

[1] Oracle® Fusion Middleware
Interoperability Solutions Guide for Oracle Web Services
Manager

12c (12.2.1)

E57783-01

October 2015

Documentation for software developers that describes how
to implement the most common OWSM interoperability
scenarios.

Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager, 12c (12.2.1)

E57783-01

Copyright © 2013, 2015, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... ix

What's New in This Guide .. xi

1 Overview of OWSM Interoperability

1.1 About OWSM Policies.. 1-1
1.2 OWSM Interoperability Scenarios.. 1-1

2 Interoperability with OWSM 10g Security Environments

2.1 Overview of Interoperability with OWSM 10g Security Environments............................. 2-1
2.2 A Note About OWSM 10g Gateways... 2-3
2.3 A Note About Third-party Software.. 2-3
2.4 Anonymous Authentication with Message Protection (WS-Security 1.0).......................... 2-4
2.4.1 Configuring an OWSM 12c Web Service and an OWSM 10g Client............................ 2-4
2.4.2 Configuring an OWSM 10g Web Service and an OWSM 12c Client............................ 2-5
2.5 Username Token with Message Protection (WS-Security 1.0) ... 2-6
2.5.1 Configuring an OWSM 12c Web Service and an OWSM 10g Client............................ 2-6
2.5.2 Configuring an OWSM 10g Web Service and an OWSM 12c Client............................ 2-7
2.6 SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0).................... 2-8
2.6.1 Configuring an OWSM 12c Web Service and an OWSM 10g Client............................ 2-8
2.6.2 Configuring an OWSM 10g Web Service and an OWSM 12c Client......................... 2-10
2.7 Mutual Authentication with Message Protection (WS-Security 1.0)................................ 2-11
2.7.1 Configuring an OWSM 12c Web Service and an OWSM 10g Client......................... 2-11
2.7.2 Configuring an OWSM 10g Web Service and an OWSM 12c Client 2-12
2.8 Username Token Over SSL... 2-13
2.8.1 Configuring an OWSM 12c Web Service and an OWSM 10g Client......................... 2-13
2.8.2 Configuring an OWSM 10g Web Service and an OWSM 12c Client 2-14
2.9 SAML Token (Sender Vouches) Over SSL (WS-Security 1.0).. 2-15
2.9.1 Configuring an OWSM 12c Web Service and an OWSM 10g Client......................... 2-15
2.9.2 Configuring an OWSM 10g Web Service and OWSM 12c Client 2-16

3 Interoperability with Oracle Containers for Java EE (OC4J) 10g Security
Environments

3.1 Overview of Interoperability with OC4J 10g Security Environments................................. 3-1
3.2 Anonymous Authentication with Message Protection (WS-Security 1.0).......................... 3-3

iv

3.2.1 Configuring an OWSM 12c Web Service and an OC4J 10g Client................................ 3-3
3.2.2 Configuring an OC4J 10g Web Service and an OWSM 12c Client................................ 3-5
3.3 Username Token with Message Protection (WS-Security 1.0) ... 3-6
3.3.1 Configuring an OWSM 12c Web Service and an OC4J 10g Client................................ 3-7
3.3.2 Configuring an OC4J 10g Web Service and an OWSM 12c Client................................ 3-8
3.4 SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)................. 3-10
3.4.1 Configuring an OWSM 12c Web Service and an OC4J 10g Client............................. 3-10
3.4.2 Configuring an OC4J 10g Web Service and an OWSM 12c Client............................. 3-12
3.5 Mutual Authentication with Message Protection (WS-Security 1.0)................................ 3-13
3.5.1 Configuring an OWSM 12c Web Service and an OC4J 10g Client............................. 3-14
3.5.2 Configuring an OC4J 10g Web Service and an OWSM 12c Client............................. 3-15
3.6 Username Token Over SSL... 3-17
3.6.1 Configuring an OWSM 12c Web Service and an OC4J 10g Client............................. 3-17
3.6.2 Configuring an OC4J 10g Web Service and an OWSM 12c Client............................. 3-18
3.7 SAML Token (Sender Vouches) Over SSL (WS-Security 1.0).. 3-20
3.7.1 Configuring an OWSM 12c Web Service and an OC4J 10g Client............................. 3-20
3.7.2 Configuring an OC4J 10g Web Service and an OWSM 12c Client............................. 3-21

4 Interoperability with Oracle WebLogic Server 12c Web Service Security
Environments

4.1 Overview of Interoperability with Oracle WebLogic Server 12c Web
Service Security Environments ... 4-1

4.2 Username Token With Message Protection (WS-Security 1.1)... 4-6
4.2.1 Interoperating with a WebLogic Web Service Policy... 4-7
4.2.2 Web Service Client Policy.. 4-8
4.3 Username Token With Message Protection (WS-Security 1.1) and MTOM....................... 4-9
4.3.1 Interoperating with a WebLogic Web Service Policy... 4-9
4.3.2 Interoperating with a WebLogic Web Service Client Policy ... 4-9
4.4 Username Token With Message Protection (WS-Security 1.0).. 4-10
4.4.1 Interoperability with a WebLogic Web Service Policy.. 4-10
4.4.2 Interoperability with a WebLogic Web Service Client Policy 4-11
4.5 Username Token Over SSL... 4-12
4.5.1 Interoperating with a WebLogic Web Service Client Policy 4-12
4.6 Username Token Over SSL with MTOM ... 4-13
4.6.1 Interoperating with a WebLogic Web Service Client Policy 4-13
4.7 SAML Token (Sender Vouches) Over SSL ... 4-13
4.7.1 Interoperating with a WebLogic Web Service Client Policy 4-14
4.8 SAML Token (Sender Vouches) Over SSL with MTOM.. 4-15
4.8.1 Interoperating with a WebLogic Web Service Client Policy 4-15
4.9 SAML Token 2.0 (Sender Vouches) With Message Protection (WS-Security 1.1) 4-16
4.9.1 Interoperating with a WebLogic Web Service Policy.. 4-16
4.9.2 Interoperating with a WebLogic Web Service Client Policy 4-18
4.10 SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1)................. 4-20
4.10.1 Interoperating with a WebLogic Web Service Policy.. 4-20
4.10.2 Interoperating with a WebLogic Web Service Client Policy 4-22
4.11 SAML Token (Sender Vouches) with Message Protection

