for each network service and a VNF.

About the Network Service Descriptor Files
Network Service descriptor files describe the deployment requirements, operational
behavior, and policies required by network services based on them.

When you instantiate, scale, or terminate a network service, the network service
deploys, scales, and undeploys the constituent VNFs based on the parameters and
policies specified in the descriptor file.

In the network service descriptor file, you:

■ Define the networks by either creating them or by referencing existing networks
and specifying network types. See "Describing Networks" for more information.

■ For each network, specify the VNFs the network service should use.

■ Specify the network forwarding path for the network traffic. See "Describing
Forwarding Graphs" for more information.

■ For each VNF in the network service, specify parameters related to CPU utilization
and other factors related to performance of the virtual machine on which the VNF
is deployed. See "Describing Deployment Flavors" for more information.

■ Specify when you want the solution to heal a VNF and scale the network service.

The solution includes the sample NPaaS_NSD.xml network service descriptor file.

Describing Networks
In the network service descriptor XML file, you define networks by creating them or
by referencing existing networks and specifying their types. You represent networks as
virtual links. You can create or reference any number of networks based on your
service requirements. You can also specify the number of end points the networks can
have.

The following text shows the pattern in which you describe a virtual link descriptor,
which corresponds to a network in the sample NPaaS_NSD.xml network service
descriptor file:

-<virtualLinkDescriptors>
 -<virtualLinkDescriptor name="network_name" type="network_type"
isReferenced="value">
 <numberOfEndPoints>number_of_endpoints</numberOfEndPoints>
 -<connectionPoints>
 <!-- The format is VNFD:ConnectionPoint -->
 <connectionPoint name="vnf_descriptor_name:connection_point_name"
type="connection_point_type" order="connectionPoint_order"/>
 </connectionPoints>

Note: If you create your own descriptor file for a network service,
ensure that the name of the descriptor file ends with NSD. For
example, if you want to create a network service descriptor file for an
IP Multimedia Subsystem (IMS) network service with the name
IMSaaS, create it as IMSaaS_NSD. This enables the solution to filter
and return search results for network service descriptors only.

About the Design Components

Designing and Onboarding Network Services and VNFs 3-3

 </virtualLinkDescriptor>
</virtualLinkDescriptors>

where:

■ network_name is the name of the network that you want to create or reference.

■ network_type is the type of the network that you want to create or reference.

■ value indicates whether you want to create or reference the network. Specify true
or false.

■ number_of_endpoints is the number of endpoints that the network provides.

■ vnf_descriptor_name:connection_point_name is the name of the VNF descriptor XML
file and the name of the VNF connection point.

■ connection_point_type is the type of the connection point.

■ connectionPoint_order is the order of the connection points for the VNF.

The following text shows a sample virtual link descriptor element in the sample
NPaaS_NSD.xml network service descriptor file:

-<virtualLinkDescriptors>
 -<virtualLinkDescriptor name="Data_IN" type="Data" isReferenced="false">
 <numberOfEndPoints>20</numberOfEndPoints>
 -<connectionPoints>
 <!-- The format is VNFD:ConnectionPoint -->
 <connectionPoint name="Juniper_vSRX_VNFD:CP01" type="IN" order="2"/>
 </connectionPoints>
 </virtualLinkDescriptor>
</virtualLinkDescriptors>

Describing Forwarding Graphs
In the network service descriptor XML file, you describe forwarding graphs by
specifying the network forwarding path for the network traffic.

The following text shows the pattern in which you describe a forwarding graph in the
NPaaS_NSD.xml network service descriptor file:

-<forwardingGraphDescriptors>
 -<forwardingGraphDescriptor name="ForwardingGraphName" default="default">
 -<networkForwardingPath>
 -<vnfd name="vnf_descriptor_name">
 -<connectionPoints>
 <connectionPoint name="connection_point_name" type="type_of_
connectionPoint"/>
 <connectionPoint name="connection_point_name" type="type_of_
connectionPoint"/>
 </connectionPoints>
 </vnfd>
 </networkForwardingPath>
 </forwardingGraphDescriptor>
</forwardingGraphDescriptors>

where:

■ ForwardingGraphName is the name of the forwarding graph.

■ default indicates if the network service should use this forwarding graph by
default or not.

About the Design Components

3-4 Network Service Orchestration Solution Implementation Guide

■ vnf_descriptor_name is the name of the VNF descriptor that you want to use with
the network service.

■ connection_point_name is the name of the connection point defined in the VNF
descriptor, that you want to use for the forwarding graph.

■ type_of_connectionPoint is the type of the connection point.

The following text shows a sample forwarding graph element in the NPaaS_NSD.xml
network service descriptor file:

-<forwardingGraphDescriptors>
 -<forwardingGraphDescriptor name="Data" default="true">
 -<networkForwardingPath>
 -<vnfd name="Checkpoint_NG_FW_VNFD">
 -<connectionPoints>
 <connectionPoint name="CP01" type="IN"/>
 <connectionPoint name="CP02" type="OUT"/>
 </connectionPoints>
 </vnfd>
 </networkForwardingPath>
 </forwardingGraphDescriptor>
</forwardingGraphDescriptors>

Describing Deployment Flavors
In the network service descriptor XML file, you describe deployment flavors by
specifying parameters for CPU utilization and other factors related to the performance
of the virtual machine on which the VNFs are deployed. You also specify when you
want to heal a VNF and scale the network service.

The following text shows the pattern in which you describe deployment flavors in the
NPaaS_NSD.xml network service descriptor file:

-<serviceDeploymentFlavors>
 -<serviceDeploymentFlavor name="flavorName">
 -<constituentVNFDs>
 -<vnf>
 <vnfd name="VNFDname"/>
 -<assuranceParameters>
 -<assuranceParameter name="assuranceParameterName" action="action">
 <id>Id</id>
 <value>value</value>
 <condition>condition</condition>
 </assuranceParameter>
 -<assuranceParameter name="assuranceParameterName" action="action">
 <id>Id</id>
 <value>value</value>
 <condition>condition</condition>
 </assuranceParameter>
 </assuranceParameters>
 </vnf>
 </constituentVNFDs>
 </serviceDeploymentFlavor>
</serviceDeploymentFlavors>

where:

■ flavorName is the name of the service deployment flavor.

■ VNFDname is the name of the VNF Descriptor.

About the Design Components

Designing and Onboarding Network Services and VNFs 3-5

■ assuranceParameterName is the name of the assurance parameter.

■ action is the action you want to perform on the VNF. You can specify either to heal
or scale the VNF.

■ Id is the Id of the assurance parameter.

■ value is the threshold value.

■ condition is the condition based on which the action is performed.

The following text shows a sample service deployment flavor element in the NPaaS_
NSD.xml network service descriptor file:

-<serviceDeploymentFlavors>
 -<serviceDeploymentFlavor name="Checkpoint">
 -<constituentVNFDs>
 -<vnf>
 <vnfd name="Checkpoint_NG_FW_VNFD"/>
 -<assuranceParameters>
 -<assuranceParameter name="Low CPU Utilization" action="heal">
 <id>cpu_util</id>
 <value>0.0</value>
 <condition>eq</condition>
 </assuranceParameter>
 -<assuranceParameter name="High CPU Utilization" action="scale">
 <id>cpu_util</id>
 <value>80.0</value>
 <condition>gt</condition>
 </assuranceParameter>
 </assuranceParameters>
 </vnf>
 </constituentVNFDs>
 </serviceDeploymentFlavor>
</serviceDeploymentFlavors>

About the VNF Descriptor Files
The VNF descriptor files describe the deployment requirements, operational behavior,
and policies required by VNFs that are based on them.

The solution includes the following sample VNF descriptor files:

■ Juniper_vSRX_VNFD.xml. This is the descriptor file for the Juniper vSRX firewall
VNF.

■ Checkpoint_NG_FW_VNFD.xml. This is the descriptor file for the Checkpoint
NG firewall VNF.

In the VNF descriptor file, you specify:

■ Deployment flavor parameters

■ Connection points for the VNF

Note: If you create your own descriptor file for a VNF, ensure that
the name of the descriptor file ends with VNFD. For example, if you
want to create a VNF descriptor file for Cisco’s VRF-aware VNF with
the name CiscoVRF, create it as CiscoVRF_VNFD. This enables the
solution to filter and return search results for VNF descriptors only.

About the Design Components

3-6 Network Service Orchestration Solution Implementation Guide

■ Software version of the VNF

The following text shows the pattern in which you describe a VNF in the VNF
descriptor file:

-<vnfd name="VNFdescriptorName">
 -<deploymentFlavors>
 <deploymentFlavor name="deploymentFlavorName" disk="diskSpace" memory="memory"
vcpus="vcpus"/>
 <deploymentFlavor name="deploymentFlavorName" disk="diskSpace" memory="memory"
vcpus="vcpus"/>
 </deploymentFlavors>
 -<connectionPoints>
 <connectionPoint name="ConnectionPointName"/>
 <connectionPoint name="ConnectionPointName"/>
 <connectionPoint name="ConnectionPointName"/>
 </connectionPoints>
 <defaultDeploymentFlavor>defaultDeploymentFlavorName</defaultDeploymentFlavor>
 -<versions>
 <version imagePasswd="" imageUserName="" imageName="imageName"
number="versionNumber"/>
 </versions>
</vnfd>

where:

■ VNFdescriptorName is the name of the VNF Descriptor.

■ deploymentFlavorName is the name of the VNF deployment flavor.

■ diskSpace is the disk space that you want to allocate for the VNF.

■ memory is the memory you want to allocate for the VNF.

■ vcpus is the number of virtual CPUs that you want to allocate for the VNF.

■ ConnectionPointName is the name of the connection point.

■ defaultDeploymentFlavorName is the name of the deployment flavor that you want
to use for the VNF by default.

■ imageName is the name of the VNF image.

■ versionNumber is the version number of the VNF image.

The following text shows sample VNF elements in the Juniper_vSRX_VNFD.xml
VNF descriptor file:

-<vnfd name="Juniper_vSRX_VNFD">
 -<deploymentFlavors>
 <deploymentFlavor name="vsrx.medium" disk="20" memory="4" vcpus="2"/>
 <deploymentFlavor name="m1.medium" disk="40" memory="4" vcpus="2"/>
 </deploymentFlavors>
 -<connectionPoints>
 <connectionPoint name="CP01"/>
 <connectionPoint name="CP02"/>
 <connectionPoint name="CP03"/>
 </connectionPoints>
 <defaultDeploymentFlavor>vsrx.medium</defaultDeploymentFlavor>
 -<versions>
 <version imagePasswd="" imageUserName=""
imageName="vsrx-12.1X47-D20.7-npaas-v0.3" number="1.0"/>
 </versions>
</vnfd>

About the Design Components

Designing and Onboarding Network Services and VNFs 3-7

Creating a Descriptor File
In Design Studio, you create a descriptor file for each Network Service specification
and VNF Service specification.

To create a descriptor file:

1. In Design Studio, import all the solution cartridges. See "Setting Up Design Studio
for the Network Service Orchestration Solution Cartridges" for more information
about importing the cartridges into Design Studio.

2. Switch to the Navigator view.

3. In the root directory of the cartridge, create the following folder structure:

model\content\product_home\config

4. Right-click on the config folder and create an XML file with the name
ServiceSpecificationName_NSD.xml for a network service and
ServiceSpecificationName_VNFD.xml for a VNF, where ServiceSpecificationName is
the name of the service specification.

5. Copy the sample content from the sample cartridge to the XML file and modify it
according to your service requirements.

About the Technical Actions File
The technical actions file describe the actions for the VNFs and Network Services in
the VIM. There is one technical actions file for each network service and VNF.

In the technical actions file, for each technical action, you define the following
elements:

■ action: This element declares a technical action, its signature, which contains the
name and type of each parameter, and the type of its subject and target.

■ match: This element declares configuration differences that match an XPath
expression.

■ generator: This element defines all the bindings of the configuration to the
parameters, subject, and target of the action to be generated.

The following example shows the elements in the technical actions file:

<technicalActionCalculator
 xmlns="http://xmlns.oracle.com/communications/inventory/actioncalculator"

xmlns:invactcalc="http://xmlns.oracle.com/communications/inventory/actioncalculato
r"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.oracle.com/communications/inventory/actioncalcula
tor schemas/TechnicalActionCalculator.xsd">
 <invactcalc:action>
 <name>DEPLOY_VNF</name>
 <actionCode>DEPLOY_VNF</actionCode>
 <subject>
 <class>LogicalDevice</class>
 </subject>
 <target>
 <class>LogicalDevice</class>
 </target>
 <parameter>
 <name>serviceID</name>

About the Design Components

3-8 Network Service Orchestration Solution Implementation Guide

 <type>string</type>
 </parameter>
 <parameter>
 <name>vnfID</name>
 <type>string</type>
 </parameter>
 <parameter>
 <name>vnfName</name>
 <type>string</type>
 </parameter>
 <parameter>
 <name>vnfdName</name>
 <type>string</type>
 </parameter>
 <parameter>
 <name>imageName</name>
 <type>string</type>
 </parameter>
 </invactcalc:action>

 <invactcalc:match>
 <invactcalc:diff>
 <invactcalc:path>/root/after/vnf/Assignment[@State='PENDING_ASSIGN'
 and /root/service[state!='PENDING_
DISCONNECT']]/..</invactcalc:path>
 </invactcalc:diff>
 <invactcalc:action>DEPLOY_VNF</invactcalc:action>
 <invactcalc:anchor>.</invactcalc:anchor>
 </invactcalc:match>

 <invactcalc:generator>
 <invactcalc:action>DEPLOY_VNF</invactcalc:action>
 <invactcalc:condition>/root/after/vnf/Assignment[@State='PENDING_
ASSIGN']</invactcalc:condition>
 <subject>.</subject>
 <target>.</target>
 <binding>
 <parameter>serviceID</parameter>
 <path>/root/service/id</path>
 </binding>
 <binding>
 <parameter>vnfID</parameter>
 <path>Assignment/id</path>
 </binding>
 <binding>
 <parameter>vnfName</parameter>
 <path>Assignment/name</path>
 </binding>
 <binding>
 <parameter>vnfdName</parameter>
 <path>Assignment/specification</path>
 </binding>
 <binding>
 <parameter>imageName</parameter>
 <path>Assignment/imageName</path>
 </binding>
 </invactcalc:generator>
</technicalActionCalculator>

About the Design Components

Designing and Onboarding Network Services and VNFs 3-9

Creating a Technical Actions File
In Design Studio, you create a technical actions file for each Network Service
specification and a VNF Service specification.

