

[image: Oracle Corporation]

Oracle® Fusion Middleware

Developing Applications for Oracle Enterprise Scheduler

12c (12.2.1)

E60615-01

October 2015

Documentation for developers that describes how to use Oracle Enterprise Scheduler to develop jobs that execute Java, PL/SQL, EJB, web services and binary process code to schedule and off-load enterprise application work.

Oracle Fusion Middleware Developing Applications for Oracle Enterprise Scheduler, 12c (12.2.1)

E60615-01

Copyright © 2011, 2015, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

Contributors: Kirk Bittler, Weifeng BaoOracle Fusion Middleware Developing Applications for Oracle Enterprise Scheduler, Shelly Butcher, David Craft, Diane Davison, Carlos Fuentes, Charles Hall, Vaibhav Lole, Solomon Nelson, Shengsong Ni, Rachna Shukla, Steve Traut, Venkat Vengala, Aaron Weisberg, Larry Hoffman

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

List of Tables

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

What's New in This Guide

1 Introduction to Oracle Enterprise Scheduler

	1.1 About Oracle Enterprise Scheduler
	1.2 Oracle Enterprise Scheduler Overview for Application Developers
	1.2.1 Introduction to Working with Oracle Enterprise Scheduler at Design-Time
	1.2.2 Introduction to Working with Oracle Enterprise Scheduler at Runtime
	1.2.3 Oracle Enterprise Scheduler Job Requests
	1.2.4 Overview of Integration Steps

	1.3 Fixed-Rate Scheduling with Oracle Enterprise Scheduler

2 Planning Job Development

	2.1 Job Development Flow
	2.2 The Hosting Application
	2.3 The Client Application
	2.4 Create the Job Implementation
	2.5 Create Job Metadata
	2.5.1 Automatic Metadata Refresh Post-Submission

3 Installing and Verifying the Oracle Enterprise Scheduler Installation

	3.1 Installing Oracle Enterprise Scheduler
	3.1.1 Targeting Oracle Enterprise Scheduler During Domain Creation
	3.1.2 OWSM-PM Targeting With Oracle Enterprise Scheduler

	3.2 Introduction to Verifying the Oracle Enterprise Scheduler Installation
	3.3 How to Verify the Oracle Enterprise Scheduler Installation Using a Browser
	3.4 How to Programmatically Verify the Oracle Enterprise Scheduler Installation
	3.5 What Happens at Runtime: How the Oracle Enterprise Scheduler Installation is Verified

4 Using the Pre-Deployed Native Hosting Application

	4.1 Introduction
	4.2 Properties
	4.3 Metadata
	4.4 Security Permissions
	4.4.1 Configuring the Policy Stripe
	4.4.2 Support for Multiple Application Stripes

5 Using Ant to Generate a Hosting Application

	5.1 Introduction to Generating a Hosting Application with Ant
	5.1.1 Prerequisites for Using the Ant Build Files

	5.2 Ant Targets for Creating and Deploying a Hosting Application
	5.3 Creating a Hosting Application and Project Workspace with Ant
	5.4 Creating a Java Job as a Shared Library with Ant
	5.5 Packaging a Java Job as a Shared Library with Ant
	5.6 Deploying a Shared Library with Ant
	5.7 Packaging a Hosting Application with Ant
	5.8 Deploying a Hosting Application with Ant
	5.9 Configuring the Generated Ant Targets

6 Creating a Thin Client Application

	6.1 Introduction
	6.2 Implementation
	6.2.1 Secured Invocation
	6.2.2 RemoteConnector API and the Server Affinity Property
	6.2.3 Examples

	6.3 Using JDeveloper to Build a Thin Client Application for MAR Deployment
	6.3.1 Create and Deploy a Thin Client Application for the Standalone Environment

	6.4 Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata

7 Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application

	7.1 How to Start JDeveloper to Support Building Oracle Enterprise Scheduler Applications
	7.2 Understanding Oracle Enterprise Scheduler Application Support Created by Oracle JDeveloper
	7.3 Building a Combined Oracle Enterprise Scheduler Application
	7.3.1 Creating the Application and Projects for EssDemoApp Application
	7.3.2 Creating Metadata and an Implementation Class for the EssDemoApp Application
	7.3.3 Adding Application Code to Submit Job Requests
	7.3.4 Setting Oracle Enterprise Scheduler Properties
	7.3.5 Assembling the EssDemoApp Application
	7.3.6 Deploying and Running the EssDemoApp Application

	7.4 Building Split Submitting and Hosting Applications
	7.4.1 How to Create the Back-End Hosting Application for EssDemoApp
	7.4.2 How to Create the Front-End Submitter Application for Oracle Enterprise Scheduler

8 Using the Metadata Service

	8.1 Introduction to Using the Metadata Service
	8.1.1 Introduction to Metadata Service Name Spaces
	8.1.2 Introduction to Metadata Service Operations
	8.1.3 Introduction to Metadata Service Transactions

	8.2 Accessing the Metadata Service
	8.2.1 How to Access the Metadata Service with a Stateless Session EJB

	8.3 Accessing the Metadata Service with Oracle JDeveloper
	8.4 Querying Metadata Using the Metadata Service
	8.4.1 How to Create a Filter
	8.4.2 How to Query Metadata Objects

9 Using Parameters and System Properties

	9.1 Introduction to Using Parameters and System Properties
	9.1.1 What You Need to Know About Application Defined Property and System Property Naming
	9.1.2 What You Need to Know About Parameter Conflict Resolution and Parameter Materialization

	9.2 Using Parameters with the Metadata Service
	9.2.1 How to Use Parameters and System Properties in Metadata Objects

	9.3 Using Parameters with the Runtime Service
	9.3.1 How to Use Parameters with the Runtime Service
	9.3.2 How to Use Parameters with a Step ID for Job Set Steps

	9.4 Using System Properties

10 Using Tokens and Logical Clusters

	10.1 Using Token Substitution
	10.1.1 Nested Substitutions
	10.1.2 Automatic Substitution

	10.2 Using Logical Clusters

11 Creating and Using PL/SQL Jobs

	11.1 Introduction to Using PL/SQL Stored Procedure Job Definitions
	11.2 Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler
	11.2.1 How to Define a PL/SQL Stored Procedure with the Correct Signature
	11.2.2 Handling Runtime Exceptions in an Oracle Enterprise Scheduler PL/SQL Stored Procedure
	11.2.3 How to Access Job Request Information In PL/SQL Stored Procedures
	11.2.4 What You Need to Know When You Define a PL/SQL Stored Procedure

	11.3 Performing Oracle Database Tasks for PL/SQL Stored Procedures
	11.3.1 How to Grant PL/SQL Stored Procedure Permissions
	11.3.2 What You Need to Know About Granting PL/SQL Stored Procedure Permissions

	11.4 Creating and Storing Job Definitions for PL/SQL Job Types
	11.4.1 How to Create a PL/SQL Job Type
	11.4.2 How to Create and Store a Job Definition for PL/SQL Job Type
	11.4.3 Using a PL/SQL Stored Procedure with an Oracle Enterprise Scheduler Application

12 Creating and Using EJB Jobs

	12.1 Introduction to Creating EJB Jobs
	12.2 Planning Job Development
	12.3 Creating and Storing Job Definitions for EJB Job Types
	12.4 Secured Invocation
	12.4.1 Forward Invocation
	12.4.2 Callback Invocation
	12.4.3 RemoteConnector API and the Server Affinity Property
	12.4.4 CSF Lookup From a Remote Server

	12.5 Synchronous Bean
	12.5.1 Metadata
	12.5.2 EJB Job Sample Code

	12.6 Asynchronous Bean
	12.6.1 Metadata
	12.6.2 EJB Job Sample Code

13 Creating and Using Web Service Jobs

	13.1 Introduction
	13.2 Predefined Web Service Job Types
	13.3 Cancel and Fault Support
	13.4 Configuration Properties for Web Service Jobs
	13.5 Oracle Web Services Manager Policy Configuration
	13.6 Creating a Web Service Job Definition
	13.6.1 Using Oracle JDeveloper to Create a Job Definition
	13.6.2 Using Oracle Enterprise Manager Fusion Middleware Control to Create a Job Definition

14 Creating and Using Process Jobs

	14.1 Introduction to Creating Process Job Definitions
	14.2 Creating and Storing Job Definitions for Process Job Types
	14.2.1 How to Create and Store a Process Job Type
	14.2.2 How to Create and Store a Process Type Job Definition

	14.3 Using an Agent Handler for Process Jobs
	14.3.1 Choosing an Agent Handler

	14.4 Process Job Locale

15 Defining and Using Schedules

	15.1 Introduction to Schedules
	15.2 Defining a Recurrence
	15.2.1 How to Define a Recurrence with a Recurrence Fields Helper
	15.2.2 How to Define a Recurrence with an iCalendar RFC 2445 Specification
	15.2.3 What You Need to Know When You Use a Recurrence Fields Helper
	15.2.4 What You Need to Know When You Use an iCalendar Expression

	15.3 Defining an Explicit Date
	15.3.1 How to Define an Explicit Date
	15.3.2 What You Need to Know About Explicit Dates

	15.4 Defining and Storing Exclusions
	15.4.1 How to Define an Exclusion
	15.4.2 How to Create an Exclusions Definition

	15.5 Defining and Storing Schedules
	15.5.1 How to Define and Store a Schedule
	15.5.2 What Happens When You Define and Store a Schedule
	15.5.3 What You Need to Know About Handling Time Zones with Schedules

	15.6 Identifying Job Requests That Use a Particular Schedule
	15.7 Updating and Deleting Schedules

16 Using the Oracle Enterprise Scheduler Web Service

	16.1 Introduction to the Oracle Enterprise Scheduler Web Service
	16.2 Developing and Using ESSWebservice Applications
	16.2.1 How to Develop and Use an ESSWebservice Java EE Application
	16.2.2 How to Develop and Use an ESSWebservice SOA Application with BPEL
	16.2.3 Setting Web Service Addressing Headers for getCompletionStatus() Operation
	16.2.4 Restrictions When Using ESSWebservice
	16.2.5 ESSWebservice Implementation

	16.3 ESSWebservice WSDL File
	16.4 Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

17 Defining and Using Job Sets

	17.1 Introduction to Defining and Using Job Sets
	17.2 Defining Job Sets
	17.2.1 How to Define a Job Set
	17.2.2 How to Define Serial Job Set Steps
	17.2.3 How to Define Parallel Job Set Steps
	17.2.4 What Happens When You Define a Job Set
	17.2.5 What You Need to Know About Serial Job Sets
	17.2.6 What You Need to Know About Job Set Application Defined Properties and System Properties
	17.2.7 What Happens at Runtime for Job Set State Priorities and State Transitions

	17.3 Cross Application Job Sets
	17.3.1 Overview of Cross Application Job Sets
	17.3.2 Requirements for Cross Application Job Sets

	17.4 Supporting Input and Output Forwarding in Job Sets

18 Defining and Using a Job Incompatibility

	18.1 Introduction to Using a Job Incompatibility
	18.1.1 Job Self Incompatibility

	18.2 Defining Incompatibility with Oracle JDeveloper
	18.2.1 How to Define a Global Incompatibility
	18.2.2 How to Define a Domain Incompatibility

	18.3 What Happens at Runtime to Handle Job Incompatibility
	18.3.1 What Happens to Subrequests with an Incompatible Parent Request

19 Using the Runtime Service

	19.1 Introduction to the Runtime Service
	19.2 Accessing the Runtime Service
	19.2.1 How to Access the Runtime Service and Obtain a Runtime Service Handle

	19.3 Submitting Job Requests
	19.3.1 How to Submit a Request to the Runtime Service
	19.3.2 What You Should Know About Default System Properties When You Submit a Request
	19.3.3 What You Should Know About Metadata When You Submit a Request
	19.3.4 DMS ECID and FlowId Support

	19.4 Managing Job Requests
	19.4.1 How to Get Job Request Information with getRequestDetail
	19.4.2 How to Change Job Request State
	19.4.3 How to Update Job Request Priority and Job Request Parameters

	19.5 Querying Job Requests
	19.6 Submitting Ad Hoc Job Requests
	19.6.1 How to Create an Ad Hoc Request
	19.6.2 What Happens When You Create an Ad Hoc Request
	19.6.3 What You Need to Know About Ad Hoc Requests

	19.7 Implementing Pre-Process and Post-Process Handlers
	19.7.1 Implementing a Pre-Process Handler
	19.7.2 Implementing a Post-Process Handler

20 Using Subrequests

	20.1 Introduction to Using Subrequests
	20.2 Creating and Managing Subrequests
	20.2.1 How to Submit Subrequests
	20.2.2 How to Cancel Subrequests
	20.2.3 How to Hold Subrequests
	20.2.4 How to Submit Multiple Subrequests
	20.2.5 How to Manage Paused Subrequests
	20.2.6 How Subrequests Are Processed
	20.2.7 How to Identify Subrequests
	20.2.8 How to Manage Subrequests and Incompatibility

	20.3 Creating a Java Procedure that Submits a Subrequest
	20.4 Creating a PL/SQL Procedure that Submits a Subrequest

21 Working with Asynchronous Java Jobs

	21.1 Introduction to Working with Asynchronous Java Jobs
	21.2 Creating an Asynchronous Java Job
	21.2.1 Implementing the Asynchronous Java Job Asynchronous Interface
	21.2.2 Asynchronous Java Job execute() Method
	21.2.3 Invoking a Remote Job from an Asynchronous Java Job
	21.2.4 Calling Back to Oracle Enterprise Scheduler with Status Updates
	21.2.5 Updating the Asynchronous Java Job
	21.2.6 Notifying Oracle Enterprise Scheduler When an Asynchronous Job Completes
	21.2.7 Asynchronous Java Job AsyncCancellable Interface
	21.2.8 Sample Asynchronous Java Job Invoking a BPEL Process Through Event Delivery Network

	21.3 A Use Case Illustrating the Implementation of a BPEL Process as an Asynchronous Job
	21.3.1 Introduction to the Recommended Design Pattern
	21.3.2 Potential Approaches
	21.3.3 Use Case Summary

	21.4 How to Implement BPEL with an Asynchronous Job
	21.4.1 Use Case: Add Oracle JDeveloper Libraries
	21.4.2 Use Case: Create the Asynchronous Job Definition
	21.4.3 Use Case: Design the Event Payload Schema and Event Definition Files
	21.4.4 Programmatically Raise a Business Event from the Asynchronous Job Methods
	21.4.5 Design the SOA Composite with Meditator and BPEL
	21.4.6 Add Fault Handling and Correlated onMessage Branch for Error and Cancel Job
	21.4.7 Validating the Deployment
	21.4.8 Troubleshooting the Use Case

	21.5 Handling Time Outs and Recovery for Asynchronous Jobs
	21.5.1 Asynchronous Request Time Outs
	21.5.2 Handling Asynchronous Jobs Marked for Manual Recovery
	21.5.3 Using RecoverRequest to Manually Recover a Job Request

	21.6 Oracle Enterprise Scheduler Interfaces and Classes

22 Job Request Logs and Output

	22.1 Request Logs
	22.1.1 System Properties
	22.1.2 Log Header
	22.1.3 Request Logging from a Java Job
	22.1.4 Request Logging from a PL/SQL Job
	22.1.5 Request Logging from a Process Job
	22.1.6 Request Logging and Output From an EJB Job
	22.1.7 Request Logging from a Web Service Job
	22.1.8 APIs for Handling Request Logs

	22.2 Request Output
	22.2.1 Using the Request File Directory
	22.2.2 System Properties
	22.2.3 Creating Request Output from a Java Job
	22.2.4 Creating Request Output from a PL/SQL Job
	22.2.5 Creating Request Output from a Process Job
	22.2.6 Creating Request Output from an EJB Job
	22.2.7 Creating Request Output from a Web Service Job
	22.2.8 APIs for Handling Request Output

23 Oracle Enterprise Scheduler Security

	23.1 Introduction to Oracle Enterprise Scheduler Security
	23.1.1 Oracle Enterprise Scheduler Metadata Access Control
	23.1.2 Oracle Enterprise Scheduler Job Execution Security

	23.2 Configuring Metadata Security for Oracle Enterprise Scheduler
	23.2.1 How to Enable Application Security with Oracle ADF Security Wizard
	23.2.2 Including Security Files in EAR File
	23.2.3 How to Define Principals for Security
	23.2.4 Creating Enterprise Role
	23.2.5 How to Create Grants with Oracle Enterprise Scheduler Metadata Pages
	23.2.6 About MetadataPermission APIs
	23.2.7 What Happens When You Configure Metadata Security

	23.3 Configuring Data Security for Oracle Enterprise Scheduler
	23.3.1 How to Change Data Security Permissions
	23.3.2 Examples

	23.4 Configuring Web Service Security for Oracle Enterprise Scheduler
	23.5 Configuring PL/SQL Job Security for Oracle Enterprise Scheduler
	23.6 Elevating Privileges for Oracle Enterprise Scheduler Jobs
	23.7 Configuring a Single Policy Stripe in Oracle Enterprise Scheduler
	23.7.1 How to Configure a Single Policy Stripe in Oracle Enterprise Scheduler
	23.7.2 What Happens When You Configure a Single Policy Stripe
	23.7.3 What Happens at Runtime

List of Tables

	3-1 HTTP Response Codes
	4-1 Pre-Deployed Native Hosting Application Properties
	5-1 Ant Targets in the Included Build File
	5-2 Ant Targets in the Generated Build File
	5-3 Information Needed by the Ant Target
	5-4 Information Needed by the Ant Target
	5-5 Build Properties for Customizing Ant Builds
	7-1 EJB Resources for the Front-End Submitter Application
	8-1 Filter Comparison Operators
	8-2 MetadataService Query Fields
	9-1 Parameter Precedence Levels
	9-2 ParameterInfo Parameter Properties
	9-3 System Properties
	10-1 EJB Job Type Automatically Substituted Properties
	10-2 Web Services Job Type: Automatically Substituted Properties
	10-3 Process Job Type: Automatically Substituted Properties
	10-4 Properties Associated With a Job Location
	11-1 Terminal States for PL/SQL Stored Procedure Results
	11-2 Oracle Enterprise Scheduler System Properties for a PL/SQL Stored Procedure Job Type
	12-1 EJB Job Type Properties
	12-2 Additional Properties
	13-1 The Predefined Web Service Job Types
	13-2 SOAP Web Service Operation Statuses
	13-3 Oracle SOA Suite Status Operations
	13-4 Web Service Job Configuration Properties
	14-1 System Properties for Process Type Jobs
	15-1 Recurrence Field Helper Patterns
	16-1 Summary of Operations Available with ESSWebservice
	17-1 Job Set Step Property
	17-2 Job Set Serial Execution Step Terminal States
	17-3 Job Set Terminal State Transitions
	17-4 Possible Job Set Runtime States
	19-1 Runtime Service Default Value Fields and Corresponding System Properties
	19-2 Runtime Service Get Request Methods
	19-3 Runtime Service Job Request State Methods
	19-4 Runtime Service Update Methods
	19-5 Query Filter Fields For Querying the Runtime (Defined in Enum RuntimeService.QueryField)
	19-6 Runtime Service Query Methods
	19-7 Ad Hoc Request Job Definition System Properties for Job Types
	22-1 ContentFactory Methods for Creating Request Logs
	22-2 RequestLogger Methods for Creating Request Logs
	22-3 ESS_JOB Functions and Procedures for Request Logging
	22-4 RuntimeService Methods for Handling Request Logs
	22-5 System Properties for Creating Request Output
	22-6 ContentFactory Methods for Java Request Output
	22-7 RequestOutput Methods for Java Request Output
	22-8 OutputContentHelper Methods for Java Request Output
	22-9 CommitSemantics Enum Members to Express Commit Semantics
	22-10 ESS_JOB Procedures and Functions for Request Output
	22-11 RuntimeService Methods for Handling Request Output
	23-1 Grant Actions for Metadata Security
	23-2 Condition Query Fields and Their Corresponding Request History View Column Entries

Preface

This document describes how to develop jobs and other extensions of Oracle Enterprise Scheduler.

Oracle Enterprise Scheduler provides the ability to run different job types, including: Java, PL/SQL, and binary scripts, distributed across the nodes in an Oracle WebLogic Server cluster. Oracle Enterprise Scheduler runs these jobs securely, with high availability and scalability, with load balancing and provides monitoring and management through Oracle Enterprise Manager Fusion Middleware Control.

Audience

This document is intended for Oracle applications developers and assumes familiarity with Java and SQL.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see the following documents in the Oracle 12c Fusion Middleware documentation set:

	
WLST Command Reference for SOA Suite

	
Installing and Configuring Oracle SOA Suite and Business Process Management

	
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework

	
Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework

	
Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

	
Oracle Fusion Middleware Application Security Guide

	
Oracle Fusion Middleware Administering Oracle Enterprise Scheduler

The following chapters in this guide describe Oracle Enterprise Scheduler administrative functions:

	
"Managing Oracle Enterprise Scheduler Service and Jobs"

	
"Troubleshooting Oracle Enterprise Scheduler"

	
"High Availability for Oracle Enterprise Scheduler"

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	
boldface

	
Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.

	
italic

	
Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.

	
monospace

	
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

What's New in This Guide

There are no updates to this guide in 12.2.1 release.

For a list of known issues (release notes), see the "Known Issues for Oracle SOA Products and Oracle AIA Foundation Pack" at http://www.oracle.com/technetwork/middleware/docs/soa-aiafp-knownissuesindex-364630.html.

1 Introduction to Oracle Enterprise Scheduler

This chapter introduces Oracle Enterprise Scheduler as a service for developing jobs that off-load work such as executing Java, PL/SQL, and binary process code.

This chapter includes the following sections:

	
About Oracle Enterprise Scheduler

	
Oracle Enterprise Scheduler Overview for Application Developers

	
Fixed-Rate Scheduling with Oracle Enterprise Scheduler

Note:

For Oracle Enterprise Scheduler sample code, be sure to see the Oracle SOA Suite sample.

1.1 About Oracle Enterprise Scheduler

Enterprise applications require the ability to respond to many real-time transactions requested by online users or web services. However, they also require the ability to off load larger transactions to run at a future time or automate the running of application maintenance work based on a defined schedule.

Oracle Enterprise Scheduler provides the ability to run different job types, including: Java, PL/SQL, binary scripts, web services and EJBs distributed across the nodes in an Oracle WebLogic Server cluster. Oracle Enterprise Scheduler runs these jobs securely, with high availability and scalability, with load balancing and provides monitoring and management through Fusion Middleware Control.

Fusion Middleware Control provides accessibility options for the pages on which you monitor and manage Oracle Enterprise Scheduler applications. Fusion Middleware Control supports screen readers and provides standard shortcut keys to support keyboard navigation. You can also view the console pages in high contrast or with large fonts for better readability. For information and instructions on configuring accessibility in Fusion Middleware Control, see "Using Oracle Fusion Middleware Accessibility Options" in Oracle Fusion Middleware Administrator's Guide.

Oracle Enterprise Scheduler provides scheduling services for the following purposes:

	
To distribute job request processing across a grid of application servers

	
To run Java, PL/SQL, binary process jobs, web services and EJBs

	
To group job requests into job sets

	
To schedule job requests based on recurrence expressions

	
To administer job requests with Fusion Middleware Control

Oracle Enterprise Scheduler provides the critical requirements in a service-oriented environment to automate processes that must recur on a scheduled basis and to defer heavy processing to specific time windows. Oracle Enterprise Scheduler lets you:

	
Support sophisticated scheduling and workload management,

	
Automate the running of administrative jobs,

	
Schedule the creation and distribution of reports,

	
Schedule a future time for a step in a business flow for business process management.

Oracle Enterprise Scheduler provides features to manage the complete life cycle of a job definition: development, distribution, scheduling, and monitoring. Using Oracle JDeveloper, application developers can easily create job requests in their development environment. Application administrators and other users can specify when and where they want their job requests to run. Users and administrators can monitor how the job ran and access the end results of those jobs.

Customers that implement large systems typically have to manage a large number of diverse machines to handle the workload of their users. Oracle Enterprise Scheduler provides the ability to control how work is distributed to individual machines or groups of machines.

1.2 Oracle Enterprise Scheduler Overview for Application Developers

Oracle Enterprise Scheduler is primarily a Java EE application that provides time- and schedule-based callbacks to other applications to run their jobs. Oracle Enterprise Scheduler compares with the Calendar application you might use in your phone or the Oracle Calendar, where you create events and meetings with details about time and recurrence; the application sends an alarm or notification at the right time for the particular event. Similarly, Oracle Enterprise Scheduler applications define jobs and specify when those jobs need to be executed, and Oracle Enterprise Scheduler gives these applications a callback when that time or when a particular event arrives. This is a simplified model of how a particular application can interact with an instance of Oracle Enterprise Scheduler. Oracle Enterprise Scheduler does not execute the jobs itself, it gives a callback to the application and the application actually executes the job request. This implies that Oracle Enterprise Scheduler is not aware of the details of the job request, all the job request details are owned and consumed by the application. An application that submits requests to run a job is called a client application.

For development purposes, both Oracle Enterprise Scheduler and the Oracle Enterprise Scheduler client application are deployed on the same Oracle WebLogic Server. The Fusion Middleware Control can provide an interface for interacting with Oracle Enterprise Scheduler. Typically, however, you provide a client application with which the end user can set up a job request and to specify when the job request is scheduled to be executed, and eventually gets a callback from Oracle Enterprise Scheduler when the time or event arrives.

1.2.1 Introduction to Working with Oracle Enterprise Scheduler at Design-Time

At design time an application developer uses Oracle JDeveloper to create a Java EE application that contains the Oracle Enterprise Scheduler executable class and Oracle Enterprise Scheduler specific metadata for this executable. The Oracle Enterprise Scheduler metadata consists of job definitions, including the executable class and parameters, and schedules. Schedules capture the times when a job request can be sent for execution. Schedules are defined independent of job requests and get associated with job requests at runtime when the job request is submitted for execution. Figure 1-1 shows the design time view of an Oracle Enterprise Scheduler application.

Figure 1-1 Oracle Enterprise Scheduler Design Time Integration

[image: ESS design time integration]

In Figure 1-1, although the metadata is written to the MDS store through Oracle Enterprise Scheduler APIs, the client application owns the metadata and the metadata does not belong to the Oracle Enterprise Scheduler application. This metadata together with the job implementation is packaged in an OAR, including the EAR for the application and the MAR containing the metadata; this is deployed in the runtime environment.

You can create the following types of metadata at design time.

	
Job type: This is a basic definition of what a job would be comprised of and defines the following:

	
The type of job to be run, such as Java, PL/SQL, binary script, and so on.

	
The Java executable class if the job is of Java type, or the PL/SQL function if the job is of PL/SQL type, or the script if the job is of Script type.

	
Parameters definitions for the job and their data type, and default values.

	
Job definition: A job definition, or job, is the smallest unit of work which gets performed in context of the client application. It is defined by an underlying job type and any parameters additional to the ones defined in the job type.

	
Job set: A job set is a sequential or parallel set of job steps, where a job step can be a single job or another job set. A job set and each of its job set steps can have additional parameters, the value for which is provided when the job or job set is submitted as a job request.

	
Schedule: A job schedule is a predefined time or a recurrence for a period of time or indefinite. Schedules are defined independent of jobs but are associated with one or more jobs at runtime when a job request is submitted.

	
Incompatibility: An incompatibility lets you specify job definitions and job sets that cannot run at the same time.

1.2.2 Introduction to Working with Oracle Enterprise Scheduler at Runtime

At runtime an application user associates a schedule with the job to be submitted and provides values for the job parameters. This information is then submitted as a job request. After Oracle Enterprise Scheduler receives a job request it determines the right time to execute the job request, and at that time sends a message to the owning client application. The client application then executes the job based on the job metadata and runtime values for the parameters.

Figure 1-2 Oracle Enterprise Scheduler Runtime Integration

[image: ESS runtime integration]

Figure 1-2 shows the sequence involved with running an application using Oracle Enterprise Scheduler, and the following steps:

	
User submits a request using a client application.

	
Client application sends the request to Oracle Enterprise Scheduler.

	
Oracle Enterprise Scheduler reads the metadata for the request.

	
Oracle Enterprise Scheduler puts the request in a wait queue in Oracle Enterprise Scheduler data store, along with the metadata.

	
At the appropriate time, according to the request specifics, Oracle Enterprise Scheduler sends a message to the client application with all the request parameters and metadata captured at the time of submission.

	
Client application performs the jobs and returns a status.

	
Oracle Enterprise Scheduler updates the history with the job request status.

1.2.3 Oracle Enterprise Scheduler Job Requests

Figure 1-3 shows the important Oracle Enterprise Scheduler components, including the following:

	
The scheduler component itself, including the runtime module, request dispatcher and request processor.

	
The client application, including the runtime EJB and end point Message-Driven-Bean (MDB) which it calls and the job it requests to execute.

	
Oracle Metadata Store and the client application metadata.

	
Oracle Enterprise Scheduler schema, including the wait and ready queues and job history.

Figure 1-3 Oracle Enterprise Scheduler Runtime Details

[image: ESS runtime details]

As shown in Figure 1-3, a client application is composed and runs as follows:

	
A user interacts with the client application, submitting a job request.

	
The client application specifies the two EJBs and the Endpoint MDB in its ejb-jar.xml. These beans are then instantiated in the client application context.

	
The beans in the application context contact the underlying Oracle Enterprise Scheduler modules. The runtime EJB sends the job request to the underlying runtime module in Oracle Enterprise Scheduler.

	
The runtime module accesses the client application metadata from Oracle MDS.

	
The runtime module persists the request along with its metadata and schedule in the wait queue in the Oracle Enterprise Scheduler schema.

	
The Oracle Enterprise Scheduler request dispatcher determines the correct time to run the job request based on its corresponding schedule. At this time, the request dispatcher moves the request to a ready queue in Oracle Enterprise Scheduler schema.

	
The Oracle Enterprise Scheduler request processor continues picking up job requests to be processed from the ready queue.

	
The request processor sends a message to the application using the endpoint MDB.

	
Oracle Enterprise Scheduler executes the scheduled job.

In most cases or at least in the simplified case, this application is the same as the application which submitted the request.

1.2.4 Overview of Integration Steps

After you have installed a basic Oracle WebLogic Server instance, take the following steps to set up Oracle Enterprise Scheduler.

	
Configure Oracle Enterprise Scheduler.

	
Develop your client application which has your job definitions and other required metadata.

	
Deploy your client application.

	
Invoke your client application to submit job request, which in turn calls Oracle Enterprise Scheduler.

	
Invoke your client application to check the status of job request, or other history, which in turn calls Oracle Enterprise Scheduler. Alternatively, use Fusion Middleware Control to check the status of a given job request.

1.3 Fixed-Rate Scheduling with Oracle Enterprise Scheduler

Oracle Enterprise Scheduler supports fixed-rate scheduling where instances of a repeating job requests are executed at a constant rate starting from the initial scheduled execution time. Each job request runs as near to the absolute time of the schedule as possible. Oracle Enterprise Scheduler ensures that only one job request in a repeating request is running at any one time. If a job request runs beyond the scheduled execution time of the next job request, the next job request becomes late and is dispatched immediately upon completion of the previous job request.

When a job request is dispatched, the next request is placed in the wait queue. The execution time for the next job request is the next time in the schedule that is no earlier than the current time. Oracle Enterprise Scheduler skips time slots that are in the past.

If the desired behavior is to run all instances of the repeating request regardless of when they are run and regardless of the requested or recurrence end date, the request must set the system property EXECUTE_PAST.

Oracle Enterprise Scheduler does not support fixed-delay scheduling. Using fixed-delay scheduling, each request is executed a fixed delay period after the previous request completes. This means that when one request is late, all subsequent requests are late as well. In contrast, fixed-rate scheduling tries to get things back on schedule after a late request.

2 Planning Job Development

The Oracle Enterprise Scheduler is flexible and provides implementation and deployment options. Some options use out-of-the-box components that are simpler to implement, while other options are more complex but allow for a great deal of customization. This chapter describes the different options you should consider when planning your Oracle Enterprise Scheduler deployment.

This chapter includes the following sections:

	
Job Development Flow

	
The Hosting Application

	
The Client Application

	
Create the Job Implementation

	
Create Job Metadata

2.1 Job Development Flow

This section describes the steps in the job development process and describes the options available for each step. Figure 2-1 contains a diagram that shows the Oracle Enterprise Scheduler components.

	
Create and deploy the hosting application. You have the following options:

	
Use the pre-deployed native hosting application instead of creating a hosting application.

	
Generate and deploy the hosting application from an Ant script.

	
Use JDeveloper to create the hosting application from scratch and then deploy it.

	
Create and deploy the UI or client application. You have the following options:

	
The client application uses the thin client shared library.

	
The client application uses the client library.

	
Use Oracle Enterprise Manager Fusion Middleware Control as the client application instead of creating a UI or client application.

	
Create and deploy the job implementation. You have the following options:

	
For non-Java-based jobs, you can implement and deploy the job independent of Oracle Enterprise Scheduler.

	
For Java-based jobs, the Java class must be part of a custom hosting application.

	
Create job metadata. You have the following options:

	
Define the metadata in Oracle Enterprise Manager Fusion Middleware Control.

	
Use Oracle JDeveloper to create predefined/seeded job metadata for deployment as part of the hosting application.

	
Programmatically create the job metadata using the metadata service API.

	
Provide submission and metadata permissions to the deployed job. You have the following options:

	
Use Oracle Enterprise Manager Fusion Middleware Control to specify permissions.

	
Provision permissions as part of your hosting or client application EAR deployment.

See chapter Oracle Enterprise Scheduler Security for more information.

Figure 2-1 Oracle Enterprise Scheduler Components

[image: Description of "Figure 2-1 Oracle Enterprise Scheduler Components" follows]

2.2 The Hosting Application

Jobs execute in the context of a hosting application. If the job is remote (for example, an EJB), the job is invoked in the hosting application. The pre-deployed native hosting application is convenient to use, but cannot execute custom Java jobs. The pre deployed native hosting application is well suited for custom remote jobs like EJB and web service jobs. See Using the Pre-Deployed Native Hosting Application for details about the pre-deployed native hosting application. See chapter Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application for more information about developing a custom hosting application using JDeveloper. See Using Ant to Generate a Hosting Application for more information about developing a custom hosting application using the Oracle Enterprise Scheduler Ant script.

2.3 The Client Application

Client applications are J2EE applications that are typically used to:

	
Submit jobs

	
Request status

	
Read job output and logs

	
Possibly, host EJB job implementations that Oracle Enterprise Scheduler can invoke remotely

Client applications can be combined with a hosting application, but this is not a best practice.

Deploying a client application to a server other than the Oracle Enterprise Scheduler server is an advanced use case and requires use of Oracle Enterprise Scheduler internal templates that are only available to other Oracle embedding products.

Client applications use the thin client shared library or the client shared library. The main differences between the two libraries are:

	
The thin client shared library does not depend on the Oracle Enterprise Scheduler server or any of the Oracle Enterprise Scheduler data sources being deployed and is ideal if Oracle Enterprise Scheduler deployment is optional. The thin client shared library contacts a hosting application to access the Oracle Enterprise Scheduler metadata and runtime store to do its work.

	
The client shared library has an advantage. The Oracle Enterprise Scheduler server need not be running to submit the job and query status because the library allows direct access to the Oracle Enterprise Scheduler metadata and runtime store. It is recommended for use when the client application is co-located on the same WebLogic server as the Oracle Enterprise Scheduler

	
Developing client applications using the thin client shared library is easier because the client application is not required to have an adf-config.xml file to talk to MDS or have Oracle Enterprise Scheduler EJB deployment descriptors that the client shared library requires.

If the metadata is not automatically provisioned by the client application at deployment time, then the thin client application does not depend on the Oracle Enterprise Scheduler MDS data source.

Refer to Creating a Thin Client Application for more information about creating a client application.

2.4 Create the Job Implementation

For non-Java-based jobs (PL/SQL and binary process jobs), you can implement, setup and deploy the process binaries or PL/SQL procedures independent of Oracle Enterprise Scheduler.

For Java-based jobs, the Java implementation must conform to the Oracle Enterprise Scheduler defined interface and must be included as part of a custom hosting application.

For EJB jobs, the EJB interface must conform to an Oracle Enterprise Scheduler defined interface. The interface is in the Oracle Enterprise Scheduler shared library. See Creating and Using EJB Jobs for information about how to create an EJB job implementation.

See chapter Creating and Using Web Service Jobs for information about how to use a SOA composite as a web service job implementation.

2.5 Create Job Metadata

The simplest way to create job metadata is to define it through the Oracle Enterprise Manager Fusion Middleware Control. You can also use JDeveloper to create metadata and place it in a MAR archive that is part of a client or hosting application and then deploy the metadata to MDS when the application is deployed. SOA Suite creates the metadata programmatically on first use using the metadata APIs.

See Using the Metadata Service for a description of the metadata API.

2.5.1 Automatic Metadata Refresh Post-Submission

Oracle Enterprise Scheduler ensures that a job request and all of its children use a consistent snapshot of metadata from submission until the request reaches a terminal state. This is accomplished by caching, at job request submission, all metadata known to be used by the request. However, this caching prevents long-running recurring requests from using important metadata changes. In order for incompatibilities to function as expected, new and updated incompatibilities must apply to all relevant requests, whether previously or newly submitted. For job metadata, customizable parameters might have changed and should apply to previously submitted requests. For example, the request category on a job definition might have changed and this must be applied to pre-existing requests so that work allocation functions as expected.

To address these issues, Oracle Enterprise Scheduler automatically refreshes metadata for previously submitted requests that are:

	
Singleton requests that have not yet run

	
Recurring requests that have more recurrences to run

Cached metadata remains consistent during execution of an instance request tree that consists of the instance parent and all child requests of that instance parent, including jobset steps and sub-requests. For a singleton request, the instance request tree includes the submitted request and any child requests. For a recurring request, each recurrence is an instance request tree that includes the instance parent and any child requests of that instance parent.

3 Installing and Verifying the Oracle Enterprise Scheduler Installation

This chapter describes how to ensure that Oracle Enterprise Scheduler has been correctly installed.

This chapter includes the following sections:

	
Installing Oracle Enterprise Scheduler

	
Introduction to Verifying the Oracle Enterprise Scheduler Installation

	
How to Verify the Oracle Enterprise Scheduler Installation Using a Browser

	
How to Programmatically Verify the Oracle Enterprise Scheduler Installation

	
What Happens at Runtime: How the Oracle Enterprise Scheduler Installation is Verified

3.1 Installing Oracle Enterprise Scheduler

Oracle Enterprise Scheduler does not have its own installer, but is installed by the installer of the embedding product such as Oracle SOA Suite. Refer to the embedding product's installation documentation for details.

The IDE is installed by the Oracle SOA Quick Start for Developers which is described in Installing Oracle SOA Suite and Business Process Management for Developers. The installer installs the IDE and automatically configures it to Oracle JDeveloper. Before you run JDeveloper, make sure to set the variable MW_HOME to the middleware home location as required by the IDE.

The Oracle Enterprise Scheduler runtime component is installed by the design time or production installer of the embedding product (for example, Oracle SOA suite whose installation is described in Installing and Configuring Oracle SOA Suite and Business Process Management). The embedding product may automatically deploy Oracle Enterprise Scheduler, but if it does not, then it can be deployed using the “Oracle Enterprise Scheduler Service Basic" template to a server or cluster. The “Oracle Enterprise Manager Plugin for ESS" template can then be deployed for Oracle Enterprise Manager Fusion Middleware Control functionality.

3.1.1 Targeting Oracle Enterprise Scheduler During Domain Creation

When you extend SOA with Oracle Enterprise Scheduler, ess-server1 is created and by default the ESS-MGD-SVRS server group is targeted to ess_server1. You can use the following steps in the FMW Configuration Wizard to re-target Oracle Enterprise Scheduler to soa_server1:

	
Check ESS-MGD-SVRS for soa_server1

	
Uncheck ESS-MGD-SVRS for ess_server1

	
Delete ess_server1

See Creating WebLogic Domains Using the Configuration Wizard for more information about the wizard.

3.1.2 OWSM-PM Targeting With Oracle Enterprise Scheduler

OWSM-PM is intended to be targeted to just one server in a domain. To facilitate this requirement, Oracle Enterprise Scheduler templates no longer target OWSM-PM. If another product in the domain automatically targets OWSM-PM, then there is nothing to do. However, if there are no managed servers in the domain except for Oracle Enterprise Scheduler, or none of these servers has OWSM-PM, then OWSM-PM must be targeted manually.

3.1.2.1 Targeting OWSM-PM Manually

In the Fusion Middleware Configuration Wizard, select the Managed Servers, Clusters and Coherence check box as shown in Figure 3-1.

Figure 3-1 Fusion Middleware Configuration Wizard

[image: Description of "Figure 3-1 Fusion Middleware Configuration Wizard" follows]

On the Managed Server screen, for ess_server1, select the WSMPM-MAN-SVR server group. ESS-MGD-SVRS should already be selected.

3.2 Introduction to Verifying the Oracle Enterprise Scheduler Installation

The Oracle Enterprise Scheduler health check enables verifying the Oracle Enterprise Scheduler installation using a web browser. The health check web page submits a simple scheduled job so as to verify that Oracle Enterprise Scheduler works as it should.

3.3 How to Verify the Oracle Enterprise Scheduler Installation Using a Browser

Access the Java health check servlet in a web browser. Access to the health check page is available only to users with administrator privileges.

To verify the Oracle Enterprise Scheduler installation:

	In a web browser, enter the following URL:

http://<hostName>:<port>/EssHealthCheck/checkHealth.jsp

where hostName is the server to which Oracle Enterprise Scheduler is installed and port is the port number.

To verify an Oracle Enterprise Scheduler cluster, use the following URL:

http://<hostName>:<port>/EssHealthCheck/diagnoseHealth.jsp

The Oracle Enterprise Scheduler Diagnostic Health Check page displays, as shown in Figure 3-2.

Figure 3-2 Diagnostic Health Check Page

[image: Diagnostic Health Check Page]

	Log in to the diagnostic servlet using an Oracle WebLogic Server administrator user name and password.
	Click the Check Health button to verify the installation.

3.4 How to Programmatically Verify the Oracle Enterprise Scheduler Installation

Programmatically access the health check servlet from your application. Access to the health check page is available only to users with administrator privileges.

To programmatically verify the Oracle Enterprise Scheduler installation:

	Access the following URL:

http://<hostName>:<port>/EssHealthCheck/checkHealth

where hostName is the server to which Oracle Enterprise Scheduler is installed and port is the port number.

	Use the HTTP response codes to gauge the health of the Oracle Enterprise Scheduler installation, as shown in Table 3-1.

Table 3-1 HTTP Response Codes

	Response Code	Oracle Enterprise Scheduler Status Code	Comments
	
200(OK)

	
Oracle Enterprise Scheduler is up and running.

	
The test job has been submitted and has succeeded within the default duration.

	
202(ACCEPTED)

	
Oracle Enterprise Scheduler is up and running but a delay in processing has occurred.

A value of 202 (SC_ACCEPTED) indicates to the client that the request is being acted upon but processing is not yet complete.

	
The test job has been submitted but has failed to complete within the default duration.

	
500 (INTERNAL_SERVER_ERROR)

	
The Oracle Enterprise Scheduler installation has errors.

	
An error has occurred during the submission or execution of the job.

3.5 What Happens at Runtime: How the Oracle Enterprise Scheduler Installation is Verified

The health check servlet schedules a trivial job with Oracle Enterprise Scheduler as part of an HTTP request. After a few seconds, the servlet calls RuntimeServiceBean.getRequestState() to check the status of the job and constructs a response message within the servlet code. The servlet then returns a response indicating the success or failure of the job.

The servlet waits for the job to either reach a terminal state, or run for 10 seconds, whichever occurs first.

	
If the job reaches a terminal state in less than 10 seconds, the job results in a state of success.

	
If the job's terminal state does not change within 10 seconds, the job results in a state of success. However, the job is listed as not having been executed. This is because the system may be overloaded such that executing the job may take some time.

	
If any problems occur when submitting or executing the job, the job results in a state of failure.

4 Using the Pre-Deployed Native Hosting Application

The pre-deployed native hosting application is included as part of Oracle Enterprise Scheduler. It greatly simplifies the process of getting Oracle Enterprise Scheduler up and running because you do not have to create your own custom hosting application.

The Oracle Enterprise Scheduler is flexible and provides implementation and deployment options. Planning Job Development is a high-level discussion about how to plan your job development and deployment process

This chapter includes the following sections:

	
Introduction

	
Properties

	
Metadata

	
Security Permissions

4.1 Introduction

The pre-deployed native hosting application provides a convenient alternative to developing your own custom hosting application. The pre-deployed native hosting application can be used to run any job except a Java-based job.

The pre-deployed native hosting application is collocated with the Oracle Enterprise Scheduler core on the Oracle Enterprise Scheduler server. The pre-deployed native hosting application can be deployed to only one cluster in the domain. The "Enterprise Scheduler Basic" template deploys the pre-deployed native hosting application along with scheduler server components and therefore can be targeted to only one cluster in the domain.

The pre-deployed native hosting application exposes the remote interfaces of Oracle Enterprise Scheduler beans mapped to the following JNDI Names:

	
Runtime service bean: java:comp/env/essnative/runtimeservice

	
Metadata service bean: java:comp/env/essnative/metadataservice

	
Async request bean: java:comp/env/essnative/asyncrequest

If the user uses some other hosting apps, the beans are to be exposed in the above fashion by declaring in weblogic's ejb-jar.xml.

4.2 Properties

Table 4-1 shows the pre-deployed native hosting application properties and their default settings.

Table 4-1 Pre-Deployed Native Hosting Application Properties

	Property Name	Value
	
PolicyStripe

	
EssNativeHostingApp

	
LogicalAppName

	
EssNativeHostingApp

	
J2ee App Name

	
EssNativeHostingApp

	
RuntimeService EJB JNDI name

	
essnative/runtimeservice

	
MetadataService EJB JNDI name

	
essnative/metadataservice

	
AsyncRequestBean JNDI name

	
essnative/asyncrequest

	
MDS Partition

	
essUserMetadata

	
MDS namespace

	
/oracle/apps/ess

4.3 Metadata

Normally, a hosting application contains the MAR metadata to be loaded into MDS, however, you cannot add a MAR archive directly into the pre-deployed native hosting application. If you have a MAR archive that you want to deploy to the pre-deployed native hosting application, you have to deploy it through a client application or using the metadata API (see Using the Metadata Service).

Oracle Enterprise Scheduler promotes the native hosting application's stripe by registering it with OPSS. This in turn exposes the stripe as viewable from Oracle Enterprise Manager Fusion Middleware Control and other MBeans. Application roles and policies can then be configured at runtime for the metadata available in the native hosting application.

4.4 Security Permissions

Permission must be granted for all jobs run by the pre-deployed native hosting application. By default, EssNativeHostingApp extends support for permissions defined in SOA and Service Bus. This is configured in ess-config.xml using the property HostingAppPolicyStripe specified with the value "EssNativeHostingApp,soa-infra,Service_Bus_Console".

If you install Oracle Enterprise Scheduler with another product (other than SOA or Service Bus) then you must use Oracle Enterprise Scheduler or WLST scripts to extend this property list of stripes.

4.4.1 Configuring the Policy Stripe

The EssNativeHostingApp security policy stripe is configured by customizing the ess-config.xml file. The Oracle Enterprise Scheduler property name is HostingAppPolicyStripe. The following examples show how to use WLST commands to check the policy stripe value and change it.

Check the value of the current policy stripe:

oracle_common/bin/essManageRuntimeConfig.sh \
 -u weblogic -p welcome1 -P 7001 -H localhost -s ess_server1 \
 -A EssNativeHostingApp -n HostingAppPolicyStripe -t ESS

Change the value of the policy stripe:

 oracle_common/bin/essManageRuntimeConfig.sh \
 -u weblogic -p welcome1 -P 7001 -H localhost -s ess_server1 \
 -m -A EssNativeHostingApp -n HostingAppPolicyStripe -t ESS
 -v MyPolicyStripe

See Oracle Fusion Middleware WLST Command Reference for SOA Suite for more information about WLST commands.

4.4.2 Support for Multiple Application Stripes

The pre-deployed native hosting application supports multistripes. The pre-deployed native hosting application policy stripes are pre-configured for SOA and Service Bus applications.

<EssProperty key="HostingAppPolicyStripe"
 value="EssNativeHostingApp,soa-infra,Services_Bus_Console"/>

You can use Oracle Enterprise Manager Fusion Middleware Control or WLST to extend this list of stripes by appending the policy stripes to the value of the HostingAppPolicyStripe property. You can also use the Oracle Enterprise Manager Fusion Middleware Control Application Properties page to change the HostingAppPolicyStripe property for the pre-deployed native hosting application.

This property is applicable only for the configuration file of the pre-deployed native hosting application. Note that there is no static definition of policy stripes in the pre-deployed native hosting application's ejb-jar.xml file, therefore, you must preserve the existing policy stripes specified in the HostingAppPolicyStripe property.

5 Using Ant to Generate a Hosting Application

This chapter describes how you can use Ant targets from a build.xml file included with Oracle Enterprise Scheduler to create a hosting application for use with Java jobs.

Using these targets, you can create the application artifacts in an Oracle JDeveloper workspace, create a template for a Java job implementation, and package and deploy both the application and the Java job (as a shared library).

Note that the Ant targets described here do not create a client user interface with which users can interact with the job. To perform client tasks, you can use Fusion Middleware Control or develop a client user interface with Oracle JDeveloper. Also, custom hosting applications are generally seeded with metadata that is packaged and deployed to the metadata repository when the application is deployed. Ant-based scripts that generate custom hosting applications do not provide a way to create metadata artifacts. For that reason, after you generate a hosting application, you must open the workspace (.jws) in Oracle JDeveloper, and add the necessary metadata before you deploy the application into the server.

When you have created and deployed your application and shared library, you can use JDeveloper or Enterprise Manager to associate metadata with the deployed outputs.

This chapter includes the following sections:

	
Introduction to Generating a Hosting Application with Ant

	
Ant Targets for Creating and Deploying a Hosting Application

	
Creating a Hosting Application and Project Workspace with Ant

	
Creating a Java Job as a Shared Library with Ant

	
Packaging a Java Job as a Shared Library with Ant

	
Deploying a Shared Library with Ant

	
Packaging a Hosting Application with Ant

	
Deploying a Hosting Application with Ant

	
Configuring the Generated Ant Targets

5.1 Introduction to Generating a Hosting Application with Ant

Oracle Enterprise Scheduler includes an Ant build file through which you can generate the basic artifacts you'll need to get a hosting application running, along with a Java job you can deploy to be executed by the application.

You use the included Ant build file to generate a hosting application. When you do, you also generate another Ant build file that contains targets you can use to generate artifacts for a Java job, as well as to build and deploy the generated components.

When you have created and deployed your application and shared library, you can use JDeveloper or Enterprise Manager to associate metadata with the deployed outputs.

You can also use a generated build.properties file to customize the work Ant does by setting values for variables a target uses when it runs.

The steps described in this chapter include the following you can do with Ant.

	
Create a hosting application that can execute jobs. Use the create-user-home in the included build.xml file.

	
Create a JDeveloper project workspace through which you can edit application artifacts with the IDE. This is done when you create the hosting application.

	
Create an Ant build file with targets for building and deploying parts of the application.

	
Create a Java job template to which you can add business logic. Use the create-new-job-def target in the generated build.xml file.

	
Package the implemented Java job as a shared library. Use the package_essjob_library target in the generated build.xml file.

	
Deploy the shared library to the hosting application. Use the deploy_essjob_library target in the generated build.xml file.

	
Package the hosting application. Use the package_hosting_app target in the generated build.xml file.

	
Deploy the hosting application. Use the deploy_hosting_app target in the generated build.xml file.

5.1.1 Prerequisites for Using the Ant Build Files

Before you get started with the provided and generated build files, make sure you're set up with the following prerequisites:

	
You must have Ant installed and set up, with the ANT_HOME variable set properly and the PATH pointing to ant's bin directory.

	
You must install and set up Oracle JDeveloper. Your PATH variable must contain the Oracle JDeveloper bin directory so that the jdev command can be executed from the command prompt.

5.2 Ant Targets for Creating and Deploying a Hosting Application

Oracle Enterprise Scheduler includes an Ant build file to get you started toward deploying a hosting application that can execute jobs. However, you're actually using two build files to finish the job: one that is included with Oracle Enterprise Scheduler and another that is generated by a target in the included build file. The following tables list and describe the targets that are included by default in the two files.

By default, the included build.xml file is located in the Oracle Enterprise Scheduler extensibility_scripts directory. For example, in an Oracle JDeveloper installation, you'll find them in MW_HOME/oracle_common/ess/extensibility_scripts/build.xml; with installations of products that include Oracle Enterprise Scheduler, you'll probably find them in an ORACLE_HOME/extensibility_scripts directory.

Table 5-1 Ant Targets in the Included Build File

	Ant Target	Description
	
create-user-home

	
Default target to create a user home.

	
help-create-user-home

	
Help on creating a user home.

When you run the create-user-home target from the included build.xml file, one of the target's actions is to create another build.xml file. That file contains the following targets that you can use to create, build and deploy artifacts for your application.

Table 5-2 Ant Targets in the Generated Build File

	Ant Target	Description
	
build_ears

	
Package the job shared library and the hosting application.

	
create-new-job-def

	
Create Java job as a shared library.

	
deploy

	
Package and deploy the job library and hosting application.

	
deploy_essjob_library

	
Deploy the Java job shared library.

	
deploy_hosting_app

	
Deploy the hosting application.

	
deploy_job_logic

	
Package and deploy the job shared library.

	
package_essjob_library

	
Package the Java job as a shared library.

	
package_hosting_app

	
Package the hosting application.

5.3 Creating a Hosting Application and Project Workspace with Ant

You can create a hosting application by running the create-user-home Ant target in the build.xml file included with Oracle Enterprise Scheduler.

After the script completes successfully, you'll have the artifacts for a hosting application that you can package and deploy. The artifacts are generated within a JDeveloper-compatible workspace in the target directory you specified. The created workspace has a build.xml that you can use to build, package and deploy the hosting application and the generated Java job as a shared library.

As the target runs, you'll be prompted to enter details that guide the target's work. These details include the environment for which the target's work is intended (such as to run with a particular application), the new application's name and target directory, and so on.

Before you get started, you should have in hand the following information for which you'll be prompted by the Ant target:

Table 5-3 Information Needed by the Ant Target

	Input Prompt	Description
	
Which template should be used

	
Possible values are "Fusion" and "Standalone". If you're developing for use with Oracle Fusion Applications, enter Fusion here.

If you're not developing for use with Oracle Fusion Applications, enter "Standalone."

There are significant differences between the Oracle Fusion Applications and standalone contexts. For example, in the Oracle Fusion Applications context, the target generates a slightly different hosting application, as well as a client application.

	
Middleware Home directory path

	
The Middleware Home directory that was created when Oracle Enterprise Scheduler was installed (probably with another product that embeds it). The locations of supporting libraries are found relative to this directory.

This feature relies on the ojdeploy utility to create, package and deploy artifacts to the server. If the middleware home path does not contain an Oracle JDeveloper directory with ojdeploy in the bin directory, specify the directory where Oracle JDeveloper is installed.

	
Hosting application name

	
The name you want the new hosting application to have.

	
Hosting application JPS stripe ID

	
A stripe is a security construct that defines the subset of values in the policy store that the application intends to use. At runtime, it determines which set of policies are applicable for the application. The application name is often used.

	
Shared library name for job business logic

	
The name for the shared library into which the generated Java job source code should be placed.

	
Empty directory where the application will be created

	
The directory where you want the generated files to go. This is the location of the JDeveloper workspace, where artifacts such as the build.xml file you use later is created.

To create a hosting application with Ant

	To get started, open a console window and change directory to where the included build.xml is located. By default, this is the Oracle Enterprise Scheduler extensibility_scripts directory. For example, in MW_HOME/oracle_common/ess/extensibility_scripts/build.xml.

Run the target with a command such as the following. You can omit the target name because it is the default target in the build file.

ant

If you want to use the target name, you can do so with the following command.

ant create-user-home

In the following example of Ant console output, note that the prompts begin with the word "[input]". For each prompt, type the value you want to use, then press Enter.

After you've entered the information needed, the target creates the directories and files you requested, copying needed files into your new workspace and setting up some of the configuration for the new hosting application.

[extensibility_scripts]$ ant

Buildfile: build.xml

-init:

create-user-home:
[input] Enter which template should be used (source_template)
(default=Fusion)
 [input] ([Fusion], Standalone)
Standalone
 [input] Enter Middleware Home Directory path (fmw_home_dir) (default=) []
/scratch/fmwtools/mw_home
 [input] Enter hosting application name (hosting_application_name)
(default=MyAppEss) [MyAppEss]
NewDemoApp
 [input] Enter hosting application JPS stripe id
(hosting_application_stripe_id) (default=MyAppEss) [MyAppEss]
NewDemoApp
 [input] Do you want to add shared library for the (java) job business
logic? (use_jobdef_library) (default=yes)
 [input] ([yes], no)
no
[input] Enter an empty directory where the applications will be created
(user_home)
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
 [echo]
 [echo]
 [mkdir] Created dir:
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
[propertyfile] Creating new property file:
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp/template.properties
 [copy] Copying 9 files to
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
 [copy] Copied 15 empty directories to 4 empty directories under
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
 [copy] Copying 1 file to
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp/ant/config
 [copy] Copying 1 file to
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
 [copy] Copying 15 files to
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
 [move] Moving 1 file to
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp/Template_Hosting
 [echo]
 [echo] ==
 [echo]
 [echo] A new workspace has been created at:
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
 [echo] This workspace can be opened and modified using JDeveloper
 [echo] To deploy the applications, run the following command:
 [echo] ant -f
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp/ant/build-ess.xml
deploy
 [echo] To create new jobs from predefined templates, run the following
command:
 [echo] ant -f
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp/build.xml
create-new-job-def

BUILD SUCCESSFUL
Total time: 49 seconds

[extensibility_scripts]$ ant

Buildfile: build.xml

-init:

create-user-home:
[input] Enter which template should be used (source_template)
(default=Fusion)
 [input] ([Fusion], Standalone)
Standalone
 [input] Enter Middleware Home Directory path (fmw_home_dir) (default=) []
/scratch/fmwtools/mw_home
 [input] Enter hosting application name (hosting_application_name)
(default=MyAppEss) [MyAppEss]
NewDemoApp
 [input] Enter hosting application JPS stripe id
(hosting_application_stripe_id) (default=MyAppEss) [MyAppEss]
NewDemoApp
 [input] Do you want to add shared library for the (java) job business
logic? (use_jobdef_library) (default=yes)
 [input] ([yes], no)
yes
 [input] Enter the shared library name for the job business logic
(jobdef_library_name) (default=MyJobsLibrary) [MyJobsLibrary]
NewDemoAppJobsLib
[input] Enter an empty directory where the applications will be created
(user_home)
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
 [echo]
 [echo]
 [mkdir] Created dir:
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
[propertyfile] Creating new property file:
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp/template.properties
 [copy] Copying 11 files to
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
 [copy] Copied 25 empty directories to 9 empty directories under
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
 [copy] Copying 1 file to
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp/ant/config
 [copy] Copying 1 file to
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
 [copy] Copying 15 files to
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
 [move] Moving 1 file to
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp/Template_Hosting
 [echo]
 [echo] ==
 [echo]
 [echo] A new workspace has been created at:
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
 [echo] This workspace can be opened and modified using JDeveloper
 [echo] To deploy the applications, run the following command:
 [echo] ant -f
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp/ant/build-ess.xml
deploy
 [echo] To create new jobs from predefined templates, run the following
command:
 [echo] ant -f
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp/build.xml
create-new-job-def

BUILD SUCCESSFUL
Total time: 1 minute 32 seconds

5.4 Creating a Java Job as a Shared Library with Ant

You can create a Java job class template by running the create-new-job-def Ant target that is in the build file generated when you created a new hosting application. (For more information, see Creating a Hosting Application and Project Workspace with Ant for more information.)

The Java class you create here is a template to which you can add logic that implements your Java job. A Java job executes Java code. With the Java job implemented, you can add metadata that comprises some of the specifics for the job.

Note:

Currently, you can create only synchronous Java job templates with this Ant target.

As the target runs, you'll be prompted to enter details that guide the target's work. Before you get started, you should have in hand the following information for which you'll be prompted by the Ant target:

Table 5-4 Information Needed by the Ant Target

	Input Prompt	Description
	
Number of job definition template to create

	
A number corresponding to the type of Java job implementation you're creating. Currently, only synchronous Java jobs can be created this way, so the only supported value is "1".

	
Java package name for job definition

	
The package name for the Java job you're creating.

	
Java class name for job definition

	
The class name for the Java job you're creating.

To create a Java job class template with Ant:

	To get started, in a console window change directory to the directory you specified as the location to create the application. The build.xml file should be there. Use the following command to run the target:

ant create-new-job-def

In the following example of Ant console output, you can see where the prompts occur. After you've entered that information, the target creates the file you requested, copying needed files into your new workspace and setting up some of the configuration for the new hosting application.

[extensibility_scripts]$ ant -f /scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp/build.xml create-new-job-def

Buildfile: /scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp/build.xml

-init:

create-new-job-def:
 [echo] Available Job Definition Templates:
 [echo] 1) Simple Synchronous Java Job
 [input] Enter number of job definition template to create (job_template_to_create)
1
 [echo] Calling default target on /scratch/miscFiles/ExtnDemo/extensibility_scripts/Standalone/Template_JobLibrary/simple_synchronous_job/build.xml

-init:

create-job-definition:
 [input] Enter Java package name for Job Definition (jobdef_package_name) (default=oracle.apps.ess.custom) [oracle.apps.ess.custom]
oracle.apps.ess.custom
 [input] Enter Java class name for Job Definition (jobdef_class_name) (default=MySynchronousJavaJob) [MySynchronousJavaJob]
NewDemoHelloWorld
 [copy] Copying 1 file to /scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp/NewDemoApp/EssSharedLibrary/src
 [copy] Copying 1 file to /scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp/NewDemoApp/EssSharedLibrary/src/oracle/apps/ess/custom

BUILD SUCCESSFUL
Total time: 34 seconds

	Having created the class template for the Java job, you can add code that implements the job's logic. The template is located in project in the JDeveloper workspace you created when you created the hosting application in Creating a Hosting Application and Project Workspace with Ant. The file's directory path is shown in the Ant console output. You can use the editor you prefer for editing Java code, such as JDeveloper or a simple text editor.

Open the Java file and add code to implement the execute() method. Example 5-1 shows what the generated code looks like. You would replace the simple implementation of the oracle.as.scheduler.Executable interface's execute() method with code that does your Java job's work.

Example 5-1 Oracle Enterprise Scheduler HelloWorld Java Class

package oracle.apps.ess.custom;

import java.io.StringWriter;
import java.security.AccessControlContext;
import java.security.AccessController;
import javax.security.auth.Subject;

import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.job.BaseSynchronousJavaJob;
import oracle.as.scheduler.request.ContentType;
import oracle.security.jps.util.SubjectUtil;

public class NewDemoHelloWorld extends BaseSynchronousJavaJob {

 public NewDemoHelloWorld() {
 super();
 }

 protected void execute() throws Exception
 {
 long requestId = getRequestExecutionContext().getRequestId();
 RequestParameters params = getRequestParameters();
 AccessControlContext accContext = AccessController.getContext();
 Subject subject = Subject.getSubject(accContext);
 String username = SubjectUtil.getUserName(subject);
 /*
 * Write contents to request log
 */
 StringWriter strWriter = new StringWriter();
 strWriter.write("Simple ESS Java job execution LOG");
 strWriter.write("ESS Job requestID: " + requestId);
 strWriter.write("Username: " + username);
 writeToRequestLog(requestId, strWriter.toString());

 /*
 * Write Text contents to request output
 */
 strWriter = new StringWriter();
 strWriter.write("Simple ESS Java job execution Text Out");
 strWriter.write("ESS Job requestID: " + requestId);
 strWriter.write("Username: " + username);
 writeToRequestOutput(requestId, strWriter.toString(), ContentType.Text);
 }
}

5.5 Packaging a Java Job as a Shared Library with Ant

You can package a Java job implementation by running the package_essjob_library Ant target.

Note:

The build file containing this target is generated when you create a new hosting application. (For more information, see Creating a Hosting Application and Project Workspace with Ant.)

The package_essjob_library target compiles and JARs the job code. The target simply runs to completion, requiring no user input.

To package a Java job class implementation with Ant:

	
In a console window change directory to the directory you specified as the location to create the hosting application. Use the following command to run the target:

ant package_essjob_library

5.6 Deploying a Shared Library with Ant

You can deploy a Java job shared library by running the deploy_essjob_library Ant target.

Note:

The build file containing this target is generated when you create a new hosting application. (For more information, see Creating a Hosting Application and Project Workspace with Ant.)

The deploy_essjob_library target deploys the job library. The target simply runs to completion, requiring no user input.

To deploy a Java job shared library with Ant:

	
In a console window change directory to the directory you specified as the location to create the hosting application. Use the following command to run the target:

ant deploy_essjob_library

5.7 Packaging a Hosting Application with Ant

You can package a hosting application by running the package_hosting_app Ant target.

Note:

The build file containing this target is generated when you create a new hosting application. (For more information, see Creating a Hosting Application and Project Workspace with Ant.)

The package_hosting_app target packages the hosting app created with the create-user-home target (for more information, see Creating a Hosting Application and Project Workspace with Ant). The target simply runs to completion, requiring no user input.

To package a hosting application with Ant:

	
In a console window change directory to the directory you specified as the location to create the hosting application. Use the following command to run the target:

ant package_hosting_app

5.8 Deploying a Hosting Application with Ant

You can deploy a hosting application by running the deploy_hosting_app Ant target.

Note:

The build file containing this target is generated when you create a new hosting application. (For more information, see Creating a Hosting Application and Project Workspace with Ant.)

The deploy_hosting_app target deploys the hosting app created with the create-user-home target (for more information, see Creating a Hosting Application and Project Workspace with Ant). This target simply runs to completion, requiring no user input.

To deploy a hosting application with Ant:

	
In a console window change directory to the directory you specified as the location to create the hosting application. Use the following command to run the target:

ant deploy_hosting_app

5.9 Configuring the Generated Ant Targets

The file user_home/ant/config/ess-build.properties contains various parameters to specify information used by the Ant scripts during build, packaging and deployment. The user_home is the directory specified to contain the application workspace in step 1 above.

Before deployment of archives, the WebLogic server based details has to be changed appropriate to the user's environment.

Use the build properties described in Table 5-5 to customize the Ant targets with configuration values of your own.

Table 5-5 Build Properties for Customizing Ant Builds

	Build Property	Description
	
customEss.hostapp.earprofile

	
-

	
customEss.hostapp.jarfile

	
-

	
customEss.hostapp.jarprofile

	
-

	
customEss.hostapp.jprproject

	
-

	
customEss.hostapp.jwsfile

	
-

	
customEss.hostapp.mds.jdbc

	
-

	
customEss.hostapp.mds.partition

	
-

	
customEss.hostapp.name

	
The name to be used for the generated hosting application.

	
customEss.hostapp.workspace

	
-

	
customEss.project.dir

	
The directory location for the generated JDeveloper project.

	
customEss.shared.library.name

	
The name to be given to the generated shared library.

	
ess.script.base.dir

	
-

	
fmw.home

	
-

	
jdev.home

	
-

	
oracle.common

	
-

	
ess.server.name

	
Comma separated names of Oracle Enterprise Scheduler admin/managed servers to which the Oracle Enterprise Scheduler job library and hosting application is deployed.

	
weblogic.admin.user

	
The WebLogic Server admin user name.

	
weblogic.server.host

	
-

	
weblogic.server.port

	
-

	
weblogic.server.ssl.port

	
-

	
weblogic.t3.url

	
-

ESS build properties
ess.script.base.dir=${user_home}

fmw.home=${fmw_home}
jdev.home=${fmw.home}/jdeveloper
oracle.common=${fmw.home}/oracle_common

========== ESS JDev project details ===============
customEss.project.dir=${ess.script.base.dir}

customEss.hostapp.workspace=${hosting_application_name}
customEss.hostapp.jwsfile=${hosting_application_name}
customEss.hostapp.earprofile=${hosting_application_name}
customEss.hostapp.jprproject=EssSharedLibrary
customEss.hostapp.jarprofile=EssSharedLibrary
customEss.hostapp.jarfile=${jobdef_library_name}

customEss.shared.library.name=${jobdef_library_name}

customEss.hostapp.mds.partition=${hosting_application_name}
customEss.hostapp.mds.jdbc=mds-ESS_MDS_DS
customEss.hostapp.name=${hosting_application_name}

========== Weblogic Server details ===============
MW_HOME=${fmw.home}
ORACLE_HOME=${jdev.home}
MW_ORA_HOME=${jdev.home}
COMMON_COMPONENTS_HOME=${oracle.common}
WEBLOGIC_HOME=${fmw.home}/wlserver_10.3
weblogic.server.host=adc2170657.example.com
WEBLOGIC_HOME=${fmw.home}/wlserver_10.3
weblogic.server.host=adc2170657.example.com
weblogic.server.port=7001
weblogic.server.ssl.port=7002
weblogic.admin.user=weblogic
weblogic.t3.url=t3://${weblogic.server.host}:${weblogic.server.port}
Comma separated names of ess admin/managed servers to which essjob library and hosting app is deployed
ess.server.name=AdminServer

6 Creating a Thin Client Application

The thin client application is typically used to submit jobs, query status and optionally used to host EJB job implementations. A thin client application uses the Oracle Enterprise Scheduler thin client library for Oracle Enterprise Scheduler APIs. This chapter describes the thin client library and how to use Oracle JDeveloper to develop a thin client application.

This chapter contains the following sections:

	
Introduction

	
Implementation

	
Using JDeveloper to Build a Thin Client Application for MAR Deployment

	
Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata

6.1 Introduction

Client applications are J2EE applications that execute in the same WebLogic domain as Oracle Enterprise Scheduler. Client applications can use the Oracle Enterprise Scheduler APIs to do the following:

	
Submit jobs

	
Query job status

	
Look at job output and logs

	
Optionally, perform updates to Oracle Enterprise Scheduler metadata

	
Host an EJB job implementation that the Oracle Enterprise Scheduler invokes remotely

The Oracle Enterprise Scheduler thin client library is used by client applications to access Oracle Enterprise Scheduler APIs (for example, the metadata service API or the runtime service API). The thin client library is a thin layer that remotely invokes an Oracle Enterprise Scheduler hosting application to perform all operations. The thin client application may optionally have an Oracle Enterprise Scheduler metadata MAR archive with Oracle Enterprise Scheduler metadata developed using Oracle JDeveloper. This metadata is automatically loaded into the Oracle Enterprise Scheduler MDS when the application is deployed. Alternatively, the application can use APIs to create the metadata dynamically.

The thin client shared library differs from the client shared library in the following ways:

	
The client shared library includes local EJBs that do all the Oracle Enterprise Scheduler work by directly accessing the MDS and runtime databases. The thin client library does not include the data sources or EJBs, but instead remotely accesses a hosting application that hosts the EJB and accesses the databases.

	
The thin client library more cleanly hides Oracle Enterprise Scheduler internal functionality from the application.

	
Because it accesses the databases directly, the client shared library works even if the Oracle Enterprise Scheduler server or cluster is down.

	
The thin client library is also useful when deployment of the Oracle Enterprise Scheduler is optional in an embedding product.

	
All of the documented APIs exposed by the client shared library are available in the thin client library. Therefore, thin client applications can:

	
Request submission using the runtime service APIs

	
Operate on requests using the runtime service APIs

	
Update metadata artifacts using the Metadata Service API

	
Remotely complete asynchronous requests

	
Because the thin client library remotely invokes an Oracle Enterprise Scheduler hosting application to perform all operations, it has to look up remote Oracle Enterprise Scheduler beans instead of local beans. There is some overhead in obtaining the InitialContext of a remote Oracle Enterprise Scheduler server. The RemoteConnector API provides the following assistance for the callback of Oracle Enterprise Scheduler beans:

	
Helper classes use RemoteConnectors to easily connect back to Oracle Enterprise Scheduler beans (for example, RuntimeService and MetadataService)

	
Log and output can be handled from a remote implementation

	
Asynchronous requests can be completed easily

	
Invocations and callbacks can be secured

6.2 Implementation

Consider the following when you use the thin client library to implement a remote EJB job:

	
Make sure the bean implements the RemoteExecutable interface for execution only, or the RemoteCancellableExecutable interface for both the execute and cancel operations.

	
Use predefined system properties such as EJB_OPERATION_NAME instead of defining specific properties such as SOA_BEAN_NAME.

	
The ejb-jar.xml file should define the oracle.security.jps.ee.ejb.JpsInterceptor interceptor. Use the interceptor to obtain the subject propagated from the Oracle Enterprise Scheduler layer and use it in other operations.

	
It's best to move the job implementation out of the ejb-jar.xml file to ensure that the EJBs are not redeployed when the job logic changes.

Tip:

The application throws a javax.naming.NamingException exception if the JNDI context cannot be created with the passed in values. Alternatively, the ScehdulerException exception can be thrown when there is a problem with look-ups that involve the credential key store.

6.2.1 Secured Invocation

Secured invocation of the remote EJB is required when the JNDI tree of its server is authenticated. This is also the case when a remote EJB uses secure lookup to call back to Oracle Enterprise Scheduler EJBs. The following sections provides some guidance.

6.2.1.1 Forward Invocation

The following apply to forward invocation.

	
When Oracle Enterprise Scheduler invokes a remote EJB, the subject of the executing job is always propagated.

	
When Oracle Enterprise Scheduler executes a job, the JndiProviderUrl of the current Oracle Enterprise Scheduler Server is always supplied to the remote EJB through RequestParameters.

	
If the JNDI tree of the remote server is authenticated, the JNDI_CSF_KEY property must be specified in the request parameters or the EssConfiguration of the hosting application.

	
Oracle Enterprise Scheduler looks up the keystore for the CsfKey to retrieve the PasswordCredential and connects to the remote server.

6.2.1.2 Callback Invocation

The following apply to callback invocation.

	
If the remote EJB must call back to Oracle Enterprise Scheduler beans, the following properties can be specified:

	
The JNDI names of Oracle Enterprise Scheduler Runtime, Metadata and AsyncRequest beans exposed in HostingApp must be specified in request parameters or the EssConfiguration of the hosting application. If EssNativeHostingApp is used, these entries are not required.

	
If the JNDI tree of the Oracle Enterprise Scheduler server is authenticated, the ESS_JNDI_CSF_KEY_NAME property must be specified in the request parameters or EssConfiguration of the hosting application. Oracle Enterprise Scheduler ensures that this property is available to the remote EJB through RequestParameters.

	
A remote EJB can make use of the RemoteConnector API to get the remote instances of Oracle Enterprise Scheduler beans. This can be done by passing the following:

	
RequestParameters

	
RequestParameters and JndiMappedName of the bean (for hosting applications other than the native hosting application)

	
RequestParameters, user name and password (if the Oracle Enterprise Scheduler server is authenticated)

	
InitialContext (primarily for Java SE clients with EssNativeHostingApp)

	
InitialContext and jndiMappedName (primarily for Java SE clients with other hosting applications)

6.2.2 RemoteConnector API and the Server Affinity Property

If your code implementation relies on accessing Oracle Enterprise Scheduler EJBs, use the methods exposed in the RemoteConnector API class. The Oracle Enterprise Scheduler requires the server affinity property to be set in the InitialContext environment before doing a JNDI lookup and the RemoteConnector API class sets this property for you. Note that this is especially important in multi-node cluster scenarios. The RemoteConnector class is packaged in the Oracle Enterprise Scheduler client libraries.

If for some reason the RemoteConector class cannot be used, you can set the environment map property to the InitialContext before doing the look-up for the Oracle Enterprise Scheduler EJBs as shown in the following example.

if(PlatformUtils.isWebLogic())
 envProps.put("weblogic.jndi.enableServerAffinity", "true");

In a multi-node cluster environment, it is best to set the cluster algorithm to "round-robin-affinity".

6.2.3 Examples

This section contains examples that illustrate how to use the thin client library.

6.2.3.1 Java EE Application That Uses RemoteConnector

The following code example shows a snippet from a Java EE application that uses RemoteConnector through the pre-deployed native hosting application.

RemoteConnector essConnector = newRemoteConnector();
//RequestParameters contains the JndiProviderURL of Oracle Enterprise Scheduler
//Server which is auto-populated from the Oracle Enterprise Scheduler end while
//invoking an EJB. The CSF key is auto-populated in RequestParameters from the
//Oracle Enterprise Scheduler end if configured for the
//Oracle Enterprise Scheduler Server and specified in the EssConfig of HostingApp.
//If CSF key is present, the CSF lookup is done from RemoteConnector to resolve
//authentication.

RuntimeService rts = essConnector.getRuntimeServiceEJB(requestParameters);

//Sample invocation using RuntimeServiceBean.
RuntimeServiceHandle handle = rts.open();
RequestDetail reqDetail = rts.getRequestDetail(handle,
requestExecutionContext.getRequestId());

6.2.3.2 Implementation

The following example shows a skeletal implementation of an EJB job that uses the thin client library. See Creating and Using EJB Jobs for more information about implementing EJB jobs.

@Stateless(name = "JMXAdapter")
public class JMXAdapterBean implements RemoteCancellableExecutable
{
@Resource
private SessionContext sctx;
public JMXAdapterBean() {
}

public void execute(RequestExecutionContext requestExecutionContext,
RequestParameters requestParameters) throws
ExecutionErrorException,
ExecutionWarningException,
ExecutionPausedException,
ExecutionCancelledException
{
//"ESS RequestId:" + requestExecutionContext.getRequestId();
//"EJB Operation:" + requestParameters.getValue(SystemProperty.EJB_OPERATION_NAME);
//"Invoke Message:" + requestParameters.getValue(SystemProperty.INVOKE_MESSAGE);
}
public void cancel(RequestExecutionContext requestExecutionContext,
RequestParameters requestParameters)
{
//"ESS RequestId:" + requestExecutionContext.getRequestId();
//"EJB Operation:" + requestParameters.getValue(SystemProperty.EJB_OPERATION_NAME);
//"Invoke Message:" + requestParameters.getValue(SystemProperty.INVOKE_MESSAGE);
}
}

6.2.3.3 Subject Propagation

When the Oracle Enterprise Scheduler invokes an EJB job, the subject associated with the hosting application is always propagated to the job. This ensures that the subject that executes the job is available in the business operation of the bean. Add the following code to the ejb-jar.xml file to retrieve the subject from within the bean.

<interceptors>
<interceptor>
<interceptor-class>oracle.security.jps.ee.ejb.JpsInterceptor</interceptor-class>
<env-entry>
<env-entry-name>application.name</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>NAME_OF_ENTERPRISE_APPLICATION</env-entry-value>
<injection-target>
<injection-target-class>oracle.security.jps.ee.ejb.JpsInterceptor</injection-target-class>
<injection-target-name>application_name</injection-target-name>
</injection-target>
</env-entry>
</interceptor>
</interceptors>
<assembly-descriptor>
<interceptor-binding>
<ejb-name>*</ejb-name>
<interceptor-class>oracle.security.jps.ee.ejb.JpsInterceptor</interceptor-class>
</interceptor-binding>
</assembly-descriptor>

You can use the following code to invoke an MBean from an EJB operation in the privileged context of the current subject:

AccessControlContext accContext = AccessController.getContext();
Subject currentSubject = Subject.getSubject(accContext);
String currentUsername = SubjectUtil.getUserName(currentSubject);
Subject.doAs(currentSubject, new PrivilegedExceptionAction() {
public Object run() {
//logic to invoke MBean
}
});

6.3 Using JDeveloper to Build a Thin Client Application for MAR Deployment

If your job uses the Oracle Enterprise Scheduler pre-deployed native hosting application, you can simplify the creation of custom job metadata by building a client application that assists in the creation of the metadata and deploys it to the pre-deployed native hosting application MDS partition (essUserMetadata).

The following instructions show how to use Oracle JDeveloper to create a thin client application that:

	
Adds job metadata

	
Creates an enterprise archive (EAR)

	
Packages the metadata archive (MAR) in the EAR

	
Deploys the metadata to the pre-deployed native hosting application

The instructions in Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata describe how to create an EJB that can be invoked by the EJB job definition added to the pre-deployed native hosting application.

The ADF infrastructure is used to deploy the metadata to a specific partition when an application gets deployed. The MDS partition for the pre-deployed native hosting application is essUserMetadata.

JDeveloper provides accessibility options, such as support for screen readers, screen magnifiers, and standard shortcut keys for keyboard navigation. You can also customize JDeveloper for better readability, including the size and color of fonts and the color and shape of objects. For information and instructions on configuring accessibility in JDeveloper, see "Oracle JDeveloper Accessibility Information" in Developing Applications with Oracle JDeveloper.

Note:

Be sure to set the MW_HOME environment variable before you start JDeveloper. For example: export MW_HOME=/scratch/prh/12c/jdev If this variable is not set, the Job Type dropdown menu is not populated.

6.3.1 Create and Deploy a Thin Client Application for the Standalone Environment

The following steps describe how to use JDeveloper to create and deploy a thin client application.

	
In the New Gallery dialog, create a custom application and project as shown in Figure 6-1.

Figure 6-1 New Gallery Dialog

[image: Description of "Figure 6-1 New Gallery Dialog" follows]

	
In the Create Custom Application dialog, enter the application name and application package prefix as shown in Figure 6-2.

Figure 6-2 Create Custom Application Dialog - Step 1 of 3

[image: Description of "Figure 6-2 Create Custom Application Dialog - Step 1 of 3" follows]

	
Enter the project name, then add ESS Job Support, ESS Client Support and EJB into the project features as shown in Figure 6-3.

Figure 6-3 Create Custom Application Dialog - Step 2 of 5

[image: img/GUID-0A79DD73-EF8F-492E-A902-072324332D89-default.jpg]

	
Configure the EJB settings as shown in Figure 6-4.

Figure 6-4 Create Custom Application Dialog - Step 4 of 5

[image: img/GUID-0D861FDF-CE89-4039-A5BF-DC45AA01E98C-default.jpg]

	
Configure the application ID value as shown in Figure 6-5

Figure 6-5 Configure ESS Job Support Settings

[image: img/GUID-575155A0-9615-4F43-B3D7-DF8E8FAFB0B7-default.jpg]

	
Click Next.

	
Click Finish to complete the steps to create a new application.

	
Edit the MANIFEST.MF file generated in the previous step and remove the following lines:

essclientapi-Specification-Version: 12
Extension-List: essruntime, essclientapi
Weblogic-Application-Version: 3.0
essclientapi-Extension-Name: oracle.ess.client.api
essruntime-Extension-Name: oracle.ess.runtime
essruntime-Specification-Version: 12

	
Right click the project node in the left tree panel, then select project properties and click “Libraries and Classpath" as shown in Figure 6-6. Make sure to only select “Java EE" and “Enterprise Scheduler" in the Classpath Entries pane.

Figure 6-6 Project Properties Dialog

[image: img/GUID-A59A539A-DF9B-4253-AF2A-0A5A674F694A-default.jpg]

	
In the New Gallery dialog, select “Enterprise Scheduler Metadata" and “Job Definition" as shown in Figure 6-7.

Figure 6-7 New Gallery Dialog

[image: img/GUID-D154ED82-7A22-42C0-940A-82C34078880E-default.jpg]

	
In the Create Job Definition dialog, select /oracle/as/ess/core/ProcessJobType from the Job Type dropdown to add simple spawned job definition metadata as shown in Figure 6-8.

Figure 6-8 Create Job Definition Dialog

[image: img/GUID-10656BD9-928D-45B1-9C96-275D6322A2FA-default.jpg]

	
To complete the addition of spawned job definition metadata, select the Override check box and enter a value for the Command Line entry. Add a system property named SYS_effectiveApplication with a value of EssNativeHostingApp.

Figure 6-9 SimpleSpawnedJobDefn.xml Tab

[image: img/GUID-4AC09DBB-EFCF-4256-92EB-341B74CFDE8E-default.jpg]

	
Add EJB job definition Metadata. Follow the steps in Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata.

	
Configure the MAR profile.

	
Select “Application Properties" and click “Deployment Node".

	
Select “MAR Module" in the right side panel and click Edit.

	
Select “User Metadata" in the Edit MAR Deployment Properties dialog as shown in Figure 6-10.

	
Make sure that the essmeta directory (under the path of the project created above) is available. If it is not available, add the directory by manually navigating to the essmeta directory.

Figure 6-10 Edit MAR Deployment Profile Properties Dialog

[image: img/GUID-60C1A2EB-7404-499D-98A6-1D1964AA3C78-default.jpg]

	
Select the appropriate metadata to package in the MAR. click the “Directories" node under “User Metadata" and make sure that the newly added job definitions are selected as shown in Figure 6-11.

Figure 6-11 Edit MAR Deployment Profile Properties Dialog

[image: img/GUID-251B69E5-FB98-4F1F-833A-BCB9A4EB4F93-default.jpg]

	
Create a deployment profile for an enterprise archive (EAR).

	
Select “Application Properties" and click the deployment node.

	
Click New in the right panel to invoke the Create Deployment Profile dialog. Choose “EAR File" from the Profile Type dropdown as shown in Figure 6-12.

Figure 6-12 Create Deployment Profile Dialog

[image: img/GUID-C3B77504-4F80-40FF-B648-0BA45645D903-default.jpg]

	
Configure the application assembly for the EAR. In the dialog, make sure the following two profiles are selected:

	
The MAR profile you previously created

	
The EJB profile. This profile is automatically created. If it is not automatically created, create a new “EJB JAR" deployment profile for the project as previously described beginning in step 2.

To create the EJB-JAR deployment profile:

	
In the Application Navigator, in the Projects panel, right-click the Application project, then click Project Properties.

	
In the Project Properties window navigator, click Deployment.

	
Under Deployment Profiles, delete all profiles listed in the window, then click New.

	
In the Create Deployment Profile dialog, from the Profile Type dropdown list, select EJB JAR file.

	
In the Name field, enter a name for the EJB. For this example, enter MySampleThinClientEjb.

	
Click OK.

Figure 6-13 Create the EJB-JAR Deployment Profile

[image: img/GUID-55367359-7A8E-4013-BD9A-3BEECC3B377B-default.jpg]

	
In the Edit EJB JAR Deployment Profile Properties dialog navigator on the left, click General.

	
In the General window, in the Enterprise Application Name field, enter MySampleThinClientApp.

	
In the navigator, expand to File Groups > Project Output > Contributors.

	
In the Contributors window, select the following check boxes:

	
Project Output Directory

	
Project Source Path

	
Project Dependencies

	
In the navigator, expand to File Groups > Project Output > Filters.

Figure 6-14 Edit EAR Deployment Profile Properties Dialog

[image: img/GUID-D40DD1D9-3673-475E-B9B4-2A318DB4ABAE-default.jpg]

	
In the Filters window, in the Files tab, ensure that the following folders are selected:

	
META-INF (and its contents)

	
oracle (and its contents)

	
In the JAR Option window, deselect the Include Manifest File item.

	
Click OK.

	
In the Project Properties dialog, click OK.

	
Configure the library dependencies for the EAR. Be sure that none of the items are selected in the Libraries Selected for Deployment pane.

Figure 6-15 Edit EAR Deployment Profile Properties Dialog

[image: img/GUID-62C724CD-7C5D-4CCC-B94B-3B409701675E-default.jpg]

	
Configure the adf-config.xml file. When you deploy an ADF-based application from JDeveloper, there is a dialog that asks you to select the MDS partition into which the metadata is to be deployed. If the EAR file generated from this application is to be deployed from the WLS console, certain MDS partition entries must be specified in the adf-config.xml file. If this is the case, ensure that the adf-config.xml file contains the entries shown in Example 6-1. You can find the adf-config.xml file in the Application Resources > Descriptors > ADF META-INF section in bottom of the left panel.

	
Configure the weblogic-application.xml file. Make sure the contents of the weblogic-application.xml file are as shown in Example 6-2.

	
Deploy the application. To complete the deployment of the EAR, select essUserMetadata in the Partition Name dropdown in the Deployment Configuration dialog and click Deploy.