(WS-Security 1.1) and MTOM.. 4-24

v

4.11.1 Interoperating with a WebLogic Web Service Policy.. 4-24
4.11.2 Interoperating with a WebLogic Web Service Client Policy 4-24
4.12 SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)................. 4-25
4.12.1 Interoperating with a WebLogic Web Service Policy.. 4-26
4.12.2 Interoperating with a WebLogic Web Service Client Policy 4-27
4.13 Mutual Authentication with Message Protection (WS-Security 1.0)................................ 4-29
4.13.1 Interoperating with a WebLogic Web Service Policy.. 4-29
4.13.2 Interoperating with a WebLogic Web Service Client Policy 4-31
4.14 Mutual Authentication with Message Protection (WS-Security 1.1)................................ 4-32
4.14.1 Interoperating with a WebLogic Web Service Policy.. 4-32
4.14.2 Interoperating with a WebLogic Web Service Client Policy 4-34

5 Interoperability with Microsoft WCF/.NET 3.5 Security Environments

5.1 Overview of Interoperability with Microsoft WCF/.NET 3.5 Security Environments 5-1
5.2 Message Transmission Optimization Mechanism (MTOM) .. 5-3
5.2.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client 5-4
5.2.2 Configuring a Microsoft WCF/.NET 3.5 Web Service and an OWSM 12c Client 5-5
5.3 Username Token With Message Protection (WS-Security 1.1)... 5-6
5.3.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client 5-6
5.3.2 Configuring a Microsoft WCF/.NET 3.5 Web Service and an OWSM 12c Client .. 5-10
5.4 Username Token Over SSL... 5-14
5.4.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client .. 5-14
5.5 Mutual Authentication with Message Protection (WS-Security 1.1)................................ 5-17
5.5.1 Configuration Prerequisites .. 5-17
5.5.2 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client .. 5-18
5.5.3 Configuring a Microsoft WCF/.NET 3.5 Web Service and an OWSM 12c Client .. 5-21
5.6 Kerberos with Message Protection .. 5-22
5.6.1 Performing Prerequisite Tasks for Interoperability... 5-23
5.6.2 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client .. 5-23
5.7 Kerberos with Message Protection Using Derived Keys ... 5-25
5.7.1 Configuration Prerequisites .. 5-26
5.7.2 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client .. 5-26
5.8 Kerberos with SPNEGO Negotiation.. 5-29
5.8.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client .. 5-29
5.9 Kerberos with SPNEGO Negotiation and Credential Delegation 5-30
5.9.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client .. 5-30
5.10 WCF/.NET 3.5 Client with Microsoft Active Directory Federation

Services 2.0 (ADFS 2.0) STS .. 5-31
5.10.1 Install and Configure Active Directory Federation Services (ADFS) 2.0 5-32
5.10.2 Configure ADFS 2.0 STS As Trusted SAML Token Issuer ... 5-33
5.10.3 Configure Users in Oracle Internet Directory .. 5-34
5.10.4 Attach the Policy ... 5-34
5.10.5 Register the Web Service as a Relying Party in ADFS 2.0 .. 5-34
5.10.6 Secure WCF/.NET 3.5 Client with ADFS 2.0 ... 5-35

vi

6 Interoperability with Microsoft WCF/.NET 4.5 Security Environments

6.1 Overview of Interoperability with Microsoft WCF/.NET 4.5 Security Environments 6-1
6.2 Message Transmission Optimization Mechanism (MTOM) .. 6-4
6.2.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client 6-4
6.2.2 Configuring a Microsoft WCF/.NET 4.5 Web Service and an OWSM 12c Client 6-5
6.3 Username Token With Message Protection (WS-Security 1.1)... 6-7
6.3.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client 6-7
6.3.2 Configuring a Microsoft WCF/.NET 4.5 Web Service and an OWSM 12c Client .. 6-10
6.4 Username Token Over SSL... 6-14
6.4.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client .. 6-14
6.4.2 Configuring a Microsoft WCF/.NET 4.5 Web Service and an OWSM 12c Client .. 6-16
6.5 Mutual Authentication with Message Protection (WS-Security 1.1)................................ 6-19
6.5.1 Configuration Prerequisites .. 6-19
6.5.2 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client .. 6-20
6.5.3 Configuring a Microsoft WCF/.NET 4.5 Web Service and an OWSM 12c Client .. 6-22
6.6 Kerberos with Message Protection .. 6-23
6.6.1 Performing Prerequisite Tasks for Interoperability... 6-23
6.6.2 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client .. 6-24
6.7 Kerberos with Message Protection Using Derived Keys ... 6-26
6.7.1 Configuration Prerequisites .. 6-26
6.7.2 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client .. 6-27
6.8 Kerberos with SPNEGO Negotiation.. 6-29
6.8.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client .. 6-29
6.9 Kerberos with SPNEGO Negotiation and Credential Delegation 6-31
6.9.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client .. 6-31
6.10 WCF/.NET 4.5 Client with Microsoft Active Directory Federation

Services 2.0 (ADFS 2.0) STS .. 6-32
6.10.1 Step 1: Install and Configure Active Directory Federation Services (ADFS) 2.0..... 6-33
6.10.2 Step 2: Configure OWSM to Trust SAML Assertions Issued by an ADFS 2.0 STS . 6-33
6.10.3 Step 3: Configure Users in Oracle Internet Directory.. 6-34
6.10.4 Step 4: Attach the Policy to the Web Service .. 6-34
6.10.5 Step 5: Register the Web Service as a Relying Party in ADFS 2.0.............................. 6-34
6.10.6 Step 6: Secure WCF/.NET 4.5 Client with ADFS 2.0... 6-35

7 Interoperability with Oracle Service Bus 10g Security Environments

7.1 Overview of Interoperability with Oracle Service Bus 10g Security Environments 7-1
7.2 Implementing a Username Token with WS-Security 1.0 Message Protection................... 7-2
7.2.1 Overview of Prerequisites for Interoperabilty .. 7-3
7.2.2 Configuring an OWSM 12c Web Service and an Oracle Service Bus 10g Client 7-4
7.2.3 Configuring an Oracle Service Bus 10g Web Service and an OWSM 12c Client 7-5
7.3 Implementing a SAML Sender Vouches Token with WS-Security 1.0 Message Protection ...