To create a technical actions file:

1. In Design Studio, switch to the Navigator view.

2. In the root directory of the cartridge, create the following folder structure:

model\content\product_home\config

3. Right-click on the config folder and create an XML file with the name
ServiceSpecificationName_TechnicalActions.xml, where ServiceSpecificationName is
the name of the service specification.

4. Copy the sample content from the sample cartridge to the XML file and modify it
according to your service requirements.

About the VNF Configuration Files
Depending on the functionality that they deliver, some VNFs in a network service may
require configuration after they are deployed. After a VNF is deployed, you can
configure the VNF based on its configuration requirements.

To configure a VNF, the solution requires the following configuration files to be
created:

■ VNFD_NameTemplate.conf

This is a VNF-specific configuration template in which you specify the placeholder
fields for instance-specific parameters.

■ VNFD_NameConfig.xml

This is a configuration file in which you specify the VNF instance-specific
configuration parameter values as name-value pairs.

The solution generates the VNFD_Name.conf configuration file based on the VNFD_
NameTemplate.conf file and the VNFD_NameConfig.xml file.

The solution reads all the name-value pairs in the VNFD_NameConfig.xml file and
replaces the placeholder fields in the VNFD_NameTemplate.conf file and generates the
VNFD_Name.conf file.

The following text shows a sample configuration template for the Juniper vSRX VNF
in the Juniper_vSRX_VNFDTemplate.conf configuration file:

 <rpc>
 <edit-config>
 <target>
 <candidate/>
 </target>
 <config>
 <configuration>
 <security>
 <utm>
 <custom-objects>
 <url-pattern>

Note: Post-deployment configuration of VNFs is not always
required.

About the Sample Network Protection Service Model

3-10 Network Service Orchestration Solution Implementation Guide

 <name>bad-sites</name>
 <value>{{site-name}}</value>
 </url-pattern>
 </custom-objects>
 </utm>
 </security>
 </configuration>
 </config>
 </edit-config>
 </rpc>

The following example shows a sample configuration for the Juniper vSRX VNF in the
Juniper_vSRX_VNFDConfig.xml configuration file:

<vnfConfiguration>
 <config>
 <param>
 <name>site-name</name>
 <value>www.example.com</value>
 </param>
 <sbiToPushConfiguration>
 <interface>netconf</interface>
 <interface-script></interface-script>
 </sbiToPushConfiguration>
 <action>null</action>
 </config>
 </vnfConfiguration>

About the Sample Network Protection Service Model
The Network Service Orchestration solution provides the following sample cartridges
that you can use as references for designing and implementing network protection as a
service on your network:

■ Juniper_vSRX_VNF. This sample cartridge contains the functionality to implement
a Juniper vSRX firewall as a VNF.

■ Checkpoint_NG_FW_VNF. This sample cartridge that contains the functionality to
implement a Checkpoint firewall as a VNF.

■ NPaaS_NetworkService. This sample cartridge contains the functionality to
implement a Network Protection service that constitutes the Juniper vSRX firewall
VNF and the Checkpoint firewall VNF.

Figure 3–1 shows how a VNF service is modeled in the sample VNF cartridge.

About the Sample Network Protection Service Model

Designing and Onboarding Network Services and VNFs 3-11

Figure 3–1 VNF Service Model

Figure 3–2 shows the Details view of the Juniper vSRX VNF service configuration
specification in Design Studio.

About the Sample Network Protection Service Model

3-12 Network Service Orchestration Solution Implementation Guide

Figure 3–2 VNF Service Configuration Details

Table 3–1 lists the specifications that are associated to the configuration items in the
Juniper vSRX VNF service configuration.

Figure 3–3 shows the ruleset extension points that are associated to the Juniper vSRX
VNF service configuration specification.

Table 3–1 VNF Service Configuration Specifications

Configuration Item Associated Specification

vnf Juniper_vSRX_VNFD logical device specification as assignment.

This specification is included in the Juniper sample cartridge.

ConnectionPoint CPD device interface specification as reference.

This specification is included in the OracleComms_NSO_
BaseCartridge cartridge.

port IPV4Address specification as reference.

This specification is included in the in OracleComms_NSO_
BaseCartridge cartridge.

capabilities Juniper_vSRX_Capability
_ServiceDescriptor specification as assignment.

This specification is included in the Juniper sample cartridge.

About the Sample Network Protection Service Model

Designing and Onboarding Network Services and VNFs 3-13

Figure 3–3 Rules Associated to the Juniper vSRX VNF Service Configuration
Specification

Figure 3–4 shows how a VNF capability service is modeled.

About the Sample Network Protection Service Model

3-14 Network Service Orchestration Solution Implementation Guide

Figure 3–4 VNF Capability Service Model

Figure 3–5 shows the Details view of the VNF capability service configuration in
Design Studio.

About the Sample Network Protection Service Model

Designing and Onboarding Network Services and VNFs 3-15

Figure 3–5 VNF Capability Service Configuration Details

Table 3–2 shows the specifications that are associated to the configuration items in the
VNF Capability service configuration.

Figure 3–6 shows the ruleset extension points that are associated with the VNF
capability service configuration.

Figure 3–6 Rules Associated to the VNF Capability Service Configuration

Table 3–2 VNF Capability Service Configuration Speciations

Configuration Item Associated Specification

capabilities Juniper_vSRX_VNFD logical device specification as reference.

This specification is included in the Juniper sample cartridge.

WebFilter Juniper_vSRX_VNFD logical device specification as reference.

This specification is included in the Juniper sample cartridge.

About the Sample Network Protection Service Model

3-16 Network Service Orchestration Solution Implementation Guide

Figure 3–7 shows how the Network Protection service is modeled in the sample
Network Service cartridge.

Figure 3–7 Network Protection Service Model

Figure 3–8 shows the details view of the Network Protection service configuration in
Design Studio.

About the Sample Network Protection Service Model

Designing and Onboarding Network Services and VNFs 3-17

Figure 3–8 Network Protection Service Configuration Details

Table 3–3 shows the specifications that are associated to the configuration items in the
Network Protection service configuration.

Figure 3–9 shows the ruleset extension points that are associated with the Network
Protection service configuration.

Table 3–3 Network Protection Service Configuration Specifications

Configuration Item Associated Specification

virtualLink IPV4Subnet specification as reference

This specification is included in the OracleComms_NSO_
BaseCartridge cartridge.

vnf Juniper_vSRX_VNFD logical device specification as reference

This specification is included in the Juniper sample cartridge.

endPoint NSSubscriber custom object specification as reference.

This specification is included in the OracleComms_NSO_
BaseCartridge cartridge.

About the Sample Network Protection Service Model

3-18 Network Service Orchestration Solution Implementation Guide

Figure 3–9 Rules Associated to the Network Protection Service Configuration

The solution includes sample descriptor files for the sample Network Protection
service and the constituent VNFs. The descriptor files enable you to define the
behavior of the network service and the VNFs.

■ NPaaS_NSD.xml. This is the descriptor file for the Network Protection service.

■ Juniper_vSRX_VNFD.xml. This is the descriptor file for the Juniper vSRX firewall
VNF.

■ Checkpoint_NG_FW_VNFD.xml. This is the descriptor file for the Checkpoint
NG firewall VNF.

You open the descriptor files in Design Studio and specify the deployment
requirements, operational behavior, and policies required by network services.

In the descriptor file:

■ Specify the networks that you want to create or reference. In the descriptor file,
networks are represented as virtual link descriptors.

■ Specify the VNFs and the flow path that you want the network traffic to pass
through.

■ Specify the CPU utilization and other parameters for each VNF in the network
service.

See "About the Descriptor Files" for more information about the Network Service
descriptor file.

See "About the VNF Descriptor Files" for more information about the VNF
descriptor file.

The solution includes sample technical actions files for the VNFs. The technical actions
files enable you to describe the actions for the VNFs in the VIM.

■ NPaaS_NSD_TechnicalActions.xml. This is the technical actions file for the
Network Protection service.

■ Juniper_vSRX_ServiceDescriptor_TechnicalActions.xml. This is the technical
actions file for the Juniper vSRX firewall VNF.

■ Checkpoint_NG_FW_ServiceDescriptor_TechnicalActions.xml. This is the
technical actions file for the Checkpoint NG virtual firewall.

About the Sample Network Protection Service Model

Designing and Onboarding Network Services and VNFs 3-19

Implementing a Network Service By Using the Sample Cartridges
The sample network protection service uses the following software components:

■ UIM 7.3.3 and the Network Service Orchestration Solution 1.1.1 cartridges

■ OpenStack VIM, with Open vSwitch capability

■ OpenDaylight SDN Controller

■ Software images for the firewall VNFs

To implement the network protection service:

1. In OpenStack, create a tenant or reference an existing tenant with administrator
privileges.

2. Create a management network with the name nfvo-mgmt or reference an existing
management network that can be shared by all the components of the solution. For
example,

The management network requires, at a minimum:

■ One IP address for each:

– Machine on which UIM is installed

– Virtual machine on which Open vSwitch is installed

– Machine on which OpenDaylight is installed

■ One IP address for each virtual machine on which you want to bring up the
VNFs

3. Connect the management network and the external network to a virtual router.
This enables you to use floating IP addresses for providing access to the data
center.

4. Create a customer-side network that facilitates the customer’s network traffic to
reach the VNFs.

Table 3–4 shows examples of IP addresses and IP address ranges of network and
subnet configuration for the customer-side network.

Note: By default, the UIM_Home/config/nso.properties file
displays the username and password of the Network Service
Orchestration solution user in plain text. You must encrypt the
password by running the EncryptText ruleset in UIM.

To encrypt the password:

1. Create a text file and type the password.

2. Save and close the file.

3. In UIM, in the Administration group of the navigation section, click
Execute Rulesets.

4. In the Ruleset list, select the EncryptText ruleset, and enter the path and
file name of the text file that contains the password in plain text and click
Process.

UIM displays the encrypted password.

About the Sample Network Protection Service Model

3-20 Network Service Orchestration Solution Implementation Guide

5. Create an Internet-side network that facilitates the traffic from the customer-side
network to the Internet.

Table 3–5 shows examples of IP addresses and IP address ranges of network and
subnet configuration for the Internet-side network.

6. Create packet-in and packet-out networks.

Table 3–6 shows examples of IP addresses and IP address ranges of network and
subnet configuration for the packet-in network.

Table 3–7 shows examples of IP addresses and IP address ranges of network and
subnet configuration for the packet-out network.

7. Start the OpenDaylight virtual machine on the management network.

8. Start the Open vSwitch virtual machines on the management network,
customer-side network, Internet-side network, packet-in network, and packet-out
network.

9. On the Open vSwitch virtual machine, run the following commands:

■ Create a steering bridge:

ovs-vsctl add-br steering

where steering is the name of the integration bridge.

■ Add the interfaces of the networks you created to the steering bridge:

Table 3–4 Example of Network and Subnet Configuration for Customer-side Network

CIDR IP Allocation Pool Gateway IP DHCP Enabled
Additional
Routes

DNS Name
Server

192.168.2.0/24 Start 192.0.2.145

End 192.0.2.250

192.0.2.1 Yes None None

Table 3–5 Example of Network and Subnet Configuration for Internet-side Network

CIDR IP Allocation Pool Gateway IP DHCP Enabled
Additional
Routes

DNS Name
Server

192.168.2.0/24 Start 192.0.2.2

End 192.0.2.254

192.0.2.1 No None None

Table 3–6 Example of Network and Subnet Configuration for Packet-in Network

CIDR IP Allocation Pool Gateway IP DHCP Enabled
Additional
Routes

DNS Name
Server

192.168.2.128/25 Start 192.0.2.129

End 192.0.2.140

- Yes None None

Table 3–7 Example of Network and Subnet Configuration for Packet-out Network

CIDR IP Allocation Pool Gateway IP DHCP Enabled
Additional
Routes

DNS Name
Server

192.168.2.0/25 Start 192.0.2.115

End 192.0.2.126

192.0.2.1 Yes None None

About the Sample Network Protection Service Model

Designing and Onboarding Network Services and VNFs 3-21

ovs-vsctl add-port steering networkInterface

where networkInterface is the name of the network interface. For example, eth1.

ovs-vsctl add-port steering eth1
ovs-vsctl add-port steering eth2
ovs-vsctl add-port steering eth3
ovs-vsctl add-port steering eth4
ovs-vsctl add-port steering eth5

■ Set the IP address and port number of the OpenDaylight virtual machine as
the controller to the steering bridge:

ovs-vsctl set-controller steering tcp:OpenDaylight_IPAddress

ovs-vsctl set bridge steering protocols="OpenFlow13"

where OpenDaylight_IPAddress is the IP address of the OpenDaylight virtual
machine.

■ Get the port numbers:

ovs-vsctl -- --columns=name_of_port list Interface

where name_of_port is the name of the Open vSwitch port.