Figure 6-16 Oracle Deployment Configuration Dialog

[image: img/GUID-25BD85CA-3773-4A01-93DA-89324A27097D-default.jpg]

Example 6-1 Contents of the adf-config.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config">
 <adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config xmlns="http://xmlns.oracle.com/mds/config" version="11.1.1.000">
 <persistence-config>
 <metadata-namespaces>
 <namespace path="/oracle/apps/ess/custom" metadata-store-usage="ess_custom_metadata"/>
 </metadata-namespaces>
 <metadata-store-usages>
 <metadata-store-usage id="ess_custom_metadata" deploy-target="true" default-cust-store="true">
 <ns3:metadata-store class-name="oracle.mds.persistence.stores.db.DBMetadataStore" xmlns:ns3="http://xmlns.oracle.com/mds/config">
 <ns3:property name="repository-name" value="mds-ESS_MDS_DS" />
 <ns3:property name="partition-name" value="essUserMetadata" />
 <ns3:property name="jndi-datasource" value="jdbc/mds-ESS_MDS_DS" />
 </ns3:metadata-store>
 </metadata-store-usage>
 </metadata-store-usages>
 </persistence-config>
 </mds-config>
 </adf-mds-config>
</adf-config>

Example 6-2 Contents of the weblogic-application.xml File

<?xml version = '1.0' encoding = 'UTF-8' ?>
<weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-application http://xmlns.oracle.com" xmlns="http://xmlns.oracle.com/weblogic/weblogic-application">
<listener>
 <listener-class>oracle.mds.lcm.weblogic.WLLifecycleListener</listener-class>
</listener>
<library-ref>
 <library-name>oracle.ess.thin.client</library-name>
</library-ref>
</weblogic-application>

6.4 Using JDeveloper to Create and Configure an EJB and its Job Definition Metadata

The following steps describe how to:

	
Create a simple synchronous EJB that conforms to Oracle Enterprise Scheduler's job implementation requirements.

	
Create EJB job definition metadata and deploy it as a part of the enterprise application.

	Create a session bean. In the New Gallery dialog, select “Session Bean" to create a new EJB as shown in Figure 6-17.

Figure 6-17 New Gallery Dialog

[image: img/GUID-CCA1BE4F-2D77-48EB-A990-9193CA63216E-default.jpg]

	Configure the session bean. Enter the EJB name in the EJB Name field and enter the mapped name in the Mapped Name field as shown in Figure 6-18. Click Next to continue.

Figure 6-18 Create Session Bean Dialog - Step 2 of 5

[image: img/GUID-5A3CCF92-62E0-4D26-8E89-5B132D2AD058-default.jpg]

	Configure the session bean business interface. Make sure that the Implement a Remote Interface check box is checked and that oracle.as.scheduler.RemoteExecutable is set as the class for the Remote Interface field as shown in Figure 6-19. Click Next and proceed to the Finish step.

Figure 6-19 Create Session Bean Dialog - Step 4 of 5

[image: img/GUID-60593FF9-FDFD-4D00-A087-7922F07D1AB2-default.jpg]

	Configure the generated session bean. Make sure the generated session bean implements the execute method defined in the RemoteExecutable interface

Figure 6-20 Configure the Generated Session Bean

[image: img/GUID-666F9CE9-5CFC-45F1-AF76-6F236E2CB042-default.jpg]

	Complete the implementation of the session bean. Make sure the bean is complete by implementing the execute method.

Figure 6-21 Complete the Implementation of the Session Bean

[image: img/GUID-EF1E9FBD-F7D3-436D-AF3E-C51086228556-default.jpg]

	Make sure the ejb-jar.xml file contains the declaration shown in Example 6-3.
	Make sure the weblogic-ejb-jar.xml file contains the declaration shown in Example 6-4.

This completes the steps used to create an EJB that can be invoked by Oracle Enterprise Scheduler using the EJB job type.

The following two steps describe how to use JDeveloper to create an EJB Job definition.

	Create EJB job definition metadata. In the New Gallery dialog, select “Job Definition" under “Enterprise Scheduler Metadata" and fill it in as shown in Figure 6-22.

Figure 6-22 Create Job Definition Dialog

[image: img/GUID-B035C844-9575-4E7E-9934-886934B3C859-default.jpg]

	Configure system properties in the job definition. In the Add System Property dialog, specify EssNativeHostingApp in the Initial Value field, and select the system property SYS_effectiveApplication from the Name dropdown as shown in Figure 6-23.

Figure 6-23 Add System Property Dialog

[image: img/GUID-DFFE0FAC-7CF6-4571-B86F-B852335BEA21-default.jpg]

Repeat the process, making sure that the SYS_EXT_jndiMappedName property is configured with an initial value of jndiName. Also add properties like SYS_EXT_jndiProviderUrl if the application is deployed to a server other than ESSAPP.

Figure 6-24 Job Definition Tab

[image: img/GUID-237F76B7-E6BC-4895-8D9F-CC7785EC6982-default.jpg]

Example 6-3 Contents of the ejb-jar.xml File

<?xml version = '1.0' encoding = 'UTF-8' ?>
<ejb-jar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/ejb-jar_3_0."
 version="3.0" xmlns="http://java.sun.com/xml/ns/javaee">
 <enterprise-beans>
 <session>
 <description>Simple Session Bean</description>
 <ejb-name>SimpleSession</ejb-name> <ejb-class>oracle.com.samples.ess.thinclient.SimpleSessionBean
 </ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <security-identity>
 <use-caller-identity/>
 </security-identity>
 </session>
 </enterprise-beans>
</ejb-jar>

Example 6-4 Contents of the weblogic-ejb-jar.xml File

<?xml version = "1.0" encoding = 'UTF-8' ?>
<weblogic-ejb-jar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-ejb-jar http://xmlns.oracle.com"
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-ejb-jar">
 <weblogic-enterprise-bean>
 <ejb-name>SimpleSession</ejb-name>
 <stateless-session-descriptor>
 <business-interface-jndi-name-map>
 <business-remote>oracle.as.scheduler.RemoteExecutable</business-remote>
 <jndi-name>ejb/simpleSessionBean</jndi-name>
 </business-interface-jndi-name-map>
 </stateless-session-descriptor>
 </weblogic-enterprise-bean>
</weblogic-ejb-jar>

7 Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application

This chapter is a tutorial that describes how to create and run an application that uses Oracle Enterprise Scheduler to run job requests and demonstrates how to work with Oracle JDeveloper to create an application using Oracle Enterprise Scheduler.

The chapter then shows a variation on the sample application using two split applications — a job submission application, a submitter, and a job execution application, a hosting application.

Note:

For Oracle Enterprise Scheduler sample code, be sure to see the sample site at https://java.net/projects/oraclesoasuite12c.

This chapter includes the following sections:

	
How to Start JDeveloper to Support Building Oracle Enterprise Scheduler Applications

	
Understanding Oracle Enterprise Scheduler Application Support Created by Oracle JDeveloper

	
Building a Combined Oracle Enterprise Scheduler Application

	
Building Split Submitting and Hosting Applications

7.1 How to Start JDeveloper to Support Building Oracle Enterprise Scheduler Applications

Some aspects of developing Oracle Enterprise Scheduler applications with Oracle JDeveloper require that you set the Middleware Home environment variable to the installation location of Oracle JDeveloper itself. Before you begin using Oracle JDeveloper to develop Oracle Enterprise Scheduler applications, be sure to set this variable.

JDeveloper provides accessibility options, such as support for screen readers, screen magnifiers, and standard shortcut keys for keyboard navigation. You can also customize JDeveloper for better readability, including the size and color of fonts and the color and shape of objects. For information and instructions on configuring accessibility in JDeveloper, see "Oracle JDeveloper Accessibility Information" in Developing Applications with Oracle JDeveloper.

To set an environment for building Oracle Enterprise Scheduler applications:

	Open a command prompt.
	Change directory to the installed location of Oracle JDeveloper. For example, on Windows you might do the following:

>cd c:\Oracle\Middleware\jdeveloper

	Set MW_HOME to the location of Oracle JDeveloper. For example:

>set MW_HOME=c:\Oracle\Middleware

	Start Oracle JDeveloper.

>jdeveloper

7.2 Understanding Oracle Enterprise Scheduler Application Support Created by Oracle JDeveloper

As you create projects in Oracle JDeveloper for developing Oracle Enterprise Scheduler applications, you add underlying support for application functionality by specifying support for particular project technologies.

For more on creating Oracle Enterprise Scheduler applications, see Building a Combined Oracle Enterprise Scheduler Application and Building Split Submitting and Hosting Applications.

When you create an application using Oracle JDeveloper, you select from the following technologies, depending on your application requirements:

	
ESS Host Support for developing a hosting application, including:

	
Updating weblogic-application.xml for application support.

	
Updating EJB deployment profile for project support.

	
Updating EAR deployment profile for application support.

	
Adding the Oracle Enterprise Scheduler library.

	
Adding context menu to project (accessed by right-clicking and selecting Enterprise Scheduler Properties), which allows the following ejb-jar.xml properties to be modified: Logical Application Name, Application Policy Stripe, JPS Interceptor Application Name.

	
ESS Client Support for developing a client application, including:

	
Updating weblogic-application.xml for application support.

	
Updating EJB deployment profile for project support.

	
Adding the Oracle Enterprise Scheduler library.

	
Adds context menu to project (accessed by right-clicking and selecting Enterprise Scheduler Properties), which allows the following ejb-jar.xml properties to be modified: JPS Interceptor Application Name.

	
ESS Job Support for developing scheduler applications, including:

	
Creating or updating a MAR profile.

	
Creating a JAR deployment profile for project support.

	
Adding the Oracle Enterprise Scheduler library.

7.3 Building a Combined Oracle Enterprise Scheduler Application

The EssDemoApp sample application you build in this tutorial includes a complete application that you build with Oracle JDeveloper using Oracle Enterprise Scheduler APIs.

In this example, you'll create a hosting application and a simple Java job implementation. Though the example here is simple, its job class implements the Executable interface from which a more complex Java job might call out to other code as part of its work.

To create an application that schedules job requests you do the following:

	
Create the Java class that specifies the logic you want to schedule and run with Oracle Enterprise Scheduler.

	
Specify Oracle Enterprise Scheduler metadata and the characteristics for job requests.

	
Define the Java application that uses Oracle Enterprise Scheduler APIs to specify and submit job requests. The application consists of two projects: one for hosting jobs and another for submitting them.

	
Assemble and deploy the Java application that uses Oracle Enterprise Scheduler APIs.

	
Run the Java application that uses Oracle Enterprise Scheduler APIs.

Note:

The instructions in this chapter assume that you are using a new Oracle JDeveloper that you installed without previously saved projects or other saved Oracle JDeveloper state. If you have previously used Oracle JDeveloper, some of the instructions may not match the exact steps shown in this chapter, or you may be able to shorten procedures or perform the same action in fewer steps. In some cases Oracle JDeveloper does not show certain dialogs based on your past use of Oracle JDeveloper.

When you use Oracle Enterprise Scheduler the application metadata is stored with MDS. To use MDS you need to have access to a database with MDS user and schema configured.

You also need a WebLogic Server instance to which Oracle Enterprise Scheduler is deployed in standalone mode. You should have access to a database with the Oracle Enterprise Scheduler schema installed.

This section includes the following subsections:

	
Creating the Application and Projects for EssDemoApp Application

	
Creating Metadata and an Implementation Class for the EssDemoApp Application

	
Adding Application Code to Submit Job Requests

	
Setting Oracle Enterprise Scheduler Properties

	
Assembling the EssDemoApp Application

	
Deploying and Running the EssDemoApp Application

7.3.1 Creating the Application and Projects for EssDemoApp Application

Using Oracle JDeveloper you create an application and projects within the application that contains the code and supporting files for the application. To create the sample application you need to do the following:

	
Create an application in Oracle JDeveloper.

	
Create projects in Oracle JDeveloper. You create two projects -- one in which to develop "Hello World"-style Java job and another in which to develop a client that submits requests with the job.

7.3.1.1 How to Create the EssDemoApp Application and Host Project

To work with Oracle Enterprise Scheduler, you first create an application in Oracle JDeveloper. You'll also create a hosting application to support job execution.

To create the EssDemoApp application and hosting project:

	
Start Oracle JDeveloper as described in How to Start JDeveloper to Support Building Oracle Enterprise Scheduler Applications.

	
In the Select Role dialog, select the Default Role, then click OK.

	
Click the Application menu, then click New and select the From Gallery option.

	
In the Name your application window enter the name and location for the new application.

	
In the New Gallery window, select Custom Application listed under the General Categories Applications item, then click OK.

	
In the Application Name field, enter an application name. For this sample application, enter EssDemoApp.

	
In the Directory field, accept the default.

	
Enter an application package prefix or accept the default, no prefix.

The prefix, followed by a period, applies to objects created in the initial project of an application.

	
Click Next.

	
In the Name your project window, enter the name for the host project you're creating and select supporting technologies. See Figure 7-1.

	
In the Project Name field, enter a name for your hosting project. For this sample application, enter EssHost.

	
On the Project Features tab, under Available, double-click ESS Host Support and ESS Job Support so that they are both listed under Selected on the right side of the dialog box.

For more on these, see Understanding Oracle Enterprise Scheduler Application Support Created by Oracle JDeveloper.

	
Click Next.

Figure 7-1 Create the Custom Application

[image: Description of "Figure 7-1 Create the Custom Application" follows]

	
In the Configure Java settings window, in the Default Package field, enter oracle.esshost.

Click Next.

	
In the Configure EJB settings window, select the following:

	
Under EJB Version, select the Enterprise JavaBeans 3.0 option button.

	
Under EJB Version 3.x, select the Generate ejb-jar.xml in this project check box.

Click Next.

	
In the Configure ESS Host Support settings window, in the Application Id field, enter EssDemoApp.

Click Finish.

This displays the EssDemoApp Overview page. You can use sections of this page to get information about aspects of the application you're creating, as well as to manage its development progress. For now, though, you'll move on to creating project artifacts to support creating jobs.

7.3.1.2 How to Create the Client Project

In the preceding step, you created a project in which to develop the application to host your jobs. In this section, you'll use Oracle JDeveloper to create another project in the EssDemoApp application. This second project provides support for client interaction with the hosting application.

To create the client project:

	
Click the File menu, then click New > Project.

	
In the New Gallery, under Categories, expand General, then click Projects.

	
Under Items, click Custom Project, then click OK.

	
In the Name your project window, enter the name for the client project you're creating and select supporting technologies. See Figure 7-2.

	
In the Project Name field, enter a name for your client project. For this sample application, enter EssClient.

	
On the Project Features tab, under Available, double-click the following items so that they are listed under Selected on the right side of the dialog box:

ESS Client Support

HTML & CSS

JSF

SP and Servlets

XML

For more on this, see Understanding Oracle Enterprise Scheduler Application Support Created by Oracle JDeveloper.

	
Click Next.

Figure 7-2 Create a Custom Project

[image: Description of "Figure 7-2 Create a Custom Project" follows]

	
In the Configure Java settings window, in the Default Package field, enter oracle.essclient.

Click Next.

	
In the Configure EJB settings window, select the following:

	
Under EJB Version, select the Enterprise JavaBeans 3.0 option button.

Click Next.

	
In the Configure ESS Client Support settings window, in the Application Id field, ensure the EssDemoApp is displayed there.

Click Finish.

7.3.2 Creating Metadata and an Implementation Class for the EssDemoApp Application

For a Java job, which is what you'll be adding here, an implementation class implements the logic of your job -- the code that does job's actual work. The class implements the oracle.as.scheduler.Executable interface. The interface's execute method provides a place where you can add the job's logic. Though the code in this example is very simple, the execute method can also serve as a starting place for processing that continues into code to which the Java job has access.

As with other job types, including PL/SQL and process jobs, a Java job's work is guided by metadata. This metadata forms a job-specific context that can include Oracle Enterprise Scheduler-defined system properties, properties you create, and control of who has access to the metadata. For example, metadata might be a way for you to collect and pass instance data to downstream code.

To use the EssDemoApp sample application to submit a job request, you need to create:

	
Metadata in the form of a job definition that is the basic unit of work that defines a job request in Oracle Enterprise Scheduler.

	
A Java job implementation class.

7.3.2.1 How to Create Metadata for the EssDemoApp Application

In this section, you use Oracle JDeveloper to create job definition metadata and a simple implementation class for a Java job.

To create metadata for the application:

	
In the Application Navigator, select the EssHost project.

	
Press Ctrl-N. This displays the New Gallery.

	
In the Categories area expand Business Tier and select Enterprise Scheduler Metadata.

	
In the Items area, select Job Definition as shown in Figure 7-3.

Figure 7-3 Adding Job Type Metadata to the Sample Application

[image: Adding Job Definition Metadata to the Sample Application]

	
Click OK. This displays the Create Job Definition dialog.

	
In the Create Job Definition dialog, specify the following:

	
In the Name field, enter a name for the job definition. For this example, enter the name: HelloWorldJobDefinition.

	
In the Package field, enter a package name. For this example, enter /oracle/esshost/metadata.

Note that you should use slashes, rather than dots, to delimit names in metadata package names. A metadata package ending in ".metadata" is not visible in Oracle JDeveloper.

	
In the Job Type field, from the dropdown list select /oracle/as/ess/core/JavaJobType.

If job types are not listed in the dropdown, ensure that you started Oracle JDeveloper as described in How to Start JDeveloper to Support Building Oracle Enterprise Scheduler Applications.

	
Ensure that the Create Java Class check box and the Synchronous option button are selected.

By selecting the Create Java Class check box, you're asking that a Java class for your Java job be created, saving you the trouble of creating one later. Selecting the Synchronous option specifies that this is a synchronous Java job.

	
Under Java Class, specify details for the Java class you're creating. In the Java Package field, enter its package name -- here, enter oracle.esshost.impl. In the Class Name field, enter a name for the class -- here, enter HelloWorldImpl as shown in Figure 7-4

Figure 7-4 Creating a Job Definition with the Job Definition Creation Wizard

[image: Creating a Job Definition]

	
Click OK.

This creates the Java class you requested, along with the HelloWorldJobDefinition.xml file. Oracle JDeveloper displays XML file's contents in the Job Definition page.

On the Job Definition page, you can edit job definition metadata, including properties that specify parameters for the job, access to this metadata, and a resource bundle to use for localization.

	
In the Job Definition page, in the Description field enter a description for the job type. For this example enter: Sample Java Job Definition.

Leave the rest of the metadata unchanged.

	
In the Application Navigator, locate the class you created by expanding the items in the projects panel to EssHost > Application Sources > oracle.esshost.impl > HelloWorldImpl.java.

	
Open HelloWorldImpl.java in the source editor.

	
In the source editor, add simple code to implement the execute method. The execute method is where execution for a Java job begins. Your HelloWorldImpl class should look something like Example 7-1.

	
Save and close HelloWorldImpl.java.

Example 7-1 HelloWorldImpl with Execute Method Implemented

public class HelloWorldImpl implements Executable, Cancellable
{
 public void execute(RequestExecutionContext ctx, RequestParameters params)
 throws ExecutionErrorException, ExecutionWarningException,
 ExecutionCancelledException, ExecutionPausedException
 {
 System.out.println("**** Sample Job Running, Request ID: " +
 ctx.getRequestId());
 }

 public void cancel()
 {
 }
}

7.3.3 Adding Application Code to Submit Job Requests

In an Oracle Enterprise Scheduler application you use the Oracle Enterprise Scheduler APIs to submit job requests from any component in the application. The EssDemoApp sample application provides a Java servlet for a servlet-based user interface for submitting job requests (using Oracle Enterprise Scheduler).

7.3.3.1 How to Add Application Code to Submit Job Requests

In this section, you'll create a servlet for receiving job submission requests.

To add a servlet to support job request submissions:

	
In the Application Navigator, select the EssClient project.

	
Press Ctrl-N. This displays the New Gallery.

	
In the New Gallery, in the Categories area, expand Web Tier and select Servlets.

	
In the Items area, select HTTP Servlet as shown in Figure 7-5.

Figure 7-5 Adding Job Type Metadata to the Sample Application

[image: Adding Job Definition Metadata to the Sample Application]

	
Click OK. This displays the Create HTTP Servlet wizard.

	
In the Welcome page, click Next.

	
In the Create HTTP Servlet - Step 2 of 4: Servlet Information page, specify the following:

	
In the Class field, enter a name for the servlet class. For this example, enter the name: EssDemo.

	
In the Package field, enter a package name. For this example, enter oracle.essclient.servlet.

	
In the Generate Content Type field, from the dropdown list ensure the HTML is selected.

	
In the Implement Methods area, select the doGet() and doPost() check boxes, as shown in Figure 7-6.

Figure 7-6 Creating a Servlet -- Step 2 of 4

[image: Adding Job Definition Metadata to the Sample Application]

	
In the Registration area, select the Configuration file (web.xml) radio button.

	
Click Next.

	
In the Create HTTP Servlet - Step 3 of 4: Mapping Information page, specify the following:

	
In the Name field, enter a name for the servlet. For this example, enter the name: EssDemo.

	
In the URL Pattern field, enter a URL for servlet mapping. For this example, enter /essdemo/*.

	
Click Finish.

The supplied EssDemo application includes the completed servlet. You need to copy the source code into your project. To do this, in Oracle JDeveloper replace the contents of the servlet with the contents of the file EssDemo.java supplied with the sample application.

7.3.4 Setting Oracle Enterprise Scheduler Properties

With Oracle Enterprise Scheduler properties, you set values for settings used in the ejb-jar.xml file associated with the application. These properties include the following:

	
Logical Application Name

Specifies the logical name used to identify this application. Separate from the application name used when deploying the application to the container, this value lets you safely hard code the logical application name in source code.

	
Application Policy Stripe

Specifies which JPS security stripe (or "security context") should be used to perform security checks.

	
JPS Interceptor Application Name

Specifies the application stripe name used at runtime to determine which set of security policies are applicable.

7.3.4.1 How to Set Oracle Enterprise Scheduler Properties for the Application

In this section, you'll set default values for Oracle Enterprise Scheduler properties.

To set values for Oracle Enterprise Scheduler properties:

	In the Application Navigator, right-click the EssHost project, then click Enterprise Scheduler Properties.
	In the Enterprise Scheduler Properties dialog, enter EssDemoApp for all three of the fields provided: Logical Application Name, Application Policy Stripe, and JPS Interceptor Application Name.
	Click OK.

Figure 7-7 Set Values for Oracle Enterprise Scheduler Properties

[image: Description of "Figure 7-7 Set Values for Oracle Enterprise Scheduler Properties" follows]

7.3.5 Assembling the EssDemoApp Application

After you create the sample application you use Oracle JDeveloper to assemble the application.

To assemble the application you do the following:

	
Create the EJB JAR files.

	
Create the application MAR file.

	
Create the application EAR file.

	
Update WAR file options.

7.3.5.1 How to Create the EJB-JAR Deployment Profile for the EssDemoApp

The sample application must contain the required EJB descriptors. You need to create the ejb-jar.xml and weblogic-ejb-jar.xml files and include these files with any Java implementation class that you create.

Oracle Enterprise Scheduler requires an application to assemble and provide an EJB JAR so that Oracle Enterprise Scheduler can find its entry point in the application while running job requests on behalf of the application. This EJB jar should have its required EJB descriptors in ejb-jar.xml and weblogic-ejb-jar, as well as any Java class implementations that are going to be submitted to Oracle Enterprise Scheduler. The descriptor files ejb-jar.xml and weblogic-ejb-jar must contain descriptions for the Oracle Enterprise Scheduler EJBs and should not be modified.

To create the EJB-JAR deployment profile:

	In the Application Navigator, in the Projects panel, right-click the EssHost project, then click Project Properties.
	In the Project Properties window, in the navigator, click Deployment.
	Under Deployment Profiles, delete all profiles listed in the window, then click New.
	In the Create Deployment Profile dialog, from the Profile Type dropdown, select EJB JAR file.
	In the Name field, enter a name for the EJB. For this example, enter ess-ejb.
	Click OK.

Figure 7-8 Create the EJB-JAR Deployment Profile

[image: Description of "Figure 7-8 Create the EJB-JAR Deployment Profile" follows]

	In the Edit EJB JAR Deployment Profile Properties dialog, in the navigator on the left, click General.
	In the General window, in the Enterprise Application Name field, enter EssDemoApp.
	In the navigator, expand to File Groups > Project Output > Contributors.
	In the Contributors window, select the following check boxes:

	
Project Output Directory

	
Project Source Path

	
Project Dependencies

	In the navigator, expand to File Groups > Project Output > Filters.
	In the Filters window, on the Files tab, ensure that the following folders are selected:

	
META-INF (and its contents)

	
oracle (and its contents)

	In the JAR Option window, deselect the Include Manifest File item.
	Click OK.
	In the Project Properties dialog, click OK.

7.3.5.2 How To Update the WAR Archive Options

In this section, you specify information that Oracle JDeveloper can use to generate a WAR file.

To update the WAR archive options:

	In the Application Navigator, in the Projects panel, right-click the EssClient project, then click Project Properties.
	In the Project Properties window, in the navigator, click Deployment.
	Under Deployment Profiles, delete all profiles listed in the window and then click New.
	In the Create Deployment Profile dialog, from the Archive Type dropdown, select WAR file.
	In the Name field enter WAR_EssDemoApp.
	Click OK.
	In the Edit WAR Deployment Profile Properties dialog, in the navigator on the left, click General.
	In the WAR Options window deselect Include Manifest File(META-INF/MANIFEST.MF).
	In the General window, select the Specify Java EE Web Context Root option. In the field beneath the option, enter EssDemoApp.
	In the navigator, expand to File Groups > Web Files > Contributors.
	In the Contributors window, select the following check boxes as shown in Figure 7-9:

	
Project Output Directory

	
Project HTML Root Directory

	
Project Source Path

Figure 7-9 Update the WAR Archive Options

[image: Description of "Figure 7-9 Update the WAR Archive Options" follows]

	In the navigator, expand to File Groups > Web Files > Filters.
	In the Filters window, on the Files tab, ensure that the following folders are selected:

	
oracle (and its contents)

	
WEB-INF (and its contents)

Click OK.

	Navigate to the Project Properties > Libraries and Classpath window. Use the Add Library button to add the following libraries:

	
ADF Common Runtime

	
ADF Faces Runtime11

	
ADF Common Web Runtime

	
ADF Page FlowRuntime

	
ADF Controller Schema

	
ADF Controller Runtime

7.3.5.3 Create the Application MAR File

To create the MAR options:

	Click the Application menu, then click Application Properties.
	In the Application Properties dialog, in the navigation pane, click Deployment.
	In the Under Deployment Profiles window, delete all profiles listed in the window and then click New.
	Select MAR File Option from dropdown menu and enter MAR_EssDemoApp as the deployment profile's name.
	Click OK.
	In the Edit MAR Deployment Profile Properties dialog, in the navigation pane, navigate to Metadata File Groups > User Metadata.
	Add the EssDemoApp/EssHost/essmeta directory.

This selects the appropriate Oracle Enterprise Scheduler user metadata for the application.

	Click OK.
	Click Edit in the Edit MAR Deployment Profile Properties window.
	Navigate to Metadata File Groups > User Metadata > Directories and select Directories. Select the bottom most directory in the tree. Select the default values.

This is the directory from which the name space is created. For example, when you select oracle, the name space is oracle. When you select the product directory, the names pace is oracle/apps/product. To create the name space /oracle/esshost/metadata, click the metadata directory. The folder you select in this dialog determines the top-level name space in the adf-config.xml file.

	Click OK.

7.3.5.4 How to Update the EAR Options

In this section, you'll prepare an EAR file that assembles the EssDemoApp sample application. The EAR archive consists of the following:

	
EJB JAR including the Oracle Enterprise Scheduler Java job implementation.

	
WAR archive with the EssDemo servlet.

To update the EAR options:

	Click the Application menu, then click Application Properties.
	In the Application Properties dialog, in the navigation pane, click Deployment.
	In the Deployment window, click New.
	In the Create Deployment Profile dialog, select EAR File from the dropdown menu. In the Name field, enter EAR_EssDemoApp as the deployment profile's name.

Click OK.

	In the Edit EAR Deployment Profile Properties dialog, in the navigation pane on the left, click Application Assembly.
	In the Application Assembly window, under Java EE Modules, ensure that all item check boxes are selected.
	In the EAR Options window, select Include Manifest File and add EssHost/src/META-INF/MANIFEST.MF.
	Click OK.
	In the Application Properties dialog, click OK.

Figure 7-10 Update the EAR Archive Options

[image: Description of "Figure 7-10 Update the EAR Archive Options" follows]

7.3.5.5 Configure Security for the Application

You must create a user that is assigned to the EssApplicationRole role. The following steps describe how to configure security for the back-end hosting application:

	Select Application > Secure > Configure ADF Security from the main menu.
	In the ADF Security page of the Configure ADF Security wizard, select ADF Authentication, then click Next.
	In the Authentication Type page, choose EssClient.jpr in the WebProject dropdown.
	Select HTTP Basic Authentication.
	Click Finish.

A file named jps-config.xml is generated. You can find this file in the Application Resources panel by expanding Descriptors and META-INF. This file contains a security context or security stripe named after the application.

	Select Application > Secure > Test Users & Roles from the main menu.

A file named jazn-data.xml is generated.

	In the overview editor for the jazn-data.xml file, click the Add button in the Users list.

Set the name to EssUser and set the password to welcome1.

	Click the Application Roles navigation tab to open the Application Roles window as shown in Figure 7-11.

Figure 7-11 Application Roles Window

[image: Description of "Figure 7-11 Application Roles Window" follows]

	Click the Add button in the Roles list and choose Add New Role.
	Set the name to EssApplicationRole.
	Click the Add button in the Mappings tab and choose Add User.
	Select EssUser and click OK.

7.3.5.6 Add Resource Grants for ESS Application Role in the Job Definition

The following steps describe how to update the job definition by adding resource grants for the ESS application role.

	In the HelloWorldJobDefinition.xml Job Definition page, in the Description field, enter HelloWorld Example.
	In the System Properties section, click the Add button.
	In the Add System Property dialog, from the Name dropdown menu, select SYS_effectiveApplication.
	In the Initial Value field, enter EssDemoApp.
	Click OK.
	In the Access Control section, click the Add button.
	In the Add Access Control dialog, from the Role dropdown menu, select EssApplicationRole. This is the role that you created Configure Security for the Application.
	Select the Read and Execute actions.
	Click OK.
	Verify that the contents of the generated file are identical to Example 7-2.

Example 7-2 jazn-data.xml

<?xml version = '1.0' encoding = 'UTF-8' standalone = 'yes'?>
<jazn-data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://xmlns.oracle.com/oracleas/schema/jazn-data.xsd">
 <jazn-realm default="jazn.com">
 <realm>
 <name>>Username / password is: EssUser / welcome1</name>
 <users>
 <user>
 <name>EssUser</name>
 <credentials>{903}LmqEdVs3zO0/QmP90tihXv4nRq5YqYSL</credentials>
 </user>
 </users>
 </realm>
 </jazn-realm>
 <policy-store>
 <applications>
 <application>
 <name>EssDemoApp</name>
 <app-roles>
 <app-role>
 <name>EssApplicationRole</name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <members>
 <member>
 <class>oracle.security.jps.internal.core.principals.JpsXmlUserImpl</class>
 <name>EssUser</name>
 </member>
 </members>
 </app-role>
 </app-roles>
 <jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>EssApplicationRole</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.as.scheduler.security.MetadataPermission</class>
 <name>oracle.esshost.metadata.JobDefinition.HelloWorldJobDefinition</name>
 <actions>Read,Update,Delete,Execute</actions>
 </permission>
 </permissions>
 </grant>
 </jazn-policy>
 </application>
 </applications>
 </policy-store>
 <system-policy/>
</jazn-data>

7.3.5.7 Configure the weblogic-application.xml File

Use the source editor to remove the following lines from weblogic-application.xml:

<library-ref>
 <library-name>oracle.applcp.runtime</library-name>
</library-ref>
<library-ref>
 <library-name>oracle.xdo.runtime</library-name>
</library-ref>

7.3.5.8 Update the EssHost MANIFEST File

Replace the content of the EssHost META-INF/MANIFEST.INF file with the following lines:

Manifest-Version: 1.0
Weblogic-Application-Version: 3.0
Extension-List: essruntime
essruntime-Extension-Name: oracle.ess.runtime
essruntime-Specification-Version: 12

7.3.5.9 Change the Realm Field

Navigate to EssClient > Web Content > WEB-INF > web.xml as shown in Figure 7-12. Change the value in the Security window Realm field from:

	
jazn.com

to:

	
Username / password is: EssUser / welcome1

Figure 7-12 Change the Realm Field

[image: Description of "Figure 7-12 Change the Realm Field" follows]

7.3.5.10 Edit the adf-config.xml File for the EssDemoApp Application

	In the Application Resources panel, expand Descriptors, expand ADF META-INF, and double-click adf-config.xml.
	In the source editor, replace the contents of the adf-config.xml file with the XML code shown in Example 7-3.

Example 7-3 adf-config.xml File for a EssDemoApp Application

<?xml version="1.0" encoding="UTF-8" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config" xmlns:sec="http://xmlns.oracle.com/adf/security/config">
 <sec:adf-security-child xmlns="http://xmlns.oracle.com/adf/security/config">
 <CredentialStoreContext credentialStoreClass="oracle.adf.share.security.providers.jps.CSFCredentialStore" credentialStoreLocation="../../src/META-INF/jps-config.xml"/>
 <sec:JaasSecurityContext initialContextFactoryClass="oracle.adf.share.security.JAASInitialContextFactory" jaasProviderClass="oracle.adf.share.security.providers.jps.JpsSecurityContext"
 authorizationEnforce="false" authenticationRequire="true"/>
 </sec:adf-security-child>
 <adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config version="11.1.1.000" xmlns="http://xmlns.oracle.com/mds/config">
 <persistence-config>
 <metadata-namespaces>
 <namespace path="/oracle/as/ess/core" metadata-store-usage="ess-core"/>
 </metadata-namespaces>
 <metadata-store-usages>
 <metadata-store-usage id="ess-core" deploy-target="false" default-cust-store="false">
 <metadata-store class-name="oracle.mds.persistence.stores.db.DBMetadataStore">
 <property name="jndi-datasource" value="jdbc/mds-ESS_MDS_DS"/>
 <property name="repository-name" value="mds-ESS_MDS_DS"/>
 <property name="partition-name" value="essapp-internal-partition"/>
 </metadata-store>
 </metadata-store-usage>
 </metadata-store-usages>
 </persistence-config>
 </mds-config>
 </adf-mds-config>
</adf-config>

7.3.6 Deploying and Running the EssDemoApp Application

After you complete the steps to build and assemble the EssDemoApp application you need to deploy the application to Oracle WebLogic Server. After you successfully deploy an application you can run the application. For the EssDemoApp sample application you use a browser to run the EssDemo servlet to submit job requests to Oracle Enterprise Scheduler running on Oracle WebLogic Server.

7.3.6.1 How to Deploy the EssDemoApp Application

To deploy the EssDemoApp application you need a properly configured and running Oracle WebLogic Server, and you need an active metadata server. When you deploy the application Oracle JDeveloper brings up the Deployment Configuration page. Select your repository from the dropdown list and Enter a partition name (the partition name defaults to application name).

To deploy the EssDemoApp application:

	
Check to make sure the Oracle WebLogic Server is up and running. If the Oracle WebLogic Server is not running, start the server. Make sure Oracle JDeveloper has a connection to the server (for this example, "MyConnection").

	
In the Application Navigator, select the EssDemoApp application.

	
In the Application Navigator from the Application Menu select Deploy > EAR_EssDemoApp > to > MyConnection.

	
Oracle JDeveloper shows the Deployment Configuration page. Select the appropriate options for your Metadata Repository.

	
Make the following choices when prompted during deployment. In the Metadata Repository section choose the repository and partition names as follows and shown in Figure 7-13:

	
Repository Name: mds-ESS_MDS_DS

	
Partition Name: essUserMetadata

Figure 7-13 Oracle Deployment Configuration Window

[image: Description of "Figure 7-13 Oracle Deployment Configuration Window" follows]

	
Click Deploy.

	
Verify the deployment using the Deployment Log.

7.3.6.2 How to Run the EssDemoApp Sample Application

To run the EssDemoApp sample application you access the EssDemo servlet in a browser.

To access the EssDemo servlet:

	Enter the following URL in a browser:

http://host:http-port/context-root/essdemo

For example,

http://myserver.example.com:7101/EssDemoApp/essdemo

This shows the EssDemo servlet, as shown in Figure 7-14.

Figure 7-14 Running EssDemo Servlet for Oracle Enterprise Scheduler Sample Application

[image: Running EssDemo servlet for the sample application]

	Select a job definition from the Job drop-down menu.
	Select a value from the Schedule drop-down menu.
	Click Submit.
	Refresh the browser to see the progress of the job in the Request Status area, as shown in Figure 7-15.

Figure 7-15 Running EssDemo Servlet with Request Status for Submitted Requests

[image: Running EssDemo servlet with request status]

7.3.6.3 How to Purge Jobs in the EssDemoApp Sample Application

Using the EssDemoApp sample application and the EssDemo servlet you can remove completed jobs from the Request Status list.

To remove completed jobs:

	Click Purge to purge a request.
	Click Cancel to cancel a request that is either RUNNING or WAITING.

7.4 Building Split Submitting and Hosting Applications

When you build and deploy Oracle Enterprise Scheduler applications, you can use two split applications -- a job submission application, a submitter, and a job execution application, a hosting application. Using this design, you need to configure and deploy each application with options that support such a split configuration. In addition, some Oracle Enterprise Scheduler deployments use a separate Oracle WebLogic Server for the hosting and the submitting applications; for this deployment option the submitting application and the hosting application are deployed to separate Oracle WebLogic Servers. When the submitter application and the hosting application for Oracle Enterprise Scheduler run on separate Oracle WebLogic Servers, you need to configure the Oracle WebLogic Server for the hosting application so that the submitting application can find the hosting application.

Note:

This section creates a new application. If you have created EssDemoApp with the sections beginning with Creating the Application and Projects for EssDemoApp Application, note that this section creates a project of the same name. You'll need to choose a different location for the application or delete the previous application in order to use the EssDemoApp application name in this section.

To build the sample split applications, you do the following:

	Build a back-end hosting application that includes the code to be scheduled and run.
	Build a front-end submitter application initiates the job requests.

This section includes the following subsections:

	
How to Create the Back-End Hosting Application for EssDemoApp

	
How to Create the Front-End Submitter Application for Oracle Enterprise Scheduler

7.4.1 How to Create the Back-End Hosting Application for EssDemoApp

Using Oracle JDeveloper you create the back-end application. To create the EssDemoApp back-end sample application you do the following:

	
Create a back-end application and project.

	
Configure security.

	
Define the deployment descriptors.

	
Create the Java class that implements the Oracle Enterprise Scheduler executable interface.

	
Create the Oracle Enterprise Scheduler metadata to describe the job

	
Assemble the application.

	
Deploy the application.

7.4.1.1 Creating the Back-End Hosting Application

To work with Oracle Enterprise Scheduler with a split application you use Oracle JDeveloper to create the back-end application and project, and to add Oracle Enterprise Scheduler extensions to the project.

To create the back-end hosting application:

	
From JDeveloper choose File > New from the main menu.

	
In the New Gallery, expand General, select Applications and then Custom Application, and click OK.

	
In the Name your application page of the Create Generic Application wizard, set the Application Name field to EssDemoApp.

	
Click Next.

	
In the Name your project window, enter the name for the host project you're creating and select supporting technologies. This project is where you create and save the Oracle Enterprise Scheduler metadata

	
In the Project Name field, enter a name for your hosting project. For this sample application, enter SuperEss.

	
On the Project Features tab, under Available, double-click ESS Host Support and ESS Job Support so that both are listed under Selected on the right side of the dialog box.

For more on these, see Understanding Oracle Enterprise Scheduler Application Support Created by Oracle JDeveloper.

	
Click Next.

Figure 7-16 Create the Back-End Hosting Application

[image: Description of "Figure 7-16 Create the Back-End Hosting Application" follows]

	
In the Configure Java Settings page, change the default package to oracle.apps.ess.howto, then click Next.

	
In the Configure EJB Settings page, select Generate ejb-jar.xml in this project and click Next.

	
In the Configure ESS Host Support settings page, in the Application Id field, enter EssDemoApp.

	
Click Finish.

7.4.1.2 Configuring Security for the Back-End Hosting Application

You need to create a user that is assigned to the EssDempAppRole role.

To configure security for the back-end hosting application:

	Select Application > Secure > Configure ADF Security from the main menu.
	In the ADF Security page of the Configure ADF Security wizard, select ADF Authentication, then click Next.
	In the Authentication Type page, accept the default values as this application does not have a web module to secure.
	Click Finish.

A file named jps-config.xml is generated. You can find this file in the Application Resources panel by expanding Descriptors, and expanding META-INF. This file contains a security context or security stripe named after the application.

	Select Application > Secure > Test Users & Roles from the main menu.

A file named jazn-data.xml is generated.

	In the overview editor for the jazn-data.xml file, click the Add button in the Users list.
	Set the name to EssDemoAppUser and set the password to welcome1.
	Click the Application Roles navigation tab.
	Click the Add button in the Roles list and choose Add New Role.
	Set the name to EssDemoAppRole.
	Click the Add button in the Mappings tab and choose Add User.
	Select EssDemoAppUser and click OK.

Figure 7-17 Configuring Security

[image: Description of "Figure 7-17 Configuring Security" follows]

7.4.1.3 Defining Metadata for the Back-End Hosting Application

To use the Oracle Enterprise Scheduler split application to submit a job request you need to create metadata that defines a job request, including the following:

	
A job type: this specifies an execution type and defines a common set of parameters for a job request.

	
A job definition: this is the basic unit of work that defines a job request in Oracle Enterprise Scheduler.

To create metadata for the back-end hosting application:

	
In the Application Navigator, select the SuperEss project.

	
Press Ctrl-N. This displays the New Gallery.

	
In the Categories area expand Business Tier and select Enterprise Scheduler Metadata.

	
In the Items area, select Job Definition as shown in Figure 7-18.

Figure 7-18 Adding Job Definition to the Sample Application

[image: Adding Job Definition Metadata to the Sample Application]

	
Click OK. This displays the Create Job Definition dialog.

	
In the Create Job Definition dialog, specify the following as shown in Figure 7-19:

	
In the Name field, enter a name for the job definition. For this example, enter the name: HelloWorldJobDef.

	
In the Package field, enter a package name. For this example, enter oracle/apps/ess/howto/metadata.

	
In the Job Type field, from the dropdown list select /oracle/as/ess/core/JavaJobType.

If job types are not listed in the dropdown, ensure that you started Oracle JDeveloper as described in How to Start JDeveloper to Support Building Oracle Enterprise Scheduler Applications.

	
Ensure that the Create Java Class check box and the Synchronous option button are selected.

By selecting the Create Java Class check box, you're asking that a Java class for your Java job be created, saving you the trouble of creating one later. Selecting the Synchronous option specifies that this is a synchronous Java job.

	
Under Java Class, specify details for the Java class you're creating. In the Java Package field, enter its package name -- here, enter oracle.apps.ess.howto. In the Class Name field, enter a name for the class -- here, enter HelloWorldJob.

	
Click OK.

This creates the Java class you requested, along with the HelloWorldJobDefinition.xml file. Oracle JDeveloper displays XML file's contents in the Job Definition page.

On the Job Definition page, you can edit job definition metadata, including properties that specify parameters for the job, access to this metadata, and a resource bundle to use for localization.

Figure 7-19 Create a Job Definition

[image: Description of "Figure 7-19 Create a Job Definition" follows]

	
In the HelloWorldJobDef.xml Job Definition page, in the Description field, enter HelloWorld Example.

	
In the System Properties section, click the Add button.

	
In the Add System Property dialog, from the Name dropdown, select SYS_effectiveApplication.

	
In the Initial Value field, enter EssDemoApp.

	
Click OK.

	
In the Access Control section, click the Add button.

	
In the Add Access Control dialog, from the Role dropdown, ensure that EssDemoAppRole is selected. This is the role that you created during Configuring Security for the Back-End Hosting Application.

	
Select the Read and Execute actions as shown in Figure 7-20.

Figure 7-20 Add Access Control Dialog

[image: Description of "Figure 7-20 Add Access Control Dialog" follows]

	
Click OK.

7.4.1.4 Creating a Java Implementation Class in the Back-End Hosting Application

To define an application that runs a Java class under control of Oracle Enterprise Scheduler you need to create the Java class that implements the Oracle Enterprise Scheduler Executable interface. The Executable interface specifies the contract that allows you to use Oracle Enterprise Scheduler to invoke a Java class.

To implement the execute method:

	In the Application Navigator, locate the class you created by expanding the items in the projects panel to SuperEss > Application Sources > oracle.apps.ess > howto > HelloWorldJob.java.
	Open HelloWorldJob.java in the source editor.
	In the source editor, add the following code to implement the execute method. The execute method is where execution for a Java job begins. The code inside your method should look something like Example 7-4.

Example 7-4 HelloWorldJob Execute Method Code

StringBuilder sb = new StringBuilder(1000);
sb.append("\n==================================");
sb.append("\n= EssDemoApp request is now running");
long myRequestId = ctx.getRequestId();
sb.append("\n= Request Id = " + myRequestId);
sb.append("\n= Request Properties:");
for (String paramKey : params.getNames()) {
 Object paramValue = params.getValue(paramKey);
 sb.append("\n=\t(" + paramKey + ", " + paramValue + ")");
}
sb.append("\n=");
sb.append("\n==================================");
Logger logger = Logger.getLogger("oracle.apps.ess.howto");
logger.info(sb.toString());

7.4.1.5 Setting Oracle Enterprise Scheduler Properties

With Oracle Enterprise Scheduler properties, you set values for settings used in the ejb-jar.xml file associated with the application. These properties include the following:

	
Logical Application Name

Specifies the logical name used to identify this application. Separate from the application name used when deploying the application to the container, this value lets you safely hard code the logical application name in source code.

	
Application Policy Stripe

Specifies which JPS security stripe (or "security context") should be used to perform security checks.

	
JPS Interceptor Application Name

Specifies the application stripe name used at runtime to determine which set of security policies are applicable.

To set values for Oracle Enterprise Scheduler properties:

	In the Application Navigator, right-click the SuperEss project, then click Enterprise Scheduler Properties.
	In the Enterprise Scheduler Properties dialog, enter EssDemoApp for all three of the fields provided: Logical Application Name, Application Policy Stripe, and JPS Interceptor Application Name.
	Click OK.

7.4.1.6 Assembling the Back-End Hosting Application for Oracle Enterprise Scheduler

After you create the back-end sample application you use ­Oracle JDeveloper to assemble the application.

To assemble the back-end application you do the following:

	
Create the EJB Java Archive

	
Create the application MAR and EAR files

7.4.1.6.1 How to Assemble the EJB JAR File for the Back-End Hosting Application

The EJB Java archive file includes descriptors for the Java job implementations.

To create the EJB-JAR deployment profile:

	In the Application Navigator, in the Projects panel, right-click the SuperEss project, then click Project Properties.
	In the Project Properties window, in the navigator, click Deployment.
	Under Deployment Profiles, delete all profiles listed in the window, then click New.
	In the Create Deployment Profile dialog, from the Profile Type dropdown, select EJB JAR file.
	In the Name field, enter a name for the EJB. For this example, enter JAR_SuperEssEjbJar.
	Click OK.
	In the Edit EJB JAR Deployment Profile Properties dialog, in the navigator, expand to File Groups > Project Output > Contributors.
	In the Contributors window, select the following check boxes:

	
Project Output Directory

	
Project Source Path

	
Project Dependencies

	In the navigator, expand to File Groups > Project Output > Filters.
	In the Filters window, on the Files tab, ensure that the following folders are selected:

	
META-INF (and its contents)

	
oracle (and its contents)

	In the JAR Option window, deselect the Include Manifest File item.
	Click OK.
	In the Project Properties dialog, click OK.

7.4.1.6.2 How to Assemble the MAR and EAR Files for the Back-End Hosting Application

In this section, you'll prepare an EAR file that assembles the EssDemoApp sample application. The EAR archive consists of the EJB JAR including the Oracle Enterprise Scheduler Java job implementation.

To update the EAR options:

	Click the Application menu, then click Application Properties.
	In the Application Properties dialog, in the navigation pane, click Deployment.
	Select the default MAR file profile, then click Edit.
	In the Edit MAR Deployment Profile Properties dialog, in the navigation pane, expand to Metadata File Groups > User Metadata then click the Add button to add a contributor and add this directory: EssDemoApp/SuperEss/essmeta
	Click OK.
	Click Edit on Edit MAR Deployment Profile Properties window.
	In the Directories window, select the oracle.apps.ess.howto check box, then click OK.
	Delete all profiles listed in the Under Deployment Profiles window and click New.
	Add the EssDemoApp/EssHost/essmeta directory.
This selects the appropriate Oracle Enterprise Scheduler user metadata for the application.

	Click OK.
	Click Edit on Edit MAR Deployment Profile Properties window.
	In the Create Deployment Profile dialog, from the Profile Type dropdown, select EAR File.
	In the Name field, enter EAR_EssDemoAppEar.

Click OK.

	In the Edit EAR Deployment Profile Properties dialog, in the navigation pane, select General.
	In the General window, in the Application Name field, enter EssDemoApp.
	In the navigation pane, select Application Assembly.
	In the Application Assembly window, ensure that all check boxes are selected as shown in Figure 7-21.

Figure 7-21 Edit EAR Deployment Profile Properties

[image: Description of "Figure 7-21 Edit EAR Deployment Profile Properties" follows]

	In the EAR Options window, select Include Manifest File and add EssDemoApp/SuperEss/src/META-INF/MANIFEST.MF.
	Click OK.
	In the Application Properties dialog, click OK.

7.4.1.7 Update the SuperEss MANIFEST File

Replace the content of the SuperEss META-INF/MANIFEST.INF file with the following lines:

Manifest-Version: 1.0
Weblogic-Application-Version: 3.0
Extension-List: essruntime
essruntime-Extension-Name: oracle.ess.runtime
essruntime-Specification-Version: 12

7.4.1.8 Configure the weblogic-application.xml File

Use the source editor to remove the following lines from weblogic-application.xml:

Path to the Weblogic application:

EssDemoApp/src/META-INF/weblogic-application.xml

<library-ref>
 <library-name>oracle.applcp.runtime</library-name>
</library-ref>
<library-ref>
 <library-name>oracle.xdo.runtime</library-name>
</library-ref>

7.4.1.9 Deploying the Back-End Hosting Application

After assembling the application, you can deploy it to the server.

To deploy the back-end hosting application:

	From the main menu, choose Application > Deploy > EAR_EssDemoAppEar...
	Set up and deploy the application to a container.
	When the Deployment Configuration dialog appears, make a note of the default values, but do not change them.

7.4.1.10 Edit the adf-config.xml File for the EssDemoApp Application

In the Application Resources panel:

	Expand Descriptors.
	Expand ADF META-INF.
	Double-click adf-config.xml.
	In the source editor, replace the contents of the adf-config.xml file with the XML shown in Example 7-5.

Example 7-5 adf-config.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config" xmlns:config="http://xmlns.oracle.com/bc4j/configuration">
 <adf-security-child xmlns="http://xmlns.oracle.com/adf/security/config">
 <JaasSecurityContext initialContextFactoryClass="oracle.adf.share.security.JAASInitialContextFactory" jaasProviderClass="oracle.adf.share.security.providers.jps.JpsSecurityContext"
 authorizationEnforce="false" authenticationRequire="true"/>
 </adf-security-child>
 <adf-adfm-config xmlns="http://xmlns.oracle.com/adfm/config">
 <defaults changeEventPolicy="ppr" useBindVarsForViewCriteriaLiterals="true" useBindValuesInFindByKey="true"/>
 <startup>
 <amconfig-overrides>
 <config:Database jbo.locking.mode="optimistic"/>
 </amconfig-overrides>
 </startup>
 </adf-adfm-config>
 <adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config version="11.1.1.000" xmlns="http://xmlns.oracle.com/mds/config">
 <persistence-config>
 <metadata-namespaces>
 <namespace path="/oracle/as/ess/core" metadata-store-usage="ess-core"/>
 </metadata-namespaces>
 <metadata-store-usages>
 <metadata-store-usage id="ess-core" deploy-target="false" default-cust-store="false">
 <metadata-store class-name="oracle.mds.persistence.stores.db.DBMetadataStore">
 <property name="jndi-datasource" value="jdbc/mds-ESS_MDS_DS"/>
 <property name="repository-name" value="mds-ESS_MDS_DS"/>
 <property name="partition-name" value="essapp-internal-partition"/>
 </metadata-store>
 </metadata-store-usage>
 </metadata-store-usages>
 </persistence-config>
 </mds-config>
 </adf-mds-config>
</adf-config>

7.4.2 How to Create the Front-End Submitter Application for Oracle Enterprise Scheduler

In an Oracle Enterprise Scheduler split application you use the Oracle Enterprise Scheduler APIs to submit job requests from a front-end application. The EssDemoAppUI application provides a Java servlet for a servlet based user interface for submitting job requests (using Oracle Enterprise Scheduler).

To create the front-end submitter sample application you do the following:

	
Create a front-end application and project.

	
Configure the ejb-jar.xml file.

	
Create the web project

	
Configure security.

	
Create the HTTP servlet.

	
Edit the web.xml file.

	
Edit the weblogic-application.xml file.

	
Edit the adf-config file.

	
Assemble the application.

	
Deploy the application.

7.4.2.1 Creating the Front-End Submitter Application

You use JDeveloper to build the front-end submitter application using similar steps as you used for the back-end hosting application.

To create the front-end submitter application:

	Complete the steps in Creating the Back-End Hosting Application but this time use ESSDemoAppUI as the name of the application. When you configure ESS host support settings, in the Application Id field, be sure to enter EssDemoApp.

7.4.2.2 Creating the SuperWeb Project

You need to create a web project for the servlet.

To create the SuperWeb project:

	
Right-click the SuperEss project and choose New.

	
In the New Gallery, expand General, select Projects and then Custom Project, and click OK.

	
In the Name your project window, enter the name for the host project you're creating and select supporting technologies. This project is where you create and save the Oracle Enterprise Scheduler metadata

	
In the Project Name field, enter a name for your hosting project. For this sample application, enter SuperWeb.

	
On the Project Features tab, under Available, double-click ESS Client Support, JSP and Servlets, so that both are listed under Selected on the right side of the dialog box.

For more on ESS Client Support, see Understanding Oracle Enterprise Scheduler Application Support Created by Oracle JDeveloper.

Click Next.

	
In the Default Package field of the Configure Java settings window, enter oracle.apps.ess.howto. Click Next.

	
In the Configure EJB Settings window, under EJB Version, select the Enterprise JavaBeans 3.0 option button.

	
In the Configure EJB Settings window, under EJB Version 3.x, select the Generate ejb-jar.xml in this project check box.

	
Click Finish.

7.4.2.3 Configuring Security for the Front-End Submitter Application

You need to configure security for the application. You do not have to create any users or roles as the EssDemoAppUI application simply shares the users and roles created by the EssDemoApp application.

To configure security for the front-end submitter application:

	Select Application > Secure > Configure ADF Security from the main menu.
	In the ADF Security page of the Configure ADF Security wizard, select ADF Authentication.
	In the Authentication Type page, select SuperWeb.jpr from the Web Project dropdown list.
	Select HTTP Basic Authentication.

Figure 7-22 Configure ADF Security

[image: img/GUID-DDE894F4-E276-48FD-A27A-862A0FB6D2CF-default.jpg]

	Click Finish.

A file named jps-config.xml is generated. You can find this file in the Application Resources panel by expanding Descriptors, and expanding META-INF.

7.4.2.4 Creating the HTTP Servlet for the Front-End Submitter Application

Normally, more complex user interfaces that are built on heavy weight frameworks such as Oracle Application Development Framework are employed, but for the sake of simplicity, you use a basic HTTP servlet for the submitter application.

To create the HTTP Servlet for the front-end submitter application:

	Right-click the SuperWeb project and choose New.
	In the New Gallery, expand Web Tier, select Servlets and then HTTP Servlet, and click OK.
	In the Create HTTP Servlet - Step 1 of 3: Servlet Information page, enter EssDemoAppServlet in the Class field.
	Change the selection from Annotation to Configuration File(web.xml).
	Enter oracle.apps.ess.howto in the Package field and click Next.
	Click Finish.
	In the source editor, replace the contents of ESSDemoAppServlet.java with the code in Example 7-6.

Example 7-6 HTTP Servlet Code for the Front-End Submitter Application

package oracle.apps.ess.howto;

import java.io.IOException;
import java.io.PrintWriter;
import java.io.StringWriter;

import java.util.ArrayList;
import java.util.Calendar;
import java.util.Enumeration;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.ListIterator;
import java.util.Map;
import java.util.Set;
import java.util.SortedSet;
import java.util.TreeSet;
import java.util.logging.Level;
import java.util.logging.Logger;
import java.util.regex.Pattern;

import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import oracle.as.scheduler.MetadataObjectId;
import oracle.as.scheduler.MetadataObjectId.MetadataObjectType;
import oracle.as.scheduler.MetadataService;
import oracle.as.scheduler.MetadataService.QueryField;
import oracle.as.scheduler.MetadataServiceHandle;
import oracle.as.scheduler.RequestDetail;
import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.RuntimeService;
import oracle.as.scheduler.RuntimeServiceHandle;
import oracle.as.scheduler.State;
import oracle.as.scheduler.core.JndiUtil;

public class EssDemoAppServlet extends HttpServlet {
 @SuppressWarnings("compatibility:4685800289380934682")
 private static final long serialVersionUID = 1L;

 private static final String CONTENT_TYPE = "text/html; charset=UTF-8";
 private static final String MESSAGE_KEY = "Message";
 private static final String PATH_SUBMIT = "/submitRequest";
 private static final String PATH_ALTER = "/alterRequest";
 private static final String MDO_SEP = ";";
 private static final String ACTION_CANCEL = "Cancel";
 private static final String ESS_UNAVAIL_MSG =
 "<p>Enterprise Scheduler Service is currently unavailable. Cause: %s</p>";

 private enum PseudoScheduleChoices {
 Immediately(0),
 InTenSeconds(10),
 InTenMinutes(10 * 60);

 @SuppressWarnings("compatibility:-5637079380819677366")
 private static final long serialVersionUID = 1L;

 private int m_seconds;

 private PseudoScheduleChoices(int seconds) {
 m_seconds = seconds;
 }

 public int getSeconds() {
 return m_seconds;
 }
 }

 public EssDemoAppServlet() throws ServletException {
 super();
 }

 @Override
 public void init(ServletConfig config) throws ServletException {
 super.init(config);
 }

 @Override
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType(CONTENT_TYPE);

 HttpSession session = request.getSession(true);
 String lastMessage = String.valueOf(session.getAttribute(MESSAGE_KEY));

 if ("null".equals(lastMessage)) {
 lastMessage = "";
 }

 try {
 RuntimeLists runtimeLists = getRuntimeLists();
 MetadataLists metadataLists = getMetadataLists();
 renderResponse(metadataLists, runtimeLists,
 request, response, lastMessage);
 } catch (ServletException se) {
 throw se;
 } catch (Exception e) {
 throw new ServletException(e);
 }
 }

 @Override
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType(CONTENT_TYPE);
 request.setCharacterEncoding("UTF-8");

 HttpSession session = request.getSession(true);
 String pathInfo = request.getPathInfo();

 // Clear the message on every post request
 StringBuilder message = new StringBuilder("");

 try {
 // Select each handler based on the form action
 if ("".equals(pathInfo)) {
 // No processing
 } else if (PATH_SUBMIT.equals(pathInfo)) {
 postSubmitRequest(request, message);
 } else if (PATH_ALTER.equals(pathInfo)) {
 postAlterRequest(request, message);
 } else {
 message.append(String.format("<p>No handler for pathInfo=%s</p>",
 pathInfo));
 }
 }
 catch (ServletException se) {
 Throwable t = se.getCause();
 String cause = (t == null) ? se.toString() : t.toString();
 message.append (String.format(ESS_UNAVAIL_MSG, cause));
 }

 // Storing the messages in the session allows them to persist
 // through the redirect and across refreshes.
 session.setAttribute(MESSAGE_KEY, message.toString());

 // render the page by redirecting to doGet(); this intentionally
 // strips the actions and post data from the request.
 response.sendRedirect(request.getContextPath() +
 request.getServletPath());
 }

 /**
 * Handle the job submission form.
 * @param request
 * @param message
 * @throws ServletException
 */
 private void postSubmitRequest(HttpServletRequest request,
 StringBuilder message)
 throws ServletException
 {
 String jobDefName = request.getParameter("job");
 String scheduleDefName = request.getParameter("schedule");

 // Various required args for submission
 Calendar start = Calendar.getInstance();
 start.add(Calendar.SECOND, 2);

 // Launch the job based on form contents
 if (jobDefName == null || scheduleDefName == null) {
 message.append("Both a job name and a schedule name must be specified\n");
 } else {
 PseudoScheduleChoices pseudoSchedule = null;

 // See if schedule given is actually a pseudo schedule
 try {
 pseudoSchedule = PseudoScheduleChoices.valueOf(scheduleDefName);
 } catch (IllegalArgumentException e) {
 // The string is not a valid member of the enum
 pseudoSchedule = null;
 }

 MetadataObjectId scheduleDefId = null;
 String scheduleDefNamePart = null;
 MetadataObjectId jobDefId = stringToMetadataObjectId(jobDefName);

 // Don't look up schedules that aren't real
 if (pseudoSchedule != null) {
 scheduleDefNamePart = scheduleDefName;
 start.add(Calendar.SECOND, pseudoSchedule.getSeconds());
 } else {
 scheduleDefId = stringToMetadataObjectId(scheduleDefName);
 scheduleDefNamePart = scheduleDefId.getNamePart();
 }

 String jobDefNamePart = jobDefId.getNamePart();
 String requestDesc = jobDefNamePart + "@" + scheduleDefNamePart;

 Logger logger = getLogger();
 long requestId = submitRequest(pseudoSchedule, requestDesc,
 jobDefId, scheduleDefId, start, logger);

 // Populate the message block based on results
 message.append(String.format("<p>New request %d launched using %s</p>",
 requestId, requestDesc));
 }
 }

 private Long submitRequest(final PseudoScheduleChoices pseudoSchedule,
 final String requestDesc,
 final MetadataObjectId jobDefId,
 final MetadataObjectId scheduleDefId,
 final Calendar start,
 final Logger logger)
 throws ServletException
 {
 RuntimeServicePayload<Long> myPayload = new RuntimeServicePayload<Long>() {
 @Override
 Long execute(RuntimeService service,
 RuntimeServiceHandle handle,
 Logger logger)
 throws Exception
 {
 RequestParameters params = new RequestParameters();
 return (null != pseudoSchedule)
 ? service.submitRequest(handle, requestDesc, jobDefId,
 start, params)
 : service.submitRequest(handle, requestDesc, jobDefId,
 scheduleDefId, null,
 start, null, params);
 }
 };
 try {
 return performOperation(myPayload, logger);
 } catch (Exception e) {
 throw new ServletException("Error submitting request using job: " +
 jobDefId + " and schedule: " +
 scheduleDefId, e);
 }
 }

 /**
 * Handle the "Cancel" and "Purge" actions from the form enclosing
 * the Request Status table.
 * @param request
 * @param message
 * @throws ServletException
 */
 private void postAlterRequest(HttpServletRequest request,
 StringBuilder message)
 throws ServletException
 {
 String cancelID = null;

 /*
 * there are a few assumptions going on here...
 * the HTTP button being used to transmit the action and
 * request is backwards from its normal usage (eg. the name
 * should be invariable, and the value variable). Because we
 * want to display either "Purge" or "Cancel" on the button, and
 * transmit the reqId with it, we are reversing the map entry
 * to get the key (which in this case is the reqID), and
 * match it to the value (Purge or Cancel).
 * Assumptions are that there is only one entry in the map
 * per request (one purge or cancel). Also, that the datatypes
 * for the key and value are those documented for
 * ServletRequest (<K,V> = <String, String[]>).
 */
 Map requestMap = request.getParameterMap();
 Iterator mapIter = requestMap.entrySet().iterator();
 while (mapIter.hasNext()) {
 Map.Entry entry = (Map.Entry)mapIter.next();
 String key = (String)entry.getKey();
 String[] values = (String[])entry.getValue();
 if (ACTION_CANCEL.equals(values[0])) {
 cancelID = key;
 }
 }

 if (cancelID != null) {
 try {
 final String cancelId2 = cancelID;
 RuntimeServicePayload<Void> myPayload = new RuntimeServicePayload<Void>() {
 @Override
 Void execute(RuntimeService service,
 RuntimeServiceHandle handle,
 Logger logger)
 throws Exception
 {
 service.cancelRequest(handle, Long.valueOf(cancelId2));
 return null;
 }
 };

 Logger logger = getLogger();
 performOperation(myPayload, logger);
 message.append
 (String.format("<p>Cancelled request %s</p>", cancelID));
 } catch (Exception e) {
 throw new ServletException
 ("Error canceling or purging request", e);
 }
 } else {
 message.append("<p>No purge or cancel action specified</p>");
 }
 }

 private String metadataObjectIdToString(MetadataObjectId mdoID)
 throws ServletException {

 String mdoString =
 mdoID.getType().value() + MDO_SEP + mdoID.getPackagePart() +
 MDO_SEP + mdoID.getNamePart();

 return mdoString;
 }

 private MetadataObjectId stringToMetadataObjectId(String mdoString)
 throws ServletException {
 String[] mdoStringParts = mdoString.split(Pattern.quote(MDO_SEP));
 if (mdoStringParts.length != 3) {
 throw new ServletException(String.format("Unexpected number of components %d found " +
 "when converting %s to MetadataObjectID",
 mdoStringParts.length,
 mdoString));
 }

 MetadataObjectType mdType =
 MetadataObjectType.getMOType(mdoStringParts[0]);
 String mdPackage = mdoStringParts[1];
 String mdName = mdoStringParts[2];

 MetadataObjectId mdoID =
 MetadataObjectId.createMetadataObjectId(mdType, mdPackage, mdName);
 return mdoID;
 }

 /**
 * this changes the format used in this class for job definitions to the one
 * which is used in the runtime query.
 * @param strMetadataObject
 * @return string representing object in runtime store
 * @throws ServletException
 */
 private String fixMetadataString(String strMetadataObject)
 throws ServletException {
 String fslash = "/";
 String[] mdoStringParts =
 strMetadataObject.split(Pattern.quote(MDO_SEP));
 if (mdoStringParts.length != 3) {
 throw new ServletException(String.format("Unexpected number of components %d found " +
 "when converting %s to MetadataObjectID",
 mdoStringParts.length,
 strMetadataObject));
 }
 String[] trimStringParts = new String[mdoStringParts.length];
 for (int i = 0; i < mdoStringParts.length; i++) {
 String mdoStringPart = mdoStringParts[i];
 trimStringParts[i] = mdoStringPart.replaceAll(fslash, " ").trim();
 }

 MetadataObjectType mdType =
 MetadataObjectType.getMOType(trimStringParts[0]);
 String mdPackage = fslash + trimStringParts[1];
 String mdName = trimStringParts[2];
 MetadataObjectId metadataObjId =
 MetadataObjectId.createMetadataObjectId(mdType, mdPackage, mdName);
 return metadataObjId.toString();
 }

 private Set<String> getSetFromMetadataEnum(Enumeration<MetadataObjectId> enumMetadata)
 throws ServletException {
 Set<String> stringSet = new HashSet<String>();

 while (enumMetadata.hasMoreElements()) {
 MetadataObjectId objId = enumMetadata.nextElement();
 String strNamePart = objId.getNamePart();
 stringSet.add(strNamePart);
 }
 return stringSet;
 }

 //**
 //
 // HTML Rendering Methods
 //
 //**

 /**
 * Rendering code for the page displayed.
 * In a real application this would be done using JSP, but this approach
 * keeps everything in one file to make the example easier to follow.
 * @param response The response object from the main request.
 * @param message Text that appears in the message panel, may contain HTML
 * @throws IOException
 */
 private void renderResponse(MetadataLists ml,
 RuntimeLists rl,
 HttpServletRequest request,
 HttpServletResponse response,
 String message)
 throws IOException, ServletException
 {
 response.setContentType(CONTENT_TYPE);
 PrintWriter out = response.getWriter();

 String urlBase = request.getContextPath() + request.getServletPath();

 // Indents maintained for clarity
 out.println("<html>");
 out.println("<head><title>EssDemo</title></head>");
 out.println("<body>");
 out.println("<table align=\"center\"><tbody>");
 out.println(" <tr><td align=\"center\"><h1>Oracle Enterprise Scheduler Tutorial</h1></td></tr>");
 out.println(" <tr><td align=\"center\"><table cellspacing=6><tr>");

 // Job launch form
 out.println(" <td align=\"center\">");
 out.println(" <h2>Launch Job</h2>");
 renderLaunchJobForm(ml, out, urlBase);
 out.println(" </td>");

 out.println(" <td align=\"center\" bgcolor=\"blue\" width=\"2\"/>");

 out.println(" </tr></table></td></tr>");

 out.println(" <tr><td bgcolor=\"red\"/></tr>");

 // Message panel
 out.println(" <tr><td align=\"center\"><h3>Messages</h3></td></tr>");
 out.println(" <tr><td>");
 out.println(message);
 out.println(" </td></tr>");

 out.println(" <tr><td bgcolor=\"red\"/></tr>");

 // Request status
 out.println(" <tr><td align=\"center\">");
 out.println(" <form name=\"attrs\" action=\"" + urlBase +
 PATH_ALTER + "\" method=\"post\">");
 out.println(" <h2>Request Status</h2>");
 out.println(" <table border=2><tbody>");
 out.println(" <th>reqID</th>");
 out.println(" <th>Description</th>");
 out.println(" <th>Scheduled time</th>");
 out.println(" <th>State</th>");
 out.println(" <th>Action</th>");

 renderStatusTable(out, rl.requestDetails);

 out.println(" </tbody></table>");
 out.println(" </form>");
 out.println(" </td></tr>");
 out.println("</tbody></table>");
 out.println("</body></html>");
 out.close();
 }

 private void renderLaunchJobForm(MetadataLists ml, PrintWriter out, String urlBase)
 throws ServletException {
 out.println(" <form name=\"attrs\" action=\"" + urlBase +
 PATH_SUBMIT + "\" method=\"post\">");
 out.println(" <table><tbody>");
 out.println(" <tr><td align=\"right\">");
 out.println(" Job:");
 out.println(" <select name=\"job\">");

 renderMetadataChoices(out, ml.jobDefList, false);
 renderMetadataChoices(out, ml.jobSetList, false);

 out.println(" </select>");
 out.println(" </td></tr>");
 out.println(" <tr><td align=\"right\">");
 out.println(" Schedule:");
 out.println(" <select name=\"schedule\">");

 renderPseudoScheduleChoices(out);
 renderMetadataChoices(out, ml.scheduleList, false);

 out.println(" </select>");
 out.println(" </td></tr>");
 out.println(" <tr><td align=\"center\">");
 out.println(" <input name=\"submit\" value=\"Submit\" type=\"submit\">");
 out.println(" </td></tr>");
 out.println(" </tbody></table>");
 out.println(" </form>");
 }

 /**
 *
 * @param out - printwriter
 * @param jobChoices -- metadata to be displayed
 * @param bBlankFirst -- blank first (so that this param is not required)
 * @throws ServletException
 */
 private void renderMetadataChoices(PrintWriter out,
 Enumeration<MetadataObjectId> jobChoices,
 boolean bBlankFirst)
 throws ServletException
 {
 if (jobChoices == null)
 return;

 boolean bFirst = true;
 while (jobChoices.hasMoreElements()) {
 MetadataObjectId job = jobChoices.nextElement();
 String strJob = metadataObjectIdToString(job);
 String strNamePart = job.getNamePart();
 if (strNamePart.compareTo("BatchPurgeJob") == 0) {
 continue;
 } else {
 if (bFirst && bBlankFirst) {
 out.printf("<option value=\"%s\">%s</option>", "", "");
 bFirst = false;
 }
 out.printf("<option value=\"%s\">%s</option>", strJob,
 strNamePart);
 }
 }
 }

 /**
 * helper method for rendering choices based on strings, adding an empty
 * string to the beginning of the list
 * @param out
 * @param choices
 */
 private void renderStringChoices(PrintWriter out, Set<String> choices) {
 if (choices == null)
 return;

 choices.add("");
 SortedSet<String> sorted = new TreeSet<String>(choices);
 Iterator choiceIter = sorted.iterator();
 while (choiceIter.hasNext()) {
 String choice = (String)choiceIter.next();

 out.printf("<option value=\"%s\">%s</option>", choice, choice);
 }
 }

 private void renderPseudoScheduleChoices(PrintWriter out) {
 for (PseudoScheduleChoices c : PseudoScheduleChoices.values()) {
 out.printf("<option value=\"%s\">%s</option>", c, c);
 }
 }

 private void renderStatusTable
 (PrintWriter out, List<RequestDetail> reqDetails)
 {
 if (reqDetails == null) {
 return;
 }

 for (RequestDetail reqDetail : reqDetails) {
 State state = reqDetail.getState();

 Calendar scheduledTime = reqDetail.getScheduledTime();
 String scheduledTimeString = null;

 if (scheduledTime == null) {
 scheduledTimeString = "null scheduled time";
 } else {
 scheduledTimeString = String.valueOf(scheduledTime.getTime());
 }

 final String actionButton;
 if (!state.isTerminal()) {
 String action = ACTION_CANCEL;
 String reqId = String.valueOf(reqDetail.getRequestId());
 actionButton = String.format
 ("<button type=submit value=%s name=\"%s\">%s</button>",
 action, reqId, action);
 } else {
 actionButton = " ";
 }

 out.printf("<tr><td>%d</td><td>%s</td><td>%s</td><td>%s</td><td>%s</td></tr>\n",
 reqDetail.getRequestId(), reqDetail.getDescription(),
 scheduledTimeString, state, actionButton);
 }
 }

 private MetadataService getMetadataService() throws Exception {
 return JndiUtil.getMetadataServiceEJB();
 }

 private RuntimeService getRuntimeService() throws Exception {
 return JndiUtil.getRuntimeServiceEJB();
 }

 private abstract class Payload<SERVICE, HANDLE, RETURN> {
 abstract SERVICE getService() throws Exception;
 abstract HANDLE getHandle(SERVICE service) throws Exception;
 abstract void closeHandle(SERVICE service,
 HANDLE handle,
 boolean abort)
 throws Exception;
 abstract RETURN execute(SERVICE service, HANDLE handle, Logger logger)
 throws Exception;
 }

 private abstract class MetadataServicePayload<T>
 extends Payload<MetadataService, MetadataServiceHandle, T>
 {
 @Override
 MetadataService getService() throws Exception {
 return getMetadataService();
 }

 @Override
 MetadataServiceHandle getHandle(MetadataService service)
 throws Exception
 {
 return service.open();
 }

 @Override
 void closeHandle(MetadataService service,
 MetadataServiceHandle handle,
 boolean abort)
 throws Exception
 {
 service.close(handle, abort);
 }
 }

 private abstract class RuntimeServicePayload<T>
 extends Payload<RuntimeService, RuntimeServiceHandle, T>
 {
 @Override
 RuntimeService getService() throws Exception {
 return getRuntimeService();
 }

 @Override
 RuntimeServiceHandle getHandle(RuntimeService service)
 throws Exception
 {
 return service.open();
 }

 @Override
 void closeHandle(RuntimeService service,
 RuntimeServiceHandle handle,
 boolean abort)
 throws Exception
 {
 service.close(handle, abort);
 }
 }

 private <S, H, R> R performOperation
 (Payload<S, H, R> payload, Logger logger)
 throws Exception
 {
 S service = payload.getService();
 H handle = payload.getHandle(service);

 Exception origException = null;
 try {
 return payload.execute(service, handle, logger);
 } catch (Exception e2) {
 origException = e2;
 throw e2;
 } finally {
 if (null != handle) {
 try {
 boolean abort = (null != origException);
 payload.closeHandle(service, handle, abort);
 } catch (Exception e2) {
 if (null != origException) {
 logger.log(Level.WARNING, "An error occurred while " +
 "closing handle, however, a previous failure was " +
 "detected. The following error will be logged " +
 "but not reported: " + stackTraceToString(e2));
 }
 }
 }
 }
 }

 private final String stackTraceToString(Exception e) {
 StringWriter sw = new StringWriter();
 PrintWriter pw = new PrintWriter(sw);
 e.printStackTrace(pw);
 pw.flush();
 pw.close();
 return sw.toString();
 }

 private Logger getLogger() {
 return Logger.getLogger(this.getClass().getName());
 }

 private class MetadataLists {
 private final Enumeration<MetadataObjectId> jobDefList;
 private final Enumeration<MetadataObjectId> jobSetList;
 private final Enumeration<MetadataObjectId> scheduleList;
 private final Enumeration<MetadataObjectId> jobTypeList;

 private MetadataLists(Enumeration<MetadataObjectId> jobDefList,
 Enumeration<MetadataObjectId> jobSetList,
 Enumeration<MetadataObjectId> scheduleList,
 Enumeration<MetadataObjectId> jobTypeList)
 {
 this.jobDefList = jobDefList;
 this.jobSetList = jobSetList;
 this.scheduleList = scheduleList;
 this.jobTypeList = jobTypeList;
 }
 }

 private class RuntimeLists {
 private final List<RequestDetail> requestDetails;
 private final Set<String> applicationChoices;
 private final Set<String> stateChoices;
 private final Set<MetadataObjectId> jobDefMDOChoices;

 private RuntimeLists(List<RequestDetail> requestDetails,
 Set<String> applicationChoices,
 Set<String> stateChoices,
 Set<MetadataObjectId> jobDefMDOChoices)
 {
 super();
 this.requestDetails = requestDetails;
 this.applicationChoices = applicationChoices;
 this.stateChoices = stateChoices;
 this.jobDefMDOChoices = jobDefMDOChoices;
 }
 }

 /**
 * Retrieve lists of jobs, schedules, and status for use by the renderer
 * @throws ServletException
 */
 private MetadataLists getMetadataLists() throws Exception {
 Logger logger = getLogger();

 MetadataServicePayload<MetadataLists> myPayload =
 new MetadataServicePayload<MetadataLists>()
 {
 @Override
 MetadataLists execute(MetadataService service,
 MetadataServiceHandle handle,
 Logger logger)
 throws Exception
 {
 Enumeration<MetadataObjectId> jobDefs =
 service.queryJobDefinitions(handle, null, QueryField.NAME, true);
 Enumeration<MetadataObjectId> jobSets =
 service.queryJobSets(handle, null, QueryField.NAME, true);
 Enumeration<MetadataObjectId> schedules =
 service.querySchedules(handle, null, QueryField.NAME, true);
 Enumeration<MetadataObjectId> jobTypes =
 service.queryJobTypes(handle, null, QueryField.NAME, true);

 return new MetadataLists(jobDefs, jobSets, schedules, jobTypes);
 }
 };
 MetadataLists ml = performOperation(myPayload, logger);
 return ml;
 }

 private RuntimeLists getRuntimeLists() throws Exception {
 Logger logger = getLogger();

 RuntimeServicePayload<List<RequestDetail>> myPayload2 =
 new RuntimeServicePayload<List<RequestDetail>>()
 {
 @Override
 List<RequestDetail> execute(RuntimeService service,
 RuntimeServiceHandle handle,
 Logger logger)
 throws Exception
 {
 List<RequestDetail> reqDetails =
 new ArrayList<RequestDetail>(10);
 Enumeration requestIds = service.queryRequests
 (handle, null, RuntimeService.QueryField.REQUESTID, true);

 while (requestIds.hasMoreElements()) {
 Long reqId = (Long)requestIds.nextElement();
 RequestDetail detail = service.getRequestDetail(handle, reqId);
 reqDetails.add(detail);
 }

 return reqDetails;
 }
 };
 List<RequestDetail> reqDetails = performOperation(myPayload2, logger);
 RuntimeLists rl = getRuntimeLists(reqDetails);
 return rl;
 }

 private RuntimeLists getRuntimeLists(List<RequestDetail> reqDetails) {
 Set<String> applicationSet = new HashSet<String>(10);
 Set<String> stateSet = new HashSet<String>(10);
 Set<MetadataObjectId> jobDefMOSet = new HashSet<MetadataObjectId>(10);

 if (reqDetails != null) {
 ListIterator detailIter = reqDetails.listIterator();
 while (detailIter.hasNext()) {
 RequestDetail detail = (RequestDetail)detailIter.next();
 applicationSet.add(detail.getDeployedApplication());
 State state = detail.getState();
 if (state.isTerminal())
 stateSet.add(state.name());
 jobDefMOSet.add(detail.getJobDefn());
 }
 }

 RuntimeLists rl = new RuntimeLists
 (reqDetails, applicationSet, stateSet, jobDefMOSet);
 return rl;
 }

}

7.4.2.5 Editing the web.xml File for the Front-End Submitter Application

You need to edit the web.xml file to and Oracle Enterprise Scheduler metadata and runtime EJB references.

To edit the web.xml file for the front-end submitter application:

	In the Application Navigator, expand SuperWeb, expand Web Content, expand WEB-INF and double-click web.xml.
	In the overview editor, click the References navigation tab and expand the EJB References section.
	Add two EJB resources with the information shown in Table 7-1.

Table 7-1 EJB Resources for the Front-End Submitter Application

	EJB Name	Interface Type	EJB Type	Local/Remote Interface
	
ess/metadata

	
Local

	
Session

	
oracle.as.scheduler.MetadataServiceLocal

	
ess/runtime

	
Local

	
Session

	
oracle.as.scheduler.RuntimeServiceLocal

	Click the Servlets navigation tab and click the Servlet Mappings tab.
	Change the /essdemoappservlet URL pattern to /essdemoappservlet/*.

7.4.2.6 Editing the weblogic-application.xml file for the Front-End Submitter Application

You need to create and edit the weblogic-application.xml file.

To edit the weblogic-application.xml file for the front-end submitter application:

	In Application Navigator, right-click the SuperEss project and select New.
	In the New Gallery, expand General, select Deployment Descriptors and then Weblogic Deployment Descriptor, and click OK.
	In the Select Descriptor page select weblogic-application.xml.
	Click Next, click Next again, and click Finish.
	In the source editor, replace the contents of the weblogic-application.xml file that you just created with the XML shown in Example 7-7.

Example 7-7 Contents to Copy to weblogic-application.xml for a Front-End Submitter Application

<?xml version = '1.0' encoding = 'UTF-8'?>
<weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-application

http://www.bea.com/ns/weblogic/weblogic-application/1.0/weblogic-application.xsd"
 xmlns="http://www.bea.com/ns/weblogic/weblogic-application">

 <!-- The following application parameter tells JPS which stripe it should
 - use to upload the jazn-data.xml policy. If this parameter is not
 - specified, it uses the Java EE deployment name plus the version
 - number (e.g. EssDemoApp#V2.0).
 -->
 <application-param>
 <param-name>jps.policystore.applicationid</param-name>
 <param-value>EssDemoAppUI</param-value>
 </application-param>

 <!-- This listener allows JPS to configure itself and upload the
 - jazn-data.xml policy to the appropriate stripe
 -->
 <listener>
 <listener-class>oracle.security.jps.wls.listeners.JpsApplicationLifecycleListener</listener-class>
 </listener>

 <!-- This listener allows MDS to configure itself and upload any metadata
 - as defined by the MAR profile and adf-config.xml
 -->
 <listener>
 <listener-class>oracle.mds.lcm.weblogic.WLLifecycleListener</listener-class>
 </listener>

 <!-- This listener allows Oracle Enterprise Scheduler to configure itself
 -->
 <listener>
 <listener-class>oracle.as.scheduler.platform.wls.deploy.ESSApplicationLifecycleListener</listener-class>
 </listener>

 <!-- This shared library contains all the Oracle Enterprise Scheduler classes
 -->
 <library-ref>
 <library-name>oracle.ess.client</library-name>
 </library-ref>
 <library-ref>
 <library-name>adf.oracle.domain</library-name>
 </library-ref>
</weblogic-application>

7.4.2.7 Editing the adf-config file for the Front-End Submitter Application

You need to edit the adf-config.xml file to tell the application to share the metadata that was created in the hosting application.

To edit the adf-config.xml file for the front-end submitter application:

	From the Application Resources panel, expand Descriptors, expand ADF META-INF, and double-click adf-config.xml.
	In the source editor, replace the contents of the adf-config.xml file with the XML shown in Example 7-8.

Example 7-8 Contents to Copy to adf-config.xml for a Front-End Submitter Application

<?xml version="1.0" encoding="UTF-8" ? >
<adf-config xmlns="http://xmlns.oracle.com/adf/config"
 xmlns:sec="http://xmlns.oracle.com/adf/security/config">
 <sec:adf-security-child xmlns="http://xmlns.oracle.com/adf/security/config"> <CredentialStoreContext
 credentialStoreClass="oracle.adf.share.security.providers.jps.CSFCredentialSto
 re"

 credentialStoreLocation="../../src/META-INF/jps-config.xml"/>
 sec:JaasSecurityContext
 initialContextFactoryClass="oracle.adf.share.security.JAASInitialContextFactor
 y"

 jaasProviderClass="oracle.adf.share.security.providers.jps.JpsSecurityContext"
 .
 authorizationEnforce="false"
 authenticationRequire="true"/
 </sec:adf-security-child>
 <adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config version="11.1.1.000"
xmlns="http://xmlns.oracle.com/mds/config">
 <type-config>
 <type-definitions>
 <classpathschema/Exclusion.xsd/classpath>
 <classpathschema/Incompatibility.xsd/classpath>
 <classpathschema/JobDefinition.xsd/classpath>
 <classpathschema/JobSet.xsd/classpath>
 <classpathschema/JobType.xsd/classpath>
 <classpathschema/Schedule.xsd/classpath>
 <classpathschema/Specialization.xsd/classpath>
 <classpathschema/Trigger.xsd/classpath>
 <classpathschema/TriggerExpression.xsd/classpath>
 <classpathschema/WorkAssignment.xsd/classpath>
 <classpathschema/Workshift.xsd/classpath>
 </type-definitions>
 </type-config>
 <persistence-config>
 <metadata-namespaces>
 <namespace path="/oracle/as/ess/core"
 metadata-store-usage="ess-core"/>
 namespace path="/oracle/apps/ess"
 metadata-store-usage="demo-app"/>
 </metadata-namespaces>
 <metadata-store-usages>
 <metadata-store-usage id="ess-core" deploy-target="false"
 default-cust-store="false">
 <metadata-store
 class-name="oracle.mds.persistence.stores.db.DBMetadataStore">
 <property name="jndi-datasource" value="jdbc/mds-ESS_MDS_DS"/>
 <property name="repository-name" value="mds-ESS_MDS_DS"/>
 <property name="partition-name"
 value="essapp-internal-partition"/>
 </metadata-store>
 </metadata-store-usage>
 metadata-store-usage id="demo-app" deploy-target="true"
 default-cust-store="false">
 <metadata-store
 class-name="oracle.mds.persistence.stores.db.DBMetadataStore">
 <property name="jndi-datasource" value="jdbc/mds-ESS_MDS_DS"/>
 <property name="repository-name" value="mds-ESS_MDS_DS"/>
 <property name="partition-name" value="essUserMetadata"/>
 </metadata-store>
 </metadata-store-usage>
 </metadata-store-usages>
 </persistence-config>
 </mds-config>
 </adf-mds-config>
 </adf-config>

7.4.2.8 Assembling the Front-End Submitter Application for Oracle Enterprise Scheduler

After you create the front-end sample application you use ­Oracle JDeveloper to assemble the application.

To assemble the front-end application you do the following:

	
Create the EJB Java Archive

	
Create the WAR file

	
Create the application MAR and EAR files

7.4.2.8.1 How to Assemble the EJB JAR File for the Front-End Submitter Application

The EJB Java archive file includes descriptors for the Java job implementations.

To assemble the EJB JAR File for the front-end submitter application:

	In Application Navigator, right-click the SuperEss project and choose New.
	In the New Gallery, expand General, select Deployment Profiles and then EJB JAR File, and click OK.
	In the Create Deployment Profile dialog, set the Deployment Profile Name to JAR_SuperEssEjbJar.
	On the Edit EJB JAR Deployment Profile Properties dialog, click OK.
	Delete the other JAR profiles created by default. Only include EJB and WAR.
	On the Project Properties dialog, click OK.

7.4.2.8.2 How to Assemble the WAR File for the Front-End Submitter Application

You need to create a web archive file for the web application.

To assemble the WAR file for the front-end submitter application

	In Application Navigator, right-click the SuperWeb project and choose New.
	In the New Gallery, expand General, select Deployment Profiles and then WAR File, and click OK.
	In the Create Deployment Profile dialog, set the Deployment Profile Name to WAR_SuperWebWar.
	On the Edit WAR Deployment Profile Properties dialog, click the General navigation tab, select Specify Java EE Web Context Root, and enter ESSDemoAppUI.
	Click OK.
	On the Project Properties dialog, click OK.

7.4.2.8.3 How to Assemble the MAR and EAR Files for the Front-End Hosting Application

The sample application must contain the MAR profile and the EAR file that assembles the EssDemoApp back-end application.