7-6
7.3.1 Configuring an OWSM 12c Web Service and an Oracle Service Bus 10g Client 7-8
7.3.2 Configuring an Oracle Service Bus 10g Web Service and an OWSM 12c Client 7-9
7.4 Implementing a SAML or Username Token Over SSL .. 7-11
7.4.1 Configuring an OWSM 12c Web Service and an Oracle Service Bus 10g Client 7-12
7.5 Implementing Mutual Authentication with WS-Security 1.0 Message Protection 7-14

vii

7.5.1 Configuring an OWSM 12c Web Service and an Oracle Service Bus 10g Client 7-16
7.5.2 Configuring an Oracle Service Bus 10g Web Service and an OWSM 12c Client 7-18

8 Interoperability with Axis 1.4 and WSS4J 1.5.8 Security Environments

8.1 Overview of Interoperability With Axis 1.4 and WSS4J 1.5.8 Security Environments..... 8-1
8.2 Creating Required Files for Interoperability With Axis and WSS4J.................................... 8-2
8.3 Username Token with Message Protection (WS-Security 1.0) ... 8-3
8.3.1 Configuring an OWSM 12c Web Service and an Axis and WSS4J Client.................... 8-3
8.3.2 Configuring an Axis and WSS4J Web Service and an OWSM 12c Client.................... 8-5
8.4 SAML Token with Message Protection (WS-Security 1.0).. 8-6
8.4.1 Configuring an OWSM 12c Web Service and an Axis an WSS4J Client 8-6
8.4.2 Configuring an Axis and WSS4J Web Service and an OWSM 12c Client.................... 8-8
8.5 Username Token Over SSL.. 8-9
8.5.1 Configuring an OWSM 12c Web Service and an Axis and WSS4J Client.................... 8-9
8.5.2 Configuring an Axis and WSS4J Web Service and an OWSM 12c Client................. 8-10
8.6 SAML Token (Sender Vouches) Over SSL ... 8-11
8.6.1 Configuring an OWSM 12c Web Service and an Axis and WSS4J Client 8-11
8.6.2 Configuring an Axis and WSS4J Web Service and an OWSM 12c Client................. 8-12

9 Interoperability with Oracle GlassFish Server Release 3.0.1

9.1 Overview of Interoperability With Oracle GlassFish Security Environments................... 9-1
9.2 Username Token with Message Protection (WS-Security 1.1) ... 9-2
9.2.1 Configuring an OWSM 12c Web Service and a GlassFish Client 9-2
9.2.2 Configuring a GlassFish Web Service and an OWSM 12c Client 9-3
9.3 SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1).................... 9-4
9.3.1 Configuring an OWSM 12c Web Service and a GlassFish Client 9-5
9.3.2 Configuring a GlassFish Web Service and an OWSM 12c Client 9-6

viii

ix

Preface

This preface describes the document accessibility features and conventions used in this
guide—Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services
Manager.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

x

xi

What's New in This Guide

The following topics introduce the new and changed features of Oracle Web Services
Manager (OWSM) and other significant changes that are described in this guide, and
provides pointers to additional information. This document is the new edition of the
formerly titled Interoperability Guide for Oracle Web Services Manager.

New and Changed Features for 12c (12.2.1)
Minor updates, such as fixes or corrections, were made to this document.

New and Changed Features for 12c (12.1.3)
Oracle JDeveloper 12c (12.1.3) includes the following new and changed features for
this document:

■ Chapter 5, "Interoperability with Microsoft WCF/.NET 3.5 Security
Environments," now documents enabling secure conversation for the following
interoperability scenario: "Username Token Over SSL" on page 5-14 and
"Username Token With Message Protection (WS-Security 1.1)" on page 5-6. It also
now documents support an additional policy in the following scenario:
"WCF/.NET 3.5 Client with Microsoft Active Directory Federation Services 2.0
(ADFS 2.0) STS" on page 5-31.

■ A new chapter has been added: Chapter 6, "Interoperability with Microsoft
WCF/.NET 4.5 Security Environments," that documents the new support for
Microsoft WCF/.NET 4.5.

New and Changed Features for 12c (12.1.2)
Oracle JDeveloper 12c (12.1.2) includes the following new and changed features for
this document:

■ The following Microsoft WCF/.NET 3.5 security environment interoperability
scenarios have been added for this release:

– "Kerberos with Message Protection Using Derived Keys" on page 5-25

– "Kerberos with SPNEGO Negotiation" on page 5-29

– "Kerberos with SPNEGO Negotiation and Credential Delegation" on page 5-30

Other Significant Changes in this Document for Release 12c (12.1.3)
For 12c (12.1.3), this guide has been reformatted to improve readability.

xii

1

Overview of OWSM Interoperability 1-1

1Overview of OWSM Interoperability

[2] This guide describes interoperability of Oracle Web Services Manager (OWSM) with
various security stacks.

Each chapter includes the following information:

■ Overview of each security stack

■ An explanation of the usage scenarios

For details regarding limitations and known problems, see "Web Services" in Release
Notes for Oracle Fusion Middleware Infrastructure.

For definitions of unfamiliar terms found in this and other books, see the Glossary.

1.1 About OWSM Policies
You attach OWSM policies to web service endpoints. Each policy consists of one or
more assertions, defined at the domain-level, that define the security requirements. A
set of predefined policies and assertions are provided out-of-the-box.

For more details about the predefined policies, see "Predefined Policies" in Securing
Web Services and Managing Policies with Oracle Web Services Manager.

For information about configuring and attaching policies, see "Securing Web Services"
and "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web
Services Manager.

1.2 OWSM Interoperability Scenarios
Table 1–1 describes the most common OWSM interoperability scenarios.

Table 1–1 Common OWSM Interoperability Scenarios

Security Stack OWSM Policies Interoperability Scenario

OWSM 10g oracle/wss10_message_protection_ser
vice_policy

oracle/wss10_message_protection_cli
ent_policy

"Anonymous Authentication
with Message Protection
(WS-Security 1.0)" on page 2-4

OWSM 10g oracle/wss10_username_token_with_me
ssage_protection_service_policy

oracle/wss10_username_token_with_me
ssage_protection_client_policy

"Username Token with
Message Protection
(WS-Security 1.0)" on page 2-6

OWSM Interoperability Scenarios

1-2 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

OWSM 10g oracle/wss10_saml_token_with_messag
e_protection_service_policy

oracle/wss10_saml_token_with_messag
e_protection_client_policy

"SAML Token (Sender Vouches)
with Message Protection
(WS-Security 1.0)" on page 2-8