10. Open the UIM_Home/config/nso.properties file and update the following
parameters.

■ startIpAddress. Specify the subnet start IP address. By default, when the
solution creates a network, the subnet IP address starts with 192.168.0.0.

■ NSO_HOST: IPv4address. Specify the host on which UIM is installed. By
default, the solution considers the host on which the UIM server is running. If
the server is running on a private network that is unavailable to external
network, specify a reachable IP address for the server.

■ NSO_USERNAME: username

where username is the username of the server on which UIM is installed.

■ NSO_PASSWORD: encrypted_password

where encrypted_password is the encrypted password of the server on which
UIM is installed.

11. Open the UIM_Home/config/NPaaS_NSD.properties file and specify values for
the parameters listed in Table 3–8:

Table 3–8 Parameters in the NPaaS Network Service Descriptor Properties File

Parameter Description

NPaaS_
NSD.default.serviceArea

Specify a default service area for the NPaaS_NSD network
service descriptor.

NPaaS_
NSD.default.dataCenter

Specify a default data center for the NPaaS_NSD network
service descriptor.

NPaaS_
NSD.ManagementNetwork

Specify the name of the management network. The
management network is the VLD Name that is specified in
the NPaaS_NSD.xml file.

NPaaS_NSD.Data_IN Specify the name of the data-in network.

NPaaS_NSD.Data_OUT Specify the name of the data-out network.

Designing New Network Services and VNF Services

3-22 Network Service Orchestration Solution Implementation Guide

12. Redeploy the Network Service Orchestration solution cartridges in Design Studio.
See "Configuring UIM for the Network Service Orchestration Solution" for
information about deploying the cartridges in the specified order.

13. Register the VIM by calling the corresponding RESTful API. See "Registering the
VIM" for instructions.

14. Discover the VIM resources. See "Discovering VIM Resources" for instructions.

Designing New Network Services and VNF Services
You can define and model network services and VNFs depending on the network
functions that you want to virtualize on your network.

To define and model network services and VNFs, you work in Design Studio. In
Design Studio, you define specifications and properties for your network services,
VNFs, and their hierarchical and related components.

To model a network service with a VNF, you create two cartridges in Design Studio:
one cartridge for the VNF and one cartridge for the network service.

In the cartridge for the Network Service, do the following:

■ Specify the following UIM entity specifications:

– One Service specification for the Network Service

– One Service Configuration specification for the network service

■ Create a technical actions file for the Network Service specification. See "Creating a
Technical Actions File" for more information.

■ Create a network service descriptor file for the Network Service specification. See
"Creating a Descriptor File" for more information.

sdnController.NPaaS_NSD Specify an implementation class for the SDN controller
interface. The default implementation class is
com.oracle.communications.inventory.nso.nfvi.sdn.ODL
Manager.

npaas.ovs.pktInToOVSPort Specify the Open vSwitch port number of the packet-in
network.

npaas.ovs.pktOutToOVSPort Specify the Open vSwitch port number of the packet-out
network.

npaas.ovs.custNetToOVSPort Specify the Open vSwitch port number of the customer-side
network.

npaas.ovs.internetToOVSPort Specify the Open vSwitch port number of the internet-side
network.

npaas.ovs.bridge_id Specify the bridge ID for the Open VSwitch and prefix it
with openflow. For example, openflow:OpenFlow_ID,
where OpenFlow_ID is the OpenFlow ID.

To retrieve the OpenFlow ID, in OpenDaylight call the
following OpenDaylight REST API:

http://odlIPaddress:port/restconf/operational/opendayligh
t-inventory:nodes/

where odlIPaddress is the IP address and port is the port
number of the OpenDaylight virtual machine.

Table 3–8 (Cont.) Parameters in the NPaaS Network Service Descriptor Properties File

Parameter Description

Designing New Network Services and VNF Services

Designing and Onboarding Network Services and VNFs 3-23

■ Create a custom properties file for the Network Service specification.

■ Create custom code for extension.

In the cartridge for the VNF Descriptor, do the following:

■ Specify the following UIM entity specifications:

– One Service specification for the VNF

– One Service Configuration specification for the VNF

– A Logical Device specification for the VNF

■ Create a technical actions file for the VNF Service specification. See "Creating a
Technical Actions File" for more information.

■ Create a VNF descriptor file for the VNF Service specification. See "Creating a
Descriptor File" for more information.

■ Create a configuration file for the VNF.

■ Create a post-configuration template configuration file for the VNF. See "About the
VNF Configuration Files" for more information.

■ Create a template file for the VNF.

■ Create custom code for extension.

Designing New Network Services and VNF Services

3-24 Network Service Orchestration Solution Implementation Guide

4

Working with Network Services and VNFs 4-1

4Working with Network Services and VNFs

This chapter provides instructions for working with network services and VNFs in
Oracle Communications Network Service Orchestration Solution.

You perform the following tasks related to VNFs and network services:

■ Instantiating a Network Service

■ Upgrading the Software Version of a VNF

■ Monitoring and Healing a VNF

■ Modifying a Network Service

■ Terminating a Network Service

■ Retrieving Details About Network Services, VNFs, and Descriptors

Instantiating a Network Service
You instantiate a network service to start a VNF on the network. A network service
can have multiple VNFs that are connected to each other. When you instantiate a
network service that has multiple VNFs, all the VNFs in the network service are
started on the network.

Before you instantiate a network service, ensure that the VIM resources are discovered.
See "Discovering VIM Resources" for information about discovering VIM resources.

When you instantiate a network service, you need to provide values for the required
parameters in the API request. For details about the values and the parameters, look in
the network service and VNF descriptor files that you created in Design Studio. See
"Network Service Orchestration RESTful API Reference" for descriptions of the
parameters.

To instantiate a network service:

1. In a RESTful API client, call the following RESTful API using the POST method:

POST http://host:port/ocnso/1.1/ns

where host is the hostname and port is the port number of the machine on which
UIM is installed.

Note: Based on the configurations that the VNFs in the network
service require, these lifecycle operations may take some time to
complete. In UIM and in your VIM, the resources may not be created,
deleted, or updated immediately after you send the API request.

Instantiating a Network Service

4-2 Network Service Orchestration Solution Implementation Guide

For a sample request and response about the network service instantiation API,
see "Instantiate a Network Service".

2. In the request, specify values for the following parameters:

■ nsName

■ nsDescriptorName

■ serviceDeploymentFlavorName

■ vnfName

■ deploymentFlavorName

■ vnfDescriptorName

■ version

■ name

■ parameters

3. Ensure that you receive a success message and a response.

4. In Oracle Communications Unified Inventory Management (UIM), verify the
following:

■ The network service and its configurations are created and are in In Service
status.

■ The VNF service with configurations is created and associated to the network
service.

■ The VNFs, which are represented as logical devices, are created.

■ The specified networks are either created or referenced.

■ The details of the endpoints are updated in the service configuration.

5. In your VIM, verify the following:

■ The VNF instance is up and running.

■ The specified networks are either created or referenced.

■ The VNF is linked to the networks.

Based on the configurations you defined in the network service and the VNF
descriptor files, the solution does the following tasks during the instantiation of a
network service:

■ Finds the best suitable data center for the network service from among the data
centers that you registered.

■ Performs resource orchestration to find the best suitable availability zone where
constituent VNFs can be deployed.

■ Creates new networks or references existing networks that are required for
connectivity among the VNFs.

■ Manages IP addresses of all the resources.

■ Configures the VNFs based on pre-defined parameters. See "About the VNF
Configuration Files" for more information.

■ If you integrated a monitoring engine, configures the monitoring engine to trigger
alarms for VNFs that reach a specified threshold to enable healing of VNFs.

Monitoring and Healing a VNF

Working with Network Services and VNFs 4-3

■ If you integrated an SDN controller, configures routing paths for end-to-end
packet flow.

Upgrading the Software Version of a VNF
You upgrade the software version of a VNF in a network service to utilize the
functional capabilities that a later software version of the VNF provides.

To upgrade the software version of a VNF:

1. In a RESTful API client, call the following RESTful API using the PUT method:

PUT http://host:port//ocnso/1.1/vnf/vnfId/upgrade/vnfVersion

where:

■ vnfId is the ID of the VNF that you want to upgrade

■ vnfVersion is the version number of the VNF image that you want to upgrade
to

For a sample request and response of this API, see "Upgrade the Software Version
of a VNF".

2. In the request, specify the details about the VNF name and the software version of
the VNF image that you want to upgrade to.

3. Ensure that you receive a success message and a response.

4. In UIM, do the following:

■ Verify that the network service is updated with a new service configuration
version.

■ Verify that the version number of the VNF image that you upgraded the VNF
to is listed.

5. In your VIM, verify that the VNF instance displays the name of the VNF image
that you upgraded to.

Monitoring and Healing a VNF
You monitor VNFs in a network service to track their performance and take actions
based on their CPU utilization, number of requests handled, and other key
performance indicator (KPI) parameters.

To monitor VNFs, you configure and use monitoring engines. You also configure and
specify the relevant parameters in the Network Service descriptor file. See "Describing
Deployment Flavors" for information about defining assurance parameters for
monitoring and healing a VNF.

By default, the solution supports integration with OpenStack Ceilometer, which
monitors VNFs and reboots failed VNFs automatically based on KPI thresholds that
are defined in the network service descriptor file. If you use OpenStack Ceilometer,
when you heal a failed VNF by replacing it, if the new VNF comes up in a different
host, the solution performs resource orchestration to deduce the resources from the
new host and the availability zone and adds up the resources count to the host.

Note: If the instantiation of a network service fails at any stage of the
transaction due to insufficient ports or other resources on the VIM (or
for any other reason), the solution rolls back the resources completely.

Modifying a Network Service

4-4 Network Service Orchestration Solution Implementation Guide

You can integrate other third-party monitoring engines by using the extensions
provided in the solution. See "Implementing a Custom Monitoring Engine" for more
information about implementing a third-party monitoring engine.

When the monitoring engine identifies a failed VNF in a network service, you can heal
the failed VNF by either rebooting or replacing the virtual machine on which the VNF
is deployed.

To heal a VNF:

1. Ensure that you have defined the assurance parameters for the VNFs in the
Network Service descriptor file. See "Describing Deployment Flavors" for
information about defining assurance parameters.

2. In a RESTful API client, call the following RESTful API using the POST method:

POST http://host:port//ocnso/1.1/vnf/vmId/heal

where vmId is the ID of the VNF virtual machine that you want to heal.

For a sample request and response of this API, see "Heal a VNF".

3. In the request, specify the details of the VNF that you want to heal and specify
whether you want to reboot or replace the VNF.

4. Ensure that you receive a success message and a response.

5. In your VIM, verify that the VNF you rebooted or replaced is listed as active and
running.

Modifying a Network Service
You modify a network service to either add or remove VNFs in a network service. You
add a VNF to a network service to enable the network service to deliver additional
service capabilities.

■ Adding a VNF to a Network Service

■ Deleting a VNF from a Network Service

Adding a VNF to a Network Service
To add a VNF to a network service:

1. In a RESTful API client, call the following RESTful API using the POST method:

POST http://host:port//ocnso/1.1/ns/networkServiceId/vnfs

where networkServiceId is the ID of the network service that you want to modify.

For a sample request and response of this API, see "Add VNFs to a Network
Service".

2. In the request, specify the details about the VNF that you want to add to the
network service.

3. Ensure that you receive a success message and a response.

4. In UIM, verify the following:

■ The network service is updated with a new service configuration version
showing the VNF that you added.

■ The status of the new service configuration version shows completed.

5. In your VIM, verify that a new VNF instance is created.

Retrieving Details About Network Services, VNFs, and Descriptors

Working with Network Services and VNFs 4-5

Deleting a VNF from a Network Service
To delete a VNF from a network service:

1. In a RESTful API client, call the following RESTful API using the DELETE method:

DELETE http://host:port//ocnso/1.1/ns/networkServiceId/vnfs

where networkServiceId is the ID of the network service that you want to modify.

For a sample request and response of this API, see "Delete a VNF from a Network
Service".

2. In the request, specify the details about the VNF that you want to remove from the
network service.

3. Ensure that you receive a success message and a response.

4. In UIM, verify the following:

■ The network service is updated with a new service configuration version
showing that the VNF is deleted.

■ The status of the service configuration version shows completed.

5. In your VIM, verify that the VNF instance is removed and the resources that were
assigned to the VNF are freed up.

Terminating a Network Service
You terminate a network service to deactivate all the constituent VNFs in the network
service. When you terminate a network service, all the resources that were allocated to
the VNFs are released and become available for consumption by other network
services.

To terminate a network service:

1. In a RESTful API client, call the following RESTful API using the DELETE method:

DELETE http://host:port/ocnso/1.1/ns/networkServiceId

where networkServiceId is the service ID of the network service that you want to
terminate.

For details about this API, see "Terminate a Network Service".

2. Specify the details of the network service you want to delete.

3. Ensure that you receive a success message and a response.

4. In UIM, verify the following:

■ The status of the network service and the VNF services is changed to
Disconnected.

■ The status of the logical device corresponding to the associated VNF is
changed to Unassigned.

5. In your VIM, verify that the VNF instance is deleted and all the allocated resources
are released.

Retrieving Details About Network Services, VNFs, and Descriptors
You can retrieve and view details about your network services, VNFs, network service
descriptors, and VNF descriptors.

Retrieving Details About Network Services, VNFs, and Descriptors

4-6 Network Service Orchestration Solution Implementation Guide

The solution provides RESTful APIs that you can call to retrieve and view different
types of information about your network services and VNFs.