To create the MAR and EAR files for the front-end submitter application:

	From the main menu, choose Application Menu > Application Properties...
	In the Application Properties dialog, delete the profile listed under Deployment Profiles and click New.
	In the Create Deployment Profile dialog, select MAR File from the Profile Type dropdown list.
	In the Name field, enter MAR_EssDemoAppUIMar and click OK.
	Click OK.
	In the Deployment page of the Application Properties dialog, click New.
	In the Create Deployment Profile dialog, select EAR File from the Profile Type dropdown list.
	In the Name field, enter EAR_EssDemoAppUIEar and click OK.
	In the Edit EAR Deployment Profile dialog, click the General navigation tab and enter EssDemoAppUI in the Application Name field.
	Select WAR_SuperWebWar.
	Click the Application Assembly navigation tab, then select MAR_ESSDemoAppUIMar and select JAR_SuperEssEjbJar.
	Click OK.
	In the Application Properties dialog, click OK.

7.4.2.8.4 Add ADF Libraries

Navigate to the Project Properties > SuperWeb > Libraries and Classpath window. Use the Add Library button to add the following libraries:

	
ADF Common Runtime

	
ADF Faces Runtime11

	
ADF Common Web Runtime

	
ADF Page FlowRuntime

	
ADF Controller Schema

	
ADF Controller Runtime

7.4.2.8.5 Set Oracle Enterprise Scheduler Properties for the Application

The following steps describe how to set values for Oracle Enterprise Scheduler properties:

	In the Application Navigator, right-click the SuperEss project, then click Enterprise Scheduler Properties.
	In the Enterprise Scheduler Properties dialog, enter EssDemoAppUI as the value for all three of the following fields:

	
Logical Application Name

	
Application Policy Stripe

	
JPS Interceptor Application Name

	Click OK.

7.4.2.9 Configure the weblogic-application.xml File

Use the source editor to remove the following lines from weblogic-application.xml:

<library-ref
 <library-name>oracle.xdo.runtime</library-name>
</library-ref>
<library-ref>
 <library-name>oracle.applcp.runtime</library-name>
</library-ref>

7.4.2.10 Deploying the Front-End Submitter Application

After assembling the application, you can deploy it to the server.

To deploy the front-end submitter application:

	From the main menu, choose Application > Deploy > EAR_EssDemoUIEar...
	Set up and deploy the application to a container.
	On the Deployment Configuration dialog, there should be two entries in the Shared Metadata Repositories panel. Find the shared repository mapped to the /oracle/apps/ess/howto name space. Change its partition to the partition used when deploying EssDemoApp. If you used the default value, this should be EssDemoApp_V2.0.

Figure 7-23 Oracle Deployment Configuration Window

[image: Description of "Figure 7-23 Oracle Deployment Configuration Window" follows]

	Click OK.

7.4.2.11 Update the EssHost MANIFEST File

Replace the contents of the EssHost META-INF/MANIFEST.INF file with the following lines:

Manifest-Version:1.0 Weblogic-Application-Version: 3.0
Extension-List: essruntime
essruntime-Extension-Name: oracle.ess.runtime
essruntime-Specification-Version: 12

7.4.2.12 Running the Split Application

To run the split application:

	Enter the following URL in a browser:

http://host:http-port:/ESSDemoAppUI/essdemoappservlet

For example,

http://myserver.example.com:7101/EssDemoAppUI/essdemoappservlet

	Log in as EssDemoAppUser with the password welcome1.
	Follow the same steps as in the combined application.

8 Using the Metadata Service

This chapter describes how to use the Oracle Enterprise Scheduler Metadata Service to create, update and manage schedules, job definitions, and other Oracle Enterprise Scheduler metadata to a metadata store. You can also use the Metadata Service query methods to list objects stored in the metadata repository.

This chapter includes the following sections:

	
Introduction to Using the Metadata Service

	
Accessing the Metadata Service

	
Accessing the Metadata Service with Oracle JDeveloper

	
Querying Metadata Using the Metadata Service

For information about how to create job definitions, see the following chapter: Creating and Using PL/SQL Jobs , and Creating and Using Process Jobs .

8.1 Introduction to Using the Metadata Service

Oracle Enterprise Scheduler provides the Metadata Service and exposes it to your application program as a Stateless Session Enterprise Java Bean (EJB). The Metadata Service allows you to create, update and manage application-level metadata objects. The Metadata Service uses Oracle Metadata Services (MDS) to save metadata objects to a repository (the repository can be either database based or file based). The Metadata Service allows you to reuse application-level metadata across multiple job request submissions.

Oracle Enterprise Scheduler metadata objects include the following:

	
Application Level Metadata: You use the Metadata Service to store job type, job definition, job set, and other application-level metadata object definitions for job requests.

	
Default (global) Oracle Enterprise Scheduler Metadata: The global Oracle Enterprise Scheduler metadata includes administrative objects such as schedules, workshifts and work assignments. Oracle Enterprise Scheduler provides MetadataServiceMXBean and the MetadataServiceMXBeanProxy to access and store default administrative objects

Note:

Oracle Enterprise Scheduler metadata objects are used both in application-level metadata and in global metadata

Access to application level-metadata objects is exposed only with the MetadataService interface. The MetadataService is exposed as a stateless session EJB. External clients must access the service only through the corresponding EJB. Clients should not interact with the internal API layer directly. When an application client uses the metadata service through the stateless session EJB, all the methods in this interface accept a reference to a MetadataServiceHandle argument, which stores state across multiple calls, for example when multiple methods are to be called within a user transaction. The MBeanProxy interface does not require a handle.

In an Oracle Enterprise Scheduler application you do not need to access or manipulate the MetadataServiceHandle. The application must hold on to the reference created by the open method and pass it in methods being called. Finally the handle must explicitly be closed by calling the close method. Only upon calling the close method are any changes made using a given handle be committed (or aborted).

Metadata object names must be unique within the scope of a given package or name space. Within a given package, two metadata objects with the same name and of the same type cannot be created.

8.1.1 Introduction to Metadata Service Name Spaces

Each Oracle WebLogic Server domain generally includes one metadata repository. A metadata repository is divided into a number of partitions, where each partition is independent and isolated from the others in the repository.

Each application can choose which partition to use. Two applications can also choose to share a partition.

Within a partition, you can organize the data in any way. Usually, the data is organized hierarchically like the file system of an operating system. Where a file system uses folders or directories, the Metadata Service uses name spaces or package names which form a unique name used to locate a file.

For all other Oracle Enterprise Scheduler applications, the application name and an optional package name containing the application-level metadata displays under the name space /oracle/apps/ess. For example, the metadata repository for an application named application1 can be divided into packages with the names dev, test, and production.

The metadata repository for this application has the following structure:

/oracle/apps/ess/application1/dev/metadata
/oracle/apps/ess/application1/test/metadata
/oracle/apps/ess/application1/production/metadata

Each Metadata Service method that creates a metadata object takes a required packageName argument that specifies the package part of the directory structure.

8.1.2 Introduction to Metadata Service Operations

After you access an Oracle Enterprise Scheduler metadata repository you can perform different types of Metadata Service operations, including:

	
Add, Update, Delete: These operations have transactional characteristics.

	
Copy: These operations have transactional characteristics.

	
Query: These operations have read-only characteristics and let you list metadata objects in the metadata repository.

	
Get: These operations have either read-only or transactional characteristics, depending on the value of the forUpdate flag.

8.1.3 Introduction to Metadata Service Transactions

Because clients access the Metadata Service through a Stateless Session EJB, each method uses a reference to a MetadataServiceHandle argument; this argument stores state for Metadata Service operations. The Metadata Service open() method begins each metadata repository user transaction. In an Oracle Enterprise Scheduler application client you obtain a MetadataServiceHandle reference with the open() method and you pass the reference to subsequent Metadata Service methods. The MetadataServiceHandle reference provides a connection to the metadata repository for the calling application.

In a client application that uses the Metadata Service you must explicitly close a Metadata Service transaction by calling close(). This ends the transaction and causes the transaction to be committed or rolled back (undone). The close() not only controls the transactional behavior within the Metadata Service, but it also allows Oracle Enterprise Scheduler to release certain resources. Thus, the close() is also required for Metadata Service read-only query() and get() operations.

Note:

The Metadata Service does not support JTA global transactions, but you can still make Metadata Service calls in the boundary of your transactions. While you can make Metadata Service calls in bean/container managed transactions, the calls are not part of your transaction.

8.2 Accessing the Metadata Service

There are several ways to access the Metadata Service, including:

	
Stateless Session EJB access: Use this type of access with Oracle Enterprise Scheduler user applications.

	
MBean access: This access is intended for use by applications that perform administrative functions using the oracle.as.scheduler.management APIs.

	
MBean proxy access: This access is intended for use by applications that perform administrative functions using the oracle.as.scheduler.management APIs. Use the MBean proxy if the administrative client is remote to the Oracle Enterprise Scheduler.

8.2.1 How to Access the Metadata Service with a Stateless Session EJB

User applications use a Stateless Session EJB to access the Metadata Service for application level metadata operations. Using JNDI you can lookup the Metadata Service associated with an Oracle Enterprise Scheduler application.

Example 8-1 shows the JNDI lookup for the Oracle Enterprise Scheduler Metadata Service that allows you to use application level metadata. Note that the getMetadataServiceEJB() method looks up the metadata service using the name "ess/metadata". By convention, Oracle Enterprise Scheduler applications use "ess/metadata" for the EJB reference to the MetadataServiceBean.

Example 8-1 JNDI Lookup for Stateless Session EJB Access to Metadata Service

// Demonstration on how to lookup metadata service from a Java EE application
// JNDI lookup on the metadata service EJB

import oracle.as.scheduler.core.JndiUtil;

MetadataService ms = JndiUtil.getMetadataServiceEJB();

8.3 Accessing the Metadata Service with Oracle JDeveloper

Using Oracle JDeveloper at design time you can create, view, and update application level metadata objects.

8.4 Querying Metadata Using the Metadata Service

The Metadata Service query methods let you view objects in the metadata repository. You can query job types with the queryJobTypes() method, query job definitions with queryJobDefinitions() method, and likewise you can query other metadata objects using the corresponding MetadataService query method.

Associated with a query you can use a filter to restrict the output to obtain only items of interest (in a manner similar to using a SQL WHERE clause).

8.4.1 How to Create a Filter

A filter specifies a comparison or a criteria for a query. You create a filter by creating a comparison that includes a field argument (String), a comparator, and an associated value (Object). In a filter, you can use the filter methods to combine comparisons to form filter expressions.

Table 8-1 lists the comparison operators (comparator argument).

Table 8-1 Filter Comparison Operators

	Comparison Operator	Description
	
CONTAINS

	
Field contains the specified value

	
ENDS_WITH

	
Field ends with the specified value

	
EQUALS

	
Field equals the specified value

	
GREATER_THAN

	
Field is greater than the specified value

	
GREATER_THAN_EQUALS

	
Field is greater than or equal to the specified value

	
LESS_THAN

	
Field is less than the specified value

	
LESS_THAN_EQUALS

	
Field is less than or equal to the specified value

	
NOT_CONTAINS

	
Field does not contain the specified value

	
NOT_EQUALS

	
Field does not equal the specified value

	
STARTS_WITH

	
Field starts with the specified value

Example 8-2 shows code that creates a new filter.

Table 8-2 MetadataService Query Fields

	Query Field	Description
	
MetadataService.QueryField.PACKAGE

	
The name of the package.

	
MetadataService.QueryField.NAME

	
The job definition name.

	
MetadataService.QueryField.JOBTYPE

	
The job type associated with the job definition.

	
MetadataService.QueryField.EXECUTIONTYPE

	
The type of job execution, synchronous or asynchronous.

	
MetadataService.QueryField.REQUEST_CATEGORY

	
The name of the request category.

	
MetadataService.QueryField.EXECUTIONMODE

	
The mode of job set execution, parallel or serial.

	
MetadataService.QueryField.FIRSTSTEP

	
The first step in a job set.

	
MetadataService.QueryField.ACTIVE

	
Indicates whether a work assignment is active.

	
MetadataService.QueryField.PRODUCT

	
Indicates the name of the product with which the job is associated.

	
MetadataService.QueryField.EFFECTIVEAPPLICATION

	
The name of the hosting application wherein this job should run.

	
MetadataService.QueryField.LOGICAL_CLUSTER_NAME

	
The logical cluster associated with the job.

Example 8-2 Creating a Filter with a Filter Comparator for a Query

Filter filter =
 new Filter(MetadataService.QueryField.PACKAGE.fieldName(),
 Filter.Comparator.NOT_EQUALS, null);

8.4.2 How to Query Metadata Objects

A MetadataService query returns an enumeration list of MetadataObjectIDs of the form:

java.util.Enumeration<MetadataObjectId>

Example 8-3 shows a sample routine that queries for a list of job types in the metadata.

Example 8-3, shows the following important steps for using the queryJobTypes() method:

	
You need to supply a reference to a metadata repository by obtaining an instance of MetadataServiceHandle.

	
You need to create a filter for the query. The filter contains the fields, comparators, and values to search for.

	
You determine the field to sort by in the query using the orderBy argument, or you set the orderBy argument to null to indicate that no specific ordering is applied.

	
You set the ascending argument for the query. When ordering is applied setting the ascending argument to true indicates ascending order or false indicates descending order for the result list.

Example 8-3 Using Metadata Service Query Methods

Enumeration<MetadataObjectId> qryResults
 = m_service.queryJobTypes(handle, filter, null, false);

9 Using Parameters and System Properties

This chapter describes how you can define parameters and values in the Oracle Enterprise Scheduler metadata and runtime services you submit with a job request. A given parameter may represent a value for an Oracle Enterprise Scheduler system property or a value for an application defined property.

This chapter includes the following sections:

	
Introduction to Using Parameters and System Properties

	
Using Parameters with the Metadata Service

	
Using Parameters with the Runtime Service

	
Using System Properties

9.1 Introduction to Using Parameters and System Properties

You can define Oracle Enterprise Scheduler parameters as follows:

	
In metadata associated with a job definition, a job type, or a job set.

	
In the request parameters when a job request is submitted. A request parameter can override a parameter specified in metadata or can specify a value for a parameter not previously defined in the metadata associated with a job request (subject to certain constraints). You can also add new parameters or update parameter values (subject to certain constraints) after a job request has been submitted.

Oracle Enterprise Scheduler system properties are parameters with names that Oracle Enterprise Scheduler reserves. For some system properties Oracle Enterprise Scheduler also defines the values or provides a default value if you do not specify a value. For more information on the Oracle Enterprise Scheduler system properties, see Using System Properties.

9.1.1 What You Need to Know About Application Defined Property and System Property Naming

Oracle Enterprise Scheduler application defined and system properties are case sensitive. For example the application defined property name USER_PARA and user_para represent different parameters in Oracle Enterprise Scheduler.

When you use application defined properties, note that Oracle Enterprise Scheduler reserves the names starting with "SYS_" (case-insensitive) for Oracle Enterprise Scheduler-defined system properties. Thus, you should not use application defined properties with names that start with "SYS_" (case-insensitive).

9.1.2 What You Need to Know About Parameter Conflict Resolution and Parameter Materialization

When submitting a job request, Oracle Enterprise Scheduler combines parameters specified in the job metadata with any submission parameters to form the runtime request parameters. The runtime parameters are saved to the database runtime store and used for subsequent processing of the request. The metadata parameters are obtained from the job definition, job type, and if applicable, the job set as they are defined in the metadata repository at the time of submission. Any subsequent changes to the metadata is normally not seen or used as the request is processed. Oracle Enterprise Scheduler resolves parameter conflicts for parameters with the same name associated with the job metadata or the submit parameters.

A parameter conflict can occur in the following cases:

	
A parameter is defined repeatedly with different values. For example if the SystemProperty.PRIORITY property is set with different values in the job type and in the job definition associated with a request.

	
A parameter is defined repeatedly and at least one definition is specified as read-only with the ParameterInfo readonly flag set to true.

To resolve conflicts with parameters, Oracle Enterprise Scheduler uses one of the following conflict resolution models and the parameter value inheritance hierarchy shown in Table 9-1:

	
Last definition wins: used when the same parameter is defined repeatedly with the readonly flag set to false in all cases. In the last definition wins model, conflicts are resolved according to the precedence rules where the highest level wins (last definition). For example a property specified at the job request level wins over the same property specified at the job definition level.

	
First read-only definition wins: used when the same parameter is defined repeatedly and at least one definition is read-only (the ParameterInfo readonly flag is set to true.) In the first read-only definition wins model, parameter conflicts are resolved according to the precedence rules shown in Table 9-1, lowest level wins. For example a readonly parameter specified at the job type definition level wins over the same property specified at the job definition level, read-only or not.

Table 9-1 Parameter Precedence Levels

	Object	Level
	
JobType

	
1 - Lowest Level

	
JobDefinition

	
2

	
Job set step

	
3

	
job set

	
4

	
Job request (using RequestParameters passed to submitRequest())

	
5 - Highest Level

9.1.2.1 What You Need to Know About Job Definition Parameter Materialization

Figure 9-1 illustrates the order of precedence taken by parameters defined in various components.

Figure 9-1 Parameter Precedence

[image: Parameter precedence]

In the case of a job request, the parameters defined by the job type take first precedence, followed by the parameters defined in the job definition. The parameters submitted with the job request take final precedence. In the case of a job set request, the parameters defined in the job set take first precedence, followed by the parameters defined by the job request run as a child of the job set.

9.1.2.2 What You Need to Know About Job Set Level Parameter Materialization

When the job set step parameters are materialized, if the job set defines any of the following system properties as read-only, and those properties are defined in the definition of the topmost job set, that is the job set of the absolute parent, the job set values override the values set at the job set step level. This causes every definition, job definition, or job set definition that runs in the context of a specific job set to run with the same values.

PRIORITY

REQUEST_EXPIRATION

RETRIES, only if the step definition value is > 0

There is an exception for RETRIES because a value of 0 may mean that the job is not capable of being restarted. So if a step is defined with RETRIES = 0, it is not overridden, but if the step has RETRIES > 0, it is overridden with the job set value.

Properties for a job set step request are materialized during the processing of a job set when the step is reached. Properties for a job step request are materialized in the following order.

	
Job type and job definition (if the step is a job definition) or job set (if the step is a job set).

	
Job set step.

	
Parent request properties and system properties (parent is step's parent job set).

	
Scoped request properties.

Example 9-2 illustrates the parameter precedence for job set steps.

Figure 9-2 Parameter Precedence for Job Set Steps

[image: Parameter precedence for job set steps]

When job sets include steps that are job sets, this is a nested job set. For a nested job set, the precedence shown in Table 9-1 applies. When a nested job set is reached, Oracle Enterprise Scheduler applies the parameters of the parent request and the parameters of the parent request follow the same precedence. The effect is that parameters of the parent request, job set and job set step are inherited by nested job sets.

9.2 Using Parameters with the Metadata Service

Oracle Enterprise Scheduler metadata includes parameters that you can associate with a metadata object. The parameters can include both application defined properties and system properties for a given definition (metadata object). An instance of the ParameterList class declares the parameters for a given job definition, job type or job set. To set parameters for a given job definition, job type, or job set definition, you can use a ParameterList object with the setParameters() method for the metadata object or you can use the constructor and supply a ParameterList. To supply parameter information in a parameter list, each ParameterList object includes ParameterInfo objects that represent parameters, such that each parameter is defined with properties as shown in Table 9-2.

Table 9-2 ParameterInfo Parameter Properties

	Parameter Property	Description
	
Name

	
Specifies the parameter name.

	
Value

	
Specifies the parameter value.

	
Readonly

	
This boolean flag can be set for each parameter. This flag indicates whether the parameter is read-only.

When true, subsequent objects in the parameter precedence hierarchy, such as request submission parameter, cannot change the parameter value. Typically a read-only parameter has a default value that cannot be changed by subsequent objects.

Note that the value of a read-only parameter can be changed in the object itself where this parameter is defined. For example if this parameter is defined in a job type as a read-only parameter, its value can be changed in the job type definition itself, but a job definition that uses the job type or a request submission parameter cannot override the value, subject to the conflict resolution rules specified for parameter values. For more information, see What You Need to Know About Parameter Conflict Resolution and Parameter Materialization.

	
Legacy

	
A boolean that specifies that a parameter should be visible when used in a GUI.

	
DataType

	
Values can only be one of the supported types, including: Boolean, Integer, Long, String, and DATETIME that represents a date as a java.util.Calendar object.

You can set parameters at different levels appropriate to parameter precedence rules for a job request. For example, you can set parameters that apply for a job type, a job definition, a job set, a job set step, or a request submission parameter. For information about the precedence rules, see What You Need to Know About Parameter Conflict Resolution and Parameter Materialization.

9.2.1 How to Use Parameters and System Properties in Metadata Objects

Example 9-1 shows code that uses a ParameterList to set parameter and system property values in a metadata object.

Example 9-1, shows the following important steps for using parameters with a metadata object:

	
You need a reference to a metadata service handle to create the metadata object where you want to add parameters.

	
You need to use the ParameterList add() method to add parameter information.

	
You can use a SystemProperty as the name for a parameter to specify a value for a system property.

	
You can specify an application defined property by using a name that you define with the parameter information in a ParameterList.

	
You need to use a metadata object setParameters() method to apply the parameters specified in the ParameterList to the metadata object. In this case, use the job definition setParameters() method.

Example 9-1 Adding Parameters and System Properties in a Metadata Object

String name = "JobDescription_name";
MetadataObjectId jobtype;
.
.
.
JobDefinition jd = new JobDefinition(name, jobtype);
ParameterList parlist = new ParameterList();
parlist.add(SystemProperty.APPLICATION, "METADATA_UNITTEST_APP", false);
parlist.add(SystemProperty.PRODUCT, "METADATA_UNITTEST_PROD", false);
parlist.add(SystemProperty.CLASS_NAME, "oracle.as.scheduler.myself", false);
parlist.add(SystemProperty.RETRIES, "2", false);
parlist.add(SystemProperty.REQUEST_EXPIRATION, "60", false);
parlist.add("MyProp", "Value", false);
parlist.add("MyReadOnlyProp", "readyOnlyValue", true);
jd.setParameters(parlist);

9.3 Using Parameters with the Runtime Service

You can specify parameters when a job request is submitted by supplying a RequestParameters object with submitRequest(). A request parameter can override a parameter specified in metadata or can specify a value for a parameter not previously defined in the metadata associated with a job request (subject to certain constraints). You can also use the runtime service setRequestParameter() method to set or modify request parameters (subject to certain constraints) after the request has been submitted.

The submitRequest() method validates each request parameter against its definition in the metadata, if one exists. Such validations include checking the data type of the parameter against the data type specified in the metadata, checking the read-only constraint for the parameter, and so on. If a given request parameter does not exist in the corresponding metadata, the data type for the parameter is determined by doing an instanceof on the parameter value. The data type of a request parameter value must be one of the supported types specified by ParameterInfo.DataType.

If the value of a request parameter is null and the property has not been assigned in the metadata, it defaults to the STRING data type when calling submitRequest(). Oracle Enterprise Scheduler assigns a null value to the parameter. As such, a parameter need not be assigned in the metadata.

The RuntimeService setRequestParameter() method allows a previously undefined request parameter to be set by a job during execution.

9.3.1 How to Use Parameters with the Runtime Service

When you submit a job request you set a parameter in a RequestParameters object. This parameter may represent an Oracle Enterprise Scheduler system property or an application defined property. The RequestParameters parameter value may be used to override a parameter specified in metadata, or to specify the value for a parameter not previously defined in metadata associated with the job request.

Example 9-2 shows code using a RequestParameters object with the add() method to set a system property value.

The example assumes that there is a user-created runtimeServiceHandle named rs_handle.

Example 9-2 Using the PRIORITY System Property with Request Parameters

import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.MetadataObjectId;
import oracle.as.scheduler.RuntimeService;
import oracle.as.scheduler.RuntimeServiceHandle;
import oracle.as.scheduler.SystemProperty;

RuntimeService runtime;
RuntimeServiceHandle rs_handle;
MetadataObjectId jobSetId;
int startsIn;
long requestID = 0L;

RequestParameters req_par = new RequestParameters();

req_par.add(SystemProperty.PRIORITY, new Integer(7));

Calendar start = Calendar.getInstance();
start.add(Calendar.SECOND, startsIn);

requestID =
 runtime.submitRequest(rs_handle,"My job set", jobSetId, start, req_par);
.
.
.

9.3.2 How to Use Parameters with a Step ID for Job Set Steps

The RequestParameters object is a container for all the parameters for a request. Some of the RequestParameters methods take a step ID as an argument. Such methods allow you to specify parameters for a job set at request submission, where parameters can be specified for, or scoped to, individual steps associated with a job set request. For such methods, the step ID argument identifies the step within the job set to which the given parameter applies. For non-job set requests, the step ID does not apply, but you can use the parameter as required by your application requirements.

When a step ID is specified in a RequestParameters method such as add(), you need to specify the step ID using the following format:

id1.id2.id3...

where the fully qualified step ID identifies the unique step, node, in the job set hierarchy (tree).

Parameters without a step ID in a job set request are treated as global parameters and they apply to each step of the job set request. The step ID argument for RequestParameters provides the capability to support shared parameters, where the parameter can apply to both a job set and either a job definition or a job type.

Oracle Enterprise Scheduler prepends the step ID to the name in the form of stepId:name to generate the unique identifier, with a colon as a separator.

Example 9-3 shows code using a RequestParameters object with a step ID specified with the add() method to set a system property value for a step in a job set.

The example assumes that there is a user-created runtimeServiceHandle named rs_handle.

Example 9-3 Using the CLASS_NAME System Property with Job Set Request Parameters

import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.MetadataObjectId;
import oracle.as.scheduler.RuntimeService;
import oracle.as.scheduler.RuntimeServiceHandle;
import oracle.as.scheduler.SystemProperty;

RuntimeService runtime;
RuntimeServiceHandle rs_handle;
MetadataObjectId jobSetId;
int startsIn;
long requestID = 0L;

RequestParameters req_par = new RequestParameters();

req_par.add(SystemProperty.PRIORITY, "stepId-1", new Integer(8));
req_par.add(SystemProperty.PRIORITY, "stepId-2.stepId-1", new Integer(6));

Calendar start = Calendar.getInstance();
start.add(Calendar.SECOND, startsIn);

requestID =
 runtime.submitRequest(rs_handle,"My job set", jobSetId, start, req_par);
.
.
.

9.4 Using System Properties

Oracle Enterprise Scheduler represents parameter names that are known to and used by the system in the SystemProperty class. You can specify system properties as parameter names in the application metadata and using request parameters when a request is submitted. Oracle Enterprise Scheduler sets certain system properties when a request is submitted or at some point in the life cycle of a request.

Table 9-3 lists the available system properties, as defined in oracle.as.scheduler.SystemProperty. Most system properties are common to all job types while some system properties are specific to a particular job type, as indicated in the descriptions in Table 9-3.

When you use parameters, note that Oracle Enterprise Scheduler reserves the parameter names starting with "SYS_" (case-insensitive) for Oracle Enterprise Scheduler defined properties.

Table 9-3 System Properties

	Name	Description
	
ALLOW_MULT_PENDING

	
Specifies whether multiple pending requests for the same job definition is allowed. This property has no meaning for a job set step.

Type: BOOLEAN

	
APPLICATION

	
Specifies the logical name of the Java EE application used for request processing. This property is automatically set by Oracle Enterprise Scheduler during request submission.

Type: STRING

	
ASYNC_REQUEST_TIMEOUT

	
Specifies the time, in minutes, that the processor waits for an asynchronous request after it has begun execution. Following this period, the request is considered to have timed out.

Type: LONG

	
BIZ_ERROR_EXIT_CODE

	
Specifies the process exit code for a Process job request that denotes an execution business error. If this property is not specified, the system treats a process exit code of 4 as an execution business error.

This property is optional for a Process job type. It is not used for other job types.

Type: STRING

	
CLASS_NAME

	
Specifies the Java executable for a Java job request. This should be the name of a Java class that implements the oracle.as.scheduler.Executable interface. This property is required for a Java job type. It is not used for other job types.

Type: STRING

	
CMDLINE

	
Specifies the command line used to invoke an external program for a Process job request.

This property is required for a Process job type. It is not used for other job types.

Type: STRING

	
CMDLINE_UNIX

	
Specifies the full command line for executing a Process type request executable on a Unix or Unix-like operating system. Typically, this property is specified in the job type and the executable name, path, and arguments are used to indicate values to be substituted at runtime.

See the following properties: EXECUTABLE_NAME, EXECUTABLE_DIR_UNIX, EXECUTABLE_SUFFIX_UNIX, PROCESS_ARGUMENTS

Type: STRING

	
CMDLINE_WINDOWS

	
Specifies the full command line for executing a Process type request executable on a Windows operating system. Typically, this property is specified in the job type and the executable name, path, and arguments are used to indicate values to be substituted at runtime.

See properties: EXECUTABLE_NAME, EXECUTABLE_DIR_WINDOWS, EXECUTABLE_SUFFIX_WINDOWS, PROCESS_ARGUMENTS

Type: STRING

	
EFFECTIVE_APPLICATION

	
Specifies the logical name of the Java EE application that is the effective application used to process the request. A job definition, job type, or a job set step can be associated with a different application by defining the EFFECTIVE_APPLICATION system property. This property can only be specified using metadata and cannot be specified as a submission parameter.

Type: STRING

	
EJB_OPERATION_NAME

	
Specifies the operation name of the EJB. This can be used by the Bean implementation to branch to appropriate business methods. This property is used for the EJB job type.

Type: STRING

	
ENVIRONMENT_VARIABLES

	
Specifies the environment variables to be set for the spawned process of a Process job request.The property value should be a comma separated list of name value pairs (name=value) representing the environment variables to be set.

This property is optional for a Process job type. It is not used for other job types.

Type: STRING

	
ESS_ASYNC_REQUEST_JNDI_MAPPED_NAME

	
Specifies the mapped name of the AsyncRequest EJB of Oracle Enterprise Scheduler bound to the JNDI of an Oracle Enterprise Scheduler server.

Type: STRING

	
ESS_JNDI_CSF_KEY_NAME

	
Specifies the name that denotes the CSF KEY name of a JNDI provider of the underlying Oracle Enterprise Scheduler server. This property can be set in EssConfig of a hosting application.

Type: STRING

	
ESS_RUNTIME_JNDI_MAPPED_NAME

	
Specifies the mapped name of the RuntimeService EJB of the Oracle Enterprise Scheduler bound to the JNDI of an Oracle Enterprise Scheduler server. This property is used for the EJB job type.

Type: STRING

	
ESS_METADATA_JNDI_MAPPED_NAME

	
Specifies the mapped name of the MetadataService EJB of the Oracle Enterprise Scheduler bound to a JNDI of Oracle Enterprise Scheduler server.

Type: STRING

	
EXECUTABLE_NAME

	
Specifies the name of the executable for a Process type request. The value should not include the path to the executable.

See properties: EXECUTABLE_DIR_UNIX, EXECUTABLE_DIR_WINDOWS

Type: STRING

	
EXECUTABLE_DIR_UNIX

	
Specifies the directory where the executable resides for a Process type request on a Unix or Unix-like operating system.

Type: STRING

	
EXECUTABLE_DIR_WINDOWS

	
Specifies the directory where the executable resides for a Process type request on a Windows operating system.

Type: STRING

	
EXECUTABLE_SUFFIX_UNIX

	
Specifies the file extension of the executable for a Process type request if executed on a generic Unix or Unix-like operating system. The default is no extension.

Type: STRING

	
EXECUTABLE_SUFFIX_WINDOWS

	
Specifies the file extension of the executable for a Process type request if executed on a Windows operating system. The default is no extension.

Type: STRING

	
EXECUTE_AUTO_EXPORT

	
Specifies whether the request's previously imported output content is automatically exported to the request's output directory before the job's execute stage runs. This property is applicable to the execute stage for Process, synchronous Java, and asynchronous Java job types. It does not apply to the update stage of asynchronous Java job types or PL/SQL job types.

Valid values are:

	
true: All previously imported output content are exported to files in the request's output directory before the job's execute stage.

	
false: No output content is automatically exported. The job may choose to manually export output content.

If this property is not specified, the system default false is used.

Type: BOOLEAN

	
EXECUTE_PAST

	
Specifies whether instances of a repeating request with an execution time in the past should be generated. Instances are never generated before the requested start time nor after the requested end time. To cause past instances to be generated, you must set this property to TRUE and specify the requested start time as the initial time from which instances should be generated. Note that a null requested start time defaults to the current time.

Valid values for this property are:

	
TRUE: All instances specified by a schedule are generated regardless of the time of generation.

	
FALSE: Instances with a scheduled execution time in the past (that is, before the time of generation) are not generated.

If this property is not specified, the system defaults to TRUE.

Type: BOOLEAN

	
EXTERNAL_ID

	
Specifies an identifier for an external portion of an asynchronous Java job. For example, an asynchronous Java job usually invokes some remote process and then returns control to Oracle Enterprise Scheduler. This property can be used to identify the remote process. This property should be set by the job implementation of asynchronous Java jobs when the identifier is known. It is never set by Oracle Enterprise Scheduler.

Type: STRING

	
EXTERNAL_JOB_TYPE

	
Specifies an indicator of the type of the remote component of the job. For requests that have a remote component such as asynchronous Java jobs, WebService jobs, or EJB jobs this property specifies the nature of the remote job. Currently supported external job types are the names of the elements in the SystemProperty.ExternalJobType property.

The supported values are SOA, OSB, ADFBC

This property is optional. If it is not specified, Oracle Enterprise Scheduler does not associate the request with an external job type, regardless of how the job is implemented.

Type: STRING

	
GROUP_NAME

	
Specifies the name of the Oracle Enterprise Scheduler isolation group to which this request is bound. This property is automatically set by Oracle Enterprise Scheduler during request submission.

Type: STRING

	
INPUT_LIST

	
Specifies input to a request. The input to a serial job set is forwarded as input to the first step only. The input to a parallel job set is forwarded as input to all the parallel steps.

Oracle Enterprise Scheduler imposes no format on the value of this property.

Type: STRING

	
INVOKE_MESSAGE

	
Specifies the XML message payload used as the input for invoking the remote web service. This property is used for the EJB job type and WebService job type. This property is a pass-through parameter for the EJB job type.

Type: STRING

	
JNDI_CSF_KEY

	
Specifies the CSF alias that is mapped to the user name and password in keystore. This specific user name/password is the credential needed to access the secured JNDI for JndiMappedName lookup. This property is needed only if the JNDI tree is secured. This property is used for the EJB job type.

Type: STRING

	
JNDI_MAPPED_NAME

	
Specifies the mapped name of an EJB that is bound to the JNDI of a local/remote server. This property is used for the EJB job type.

Type: STRING

	
JNDI_PROVIDER_URL

	
Specifies the URL of the JNDI provider pertaining to a remote server. This property is optional, needed only if the EJB and Oracle Enterprise Scheduler are remotely located. If this property is not specified, the job is executed in a local server. This property is used for the EJB job type.

Type: STRING

	
LISTENER

	
Specifies the event listener class associated with the request. This should be the name of a Java class that implements the oracle.as.scheduler.EventListener interface.

Type: STRING

	
LOCALE

	
Specifies the locale associated with the request.

Type: STRING

	
LOGICAL_CLUSTER_NAME

	
Specifies the name of a logical cluster. A logical cluster consists of information related to a physical cluster and is usually stored in the hosting application's configuration. The logical cluster name is a reference to a set of physical cluster information in the application's configuration. If the property is not specified, no logical cluster is associated with the request.

Type: STRING

	
OUTPUT_LIST

	
Specifies output from a request.

The output of a serial job set is the OUTPUT_LIST of the last step. The output of a parallel job set is the concatenation of the OUTPUT_LIST of all the steps, in no guaranteed order, with oracle.as.scheduler.SystemProperty.OUTPUT_LIST_DELIMITER as a separator.

Type: STRING

	
POST_PROCESS

	
Specifies the post-process callout handler class. This should be the name of a Java class that implements the oracle.as.scheduler.PostProcessHandler interface.

Type: STRING

	
PRE_PROCESS

	
Specifies the pre-process callout handler class. This should be the name of a Java class that implements the oracle.as.scheduler.PreProcessHandler interface.

Type: STRING

	
PRIORITY

	
Specifies the request processing priority. The priority interval is [0..9] with 0 as the lowest priority and 9 as the highest.

Default: If this property is not specified, the system default value used is 4.

Type: INTEGER

	
PROCEDURE_NAME

	
Specifies the name of the PL/SQL stored procedure to be called for a SQL job request. The stored procedure should be specified using schema.name format.

The property is required for a SQL job type. It is not used for other job types.

Type: STRING

	
PRODUCT

	
Specifies the product within the application that submitted the request.

Type: STRING

	
PROCESS_ARGUMENTS

	
Specifies the arguments passed to the executable of a Process type spawned process.

Type: STRING

	
REDIRECTED_OUTPUT_FILE

	
Specifies the file where standard output and error streams are redirected for a Process job request. This represents the full path of the log file where the standard output and error streams are redirected for the spawned process when the request is executed.

This property is optional for a Process job type. It is not used for other job types.

Type: STRING

	
REPROCESS_DELAY

	
Specifies the callout handler processing delay time. This represents the time, in minutes, to delay request processing when a delay is requested by a callback handler.

Default: If this property is not specified, the system default used is 5.

Type: INTEGER

	
REQUEST_CATEGORY

	
Specifies an application-specific label for a request. The label, defined by an application or system administrator, allows administrators to group job requests according to their own specific requirements.

Type: STRING

	
REQUEST_EFFECTIVE_ENCODING

	
Specifies the effective encoding associated with a Process job request.

SpawnLauncher determines the Locale setting for a spawned job request in the following precedence order:

	
LC_ALL/LANG specified in environment properties (SystemProperty.ENVIRONMENT_VARIABLES) for the request

	
LC_ALL/LANG specified in the hosting application ess-config.xml file

	
Weblogic server LC_ALL/LANG

The effective encoding is computed before the process is spawned and is stored in this property. This is later used to determine the encoding to use for the request log and output.

Type: STRING

	
REQUEST_EXPIRATION

	
Specifies the expiration time for a request. This represents the time, in minutes, that a request expires after its scheduled execution time. A expiration value of zero (0) means that the request never expires. If this property is not specified, the system default value used is 0.

Request expiration only applies to requests that are waiting to run. If a request waits longer than the specified expiration period, it does not run. After a request starts running the request expiration no longer applies.

Type: INTEGER

	
REQUEST_LOG_LEVEL

	
Specifies the log level for request logging. Valid values for log level are the String representations of levels defined in java.util.logging. The level is obtained using Level.getName(). The default log level is "INFO".

Type: STRING

	
REQUESTED_PROCESSOR

	
Specifies the request processor node on which the request should be processed. This allows processor affinity to be specified for a request. If this property is not specified, the request can run on any available request processor node. In general, this property should not be specified.

If this property is specified for a request, the request processor's work assignments oracle.as.scheduler.WorkAssignment (specialization) must allow the execution of such requests, otherwise the request is never executed. If the specified node is not running, the request remains in the READY state and is not executed until the node is restarted.

Type: STRING

	
RESOLVED_CMDLINE

	
Specifies the command line used for a Process type job request. This property is only set by Oracle Enterprise Scheduler. It is meant for diagnostic purposes only.

Type: STRING

	
RETRIES

	
Specifies the retry limit for a failed request. If request execution fails, the request retries up to the number of times specified by this property until the request succeeds. If retry limit is zero (0), a failed request is not retried.

Default: If this property is not specified, the system default used is 0.

Type: INTEGER

	
RUNAS_APPLICATIONID

	
Specifies the runAs identifier that should be used to execute the request. Normally, a request runs as the submitting user. However, if this property is set in the metadata of the job associated with the request, then the request executes under the user identified by this property. This property can only be specified using metadata and cannot be specified as a submission parameter.

Type: STRING

	
SELECT_STATE

	
Specifies whether the result state of a job set step affects the eventual state of its parent job set. In order for the state of a job set step to be considered when determining the state of the job set, the SELECT_STATE must be set to true. If SELECT_STATE is not specified on a job set step, the state of the step is included in the determination of the state of the job set.

Type: BOOLEAN

	
SQL_JOB_CLASS

	
Specifies an Oracle Enterprise Scheduler job class to be assigned to the Oracle Enterprise Scheduler job used to execute a SQL job request. This property need not be specified unless the job used for a job request is associated with a particular Oracle Database resource consumer group or has affinity to a database service.

If this property is not specified, a default Oracle Enterprise Scheduler job class is used for the job that executes the SQL request. That job class is associated with the default resource consumer group. It belongs to the default service, such that it has no service affinity and, in an Oracle RAC environment, any one of the database instances within the cluster might run the job. No additional privilege or grant is required for an Oracle Enterprise Scheduler SQL job request to use that default job class.

This property is optional for a SQL job type. It is not used for other job types.

Type: STRING

	
SUBMITTING_APPLICATION

	
Specifies the logical name of the Java EE application for the submitted (absolute parent) request. This property is automatically set by Oracle Enterprise Scheduler during request submission.

Type: STRING

	
SUCCESS_EXIT_CODE

	
Specifies the process exit code for a Process job request that denotes an execution success. If this property is not specified the system treats a process exit code of 0 as execution success.

This property is optional for a Process job type. It is not used for other job types.

Type: STRING

	
SUPPORT_OUTPUT_FILES

	
Specifies whether the request creates temporary or output files. The property applies during these stages: pre-processing, execution, async update, and post-processing. The request can always use the API to create output content directly in the content store.

The property value specifies the action to take. If this property is not specified, no directories are created. Non-valid values are treated as though the property is not specified.

Valid values are:

	
SystemProperty.SUPPORT_OUTPUT_FILES_NONE

	
SystemProperty.SUPPORT_OUTPUT_FILES_WORK

	
SystemProperty.SUPPORT_OUTPUT_FILES_OUTPUT

Type: STRING

	
UPLOAD_CONTENT_TO_REPOSITORY

	
Specifies whether to upload request log and output files to a separate repository, such as Universal Content Management (UCM), from the internal repository when the request execution completes.

Property value specifies the action to take. If this property is not specified, content is not uploaded. Non-valid values are treated as though the property were not specified.

Valid value is:

SystemProperty.UPLOAD_CONTENT_TO_REPOSITORY_COPY

Type: STRING

	
USE_ALTERNATE_ENV

	
Specifies whether to use an alternative environment from a callout rather than the normal application environment. If this property is not specified, the normal application environment is used.

Type: BOOLEAN

	
USE_EXTENDED_SETUP

	
Specifies whether to initiate capabilities like ApplSessions prior to invoking job-related code such as the job executable or pre-process handler, post-process handler. Extended functionality is invoked only in an environments where it is available. If this property is not specified, no extended functionality is set up prior to job execution.

Type: BOOLEAN

	
USER_FILE_DIR

	
Specifies a base directory in the file system where files, such as input and output files, may be stored for use by the request executable.

Oracle Enterprise Scheduler supports a configuration parameter that specifies a file directory where requests may store files. At request submission, a USER_FILE_DIR property is automatically added for the request if the configuration parameter is currently set and USER_FILE_DIR property was not specified for the request. If the property is added, it is initialized to the value of the configuration parameter. The property is not added if the configuration parameter is not set at the time of request submission.

Type: STRING

	
USER_FILE_DIR_SHARED

	
Specifies whether the request's USER_FILE_DIR (configured RequestFileDir) directory is shared. This property represents the value of RequestFileDirShared. This property is valid for a request in standard or extended request mode.

Valid values are:

	
true: USER_FILE_DIR is a shared directory.

	
false: USER_FILE_DIR is a local directory.

If this property is not specified, system default false is used.

Type: BOOLEAN

	
USER_NAME

	
Specifies the name of the user used to execute the request. Normally this is the submitting user unless the RUNAS_APPLICATIONID property was set in the job metadata. This property is automatically set by Oracle Enterprise Scheduler during request submission.

Type: STRING

	
WARNING_EXIT_CODE

	
Specifies the process exit code for a Process job request that denotes an execution warning. If this property is not specified, the system treats a process exit code of 3 as execution warning.

This property is optional for a Process job type. It is not used for other job types.

Type: STRING

	
WORK_DIR_ROOT

	
Specifies the working directory for the spawned process of a Process job request.

This property is optional for a Process job type. It is not used for other job types.

Type: STRING

	
WS_WSDL_URL

	
Specifies the relative URL for web service WSDL. The base URL is given by the WS_WSDL_BASE_URL system property. This property is used for a WebService job type.

Type: STRING

	
WS_WSDL_BASE_URL

	
Specifies a base URL that can be used in conjunction with the WS_WSDL_URL system property to provide a full URL for the web service WSDL. The property is usually used in conjunction with the LOGICAL_CLUSTER_NAME system property. It is meant to be a generic base URL that is common for all web service WSDLs in the cluster. This property is used for a WebService job type.

This property is optional. If it is not specified, equivalent information may be retrieved from the information associated with the LOGICAL_CLUSTER_NAME system property of the request if it is configured in the hosting application's configuration.

Type: STRING

	
WS_TARGET_NS

	
Specifies the target name space for the web service. This property is used for a WebService job type.

Type: STRING

	
WS_ENDPOINT_URL

	
Specifies the relative URL for a web service endpoint. The base URL is given by the WS_ENDPOINT_BASE_URL system property. This property is used for a WebService job type.

Type: STRING

	
WS_ENDPOINT_BASE_URL

	
Specifies a base URL that can be used in conjunction with the WS_ENDPOINT_URL system property to provide a full URL for the web service endpoint. This property is usually used in conjunction with the LOGICAL_CLUSTER_NAME system property. It is meant to be a generic base URL that is common for all web service endpoints in the cluster. This property is used for a WebService job type.

This property is optional. If it is not specified, equivalent information may be retrieved from the information associated with the LOGICAL_CLUSTER_NAME system property of the request if it is configured in the hosting application's configuration.

Type: STRING

	
WS_SERVICE_NAME

	
Specifies the WSDL service name for a web service operation. This property is used for a WebService job type.

Type: STRING

	
WS_PORT_NAME

	
Specifies the WSDL port name for a web service operation. This property is used for a WebService job type.

Type: STRING

	
WS_OPERATION_NAME

	
Specifies the WSDL operation name for a web service operation. This property is used for a WebService job type.

Type: STRING

	
WS_CANCEL_OPERATION_NAME

	
Specifies the WSDL operation name for a web service cancel operation. This property is used for a WebService job type.

Type: STRING

	
WS_CANCEL_MESSAGE

	
Specifies the XML message payload used as the input for invoking cancel on remote web service. This property is used for a WebService job type.

Type: STRING

10 Using Tokens and Logical Clusters

In order to make job definitions easily portable from test environments to production environments, it is best for job definitions not to contain environment-specific information such as host names and port numbers. The Oracle Enterprise Scheduler token substitution and logical cluster features allow you to abstract metadata so that it can be easily changed to correctly fit the target deployment during the T2P process.

This chapter contains the following sections:

	
Using Token Substitution

	
Using Logical Clusters

10.1 Using Token Substitution

To improve the flexibility of configuration and reduce the need for provisioning, Oracle Enterprise Scheduler allows you to include substitutable tokens in request parameters and environment properties.

Tokens take the following form: ${TokenPrefix:token}

Where token is the name of the token and TokenPrefix is where the substitution value is specified. Supported token prefixes are: APP_ENV, ESS_ENV, and ESS_REQ. The examples given below are simple, but illustrate the capabilities of Oracle Enterprise Scheduler substitution.

	
APP_ENV

The substitution value comes from the application environment properties.

For example, the following environment variable is specified in the hosting application configuration properties using Oracle Enterprise Manager Fusion Middleware Control or WLST:

AppEnvVar1=foo

A request parameter is specified in a job definition:

MyParam=${APP_ENV:appEnvVar1}

After the substitution, the value of MyParam is foo.

	
ESS_ENV

Substitution values come from the Oracle Enterprise Scheduler server environment. This includes the following three possible sources:

	
JVM system properties: The token value is the name of the system property.

	
JVM environment variables: The token value is the name of the environment variable.

	
JRF: Token values are jrfServerLogPath, jrfServerConfigDirectory, and jrfDomainConfigDirectory.

The following example shows the use of the ESS_ENV token prefix in the specification of an environment variable in the hosting application configuration properties.

wlstLocation = ${ESS_ENV:common.components.home}/common/bin/wlst.sh.

When the substitution is performed, the Oracle Enterprise Scheduler process job environment includes an environment variable named wlstLocation whose value is a complete path. For example:

/myInstallHome/mw_home/oracle_common/common/bin/wlst.sh.

	
ESS_REQ

ESS_REQ substitutions come from information specific to the Oracle Enterprise Scheduler request in question. The following are the supported tokens:

	
REQUEST_ID

	
REQUEST_HANDLE

	
IS_RESUMED

	
PAUSED_STATE

	
Request parameter names for those requests

10.1.1 Nested Substitutions

Nested substitutions are automatically resolved when the top-level substitution is done. For example, the following request parameters are specified in a job definition for a process job:

MyParam1=${ESS_REQ:MyParam2}
MyParam2=${APP_ENV:MyEnvProp1}

An application's environment properties includes the following:

MyEnvProp1=${ESS_ENV:weblogic.Name}

The value of the JVM system property weblogic.Name might be something like ess_server1. When substitution is performed on MyParam1, it resolves to the value of MyParam2, which in turn resolves to the value of MyEnvProp1. The the result of the nested substitution is that the value of MyParam1 is ess_server1.

10.1.2 Automatic Substitution

Automatic Oracle Enterprise Scheduler substitution is available for process job command lines and environment properties, as well as for some request properties used by EJB and web service jobs.

Table 10-1, Table 10-2, and Table 10-3 list the automatically substituted request parameters for EJB jobs, web service jobs, and process jobs.

Table 10-1 EJB Job Type Automatically Substituted Properties

	Property Name
	
SYS_EXT_jndiProviderUrl

	
SYS_EXT_essRuntimeJndiMappedName

	
SYS_EXT_essMetadataJndiMappedName

	
SYS_EXT_essAsyncRequestJndiMappedName

	
SYS_EXT_essJndiCsfKey

	
SYS_EXT_invokeMessage

Table 10-2 Web Services Job Type: Automatically Substituted Properties

	Property Name
	
SYS_EXT_wsEndpointBaseUrl

	
SYS_EXT_wsEndpointUrl

	
SYS_EXT_wsWsdlBaseUrl

	
SYS_EXT_wsWsdlUrl

	
SYS_EXT_invokeMessage

	
SYS_EXT_wsCancelMessage

Table 10-3 Process Job Type: Automatically Substituted Properties

	Property Name
	
SYS_cmdLine

	
SYS_EXT_cmdLine.Unix

	
SYS_EXT_cmdLine.Windows

	
SYS_environmentVariables

For more information about these properties refer to the following chapters:

	
Creating and Using EJB Jobs

	
Creating and Using Web Service Jobs

	
Creating and Using Process Jobs .

10.2 Using Logical Clusters

Oracle Enterprise Scheduler provides the means by which EJB and web service jobs can define an abstract job location. The job location is specified by the Oracle Enterprise Scheduler SYS_logicalClusterName system property and specifies a logical cluster name (LCN). If the job definition for an EJB or web service job specifies a value for an LCN, certain environment-specific properties are specified using Oracle Enterprise Manager Fusion Middleware Control or WLST commands at the hosting application level rather than in the job definition. All job definitions with the same LCN share the value of the properties entered in the hosting application configuration properties using Oracle Enterprise Manager Fusion Middleware Control or WLST commands.

Note:

Oracle Enterprise Manager Fusion Middleware Control refers to logical cluster functionality as "job location." The terms "logical clusters" and "job location" can be used interchangeably.

If a job definition specifies a value for the SYS_logicalClusterName property, then the value is used as a prefix for a set of application configuration properties that define attributes of the logical cluster. Table 10-4 lists the properties associated with job location, where prefix represents the logical cluster name. Note that these properties need not be specified if they are configured in the hosting application.

Table 10-4 Properties Associated With a Job Location

	Property Name	Corresponding System Property	Description
	
LCN.prefix.JndiProviderUrl

	
SYS_EXT_jndiProviderUrl

	
The JNDI provider for the cluster. Used with the EJB job type. The corresponding system property, SYS_EXT_jndiProviderUrl, need not be specified in the job.

	
LCN.prefix.WsEndpointBaseUrl

	
SYS_EXT_wsEndpointBaseUrl

	
The host and port. For example, http://host:port/. Used with the EJB job type. The corresponding system property, SYS_EXT_wsEndpointBaseUrl, need not be specified in the job.

	
LCN.prefix.WsWsdlBaseUrl

	
SYS_EXT_wsWsdlBaseUrl

	
The host and port of the WSDL. For example, http://host:port/. Used with the EJB job type. The Corresponding system property, SYS_EXT_wsWsdlBaseUrl, need not be specified in the job.

For example, if a job defines the SYS_logicalClusterName property as SOA_Cluster1, then the application configuration might contain the following properties:

LCN.SOA_Cluster1.WsEndpointBaseURL=http://host:port/
LCN.SOA_Cluster1.WsWsdlBaseURL=http://host:port/
LCN.SOA_Cluster1.JndiProviderURL=t3://host1;port1;host2:port2/

Note:

The value of the SYS_logicalClusterName property cannot contain the “." character.

11 Creating and Using PL/SQL Jobs

This chapter describes how to create PL/SQL stored procedures for use with Oracle Enterprise Scheduler, and describes Oracle Database tasks that you need to perform to use PL/SQL stored procedures with Oracle Enterprise Scheduler.

After you create a PL/SQL procedure and define a job definition, you can use the Oracle Enterprise Scheduler runtime service to submit a job request for a PL/SQL procedure.

This chapter includes the following sections:

	
Introduction to Using PL/SQL Stored Procedure Job Definitions

	
Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler

	
Performing Oracle Database Tasks for PL/SQL Stored Procedures

	
Creating and Storing Job Definitions for PL/SQL Job Types

For information about how to use the Runtime Service, see Using the Runtime Service.

11.1 Introduction to Using PL/SQL Stored Procedure Job Definitions

Oracle Enterprise Scheduler lets you run job requests of different types, including: Java classes, PL/SQL stored procedures, and process requests that run as a forked process. To use Oracle Enterprise Scheduler with PL/SQL stored procedures you need to do the following:

	
Create or obtain the PL/SQL stored procedure that you want to use with Oracle Enterprise Scheduler.

	
Load the PL/SQL stored procedure in the Oracle Database and grant the required permissions and perform other required DBA tasks.

	
Use Oracle JDeveloper to create job type and job definition objects and store these objects with the Oracle Enterprise Scheduler application metadata.

	
Use Oracle JDeveloper to create an application with Oracle Enterprise Scheduler APIs that runs and submits a PL/SQL stored procedure.

Finally, after you create an application that uses the Oracle Enterprise Scheduler APIs you use Oracle JDeveloper to deploy and run the application.

At runtime, after you submit a job request you can monitor and manage the job request. For more information, see Using the Runtime Service.

Oracle Enterprise Scheduler uses an asynchronous execution model for PL/SQL stored procedure job requests. This means that Oracle Enterprise Scheduler does not directly call the PL/SQL stored procedure, but instead uses Oracle Database Scheduler (an Oracle Database feature). When a PL/SQL stored procedure job request is ready to execute, Oracle Enterprise Scheduler creates an immediate, run-once Oracle Database Scheduler job. This Oracle Database Scheduler job is created by the Oracle Enterprise Scheduler runtime schema user associated with the container instance that executes the PL/SQL request, and is owned by the application procedure owner. The Oracle Database Scheduler job procedure is a PL/SQL wrapper procedure owned by the Oracle Enterprise Scheduler runtime schema user. Finally, when the Oracle Database Scheduler job runs, the wrapper procedure calls the application stored procedure using dynamic SQL. After the PL/SQL stored procedure completes, either by a successful return or by raising an exception, the Oracle Database Scheduler job finishes and creates an event that informs Oracle Enterprise Scheduler that the remote executable finished.

11.2 Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler

When you want to use a PL/SQL stored procedure with Oracle Enterprise Scheduler, the PL/SQL procedure must have certain characteristics to work with an Oracle Enterprise Scheduler application and a DBA must assure that certain Oracle Database permissions are assigned to the PL/SQL stored procedure.

Creating a PL/SQL stored procedure involves the following steps:

	
Define the PL/SQL stored procedure that has the correct signature for use with Oracle Enterprise Scheduler

	
Perform the required DBA tasks to make the PL/SQL stored procedure available to Oracle Enterprise Scheduler

11.2.1 How to Define a PL/SQL Stored Procedure with the Correct Signature

The PL/SQL stored procedure that you call from Oracle Enterprise Scheduler must have a specific signature and include specific procedure parameters, as follows:

PROCEDURE my_proc(request_handle IN VARCHAR2);

The request_handle parameter is an opaque value representing an execution context for the Oracle Enterprise Scheduler request being executed.

Example 11-1 shows a sample HELLO_WORLD stored procedure for use with Oracle Enterprise Scheduler.

Example 11-1 HELLO_WORLD PL/SQL Stored Procedure

create or replace procedure HELLO_WORLD(request_handle in varchar2)
as
 v_request_id number := null;
 v_prop_name varchar2(500) := null;
 v_prop_int integer := null;
begin
 -- Get the Oracle Enterprise Scheduler request ID being executed.
 begin
 v_request_id := ess_runtime.get_request_id(request_handle);
 exception
 when others then
 raise_application_error(-20000,
 'Failed to get request id for request handle ' ||
 request_handle || '. [' || SQLERRM || ']');
 end;

 -- Retrieve value of an existing request property.
 begin
 v_prop_name := 'mytestIntProp';
 v_prop_int := ess_runtime.get_reqprop_int(v_request_id, v_prop_name);
 exception
 when others then
 rollback;
 raise_application_error(-20001,
 'Failed to get request property ' || v_prop_name ||
 ' for Oracle Enterprise Scheduler request ID ' || v_request_id ||
 '. [' || SQLERRM || ']');
 end;

 -- Update an existing request property with a new value.
 -- This procedure is responsible for commit/rollback of the update operation.
 begin
 v_prop_name := 'myJobdefProp';
 ess_runtime.update_reqprop_varchar2(v_request_id, v_prop_name,
 'myUpdateValue');
 commit;
 exception
 when others then
 rollback;
 raise_application_error(-20002,
 'Failed to update request property ' || v_prop_name ||
 ' for Oracle Enterprise Scheduler request ID ' || v_request_id ||
 '. [' || SQLERRM || ']');
 end;
end helloworld;
/

11.2.2 Handling Runtime Exceptions in an Oracle Enterprise Scheduler PL/SQL Stored Procedure

In the PL/SQL stored procedure, you can handle exceptions and other issues by raising a RAISE_APPLICATION_ERROR exception. The RAISE_APPLICATION_ERROR requires that the error code from the PL/SQL stored procedure range from -20000 to -20999. The PL/SQL stored procedure can use RAISE_APPLICATION_ERROR if it must raise an exception. RAISE_APPLICATION_ERROR requires that the error code range from -20000 to -20999.

Table 11-1 indicates the Oracle Enterprise Scheduler state based on the result of the PL/SQL stored procedure.

Table 11-1 Terminal States for PL/SQL Stored Procedure Results

	Final State	Description
	
SUCCEEDED

	
If the PL/SQL stored procedure returns normally, without raising an exception, the request state transitions to the SUCCEEDED state, bearing any subsequent errors completing the request.

	
WARNING

	
If the PL/SQL stored procedure returns with an exception, the request state is based on the SQL error code of the exception.

The request transitions to the WARNING terminal state if the SQL error code ranges from -20900 to -20919.

	
ERROR

	
If the PL/SQL stored procedure returns with an exception, the request state is based on the SQL error code of the exception.

The request transitions to the ERROR terminal state for any error code outside the range of -20900 to -20919 (error codes within this range indicate a WARNING).

Return codes in the range -20920 to -20929 result in an ERROR state with a BUSINESS error type, where the request is not subject to automatic retries.

11.2.3 How to Access Job Request Information In PL/SQL Stored Procedures

Oracle Enterprise Scheduler provides a PL/SQL package, ESS_RUNTIME to perform certain operations that you may need when you are working in a PL/SQL stored procedure. You can use these procedures perform job request operations and to obtain job request information for an Oracle Enterprise Scheduler runtime schema. For example, you can use these runtime procedure to submit requests and retrieve and update request information associated with an Oracle Enterprise Scheduler job request.

The following sample code shows use of an ESS_RUNTIME procedure:

v_request_id := ess_runtime.get_request_id(request_handle);

This request obtains the request ID associated with a job request.

Certain procedures in the ESS_RUNTIME package require a request handle parameter and provide information on an executing request (these should only be called from the PL/SQL stored procedure that is executing the PL/SQL stored procedure request). You can call some procedures in the ESS_RUNTIME package from outside of the context of an executing request; these procedures may include a request ID parameter.

11.2.4 What You Need to Know When You Define a PL/SQL Stored Procedure

You need to know the following when you create an use a PL/SQL stored procedure with Oracle Enterprise Scheduler:

	
It is not required that the PL/SQL stored procedure exist when the Oracle Enterprise Scheduler request is submitted, but the PL/SQL stored procedure must exist and be callable when the request is ready to run.

	
The PL/SQL stored procedure must exist on the same database as the Oracle Enterprise Scheduler Runtime schema.

11.3 Performing Oracle Database Tasks for PL/SQL Stored Procedures

After you create the PL/SQL stored procedure that you want to use with Oracle Enterprise Scheduler a DBA must load the PL/SQL stored procedure in the Oracle Database and grant the required permissions.

11.3.1 How to Grant PL/SQL Stored Procedure Permissions

Before the DBA grants permissions, the DBA must determine the Oracle Database and the Oracle Enterprise Scheduler runtime schema that is associated with the deployed Java EE application that is going to submit the Oracle Enterprise Scheduler PL/SQL stored procedure request.

Use the following definitions when you grant PL/SQL stored procedure permissions:

ess_schema: specifies the Oracle Enterprise Scheduler runtime schema associated with the Java EE application.

user_schema: specifies the name of the application user schema.

PROC_NAME: specifies the name of the PL/SQL stored procedure associated with the Oracle Enterprise Scheduler job request.

To grant Oracle Database permissions:

	In the Oracle Database grant execute on the ESS_RUNTIME package to the application user schema. For example:

GRANT EXECUTE ON ess_schema.ESS_RUNTIME to user_schema;

	In the Oracle Database, create a private synonym for the ESS_RUNTIME package. This is a convenience step that allows the PL/SQL stored procedure to reference the ESS_RUNTIME as simply ESS_RUNTIME rather than using the full schema_name.ESS_RUNIME. For example:

CREATE OR REPLACE SYNOMYM user_schema.ESS_RUNTIME for ess_schema.ESS_RUNTIME;

	In the Oracle Database, grant execute on the ESS_JOB package to the application user schema. This step can be skipped if ESS_JOB is not used. For example:

GRANT EXECUTE ON ess_schema.ESS_JOB to user_schema;

	In the Oracle Database, create a private synonym for the ESS_JOB package. This is a convenience step that allows the PL/SQL stored procedure to reference the ESS_JOB as simply ESS_JOB rather than using the full schema_name.ESS_JOB. This step can be skipped if ESS_JOB is not used. For example:

CREATE OR REPLACE SYNONYM user_schema.ESS_JOB for ess_schema.ESS_JOB;

	In the Oracle Database, grant execute on a PL/SQL stored procedure owned by the Oracle Enterprise Scheduler runtime schema user that serves as the Oracle Enterprise Scheduler job procedure. For example:

GRANT EXECUTE ON ess_schema.ESS_SCHJOB_PROC to user_schema;

As an example, if the Oracle Enterprise Scheduler runtime schema is TEST_ESS, the application user schema is HOWTO, and the PL/SQL procedure is named HELLO_WORLD, the DBA operations are:

GRANT EXECUTE ON test_ess.ess_runtime to howto;
CREATE OR REPLACE SYNONYM howto.ess_runtime for test_ess.ess_runtime;
GRANT EXECUTE ON test_ess.ess_job to howto;
CREATE OR REPLACE SYNONYM howto.ess_job for test_ess.ess_job;
GRANT EXECUTE ON test_ess.ESS_SCHJOB_PROC to howto;

11.3.2 What You Need to Know About Granting PL/SQL Stored Procedure Permissions

The two steps shown for DBA tasks for granting permissions on the ESS_RUNTIME package are only required if the ESS_RUNTIME package is referenced by a PL/SQL procedure. The two steps shown for DBA tasks use to grant permissions on the ESS_JOB package are only required if the ESS_JOB package is referenced by a PL/SQL procedure. The step shown for the ESS_SCHJOB_PROC procedure is always required since it allows the Oracle Enterprise Scheduler wrapper procedure to be called.

All PL/SQL stored procedures in a given application user schema that are used for Oracle Enterprise Scheduler PL/SQL stored procedure jobs should always be associated with the same (single) Oracle Enterprise Scheduler Runtime schema. While this is not technically required, it greatly simplifies the DBA setup and does not require the PL/SQL stored procedure to explicitly specify the Oracle Enterprise Scheduler runtime schema if the procedure references the ESS_RUNTIME.

11.4 Creating and Storing Job Definitions for PL/SQL Job Types

To use PL/SQL stored procedures with Oracle Enterprise Scheduler you need to locate the Metadata Service and create a job definition. You create a job definition by specifying a name and a job type. When you create a job definition you also need to set certain system properties. You can then store the job definition and other associated objects using the Metadata Service.

For information about how to use the Metadata Service, see Using the Metadata Service .

Oracle Enterprise Scheduler uses an Oracle Database Scheduler job to execute the PL/SQL stored procedure for a SQL job request. An Oracle Database Scheduler job class can be associated with the job when that job must have affinity to a database service or is to be associated with an Oracle Database resource consumer group. The Oracle Database Scheduler job owner must have EXECUTE privilege on the Oracle Database Scheduler job class in order to successfully create a job using that job class.

You can use Oracle Enterprise Scheduler system properties to specify certain attributes for the Oracle Enterprise Scheduler job that calls the PL/SQL stored procedure.

These SystemProperty properties apply specifically to SQL job types; PROCEDURE_NAME, SQL_JOB_CLASS.

The PROCEDURE_NAME system property specifies the name of the PL/SQL stored procedure to be executed. The stored procedure name should have a owner.name format, where owner is the schema owner of the job procedure and name is the procedure name. This property must be specified for either the job type or job definition.

The SQL_JOB_CLASS system property specifies an Oracle Database Scheduler job class to be assigned to the Oracle Database Scheduler job used to execute an SQL job request. This property does not need to be specified unless the Oracle Database Scheduler job used for a request should be associated with a particular Oracle Database resource consumer group or have affinity to a database service.

If the SQL_JOB_CLASS system property is not specified, a default Oracle Database Scheduler job class created by Oracle Enterprise Scheduler is used for the Oracle Database Scheduler job. The default job class is associated with the default resource consumer group. It belongs to the default service, which means it has no service affinity and in an Oracle RAC environment any one of the database instances within the cluster might run the job. No additional privilege grant is needed for an Oracle Enterprise Scheduler SQL request to use that default job class.

11.4.1 How to Create a PL/SQL Job Type

An Oracle Enterprise Scheduler JobType object specifies an execution type and defines a common set of properties for a job request. A job type can be defined and then shared among one or more job definitions. Oracle Enterprise Scheduler supports three execution types:

	
JAVA_TYPE: for job definitions that are implemented in Java and run in the container.

	
SQL_TYPE: for job definitions that run as PL/SQL stored procedures in a database server.

	
PROCESS_TYPE: for job definitions that are binaries and scripts that run as separate processes.

When you specify the JobType you can also specify properties that define the characteristics associated with the JobType. Table 11-2 describes the SystemProperties that are appropriate for a PL/SQL stored procedure job type.

Table 11-2 Oracle Enterprise Scheduler System Properties for a PL/SQL Stored Procedure Job Type

	System Property	Description
	
PROCEDURE_NAME

	
Specifies the name of the stored procedure to run as part of PL/SQL job execution.

For a SQL_TYPE application, this is a required property.

	
SQL_JOB_CLASS

	
Specifies an Oracle Database Scheduler job class to be assigned to the Oracle Database Scheduler job used to execute an SQL job request.

This is an optional property for a SQL_TYPE job type.

When you create and store a PL/SQL job type, you do the following:

	
Use the JobType constructor and supply a String name and a JobType.ExecutionType.SQL_TYPE argument.

	
Set the appropriate properties for the new JobType.

	
Obtain the metadata pointer, as shown in Accessing the Metadata Service. Use the Metadata Service addJobType() method to store the JobType in metadata.

	
Use a MetadataObjectId that uniquely identifies metadata objects in the metadata repository, and, using a unique identifier the MetadataObjectID contains the fully qualified name for a metadata object.

See Using a PL/SQL Stored Procedure with an Oracle Enterprise Scheduler Application for sample code.

11.4.2 How to Create and Store a Job Definition for PL/SQL Job Type

To use PL/SQL with Oracle Enterprise Scheduler, you need to create and store a job definition. A job definition is the basic unit of work that defines a job request in Oracle Enterprise Scheduler. Each job definition belongs to one and only one job type.

Note:

After you create a job definition with a job type, you cannot change the type or the job definition name. To change the type or the job definition name, you need to create a new job definition.

Using a PL/SQL Stored Procedure with an Oracle Enterprise Scheduler Application shows how to create a job definition using the job definition constructor and the job type.

11.4.3 Using a PL/SQL Stored Procedure with an Oracle Enterprise Scheduler Application

This section shows sample code in which job type and job definition application metadata are created for a SQL job type.

import oracle.as.scheduler.JobType;
import oracle.as.scheduler.JobDefinition;
import oracle.as.scheduler.MetadataService;
import oracle.as.scheduler.MetadataServiceHandle;
import oracle.as.scheduler.MetadataObjectId;
import oracle.as.scheduler.ParameterInfo;
import oracle.as.scheduler.ParameterInfo.DataType;
import oracle.as.scheduler.ParameterList;

void createDefinition()
{
 MetadataService metadata = ...
 MetadataServiceHandle mshandle = null;

 try
 {
 ParameterInfo pinfo;
 ParameterList plist;

 mshandle = metadata.open();

 // Define and add a PL/SQL job type for the application metadata.
 String jobTypeName = "PLSQLJobDefType";
 JobType jobType = null;
 MetadataObjectId jobTypeId = null;

 jobType = new JobType(jobTypeName, JobType.ExecutionType.SQL_TYPE);

 plist = new ParameterList();
 pinfo = SystemProperty.getSysPropInfo(SystemProperty.PROCEDURE_NAME);
 plist.add(info.getName(), pinfo.getDataType(), "HOWTO.HELLO_WORLD", false);
 pinfo = SystemProperty.getSysPropInfo(SystemProperty.PRODUCT);
 plist.add(pinfo.getName(), pinfo.getDataType(), "HOW_TO_PROD", false);
 jobType.setParameters(plist);

 jobTypeId = metadata.addJobType(mshandle, jobType, "HOW_TO_PROD");

 // Define and add a job definition for the application metadata.
 String jobDefName = "PLSQLJobDef";
 JobDefinition jobDef = null;
 MetadataObjectId jobDefId = null;

 jobDef = new JobDefinition(jobDefName, jobTypeId);
 jobDef.setDescription("Demo PLSQL Job Definition " + jobDefName);

 plist = new ParameterList();
 plist.add("myJobdefProp", DataType.STRING, "myJobdefVal", false);
 jobDef.setParameters(plist);

 jobDefId = metadata.addJobDefinition(mshandle, jobDef, "HOW_TO_PROD");
 }
 catch (Exception e)
 {
 [...]
 }
 finally
 {
 // always close metadata service handle in finally block
 if (null != mshandle)
 {
 metadata.close(mshandle);
 mshandle = null;
 }
 }
}

12 Creating and Using EJB Jobs

This chapter describes how to use Oracle Enterprise Scheduler to create Enterprise Java Bean (EJB) jobs.

This chapter contains the following sections:

	
Introduction to Creating EJB Jobs

	
Planning Job Development

	
Creating and Storing Job Definitions for EJB Job Types

	
Secured Invocation

	
Synchronous Bean

	
Asynchronous Bean

12.1 Introduction to Creating EJB Jobs

The EJB job type allows you to create Java-based jobs and take advantage of the convenience of the pre-deployed hosting application. In addition, the EJB can be located remotely on a different server. Unlike Java SE-based jobs, EJB jobs are not required to be embedded inside the hosting application. This allows them to be located remotely and to be used with the pre-deployed hosting application. An EJB job can be invoked from any hosting application, including the pre-deployed hosting application. Note that the EJB implementation must be in the same WebLogic domain as the scheduler server.

The EJB conforms to an interface defined by Oracle Enterprise Scheduler (defined in a shared library). The EJB is non-transactional. Both synchronous and asynchronous EJB jobs are supported. When running asynchronously, the EJB returns quickly and the Oracle Enterprise Scheduler EJB is invoked later when the job completes. The EJB implementation can work with any of the three shared libraries—server (oracle.ess), client (oracle.ess.client), and thin client (oracle.ess.thin.client). The thin client shared library does not depend on Oracle Enterprise Scheduler data sources. See Creating a Thin Client Application for more information about using the thin client library.

The EJB can submit sub-requests and it can write to output and a log. The EJB interface is similar or the same as a Java job and can do similar things. To improve performance, it is possible to consolidate multiple job implementations under a single shared EJB.

An EJB job is a Java job that is executed remotely using the EJB remote business interface. The execution type is JAVA_TYPE. The remote job is an EJB deployed in a remote server. The remote business interface of this bean extends the oracle.as.scheduler.RemoteExecutable interface and defines the execute method. The contract between Oracle Enterprise Scheduler and the servicing component is defined with the execute method. Figure 12-1 shows the components in a typical EJB job deployment.

The EJB must be located in the same domain as the hosting application and the Subject object is propagated to the EJB. For JNDI lookup operations, you can supply optional credentials. The default identity is "anonymous".

Figure 12-1 EJB Job Environment

[image: Description of "Figure 12-1 EJB Job Environment" follows]

12.2 Planning Job Development

The Oracle Enterprise Scheduler is flexible and provides implementation and deployment options. Planning Job Development is a high-level discussion about how to plan your job development and deployment process.

12.3 Creating and Storing Job Definitions for EJB Job Types

To use EJB type jobs with Oracle Enterprise Scheduler, you must locate the Metadata Service and create a job definition. You create a job definition by specifying a name and a job type. When you create a job definition you must also set certain system properties. You can store the job definition in the metadata repository using the Metadata Service. Sample metadata files are provided later in this chapter.

For information about how to use the Metadata Service, see Using the Metadata Service .

When you specify the JobType for the job definition, you can also specify SystemProperties that define the characteristics associated with the JobType. Table 12-1 and Table 12-2 describe the properties that specify how the request should be processed.

Table 12-1 EJB Job Type Properties

	Property Name [Field in SystemProperty class]	Description
	
SYS_EXT_jndiProviderUrl [JNDI_PROVIDER_URL]

	
Optional. Specifies the URL of the remote server. Required only if the EJB is remotely located.

The JndiProviderUrl can be specified to contain tokens that are resolved at runtime.

The following are two examples:

	
${WIRING:urn:oracle:fmw:soa:t3}

This URN is resolved at runtime and the actual URL value is fetched.

	
t3://localhost:19283

Where localhost is the host where EJB's are deployed and 19283 is the server port number.

	
SYS_EXT_jndiMappedName [JNDI_MAPPED_NAME]

	
Required. Specifies the JNDI lookup name of a remote EJB implementation.

Example: ejb/fileAdapter

	
SYS_EXT_ejbOperationName [EJB_OPERATION_NAME]

	
Optional. Specifies a pass-through parameter used by the EJB implementation to branch to the appropriate business methods.

Example: manageFileAdapter

	
SYS_EXT_jndiCSFKey [JNDI_CSF_KEY]

	
Required only if the JNDI tree of the EJB server is secured. Points to the CSF alias that is mapped to the user name and password in the keystore. This specific user name/password pair is the credential required to access the secured JNDI for JndiMappedName lookup.

This property can be added to either the RequestParameters object or to the Oracle Enterprise Scheduler configuration of the hosting application.

Note:

You can use Oracle Enterprise Manager Fusion Middleware Control or WLST scripts to configure the CSF key aliases as a post installation step. Prior to the post installation step, the Keystore's CSF map can be set to the default value of oracle.ess.security.

Table 12-2 lists the properties that can be added either to the RequestParameters object or to the Oracle Enterprise Scheduler configuration of the hosting application. In a production environment, environment specific data should not be entered into the job definition because the job definition is replicated when going from the test environment to the production environment. Instead, this data should be entered separately as configuration data with the hosting application. The Oracle Enterprise Scheduler token substitution and logical cluster features allow you to abstract metadata so that it can be easily changed to correctly fit the target deployment during the T2P process. See Using Tokens and Logical Clusters for information about using these features.

Table 12-2 Additional Properties

	Property Name [Field in SystemProperty class]	Description
	
SYS_EXT_essJndiCsfKey [ESS_JNDI_CSF_KEY_NAME]

	
Optional. Specifies the CSF key alias of the authenticated Oracle Enterprise Scheduler server. This property is required only if the Oracle Enterprise Scheduler JNDI tree is authenticated.

Example: ess-jndi-csf-key

	
SYS_EXT_essRuntimeJndiMappedName{ESS_RUNTIME_JNDI_MAPPED_NAME]

	
Specifies the JNDI mapped name of Oracle Enterprise Scheduler's RuntimeService bean that is defined in the hosting application and bound to the Oracle Enterprise Scheduler server's JNDI tree.

This property is required only if you use a hosting application other than EssNativeHostingApp and the remote bean has to call the Oracle Enterprise Scheduler runtime bean (for example, to write output or log information, submit requests or operate on requests).

	
SYS_EXT_essMetadataJndiMappedName[ESS_METADATA_JNDI_MAPPED_NAME]

	
Specifies the JNDI mapped name of Oracle Enterprise Scheduler's MetadataService bean defined in the hosting application and bound to the Oracle Enterprise Scheduler server's JNDI tree.

This property is required only if you use a hosting application other than EssNativeHostingApp and the remote bean requires access to Oracle Enterprise Scheduler's metadata bean.

	
SYS_EXT_essAsyncRequestJndiMappedName[ESS_ASYNC_REQUEST_JNDI_MAPPED_NAME]

	
Specifies the JNDI mapped name of Oracle Enterprise Scheduler's AsyncRequest bean defined in the hosting application and bound to Oracle Enterprise Scheduler server's JNDI tree.

This property is required only if:

	
The EJB invocation is asynchronous

	
You use a hosting application other than EssNativeHostingApp

	
The remote bean has to call back to Oracle Enterprise Scheduler beans (for example, an asynchronous callback).

For more information about system properties, see Using Parameters and System Properties .

12.4 Secured Invocation

Secured invocation of remote EJBs is required when the JNDI tree of its server is authenticated. This is also true when a remote EJB calls back to Oracle Enterprise Scheduler EJBs using secured lookup. The following sections provide some guidance.

12.4.1 Forward Invocation

The following apply to forward invocation.

	
When Oracle Enterprise Scheduler invokes a remote EJB, the subject of the executing job is always propagated.

	
When Oracle Enterprise Scheduler executes a job, the JndiProviderUrl of the current Oracle Enterprise Scheduler Server is always supplied to the remote EJB through RequestParameters.

	
If the JNDI tree of the remote server is authenticated, the JNDI_CSF_KEY property must be specified in the request parameters or the EssConfiguration of the hosting application.

	
Oracle Enterprise Scheduler looks up the keystore for the CsfKey to retrieve the PasswordCredential and connects to the remote server.

12.4.2 Callback Invocation

The following apply to callback invocation.

	
If the remote EJB must call back to Oracle Enterprise Scheduler beans, the following properties can be specified:

	
The JNDI names of Oracle Enterprise Scheduler Runtime, Metadata and AsyncRequest beans exposed in HostingApp must be specified in request parameters or the EssConfiguration of the hosting application. If EssNativeHostingApp is used, these entries are not required.

	
If the JNDI tree of the Oracle Enterprise Scheduler server is authenticated, the ESS_JNDI_CSF_KEY_NAME property must be specified in the request parameters or EssConfiguration of the hosting application. Oracle Enterprise Scheduler ensures that this property is available to the remote EJB through RequestParameters.

	
A remote EJB can make use of the RemoteConnector API to get the remote instances of Oracle Enterprise Scheduler beans. This can be done by passing the following:

	
RequestParameters

	
RequestParameters and JndiMappedName of the bean (for hosting applications other than the native hosting application)

	
RequestParameters, user name and password (if the Oracle Enterprise Scheduler server is authenticated)

	
InitialContext (primarily for Java SE clients with EssNativeHostingApp)

	
InitialContext and jndiMappedName (primarily for Java SE clients with other hosting applications)

12.4.3 RemoteConnector API and the Server Affinity Property

If your code implementation relies on accessing Oracle Enterprise Scheduler EJBs, use the methods exposed in the RemoteConnector API class. The Oracle Enterprise Scheduler requires the server affinity property to be set in the InitialContext environment before doing a JNDI lookup and the RemoteConnector API class sets this property for you. Note that this is especially important in multi-node cluster scenarios. The RemoteConnector class is packaged in the Oracle Enterprise Scheduler client libraries.

If for some reason the RemoteConector class cannot be used, you can set the environment map property to the InitialContext before doing the look-up for the Oracle Enterprise Scheduler EJBs as shown in the following example.

if(PlatformUtils.isWebLogic())
 envProps.put("weblogic.jndi.enableServerAffinity", "true");

In a multi-node cluster environment, it is best to set the cluster algorithm to "round-robin-affinity".

12.4.4 CSF Lookup From a Remote Server

If the beans of Oracle Enterprise Scheduler Services are authenticated, remote applications must use a secured lookup to make callbacks to Oracle Enterprise Scheduler. You can use Oracle Enterprise Scheduler's RemoteConnector API which uses the ESS_JNDI_CSF_KEY_NAME property available in the request parameters to do the look-up. But to assist this CSF lookup, the code that invokes the RemoteConnector must grant permission for credential store access. The following XML fragment can be added to the jazn-data.xml file of the remote application.

 <jazn-policy>
 <grant>
 <grantee>
 <codesource>
 <url>file:${domain.home}/servers/${weblogic.Name}/tmp/ _WL_user/<AppName>/-</url>
 </codesource>
 </grantee>
 <permissions>
 <permission> <class>oracle.security.jps.service.credstore.CredentialAccessPermission
 </class>
 <name>context=SYSTEM,mapName=oracle.ess.security,keyName=*</name>
 <actions>READ</actions>
 </permission>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>IdentityAssertion</name>
 <actions>execute</actions>
 </permission>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>AppSecurityContext.setApplicationID.*</name>
 </permission>
 </permissions>
 </grant>
 </jazn-policy>

12.5 Synchronous Bean

This section contains examples that illustrate how to create a synchronous bean.

12.5.1 Metadata

This section shows metadata as it applies to synchronous beans.

The following example shows a sample job definition for an EJB job located in the file oracle/apps/ess/custom/Jobs/EssGatewayJobDefn.xml

<?xml version = '1.0'?>
<job-definition xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://xmlns.oracle.com/scheduler"
 name="SoaEjbJobDefn"
 job-type="/oracle/as/ess/core/JobType/SyncEjbJobType.xml">
<description/>
 <display-name>EssGatewayBean</display-name>
 <parameter-list>
 <parameter name="SYS_EXT_jndiKeyName" data-type="string" read-only="true">
 ejb/essGatewayBean</parameter>
 <parameter name="SYS_EXT_jndiProviderUrl" data-type="string" read-only="true">URL</parameter>
 <parameter name="SYS_EXT_ejbOperationName" data-type="string"
 read-only="true">activateFileAdapter</parameter>
 <parameter name="SYS_effectiveApplication" data-type="string">
 ESS_NATIVE_HOSTING_APP_LOGICAL_NAME</parameter>
 </parameter-list>
</job-definition>

12.5.2 EJB Job Sample Code

This section shows a sample implementation of a synchronous EJB job expected by Oracle Enterprise Scheduler.

The following code snippet shows a fragment of the ejb-jar.xml file that defines this bean.

<session>
 <description>ESS Gateway Bean</description>
 <ejb-name>EssGateway</ejb-name>
 <ejb-class>com.soa.beans.EssGatewayBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <security-identity>
 <use-caller-identity/>
 </security-identity>
</session>

The following code snippet shows a fragment of the weblogic-ejb-jar.xml file that defines this bean.

<weblogic-enterprise-bean>
 <ejb-name>FileAdapterBean</ejb-name>
 <stateless-session-descriptor>
 <business-interface-jndi-name-map>
 <business-remote>oracle.as.scheduler.RemoteCancellableExecutable
 </business-remote>
 <jndi-name>ejb/essGatewayBean</jndi-name>
 </business-interface-jndi-name-map>
 </stateless-session-descriptor>
 </weblogic-enterprise-bean>

import javax.ejb.Stateless;
import oracle.as.scheduler.SystemProperty;
import oracle.as.scheduler.ExecutionCancelledException;
import oracle.as.scheduler.ExecutionErrorException;
import oracle.as.scheduler.ExecutionPausedException;
import oracle.as.scheduler.ExecutionWarningException;
import oracle.as.scheduler.RemoteCancellableExecutable;
import oracle.as.scheduler.RequestExecutionContext;
import oracle.as.scheduler.RequestParameters;

@Stateless(name = "EssGateway", mappedName = "ejb/essGatewayBean")
public class EssGatewayBean implements RemoteCancellableExecutable
{
 public EssGatewayBean()
 {
 }

 public void execute(RequestExecutionContext context,
 RequestParameters parameters) throws ExecutionErrorException,
 ExecutionWarningException, ExecutionCancelledException,
 ExecutionPausedException
 {
 //Get the value of 'SYS_EXT_ejbOperationName' property
 String opName = (String)parameters.getValue(SystemProperty.EJB_OPERATION_NAME);

 if("manageFileAdapter".equals(opName))
 {
 //
 //Call business method of this bean or some other bean
 //
 //Hint: User defined properties can be set in RequestParameters while
 //submitting the job and can be retrieved here for further processing.
 }
 }

 public void cancel(RequestExecutionContext context,
 RequestParameters parameters)
 {
 //
 //Logic to cancel the execution of a business method.
 //
 // Execute the actual logic of cancellation, notifies back to ESS
 // by throwing ExecutionCancelledException through execute method.
 }
}

12.6 Asynchronous Bean

Asynchronous EJBs are typically used:

	
For long-running operations

	
For processor-intensive tasks

	
For background tasks

	
To increase application throughput

	
To improve application response time if the method invocation result is not required immediately

The synchronous EJB job is more appropriate for short-running user business methods.

There are a couple of ways for Oracle Enterprise Scheduler to execute a bean asynchronously:

	
Explicit asynchrony: Use a synchronous stateless bean to invoke a message-driven bean asynchronously. (Add a Java Message Service message to a topic/queue that is listened to by a message-driven bean)

	
Implicit asynchrony: Use the EJB Asynchronous annotation to declare a business method (other than execute, cancel methods) to behave asynchronously.

When Oracle Enterprise Scheduler invokes a bean asynchronously, it does not wait for the execute method to finish. For that reason, the bean implementation has to notify the Oracle Enterprise Scheduler after processing finishes. The RemoteAsyncHelper class can be used for this purpose. Alternatively, the AsyncRequestBean obtained from RemoteConnector can be used to notify Oracle Enterprise Scheduler with a status update.

Note:

Oracle Enterprise Scheduler can invoke a synchronous bean asynchronously. However, if you use this method the bean must be modeled in a way that long-running methods are marked for asynchrony.

Note:

As specified in the EJB standard, you cannot use the @Asynchronous annotation in the execute method or the entire class because the execute method throws custom exceptions which are not permitted. Oracle Enterprise Scheduler requires the execute method to throw custom exceptions.

12.6.1 Metadata

This section shows metadata as it applies to asynchronous beans.

This example shows a sample job definition for an EJB job located in the file oracle/apps/ess/custom/Jobs/AsyncJobDefn.xml

<?xml version = '1.0'?>
<job-definition xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/scheduler" name="EssAsyncJobDefn"
 job-type="/oracle/as/ess/core/JobType/AsyncEjbJobType.xml">
 <display-name>EssGatewayBean</display-name>
 <parameter-list>
 <parameter name="SYS_EXT_jndiKeyName" data-type="string"
 read-only="true">ejb/essAsyncGatewayBean</parameter>
 <parameter name="SYS_EXT_jndiProviderUrl" data-type="string"
 read-only="true">t3://localhost:10801</parameter>
 <parameter name="SYS_EXT_ejbOperationName"
 data-type="string"read-only="true">activateFileAdapter</parameter>
 <parameter name="SYS_effectiveApplication" data-type="string">
 ESS_NATIVE_HOSTING_APP_LOGICAL_NAME</parameter>
 </parameter-list>
</job-definition>

12.6.2 EJB Job Sample Code

This section includes sample code that illustrates how to implement asynchrony using both the explicit and implicit methods described in Asynchronous Bean.