OWSM 10g oracle/wss10_x509_token_with_messag
e_protection_service_policy

oracle/wss10_x509_token_with_messag
e_protection_client_policy

"Mutual Authentication with
Message Protection
(WS-Security 1.0)" on page 2-11

OWSM 10g oracle/wss_username_token_over_ssl_
service_policy

oracle/wss_username_token_over_ssl_
client_policy

"Username Token Over SSL" on
page 2-13

OWSM 10g oracle/wss_saml_token_over_ssl_serv
ice_policy

oracle/wss_saml_token_over_ssl_clie
nt_policy

"SAML Token (Sender Vouches)
Over SSL (WS-Security 1.0)" on
page 2-15

OC4J 10g oracle/wss10_message_protection_ser
vice_policy

oracle/wss10_message_protection_cli
ent_policy

"Anonymous Authentication
with Message Protection
(WS-Security 1.0)" on page 3-3

OC4J 10g oracle/wss10_username_token_with_me
ssage_protection_service_policy

oracle/wss10_username_token_with_me
ssage_protection_client_policy

"Username Token with
Message Protection
(WS-Security 1.0)" on page 3-6

OC4J 10g oracle/wss10_saml_token_with_messag
e_protection_service_policy

oracle/wss10_saml_token_with_messag
e_protection_client_policy

"SAML Token (Sender Vouches)
with Message Protection
(WS-Security 1.0)" on page 3-10

OC4J 10g oracle/wss10_x509_token_with_messag
e_protection_service_policy

oracle/wss10_x509_token_with_messag
e_protection_client_policy

"Mutual Authentication with
Message Protection
(WS-Security 1.0)" on page 3-13

OC4J 10g oracle/wss_username_token_over_ssl_
service_policy

OR

oracle/wss_saml_or_username_token_o
ver_ssl_service_policy

oracle/wss_username_token_over_ssl_
client_policy

"Username Token Over SSL" on
page 3-17

OC4J 10g oracle/wss_saml_token_over_ssl_serv
ice_policy

OR

oracle/wss_saml_or_username_token_o
ver_ssl_service_policy

oracle/wss_saml_token_over_ssl_clie
nt_policy

"SAML Token (Sender Vouches)
Over SSL (WS-Security 1.0)" on
page 3-20

Table 1–1 (Cont.) Common OWSM Interoperability Scenarios

Security Stack OWSM Policies Interoperability Scenario

OWSM Interoperability Scenarios

Overview of OWSM Interoperability 1-3

Oracle WebLogic
Server 12c

oracle/wss11_username_token_with_me
ssage_protection_service_policy

oracle/wss11_username_token_with_me
ssage_protection_client_policy

"Username Token With
Message Protection
(WS-Security 1.1)" on page 4-6

Oracle WebLogic
Server 12c

oracle/wss11_username_token_with_me
ssage_protection_service_policy

oracle/wss11_username_token_with_me
ssage_protection_client_policy

"Username Token With
Message Protection
(WS-Security 1.1) and MTOM"
on page 4-9

Oracle WebLogic
Server 12c

oracle/wss10_username_token_with_me
ssage_protection_service_policy

oracle/wss10_username_token_with_me
ssage_protection_client_policy

"Username Token With
Message Protection
(WS-Security 1.0)" on page 4-10

Oracle WebLogic
Server 12c

oracle/wss_username_token_over_ssl_
service_policy

"Username Token Over SSL" on
page 4-12

Oracle WebLogic
Server 12c

oracle/wss_username_token_over_ssl_
service_policy

"Username Token Over SSL
with MTOM" on page 4-13

Oracle WebLogic
Server 12c

oracle/wss_saml_token_over_ssl_serv
ice_policy

"SAML Token (Sender Vouches)
Over SSL" on page 4-13

Oracle WebLogic
Server 12c

oracle/wss11_saml20_token_with_mess
age_protection_service_policy

oracle/wss11_saml20_token_with_mess
age_protection_client_policy

"SAML Token (Sender Vouches)
Over SSL with MTOM" on
page 4-15

Oracle WebLogic
Server 12c

oracle/wss11_saml20_token_with_mess
age_protection_service_policy

oracle/wss11_saml20_token_with_mess
age_protection_client_policy

"SAML Token 2.0 (Sender
Vouches) With Message
Protection (WS-Security 1.1)"
on page 4-16

Oracle WebLogic
Server 12c

oracle/wss11_saml_token_with_messag
e_protection_service_policy

oracle/wss11_saml_token_with_messag
e_protection_client_policy

"SAML Token (Sender Vouches)
with Message Protection
(WS-Security 1.1)" on page 4-20

Oracle WebLogic
Server 12c

oracle/wss11_saml_token_with_messag
e_protection_service_policy

oracle/wss11_saml_token_with_messag
e_protection_client_policy

"SAML Token (Sender Vouches)
with Message Protection
(WS-Security 1.1) and MTOM"
on page 4-24

Oracle WebLogic
Server 12c

oracle/wss10_saml_token_with_messag
e_protection_service_policy

oracle/wss10_saml_token_with_messag
e_protection_client_policy

"SAML Token (Sender Vouches)
with Message Protection
(WS-Security 1.0)" on page 4-25

Oracle WebLogic
Server 12c

oracle/wss10_x509_token_with_messag
e_protection_service_policy

oracle/wss10_x509_token_with_messag
e_protection_client_policy

"Mutual Authentication with
Message Protection
(WS-Security 1.0)" on page 4-29

Oracle WebLogic
Server 12c

oracle/wss11_x509_token_with_messag
e_protection_service_policy

oracle/wss11_x509_token_with_messag
e_protection_client_policy

"Mutual Authentication with
Message Protection
(WS-Security 1.1)" on page 4-32

Table 1–1 (Cont.) Common OWSM Interoperability Scenarios

Security Stack OWSM Policies Interoperability Scenario

OWSM Interoperability Scenarios

1-4 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

Microsoft
WCF/.NET 3.5

oracle/wsmtom_policy "Message Transmission
Optimization Mechanism
(MTOM)" on page 5-3