You can retrieve and view the following details about VNFs, network services, and
descriptors:

■ Information about a specific network service

■ Information about the network forwarding paths for a network service

■ List of available network service descriptors

■ Network service descriptor information

■ List of VNF descriptors supported by a network service descriptor

■ List of flavors of a network service descriptor

■ VNF descriptor information

■ List of versions of the VNF descriptor

■ List of VNF descriptor flavors

For details about the RESTful APIs, see "Network Service Orchestration RESTful API
Reference".

5

Extending the Network Service Orchestration Solution 5-1

5Extending the Network Service Orchestration
Solution

This chapter describes how you can customize and extend Oracle Communications
Network Service Orchestration Solution to meet the business needs of your
organization.

You can extend the functionality of the solution by:

■ Designing cartridges in Oracle Communications Design Studio. See "Designing
Cartridges for Custom VNFs and Network Services".

For more information about designing cartridges:

– See UIM Concepts to understand the concept of extending cartridge packs and
the impact of doing so.

– See UIM Cartridge Guide for information about the leading practices for
extending cartridge packs.

– See UIM Developer's Guide for information about how to extend cartridge
packs.

– See Design Studio Help for instructions on how to extend cartridge packs
through specifications, characteristics, and rulesets.

■ Using extension points and Java interface extensions. See "Using Extension Points
and Java Interface Extensions to Extend the Solution".

Setting Up Design Studio for the Network Service Orchestration Solution
Cartridges

Before you design and work with cartridges for VNFs and network services, you must
set up Design Studio.

To set up Design Studio for the Network Service Orchestration solution:

1. Create a local directory (UIM_SDK_Home).

2. Locate the UIM_SDK.zip folder in the UIM software pack and extract it into the
UIM_SDK_Home local directory.

Important: To ensure that your extensions can be upgraded and
supported, you must follow the guidelines and policies described in
UIM Concepts.

Designing Cartridges for Custom VNFs and Network Services

5-2 Network Service Orchestration Solution Implementation Guide

3. Create another local directory (NSO_SDK_Home).

4. Locate the OracleComms_NSO_1.1.1.0.0.build_number.zip file and extract it into
the NSO_SDK_Home local directory.

5. Create another local directory (OTHER_LIB_Home) and copy the following
WebLogic libraries from your WebLogic installation into the OTHER_LIB_Home
local directory:

■ WL_Home/oracle_common/modules/groovy-all-2.0.5.jar

■ WL_Home/oracle_common/modules/jersey-client-1.18.jar

■ WL_Home/oracle_common/modules/jettison-1.1.jar

■ WL_Home/wlserver/modules/features/weblogic.server.merged.jar

6. Copy other UIM-specific JAR files to the OTHER_LIB_Home directory. See UIM
7.3.3 Installation Guide for information about UIM-specific JAR files.

7. In Design Studio, open a new workspace.

8. Navigate to UIM_SDK_Home/cartridges and import the following UIM base
cartridges into Design Studio:

■ ora_uim_baseextpts

■ ora_uim_basemeasurements

■ ora_uim_basespecifications

■ ora_uim_basetechnologies

■ ora_uim_common

■ ora_uim_mds

■ ora_uim_model

9. Navigate to NSO_SDK_Home/designStudio/cartridgeZips and import the
following Network Service Orchestration solution cartridges into Design Studio:

■ OracleComms_NSO_BaseCartridge

■ NPaaS_NetworkService

■ Checkpoint_NG_FW_VNF

■ Juniper_vSRX_VNF

10. In Design Studio, for the Network Service Orchestration Solution cartridge
projects, configure the following Java build path classpath variables:

■ UIM_LIB. Specify the path as UIM_SDK_Home/lib

■ OTHER_LIB. Specify the path as OTHER_LIB_Home

■ NSO_LIB. Specify the path as NSO_SDK_Home/designStudio/nso_lib

Designing Cartridges for Custom VNFs and Network Services
To design cartridges for custom VNFs and network services:

1. In Design Studio, create new Inventory projects for the VNFs and the network
service that you want to design.

See Design Studio Help for instructions about creating cartridge projects.

Using Extension Points and Java Interface Extensions to Extend the Solution

Extending the Network Service Orchestration Solution 5-3

2. For each VNF and network service Inventory project, create specifications,
metadata, and technical action files by referring to the solution’s sample
cartridges.

3. For each service specification, create a technical action XML file. See "About the
Technical Actions File" for more information.

4. If required, write custom ruleset extension points. See "Writing a Custom Ruleset
Extension Point"for more information.

5. If required, extend the core functionality by using Java interface extensions. See
"Using Java Interface Extensions" for more information.

Using Extension Points and Java Interface Extensions to Extend the
Solution

You can extend the core functionality of the Network Service Orchestration solution
by:

■ Writing a custom rule set extension point. See "Writing a Custom Ruleset
Extension Point".

■ Using Java interface extensions. See "Using Java Interface Extensions".

Writing a Custom Ruleset Extension Point
You can extend the solution’s core functionality by writing a custom rule set extension
point and associating the extension point with the rule set in Design Studio.

To extend the solution’s core functionality by using the base extension points:

1. In Groovy or Drools, write a ruleset that provides the additional functionality that
you want to implement.

2. Write a rule set extension point by integrating the extension point and the ruleset
with a placement of BEFORE, INSTEAD, or AFTER.

3. In Design Studio, relate the rule set extension point to the relevant specification.

Table 5–1 describes the Network Service Orchestration solution core APIs that can be
extended by using the extension points in the solution.

Table 5–1 Network Service Orchestration Solution Core APIs and Extension Points

API Extension Point Description

NetworkServiceDesignMana
ger.processCreate

NetworkServiceDesignManager_
processCreate

Implements the design-and-assign logic
for a network service when the network
service is instantiated.

NetworkServiceDesignMana
ger.processDisconnect

NetworkServiceDesignManager_
processDisconnect

Cleans up the network service resources
when the network service is terminated.

NetworkServiceDesignMana
ger.processChange

NetworkServiceDesignManager_
processChange

Implements the design-and-assign logic or
cleans up the resources when a network
service is updated.

VNFServiceDesignManager.p
rocessCreate

VNFServiceDesignManager_
processCreate

Implements the design-and-assign logic
for the VNF service when a network
service is instantiated with a VNF.

VNFServiceDesignManager.p
rocessDisconnect

VNFServiceDesignManager_
processDisconnect

Cleans up the VNF service resources when
a network service is terminated.

Using Extension Points and Java Interface Extensions to Extend the Solution

5-4 Network Service Orchestration Solution Implementation Guide

Using Java Interface Extensions
You can extend the solution’s core functionality by using Java interface extensions. You
write a new Java implementation class for a core interface and implement the core
interface for a specific network service or VNF descriptor.

The solution supports the following functionality through custom Java
implementation classes:

■ Implementation of a custom SDN controller. See "Implementing a Custom SDN
Controller".

■ Implementation of a custom VNF monitoring engine. See "Implementing a
Custom Monitoring Engine".

■ Implementation of a custom VIM. See "Implementing a Custom VIM".

■ Implementation of a custom VNF manager. See "Implementing a Custom VNF
Lifecycle Manager".

■ Implementation of a custom VNF connection manager. See "Implementing a
Custom VNF Connection Manager".

■ Implementation of a custom VNF configuration manager. See "Implementing a
Custom VNF Configuration Manager".

■ Implementation of a custom response manager. See "Implementing a Custom
Response Manager" for more information.

VNFServiceDesignManager.p
rocessChange

VNFServiceDesignManager_
processChange

Implements the design-and-assign logic
for a VNF service when the network
service is updated.

VNFServiceManager.process
TechnicalActions

VNFServiceManager_
processTechnicalActions

Activates or removes the resources in a
VIM for each VNF service.

NetworkServiceManager.pro
cessTechnicalActions

NetworkServiceManager_
processTechnicalActions

Activates or removes the resources in a
VIM for each network service.

ConsumerHelper.getDataCen
terForConsumer

ConsumerHelper_
getDataCenterForConsumer

Looks up the data center based on the NS
endpoint.

VNFServiceHelper.createVN
F

VNFServiceHelper_createVNF Creates a VNF.

ConsumerHelper.getDataCen
terLookupIdentifier

ConsumerHelper_
getDataCenterLookupIdentifier

Returns the string representation of the
dynamic property in the JSON request for
NS instantiation.

NetworkServiceManager.desi
gnInstantiate

NetworkServiceManager_
designInstantiate_Global

Used to design the network service for
instantiation.

NetworkServiceManager.desi
gnUpdate

NetworkServiceManager_
designUpdate_Global

Used to design the network service for
update.

Note: If you change any keys in the nso.properties file and the
nfvi.properties file, before redeploying the solution’s core cartridges
or upgrading the solution, take a backup of these files and use the
latest files.

Table 5–1 (Cont.) Network Service Orchestration Solution Core APIs and Extension Points

API Extension Point Description

Using Extension Points and Java Interface Extensions to Extend the Solution

Extending the Network Service Orchestration Solution 5-5

Implementing a Custom SDN Controller
By default, the solution supports integration with OpenDaylight, but you can also
implement a custom SDN controller.

Figure 5–1 shows a model diagram that depicts how you can write an extension for an
SDN controller in Design Studio.

Figure 5–1 Custom SDN Controller Model

To implement a custom SDN controller:

1. In the custom Network Service descriptor cartridge, create a Java implementation
class for the SDN controller.

2. Configure the custom SDN controller class to implement the
oracle.communications.inventory.nso.nfvi.SDNController interface, which is
provided in the OracleComms_NSO_NFVIAdapter cartridge.

3. Override the following methods in the custom SDN controller Java
implementation class:

public String createFlows(Map request) throws Exception
public String deleteFlows(Map request) throws Exception
public String updateFlows(Map request) throws Exception

4. In your Network Service descriptor cartridge, create or update the network service
properties file and add the following entry:

Using Extension Points and Java Interface Extensions to Extend the Solution

5-6 Network Service Orchestration Solution Implementation Guide

sdnController.NSD_Name=SDNController_ImplementationClassPath

where:

■ NSD_Name is the name of the network service descriptor

■ SDNController_ImplementationClassPath is the path of the implementation class
of your custom SDN controller

5. Redeploy the cartridge.

Implementing a Custom Monitoring Engine
By default, the solution supports integration with OpenStack Ceilometer, but you can
also implement and use a custom monitoring engine with the solution.

Figure 5–2 shows a model diagram that depicts how you can write an extension for a
custom VNF monitoring engine in Design Studio.

Figure 5–2 Custom Monitoring Engine Model

To implement a custom monitoring engine:

Note: If the sdnController.NSD_Name key is commented out or if
the path of the implementation class is not specified, the solution does
not perform the network flow operations such as creation of flows,
deletion of flows, and update of flows for the network service.

Using Extension Points and Java Interface Extensions to Extend the Solution

Extending the Network Service Orchestration Solution 5-7

1. In the custom VNF descriptor cartridge, create a Java implementation class for the
VNF monitoring manager.

2. Configure the VNFMonitoringManager class to implement the
oracle.communications.inventory.nso.nfvi.VNFMonitoringManager interface,
which is provided in the OracleComms_NSO_NFVIAdapter cartridge.

3. Override the following methods in the custom VNF monitoring engine Java
implementation class:

public String createAlarms(Map request) throws Exception
public String deleteAlarms(Map request) throws Exception
public String updateAlarms(Map request) throws Exception
public String getAlarms(Map request) throws Exception
public String customCall(Map request) throws Exception

4. In the VNF descriptor cartridge, create or update the VNF properties file and add
the following entry:

vnfMonitor.VNFD_Name=MonitoringEngine_ImplementationClassPath

where:

■ VNFD_Name is the name of the VNF descriptor

■ MonitoringEngine_ImplementationClassPath is the path of the implementation
class of your monitoring engine

5. Redeploy the cartridge.

Implementing a Custom VIM
By default, the solution supports integration with OpenStack, but you can also
implement a custom VIM.

Figure 5–3 shows a model diagram that depicts how you can write an extension for a
custom VIM in Design Studio.

Note: If the vnfMonitor.VNFD_Name key is commented out or if the
path of the implementation class is not specified, the solution does not
perform monitoring operations such as creation, deletion, and update
of alarms for the network service.

Using Extension Points and Java Interface Extensions to Extend the Solution

5-8 Network Service Orchestration Solution Implementation Guide

Figure 5–3 Custom VIM Model

To implement a custom VIM:

1. In your custom cartridge, create a Java implementation class for the NFVIManager
interface.

2. Configure the NFVIManager class to implement the
oracle.communications.inventory.nso.nfvi.NFVIManager interface, which is
provided in the OracleComms_NSO_NFVIAdapter cartridge.

3. Override the methods in the custom NFVI manager Java implementation class.

4. Open the UIM_Home/config/nfvi.properties file, and add or update the
following entry:

nfviMgr.nfviType=VIM_ImplementationClassPath

where:

Using Extension Points and Java Interface Extensions to Extend the Solution

Extending the Network Service Orchestration Solution 5-9

■ nfviType is the type of VIM. For example, OpenStack or VMware.

■ VIM_ImplementationClassPath is the path of the implementation class of your
VIM

5. Redeploy the cartridge.

Implementing a Custom VNF Lifecycle Manager
By default, the solution manages the VNF lifecycle operations by using OpenStack
Compute services (referred to as Nova), but you can also implement and use a custom
VNF lifecycle manager with the solution.

Figure 5–4 shows a model diagram that depicts how you can write an extension for a
custom VNF lifecycle manager in Design Studio.

Figure 5–4 Custom VNF Manager Model

To implement a custom VNF lifecycle manager:

1. In your custom cartridge, create a Java implementation class for the VNF lifecycle
manager.

2. Configure the custom VNF lifecycle manager class to implement the
oracle.communications.inventory.nso.nfvi.VNFLifeCycleManager interface,
which is provided in the OracleComms_NSO_NFVIAdapter cartridge.