12.6.2.1 Sample Implementation of Asynchrony Using a Message-Driven Bean

The following code sample shows a synchronous stateless bean that is used to invoke a message driven bean asynchronously.

package com.soa.test;

import java.io.Serializable;
import java.util.ArrayList;
import javax.ejb.Stateless;
import javax.jms.ObjectMessage;
import javax.jms.Queue;
import javax.jms.QueueConnection;
import javax.jms.QueueConnectionFactory;
import javax.jms.QueueSender;
import javax.jms.QueueSession;
import javax.jms.Session;

import javax.naming.InitialContext;

import oracle.as.scheduler.AsyncRequestBeanRemote;
import oracle.as.scheduler.ExecutionCancelledException;
import oracle.as.scheduler.ExecutionErrorException;
import oracle.as.scheduler.ExecutionPausedException;
import oracle.as.scheduler.ExecutionWarningException;
import oracle.as.scheduler.RemoteCancellableExecutable;
import oracle.as.scheduler.RequestExecutionContext;
import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.request.RemoteConnector;

@Stateless(name = "EssAsyncPilot")
public class EssAsyncPilotBean implements RemoteCancellableExecutable
{
 public EssAsyncPilotBean() {
 }

 public void execute(RequestExecutionContext requestExecutionContext,
 RequestParameters requestParameters)
 throws ExecutionErrorException, ExecutionWarningException,
 ExecutionPausedException, ExecutionCancelledException {
 // Delegate the job request cancellation to message driven bean
 postToQueue("execute", requestExecutionContext, requestParameters);
 }

 public void cancel(RequestExecutionContext requestExecutionContext,
 RequestParameters requestParameters) {
 RemoteConnector connector = new RemoteConnector();
 AsyncRequestBeanRemote asyncRequest;

 // Delegate the job request cancellation to message driven bean
 try {
 postToQueue("cancel", requestExecutionContext, requestParameters);
 } catch (Exception e) {
 //Mark this request as ERRORed
 }
 /*
 * Other ways to cancel the job request.
 * asyncRequest = connector.getAsyncRequestEJB(requestParameters);
 * asyncRequest.onCancel(requestExecutionContext);
 *
 * (or)
 *
 * asyncRequest = connector.getAsyncRequestEJB(requestParameters);
 * asyncRequest.setRequestStatus(
 * requestExecutionContext, AsyncStatus.CANCEL, "Cancelling the job");
 *
 * (or simply)
 *
 * RemoteAsyncHelper asyncHelper = new RemoteAsyncHelper(
 * requestExecutionContext, requestParameters);
 * asyncHelper.onCancel();
 *
 */
 }

 private void postToQueue(String instruction,
 RequestExecutionContext context, RequestParameters params) {
 try {
 QueueConnectionFactory qconFactory;
 QueueConnection qcon;
 QueueSession qsession;
 QueueSender qsender;
 Queue queue;
 ObjectMessage msg;
 InitialContext ic = new InitialContext();

 qconFactory = (QueueConnectionFactory) ic
 .lookup("EssAsyncJmsConnFactory");
 qcon = qconFactory.createQueueConnection();
 qsession = qcon.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

 queue = (Queue) ic.lookup("EssAsyncJmsQueue");

 qsender = qsession.createSender(queue);
 msg = qsession.createObjectMessage();
 qcon.start();

 ArrayList<Serializable> objsList = new ArrayList<Serializable>(2);
 objsList.add(context);
 objsList.add(params);
 objsList.add(instruction);
 msg.setObject(objsList);
 qsender.send(msg);

 System.out.println("The message, " + instruction
 + ", has been sent to the EssAsyncJmsQueue.");
 qsender.close();
 qsession.close();
 qcon.close();
 } catch (Exception e) {
 System.out.print("error " + e);
 }
 }
}

import java.util.List;
import java.io.Serializable;
import javax.ejb.MessageDriven;

import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.ObjectMessage;

import oracle.as.scheduler.RequestExecutionContext;
import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.async.RemoteAsyncHelper;

/**
 * This message driven bean sample relies on execute/cancel instructions.
 * Upon completion of execution or cancellation, this bean notifies
 * ESS about its status so that the job request is marked for completion.
 */
@MessageDriven(mappedName = "ejb/essAsyncJms")
public class EssAsyncJmsBean implements MessageListener {
 public void onMessage(Message message) {
 if (message instanceof ObjectMessage) {
 ObjectMessage objMessage = (ObjectMessage)message;
 try {
 List<Serializable> objsList = (List<Serializable>)objMessage.getObject();
 RequestExecutionContext ctx = (RequestExecutionContext)objsList.get(0);
 RequestParameters params = (RequestParameters)objsList.get(1);
 String instruction = (String)objsList.get(2);
 RemoteAsyncHelper asyncHelper = new RemoteAsyncHelper(ctx, params);
 if ("cancel".equalsIgnoreCase(instruction)) {
 //EssAsyncJmsBean.cancel: Cancelling the Execution
 try {
 //Do the actual cancellation
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 }
 asyncHelper.onCancel();
 //EssAsyncJmsBean.cancel: Completed cancellation
 } else {
 //EssAsyncJmsBean.execute: Started the Execution ");
 try {
 //Do the actual execution
 Thread.sleep(5000);
 } catch (InterruptedException e) {
 }
 asyncHelper.onSuccess();
 //EssAsyncJmsBean.execute: Completed the Execution ");
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
}

12.6.2.2 Sample Implementation of Asynchrony Using Annotations

The following code snippet uses the EJB Asynchronousto declare a bean or its methods to behave asynchronously.

package com.soa.test;

import java.util.concurrent.Future;

import javax.annotation.Resource;

import javax.ejb.AsyncResult;
import javax.ejb.Asynchronous;
import javax.ejb.SessionContext;
import javax.ejb.Stateless;

import javax.xml.transform.Result;

import oracle.as.scheduler.ExecutionCancelledException;
import oracle.as.scheduler.ExecutionErrorException;
import oracle.as.scheduler.ExecutionPausedException;
import oracle.as.scheduler.ExecutionWarningException;
import oracle.as.scheduler.RemoteExecutable;
import oracle.as.scheduler.RequestExecutionContext;
import oracle.as.scheduler.RequestNotFoundException;
import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.RuntimeServiceException;
import oracle.as.scheduler.SchedulerException;
import oracle.as.scheduler.async.RemoteAsyncHelper;

@Stateless(name = "EssAsyncAnnotatedBean", mappedName = "ejb/essAsyncAnnBean")
public class EssAsyncAnnotatedBean implements RemoteExecutable {
 @Resource
 SessionContext sessionContext;

 public void execute(RequestExecutionContext requestExecutionContext,
 RequestParameters requestParameters) throws
 ExecutionErrorException, ExecutionWarningException,
 ExecutionPausedException,ExecutionCancelledException
 {
 RemoteAsyncHelper asyncHelper = null;

 try {
 asyncHelper = new RemoteAsyncHelper(requestExecutionContext, requestParameters);

 //Initiate processing
 initiateProcessing(requestExecutionContext, requestParameters);

 //Get processed results
 Future<Result[]> results = getProcessedResults(requestExecutionContext, requestParameters);

 //do further processing

 //Finally, complete the request
 asyncHelper.onSuccess();
 }
 catch (Exception e)
 {
 try
 {
 asyncHelper.onBizError(e.getMessage());
 }
 catch (Exception f)
 {
 }
 }
 }

 @Asynchronous
 public void initiateProcessing(RequestExecutionContext requestExecutionContext,
 RequestParameters requestParameters)
 {
 //startProcessing
 }

 @Asynchronous
 public Future<Result[]> getProcessedResults(RequestExecutionContext requestExecutionContext,
 RequestParameters requestParameters)
 {
 Result[] resultsArr = null;
 //do processing
 return new AsyncResult<Result[]>(resultsArr);
 }

}

13 Creating and Using Web Service Jobs

This chapter describes how to use Oracle Enterprise Scheduler to create Web Service jobs and contains the following sections:

	
Introduction

	
Predefined Web Service Job Types

	
Cancel and Fault Support

	
Configuration Properties for Web Service Jobs

	
Oracle Web Services Manager Policy Configuration

	
Creating a Web Service Job Definition

13.1 Introduction

Web services provide a standard means to expose services on the web. Web services are accessible from a URL and use SOAP and XML as their payloads. Web services are described by the WSDL standard that defines the interface and the URL of the web service. The following are examples of web services

	
SOA suite composites

	
Oracle Service Bus proxy services

	
ADF Business Component web services

Web services can expose one-way, synchronous, or asynchronous operations. A one-way web service operation is a fire-and-forget operation where the web service does not return a response. A synchronous web service operation returns a response as part of the same web service invocation. Typically, a web service client blocks until the synchronous operation response is received. An asynchronous web service operation involves two one-way messages: one for the web service operation request and a separate one for the response. Asynchronous web service operations typically represent long running operations. A web service client invokes an asynchronous web service operation, but does not wait for the response. Instead, the client specifies a callback URL at which to receive the response from the web service. The web service processes the request in the background and uses a callback operation to return the response to the client-specified callback URL.

Oracle Enterprise Scheduler supports web service jobs that use synchronous, one-way and asynchronous interfaces. The web service job definition can be defined using JDeveloper (as part of a hosting application or client application) or using Oracle Enterprise Manager Fusion Middleware Control. When the web service job type is selected, a wizard leads the user through a simple set of steps to define the web service job (see the example in Using Oracle Enterprise Manager Fusion Middleware Control to Create a Job Definition). This wizard obtains the WSDL URL and asks the user to select the WSDL service, port type, and operation. It then creates sample XML for the payload based on the WSDL, and allows the user to update it. Asynchronous and synchronous web service may optionally have a designated operation for cancel. If there is a cancel operation, the operation is selected and the sample XML code for the cancel operation is modified. The wizard populates a set of predefined system properties in the job definition with values entered or derived from what the user enters in the wizard.

Note:

The WSDL URL in a web services job type must be a concrete WSDL URL. It cannot be an abstract WSDL URL.

The job definition can have user defined parameters. Elements or attributes in the invoke or cancel payload XML code can specify that one of these parameters be plugged in as the element value by specifying a token substitution instruction. For example, plug in the parameter customerID with the token substitution command ${ESS_REQ:customerID}. This allows the job submitter to just enter parameter values and have the XML payload constructed from them. Token substitutions can also be specified for the WSDL base URL and WSDL relative URL system properties. For more information about token substitution see Using Tokens and Logical Clusters .

Web service jobs are secured by Oracle Web Services Manager (OWSM) policies. In Oracle Enterprise Manager Fusion Middleware Control or JDeveloper, you can attach OWSM directly attached policies for the job definition for the invocation (client policy) and the callback (service policy) actions. You can use globally attached policies to define policies globally or you can secure individual job definitions with directly attached policies.

Note:

See the following sections in Securing Web Services and Managing Policies with Oracle Web Services Manager for more information about using Oracle Web Services Manager (OWSM) policies:

	
"Attaching Policies Globally Using Fusion Middleware Control"

	
"Attaching Policies Globally Using WLST"

	
"Attaching Policies Directly Using WLST"

Progress messages are supported for asynchronous web service jobs. These messages are written to the job log. In the callback operation, the job can indicate if the job succeeded or failed. The callback message comprises the job's output

13.2 Predefined Web Service Job Types

As described in Introduction, Oracle Enterprise Scheduler supports three predefined web service job types. The web service predefined job types are shown in Table 13-1.

Table 13-1 The Predefined Web Service Job Types

	Predefined Job Type	Description
	
/oracle/as/ess/core/JobType/AsyncWebserviceJobType

	
(Asynchronous) The caller invokes the web service, the web service runs asynchronously in the background, and the web service calls back to the caller at a callback URL

	
/oracle/as/ess/core/JobType/SyncWebserviceJobType

	
(Synchronous) The caller blocks until the response is returned (request/response)

	
/oracle/as/ess/core/JobType/OnewayWebserviceJobType

	
(One-way) The caller does not expect a response. The web service runs in the background (fire-and-forget).

The job type you specify in the web service job definition implicitly determines whether the configured web service operation is invoked using an asynchronous, synchronous or one-way (fire-and-forget) operation.

13.3 Cancel and Fault Support

Supporting a cancel operation for web service jobs is optional. The web service may support a cancel operation that allows a running web service invocation to be canceled. The cancel operation must not be an abort operation (hammer-on-head style), where the composite is terminated and never calls back to complete the original operation. A well-behaved cancel implementation by a web service provider ensures the original web service operation returns an "operation canceled response," with a predefined wsa:Action code (see Table 13-2) in the SOAP response header. The cancel web service operation must be a synchronous web service operation.

Both synchronous and asynchronous web service jobs can indicate whether the web service operation was canceled or resulted in a fault (error) by specifying the appropriate value in the wsa:Action SOAP response message header. If the callback response SOAP message does not match the “Canceled" or “Fault" response (through one of the mechanisms listed below), then the job state is “Succeeded".

The Table 13-2 shows the different web service operation statuses that can be specified using the SOAP wsa:Action header.

Table 13-2 SOAP Web Service Operation Statuses

	Action Code Name	Action URI
	
Cancelled

	
"http://xmlns.oracle.com/schedulercallback/wsOperationCancelled"

	
Fault

	
	
Standard web service addressing: "http://schemas.xmlsoap.org/ws/2004/08/addressing/fault"

	
Oracle application server: "http://xmlns.oracle.com/oracleas/schema/oracle-fault-11_0/Fault"

The Oracle SOA Suite does not support setting wsa:Action message headers. As an alternative you can add one of the strings listed in Table 13-3 to the SOAP body element of a callback message.

Table 13-3 Oracle SOA Suite Status Operations

	Operation	String
	
Cancelled

	
"wsOperationCancelled"

	
Fault

	
"wsOperationFault"

13.4 Configuration Properties for Web Service Jobs

Table 13-4 lists the properties associated with the web service job type.

Table 13-4 Web Service Job Configuration Properties

	Property Name	Description
	
SYS_EXT_wsWsdlBaseUrl1

	
The base URL part of WSDL URL.

	
SYS_EXT_wsWsdlUrl1

	
The relative part of the web service WSDL URL (must be a concrete WSDL URL). Either the SYS_EXT_wsEndpointUrl property or the SYS_EXT_wsWsdlUrl property must be completely specified. For example, either SYS_EXT_wsWsdlBaseUrl and SYS_EXT_wsWsdlUrl are both configured, or SYS_EXT_wsEndpointBaseUrl and SYS_EXT_wsEndpointUrl are both configured.

	
SYS_EXT_wsEndpointBaseUrl1

	
The base URL part of endpoint URL.

	
SYS_EXT_wsEndpointUrl1

	
The relative part of the web service endpoint URL (must be a concrete WSDL URL). Either the SYS_EXT_wsEndpointUrl property or the SYS_EXT_wsWsdlUrl property must be completely specified. For example, either SYS_EXT_wsWsdlBaseUrl and SYS_EXT_wsWsdlUrl are both configured, or SYS_EXT_wsEndpointBaseUrl and SYS_EXT_wsEndpointUrl are both configured.

	
SYS_EXT_wsTargetNamespace

	
The target name space.

	
SYS_EXT_wsServiceName

	
The service name.

	
SYS_EXT_wsPortName

	
The port name.

	
SYS_EXT_wsOperationName

	
The operation name.

	
SYS_EXT_invokeMessage1

	
The XML submit message used to invoke the web service.

	
SYS_EXT_wsCancelOperationName

	
Optional. The cancel operation name.

	
SYS_EXT_wsCancelMessage1

	
Optional. The XML message for the web service cancel operation.

	
SYS_externalJobType

	
Optional. The supported values are “ADFBC", “OSB" or “SOA". Any other value is invalid.

If the SYS_EXT_wsEndpointBaseUrl property and the SYS_EXT_wsEndpointUrl property are specified in the job definition, Oracle Enterprise Scheduler has enough information to invoke the web service. If the SYS_EXT_wsEndpointBaseUrl and SYS_EXT_wsEndpointUrl properties are not specified in the job definition and the SYS_EXT_wsWsdlBaseUrl and the SYS_EXT_wsWsdlUrl properties are specified, Oracle Enterprise Scheduler retrieves the WSDL at runtime (before invoking the job), gets the EndpointUrl and TargetNamespace property values from the WSDL and invokes the web service.

The SYS_EXT_wsServiceName, SYS_EXT_wsPortName and SYS_EXT_wsOperationName properties must be specified to identify the specific web service operation to be invoked.

The SYS_EXT_invokeMessage property contains the XML message (SOAP body payload) for invocation. This can either be an XML template or full XML.

An XML template contains tokens that are replaced at runtime. The job submitter specifies the parameter values to substitute for the tokens in the template. If full XML is used without tokens, no substitution is required and the specified XML in the job definition is used “as is" for job invocation.

Note:

The angle brackets (“<“and “>") in XML statements must be escaped.

After it is invoked, the remote web service can log progress messages to update its status. These messages are logged by the web service job and are available in the request logs. The web service response XML is captured as job output.

If the SYS_EXT_wsCancelMessage and SYS_EXT_wsCancelOperationName properties are configured with a cancel message, the message is invoked when a cancel operation is initiated on a running web service job. The cancel operation is always invoked as a synchronous web service operation.

The cancel message SOAP header is automatically populated with the WS-Addressing relatesToId property set to the wsa:messageId associated with the invoke web service operation. The cancel operation uses the same OWSM policy as the invoke operation. If the SYS_EXT_wsCancelMessage property is not configured, it indicates that the web service does not support cancellation and therefore cannot be canceled.

The SYS_externalJobType property allows web service job definitions to specify a web service type (ADFBC, Service Bus or SOA). Intended for future customized web service job implementations.

13.5 Oracle Web Services Manager Policy Configuration

The web service job type uses decoupled Oracle Web Services Manager (OWSM) policy subjects (Job-Invoke, Job-Callback) and associated globally attached policies and directly attached policies for web service invocation and callback operations.

The Job-Invoke policy subject is associated with all web service job types (one-way, synchronous and asynchronous), whereas the Job-Callback policy subject is available only for the asynchronous web service job type. The Job-Invoke and Job-Callback globally attached policies can be specified at the domain level and configured using EM or WLST.

If a Job-Invoke globally attached policy or a directly attached policy is not specified for a web service job definition, an attempt is made to invoke the web service anonymously. This only works for the one-way and synchronous job type, because anonymous callbacks are not supported for the asynchronous web service job type.

Job-Invoke and Job-Callback directly attached policies are specific to individual web service job definitions and are captured in the policy assembly descriptor associated with the web service job definition. These directly attached policies can be specified at design time using JDeveloper or at runtime using Oracle Enterprise Manager Fusion Middleware Control, or using WLST commands.

Globally attached policies for web service job policy subjects can be set up using Oracle Enterprise Manager Fusion Middleware Control or using a WLST script to configure domain-level globally attached policies for web service job policy subjects. Example 13-1 shows how such a script might look.

Example 13-1 WLST Script to Configure Globally Attached Policies

connect(adminuser, adminpassword, adminurl)

beginRepositorySession()
deletePolicySet('domain-default-job-invoke-client-policies')
describeRepositorySession()
commitRepositorySession()

beginRepositorySession()
deletePolicySet('domain-default-job-callback-service-policies')
describeRepositorySession()
commitRepositorySession()

print "-- create domain-default-job-invoke-client-policies --"
beginRepositorySession()
describeRepositorySession()
createPolicySet('domain-default-job-invoke-client-policies', 'job-invoke', 'Domain("*")')
attachPolicySetPolicy("oracle/wss11_saml_token_with_message_protection_client_policy")
describeRepositorySession()
commitRepositorySession()

print "-- create domain-default-job-callback-service-policies --"
beginRepositorySession()
describeRepositorySession()
createPolicySet('domain-default-job-callback-service-policies', 'job-callback', 'Domain("*")')
attachPolicySetPolicy("oracle/wss11_saml_or_username_token_with_message_protection_service_policy")
describeRepositorySession()
commitRepositorySession()

13.6 Creating a Web Service Job Definition

Both Oracle JDeveloper and Oracle Enterprise Manager Fusion Middleware Control offer convenient graphical user interfaces to help you create web service job definitions. Using Oracle JDeveloper to Create a Job Definition describes how to use Oracle JDeveloper to create a job definition and Using Oracle Enterprise Manager Fusion Middleware Control to Create a Job Definition describes how to use Oracle Enterprise Manager Fusion Middleware Control to do the same.

13.6.1 Using Oracle JDeveloper to Create a Job Definition

You can use Oracle JDeveloper to create a web service job definition while creating your application. Refer to Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application general information about how to use Oracle JDeveloper to create applications that work with the Oracle Enterprise Scheduler.

JDeveloper provides accessibility options, such as support for screen readers, screen magnifiers, and standard shortcut keys for keyboard navigation. You can also customize JDeveloper for better readability, including the size and color of fonts and the color and shape of objects. For information and instructions on configuring accessibility in JDeveloper, see "Oracle JDeveloper Accessibility Information" in Developing Applications with Oracle JDeveloper.

The following steps show you how to create a job definition for an asynchronous web service job type.

	Navigate to the Job Definition tab. Fill in the Name, Display Name, and Description fields and choose an appropriate web service job type as shown in the example in Figure 13-1. Have the WSDL URL for the target web service available.

Figure 13-1 Oracle JDeveloper: Job Definition Tab

[image: Description of "Figure 13-1 Oracle JDeveloper: Job Definition Tab" follows]

	Click the Web Service Explorer button to launch the Web Service configuration wizard as shown in Figure 13-2. Enter the WSDL URL, the Service, Port, Operation and configure the payload XML as shown in the example, then click OK.

Note:

The example shown in Figure 13-2 shows the invoke XML payload with the substitutable token SubmitArgument1, whose value is provided at submission request time. Token substitution is described in Using Tokens and Logical Clusters .

Figure 13-2 Oracle JDeveloper: Web Service Popup

[image: img/GUID-6D2B6E89-9889-417F-8F05-2BAD141E4D93-default.png]

	Click the Specify Security Policies button as shown in Figure 13-3. Select For Request to configure the directly attached policy for the Job-Invoke policy subject.

Figure 13-3 Oracle JDeveloper: Job Definition Tab

[image: img/GUID-1B6C0E95-A72A-423C-A22C-B1E5CE38F666-default.png]

	The Job-Invoke policy subject is available for all web service job definition types (one-way, synchronous and asynchronous. Select and attach the required OWSM client policy for the Job-Invoke directly attached policy. You should see a screen like the one shown in Figure 13-4.

Figure 13-4 Oracle JDeveloper: ESS Web Service Policies Popup

[image: Description of "Figure 13-4 Oracle JDeveloper: ESS Web Service Policies Popup" follows]

	This completes directly attached policy configuration for a synchronous or one-way web service job definition. For asynchronous job definitions, you can also configure the directly attached policy for the Job-Callback policy subject.

To configure a Job-Callback directly attached policy for an asynchronous job definition, repeat step 3 of this procedure and instead of For request, select For callback. Select and attach the required OWSM service policy for the Job-Callback directly attached policy as shown in Figure 13-4.

Note:

Post deployment, you can use Oracle Enterprise Manager Fusion Middleware Control to change job policies associated with web service job definitions.

Figure 13-5 Oracle JDeveloper: ESS Web Service Policies Popup

[image: img/GUID-82E114DC-62FB-4EDB-81B8-303CE49890BD-default.png]

13.6.2 Using Oracle Enterprise Manager Fusion Middleware Control to Create a Job Definition

This procedure shows how to use the Oracle Enterprise Manger to create and configure a web service job definition.

	Start and log in to Oracle Enterprise Manager Fusion Middleware Control.
	From the navigation pane, expand the Scheduling Services folder and select the Oracle Enterprise Scheduler application.
	From the Scheduling Services menu, select Job Metadata > Job Definitions and then click the Create button.
	Fill in the Name, Display Name, and Description fields and choose the appropriate web service job type from the Job Type dropdown as shown in the example in Figure 13-6.

Figure 13-6 Fusion Middleware Control Console: Create Job Definition Page

[image: Description of "Figure 13-6 Fusion Middleware Control Console: Create Job Definition Page" follows]

	Click the Select Web Service button and enter the WSDL URL in the Select Web Service popup window. After you enter the URL, select the Service, Port Type, Operation and configure the Invoke Operation XML payload.

The example shown in Figure 13-7 shows the invoke XML payload with the substitutable token SubmitArgument1, whose value is provided at submission request time.

Note:

Token substitution is described in Using Tokens and Logical Clusters .

Figure 13-7 Fusion Middleware Control Console: Select Web Service Popup

[image: Description of "Figure 13-7 Fusion Middleware Control Console: Select Web Service Popup" follows]

	After you create the job definition, return to the Job Definitions page and select the job definition name (“AsyncWSJob1" in this example) in the Results table. Click the Attach/Detach Policy button and select Invoke as shown in Figure 13-8 to configure the directly attached policy for the Job-Invoke policy subject. The Job-Invoke policy subject is available for all web service job type definitions.

Figure 13-8 Fusion Middleware Control Console: Job Definitions Page

[image: Description of "Figure 13-8 Fusion Middleware Control Console: Job Definitions Page" follows]

	In the Web Services Policy page, select the policy and click the Attach/Detach button to attach the required OWSM client policy for the Job-Invoke directly attached policy. This is shown in Figure 13-9. The Attach/Detach Policies popup is displayed.

Figure 13-9 Fusion Middleware Control Console: Web Service Policies Page

[image: Description of "Figure 13-9 Fusion Middleware Control Console: Web Service Policies Page" follows]

	Select the policy and click OK to complete the attachment.

Figure 13-10 Fusion Middleware Control Console: Policy Attachment Popup

[image: Description of "Figure 13-10 Fusion Middleware Control Console: Policy Attachment Popup" follows]

	This completes directly attached policy configuration for a synchronous or one-way web service job definition. For an asynchronous job definitions, you can also configure the directly attached policy for the Job-Callback policy subject.

To configure Job-Callback directly attached policy for an asynchronous job definition, repeat step 6 of this procedure and instead of Invoke, select Callback. Select and attach the required OWSM service policy for the Job-Callback directly attached policy.

1
This property can be specified using token substitution. Refer to Using Tokens and Logical Clusters for more information.

14 Creating and Using Process Jobs

This chapter describes how to use Oracle Enterprise Scheduler to create process jobs, which run a script or binary command in a forked process.

This chapter includes the following sections:

	
Introduction to Creating Process Job Definitions

	
Creating and Storing Job Definitions for Process Job Types

	
Using an Agent Handler for Process Jobs

	
Process Job Locale

For information about how to use the Runtime Service, see Using the Runtime Service.

14.1 Introduction to Creating Process Job Definitions

Oracle Enterprise Scheduler lets you run job requests of different types, including: Java classes, PL/SQL stored procedures, or process jobs that run as spawned jobs. To use Oracle Enterprise Scheduler to run process type jobs you need to specify certain metadata to define the characteristics of the process type job that you want to run. You may also want to specify properties of the job request, such as the schedule for when it runs.

Specifying a process type job request with Oracle Enterprise Scheduler is a three step process:

	
You create or obtain the script or binary command that you want to run with Oracle Enterprise Scheduler. We do not cover this step because we assume that you have previously created the script or command for the spawned process.

	
Using the Oracle Enterprise Scheduler APIs in your application, you create job type and job definition objects and store these objects to the metadata repository.

	
Using the Oracle Enterprise Scheduler APIs you submit a job request. For information about how to submit a request, see Using the Runtime Service.

After you create an application that uses the Oracle Enterprise Scheduler APIs, you need to package and deploy the application.

At runtime, after you submit a job request you can monitor and manage the job request. For more information on monitoring and managing job requests, see Using the Runtime Service.

14.2 Creating and Storing Job Definitions for Process Job Types

To use process type jobs with Oracle Enterprise Scheduler, you need to locate the Metadata Service and create a job definition. You create a job definition by specifying a name and a job type. When you create a job definition you also need to set certain system properties. You can store the job definition in the metadata repository using the Metadata Service.

For information about how to use the Metadata Service, see Using the Metadata Service .

14.2.1 How to Create and Store a Process Job Type

An Oracle Enterprise Scheduler JobType object specifies an execution type and defines a common set of properties for a job request. A job type can be defined and then shared among one or more job definitions. Oracle Enterprise Scheduler supports three execution types:

	
JAVA_TYPE: for job definitions that are implemented in Java and run in the container.

	
SQL_TYPE: for job definitions that run as PL/SQL stored procedures in a database server.

	
PROCESS_TYPE: for job definitions that are binaries and scripts that run as separate processes under the control of the host operating system.

When you specify the JobType you can also specify SystemProperties that define the characteristics associated with the JobType. Table 14-1 describes the properties that specify how the request should be processed if the request results in spawning a process for a process job type.

Table 14-1 System Properties for Process Type Jobs

	System Property	Description
	
BIZ_ERROR_EXIT_CODE

	
Specifies the process exit code for a process job request that denotes an execution business error. If this property is not specified, the system treats a process exit code of 4 as an execution business error.

	
CMDLINE

	
Command line required for invoking an external program.

	
ENVIRONMENT_VARIABLES

	
A comma-separated list of name/value pairs (name=value) representing the environment variables to be set for spawned processes.

	
REDIRECTED_OUTPUT_FILE

	
Specifies the file where standard output and error streams are redirected for a process job request.

	
REQUESTED_PROCESSOR

	
The Oracle WebLogic Server node on which a spawned job is executed.

	
SUCCESS_EXIT_CODE

	
The process exit code for a process job request that denotes a successful execution. If this property is not specified, the system treats a process exit code of 0 as a successful completion.

	
WARNING_EXIT_CODE

	
The process exit code for a spawned job that denotes a successful execution. If this property is not specified, the system treats a process exit code of 3 as a warning exit.

	
WORK_DIR_ROOT

	
The working directory for a spawned process.

For more information about system properties, see Using Parameters and System Properties .

Example 14-1 shows a sample job definition with a PROCESS_TYPE.

As shown in Example 14-1, when you create and store a process job type, you do the following:

	
Use the JobType constructor and supply a String name and a JobType.ExecutionType.PROCESS_TYPE argument.

	
Obtain the metadata pointer, as shown in Accessing the Metadata Service. Use the Metadata Service addJobType() method to store the JobType in metadata.

	
The MedatdataObjectId, returned by addJobType(), uniquely identifies metadata objects in the metadata repository using a unique identifier.

Example 14-1 Creating an Oracle Enterprise Scheduler Job Definition and Setting Job Definition Properties

import oracle.as.scheduler.ConcurrentUpdateException;
import oracle.as.scheduler.JobType;
import oracle.as.scheduler.JobDefinition;
import oracle.as.scheduler.MetadataService;
import oracle.as.scheduler.MetadataServiceHandle;
import oracle.as.scheduler.MetadataObjectId;
import oracle.as.scheduler.MetadataServiceException;
import oracle.as.scheduler.ParameterInfo;
import oracle.as.scheduler.ParameterInfo.DataType;
import oracle.as.scheduler.ParameterList;
import oracle.as.scheduler.SystemProperty;
import oracle.as.scheduler.ValidationException;

 void createDefinition()
 throws MetadataServiceException,ConcurrentUpdateException,
 ValidationException
 {
 MetadataService metadata = ...
 MetadataServiceHandle mshandle = null;

 try
 {
 ParameterInfo pinfo;
 ParameterList plist;

 mshandle = metadata.open();

 // Define and add a PL/SQL job type for the application metadata.
 String jobTypeName = "ProcessJobDefType";
 JobType jobType = null;
 MetadataObjectId jobTypeId = null;

 jobType = new JobType(jobTypeName, JobType.ExecutionType.
 PROCESS_TYPE);

 plist = new ParameterList();
 pinfo = SystemProperty.getSysPropInfo(SystemProperty.CMDLINE);
 plist.add(pinfo.getName(), pinfo.getDataType(), "/bin/myprogram
 arg1 arg2", false);
 pinfo = SystemProperty.getSysPropInfo(SystemProperty.
 ENVIRONMENT_VARIABLES);
 plist.add(pinfo.getName(), pinfo.getDataType(),
 "LD_LIBRARY_PATH=/usr/lib", false);
 pinfo = SystemProperty.getSysPropInfo(SystemProperty.PRODUCT);
 plist.add(pinfo.getName(), pinfo.getDataType(), "HOW_TO_PROD", false);
 jobType.setParameters(plist);

 jobTypeId = metadata.addJobType(mshandle, jobType, "HOW_TO_PROD");

 // Define and add a job definition for the application metadata.
 String jobDefName = "ProcessJobDef";
 JobDefinition jobDef = null;
 MetadataObjectId jobDefId = null;

 jobDef = new JobDefinition(jobDefName, jobTypeId);
 jobDef.setDescription("Demo Process Type Job Definition " +
 jobDefName);

 plist = new ParameterList();
 plist.add("myJobdefProp", DataType.STRING, "myJobdefVal", false);

 pinfo = SystemProperty.getSysPropInfo(SystemProperty.
 REDIRECTED_OUTPUT_FILE);
 plist.add(pinfo.getName(), pinfo.getDataType(), "/tmp/" + jobDefName
 + ".out", false);

 jobDef.setParameters(plist);

 jobDefId = metadata.addJobDefinition(mshandle, jobDef, "HOW_TO_PROD");
 }
 catch (Exception e)
 {
 [...]
 }
 finally
 {
 // Close metadata service handle in finally block.
 if (null != mshandle)
 {
 metadata.close(mshandle);
 mshandle = null;
 }
 }
 }

14.2.2 How to Create and Store a Process Type Job Definition

To use process type jobs, you need to create and store a job definition.

Note:

After you create a job definition with a job type, you cannot change the type or the job definition name. To change the job type or the job definition name, you need to create a new job definition.

Example 14-1 shows how to create a job definition using the job definition constructor and the job type. Table 14-1 describes some of the system properties that are associated with the job definition.

As shown in Example 14-1, when you create and store a job definition you do the following:

	
Use the JobDefinition constructor and supply a String name and a MetadataObjectID that points to a job type stored in the metadata.

	
Set the appropriate properties for the new job definition.

	
Obtain the metadata pointer, as shown in Accessing the Metadata Service. Then, use the Metadata Service addJobDefinition() method to store the job definition in the metadata repository and to return a MetadataObjectID.

14.3 Using an Agent Handler for Process Jobs

Oracle Enterprise Scheduler requires an agent handler to manage individual process jobs. The agent handler validates, spawns, monitors and controls process job execution, and also returns the exit status of process jobs to Oracle Enterprise Scheduler. The agent handler also monitors Oracle Enterprise Scheduler availability and handles job cancellation requests. In the event of abnormal job termination (or job cancellation requests), the agent handler terminates the spawned process (along with its children) and exits. It detects the operating system type and uses appropriate system calls to invoke, manage and terminate process jobs.

The Oracle Enterprise Scheduler agent handler can generate its log under the /tmp folder. Log generation must be enabled by setting the Oracle Enterprise Scheduler log level to FINE, FINER or FINEST and ensuring read and write access to the /tmp folder. One log file is generated for each process job invocation. The log file lists the process job invocation log, including a list of environment variables, the command line and redirected output file specified for the process job, process ID and exit code for the process job or errors detected while spawning the process.

14.3.1 Choosing an Agent Handler

Oracle Enterprise Scheduler provides two different agent handlers, the Java agent handler and the Perl agent handler. Both agent handlers are functionally equivalent with the exception that the Java agent handler does not support terminate-spawned-process-on-restart behavior on Windows.

By default, Oracle Enterprise Scheduler uses the Java agent handler for requests in standard and extended mode. It always uses the Perl agent handler for requests in Fusion mode. To use the Perl agent handler in standard and extended request modes, you must add the PerlCommand property to the ess-config.xml file associated with the hosting application running the process job as shown in the following example.

<EssProperties>
 <EssProperty key="RequestFileDirectory" value="/tmp/ess/requestFileDirectory"/>
 <EssProperty key="RequestFileDirectoryShared" value="false"/>
 ...
 <EssProperty key="PerlCommand" value="/usr/bin/perl"/>
</EssProperties>

You can use token substitution to specify environment dependent values like directory names. Refer to Using Tokens and Logical Clusters for more information.

The Oracle Enterprise Scheduler Perl agent handler requires Oracle Perl version 5.10 or later. Instructions for installing Perl to support process jobs can be found in the chapter "Configuring Perl to Support Process Jobs" in Oracle Fusion Middleware Administering Oracle Enterprise Scheduler.

Note:

If you run Oracle Enterprise Scheduler in a Fusion Applications environment you must use the Perl agent handler.

14.4 Process Job Locale

Individual process jobs can use different locales and encoding as determined by the locale environment variable settings applicable to the process job at execution time. For a process job, Oracle Enterprise Scheduler imports the request log and output file into the content store after completing the request.

Locale environment variables for a process job can be specified at multiple places including the process job definition and the hosting application's ess-config.xml file. The locale resolution logic for a process job uses the following precedence order to determine the effective LC_ALL and LANG environment variable values for the request:

	
SYS_environment variables associated with the request (highest precedence)

	
The hosting application's ess-config.xml file

	
The WebLogic server locale (lowest precedence)

For every process job, the effective locale and encoding is determined based on the above precedence order (with the effective LC_ALL value overriding the effective LANG value). This encoding applies to the log only, and not the output.

15 Defining and Using Schedules

This chapter describes how to define schedules that you can associate with a Oracle Enterprise Scheduler job definition, specifying when a job request runs and including administrative actions such as workshifts that specify time-based controls for processing with Oracle Enterprise Scheduler.

This chapter includes the following sections:

	
Introduction to Schedules

	
Defining a Recurrence

	
Defining an Explicit Date

	
Defining and Storing Exclusions

	
Defining and Storing Schedules

	
Identifying Job Requests That Use a Particular Schedule

	
Updating and Deleting Schedules

15.1 Introduction to Schedules

Using Oracle Enterprise Scheduler you can create a schedule to determine when a job request runs or use a schedule for other purposes, such as determining when a work assignment becomes active. A schedule can contain a list of explicit dates, such as July 14, 2012. A schedule can also include expressions that represent a set of recurring dates (or times and dates).

Using Oracle Enterprise Scheduler you create a schedule with one or more of the following:

	
Explicit Date: Defines a date for use in a schedule or exclusion.

	
Recurrence: Contains an expression that represents a pattern for a recurring date and time. For example, you can specify a recurrence representing a regular period such as Mondays at 10:00AM.

	
Exclusion: Contains a list of dates to exclude or dates and times to exclude from a schedule. For example, you can create an exclusion that contains a list of holidays to exclude from a schedule.

15.2 Defining a Recurrence

A recurrence is an expression that represents a recurring date and time. You specify a recurrence using an Oracle Enterprise Scheduler Recurrence object. You use a Recurrence object when you create a schedule or with an exclusion to specify a list of dates.

The Recurrence constructor allows you to create a recurrence as follows:

	
Using the fields defined in the RecurrenceFields class, such as DAY_OF_MONTH.

	
Using a recurrence expression compliant with the iCalendar (RFC 2445) specification. For information about using iCalendar RFC 2245 expressions see,

http://www.ietf.org/rfc/rfc2445.txt

Note:

When you create a recurrence you can only use one of these two mechanisms for each recurrence instance.

A recurrence can also include the following (these are not required):

	
Start date: The starting time and date for the recurrence pattern.

	
End date: The ending time and date for the recurrence pattern.

	
Count: The count for the recurrence pattern. The count indicates the maximum number of occurrences the object generates. For example, if you specify a recurrence representing a regular period such as Mondays at 10:00AM, and a count of 4, then the recurrence includes only four Mondays.

The start date, end date, and count attributes are valid for either a RecurrenceFields helper based instance or an iCalendar based instance of a recurrence.

You can validate a recurrence using the recurrence validate() method that checks if an instance of a Recurrence object represents a well defined and complete recurrence pattern. A Recurrence instance is considered complete if it has the minimum required fields that can generate occurrences of dates or dates and times.

15.2.1 How to Define a Recurrence with a Recurrence Fields Helper

You can create a recurrence using a recurrence fields helper. The RecurrenceFields helper class provides a user-friendly way to specify a recurrence pattern. Table 15-1 shows the recurrence fields helper classes available to specify a recurrence pattern.

Table 15-1 Recurrence Field Helper Patterns

	Recurrence Field	Description
	
DAY_OF_MONTH

	
Defines the day of a month

	
DAY_OF_WEEK

	
Enumeration of the day of a week

	
FREQUENCY

	
Defines the repeat frequency of a Recurrence. Choices are:

	
DAILY: Indicates every day repetition

	
HOURLY: Indicates every hour repetition

	
MINUTELY: Indicates every minute repetition

	
MONTHLY: Indicates every month repetition

	
SECONDLY: Indicates every second repetition

	
WEEKLY: Indicates every week repetition

	
YEARLY: Indicates every year repetition

	
MONTH_OF_YEAR

	
Defines the months of the year

	
TIME_OF_DAY

	
Defines the time of the day

	
WEEK_OF_MONTH

	
Enumerations for the week of a month

	
YEAR

	
Encapsulate the value of a year

Example 15-1 shows a sample recurrence created using the RecurrenceFields helper class with a weekly frequency (every Monday at 10:00 a.m.) using no start or end date.

In Example 15-1, note the following:

	
The schedule becomes active as specified with the start time supplied at runtime by Oracle Enterprise Scheduler when a job request that uses the schedule is submitted.

	
The interval parameter 1 specifies that this recurrence generates occurrences every week. You calculate this value by multiplying the frequency with the interval.

Example 15-2 shows a sample recurrence for every 4 hours with no start or end date. The recurrence was created using the RecurrenceFields helper class with an hourly frequency, an interval multiplier of 4, a null start date, and a null end date.

In Example 15-2, note the following:

	
The schedule becomes active as specified with the start time supplied at runtime by Oracle Enterprise Scheduler when a job request that uses the schedule is submitted.

	
The interval parameter 4 specifies that this recurrence generates occurrences every 4 hours. You calculate this value by multiplying the frequency with the interval.

Example 15-3 shows a sample recurrence created using the RecurrenceFields helper class and a monthly frequency.

Example 15-3 specifies a recurrence with the following characteristics:

	
Includes an interval parameter with the value 1 specifies that this recurrence generates occurrences every month.

	
Includes a specification for the week of month, indicating the second week.

	
Includes a specification for the day of week, Tuesday.

	
Includes the specification for the time of day, with the value 11:00.

Example 15-4 shows a sample recurrence created using the RecurrenceFields helper class and a monthly frequency specified with a start date and time.

Example 15-4 defines a recurrence with the following characteristics:

	
The end date is specified as null meaning no end date.

	
Using this recurrence, the start date is specified with the Calendar instance cal, and its value is set with the set() method calls.

Example 15-1 Defining a Recurrence with Weekly Frequency

Recurrence recur1 =
 new Recurrence(RecurrenceFields.FREQUENCY.WEEKLY, 1, null, null);
recur1.addDayOfWeek(RecurrenceFields.DAY_OF_WEEK.MONDAY);
recur1.setRecurTime(RecurrenceFields.TIME_OF_DAY.valueOf(10, 0, 0));
recur1.validate();

Example 15-2 Defining a Recurrence with Four Hourly Frequency

Recurrence recur2 =
 new Recurrence(RecurrenceFields.FREQUENCY.HOURLY, 4, null, null);
 recur2.validate();

Example 15-3 Defining a Recurrence with Monthly Frequency

Recurrence recur3 =
 new Recurrence(RecurrenceFields.FREQUENCY.MONTHLY, 1, null, null);
recur3.addWeekOfMonth(RecurrenceFields.WEEK_OF_MONTH.SECOND);
recur3.addDayOfWeek(RecurrenceFields.DAY_OF_WEEK.TUESDAY);
recur3.setRecurTime(RecurrenceFields.TIME_OF_DAY.valueOf(11, 00, 00));
recur3.validate();

Example 15-4 Defining a Recurrence with Start Date and Time Specified

 Calendar cal = Calendar.getInstance();
 cal.set(Calendar.YEAR, 2007);
 cal.set(Calendar.MONTH, Calendar.JULY);
 cal.set(Calendar.DAY_OF_MONTH, 1);
 cal.set(Calendar.HOUR, 9);
 cal.set(Calendar.MINUTE, 0);
 cal.set(Calendar.SECOND, 0);
 Recurrence recur4 = new Recurrence(RecurrenceFields.FREQUENCY.WEEKLY,
 1,
 cal,
 null);
 recur4.validate();

15.2.2 How to Define a Recurrence with an iCalendar RFC 2445 Specification

You can specify a recurrence pattern using the Recurrence constructor with a String containing an iCalendar (RFC 2445) specification.

For information about using iCalendar RFC 2245 expressions see the following link:

http://www.ietf.org/rfc/rfc2445.txt

Example 15-5 shows a sample recurrence created using an iCalendar expression.

Note:

The following are not supported through iCalendar expressions:

COUNT, UNTIL, BYSETPOS, WKST

You can still directly specify a count on the Recurrence object using the setCount method.

Example 15-5 Defining a Recurrence with an iCalendar String Expression

Recurrence recur5 = new Recurrence("FREQ=YEARLY;INTERVAL=1;BYMONTH=5;BYDAY=2MO;");
recur5.validate();

15.2.3 What You Need to Know When You Use a Recurrence Fields Helper

When you define a recurrence with a RecurrenceFields helper, note the following:

	
Providing a frequency with one of the RecurrenceFields.FREQUENCY constants is always mandatory when you define a recurrence pattern using the RecurrenceFields helper classes (for more information on frequency, see Table 15-1).

	
The frequency interval supplied with the recurrence constructor is an integer that acts as a multiplier for the supplied frequency. For example if the frequency is RecurrenceFields.FREQUENCY.HOURLY and the interval is 8, then the combination represents every 8 hours.

	
Providing either a start or end date is optional. But if a start or end date is specified, it is guaranteed that the object does not generate any occurrences before the start date or after the end date (and if specified, any associated start time or end time).

	
In general if both start date and recurrence fields are used, then the recurrence fields always take precedence. This qualification means the following:

	
If a start date is specified with just the frequency fields from the RecurrenceFields then the start date defines the occurrences with the frequency field, starting with the first occurrence on the start date itself. For example if a start date is specified as 01-MAY-2007:09:00:00 with a RecurrenceFields.FREQUENCY of WEEKLY without using other recurrence fields, the occurrences happen once every week starting on 01-MAY-2007:09:00:00 (and including 08-MAY-2007:09:00:00, 15-MAY-2007:09:00:00, and so on).

Thus, providing a start date along with a specification of frequency fields provides a quick way of defining a recurrence pattern.

	
If the start date or end date is specified together with additional recurrence fields, the recurrence fields take precedence, and the start date or end date only act as absolute boundary points. For example, with a start date of 01-MAY-2007:09:00:00 and a frequency of WEEKLY if the additional recurrence field DAY_OF_WEEK is used with a value of WEDNESDAY the occurrence happens on every Wednesday starting with the first Wednesday that comes after 01-MAY-2007. Because 01-MAY-2007 is a Tuesday, the first occurrence happens on 02-MAY-2007:09:00:00 and not on 01-MAY-2007:09:00:00.

In this case, with the start date of 01-MAY-2007:09:00:00, if the TIME_OF_DAY is also specified as 11:00:00, all the occurrences happen at 11:00:00 overriding the 09:00:00 time from the starting date specification.

	
When just a frequency is supplied and a recurrence does not include either a start date, start time, or a TIME_OF_DAY field, the occurrences happen based on a timestamp that Oracle Enterprise Scheduler supplies at runtime (typically this timestamp is provided during request submission).

For example, when a recurrence indicates a 2 hour recurrence then the time of the job request submission determines the start time for the occurrences. Thus, in such cases the occurrences for a job request are each 2 hours apart, but when multiple job requests are submitted, the start times are different and are set at the request submission time for the job requests.

	
When the start date is not used, recurrence fields can be included such that a recurrence pattern is completely defined. For example, specifying a MONTH_OF_YEAR alone does not define a recurrence pattern when a start date is not also present. Without a start date the number of minimum recurrence fields required to define a pattern depends upon the value of the frequency used. For example with frequency of WEEKLY, only DAY_OF_WEEK and TIME_OF_DAY are sufficient to define which day the weekly occurrences should happen. With a frequency of YEARLY, MONTH_OF_YEAR, DAY_OF_MONTH (or the WEEK_OF_MONTH and DAY_OF_WEEK) and the TIME_OF_DAY are sufficient to define the recurrence pattern.

	
You can supply multiple values for recurrence fields, except for the frequency field. However, at runtime Oracle Enterprise Scheduler skips invalid combinations silently. For example with MONTH_OF_YEAR specified as January and ending in June, and with DAY_OF_MONTH as 30, the recurrence skips an invalid day, that is day 30 for February.

15.2.4 What You Need to Know When You Use an iCalendar Expression

When you define a recurrence with an iCalendar expression, note the following:

	
When the recurrence does not include either a start date or time and the iCalendar expression does not specify a time of day, the occurrences happen based on a timestamp that Oracle Enterprise Scheduler supplies at runtime (typically this timestamp is provided during request submission).

For example a recurrence can indicate a 2 hour recurrence, and the start date and time of the job request submission determines the exact start time for the occurrences. Note that in such cases, when the start time is not specified, occurrences for different job requests can happen at different times, based on the submission time, but the individual occurrences are 2 hours apart.

	
Providing either a start date with setStartDate() or an end date with setEndDate() is optional. But if a start or end date is specified, it is guaranteed that the object does not generate any occurrences before the start date or after the end date (and if specified, any associated start time or end time).

15.3 Defining an Explicit Date

An explicit date defines a date and time for use in a schedule or an exclusion. You construct an ExplicitDate using appropriate fields from the RecurrenceFields class.

15.3.1 How to Define an Explicit Date

Example 15-6 shows an explicit date definition.

Example 15-6 Defining an Explicit Date

ExplicitDate date = new ExplicitDate(RecurrenceFields.YEAR.valueOf(2007), RecurrenceFields.MONTH_OF_YEAR.AUGUST,RecurrenceFields.DAY_OF_MONTH.valueOf(17));

In Example 15-6 a RecurrenceFields helper defines a date in the constructor and the value does not include a time of day. You can optionally use setTime to set the time associated with an explicit date.

15.3.2 What You Need to Know About Explicit Dates

The ExplicitDate class provides the ability to define a partial date, when compared with java.util.Calendar where the time part is not specified. Also all other java.util.Calendar fields such as TimeZone are not defined with an ExplicitDate. When the time part is not specified in an ExplicitDate, Oracle Enterprise Scheduler computes the time appropriately. For example, consider a schedule that indicates every Monday after June 1, 2007, and adds an explicit date for the 17th of August 2007 (a Friday). In this example, the 17th of August 2007 is a partial date since it does not include a time.

15.4 Defining and Storing Exclusions

Using an Oracle Enterprise Scheduler exclusion you can represent dates that need to be excluded from a schedule. For example, you can use an exclusion to create a list of holidays to skip in a schedule.

15.4.1 How to Define an Exclusion

You represent an individual exclusion with an Exclusion object. You can define the dates to exclude in an exclusion using either an ExplicitDate or with a Recurrence object.

Example 15-7 shows how to create an Exclusion instance using a recurrence.

Example 15-7 defines an individual exclusion. For information about creating a list of Exclusions, see How to Create an Exclusions Definition.

Example 15-7 Defining Explicit Dates and an Exclusion

Recurrence recur = new Recurrence(RecurrenceFields.FREQUENCY.YEARLY, 1);
recur.addMonth(RecurrenceFields.MONTH_OF_YEAR.JULY);
recur.addDayOfMonth(RecurrenceFields.DAY_OF_MONTH.valueOf(4));
Exclusion e = new Exclusion("Independence Day", recur);

15.4.2 How to Create an Exclusions Definition

To create a list of exclusions and persist the exclusion dates you do the following:

	Create a list of exclusions.
	Define an ExclusionsDefinition object using the list of exclusions.
	Use the Metadata Service addExclusionDefinition() method to persist the ExclusionsDefinition.

Example 15-8 Creating and Storing a List of Exclusions in an ExlusionDefinition

Collection<Exclusion> exclusions = new ArrayList<Exclusion>();
Exclusion e = new Exclusion("Independence Day", recur);
exclusions.add(e);
ExclusionsDefinition exDef1 =
new ExclusionsDefinition("OrclHolidays1", "Annual Holidays", exclusions);
MetadataServiceHandle handle = m_service.open();
MetadataObjectId exId1 = m_service.addExclusionDefinition(handle,exDef1,
"METADATA_UNITTEST_PROD");

Finally, when you want to associate an ExclusionsDefinition with a schedule, you use the schedule addExclusion() method.

Example 15-8 shows how to create an ExclusionDefinition and store the definition to the metadata repository.

Note in Example 15-8 that the ExclusionsDefinition constructor requires three arguments.

15.5 Defining and Storing Schedules

Using Oracle Enterprise Scheduler you can create a schedule to determine when a job request runs or use the schedule for other purposes (such as determining when a work assignment becomes active). A schedule contains a list of explicit dates, such as June 13, 2007 or a set of expressions that represent a recurring date or date and time. A schedule can also specify specific exclusion and inclusion dates.

You create a schedule using the following:

	
Explicit Dates: Define a date for use in a schedule or exclusion. For more information, see Defining an Explicit Date

	
Recurrences: Contain an expression that represents a pattern for a recurring date and time. For example, you can specify a recurrence representing a regular period such as Mondays at 10:00AM. For more information, see Defining a Recurrence

	
Exclusions: Contain a list of dates to exclude or dates and times to exclude from a schedule. For example, you can create an exclusion that contains a list of holidays to exclude from a schedule. For more information, see Defining and Storing Exclusions

15.5.1 How to Define and Store a Schedule

To define a schedule:

	Create a schedule by defining an Oracle Enterprise Scheduler Schedule object and using the schedule constructor to create a new schedule.
	Obtain a metadata service reference, m_metadataService, and open a metadata session in a try block with MetadataServiceHandle.

MetadataObjectId scheduleId = m_service.addScheduleDefinition(handle,schedule,"HOW_TO_PROD");

	Define the date, recurrences and exclusions.
	Store the schedule using addScheduleDefinition.
	Close the session with a finally block.

15.5.2 What Happens When You Define and Store a Schedule

Example 15-9 shows a sample schedule definition using a recurrence with the RecurrenceFields helper class for a weekly schedule, specified to run on Mondays at 10:00AM.

The schedule uses the addInclusionDate() method to add an explicit date to the occurrences in the schedule, and the addExclusionDate() method to explicitly exclude the date of May 15 from schedule occurrences.

Example 15-10 shows sample code used to store a schedule. The method addScheduleDefinition() is used to store the schedule within a try block, followed by a finally block that includes error handling.

Example 15-9 Creating a Schedule Recurrence with RecurrenceFields Helpers

Recurrence recur = new Recurrence(RecurrenceFields.FREQUENCY.WEEKLY, 1);
 recur.addDayOfWeek(RecurrenceFields.DAY_OF_WEEK.MONDAY);
 recur.setRecurTime(RecurrenceFields.TIME_OF_DAY.valueOf(10, 0, 0));

 ExplicitDate july10 = new ExplicitDate(RecurrenceFields.YEAR.valueOf(2008),
 RecurrenceFields.MONTH_OF_YEAR.JULY,
 RecurrenceFields.DAY_OF_MONTH.valueOf(10));

 ExplicitDate may15 = new ExplicitDate(RecurrenceFields.YEAR.valueOf(2008),
 RecurrenceFields.MONTH_OF_YEAR.MAY,
 RecurrenceFields.DAY_OF_MONTH.valueOf(15));

 Schedule schedule = new Schedule("everyMonday", "Weekly Schedule", recur);
 schedule.addInclusionDate(july10);
 schedule.addExclusionDate(may15);

Example 15-10 Storing a Schedule

MetadataServiceHandle handle = null;
boolean abort = true;
try
 {
 handle = m_service.open();
 m_service.addScheduleDefinition(handle, schedule, "HOW_TO_PROD");
 abort = false;
 }
finally
 {
 if (handle != null)
 {
 m_service.close(handle, abort);
 }
 }

15.5.3 What You Need to Know About Handling Time Zones with Schedules

You can use a java.util.TimeZone object to set the time zone for a schedule. Use the Schedule setTimeZone() method to set or clear the TimeZone for a Schedule. The Schedule method getTimeZone()returns a java.util.TimeZone value if the Schedule object has as TimeZone set.

15.6 Identifying Job Requests That Use a Particular Schedule

You can use Fusion Middleware Control to search for job requests that use a particular schedule.

For more information about searching for job requests that use a certain schedule, see the section "Searching for Oracle Enterprise Scheduler Job Requests" in the chapter "Managing Oracle Enterprise Scheduler Requests" in Oracle Fusion Middleware Administering Oracle Enterprise Scheduler.

15.7 Updating and Deleting Schedules

You can use Fusion Middleware Control to edit and delete schedules.

For information about editing and deleting schedules, see the section "Managing Schedules" in the chapter "Managing Oracle Enterprise Scheduler Requests" in Oracle Fusion Middleware Administering Oracle Enterprise Scheduler.

16 Using the Oracle Enterprise Scheduler Web Service

This chapter describes how you can use the Oracle Enterprise Scheduler web service for accessing a subset of the Oracle Enterprise Scheduler runtime functionality.

This chapter includes the following sections:

	
Introduction to the Oracle Enterprise Scheduler Web Service

	
Developing and Using ESSWebservice Applications

	
ESSWebservice WSDL File

	
Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

16.1 Introduction to the Oracle Enterprise Scheduler Web Service

Oracle Enterprise Scheduler provides a rich set of functionality for enterprise level scheduling. This functionality includes support for the following operations:

	
Creating and managing Oracle Enterprise Scheduler metadata

	
Submitting and managing Oracle Enterprise Scheduler job requests

	
Configuring and managing Oracle Enterprise Scheduler

Client applications can use the Oracle Enterprise Scheduler web service (ESSWebservice) to access a subset of the Oracle Enterprise Scheduler runtime functionality. The ESSWebservice is provided primarily to support SOA integration, for example invoking Oracle Enterprise Scheduler from a BPEL process. However, any client that requires a web service to interact with Oracle Enterprise Scheduler can use ESSWebservice. ESSWebservice exposes job scheduling and management functionality for request submission and request management.

ESSWebservice is deployed within the Oracle Enterprise Scheduler application, where the application is a Java EE application within the Oracle Enterprise Scheduler runtime framework. Thus, the ESSWebservice is available on every node where Oracle Enterprise Scheduler is installed and deployed.

The ESSWebservice is a synchronous web service, such that all the operations invoked are synchronous operations. Although the Oracle Enterprise Scheduler internal job execution model is asynchronous, the ESSWebservice APIs need not be asynchronous. However, Oracle Enterprise Scheduler web service also provides the capability to retrieve the job completion events asynchronously (in a manner similar to implementing the Oracle Enterprise Scheduler EventListener contract in the core API layer).

The ESSWebservice WSDL describes the complete functionality for the ESSWebservice. Table 16-1 summarizes the operations available with ESSWebservice.

Table 16-1 Summary of Operations Available with ESSWebservice

	Operation	Communication Type	Description
	
addPPAction

	
Synchronous

	
Adds a post-processing action to a step in a job set request. This method is called prior to submitting the request. The method provides support for action previously supported by add_printer, add_notification, add_layout in concurrent processing. The parameters to these legacy routines are passed as arguments to addPPAction in the order in which they were declared in the original routine.

	
addPPActions

	
Synchronous

	
Similar to addPPAction, except that you can package multiple actions in your request.

	
cancelRequest

	
Synchronous

	
Cancels the processing of a request that is not in a terminal state.

	
Oracle Enterprise SchedulerOracle Enterprise SchedulerOracle Enterprise Scheduler

Oracle Enterprise SchedulerOracle Enterprise Scheduler

	
Synchronous

	
Marks a request in a terminal state for deletion. This does not physically remove any data, although the request is no longer be accessible by most methods.

For parent requests, this operation cascades to all children.

	
getCompletionStatus

	
Asynchronous

	
Registers for an asynchronous status update when the request completes. A one-way operation with a separate asynchronous response.

	
getRequestExecutionContext

	
Synchronous

	
Gets an oracle.as.scheduler.RequestExectionContext object from a serialized request execution context string. This operation should only be invoked from a remote running ESS job.

	
getRequestDetail

	
Synchronous

	
Gets the runtime details of the specified request.

	
getRequestState

	
Synchronous

	
Retrieves the current state of the specified request.

	
holdRequest

	
Synchronous

	
Withholds further processing of a request that is in WAIT or READY state. For parent requests, this operation cascades to all eligible child requests.

	
releaseRequest

	
Synchronous

	
Releases a request from the HOLD state. For parent requests, this operation cascades to all eligible child requests.

	
setAsyncRequestStatus

	
Synchronous

	
Sets the status of an asynchronous java job.

	
setNLSOptions

	
Synchronous

	
Sets NLS environment options for a request.

	
setStepsArgs

	
Synchronous

	
Marshals arguments in the previous concurrent processing style into a Oracle Enterprise Scheduler properties for a step in a job set request. This operation is invoked prior to submitting a request.

	
setSubmitArgs

	
Synchronous

	
Marshals arguments in the previous concurrent processing style into Oracle Enterprise Scheduler properties.This operation is invoked prior to submitting the request. The key of each argument is ARGUMENT_PREFIX#, where # is the ordinal value of the argument. For example ARGUMENT_PREFIX1="firstArg" and ARGUMENT_PREFIX2="secondArg".

	
submitRecurringRequest

	
Synchronous

	
Submits a new recurring job request (a request with a schedule).

	
submitRequest

	
Synchronous

	
Submits a new job request. For more information, see Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

16.2 Developing and Using ESSWebservice Applications

Oracle Enterprise Scheduler executes a job request, for example a Java type job request, in the context of the application that submitted the job. Typically, for development purposes, Oracle Enterprise Scheduler and client applications co-exist locally on any given node which allows Oracle Enterprise Scheduler to execute the job in the context of the target application. For the purposes of production, the client application and Oracle Enterprise Scheduler often reside on different servers.

A Java EE application that uses Oracle Enterprise Scheduler contains all the Oracle Enterprise Scheduler artifacts including the following:

	
Metadata, including a job type, a job definition, a schedule, and any other required metadata such as a job set.

	
Job implementation classes (for Java jobs).

	
A Required Oracle Enterprise Scheduler endpoint description (an MDB description in ejb-jar.xml).

Any clients interacting with Oracle Enterprise Scheduler using ESSWebservice need to provide this type of Java EE application, so that Oracle Enterprise Scheduler can run jobs in the context of the correct target application. All such web service clients must know the name of the corresponding Java EE hosting application and should pass it to Oracle Enterprise Scheduler and should pass it to the Oracle Enterprise Scheduler web service call wherever required (as defined in the WSDL).

Such an application is a regular Oracle Enterprise Scheduler client application, where the job request submission and management are done using ESSWebservice operations.

16.2.1 How to Develop and Use an ESSWebservice Java EE Application

When the Oracle Enterprise Scheduler functionality is accessed using the ESSWebservice web service, a corresponding hosting Java EE application must be available to Oracle Enterprise Scheduler. Even though clients can interact with Oracle Enterprise Scheduler remotely using the Oracle Enterprise Scheduler web service, the associated Java EE hosting application must still be co-located with Oracle Enterprise Scheduler. This allows Oracle Enterprise Scheduler to execute job requests in the correct application context. Therefore, ESSWebservice clients must still develop, package and deploy a corresponding Java EE hosting application that contains all the required Oracle Enterprise Scheduler artifacts.

16.2.2 How to Develop and Use an ESSWebservice SOA Application with BPEL

For SOA clients all the SOA components such as a BPEL process are deployed as a SOA composite. A SOA composite is not a Java EE application. The composite is executed using the SOA fabric runtime framework (within soa-infra).

For SOA components, create a separate Java EE hosting application that acts as the proxy between the composite and Oracle Enterprise Scheduler. This hosting application can either be created in a one-to-one association with one Oracle Enterprise Scheduler application for each composite deployed, or multiple composites can share a single Java EE hosting application. The Java EE hosting application contains all the desired Oracle Enterprise Scheduler artifacts.

16.2.3 Setting Web Service Addressing Headers for getCompletionStatus() Operation

As shown in the ESSWebservice WSDL, if clients want to be notified asynchronously on job completion they can invoke the getCompletionStatus() operation. Upon job completion, Oracle Enterprise Scheduler invokes the callback operation onJobCompletion() following ws-addressing where ESSWebservice captures the caller's address in the incoming call. Clients should be capable of receiving the callback at any arbitrary time in the future. Such a callback depends entirely upon the time required to complete the job. This is similar to the Oracle Enterprise Scheduler functionality for invoking a client's listener (that implements the Oracle Enterprise Scheduler EventListener contract) upon job completion.

When you use getCompletionStatus() clients must include certain required web service addressing headers (in particular the wsa:MessageID and wsa:ReplyTo headers). This allows the Oracle Enterprise Scheduler runtime to asynchronously notify the job completion status be sent to the correct ReplyTo address. When you use getCompletionStatus() from a BPEL process the SOA runtime automatically adds the required headers. When using getCompletionStatus() programmatically on the client side, using the web service proxies, the web service client must set these addressing headers.

16.2.4 Restrictions When Using ESSWebservice

ESSWebservice does not support the following Oracle Enterprise Scheduler features:

	
Ad hoc Request Submission: ESSWebservice does not support ad hoc job request submission (ad hoc request submission is available using the EJB APIs). Therefore any job that is submitted using the ESSWebservice must have its corresponding definition, including a job type and job definition along with the schedule definitions created as metadata objects in the associated proxy application. The web service operation can then refer to such metadata objects using their identifier arguments as specified in the WSDL.

	
Query API: ESSWebservice does not expose the query APIs. Web service clients do not need to obtain the query information for Oracle Enterprise Scheduler requests. ESSWebservice web service clients do not provide generic monitoring and managing functionality that would require the use of query APIs.

16.2.5 ESSWebservice Implementation

The Oracle Enterprise Scheduler functionality is exposed as web a service using a Service Endpoint Interface (SEI) annotated with the JAX-WS annotations. The web service implementation of this SEI web service invokes the common Oracle Enterprise Scheduler implementation layer. The ESSWebservice is exposed in Document/literal wrapped mode for maximum interoperability.

Some of the data types used in ESSWebservice are not suitable to be used in a web service directly. Such data types cannot be readily converted into corresponding XML representation. Therefore, the Oracle Enterprise Scheduler web service layer defines wrapper classes around these data types that are exposed in the ESSWebservice, and visible in the WSDL. In general, the web service layer reuses the existing data types where possible.

16.3 ESSWebservice WSDL File

When Oracle Enterprise Scheduler is installed and running, you can obtain the WSDL definition file from the web services page at the following type of URL:

http://host:port/ess/esswebservice?WSDL

For example,

http://system1:7001/ess/esswebservice?WSDL

Note that you cannot invoke web service operations by directly accessing the ESSWebservice URL from a browser.

16.4 Use Case: Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process

The following example demonstrates how to use the ESSWebService from a BPEL process; in the BPEL process you use ESSWebService to submit a job request. The use case demonstrates one way of using Oracle Enterprise Scheduler for BPEL and SOA users. Experienced SOA users and designers may have other ideas for how to work with Oracle Enterprise Scheduler using the web service.

Oracle JDeveloper is used to create an application and the projects within the application that contain the code and support files for the application.

JDeveloper provides accessibility options, such as support for screen readers, screen magnifiers, and standard shortcut keys for keyboard navigation. You can also customize JDeveloper for better readability, including the size and color of fonts and the color and shape of objects. For information and instructions on configuring accessibility in JDeveloper, see "Oracle JDeveloper Accessibility Information" in Developing Applications with Oracle JDeveloper.

To create the ESSWebService sample application, follow these steps:

	
Start Oracle JDeveloper.

	
Click the New Application button.

	
In the New Gallery - Items area select SOA Application.

	
Click OK.

	
Use the Name your application window to enter the name and location for the new application and to specify the application template.

	
In the Application Name field, enter an application name. For this example, enter EssWebApplication.

	
In the Directory field, accept the default or specify a location for the application to be created.

	
Enter an application package prefix or accept the default, no prefix.

The prefix, followed by a period, applies to objects created in the initial project of an application.

	
Click Next.

	
In the Name Your Project dialog, select SOA project options.

	
In the Project Name field, enter a project name or accept the default, Project1.

	
On the Project Features tab, select SOA Suite.

	
Click Next.

	
In the Configure SOA Settings dialog, select Composite with BPEL Process and click Finish.

	
Choose one of the two BPEL specifications as shown in Figure 16-1.

Figure 16-1 Choose a BPEL Specification

[image: Description of "Figure 16-1 Choose a BPEL Specification" follows]

	
Select the service type from the Template dropdown menu as shown in Figure 16-2 and click OK.

Figure 16-2 Selecting the Service Type

[image: Description of "Figure 16-2 Selecting the Service Type" follows]

	
In the Editor pane (BPELProcess1.bpel), drag the Schedule Job component from the Oracle Extensions section of the Components palette to the position between the receiveInput and callBackClient components as shown in Figure 16-3.

Figure 16-3 Adding the Schedule Job Component

[image: Description of "Figure 16-3 Adding the Schedule Job Component" follows]

	
Create a connection to the metadata server as shown in Figure 16-4.

	
Click the New button in the resource window.

	
In the dropdown menu, select IDE Connecitons > SOA-MDS. In the Create SOA-MDS Connection dialog, fill in the appropriate information about your MDS server.

Note:

You can also create the connection by choosing File > New Gallery > General > Connections > SOA-MDS Connections.

Figure 16-4 Creating a Connection to the Metadata Server

[image: Description of "Figure 16-4 Creating a Connection to the Metadata Server" follows]

	
Right-click the Schedulejob1 component and select the Edit item. This invokes the Edit Schedule Job dialog shown in Figure 16-5.

Figure 16-5 Editing Schedule Job

[image: Description of "Figure 16-5 Editing Schedule Job" follows]

	
Click the Job browse button to select the job definition through the MDS connection. Figure 16-6 shows an example.

Figure 16-6 Selecting the Job Definition Through the MDS Connection

[image: Description of "Figure 16-6 Selecting the Job Definition Through the MDS Connection" follows]

	
If the Sys_effectiveApplication property is not defined in the job definition you selected, you are prompted to provide it in Application field on the general tab. If Sys_effectiveApplication property is defined in the selected job definition, it appears in the Application field and cannot be edited. See Figure 16-7.

Figure 16-7 Defining the Sys_effectiveApplication Property (if not Already Defined)

[image: Description of "Figure 16-7 Defining the Sys_effectiveApplication Property (if not Already Defined)" follows]

	
Add system properties:

	
Select the System Properties tab.

	
The Job Properties pane should be populated with system properties obtained through the MDS connection from the job definition.

	
Use the Add button to add additional system properties in the User Defined Properties pane.

Figure 16-8 Adding User Defined Properties

[image: Description of "Figure 16-8 Adding User Defined Properties" follows]

	
Add application properties:

	
Select the Application Properties tab.

	
The Job Properties pane should be populated with properties obtained through the MDS connection from the job definition.

	
Use the Add button to add additional properties in the User Defined Properties pane.

Figure 16-9 Adding Additional User Defined Properties

[image: Description of "Figure 16-9 Adding Additional User Defined Properties" follows]

	
Attach the WSDL URL.

	
Click the Project Editor tab (Figure 16-10).

	
Edit the ESSService component. Provide the Name, WSDL URL, Port Type and other information (Figure 16-11).

Figure 16-10 The Project Editor Tab

[image: Description of "Figure 16-10 The Project Editor Tab" follows]

Figure 16-11 The Update Reference Dialog

[image: Description of "Figure 16-11 The Update Reference Dialog" follows]

	
Add a security policy to the service.

	
In the Project Editor tab, right-click the Oracle Enterprise Scheduler web service and select Configure SOA WS Policies > For Request to open the Configure SOA WS Policies dialog as shown in Figure 16-12.

Figure 16-12 Opening the Configure SOA WS Policies

[image: Description of "Figure 16-12 Opening the Configure SOA WS Policies" follows]

	
In the Security area of the Configure SOA WS Policies, click the Add button to attach the desired security policies. For example, oracle/wss_http_token_client_policy as shown in Figure 16-13 and Figure 16-14. If you are creating an asynchronous BPEL process you must also use this process to attach a service policy to the callback.

Figure 16-13 The Configure SOA WS Policies Dialog

[image: Description of "Figure 16-13 The Configure SOA WS Policies Dialog" follows]

Figure 16-14 The Select Security Policies Dialog

[image: Description of "Figure 16-14 The Select Security Policies Dialog" follows]

	
Add the Invoke activity for the getCompletionStatus operation.

	
Click the Design tab to switch the display from the source view back to the design view.

	
From the BPEL Constructs section of the Component Palette, drag and drop an Invoke component between Schedulejob1 and callbackClient as shown in Figure 16-15.

Figure 16-15 Drag and Drop an Invoke Component Between Schedulejob1 and callbackClient

[image: Description of "Figure 16-15 Drag and Drop an Invoke Component Between Schedulejob1 and callbackClient" follows]

	
Right-click the Invoke1 button to open the Edit Invoke dialog. Rename the component getStatusAsync.

	
Drag the arrow from the getStatusAsync component to the EssService component in the Partner Links area. The Edit Invoke dialog opens as shown in Figure 16-16.

	
From the Edit Invoke dialog Operation dropdown, select getCompletionStatus as shown in Figure 16-16.

	
Create an input variable named x and click OK to close the Edit Invoke dialog.

Figure 16-16 The Edit Invoke Dialog

[image: Description of "Figure 16-16 The Edit Invoke Dialog" follows]

	
Drag and drop an Assign component from the BPEL Construct area in the Component Palette to between the ScheduleJob1 and the getStatusAsync component.

	
Double-click the Assign component to open the Edit Assign dialog and map the ScheduleJob1 output parameter requestID to the getStatusAsync input parameter requestID as shown in Figure 16-17. Click OK.

Figure 16-17 Use the Edit Assign Dialog to Map the ScheduleJob1 Output parameter requestID to the getStatusAsync Input Parameter requestID

[image: Description of "Figure 16-17 Use the Edit Assign Dialog to Map the ScheduleJob1 Output parameter requestID to the getStatusAsync Input Parameter requestID" follows]

	
Receive job completion status.

	
From the BPEL Constructs section of the Component Palette, drag and drop a Receive component between the getStatusAsync and the callbackClient components as shown in Figure 16-18.

Figure 16-18 Drag and Drop a Receive Component Between the getStatusAsync and the callbackClient Components

[image: Description of "Figure 16-18 Drag and Drop a Receive Component Between the getStatusAsync and the callbackClient Components" follows]

	
Attach the Receive1 component to ESSService in Partner Links area by dragging the arrow from the Receive1 component to the ESSService component. This action also opens the Edit Receive dialog. Rename the Receive1 component to OnJobCompletion as shown in Figure 16-19.

Figure 16-19 Rename the Receive1 component to OnJobCompletion

[image: Description of "Figure 16-19 Rename the Receive1 component to OnJobCompletion" follows]

	
Select the OnJobCompletion operation and add a variable named y as shown in Figure 16-19. Click OK to close the Edit Receive dialog.

	
Drag and drop an Assign component from the BPEL Construct area in the Component Palette to between the onJobCompletion component and the callbackClient component.

	
Double-click the Assign component to open the Edit Assign dialog and map the onJobCompletion component's output parameter resultMessage to the callbackClient component's input parameter result variable as shown in Figure 16-20. Click OK.

Figure 16-20 Map the onJobCompletion Component's Output Parameter resultMessage to the callbackClient Component's input Parameter result Variable

[image: img/GUID-0582F1D3-F014-4155-A242-522F8783A007-default.png]

17 Defining and Using Job Sets

This chapter describes how to define and submit an Oracle Enterprise Scheduler job set, a collection of job definitions that can be grouped together to run as a single unit.

This chapter includes the following sections:

	
Introduction to Defining and Using Job Sets

	
Defining Job Sets

	
Cross Application Job Sets

	
Supporting Input and Output Forwarding in Job Sets

17.1 Introduction to Defining and Using Job Sets

Oracle Enterprise Scheduler provides for collections of job definitions that can be grouped together to run as a single unit called a job set. A job set may be nested; thus a job set may contain a collection of job definitions or one or more child job sets. Each job definition or job set included within a job set is called a job set step.

A job set is defined as either a serial job set or a parallel job set. At runtime, Oracle Enterprise Scheduler runs parallel job set steps together, in parallel. When a serial job set runs, Oracle Enterprise Scheduler runs the steps one after another in a specific sequence. Using a serial job set Oracle Enterprise Scheduler supports conditional branching between steps based on the execution status of a previous step.

You can define a serial job set to include a parallel job set, or a parallel job set to include a serial job set. Job sets that include a mix of parallel and serial job sets are called complex job sets. For example, when a serial job set contains a child parallel job set, the serial job set runs serially until it reaches the child parallel job set. Then, all the job definitions or job set definitions in the child parallel job set run in parallel. Upon completion of the child parallel job set the serial job set continues running its remaining steps serially. Nested parallel job sets behave the same as non-nested parallel job sets.

For every step in a job set Oracle Enterprise Scheduler supports a property (SYS_selectState) that provides runtime flexibility for how a particular step affects the entire job set. This property is defined on a per step basis. Table 17-1 describes SYS_selectState.

Table 17-1 Job Set Step Property

	Property	Description
	
SYS_selectState

	
Specifies whether the result state of a job set step should be included when determining the state of the job set. Specifies whether the execution state of the step affects the eventual state of entire job set.

By default, all job set steps affect the job set state. To prevent the state of a particular job set step from affecting the state of the job set, set SELECT_STATE to false for that step. To allow the state of a job set step to affect the overall state of the job set, set SELECT_STATE to true for that step.

Oracle Enterprise Scheduler provides the capability for a job set to execute across multiple applications. A job set runs in its hosting application and by default all job set steps also run in this application.

17.2 Defining Job Sets

You can define a job set in Oracle JDeveloper by specifying the following:

	
The name, package, and description for the job set

	
The application defined properties for the job set

	
The system properties for the job set

	
Specifying the job set steps

The contents of a job set are specified when you define the job set steps. For example, for a serial job set you specify the name and the execution mode and then you add the job set steps to define the sequence of job definitions or child job sets that run when the job set runs.

17.2.1 How to Define a Job Set

An Oracle Enterprise Scheduler job set is defined by a name, a package, a job set execution mode, step definitions, application defined properties, and system properties.

To create a job set:

	
In Oracle JDeveloper, right-click in the project to view the New Gallery.

	
In the All Technologies tab, under Categories, expand Business Tier and select Enterprise Scheduler Metadata.

	
Under Items, select Job Set and click OK. This displays the Create Job Set window.

	
In the Create Job Set window, specify the following:

	
In the Name field, enter a name for the job set or accept the default name.

	
In the Package field, enter a package name for the job set.

	
The Location field displays the full path of the directory where the job set file is stored.

	
Click OK. This creates the job set and displays the Job Set Definition page, as shown in Figure 17-1.

Figure 17-1 Job Set Editor with Serial Job Set

[image: Job Set Editor with serial job set]

	
In the Job Set Editor pane, in the Description field enter a description for the job set.

	
In the Job Set Steps area, select the Parallel or Serial radio button to specify parallel or serial execution mode for the job set.

	
In the Job Set Editor pane add the job set steps. For more information on adding job set steps, see How to Define Serial Job Set Steps or How to Define Parallel Job Set Steps.

	
In the Application Defined Properties area, click Add to add properties associated with the job set. You use these to represent an application-specific or step-specific application defined property for the job set. For more information on using application defined properties, see Introduction to Using Parameters and System Properties. For more information, see What You Need to Know About Job Set Level Parameter Materialization.

	
In the System Properties area, click Add to add system properties associated with the job set. For more information on using system properties, see Using System Properties.

	
In the Access Control area, click Add to modify the list of roles that have access to this metadata, along with their access levels. For more information on defining access, see Oracle Enterprise Scheduler Security .

	
In the Localization area, enter the following information for localizing this job set:

	
Resource Bundle Base Name -- The base name for the resource bundle that specifies internationalized values.

	
Display Name Resource Key -- The resource key that specifies the display name value in the resource bundle.

	
Description Resource Key -- The resource key that specifies the description text in the resource bundle.

	
Save the job set.

17.2.2 How to Define Serial Job Set Steps

To define serial job set steps you select the serial execution mode and then add job set steps. Job set steps are created from the available job definitions and job sets defined in the current project. You define serial job set steps when you specify a step ID and a job definition child job set definition associated with the step. You also define links from a job set step terminal states to specify the next step. Table 17-2 lists the possible terminal states that you can specify using JDeveloper.

Table 17-2 Job Set Serial Execution Step Terminal States

	Terminal State	Description
	
SUCCEEDED

	
Oracle JDeveloper indicates this state with a check mark button. This path represents a child step or child job set was successfully processed by the system.

	
WARNING

	
Oracle JDeveloper indicates this step with a warning button. A child step or child job set resulted in a warning.

	
ERROR

	
Oracle JDeveloper indicates this step with an error button. Some aspect of the request to run the child step or child job set processing resulted in an error.

To add serial job set steps:

	First, define the appropriate job definitions or job sets and define the parent job set to contain the steps.
	In the Job Set Editor pane, in the Job Set Steps area, select Serial execution mode.
	Click the Add button to add a job set step. This displays the Add Step window.
	In the Step ID field, enter the step ID. For example, enter step1.
	In the Job field, from the dropdown list select a job definition or a job set to associate with the step. For example, select Job1.
	If you need to define step level application defined properties, then select the Application Defined Properties tab and add properties for the step.
	If you need to define step level system properties, then select the System Properties tab and add job set step system properties for the step.
	Select a destination for the step. The step can be added as part of the job set by selecting Insert into main diagram. To make the step available for use in another step, for either error or warning states, select Add to list of available steps.
	Click OK, this adds the job set step, as shown in Figure 17-2.

Figure 17-2 Job Set with a Step Added

[image: Job set with a step added]

	From the dropdown list next to the error icon, select Stop or select the step for the ERROR terminal state for the step. For example, from the dropdown list select Step_error (Step_error must be defined).
	From the dropdown list next to the warning icon, select Stop or select the step for the WARNING terminal state for the step. For example, from the dropdown list select Step_warning (Step_warning must be defined).
	Click the Add button and add additional steps as needed.
	Click OK, as shown in Figure 17-3.

Figure 17-3 Job Set with Two Steps Added

[image: Job set with two steps added]

17.2.3 How to Define Parallel Job Set Steps

You can add parallel job set steps to a job set.

To add parallel job set steps:

	First, define the appropriate job definitions and job set definitions and the parent job set.
	In the Job Set Editor, select the Parallel execution mode.
	Click the Add button to add a job set step to the job set.

The Add Step window displays.

	In the Job field, select a job definition or a job set.
	If you need to define step level application defined properties, then select the Application Defined Properties tab and add properties for the step.
	If you need to define step level system properties, then select the System Properties tab and add job set step system properties for the step.
	Click OK, this adds the job set step.
	Click the Add button.
	In the Add Step dialog, select the job set or job definition to use for next job in the parallel job set.
	Click OK. The job set step displays in the job set, as shown in Figure 17-4.

Figure 17-4 Adding Job Set Steps to a Parallel Job Set

[image: Adding job set steps to a parallel job set]

17.2.4 What Happens When You Define a Job Set

When you define a job set with Oracle JDeveloper, Oracle JDeveloper creates an XML file containing elements that represent the steps that you define.

When you define a parallel job set you specify a set of job set steps that run together. A parallel job set only contains steps, and does not contain links between steps, as all the steps execute together and do not depend on each other or upon the order in which each step runs.

When you define a job set Oracle JDeveloper creates an XML document that conforms to the Oracle Enterprise Scheduler job step schema.

17.2.5 What You Need to Know About Serial Job Sets

When you define a serial job set, the associated XML document includes job set steps and links. Oracle Enterprise Scheduler enforces the following limitations for serial job set definitions:

	
To prevent looping within a job set, job set definitions should not contain circular execution paths. A circular execution path, or a loop, is defined at the job set level as follows: loop is a path from one job set step along the links of any number of other steps back to the same job set step. For example, in a job set with a flow from Job_A, to Job_B, to Job_C defined, Oracle Enterprise Scheduler does not allow you to define an execution path from Job_B or Job_C back to Job_A. For example you could a create circular execution path, or a loop, if one of the links in a job set step for success, error, or warning links back to the same job set step. Thus, each job set step can link to any of the available job definitions or job sets, or they could all use the same job definition or job set as a link for the success, error and warning case. There is only a possible loop based on the path through the job set steps, as identified by the job set step ID. Oracle Enterprise Scheduler validates job sets at submission time to try to prevent job set step level looping. Also, Oracle JDeveloper does not allow you to create a job set containing a job set step level loop.

	
To prevent looping within a job set, job set definitions should not contain self-referencing execution paths. For example, in a job set with Job_B defined, Oracle Enterprise Scheduler does not allow you to define an execution path from Job_B to Job_B itself if Job_B ends up with a terminal state of ERROR. However using the RETRIES property available for a job definition or a job set, you can have multiple executions up to the configured RETRIES number.

	
When there is no job set link defined for a terminal state of a step, it implies that the job set should stop if the step ends with the unspecified terminal state. For example if there is no link defined for a step Job_D for the state WARNING, and if the step Job_D ends up with the state of WARNING, the job set stops execution.

Each job set step can be defined to use any of the available job definitions or job sets, and multiple steps may use the same job definition or job set.

17.2.6 What You Need to Know About Job Set Application Defined Properties and System Properties

There are cases where job set application defined properties or system properties may conflict with application defined properties or system properties set either in metadata or when a job request is submitted. For more information on how job set application defined properties and system properties are handled, see Using Parameters with the Metadata Service and Using Parameters with the Runtime Service.

17.2.7 What Happens at Runtime for Job Set State Priorities and State Transitions

At runtime, the individual steps in a job set can end up with different terminal states, as indicated in Table 17-2. When a job set step is a job set, the job set step also ends with one of these terminal states. Oracle Enterprise Scheduler provides a priority hierarchy for the terminal states of job set steps. This means that when there are multiple steps in a job set, the job set terminal state is applied the terminal state of the step with the highest priority terminal state. Thus, the highest priority terminal state of the steps determines the resulting state for the entire job set.

The resulting state of a job set affects all subsequent state dependent processing within the system. A job set always follows the basic rule of transitioning to a terminal state based on the terminal states of its child requests, only after the completion of all child requests. As a rule, the job set transitions to one of the computed terminal states only after all child requests have finished and transitioned to terminal states. For example, if a given job set is actually a step within another job set, then the way in which the state of the inner job set request is computed affects the conditional execution within the outer job set.

Table 17-3 shows the possible job set terminal states with the level indicated in the Priority column.

Table 17-3 Job Set Terminal State Transitions

	Terminal State	Description	Priority
	
ERROR

	
If any step in a job set finishes with the terminal state of ERROR, the entire job set is marked with the terminal state of ERROR no matter what the state of the other steps.

For serial job sets, if one step goes to ERROR, subsequent steps do not execute. For parallel job sets, all steps begin at the same time, and the job set state is not determined until the job set steps reach a terminal state.

	
The ERROR state has the highest priority.

	
WARNING

	
If any step in a job set ends up with the terminal state of WARNING, and there is no step with the terminal state of ERROR then the job set is marked with the terminal state WARNING. When the terminal state is WARNING, post processing begins.

	
Lower than ERROR

	
EXPIRED

	
The job set transitions to EXPIRED state if at least one of the child requests expires while there is no step that ends with the terminal state of ERROR or WARNING.

	
Lower than ERROR and WARNING

	
CANCELLED

	
Based on the actual outcome of a cancellation attempt, the job set can transition to CANCELLED if at least one child request successfully processes the cancellation attempt and transitions to CANCELLED state. The cancellation might have been requested on the entire job set or just a specific child request.

Further the transition to CANCELLED follows the priorities of terminal states. Therefore the job set transitions to CANCELLED terminal state only if there is no step that ends with the state of ERROR, WARNING, or EXPIRED and there is at least one step with terminal state of CANCELLED.

When a job set is canceled, steps that have not been added or run are considered to be CANCELLED for the purpose of final state.

	
Lower than ERROR, WARNING, and EXPIRED

	
SUCCEEDED

	
The job set is considered as SUCCEEDED if and only if all child requests completed with the terminal state of SUCCEEDED.

	
The SUCCEEDED state has the lowest priority among all terminal states

Table 17-4 lists additional possible states for a job set:

Table 17-4 Possible Job Set Runtime States

	State	Description
	
WAIT

	
This is the initial state of the submitted job set request. After the job set request transitions to RUNNING state, however, all generated child requests transition directly to READY state rather than WAIT state.

	
READY

	
Job sets go from WAIT to READY to RUNNING. This is true for all job set steps, whether the step is a job definition or nested job set.

	
RUNNING

	
The submitted job set transitions from WAIT to READY to RUNNING. Nested job sets start in READY and transition to RUNNING.