Microsoft
WCF/.NET 3.5

oracle/wss11_username_token_with_me
ssage_protection_service_policy

OR

oracle/wss11_saml_or_username_token
_with_message_protection_service_po
licy

oracle/wss11_username_token_with_me
ssage_protection_client_policy

"Username Token With
Message Protection
(WS-Security 1.1)" on page 5-6

Microsoft
WCF/.NET 3.5

oracle/wss_saml_or_username_token_o
ver_ssl_service_policy

OR

oracle/wss_username_token_over_ssl_
service_policy

"Username Token Over SSL" on
page 5-14

Microsoft
WCF/.NET 3.5

oracle/wss11_x509_token_with_messag
e_protection_service_policy

oracle/wss11_x509_token_with_messag
e_protection_client_policy

"Mutual Authentication with
Message Protection
(WS-Security 1.1)" on page 5-17

Microsoft
WCF/.NET 3.5

oracle/wss11_kerberos_with_message_
protection_service_policy

"Kerberos with Message
Protection" on page 5-22

Microsoft
WCF/.NET 3.5

wss11_kerberos_token_with_message_p
rotection_basic128_service_policy

"Kerberos with Message
Protection Using Derived Keys"
on page 5-25

Microsoft
WCF/.NET 3.5

Policy created with
http_spnego_token_service_template

"Kerberos with SPNEGO
Negotiation" on page 5-29

Microsoft
WCF/.NET 3.5

Policy created with
http_spnego_token_service_template

"Kerberos with SPNEGO
Negotiation and Credential
Delegation" on page 5-30

Oracle Service
Bus 10g

wss10_username_token_with_message_p
rotection_client_policy

wss10_username_token_with_message_p
rotection_service_policy

"Implementing a Username
Token with WS-Security 1.0
Message Protection" on
page 7-2

Oracle Service
Bus 10g

oracle/wss10_saml_token_with_messag
e_protection_service_policy

oracle/wss10_saml_token_with_messag
e_protection_client_policy

"Implementing a SAML Sender
Vouches Token with
WS-Security 1.0 Message
Protection" on page 7-6

Oracle Service
Bus 10g

oracle/wss_saml_or_username_token_o
ver_ssl_service_policy

"Implementing a SAML or
Username Token Over SSL" on
page 7-11

Oracle Service
Bus 10g

oracle/wss10_x509_token_with_messag
e_protection_service_policy

oracle/wss10_x509_token_with_messag
e_protection_client_policy

"Implementing Mutual
Authentication with
WS-Security 1.0 Message
Protection" on page 7-14

Axis 1.4 and
WSS4J 1.5.8

oracle/wss10_username_token_with_me
ssage_protection_service_policy

oracle/wss10_username_token_with_me
ssage_protection_client_policy

"Username Token with
Message Protection
(WS-Security 1.0)" on page 8-3

Table 1–1 (Cont.) Common OWSM Interoperability Scenarios

Security Stack OWSM Policies Interoperability Scenario

OWSM Interoperability Scenarios

Overview of OWSM Interoperability 1-5

Axis 1.4 and
WSS4J 1.5.8

oracle/wss10_saml_token_with_messag
e_protection_service_policy

oracle/wss10_saml_token_with_messag
e_protection_client_policy

"SAML Token with Message
Protection (WS-Security 1.0)"
on page 8-6

Axis 1.4 and
WSS4J 1.5.8

oracle/wss_username_token_over_ssl_
service_policy

oracle/wss_username_token_over_ssl_
client_policy

"Username Token Over SSL" on
page 8-9

Axis 1.4 and
WSS4J 1.5.8

oracle/wss_saml_token_over_ssl_serv
ice_policy

oracle/wss_saml_token_over_ssl_clie
nt_policy

"SAML Token (Sender Vouches)
Over SSL" on page 8-11

GlassFish
Enterprise Server

oracle/wss11_saml_token_with_messag
e_protection_service_policy

oracle/wss11_saml_token_with_messag
e_protection_client_policy

"SAML Token (Sender Vouches)
with Message Protection
(WS-Security 1.1)" on page 9-4

Table 1–1 (Cont.) Common OWSM Interoperability Scenarios

Security Stack OWSM Policies Interoperability Scenario

OWSM Interoperability Scenarios

1-6 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

2

Interoperability with OWSM 10g Security Environments 2-1

2Interoperability with OWSM 10g Security
Environments

[3] This chapter describes interoperability of Oracle Web Services Manager (OWSM) with
OWSM 10g security environments.

This chapter includes the following sections:

■ Overview of Interoperability with OWSM 10g Security Environments

■ A Note About OWSM 10g Gateways

■ A Note About Third-party Software

■ Anonymous Authentication with Message Protection (WS-Security 1.0)

■ Username Token with Message Protection (WS-Security 1.0)

■ SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)

■ Mutual Authentication with Message Protection (WS-Security 1.0)

■ Username Token Over SSL

■ SAML Token (Sender Vouches) Over SSL (WS-Security 1.0)

2.1 Overview of Interoperability with OWSM 10g Security Environments
With OWSM 10g, you specify policy steps at each policy enforcement point. The policy
enforcement points in OWSM 10g include Gateways and Agents. Each policy step is a
fine-grained operational task that addresses a specific security operation, such as
authentication and authorization; encryption and decryption; security signature,
token, or credential verification; and transformation. Each operational task is
performed on either the web service request or response. For more details about the
OWSM 10g policy steps, see "Oracle Web Services Manager Policy Steps" in Oracle Web
Services Manager Administrator's Guide 10g (10.1.3.4) at
http://download.oracle.com/docs/cd/E12524_01/web.1013/e12575/policy_steps.
htm#BABIAHEG.

With OWSM 12c, you attach policies to web service endpoints. Each policy consists of
one or more assertions, defined at the domain-level, that define the security
requirements. A set of predefined policies and assertions are provided out-of-the-box.

Table 2–1 and Table 2–2 summarize the most common OWSM 10g interoperability
scenarios based on the following security requirements: authentication, message
protection, and transport.

For more information about:

Overview of Interoperability with OWSM 10g Security Environments

2-2 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

■ OWSM predefined policies, see "Predefined Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

■ Configuring and attaching OWSM 12c policies, see "Securing Web Services" and
"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web
Services Manager.

■ OWSM 10g policy steps, see "Oracle Web Services Manager Policy Steps" in Oracle
Web Services Manager Administrator's Guide 10g (10.1.3.4) at
http://download.oracle.com/docs/cd/E12524_01/web.1013/e12575/policy_ste
ps.htm#BABIAHEG

Note: In the following scenarios, ensure that you are using a
keystore with v3 certificates. By default, the JDK 1.5 keytool generates
keystores with v1 certificates.

Review "A Note About OWSM 10g Gateways" on page 2-3 and "A
Note About Third-party Software" on page 2-3 for important
information about your usage of OWSM 10g Gateways and
third-party software.