3. Override the methods in the custom VNF lifecycle manager Java implementation
class.

Note: If you change any keys in the nfvi.properties file, before
redeploying the solution’s core cartridges or upgrading the solution,
take a backup of the nfvi.properties file and use the latest file.

Using Extension Points and Java Interface Extensions to Extend the Solution

5-10 Network Service Orchestration Solution Implementation Guide

4. Open the UIM_Home/config/nfvi.properties file, and add or update the
following entry:

vnflcMgr.vimType=VNFLifecycleManager_ImplementationClassPath

where:

■ vimType is the type of VIM

■ VNFLifecycleManager_ImplementationClassPath is the path of the
implementation class of your custom VNF lifecycle manager

5. Redeploy the cartridge.

Implementing a Custom VNF Connection Manager
The Network Service Orchestration solution includes a VNF connection manager that
enables the solution to establish a communication channel with VNFs for deploying
configurations during the VNF lifecycle operations. You can also implement a custom
VNF connection manager for the solution by writing an extension.

Figure 5–5 shows a model diagram that depicts how you can write an extension for a
custom VNF connection manager in Design Studio.

Figure 5–5 Custom VNF Connection Manager Model

To implement a custom VNF connection manager:

Note: If you change any keys in the nfvi.properties file, before
redeploying the solution’s core cartridges or upgrading the solution,
take a backup of the nfvi.properties file and use the latest file.

Using Extension Points and Java Interface Extensions to Extend the Solution

Extending the Network Service Orchestration Solution 5-11

1. In the custom VNF descriptor cartridge, create a Java implementation class for the
custom VNF connection manager.

2. Configure the custom VNF connection manager class to implement the
oracle.communications.inventory.nso.nfvi.VNFConnectionManager interface,
which is provided in the OracleComms_NSO_NFVIAdapter cartridge.

3. Override the methods in the custom VNF connection manager Java
implementation class.

4. In the VNF descriptor cartridge, create or update the VNF properties file and add
the following entry:

vnfConnectionMgr.VNFD_Name=VNFConnectionManager_ImplementationClassPath

where:

■ VNFD_Name is the name of the VNF descriptor

■ VNFConnectionManager_ImplementationClassPath is the path of the
implementation class of your custom VNF connection manager

5. Redeploy the cartridge.

Implementing a Custom VNF Configuration Manager
The Network Service Orchestration solution includes a VNF configuration manager
that generates configuration content for VNF configuration. You can also implement a
custom VNF configuration manager for the solution by writing an extension.

Figure 5–6 shows a model diagram that depicts how you can write an extension for a
custom VNF configuration manager in Design Studio.

Note: If the vnfConnectionMgr.VNFD_Name key is commented out
or if the path of the implementation class is not specified, the solution
does not run configurations on the virtual machines on which the
VNFs are deployed.

Using Extension Points and Java Interface Extensions to Extend the Solution

5-12 Network Service Orchestration Solution Implementation Guide

Figure 5–6 Custom VNF Configuration Manager Model

To implement a custom VNF configuration manager:

1. In the custom VNF descriptor cartridge, create a Java implementation class for the
custom VNF configuration manager.

2. Configure the custom VNF configuration manager class to implement the
oracle.communications.inventory.nso.nfvi.VNFConfigManager interface, which
is provided in the OracleComms_NSO_NFVIAdapter cartridge.

3. Override the methods in the custom VNF configuration manager Java
implementation class.

4. In the VNF descriptor cartridge, create or update the VNF properties file and add
the following entry:

vnfConfigMgr.VNFD_Name=VNFConfigurationManager_ImplementationClassPath

where:

■ VNFD_Name is the name of the VNF descriptor

■ VNFConfigurationManager_ImplementationClassPath is the path of the
implementation class of your custom VNF configuration manager

5. Redeploy the cartridge.

Note: If the vnfConfigMgr.VNFD_Name key is commented out or if
the path of the implementation class is not specified, the solution does
not generate configurations for the VNF.

Localizing the Network Service Orchestration Solution

Extending the Network Service Orchestration Solution 5-13

Implementing a Custom Response Manager
By default, the solution includes a response manager that publishes the status of the
VNF and network service life-cycle operations to a topic in the WebLogic server. You
can also implement a custom response manager by writing an extension.

To implement a custom response manager:

1. In your custom cartridge, create a Java implementation class for the custom
response manager.

2. Configure the custom response manager class to implement the
oracle.communications.inventory.nso.nfvi.NSOResponseManager interface,
which is provided in the OracleComms_NSO_Common cartridge.

3. Override the following method in the custom response manager Java
implementation class:

public void processRequest(NSResponseInfo response) throws
ValidationException

4. Open the UIM_Home/config/nso.properties file, and add or update the following
entry:

nso.ResponseManager.list.1=ResponseManager_ImplementationClassPath

where ResponseManager_ImplementationClassPath is the path of the implementation
class of your custom response manager.

The solution supports multiple implementations of response manager.

5. Redeploy the cartridge.

Localizing the Network Service Orchestration Solution
You can localize the UIM user interface, UIM Help, and the responses that the REST
APIs return into your local language. If you have deployed the NSOBranding
cartridge, you can also localize the UI labels of the NFV entities that are displayed in
the UIM user interface.

To localize the Network Service Orchestration Solution:

1. Localize the UIM user interface and UIM Help. See the chapter about localizing
UIM in UIM 7.3.3 Developer’s Guide.

2. Localize the NFV entities in the UIM user interface. See "Localizing the NFV
Entities in the UIM User Interface" for instructions.

3. Localize the responses that the RESTful APIs return. See "Localizing the Responses
in RESTful APIs" for instructions.

Localizing the NFV Entities in the UIM User Interface
To localize the NFV entities in the UIM user interface:

1. Navigate to designStudio\cartridgeZips and import the NSOBranding sample
cartridge into Design Studio.

Note: If you change any keys in the nso.properties file, before
redeploying the solution’s core cartridges or upgrading the solution,
take a backup of the nso.properties file and use the latest file.

Localizing the Network Service Orchestration Solution

5-14 Network Service Orchestration Solution Implementation Guide

2. Make a copy of the
model\content\inventory.ear\WEB-INF\classes\oracle\communciations\inve
ntory\common\bundle\InventoryUIBundle.xlf file and rename it as
InventoryUIBundle_localeID_.xlf, where localeID is the locale ID of the language
into which you want to localize the UI labels of the NFV entities.

For example, if you want to localize the UI labels into French, rename the file to
InventoryUIBundle_fr_FR_.xlf.

3. Open the file and replace the text in the <source> tags with the corresponding text
in your local language.

For example, to localize the Network Services label into French, change:

 <trans-unit id="MENU_NETWORK_SERVICES">
 <source>Network Services</source>
 <target/>
 </trans-unit>
to

 <trans-unit id="MENU_NETWORK_SERVICES">
 <source>Services réseau</source>
 <target/>
 </trans-unit>

4. Compile and deploy the cartridge into UIM and restart the UIM server.

Localizing the Responses in RESTful APIs
To localize the responses in the Network Service Orchestration solution RESTful APIs:

1. Make a copy of the UIM_
Home/config/resources/logging/nsoresourcebundle.properties file in the same
directory and rename it as nsoresourcebundle_localeID.properties, where localeID
is the locale ID of your local language. For example, rename it to
nsoresourcebundle_fr_FR.properties to localize the responses into French.

2. Open the nsoresourcebundle_localeID.properties file and localize the messages.

3. (Optional) If you want to implement the sample Network Protection service by
using the sample cartridges, make a copy of the UIM_
Home/config/resources/logging/npassresourcebundle.properties file in the
same directory and name it as npaasresourcebundle_localeID.properties and
localize the messages.

4. Restart the UIM server.

5. In your RESTful API client, update the Accept-Language header with the locale
ID. For example, for French, specify fr-FR.

6

Contents of the Network Service Orchestration JAR and ZIP Files 6-1

6Contents of the Network Service Orchestration
JAR and ZIP Files

This chapter describes the contents of Oracle Communications Network Service
Orchestration Solution JAR and ZIP files.

Table 6–1 describes the contents of the Network Service Orchestration JAR and ZIP
files.

Network Service Orchestration Individual JAR Files
The Network Service Orchestration cartridge contains individual JAR files that
comprise the super JAR file. Each individual JAR file is deployable.

Table 6–1 Network Service Orchestration JAR and ZIP File Contents

Directory Directory Content Description

deploy/

individualJarsForSuperJar

Contains individual JAR files that comprise the super JAR file.

See "Network Service Orchestration Individual JAR Files" for
more information.

deploy/

superJarToDeploy

Contains the super JAR file.

See "Network Service Orchestration Super JAR File" for more
information.

deploy/

applications

Contains applications.

See "Network Service Orchestration Applications" for more
information.

designStudio/

cartridgeZips

Contains cartridge project ZIP files.

See "Network Service Orchestration ZIP Files" for more
information.

Note: Before deploying the Network Service Orchestration cartridge
JAR files, you must deploy the base cartridges if not previously
deployed. For information about the base cartridges, see "Configuring
UIM for the Network Service Orchestration Solution" and UIM
Cartridge Guide.

Oracle recommends that you deploy the super JAR file. If you deploy
the JAR files individually, you must install them in a specific order.

Network Service Orchestration Super JAR File

6-2 Network Service Orchestration Solution Implementation Guide

The Network Service Orchestration cartridge individual JAR files are located in the
deploy/individualJarsForSuperJar directory and they must be deployed in the
following order:

■ OracleComms_NSO_NFVIAdapter

■ OracleComms_NSO_Common

■ OracleComms_NSO_BaseCartridge

The Network Service Orchestration cartridge also contains individual JAR files for
sample cartridges that comprise the super JAR file. Each individual JAR file is
deployable.

■ NPaaS_NetworkService

■ Juniper_vSRX_VNF

■ Checkpoint_NG_FW_VNF

Network Service Orchestration Super JAR File
The Network Service Orchestration cartridge contains the OracleComms_NSO_*.jar
super JAR file. The solution super JAR is located in the deploy\superJarToDeploy
directory.

The Network Service Orchestration super JAR file contains the entire contents of the
solution and is ready for deployment.

See UIM Cartridge Guide for more information about deploying cartridges into Oracle
Communications Unified Inventory Management (UIM).

Network Service Orchestration Applications
The Network Service Orchestration cartridge contains the OracleComms_NSO_
WebServices.war application file in the deploy\applications\ directory.

The OracleComms_NSO_WebServices.war file contains the implementation of the
Network Service Orchestration solution web services.

Network Service Orchestration ZIP Files
The Network Service Orchestration cartridge contains one project ZIP file for every
cartridge or model project, and each ZIP file contains a project in its pre-compiled state
(the project name is the root directory).

Note: The asterisk in the JAR file name represents a five-segment
release version number followed by a build number. The five-segment
release version numbers represent the following:

■ Major Version Number

■ Minor Version Number

■ Maintenance Pack

■ Generic Patch

■ Customer Patch

Network Service Orchestration ZIP Files

Contents of the Network Service Orchestration JAR and ZIP Files 6-3

The solution cartridge contains the following cartridge ZIP files, which are located in
the designStudio\cartridgeZips\ directory:

■ NPaaS_NetworkService

■ Juniper_vSRX_VNF

■ Checkpoint_NG_FW_VNF

■ NSOBranding

■ OracleComms_NSO_BaseCartridge

Network Service Orchestration ZIP Files

6-4 Network Service Orchestration Solution Implementation Guide

7

Network Service Orchestration RESTful API Reference 7-1

7Network Service Orchestration RESTful API
Reference

This chapter provides reference information about the Oracle Communications
Network Service Orchestration Solution RESTful APIs.

The Network Service Orchestration RESTful APIs provide the northbound interface to
the Network Service Orchestration solution. Operation Support Systems (OSS) and
VNF managers query data from the solution’s resource inventory.

The solution’s RESTful APIs enable you to perform various functions by using a
RESTful API client.

The root URL for the Network Service Orchestration RESTful API resources is:

■ HTTP Connection: http://nso_host:port/ocnso/1.1

■ SSL Connection: https://nso_host:ssl_port/ocnso/1.1

where:

– nso_host is the host name

– port is the port number of the machine on which Oracle Communications
Unified Inventory Management (UIM) is installed

– ssl_port is the SSL port number of the machine on which UIM is installed

To access the Network Service Orchestration RESTful APIs, in your RESTful API client,
choose Basic Authentication and specify the username and password of the machine
on which UIM is installed.

List of Network Service Orchestration Solution RESTful API Resources
Table 7–1 lists the Network Service Orchestration RESTful API resources.

Note: If you use HTTPS-enabled OpenStack Keystone RESTful APIs,
add the Certified Authority certificate to the TrustStore that your
application server uses. If OpenStack Keystone is configured with
self-signed certificate, then add the self-signed certificate to the
TrustStore of the application server. See Oracle WebLogic Server
documentation for information about configuring TrustStore.

List of Network Service Orchestration Solution RESTful API Resources

7-2 Network Service Orchestration Solution Implementation Guide

Table 7–1 Network Service Orchestration Solution RESTful API Resources

Task Method Resource Description

Register a Virtual
Infrastructure Manager (VIM)

POST /ocnso/1.1/vim Registers the IP address, port, username and
password of the VIM with the solution.

Discover VIM resources POST /ocnso/1.1/vim/vimId/disc
overy?infoLevel=vim_
information

Discovers the resources of the registered VIM into
the solution.

Update a VIM POST /ocnso/1.1/vim/update/vim
Id

Updates the IP address, port, username,
password, and project name of an existing VIM in
the solution.

Instantiate a network service POST /ocnso/1.1/ns Instantiates a network service and its constituent
VNFs.

Terminate a network service DELETE /ocnso/1.1/ns/networkServic
eId

Terminates a network service and the constituent
VNFs.