	
CANCELLING

	
A job set transitions to CANCELLING when the user requests a cancellation for the entire job set. This can be done by calling cancelRequest() with the request ID of the parent request representing the job set. Passing the parent request ID indicates that the user wants to cancel entire job set irrespective of its current, non-terminal, state and the states of its child requests.

In such cases, a cancellation is attempted on all child requests that are still active and have not already transitioned to a terminal state.

On the other hand if cancellation is attempted only on a specific child request in the job set, there won't be any state change for the parent request and only the particular child request transitions to CANCELLING if possible.

If the cancel happens during post-processing, the state is set to WARNING rather than CANCELLED. If the job set finishes before the cancel is issued, the job set can have state SUCCEEDED.

	
COMPLETED

	
This state indicates that the job set or job set step has finished executing and post-processing begins.

	
BLOCKED

	
The BLOCKED state is not a terminal state. However any request can remain in a BLOCKED state for a long period until the blocking condition is eliminated (such as incompatibility).

In the case of a job set, any individual step might be BLOCKED while other steps either complete or may be running. The job set itself, however, remains in a RUNNING state. Eventually if all steps in the job set complete except the ones that are in the BLOCKED state, the job set cannot continue further until the blocking step is ready to run. When the blocked step unblocks and completes, the job set can proceed. After the steps complete, the job set eventually goes to the appropriate terminal state.

For a serial job set, the job set may stop at a step that is in BLOCKED state. In such cases, all previous steps are complete and the job set cannot continue until the blocked step executes.

However for a parallel job set, multiple steps can remain in BLOCKED state. Further, while some steps are blocked, other steps can still continue to run.

	
HOLD

	
The HOLD state is very similar to the BLOCKED state. Following the same rules for the BLOCKED state, a job set cannot continue running while a step is in HOLD state. A serial job set cannot continue if the current step in the execution flow is stuck at HOLD state. In the case of a parallel job set, if at least one step is stuck in HOLD state while all other steps have completed, the job set can complete when the step is no longer in HOLD state.

17.3 Cross Application Job Sets

Oracle Enterprise Scheduler provides the capability for a job or a job set to execute across multiple applications as shown in Figure 17-5:

	
Job set FIN has three steps, two of which are defined to execute in different applications.

	
Job set FIN is submitted to the GL application.

	
Step 1 has the EFFECTIVE_APPLICATION system property set to ODI, so Step 1 executes in the ODI application.

	
Step 2 does not have an effective application set, so it executes in the GL application.

	
Step 3 has the EFFECTIVE_APPLICATION system property set to INV, so Step 3 executes in the INV application.

Figure 17-5 Cross Application Job Set Steps

[image: Cross application job set steps]

17.3.1 Overview of Cross Application Job Sets

A job set runs in its hosting application and by default, all job set steps also run in this application. The system property SYS_effectiveApplication should be defined on the job definition or job set (rather than the job set step). For a nested job set that defines SYS_effectiveApplication, the application applies to any child requests of that nested job set. If it is a nested job set, the jobs in the nested job set execute in the effective application. When SYS_effectiveApplication is defined for a job, the request for the job set and any child requests of the job set are associated with the effective application, meaning the APPLICATION system property for those requests is set to the effective application.

The SYS_effectiveApplication system property may only be defined in metadata, specifically job set, job set step, job type, and job. The property SYS_effectiveApplication is not supported in the request parameters. The effective application must be in the same cluster as the hosting application, or an error results. If a submitted job set defines the effective application, that value must be the same as the hosting application, or the job set submission is rejected.

For a job set that executes across multiple applications, querying for requests by application is not sufficient to retrieve all children. Oracle Enterprise Scheduler supports absolute parent ID as a query field, making it possible to query for all requests in a job set regardless of the application. The absolute parent ID is the request ID of the job set that was submitted to the hosting application.

17.3.2 Requirements for Cross Application Job Sets

Oracle Enterprise Scheduler supports cross-application job set subject to the following requirements:

	
All applications for a given job set must be deployed in the same cluster.

	
All applications in the job set must share the same enterprise security.

	
All request metadata must be accessible from the application the job set is submitted to, referred to as the hosting application. All metadata for the request are persisted to the runtime store for the hosting application. The persisted metadata include all metadata used by the submitted job set and any nested job set.

	
Metadata for subrequests must be accessible from the application that submits the subrequest, unless the metadata used by the subrequest were already persisted to the runtime store at job set submission time.

17.4 Supporting Input and Output Forwarding in Job Sets

Sometimes a step in a job set requires input from the previous step in the job set. Oracle Enterprise Scheduler uses two system properties SYS_inputList and SYS_outputList to facilitate forwarding the output from one step to the input of the next step.

When a job produces information, such as a list of output files, that must be passed on to the next step in a job set, the job adds the information to the SYS_outputList property. Upon completion of the job request execution, Oracle Enterprise Scheduler forwards the SYS_outputList property of the request so that it becomes the SYS_inputList property of the next step before it executes. The next step takes as its input the output of the previous step.

A job set step can be a single job or a job set, Oracle Enterprise Scheduler supports forwarding with nested job sets as well. For a serial job set, Oracle Enterprise Scheduler defines the output of the job set as the output of the last step of the job set, meaning that only the SYS_outputList property of the last step is forwarded to the next step. Similarly, the input to a serial job set is forwarded only to the first step of the job set; that is, only the first step of a serial job set has the SYS_inputList property set to the value of the SYS_outputList property of the previous step.

For a parallel job set, Oracle Enterprise Scheduler specifies that the output of the job set is the concatenation of the SYS_outputList property of every job in the job set, separated by a delimiter (with no order guaranteed). The input to a parallel job set is forwarded to every job in the job set, meaning that every job in the parallel job set has the same INPUT_LIST property. The system property OUTPUT_LIST_DELIMITER specifies the delimiter used when listing output files.

Suppose a job set has two jobs, each job producing its own output file, file1.txt and file2.txt. The system property SYS_outputList for that job set has the values file1.txt;file2.txt, assuming the value of OUTPUT_LIST_DELIMITER is a semi-colon. The concatenated list of output files enables the next job step in the job set to access output files generated by previous steps within the job set.

The InputFile class provides access to files as input to a job definition. There is currently no mechanism for accepting a file as an input to a job request.

Except for forwarding the value of the SYS_outputList property of a step to the value of the SYS_inputList property of the next step, Oracle Enterprise Scheduler treats the two properties like any other system properties. Oracle Enterprise Scheduler does not define the format for the value of the properties (except for the semicolon delimiter in case of parallel job set). It is the responsibility of the job to define the syntax and semantics for the properties; for example using a fully qualified name or relative path name and a comma or space as a delimiter.

18 Defining and Using a Job Incompatibility

This chapter describes how to use an Oracle Enterprise Scheduler job incompatibility, with which you can specify job requests that cannot run together.

This chapter includes the following sections:

	
Introduction to Using a Job Incompatibility

	
Defining Incompatibility with Oracle JDeveloper

	
What Happens at Runtime to Handle Job Incompatibility

For information about how to create and submit job requests see t Creating and Using PL/SQL Jobs , and Creating and Using Process Jobs . For more information on using job sets, see Defining and Using Job Sets .

Note:

To simplify the discussion we refer only to job definitions in this incompatibility chapter, but in all cases this discussion applies to both job definitions and job sets.

18.1 Introduction to Using a Job Incompatibility

A given incompatibility specifies either a global incompatibility or a domain, property-based, incompatibility. Oracle Enterprise Scheduler supports incompatibility between job definitions or job sets based on an incompatibility definition as represented by the oracle.as.scheduler.Incompatibility Java class. The IncompatibilityType enum specifies the valid incompatibility types.

	
Domain-Specific (DOMAIN): where one or more job definitions are marked as incompatible within the scope of a resource, where the resource is identified by a system property name or a user-defined parameter name. A property name must be specified for each job definition used to define the incompatibility. Oracle Enterprise Scheduler ensures that requests for the incompatible jobs do not run at the same time if they have the same value for that resource. Parameters specified through parameterVO are submitted as request properties having the property name submit.argument1, ... submit.argument#. To use such a parameter as the domain incompatibility property, specify submit.argument1, ... submit.argument# for the incompatibility property name.

	
Global (GLOBAL): where one or more job definitions are marked as incompatible, regardless of any resource or property. Oracle Enterprise Scheduler ensures that requests for the incompatible jobs do not run at the same time.

An Oracle Enterprise Scheduler incompatibility definition specifies either a global incompatibility or a domain (property-based) incompatibility. An incompatibility consists of one or more entities (job definition or job set) and the resource over which they must be incompatible. A resource is not specified for a global incompatibility. Each entity can be flagged as being self-incompatible. If an incompatibility is defined for only one entity that entity must be flagged as self-incompatible. Oracle Enterprise Scheduler does not support a mixed mode where one entity represents a domain (property-based) entity and another entity represents a global (no property) entity.

For a domain incompatibility, the resource is represented by a property name that might be different for each entity of the incompatibility. For example, if a domain incompatibility is created for two job definitions, JobA and JobB, then the resource (property) identified for each entity might have different property names in JobA and JobB. It might be called foo in JobA while it might be called foo2 in JobB. Oracle Enterprise Scheduler considers a request for JobA and a request for JobB to be incompatible if they have the same value for their respective property, and those requests would not run at the same time. If the requests have a different value for their respective property, they are considered compatible and allowed to run concurrently.

An incompatibility definition specifies which job definition is incompatible with another job definition. A given job definition does not directly point to or reference any incompatibility definitions.

Oracle Enterprise Scheduler determines which, if any, incompatibility definitions reference the job definition of a request when it is about to executed for the first time. It also determines the resource (property) value for any domain incompatibility at that time. That information is used throughout the subsequent processing life cycle of the request, including any retries of the request. For job set requests, Oracle Enterprise Scheduler determines which, if any, incompatibility definitions reference the job definition of any potential job set step when the top-most job set request is about to be executed rather than when individual step requests are executed.

For a Schedule-based submission, Oracle Enterprise Scheduler creates new child requests for instances of the Schedule. Only one instance request is executed at a given time. Oracle Enterprise Scheduler tracks metadata changes made to incompatibility definitions and may refresh the incompatibility definitions, if any, when an instance request is about to be executed for the first time. This means the incompatibility definitions used when the next instance request is executed may be different than the incompatibility definitions used when a prior instance request was executed.

18.1.1 Job Self Incompatibility

A job definition or job set can be defined as self incompatible where the job definition or job set is incompatible with itself. A self-incompatibility implies that multiple job requests associated with a single job definition cannot run together. An incompatibility definition can contain a single entity if it is marked as self-incompatible. For global self-incompatibly, Oracle Enterprise Scheduler ensures that multiple requests for that particular job or job set definition are not run simultaneously. For property-based self-incompatibly, Oracle Enterprise Scheduler ensures that requests for that particular job or job set definition, and having the same value for the property, are not run at the same time.

18.2 Defining Incompatibility with Oracle JDeveloper

You can define an incompatibility in Oracle JDeveloper by specifying the following:

	
The name and package for the incompatibility

	
The incompatibility type

	
The entity for the incompatibility and whether there is a self incompatibility

	
For a domain specific incompatibility, the property associated with the incompatibility for each entity

18.2.1 How to Define a Global Incompatibility

An Oracle Enterprise Scheduler global incompatibility is defined by a name, a package and entities.

To create a global incompatibility:

	
In Oracle JDeveloper, right-click in the project to view the New Gallery.

	
Under Categories, expand Business Tier and select Enterprise Scheduler Metadata.

	
Under Items, select Incompatibility and click OK. This displays the Create Incompatibility window, as shown in Figure 18-1.

Figure 18-1 Create Incompatibility Window

[image: Description of "Figure 18-1 Create Incompatibility Window" follows]

	
Use the Create Incompatibility dialog to specify the following:

	
In the Name field, enter a name for the incompatibility or accept the default name.

	
In the Package field, enter a package name for the incompatibility.

	
The Location field displays the full path of the directory where the incompatibility file is stored.

	
In the Incompatibility Type field, select Global. and click OK.

The incompatibility is created, and the Incompatibility Definition page displays.

	
In the Incompatibility Editor pane, in the Description field enter a description for the incompatibility.

	
In the Entities area, click Add to add entities. This displays the Add Entity dialog, as shown in Figure 18-2.

Figure 18-2 Incompatibility Add Entity Window

[image: Description of "Figure 18-2 Incompatibility Add Entity Window" follows]

	
Select one or more entities for the incompatibility and click OK. The Incompatibility Editor displays.

	
To specify a self incompatibility or to change the entity, double-click the entity in the Entities area. This displays the Edit Entity dialog as shown in Figure 18-3.

Figure 18-3 Edit Entity Window for Global Incompatibility

[image: Description of "Figure 18-3 Edit Entity Window for Global Incompatibility" follows]

	
To specify self incompatibility, select Self Incompatible.

	
Save the incompatibility.

18.2.2 How to Define a Domain Incompatibility

An Oracle Enterprise Scheduler domain incompatibility is defined by a name, a package, entities, and properties for each entity.

To create an incompatibility:

	
In Oracle JDeveloper, right-click in the project to view the New Gallery.

	
Under Categories, expand Business Tier and select Enterprise Scheduler Metadata.

	
Under Items, select Incompatibility and click OK. This displays the Create Incompatibility window.

	
Use the Create Incompatibility dialog to specify the following:

	
In the Name field, enter a name for the incompatibility or accept the default name.

	
In the Package field, optionally enter a package name for the incompatibility.

	
The Location field displays the full path of the directory where the incompatibility file is stored.

	
In the Incompatibility Type field, select Domain, as shown in Figure 18-4.

Figure 18-4 Create Incompatibility Window

[image: Description of "Figure 18-4 Create Incompatibility Window" follows]

Click OK. This creates the incompatibility and displays the Incompatibility Editor.

	
In the Incompatibility Editor pane, in the Description field enter a description for the incompatibility.

	
In the Incompatibility Entities area, click Add.

The Add Entity window displays.

	
Select one or more jobs or job sets to add to the incompatibility and click OK.

The Incompatibility Editor displays.

	
To specify a self incompatibility or modify an entity or its properties, under the Entities field, double-click an entity.

The Edit Entity window displays, as shown in Figure 18-5.

Figure 18-5 Incompatibility Edit Entity Window

[image: Description of "Figure 18-5 Incompatibility Edit Entity Window" follows]

	
To specify self incompatibility, select Self Incompatible.

	
Save the incompatibility.

18.3 What Happens at Runtime to Handle Job Incompatibility

Oracle Enterprise Scheduler handles incompatibility definitions according to the incompatibility type, global or domain (property-based), at runtime. When a job request is about to be executed, Oracle Enterprise Scheduler determines which incompatibility definitions reference the job or job set definition used for the request submission. For each domain incompatibility it also determines the value of the resource or property, to use for that incompatibility. Oracle Enterprise Scheduler checks to determine if there are any incompatible requests already executing. If so, the request is blocked until all requests with which it is incompatible have completed.

Note:

The value of the property for a domain incompatibility is obtained from the request parameters at request execution. That value usually originates either in the job definition or in a request parameter specified at request submission. If no such parameter is found, that incompatibility is ignored during subsequent request processing. The request is compatible with any other request with regard to that incompatibility definition. This initial property value is used as the incompatibility resource value even if the property is subsequently altered.

18.3.1 What Happens to Subrequests with an Incompatible Parent Request

A request which is incompatible with another request is also incompatible with the sub-requests of that request (the children). A request that has been blocked by a sub-request parent remains blocked while any sub-requests execute and until the sub-request parent request is resumed and completes.

19 Using the Runtime Service

This chapter describes how to use the Oracle Enterprise Scheduler runtime service APIs for submitting and managing job requests and for querying job request information from the job request history.

Note:

The runtime service also includes log and output APIs. These APIs are document separately in Job Request Logs and Output .

This chapter includes the following sections:

	
Introduction to the Runtime Service

	
Accessing the Runtime Service

	
Submitting Job Requests

	
Managing Job Requests

	
Querying Job Requests

	
Submitting Ad Hoc Job Requests

	
Implementing Pre-Process and Post-Process Handlers

19.1 Introduction to the Runtime Service

Oracle Enterprise Scheduler lets you define and run different job types including: Java classes, PL/SQL procedures, and process job types (forked processes). To run these job types you need to submit a job definition.

You can use the runtime service to perform different types of operations, including:

	
Submit: These operations let you supply a job definition to Oracle Enterprise Scheduler to create job requests.

	
Manage: These operations allow you to change the state of job requests and to update job requests.

	
Query: These operations let you find the status of job requests and report job request history.

19.2 Accessing the Runtime Service

Like the metadata service, Oracle Enterprise Scheduler provides a runtime MBean proxy interface.

The runtime service open() method begins each Oracle Enterprise Scheduler runtime service user transaction. In an Oracle Enterprise Scheduler application client you obtain a RuntimeServiceHandle reference that is created by open() and you pass the reference to runtime service methods. The RuntimeServiceHandle reference provides a connection to the runtime service for the client application. In the client application you must explicitly close the runtime service by calling close(). This ends the transaction and causes the transaction to be committed or rolled back (undone). The close() not only controls the transactional behavior within the runtime service, but it also allows Oracle Enterprise Scheduler to release the resources associated with the RuntimeServiceHandle.

19.2.1 How to Access the Runtime Service and Obtain a Runtime Service Handle

Oracle Enterprise Scheduler exposes the runtime service to your application program as a Stateless Session Enterprise Java Bean (EJB). You can use JNDI to locate the Oracle Enterprise Scheduler runtime service Stateless Session EJB.

Example 19-1 shows a lookup for the Oracle Enterprise Scheduler runtime service using the RuntimeServiceLocalHome object.

Note:

When you access the runtime service:

	
JndiUtil.getRuntimeServiceEJB() assumes that the RuntimeService EJB has been mapped to the local JNDI location "ess/runtime". This happens automatically in the hosted application's message-driven bean (MDB).

	
The open() call provides a RuntimeServiceHandle reference. You use this reference with the methods that access the runtime service in your application program.

	
When you finish using the runtime service you must call close() to release the resources associated with the RuntimeServiceHandle.

Example 19-1 JNDI Lookup to Access Oracle Enterprise Scheduler Runtime Service

import oracle.as.scheduler.core.JndiUtil;
// Demonstration of how to lookup runtime service from a
// Java EE application component

 RuntimeService runtime = JndiUtil.getRuntimeServiceEJB();
 RuntimeServiceHandle rHandle = null;
 .
 .
 .
 try
 {
 ...
 rHandle = runtime.open();
 ...
 }
 finally
 {
 if (rHandle != null)
 {
 runtime.close(rHandle);
 }
 }

19.3 Submitting Job Requests

When you submit a job definition you create a new job request. You can submit a job request using a job definition that is persisted to a metadata repository, or you can create a job request in an ad hoc manner where the job definition or the schedule is not stored in the metadata repository (for information about ad hoc requests, see Submitting Ad Hoc Job Requests).

19.3.1 How to Submit a Request to the Runtime Service

You create a job request by calling submitRequest(). Depending on your requirements, you can create a job request with one of the following formats:

	
Create a new job request using a job definition stored in the metadata repository, to run once at a specific time.

	
Create a new job request using a job definition and a schedule, each stored in the metadata repository.

Example 19-2 shows the submitRequest() method that creates a new job request with a job definition that resides in the metadata repository. You can also submit an ad hoc job request where the job definition and schedule are not stored in the metadata repository. For more information, see Submitting Ad Hoc Job Requests. You can also submit a sub-request. For more information, see Using Subrequests .

Note:

When you submit a job request using the runtime service:

	
You obtain the runtime service handle as shown in Example 19-1.

	
The runtime service internally uses the metadata service to obtain job definition metadata with the supplied MetadataObjectId, jobDefnId.

Example 19-2 Creating a Job Request with submitRequest()

long requestID = 0L;
MetadataObjectId jobDefnId;

RequestParameters p = new RequestParameters();

Calendar start = Calendar.getInstance();
start.add(Calendar.SECOND, startsIn);

requestID = runtime.submitRequest(r, "My Java job", jobDefnId, start, p);

19.3.2 What You Should Know About Default System Properties When You Submit a Request

When you create a job request Oracle Enterprise Scheduler resolves and stores the properties associated with the job request. Certain system properties can be associated with a job request. If you do not set these properties anywhere in the properties hierarchy when a job request is submitted, then Oracle Enterprise Scheduler provides default values.

Table 19-1 shows the default runtime service field names and the corresponding system properties.

Table 19-1 Runtime Service Default Value Fields and Corresponding System Properties

	Value	Runtime Service Default Value Field	Corresponding System Property	Description
	
0

	
DEFAULT_REQUEST_EXPIRATION

	
SYS_requestExpiration

	
The default expiration time, in minutes, for a request. The default value is 0 which means the request never expires.

	
4

	
DEFAULT_PRIORITY

	
SYS_priority

	
The default system priority associated with a request.

	
5

	
DEFAULT_REPROCESS_DELAY

	
SYS_reprocessDelay

	
The default period, in minutes, in which processing must be postponed by a callout handler that returns Action.DELAY.

	
0

	
DEFAULT_RETRIES

	
SYS_retries

	
The default number of times a failed request is retried. The default value is 0 which means a failed request is not retried.

	
0

	
DEFAULT_ASYNC_REQUEST_TIMEOUT

	
SYS_request_timeout

	
Specifies the time in minutes that the processor waits for an asynchronous response after the job execution has begun. After the time elapses, the request is timed out.

19.3.3 What You Should Know About Metadata When You Submit a Request

All Oracle Enterprise Scheduler Metadata associated with a job request is persisted in the runtime store at the time of request submission. Persisted metadata objects include job definition, job type, job set, schedule, incompatibility definitions, and exclusion definition. Metadata is stored in the context of a top level request, and each metadata object is uniquely identified by the absolute parent request ID and its metadata ID. Each unique metadata object is stored only once for a top-level request, even if the definition is used multiple times in the request. This ensures that every child request uses the same definition.

When a request is submitted, all known metadata for the request is persisted. For subrequests, the metadata is not know until the subrequest is submitted, so subrequest metadata is persisted when the subrequest is submitted, after first checking that the metadata object is not already persisted in the runtime store.

Metadata persisted in the runtime store is removed when the absolute parent request is deleted.

19.3.4 DMS ECID and FlowId Support

Oracle Enterprise Scheduler associates a DMS ECID and FlowId value with every request. Oracle Enterprise Scheduler usually obtains the ECID and FlowId from the current DMS execution context, if present, at request submission and uses that ECID and FlowId value during subsequent processing of the request. For example, Oracle Enterprise Scheduler sets up a DMS execution context that associates the ECID and FlowId with the request when it initiates the job executable.

If a DMS FlowId property is not present in the DMS execution context at request submission, then a new FlowId is associated with the request. For example, if the request is not submitted by SOA, there might not be a FlowId present on the DMS execution context and Oracle Enterprise Scheduler associates a new FlowId with the request.

If no DMS execution context is present at request submission, then a new ECID and new FlowId are associated with the request. For example, if a request is submitted using the Oracle Enterprise Scheduler PL/SQL interface, there might be no DMS context information available from the database session when the PL/SQL submit procedure is called. A new ECID and new FlowId are associated with the request after it is successfully validated by the Oracle Enterprise Scheduler mid-tier.

19.3.4.1 ECID and FlowID for Child Requests

In general, child requests inherit the ECID and FlowId from their parent request. For example, Oracle Enterprise Scheduler uses the ECID and FlowId of the parent request when a job set step request is created.

A sub-request is a submitted request, therefore the ECID and FlowId of the current DMS execution context of the sub-request submission is associated with the sub-request. Usually the ECID and FlowId values are the same as those of the parent request because Oracle Enterprise Scheduler sets up a DMS execution context that has the ECID and FlowId of the parent request prior to initiating the parent job executable. It is possible that the application or some component layer changed the ECID or FlowId prior to Oracle Enterprise Scheduler receiving the sub-request submission. If that is the case, the parent and sub-request might have a different ECID or FlowId.

If a schedule is specified at request submission, the submitted request represents an absolute parent that does not execute. Oracle Enterprise Scheduler automatically creates child instance requests according to the specified schedule and a new ECID and FlowId is used for each child instance. The child instance request represents an instance parent request and may have children of its own; for example, a sub-request or job set step request. Any such children typically have the same ECID and FlowId as its instance parent request.

19.3.4.2 DMS FlowId and SOA CorrelationFlowId

Oracle Enterprise Scheduler uses the DMS FlowId property whose property name is "FlowId". SOA has several properties that might be present on a DMS execution context. Two such properties are the SOA CorrelationFlowId and SOA FlowId. properties. The DMS FlowId property ("FlowId") is used to propagate the value for the SOA CorrelationFlowId. The DMS property name "oracle.soa.tracking.FlowId" is used to propagate the value for the SOA FlowId property. For that reason, the FlowId property associated with an Oracle Enterprise Scheduler request submitted by SOA might match the SOA CorrelationFlowId value.

19.4 Managing Job Requests

After you submit a job request, using the requestID you can do the following:

	
Get request information

	
Change the state of the request

	
Update request parameters

19.4.1 How to Get Job Request Information with getRequestDetail

Using the runtime service, with a requestID, you can obtain information about a job request that is in the system. Table 19-2 shows the runtime service methods that allow you to obtain job request information.

Table 19-2 Runtime Service Get Request Methods

	Runtime Service Method	Description
	
getRequestDetail()

	
Retrieves complete runtime details for the specified request

	
getRequestDetailBasic()

	
Retrieves basic runtime details of the specified request. The RequestDetail returned by this method includes most of the information as getRequestDetail(), but certain less commonly used information is omitted to improve performance.

	
getRequestParameter()

	
Retrieves the value of a request parameter.

	
getRequests()

	
Retrieves an enumeration of immediate child request identifiers associated with the specified request. This includes IDs for requests that did not complete, such as when the request transaction is rolled back or an error occurs.

	
getRequestState()

	
Retrieves the current state of the specified request

Example 19-3shows code that determines if there is any immediate child request in the HOLD state.

Example 19-3 Determining Whether Any Immediate Child Job Requests Are on Hold

 h = s_runtime.open();
 try {

 s_runtime.holdRequest(h,reqid);

 Enumeration e = s_runtime.getRequests(h, reqid);

 boolean foundHold = false;
 while (e.hasMoreElements()) {

 long childid = ((Long)e.nextElement()).longValue();
 State state = s_runtime.getRequestState(h,childid);
 if (state == State.HOLD) {
 foundHold = true;
 break;
 }
 }

19.4.2 How to Change Job Request State

Using the runtime service, with a requestID, you can change the state of a job request. Table 19-3 shows the runtime service job request state change methods. The job request management methods allow you to change the state of a request, depending on the state of the job request. For example, you cannot cancel a request with cancelRequest() if the request is in the COMPLETED state.

Table 19-3 Runtime Service Job Request State Methods

	Runtime Service Method	Description
	
cancelRequest()

	
Cancels the processing of a request that is not in a terminal state.

	
deleteRequest()

	
Marks a request in a terminal state for deletion.

	
holdRequest()

	
Withholds further processing of a request that is in WAIT or READY state.

	
releaseRequest()

	
Releases a request from the HOLD state.

Example 19-4 shows a submitRequest() with methods that control the state of the job request. The holdRequest() holds the processing of the job request. The corresponding releaseRequest() releases the request. This example does not show the conditions that require the hold for the request.

Note:

Note the following in Example 19-4:

	
You obtain the runtime service handle, rHandle, as shown in Example 19-1.

	
The holdRequest() places the request in the HOLD state.

	
You may do some required processing while the request is in the HOLD state.

	
The releaseRequest() releases the request from the HOLD state.

Example 19-4 Runtime Service releaseRequest() Usage

rHandle = runtime.open();
try
{
 runtime.holdRequest(rHandle,reqid);
.
.
.
 runtime.releaseRequest(rHandle, reqid);
.
.
.
}
finally
{
 if (rHandle != null)
 {
 runtime.close(rHandle);
 }
 }

19.4.3 How to Update Job Request Priority and Job Request Parameters

Using the runtime service you can update job request system properties or request parameters. Table 19-4 shows the runtime service methods that allow you to lock and update up a job request.

Table 19-4 Runtime Service Update Methods

	Runtime Service Method	Description
	
lockRequest()

	
Acquires a lock for the given request. The lock is released when close() operation is subsequently invoked or the encompassing transaction is committed. If an application tries to invoke this operation while the lock is being held by another thread, this method blocks until the lock is released. Use this method to ensure data consistency when updating request parameters or system properties.

	
setRequestParameter()

	
Updates the property value of the specified request subject to the property read-only constraints.

Example 19-5 shows code that updates a job request parameter. This code would be wrapped in a try/finally block as shown in Example 19-1.

Example 19-5 shows the following:

	
Obtain the runtime service handle, rhandle, as shown in Example 19-1.

	
Acquire a lock for either the request using lockRequest()

	
Perform the update operation with setRequestParameter()

	
Use close() to cause the transaction to be committed or rolled back (undone). The close() not only controls the transactional behavior within the runtime service, but it also allows Oracle Enterprise Scheduler to release the resources associated with the RuntimeServiceHandle.

Example 19-5 Sample Runtime Service Parameter Update

...
 s_runtime.lockRequest(rhandle, reqid);
 s_runtime.setRequestParameter(rhandle, reqId, paramName, "yy");
...

19.5 Querying Job Requests

Using the runtime service you can query job request information. This involves the following steps:

	
Query for request identifiers and limit results with a filter.

	
Get request details to provide additional information for each request ID that the query returns.

There is only one query method; the runtime service queryRequests() method returns an enumeration of request IDs that match the query. The queryRequests() method includes a filter argument that contains field, comparator, and value combinations that help select query results. Note that the return value includes IDs for requests that did not complete, such as when the request transaction is rolled back or an error occurs. For more information on filters, see How to Create a Filter.

When you create a filter for a query, you can use any of the field names shown in Table 19-5 when querying the runtime store.

Table 19-5 Query Filter Fields For Querying the Runtime (Defined in Enum RuntimeService.QueryField)

	Name	Description
	
ABSPARENTID

	
The absolute parent request ID of a request.

	
APPLICATION

	
The application name.

	
ASYNCHRONOUS

	
Indicates if the job is asynchronous, synchronous or unknown. The value of the field is not set until the request is processed. The field data type is java.lang.Boolean. The value may be NULL if the nature of the job has not yet been determined.

	
CLASSNAME

	
The name of the executable class that processed the request

	
COMPLETED_TIME

	
The date and time that Oracle Enterprise Scheduler finished processing the request. This field represents the time the process phase was set to COMPLETED.

	
DEFINITION

	
The job definition ID (Metadata Object ID).

	
ELAPSEDTIME

	
The amount of time, in milliseconds, that elapsed while the request was running.

	
ENTERPRISE_ID

	
The enterprise ID.

	
ERROR_TYPE

	
The request error type.

	
EXTERNAL_ID

	
The identifier for an external portion of an Oracle Enterprise Scheduler asynchronous Java job.

	
EXTERNAL_JOB_TYPE

	
Indicates the type of the remote job

	
INSTANCEPARENTID

	
The request ID of the instance parent request.

	
JOB_TYPE

	
The job type ID (Metadata Object ID).

	
LOGICAL_CLUSTER_NAME

	
Indicates the logical cluster on which a remote job is executed.

	
NAME

	
The request description.

	
PARENTREQUESTID

	
The parent request ID.

	
PRIORITY

	
The priority of the request.

	
PROCESS_PHASE

	
The process phase of the request.

	
PROCESSEND

	
The date and time that the process ended. The PROCESSSTART is set only when a request transitions from READY to RUNNING. This implies that (PROCESSEND - PROCESSSTART) encompasses the entire span of execution: from the time the state becomes RUNNING to the time it transitions to a terminal state.

	
PROCESSOR

	
The name of the instance that processed the request.

	
PROCESSSTART

	
The date and time that the process started. The PROCESSSTART is set only when a request transitions from READY to RUNNING. This implies that (PROCESSEND - PROCESSSTART) encompasses the entire span of execution: from the time the state becomes RUNNING to the time it transitions to a terminal state.

	
PRODUCT

	
The product name.

	
READYWAIT_TIME

	
The amount of time, in milliseconds, a request has been waiting to run since it became READY.

	
REQUEST_CATEGORY

	
The request category specified for the request.

	
REQUEST_DMS_ECID

	
The DMS ECID used for processing of a request.

	
REQUESTEDEND

	
The requested end time.

	
REQUESTEDSTART

	
The requested start time.

	
REQUESTID

	
The request ID of a submitted request.

	
REQUESTTYPE

	
The type of request (that is, an element of RequestType)

	
RESULTINDEX

	
Controls the starting and ending index of the returned results. This field allows users to express result constraints such as "return only results 10 through 20".

	
RETRIED_COUNT

	
The retried count associated with a job. This field represents the number of times the job was retried.

	
REQUESTTRIGGER

	
The Trigger ID (Metadata Object ID).

	
SCHEDULE

	
The schedule ID (Metadata Object ID).

	
SCHEDULED

	
The time when the request is scheduled to be executed.

	
STATE

	
The job request state.

	
SUBMISSION

	
The submission time of the request.

	
SUBMITTER

	
The submitter of the request.

	
SUBMITTER_DMS_ECID

	
The DMS ECID from the DMS context at request submission.

	
SUBMITTER_FLOWID

	
The SOA/DMS FlowId from the DMS context at request submission.

	
SUBMITTERGUID

	
The submitter GUID of the request.

	
TIMED_OUT

	
Indicates whether the job has timed out.

	
TYPE

	
The execution type of the request.

	
USERNAME

	
The name of the user who submitted the request.

	
WAITTIME

	
The amount of time, in milliseconds, a request has been waiting to run.

	
WORKASSIGNMENT

	
The name of the work assignment that was active when the request was processed.

Table 19-6 shows the runtime service method for querying job requests and Example 19-6 shows the use of this method.

Table 19-6 Runtime Service Query Methods

	Runtime Query Method	Description
	
queryRequests()

	
Gets a summary of requests.

Example 19-6 Using queryRequest() Method

 Filter filter =
 new Filter(RuntimeService.QueryField.DEFINITION.fieldName(),
 Filter.Comparator.EQUALS,
 myJavaSucJobDef.toString())
 .and(RuntimeService.QueryField.STATE.fieldName(),
 Filter.Comparator.EQUALS,
 new Integer(12));

 //
 Enumeration requests =
 runtime.queryRequests(h, filter,
 RuntimeService.QueryField.REQUESTID, true);

19.6 Submitting Ad Hoc Job Requests

To use an ad hoc request you supply request parameters, a job definition, and optionally a schedule that you create and define without saving it to a metadata repository. An ad hoc request does not require you define the details of a job request in a metadata repository. Thus, ad hoc requests support an abbreviated job request submission process that can occur without using a connection to the metadata repository.

Note:

Ad hoc requests have the following limitation: job sets are not supported with ad hoc requests.

19.6.1 How to Create an Ad Hoc Request

To create an ad hoc request you use the ad hoc version of submitRequest(). For the job definition, instead of supplying a job definition MetadataObjectId, you can define the job definition object and use a system property that corresponds to the job type, as shown in Table 19-7.

Table 19-7 Ad Hoc Request Job Definition System Properties for Job Types

	System Property	Description
	
CLASS_NAME

	
Specifies the Java class to execute (for a Java job type).

	
PROCEDURE_NAME

	
Specifies the PL/SQL stored procedure to execute (for an SQL job type).

	
CMDLINE

	
Specifies the command line used to invoke an external program for a process job request.

With one signature of the ad hoc version of submitRequest() you do not need to supply MetadataObjectIds, you can provide the Schedule object as an argument as object instances directly to submitRequest(). Other ad hoc submitRequest() signatures allow you to submit a job request using a job definition from metadata and an instance for the Schedule object.

Example 19-7 shows sample code for an ad hoc request submission that uses a schedule.

In this example, note the following ad hoc specific details for the request submission:

	
The CLASS name is set to define the Java class that runs when Oracle Enterprise Scheduler executes the job request: p.add(SystemProperty.CLASS_NAME, "test.job.HelloWorld");

	
The submitRequest() includes an argument that specifies the job type: JobType.ExecutionType.JAVA_TYPE.

	
Specify the Java class, the procedure name, or the command line program to execute when the ad hoc Request is processed by setting one of the system properties shown in Table 19-7.

	
Call the ad hoc version of submitRequest() specifying the type argument to correspond with the system property you set to define the request. The type you supply must be one of JAVA_TYPE, SQL_TYPE, or PROCESS_TYPE.

	
As with any job request, set the appropriate system properties to be associated with the job request.

Example 19-7 Creating Request Parameters and a Schedule for an Ad Hoc Request

 RequestParameters p = new RequestParameters();
 String propName = "testProp";
 String propValue = "testValue";
 p.add(propName, propValue);
 p.add(SystemProperty.REQUEST_EXPIRATION, new Integer(10));
 p.add(SystemProperty.LISTENER, "test.listener.TestListener");
 p.add(SystemProperty.EXECUTE_PAST, "TRUE");
 p.add("application", getApplication());
 p.add(SystemProperty.CLASS_NAME, "test.job.HelloWorld");

 Calendar start = Calendar.getInstance();
 start.add(Calendar.SECOND, 5);
 Calendar end = (Calendar) start.clone();
 end.add(Calendar.SECOND, 5);

 Recurrence recur = new Recurrence(RecurrenceFields.FREQUENCY.SECONDLY,
 2, start, end);

 Schedule schedule = new Schedule("mySchedule",
 "Run every 2 sec for 5 seconds.", recur);

 // adhoc submission, no metadata definitions passed
 reqId = runtime.submitRequest(h,
 "testAdhocJavaWithSchedule",
 JobType.ExecutionType.JAVA_TYPE, schedule, null, Calendar.getInstance(), null, p);

19.6.2 What Happens When You Create an Ad Hoc Request

The ad hoc submitRequest() returns the request identifier for the request. You can use this request identifier with runtime calls such as setRequestParameter() or getRequestDetail() as you would with any other job request.

There is only one submitRequest signature that creates a request with an ad hoc job definition. The job definition ID, obtained from RequestDetail.getJobDefn(), is null in this case. Without an ad hoc job definition, a request cannot be considered ad hoc.

19.6.3 What You Need to Know About Ad Hoc Requests

If you want to define a schedule to use with an ad hoc request and you want to specify exclusion dates, you need to exclude the dates using the addExclusionDate() method for the schedule. For ad hoc requests, you cannot use a schedule that specifies exclusion dates using addExclusion() method for the schedule.

Currently, if the schedule is ad hoc, a check of ExclusionDefinition is skipped. Thus, if you use a schedule and use addExclusion() and submit an ad hoc job request, then Oracle Enterprise Scheduler does not use the ExclusionsDefinition IDs with the job request.

19.7 Implementing Pre-Process and Post-Process Handlers

Along with the core logic of your job, you can include code that executes before and after the job's main execution code. With code that executes before, known as a pre-process handler, you can do such things as set up certain conditions for the job executable. With code that executes after, known as a post-process handler, you can do such things as processing the results of the job executable, perhaps by printing reports or sending notifications.

You provide pre- and post-process handlers by implementing specific interfaces, then connecting your implementations to the service through a system property that indicates which of your classes to use.

19.7.1 Implementing a Pre-Process Handler

With a pre-process handler, your code can do things to create an environment for your job to execute. This could include creating connections to resources that your job requires, for example.

The pre-processor is instantiated and invoked at the start of request execution when the request transitions to RUNNING state. This is done each time the request is executed, including when a failed request is retried or a paused request is resumed after its sub-requests have completed.

You create a pre-process handler by implementing the oracle.as.scheduler.PreProcessHandler interface. With your pre-process handler class in hand, you specify that it should be used by setting the SYS_preProcess system property to the fully-qualified name of your handler class. You can define the property on job metadata or include it in the request submission parameters.

19.7.1.1 Implementing the PreProcessHandler Interface

Your PreProcessHandler implementation should do the pre-process actions your job requires, then return an oracle.as.scheduler.HandlerAction instance from the interface's one method, preProcess. (Your class may also implement the Cancellable interface if you want the job to support cancellation. It must also provide an empty constructor.)

The HandlerAction instance your preProcess implementation returns should give status about whether, and under what conditions, the job should proceed. When constructing the HandlerAction class, you pass it a HandlerStatus instance that indicates the status of pre-processing for the request.

Supported HandlerStatus values and actions are listed below. An unsupported status causes the request to transition to an error state and be subject to retries if configured.

	
PROCEED informs Oracle Enterprise Scheduler that request processing should commence. The request remains in the RUNNING state.

	
WARN informs Oracle Enterprise Scheduler that request processing should commence but that a warning should be logged. The request remains in the RUNNING state.

	
CANCEL informs Oracle Enterprise Scheduler that request pre-processing has been canceled. The request transitions to the CANCELLED state.

	
DELAY informs Oracle Enterprise Scheduler to postpone request processing by the quantum of time specified by the SYS_reprocessDelay system property. The request remains in RUNNING state during the delay.

	
SYSTEM_ERROR informs Oracle Enterprise Scheduler that the handler has experienced an error. The request transitions to an error state and is subject to retries if configured.

	
BIZ_ERROR informs Oracle Enterprise Scheduler that the handler has experienced a business error. The request transitions to an error state not subject to retries.

19.7.2 Implementing a Post-Process Handler

With a post-process handler, your code can do things that should take place after your job has executed. This could include releasing connections to resources that your job required, for example, or generating a report based on request-specific data or status.

The post-processor is instantiated and invoked after job execution, when the request transitions to COMPLETED state. The post-processor is invoked only once for a request, in contrast to the pre-processor.

You create a post-process handler by implementing the oracle.as.scheduler.PostProcessHandler interface. With your post-process handler class in hand, you specify that it should be used by setting the SYS_postProcess system property to the fully-qualified name of your handler class. You can define the property on job metadata or include it in the request submission parameters.

19.7.2.1 Implementing the PostProcessHandler Interface

Your PostProcessHandler implementation should do the post-process actions your job requires, then return an oracle.as.scheduler.HandlerAction instance from the interface's one method, postProcess. (Your class may also implement the Cancellable interface if you want the job to support cancellation. It must also provide an empty constructor.)

The HandlerAction instance your postProcess implementation returns should give status about whether, and under what conditions, the job should conclude. When constructing the HandlerAction class, you pass it a HandlerStatus instance that indicates the status of post-processing for the request.

Supported HandlerStatus values and actions are listed below. An unsupported status causes the request to transition to WARNING state.

	
PROCEED to inform Oracle Enterprise Scheduler that request post-processing completed successfully. The request transitions to the SUCCEEDED state or WARNING state depending on the status of the request prior to invoking the post-processor.

	
WARN to inform Oracle Enterprise Scheduler that request post-processing resulted in a warning. The request transitions to WARNING state.

	
CANCEL informs Oracle Enterprise Scheduler that request post-processing has been canceled. The request transitions to WARNING state.

	
DELAY to inform Oracle Enterprise Scheduler to postpone request processing by the quantum of time specified by the SYS_reprocessDelay system property. The request remains in COMPLETED state during the delay.

	
SYSTEM_ERROR to inform Oracle Enterprise Scheduler that the handler has experienced an error. The request transitions to the WARNING state.

	
BIZ_ERROR to inform Oracle Enterprise Scheduler that the handler has experienced a business error. The request transitions to the WARNING state.

20 Using Subrequests

This chapter describes how to use Oracle Enterprise Scheduler subrequests to process data in parallel, particularly in a dynamic context, where the number of parallel requests can vary.

This chapter includes the following sections:

	
Introduction to Using Subrequests

	
Creating and Managing Subrequests

	
Creating a Java Procedure that Submits a Subrequest

	
Creating a PL/SQL Procedure that Submits a Subrequest

20.1 Introduction to Using Subrequests

Oracle Enterprise Scheduler subrequests are useful when you want to process data in parallel. A request submitted from a running job is called a subrequest. You can submit multiple subrequests from a single parent request. The customary method of parallel execution in Oracle Enterprise Scheduler is the job set concept but there might be cases where the number of parallel processes may not be fixed in number. For example, when you want to allocate one request per million rows and in the last week 9.7 million rows have accumulated to process. In this case, you would allocate ten requests as opposed to 5 for a week that accumulated 4.6 million rows.

Oracle Enterprise Scheduler supports subrequest functionality so that a given running request (Job Request) can submit a subrequest and wait for the completion of such a request before it continues.

Oracle Enterprise Scheduler supports subrequests by exposing an overloaded subrequest method submitRequest(). An application that submits a job request can invoke this API to submit a subrequest.

The following restrictions apply to subrequests:

	
A subrequest can be submitted only for onetime execution. No schedule can be specified. The subrequest is always treated as a "run now" request.

	
Ad hoc subrequests are not supported. A subrequest must be submitted for an existing JobDefinition object in the application.

	
Job sets are not supported for subrequests. A subrequest can only be submitted to a JobDefinition object. However, any running job (which may be part of a job set) can submit a subrequest.

These restrictions simplify the execution of subrequests and avoid any complications and delays in the execution of the submitting request itself.

There are different kinds of parent requests in Oracle Enterprise Scheduler, for the description in this chapter, a parent request refers to the request that is submitting a subrequest.

A subrequest follows the normal flow of a regular one-time request. However the processing of a subrequest starts only when the parent request pauses its execution. To indicate this, Oracle Enterprise Scheduler uses the PAUSED state. This state implies that the parent request is paused and waiting for the subrequest to finish.

After a parent request submits a subrequest, that parent must return control back to Oracle Enterprise Scheduler, in the manner appropriate for its job type, indicating that it has paused execution. Oracle Enterprise Scheduler then sets the parent state to PAUSED and starts processing the subrequest. After the subrequest finishes, Oracle Enterprise Scheduler places the parent request on the ready queue, where it remains PAUSED, until it is picked up by an appropriate request processor. The parent is then set to RUNNING state and re-run as a resumed request.

20.2 Creating and Managing Subrequests

	
How to Submit Subrequests

	
How to Cancel Subrequests

	
How to Hold Subrequests

	
How to Submit Multiple Subrequests

	
How to Manage Paused Subrequests

	
How Subrequests Are Processed

	
How to Identify Subrequests

	
How to Manage Subrequests and Incompatibility

20.2.1 How to Submit Subrequests

A subrequest can be submitted by calling the submitRequest API. The subrequest is set to WAIT state, but Oracle Enterprise Scheduler does not process the request while the parent request is running. A subrequest can be processed only after the parent request has paused.

20.2.2 How to Cancel Subrequests

There are two main ways a subrequest can be canceled, either by the user cancelling the subrequest directly or as a result of the parent request being canceled. For either method, the cancellation process of the subrequest is handled in the same manner as any other executable request. The difference lies in how Oracle Enterprise Scheduler treats the parent request after all pending subrequests have completed and reached a terminal state.

Oracle Enterprise Scheduler sets a subrequest that is in WAIT or READY state directly to CANCELLED. If a subrequest is currently running, then the subrequest is set to CANCELLING and Oracle Enterprise Scheduler then attempts to cancel the running executable in the manner appropriate for its job type. Usually, the subrequest ends up in CANCELLED state, but it may end in some other terminal state depending on the life cycle stage where the subrequest was at. The parent request remains in PAUSED or CANCELLING state until all subrequests have reached a terminal state.

If the user cancels a subrequest, then Oracle Enterprise Scheduler cancels that subrequest, as described previously. The parent request remains in PAUSED state until all subrequests are complete, at which point Oracle Enterprise Scheduler resumes or restarts the parent request. This enables the parent request to handle the completion of the subrequest, possibly as canceled, in an appropriate fashion. Cancellation of subrequests is thus not propagated upwards.

If the user cancels the parent request, Oracle Enterprise Scheduler sets the parent request to CANCELLING state, and then initiates a cancellation for all pending subrequests in the manner described previously. After all subrequests have completed, Oracle Enterprise Scheduler sets the parent request to CANCELLED, and the parent request does not resume. Cancellation of a parent request is propagated down to its subrequests.

20.2.3 How to Hold Subrequests

A subrequest has the same life cycle as an ordinary request, and can be held when it is in WAIT or READY state. The parent request remains in PAUSED state while the subrequest is on hold.

20.2.4 How to Submit Multiple Subrequests

Oracle Enterprise Scheduler allows requests to submit multiple subrequests. A running request may submit more than one subrequest. All of these subrequests are processed by Oracle Enterprise Scheduler when the parent request pauses and goes to PAUSED state.

In case of multiple such subrequests, the parent request is resumed only when all the subrequests finish.

Also it is possible to submit subrequests up to any depth. This creates nested subrequests. As such there are no restrictions on the depth of such subrequest submissions. This is kind of similar to stack push and pop operations.

20.2.5 How to Manage Paused Subrequests

	
Indicating Paused Status

	
Storing the Paused State for a Parent Request

20.2.5.1 Indicating Paused Status

A Java executable can submit subrequests using RuntimeService.submitRequest. After the subrequest has been submitted, the parent request must indicate to Oracle Enterprise Scheduler that it is pausing to allow the subrequest to be processed. This is accomplished by the parent throwing an ExecutionPausedExcpetion which causes the request to transition to PAUSED state. After the subrequests have completed, the parent request is run again as a resumed request. The RequestExecutionContext can be used to determine if the executable is being run as a resumed request.

20.2.5.2 Storing the Paused State for a Parent Request

When a job execution pauses after submitting a subrequest, Oracle Enterprise Scheduler regards its execution as complete, for all intents and purposes, as implementation-wise there is no notion of pausing an execution thread. Therefore, to resume such a paused job, Oracle Enterprise Scheduler must restart the job. In such cases, the job execution restarts from the beginning, whereas the desired behavior is to continue from the point at which execution was paused. This requires the job execution to store some kind of execution state that would represent the paused point. On resuming, the job can retrieve such a state and jump to the paused point to continue from there.

In general, it is incumbent on individual jobs to define an execution state that would allow it to resume in a deterministic way from each pause point throughout the business logic (jobs can have multiple pause points). In some cases, it can be as simple as storing the step number and jumping to that particular step on resuming, while in other cases it can be a huge data set that stores critical state for the business logic when it pauses. Oracle Enterprise Scheduler cannot provide a complete solution or framework to store the entire state.

Oracle Enterprise Scheduler provides a simplistic means for jobs to store their pause point in the form of a string that can be specified when the parent job pauses its execution. Upon resuming the parent job, the paused state value can be obtained by the parent to use as required.

Java jobs can specify a paused state string using a special ExecutionPausedException constructor. The state parameter represents the paused state string saved by Oracle Enterprise Scheduler when it sets the parent request to PAUSED state.

public ExecutionPausedException(String message, String state)

The resumed parent can retrieve the paused state value by calling getPausedState() on the RequestExecutionContext passed to the parent executable.

In case a single string value is not sufficient, the parent job can write any number of properties back into Oracle Enterprise Scheduler using setRequestParameter(), and retrieve those properties on resuming using getRequestParameter().

20.2.6 How Subrequests Are Processed

When a subrequest is submitted, Oracle Enterprise Scheduler sets the request state to WAIT but in a deferred mode so it is not dispatched until the parent request pauses.

The parent request of a Java job indicates that it is ready for subrequests to be processed by throwing ExecutionPausedException. When the Oracle Enterprise Scheduler receives such an exception, it sets the parent request state to PAUSED, publishes a system event message that the parent has paused, and then dispatches all waiting subrequests for that parent to the ready queue.

Subrequest execution follows the normal life cycle within Oracle Enterprise Scheduler. After all subrequests for a given parent request are finished, the parent request can be resumed.

When a parent is ready to resume, Oracle Enterprise Scheduler places the parent request in the ready queue. The parent state remains as PAUSED while it is waiting to be picked up. After Oracle Enterprise Scheduler picks up the parent request from the ready queue, the request state is set to RUNNING and the request executable called as a resumed request.

If a request is paused without submitting any subrequests, it is treated as if all subrequests had finished. That is, it is placed in the ready queue, at PAUSED state, to be picked up for processing as a resumed request.

The final state of a subrequest does not influence how Oracle Enterprise Scheduler handles the parent request or the final state of the parent request after that parent executable has completed. When the parent request resumes, the parent request job logic can retrieve information about the subrequest, using this data as needed to determine subsequent actions. The final state of the parent request is based entirely on the state in which the parent request completed: succeeded, error, warning or canceled.

20.2.7 How to Identify Subrequests

In Oracle Enterprise Scheduler, each request has a RequestType attribute. That attribute indicates whether the request is a singleton, part of a job set, a recurring request, a subrequest, and so on.

A subrequest has a RequestType of SUB_REQUEST or UNVALIDATED_SUB_REQUEST. An UNVALIDATED_SUB_REQUEST represents a subrequest that was submitted using the Oracle Enterprise Scheduler PL/SQL interface but has not yet been validated. The RequestType of the parent request is either SINGLETON, RECUR_CHILD, JOBSET_STEP, or SUBREQUEST. All other request types represent requests that can never be the parent of a subrequest.

The parent request ID attribute for a subrequest is the request that submitted the subrequest.

20.2.8 How to Manage Subrequests and Incompatibility

In general, a request acquires incompatibility locks when the request transition from READY to RUNNING state. Those locks are not released until the request finishes and is set to a terminal state; for example, SUCCEEDED, ERROR, WARNING, CANCELLED.

Incompatibility locks acquired by a subrequest parent remain in effect even while a parent request is in a PAUSED state. Any requests that were blocked by a subrequest parent remain blocked while the subrequests execute and until the parent request is resumed and finishes.

Subrequests follow all the rules of incompatibility. A subrequest therefore may get blocked if any incompatible requests are currently running when Oracle Enterprise Scheduler is ready to execute the subrequest. During such time windows, the parent request remains in PAUSED state while the subrequest transitions to BLOCKED state.

20.3 Creating a Java Procedure that Submits a Subrequest

This is an example of the Java class for a Java job type that submits subrequests. The procedure submits two subrequests, pausing between each one. Each subrequest uses the same JobDefinition but specifies a different value for the request parameter named SubRequestData. The oracle.as.scheduler.Executable.execute method of the parent request is called a total of three times for a given Oracle Enterprise Scheduler request and the following summaries the expected conditions and actions for each.

In the first call to execute method as a non-resumed request:

Entry condition:

	
RequestExecutionContext.isResumed() is false

	
RequestExecutionContext.getPausedState() is null

Method Action:

	
Submit a subrequest with request parameter value of 'MyData1'

	
Throw ExecutionPausedException with pausedState of 'MyPausedState1"

Oracle Enterprise Scheduler transitions the request to PAUSED state, execute the subrequest, and then resume the request after the subrequest has completed.

First call to execute method as resumed request:

Entry condition:

	
RequestExecutionContext.isResumed() is true

	
RequestExecutionContext.getPausedState() is 'MyPausedState1'

Method Action:

	
Submit a subrequest with request parameter value of 'MyData2'

	
Throw ExecutionPausedException with pausedState of 'MyPausedState2"

Oracle Enterprise Scheduler transitions the request to PAUSED state, execute the subrequest, and then resume the request after the subrequest has completed.

Second call to execute method as resumed request:

Entry condition:

	
RequestExecutionContext.isResumed() is true

	
RequestExecutionContext.getPausedState() is 'MyPausedState2'

Method Action:

	
Exit normally, no exception.

Oracle Enterprise Scheduler transitions the request to SUCCEEDED state.

Example 20-1 shows a Java procedure with a subrequest.

Example 20-1 Java Procedure with Subrequest

// constants for the pausedState values
private final static String PAUSED_STATE_1 = "MyPausedState1";
private final static String PAUSED_STATE_2 = "MyPausedState2";

public class SubRequestSubmittor implements Executable {

 // method called by Oracle Enterprise Scheduler when the request is executed
 public void execute(RequestExecutionContext execCtx,
 RequestParameters props)
 throws ExecutionWarningException,
 ExecutionErrorException,
 ExecutionPausedException,
 ExecutionCancelledException {

 long requestId = execCtx.getRequestId();
 boolean isResumed = execCtx.isResumed();
 String pausedState = execCtx.getPausedState();

 if (!isResumed) {

 // Method being called for first time, as non-resumed request.
 // Submit first subrequest.
 submitSubRequest(execCtx, "MyData1");
 throw new ExecutionPausedException("first subrequest", PAUSED_STATE_1);

 } else if (PAUSED_STATE_1.equals(pausedState)) {

 // Method being called for a resumed request.
 // Submit next subrequest.
 submitSubRequest(execCtx, "MyData2");
 throw new
 ExecutionPausedException("second subrequest", PAUSED_STATE_2);

 } else if (PAUSED_STATE_2.equals(pausedState)) {

 // Method being called for a resumed request.
 // All done, just return.

 } else {

 // Method being called for a resumed request.
 // Unknown paused state (should never happen).
 String msg = "Request " + requestId +
 " was resumed with unexpected pause state " + pausedState;
 throw new ExecutionErrorException(msg);

 }
 }

 // Submit subrequest with request parameter having the given value.
 private void submitSubRequest(RequestExecutionContext execCtx,
 String paramValue)
 throws ExecutionErrorException{

 RuntimeService rs = null;
 RuntimeServiceHandle rh = null;

 try {
 rs = getRuntimeService();

 // Retrieve MetadataObjectId of the subrequest job definition
 String jobDef = "MySubRequestJobDef";
 MetadataObjectId jobDefId = getJobDefinition(jobDef);

 // Set value for the request parameter used by subrequest.
 RequestParameters rp = new RequestParameters();
 rp.add("SubRequestData", paramValue);

 // Submit the subrequest
 rh = rs.open();

 long subReqId = rs.submitRequest(rh, execCtx,
 "subrequest submitter",
 jobDefId, rp);

 } catch (Exception e) {

 String msg = "Error while submitting subrequest for request " +
 ExecCtx.getRequestId();
 throw new ExecutionErrorException(msg, e);

 } finally {

 if (null != rh) {
 try {
 rs.close(rh);
 } catch (Exception e) {
 String msg = "Error while submitting subrequest for request "
 + ExecCtx.getRequestId();
 throw new ExecutionErrorException(msg, e);
 }
 }
 }
 }

 // Get RuntimeService.
 private RuntimeService getRuntime()
 throws ExecutionErrorException {
 // implementation not shown
 }

 // Retrieve MetadataObjectId for a given job definition name.
 private MetadataObjectId getJobDefinition(String jobDef)
 throws ExecutionErrorException {
 // implementation not shown
 }

}

20.4 Creating a PL/SQL Procedure that Submits a Subrequest

The ESS_RUNTIME PL/SQL package is used by an SQL job request to submit a subrequest. It also contains support to determine if the request procedure is being executed as a resumed request and retrieve the paused state string.

For a Java request, the parent request submits a subrequest using a RuntimeService.submitRequest method and then throws ExecutionPausedException when it is ready to be paused to allow the subrequest to execute.

For a SQL request, ess_runtime.submit_subrequest is used to submit the subrequest. The parent request must call ess_runtime.mark_paused when it is ready for the subrequest to run, commit the transaction and return successfully, without raising an exception. The mark_paused method informs Oracle Enterprise Scheduler that, upon successful return from the parent request procedure, the parent request should be set to PAUSED and the subrequest allowed to execute. The mark_paused method supports an optional argument by which the paused state string can be specified.

It is important to note that subrequest is executed until the parent request has called mark_paused, commits, and returns normally, without raising an exception. If an exception is raised, Oracle Enterprise Scheduler does not set parent request to PAUSED state, but instead, it the parent state is set to ERROR or WARNING depending on the SQL error code. Furthermore, the subrequests are automatically CANCELLED and are not executed.

After the subrequest has finished, PL/SQL procedure for the parent request is re-executed again as resumed request, similar to what occurs for a Java Executable.

For a Java executable, the RequestExecutionContext indicates if the request is being resumed and has the paused state string specified using the ExecutionPausedException thrown when the parent request paused.

For an SQL request, ess_runtime.is_resumed indicates whether the request procedure is being executed for a resumed request. The method ess_runtime.get_paused_state returns the paused state string specified using the ess_runtime.mark_paused procedure when the request was paused.

This is an example of the PL/SQL stored procedure for a SQL job type that submits subrequests using the ESS_RUNTIME package. The procedure submits two subrequests, pausing between each one. Each subrequest uses the same JobDefinition but specifies a different value for the request parameter named SubRequestData. The PL/SQL stored procedure would be called a total of three times for a given Oracle Enterprise Scheduler request and the following summaries the expected conditions and actions for each.

First call to procedure as non-resumed request:

Entry condition:

	
ess_runtime.is_resumed is false

	
ess_runtime.get_paused_state is null

Procedure Action:

	
Submit a subrequest with request parameter value of 'MyData1'

	
Mark request as paused using paused state of 'MyPausedState1'

	
Exit normally, no exception

Oracle Enterprise Scheduler transitions the request to PAUSED state, execute the subrequest, and then resume the request after the subrequest has completed.

First call to procedure as resumed request:

Entry condition:

	
ess_runtime.is_resumed is true

	
ess_runtime.get_paused_state is 'MyPausedState1'

Procedure Action:

	
Submit a subrequest with request parameter value of 'MyData2'

	
Mark request as paused using paused state of 'MyPausedState2'

	
Exit normally, no exception

Oracle Enterprise Scheduler transitions the request to PAUSED state, execute the subrequest, and then resume the request after the subrequest has completed.

Second call to procedure as resumed request:

Entry condition:

	
ess_runtime.is_resumed is true

	
ess_runtime.get_paused_state is 'MyPausedState2'

Procedure Action:

	
Exit normally, no exception.

Oracle Enterprise Scheduler transitions the request to SUCCEEDED state.

Example 20-2 shows a PL/SQL procedure with a subrequest.

Example 20-2 PL/SQL Procedure with Subrequest

-- Application stored procedure.
procedure plsql_subreq_sample
(request_handle in varchar2)
is
 v_reqid number;
 v_is_resumed boolean;
 v_paused_str varchar2(100);
 v_paused_state1 varchar2(100) := 'MyPausedState1';
 v_paused_state2 varchar2(100) := 'MyPausedState2';
begin
 -- Request id of this subrequest parent.
 v_reqid := ess_runtime.get_request_id(request_handle);

 -- Check is this is a resumed request
 v_is_resumed := ess_runtime.is_resumed(request_handle);

 if (v_is_resumed = false) then
 -- This parent request is being run for the first time.
 -- Submit a subrequest and exit as success to allow ESS to pause this parent.
 submit_subrequest(request_handle, v_paused_state1, 'MyData1');
 else
 -- Parent is being run as resumed request.
 v_paused_str := ess_runtime.get_paused_state(v_reqid);
 if (v_paused_state1 = v_paused_str) then
 -- Request being resumed after first pause.
 -- Submit a subrequest and exit as success to allow ESS to pause this parent.
 submit_subrequest(request_handle, v_paused_state2, 'MyData2');
 elsif (v_paused_state2 = v_paused_str) then
 -- Request being resumed after second pause.
 -- Parent is done. Just return as success.
 null;
 end if;
 end if;
end;

-- Helper procedure to submit subrequest and call mark_paused.
-- Caller should exit normally, without an error, to allow
-- ESS mid-tier to pause the parent and execute the sub-request.
procedure submit_subrequest
(request_handle in varchar2,
 paused_state_value in varchar2,
 reqprop_value in varchar2)
is
 v_sub_reqid number := null;
 v_req_props ess_runtime.request_prop_table_t := null;
 v_idx pls_integer := 0;
begin
 v_req_props := ess_runtime.request_prop_table_t();
 v_idx := 0;

 v_idx := v_idx + 1;
 v_req_props.extend;
 v_req_props(v_idx).prop_name := 'SubRequestData';
 v_req_props(v_idx).prop_datatype := ess_runtime.STRING_DATATYPE;
 v_req_props(v_idx).prop_value := reqprop_value;

 -- Must commit or rollback work done in this block.
 begin
 -- Submit the subrequest.
 v_sub_reqid := ess_runtime.submit_subrequest(
 request_handle => request_handle,
 definition_name => 'sampleJob',
 definition_package => 'samplePkg',
 props => v_req_props);

 -- Indicate that the parent request should pause.
 -- The actual state change does not occur until ESS is notififed
 -- that this run of the parent executable finished.
 ess_runtime.mark_paused(request_handle, paused_state_value);

 -- This procedure is responsible for the txn commit.
 commit;
 exception
 -- Rollback txn on failure and raise an error.
 rollback;
 raise_application_error(-20000,
 'Error submitting sub-request. '||
 'SQLCODE='||SQLCODE || ', SQLERRM=['||SQLERRM||']',
 true);
 end;
 end;
end;

21 Working with Asynchronous Java Jobs

This chapter describes how to use Oracle Enterprise Scheduler to invoke asynchronous Java jobs to support long-running or non-container-managed jobs that invoke Java code.

This chapter includes the following sections:

	
Introduction to Working with Asynchronous Java Jobs

	
Creating an Asynchronous Java Job

	
A Use Case Illustrating the Implementation of a BPEL Process as an Asynchronous Job

	
How to Implement BPEL with an Asynchronous Job

	
Handling Time Outs and Recovery for Asynchronous Jobs

	
Oracle Enterprise Scheduler Interfaces and Classes

21.1 Introduction to Working with Asynchronous Java Jobs

Normally Oracle Enterprise Scheduler Java job requests run inside Oracle WebLogic Server in a dedicated thread; however, there are cases that require the ability to submit long running or non-container managed Java job requests.

Oracle Enterprise Scheduler supports asynchronous Java job invocation with the following features:

	
From the Oracle Enterprise Scheduler user point of view there is no difference in scheduling asynchronous Java job invocation.

	
From Oracle Enterprise Scheduler perspective, the asynchronous Java job invocation job request is submitted and is added to the queue, and returns immediately after running (and the job request enters the RUNNING state). Oracle Enterprise Scheduler continues operating until it hears back from the job at which point Oracle Enterprise Scheduler can apply post-processing or complete the job.

	
Asynchronous Java jobs can be used to initiate a variety of external jobs outside of Oracle Enterprise Scheduler. The external job, or the entity that manages it, must communicate the status of the job to Oracle Enterprise Scheduler.

21.2 Creating an Asynchronous Java Job

An Oracle Enterprise Scheduler asynchronous Java job consists of an Oracle Enterprise Scheduler job request and an external mechanism. The Oracle Enterprise Scheduler job request is implemented similarly to a standard Oracle Enterprise Scheduler Java job request; however, unlike a standard Oracle Enterprise Scheduler request, an asynchronous Java job request might not do any work, depending on the scenario. The only purpose of an asynchronous Java job request is to trigger the external mechanism. The external mechanism executes the payload (monitoring a database, calculating pi, or any other long lived process), and must be separable from the thread running the Oracle Enterprise Scheduler Java job. The external mechanism can be a SOA composite (BPEL) or asynchronous Oracle ADF Business Components web service, another thread, JVM, machine, or some other mechanism. The means of communication between the external mechanism and the client application is left to the job owner. However, an important point for the asynchronous Java job is that the pointer to the physical Java object representing the asynchronous job is not stored in Oracle Enterprise Scheduler memory. This is because:

	
The job can run for an indeterminate amount of time and caching this handle is a waste of resources.

	
Long lived jobs should be able to survive container restarts. Because this object is not cached and most likely garbage collected, the job should be stateless and its submitting application is responsible for maintaining the correlation between job requests and the external mechanisms running them. Oracle Enterprise Scheduler provides the job request ID and job request handle for this reason. This information should be persisted in order to survive restarts.

21.2.1 Implementing the Asynchronous Java Job Asynchronous Interface

An asynchronous Java job invocation must implement the AsyncExecutable interface.

21.2.2 Asynchronous Java Job execute() Method

The duty of an asynchronous Java jobs's execute() method is to set up the external mechanism in which the real work runs; this should start the external mechanism and then return. The asynchronous Java job invocation execute() method may not do any actual work. An exception can be thrown during the execute method to tell Oracle Enterprise Scheduler that this job had a problem during initialization and failed to run. The exception during the execute method does not tell Oracle Enterprise Scheduler that the actual work running on the external mechanism encountered a problem. It is the responsibility of the job owner to make sure any resources that may have been started or used are released, since Oracle Enterprise Scheduler does no further processing if it catches an exception. Assuming no exception is thrown, Oracle Enterprise Scheduler puts the job into the running state and then releases the handle on the job's object so that it may be garbage collected.

21.2.3 Invoking a Remote Job from an Asynchronous Java Job

An asynchronous Java job that invokes an external web service can set web service addressing headers to simplify the work of the remote job.

Correlation

The WSA messageID header is used to correlate the response message with the request. Oracle Enterprise Scheduler provides the method RequestExecutionContext.getIdString, which returns an ID to be used for the value of the WSA messageID header.

Reply Addressing

The WSA ReplyTo and FaultTo headers can be used to direct replies to the Oracle Enterprise Scheduler generic callback service. The Oracle Enterprise Scheduler generic callback service address can be obtained using the WebServices WSDL URLs link on the Oracle Enterprise Scheduler instance home page at http://host:port/ess/.

21.2.4 Calling Back to Oracle Enterprise Scheduler with Status Updates

Oracle Enterprise Scheduler provides a web service operation for asynchronous callbacks, setAsyncRequestStatus (see the interface in Example 21-15). It requires typed information such as status and the status message, as well as the correlation information to be explicitly given.

Oracle Enterprise Scheduler provides another mechanism: a generic Java Required Files web service provider for asynchronous callbacks. The web service provider accepts payloads of any type, and messages are delivered as SOAPMessage objects. The WSA relatesTo header is extracted so as to correlate the message with the request. This header is populated with the WSA messageID header of the original request. The Action header is used to determine whether the response is due to the completion of the asynchronous job or a fault.

If the response is due to a fault, the asynchronous job request status is provisionally set to ERROR. If the response is due to the successful completion of the asynchronous job, the asynchronous job request status is provisionally set to SUCCESS. The SOAPMessage body is extracted and converted to a string which is passed to the Updatable.onEvent method.

The web service provider address is http://host:port/ess-async/essasynccallback.

21.2.5 Updating the Asynchronous Java Job

Oracle Enterprise Scheduler provides the interface oracle.as.scheduler.Updatable, which allows the job request to receive update events initiated by the application code. When a job request is updated, Oracle Enterprise Scheduler determines whether the client class implements the Updatable interface. If the client class does implement the Updatable interface, it instantiates a new object of the job class and calls the onEvent method in the context of the MDB of the hosting application. This method accepts the request status as determined by the web service invocation and a string representing information in a format known to the job, for example, the SOAPMessage body from the Oracle Enterprise Scheduler web service. This method may log information or do some other processing. It then returns an UpdateAction object including a status and a status message.

The call to onEvent occurs in the context of the user associated with the execution of the request.

If the job does not implement the Updatable interface, the event is processed based on the status determined from the asynchronous callback to Oracle Enterprise Scheduler.

For more information about the Updatable interface, see Example 21-12.

21.2.6 Notifying Oracle Enterprise Scheduler When an Asynchronous Job Completes

When an asynchronous Java jobs's execute() method is successful and the job request is running on the external mechanism, Oracle Enterprise Scheduler continues processing other jobs. When the job request is complete or encounters an error, it must communicate back to Oracle Enterprise Scheduler. This communication channel is the responsibility of the external mechanism.

21.2.6.1 Using the Web Service to Notify When an Asynchronous Job Completes

When you invoke the Oracle Enterprise Scheduler web service operation, setAsyncRequestStatus, this sets the asynchronous request's status and associated information. Associated with this operation, the following pieces of information are needed:

setAsyncRequestStatus(String requestExecutionContext, AsyncStatus status, String statusMessage)

Where:

	
requestExecutionContext is a string that should be passed in as part of the initiating event. This parameter is derived from the Oracle Enterprise Scheduler job's RequestExecutionContext object.

	
status is one of the following: SUCCESS, ERROR, WARNING, PAUSE, CANCEL, BIZ_ERROR or UPDATE.

	
statusMessage is:

	
An error message if the status is ERROR or BIZ_ERROR.

	
A warning message if the status is WARNING.

	
A paused state if the status is PAUSED.

	
A customized string you define and have the job interpret accordingly if the status is UPDATE.

	
The value is ignored if the status is SUCCESS or CANCEL.

For more information about implementing a web service in a web application, see the chapters "Integrating Web Services Into a Fusion Web Application" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework and "Securing and Administering WebLogic Web Services" in Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

21.2.6.2 Using EJB to Notify When an Asynchronous Job Completes

The external mechanism can communicate status to Oracle Enterprise Scheduler using the asynchronous request EJB, that provides local and remote EJB interfaces. A helper class is provided that encapsulates all the EJB references. This helper only works when it is used inside the container since the helper uses dependency injection. The helper class contains methods for communicating success, errors, warnings, and cancellations. The following is an example:

Async request bean: java:comp/env/essnative/asyncrequest

The method:

 /**
 * Set the status of an ESS asynchronous java job.
 *
 * @param context The <code>RequestExecutionContext</code> with which the
 * request was started.
 * @param status The status of the request.
 * @param statusMessage An error message if the status is ERROR,
 * a warning message if the status is WARNING,
 * the paused state if the status is PAUSED.
 * The value is ignored if the status is SUCCESS or CANCEL.
 * @throws RequestNotFoundException If a request is not found for the
 * <code>context</code>.
 */
 public void setRequestStatus(String context,
 String status,
 String statusMessage)
 throws RuntimeServiceException, RequestNotFoundException

21.2.7 Asynchronous Java Job AsyncCancellable Interface

If you want the job to be cancellable, you must also implement the AsyncCancellable interface. This interface differs from the normal cancellable interface in that its cancel method also provides the RequestExecutionContext and the RequestParameters for that job. The provided context and parameters should be used to determine which external mechanism is running the payload and then ask it to stop. The external mechanism (rather than the job's AsyncCancellable.cancel() implementation) notifies Oracle Enterprise Scheduler that the job has been canceled.

Note:

Currently, there is no way to terminate a running asynchronous Oracle ADF Business Components web service process.

21.2.8 Sample Asynchronous Java Job Invoking a BPEL Process Through Event Delivery Network

Using an asynchronous request you can invoke a BPEL process from Oracle Enterprise Scheduler. An asynchronous Oracle Enterprise Scheduler Java job is used to invoke the BPEL process. When the BPEL process completes, whether successfully, with an error or warning, or if it is canceled, the BPEL process notifies Oracle Enterprise Scheduler using a Oracle Enterprise Scheduler web service operation.

This method for invoking a BPEL process involves the following steps:

	
Create an asynchronous Oracle Enterprise Scheduler Java job.

	
Invoke a BPEL process from the Oracle Enterprise Scheduler Java job.

	
When the BPEL process is done, call back to the Oracle Enterprise Scheduler web service with the completion status. Use the web service operation method to inform Oracle Enterprise Scheduler of the request completion. For more information, see Using the Web Service to Notify When an Asynchronous Job Completes.

	
After Oracle Enterprise Scheduler has the completion information, it completes any required post-processing of the request (if required).

You can invoke the associated web service directly or you can publish an event telling the event mediator to start the BPEL process, as shown in Example 21-1.

Example 21-1 Job that Initiates a BPEL Process Through an Event Mediator

import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.ExecutionCancelledException;
import oracle.as.scheduler.ExecutionErrorException;
import oracle.as.scheduler.ExecutionPausedException;
import oracle.as.scheduler.ExecutionWarningException;
import oracle.as.scheduler.RequestExecutionContext;

import javax.xml.namespace.QName;
import oracle.fabric.blocks.event.BusinessEventConnection;
import oracle.fabric.blocks.event.BusinessEventConnectionFactory;
import oracle.fabric.common.BusinessEvent;
import oracle.integration.platform.blocks.event.BusinessEventBuilder;
import oracle.integration.platform.blocks.event.BusinessEventConnectionFactorySupport;
import oracle.xml.parser.v2.XMLDocument;
import org.w3c.dom.Element;

// Async imports
import oracle.as.scheduler.AsyncExecutable;
import oracle.as.scheduler.AsyncCancellable;

public class BPELJob implements AsyncExecutable, AsyncCancellable
{
 public BPELJob() {
 }

 public void execute(RequestExecutionContext ctx, RequestParameters params)
 throws ExecutionErrorException,
 ExecutionWarningException,
 ExecutionCancelledException,
 ExecutionPausedException
 {
 // Publish an event to the Event Mediator
 publishEvent(ctx.getRequestId() + "", ctx.toString(), "ESS_EVENT");
 }

 // Cancel

 public void cancel (RequestExecutionContext ctx,
 RequestParameters requestParams) {
 publishEvent(ctx.getRequestId() + "", ctx.toString(), "CANCEL_ESS_EVENT");
 return;
 } // cancel

 // Event publishing

 private final String eventName = "ESSDemoEvent";
 private final String eventElement = "ESSDemoEventElement";
 private final String eventNamespace =
 "http://xmlns.oracle.com/apps/ta/essdemo/events/edl";
 private final String schemaNamespace =
 "http://xmlns.oracle.com/apps/ta/essdemo/events/schema";

 private XMLDocument buildEventPayload(String correlationId, String key, String
 eventType) {
 Element masterElem, childElem1, childElem2, childElem3;
 XMLDocument document = new XMLDocument();
 masterElem = document.createElementNS(schemaNamespace, eventElement);
 document.appendChild(masterElem);
 childElem1 = document.createElementNS(schemaNamespace, "requestId");
 childElem1.appendChild(document.createTextNode(correlationId));
 masterElem.appendChild(childElem1);
 childElem2 = document.createElementNS(schemaNamespace,
 "executionContext");
 childElem2.appendChild(document.createTextNode(key));
 masterElem.appendChild(childElem2);
 childElem3 = document.createElementNS(schemaNamespace, "eventType");
 childElem3.appendChild(document.createTextNode(eventType));
 masterElem.appendChild(childElem3);
 return document;
 }

 private void publishEvent(String correlationId, String key, String eventType)
 throws ExecutionErrorException
 {

 try {
 // Get event connection
 BusinessEventConnectionFactory cf =
 BusinessEventConnectionFactorySupport.
 findRelevantBusinessEventConnectionFactory(true);

 if (cf != null) {
 BusinessEventConnection conn =
 cf.createBusinessEventConnection();

 // Build event
 BusinessEventBuilder builder =
 BusinessEventBuilder.newInstance();

 // Specify the event name and namespace. In this prototype,
 // they are constants, eventNamespace, eventName
 builder.setEventName(new QName(eventNamespace, eventName));

 // Specify the event payload. In this prototype, the
 // getXMLPayload custom method constructs the payload
 builder.setBody(buildEventPayload(correlationId, key,
 eventType).getDocumentElement());
 BusinessEvent event = builder.createEvent();

 // Publish event
 conn.publishEvent(event, 5);

 // For debug only
 System.out.println("Event was sent sucessfully");
 } else {
 // For debug only
 System.out.println("cf is null");
 }
 } catch (Exception exp) {
 String errorMsg = "Failed sending event for correlation ID " + correlationId);
 exp.printStackTrace();
 throw new ExecutionErrorException(errorMsg, exp);
 }
 } // publishEvent

21.2.8.1 Sample BPEL Process Design Time with Oracle Enterprise Scheduler

You can use an asynchronous Java job to run a BPEL process. The process initiated by an event, handled by the Event Mediator which starts the process. For an example, see Figure 21-1.

	
The real work of the process is done in the DoMyWork module.

	
If the work completes successfully, control flows to AssignAsyncSuccess/AsyncCallbackSUCCESS, which invokes the Oracle Enterprise Scheduler web service callback specifying SUCCESS for the status and no status message.

	
If the Oracle Enterprise Scheduler request is canceled, the Oracle Enterprise Scheduler job's cancel method is called. The job object would then notify the remote job that it should be canceled. If the cancel succeeds, the remote job notifies Oracle Enterprise Scheduler using the callback mechanism, setting the status to CANCEL. In this case, control would jump to the branch on the far right.

	
If a fault occurs, control jumps to the middle branch. AsyncCallbackERROR invokes the Oracle Enterprise Scheduler web service callback specifying ERROR for the status and an error message from the fault. AsyncCallbackCANCEL invokes the Oracle Enterprise Scheduler web service callback specifying CANCEL for the status and no status message.

Figure 21-1 Java Job to Call a BPEL Process and Return with Asynchronous Request

[image: Description of "Figure 21-1 Java Job to Call a BPEL Process and Return with Asynchronous Request" follows]

In the BPEL process, you need the web service operation values to the Oracle Enterprise Scheduler asynchronous callback, as shown in Figure 21-2, Figure 21-3, and Figure 21-4 for the AssignAsyncError assignment activity.

Figure 21-2 AsyncCallBackError Argument Mapping for statusMessage Element

[image: Description of "Figure 21-2 AsyncCallBackError Argument Mapping for statusMessage Element" follows]

Figure 21-3 AsyncCallbackError Argument Mapping for requestExecutionContext

[image: Description of "Figure 21-3 AsyncCallbackError Argument Mapping for requestExecutionContext" follows]

Figure 21-4 AsyncCallbackError Argument Mapping for status Element

[image: Description of "Figure 21-4 AsyncCallbackError Argument Mapping for status Element" follows]

21.3 A Use Case Illustrating the Implementation of a BPEL Process as an Asynchronous Job

Use cases for implementing a BPEL process as an asynchronous job are as follows:

	
Gaining approval for a task using human workflow notifications and other SOA-specific activities.

	
Notifying Oracle Enterprise Scheduler that a job has completed, while allowing other jobs to run or proceed to the next job in a set.

Design Pattern Summary

Asynchronous Oracle Enterprise Scheduler jobs are Java jobs that implement the AsyncExecutable interface, which is invoked by Oracle Enterprise Scheduler by implementing the execute() method. This method enables initiating a long running or remote task where the execute() method completes (such as raising a business event), while Oracle Enterprise Scheduler keeps the job in RUNNING status. The remote task completes and notifies Oracle Enterprise Scheduler of its completion using a status message using one of the following implementations:

	
The RuntimeService EJB

	
The Oracle Enterprise Scheduler web service setAsyncRequestStatus operation.

This pattern assumes the remote task to be invoked is a BPEL process which is triggered by raising a business event in the execute() method of the asynchronous job. Upon termination of the process through completion, error or cancellation, the BPEL process invokes the Oracle Enterprise Scheduler web service and sets the status accordingly.

Involved Components

Oracle Enterprise Scheduler, SOA Meditator and BPEL, as shown in Figure 21-5.

Figure 21-5 BPEL Call from Oracle Enterprise Scheduler Asynchronous Job

[image: Description of "Figure 21-5 BPEL Call from Oracle Enterprise Scheduler Asynchronous Job" follows]

21.3.1 Introduction to the Recommended Design Pattern

There are use cases where Oracle Enterprise Scheduler jobs need to invoke BPEL processes in a bi-directional fashion to track completion of that BPEL before moving on to other jobs. As invoking asynchronous web services from Java code (Oracle Enterprise Scheduler or Oracle ADF Business Components) in Oracle Fusion Applications is prohibited, an Oracle Enterprise Scheduler job cannot invoke an asynchronous BPEL process directly and must rely on the asynchronous job implementation type.

This approach is recommended because it leverages existing functionality in Oracle Fusion Middleware, such as events and BPEL.

21.3.2 Potential Approaches

Instead of the asynchronous Oracle Enterprise Scheduler job functionality, the following approaches are possible but not allowed:

	
Invoking asynchronous web services such as Oracle ADF Business Components or BPEL using JAX-WS proxies - blocked threads and callback services are disallowed in Oracle Enterprise Scheduler.

	
Raising a business event to trigger BPEL, BPEL invokes an Oracle ADF Business Components service which invokes the RuntimeService EJB to set the status, a complex and error prone procedure.

21.3.3 Use Case Summary

An Expenses system has a periodic Oracle Enterprise Scheduler job which runs to import and process expenses which requires submission of BPEL processes to leverage Human Workflow for notification and approvals. In this use case, an Oracle Enterprise Scheduler job would be responsible for importing the expenses and lines and submitting sub-requests for each expense to trigger the asynchronous BPEL functionality per expense. This sub-request is implemented as an asynchronous Oracle Enterprise Scheduler job which raises a business event, completing it's Java execute() method, and staying in a running state while BPEL is initiated, submits the Human Task notification and awaits the outcome from user interaction. After this outcome is obtained, BPEL invokes the Oracle Enterprise Scheduler web service signaling that this particular sub-request is completed.

21.4 How to Implement BPEL with an Asynchronous Job

Implementing an Oracle Enterprise Scheduler asynchronous job in BPEL requires performing the following steps:

	Author the Oracle Enterprise Scheduler Java job to implement the AsyncExecutable and AsyncCancellable interfaces by writing execute() and cancel() methods.
	Create the asynchronous Oracle Enterprise Scheduler job definition.
	Design the event payload schema (XSD) and event definition (EDL) files.
	Programmatically raise a business event from the asynchronous Oracle Enterprise Scheduler job execute() and (optionally) cancel methods.
	Design the SOA Composite with Meditator and BPEL.
	Add fault handling and correlated onMessage branch for error and cancel job status updates.

21.4.1 Use Case: Add Oracle JDeveloper Libraries

In your Oracle Enterprise Scheduler Application, be sure to add the Applications Core, and Enterprise Scheduler Service Oracle JDeveloper libraries and create a new Java class with appropriate class naming and directory structure (per standards) which implements both the Oracle Enterprise Scheduler AsyncExecutable and AsyncCancellable interfaces. Importing both of these interfaces require you to implement the execute() and cancel() methods which Oracle Enterprise Scheduler RuntimeService bean invokes to initiate the desired behavior in your Oracle Enterprise Scheduler job, as shown in Example 21-2.

Example 21-2 Adding Oracle JDeveloper Libraries

public class ASMEventAsyncJob implements AsyncExecutable, AsyncCancellable {
 public ASMEventAsyncJob() {
 super();
 }

 public void execute(RequestExecutionContext ctx, RequestParameters params)
 throws ExecutionErrorException,
 ExecutionWarningException,
 ExecutionCancelledException,
 ExecutionPausedException
 {
 publishEvent(ctx.getRequestId() + "", ctx.toString(), "ESS_EVENT");
 return;

 }

 public void cancel (RequestExecutionContext ctx,
 RequestParameters requestParams) {
 publishEvent(ctx.getRequestId() + "", ctx.toString(), "CANCEL_ESS_EVENT");
 return;
 } // cancel

21.4.2 Use Case: Create the Asynchronous Job Definition

In your Oracle Enterprise Scheduler JDeveloper workspace, click "New', choose the Enterprise Scheduler Service technology group and select "Job Definition". Enter the name off your Oracle Enterprise Scheduler job definition, choose the provided "JavaJobType" and select the class build in step 1 as the overriding Java class for this job definition, as shown in Figure 21-6.

Figure 21-6 Create Job Definition

[image: Description of "Figure 21-6 Create Job Definition" follows]

Now choose the class developed in Step 1 as the overriding Java class for this job definition, define parameters and access control as required by your use case, as shown in Figure 21-7.

Figure 21-7 Create Job Definition with Job Type Defined

[image: Description of "Figure 21-7 Create Job Definition with Job Type Defined" follows]

21.4.3 Use Case: Design the Event Payload Schema and Event Definition Files

The SOA composite designer has UI features to assist in designing business event payload definitions (EDL); however your schema (.xsd) must be designed first. Example 21-3 shows a sample XSD file.

With the payload element type completed, you can either create the EDL by hand or use the event definition builder. To use the builder, open the SOA composite editor and click the lightning bolt button at the top of the UI to open the Event Definition Creation window, as shown in Figure 21-8

Figure 21-8 Event Definition Creation

[image: Description of "Figure 21-8 Event Definition Creation" follows]

Next, assign a name and name space and click Add to add a new event to this definition, as shown in Figure 21-9.

Figure 21-9 Add an Event

[image: Description of "Figure 21-9 Add an Event" follows]

Click OK. The event definition summary displays the completed event definition. Add more events as needed for your requirements, as shown in Figure 21-10.

Figure 21-10 Events List

[image: Description of "Figure 21-10 Events List" follows]

Example 21-4 shows a sample of the EDL file that is created.

Example 21-3 Sample XSD File

<?xml version="1.0" encoding="UTF-8" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://xmlns.oracle.com/apps/ta/essdemo/events/schema"
 targetNamespace="http://xmlns.oracle.com/apps/ta/essdemo/events/schema"
 attributeFormDefault="unqualified"
 elementFormDefault="qualified">
 <xsd:element name="ESSDemoEventElement" type="ESSDemoEventElementType"/>
 <xsd:complexType name="ESSDemoEventElementType">
 <xsd:sequence>
 <xsd:element name="requestId" type="xsd:string"/>
 <xsd:element name="executionContext" type="xsd:string"/>
 <xsd:element name="eventType" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

</xsd:schema>

Example 21-4 EDL File

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<definitions xmlns="http://schemas.oracle.com/events/edl"
 targetNamespace="http://xmlns.oracle.com/
 AsyncEssDemoComposite/EventDefinition1">
 <schema-import namespace="http://xmlns.oracle.com/singleString"
 location="xsd/singleString.xsd"/>
 <schema-import namespace="http://xmlns.oracle.com/apps/ta
 /essdemo/events/schema"
 location="xsd/ESSDemoEventSchema.xsd"/>
 <event-definition name="ESSEvent">
 <content xmlns:ns1="http://xmlns.oracle.com/apps/ta/essdemo/events/schema"
 element="ns1:ESSDemoEventElement"/>
 </event-definition>
</definitions>

21.4.4 Programmatically Raise a Business Event from the Asynchronous Job Methods

The business event raised from the asynchronous Oracle Enterprise Scheduler job must contain the request execution context's toString() value in order for BPEL to indicate which job is completed/canceled/errored. Programmatically Raising Business Events from Java is covered in the "Initiating SOA from ADF" section which contains the specifics on how to write Java code that raises business events. You must design an event schema (.xsd) and definition (EDL) in order to declaratively build the SOA composite which subscribes to this raised business event. Your Java code must create this XML document from scratch and it must exactly match QName values such as element and name space attributes in the payload structure.