Table 2–1 OWSM 10g Service Policy and OWSM 12c Client Policy Interoperability

Identity Token
WS-Security
Version

Message
Protection

Transport
Security Service Policy Client Policy

Anonymous 1.0 Yes No Request pipeline:
Decrypt and Verify
Signature

Response pipeline: Sign
Message and Encrypt

oracle/wss10_message_p
rotection_client_polic
y

Username 1.0 Yes No Request pipeline:

■ Decrypt and Verify
Signature

■ Extract Credentials
(configured as
WS-BASIC)

■ File Authenticate

Response pipeline: Sign
Message and Encrypt

oracle/wss10_username_
token_with_message_pro
tection_client_policy

SAML 1.0 Yes No Request pipeline:

■ XML Decrypt

■ SAML—Verify
WSS 1.0 Token

Response pipeline: Sign
Message and Encrypt

oracle/wss10_saml_toke
n_with_message_protect
ion_client_policy

Mutual
Authentication

1.0 Yes No Request pipeline:
Decrypt and Verify

Response pipeline: Sign
Message and Encrypt

oracle/wss10_x509_toke
n_with_message_protect
ion_client_policy

Username over SSL 1.0 and 1.1 No Yes Request pipeline:

■ Extract Credentials

■ File Authenticate

wss_username_token_ove
r_ssl_client_policy

SAML over SSL 1.0 and 1.1 No Yes Request pipeline:

■ Extract Credentials

■ File Authenticate

oracle/wss_saml_token_
over_ssl_client_policy

Table 2–2 OWSM 12c Service Policy and OWSM 10g Client Policy Interoperability

Identity Token
WS-Security
Version

Message
Protection

Transport
Security Service Policy Client Policy

Anonymous 1.0 Yes No oracle/wss10_message
_protection_service_
policy

Request pipeline: Sign
Message and Encrypt

Response pipeline:
Decrypt and Verify
Signature

Username 1.0 Yes No oracle/wss10_usernam
e_token_with_message
_protection_service_
policy

Request pipeline: Sign
Message and Encrypt

Response pipeline:
Decrypt and Verify
Signature

SAML 1.0 Yes No oracle/wss10_saml_to
ken_with_message_pro
tection_service_poli
cy

Request pipeline:

■ Extract Credentials
(configured as
WS-BASIC

■ SAML—Insert WSS
1.0 Sender-Vouches
Token

■ Sign and Encrypt

Response pipeline:
Decrypt and Verify
Signature

Mutual
Authentication

1.0 Yes No oracle/wss10_x509_to
ken_with_message_pro
tection_service_poli
cy

Request pipeline: Sign
Message and Encrypt

Response pipeline:
Decrypt and Verify
Signature

Username over SSL 1.0 and 1.1 No Yes wss_username_token_o
ver_ssl_service_poli
cy

N/A

SAML over SSL 1.0 and 1.1 No Yes oracle/wss_saml_toke
n_over_ssl_service_p
olicy

Request pipeline:

■ Extract Credentials

■ SAML—Insert WSS
1.0 Sender-Vouches
Token

A Note About Third-party Software

Interoperability with OWSM 10g Security Environments 2-3

The following sections provide additional interoperability information about using
OWSM 10g Gateways and third-party software with OWSM 12c.

2.2 A Note About OWSM 10g Gateways
Oracle Fusion Middleware 12c does not include a Gateway component. You can
continue to use the OWSM 10g Gateway components with OWSM 10g policies in your
applications.

2.3 A Note About Third-party Software
OWSM 10g supports policy enforcement for third-party application servers, such as
IBM WebSphere and Red Hat JBoss. Oracle Fusion Middleware 12c only supports
Oracle WebLogic Server. You can continue to use the third-party application servers
with OWSM 10g policies.

Anonymous Authentication with Message Protection (WS-Security 1.0)

2-4 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

2.4 Anonymous Authentication with Message Protection (WS-Security
1.0)

This section describes how to implement anonymous authentication with message
protection that conforms to the WS-Security 1.0 standard, in the following
interoperability scenarios:

■ "Configuring an OWSM 12c Web Service and an OWSM 10g Client" on page 2-4

■ "Configuring an OWSM 10g Web Service and an OWSM 12c Client" on page 2-5

2.4.1 Configuring an OWSM 12c Web Service and an OWSM 10g Client
The following instructions tell how to configure an OWSM 12c web service and an
OWSM 10g client to implement anonymous authentication with message protection
that conforms to the WS-Security 1.0 standard:

To configure an OWSM 12c web service:

1. Clone the following policy: oracle/wss10_message_protection_service_policy

For more information, see "Cloning a Web Service Policy" in Securing Web Services
and Managing Policies with Oracle Web Services Manager

2. Edit the policy settings, as follows:

a. Disable the Include Timestamp configuration setting.

b. Leave the default configuration set for all other configuration settings.

3. Attach the policy to a web service.

For more information, see

"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web
Services Manager

To configure OWSM 10g client:

1. Register the web service (above) with the OWSM 10g Gateway.

For more information, see"Registering Web Services to an OWSM Gateway" in the
OWSM Administrator's Guide 10g at:
http://download.oracle.com/docs/cd/E12524_01/web.1013/e12575/gateways.h
tm

2. Attach the following policy step to the request pipeline: Sign Message and Encrypt
Gateway.

3. Configure the Sign Message and Encrypt policy step in the request pipeline, as
follows:

a. Set Encryption Algorithm to AES-128.

b. Set Key Transport Algorithm to RSA-OAEP-MGF1P.

c. Configure the keystore properties for message signing and encryption. The
configuration should be in accordance with the keystore used on the server
side

4. Attach the following policy step to the response pipeline: Decrypt and Verify
Signature.

5. Configure the Decrypt and Verify Signature policy step in the response pipeline,
by configuring the keystore properties for decryption and signature verification.

Anonymous Authentication with Message Protection (WS-Security 1.0)

Interoperability with OWSM 10g Security Environments 2-5

The configuration should be in accordance with the keystore used on the server
side.

6. Navigate to the OWSM Test page and enter the virtualized URL of the web
service.

7. Invoke the web service.

2.4.2 Configuring an OWSM 10g Web Service and an OWSM 12c Client
The following instructions tell how to configure an OWSM 10g web service and an
OWSM 12c client to implement anonymous authentication with message protection
that conforms to the WS-Security 1.0 standard:

To configure the OWSM 10g web service:

1. Register the web service with the OWSM 10g Gateway.

For more information, see "Registering Web Services to an OWSM Gateway" in the
OWSM Administrator's Guide 10g at:
http://download.oracle.com/docs/cd/E12524_01/web.1013/e12575/gateways.h
tm

2. Attach the following policy step in the request pipeline: Decrypt and Verify
Signature.

3. Configure the Decrypt and Verify Signature policy step in the request pipeline, as
follows. Configure the keystore properties for decryption and signature
verification. The configuration should be in accordance with the keystore used on
the server side.