Upgrade VNF software version PUT /ocnso/1.1/vnf/vnfId/upgra
de

Upgrades the software image version of a VNF.

Heal a VNF POST /ocnso/vnf/vnfId/heal?actio
n=reboot

/ocnso/vnf/vnfId/heal?actio
n=replace

Heals a VNF by rebooting or replacing the VM.

 Available values for the action parameter are:

■ Replace

■ Reboot

Add VNFs to a network service POST /ocnso/1.1/ns/networkServic
eId/vnfs

Adds VNFs to a network service.

Scale a VNF POST /ocnso/1.1/ns/networkServic
eId/scale/vnfId

Scales a VNF in a network service.

Configure VNF service
capabilities

POST /ocnso/1.1/vnf/configure Configures the capabilities of a VNF service.

Delete a VNF from a network
service

DELETE /ocnso/1.1/ns/networkServic
eId/vnfs

Deletes a VNF from a network service.

Get VIM information GET /ocnso/1.1/vim/vimId Returns information about a VIM that is
registered with the solution

Get network service
information

GET /ocnso/1.1/nsd/networkServi
ceId

Returns information about a network service.

Get a list of all network service
descriptors that are deployed
in the solution

GET /ocnso/1.1/nsd Returns a list of all network service descriptors
that are deployed in the solution.

Get details about a network
service descriptor

GET /ocnso/1.1/nsd/nsdName Returns details about a network service
descriptor.

Get a list of VNF descriptors in
a network service descriptor

GET /ocnso/1.1/nsd/nsdName/v
nfds

Returns a list of VNF descriptors in a network
service descriptor.

Get network service descriptor
deployment flavors

GET /ocnso/1.1/nsd/nsdName/fl
avors

Returns a list of all constituent service flavors that
are defined for a network service descriptor.

Get details about a VNF
Descriptor

GET /ocnso/1.1/vnfd/vnfdName Returns details about a VNF descriptor.

Get a list of VNF descriptors in
a network service descriptor

GET /ocnso/1.1/nsd/nsdName/v
nfds

Returns a list of VNF descriptors in a network
service descriptor.

Get a list of supported versions
for a VNF descriptor

GET /ocnso/1.1/vnfd/vnfdName/
versions

Returns a list of supported versions for a VNF
descriptor.

Get VNF descriptor
deployment flavors

GET /ocnso/1.1/vnfd/vnfdName/
flavors

Returns a list of deployment flavors that are
defined for a VNF descriptor.

Get a list of all active network
services that are created based
on a specific network service
descriptor

GET /ocnso/1.1/ns/nsdName=ns
dName

Returns a list of all active network services that
are created based on the given network service
descriptor.

Get details about a network
service

GET /ocnso/1.1/ns/networkServic
eId

Returns details about a network service.

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-3

HTTP Response Status Codes
Table 7–2 describes the HTTP response status codes for the GET, POST, PUT, and
DELETE operations of the Network Service Orchestration Solution RESTful APIs.

Sample Requests and Responses
The following sections provide sample JSON requests and responses for the Network
Service Orchestration solution RESTful API resources.

Register a VIM
Registers the following details about the VIM with the Network Service Orchestration
solution:

■ IP address

■ Port

■ Username

■ Password

Get details about VNFs in a
network service

GET /ocnso/1.1/ns/networkServic
eId/vnfs

Returns details about VNFs in a network service.

Get details about networks in a
network service

GET /ocnso/1.1/ns/networkServic
eId/networks

Returns details about networks in a network
service.

Get details about endpoints in
a network service

GET /ocnso/1.1/ns/networkServic
eId/endpoints

Returns details about endpoints in a network
service.

Get status information of a
network service

GET /ocnso/1.1/ns/networkServic
eId/status

Returns status information of a network service.

Get details about a VNF GET /ocnso/1.1/ns/vnf/vnfId Returns details about a VNF.

Get status information of a
VNF

GET /ocnso/1.1/ns/vnfId/status Returns status information about a VNF.

Table 7–2 HTTP Response Status Codes for the REST APIs

Response Code Description

200 OK The request is successful.

The information returned in the response is dependent on the method used in the
request.

For example:

■ GET. An entity corresponding to the requested resource is sent in the response.

■ POST. An entity describing or containing the result of the action.

202 Accepted The request has been accepted for processing, but the processing has not completed. The
request might or might not eventually be acted upon, as it might be disallowed when
processing actually takes place.

400 Bad Request The request could not be understood by the server due to incorrect syntax. Do not repeat
the request without correcting the syntax.

404 Not Found The server has not found a matching request or URI.

500 Internal Server
Error

The server encountered an unexpected condition which prevented it from fulfilling the
request.

Table 7–1 (Cont.) Network Service Orchestration Solution RESTful API Resources

Task Method Resource Description

Sample Requests and Responses

7-4 Network Service Orchestration Solution Implementation Guide

Method
POST

URL
http://nso_host:port/ocnso/1.1/vim

Sample JSON Request
{
"id":"vimId",
"name":"vimName",
"host":"11.111.111.1",
"port":"12345",
"userName":"nso",
"pswd":"***",
"projectName":"test",
"domainName":"default",
"vimType":"default",
"version":"3",
"sslEnabled":"false",
"cpuOvercommitRatio":"15",
"memoryOvercommitRatio":"1.5",
"diskOvercommitRatio":"1.0"
}

Table 7–3 describes the parameters in the request.

Table 7–3 Request Parameters

Parameter Value Required Description

name String No Name for the VIM.

id String Yes Unique ID for the VIM in NSO.

host String Yes IP address or host name of the VIM.

port String Yes Port number of the VIM.

userName String Yes Username of the VIM.

pswd String Yes Password of the VIM.

projectName String Yes Name of the project.

domainName String No Name of the domain.

version String No Version number of the VIM that you use.

If you use OpenStack Kilo:

■ For OpenStack Keystone version 2, specify 2.

■ For OpenStack Keystone version 3, specify 3.
This is the default.

sslEnabled String No Specify whether you have SSL enabled for the
VIM.

Values are:

■ true. Indicates that you have SSL enabled for
the VIM.

■ false. Indicates that you do not have SSL
enabled for the VIM. This is the default.

vimType String Yes Type of the VIM. The default is OpenStack.

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-5

Sample JSON Response
vimDataCenter is successfully registered with NSO.

Discover VIM Resources
Discovers the resources that are available on the VIM. In UIM, creates the following
resources as custom objects:

■ Availability zones

■ Flavors

■ Hosts

■ Virtual Data Center (VDC)

Method
POST

URL
http://nso_host:port/ocnso/1.1/vim/vimId/discovery?infoLevel=vim_information

where:

■ vimId is the Id of the VIM whose resources you want to discover

■ vim_information is the level of information about the VIM that you want to retrieve
and view in the response. The values are:

– summary. Retrieves and displays a summary of the VIM resources.

– details. Retrieves and displays complete details about all the VIM resources.

Sample Request
This API does not require any request parameters.

Sample Response
This API returns the following response if you set the infoLevel parameter in the URL
to summary:

{
 "data": {
 "summary": {
 "Number of Subnets": 0,
 "Number of Flavors": 7,
 "Number of Hosts": 0,
 "Number of Networks": 4,
 "Number of Zones": 3

cpuOvercommitRa
tio

Double No Ratio of over-committed virtual CPUs on the VIM

memoryOvercom
mitRatio

Double No Ratio of over-committed memory on the VIM

diskOvercommitR
atio

Double No Ratio of over-committed disk on the VIM

Table 7–3 (Cont.) Request Parameters

Parameter Value Required Description

Sample Requests and Responses

7-6 Network Service Orchestration Solution Implementation Guide

 }
 }
}

The API returns the following response if you set the infoLevel parameter in the URL
to details:

{
 "data": {
 "availabilityZones": [
 {
 "zone": "CustomerTermination",
 "hosts": [
 "compute2"
]
 },
 {
 "zone": "nova",
 "hosts": [
 "compute4"
]
 },
 {
 "zone": "InternetTermination",
 "hosts": [
 "compute3"
]
 }
],
 "networks": [
 {
 "network": "ext-net",
 "subnets": [
 "ext-subnet"
]
 },
 {
 "network": "825158_ManagementNetwork",
 "subnets": [
 "825158_ManagementNetwork"
]
 },
 {
 "network": "975005_Data_IN",
 "subnets": [
 "975005_Data_IN"
]
 },
 {
 "network": "825158_Data_OUT",
 "subnets": [
 "825158_Data_OUT"
]
 },
],
 "flavors": [
 "m1.small",
 "m1.large",
 "csr_flavor",
 "m1.medium",
 "vsrx.medium",

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-7

 "checkpoint",
 "Gold"
]
 }
 }

Update a VIM
Updates the following details about an existing VIM in the solution:

■ IP address

■ Port

■ Username

■ Password

■ Project Name

Method
PUT

URL
http://nso_host:port/ocnso/1.1/vim/vimId

where vimId is the Id of the VIM that you want to update

Sample Request
{
"host":"11.111.1.11",
"port":"12345",
"userName":"admin",
"pswd":"****",
"projectName":"test",
"domainName":"default",
"version":"3",
"sslEnabled":"false",
"cpuOvercommitRatio":"15",
"memoryOvercommitRatio":"1.5",
"diskOvercommitRatio":"1.0"
}

Sample Response
VIM is updated successfully.

Instantiate a Network Service
Creates networks and the constituent resources and starts the VNFs in the network
service.

Method
POST

URL
http://nso_host:port/ocnso/1.1/ns

Sample Requests and Responses

7-8 Network Service Orchestration Solution Implementation Guide

Sample Request
 {
 "nsName":"NPaaS1",
 "nsDescriptorName":"NPaaS_NSD",
 "serviceDeploymentFlavorName":"Checkpoint",
 "vnfs":[
 {
 "vnfName":"Vnf1",
 "deploymentFlavorName":"checkpoint",
 "vnfDescriptorName":"Checkpoint_NG_FW_VNFD",
 "version":"1.0"
 }
],
 "endPoints": [
 {
 "name":"Test110301",
 "forwardingGraphDescriptorName":"Data",
 "parameters":
 [
 {
 "name": "ipAddress",
 "value": "207.123.34.2"
 },
 {
 "name": "vlanId",
 "value": "101"
 },
 {
 "name": "serviceLocation",
 "value": "city03"
 }
]
 }
]
}

Table 7–4 describes the parameters in the request.

Table 7–4 Request Parameters

Parameter Name Value Required Description

nsName String Yes Name of the network service that you want to
instantiate.

nsDescriptorName String Yes Name of the network service descriptor.

serviceDeployment
FlavorName

String Yes Name of the Network Service deployment flavor.

vnfs:[vnfName String Yes Name of the VNF in the network service that
you want to instantiate.

vnfs:[
deploymentFlavorN
ame

String Yes Name of the deployment flavor of the VNF
service.

vnfs:[
vnfDescriptorName

String Yes Name of the VNF descriptor that contains the
descriptor of the VNF.

vnf:[version String Yes Version number of the VNF image.

endPoints:[name String Yes Name of the endpoint.

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-9

Sample Response
{
"networkServiceName": "NSO_NPassService_1",
"networkServiceId": "2475008",
"networkServiceStatus": "PENDING",
"businessInteractionId": "2475017",
"message": "[INV-992902] Network Service instantiation is in progress.",
"status": 202,
"vnfs": [
 {
 "vnfId": "2250005",
 "vnfName": "NSO_CheckPointVNF_1",
 "vnfStatus": "PENDING_ASSIGN",
 "vnfDescriptor": "Checkpoint_NG_FW_VNFD",
 "vnfServiceId": "2475009",
 "businessInteractionId": "2475018"
 }
]
}

Terminate a Network Service
Terminates a network service. Undeploys the constituent VNFs in the network service
and releases all the resources that were allocated to the service.

Method
DELETE

URL
http://nso_host:port/ocnso/1.1/ns/networkServiceId

Sample Request
This API does not require parameters. Specify the network service ID in the URL.

Sample Response
{
"networkServiceName": "NSO_NPassService_1",
"networkServiceId": "2475008",
"networkServiceStatus": "PENDING_DISCONNECT",
"businessInteractionId": "2475025",
"message": "[INV-992907] Network Service termination is in progress.",
"status": 202,
"vnfs": [

endPoints:[
forwardingGraphDe
scriptorName

String Yes Name identifier that is defined in the Network
Service metadata descriptor for which a
sequence of VNFDs is defined for flow.

endPoints:[
parameters:[name

String Yes Dynamic parameter that can be sent from the
request to implement custom logic by using the
extensions in the solution.

endPoints:[
parameters:[value

String Yes Value of the customer-side end point termination
points.

Table 7–4 (Cont.) Request Parameters

Parameter Name Value Required Description

Sample Requests and Responses

7-10 Network Service Orchestration Solution Implementation Guide

 {
 "vnfId": "2250005",
 "vnfName": "VNF1",
 "vnfStatus": "PENDING_UNASSIGN",
 "vnfDescriptor": "Juniper_vSRX_VNFD",
 "vnfServiceId": "2475009",
 "businessInteractionId": "2475026"
 }
]
}

Upgrade the Software Version of a VNF
Upgrades the software version of a VNF image in a network service.

Method
PUT

URL
http://nso_host:port/ocnso/1.1/vnf/vnfId/upgrade/vnf_version

Sample Request
This API does not require parameters. Specify the VNF ID and the VNF version
number you want to upgrade to in the URL.

Table 7–5 describes the parameters in the request.

Sample Response
{
 "vnfId": "975022",
 "interactionId": "975028",
 "message": "Network Service upgrade is under process.",
 "status": 202
}

Heal a VNF
Heals a VNF by either rebooting or replacing a VNF in the VIM.