Note that your execute() method is invoked when Oracle Enterprise Scheduler starts to run your job, when an end user or external entity instructs Oracle Enterprise Scheduler to cancel the running job, Oracle Enterprise Scheduler sets the job's status to 'CANCELLING" and then invokes the cancel() method. It's recommended that both methods raise events that contain similar payload types/name spaces so correlation sets can be used and the cancel event can be sent to the in-flight BPEL process in order to have it perform alternative functionality and then invoke the Oracle Enterprise Scheduler web service to set the job status to 'CANCELLED'.

This sample places the event raising code in the Oracle Enterprise Scheduler job's class code, however, the best approach is to share the code as an Oracle ADF Library which you can then import into this project to reduce duplication of publishing code.

Sample code calling the event raising code passing in requestID (for the BPEL correlation set to allow in-flight cancel) and the execution context's toString() value:

publishEvent(ctx.getRequestId() + "", ctx.toString(), "ESS_EVENT");

Sample event raising code is shown in Example 21-5.

Example 21-5 Event Raising Code

 private final String eventElement = "ESSDemoEventElement";
 private final String eventNamespace = "http://xmlns.oracle.com/apps/ta/essdemo/events/edl";
 private final String schemaNamespace = "http://xmlns.oracle.com/apps/ta/essdemo/events/schema";

 private XMLDocument buildEventPayload(String correlationId, String key, String
 eventType) {
 Element masterElem, childElem1, childElem2, childElem3;
 XMLDocument document = new XMLDocument();
 masterElem = document.createElementNS(schemaNamespace, eventElement);
 document.appendChild(masterElem);
 childElem1 = document.createElementNS(schemaNamespace, "requestId");
 childElem1.appendChild(document.createTextNode(correlationId));
 masterElem.appendChild(childElem1);
 childElem2 = document.createElementNS(schemaNamespace,
 "executionContext");
 childElem2.appendChild(document.createTextNode(key));
 masterElem.appendChild(childElem2);
 childElem3 = document.createElementNS(schemaNamespace, "eventType");
 childElem3.appendChild(document.createTextNode(eventType));
 masterElem.appendChild(childElem3);
 return document;
 }

public void publishEvent(String correlationId, String key, String eventType) throws ExecutionErrorException { // Determine whether we are outside of a JTA transaction try { // Get event connection BusinessEventConnectionFactory cf = BusinessEventConnectionFactorySupport.findRelevantBusinessEventConnectionFactory (true); if (cf != null) { BusinessEventConnection conn = cf.createBusinessEventConnection(); // Build event BusinessEventBuilder builder = BusinessEventBuilder.newInstance(); // Specify the event name and namespace. In this prototype, // they are constants, eventNamespace, eventName builder.setEventName(new QName(eventNamespace, eventName)); // Specify the event payload. In this prototype, the // getXMLPayload custom method constructs the payload builder.setBody(buildEventPayload(correlationId, key, eventType).getDocumentElement()); BusinessEvent event = builder.createEvent(); // Publish event conn.publishEvent(event, 5); // For debug only System.out.println("Event was sent sucessfully"); conn.close(); } else { // For debug only System.out.println("cf is null"); } } catch (Exception exp) { String errorMsg = "Failed sending event for correlation ID " + correlationId); exp.printStackTrace(); throw new ExecutionErrorException(errorMsg); } } // publishEvent

21.4.5 Design the SOA Composite with Meditator and BPEL

Since this use case depends on BPEL functionality it is necessary to build a SOA composite which contains a Mediator for event subscription which can then transform the payload and initiate the BPEL process.

In your SOA workspace, create a new SOA composite. To setup the composite for this pattern, add a Mediator that subscribes to your Oracle Enterprise Scheduler raised event and wire it to a BPEL process. Add a service reference to the Oracle Enterprise Scheduler web service WSDL. For example,

http://myhost.com:7001/ess/esswebservice?WSDL

Continue to build the required functionality in the BPEL process using one or more nested scopes. Bear in mind that your functionality should reside within at least one primary scope on which you can add an onMessage event (for in-flight cancel message receipt) and fault handler branches, as shown in Figure 21-11.

Figure 21-11 Composite with BPEL and ESSWebService

[image: Description of "Figure 21-11 Composite with BPEL and ESSWebService" follows]

For more information about invoking the Oracle Enterprise Scheduler web service, see Using the Oracle Enterprise Scheduler Web Service .

21.4.6 Add Fault Handling and Correlated onMessage Branch for Error and Cancel Job

Oracle Enterprise Scheduler does not perform any sort of heartbeat monitoring of asynchronous Oracle Enterprise Scheduler jobs after the execute() method's Java code has completed. After the job is submitted it exists in a RUNNING state within the Oracle Enterprise Scheduler infrastructure until the remote job code, BPEL, or end user interacts with Oracle Enterprise Scheduler directly to set the status of the job. Because of this caveat, developers need to design their BPEL processes to handle, at a minimum, two types of scenarios that most often occur in the life span of an Oracle Enterprise Scheduler job and, whenever possible, push that state information back to Oracle Enterprise Scheduler so monitoring UIs can reflect the correct state of the job to end users.

BPEL Handling Cancellation

For example, if the end user interacts with the monitoring UI and requests that the job be canceled, Oracle Enterprise Scheduler then updates the job's status to CANCELLING and wait for the remote functionality to tidy up and confirm that it has canceled, as shown in Figure 21-12.

Figure 21-12 BPEL Handling Cancellation

[image: Description of "Figure 21-12 BPEL Handling Cancellation" follows]

BPEL Handling Error

Additionally, when the remote functionality encounters a failure, the responsibility to notify Oracle Enterprise Scheduler of this failure falls on the shoulders of the remote functionality (in this case, BPEL) to notify Oracle Enterprise Scheduler that the job's status is ERROR and provide a status message in addition to any logging that was performed. This is illustrated in Figure 21-13.

Figure 21-13 BPEL Handling Error

[image: Description of "Figure 21-13 BPEL Handling Error" follows]

In order to acknowledge cancellation and arbitrate proper status back to the Oracle Enterprise Scheduler infrastructure, BPEL must be designed within a certain layout to support receipt of the incoming cancellation message and trapping of any failures such that, in either case, the Oracle Enterprise Scheduler subsystem can be updated. For this purpose, in the BPEL Process, there should be at least one scope which contain the functionality for this asynchronous job. This allows sufficient control for handling cancel and error states which must then be sent to the Oracle Enterprise Scheduler web service in order to update the job's status in the Oracle Enterprise Scheduler runtime.

To build the basic process flow to support these states, the following steps should be completed in order:

	Create the correlation set and flag it for imitate on the incoming Receive activity.
	Create the onMessage branch with use of correlation set created in sub-step 1.
	Create the fault handling branch.
	Populate the onMessage and fault handling branches with cleanup activities as needed and invoke the Oracle Enterprise Scheduler web service with appropriate status.

21.4.6.1 Create Correlation Set and Define Initiate Activity

In order to support receiving the cancel event while the BPEL process is in the middle of performing other activities or waiting for an asynchronous callback the process must be configured with a correlation set. A correlation set is key value that is built from one or more incoming payload attributes which are used to uniquely identify the BPEL process to the BPEL engine whereby additional service requests that contain matching sets of attributes can be routed to the process that is currently running instead of initiating a new one. While correlation is standard functionality used for asynchronous request responses, it can also be used to change the flow of execution in a BPEL process through scope-level onMessage branches.

To setup the correlation set, open the BPEL process in the designer, double-click the Receive activity and click the correlations tab.

Note that coarctation sets have an "initiate" property which indicates which activity is the starting point for this correlation set's life cycle. In this case, the start of the BPEL process is the point at which the correlation set's life cycle should begin allowing correlated events to route to this process at any point during the process.

To create a correlation set:

	
Click the "New" button in the Correlations tab of any Receive, Invoke or onMessage activity and provide a name for the correlation set.

	
Next, click "Add" to define one or more property attributes to use as the correlation key.

	
Choose a variable attribute as the set property and click "OK".

	
Repeat steps 2 and 3 as necessary to build an attribute set that is always unique.

	
Set the initiate flag on the correlation to "Yes" on the activity for which the correlation set's life cycle should begin.

Primary (first) Receive Activity with Defined Correlation Set and "Initiate" flagged to "Yes", as shown in Figure 21-14.

Figure 21-14 Correlations for Receive Activity

[image: Description of "Figure 21-14 Correlations for Receive Activity" follows]

CorrelationSet_1 definition with a single property defined (define more as needed to ensure unique keys are created), as shown in Figure 21-15.

Figure 21-15 Edit Correlation Set

[image: Description of "Figure 21-15 Edit Correlation Set" follows]

21.4.6.2 Create the onMessage Branch with Use of Correlation Set

After the correlation set has been defined and set for initiate it's now possible to create the onMessage branch on the scope that contains the activities necessary to accept the incoming cancellation message, perform any compensation or cleanup and then assign the job's completion status to CANCEL.

Note:

At this point, the onMessage branch could contain the invoke activity or finish allowing a higher order scope to perform the invoke, reducing the overall number of necessary invoke activities in the flow.

The following steps guide you through adding the previously created correlation set to the onMessage branch activity, as shown in Figure 21-16.

	
On the nested scope containing the process functionality, click the 'Add onMessage branch' button which should create a new flow off to the side of the scope.

	
Double-click the onMessage branch activity to open the activity editor.

	
Choose the "Correlations" tab.

	
Click the Add '+' button and select the previously created correlation set ensuring that the initiate flag is set to 'No' and click "Ok".

Figure 21-16 BPEL OnMessage Branch

[image: BPEL OnMessage Branch]

21.4.6.3 Create the Fault Branch

Through the course of performing the various activities in the nested work scope BPEL may encounter faults from business services or system functionality. In most cases, business services define one or more WSDL-defined faults that can be thrown back to the calling process. Ordinarily, a BPEL CatchAll fault branch traps any and all faults that are raised regardless of their type and origin but there may be cases where product teams have requirements to perform different sets of behavior in response to specific business faults. In cases where it's desirable to perform unique compensation behavior for specific business faults, the developer should create a named fault handling branch for each WSDL-defined fault. In addition to these named fault handler branches, it is still necessary to add a CatchAll fault handling branch to trap any system level or unmanaged faults that are raised from the scope.

Click the CatchFault and CatchAll scope buttons to create the desired fault handling branches, then double-click the named fault handling branches and define the named fault those branches catch.

Note the available status, as shown in Figure 21-17.

Figure 21-17 Catch Branch for BPEL Flow

[image: Description of "Figure 21-17 Catch Branch for BPEL Flow" follows]

21.4.6.4 Populate the onMessage and Fault Branch

You need to populate the onMessage and Fault branch with cleanup activities as needed and invoke Oracle Enterprise Scheduler web service with appropriate status.

In the event of a fault or receipt of the cancellation message through the onMessage branch the Oracle Enterprise Scheduler infrastructure must be updated directly using the Oracle Enterprise Scheduler web service in order to reflect the job's status and status message properly in the monitoring UIs. As a result, each fault handling or onMessage branch should assign the correct status and status message value to the Oracle Enterprise Scheduler web service invoke variable and optionally contain the invoke activity or, by design, return to a higher order scope which is designed to be agnostic to the outcome of the job status and perform the invoke activity on the Oracle Enterprise Scheduler web service before completing.

Additionally, drag activities into the onMessage and fault branches as needed to cleanup/log/compensate.

Example scope with onMessage and Fault handling branches is shown in Figure 21-18.

Figure 21-18 Entire BPEL Flow Sample

[image: Description of "Figure 21-18 Entire BPEL Flow Sample" follows]

21.4.7 Validating the Deployment

To test that the functionality works you must perform the following sequence of steps:

	
Turn on the EDN-DB-LOG page by navigating to the following site to make sure it reads "Log is Enabled". If not, click the link for "Enable",

http://host:port/soa-infra/events/edn-db-log

	
Submit your job through your own application, Fusion Middleware Control the task flow user interface for submitting job requests and confirm that the status of the job is RUNNING.

	
Your event should immediately show up in the EDN-DB-LOG page. Check for this event payload, as shown in Example 21-6.

	
Your subscribing mediator has been triggered, you can check Fusion Middleware Control ($DOMAIN_HOME/as.log) or soa-diagnostic logs ($DOMAIN_HOME/servers/<serverName>logs/<serverName>.log) to see any mediator activity as a result of your event, as shown in Example 21-7.

	
Check the Oracle Enterprise Manager Fusion Middleware Control Console for an instance of your SOA composite and check for errors.

http://host:port/em

	
If your BPEL process has not errored and is expecting a response from the human workflow notification, navigate to the worklist, login as the assigned approver and approve or reject the notification per your design requirements.

	
From here, the BPEL process should complete and invoke the Oracle Enterprise Scheduler web service to set the job's completion status and status message. Check the monitoring UI diagnostic logs for stack traces and log messages.

	
Additionally, you can check the REQUEST_HISTORY table in the Oracle Enterprise Scheduler schema for details on your job's state.

Example 21-6 Event Payload

Example:Enqueing event: http://xmlns.oracle.com/apps/ta/essdemo/events/edl::ESSDemoEvent from J
Body: <business-event xmlns:ns="http://xmlns.oracle.com/apps/ta/essdemo/events/edl" xmlns="http://oracle.com/fabric/businessEvent">
<name>ns:ESSDemoEvent</name>
<id>df8e34c1-4c65-4379-b9be-2c692670ebbe</id>
<content>
<ESSDemoEventElement xmlns="http://xmlns.oracle.com/apps/ta/essdemo/events/schema">
<requestId>3</requestId>
<executionContext>3, false, null, 6A4A16757764CD60E0402382B7703F44, 12</executionContext>
<eventType>ESS_EVENT</eventType>
</ESSDemoEventElement>
</content>
</business-event>
Subject name:
Enqueing complete
Enqueing event: http://xmlns.oracle.com/apps/ta/essdemo/events/edl::ESSDemoEvent from J
Body: <business-event xmlns:ns="http://xmlns.oracle.com/apps/ta/essdemo/events/edl" xmlns="http://oracle.com/fabric/businessEvent">
<name>ns:ESSDemoEvent</name>
<id>a4104da8-5579-4434-ab8b-d31a226e3b0f</id>
<content>
<ESSDemoEventElement xmlns="http://xmlns.oracle.com/apps/ta/essdemo/events/schema">
<requestId>4</requestId>
<executionContext>4, false, null, 6A4A2BC7E5477C60E0402382B77041C9, 12</executionContext>
<eventType>ESS_EVENT</eventType>
</ESSDemoEventElement>
</content>
</business-event>

Example 21-7 Mediator Activity

INFO: MediatorServiceEngine received an event =
{http://xmlns.oracle.com/apps/ta/ess/demo/events/edl}ESSDemoEvent
Apr 17, 2009 1:57:26 PM oracle.tip.mediator.common.persistence.MediatorPersistor persistCallback
INFO: No call back info set in incoming message
Apr 17, 2009 1:57:26 PM oracle.tip.mediator.common.persistence.MediatorPersistor persistCallback
INFO: Message properties :
{id=041ecfcf-8b73-4055-b5c0-0b89af04f425, tracking.compositeInstanceId=50003, tracking.ecid=0000I2pqzVCBLA5xrOI7SY19uEYF00004g:47979}
Apr 17, 2009 1:57:26 PM oracle.tip.mediator.dispatch.InitialMessageDispatcher dispatch
INFO: Executing Routing Service..
Apr 17, 2009 1:57:26 PM oracle.tip.mediator.dispatch.InitialMessageDispatcher processCases
INFO: Unfiltered case list size :1
Apr 17, 2009 1:57:26 PM oracle.tip.mediator.monitor.MediatorActivityMonitor createMediatorCaseInstance
INFO: Creating case instance with name :ESSDemoProcess.essdemoprocess_client.process
Apr 17, 2009 1:57:26 PM oracle.tip.mediator.dispatch.InitialMessageDispatcher processCase
INFO: Immediate case
{ESSDemoProcess.adedemoprocess_client.process}with case id :
{5B52B4A02B9211DEAF64D3EF6E2FB21D}will be executed
Apr 17, 2009 1:57:26 PM oracle.tip.mediator.service.filter.FilterFactory createFilterHandler
INFO: No Condition defined

21.4.8 Troubleshooting the Use Case

To troubleshoot issues with the Oracle ADF UI functionality such as the monitoring and submission task flows use the server's console log, applications log and server diagnostic logs for information on what is failing and why.

To troubleshoot issues with the events functionality, such as the event not reaching the BPEL process with request execution context intact, use the EDN database log page (http://host:post/soa-infra/events/edn-db-log) to inspect the event payload and carefully compare it to the schema definition, even slight mismatches can cause the transformation to 'succeed' but produce an skeleton payload to BPEL which is missing any request context values. Oracle JDeveloper and third-party tools can be used to validate the schema of the event payload and debug the transformation against that payload.

To troubleshoot the mediator, BPEL SOA functionality, use the Oracle Enterprise Manager and server console or diagnostics log files for diagnostics and AppsLogger Sensor variables for logging.

For more information about troubleshooting Oracle Enterprise Scheduler at runtime, see the chapter "Troubleshooting Oracle Enterprise Scheduler" in Oracle Fusion Middleware Administering Oracle Enterprise Scheduler.

21.5 Handling Time Outs and Recovery for Asynchronous Jobs

Oracle Enterprise Scheduler asynchronous Java jobs depend on the remote job to update Oracle Enterprise Scheduler with its completion status before it can finish processing the request. Due to the nature of remote communication, there may be cases where Oracle Enterprise Scheduler does not receive the remote request status because of network failures, and so on. In these cases, the request may be stuck in a non-terminal state.

Transitioning a timed out request to a terminal state is important as it:

	
Frees any incompatibility locks held by that job request.

	
If the job request is a job set step, allows the job set to continue.

	
If the request is a subrequest, allows the parent request to resume.

	
Allows the job request to be deleted or purged.

21.5.1 Asynchronous Request Time Outs

An Oracle Enterprise Scheduler system property, SystemProperty.ASYNC_REQUEST_TIMEOUT, enables setting job request time out values for asynchronous Java jobs. By default, the property is not enabled, such that its value is less than or equal to zero.

The property may be set in the job definition metadata or when the job request is submitted. The value represents the duration, in minutes, from the time the job request begins local execution until a terminal asynchronous job status is received from the remote job.

21.5.1.1 Setting the Time Out Value

For a given asynchronous job request, set the system property SystemProperty.ASYNC_REQUEST_TIMEOUT to a value greater than 0.

21.5.1.2 Discovering the Asynchronous Job Requests that Have Timed Out

For a given request, RequestDetail.isTimedOut indicates the status of the time out. Requests that have timed out can be discovered using the query shown in Example 21-8.

A similar query can be run using REQUEST_HISTORY_VIEW, as shown in Example 21-9.

Example 21-8 Indicating the Time Out status

Filter timedOutRunningFilter = new Filter(
 RuntimeService.QueryField.TIMED_OUT.fieldName(),
 Filter.Comparator.EQUALS,
 Boolean.TRUE)
.and(
 RuntimeService.QueryField.STATE.fieldName(),
 Filter.Comparator.EQUALS,
 State.RUNNING.value());
runtimeService.queryRequests(handle, timedOutRunningFilter, null, true);

Example 21-9 Using REQUEST_HISTORY_VIEW

SELECT requestId FROM request_history_view WHERE timedout='Y' AND state=3;

21.5.1.3 Completing Asynchronous Requests without a Time Out

In the absence of a time out value, asynchronous requests whose remote job has completed without delivering the status to Oracle Enterprise Scheduler may be completed directly using RuntimeMXBean.completeAsyncRequest. Because there is no time out value to flag the request as needing attention, you must carefully track requests without time outs.

For more information about managing job requests without time outs, see the chapter "Troubleshooting Oracle Enterprise Scheduler" in Oracle Fusion Middleware Administering Oracle Enterprise Scheduler.

21.5.1.4 What Happens When an Asynchronous Job Request Times Out

Oracle Enterprise Scheduler periodically checks for asynchronous job requests on which the property SystemProperty.ASYNC_REQUEST_TIMEOUT has been set. When the time has exceeded without a terminal status having been received, the job is flagged as timed out. Otherwise, the job state is unaffected, and remains in a RUNNING state. Meanwhile, Oracle Enterprise Scheduler continues to accept status updates from the remote job. The flag indicates that the status of the remote job may need to be investigated.

21.5.2 Handling Asynchronous Jobs Marked for Manual Recovery

If the remote job completed but its status was not delivered to Oracle Enterprise Scheduler, you can complete the request manually.

In some cases, the status of a job status cannot be determined automatically, such that it is unknown whether or not a job is executing. If the job is executing, the job request must not transition to a terminal state. If the job does transition to a terminal state, incompatibility locks could be released, possibly causing incompatible job requests to run simultaneously.

For example:

	
An asynchronous Java job encounters an error when starting a remote service, such that it is unclear that the remote service has actually been invoked. The job request must not go to an error state until it is determined whether the remote job is running. If the job might be running, the job should throw an oracle.as.scheduler.ExecutionManualRecoveryException to indicate to Oracle Enterprise Scheduler that the job request must transition to ERROR_MANUAL_RECOVERY state.

	
An Oracle Enterprise Scheduler asynchronous Java job throws a java.lang.Error which does not indicate to Oracle Enterprise Scheduler whether the remote service has been invoked.

	
A spawned job is running in a clustered environment, with the job request running on Oracle Enterprise Scheduler instance1. The Oracle Enterprise Scheduler instance1 server goes down, along with the associated Perl agent. If instance1 is not going to recover for a while, the job status is unknown. The property State.ERROR_MANUAL_RECOVERY is used for this type of situation. This is a non-terminal state that suspends processing on a job request until a recovery operation is manually invoked. Any incompatibility locks acquired are retained until manual recovery completes.

For more information about handling asynchronous jobs marked for manual recovery, see the section "Handling Stuck Asynchronous Jobs Requiring Manual Recovery" in the chapter "Troubleshooting Oracle Enterprise Scheduler" in Oracle Fusion Middleware Administering Oracle Enterprise Scheduler.

21.5.3 Using RecoverRequest to Manually Recover a Job Request

If some job requests are stuck in an incomplete state, it should first be determined whether the job requests can complete by normal means. For instance, if a job request is in RUNNING state, it may be for an asynchronous Java job running remotely. If the remote job is unable to respond, then you must try to cancel the job request. This transitions the job request to CANCELLING state. If the job request does not transition to CANCELLED state, then it may be a candidate for recovery.

All child requests of the request to be recovered must have already completed, meaning that its process phase is ProcessPhase.Complete. You can retrieve the process phase by executing RequestDetail.getProcessPhase().

Using RuntimeService.queryRequests, you can run a query to determine incomplete child requests using the filter shown in Example 21-10.

If it is determined that any child requests require manual recovery, then invoke recoverRequest for those jobs first. If recoverRequest is invoked on a parent request with incomplete child requests, an exception is thrown. The exception message lists child requests that are incomplete. Example 21-11 shows the recoverRequest syntax.

For more information about manually handling synchronous Java jobs, see the section "Handling Synchronous Java Jobs Requiring Manual Recovery" in "Troubleshooting Oracle Enterprise Scheduler" in Oracle Fusion Middleware Administering Oracle Enterprise Scheduler.

Example 21-10 Filtering for Incomplete Child Requests

Filter filter =
 new Filter(RuntimeService.QueryField.ABSPARENTID.fieldName(),
 Filter.Comparator.EQUALS, requestId)
 .and(RuntimeService.QueryField.REQUESTID.fieldName(),
 Filter.Comparator.NOT_EQUALS, requestId)
 .and(RuntimeService.QueryField.PROCESS_PHASE.fieldName(),
 Filter.Comparator.NOT_EQUALS,
 ProcessPhase.Complete.value());

Example 21-11 recoverRequest

 /**
 * Attempts to force a request to complete under certain conditions.
 * <p>
 * 1. The request must already by in a terminal state, {@code
 * State.CANCELLING}, or {@code State.ERROR_MANUAL_RECOVER}.
 * If a request is in another state,
 * {@code RuntimeService.cancel} must be called first. If the
 * request does not eventually transition to {@code State.CANCELLED},
 * then this operation may be invoked on the request.
 * 2. All child requests of the given request must already be complete.
 * <p>
 * A completed> request is a request in a terminal state with
 * a process phase of {@code ProcessPhase.Complete}.
 * <p>
 * Note that this operation locks the request.
 * <p>
 * @param requestId the request identifier of the request.
 * @throws IOException if a protocol error occurred.
 * @throws InstanceNotFoundException if the request is not found
 * @throws OperationException if the given request has child requests
 * that are not complete.
 * @throws RuntimeOperationsException if a RuntimeService subsystem failure
 * occurs.
 */
 public void recoverRequest(long requestId)
 throws IOException, InstanceNotFoundException, OperationsException,
 RuntimeOperationsException;

21.6 Oracle Enterprise Scheduler Interfaces and Classes

Sample code illustrating the Oracle Enterprise Scheduler asynchronous callback interfaces and classes are shown in Example 21-12, Example 21-13, Example 21-14 and Example 21-15.

The UpdateAction class is returned by Updatable.onEvent.

Example 21-12 Oracle Enterprise Scheduler Updatable Interface

public interface Updatable
{
 /**
 * Invoked by Enterprise Scheduler when a job request is updated.
 * This method must eventually return control to the caller.
 *
 * @param context An oracle.as.scheduler.RequestExecutionContext
 * object for this request.
 *
 * @param parameters the request parameters associated with this request
 *
 * @param resultCode the {@code
 * oracle.as.scheduler.async.UpdateAction.ActionCode} indicating the
 * action that generated this event.
 *
 * @param messagePayload a {@code String} representing the body of this
 * event. The content and format are not known by the Enterprise Scheduler.
 */
 public UpdateAction onEvent(RequestExecutionContext context,
RequestParameters parameters,
 oracle.as.scheduler.async.AsyncStatus resultCode,
 String messagePayload);
}

Example 21-13 Oracle Enterprise Scheduler UpdateAction Class

package oracle.as.scheduler.async;

/**
 * Enumeration of return values from application execution callout. The
 * action returned determines how the subsequent processing of the request
 * proceeds.
 */
public class UpdateAction
{
 /**
 * Constructor. Creates an UpdateAction object from the status
 * and message components.
 *
 * @param status Indicates the status of execution of this update event.
 * This status may result in a state transition for the request.
 *
 * @param message A message that, depending on the value of {@code status},
 * may be used for various purposes.
 */
 public UpdateAction(AsyncStatus status, String message);

 public AsyncStatus getAsyncStatus();

 public String getMessage();
}

Example 21-14 Oracle Enterprise Scheduler AsyncStatus Enum

Package oracle.as.scheduler.async;

/**
* Valid values for the callback status of an asynchronous java job.
 * Returning an {@code AsyncStatus} does not guarantee that the state of the
 * request changes to the corresponding value. The new state of the request
 * depends on the old state, the async status, the result of the
 * post-Process handler (if any), and any errors that may occur in
 * subsequent processing.
 */
public enum AsyncStatus
{
 /**
 * The asynchronous job ran successfully.
 */
 SUCCESS,

 /**
 * The asynchronous job has paused for the execution of sub-requests.
 */
 PAUSE,

 /**
 * The asynchronous job is issuing a WARNING.
 */
 WARNING,

 /**
 * The asynchronous job encountered an error.
 */
 ERROR,

 /**
 * The asynchronous job has canceled its execution. Usually this
 * originates from a {@code RuntimeService.cancel} call.
 */
 CANCEL,

 /**
 * The asynchronous job is updated. The request state is not changed
 * by this action.
 */
 UPDATE,
 /**
 * The asynchronous job encountered a business error.
 */
 BIZ_ERROR,

 /**
 * The asynchronous job requests manual recovery to complete the request.
 */
 ERROR_MANUAL_RECOVERY;
}

Example 21-15 Existing Asynchronous Callback Web Service Operation

 /**
 * Set the status of an Oracle Enterprise Scheduler asynchronous java job.
 *
 * @param requestExecutionContext A java.lang.String representing
 * an oracle.as.scheduler.RequestExecutionContext object.
 * @param status
 * @param statusMessage
 * An error message if the status is ERROR,
 * A business error message if the status is BIZ_ERROR,
 * A warning message if the status is WARNING,
 * A paused state if the status is PAUSED.
 * The value is ignored if the status is SUCCESS or CANCEL.
 *
 */
 public void setAsyncRequestStatus(String requestExecutionContext,
 AsyncStatus status,
 String statusMessage)
 throws RequestNotFoundException, RuntimeServiceException ;

22 Job Request Logs and Output

This chapter describes how to use Oracle Enterprise Scheduler to generate job request logs and output that should be saved for later use by administrators and users.

Logs generated by job requests help administrators diagnose problems and see job-specific status. Logs are accessible through the Fusion Middleware Control. In addition, some jobs generate output as part of their work, such as a report about job-specific data that a user can review after the job has completed. Your code can create and store request log information as well as request output.

This chapter includes the following sections:

	
Request Logs

	
Request Output

22.1 Request Logs

Oracle Enterprise Scheduler provides APIs your job can use to request logging. All job types, except for process jobs, use the logging APIs. Oracle Enterprise Scheduler also provides APIs to handle request logs in the content store.

Oracle Enterprise Scheduler supports a single log per request. The log has a name of the form REQUESTID.log. The logging APIs log directly to the content store, and log content may not be rolled back.

For more about viewing job request logs with Fusion Middleware Control, see Viewing Job Request Logs in Oracle Fusion Middleware Administering Oracle Enterprise Scheduler.

22.1.1 System Properties

The system property SYS_EXT_requestLogLevel constrains which messages logged using the API are stored in the request log.

The property's value defaults to INFO. The complete set of valid values are SEVERE, WARNING, INFO, CONFIG, FINE, FINER, FINEST. Use Java and PL/SQL APIs to discover the request log level.

Note that SYS_EXT_requestLogLevel does not apply to process jobs because they do not use the logging API.

22.1.2 Log Header

Your logging code writes entries to a log that begins with the following heading information. This header is automatically prefixed to each record written to the log using the logging APIs, therefore it does not apply to process jobs.

####[TIMESTAMP] [LOGLEVEL]

Sample log lines:
####[2011-07-11T14:20:32.276-07:00] [INFO] This is a log record.
####[2011-07-11T14:20:32.282-07:00] [INFO] This is the first line of a multi-line log record:
second line of multi-line log record.

22.1.3 Request Logging from a Java Job

You can use the Java request logger to log during the execute and update stages of a Java or asynchronous Java job, as well as during pre-processing and post-processing for all job execution types.

The job logic must use the ContentFactory API to get the RequestLogger that can be used to log messages to the request log. Oracle Enterprise Scheduler uses the current value of the SYS_EXT_requestLogLevel system property to constrain logging level each time the logger is retrieved.

22.1.3.1 APIs for Java Job Logging

In your Java job's logic, you can use the oracle.as.scheduler.request.ContentFactory class getRequestLogger method (see Table 22-1) to get a RequestLogger instance for adding log entries. Note that the request logger does not support a resource bundle.

The Java APIs available for handling logs include the following:

	
Use the ContentFactory class to get instances of a RequestLogger you can use to create the log and add entries. See Table 22-1.

	
Use the RequestLogger class to write the log. See Table 22-2.

The oracle.as.scheduler.request.ContentFactory class provides methods to get your code access to the output content framework, as well as to an instance you can use to create the output itself.

Table 22-1 ContentFactory Methods for Creating Request Logs

	Method	Description
	
getRequestLogger(long requestId)

	
Returns a RequestLogger instance for the specified requestId and creates log content named requestId.log in Oracle Enterprise Scheduler content store.

After you have a logger instance, you can use the methods in Table 22-2 to add entries.

Table 22-2 RequestLogger Methods for Creating Request Logs

	Method	Description
	
log(Level level, String msg)

fine(String msg)

finer(String msg)

finest(String msg)

	
These methods log messages at the specified levels.

The message is logged only if the specified logging level is equal or greater than the log level specified by the SYS_EXT_requestLogLevel system property. If the property isn't set, the default log level is INFO.

When using the log method, the java.util.logging.Level supports the following values, in descending order.

	
SEVERE

	
WARNING

	
INFO

	
CONFIG

	
FINE

	
FINER

	
FINEST

22.1.3.2 Java Request Logging Example

Example 22-1 shows a very simple Java job example that does logging.

Example 22-1 Java Request Logging Example

import oracle.as.scheduler.request.ContentFactory;
import oracle.as.scheduler.request.RequestLogger;
import java.util.logging.Level;

class ExampleJavaLogger{

 private boolean m_loggingEnabled = false;
 private RequestLogger m_requestLogger = null;

 public void execute(RequestExecutionContext ctx,
 RequestParameters params)
 {
 try
 {
 m_requestLogger = ContentFactory.getRequestLogger(ctx.getRequestId());
 m_loggingEnabled = true;
 }
 catch (Exception ex)
 {
 // failed to get request logger
 }

 log(Level.INFO, "Starting the job.");
 // ...
 log(Level.INFO, "Ending the job.");
 }

 private void log(Level level, String message)
 {
 if (m_loggingEnabled)
 {
 m_requestLogger.log(level, message);
 }
 }
}

22.1.4 Request Logging from a PL/SQL Job

To create logs from PL/SQL, your code can use the ESS_JOB PL/SQL package to write log entries.

22.1.4.1 ESS_JOB Package Support for Creating Logs

Oracle Enterprise Scheduler provides the ESS_JOB package with functions and procedures for logging from PL/SQL code.

Table 22-3 ESS_JOB Functions and Procedures for Request Logging

	Method	Description
	
procedure write_log(p_level in integer, p_text in varchar2);

	
Writes p_text as a message to request log content for the Oracle Enterprise Scheduler request associated with the current session.

The message is logged only if the specified logging level is equal or greater than the log level specified by the SYS_EXT_requestLogLevel system property. If the property isn't set, the default log level is LEVEL_INFO.

Log level values correspond to those defined in java.util.logging.Level.

Use the following values for the p_level parameter (shown in descending order):

	
LEVEL_SEVERE

	
LEVEL_WARNING

	
LEVEL_INFO

	
LEVEL_CONFIG

	
LEVEL_FINE

	
LEVEL_FINER

	
LEVEL_FINEST

22.1.4.2 PL/SQL Request Logging Example

An example of request logging by a SQL request job procedure is shown below.

create or replace procedure log_example_job
(request_handle in varchar2)
as
 v_request_id number := null;
begin
 ess_job.write_log(ess_job.level_fine,
 'LOG_EXAMPLE_JOB Procedure Begin');

 -- Oracle Enterprise Scheduler request id being executed.
 begin
 v_request_id := ess_runtime.get_request_id(request_handle);
 exception
 when others then
 ess_job.write_log(ess_job.level_severe,
 'Bad request handle: '||request_handle);
 raise_application_error(-20000,
 'Failed to get request id for request handle '||request_handle,
 true);
 end;

 -- Job logic
 ess_job.write_log(ess_job.level_info,
 'Executing job logic...');

 ess_job.write_log(ess_job.level_fine,
 'LOG_EXAMPLE_JOB Procedure End');
end;
/

22.1.5 Request Logging from a Process Job

You can write to the job request log from process job. The way this works is quite different from Java and PL/SQL jobs, where the executing code has access to an API for writing entries at a particular level. Instead, for a process job, the job's standard output and standard error are redirected to a file in the request's log work directory (a location set by Oracle Enterprise Scheduler). Oracle Enterprise Scheduler imports this file and append it to the request log in the content store.

In other words, to log from a process job, you need only write to standard output from job logic code.

The encoding used to read the log file is determined as described in Process Job Locale.

Note that you cannot log at particular levels from a process job (where the API for setting the level isn't available). So the SYS_EXT_requestLogLevel system property does not constrain log contents. Oracle Enterprise Scheduler always appends the contents of the log file to the request log in the content store.

22.1.6 Request Logging and Output From an EJB Job

Because an EJB Job is a Java job that gets executed remotely, the remote EJB job implementation can write content to logs and output. Use the oracle.as.scheduler.request.RemoteContentHelper API to handle this content. The following bullet items describe the high-level steps involved. Example 22-2 shows an EJB job implementation that illustrates this functionality.

	
Set up the RemoteContentHelper. The parameters RequestExecutionContext and RequestParameters can be obtained from the execute() method of the job implementation.

RemoteContentHelper rch=new RemoteContentHelper(RequestExecutionContext, RequestParameters);

	
Write content to the log file.

rch.log(Level.INFO, logMessage)

	
Write text output.

RuntimeServiceHandle rsh = null;
 ContentHandle ch = null;
 String contentName = "Content1";
 String contentData = "Some text content";
 try {
 rsh = rch.getRuntimeService().open();
 ch = rch.openOutputContent(rsh, contentName, ContentType.Text, EnumSet.of(ContentHandle.ContentOpenOptions.Write));
 rchelper().write(ch, contentData);
 } catch (Exception ex) {
 throw new ExecutionErrorException(ex);
 } finally {
 rch.closeOutputContent(ch);
 rch.getRuntimeService().close(rsh);
 }

	
Write binary output.

RuntimeServiceHandle rsh = null;
 ContentHandle ch = null;
 String contentName = "Content1";
 String contentData = "Some binary content"; //Binary content can differ in the variable declaration.
 try {
 rsh = rch.getRuntimeService().open();
 ch = rch.openOutputContent(rsh, contentName, ContentType.Binary, EnumSet.of(ContentHandle.ContentOpenOptions.Write));
 rchelper().write(ch, contentData.getBytes());
 } catch (Exception ex) {
 throw new ExecutionErrorException(ex);
 } finally {
 rch.closeOutputContent(ch);
 rch.getRuntimeService().close(rsh);
 }

Example 22-2 shows an EJB job implementation that demonstrates how to handle output and logs.

Example 22-2 SimpleSyncEssBean

import java.util.ArrayList;
import java.util.logging.Level;
import java.util.EnumSet;

import javax.ejb.Stateless;

import oracle.as.scheduler.RuntimeServiceHandle;
import oracle.as.scheduler.ExecutionCancelledException;
import oracle.as.scheduler.ExecutionErrorException;
import oracle.as.scheduler.ExecutionPausedException;
import oracle.as.scheduler.ExecutionWarningException;
import oracle.as.scheduler.RemoteExecutable;
import oracle.as.scheduler.RequestExecutionContext;
import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.request.RemoteContentHelper;
import oracle.as.scheduler.request.ContentDetail;
import oracle.as.scheduler.request.ContentHandle;
import oracle.as.scheduler.request.ContentType;

@Stateless(name = "SimpleSyncEssBean")
public class SimpleSyncEssBean implements RemoteExecutable {
 private RemoteContentHelper m_rch = null;

 public void execute(RequestExecutionContext requestExecutionContext,
 RequestParameters requestParameters) throws ExecutionErrorException, ExecutionWarningException,
 ExecutionCancelledException,
 ExecutionPausedException {
 long requestId = requestExecutionContext.getRequestId();
 // setup helper now so it is available to println
 m_rch = setupRemoteContentHelper(requestExecutionContext, requestParameters);

 ContentType contentType = ContentType.Text;
 String contentName = requestId + "Output.txt";

 ArrayList<String> srcLines = new ArrayList<String>();
 srcLines.add("SimpleSyncEssBean Output Details \n");
 boolean success = false;
 String exmsg = "";

 try {
 createOutputContent(contentName, contentType, srcLines);
 success = verifyOutputContent(contentName, contentType, srcLines);
 } catch (ExecutionErrorException ex) {
 exmsg = ex.getMessage();
 }

 if (!success) {
 throw new ExecutionErrorException("Output test failed: " + contentName + ", " + exmsg);
 } else {
 printToLog("Output test succeeded: " + contentName);
 }
 printToLog(" SimpleSyncEssBean job succeeded. RequestId:" + requestId);
 }

 /**
 * Creates the remote content helper for log/output.
 */
 private RemoteContentHelper setupRemoteContentHelper(RequestExecutionContext ctx, RequestParameters params) throws ExecutionErrorException {

 RemoteContentHelper rch = null;
 try {
 rch = new RemoteContentHelper(ctx, params);
 } catch (Exception ex) {
 throw new ExecutionErrorException(ex);
 }

 return rch;
 }

 /**
 * Gets the remote content helper that is setup.
 * Throws if it is not setup.
 */
 private RemoteContentHelper rchelper() throws ExecutionErrorException {
 if (null == m_rch) {
 throw new ExecutionErrorException("RemoteContentHelper is not setup");
 }

 return m_rch;
 }

 private void printToLog(String message) throws ExecutionErrorException {
 System.out.println(message);
 if (m_rch != null) {
 try {
 m_rch.log(Level.INFO, message);
 } catch (Exception ex) {
 // ignore
 }
 } else {
 rchelper();
 }

 }

 /**
 * Writes dataList as either Text or Binary output content.
 */
 private void createOutputContent(String contentName, ContentType contentType,
 ArrayList<String> dataList) throws ExecutionErrorException {
 RuntimeServiceHandle rsh = null;
 ContentHandle ch = null;
 try {
 rsh = rchelper().getRuntimeService().open();
 ch =
 rchelper().openOutputContent(rsh, contentName, contentType,
 EnumSet.of(ContentHandle.ContentOpenOptions.Write));

 for (String data : dataList) {
 if (ContentType.Text == contentType) {
 rchelper().write(ch, data);
 } else {
 rchelper().write(ch, data.getBytes());
 }
 }
 } catch (Exception ex) {
 throw new ExecutionErrorException(ex);
 } finally {
 if (ch != null) {
 try {
 rchelper().closeOutputContent(ch);
 } catch (Exception ex) {
 printToLog("Error while closing ch: " + ex.getMessage());
 //ex.printStackTrace();
 throw new ExecutionErrorException(ex);
 }
 }
 if (rsh != null) {
 try {
 rchelper().getRuntimeService().close(rsh);
 } catch (Exception ex) {
 printToLog("Error while closing rsh: " + ex.getMessage());
 //ex.printStackTrace();
 throw new ExecutionErrorException(ex);
 }
 }
 }
 }

 /**
 * Verifies Text or Binary output content.
 */
 private boolean verifyOutputContent(String contentName, ContentType contentType, ArrayList<String> srcDataList) throws ExecutionErrorException {

 String actualData = getOutputContent(contentName, contentType);

 StringBuffer sb = new StringBuffer();
 for (String str : srcDataList) {
 sb.append(str);
 }
 String srcData = sb.toString();

 boolean success = srcData.equals(actualData);

 if (!success) {
 printToLog("Test failed for " + contentName);
 printToLog("Expected data: <\n" + srcData + ">");
 printToLog("Actual data: <\n" + actualData + ">");
 }

 try {
 if (rchelper().outputContentExists(contentName)) {
 ContentDetail detail = rchelper().getOutputContentDetail(contentName);
 printToLog("ContentDetail:\n" + detail);
 } else {
 printToLog("The output content details are not present:\n");
 }

 } catch (Exception ex) {
 String exm = "Failed to get output content detail: " + contentName;
 printToLog(exm);
 throw new ExecutionErrorException(ex);
 }

 return success;
 }

 /**
 * Gets either Text or Binary output content as String.
 */
 private String getOutputContent(String contentName, ContentType contentType) throws ExecutionErrorException {
 RuntimeServiceHandle rsh = null;
 long requestId = rchelper().getRequestExecutionContext().getRequestId();
 ContentHandle ch = null;
 String result = null;
 try {
 rsh = rchelper().getRuntimeService().open();
 ch =
 rchelper().openOutputContent(rsh, contentName, contentType,
 EnumSet.of(ContentHandle.ContentOpenOptions.Read));

 if (ContentType.Text == contentType) {
 char[] chars = rchelper().getTextContent(ch, Integer.MAX_VALUE);
 result = new String(chars);
 } else {
 byte[] bytes = rchelper().getBinaryContent(ch, Integer.MAX_VALUE);
 result = new String(bytes);
 }
 } catch (Exception ex) {
 throw new ExecutionErrorException(ex);
 } finally {
 if (ch != null) {
 try {
 rchelper().closeOutputContent(ch);
 } catch (Exception ex) {
 printToLog("Error while closing ch: " + ex.getMessage());
 //ex.printStackTrace();
 throw new ExecutionErrorException(ex);
 }
 }
 if (rsh != null) {
 try {
 rchelper().getRuntimeService().close(rsh);
 } catch (Exception ex) {
 printToLog("Error while closing rsh: " + ex.getMessage());
 //ex.printStackTrace();
 throw new ExecutionErrorException(ex);
 }
 }
 }

 return result;
 }

}

22.1.7 Request Logging from a Web Service Job

Progress messages are only available to asynchronous jobs. The Oracle Enterprise Scheduler AsyncWebServiceJob callback endpoint supports a new logAsyncWSJobProgressMessage one-way operation. This operation allows an asynchronous SOA composite (or other asynchronous web service) to log progress messages using ws-addressing for correlation and the same callback endpoint and associated callback OWSM policy. This provides a simple, convenient option for logging progress messages from asynchronous SOA composites.

The Oracle Enterprise Scheduler asynchronous web service job callback endpoint WSDL provides the necessary information for using this operation. A portion of the WSDL is shown in Example 22-3.

Example 22-3 Asynchronous Web Service Job Callback Endpoint WSDL

 <xsd:complexType name="logAsyncWSJobProgressMessage">
 <xsd:sequence>
 <xsd:element name="level" type="tns:logLevel" form="qualified"/>
 <xsd:element name="message" type="xsd:string" form="qualified"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:element name="logAsyncWSJobProgressMessage" type="tns:logAsyncWSJobProgressMessage"/>
 <message name="logAsyncWSJobProgressMessageInput">
 <part name="parameters" element="tns:logAsyncWSJobProgressMessage"/>
 </message>

 <portType name="RequestPort">
 <operation name="logAsyncWSJobProgressMessage">
 <input message="tns:logAsyncWSJobProgressMessageInput" xmlns:ns1="http://www.w3.org/2006/05/addressing/wsdl" ns1:Action="logAsyncWSJobProgressMessage"/>
 </operation>
 </portType>

22.1.8 APIs for Handling Request Logs

You can use methods of the oracle.as.scheduler.RuntimeService class to handle logs stored in the Oracle Enterprise Scheduler content store. You'll need to first get a RuntimeServiceHandle instance. You'll pass this instance as an argument for each of these RuntimeService methods.

For more on the RuntimeServiceHandle, see How to Access the Runtime Service and Obtain a Runtime Service Handle.

Table 22-4 RuntimeService Methods for Handling Request Logs

	Method	Description
	
getLogContentDetail(RuntimeServiceHandle handle, long requestId)

	
Returns a ContentDetail instance with the log content detail for the request, or null if the log does not exist.

	
openLogContent(RuntimeServiceHandle handle, long requestId)

	
Returns a ContentHandle instance from opening the request log to retrieve log data for the specified request. You can use the handle to retrieve output data. The content must be closed to release the handle.

	
getLogLines(RuntimeServiceHandle handle, ContentHandle contentHandle, int maxLines)

	
Returns a String array with at most maxLines lines from the request log, continuing from the last call to this method. The content handle is from the previous call to openLogContent. This returns a String array of lines from the log without line terminators; if no more lines, array is empty.

	
getTextContent(RuntimeServiceHandle handle, ContentHandle contentHandle, int maxChars)

	
Returns a char array with at most maxChars characters from the log or output text content.

	
closeContent(RuntimeServiceHandle handle, ContentHandle contentHandle)

	
Closes the previously opened log or output content and releases the handle.

22.2 Request Output

You can have your job create output content at runtime. For example, your job might collect data that would be useful in a report for users. When you generate output at runtime, it's available to be retrieved later through a client user interface or the Fusion Middleware Control.

The output your code creates can be created directly in the Oracle Enterprise Scheduler content store, or it can be created in the file system and imported to the content store. Oracle Enterprise Scheduler can import it automatically or your job can use Oracle Enterprise Scheduler APIs to import it explicitly.

When you use the file system, you write to a particular directory whose location has been configured in the Oracle Enterprise Scheduler ess-config.xml file. Oracle Enterprise Scheduler creates a request file directory to contain files written from all requests. Your code writes to a subdirectory of this created specifically for the request. Oracle Enterprise Scheduler automatically imports all of the request's output to the content store, and then deletes request-specific subdirectories.

Oracle Enterprise Scheduler provides APIs for managing output content in the content store.

22.2.1 Using the Request File Directory

The request file directory is specified in the Oracle Enterprise Scheduler ess-config.xml file. For each request, Oracle Enterprise Scheduler can create request-specific subdirectories of this request file directory: a working directory for temporary files and an output directory for output files that should be imported into the content store.

Your code can write temporary and output files to their respective request-specific directories at runtime. Oracle Enterprise Scheduler imports to the content store files in the request's output directory. When the content is imported depends on whether the request file directory is shared or local, as described in Common Request File Directory Behavior, Shared Request File Directory Behavior, and Local Request File Directory Behavior.

After automatically importing all of the request's output to the content store, Oracle Enterprise Scheduler deletes the request-specific output directory and its contents.

The request file directory can be local, meaning that it is used only for work done on a single server. It can also instead be shared, in which a single directory is used for work done on multiple servers. Runtime behavior differs depending on whether the directory is configured to be local or shared.

The directory is specified in the ess-config.xml file, as shown in Example 22-4. Oracle Enterprise Scheduler sets USER_FILE_DIR (SYS_userFileDir) based on RequestFileDirectory and then makes the property read-only. The job cannot override this by setting USER_FILE_DIR.

Example 22-4 Request File Directory Configuration with ess-config.xml file

<ess:EssConfig xmlns:ess="http://ess.oracle.com"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <ess:EssProperties>
 <ess:EssProperty key="RequestFileDirectory" value="/etc/outputfiles"
 immutable="true"/>
 <ess:EssProperty key="RequestFileDirectoryShared" value="false"
 immutable="true"/>
 </ess:EssProperties>
</ess:EssConfig>

22.2.1.1 Common Request File Directory Behavior

Oracle Enterprise Scheduler automatically imports all request output files from the output directory to the content store, and deletes the request working directory and all files in it.

Imported files always overwrite existing content of the same file name as long as the existing content was previously imported. If the existing content was created using the API, then it is considered to be distinct from the new file, and the new file does not overwrite and is ignored. In other words, content created with the API has precedence.

Oracle Enterprise Scheduler does not import output files of zero length.

22.2.1.2 Shared Request File Directory Behavior

Any files created by the request remains in its working and output directories until the request completes and goes to a terminal state. Any files created by a request in a shared file directory are available to all stages of the request.

22.2.1.2.1 Error Handling When a Shared Request File Directory is Used

Oracle Enterprise Scheduler creates the request work directory before the job request transitions to the RUNNING state. Any error while creating the directory results in a system error for the request.

For process a job, importing the log occurs after the request transitions to a terminal state. If an error occurs while importing the log, the error is logged and the request log is left in the file system. You must manually import the log to the content store.

Importing output files for any job type occurs after the request transitions to a terminal state. If there is an error while importing output files, the error is logged and the output files are left in their directories on the file system. You must remove the output files.

22.2.1.3 Local Request File Directory Behavior

Oracle Enterprise Scheduler creates request-specific directories before any stage of the request runs. If the request file directory is local, it must be a location that is guaranteed to exist locally on every server. In this case, files created by one stage of the request are not guaranteed to be available in the next stage because stages are independent units of work and may run on different servers.

For a local request file directory, the common behavior holds except that Oracle Enterprise Scheduler performs the actions for each stage. The reason is that each stage may execute on a different server, and it is necessary for Oracle Enterprise Scheduler to capture and clean up the files for each stage because they may not be there for the next stage.

In case a request requires access to all previously imported output files, it can set the parameter SYS_EXT_executeAutoExport = true. If this is set, at the beginning of the execute stage, Oracle Enterprise Scheduler automatically exports previously imported output files to the request's working output directory. This gives you an opportunity to update the file before it is imported back to the content store at the end of the execute stage. (Note that the content isn't removed from the content store when the content is exported.) Furthermore, Oracle Enterprise Scheduler provides an API for a request to selectively export previously imported output files.

22.2.1.3.1 Error Handling When a Local Request File Directory is Used

When a local request file directory is used, file imports happen at the end of each stage (pre-processing, execution, update, post-processing). If an error occurs while importing logs or output files, the log and output files that failed to import are moved to a mirror directory at request_file_directory/preserve. For example, for request 18 this would be request_file_directory/preserve/18.

For the pre-processing stage, an error creating the request directory at the beginning of the stage or importing output files at the end of the stage results in a system error for the request.

For the post-processing stage, an error creating the request directory at the beginning of the stage or importing output files at the end of the stage results in a warning for the request.

For the execution stage of a Java job, asynchronous Java job, and process job request, an error creating the request directory or automatically exporting previously imported output files (such as when the SYS_EXT_executeAutoExport system property is used) at the beginning of the stage or importing output files at the end of the stage results in a system error for the request.

If the request is a process job, an error importing the request log is logged and not treated as an error. The log is left in the file system, and you may manually import it to the content store. If there is an internal error during execution of a process job, log and output files are not imported because the job could still be running. The log and output files are imported when the job is terminated, either automatically or manually by the user. If the job goes to ERROR_MANUAL_RECOVERY, it is the user's responsibility to clean up the request log and output files.

For the update stage, an error creating the request directory or importing output files is logged only.

22.2.2 System Properties

Setting the SYS_EXT_supportOutputFiles system property is essential to using the request file directory and automatic importing of output files.

To use the request output directory to create output files, the job must define a parameter using the system property SYS_EXT_supportOutputFiles. Depending on what sort of files the job wants to create, the property can be set in one of the following ways:

	
Set it to "output" in order to have files written to the request output directory imported to the content store.

	
Set it to "work" in order to write files to the request working directory that are not intended for import, such as temporary files.

	
Set it to "none", or leave it undefined, if the job does not create any output or temporary files.

Table 22-5 System Properties for Creating Request Output

	Method	Description
	
SYS_EXT_supportOutputFiles

	
String property indicating whether a job creates files in the file system. Supported values are work, output, and none. An invalid value is treated as none.

	
SYS_EXT_executeAutoExport

	
Boolean property indicating whether previously imported output files shall be exported at the start of the execute stage. The content isn't removed from the content store when it is automatically exported.

22.2.3 Creating Request Output from a Java Job

To create request output from Java, your job's code can use the Oracle Enterprise Scheduler API to create output content directly in the content store, or your job can create files in the request's output directory in the file system. If your job creates files in the request's output directory, you can either explicitly import those files to the content store or allow Oracle Enterprise Scheduler to automatically import the files to the content store.

Using the API, the job can create text or binary output content. Imported output files are always imported as binary content, meaning the bytes are uninterpreted.

22.2.3.1 APIs for Handling Request Output from a Java Job

The Java APIs available for handling request output include the following:

	
Use the ContentFactory class to get instances of other classes you can use to create and manage output content, including RequestOutput and OutputContentHelper output. See Table 22-6.

	
Use the RequestOutput class to create output content directly in the content store. See Table 22-7.

	
Use the OutputContentHelper class to explicitly manage content you create as files in the request output file directory, and to interact with the content store. See Table 22-8.

The oracle.as.scheduler.request.ContentFactory class provides methods to get your code access to the output content framework, as well as to an instance you can use to create the output itself.

Table 22-6 ContentFactory Methods for Java Request Output

	Method	Description
	
getRequestOutput(RuntimeServiceHandle rsh, long requestId, ContentType contentType, String contentName)

	
Returns a RequestOutput instance with output for the specified request and creates the output content for the request. Each write uses the specified request service handle; your calling code is responsible for committing or rolling back the transaction.

	
getOutputContentHelper(long requestId)

	
Returns a OutputContentHelper instance for creating output content for requests with Standard or Extended request mode. Each operation is performed in a separate transaction.

	
getOutputContentHelper(long requestId, RuntimeServiceHandle rsh)

	
Returns a OutputContentHelper instance for creating output content for requests with Standard or Extended request mode. Each operation uses the provided handle, and it is the caller's responsibility to commit or rollback the transaction.

The oracle.as.scheduler.request.RequestOutput class represents the output your code is creating. You get an instance of this class from ContentFactory.getRequestOutput, then use its write methods to write to the output content you are creating.

Table 22-7 RequestOutput Methods for Java Request Output

	Method	Description
	
writeln(String str)

	
Appends str to the text output content, followed by a line feed character.

	
write(String str)

	
Appends str to the text output content.

	
write(String str, int offset, int length)

	
Appends str to the text output content.

	
write(char[] chars)

	
Appends chars to the text output content.

	
write(char[] chars, int offset, int length)

	
Appends chars to the text output content.

	
write(byte[] bytes)

	
Appends bytes to the binary output content.

	
write(byte[] bytes, int offset, int length)

	
Appends bytes to the binary output content.

Methods of the oracle.as.scheduler.request.OutputContentHelper class do the heavy lifting for output file handling in Java jobs. Using these methods, your code can work with the request file directory and the content store itself.

Note that methods for importing content to the content store take a OutputContentHelper.CommitSemantics enum instance that you can use to specify transaction semantics during import. For more information, see Table 22-9.

Table 22-8 OutputContentHelper Methods for Java Request Output

	Method	Description
	
workDirectoryExists()

	
Returns true if the request's work directory exists. Allows the job at any stage to determine if the work directory exists before it attempts to create temporary files.

The job must define the SYS_EXT_supportOutputFiles system property with a value of work or output to cause Oracle Enterprise Scheduler to create the work directory.

	
outputDirectoryExists();

	
Returns true if the request's output directory exists. Allows the job at any stage, such as update, to determine if the output directory exists before it attempts to create output files.

The job must define the SYS_EXT_supportOutputFiles system property with a value of output to cause Oracle Enterprise Scheduler to create the output directory.

	
isRequestWorkDirectoryShared();

	
Returns true if the request file directory is shared. If it is, then any files created in the request work dir or output dir in any stage is available to all subsequent stages of the request.

	
getResolvedWorkDirectory();

	
Returns a String with the request work directory as resolved to the current server. The job may create temporary files in the work directory, and Oracle Enterprise Scheduler automatically deletes the work directory at the end of request execution if the RequestFileDirectory is shared, or at the end of each stage (pre-processing, execution, update, post-processing) if the RequestFileDirectory is local.

	
getResolvedOutputDirectory();

	
Returns a String with the request output directory, resolved to the current server. The job may create output files in the output directory that can be automatically or manually imported to the Oracle Enterprise Scheduler content store.

	
importOutputFiles(List<String> fileNames, CommitSemantics semantics);

	
Returns an ImportExportResult instance from importing the specified files from the resolved output directory. Imported content overwrites existing content of the same name, unless the existing content was created using the API. In that case, the file is not imported.

	
importOutputFiles(CommitSemantics semantics);

	
Returns an ImportExportResult instance from importing all files from the resolved output directory. Imported content overwrites existing content of the same name, unless the existing content was created using the API. In that case, the file is not imported.

	
exportOutputContent(List<String> contentNames);

	
Returns an ImportExportResult from exporting the specified previously imported output content to files in the request output directory. The exported files overwrite any existing files of the same names. Note that output content created using the API can not be exported.

	
exportOutputContent();

	
Returns an ImportExportResult instance from exporting all previously imported output content to files in the request output directory. The exported files overwrite any existing files of the same names. Note that output content created using the API can not be exported.

	
queryOutputContent()

	
Returns a list of ContentDetail instances with detailed information for all existing output content in the content store. This returns information on both output content that was imported and output content created using the API.

	
queryOutputContent(String contentName)

	
Returns a ContentDetail instance with detailed information for the output content in the content store, if it exists (null if it does not). This returns information on both output content that was imported and output content created using the API.

	
outputContentExists(String contentName)

	
Returns true if the specified output content exists in the content store for the request. This returns information on output content that was imported and output content created using the API.

	
deleteOutputContent(List<String> contentNames)

	
Deletes the specified output content from the content store for the request. Can delete output content that was imported and output content created using the API.

Use the oracle.as.scheduler.request.OutputContentHelper.CommitSemantics enum to specify what should happen if errors occur while importing content to the content store.

Table 22-9 CommitSemantics Enum Members to Express Commit Semantics

	Field	Description
	
StopOnFirstError

	
Stop the operation for all files when there is an error on a file. If the handle is internal, it is committed.

	
IgnoreErrors

	
Attempt the operation on all files regardless of errors. If the handle is internal, it is committed.

	
Transactional

	
Stop the operation for all files when any file has an error. This is not valid with a user-provided handle.

22.2.3.2 Java Request Output Examples

Example 22-5 illustrates how to create output content using the RequestOutput API. The output content is created directly in the content store.

Example 22-6 illustrates how to create an output file in the request output directory. Remember that the job must define the SYS_EXT_supportOutputFiles system property as output. This example is appropriate for a Java job, an asynchronous Java job, a pre-processor, or a post-processor.

The following example shows how to manually export and import output files. This would be useful if you need to create content from files during update. Be aware that you can export only files that have been imported and not files that were created using the API.

The example illustrates the scenario that a file that may have been created previously must be updated and imported.

import oracle.as.scheduler.request.ContentFactory;
import oracle.as.scheduler.request.ImportExportResult;
import oracle.as.scheduler.request.ImportExportResult.ImportExportStatus;
import oracle.as.scheduler.request.OutputContentHelper;
import oracle.as.scheduler.request.OutputContentHelper.CommitSemantics;

class ExampleExportImport{

 OutputContentHelper helper = ContentFactory.getOutputContentHelper(requestId);

 if (!helper.outputDirectoryExists())
 {
 // error - make sure job definition defines SYS_EXT_supportOutputFiles
 }

 String outputDir = helper.getResolvedOutputDirectory();
 String fileName = "myfile.out";
 List<String> fileNamesList = new ArrayList<String>();
 fileNamesList.add(fileName);

 // Export the file if it exists; otherwise, create it.

 if (helper.outputContentExists(fileName))
 {
 ImportExportResult exportResult = helper.exportOutputContent(fileNamesList);
 if (exportResult.getStatus() != ImportExportStatus.Success)
 {
 // handle error
 }
 }
 else
 {
 File f = new File(outputDir, fileName);
 f.createNewFile();
 }

 // ... update the file as needed ...

 // Import the new or updated file.
 // Updated file overwrites previous contents.

 ImportExportResult importResult =
 helper.importOutputFile(fileNamesList, CommitSemantics.IgnoreErrors);

 if (importResult.getStatus() != ImportExportStatus.Success)
 {
 // handle error
 }
}

Example 22-5 Creating Output Content using RequestOutput

import oracle.as.scheduler.request.ContentFactory;
import oracle.as.scheduler.request.ContentType;
import oracle.as.scheduler.request.RequestOutput;

class ExampleOutputContentCreator
{
 RuntimeService runtimeService = getRuntimeService();
 RuntimeServiceHandle handle;
 try {
 handle = runtimeService.open();
 RequestOutput requestOutput = ContentFactory.getRequestOutput(
 handle, requestId, ContentType.Text, “SampleOutput.txt");

 requestOutput.writeln(“Output data in sample output content.");
 }
 finally {
 runtimeService.close(handle);
 }
}

Example 22-6 Creating an Output File for Automatic Import

import oracle.as.scheduler.request.ContentFactory;
import oracle.as.scheduler.request.OutputContentHelper;

class ExampleOutputCreator{

 OutputContentHelper helper = ContentFactory.getOutputContentHelper(requestId);
 String outputDir = helper.getResolvedOutputDirectory();

 File f = new File(outputDir, "myfile");
 f.createNewFile();
 if (f.exists())
 {
 // write to file
 }
}

22.2.4 Creating Request Output from a PL/SQL Job

To create request output from PL/SQL, your code can use the ESS_JOB PL/SQL package to create output content directly in the content store.

Using functions and procedures in the package, the job can create text or binary output content.

22.2.4.1 PL/SQL Package Support for Creating Output

Table 22-10 ESS_JOB Procedures and Functions for Request Output

	Method	Description
	
open_text_output_content(p_content_name in varchar2) return varchar2

open_binary_output_content(p_content_name in varchar2) return varchar2

	
Returns a handle from opening the specified output content for the request associated with the current session.

These are convenience functions that call open_output_content with the appropriate content type constant. See open_output_content for additional details.

	
open_output_content(p_content_name in varchar2, p_content_type in integer) return varchar2;

	
Returns an opaque handle from opening the output content p_content_name for the request associated with the current session.

This creates a new output content entry if one does not already exist for the given name. If one already exists, then the specified content type must match that already established for that name.

p_content_type represents content type with one of the content type constants:

CONTENT_TYPE_TEXT (value: 1) for text content.

CONTENT_TYPE_BINARY (value: 2) for binary content.

This returns an opaque handle that is passed to subsequent procedures that operate on that output content.

The content entry is locked on successful return from this function. It may or may not be locked if this procedure fails. A commit or rollback releases the lock. The write_text_content or write_ntext_content procedures must be used to write data for text content, while the write_binary_content procedure must be used to write data for binary content.

You should call close_content to free any resources associated with the handle returned by this method. The close should be done prior to transaction commit or rollback.

NOTE: The content output support has DML semantics. The caller is responsible for the commit/rollback.

	
write_ntext_content(p_content_handle in varchar2, p_data in nvarchar2)

write_text_content(p_content_handle in varchar2, p_data in varchar2);

	
Writes data as p_data to the output content associated with the given handle. These operations are supported only for CONTENT_TYPE_TEXT content type.

p_content_handle is the output handle from a prior open_output_content call.

NOTE: The content output support has DML semantics. The caller is responsible for the commit/rollback.

	
write_binary_content(p_content_handle in varchar2, p_data in raw);

	
Writes binary data as p_data to the output content associated with the given handle. This operation is supported only for CONTENT_TYPE_BINARY content type.

p_content_handle is the output handle from a prior open_output_content call.

NOTE: The content output support has DML semantics. The caller is responsible for the commit/rollback.

	
close_content(p_content_handle in varchar2);

	
Closes the output content handle. This releases resources associated with the given handle and it is no longer valid. Call this method before transaction commit or rollback.

p_content_handle is the output handle from a prior open_output_content call.

NOTE: The content output support has DML semantics. The caller is responsible for the commit/rollback. This method does not automatically perform a commit or rollback

	
output_content_exists(p_content_name in varchar2) return boolean;

	
Returns true if an output content entry having the specified name already exists for the request associated with the current session.

p_content_name is the name of the output content entity.

	
delete_output_content(p_content_name in varchar2);

	
Deletes the specified output content entry for the request associated with the current session.

p_content_name is the name of the output content entity.

22.2.4.2 PL/SQL Output Creation Examples

Example 22-7 illustrates how to write text content into output, as well as how to write log entries along the way.

Example 22-8 illustrates how to write binary content for output.

Example 22-7 PL/SQL Output Creation Examples

create or replace procedure text_output_example_job
(request_handle in varchar2)
as
 v_request_id number := null;
 v_content_name varchar2(100) := 'mycontent.txt';
 v_content_handle varchar2(100);
 v_ntext nvarchar2(100);
begin
 ess_job.write_log(ess_job.LEVEL_FINE,
 'TEXT_OUTPUT_EXAMPLE_JOB Procedure Begin');

 -- Oracle Enterprise Scheduler request id being executed.
 begin
 v_request_id := ess_runtime.get_request_id(request_handle);
 exception
 when others then
 ess_job.write_log(ess_job.LEVEL_SEVERE,
 'Bad request handle: '||request_handle);
 raise_application_error(-20000,
 'Failed to get request id for request handle '||request_handle,
 true);
 end;

 begin
 -- ----------
 -- Delete content entry if it already exists.
 -- ----------
 if (not ess_job.output_content_exists(v_content_name)) then
 ess_job.write_log(ess_job.LEVEL_FINEST,
 'Content does not exist: ' || v_content_name);
 else
 ess_job.write_log(ess_job.LEVEL_INFO,
 'Deleting existing content: ' || v_content_name);
 ess_job.delete_output_content(v_content_name);
 commit;
 end if;

 -- ----------
 -- Write text content. Source data has some non-ascii chars.
 -- Illustrate multiple writes.
 -- ----------
 ess_job.write_log(ess_job.LEVEL_FINE,
 'Write text content: '||v_content_name);

 v_content_handle := null;
 v_content_handle := ess_job.open_text_output_content(v_content_name);

 ess_job.write_text_content(v_content_handle,
 'Data ');
 ess_job.write_ntext_content(v_content_handle,
 unistr('(NTEXT data:\00c4\00c5)'));
 ess_job.write_text_content(v_content_handle,
 ' for CONTENT ' || v_content_name);

 ess_job.close_content(v_content_handle);
 v_content_handle := null;
 commit;
 exception
 when others then
 ess_job.write_log(ess_job.LEVEL_WARNING,
 'Error during text output operations. ' ||
 'content: ' || v_content_name || chr(10) ||
 'Error_Stack...' || chr(10) ||
 dbms_utility.format_error_stack() || chr(10) ||
 'Error_Backtace...' || chr(10) ||
 dbms_utility.format_error_backtrace());
 if v_content_handle is not null then
 ess_job.close_content(v_content_handle);
 v_content_handle := null;
 end if;
 rollback;
 raise_application_error(-20000,
 'Output content operations failed for '||v_content_name);
 end;

 ess_job.write_log(ess_job.level_info,
 'TEXT_OUTPUT_EXAMPLE_JOB Procedure End');
end;
/

Example 22-8 Manual Export and Import of Request Output

create or replace procedure binary_output_example_job
(request_handle in varchar2)
as
 v_request_id number := null;
 v_content_name varchar2(100) := 'mycontent.bin';
 v_content_handle varchar2(100);
 v_nchar_cs varchar2(100);
 v_dest_cs varchar2(100);
 v_ntext nvarchar2(100);
 v_raw raw(500);
begin
 ess_job.write_log(ess_job.LEVEL_FINE,
 'BINARY_OUTPUT_EXAMPLE_JOB Procedure Begin');

 -- Oracle Enterprise Scheduler request id being executed.
 begin
 v_request_id := ess_runtime.get_request_id(request_handle);
 exception
 when others then
 ess_job.write_log(ess_job.LEVEL_SEVERE,
 'Bad request handle: '||request_handle);
 raise_application_error(-20000,
 'Failed to get request id for request handle '||request_handle,
 true);
 end;

 begin
 -- ----------
 -- Delete content entry if it already exists.
 -- ----------
 if (not ess_job.output_content_exists(v_content_name)) then
 ess_job.write_log(ess_job.LEVEL_FINEST,
 'Content does not exist: ' || v_content_name);
 else
 ess_job.write_log(ess_job.LEVEL_INFO,
 'Deleting existing content: ' || v_content_name);
 ess_job.delete_output_content(v_content_name);
 commit;
 end if;

 -- ----------
 -- Write binary content.
 -- This is the UTF-8 representation of a string for a known byte
 -- encoding rather than whatever the charset/national charset
 -- happens to be for this database.
 -- Source data has couple non-ascii chars.
 -- ----------

 -- database national character set being used
 select value into v_nchar_cs
 from nls_database_parameters
 where parameter = 'NLS_NCHAR_CHARACTERSET';
 ess_job.write_log(ess_job.LEVEL_FINEST,
 'NLS_NCHAR_CHARACTERSET = '||v_nchar_cs);

 ess_job.write_log(ess_job.LEVEL_FINE,
 'Write binary content: '||v_content_name);

 v_content_handle := null;
 v_content_handle := ess_job.open_binary_output_content(v_content_name);

 v_ntext := unistr('Data (NTEXT data:\00c4\00c5) for CONTENT ' ||
 v_content_name);

 v_dest_cs := 'AL32UTF8';
 v_raw := utl_raw.cast_to_raw(convert(v_ntext, v_dest_cs, v_nchar_cs));
 ess_job.write_binary_content(v_content_handle, v_raw);
 ess_job.write_log(ess_job.LEVEL_FINE,
 'Wrote '||utl_raw.length(v_raw)||' bytes' ||
 ' using ' || v_dest_cs || ' charset');

 ess_job.close_content(v_content_handle);
 v_content_handle := null;
 commit;
 exception
 when others then
 ess_job.write_log(ess_job.LEVEL_WARNING,
 'Error during binary output operations. ' ||
 'content_name=' || v_content_name || chr(10) ||
 'Error_Stack...' || chr(10) ||
 dbms_utility.format_error_stack());
 if v_content_handle is not null then
 ess_job.close_content(v_content_handle);
 v_content_handle := null;
 end if;
 rollback;
 raise_application_error(-20000,
 'Output content operations failed for '||v_content_name);
 end;

 ess_job.write_log(ess_job.level_info,
 'BINARY_OUTPUT_EXAMPLE_JOB Procedure End');
end;
/

22.2.5 Creating Request Output from a Process Job

You create output from process job logic by writing the content to the location specified by the ESS_OUTPUT_WORK_DIR environment variable that is available for all process jobs. As with other jobs, ensure that the SYS_EXT_supportOutputFiles system property is set to output so that the environment variable is defined for the job.

After your process code writes the file, Oracle Enterprise Scheduler automatically imports output files in the directory into the content store as binary content.

22.2.6 Creating Request Output from an EJB Job

See Request Logging and Output From an EJB Job for a description and examples about how to create output from an EJB job.

22.2.7 Creating Request Output from a Web Service Job

For synchronous and asynchronous web services, request output content is automatically created from the response message payload as described below. The output content is text data with the name WebServiceJobOutput-REQUESTID.txt, where REQUESTID is the request ID of the request.

For a synchronous web service, the response message payload is captured as the request output.

For an asynchronous web service, the callback/response message payload received at EssWsJobAsyncCallbackService is captured as the request output when the job status is SUCCESS.

22.2.8 APIs for Handling Request Output

You can use methods of the oracle.as.scheduler.RuntimeService class to handle request output stored in the Oracle Enterprise Scheduler content store. You'll need to first get a RuntimeServiceHandle instance. You'll pass this instance as an argument for each of these RuntimeService methods. For more on the RuntimeServiceHandle, see How to Access the Runtime Service and Obtain a Runtime Service Handle.

Table 22-11 RuntimeService Methods for Handling Request Output

	Method	Description
	
getOutputContentDetail(RuntimeServiceHandle handle, long requestId, String contentName)

	
Returns a ContentDetail instance for the specified output content for the specified request, or null if the content does not exist.

	
getOutputContentDetail(RuntimeServiceHandle handle, long requestId)

	
Returns a ContentDetail List instance for all output content for the request. The list is empty if there is no output content.

	
openOutputContent(RuntimeServiceHandle handle, long requestId, String contentName)

	
Opens the specified request output to retrieve output data for the specified content, returning ContentHandle instance. You can use the handle to retrieve output data. The content must be closed to release the handle.

	
getTextContent(RuntimeServiceHandle handle, ContentHandle contentHandle, int maxChars)

	
Returns a char array with at most maxChars characters from the log or output text content.

	
getBinaryContent(RuntimeServiceHandle handle, ContentHandle contentHandle, int maxBytes)

	
Returns a byte array with at most maxBytes bytes from the binary content.

	
closeContent(RuntimeServiceHandle handle, ContentHandle contentHandle)

	
Closes the previously opened log or output content and releases the handle.

23 Oracle Enterprise Scheduler Security

This chapter describes Oracle Enterprise Scheduler Security features that provides access control for its resources and application identity propagation for job execution.

This chapter includes the following sections:

	
Introduction to Oracle Enterprise Scheduler Security

	
Configuring Metadata Security for Oracle Enterprise Scheduler

	
Configuring Data Security for Oracle Enterprise Scheduler

	
Configuring Web Service Security for Oracle Enterprise Scheduler

	
Configuring PL/SQL Job Security for Oracle Enterprise Scheduler

	
Elevating Privileges for Oracle Enterprise Scheduler Jobs

	
Configuring a Single Policy Stripe in Oracle Enterprise Scheduler

23.1 Introduction to Oracle Enterprise Scheduler Security

Oracle Enterprise Scheduler Security includes the following:

	
Protected operations on MetadataService; protected by MetadataPermission, which enforces metadata access control. Access control on metadata objects. Only a privileged user may create, delete, and update job and schedule metadata. For more information see Oracle Enterprise Scheduler Metadata Access Control.

	
Support for the use of an application identity. Using an application identity enables elevated privileges for completing a job that requires higher privileges than those allotted to the submitting user. For more information, see Oracle Enterprise Scheduler Job Execution Security.

23.1.1 Oracle Enterprise Scheduler Metadata Access Control

At design time the metadata creator must decide which job functions can access which metadata objects. This is expressed by associating each metadata object with one or more roles and specifying one or more actions for each role. Figure 23-1 shows the metadata security summary.

Figure 23-1 Design Time Metadata Security for Oracle Enterprise Scheduler

[image: Description of "Figure 23-1 Design Time Metadata Security for Oracle Enterprise Scheduler" follows]

23.1.2 Oracle Enterprise Scheduler Job Execution Security

During job submission, the user under whose permissions the job request is submitted is called the submitting user. At request execution time all user Java code including pre-processing, post-processing, Java jobs, and substitution, is run as the submitting user, retaining all roles and credentials.

If the job metadata specifies SYS_RUNAS_APPLICAITONID, however, the job runs under the elevated privileges of an application ID. For more information, see Elevating Privileges for Oracle Enterprise Scheduler Jobs.

23.2 Configuring Metadata Security for Oracle Enterprise Scheduler

When a user accesses Oracle Enterprise Scheduler services using the RuntimeService or MetadataService, the identity of the user is acquired and Oracle Enterprise Scheduler checks if the user has the required permissions to access resources (for example metadata objects). For example, if a user named teller1 must call getJobDefinition to access a metadata object named calculateFees, Oracle Enterprise Scheduler ensures that teller1 has READ permission for the metadata object calculateFees before returning the object.

At design time the metadata creator must decide which job functions can access which metadata objects. This is expressed by associating each metadata object with one or more roles and specifying one or more actions for each role.

There are two options for metadata role assignments:

	
Using Oracle JDeveloper Tools Oracle ADF Security Wizard

	
Using Oracle JDeveloper Oracle Enterprise Scheduler add-in metadata pages

Oracle JDeveloper ADF Security wizard creates the roles you use; the roles must be created before you can register them with a metadata object.

23.2.1 How to Enable Application Security with Oracle ADF Security Wizard

These steps describe a minimal, validated security setup for an application using Oracle Enterprise Scheduler.

Follow these steps to create a working jps-config.xml and a partially-populated jazn-data.xml. Use these steps to configure servlets to work with JPS.

To enable security using the ADF Security wizard:

	In Oracle JDeveloper, with an application open, from the Application menu select Secure.
	From the dropdown list, select Configure ADF Security. The Configure ADF Security wizard displays.
	In the Enable ADF Security page, select either ADF Authentication and Authorization or ADF Authentication and click Next.
	In the Select authentication type page, select either HTTP Basic Authentication or Form-Based Authentication and click Next.
	If you selected ADF Authentication and Authorization > Form-Based Authentication in the Enable automatic policy grants page, select the appropriate options from the Enable Automatic Grant area, and click Next.
	In the Specify authenticated welcome page, select options as needed and click Next.
	In the Summary page verify the options and click Finish.
	In the Security Infrastructure Created dialog, click OK.

23.2.2 Including Security Files in EAR File

To enable security and to ensure that the jazn-data.xml is included in the application deployment, perform the following steps after assembling the EAR file for the application.

	
In Oracle JDeveloper, select Application > Application Properties.

	
In the Application Properties page, in the Navigator select Deployment.

	
In the Deployment Profiles area, select the EAR file Deployment descriptor.

	
Click Edit. This displays the Edit EAR Deployment Profile Properties page.

	
In the Edit EAR Deployment Profile Properties page, expand File Groups > Application Descriptors > Filters.

	
In the Filters area, select the Files tab.

	
Ensure that the files jazn-data.xml, jps-config.xml, and weblogic-application.xml are selected under the META-INF folder.

	
Click OK to save the descriptor.

23.2.3 How to Define Principals for Security

You need to define roles before the roles are used in Oracle Enterprise Scheduler security. There are two types of roles that may be defined:

	
Enterprise roles: These are defined directly in Oracle WebLogic Server either using the Oracle WebLogic Server console, using the WLST scripts, or using the ADF Security Wizard in Oracle JDeveloper.

	
Application roles: These can be defined in the jazn-data.xml file or using the ADF Security Wizard.

To create the application role:

	In Oracle JDeveloper, open the application and expand Application Resources in the Application Navigator.
	In the Application Resources area, expand Descriptors and META-INF.
	In META-INF, double-click to open jazn-data.xml.
	In the page showing jazn-data.xml, select the Applications Role tab. Note, if the Application Role tab is not shown, try closing jazn-data.xml and then opening it again.
	Click the Add button in the Roles list and choose Add New Role.
	Set the name to EssApplicationRole in the Name field.

Figure 23-2 Creating the Application Role

[image: Description of "Figure 23-2 Creating the Application Role" follows]

23.2.4 Creating Enterprise Role

To create the enterprise role:

	
In Oracle JDeveloper, open the application and expand Application Resources in the Application Navigator.

	
In the Application Resources area, expand Descriptors and META-INF.

	
In META-INF, double-click to open jazn-data.xml.

	
In the page showing jazn-data.xml, select the Test Users & Roles tab. Note, if the Test Users & Roles tab is not shown, try closing jazn-data.xml and then opening it again.

	
Select the Enterprise Roles tab.

	
Click the Add button in the Roles list and choose Add New Role.

	
Set the name to EssEnterpriseRole in the Name field.

Figure 23-3 Creating the Enterprise Role

[image: Description of "Figure 23-3 Creating the Enterprise Role" follows]

23.2.5 How to Create Grants with Oracle Enterprise Scheduler Metadata Pages

Access to all metadata is controlled by grants. In order to ensure access by the right identities, you need to give the correct grants. It is expected that most metadata grants are done using the Oracle Enterprise Scheduler Oracle JDeveloper add-in.

First, create any required Oracle Enterprise Scheduler metadata in an application using File > New > Business Tier > Enterprise Scheduler Metadata.

Using Oracle JDeveloper, you can add security grants to Oracle Enterprise Scheduler metadata objects.

To secure Oracle Enterprise Scheduler metadata objects:

	Open the Editor page for any Oracle Enterprise Scheduler metadata object.
	In the Access Control area, click Add to add a new access control item.
	In the Add Access Control dialog, select a Role from the dropdown list. This selects a role to grant access privileges.
	Select one or more actions from the list, Read, Execute, Update, or Delete.
	Click OK. This displays the updated role, as shown in Figure 23-4.
	Repeat for as many roles as needed.

Figure 23-4 Security Roles for Oracle Enterprise Scheduler Metadata

[image: Description of "Figure 23-4 Security Roles for Oracle Enterprise Scheduler Metadata" follows]

23.2.6 About MetadataPermission APIs

Grants for metadata are part of the class oracle.as.scheduler. security.MetadataPermission. The name, or target of the permission is based on the package, metadata object type, and name of the metadata object being protected; this identifier can be retrieved from MetdataObjectId#toPermissionString().

Table 23-1 lists the actions for the grants. The notation <Type> is a placeholder for all of the metadata object types. For example, get<Type>() refers to the methods getJobDefinition(), getJobType(), getJobSet().

Table 23-1 Grant Actions for Metadata Security

	Action	Implies	Metadata Functions
	
READ

	
None

	
get<Type>(), query<Type>()

	
EXECUTE

	
READ

	
submitRequest()

	
CREATE

	
READ

	
add<Type>()

	
UPDATE

	
READ

	
update<Type>()

	
DELETE

	
READ

	
delete<Type>()

If you are submitting ad-hoc requests, you can have full wildcard ("*") permission with both EXECUTE and CREATE actions. When submitting ad-hoc requests, that is, using submitRequest() without certain MetadataObjectIds, you can grant permissions with the full wildcard ("*") name using the EXECUTE and CREATE actions.

23.2.7 What Happens When You Configure Metadata Security

Each time a user application calls a MetdataService or RuntimeService method, Oracle Enterprise Scheduler checks the current subject for privileges on the metadata accessed by the methods. For example, submitting a request requires EXECUTE permissions on the job definition or job set metadata object associated with the submission. Methods that change metadata, for example calling updateJobDefinition(), require UPDATE permissions.

For all MetadataService methods except queries, an exception is thrown when the user tries to access a metadata object for which the user does not have permission.

The MetadataService query methods have different behavior. When a user performs a query Oracle Enterprise Scheduler only returns metadata objects that have READ permission. Thus a user who has no permissions on metadata objects receives an empty list for all queries, but this user would not see an exception thrown due to lack of permissions.

The value of SystemProperty.USER_NAME is overwritten at submission time; the user cannot spoof an identity at submission time using SystemProperty.USER_NAME.

23.3 Configuring Data Security for Oracle Enterprise Scheduler

The Oracle Enterprise Scheduler standalone data security implementation is based on functional security permission checking using the RuntimeDataPermission class. By default, Oracle Enterprise Scheduler supports the following levels of data security enforcement:

	
A user can only operate on the requests that he or she submits.

	
A user can be granted permission to see all requests regardless of who submits them by assigning the user to the Admin, Operator, or Monitor roles.

	
A user can view the output generated by the requests that he or she submits or executes.

If you want to add or change the default data security permissions, you must reconfigure the jazn-data.xml file as shown in How to Change Data Security Permissions.

23.3.1 How to Change Data Security Permissions

This section describes how configure the jazn-data.xml file to change the a job request's data security from the "out-of-the-box" default settings described in Configuring Data Security for Oracle Enterprise Scheduler.

The following is an example of ajazn-data.xml permission section that defines RuntmeDataPermission.

<permission>
 <name>definition like 'oracle.apps.ess.custom.soa.*',product like "SOA%",PROPERTY1=VALUE1</name>
 <class>oracle.as.scheduler.security.RuntimeDataPermission</class>
 <actions>ESS_REQUEST_READ,ESS_REQUEST_OUTPUT_READ</actions>
</permission

The permission conditions defined in the example above grant permission to a user to read the details of a job request and to read job request output if the job request matches the following criteria:

	
Its job definition matches the pattern: oracle.apps.ess.custom.soa.* and

	
If the value of the product field has "SOA"' and

	
A user-defined property named PROPERTY1 is set with the value of VALUE1

23.3.1.1 Conditions

Conditions are specified in the <name> element and use the “=" and “like/LIKE" operators. The “%" and “*" wildcard characters can be used with the “like/LIKE" operators. Note that you cannot use the “%" wildcard character in a field name that specifies a metadata object name, however, you can use it if the field name specifies other data such as products, and request categories. For example, the following examples work correctly:

	
definition LIKE 'oracle.apps.ess.custom.soa.*'

	
requestCategory LIKE 'EssFineGrained%',workAssignment LIKE 'FineGrainedWA%',className LIKE '%BasicJavaJob%'

While the following entry does not work correctly:

	
definition LIKE 'oracle.apps.ess.custom.soa.%'

Conditions are specified as sets of key-value pairs with the following specific delimiter syntax.

	
Key-value pairs in conditions are separated by the “," character.

	
Whitespace characters cannot be specified directly before or after the “," delimiter.

	
The value portion of a key-value condition can be unquoted, single-quoted, or double-quoted.

	
Multiple conditions specified in the same element are interpreted as logically ANDed together.

	
You can logically OR conditions by defining two or more permission resources for a same grantee.

The following rules apply to field names and reqProp keys:

	
The field name must be the value represented by fieldName of RuntimeService.QueryField. For example, QueryField.DEFINITION.fieldName().

	
You cannot specify ResultIndex as the field name because there is no equivalent field in Request History View for ResultIndex. The Request History View is the Database View created out of the Request_history table. The SQL query of the standalone data security gets executed against this view.

	
reqProp is a user property defined in Oracle Enterprise Scheduler job metadata or during request submissions. For example, PARTITION_NAME='SOA'.