4. Attach the following policy step in the response pipeline: Sign Message and
Encrypt.

5. Configure the Sign Message and Encrypt policy response pipeline as follows:

a. Set Encryption Algorithm to AES-128.

b. Set Key Transport Algorithm to RSA-OAEP-MGF1P.

c. Configure the keystore properties for message signing and encryption. The
configuration should be in accordance with the keystore used on the server
side.

To configure the OWSM 12c client:

1. Create a client proxy using the virtualized URL of the web service registered on
the OWSM Gateway.

2. Clone the following policy: oracle/wss10_message_protection_client_policy.

3. Edit the policy settings, as follows:

a. Disable the Include Timestamp configuration setting.

b. Leave the default configuration set for all other configuration settings.

4. Attach the policy to the web service client.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

5. Configure the policy.

For more information, see "oracle/wss10_message_protection_client_policy" in
Securing Web Services and Managing Policies with Oracle Web Services Manager

Username Token with Message Protection (WS-Security 1.0)

2-6 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

6. Invoke the web service.

2.5 Username Token with Message Protection (WS-Security 1.0)
This section tells how to implement username token with message protection that
conforms to the WS-Security 1.0 standard:

■ "Configuring an OWSM 12c Web Service and an OWSM 10g Client" on page 2-6

■ "Configuring an OWSM 10g Web Service and an OWSM 12c Client" on page 2-7

2.5.1 Configuring an OWSM 12c Web Service and an OWSM 10g Client
The following instructions tell how to configure an OWSM 12c web service and an
OWSM 10g client to implement username token with message protection that
conforms to the WS-Security 1.0 standard:

To configure the OWSM 12c Web Service:

1. Clone the following policy:
oracle/wss10_username_token_with_message_protection_service_policy

2. Edit the policy settings, as follows:

a. Disable the Include Timestamp configuration setting.

b. Leave the default configuration set for all other configuration settings.

For more information, see "Cloning a Web Service Policy" in Securing Web
Services and Managing Policies with Oracle Web Services Manager

3. Attach the policy to a web service.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

To configure the OWSM 10g client:

1. Register the web service (above) with the OWSM 10g Gateway.

Fore more information, see "Registering Web Services to an OWSM Gateway" in
the OWSM Administrator's Guide 10g at:
http://download.oracle.com/docs/cd/E12524_01/web.1013/e12575/gateways.h
tm

2. Attach the following policy step to the request pipeline: Sign Message and Encrypt

3. Configure the Sign Message and Encrypt policy step in the request pipeline, as
follows:

a. Set Encryption Algorithm to AES-128.

b. Set Key Transport Algorithm to RSA-OAEP-MGF1P.

c. Set Encrypted Content to ENVELOPE.

d. Set Signed Content to ENVELOPE.

e. Configure the keystore properties for message signing and encryption. The
configuration should be in accordance with the keystore used on the server
side.

4. Attach the following policy step to the response pipeline: Decrypt and Verify
Signature.

Username Token with Message Protection (WS-Security 1.0)

Interoperability with OWSM 10g Security Environments 2-7

5. Configure the Decrypt and Verify Signature policy step in the response pipeline, as
follows:

a. Configure the keystore properties for decryption and signature verification.
The configuration should be in accordance with the keystore used on the
server side.

6. Navigate to the OWSM Test page and enter the virtualized URL of the web
service.

7. Select the Include Header checkbox against WS-Security and provide valid
credentials.

8. Invoke the web service.

2.5.2 Configuring an OWSM 10g Web Service and an OWSM 12c Client
The following instructions tell how to configure an OWSM 10g web service and an
OWSM 12c client to implement username token with message protection that
conforms to the WS-Security 1.0 standard:

To configure the OWSM 10g web service:

1. Register the web service with the OWSM 10g Gateway.

For more information, see "Registering Web Services to an OWSM Gateway" in the
OWSM Administrator's Guide 10g at:
http://download.oracle.com/docs/cd/E12524_01/web.1013/e12575/gateways.h
tm

2. Attach the following policy steps in the request pipeline:

a. Decrypt and Verify Signature

b. Extract Credentials (configured as WS-BASIC)

c. File Authenticate

Note: You can substitute File Authenticate with LDAP Authenticate,
Oracle Access Manager Authenticate, Active Directory Authenticate,
or SiteMinder Authenticate.

3. Configure the Decrypt and Verify Signature policy step in the request pipeline, as
follows:

a. Configure the keystore properties for extracting credentials. The configuration
should be in accordance with the keystore used on the server side.

4. Configure the Extract Credentials policy step in the request pipeline, as follows:

a. Set the Credentials location to WS-BASIC.

5. Configure the File Authenticate policy step in the request pipeline to use valid
credentials.

6. Attach the following policy step in the response pipeline: Sign Message and
Encrypt.

a. Set Encryption Algorithm to AES-128.

b. Set Key Transport Algorithm to RSA-OAEP-MGF1P.

SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)

2-8 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

c. Configure the keystore properties for message signing and encryption. The
configuration should be in accordance with the keystore used on the server
side.

To Configure the OWSM 12c Client:

1. Create a client proxy using the virtualized URL of the web service registered on
the OWSM Gateway.

2. Clone the following policy:
oracle/wss10_username_token_with_message_protection_client_policy

For more information, see "Cloning a Web Service Policy" in Securing Web Services
and Managing Policies with Oracle Web Services Manager.

3. Edit the policy settings, as follows:

a. Disable the Include Timestamp configuration setting.

b. Leave the default configuration set for all other configuration settings.

For more information, see "Cloning a Web Service Policy" in Securing Web Services
and Managing Policies with Oracle Web Services Manager.