Method
POST

URL
http://nso_host:port/ocnso/1.1/vnf/vnf_Id/heal?action=action

Table 7–5 Request Parameters

Parameter Name Value Required Description

vnfId String Yes Id of the VNF whose image you want to
upgrade.

vnf_Version String Yes Version number of the VNF image that you want
to upgrade to. This version number should
already be defined in the VNF descriptor file.

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-11

where:

■ vnf_Id is the VNF ID

■ action is the action that you want to perform on the VNF. Specify any one of the
following values:

– reboot. Reboots the VNF.

– replace. Replaces the VNF.

Sample Request
Request parameters are not required for this API.

Sample Response

reboot
VNF has been rebooted successfully.

replace
VNF has been replaced successfully. The new VM Id is
84068628-9d4b-415c-9d63-181cadc9b20d.

Add VNFs to a Network Service
Adds VNFs to an existing network service.

Method
POST

URL
http://nso_host:port/ocnso/1.1/ns/networkServiceId/vnfs

Sample Request
[
 {
 "vnfName":"VNF1",
 "deploymentFlavorName":"checkpoint",
 "vnfDescriptorName":"Checkpoint_NG_FW_VNFD",
 "version":"1.0"
 },
 {
 "vnfName":"VNF2",
 "deploymentFlavorName":"checkpoint",
 "vnfDescriptorName":"Checkpoint_NG_FW_VNFD",
 "version":"1.0"
 }
]

Table 7–6 describes the parameters in the request.

Sample Requests and Responses

7-12 Network Service Orchestration Solution Implementation Guide

Sample Response
{
"networkServiceName": "NSO_NPassService_1",
"networkServiceId": "2475008",
"businessInteractionId": "2475021",
"message": "[INV-992903] Adding VNF to Network Service is in progress.",
"status": 202,
"vnfs": [
 {
 "vnfId": "2250007",
 "vnfName": "VNF1",
 "vnfStatus": "PENDING_ASSIGN",
 "vnfDescriptor": "Checkpoint_NG_FW_VNFD",
 "vnfServiceId": "2475011",
 "businessInteractionId": "2475022"
 },
 {
 "vnfId": "2250008",
 "vnfName": "VNF2",
 "vnfStatus": "PENDING_ASSIGN",
 "vnfDescriptor": "Checkpoint_NG_FW_VNFD",
 "vnfServiceId": "2475012",
 "businessInteractionId": "2475023"
 }
]
}

Scale a VNF
Scales a VNF in a network service.

Method
POST

URL
http://nso_host:port/ocnso/1.1/ns/networkServiceId/scale/vnfId

Sample Request
Request parameters are not required

Sample Response
{
"networkServiceName": "NSO_NPassService_1",
"networkServiceId": "2475008",

Table 7–6 Request Parameters

Parameter Name Value Required Description

vnfName String Yes Name of the VNF that you want to add.

deploymentFlavorN
ame

String Yes Name of the VNF deployment flavor.

vnfDescriptorName String Yes Name of the VNF descriptor.

version String Yes Version number of the VNF image.

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-13

"businessInteractionId": "2475019",
"message": "[INV-992913] VNF Scaling is in progress.",
"status": 202,
"vnfs": [
 {
 "vnfId": "2250006",
 "vnfName": "Juniper_vSRX_VNFD_1460550991411",
 "vnfStatus": "PENDING_ASSIGN",
 "vnfDescriptor": "Juniper_vSRX_VNFD",
 "vnfServiceId": "2475010",
 "businessInteractionId": "2475020"
 }
]
}

Delete a VNF from a Network Service
Deletes a VNF from an existing network service and undeploys it in the VIM.

Method
DELETE

URL
http://nso_host:port/ocnso/1.1/ns/networkServiceId/vnfs

Sample Request
[
{
"vnfId":"11"
}
]

where vnfId is the Id of the VNF in UIM. The VNF is represented as a logical device in
UIM.

Sample Response
{
"networkServiceName": "NSO_NPassService_1",
"networkServiceId": "2475008",
"businessInteractionId": "2475023",
"message": "[INV-992904] Deleting VNF from Network Service is in progress.",
"status": 202,
"vnfs": [
 {
 "vnfId": "11",
 "vnfName": "VNF1",
 "vnfStatus": "PENDING_UNASSIGN",
 "vnfDescriptor": "Juniper_vSRX_VNFD",
 "vnfServiceId": "2475011",
 "businessInteractionId": "2475024"
 }
]
}

Sample Requests and Responses

7-14 Network Service Orchestration Solution Implementation Guide

Configure VNF Service Capabilities
Configures the capabilities of a VNF in a network service.

Method
POST

URL
http://nso_host:port/ocnso/1.1/vnf/configure

Sample Request
 {
 "vnfId" : "vnfID",
 "capabilities" :
 [
 {
 "name" : "WebFilter",
 "parameters" :
 [
 {
 "name" : "Id",
 "value" : "WebFilter-vnfID"
 },
 {
 "name" : "Action",
 "value" : "Create"
 }
],
 "configuration" :
 {
 "items" : [
 {
 "name" : "WebFilterRuleset",
 "parameters" : [
 {
 "name" : "Id",
 "value" : "WebFilter_RulesetvnfID"
 },
 {
 "name" : "Action",
 "value" : "Add"
 }
],
 "items" : [
 {
 "name" : "WebFilterRule",
 "parameters" : [
 {
 "name" : "Id",
 "value" : "WebFilter_Rule_UniqueNumber"
 },
 {
 "name" : "Action",
 "value" : "Add"
 },
 {
 "name" : "BlockURL",
 "value" : "www.example.com"

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-15

 }
]
 }
]
 }
]
 }
 }
]
}

Sample Response
{

 "status": 202,
 "message": "VNF Configuration is in progress.",
 "vnfId": "12345",
 "vnfName": "VNF1",
 "vnfStatus" : "ASSIGNED",
 "vnfDescriptor":"Juniper_VSRX_VNFD",
 "vnfServiceName":"vSRX123",
 "vnfServiceStatus":"ASSIGNED",
 "vnfServiceDescriptor":"Juniper_vSRX_ServiceDescriptor"
}

Get VIM Details
Retrieves the details of a VIM that is registered with the solution.

Method
GET

URL
http://nso_host:port/ocnso/1.1/vim/vimId

where vimId is the ID of the VIM

Sample Response
{
 "id": "VIMCloudTest",
 "name": "VIMCloudTest",
 "host": "10.133.0.31",
 "port": "35357",
 "userName": "admin",
 "pswd": "****",
 "projectName": "admin",
 "domainName": "default",
 "vimType": "OpenStack",
 "version": "3",
 "sslEnabled": true,
 "cpuOvercommitRatio": "15",
 "memoryOvercommitRatio": "1.5",
 "diskOvercommitRatio": "1.0"
}

Sample Requests and Responses

7-16 Network Service Orchestration Solution Implementation Guide

Get List of Network Services
Retrieves the list of active network services that are defined in a network service
descriptor.

Method
GET

URL
http://nso_host:port/ocnso/1.1/ns?nsdName=nsdName

where nsdName is the name of the network service descriptor file

Sample Response
[
 {
 "nsID": "17",
 "nsdName": "NPaaS_NSD",
 "nsName": "NSO_QA_NPaaS_mgf_1_Service",
 "status": "IN_SERVICE"
 },
 {
 "nsID": "23",
 "nsdName": "NPaaS_NSD",
 "nsName": "NSO_QA_NPaaS_mgf_3_Service",
 "status": "IN_SERVICE"
 }
]

Get Network Service Details
Retrieves the details of a network service.

Method
GET

URL
http://nso_host:port/ocnso/1.1/ns/networkServiceId

where networkServiceId is the network service ID

Sample Response
{
 "nsID": "75191",
 "nsdName": "NPaaS_NSD",
 "nsName": "NPassService_Juniper55_Service",
 "status": "IN_SERVICE",
 "vimId": "VIMCloudTest",
 "biID": "75407",
 "networks": [
 {
 "networkName": "75191_Data_OUT",
 "status": "REFERENCED"
 },
 {
 "networkName": "75191_Data_IN",

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-17

 "status": "REFERENCED"
 },
 {
 "networkName": "nfvo-poc3-mgmt",
 "status": "REFERENCED"
 }
],
 "vnfs": [
 {
 "vnfId": "75127",
 "vnfName": "JuniperVNF55-1",
 "status": "ASSIGNED",
 "vnfDescriptor": "Juniper_vSRX_VNFD",
 "vnfServiceId": "75192",
 "vmId": "d63486ed-e025-41bf-8259-7294fb043ff5",
 "biID": "75408"
 }
],
 "endPoints": [
 {
 "name": "EndPoint55",
 "status": "REFERENCED"
 }
]
}

Get Status Information of a Network Service
Retrieves the status information about a network service.

Method
GET

URL
http://nso_host:port/ocnso/1.1/ns/networkServiceId/status

where networkServiceId is the ID of the network service

Sample Response
{
 "nsID": "375005",
 "nsdName": "NPaaS_NSD",
 "nsName": "29_1.3_ns_Service",
 "status": "IN_SERVICE"
}

Get List of Network Service Descriptors
Retrieves a list of network service descriptors.

Method
GET

URL
http://nso_host:port/ocnso/1.1/nsd

Sample Requests and Responses

7-18 Network Service Orchestration Solution Implementation Guide

Sample Response
{
 "NPaaS_NSD",
 "CustomerName_NPaaS_NSD"
}

Get Information about a Network Service Descriptor
Retrieves details about a specified network service descriptor.

Method
GET

URL
http://nso_host:port/ocnso/1.1/nsd/nsdName

where nsdName is the name of the network service descriptor

Sample Response
{
 "referencedVnfds": [
 "Checkpoint_NG_FW_VNFD",
 "Juniper_vSRX_VNFD"
],
 "serviceDeploymentFlavors": [
 {
 "name": "Checkpoint",
 "constituentVNFDs": [
 {
 "vnfd": {
 "name": "Checkpoint_NG_FW_VNFD",
 "vNetworkInterfaces": 0
 },
 "assuranceParameters": [
 {
 "name": "Low CPU Utilization",
 "id": "cpu_util",
 "condition": "eq",
 "value": "0.0",
 "action": "heal"
 },
 {
 "name": "High CPU Utilization",
 "id": "cpu_util",
 "condition": "gt",
 "value": "80.0",
 "action": "scale"
 }
]
 }
]
 },
 {
 "name": "Juniper",
 "constituentVNFDs": [
 {
 "vnfd": {

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-19

 "name": "Juniper_vSRX_VNFD",
 "vNetworkInterfaces": 0
 },
 "assuranceParameters": [
 {
 "name": "Low CPU Utilization",
 "id": "cpu_util",
 "condition": "eq",
 "value": "0.0",
 "action": "heal"
 },
 {
 "name": "High CPU Utilization",
 "id": "cpu_util",
 "condition": "gt",
 "value": "40.0",
 "action": "scale"
 }
]
 }
]
 }
]
}

Get VNF Descriptors
Retrieves a list of VNF descriptors that a network service descriptor references.

Method
GET

URL
http://nso_host:port/ocnso/1.1/nsd/nsdName/vnfds

where nsdName is the name of the network service descriptor

Sample Response
[
 "Juniper_vSRX_VNFD",
 "Checkpoint_NG_FW_VNFD"
]

Get Flavors of a Network Service Descriptor
Retrieves a list of deployment flavors for a specified network service descriptor.

Method
GET

URL
http://nso_host:port/ocnso/1.1/nsd/nsdName/flavors

where nsdName is the name of the network service descriptor

Sample Requests and Responses

7-20 Network Service Orchestration Solution Implementation Guide

Sample Response
[
 {
 "name": "Checkpoint",
 "constituentVNFDs": [
 {
 "vnfd": {
 "name": "Checkpoint_NG_FW_VNFD",
 "vNetworkInterfaces": 0
 },
 "assuranceParameters": [
 {
 "name": "Low CPU Utilization",
 "id": "cpu_util",
 "condition": "eq",
 "value": "0.0",
 "action": "heal"
 },
 {
 "name": "High CPU Utilization",
 "id": "cpu_util",
 "condition": "gt",
 "value": "80.0",
 "action": "scale"
 }
]
 }
]
 },
 {
 "name": "Juniper",
 "constituentVNFDs": [
 {
 "vnfd": {
 "name": "Juniper_vSRX_VNFD",
 "vNetworkInterfaces": 0
 },
 "assuranceParameters": [
 {
 "name": "Low CPU Utilization",
 "id": "cpu_util",
 "condition": "eq",
 "value": "0.0",
 "action": "heal"
 },
 {
 "name": "High CPU Utilization",
 "id": "cpu_util",
 "condition": "gt",
 "value": "40.0",
 "action": "scale"
 }
]
 }
]
 }
]

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-21

Get Information about a VNF Descriptor
Retrieves details about a specified VNF descriptor.

Method
GET

URL
http://nso_host:port/ocnso/1.1/vnfd/vnfdName

where vnfdName is the name of the VNF descriptor

Sample Response
{
 "deploymentFlavors": [
 {
 "name": "vsrx.small",
 "vcpus": 2,
 "memory": 2,
 "disk": 20
 },
 {
 "name": "vsrx.medium",
 "vcpus": 2,
 "memory": 4,
 "disk": 20
 },
 {
 "name": "m1.medium",
 "vcpus": 2,
 "memory": 4,
 "disk": 40
 }
],
 "connectionPoints": [
 {
 "name": "CP01",
 "isExternal": false,
 "order": -1
 },
 {
 "name": "CP02",
 "isExternal": false,
 "order": -1
 },
 {
 "name": "CP03",
 "isExternal": false,
 "order": -1
 }
],
 "versions": [
 {
 "number": "1.0",
 "imageName": "vsrx-12.1X47-D20.7-npaas-v0.3",
 "imageUserName": "",
 "imagePasswd": ""
 },

Sample Requests and Responses

7-22 Network Service Orchestration Solution Implementation Guide

 {
 "number": "1.1",
 "imageName": "vsrx-12.1X47-D20.7-npaas-v0.3",
 "imageUserName": "",
 "imagePasswd": ""
 }
]
}

Get Versions of a VNF Descriptor
Retrieves details about the versions of a specified VNF descriptor.