	
Table 23-2 shows the list of valid field names and their corresponding request history view column entries:

Table 23-2 Condition Query Fields and Their Corresponding Request History View Column Entries

	Query Field	Request History View Column
	
QueryField.REQUESTID

	
requestid

	
QueryField.APPLICATION

	
application

	
QueryField.USERNAME

	
userName

	
QueryField.PRODUCT

	
product

	
QueryField.REQUEST_CATEGORY

	
requestCategory

	
QueryField.PRIORITY

	
priority

	
QueryField.NAME

	
name

	
QueryField.ABSPARENTID

	
absParentId

	
QueryField.TYPE

	
type

	
QueryField.DEFINITION

	
definition

	
QueryField.STATE

	
state

	
QueryField.SCHEDULE

	
schedule

	
QueryField.PROCESSSTART

	
processStart

	
QueryField.PROCESSEND

	
processEnd

	
QueryField.REQUESTEDSTART

	
requestedStart

	
QueryField.REQUESTEDEND

	
requestedEnd

	
QueryField.SUBMISSION

	
submission

	
QueryField.PARENTREQUESTID

	
parentRequestId

	
QueryField.WORKASSIGNMENT

	
workAssignment

	
QueryField.SCHEDULE

	
scheduled

	
QueryField.REQUESTTRIGGER

	
requesttrigger

	
QueryField.PROCESSOR

	
processor

	
QueryField.CLASSNAME

	
processor

	
QueryField.ELAPSEDTIME

	
elapsedtime

	
QueryField.WAITTIME

	
waittime

	
QueryField.SUBMITTER

	
submitter

	
QueryField.SUBMITTERGUID

	
submitterguid

23.3.1.1.1 Condition Examples

The following examples show validly specified conditions:

• fieldName=value
• fieldName like 'value%'
• fieldName like "value*"
• reqProp="value"
• reqProp LIKE "value*"
• PermissionName : <name>fieldName1=value1,fieldName2 like 'value2%',reqProp="value",reqProp like 'value*'</name>

23.3.1.2 Actions

Available actions include a combination of the following:

	
ESS_REQUEST_READ

	
ESS_REQUEST_UPDATE

	
ESS_REQUEST_HOLD

	
ESS_REQUEST_CANCEL

	
ESS_REQUEST_LOCK

	
ESS_REQUEST_RELEASE

	
ESS_REQUEST_DELETE

	
ESS_REQUEST_PURGE

	
ESS_REQUEST_OUTPUT_READ

	
ESS_REQUEST_OUTPUT_DELETE

23.3.2 Examples

Example 23-1 shows how permissions can be specified directly in the <permission> element.

Example 23-2 shows how permissions can be specified using permission sets.

Note:

The content defined in the <permission-sets> - <permission-set> - <member-resources> - <member-resource> - <resource-name> element must be the same as the content defined in the <resources> - <resource> - <name> element.

Example 23-1 PL/SQL Request Text Output

<app-roles>
 <app-role>
 <name>riyanu_soa_role</name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <members>
 <member>
 <name>riyanu_soa_group</name>
 <class>weblogic.security.principal.WLSGroupImpl</class>
 </member>
 </members>
 </app-role>
</app-roles>
<grant>
 <grantee>
 <description>Allow soa role to pass through</description>
 <principals>
 <principal>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>riyanu_soa_role</name>
 </principal>
 </principals>
</grantee>
<permissions>
 <permission>
 <name>oracle.apps.ess.custom.soa.*</name>
 <class>oracle.as.scheduler.security.MetadataPermission</class>
 <actions>READ,EXECUTE,CREATE,DELETE,UPDATE</actions>
 </permission>
 <permission>
 <name>definition like oracle.apps.ess.custom.soa.*, partitionName=SOA_PARTITION,product=SOA</name>
 <class>oracle.as.scheduler.security.RuntimeDataPermission</class>
 <actions>ESS_REQUEST_READ,ESS_REQUEST_UPDATE, ESS_REQUEST_OUTPUT_READ</actions>
 </permission>
</permissions>
</grant>

Example 23-2 PLSQL Request Binary Output Example

<app-roles>
 <app-role>
 <name>riyanu_soa_role</name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <members>
 <member>
 <name>riyanu_soa_group</name>
 <class>weblogic.security.principal.WLSGroupImpl</class>
 </member>
 </members>
 </app-role>
</app-roles>
<resource-types>
 <resource-type>
 <name>ESSSOAMetadataResourceType</name>
 <display-name>ESSSOAMetadataResourceType</display-name>
 <description>ESS SOA Metadata Resource</description>
 <matcher-class>oracle.as.scheduler.security.MetadataPermission</matcher-class>
 <actions-delimiter>,</actions-delimiter>
 <actions>create,read,update,delete,execute</actions>
 </resource-type>
 <resource-type>
 <name>ESSSOARequestResourceType</name>
 <display-name>ESSSOARequestResourceType</display-name>
 <description>Resource type for simple ESS request accesscontrol</description>
 <matcher-class>oracle.as.scheduler.security.RuntimeDataPermission </matcher-class>
 <actions-delimiter>,</actions-delimiter>
 <actions>ESS_REQUEST_READ,ESS_REQUEST_UPDATE,ESS_REQUEST_CANCEL, ESS_REQUEST_DELETE,ESS_REQUEST_OUTPUT_READ</actions>
 </resource-type>
</resource-types>
 <resources>
 <resource>
 <name>oracle.apps.ess.custom.soa.*</name>
 <type-name-ref>ESSSOAMetadataResourceType</type-name-ref>
 <description>All SOA ESS metadata</description>
 <display-name>All SOA ESS metaddata</display-name>
 </resource>
 <resource>
 <name>definition like "oracle.apps.ess.custom.soa.*", partitionName=SOA_PARTITION,product=SOA</name>
 <type-name-ref>ESSSOARequestResourceType</type-name-ref>
 <description>Any ESS Multi request</description>
 <display-name>Any ESS Multi request</display-name>
 </resource>
 </resources>
 <permission-sets>
 <permission-set>
 <name>READ_ALL_SOA_MULTI_METADATA_RIYANU</name>
 <display-name>Read privilege on all SOA ESS metadata
 </display-name>
 <description>Read privilege on all SOA ESS metadata</description>
 <member-resources>
 <member-resource>
 <type-name-ref>ESSSOAMetadataResourceType</type-name-ref>
 <resource-name>oracle.apps.ess.custom.soa.*</resource-name>
 <actions>create,read,execute</actions>
 </member-resource>
 </member-resources>
 </permission-set>
 <permission-set>
 <name>READ_ALL_ESS_SOA_REQUESTS_RIYANU</name>
 <display-name>All privileges on all ESS Requests</display-name>
 <description>Allow read, update, cancel, hold, delete all the ESS requests</description>
 <member-resources>
 <member-resource>
 <type-name-ref>ESSSOARequestResourceType</type-name-ref>
 <resource-name>definition like "oracle.apps.ess.custom.soa.*", partitionName=SOA_PARTITION,product=SOA</resourcename>
 <actions>ESS_REQUEST_READ,ESS_REQUEST_OUTPUT_READ</actions>
 </member-resource>
 </member-resources>
 </permission-set>
</permission-sets>
<jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>riyanu_soa_role</name>
 </principal>
 </principals>
 </grantee>
 <permission-set-refs>
 <permission-set-ref>
 <name>READ_ALL_SOA_MULTI_METADATA_RIYANU</name>
 </permission-set-ref>
 <permission-set-ref>
 <name>READ_ALL_ESS_SOA_REQUESTS_RIYANU</name>
 </permission-set-ref>
 </permission-set-refs>
 </grant>
</jazn-policy>

23.4 Configuring Web Service Security for Oracle Enterprise Scheduler

For information about securing the Oracle Enterprise Scheduler web service, see Using the Oracle Enterprise Scheduler Web Service .

23.5 Configuring PL/SQL Job Security for Oracle Enterprise Scheduler

The PL/SQL job does not enforce data security checks when calling ess_runtime package APIs.

23.6 Elevating Privileges for Oracle Enterprise Scheduler Jobs

When a user accesses Oracle Enterprise Scheduler services using the RuntimeService or MetadataService interfaces, the identity of the user calling the methods is acquired. This identity is used to check whether the user has the required permissions to access certain resources such as metadata objects. For example, if user teller1 calls the method getJobDefinition for metadata object caclulateFees, Oracle Enterprise Scheduler ensures that teller1 has read permissions for metadata object caclulateFees before returning the object.

The caller identity is also used to run jobs requested by the user. For example, if user teller1 calls the method submitRequest() for a Java job, the requested jobs run under teller1 and retain all roles and credentials assigned to that user.

Oracle Enterprise Scheduler supports the use of an application identity. Using an application identity enables elevated privileges for completion of a job that requires higher privileges than those allotted to the submitting user.

23.7 Configuring a Single Policy Stripe in Oracle Enterprise Scheduler

Oracle Platform Security policy store serves as the repository for authorization policies. Authorization policies load at runtime into the Java Virtual Machine, and are used to make decisions regarding authorization. Authorization policies comprise a hierarchy of application roles, the mapping of enterprise roles to application roles and permissions grants to application roles. Application roles can also be hierarchical.

Aside from authorization policies, Oracle Platform Security policy store also stores administrative constructs that help in maintaining these authorization policies, including resource catalogs (with associated resource types), permission sets and role categories. The authorization polices and administrative components are scoped to an application. This is known as an application stripe.

An application stripe is a collection of JAAS policies applicable to the application with which it is associated. Out of the box, an application stripe maps to an Oracle Java EE application. Oracle Platform Security also supports mapping multiple Java EE applications to one application stripe. The application ID string identifies the name of the application or applications.

23.7.1 How to Configure a Single Policy Stripe in Oracle Enterprise Scheduler

Oracle Enterprise Scheduler allows specifying an applicationStripe name and mapping it to a JPS policy context ID. You can assign multiple Oracle Enterprise Scheduler hosting applications to a single policy context.

To configure an Oracle Enterprise Scheduler hosting application to a specific applicationStripe:

	Open the ejb-jar.xml file.
	Under the message-driven element, add an activation-config-properties element with the value applicationStripe.
	Under the jpsinterceptor-class element, configure the JpsInterceptor.

Make sure to match the value of applicationStripe under the <message-driven> element with the application.name value under the <interceptor> element.

Example 23-3 shows an applicationStripe configuration for the policy context ESS_FUNCTIONAL_TEST_APP_STRIPE.

	If your application has a web module, configure the web module JpsFilter to use the same applicationStripe in the file web.xml. Example 23-4 shows a code sample.

Example 23-3 Configuring the applicationStripe and the JpsInterceptor

<ejb-jar>

 <enterprise-beans>
 <message-driven>
 <ejb-name>ESSAppEndpoint</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.EssAppEndpointBean</ejb-class>
 <activation-config>

 <activation-config-property>
 <activation-config-property-name>applicationStripe</activation-config-property-name>
 <activation-config-property-value>ESS_FUNCTIONAL_TESTS_APP_
 STRIPE</activation-config-property-value>
 </activation-config-property>
 </activation-config>
 </message-driven>

 </enterprise-beans>

 <interceptors>
 <interceptor>
 <interceptor-class>oracle.security.jps.ee.ejb.JpsInterceptor</interceptor-class>
 <env-entry>
 <env-entry-name>application.name</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>ESS_FUNCTIONAL_TESTS_APP_STRIPE</env-entry-value>
 <injection-target>
 <injection-target-class>oracle.security.jps.ee.ejb.JpsInterceptor
 </injection-target-class>
 <injection-target-name>application_name</injection-target-name>
 </injection-target>
 </env-entry>
 </interceptor>
 </interceptors>
</ejb-jar>

Example 23-4 Configuring the Web Module in web.xml

<web-app>
 <filter>
 <filter-name>JpsFilter</filter-name>
 <filter-class>oracle.security.jps.ee.http.JpsFilter</filter-class>
 ...
 <init-param>
 <param-name>application.name</param-name>
 <param-value>ESS_FUNCTIONAL_TESTS_APP_STRIPE</param-value>
 </init-param>
 </filter>

</web-app>

23.7.2 What Happens When You Configure a Single Policy Stripe

At design time, an application stripe manifests as:

	
An <application> element under the <policystore> element in the jazn-data.xml file.

	
A node under the node cn=<Weblogic.domain.name>,cn=JPSContext,cn=<root.node>, such as cn=ATGDemo,cn=base_domain,cn=JPSContext,cn=MY_Node.

23.7.3 What Happens at Runtime

At runtime, an application stripe manifests as an instance of the class oracle.security.jps.service.policystore.ApplicationPolicy.

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2015, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Alpha and Beta Draft Documentation Notice

If this document is in preproduction status:

This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.

[image: Oracle Logo]

OEBPS/img/GUID-B5470780-5861-4564-AD8B-66217659CB73-default.png
(s <|v & |

& BPELProcess1 bpel

%R F-S-P2FQI >R

Bavy e

Partner Links

-

bpelprocess1_clent

wra @

PartnerLinks | M

receivelnput

callbackClient

process/sequence/scope

Design| Source History

Zoom:

Components
Q-
BPEL2.0

I BPEL Constructs
I Subprocesses

|
Dehydrate

Transform

xQuery
Transform

00

L]

41504 Component
I BPEL Services

Properties

Q Find

B schedutejob

General

6 >

Application Properties

=l Oracle Extensions

>
Java
Embedding

3]
Replay
-

)
Transiate

XSLT
Transform

=]

ts

I Custom Activity Tempiates

Applic_

»

OEBPS/GUID-E1B4CDED-B5EF-440F-9192-8DF902B7898A-default.gif
Edit Entity

OEBPS/GUID-6D2B6E89-9889-417F-8F05-2BAD141E4D93-default.png
[8] Oracle JDeveloper 12c - EssDemoApp.jws : EssDemo.jpr : /scratchivnanjund/tmpitestDemoApp/Ess DemoApp/EssDemo/essmetajoracle/apps/ess/seeded/demopackage/Jobs/AgT]

Applicatons B Asyncwsionzxm! -
(] EssDemoapp ~ | [3 Job Definition

i Projects -2 W
EJ AR-7-= Name: Asynewsion? [8] Web Service
& (Gl pemoun
Display Name: [AsyncWslobz
< Dlzsoeme Specy a WL sefct e s por, s perton. A il pyoad b genere |

5 (2 Application Sources Invake Async SOA Cam| in which speciic values can be inserted.

c@es Description:
583 oracte wsoL: [fdefauitfAsyneSOAProjectl fasyncsoacompositel_client_egPWSDL] Q

=03 apps Job Type: Joraclefas/ess/core/A;
503 ess Web Service Type: [son

-0 seeded Class Name: [oracle.as.schedulerjob.

[publish

]

service: e1_client_ep

= (G Application Defined Properties 7+ %

No Application Defined Properties
I Application Resources

0s Contrls = @ sytem Propenies /¥ %
1o Cone S @opempopertis | pon [rsnesorcompostei st EiE
Name
SYS_effectiveApplication Invoke Operation
prTr =R M
5 &= Access ool o 7% U
No Access Control Payload: [<ns1process xminsins1="http://xmIns.oracle.com/AsyncSOAAPPL/ASyr]
<nsLinput>$(ESS_REQ;Subm tArgumentL/nsLinput>
= @ Localization </nsLiprocess>
Job Definition Editor| ¢ 3

Messages - Log -
Ju1 03, 2013 6:41:32 AM oracle. tion
SEVERE: java.i0.FileNotFoundExc

Ju1 03, 2013 6:43:43 AM oracle.
HFO: - -BEGIN MSG NODE-

No Structure

Jul 03, 2013 £:43:43 AM oracle. <€] v
INFO; 1-oo-Complax Part payiod

30163, 2013 8145143 A bracler

INFo: 2-2--End Complex pare pay] _ HeP (e oo
S 03, 2015 8143145 A orache ememmsrsras .

HFo: - -END MSG NODE-

«@

€ > »

OEBPS/img/GUID-E5BFDDF0-28DE-4BA3-9B4E-7607C2E20C62-default.gif
Receive xR

* 7R

Initiate Properties

[] ShowNamespace URls

OEBPS/img/GUID-326D83D2-D0CE-4493-B819-ADAEC7635663-default.gif
Orace Enterprise

Scheduler soA-8PEL

Asynciob '

oxeute) Begin

[ReiseEvent - 4{

|~
Success
EssWebService
setAsyncstatus <)

OEBPS/img/GUID-8F476381-583D-4C09-BB29-1AE03B6362BC-default.png
WMMML

Edit Schedule Job

| SYtemPropertes | S Condion | Targes | sources =
General polcaton Froperes

ine

e

Warning

o sppicatio (YS_efecveAplcation)was found. Make sure 10 speciy an pplicton.

e ooy [ok Cancel

processseauence/cope. 2o0m,

Design Source Histor

Edit Schedule job

System Properties ~Skip Condition | Targets Sources
General Application Properties

Application |
Name: [schedulejob1 |
Description: | | &

Job: [foracle/apps/ess/demopackage /Basicjavajob | Q
Schedule: | | Q@
StartTime: | | &

Help apply | Ok | cancel

4

OEBPS/img/GUID-25BD85CA-3773-4A01-93DA-89324A27097D-default.jpg
@ Oracle Deployment Configuration

Configure and custamize settings for this deployment

bDS
- Metadata Repasitory

Reposiory Name: [mas-E55_MDS_DS]

Repository Type: D8

Partition Name:

Path/JNDIInfo; jdbc/mds-ESS_MDS_DS

- Shared Metadata Repositaries

Namespace Repository Type Partition Path/JNDI Info

Help Deploy. Cancel

OEBPS/GUID-B1EF3415-258A-48B5-9445-562665B54227-default.jpg
Name your project

Create Custom Project - Step 1 of 4.

5 ot vame
T

Project EJB Setting:

Project ESS Client Sup

Help

Broject Name: [EssClient

Directory:

[#5crateh/ababchak/jdeveloper/mywork/EssDemoApp/EssClient |

Browse.

Project Features | Generated Components

Available

=]
Database Modeling

8 Modeling

ESS Host Support

£S5 Job Support
Extension Development
java Modeling
javaserver Faces (SF)

(OFP Library Suite
OFP Suite

evascript
2 [spanserviets
Qo

Associated Libraries

selected

ESS Client Support
HTML and Cs5

Maven Feature Description:

Apache Maven is a software project managem ent and comprehension tool. Based on the
concept of a project object model (POM), Maven can manage a project's buld, reporting
and documentation from 2 central piece of information.

Next> | Enish Cancel

OEBPS/img/GUID-B822BDC1-41AD-4A0B-9123-359DC3F618D9-default.gif
Create Incompatibility,

Incompatiblity

Allows you to speciy jobs that cannot be executed at the same time,

Neme:
Package:

Location;

Incompatibity 1

IC:{Developerimyworkjapplication!SfProject1]

Incompatibity Type:

@ Gibl (entire fob)

O Domain (propety of the job)

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Fusion Middleware Developing
Applications for Oracle Enterprise
Scheduler, 12¢ (12.2.1)

OEBPS/img/GUID-FF946ECE-B893-4269-BA5D-94EFEDDF6FD1-default.gif
From

To

Type: [Expression

ype; (Varible

Expression

B

concat('Fault: ', ora:getFaulthane(),
ora:getFaultasString())

fariables
Process
3 variables
(x) inputvariable
- (x) OnMessage_cancel_inputVariable
- () outputvariable
() AsyncCallback setAsyncRequeststatus_Inputvs
() AsyncCallback_setsyncRequeststatus_Output
- (x) getRequestDetail_getRequeststate_Inputvariab)
(%) getRequestDetail_getRequestState_Outputvar
() asyncCancel_setAsyncRequestStatus_inputvar
() asyncCancel_setAsyncRequestStatus_Outputy
5 (x) Invoke._d4_setSubmitArgs_nputvariable
- (x) Invoke_4_setSubmitArgs_OutputVariable
(<) ASyncCGalibackERROR.setAs ync RequestStatus.
& [parameters
> nsLisetasyncRequeststatus
4> nsLrequestExecutionContext
<> nsListatus
st sausiisg
() AsyncCallbackERROR_ s etAsync RequestStatus.
& Scope - Scape_1

[show Detailed Node Information

/ns:

xpath

etAsynCReqUeSTSTatus/NSL: statush

|

ey

OEBPS/GUID-AF80EA2F-7945-4E2E-9ED3-1C263347D40C-default.png
Update Reference

soap
Web service is a service externalto the SOA composite.

tame [Essservice]
WSDL URL [FApplicationt /Projectl /SOA /WSDLs ESSWebServiceAbstract wsdl|
Fort Type: [Esswepservice ~
CalbackportType; [EsswebserviCalback

] copy wsd and its dependent artifacts ito the project.

Transaction Participation: (WSDLDriven |

verson e

Help oK. Cancel

OEBPS/GUID-B8ECC6B1-9ACD-4D25-A91F-D8B69C9F4A72-default.gif
Oracle JDeveloper client-app.ear
Developing a A.class.
client application 8.class

— Adobclass.

&

Metadata

Store

Essjar —»| | metadata

OEBPS/GUID-575155A0-9615-4F43-B3D7-DF8E8FAFB0B7-default.jpg
Create Custom Application - 5tep 5 of &

Configure ESS Job Support settings

Application Name
Project tame
Project ava Settings
Eroject € Settinas

© Project EsS Job Sup

© Build Tool

Help

Enter values for weblogic-application. xm|.

Application Id:

T
L ey

Einish

Cancel

OEBPS/GUID-E1D3993E-3420-4531-B43E-81EC45DA5A92-default.png
Oracle JDeveloper 12c Development Build - AppjobCompletionStatis.Jws : ProjobCompletionstatus.jpr

[-|v &

Farmer Links -

receiveinput

Scheduleiobt

gutstazeyne

calbackient

PEL2.0

Farmer Links

process/sequence/receive(2]

Design) Source_History

BPEL2.0

=1 BPEL Constructs

Basic Activities

n
Rl
I Subprocesses
I Oracle Extensions
150 Components
I BPEL Services
I Custom Activity Te,

Properties

Q Fna

General
Correlations
Properties
Annotations
Assertions
Headers
Timeout
Documentation
Skip Condition
Targets

OEBPS/GUID-C396D4D4-75D5-499A-912F-2D4F7940E5AE-default.gif
Edit Correlation Set - CorrelationSet_L

Name:
Scope: [ESSAsyncsPELRY Q
Propertes
deadd A e X oziee
Name Type Al
[inputvariable_payload.. long ESSAsyncBPELProcess.

[] ShowNamespace URls

OEBPS/GUID-48126F0D-A79E-409E-8FA8-DAAD2AC47308-default.jpg
0 Enterprise Scheduler Browser X Enterprise Scheduler Browser

IDSConnectionl - MDSConnectionl
e — [Ess Metadata s

£55 Metadata [yrermmmpmry
=@ oracle 504 DesignTimeRepository -G oracle
& apps

&-03 apps
B-& ess
=@ demopackage

[RemoteExecutableSyncEssSubRequ
B

[RemoteExecutableAsyncEjbjobWitt
[RemoteExecutablesyncEjbjobWithL.

(3 RemoteElEMetadataOperationjobD:
[testContentHelperManualimport

[LoggingLevelTestCetLoggerExpn
[TestAsynchrnousWebServicejob

[TestsynchronousWebservicejob
[testContentHelperBasicOutput
[RemoteAsyncSubRequestjobDefn

MDS Connection:

MDS Connection:

Help] Cancel Help ok Cancel

N

OEBPS/GUID-2F4812BD-9BE0-4FE8-B5F8-1424469E6285-default.jpg
Applications

EssDemoapp

A projects @V = e
T Application Roles_ b ication Roles security Policy: [EssDemoapp)
EssHost :‘::“’“ f’:’"s‘ Create roles specific to this application. Map a role to users or enterprise roles for testing.
0 o SaircsS est Users & Roles | Qe Name or Display fame
Sess est Users & Roles

Roles K| e]

B snomymos-roie AN ‘
e RidEaing e

New Role Category

Mappings |~Grants,

Mapped Users and Roles +-X

=l Application Resources

2 suia s
3 onnections
< (32 Descriptors
53 META-INF
[cvaterszo
& Jazn-data sl
) js-conig xmi
B weblogic-application xm
{20 ADF META-INF
@ (3 Ubraries

OEBPS/img/GUID-78FDB9B0-D176-43DE-A2B2-BD223B2D844A-default.jpg
Create Custom Application - Step 2 of 6

Name your project
Broject Name: [EssHost]
Application Name
ok e Directory: [[scratch/ababeha/developer mywork EssDemoApp /EssHost] orowse
¢ Eskcrimasoing || ok euures | Generuea Companes | Assca s
e ||| Seiectea
[T | aseriodeing
¢ o 1 |gg wodeing £55 Host Support
S suitaTool B uobo 53 Job Support
evtension Development
HTHL and cs5
ava Hodeling >
avaScript
javaServer Faces (JSF) %
5P and Serviets
aven
0EF Library suite
oepsue
55 Client Support Feature Descrption
Used 0 bulld an Enterprise SchedulerService based cllet appication, which Includes B
[>
Help < Back Next > Einish Cancel
4

OEBPS/GUID-099B17E8-B12E-4625-9788-B7A139FBC526-default.png
Create BPEL Process

BPEL Process [
A BPEL process is aservice orchestration, based on the BPEL specification, used to ah

describe/exectite a business process (or large grained service), which is implemented as a
stateful service.

() BPEL 2.0 Specification () BPEL 1.1 Specification

pame [BPeProcess1]

Namespace: [t/ xming oracie.com /Applicaion? ProjectL /6PELPracess1]

Directory: [/scratch/shaiverm /test_jdev /jdeveloper/mywork/Application2/Project1/SOA/BPEL | O

Template:

Service Name:

Synchronous BPEL Process

o one way bR Process
153 Define Service Larer
6] Base on a WsDL 2

Subscribe 1o Events
b= T Q

Qutput: [xmins racie.com /Applcations, rojectL EPeLFrocessLprocessRezponse] C

Help oK. Cancel

OEBPS/img/GUID-251B69E5-FB98-4F1F-833A-BCB9A4EB4F93-default.jpg
Edit MAR Deployment Profile Properties
Q search Directories
MAR Options Files

55 Metadata File Groups
- User Metadata

5 ADF Library Customizat
Directaries

Help

SelectAll Customizations Deselect All Customizations

e

5[23 Merged Contents of This File Group's Contributors
-4 C3 oracte

[715) SmpleSpauncaiobDern xmI
718 simplesyncegblobDern xmi

Expand All Nodes Collapse AllNodes

oK

Cancel

OEBPS/GUID-A59A539A-DF9B-4253-AF2A-0A5A674F694A-default.jpg
@ Project Properties

Jscratchjababchak/jdeveloper/mywork/MySampleThincl

Qsearch

Project Source Paths
ADF Business Components
ADF Model

- ADF Task Flows

ADF View

ant

Compiler

- Dependencies
Deployment
- BB Module
Extension
- Facelets Tag Libraries
Features
Javadoc
Java EE Application
S
1SPTag Libraries
- JsP Visual Editor

- Maven
Resource Bundle
Run/Debug

Libraries and Classpath

Customize Setting:

© Use Custom Settings

(© Use Project Settings

Java s version
[L7.0.95 Geram

Change.

Application Librarie

Osh

Classpatn Entries:

Export Description Add Library.

T
meo

nterprise Scheduler
ol Topink

Add JAR/Directory.

Remove

Edit

16 62

Help

oK Cancel

OEBPS/img/GUID-F2336F67-9A12-4C0A-A466-6267FCC812CE-default.gif
[(B Exampledobset.xml * |
.

5 Job Set

5

Name: ExampleTobset

Display Name: [Exampledobset

Description

[Pubish

= B Job Set Steps /R

O Pardlel &) Serial

Avaleble Steps

[step_error
[step_waming

© e
b oo

OEBPS/GUID-A28CC44C-DF6B-4157-8E5C-35EA0D5D604C-default.gif
Oracle Enterprise
‘Scheduler

Asynclob

EssWebService

setAsyncstatus

Cancel

SOA-BPEL

OEBPS/GUID-1D09AF97-D49C-4FCA-A928-8A40374A034D-default.jpg
Aglication fioles Application Roles

Security Policy: [Essbemoapp |
Resource Grants

Create roles specific to this application. Map a role to users or enterprise roles for testing
Entitlement Grants

st Users & Roles | ‘G Name or sy Name

Roles - % Name [EssDemoAppRole
anonymous-role

[aunemtcarea-role

Description:
DemoAppRole "

Dizplay Name: |

Mappings |~ Grants:

Mapped Users and Roles
& EssDemoAppuser

OEBPS/GUID-1B6C0E95-A72A-423C-A22C-B1E5CE38F666-default.png
[8] Oracle JDeveloper 12c - EssDemoApp jws : EssDemo.jpr : /scratchivnanjund/tmp/testDemoApp/Ess DemoApp/EssDemo/essmeta/oracle/appsiessiseededidemopackage/Jobs/A€T]

Applications RG] [Asyncwsiob2.xm!

EssDemoApp ~ (7| [Job Definition
Sproects @ @ V- B
Demout
& (5 Essbemo
5 (2 Application Sources Invake Async SOA Compasitel
SEes Description:

= oracie

= E2awps JobType: foractejasfessicore/AsyncebsenvicelobType @ B | Forreauest

S0 For callack
0 seeded Class Name: [orace a.schedulr jab wabservice Asynchsjon]

[publish

Name: Asyncwsiobz

Display Name: [RsyncWsjob2

= [Application Defined Properties

No Application Defined Properties

 Appicaton Resouress
0s Contrls = @ sytem Propenies /¥ %
Recant i

ame e it vaue Readony |
e S| S_steaneapaizain stan EssDemorpp

SYS_EXT_wsWsdiBaseUrl STRING http://adcO0cglus.oracle.com:242... W

SYS_EXT_wsWsdir STRING /s0a-infra/services/defaultfAsync... W

SYS_externallobType STRING SOA 4

SYS_EXT_wsServiceName STRING asyncsoacompositel_client_ep v

SYS_EXT_wsPortame STRING AsyncsOACompositel_pt v

SYS_EXT_wsOperationName. STRING process v

SYS_EXT imvokeMeseaae stane it process xmnsns -

Jab Definition Editor,

Messages - Log -

Ju1 03, 2013 6:41:32 AM oracle.security.Jps.internal .config.xnl.XnlConfigurationFactory initbefaul tConfiguration
No Structure SEVERE: java.i0.FileNotFoundException: ./config/jps-config.xnl (No such file or directory)

Jul 03, 2013 6:43:43 AM oracle.jZee.ws.ndds.adt.ADTUEI15 printhessageNode

HFO: - -BEGIN MSG NODE-

Jul 03, 2013 6:43:43 AM oracle.jZee.ws.ndds.adt. ADTUEI 15 printhessageNode

INFO: ----Complex Part payload-

Jul 03, 2013 6:43:43 AM oracle.jZee.ws.ndds.adt. ADTUEI 15 printhessageNode

INFO: ‘----End Complex Part payload----

Jul 03, 2013 6:43:43 AM oracle.jZee.ws.ndds.adt. ADTUEI 15 printhessageNode

HFo: - -END MSG NODE-

«@

<€ > >

OEBPS/GUID-ECA88C63-5F7A-41A3-B1CE-C58F237DE834-default.png
Oracle JDeveloper 12c Development Build - myTestApplication.jws : myTestProject.pr.

Applications -2 « Compon
myTestapplication ~ |~ | %R F-S-PFQI >0 B Qs
eSS S Bavao(ms
) rEL < - =7m | = BPEL Constructs
& BPELProcess1.bpel s 2
frents N Web Service ol
Schemas 3
& BPELProcessLxsd receivelnput imvoke [T
7 testsuites E] o
[fiteList.xmt g B 2
Transformations A Receive Repy *
Ewims & .A 4l Subprocesses
R = > » 2 Orace Extensions
2 Application Resources Schedulejob1 4504 Campanents
“ibataCom.. @ ¥ B~ k: oL services
4 Recent Files bpelprocess1_client - 2 Custom Activty Templates
i
wpeL. Properties
=| @Fna
a BPELProcess1 bpel f—
- Partner Links v L4
5B variables General Jame
@-dh Process Correlations |
Comdton ses calbackClen Poperts | Somersatio
Imparts Cemilns Detail Label: &
Praperties Annotations
Property Aliases Headers
Message Types o eaion | Imeractc
Inline Subprocesses o
= artivities BPEL 2.0 Skip Condition Partner Li
€ 5] > <€ Targets
[Show Detailed Node Inform... | process/sequence invoke[1] e Port Type
Source | BPEL pesign STRFERJFIE R —

OEBPS/img/GUID-EF1E9FBD-F7D3-436D-AF3E-C51086228556-default.jpg
Qe Find 2440883 RAMEEREB 3

sackage con.oracle. sanples. ess. thinclient

@imporr .
EiStateless(nane = “SimpleSession”, nappediiane = "ejb/sinpeSessionBean
ALocal
Eublic class SinpleSessiondean inplenents RenoteExecutable {
@Resource

SessionContext sessionContext;

B public SinpleSessiongean() {
i

anverride
public void execute(RequestEXECUTioNCONTEXT requestEXECUT] onContext,
RequestParaneters requestParaneters) throws ExecutionErrorException, ExecutionkarningExcept
ExecutionCancelledException,
E ExecutionPausedException {
Systen.out.printin("Sinple Session Bean executed. " +
"Requestld:’ + requestEXecUtionContext. getRequestl());

SimpleSessionBean ~ execute (RequestExecutionContext, RequestParam eters) 3162 -

OEBPS/GUID-666F9CE9-5CFC-45F1-AF76-6F236E2CB042-default.jpg
MySampleThinClientapp = |+ || Q= find 244085858 ER1BKEEB
2 projects @ VB package con.oracle. sanples. ess. thinclient;
\ClientAppMARProj
\ Pyt Y M iWpOrt ...;

Application Sources
@ com.oracle.samples

B @stateless(nane = "SimpleSession”, mappedName jh/simpleSessionBean”
5@ s elocal
©@ thincters Spublic class SingleSessiondean implenents RenoteExecutable {
& Simplesessioneiniis | | (@ mptement Metbod
il HETAINE @ Make ‘Simplesessiongean’ Abstract
B cogaracnt & sexina seraization ersion

;
|

; oracle A\ suppress"Missing Serialization I
Exe]

wps

& s
& [custom |

F o >

L Application Resources

@ £ buid Fles

B3 Connections

&3 Descriptors

By JDeveloper Name (SuppressWarnings Annotatior)

OEBPS/img/GUID-AB05D717-3EA0-471F-B408-414F4095120D-default.png
‘f» Applications Places system @ER{ET o

0 Oracie JDeveloper 12c Development Bulld - AppjobCompletionStatus.ws : ProjobCompletionStatus. pr : /scratch/shaiverm/d | 3]

| & BPELProcess1.bpel Compon,
Q-
BPEL2.0

e e e]
Annotations Assertions Headers Timeout = BPEL Constructs

Genet | Comemtons | propertes | wen ervice
@ @

Name: Receivel
Ivoke Partner Link

Conversation D « >

[] Create Instance Receive Reply

T
IneractionType: [Parmer k™| ElSuba
T 1 Oraci Exensions

I Application R. o s ice 150 Components

4RV E- - 21 BPEL Services
4l Recent Files PortType: [§ ESSWebserviceCallback +I Custom Activity Templates

Operation: [onjobCompletion
Properties

© Arguments Mapping) Variable]] Q Find
Variable *Q

[Ruto-Create variabie]

mports
Properties
Property Al
Message Ty
Inine Subpi
B Actwies
o8 seauen
@ zcn

& 1~ | Desion) source istory

€D Build - Issues

SDW;:M 0A0@o | L A

BPEL Properties Unavailable

B Terminal |[3 vNC config

OEBPS/img/GUID-E1A62160-9DD1-45FC-9BAB-D847E54E7391-default.png
_

YPdRRAXQAKT B Project1

Exposed Services Components External References

o8
EssSenvice
Operations

submitRequest
submitRecurring..
getCompletionsta...
getRequestState

/e
@ Rename
% Delete

& Validate

©
bpelprocess1_clie...

@ ForRequest

@ For Calback Protectsensitve Data

“§) Configure sensors.

@ 1000 Tasks

‘ >
Design) Source History.

OEBPS/img/GUID-A2E88AE5-089A-4B9F-92AF-B4FBAE3F16EE-default.jpg
Oracle Deployment Configuration

Configure and customize settings for this deployment

DS
- Metadata Repository

Repository Name: [mds-ESS_MDS_DS

Repository Type: D8

Bartition Name:

Path/INDI Info: b/ mds-ESS_MDS_DS

- Shared Metadata Repositories

Namespace Repository Type Pantton Path DI nfo

oracle/as/ess/core |mds-ESS_MDS_DS. essapp=internal-partition ¥ jdbc/m ds-ESS_MDS_DS
Help Deplor Cancel

OEBPS/img/GUID-A28CC44C-DF6B-4157-8E5C-35EA0D5D604C-default.gif
Oracle Enterprise
‘Scheduler

Asynclob

EssWebService

setAsyncstatus

Cancel

SOA-BPEL

OEBPS/GUID-60593FF9-FDFD-4D00-A087-7922F07D1AB2-default.jpg
@ Create Session Bean - Step 4 of 5

Interfaces
nterthe £8 nterface mames
0 lcenera Implment a Remorte Interface
'y Class Definitions Remote meimace
HE— [oracte asscheduier RemoteExecutaoi] srawse
) wmertaces
T A []Implement a Local Interface
[Gomaracie S Hinclent Simplesesianioal] [orowee
[mplement TimedObject nterface
Help <Back | Next> | Einish Cancel

OEBPS/GUID-EF1E9FBD-F7D3-436D-AF3E-C51086228556-default.jpg
Qe Find 2440883 RAMEEREB 3

sackage con.oracle. sanples. ess. thinclient

@imporr .
EiStateless(nane = “SimpleSession”, nappediiane = "ejb/sinpeSessionBean
ALocal
Eublic class SinpleSessiondean inplenents RenoteExecutable {
@Resource

SessionContext sessionContext;

B public SinpleSessiongean() {
i

anverride
public void execute(RequestEXECUTioNCONTEXT requestEXECUT] onContext,
RequestParaneters requestParaneters) throws ExecutionErrorException, ExecutionkarningExcept
ExecutionCancelledException,
E ExecutionPausedException {
Systen.out.printin("Sinple Session Bean executed. " +
"Requestld:’ + requestEXecUtionContext. getRequestl());

SimpleSessionBean ~ execute (RequestExecutionContext, RequestParam eters) 3162 -

OEBPS/GUID-8D9258A7-9B9E-4FB1-B407-513459579932-default.gif
Add Entity

Select one or more jobs.

fabz
[abset1

OEBPS/img/GUID-60C1A2EB-7404-499D-98A6-1D1964AA3C78-default.jpg
i projects
B ess
& @ thinclient
& simplese
& META-INE
B ejorjarxml
5 weblogic-jb-ar|
o mEs
&-53 oracte
503 a0ps
BB
&8 custom
& Jobs
B
e
‘€ >
| Applcation Resaurces

3 buid s
23 Connections
B3 Descriptors
3 mETA-E
5] ADF META-INE
& (23 Libraries
@3 Service Bus System Resourc

Q search

MAR Options
55 Metadata File Groups

Directaries
£ ADF Library Customizat
Directaries

Delete

Help

User Metadata

Eile Group Name

Target Directory n Archive

Order of Contributors

SampleThinClient

op/Th. Add

Remove

ok Cancel

on

OEBPS/GUID-FF946ECE-B893-4269-BA5D-94EFEDDF6FD1-default.gif
From

To

Type: [Expression

ype; (Varible

Expression

B

concat('Fault: ', ora:getFaulthane(),
ora:getFaultasString())

fariables
Process
3 variables
(x) inputvariable
- (x) OnMessage_cancel_inputVariable
- () outputvariable
() AsyncCallback setAsyncRequeststatus_Inputvs
() AsyncCallback_setsyncRequeststatus_Output
- (x) getRequestDetail_getRequeststate_Inputvariab)
(%) getRequestDetail_getRequestState_Outputvar
() asyncCancel_setAsyncRequestStatus_inputvar
() asyncCancel_setAsyncRequestStatus_Outputy
5 (x) Invoke._d4_setSubmitArgs_nputvariable
- (x) Invoke_4_setSubmitArgs_OutputVariable
(<) ASyncCGalibackERROR.setAs ync RequestStatus.
& [parameters
> nsLisetasyncRequeststatus
4> nsLrequestExecutionContext
<> nsListatus
st sausiisg
() AsyncCallbackERROR_ s etAsync RequestStatus.
& Scope - Scape_1

[show Detailed Node Information

/ns:

xpath

etAsynCReqUeSTSTatus/NSL: statush

|

ey

OEBPS/img/GUID-2F4812BD-9BE0-4FE8-B5F8-1424469E6285-default.jpg
Applications

EssDemoapp

A projects @V = e
T Application Roles_ b ication Roles security Policy: [EssDemoapp)
EssHost :‘::“’“ f’:’"s‘ Create roles specific to this application. Map a role to users or enterprise roles for testing.
0 o SaircsS est Users & Roles | Qe Name or Display fame
Sess est Users & Roles

Roles K| e]

B snomymos-roie AN ‘
e RidEaing e

New Role Category

Mappings |~Grants,

Mapped Users and Roles +-X

=l Application Resources

2 suia s
3 onnections
< (32 Descriptors
53 META-INF
[cvaterszo
& Jazn-data sl
) js-conig xmi
B weblogic-application xm
{20 ADF META-INF
@ (3 Ubraries

OEBPS/GUID-10F18C80-3923-45F7-AB83-60639CDE43C7-default.png
ORACLE Enterprise Manager Fusion Widdleware Control 12¢

Target Navigation

Vien

> £ Appication Deployments

7 B3 webLogic Domain
V Bl sosinfra
& Adminserver
&l bam_servert
&l mit_servert
&l s0z_servert
> B Business Actvity Monitoring
Metadata Reposiories
7 [Scheduiing Services
[essapp (ft_server1)
=]
User Messaging Service

4 essapp @
R Scheduing Service + [StertUp [Shut Down.

1 webogic

Lgot O

Logged n 2s weblogic! (3 br2261783.icc.orace.com

Page Refreshed Aug 8, 2013 1240:08 AH IST €

Scheduing Service Home > 3

Job Definitions

‘Select the applcation (J2EE applcation deployment name) for which you want to view the job defintons.
Filter Criteria

‘Appiication | EssNativerostingApp(V1.0) (]
Name.

=

JEdt.. RDelete... g Vie ServicePoliies +

[P @yinvoke [20bType
AsyncWsTobt i Bacalback fustom AsynciebservicelobType
(<]

OEBPS/img/GUID-B1EF3415-258A-48B5-9445-562665B54227-default.jpg
Name your project

Create Custom Project - Step 1 of 4.

5 ot vame
T

Project EJB Setting:

Project ESS Client Sup

Help

Broject Name: [EssClient

Directory:

[#5crateh/ababchak/jdeveloper/mywork/EssDemoApp/EssClient |

Browse.

Project Features | Generated Components

Available

=]
Database Modeling

8 Modeling

ESS Host Support

£S5 Job Support
Extension Development
java Modeling
javaserver Faces (SF)

(OFP Library Suite
OFP Suite

evascript
2 [spanserviets
Qo

Associated Libraries

selected

ESS Client Support
HTML and Cs5

Maven Feature Description:

Apache Maven is a software project managem ent and comprehension tool. Based on the
concept of a project object model (POM), Maven can manage a project's buld, reporting
and documentation from 2 central piece of information.

Next> | Enish Cancel

OEBPS/img/GUID-29E17D61-2100-49BB-B1C1-F9B4BABA734B-default.gif
Oracle Weblogic Server
client application

dlient nterface scheduled job

) 1
§ @

| ponos
] =oico |

&
Oracle Enterprise Scheduler

Runtime | Request | Request
Module | Dispatcher | Processor

Oracle Metadata
Store

History

client application
metadata

Oracle Enterprise:
Scheduler Schema

OEBPS/img/GUID-F994432C-9A61-42D4-BC37-21ACE736CF04-default.gif
OnMessage Branch xR

B#/ %

set Initiate Properties
Correlationset.1 no nsSinputvariable_p.

[] ShowNamespace URls

OEBPS/GUID-6772D40C-2CEC-430E-A374-F5BF6CEE398D-default.gif
catcn xR

Fault Qlame

Namespace URI: [ttp:/ /xmins oracle.com /scheduler

Local Part llegalArgumentException

Fault ariabie: [Fauvar % Q

InvokeESs

OEBPS/img/GUID-D40DD1D9-3673-475E-B9B4-2A318DB4ABAE-default.jpg
Edit EJB JAR Deployment Profile Properties

- Project Output

!

Q search Filters
Ceneral Files | Patterns
JAR Options
File Groups

“This file group includes the project autput directory as a contributar. You

may need to compile the project to see alliles coming from the output
directory.
Contributors

() ep-jarmt

) weblogic-ejb-jar.xmi
“ €3 com
v

3 thinclient
) Simpiesessiongeaniass
) SimpleSessionBeanjava

&[]0 essmera
[]E3 oracke

Expand All Nodes Collapse All Nodes

oK. Cancel

OEBPS/GUID-25BD85CA-3773-4A01-93DA-89324A27097D-default.jpg
@ Oracle Deployment Configuration

Configure and custamize settings for this deployment

bDS
- Metadata Repasitory

Reposiory Name: [mas-E55_MDS_DS]

Repository Type: D8

Partition Name:

Path/JNDIInfo; jdbc/mds-ESS_MDS_DS

- Shared Metadata Repositaries

Namespace Repository Type Partition Path/JNDI Info

Help Deploy. Cancel

OEBPS/GUID-326D83D2-D0CE-4493-B819-ADAEC7635663-default.gif
Orace Enterprise

Scheduler soA-8PEL

Asynciob '

oxeute) Begin

[ReiseEvent - 4{

|~
Success
EssWebService
setAsyncstatus <)

OEBPS/img/GUID-4AC09DBB-EFCF-4256-92EB-341B74CFDE8E-default.jpg
Applications

MySampleThinClientapp =

=IProjects - V-5
ThinClientAppMARPro)

@ [Application Sources

e

=3 oracle
=3 apps
e ess
&£ custom

= Bos

[Simplespanncdjobbein
B SmplesynceibjotDern.x

@ >

=l Application Resources

@ (3 buid Fles
B3 Connections

©-B3 Descriptars

3 META-E

53 ADF META-INE

& [0 Libraries

(53 Service bus System Resources

1| O3 SimplespawnedjobDefn xmi

Job Definition |

Name: SimplespawnediobDefn

Dizplay Name: [SimpleSpaaneclobDein

Description:

Job Type: foraclefas/ess/care PracesslobType

Command Line s &F

|] override

[publish

=[] Application Defined Properties

g

7+ R

No Application Defined Properties

= @ system roperties

No System Properties

Job Definition Editor,

Deployment - Log

B

Updating adf-config.xnl with ESS event listener for
Updating adf-config.xnl with ESS event Tistener for
Upating adf-config.xnl with ESS event Tistener for
Info: Nanespace '/oracle/apps/ess/custon’ is napped

“deno-app’

df-config.xnl but no metadata from the nanespace 15 included in the MAR.

Actions +

Jobset
Job-definition

Jobtype

o deploy-target netadata-st

ol

OEBPS/img/GUID-3561208B-8833-4B63-8078-8B202927D526-default.jpg
Create Deployment Profile

Click OK to create your new deployment profile and imm ediately open it to see its configuration.

Profile Type

—

Deployment Profile Name:

=

Description

Creates a profile for deploying the Java EE E18 module (18 JAR) to an application server. The
EJE JAR contains the EJE companents and the corresponding deploym ent descriptors.

Help oK Cancel

OEBPS/img/GUID-E1B4CDED-B5EF-440F-9192-8DF902B7898A-default.gif
Edit Entity

OEBPS/GUID-36DEB976-560F-4FAB-908E-0131B35D92B1-default.png
ORACLE Enterprise Manager Fusion Widdleware Control 12¢

tep v | 38 weblogc » | Logout O

Target Navigation ® essapp @

Logged n 2s weblogic! (3 br2261783.icc.orace.com
= (5 Scheduing Servce = [IStartlp CRShutDonn,

Page Refeshed Aug 7, 2013 115522 PHIST G

‘Appication Deployments

> B3 son Scheduing Service Home > Job Defintions > Cre.
Weblogic Domain Create Job Definition
V & soainfra o o
5 adminserver eeleaton Eedletcrostnston

& ban_servert [B30b efinition
& mft_servert

5 : *Name [AsynciSTob 1

usiness Actvity Montorig Dl Name [Asynciisioh
> £ Metadata Repositories Package foracle/apps/ess/custom|
scheduing Sevices Descipton ol BpSOACaToRRE
13 Essiep (nf_servers)
3 [essaPP (soa_servern)| 7
b B3 User MessagngSenvice | § “xdbType Selcteb serve..
ClassName. orade.as.schecierob webservie.ASynlS ob
 Application Defined Properties 7% R
reme e [intaivobe [Readonly
o Applcation Defned ropertes ourd
I System Properties 7% R
neme e [intalvoke [Readonly
S5 _effecveroplcatin Stng ExsNatverostngh

OEBPS/GUID-51220EF2-82E3-4E79-8A1B-850E133C5836-default.jpg
Edit EAR Deployment Profile Properties

Q search

Ceneral

EAR Options
= File Groups
& Application Descriptors
- Contributors

Fiters

& Application Libraries
Contributors
Fiters

Library Dependencies

Platform

Help

Application Assembly

application

[ava €€ Modules:

Select the Java EE modules that you would like to assemble into your Java EE

= Bl Essciemor
v] wAR_EssDemoapp
= @ Essrostior
CEIE -

Bath in EAR:

Cancel

OEBPS/img/GUID-95AF27E0-B441-4F20-8F9F-19ECF4BE79E5-default.gif
[Eidobtypetuml x |

0 J0b Type

3]

Name: Jabtypel

Display Name: [Jobtypel

Description

Execution Type: JAVA_TYPE

@ Localization

Class Name: @ [JReadOriy
= [Application Defined Properties ¥R
o Applcation Defned Fropertes
{2 System Properties 7% R
= ©= Access Control ¥R
ole Read Ereats Lpdate Dektz
testal v v v v

OEBPS/img/GUID-0D861FDF-CE89-4039-A5BF-DC45AA01E98C-default.jpg
| § Create Custom Application - Step 4 of 5

Configure EJB settings

£ Version
Application Name

) Enterprise JavaBians 3.0 (ava EES.0)

Project [ava settings | |) EMterprise Javaieans 3.1 gava EE6.0)

Project EJB Sertings | | &8 Version 3.

o Select the preferences that you wish to set for your B8 3.x project.

Build Tool
] Generate ndi properties file for project

Generate ejb-jar xm in this project

Select storage type of EJB meta-data preferences:

) Using annotations

(@ In efb-jar.xml and using annatations

Help <Back Hext > Enish Cancel

OEBPS/img/GUID-82110B50-B962-48A4-83CB-4BD30890B62D-default.png
ORACLE Enterprise Manager Fusion Hiddieware Control 12 telp v | 38 weblogic » | Logout O

i Weblogic Domain +

Target Navigat select Web Servics

oo]| o [e a5 o e T ol

> B2 Applcatonse
* Wb Service ype [50A (]
> B3 s0a o ™

7 £ webLogic Do
v &l soainfra * services fasynchpelprocessd cient_ep.
& admins
5] bam_se
& mft_ser
&5l soasel
> B2 Business Actv *PortType | AsyncapELProcess pt
1> B Metadata Rep.
7 B Scheduing Se! Invoke Operation Cancel Operation

%aw « Operaton [pocsss [] e

> B2 User M *Payload | <ns 1:process xming:ns 1="htta: //xmins orade.com/CancelableAsyncSOA4.
R [CancellbieAsyncSOAComposited/AsyncBPELProcessd">
<ns Linput>S{ESS REQ;SubmitArgument} </ns Linput>
<fnstiprocess>

OEBPS/img/GUID-65E01F3C-7A41-42F6-86ED-242FAB3A1751-default.jpg
Name your project

Create Custom Application - Step 2 of &

5

Application Name
Project Name

Project lava Settins

Project B Settings

Project ESS Host Supg

Build Tool

Help

Directory,

Browse.

Project Features | Generated Components | Associated Libraries

Available: Selected:

Aoepge o
ol s

Database Modeling K3

ESS Client Support

Extension Development Feature Description:

The extension developm ent feature allows users to create extensions to
IDeveloper. These extensions may augment o modify the behavior of
IDeveloper.

<Back Next> | Emisn Cancel

v in

OEBPS/img/GUID-29D52385-6CD5-4BE3-9627-FC2FD0969D99-default.png
Java Jobs
Server

Hosting Application
(Pre-Deployed or Custom)

] Ciient Appiication

(Jobt @2 '@a
k (EM or Custom UI)

DS

/ Hosting Application
Job 1 <> " (Pre.Daployed or
Custom)

| Ctient Appiication
(EM or Custom Ul)

OEBPS/GUID-0415B1EE-82BE-4AC8-A62C-10272480CA97-default.gif
B Exampledobset xml * |

B J0b Set

Name:

Display Name:
Description

[Pubish

ExampleTobset

[ExampleTobset

= 3 Jobset steps

ZtRav

O Pardlel &) Serial

R T
P |

PR
P |

Avalable Steps

[step_error
[step_waming

5|

OEBPS/img/GUID-A59A539A-DF9B-4253-AF2A-0A5A674F694A-default.jpg
@ Project Properties

Jscratchjababchak/jdeveloper/mywork/MySampleThincl

Qsearch

Project Source Paths
ADF Business Components
ADF Model

- ADF Task Flows

ADF View

ant

Compiler

- Dependencies
Deployment
- BB Module
Extension
- Facelets Tag Libraries
Features
Javadoc
Java EE Application
S
1SPTag Libraries
- JsP Visual Editor

- Maven
Resource Bundle
Run/Debug

Libraries and Classpath

Customize Setting:

© Use Custom Settings

(© Use Project Settings

Java s version
[L7.0.95 Geram

Change.

Application Librarie

Osh

Classpatn Entries:

Export Description Add Library.

T
meo

nterprise Scheduler
ol Topink

Add JAR/Directory.

Remove

Edit

16 62

Help

oK Cancel

OEBPS/img/GUID-8304FC0E-591B-4970-AE0B-1BC056AEACD4-default.png
I—I

System Properties | Skip Condition | Targets
General

npnmmn Prup:mes

job Properties

vee Value

User Defined Properties

+ X

Name Type Value
I
prooupuix B
b

e requestCategory
Help

o

Cancel

OEBPS/img/GUID-61C823C4-99EB-4063-8E18-15D9F3E30EDB-default.gif
application
developer

Oracle Enterprise
Scheduler Metadata

§

rjobsjont
rjobsjob2
Jpayrolfjobsfon?

Jazn-dataxmi

Grant
hr-rep
MetadataPerm

¢ =3

Oracle
JDeveloper

> (horead)
Grant
hr-admin
MetadataPerm
(nrjobsijob1" execute)

EJB
Job1 class

Job2.class

WaR

 Deploy

e i

Oracle
Weblogic
Server

Oracle
Metadata
store

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Fusion Middleware Developing
Applications for Oracle Enterprise
Scheduler, 12¢ (12.2.1)

OEBPS/GUID-DD8BAB0B-1DEA-45A3-91BE-92DF1AEF26AA-default.gif
Edit Entity

] e Incompatibe.

Datatype: STRING

OEBPS/GUID-0EC666EC-B506-41D9-88EC-3EEB754B5A9B-default.jpg
Edit WAR Deployment Profile Properties

Q search Contributors
General
Lwaropions Broject Output Directory.
= File Groups Project HTML Root Directory
& Web Files
Project Source Patf]
Filters
L neses [] Project Dependencies
- Contributors Order of Contributors
Filters
5 WEB-INF/lip 7y Project HTML Root Directory. Add
Contributors Project Output Directory
Filters v e
Library Dependencies
- Profie Dependencies —
Platform ol
e
Help o Cancel

OEBPS/GUID-743BD7DC-46CA-4994-B33D-569DB2858A2F-default.jpg
Agelicuons A ———————

EssDemoapp —l—]

Projets @] @ V- & Application Roles
EssClient

Application Roles
Create roles specific to this application. Map a role to users or eterprise roles for testing

Resource Grants
EssHost
Entitlement Grants

Test Users & Roles

Qpes Name or Display Name

Roles &~)| Name: [EssApplicationRole
anonymous-role Osplaghame [

Description:

Mappings |~Grants.

Mapped Users and Roles
8 essuser

=l Application Resources

2 suia s
23 onnections
< (2 Deseriptors
=20 META-INF
@ jazn-daraxmi
B jos-config xmt
B weblogic-application xm
{20 ADF META-INF

RISy OverviewSauree Fistory

OEBPS/img/GUID-F03C8E06-E6B5-48FF-B373-FBC33F3208F3-default.png
General | Copy Rules | Annotations | Documentation | Skip Condition | Targets | Sources

%0ma
BPELProcessLbpel

e BPELProcessLopel
@ 03 Partner Links Partner Links [1
5B variables Variables -8
G- Process Process -8
Variables B35

Varisbles
&) inputvariable client 8PELProcess1Requestiessag
) outpurVariabe clGPELProce=1Responseies
@) xnsLgerCompletionstatusingt

(&) Seope - Schecueiobl
5B varissles . ¢

@) Esstnput 11wt e ;
5@ EssOutput neL vt eSO
parameters

=€) nslisubmitRequestResponse submith

€ requestid long:

npurvariable e OFELProces < Requesissage () @
outpurvariable et GFELProce< < Responsehies e @)
xnsLgetcompletionstarusinput 68
parameters [@
s getCompletionStatus etCom plerionstetus €&
nsirequestid long ©
Scope - Scheculefob (£
Vartssles

+R @D

utput paramet

Help Apply oK. Cancel
S 4

OEBPS/GUID-FC1B69EF-94E8-4631-A52E-33A43BF9B17E-default.png
Select Security Policies

Select Security policies from the st

Joracle /mo_authentication_client_policy

forace/no_messageprotection_client_policy
lracle /sts_trust_config_client_policy

loracle /wss_http_token_over_ss1_client_policy

lrace /wss_sam|_token_bearer_client_policy

lorace /wss_sam|_token_bearer_over_ss1_client_policy
loracle /wss_sam|_token_over_ss_client_policy

loracle /wss_sam120_token_bearer_over_ssl_client_policy

CEELEEEEEE)

loracle /wss_samI20_token_over_ssl_client_policy

elp 0k [caneei]

OEBPS/img/GUID-D3F53900-53D8-4683-9E38-FE0590186505-default.jpg
Fusion Middleware Configuration Wizard - Page 8 of 15

Advanced Configuration

o
Aomiitrtor sccou
Demain o a0
Dstssacs Comnpursion e
Componensoasource:
pscTes

Advanced Configuraion
anazes serers

Qusers

Contguraion sumpary.

~
N
i¢
i
T
1
1
2
1
A
1
1
¥

sty seins

Node Hanger
Confaure ode tamsger

| 12 Managed servers, Custrs ana Conerence
g or Okt o oty Seting:

Domain romend Host Gapture
Confgure omsinFrontnaHort

Deploymerts and services
Targt o Servers o Clusters

M Fiestore
oy senings

ORACLE
FUSION MIODLEWARE.

<o o>]| &

OEBPS/img/GUID-DDE894F4-E276-48FD-A27A-862A0FB6D2CF-default.jpg
Configure ADF Security - Step 2 of 4

Select authentication type

Configure authentication type for your web project.If configuring ADF security for a
ADE Security.

model application that doesn't require web authentication, select < No Web
) Authentication Type | AU"entication =

*

Authenticsted Welcor| Web Project: [SuperWeb.jpr.

—e1©1

Authentication Type

HTTP Basic Authentication

HTTP Digest Authentication

HTTPS Client Authentication (Public Key Certificate)

Form-ased Authentication

Example for ADF Faces pages: /faces /page jsp

Help

<macc [e | pnsn =T

OEBPS/img/GUID-666F9CE9-5CFC-45F1-AF76-6F236E2CB042-default.jpg
MySampleThinClientapp = |+ || Q= find 244085858 ER1BKEEB
2 projects @ VB package con.oracle. sanples. ess. thinclient;
\ClientAppMARProj
\ Pyt Y M iWpOrt ...;

Application Sources
@ com.oracle.samples

B @stateless(nane = "SimpleSession”, mappedName jh/simpleSessionBean”
5@ s elocal
©@ thincters Spublic class SingleSessiondean implenents RenoteExecutable {
& Simplesessioneiniis | | (@ mptement Metbod
il HETAINE @ Make ‘Simplesessiongean’ Abstract
B cogaracnt & sexina seraization ersion

;
|

; oracle A\ suppress"Missing Serialization I
Exe]

wps

& s
& [custom |

F o >

L Application Resources

@ £ buid Fles

B3 Connections

&3 Descriptors

By JDeveloper Name (SuppressWarnings Annotatior)

OEBPS/GUID-0A79DD73-EF8F-492E-A902-072324332D89-default.jpg
Create Custom Application - Step 2 of 6

Name your project

Project lava Settings | | Project Features | Generated Components | Associated Libraries

; Project EJB Settings Available: Selected:
Customizable Components >
Database Modeling <

ESS Host Support

Extension Development Feature Description:

The extension developm ent feature allows users to create extensions to
IDeveloper. These extensions may augment or modify the behavior of
IDeveloper.

Help <Back

Next > Enish Cancel

OEBPS/GUID-5A701160-158F-4391-BFAC-D8A4B5C51CD9-default.png
[¢] Oracle JDeveloper 12c - EssDemoApp.jws : EssDemo.jpr : /scratch/vnanjund/tmp/testDemoApp/EssDemoApp/EssDemo/essmetaloracle/appsiessiseeded/demopackage/Jobs/AT:

Applications RG]

(@EEssbemoape | [job Definition

Sbres @ @ T -
@ (3] Demout
=@l Esspemo

& (3 Application Sources

@S

583 oracte
EE
G Ress
@83 seeded

I Application Resources
I Data Controls
1 Recent Files

Asynewslob2.mi - Structure | &

No Structure

B Asyncwsjobz.xmt

Name Asynewsiobz
Display Name: [RsyncWsjob2

Invoke Async SOA Compositel
Description:

JobType: foraciejas/ess/corejAsynaebservicelonType @ @

Class Name: [orace a.schedulr jab wabservice Asynchsjon

[publish

= [Application Defined Properties

No Application Defined Properties

= @ system roperties

Name Initial Value Read Only
SYS_effectiveapplication EssDemoapp

B ©= Access Control

No Access Contral

5 @ tocatization

Jab Definition Editor,

Messages - Log -
Ju1 03, 2013 6:41:30 AM oracle.security.Jps.internal .config.xnl.XnlConfigurationFactory initbefaul tConfiguration
SEVERE: java.i0.FileNotFoundException: ./config/jps-config.xml (No such file or directory)
Ju1 03, 2013 6:41:31 AM oracle.security.Jps.internal .config.xnl.Xnl ConfigurationFactory initbefaul tConfiguration
SEVERE: java.i0.FileNotFoundException: ./config/jps-config.xml (No such file or directory)
Ju1 03, 2013 6:41:31 AM oracle.security.Jps.internal .config.xnl.Xnl ConfigurationFactory initbefaul tConfiguration
SEVERE: java.i0.FileNotFoundException: ./config/jps-config.xml (No such file or directory)
Ju1 03, 2013 6:41:32 AM oracle.security.Jps.internal .config.xnl.Xnl ConfigurationFactory initbefaul tConfiguration
SEVERE: java.i0.FileNotFoundException: ./config/jps-config.xml (No such file or directory)
Ju1 03, 2013 6:41:32 AM oracle.security.Jps.internal .config.xnl.Xnl ConfigurationFactory initbefaul tConfiguration
SEVERE: java.i0.FileNotFoundException: ./config/jps-config.xml (No such file or directory)

«€

OEBPS/img/GUID-925C2E33-9AA5-454D-A1B9-211B04842DFF-default.gif
((E3ExampleJobSet.xml * | [C]

Job Set r
Hame: Examplelobset
Dislay Name: [Examplelobet
Desrpton
[Publish
= B Job Set Steps ¥R
O Parallel @) serial
Avaieble teps
[Application Defined Properties AR
& @ System properties %%
@ ©= Access Control AR
& @ Localization
Jobset ditor [i

OEBPS/GUID-E5BFDDF0-28DE-4BA3-9B4E-7607C2E20C62-default.gif
Receive xR

* 7R

Initiate Properties

[] ShowNamespace URls

OEBPS/GUID-0439DB55-C7A4-492C-914C-3B687FE54350-default.png
ORACLE Enterprise Manager Fusion Widdleware Control 12¢

ogicDomain +

Target Navigation

Vien

‘Appication Deployments
> @3 s0a

Webloge poman
Bl sosnta
8 adnoserver
5 ban servers
8 nftservert
8 soaserers

Business Actity Moritoring
&> [Metadats Repositories

Scheduing Services

[essapp (ft_server1)

=]
> B User Messaging Service:

28 veblogic + | Logout O
4 essapp @

Logged n 2s weblogic! (3 br2261783.icc.orace.com
(5 Scheduing Servce = [IStartlp CRShutDonn,

Page Refreshed Aug 8, 2013 5:29:05 AMIST &

Scheduing Service Home > Job Defintons >
Web Service Policies

o]
Applcation” EssNativeHostingApp(V1.0)
Job Defirfion NemeAsynciiSJob1

SubjectType Tnvoke

Select an expression from the Contraint dropdown to view the corresponding effective polcy references. For polcy set flagged as Mot Vald", cick the nk o view the
Valdation error detals, For security polcy references, lick th violations count ik to view violation detais. When polces ar attached|detached, effective policy
references are recalcuated.

Constraint None

Globally Attached Policies

[Category/Polcy Name. [poicy set
o rows yet.

StatusNot Valid

Totl Vlatons|

Opfectve only @ Al | g Detach

[ol Volstons|

]

OEBPS/img/GUID-E2748E30-8950-423F-ABC5-18BE7E653F54-default.jpg
New Gallery

Q
Categories: Items: [Show Al Descriptions
rgrans “ [Broorvee
Waven 5 Job Deinkion
Projects. Launches Job Definition Creation. To enable this option, you must select a
i projec,ora il wihin a prolectInthe Application Naviaator
i
ob sex
(= BPM Tier L
- Activiy Guide @ ncompatbiy
Business Components

B scheute

Simulation v
= Business Tier
- ADF gusiness Components
Business Rules
- Contexts and Dependency Inje
Data Controls

- Security
Spring
~TopLink/Pa

Web Services
i€ =

Help oK. Cancel

OEBPS/GUID-1CF058E4-5AA9-4609-AD13-557214219DE7-default.gif
Enterprise Scheduler Service Tutorial

Launch Job

Job: [JobWithParams Messages

Schedule: Immediately v

New request 2 launched using Job_essdemo1@Immediately

Submit
Request Status
[reqD Description Scheduled time State Action

1 |Tob_essdemol@lmmediately [Wed Jan 07 14:05:05 PST 2009 [SUCCEEDED |_Purge
2 [Tob_essdemol@lmmediately [Fri Jan 09 14:31:47 PST 2009 [WAIT Cancel

OEBPS/img/GUID-0A5B8361-4F7A-47F0-965C-960CADD7ED79-default.gif
Create Job Definition

Job Definition

A job definition describes a job (basic unit of work) that runs in the.
Scheduler. A job defintion requires 2 job type.

Name:
Package:

Job Type:

Location

Asyndjot]

oracle/apps/tajess/demo

Joracle apps/fnd/appicore/cp/common JavalobType.

/scratch/smikolai/applications/ASMESSApp /EssDem o/ essmeta/

OEBPS/GUID-3561208B-8833-4B63-8078-8B202927D526-default.jpg
Create Deployment Profile

Click OK to create your new deployment profile and imm ediately open it to see its configuration.

Profile Type

—

Deployment Profile Name:

=

Description

Creates a profile for deploying the Java EE E18 module (18 JAR) to an application server. The
EJE JAR contains the EJE companents and the corresponding deploym ent descriptors.

Help oK Cancel

OEBPS/GUID-925C2E33-9AA5-454D-A1B9-211B04842DFF-default.gif
((E3ExampleJobSet.xml * | [C]

Job Set r
Hame: Examplelobset
Dislay Name: [Examplelobet
Desrpton
[Publish
= B Job Set Steps ¥R
O Parallel @) serial
Avaieble teps
[Application Defined Properties AR
& @ System properties %%
@ ©= Access Control AR
& @ Localization
Jobset ditor [i

OEBPS/GUID-241A1982-404F-4033-BA48-4B23B89CA2C0-default.jpg
Applications

 jazn-data.xmi

£ssDemopp - @
— APPICKION ROIES 1 o ot reaim
e RSOUICRCIANE | 0 Crseusers napanaly, s s A e o splcation s o5t yur splcaion
O o homcaton sources itement Grants | @ Kot sure what to 403 Fes e a1y 52t Macice rocomm g one
fo~26 Test Users & Rotes

Users..| Enterprise Roles
Qyes Name or Display Name

Roles | SR

Add NewRole
Add Existing Roles,

Members |- Mapped Roles

Member U
= Application Resources

+ X

2 suia s
23 connections
< (3 Descriptors

503 META-INF

[cvaterszo
8 Jazn-data sl
) js-conig xmi

) weblogic-application xm

{23 ADF META-INF

3 Ubrartes

OEBPS/GUID-E1A62160-9DD1-45FC-9BAB-D847E54E7391-default.png
_

YPdRRAXQAKT B Project1

Exposed Services Components External References

o8
EssSenvice
Operations

submitRequest
submitRecurring..
getCompletionsta...
getRequestState

/e
@ Rename
% Delete

& Validate

©
bpelprocess1_clie...

@ ForRequest

@ For Calback Protectsensitve Data

“§) Configure sensors.

@ 1000 Tasks

‘ >
Design) Source History.

OEBPS/GUID-CCA1BE4F-2D77-48EB-A990-9193CA63216E-default.jpg
Applicatians:
MySampleThinClientapp |+
B ®-V-E-
THiRClientARMARPro)
= £ Application Sources
&£ META-INE
B ejojarxmi
R weblogic-eib-jarx
=GB Ess
=03 oracte
500 s
- ess
&£ custom
= Jobs
3 simp

I projects

=l Application Resources

3 buid s

3 Connections
B3 Descriptors
[META-INE
53] ADF META-INE
3 Lioraries

23 Service bus System Resources

U3 simpleSpannedjobDefn.xm!

3 Job Definition

Q

GIES

Categories:

hems: [] ShowAl Descriptions

!
e
i e
e
SungnT
(- Database Tier

Help

[8 Data Control

R s

© Entiies from Tables

© entity

&) Java service Facade gPA/TopLink)

[@ 1P Mappings oaLy

[B Jpa Persistence Descriptor (persistence.xmi)
[B Jpa Persistence Unit

& Message-Driven bean

& session pean

Launches the Create Session Bean wizard, which allows you to create a
stateful or stateless session bean. To enable this optian, you must
select a project in the Application Navigator.

oK. Cancel

OEBPS/img/GUID-51220EF2-82E3-4E79-8A1B-850E133C5836-default.jpg
Edit EAR Deployment Profile Properties

Q search

Ceneral

EAR Options
= File Groups
& Application Descriptors
- Contributors

Fiters

& Application Libraries
Contributors
Fiters

Library Dependencies

Platform

Help

Application Assembly

application

[ava €€ Modules:

Select the Java EE modules that you would like to assemble into your Java EE

= Bl Essciemor
v] wAR_EssDemoapp
= @ Essrostior
CEIE -

Bath in EAR:

Cancel

OEBPS/GUID-A6F81952-C70C-476D-8F11-B4976C562DCF-default.gif
Oracle Enterprise

Error

SOA-BPEL

‘Scheduler
Asynclob,
oxeute) Begin
RalseEvent 1//
EssWebService
setAsyncstatus <)

-

OEBPS/GUID-82E114DC-62FB-4EDB-81B8-303CE49890BD-default.png
[8] Oracle JDeveloper 12c - EssDemoApp.jws : EssDemo.jpr : /scratchivnanjund/tmpitestDemoApp/Ess DemoApp/EssDemo/essmetaloracle/apps/ess/seeded/demopackage/Jobs/ALT]

a Name: Asyncwsjob2 [8] ESS Web Service Policies
s (B bemout
= Blessoemo Display Name: lsynciSjobz £55 Callback Web Service Folicies

(3 Application Sources Invoke Async SOA Conl Configure web service policies for job definition:
=B s Description JabDefinition:/oracle/apps/ess/seeded/dsmopackage /AsyncHsjob2
&£ oracle LY
=B pes ooType foractesassessscore [Configure web service policies for job definition:

02 seeded Class Name: [oracle.as.schedulerjat{ yrom —— -

[Publish []
= [Application Defined Properties | Reliebity *x|B8 ex
No Applicaton Defined propertes | | J
- Application Resources Addressing E3
Soumconror = @ syem opers Y i Sz

I Recent Files

U
e Gy ¢rnve [

SY_effectiveApplication
SYS_BXT_wsWsdlgaselir [oracte wssL0_sam|_token_service_policy @
SYS_BXT_wawsdlLr
SYS_externallob Type
SYS_BXT_wiServiceName
SYS_BAT_wsPartame
SY5_BXT_wsOperationiiame
SYS_BXT_invokebessaqe -

Job Defintion Edtor < i

Messages - Log » | =
o 5 Management Lrail

301 03, 2015 6:43:43 A oracle.
frid Sk s nave.]

Asynewslob2.mi - Structure | &

No Structure

INFO: ----Complex Part payload
U1 03, 2013 6:43:43 AM oracle.
INFO: ----End Complex Part pay
U1 03, 2013 6:43:43 AM oracle.
HFO: - -END_MSG NODE-
Ju1 03, 2013 6:47:13 AM oracle.security.Jps.internal .config.xnl.Xnl ConfigurationFactory initbefaul tConfiguration
SEVERE: java.i0.FileNotFoundException: ./config/jps-config.xml (No such file or directory)

Help oK.

«©Q

= D> »

OEBPS/img/GUID-8D9258A7-9B9E-4FB1-B407-513459579932-default.gif
Add Entity

Select one or more jobs.

fabz
[abset1

OEBPS/img/GUID-6772D40C-2CEC-430E-A374-F5BF6CEE398D-default.gif
catcn xR

Fault Qlame

Namespace URI: [ttp:/ /xmins oracle.com /scheduler

Local Part llegalArgumentException

Fault ariabie: [Fauvar % Q

InvokeESs

OEBPS/GUID-74DFB796-6930-4B34-900B-0D17FDDF32DC-default.jpg
Applications EEEE
EssDemoApp —=]_]
= Projects -V
= Pro RB-7-=E ABBIaON | securny
Essiient Serviets
2 Appiication sources firers | Login Auhemtcation
& (23 Web Content
= [Wep-InE Security ONore
i adfc-config.xm| Pages
%(:;m;gg m - (@ iep Basic Authentication (RFC 2617)
ererences calm: R sword i EssUser / welcon]
o] trinida-config xmi el Ll
1 web.xmi (O Hutp Digest Authentication (RFC 2617)
e N ——
{23 Page Fows
(@ Esstost © Form-Baed Authentication

©) Hitp Client Authentication (public key certficate)

=l Application Resources

2 suia s

L -

OEBPS/img/GUID-820DD4F0-0540-411A-B4EF-845B406ACF56-default.png
System Properties | Skip Condition | Targets | Sources
General Application Properties

job Properties

Name Type Value

User Defined Properties +x

ane Ty vaie
|

OEBPS/img/GUID-7A7DC738-E158-404D-B1D4-6EAB6BECDE1D-default.png
ORACLE Enterprise Manager Fusion Widdieware Control 12¢ tep v | 38 weblogc v | Logout O

TAHGEE Na pojcy attachment - Oracie Eterprise Manager g feeoredecon

Vew~ | Attach/Detach Policies(WsmPolicy:/ /oracle/apps/ess/custom/AsyncWSJob1) (... Ok | teidate | conca
& [0 Appicatc Globally Attached Policies

B son TName [Category _[Poliy Set [Enabled [pesarption
7 [Weblookt o rows yet

7 £ soainf

o @

& mf
&l s Directly Attached Policies
&> £ Business [Name |category Enabled [Description View Detail

> Do Do wase v esoassves. | 6

v B Scheduiin

&> £ User Mes

a attach = Detach

Available Policies

vew + | [El | Eivetsch
é [[o] |

= [Cotzgory | Stots [pesarpton [View Detai |
‘orade/no_addressing_policy Ws-Addressi. This policy faciltates t.

oradle/log_policy Management
‘oracle/no_mtom_policy MTOM Attac.
‘oradle/wsmtom_policy MTOM Attac.
orade/http_basic_auth_over_ss|_dient_policy Security
oradle/http_saml20_token_bearer_dient_policy Security
orsclett _sani20_token besrer_over_s|cient_polcy searity

“This policy causes the reg,
“This polcy facitates t.
This Message Transmission

“This policy includes usern.
“This policy ncludes SAML

184444

“Thi policy ncludes SAML il

Showing 71 outof 71 Rows:

OEBPS/img/GUID-62C724CD-7C5D-4CCC-B94B-3B409701675E-default.jpg
Edit EAR Deployment Profile Properties

Q search Library Dependencies
General Libraries Selected for Deployment
- Application Assembly

EAR Options

= File Groups

& Application Descriptors

- Contributors

Fiters

& Application Libraries
Contributors
Fiters -

[l Encerprise Scheduler
pLink

Platform 2

Help ok Cancel
b

OEBPS/img/GUID-B865E3E1-A8A1-4670-825D-A2B20E88597A-default.png
4. Applications Places

Applications

Application.
ELCEN &N
& e

s BPELProcessLbpel
@ 03 Evems
& 03 schemas

2, BPELProcessLxsd
200 testsuites

& fetistmi
(3 Transformations
& B wsoLs
(e n
2 Applicaton Resources
2 Data Con.. @ 7 -

I Recent Files

BPELPr... -

i PELProcessLopel
Partner Links

Variables

Carretaton sets

Exensions
imports

Praperties

Property Aliases

Message Types

Inline Subprocesses

-1 Actiities

BB EE

Yaw +/%

sysem SER{ET

Oracle JDeveloper 12 Development Build - Applicationi.jwe

Projectijpr

Resources -

EE

New Catalog

Partner Links

-

£

bpelprocess1_clent

PEL 2.0

Import.
Refresh

Partner Links

ADF Business Components REST Service.
Application Server.
BAM Connection.

Database.
'@ | o
receivelnput Jhax

UDDI Registry.

Schedulejob:

callbackClient

o

Properties

Q fna @

0] show Detailed Node Inform

Source BPEL

process/sequence/scope

Design) Source_History

@) (@ emna

(31 rvne confia]

OEBPS/img/GUID-48126F0D-A79E-409E-8FA8-DAAD2AC47308-default.jpg
0 Enterprise Scheduler Browser X Enterprise Scheduler Browser

IDSConnectionl - MDSConnectionl
e — [Ess Metadata s

£55 Metadata [yrermmmpmry
=@ oracle 504 DesignTimeRepository -G oracle
& apps

&-03 apps
B-& ess
=@ demopackage

[RemoteExecutableSyncEssSubRequ
B

[RemoteExecutableAsyncEjbjobWitt
[RemoteExecutablesyncEjbjobWithL.

(3 RemoteElEMetadataOperationjobD:
[testContentHelperManualimport

[LoggingLevelTestCetLoggerExpn
[TestAsynchrnousWebServicejob

[TestsynchronousWebservicejob
[testContentHelperBasicOutput
[RemoteAsyncSubRequestjobDefn

MDS Connection:

MDS Connection:

Help] Cancel Help ok Cancel

N

OEBPS/img/GUID-0EC666EC-B506-41D9-88EC-3EEB754B5A9B-default.jpg
Edit WAR Deployment Profile Properties

Q search Contributors
General
Lwaropions Broject Output Directory.
= File Groups Project HTML Root Directory
& Web Files
Project Source Patf]
Filters
L neses [] Project Dependencies
- Contributors Order of Contributors
Filters
5 WEB-INF/lip 7y Project HTML Root Directory. Add
Contributors Project Output Directory
Filters v e
Library Dependencies
- Profie Dependencies —
Platform ol
e
Help o Cancel

OEBPS/GUID-8F476381-583D-4C09-BB29-1AE03B6362BC-default.png
WMMML

Edit Schedule Job

| SYtemPropertes | S Condion | Targes | sources =
General polcaton Froperes

ine

e

Warning

o sppicatio (YS_efecveAplcation)was found. Make sure 10 speciy an pplicton.

e ooy [ok Cancel

processseauence/cope. 2o0m,

Design Source Histor

Edit Schedule job

System Properties ~Skip Condition | Targets Sources
General Application Properties

Application |
Name: [schedulejob1 |
Description: | | &

Job: [foracle/apps/ess/demopackage /Basicjavajob | Q
Schedule: | | Q@
StartTime: | | &

Help apply | Ok | cancel

4

OEBPS/img/GUID-60593FF9-FDFD-4D00-A087-7922F07D1AB2-default.jpg
@ Create Session Bean - Step 4 of 5

Interfaces
nterthe £8 nterface mames
0 lcenera Implment a Remorte Interface
'y Class Definitions Remote meimace
HE— [oracte asscheduier RemoteExecutaoi] srawse
) wmertaces
T A []Implement a Local Interface
[Gomaracie S Hinclent Simplesesianioal] [orowee
[mplement TimedObject nterface
Help <Back | Next> | Einish Cancel

OEBPS/img/GUID-6D2B6E89-9889-417F-8F05-2BAD141E4D93-default.png
[8] Oracle JDeveloper 12c - EssDemoApp.jws : EssDemo.jpr : /scratchivnanjund/tmpitestDemoApp/Ess DemoApp/EssDemo/essmetajoracle/apps/ess/seeded/demopackage/Jobs/AgT]

Applicatons B Asyncwsionzxm! -
(] EssDemoapp ~ | [3 Job Definition

i Projects -2 W
EJ AR-7-= Name: Asynewsion? [8] Web Service
& (Gl pemoun
Display Name: [AsyncWslobz
< Dlzsoeme Specy a WL sefct e s por, s perton. A il pyoad b genere |

5 (2 Application Sources Invake Async SOA Cam| in which speciic values can be inserted.

c@es Description:
583 oracte wsoL: [fdefauitfAsyneSOAProjectl fasyncsoacompositel_client_egPWSDL] Q

=03 apps Job Type: Joraclefas/ess/core/A;
503 ess Web Service Type: [son

-0 seeded Class Name: [oracle.as.schedulerjob.

[publish

]

service: e1_client_ep

= (G Application Defined Properties 7+ %

No Application Defined Properties
I Application Resources

0s Contrls = @ sytem Propenies /¥ %
1o Cone S @opempopertis | pon [rsnesorcompostei st EiE
Name
SYS_effectiveApplication Invoke Operation
prTr =R M
5 &= Access ool o 7% U
No Access Control Payload: [<ns1process xminsins1="http://xmIns.oracle.com/AsyncSOAAPPL/ASyr]
<nsLinput>$(ESS_REQ;Subm tArgumentL/nsLinput>
= @ Localization </nsLiprocess>
Job Definition Editor| ¢ 3

Messages - Log -
Ju1 03, 2013 6:41:32 AM oracle. tion
SEVERE: java.i0.FileNotFoundExc

Ju1 03, 2013 6:43:43 AM oracle.
HFO: - -BEGIN MSG NODE-

No Structure

Jul 03, 2013 £:43:43 AM oracle. <€] v
INFO; 1-oo-Complax Part payiod

30163, 2013 8145143 A bracler

INFo: 2-2--End Complex pare pay] _ HeP (e oo
S 03, 2015 8143145 A orache ememmsrsras .

HFo: - -END MSG NODE-

«@

€ > »

OEBPS/GUID-61C823C4-99EB-4063-8E18-15D9F3E30EDB-default.gif
application
developer

Oracle Enterprise
Scheduler Metadata

§

rjobsjont
rjobsjob2
Jpayrolfjobsfon?

Jazn-dataxmi

Grant
hr-rep
MetadataPerm

¢ =3

Oracle
JDeveloper

> (horead)
Grant
hr-admin
MetadataPerm
(nrjobsijob1" execute)

EJB
Job1 class

Job2.class

WaR

 Deploy

e i

Oracle
Weblogic
Server

Oracle
Metadata
store

OEBPS/img/GUID-B4A60DA9-9E6C-4157-8DEA-8E3473872250-default.gif
bvems

Events + /%

Name Type

OEBPS/GUID-1D608348-A0D4-46F2-AAE0-169CECAAEC6A-default.gif
L FaBXO Composite: AsyncEssDemoComposite

Event Definition Creation

Event Definition Creation =
‘The Event Definition Creation dialog allows you to create a Event metadata definition file.

Event Definition name: [EventDefinition1 3
Directory: &:/scratch/smikolai/applications /EssDemoSOAApR/AsyncEssDemoComposte/ | e
Namespace hitp: [xmins oracle.com /AsyncEssDemoComposite /EventDefinition1. el

Events + /7 x

Name Type]

OEBPS/GUID-95AF27E0-B441-4F20-8F9F-19ECF4BE79E5-default.gif
[Eidobtypetuml x |

0 J0b Type

3]

Name: Jabtypel

Display Name: [Jobtypel

Description

Execution Type: JAVA_TYPE

@ Localization

Class Name: @ [JReadOriy
= [Application Defined Properties ¥R
o Applcation Defned Fropertes
{2 System Properties 7% R
= ©= Access Control ¥R
ole Read Ereats Lpdate Dektz
testal v v v v

OEBPS/GUID-B822BDC1-41AD-4A0B-9123-359DC3F618D9-default.gif
Create Incompatibility,

Incompatiblity

Allows you to speciy jobs that cannot be executed at the same time,

Neme:
Package:

Location;

Incompatibity 1

IC:{Developerimyworkjapplication!SfProject1]

Incompatibity Type:

@ Gibl (entire fob)

O Domain (propety of the job)

OEBPS/GUID-65E01F3C-7A41-42F6-86ED-242FAB3A1751-default.jpg
Name your project

Create Custom Application - Step 2 of &

5

Application Name
Project Name

Project lava Settins

Project B Settings

Project ESS Host Supg

Build Tool

Help

Directory,

Browse.

Project Features | Generated Components | Associated Libraries

Available: Selected:

Aoepge o
ol s

Database Modeling K3

ESS Client Support

Extension Development Feature Description:

The extension developm ent feature allows users to create extensions to
IDeveloper. These extensions may augment o modify the behavior of
IDeveloper.

<Back Next> | Emisn Cancel

v in

OEBPS/img/GUID-FCC12950-715B-4D08-AAAE-01D5F370CEF1-default.gif
From

To

Type: [Variable

ype; [Varibie

riables
) inputvariable
payload
-4 ns4:ESSDemoEvertElement
< nsdrequestid
<
<> nsdeventType
) OnMessage_cancel_Inputvarable
) outputvariable
) AsyncCallback_setAsyncRequestStatus_InputVariable
AsyncCallback_setAsyncRequeststatus_OutputVariable
) getRequestDetail_getRequestState_InputVar fable
}) getRequestDetail_getRequestState_OutputVariable
) asyncCancel_setAsyncRequestStatus_InputVariable
) asyncCancel_setAsyncRequestStatus_OutputVar iable
) Invoke_4_setSubmitArgs_InputVariable
}) Invoke_4_setSubmitArgs_OutputVariable
) AsyncCallbackERROR setAsyncRequestStatus_InputVa
AsyncCallbackERROR setAs ync RequestStatus _Outpur
lope - Scope_1

(x) inputvariable
() OnMessage_cancel_InputVariable
‘ (x) outputVariable
(x) AsyncCallback_setAsyncRequestStatus_InputVariab
(%) AsyncCallback_setAsyncRequestStatus_OutputVaric
(%) getRequestDetail_getRequeststate_Inputvariable
(%) getRequestDetail_getRequestState_OutputVariable
(x) asyncCancel_setAsyncRequestStatus_InputVariable
(x) asyncCancel_setAsyncRequestStatus_OutputVariabl
() Invoke_4_setSubmitArgs_InputVariable
‘ (%) Invoke_4_setSubmitArgs_OutputVariable
(x) AsyncCallbackERROR_setAsyncRequestStatus _Inpy
&3 parameters
<-
o s
(%) AsyncCallbackERROR_setAsyncRequestStatus _Outy

[show Detailed Node Information

[show Detailed Node Information

xpath: [/s

SSDenoEventEl enent/nsd: execution

xpath: [/ns:

etASyNCReqUESTSTatus/NSL: request

|

T

OEBPS/GUID-0EDB05BF-88E9-4F25-A2B7-B24712A734B9-default.gif
From

To

Type: [Expression

ype; [Varible

Expression

*CANCEL"

riables
Process
Variables
(%) inputvariable
(x) OnMessage_cancel_InputVariable
() outputvariable
() AsyncGallback setAsyncRequeststatus_Inputv
(%) AsyncCallback_setAsyncRequestStatus_Output
(%) getRequestDetail_getRequestState_InputVariabl
() getRequestDetail_getRequestState_OutputVarial
(x) asyncCancel_setAsyncRequestStatus_InputVari
(%) async Cancel_setAsynic RequestStatus_OutputVar
() Invoke_4_setSubmitArgs_InputVariable
(%) Invoke_d_setSubmitArgs_OutputVariable
5-(x) AsyncCallbackERROR_setAsyncRequestStatus.
&3 parameters
543 nsLisethsyncRequeststatus

<> nslrequestxecutionContext

<)

<> nslstatushessage

() AsyncCallbackERROR s ets yncRequestStatus_.