Method
GET

URL
http://nso_host:port/ocnso/1.1/vnfd/vnfdName/versions

where vnfdName is the name of the VNF descriptor

Sample Response
{
 "number": "1.0",
 "imageName": "npaas-srx-poc3-nso",
 "imageUserName": "",
 "imagePasswd": ""
 },
 {
 "number": "1.1",
 "imageName": "npaas-srx-poc3-nso2",
 "imageUserName": "",
 "imagePasswd": ""
 },
 {
 "number": "1.3",
 "imageName": "vsrx-12.1X47-D20.7-npaas-v0.3",
 "imageUserName": "",
 "imagePasswd": ""
 },
 {
 "number": "1.4",
 "imageName": "vsrx-npaas-v0.4",
 "imageUserName": "",
 "imagePasswd": ""
 }

Get Flavors of a VNF Descriptor
Retrieves the list of flavors of a specified VNF descriptor.

Method
GET

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-23

URL
http://nso_host:port/ocnso/1.1/vnfd/vnfdName/flavors

where vnfdName is the name of the VNF descriptor

Sample Response
 {
 "vcpus": 2,
 "memory": 4,
 "disk": 20,
 "name": "vsrx.medium"
 },
 {
 "vcpus": 2,
 "memory": 4,
 "disk": 40,
 "name": "m1.medium"
 }

Get Details about VNFs in a Network Service
Retrieves the details about the VNFs in a network service.

Method
GET

URL
http://nso_host:port/ocnso/1.1/ns/networkServiceId/vnfs

where networkServiceId is the ID of the network service

Sample Response
{
 "nsID": "375005",
 "nsdName": "NPaaS_NSD",
 "nsName": "29_1.3_AMns_Service",
 "vnfs": [
 {
 "vnfId": "300003",
 "vnfName": "VNF1",
 "vnfStatus": "INSTALLED",
 "vnfDescriptor": "Juniper_vSRX_VNFD",
 "vnfServiceId": "375006",
 "vnfServiceName": "VNF_Juniper_vSRX_VNFD_Service",
 "vnfServiceStatus": "IN_SERVICE",
 "vnfServiceDescriptor": "Juniper_vSRX_ServiceDescriptor",
 "vnfVersion": "1.0",
 "vmId": "3479b080-6341-425c-b242-ecd14b1dcef8",
 "biID": "375006",
 "status" : "ASSIGNED"
 "deploymentFlavorInfo": {
 "name": "m1.medium",
 "vcpus": 2,
 "memory": "4 MB",
 "disk": "40 GB"
 },

Sample Requests and Responses

7-24 Network Service Orchestration Solution Implementation Guide

 "connectionPoints": [
 {
 "id": "300003-1",
 "name": "CP01",
 "ipAddress": {
 "address": "192.0.2.132",
 "network": "nfvo-pkt-in-v2",
 "externalID": "8f2468de-c4b1-4656-b23f-ccd5c26b9d83"
 }
 },
 {
 "id": "300003-2",
 "name": "CP02",
 "ipAddress": {
 "address": "192.0.2.120",
 "network": "nfvo-pkt-out-v2",
 "externalID": "8ab6b415-b04a-458c-97bc-d4ef2eb550c3"
 }
 },
 {
 "id": "300003-3",
 "name": "CP03",
 "ipAddress": {
 "address": "192.0.2.8",
 "network": "nfvo-mgmt",
 "externalID": "9e32e48a-439c-4292-a308-9eafa0beeb78"
 }
 }
]
 }
]
}

Get Details about Networks in a Network Service
Retrieves the details about the networks in a network service.

Method
GET

URL
http://nso_host:port/ocnso/1.1/ns/networkServiceId/networks

where networkServiceId is the ID of the network service

Sample Response
{
 "nsID": "375005",
 "nsdName": "NPaaS_NSD",
 "nsName": "ns_Service",
 "networks": [
 {
 "networkName": "nfvo-mgmt",
 "networkID": "nfvo-mgmt",
 "externalID": "109ae4cf-3cea-4729-a24f-957c4ed6d3c6",
 "status" : "REFERENCED" ,
 "subnets": [
 {

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-25

 "startIP": "192.0.2.0",
 "prefix": "24",
 "externalID": "fb791563-7c8b-454c-a1eb-87399e6837dc"
 }
]
 },
 {
 "networkName": "nfvo-pkt-in-v2",
 "networkID": "nfvo-pkt-in-v2",
 "externalID": "2277b6e2-eb2d-4cc2-b80c-6d6c38f35ab0",
 "status" : "REFERENCED" ,
 "subnets": [
 {
 "startIP": "192.0.2.128",
 "prefix": "25",
 "externalID": "d47bf43a-57bd-4b17-b559-505a426d7359"
 }
]
 },
 {
 "networkName": "nfvo-pkt-out-v2",
 "networkID": "nfvo-pkt-out-v2",
 "externalID": "3b45febc-4531-4751-ac55-9e43bd53897a",
 "status" : "REFERENCED" ,
 "subnets": [
 {
 "startIP": "192.0.2.0",
 "prefix": "25",
 "externalID": "c04bb488-73cc-4e93-bcab-156030a63a0c"
 }
]
 }
]
}

Get Details about Endpoints in a Network Service
Retrieves the details about the endpoints in a network service.

Method
GET

URL
http://nso_host:port/ocnso/1.1/ns/networkServiceId/endpoints

where networkServiceId is the ID of the network service

Sample Response
{
 "nsID": "75133",
 "nsdName": "NPaaS_NSD",
 "nsName": "NPaaS_Service",
 "biID": "75360",
 "endPoints": [
 {
 "name": "cnsmr_endpoint",
 "ipAddress": "207.123.34.2",
 "status": "PENDING_UNREFERENCE"

Sample Requests and Responses

7-26 Network Service Orchestration Solution Implementation Guide

 }
]
}

Get Details about a VNF
Retrieves the details about a VNF.

Method
GET

URL
http://nso_host:port/ocnso/1.1/vnf/vnfId

where vnfId is the ID of the VNF

Sample Response
{
 "vnfId": "300003",
 "vnfName": "VNF1",
 "vnfStatus": "INSTALLED",
 "vnfDescriptor": "Juniper_vSRX_VNFD",
 "vnfServiceId": "375006",
 "vnfServiceName": "vnf_Juniper_vSRX_VNFD_Service",
 "vnfServiceStatus": "IN_SERVICE",
 "vnfServiceDescriptor": "Juniper_vSRX_ServiceDescriptor",
 "biID": "375006",
 "deploymentFlavorInfo": {
 "name": "m1.medium",
 "vcpus": 2,
 "memory": "4 MB",
 "disk": "40 GB"
 },
 "connectionPoints": [
 {
 "id": "300003-1",
 "name": "CP01",
 "ipAddress": {
 "address": "192.0.2.132",
 "network": "nfvo-pkt-in-v2",
 "externalID": "8f2468de-c4b1-4656-b23f-ccd5c26b9d83"
 }
 },
 {
 "id": "300003-2",
 "name": "CP02",
 "ipAddress": {
 "address": "192.0.2.120",
 "network": "nfvo-pkt-out-v2",
 "externalID": "8ab6b415-b04a-458c-97bc-d4ef2eb550c3"
 }
 },
 {
 "id": "300003-3",
 "name": "CP03",
 "ipAddress": {
 "address": "192.0.2.8",
 "network": "nfvo-mgmt",

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-27

 "externalID": "9e32e48a-439c-4292-a308-9eafa0beeb78"
 }
 }
]
}

Get Status Information of a VNF
Retrieves the status information of a VNF.

Method
GET

URL
http://nso_host:port/ocnso/1.1/vnf/vnfId/status

where vnfId is the ID of the VNF

Sample Response
{
 "vnfId": "75085",
 "vnfName": "ChkptVNF_CP_B253_BALU_Scale",
 "status": "ASSIGNED",
 "vnfDescriptor": "Checkpoint_NG_FW_VNFD",
 "vnfServiceId": "75134",
 "vnfServiceStatus": "IN_SERVICE",
 "vmStatus": "ACTIVE",
 "vmId": "80cbd3bf-5bc2-45b1-9cc4-b4bbc9e120c2",
 "biID": "75273"
}

Sample Requests and Responses

7-28 Network Service Orchestration Solution Implementation Guide

	Contents
	Preface
	Audience
	Related Documentation
	Documentation Accessibility

	1 Overview
	About Network Service Orchestration Solution
	Solution Components
	About Network Service Orchestration Entities
	About the Sample Network Protection Service
	About the Branding Cartridge

	2 Installing and Integrating the Solution Components
	Planning Your Implementation
	Software Requirements
	Configuring UIM for the Network Service Orchestration Solution
	Setting Up Queues in WebLogic Server
	Running Scripts to Set Up Queues in WebLogic Server
	Setting Up Queues in WebLogic Server Manually

	Registering the SDN Controller
	Integrating the Solution With Northbound Applications for Asynchronous Communication
	Running Scripts to Set Up Topics in WebLogic Server
	Setting Up Topics in WebLogic Server Manually

	Integrating the VIM with the Solution
	Registering the VIM
	Discovering VIM Resources

	Enabling Logging for the Network Service Orchestration Solution
	Upgrading the Network Service Orchestration Solution
	Supported Southbound Integration

	3 Designing and Onboarding Network Services and VNFs
	About the Design Components
	About the Descriptor Files
	About the Network Service Descriptor Files
	About the VNF Descriptor Files
	Creating a Descriptor File

	About the Technical Actions File
	Creating a Technical Actions File

	About the VNF Configuration Files

	About the Sample Network Protection Service Model
	Implementing a Network Service By Using the Sample Cartridges

	Designing New Network Services and VNF Services

	4 Working with Network Services and VNFs
	Instantiating a Network Service
	Upgrading the Software Version of a VNF
	Monitoring and Healing a VNF
	Modifying a Network Service
	Adding a VNF to a Network Service
	Deleting a VNF from a Network Service

	Terminating a Network Service
	Retrieving Details About Network Services, VNFs, and Descriptors

	5 Extending the Network Service Orchestration Solution
	Setting Up Design Studio for the Network Service Orchestration Solution Cartridges
	Designing Cartridges for Custom VNFs and Network Services
	Using Extension Points and Java Interface Extensions to Extend the Solution
	Writing a Custom Ruleset Extension Point
	Using Java Interface Extensions
	Implementing a Custom SDN Controller
	Implementing a Custom Monitoring Engine
	Implementing a Custom VIM
	Implementing a Custom VNF Lifecycle Manager
	Implementing a Custom VNF Connection Manager
	Implementing a Custom VNF Configuration Manager
	Implementing a Custom Response Manager

	Localizing the Network Service Orchestration Solution
	Localizing the NFV Entities in the UIM User Interface
	Localizing the Responses in RESTful APIs

	6 Contents of the Network Service Orchestration JAR and ZIP Files
	Network Service Orchestration Individual JAR Files
	Network Service Orchestration Super JAR File
	Network Service Orchestration Applications
	Network Service Orchestration ZIP Files

	7 Network Service Orchestration RESTful API Reference
	List of Network Service Orchestration Solution RESTful API Resources
	HTTP Response Status Codes
	Sample Requests and Responses
	Register a VIM
	Method
	URL
	Sample JSON Request
	Sample JSON Response

	Discover VIM Resources
	Method
	URL
	Sample Request
	Sample Response

	Update a VIM
	Method
	URL
	Sample Request
	Sample Response

	Instantiate a Network Service
	Method
	URL
	Sample Request
	Sample Response

	Terminate a Network Service
	Method
	URL
	Sample Request
	Sample Response

	Upgrade the Software Version of a VNF
	Method
	URL
	Sample Request
	Sample Response

	Heal a VNF
	Method
	URL
	Sample Request
	Sample Response

	Add VNFs to a Network Service
	Method
	URL
	Sample Request
	Sample Response

	Scale a VNF
	Method
	URL
	Sample Request
	Sample Response

	Delete a VNF from a Network Service
	Method
	URL
	Sample Request
	Sample Response

	Configure VNF Service Capabilities
	Method
	URL
	Sample Request
	Sample Response

	Get VIM Details
	Method
	URL
	Sample Response

	Get List of Network Services
	Method
	URL
	Sample Response

	Get Network Service Details
	Method
	URL
	Sample Response

	Get Status Information of a Network Service
	Method
	URL
	Sample Response

	Get List of Network Service Descriptors
	Method
	URL
	Sample Response

	Get Information about a Network Service Descriptor
	Method
	URL
	Sample Response

	Get VNF Descriptors
	Method
	URL
	Sample Response

	Get Flavors of a Network Service Descriptor
	Method
	URL
	Sample Response

	Get Information about a VNF Descriptor
	Method
	URL
	Sample Response

	Get Versions of a VNF Descriptor
	Method
	URL
	Sample Response

	Get Flavors of a VNF Descriptor
	Method
	URL
	Sample Response

	Get Details about VNFs in a Network Service
	Method
	URL
	Sample Response

	Get Details about Networks in a Network Service
	Method
	URL
	Sample Response

	Get Details about Endpoints in a Network Service
	Method
	URL
	Sample Response

	Get Details about a VNF
	Method
	URL
	Sample Response

	Get Status Information of a VNF
	Method
	URL
	Sample Response