&) Scope - Scope_1

[show Detailed Node Information

xpath: [/ns:

etAsynCReqUeSTSTatus/NsL: status

|

ey

OEBPS/GUID-7A403CBA-0898-4520-BA9B-8A9636F03EC8-default.gif
Esswebsenvice

submitRequ.

o
o et
essasynchpel.. Getreauest

getRequest

— holdRequest

proces releaseReq.
setasyncre. . 3]

OEBPS/GUID-E8D59691-FFD2-45F9-A7E8-E9335099988E-default.gif
Create Incompatibility,

Incompatiblity

Allows you to speciy jobs that cannot be executed at the same time,

Neme:
Package:

Location;

Incompatibity 1

IC:{Developerimyworkjapplication!SfProject1]

Incompatibity Type:

© Gibl (entire fob)

(&) Domain (propety of the job)

OEBPS/GUID-DFFE0FAC-7CF6-4571-B86F-B852335BEA21-default.jpg
3 Job Definition

| [simplesyncEibjobDefnxm!

Name: SimplesyncejbjobDefn

Dizplay Name: SimplesyneBjobDein

@ Add System Property

Deseription
i [s¥s_ettectveappiication

Job Type: Type: STRING

Class Name: | nitalvalue: [EsshatverostingAp

[Cleuvish | (] Read Only

= @ Applicati

No Applicatio

@ system

No System Prol

= ©= Access

No Access Cor

5 @ wocatiza
Joo Desntion e

Deplayment - Lt

Q

Help

oK.

Cancel

OEBPS/GUID-DB1635EA-033E-4EAF-8A38-134389CE36D5-default.gif
5 Job Set

Name:

Display Name:
Descripton

[Publsh

ExampleTobset

[ExampleTobset

= 3 Jobset steps

ZERaw

@ Pardlel (O Serial

3

OEBPS/GUID-82110B50-B962-48A4-83CB-4BD30890B62D-default.png
ORACLE Enterprise Manager Fusion Hiddieware Control 12 telp v | 38 weblogic » | Logout O

i Weblogic Domain +

Target Navigat select Web Servics

oo]| o [e a5 o e T ol

> B2 Applcatonse
* Wb Service ype [50A (]
> B3 s0a o ™

7 £ webLogic Do
v &l soainfra * services fasynchpelprocessd cient_ep.
& admins
5] bam_se
& mft_ser
&5l soasel
> B2 Business Actv *PortType | AsyncapELProcess pt
1> B Metadata Rep.
7 B Scheduing Se! Invoke Operation Cancel Operation

%aw « Operaton [pocsss [] e

> B2 User M *Payload | <ns 1:process xming:ns 1="htta: //xmins orade.com/CancelableAsyncSOA4.
R [CancellbieAsyncSOAComposited/AsyncBPELProcessd">
<ns Linput>S{ESS REQ;SubmitArgument} </ns Linput>
<fnstiprocess>

OEBPS/GUID-05C7759F-B97D-490F-B84B-C4FFD772D5D9-default.jpg
Enterprise Scheduler Properties

Enter values for ejb-jarxml

Logical Application Name: [Essbemoapp
Application Policy Stripe: [Essbemoapp

JPS Interceptor Application Name: [EssDem oApp

Help ok | cancel

OEBPS/img/GUID-55367359-7A8E-4013-BD9A-3BEECC3B377B-default.jpg
Edit EJB JAR Deployment Profile Properties

Q General
ceneral ge AR il
/5148 Qptong o/ THinClentAppHARFrj/deploy iy SampleTHinClentejoar| |- Brovse
5 File Groups b
- project Outpue earie
Soninars /ThinCiertApRMARPral/ deploy /ySam pleThinClentE.ear| |- Bravee
iners
Ubrary Dependencies Deploymen i
. Profl Dependencies I T
Platform -
& || enerprise appicaton Name: ySampieThinciemg |
. Deployment Client Maximum Heap Size (in Megabytes): jAuto ™,
-
Help ok Cancel
P

OEBPS/img/GUID-0A79DD73-EF8F-492E-A902-072324332D89-default.jpg
Create Custom Application - Step 2 of 6

Name your project

Project lava Settings | | Project Features | Generated Components | Associated Libraries

; Project EJB Settings Available: Selected:
Customizable Components >
Database Modeling <

ESS Host Support

Extension Development Feature Description:

The extension developm ent feature allows users to create extensions to
IDeveloper. These extensions may augment or modify the behavior of
IDeveloper.

Help <Back

Next > Enish Cancel

OEBPS/img/GUID-D154ED82-7A22-42C0-940A-82C34078880E-default.jpg
Applications

MySsmplThinClentapn
&R V-E-
=[5 ThinClinappMaRPro)
= £ Application Sources
& L MeTA-nE
B, ejojarxmi

5 wabtogic-eiojarx

I projects

=
=l Application Resources

3 buid s
@ B3 Connections
B3 Descriptors
& (1 META-INF
5] ADF META-INE
@ B3 Ubraries
(23 Service bus System Resources

Q

(Categories:

ems:

[] showAll Descriptions

Applications
- Connections
Deployment Descriptors
~Deployment Profiles
Diagrams
v
Maven
Projects
umL
L
=5 Business Tier
- ADF Business Components
Business Rules
- Contexts and Dependency Inj
Data Contrals
[

- Security
TopLink/JPa
‘€ >

Help

[Job Type

[3 Job Definition

Launches Job Definition Creation, To enable this option, you must select
2 project, or afile within a project in the Application Naviastor. "

59 Job set

& ncompariiy

B scheaute

oK. Cancel

m

e

T TR

Py

s

e

A

———

OEBPS/GUID-5A3CCF92-62E0-4D26-8E89-5B132D2AD058-default.jpg
@ Create Session Bean - Step 2 of 5

General

Enter an EJ6 name and chaose fram the Session BB aptians below.

S Generat E Name: [Smplesession |

o Class Definitions
T SessionType: (&) Stateless O Stateful O Singleton

Transaction ype{Contaner-managed Transactions €My win mpick Commit]

Mapped Name; [dbsmplsesstonsean]

] Generate Session Facade Methods Wiore Qption:

Entity Type 9 JPA Enifles Topll

Help i Next> | Einish Cancel

OEBPS/img/GUID-DE4B38A8-BB0D-4B59-87C1-B18E1890092F-default.png
Oracle Deployment Configuration

Configure and customize settings for this deployment
s
- Metadata Repository
Bepository Name: [mas-ESS-MDS.0S =]
Repository Type: DB
Bartiion Name =
Path/INDI Info: b/ mds-ESS_MDS_DS
- Shared Metadata Repositories
Namespace Repository Type Pantton Path DI nfo
oracle/apps/ess/howto [mds=ESS_MDS_DS. essUserMetadata. idbc/mds-ESs_MDS_DS
Help Deplor Cancel

OEBPS/img/GUID-C1D75AE3-8826-41F0-B11C-C032E4742185-default.jpg
Create Job Definition

Job Definition

A job definition describes job (basic unit of work) that runs in the scheduler. A job
definition requires a job type.

pame [ReloWortajobDeiniion]
Package: [7oracte/esshost/metadata]

Job Type [soracteasyesscore javajonType ~
Location [#5cratch/ababchak/ideveloper/mywork/EssDemoApp /EssHost /essmeta/_|

Create java Class
Java Class

® yynchronous
O Asynchronous

Locaton: [[zcratch/ababchafjvelaper/myworkEcsDemoApp/EssHost/are |

Java Package: [oracie ssshostmpt §s

Class Name: [FeitoWoriaimt]

Help ok | cancel

OEBPS/GUID-B035C844-9575-4E7E-9934-886934B3C859-default.jpg
Applications [F3 simplespawnediobDefnxml & SimpleSessionbeanjava [eib-jarsml | B weblogic-eib-jarsn
[l MysampleThinClientapp ~ = | Q' Fing MR B

clbrojects Bl @ WrE- B 6 Create job Definition G
& @ comoracle.samples R
B @ ess Job Definition oo
& @ thincent o | s detmtion descrines a ot (wasicunit o warg thatruns n he
& simplesessi =2 Scheduler, A job defintion requires a job type.
& META-INF 2
B ejojarxmi g
R webiogicodblara Name: [SmpleSyncEplonDerm] borer
=D
Package: [Jaracie/apps/ess/custom
D e oo o \
& E‘;}u Job Type: [Joraciefas/ess care/SyncElotType S|
& (3 custom M Location: iy Work;iySampieThin e o ThinClentA ppWARProjessmetal]
= (3 Jobs
B simt
~I Application Resources
3 i Fies
3 Connections
& (1 Descriptors
£ META-INE
51 ADF META-INE weblogic-
3 Libraries Overview 5
33 service bus system Resources |0
nct
Help ok Cancel
o 1
T

OEBPS/img/GUID-E97E956F-3B54-45F2-BF13-E384F738FB65-default.gif
Oracle Weblogic Server
| client appli
[

3
3 L\ Vr‘
Oracke Enterpriss Orace Enterprise

Scheduler metadata Scheduler Data.

OEBPS/GUID-15EE20DB-2DC1-4634-8113-2357BE936266-default.jpg
@ Create Custom Application - Step 1 of 3

Name your application

e Application Name:
| Application Name | [y som pieThinClientApp

+ Project Name

O b

T

Help <Ba Next > Einish

Directary.
[Fscratch/riyanu/yWork/MySampleThinClientapp. Browse
Application Package Prefix
[com.orace.samples.ess thincient

Cancel

OEBPS/GUID-6F59470A-87AD-477D-832B-F423A541A6C6-default.jpg
New Gallery

Q
Categories: Items: [] Show Al Descriptions
[8 e sava
e e
e S
A A
Transtormations cotepyg
[secarty
Utiity (& serviet Fiter
e
Servie Listener
= SOA Tier E
" fauts
merfaces
o —
Tess
B ——
e Tir
i
157
¥ Faceets
157 3
All ltems. 2
[>
Help oK Cancel
>

OEBPS/GUID-A8989DFE-F09B-4857-9AE9-818774664930-default.jpg
Enterprise Scheduler Service DemoApp

Launch Job

Job: HelloWorldTestAppJob ~

Schedule: mmediately +

Messages

Request Status

[reqrD | Description [Scheduled time [state [Action
[t [Basiclavalob@lmmediately [Mon Feb 24 02:33:28 PST 2014 [SUCCEEDED |
[[BelloWorldJobDefinition @Immediately [Mon Feb 24 05:24:16 PST 2014 [SUCCEEDED |
[3 [BelloWorldJobDefinition@Immediately [Mon Feb 24 05:25:44 PST 2014[SUCCEEDED |
[+ [Basiclavalob@Immediately [Mon Feb 24 05:25:49 PST 2014 [SUCCEEDED |
[[HelloWorldJobDefinition@lmmediately [Mon Feb 24 05:25:52 PST 2014[SUCCEEDED |
[6 [HelloWorldob@Immediately [Mon Feb 24 10:00:10 PST 2014 [SUCCEEDED |

OEBPS/img/GUID-82E114DC-62FB-4EDB-81B8-303CE49890BD-default.png
[8] Oracle JDeveloper 12c - EssDemoApp.jws : EssDemo.jpr : /scratchivnanjund/tmpitestDemoApp/Ess DemoApp/EssDemo/essmetaloracle/apps/ess/seeded/demopackage/Jobs/ALT]

a Name: Asyncwsjob2 [8] ESS Web Service Policies
s (B bemout
= Blessoemo Display Name: lsynciSjobz £55 Callback Web Service Folicies

(3 Application Sources Invoke Async SOA Conl Configure web service policies for job definition:
=B s Description JabDefinition:/oracle/apps/ess/seeded/dsmopackage /AsyncHsjob2
&£ oracle LY
=B pes ooType foractesassessscore [Configure web service policies for job definition:

02 seeded Class Name: [oracle.as.schedulerjat{ yrom —— -

[Publish []
= [Application Defined Properties | Reliebity *x|B8 ex
No Applicaton Defined propertes | | J
- Application Resources Addressing E3
Soumconror = @ syem opers Y i Sz

I Recent Files

U
e Gy ¢rnve [

SY_effectiveApplication
SYS_BXT_wsWsdlgaselir [oracte wssL0_sam|_token_service_policy @
SYS_BXT_wawsdlLr
SYS_externallob Type
SYS_BXT_wiServiceName
SYS_BAT_wsPartame
SY5_BXT_wsOperationiiame
SYS_BXT_invokebessaqe -

Job Defintion Edtor < i

Messages - Log » | =
o 5 Management Lrail

301 03, 2015 6:43:43 A oracle.
frid Sk s nave.]

Asynewslob2.mi - Structure | &

No Structure

INFO: ----Complex Part payload
U1 03, 2013 6:43:43 AM oracle.
INFO: ----End Complex Part pay
U1 03, 2013 6:43:43 AM oracle.
HFO: - -END_MSG NODE-
Ju1 03, 2013 6:47:13 AM oracle.security.Jps.internal .config.xnl.Xnl ConfigurationFactory initbefaul tConfiguration
SEVERE: java.i0.FileNotFoundException: ./config/jps-config.xml (No such file or directory)

Help oK.

«©Q

= D> »

OEBPS/img/GUID-74DFB796-6930-4B34-900B-0D17FDDF32DC-default.jpg
Applications EEEE
EssDemoApp —=]_]
= Projects -V
= Pro RB-7-=E ABBIaON | securny
Essiient Serviets
2 Appiication sources firers | Login Auhemtcation
& (23 Web Content
= [Wep-InE Security ONore
i adfc-config.xm| Pages
%(:;m;gg m - (@ iep Basic Authentication (RFC 2617)
ererences calm: R sword i EssUser / welcon]
o] trinida-config xmi el Ll
1 web.xmi (O Hutp Digest Authentication (RFC 2617)
e N ——
{23 Page Fows
(@ Esstost © Form-Baed Authentication

©) Hitp Client Authentication (public key certficate)

=l Application Resources

2 suia s

L -

OEBPS/GUID-FD542FED-3460-4832-845C-41AA408349EE-default.png
‘f» Applications Places system @ER{ET = Ko

0 Oracie JDeveloper 12c Development Bulld - AppjobCompletionStatus.ws : ProjobCompletionStatus. pr : /scratch/shaiverm/d | 3]

Edit Invoke

Headers | Documentation | Skip Condition | Targets | Sources
General | Correlations | Properties | Assertions | Annotations BPEL2.0

=1 BPEL Constructs
Name: jgerstatusAsync

Conversation D

Detal Lat

I Subprocesses
[l invoke as Detail =l Oracle Extensio

IeractonType: ®

— e :
A Applcaionk 2 ginGA conpere
e eenesor =
LRYE- T P Semices
ARecenles e e = B
R e R
[

rapeis
e
Te@ +. B Y a e
4, BpeLProcessit - Joputs [| setRequestets
et o
=2 variables @ holdRequest
s Process G releaseRequest
ol
v
o
e
el

<€D

[showDetailed

Build - Issues
B@oAc@o | &-1 £
|

Source BPEL

Terminal |[3 vNC config

|| © oracle peveloper 12 Development

OEBPS/img/GUID-58C43C44-515E-43F3-A054-D721E2A25F89-default.png
Create BPEL Process

[e— =

describe/exectite a business process (or large grained service), which is implemented as a
stateful service.

() BPEL 2.0 Specification] () BPEL 1.1 Specification

pame [BPeProcess1]

Namespace: [t/ xming oracie.com /Applicaiond ProjectL /6PELPracess1]

Directory: [/scratch/shaiverm /test._jdev jdeveloper/mywork/Applicationl /Project1/SOA/BPEL |

Template: [38 Asynchronous BPEL Process -@

Seruice Name: bpeprocessL_client]

Expose as a SOAP service

Devery: [async persit -]

Input: f{nttp://xmins.oracle.com /Application1 /Project1/BPELProcessLiprocess | 3

Qutput: [xmins racie.com Appicatont rojectL BPELFrocessLprocessRezponse] G

Help oK. Cancel

OEBPS/img/GUID-B0DF44F7-C655-41F6-9D0C-C8EC9B74ADCC-default.jpg
a Add Access Control

Select a role and specify the actions it can perform.
Role: [EssDemoappRole -

] Read

[
Update

Delete

Help oK Cancel

OEBPS/GUID-6A144402-5F92-429A-A0CB-8CFCB17A8847-default.gif
Add an Event

Define this event's type

@ Hement

Name

/xmins oracle.com [apps/ta/essdemo/events/schemaEssDem oventelement| &

EssEvent

elp

OEBPS/GUID-F03C8E06-E6B5-48FF-B373-FBC33F3208F3-default.png
General | Copy Rules | Annotations | Documentation | Skip Condition | Targets | Sources

%0ma
BPELProcessLbpel

e BPELProcessLopel
@ 03 Partner Links Partner Links [1
5B variables Variables -8
G- Process Process -8
Variables B35

Varisbles
&) inputvariable client 8PELProcess1Requestiessag
) outpurVariabe clGPELProce=1Responseies
@) xnsLgerCompletionstatusingt

(&) Seope - Schecueiobl
5B varissles . ¢

@) Esstnput 11wt e ;
5@ EssOutput neL vt eSO
parameters

=€) nslisubmitRequestResponse submith

€ requestid long:

npurvariable e OFELProces < Requesissage () @
outpurvariable et GFELProce< < Responsehies e @)
xnsLgetcompletionstarusinput 68
parameters [@
s getCompletionStatus etCom plerionstetus €&
nsirequestid long ©
Scope - Scheculefob (£
Vartssles

+R @D

utput paramet

Help Apply oK. Cancel
S 4

OEBPS/img/GUID-39EB36A8-EE73-45A6-A0FC-7903B0B2B662-default.gif
Create Job Definition

Job Definition

A job definition describes a job (basic unit of work) that runs in the.
Scheduler. A job defintion requires 2 job type.

Name:
Package:

Job Type:

Location

Asyndjot]

oracle/apps/tajess/demo

Joracle apps/fnd/appicore/cp/common JavalobType.

/scratch/smikolai/applications/ASMESSApp /EssDem o/ essmeta/

OEBPS/img/GUID-241A1982-404F-4033-BA48-4B23B89CA2C0-default.jpg
Applications

 jazn-data.xmi

£ssDemopp - @
— APPICKION ROIES 1 o ot reaim
e RSOUICRCIANE | 0 Crseusers napanaly, s s A e o splcation s o5t yur splcaion
O o homcaton sources itement Grants | @ Kot sure what to 403 Fes e a1y 52t Macice rocomm g one
fo~26 Test Users & Rotes

Users..| Enterprise Roles
Qyes Name or Display Name

Roles | SR

Add NewRole
Add Existing Roles,

Members |- Mapped Roles

Member U
= Application Resources

+ X

2 suia s
23 connections
< (3 Descriptors

503 META-INF

[cvaterszo
8 Jazn-data sl
) js-conig xmi

) weblogic-application xm

{23 ADF META-INF

3 Ubrartes

OEBPS/GUID-F0843AB1-4DA1-4B5D-A508-35B0C31CD745-default.gif
File Edit View Application Refactor Search Navigate Build Run Versioning Tools Window Help ADF

EeHE > 90 XERO-0- 8- > Aitdm- > &4

ElessasyncspeLsrocesswsdl | dyBPeurrocessinpel |ofScomposiexm | ESsAsyncapELrrocess boel | Bl Helloworidiavs GI0)E)

(&) s @ |9
@ s
il 2

receivelnput

2ananas

Y

e 2@ Lo b Bo &
v
@

B8

Jowads

e B e bebe ®

AssignAsyncSuccess

Assignasyncerror assignsyncCancel

AsyneCallbadSUCCEss

AsyneCallbackeRROR AsyneCallbackCANCEL

zoom:|_90[F] —fF——— @

Design | Source | History

Elios

OEBPS/img/GUID-DD8BAB0B-1DEA-45A3-91BE-92DF1AEF26AA-default.gif
Edit Entity

] e Incompatibe.

Datatype: STRING

OEBPS/GUID-75C95369-E4CA-4A1D-A403-0CDA3CCE734E-default.gif
Job definition Job set
step step

Sttpo [[58et forsto)

|

JobDefinition

I

JobSet Step

v
Parent JobSet and
other parameters

from parent request

Overwrite specific
read-only System
Properties with
values from top-level
JobSet

‘Scoped request
parameters

OEBPS/img/GUID-D4DE847F-6F82-4249-AF09-83C68757ACB0-default.jpg
- Connections
Deployment Descriptors
Deployment Profiles
Diagrams
v
Maven
Projects
umL
L
=5 Business Tier
1 ADF Business Components
Business Rules
- Contexts and Dependency Inj
Data Contrals
S
Enterprise Scheduler Metadat

Help

Categories ems [ShowAll Descriptions
(icehersl [Java Deskeop Application
[

&) ADF Fusion Web Application

ADF Java Deskiop Application

(3] Apstcaton rom EaR e

[} Application Template

Custom Application

Creates an application that incluides a single project that can be
customized to include any features

Database Application

Extension Application
Java EE Web Application
OEP Application

Service Bus Application

oK Cancel

OEBPS/img/GUID-C3B77504-4F80-40FF-B648-0BA45645D903-default.jpg
[MySampleThinClientapp =~

projects @ @ V- B
G@ess
=@ thinclient
& simplesessi
& £ META-INF
& ejp-jorxmi
B weblogic-ejb-jar
aEEs
&0 oracte
&89 aops
B ess
&80 custom
& Jobs
3 sims
3 sims

= Application Resources

3 buid ies
B3 Connections
B3 Descriptors

& META-INF

5 (5] ADF META-INE
-3 Uibrartes

Applications 5

3 simplespaonedjobDefnxmi & i

(3 Job Definition

Name: SimplesyncejbjobDefn

Display Name: [Sim pleSyncEjbjobDefn

Description
Job Type: _foracle/as/ess core/SynciiblobType
=¥ G create Deployment Profile @]
TP Click oK to create your new deployment profile and immediately open it to see its configuration.
Profile Type
[earrite

Deployment Profile Name:

[ySampleThinClenAppEat

Nam{| Description:

SY5{| [Creates a profile for deploying the Java EE enterprise archive (EAR) fie to an application
SYS_{| | server. The EAR file consists of the application’s assembled WAR, EJ8 JAR, and client JAR
svs |

Help oK. Cancel

Job Definition Editor,

OEBPS/img/GUID-1CF058E4-5AA9-4609-AD13-557214219DE7-default.gif
Enterprise Scheduler Service Tutorial

Launch Job

Job: [JobWithParams Messages

Schedule: Immediately v

New request 2 launched using Job_essdemo1@Immediately

Submit
Request Status
[reqD Description Scheduled time State Action

1 |Tob_essdemol@lmmediately [Wed Jan 07 14:05:05 PST 2009 [SUCCEEDED |_Purge
2 [Tob_essdemol@lmmediately [Fri Jan 09 14:31:47 PST 2009 [WAIT Cancel

OEBPS/GUID-0A5B8361-4F7A-47F0-965C-960CADD7ED79-default.gif
Create Job Definition

Job Definition

A job definition describes a job (basic unit of work) that runs in the.
Scheduler. A job defintion requires 2 job type.

Name:
Package:

Job Type:

Location

Asyndjot]

oracle/apps/tajess/demo

Joracle apps/fnd/appicore/cp/common JavalobType.

/scratch/smikolai/applications/ASMESSApp /EssDem o/ essmeta/

OEBPS/img/GUID-5A701160-158F-4391-BFAC-D8A4B5C51CD9-default.png
[¢] Oracle JDeveloper 12c - EssDemoApp.jws : EssDemo.jpr : /scratch/vnanjund/tmp/testDemoApp/EssDemoApp/EssDemo/essmetaloracle/appsiessiseeded/demopackage/Jobs/AT:

Applications RG]

(@EEssbemoape | [job Definition

Sbres @ @ T -
@ (3] Demout
=@l Esspemo

& (3 Application Sources

@S

583 oracte
EE
G Ress
@83 seeded

I Application Resources
I Data Controls
1 Recent Files

Asynewslob2.mi - Structure | &

No Structure

B Asyncwsjobz.xmt

Name Asynewsiobz
Display Name: [RsyncWsjob2

Invoke Async SOA Compositel
Description:

JobType: foraciejas/ess/corejAsynaebservicelonType @ @

Class Name: [orace a.schedulr jab wabservice Asynchsjon

[publish

= [Application Defined Properties

No Application Defined Properties

= @ system roperties

Name Initial Value Read Only
SYS_effectiveapplication EssDemoapp

B ©= Access Control

No Access Contral

5 @ tocatization

Jab Definition Editor,

Messages - Log -
Ju1 03, 2013 6:41:30 AM oracle.security.Jps.internal .config.xnl.XnlConfigurationFactory initbefaul tConfiguration
SEVERE: java.i0.FileNotFoundException: ./config/jps-config.xml (No such file or directory)
Ju1 03, 2013 6:41:31 AM oracle.security.Jps.internal .config.xnl.Xnl ConfigurationFactory initbefaul tConfiguration
SEVERE: java.i0.FileNotFoundException: ./config/jps-config.xml (No such file or directory)
Ju1 03, 2013 6:41:31 AM oracle.security.Jps.internal .config.xnl.Xnl ConfigurationFactory initbefaul tConfiguration
SEVERE: java.i0.FileNotFoundException: ./config/jps-config.xml (No such file or directory)
Ju1 03, 2013 6:41:32 AM oracle.security.Jps.internal .config.xnl.Xnl ConfigurationFactory initbefaul tConfiguration
SEVERE: java.i0.FileNotFoundException: ./config/jps-config.xml (No such file or directory)
Ju1 03, 2013 6:41:32 AM oracle.security.Jps.internal .config.xnl.Xnl ConfigurationFactory initbefaul tConfiguration
SEVERE: java.i0.FileNotFoundException: ./config/jps-config.xml (No such file or directory)

«€

OEBPS/GUID-E2748E30-8950-423F-ABC5-18BE7E653F54-default.jpg
New Gallery

Q
Categories: Items: [Show Al Descriptions
rgrans “ [Broorvee
Waven 5 Job Deinkion
Projects. Launches Job Definition Creation. To enable this option, you must select a
i projec,ora il wihin a prolectInthe Application Naviaator
i
ob sex
(= BPM Tier L
- Activiy Guide @ ncompatbiy
Business Components

B scheute

Simulation v
= Business Tier
- ADF gusiness Components
Business Rules
- Contexts and Dependency Inje
Data Controls

- Security
Spring
~TopLink/Pa

Web Services
i€ =

Help oK. Cancel

OEBPS/img/GUID-E8D59691-FFD2-45F9-A7E8-E9335099988E-default.gif
Create Incompatibility,

Incompatiblity

Allows you to speciy jobs that cannot be executed at the same time,

Neme:
Package:

Location;

Incompatibity 1

IC:{Developerimyworkjapplication!SfProject1]

Incompatibity Type:

© Gibl (entire fob)

(&) Domain (propety of the job)

OEBPS/img/GUID-61AFF488-40B5-4E6A-B274-BC18857DEDF4-default.gif
& New Gallery.

Al Technalogies

@ n

Cotegores: tems [how Al pescrptons

= 0 305 Type
(= Business Tier

33 30b Definition
AOF Busiess Components

Launches Tob Defition Creatian.
- Business Inteligence.

Data Cantrols To enabl this option, you must select 2 poject, or il within a project inthe.
Applcation Navigator

B xbset
- Seaurty

Toplink/PA [® Incompatibiity
- web Services
=it Tir L=t
- ADF Deskiop Integration
AOF Suing
- Extension Development
Sing/aWT
= Database Ter
Database Fles
- Database Objects

OEBPS/GUID-820DD4F0-0540-411A-B4EF-845B406ACF56-default.png
System Properties | Skip Condition | Targets | Sources
General Application Properties

job Properties

Name Type Value

User Defined Properties +x

ane Ty vaie
|

OEBPS/GUID-B4A60DA9-9E6C-4157-8DEA-8E3473872250-default.gif
bvems

Events + /%

Name Type

OEBPS/img/GUID-1D608348-A0D4-46F2-AAE0-169CECAAEC6A-default.gif
L FaBXO Composite: AsyncEssDemoComposite

Event Definition Creation

Event Definition Creation =
‘The Event Definition Creation dialog allows you to create a Event metadata definition file.

Event Definition name: [EventDefinition1 3
Directory: &:/scratch/smikolai/applications /EssDemoSOAApR/AsyncEssDemoComposte/ | e
Namespace hitp: [xmins oracle.com /AsyncEssDemoComposite /EventDefinition1. el

Events + /7 x

Name Type]

OEBPS/GUID-62C724CD-7C5D-4CCC-B94B-3B409701675E-default.jpg
Edit EAR Deployment Profile Properties

Q search Library Dependencies
General Libraries Selected for Deployment
- Application Assembly

EAR Options

= File Groups

& Application Descriptors

- Contributors

Fiters

& Application Libraries
Contributors
Fiters -

[l Encerprise Scheduler
pLink

Platform 2

Help ok Cancel
b

OEBPS/GUID-0582F1D3-F014-4155-A242-522F8783A007-default.png
General | Copy Rules | Annotations | Documentation | Skip Condition | Targets | Sources
& QO =«

nsert NewRule After ~
SPeLProcessLbpel s

iPELProcessL bpel
Partner Links

3 Partner Links
3 varisbles Variables -8
54 Process Process -8
5B varisbles Variables B3-8)

@-@0) Inpuvariable clentSPELProcess1Requestiessage inputvariable client8PELPracess1Requestiessage 00

@-@0) outputvariable clientEPELProcess1RespanseMessage outputVariable clientEPELProcess1RespanseMessage -8

-G x nsLigetCompletionstatusinput payload B2

&-@0) y nsLanjobCompleioninput clentprocessResponse <anonymovis> €0

clentresult string €

xnsLgetcompietionstarusinput 68
¥ nsLonjsbCompletioninput 6@

parameters .
54> nsLonlobCompletion criobCompleion
> requestid o
o] stae cte
@ resutessage sting

>

+R @D

8 Soutpurvariable payloaa) clentresut

Apply oK. Cancel

Help

OEBPS/GUID-005505B7-8C14-4F70-A448-48A3F2696250-default.gif
Jobset FIN Definition

Stept
EFFECTIVE_APPLICATION
"0DI"

Step2

Step3.
EFFECTIVE_APPLICATION
5

‘Submit Jobset FIN
1o GL App

‘Oracle Weblogic Server

Oracle Enterprise Scheduler

OEBPS/img/GUID-A8989DFE-F09B-4857-9AE9-818774664930-default.jpg
Enterprise Scheduler Service DemoApp

Launch Job

Job: HelloWorldTestAppJob ~

Schedule: mmediately +

Messages

Request Status

[reqrD | Description [Scheduled time [state [Action
[t [Basiclavalob@lmmediately [Mon Feb 24 02:33:28 PST 2014 [SUCCEEDED |
[[BelloWorldJobDefinition @Immediately [Mon Feb 24 05:24:16 PST 2014 [SUCCEEDED |
[3 [BelloWorldJobDefinition@Immediately [Mon Feb 24 05:25:44 PST 2014[SUCCEEDED |
[+ [Basiclavalob@Immediately [Mon Feb 24 05:25:49 PST 2014 [SUCCEEDED |
[[HelloWorldJobDefinition@lmmediately [Mon Feb 24 05:25:52 PST 2014[SUCCEEDED |
[6 [HelloWorldob@Immediately [Mon Feb 24 10:00:10 PST 2014 [SUCCEEDED |

OEBPS/img/GUID-52C73B16-16AE-4B0F-AE64-E295E8AEF255-default.jpg
ESS Web Ser

ESS Request Web Service Policies

Configure web service policies for job definition: JobDefinition://wer/asd/Job1

R
securiy */7%|08
Management */%|08

Help Cancel

OEBPS/img/GUID-A6F81952-C70C-476D-8F11-B4976C562DCF-default.gif
Oracle Enterprise

Error

SOA-BPEL

‘Scheduler
Asynclob,
oxeute) Begin
RalseEvent 1//
EssWebService
setAsyncstatus <)

-

OEBPS/GUID-B865E3E1-A8A1-4670-825D-A2B20E88597A-default.png
4. Applications Places

Applications

Application.
ELCEN &N
& e

s BPELProcessLbpel
@ 03 Evems
& 03 schemas

2, BPELProcessLxsd
200 testsuites

& fetistmi
(3 Transformations
& B wsoLs
(e n
2 Applicaton Resources
2 Data Con.. @ 7 -

I Recent Files

BPELPr... -

i PELProcessLopel
Partner Links

Variables

Carretaton sets

Exensions
imports

Praperties

Property Aliases

Message Types

Inline Subprocesses

-1 Actiities

BB EE

Yaw +/%

sysem SER{ET

Oracle JDeveloper 12 Development Build - Applicationi.jwe

Projectijpr

Resources -

EE

New Catalog

Partner Links

-

£

bpelprocess1_clent

PEL 2.0

Import.
Refresh

Partner Links

ADF Business Components REST Service.
Application Server.
BAM Connection.

Database.
'@ | o
receivelnput Jhax

UDDI Registry.

Schedulejob:

callbackClient

o

Properties

Q fna @

0] show Detailed Node Inform

Source BPEL

process/sequence/scope

Design) Source_History

@) (@ emna

(31 rvne confia]

OEBPS/GUID-36C41AD4-8CCF-4C22-A2DC-528D8A585DE4-default.png
Edit Schedule Job

System Properties | Skip Condition | Targets | Sources

e

Application: |]
Mame: [Scheautejobd]
Descripton: =

b [] Q
schedule: [Q¢

startTime: | =
Help Apply oK. Cancel

OEBPS/GUID-7A7DC738-E158-404D-B1D4-6EAB6BECDE1D-default.png
ORACLE Enterprise Manager Fusion Widdieware Control 12¢ tep v | 38 weblogc v | Logout O

TAHGEE Na pojcy attachment - Oracie Eterprise Manager g feeoredecon

Vew~ | Attach/Detach Policies(WsmPolicy:/ /oracle/apps/ess/custom/AsyncWSJob1) (... Ok | teidate | conca
& [0 Appicatc Globally Attached Policies

B son TName [Category _[Poliy Set [Enabled [pesarption
7 [Weblookt o rows yet

7 £ soainf

o @

& mf
&l s Directly Attached Policies
&> £ Business [Name |category Enabled [Description View Detail

> Do Do wase v esoassves. | 6

v B Scheduiin

&> £ User Mes

a attach = Detach

Available Policies

vew + | [El | Eivetsch
é [[o] |

= [Cotzgory | Stots [pesarpton [View Detai |
‘orade/no_addressing_policy Ws-Addressi. This policy faciltates t.

oradle/log_policy Management
‘oracle/no_mtom_policy MTOM Attac.
‘oradle/wsmtom_policy MTOM Attac.
orade/http_basic_auth_over_ss|_dient_policy Security
oradle/http_saml20_token_bearer_dient_policy Security
orsclett _sani20_token besrer_over_s|cient_polcy searity

“This policy causes the reg,
“This polcy facitates t.
This Message Transmission

“This policy includes usern.
“This policy ncludes SAML

184444

“Thi policy ncludes SAML il

Showing 71 outof 71 Rows:

OEBPS/img/GUID-0415B1EE-82BE-4AC8-A62C-10272480CA97-default.gif
B Exampledobset xml * |

B J0b Set

Name:

Display Name:
Description

[Pubish

ExampleTobset

[ExampleTobset

= 3 Jobset steps

ZtRav

O Pardlel &) Serial

R T
P |

PR
P |

Avalable Steps

[step_error
[step_waming

5|

OEBPS/img/GUID-5E53864B-2D62-481A-8DBE-C38055EF6001-default.png
EM

Metadata &
Request
‘Submission

ESS server/cluster/domain

execute

cancel

ESSAPP | HostingApp

serverfcluster/domain
oracle ess. hin.client
shared ibrary

<dinterface>>
RemoteCancellableExecutable

axecuto()
cancel()

<business-remote>:
"RemoteExecutable or
RemoteCancellableExecutable |

RemoteJobBean
@stateless.

axecuto()
cancel()
operation ()

- Implement RemoteExecutable if execute functionalty s suffcient.
- Implement RemoteCancellableExecutable if execute and cancel functionalities are required.

OEBPS/img/GUID-7910EB8F-CC9D-4528-A0BD-8EFB2CED917C-default.png
o Frojec1 -

YPdLRRAXANAT B

Projectl

Exposed Services

©
bpelprocess1_clie...

process
brocessResponse

Components External References

EssService

submitRequest
submitRecurring..

getCompletionsta.
getRequestState
getRequestDetail
jetRequestExecu.
oldRequest
releaseRequest [3]

OEBPS/img/GUID-10656BD9-928D-45B1-9C96-275D6322A2FA-default.jpg
A Job definition describes job (basic unit of work) that runs in the.
scheduler. A job definition requires ajob type.

Name: [SmpteSpawnediobbein]

Package: [foracle/apps/ess/custom |

Job Type: [foracle/as/ess/core/ProcessjabType ~|

Location: [yanu/MyWork/MySampleThinClientApp/ ThinClientAppMARProj/essmeta/|

Help ok Cancel

OEBPS/GUID-55367359-7A8E-4013-BD9A-3BEECC3B377B-default.jpg
Edit EJB JAR Deployment Profile Properties

Q General
ceneral ge AR il
/5148 Qptong o/ THinClentAppHARFrj/deploy iy SampleTHinClentejoar| |- Brovse
5 File Groups b
- project Outpue earie
Soninars /ThinCiertApRMARPral/ deploy /ySam pleThinClentE.ear| |- Bravee
iners
Ubrary Dependencies Deploymen i
. Profl Dependencies I T
Platform -
& || enerprise appicaton Name: ySampieThinciemg |
. Deployment Client Maximum Heap Size (in Megabytes): jAuto ™,
-
Help ok Cancel
P

OEBPS/img/GUID-DFFE0FAC-7CF6-4571-B86F-B852335BEA21-default.jpg
3 Job Definition

| [simplesyncEibjobDefnxm!

Name: SimplesyncejbjobDefn

Dizplay Name: SimplesyneBjobDein

@ Add System Property

Deseription
i [s¥s_ettectveappiication

Job Type: Type: STRING

Class Name: | nitalvalue: [EsshatverostingAp

[Cleuvish | (] Read Only

= @ Applicati

No Applicatio

@ system

No System Prol

= ©= Access

No Access Cor

5 @ wocatiza
Joo Desntion e

Deplayment - Lt

Q

Help

oK.

Cancel

OEBPS/GUID-8C9E847D-A633-40E5-84F5-8AF5518BDDF3-default.gif
& g «
)
kol
£ El e El @
& Dowork.
@
el el
! @ :
Assignerror AssignCancel

OEBPS/img/GUID-7A403CBA-0898-4520-BA9B-8A9636F03EC8-default.gif
Esswebsenvice

submitRequ.

o
o et
essasynchpel.. Getreauest

getRequest

— holdRequest

proces releaseReq.
setasyncre. . 3]

OEBPS/GUID-D154ED82-7A22-42C0-940A-82C34078880E-default.jpg
Applications

MySsmplThinClentapn
&R V-E-
=[5 ThinClinappMaRPro)
= £ Application Sources
& L MeTA-nE
B, ejojarxmi

5 wabtogic-eiojarx

I projects

=
=l Application Resources

3 buid s
@ B3 Connections
B3 Descriptors
& (1 META-INF
5] ADF META-INE
@ B3 Ubraries
(23 Service bus System Resources

Q

(Categories:

ems:

[] showAll Descriptions

Applications
- Connections
Deployment Descriptors
~Deployment Profiles
Diagrams
v
Maven
Projects
umL
L
=5 Business Tier
- ADF Business Components
Business Rules
- Contexts and Dependency Inj
Data Contrals
[

- Security
TopLink/JPa
‘€ >

Help

[Job Type

[3 Job Definition

Launches Job Definition Creation, To enable this option, you must select
2 project, or afile within a project in the Application Naviastor. "

59 Job set

& ncompariiy

B scheaute

oK. Cancel

m

e

T TR

Py

s

e

A

———

OEBPS/img/GUID-06409C35-9A99-4112-AAE0-623706BA7B5E-default.jpg
Create Job Definition

Job Definition

A ob definition describes a job (basic unit of work) that runs in the
scheduler. A job definition requires job type.

tame [HelloWoridjabber]
Package: [oracle/apps/ess/nowto/metadata

Job Type: [soracteasyess/core javajonType ~
Location cratchyababchak jdeveloper/myvwork EssDem oApp/SuperEs{

reate Java Class
Java Class,

® gynchronous
O Asynchronous

N T T

Java Package: [oracle apps ess howto] @

Class Name: [Fetioworiajoe]]

Help oK Cancel

OEBPS/img/GUID-8413B92A-BCF7-4989-BC3F-8500F5D3C51E-default.png
Configure SOA W5 Policies

SOA Client WS Policies: EssService - Binding WS

Port: SchedulerservicelmplPort

YA
o +x|w@
[]
Relabilty +x|w@
[]
Adaressing +x|w@

— (Fyxve

Management */7%| @@

e o

OEBPS/img/GUID-E1DB6D8B-E2CC-492A-B2D6-2B1E91F8C1E2-default.jpg
Edit EAR Deploy{3ent Profile Properties

Q search Application Assembly

General Select the Java EE modules that you would like to assemble into your Java EE
application

EAR Options

[ava EE Modules:
MAR_EssDemoApp
SuperEss jor
JAR_SuperEssEjblar

= File Groups
- Application Descriptors
- Contributors £
Fiters
- Application Libraries
Contributors

Fiters =
Library Dependencies
Platform v

Help oK Cancel

OEBPS/img/GUID-05C7759F-B97D-490F-B84B-C4FFD772D5D9-default.jpg
Enterprise Scheduler Properties

Enter values for ejb-jarxml

Logical Application Name: [Essbemoapp
Application Policy Stripe: [Essbemoapp

JPS Interceptor Application Name: [EssDem oApp

Help ok | cancel

OEBPS/img/GUID-DB1635EA-033E-4EAF-8A38-134389CE36D5-default.gif
5 Job Set

Name:

Display Name:
Descripton

[Publsh

ExampleTobset

[ExampleTobset

= 3 Jobset steps

ZERaw

@ Pardlel (O Serial

3

OEBPS/GUID-FCC12950-715B-4D08-AAAE-01D5F370CEF1-default.gif
From

To

Type: [Variable

ype; [Varibie

riables
) inputvariable
payload
-4 ns4:ESSDemoEvertElement
< nsdrequestid
<
<> nsdeventType
) OnMessage_cancel_Inputvarable
) outputvariable
) AsyncCallback_setAsyncRequestStatus_InputVariable
AsyncCallback_setAsyncRequeststatus_OutputVariable
) getRequestDetail_getRequestState_InputVar fable
}) getRequestDetail_getRequestState_OutputVariable
) asyncCancel_setAsyncRequestStatus_InputVariable
) asyncCancel_setAsyncRequestStatus_OutputVar iable
) Invoke_4_setSubmitArgs_InputVariable
}) Invoke_4_setSubmitArgs_OutputVariable
) AsyncCallbackERROR setAsyncRequestStatus_InputVa
AsyncCallbackERROR setAs ync RequestStatus _Outpur
lope - Scope_1

(x) inputvariable
() OnMessage_cancel_InputVariable
‘ (x) outputVariable
(x) AsyncCallback_setAsyncRequestStatus_InputVariab
(%) AsyncCallback_setAsyncRequestStatus_OutputVaric
(%) getRequestDetail_getRequeststate_Inputvariable
(%) getRequestDetail_getRequestState_OutputVariable
(x) asyncCancel_setAsyncRequestStatus_InputVariable
(x) asyncCancel_setAsyncRequestStatus_OutputVariabl
() Invoke_4_setSubmitArgs_InputVariable
‘ (%) Invoke_4_setSubmitArgs_OutputVariable
(x) AsyncCallbackERROR_setAsyncRequestStatus _Inpy
&3 parameters
<-
o s
(%) AsyncCallbackERROR_setAsyncRequestStatus _Outy

[show Detailed Node Information

[show Detailed Node Information

xpath: [/s

SSDenoEventEl enent/nsd: execution

xpath: [/ns:

etASyNCReqUESTSTatus/NSL: request

|

T

OEBPS/GUID-48F23A8E-EB11-4A91-8F0D-21633F7B6BB6-default.jpg
3

ESS - Diagnostic health check service

Check Health

OEBPS/img/GUID-0EDB05BF-88E9-4F25-A2B7-B24712A734B9-default.gif
From

To

Type: [Expression

ype; [Varible

Expression

*CANCEL"

riables
Process
Variables
(%) inputvariable
(x) OnMessage_cancel_InputVariable
() outputvariable
() AsyncGallback setAsyncRequeststatus_Inputv
(%) AsyncCallback_setAsyncRequestStatus_Output
(%) getRequestDetail_getRequestState_InputVariabl
() getRequestDetail_getRequestState_OutputVarial
(x) asyncCancel_setAsyncRequestStatus_InputVari
(%) async Cancel_setAsynic RequestStatus_OutputVar
() Invoke_4_setSubmitArgs_InputVariable
(%) Invoke_d_setSubmitArgs_OutputVariable
5-(x) AsyncCallbackERROR_setAsyncRequestStatus.
&3 parameters
543 nsLisethsyncRequeststatus

<> nslrequestxecutionContext

<)

<> nslstatushessage

() AsyncCallbackERROR s ets yncRequestStatus_.

&) Scope - Scope_1

[show Detailed Node Information

xpath: [/ns:

etAsynCReqUeSTSTatus/NsL: status

|

ey

OEBPS/img/GUID-1D09AF97-D49C-4FCA-A928-8A40374A034D-default.jpg
Aglication fioles Application Roles

Security Policy: [Essbemoapp |
Resource Grants

Create roles specific to this application. Map a role to users or enterprise roles for testing
Entitlement Grants

st Users & Roles | ‘G Name or sy Name

Roles - % Name [EssDemoAppRole
anonymous-role

[aunemtcarea-role

Description:
DemoAppRole "

Dizplay Name: |

Mappings |~ Grants:

Mapped Users and Roles
& EssDemoAppuser

OEBPS/img/GUID-6A144402-5F92-429A-A0CB-8CFCB17A8847-default.gif
Add an Event

Define this event's type

@ Hement

Name

/xmins oracle.com [apps/ta/essdemo/events/schemaEssDem oventelement| &

EssEvent

elp

OEBPS/GUID-B0DF44F7-C655-41F6-9D0C-C8EC9B74ADCC-default.jpg
a Add Access Control

Select a role and specify the actions it can perform.
Role: [EssDemoappRole -

] Read

[
Update

Delete

Help oK Cancel

OEBPS/img/GUID-F0843AB1-4DA1-4B5D-A508-35B0C31CD745-default.gif
File Edit View Application Refactor Search Navigate Build Run Versioning Tools Window Help ADF

EeHE > 90 XERO-0- 8- > Aitdm- > &4

ElessasyncspeLsrocesswsdl | dyBPeurrocessinpel |ofScomposiexm | ESsAsyncapELrrocess boel | Bl Helloworidiavs GI0)E)

(&) s @ |9
@ s
il 2

receivelnput

2ananas

Y

e 2@ Lo b Bo &
v
@

B8

Jowads

e B e bebe ®

AssignAsyncSuccess

Assignasyncerror assignsyncCancel

AsyneCallbadSUCCEss

AsyneCallbackeRROR AsyneCallbackCANCEL

zoom:|_90[F] —fF——— @

Design | Source | History

Elios

OEBPS/GUID-251B69E5-FB98-4F1F-833A-BCB9A4EB4F93-default.jpg
Edit MAR Deployment Profile Properties
Q search Directories
MAR Options Files

55 Metadata File Groups
- User Metadata

5 ADF Library Customizat
Directaries

Help

SelectAll Customizations Deselect All Customizations

e

5[23 Merged Contents of This File Group's Contributors
-4 C3 oracte

[715) SmpleSpauncaiobDern xmI
718 simplesyncegblobDern xmi

Expand All Nodes Collapse AllNodes

oK

Cancel

OEBPS/GUID-39EB36A8-EE73-45A6-A0FC-7903B0B2B662-default.gif
Create Job Definition

Job Definition

A job definition describes a job (basic unit of work) that runs in the.
Scheduler. A job defintion requires 2 job type.

Name:
Package:

Job Type:

Location

Asyndjot]

oracle/apps/tajess/demo

Joracle apps/fnd/appicore/cp/common JavalobType.

/scratch/smikolai/applications/ASMESSApp /EssDem o/ essmeta/

OEBPS/img/GUID-B8ECC6B1-9ACD-4D25-A91F-D8B69C9F4A72-default.gif
Oracle JDeveloper client-app.ear
Developing a A.class.
client application 8.class

— Adobclass.

&

Metadata

Store

Essjar —»| | metadata

OEBPS/img/GUID-575155A0-9615-4F43-B3D7-DF8E8FAFB0B7-default.jpg
Create Custom Application - 5tep 5 of &

Configure ESS Job Support settings

Application Name
Project tame
Project ava Settings
Eroject € Settinas

© Project EsS Job Sup

© Build Tool

Help

Enter values for weblogic-application. xm|.

Application Id:

T
L ey

Einish

Cancel

OEBPS/img/GUID-B035C844-9575-4E7E-9934-886934B3C859-default.jpg
Applications [F3 simplespawnediobDefnxml & SimpleSessionbeanjava [eib-jarsml | B weblogic-eib-jarsn
[l MysampleThinClientapp ~ = | Q' Fing MR B

clbrojects Bl @ WrE- B 6 Create job Definition G
& @ comoracle.samples R
B @ ess Job Definition oo
& @ thincent o | s detmtion descrines a ot (wasicunit o warg thatruns n he
& simplesessi =2 Scheduler, A job defintion requires a job type.
& META-INF 2
B ejojarxmi g
R webiogicodblara Name: [SmpleSyncEplonDerm] borer
=D
Package: [Jaracie/apps/ess/custom
D e oo o \
& E‘;}u Job Type: [Joraciefas/ess care/SyncElotType S|
& (3 custom M Location: iy Work;iySampieThin e o ThinClentA ppWARProjessmetal]
= (3 Jobs
B simt
~I Application Resources
3 i Fies
3 Connections
& (1 Descriptors
£ META-INE
51 ADF META-INE weblogic-
3 Libraries Overview 5
33 service bus system Resources |0
nct
Help ok Cancel
o 1
T

OEBPS/img/GUID-5A3CCF92-62E0-4D26-8E89-5B132D2AD058-default.jpg
@ Create Session Bean - Step 2 of 5

General

Enter an EJ6 name and chaose fram the Session BB aptians below.

S Generat E Name: [Smplesession |

o Class Definitions
T SessionType: (&) Stateless O Stateful O Singleton

Transaction ype{Contaner-managed Transactions €My win mpick Commit]

Mapped Name; [dbsmplsesstonsean]

] Generate Session Facade Methods Wiore Qption:

Entity Type 9 JPA Enifles Topll

Help i Next> | Einish Cancel

OEBPS/GUID-E97E956F-3B54-45F2-BF13-E384F738FB65-default.gif
Oracle Weblogic Server
| client appli
[

3
3 L\ Vr‘
Oracke Enterpriss Orace Enterprise

Scheduler metadata Scheduler Data.

OEBPS/GUID-58C43C44-515E-43F3-A054-D721E2A25F89-default.png
Create BPEL Process

[e— =

describe/exectite a business process (or large grained service), which is implemented as a
stateful service.

() BPEL 2.0 Specification] () BPEL 1.1 Specification

pame [BPeProcess1]

Namespace: [t/ xming oracie.com /Applicaiond ProjectL /6PELPracess1]

Directory: [/scratch/shaiverm /test._jdev jdeveloper/mywork/Applicationl /Project1/SOA/BPEL |

Template: [38 Asynchronous BPEL Process -@

Seruice Name: bpeprocessL_client]

Expose as a SOAP service

Devery: [async persit -]

Input: f{nttp://xmins.oracle.com /Application1 /Project1/BPELProcessLiprocess | 3

Qutput: [xmins racie.com Appicatont rojectL BPELFrocessLprocessRezponse] G

Help oK. Cancel

OEBPS/GUID-F2336F67-9A12-4C0A-A466-6267FCC812CE-default.gif
[(B Exampledobset.xml * |
.

5 Job Set

5

Name: ExampleTobset

Display Name: [Exampledobset

Description

[Pubish

= B Job Set Steps /R

O Pardlel &) Serial

Avaleble Steps

[step_error
[step_waming

© e
b oo

OEBPS/GUID-78FDB9B0-D176-43DE-A2B2-BD223B2D844A-default.jpg
Create Custom Application - Step 2 of 6

Name your project
Broject Name: [EssHost]
Application Name
ok e Directory: [[scratch/ababeha/developer mywork EssDemoApp /EssHost] orowse
¢ Eskcrimasoing || ok euures | Generuea Companes | Assca s
e ||| Seiectea
[T | aseriodeing
¢ o 1 |gg wodeing £55 Host Support
S suitaTool B uobo 53 Job Support
evtension Development
HTHL and cs5
ava Hodeling >
avaScript
javaServer Faces (JSF) %
5P and Serviets
aven
0EF Library suite
oepsue
55 Client Support Feature Descrption
Used 0 bulld an Enterprise SchedulerService based cllet appication, which Includes B
[>
Help < Back Next > Einish Cancel
4

OEBPS/dcommon/oracle.gif

OEBPS/GUID-A15BC32C-27D0-4CDC-98A5-0B2E49A4E680-default.jpg
[Create HTTP Servlet - Step 2 of 4

Enter servlet details

g
| i Generate Content Type: HTML -

[] Generate Header Comments
Registration
 Configuration fle Gaeb.xml)
© Annotations

Implement Methods:
[V doGeto [doDelete0 [] doPur0
[service0

Help <Back Next > Einish Cancel

OEBPS/GUID-C1D75AE3-8826-41F0-B11C-C032E4742185-default.jpg
Create Job Definition

Job Definition

A job definition describes job (basic unit of work) that runs in the scheduler. A job
definition requires a job type.

pame [ReloWortajobDeiniion]
Package: [7oracte/esshost/metadata]

Job Type [soracteasyesscore javajonType ~
Location [#5cratch/ababchak/ideveloper/mywork/EssDemoApp /EssHost /essmeta/_|

Create java Class
Java Class

® yynchronous
O Asynchronous

Locaton: [[zcratch/ababchafjvelaper/myworkEcsDemoApp/EssHost/are |

Java Package: [oracie ssshostmpt §s

Class Name: [FeitoWoriaimt]

Help ok | cancel

OEBPS/img/GUID-237F76B7-E6BC-4895-8D9F-CC7785EC6982-default.jpg
SimplesyncEjbjobDefn xm!

B Job Definition 2

Name: SimplesyncejbjobDefn

Display Name: [SimpleSyncEjbjobDefn

Deseripton
Job Type: foraclefas/ess/core/SyncEjblobType
Class Name: [oracieas scheduler job.efo Syncdsjob]
[Publish
= [Application Defined Properties 7+ R
No Application Defined Propertes
& @ System Properties /R
L
Name Type InialValue Read Only
Svs_atfectveappiication STRING Esstlativeostinghnp
SYS_EXT_inditiappediame STRING cib/simpleSessiontiean
SYS_EXT_indiprovidertr STRING 3/ flocalhost 7001
5 ©= Access Control ¥R

Job Definition Editar, ¢

OEBPS/img/GUID-CCA1BE4F-2D77-48EB-A990-9193CA63216E-default.jpg
Applicatians:
MySampleThinClientapp |+
B ®-V-E-
THiRClientARMARPro)
= £ Application Sources
&£ META-INE
B ejojarxmi
R weblogic-eib-jarx
=GB Ess
=03 oracte
500 s
- ess
&£ custom
= Jobs
3 simp

I projects

=l Application Resources

3 buid s

3 Connections
B3 Descriptors
[META-INE
53] ADF META-INE
3 Lioraries

23 Service bus System Resources

U3 simpleSpannedjobDefn.xm!

3 Job Definition

Q

GIES

Categories:

hems: [] ShowAl Descriptions

!
e
i e
e
SungnT
(- Database Tier

Help

[8 Data Control

R s

© Entiies from Tables

© entity

&) Java service Facade gPA/TopLink)

[@ 1P Mappings oaLy

[B Jpa Persistence Descriptor (persistence.xmi)
[B Jpa Persistence Unit

& Message-Driven bean

& session pean

Launches the Create Session Bean wizard, which allows you to create a
stateful or stateless session bean. To enable this optian, you must
select a project in the Application Navigator.

oK. Cancel

OEBPS/img/GUID-AF80EA2F-7945-4E2E-9ED3-1C263347D40C-default.png
Update Reference

soap
Web service is a service externalto the SOA composite.

tame [Essservice]
WSDL URL [FApplicationt /Projectl /SOA /WSDLs ESSWebServiceAbstract wsdl|
Fort Type: [Esswepservice ~
CalbackportType; [EsswebserviCalback

] copy wsd and its dependent artifacts ito the project.

Transaction Participation: (WSDLDriven |

verson e

Help oK. Cancel

OEBPS/img/GUID-ECA88C63-5F7A-41A3-B1CE-C58F237DE834-default.png
Oracle JDeveloper 12c Development Build - myTestApplication.jws : myTestProject.pr.

Applications -2 « Compon
myTestapplication ~ |~ | %R F-S-PFQI >0 B Qs
eSS S Bavao(ms
) rEL < - =7m | = BPEL Constructs
& BPELProcess1.bpel s 2
frents N Web Service ol
Schemas 3
& BPELProcessLxsd receivelnput imvoke [T
7 testsuites E] o
[fiteList.xmt g B 2
Transformations A Receive Repy *
Ewims & .A 4l Subprocesses
R = > » 2 Orace Extensions
2 Application Resources Schedulejob1 4504 Campanents
“ibataCom.. @ ¥ B~ k: oL services
4 Recent Files bpelprocess1_client - 2 Custom Activty Templates
i
wpeL. Properties
=| @Fna
a BPELProcess1 bpel f—
- Partner Links v L4
5B variables General Jame
@-dh Process Correlations |
Comdton ses calbackClen Poperts | Somersatio
Imparts Cemilns Detail Label: &
Praperties Annotations
Property Aliases Headers
Message Types o eaion | Imeractc
Inline Subprocesses o
= artivities BPEL 2.0 Skip Condition Partner Li
€ 5] > <€ Targets
[Show Detailed Node Inform... | process/sequence invoke[1] e Port Type
Source | BPEL pesign STRFERJFIE R —

OEBPS/img/GUID-1B6C0E95-A72A-423C-A22C-B1E5CE38F666-default.png
[8] Oracle JDeveloper 12c - EssDemoApp jws : EssDemo.jpr : /scratchivnanjund/tmp/testDemoApp/Ess DemoApp/EssDemo/essmeta/oracle/appsiessiseededidemopackage/Jobs/A€T]

Applications RG] [Asyncwsiob2.xm!

EssDemoApp ~ (7| [Job Definition
Sproects @ @ V- B
Demout
& (5 Essbemo
5 (2 Application Sources Invake Async SOA Compasitel
SEes Description:

= oracie

= E2awps JobType: foractejasfessicore/AsyncebsenvicelobType @ B | Forreauest

S0 For callack
0 seeded Class Name: [orace a.schedulr jab wabservice Asynchsjon]

[publish

Name: Asyncwsiobz

Display Name: [RsyncWsjob2

= [Application Defined Properties

No Application Defined Properties

 Appicaton Resouress
0s Contrls = @ sytem Propenies /¥ %
Recant i

ame e it vaue Readony |
e S| S_steaneapaizain stan EssDemorpp

SYS_EXT_wsWsdiBaseUrl STRING http://adcO0cglus.oracle.com:242... W

SYS_EXT_wsWsdir STRING /s0a-infra/services/defaultfAsync... W

SYS_externallobType STRING SOA 4

SYS_EXT_wsServiceName STRING asyncsoacompositel_client_ep v

SYS_EXT_wsPortame STRING AsyncsOACompositel_pt v

SYS_EXT_wsOperationName. STRING process v

SYS_EXT imvokeMeseaae stane it process xmnsns -

Jab Definition Editor,

Messages - Log -

Ju1 03, 2013 6:41:32 AM oracle.security.Jps.internal .config.xnl.XnlConfigurationFactory initbefaul tConfiguration
No Structure SEVERE: java.i0.FileNotFoundException: ./config/jps-config.xnl (No such file or directory)

Jul 03, 2013 6:43:43 AM oracle.jZee.ws.ndds.adt.ADTUEI15 printhessageNode

HFO: - -BEGIN MSG NODE-

Jul 03, 2013 6:43:43 AM oracle.jZee.ws.ndds.adt. ADTUEI 15 printhessageNode

INFO: ----Complex Part payload-

Jul 03, 2013 6:43:43 AM oracle.jZee.ws.ndds.adt. ADTUEI 15 printhessageNode

INFO: ‘----End Complex Part payload----

Jul 03, 2013 6:43:43 AM oracle.jZee.ws.ndds.adt. ADTUEI 15 printhessageNode

HFo: - -END MSG NODE-

«@

<€ > >

OEBPS/GUID-D4DE847F-6F82-4249-AF09-83C68757ACB0-default.jpg
- Connections
Deployment Descriptors
Deployment Profiles
Diagrams
v
Maven
Projects
umL
L
=5 Business Tier
1 ADF Business Components
Business Rules
- Contexts and Dependency Inj
Data Contrals
S
Enterprise Scheduler Metadat

Help

Categories ems [ShowAll Descriptions
(icehersl [Java Deskeop Application
[

&) ADF Fusion Web Application

ADF Java Deskiop Application

(3] Apstcaton rom EaR e

[} Application Template

Custom Application

Creates an application that incluides a single project that can be
customized to include any features

Database Application

Extension Application
Java EE Web Application
OEP Application

Service Bus Application

oK Cancel

OEBPS/GUID-A2E88AE5-089A-4B9F-92AF-B4FBAE3F16EE-default.jpg
Oracle Deployment Configuration

Configure and customize settings for this deployment

DS
- Metadata Repository

Repository Name: [mds-ESS_MDS_DS

Repository Type: D8

Bartition Name:

Path/INDI Info: b/ mds-ESS_MDS_DS

- Shared Metadata Repositories

Namespace Repository Type Pantton Path DI nfo

oracle/as/ess/core |mds-ESS_MDS_DS. essapp=internal-partition ¥ jdbc/m ds-ESS_MDS_DS
Help Deplor Cancel

OEBPS/GUID-C3B77504-4F80-40FF-B648-0BA45645D903-default.jpg
[MySampleThinClientapp =~

projects @ @ V- B
G@ess
=@ thinclient
& simplesessi
& £ META-INF
& ejp-jorxmi
B weblogic-ejb-jar
aEEs
&0 oracte
&89 aops
B ess
&80 custom
& Jobs
3 sims
3 sims

= Application Resources

3 buid ies
B3 Connections
B3 Descriptors

& META-INF

5 (5] ADF META-INE
-3 Uibrartes

Applications 5

3 simplespaonedjobDefnxmi & i

(3 Job Definition

Name: SimplesyncejbjobDefn

Display Name: [Sim pleSyncEjbjobDefn

Description
Job Type: _foracle/as/ess core/SynciiblobType
=¥ G create Deployment Profile @]
TP Click oK to create your new deployment profile and immediately open it to see its configuration.
Profile Type
[earrite

Deployment Profile Name:

[ySampleThinClenAppEat

Nam{| Description:

SY5{| [Creates a profile for deploying the Java EE enterprise archive (EAR) fie to an application
SYS_{| | server. The EAR file consists of the application’s assembled WAR, EJ8 JAR, and client JAR
svs |

Help oK. Cancel

Job Definition Editor,

OEBPS/img/GUID-099B17E8-B12E-4625-9788-B7A139FBC526-default.png
Create BPEL Process

BPEL Process [
A BPEL process is aservice orchestration, based on the BPEL specification, used to ah

describe/exectite a business process (or large grained service), which is implemented as a
stateful service.

() BPEL 2.0 Specification () BPEL 1.1 Specification

pame [BPeProcess1]

Namespace: [t/ xming oracie.com /Applicaion? ProjectL /6PELPracess1]

Directory: [/scratch/shaiverm /test_jdev /jdeveloper/mywork/Application2/Project1/SOA/BPEL | O

Template:

Service Name:

Synchronous BPEL Process

o one way bR Process
153 Define Service Larer
6] Base on a WsDL 2

Subscribe 1o Events
b= T Q

Qutput: [xmins racie.com /Applcations, rojectL EPeLFrocessLprocessRezponse] C

Help oK. Cancel

OEBPS/GUID-AB05D717-3EA0-471F-B408-414F4095120D-default.png
‘f» Applications Places system @ER{ET o

0 Oracie JDeveloper 12c Development Bulld - AppjobCompletionStatus.ws : ProjobCompletionStatus. pr : /scratch/shaiverm/d | 3]

| & BPELProcess1.bpel Compon,
Q-
BPEL2.0

e e e]
Annotations Assertions Headers Timeout = BPEL Constructs

Genet | Comemtons | propertes | wen ervice
@ @

Name: Receivel
Ivoke Partner Link

Conversation D « >

[] Create Instance Receive Reply

T
IneractionType: [Parmer k™| ElSuba
T 1 Oraci Exensions

I Application R. o s ice 150 Components

4RV E- - 21 BPEL Services
4l Recent Files PortType: [§ ESSWebserviceCallback +I Custom Activity Templates

Operation: [onjobCompletion
Properties

© Arguments Mapping) Variable]] Q Find
Variable *Q

[Ruto-Create variabie]

mports
Properties
Property Al
Message Ty
Inine Subpi
B Actwies
o8 seauen
@ zcn

& 1~ | Desion) source istory

€D Build - Issues

SDW;:M 0A0@o | L A

BPEL Properties Unavailable

B Terminal |[3 vNC config

OEBPS/GUID-7910EB8F-CC9D-4528-A0BD-8EFB2CED917C-default.png
o Frojec1 -

YPdLRRAXANAT B

Projectl

Exposed Services

©
bpelprocess1_clie...

process
brocessResponse

Components External References

EssService

submitRequest
submitRecurring..

getCompletionsta.
getRequestState
getRequestDetail
jetRequestExecu.
oldRequest
releaseRequest [3]

OEBPS/GUID-29E17D61-2100-49BB-B1C1-F9B4BABA734B-default.gif
Oracle Weblogic Server
client application

dlient nterface scheduled job

) 1
§ @

| ponos
] =oico |

&
Oracle Enterprise Scheduler

Runtime | Request | Request
Module | Dispatcher | Processor

Oracle Metadata
Store

History

client application
metadata

Oracle Enterprise:
Scheduler Schema

OEBPS/img/GUID-36DEB976-560F-4FAB-908E-0131B35D92B1-default.png
ORACLE Enterprise Manager Fusion Widdleware Control 12¢

tep v | 38 weblogc » | Logout O

Target Navigation ® essapp @

Logged n 2s weblogic! (3 br2261783.icc.orace.com
= (5 Scheduing Servce = [IStartlp CRShutDonn,

Page Refeshed Aug 7, 2013 115522 PHIST G

‘Appication Deployments

> B3 son Scheduing Service Home > Job Defintions > Cre.
Weblogic Domain Create Job Definition
V & soainfra o o
5 adminserver eeleaton Eedletcrostnston

& ban_servert [B30b efinition
& mft_servert

5 : *Name [AsynciSTob 1

usiness Actvity Montorig Dl Name [Asynciisioh
> £ Metadata Repositories Package foracle/apps/ess/custom|
scheduing Sevices Descipton ol BpSOACaToRRE
13 Essiep (nf_servers)
3 [essaPP (soa_servern)| 7
b B3 User MessagngSenvice | § “xdbType Selcteb serve..
ClassName. orade.as.schecierob webservie.ASynlS ob
 Application Defined Properties 7% R
reme e [intaivobe [Readonly
o Applcation Defned ropertes ourd
I System Properties 7% R
neme e [intalvoke [Readonly
S5 _effecveroplcatin Stng ExsNatverostngh

OEBPS/GUID-E1DB6D8B-E2CC-492A-B2D6-2B1E91F8C1E2-default.jpg
Edit EAR Deploy{3ent Profile Properties

Q search Application Assembly

General Select the Java EE modules that you would like to assemble into your Java EE
application

EAR Options

[ava EE Modules:
MAR_EssDemoApp
SuperEss jor
JAR_SuperEssEjblar

= File Groups
- Application Descriptors
- Contributors £
Fiters
- Application Libraries
Contributors

Fiters =
Library Dependencies
Platform v

Help oK Cancel

OEBPS/GUID-D3F53900-53D8-4683-9E38-FE0590186505-default.jpg
Fusion Middleware Configuration Wizard - Page 8 of 15

Advanced Configuration

o
Aomiitrtor sccou
Demain o a0
Dstssacs Comnpursion e
Componensoasource:
pscTes

Advanced Configuraion
anazes serers

Qusers

Contguraion sumpary.

~
N
i¢
i
T
1
1
2
1
A
1
1
¥

sty seins

Node Hanger
Confaure ode tamsger

| 12 Managed servers, Custrs ana Conerence
g or Okt o oty Seting:

Domain romend Host Gapture
Confgure omsinFrontnaHort

Deploymerts and services
Targt o Servers o Clusters

M Fiestore
oy senings

ORACLE
FUSION MIODLEWARE.

<o o>]| &

OEBPS/GUID-10656BD9-928D-45B1-9C96-275D6322A2FA-default.jpg
A Job definition describes job (basic unit of work) that runs in the.
scheduler. A job definition requires ajob type.

Name: [SmpteSpawnediobbein]

Package: [foracle/apps/ess/custom |

Job Type: [foracle/as/ess/core/ProcessjabType ~|

Location: [yanu/MyWork/MySampleThinClientApp/ ThinClientAppMARProj/essmeta/|

Help ok Cancel

OEBPS/img/GUID-0439DB55-C7A4-492C-914C-3B687FE54350-default.png
ORACLE Enterprise Manager Fusion Widdleware Control 12¢

ogicDomain +

Target Navigation

Vien

‘Appication Deployments
> @3 s0a

Webloge poman
Bl sosnta
8 adnoserver
5 ban servers
8 nftservert
8 soaserers

Business Actity Moritoring
&> [Metadats Repositories

Scheduing Services

[essapp (ft_server1)

=]
> B User Messaging Service:

28 veblogic + | Logout O
4 essapp @

Logged n 2s weblogic! (3 br2261783.icc.orace.com
(5 Scheduing Servce = [IStartlp CRShutDonn,

Page Refreshed Aug 8, 2013 5:29:05 AMIST &

Scheduing Service Home > Job Defintons >
Web Service Policies

o]
Applcation” EssNativeHostingApp(V1.0)
Job Defirfion NemeAsynciiSJob1

SubjectType Tnvoke

Select an expression from the Contraint dropdown to view the corresponding effective polcy references. For polcy set flagged as Mot Vald", cick the nk o view the
Valdation error detals, For security polcy references, lick th violations count ik to view violation detais. When polces ar attached|detached, effective policy
references are recalcuated.

Constraint None

Globally Attached Policies

[Category/Polcy Name. [poicy set
o rows yet.

StatusNot Valid

Totl Vlatons|

Opfectve only @ Al | g Detach

[ol Volstons|

]

OEBPS/GUID-DDE894F4-E276-48FD-A27A-862A0FB6D2CF-default.jpg
Configure ADF Security - Step 2 of 4

Select authentication type

Configure authentication type for your web project.If configuring ADF security for a
ADE Security.

model application that doesn't require web authentication, select < No Web
) Authentication Type | AU"entication =

*

Authenticsted Welcor| Web Project: [SuperWeb.jpr.

—e1©1

Authentication Type

HTTP Basic Authentication

HTTP Digest Authentication

HTTPS Client Authentication (Public Key Certificate)

Form-ased Authentication

Example for ADF Faces pages: /faces /page jsp

Help

<macc [e | pnsn =T

OEBPS/img/GUID-8C9E847D-A633-40E5-84F5-8AF5518BDDF3-default.gif
& g «
)
kol
£ El e El @
& Dowork.
@
el el
! @ :
Assignerror AssignCancel

OEBPS/img/GUID-706C37EF-6677-4FD7-805E-3A553F3B044B-default.gif
Job definition request Job set request
Job Type. Job Set Step
v v
Job Definion Job Set (top-level)

Request Parameters

OEBPS/img/GUID-75C95369-E4CA-4A1D-A403-0CDA3CCE734E-default.gif
Job definition Job set
step step

Sttpo [[58et forsto)

|

JobDefinition

I

JobSet Step

v
Parent JobSet and
other parameters

from parent request

Overwrite specific
read-only System
Properties with
values from top-level
JobSet

‘Scoped request
parameters

OEBPS/GUID-D40DD1D9-3673-475E-B9B4-2A318DB4ABAE-default.jpg
Edit EJB JAR Deployment Profile Properties

- Project Output

!

Q search Filters
Ceneral Files | Patterns
JAR Options
File Groups

“This file group includes the project autput directory as a contributar. You

may need to compile the project to see alliles coming from the output
directory.
Contributors

() ep-jarmt

) weblogic-ejb-jar.xmi
“ €3 com
v

3 thinclient
) Simpiesessiongeaniass
) SimpleSessionBeanjava

&[]0 essmera
[]E3 oracke

Expand All Nodes Collapse All Nodes

oK. Cancel

OEBPS/GUID-237F76B7-E6BC-4895-8D9F-CC7785EC6982-default.jpg
SimplesyncEjbjobDefn xm!

B Job Definition 2

Name: SimplesyncejbjobDefn

Display Name: [SimpleSyncEjbjobDefn

Deseripton
Job Type: foraclefas/ess/core/SyncEjblobType
Class Name: [oracieas scheduler job.efo Syncdsjob]
[Publish
= [Application Defined Properties 7+ R
No Application Defined Propertes
& @ System Properties /R
L
Name Type InialValue Read Only
Svs_atfectveappiication STRING Esstlativeostinghnp
SYS_EXT_inditiappediame STRING cib/simpleSessiontiean
SYS_EXT_indiprovidertr STRING 3/ flocalhost 7001
5 ©= Access Control ¥R

Job Definition Editar, ¢

OEBPS/GUID-F994432C-9A61-42D4-BC37-21ACE736CF04-default.gif
OnMessage Branch xR

B#/ %

set Initiate Properties
Correlationset.1 no nsSinputvariable_p.

[] ShowNamespace URls

OEBPS/img/GUID-FD542FED-3460-4832-845C-41AA408349EE-default.png
‘f» Applications Places system @ER{ET = Ko

0 Oracie JDeveloper 12c Development Bulld - AppjobCompletionStatus.ws : ProjobCompletionStatus. pr : /scratch/shaiverm/d | 3]

Edit Invoke

Headers | Documentation | Skip Condition | Targets | Sources
General | Correlations | Properties | Assertions | Annotations BPEL2.0

=1 BPEL Constructs
Name: jgerstatusAsync

Conversation D

Detal Lat

I Subprocesses
[l invoke as Detail =l Oracle Extensio

IeractonType: ®

— e :
A Applcaionk 2 ginGA conpere
e eenesor =
LRYE- T P Semices
ARecenles e e = B
R e R
[

rapeis
e
Te@ +. B Y a e
4, BpeLProcessit - Joputs [| setRequestets
et o
=2 variables @ holdRequest
s Process G releaseRequest
ol
v
o
e
el

<€D

[showDetailed

Build - Issues
B@oAc@o | &-1 £
|

Source BPEL

Terminal |[3 vNC config

|| © oracle peveloper 12 Development

OEBPS/GUID-60C1A2EB-7404-499D-98A6-1D1964AA3C78-default.jpg
i projects
B ess
& @ thinclient
& simplese
& META-INE
B ejorjarxml
5 weblogic-jb-ar|
o mEs
&-53 oracte
503 a0ps
BB
&8 custom
& Jobs
B
e
‘€ >
| Applcation Resaurces

3 buid s
23 Connections
B3 Descriptors
3 mETA-E
5] ADF META-INE
& (23 Libraries
@3 Service Bus System Resourc

Q search

MAR Options
55 Metadata File Groups

Directaries
£ ADF Library Customizat
Directaries

Delete

Help

User Metadata

Eile Group Name

Target Directory n Archive

Order of Contributors

SampleThinClient

op/Th. Add

Remove

ok Cancel

on

OEBPS/img/GUID-A15BC32C-27D0-4CDC-98A5-0B2E49A4E680-default.jpg
[Create HTTP Servlet - Step 2 of 4

Enter servlet details

g
| i Generate Content Type: HTML -

[] Generate Header Comments
Registration
 Configuration fle Gaeb.xml)
© Annotations

Implement Methods:
[V doGeto [doDelete0 [] doPur0
[service0

Help <Back Next > Einish Cancel

OEBPS/img/GUID-36C41AD4-8CCF-4C22-A2DC-528D8A585DE4-default.png
Edit Schedule Job

System Properties | Skip Condition | Targets | Sources

e

Application: |]
Mame: [Scheautejobd]
Descripton: =

b [] Q
schedule: [Q¢

startTime: | =
Help Apply oK. Cancel

OEBPS/img/GUID-005505B7-8C14-4F70-A448-48A3F2696250-default.gif
Jobset FIN Definition

Stept
EFFECTIVE_APPLICATION
"0DI"

Step2

Step3.
EFFECTIVE_APPLICATION
5

‘Submit Jobset FIN
1o GL App

‘Oracle Weblogic Server

Oracle Enterprise Scheduler

OEBPS/img/GUID-743BD7DC-46CA-4994-B33D-569DB2858A2F-default.jpg
Agelicuons A ———————

EssDemoapp —l—]

Projets @] @ V- & Application Roles
EssClient

Application Roles
Create roles specific to this application. Map a role to users or eterprise roles for testing

Resource Grants
EssHost
Entitlement Grants

Test Users & Roles

Qpes Name or Display Name

Roles &~)| Name: [EssApplicationRole
anonymous-role Osplaghame [

Description:

Mappings |~Grants.

Mapped Users and Roles
8 essuser

=l Application Resources

2 suia s
23 onnections
< (2 Deseriptors
=20 META-INF
@ jazn-daraxmi
B jos-config xmt
B weblogic-application xm
{20 ADF META-INF

RISy OverviewSauree Fistory

OEBPS/img/GUID-0582F1D3-F014-4155-A242-522F8783A007-default.png
General | Copy Rules | Annotations | Documentation | Skip Condition | Targets | Sources
& QO =«

nsert NewRule After ~
SPeLProcessLbpel s

iPELProcessL bpel
Partner Links

3 Partner Links
3 varisbles Variables -8
54 Process Process -8
5B varisbles Variables B3-8)

@-@0) Inpuvariable clentSPELProcess1Requestiessage inputvariable client8PELPracess1Requestiessage 00

@-@0) outputvariable clientEPELProcess1RespanseMessage outputVariable clientEPELProcess1RespanseMessage -8

-G x nsLigetCompletionstatusinput payload B2

&-@0) y nsLanjobCompleioninput clentprocessResponse <anonymovis> €0

clentresult string €

xnsLgetcompietionstarusinput 68
¥ nsLonjsbCompletioninput 6@

parameters .
54> nsLonlobCompletion criobCompleion
> requestid o
o] stae cte
@ resutessage sting

>

+R @D

8 Soutpurvariable payloaa) clentresut

Apply oK. Cancel

Help

OEBPS/GUID-52C73B16-16AE-4B0F-AE64-E295E8AEF255-default.jpg
ESS Web Ser

ESS Request Web Service Policies

Configure web service policies for job definition: JobDefinition://wer/asd/Job1

R
securiy */7%|08
Management */%|08

Help Cancel

OEBPS/img/GUID-E1D3993E-3420-4531-B43E-81EC45DA5A92-default.png
Oracle JDeveloper 12c Development Build - AppjobCompletionStatis.Jws : ProjobCompletionstatus.jpr

[-|v &

Farmer Links -

receiveinput

Scheduleiobt

gutstazeyne

calbackient

PEL2.0

Farmer Links

process/sequence/receive(2]

Design) Source_History

BPEL2.0

=1 BPEL Constructs

Basic Activities

n
Rl
I Subprocesses
I Oracle Extensions
150 Components
I BPEL Services
I Custom Activity Te,

Properties

Q Fna

General
Correlations
Properties
Annotations
Assertions
Headers
Timeout
Documentation
Skip Condition
Targets

OEBPS/img/GUID-FC1B69EF-94E8-4631-A52E-33A43BF9B17E-default.png
Select Security Policies

Select Security policies from the st

Joracle /mo_authentication_client_policy

forace/no_messageprotection_client_policy
lracle /sts_trust_config_client_policy

loracle /wss_http_token_over_ss1_client_policy

lrace /wss_sam|_token_bearer_client_policy

lorace /wss_sam|_token_bearer_over_ss1_client_policy
loracle /wss_sam|_token_over_ss_client_policy

loracle /wss_sam120_token_bearer_over_ssl_client_policy

CEELEEEEEE)

loracle /wss_samI20_token_over_ssl_client_policy

elp 0k [caneei]

OEBPS/GUID-8304FC0E-591B-4970-AE0B-1BC056AEACD4-default.png
I—I

System Properties | Skip Condition | Targets
General

npnmmn Prup:mes

job Properties

vee Value

User Defined Properties

+ X

Name Type Value
I
prooupuix B
b

e requestCategory
Help

o

Cancel

OEBPS/img/GUID-10F18C80-3923-45F7-AB83-60639CDE43C7-default.png
ORACLE Enterprise Manager Fusion Widdleware Control 12¢

Target Navigation

Vien

> £ Appication Deployments

7 B3 webLogic Domain
V Bl sosinfra
& Adminserver
&l bam_servert
&l mit_servert
&l s0z_servert
> B Business Actvity Monitoring
Metadata Reposiories
7 [Scheduiing Services
[essapp (ft_server1)
=]
User Messaging Service

4 essapp @
R Scheduing Service + [StertUp [Shut Down.

1 webogic

Lgot O

Logged n 2s weblogic! (3 br2261783.icc.orace.com

Page Refreshed Aug 8, 2013 1240:08 AH IST €

Scheduing Service Home > 3

Job Definitions

‘Select the applcation (J2EE applcation deployment name) for which you want to view the job defintons.
Filter Criteria

‘Appiication | EssNativerostingApp(V1.0) (]
Name.

=

JEdt.. RDelete... g Vie ServicePoliies +

[P @yinvoke [20bType
AsyncWsTobt i Bacalback fustom AsynciebservicelobType
(<]

OEBPS/GUID-06409C35-9A99-4112-AAE0-623706BA7B5E-default.jpg
Create Job Definition

Job Definition

A ob definition describes a job (basic unit of work) that runs in the
scheduler. A job definition requires job type.

tame [HelloWoridjabber]
Package: [oracle/apps/ess/nowto/metadata

Job Type: [soracteasyess/core javajonType ~
Location cratchyababchak jdeveloper/myvwork EssDem oApp/SuperEs{

reate Java Class
Java Class,

® gynchronous
O Asynchronous

N T T

Java Package: [oracle apps ess howto] @

Class Name: [Fetioworiajoe]]

Help oK Cancel

OEBPS/img/GUID-C396D4D4-75D5-499A-912F-2D4F7940E5AE-default.gif
Edit Correlation Set - CorrelationSet_L

Name:
Scope: [ESSAsyncsPELRY Q
Propertes
deadd A e X oziee
Name Type Al
[inputvariable_payload.. long ESSAsyncBPELProcess.

[] ShowNamespace URls

OEBPS/img/GUID-15EE20DB-2DC1-4634-8113-2357BE936266-default.jpg
@ Create Custom Application - Step 1 of 3

Name your application

e Application Name:
| Application Name | [y som pieThinClientApp

+ Project Name

O b

T

Help <Ba Next > Einish

Directary.
[Fscratch/riyanu/yWork/MySampleThinClientapp. Browse
Application Package Prefix
[com.orace.samples.ess thincient

Cancel

OEBPS/img/GUID-6F59470A-87AD-477D-832B-F423A541A6C6-default.jpg
New Gallery

Q
Categories: Items: [] Show Al Descriptions
[8 e sava
e e
e S
A A
Transtormations cotepyg
[secarty
Utiity (& serviet Fiter
e
Servie Listener
= SOA Tier E
" fauts
merfaces
o —
Tess
B ——
e Tir
i
157
¥ Faceets
157 3
All ltems. 2
[>
Help oK Cancel
>

OEBPS/GUID-B5470780-5861-4564-AD8B-66217659CB73-default.png
(s <|v & |

& BPELProcess1 bpel

%R F-S-P2FQI >R

Bavy e

Partner Links

-

bpelprocess1_clent

wra @

PartnerLinks | M

receivelnput

callbackClient

process/sequence/scope

Design| Source History

Zoom:

Components
Q-
BPEL2.0

I BPEL Constructs
I Subprocesses

|
Dehydrate

Transform

xQuery
Transform

00

L]

41504 Component
I BPEL Services

Properties

Q Find

B schedutejob

General

6 >

Application Properties

=l Oracle Extensions

>
Java
Embedding

3]
Replay
-

)
Transiate

XSLT
Transform

=]

ts

I Custom Activity Tempiates

Applic_

»

OEBPS/GUID-61AFF488-40B5-4E6A-B274-BC18857DEDF4-default.gif
& New Gallery.

Al Technalogies

@ n

Cotegores: tems [how Al pescrptons

= 0 305 Type
(= Business Tier

33 30b Definition
AOF Busiess Components

Launches Tob Defition Creatian.
- Business Inteligence.

Data Cantrols To enabl this option, you must select 2 poject, or il within a project inthe.
Applcation Navigator

B xbset
- Seaurty

Toplink/PA [® Incompatibiity
- web Services
=it Tir L=t
- ADF Deskiop Integration
AOF Suing
- Extension Development
Sing/aWT
= Database Ter
Database Fles
- Database Objects

OEBPS/GUID-DE4B38A8-BB0D-4B59-87C1-B18E1890092F-default.png
Oracle Deployment Configuration

Configure and customize settings for this deployment
s
- Metadata Repository
Bepository Name: [mas-ESS-MDS.0S =]
Repository Type: DB
Bartiion Name =
Path/INDI Info: b/ mds-ESS_MDS_DS
- Shared Metadata Repositories
Namespace Repository Type Pantton Path DI nfo
oracle/apps/ess/howto [mds=ESS_MDS_DS. essUserMetadata. idbc/mds-ESs_MDS_DS
Help Deplor Cancel

OEBPS/GUID-4AC09DBB-EFCF-4256-92EB-341B74CFDE8E-default.jpg
Applications

MySampleThinClientapp =

=IProjects - V-5
ThinClientAppMARPro)

@ [Application Sources

e

=3 oracle
=3 apps
e ess
&£ custom

= Bos

[Simplespanncdjobbein
B SmplesynceibjotDern.x

@ >

=l Application Resources

@ (3 buid Fles
B3 Connections

©-B3 Descriptars

3 META-E

53 ADF META-INE

& [0 Libraries

(53 Service bus System Resources

1| O3 SimplespawnedjobDefn xmi

Job Definition |

Name: SimplespawnediobDefn

Dizplay Name: [SimpleSpaaneclobDein

Description:

Job Type: foraclefas/ess/care PracesslobType

Command Line s &F

|] override

[publish

=[] Application Defined Properties

g

7+ R

No Application Defined Properties

= @ system roperties

No System Properties

Job Definition Editor,

Deployment - Log

B

Updating adf-config.xnl with ESS event listener for
Updating adf-config.xnl with ESS event Tistener for
Upating adf-config.xnl with ESS event Tistener for
Info: Nanespace '/oracle/apps/ess/custon’ is napped

“deno-app’

df-config.xnl but no metadata from the nanespace 15 included in the MAR.

Actions +

Jobset
Job-definition

Jobtype

o deploy-target netadata-st

ol

OEBPS/GUID-0D861FDF-CE89-4039-A5BF-DC45AA01E98C-default.jpg
| § Create Custom Application - Step 4 of 5

Configure EJB settings

£ Version
Application Name

) Enterprise JavaBians 3.0 (ava EES.0)

Project [ava settings | |) EMterprise Javaieans 3.1 gava EE6.0)

Project EJB Sertings | | &8 Version 3.

o Select the preferences that you wish to set for your B8 3.x project.

Build Tool
] Generate ndi properties file for project

Generate ejb-jar xm in this project

Select storage type of EJB meta-data preferences:

) Using annotations

(@ In efb-jar.xml and using annatations

Help <Back Hext > Enish Cancel

OEBPS/img/GUID-48F23A8E-EB11-4A91-8F0D-21633F7B6BB6-default.jpg
3

ESS - Diagnostic health check service

Check Health

OEBPS/GUID-8413B92A-BCF7-4989-BC3F-8500F5D3C51E-default.png
Configure SOA W5 Policies

SOA Client WS Policies: EssService - Binding WS

Port: SchedulerservicelmplPort

YA
o +x|w@
[]
Relabilty +x|w@
[]
Adaressing +x|w@

— (Fyxve

Management */7%| @@

e o