4. Attach the policy to the web service client.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

5. Configure the policy.

For more information, see
"oracle/wss10_username_token_with_message_protection_client_policy" in
Securing Web Services and Managing Policies with Oracle Web Services Manager

6. Invoke the web service.

2.6 SAML Token (Sender Vouches) with Message Protection (WS-Security
1.0)

This section tells how to implement SAML token (sender vouches) with message
protection that conforms to the WS-Security 1.0 standard, in the following
interoperability scenarios:

■ "Configuring an OWSM 12c Web Service and an OWSM 10g Client" on page 2-8

■ "Configuring an OWSM 10g Web Service and an OWSM 12c Client" on page 2-10

2.6.1 Configuring an OWSM 12c Web Service and an OWSM 10g Client
The following instructions tell how to configure an OWSM 12c web service and an
OWSM 10g client to implement SAML token (sender vouches) with message
protection that conforms to the WS-Security 1.0 standard:

To Configure the OWSM 12c Web Service:

1. Clone the following policy:
oracle/wss10_saml_token_with_message_protection_service_policy.

Note: Oracle recommends that you do not change the predefined
policies so that you will always have a known set of valid policies to
work with.

SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)

Interoperability with OWSM 10g Security Environments 2-9

2. Edit the policy settings, as follows:

a. Disable the Include Timestamp configuration setting.

b. Leave the default configuration set for all other configuration settings.

3. Attach the policy to the web service.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

To Configure the OWSM 10g Client:

1. Register the web service with the OWSM 10g Gateway.

For more information, see "Registering Web Services to an OWSM Gateway" in the
OWSM Administrator's Guide 10g at:
http://download.oracle.com/docs/cd/E12524_01/web.1013/e12575/gateways.ht
m

2. Attach the following policy steps in the request pipeline:

a. Extract Credentials (configured as WS-BASIC)

b. SAML—Insert WSS 1.0 Sender-Vouches Token

c. Sign Message and Encrypt

3. Configure the Extract Credentials policy step in the request pipeline, as follows:

a. Set the Credentials location to WS-BASIC.

4. Configure the SAML—Insert WSS 1.0 Sender-Vouches Token policy step in the
request pipeline, as follows:

a. Set Subject Name Qualifier to www.oracle.com

b. Set Assertion Issuer as www.oracle.com

c. Set Subject Format as UNSPECIFIED.

d. Set other signing properties, as required.

5. Configure the Sign Message and Encrypt policy step in the request pipeline, as
follows:

a. Set the Encryption Algorithm to AES-128.

b. Set Key Transport Algorithm to RSA-OAEP-MGF1P.

c. Configure the keystore properties for decryption and signature verification.
The configuration should be in accordance with the keystore used on the
server side.

6. Attach the following policy step in the response pipeline: Decrypt and Verify
Signature.

7. Configure the Decrypt and Verify Signature policy step in the response pipeline, as
follows:

a. Configure the keystore properties for decryption and signature verification.
The configuration should be in accordance with the keystore used on the
server side.

8. Navigate to the OWSM Test page and enter the virtualized URL of the web
service.

9. Select Include Header checkbox against WS-Security and provide valid
credentials.

SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)

2-10 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

10. Invoke the web service.

2.6.2 Configuring an OWSM 10g Web Service and an OWSM 12c Client
The following instructions tell how to configure an OWSM 10g web service and an
OWSM 12c client to implement SAML token (sender vouches) with message
protection that conforms to the WS-Security 1.0 standard:

To Configure the OWSM 10g Web Service:

1. Register the web service with the OWSM 10g Gateway.

For more information, see "Registering Web Services to an OWSM Gateway" in the
OWSM Administrator's Guide 10g at:
http://download.oracle.com/docs/cd/E12524_01/web.1013/e12575/gateways.h
tm

2. Attach the following policy steps in the request pipeline:

a. XML Decrypt

b. SAML—Verify WSS 1.0 Token

3. Configure the XML Decrypt policy step in the request pipeline, as follows:

a. Configure the keystore properties for XML decryption. The configuration
should be in accordance with the keystore used on the server side.

4. Configure the SAML—Verify WSS 1.0 Token policy step in the request pipeline, as
follows:

a. Set the Trusted Issuer Name as www.oracle.com

5. Attach the following policy step in the response pipeline: Sign Message and
Encrypt.

6. Configure the Sign Message and Encrypt policy step in the response pipeline,
follows:

a. Set Encryption Algorithm to AES-128.

b. Set Key Transport Algorithm to RSA-OAEP-MGF1P.

c. Configure the keystore properties for message signing and encryption. The
configuration should be in accordance with the keystore used on the server
side.

To Configure the OWSM 12c Client:

1. Create a client proxy using the virtualized URL of the web service registered on
the OWSM Gateway.

2. Clone the following policy:
oracle/wss10_saml_token_with_message_protection_client_policy.

For more information, see "Cloning a Web Service Policy" in Securing Web Services
and Managing Policies with Oracle Web Services Manager

3. Edit the policy settings, as follows:

1. Disable the Include Timestamp configuration setting.

2. Leave the default configuration set for all other configuration settings.

4. Attach the policy to the web service client.

Mutual Authentication with Message Protection (WS-Security 1.0)

Interoperability with OWSM 10g Security Environments 2-11

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

5. Configure the policy.

For more information, see
"oracle/wss10_saml_token_with_message_protection_client_policy" in Securing
Web Services and Managing Policies with Oracle Web Services Manager.

6. Invoke the web service.

2.7 Mutual Authentication with Message Protection (WS-Security 1.0)
This section tells how to implement mutual authentication with message protection
that conform to the WS-Security 1.0 standard, in the following interoperability
scenarios:

■ "Configuring an OWSM 12c Web Service and an OWSM 10g Client" on page 2-11

■ "Configuring an OWSM 10g Web Service and an OWSM 12c Client" on page 2-12

2.7.1 Configuring an OWSM 12c Web Service and an OWSM 10g Client
The following instructions tell how to configure an OWSM 12c web service and an
OWSM 10g client to implement mutual authentication with message protection that
conform to the WS-Security 1.0 standard:

To Configure the OWSM 12c Web Service:

1. Clone the following policy:
oracle/wss10_x509_token_with_message_protection_service_policy.

For more information, see "Cloning a Web Service Policy" in Securing Web Services
and Managing Policies with Oracle Web Services Manager

2. Edit the policy settings, as follows:

a. Disable the Include Timestamp configuration setting.

b. Leave the default configuration set for all other configuration settings.

3. Attach the policy to the web service.

To Configure the OWSM 10g Client:

1. Register the web service (above) with the OWSM 10g Gateway.

For more information, see "Registering Web Services to an OWSM Gateway" in the
OWSM Administrator's Guide 10g at:
http://download.oracle.com/docs/cd/E12524_01/web.1013/e12575/gateways.h
tm

2. Attach the following policy step in the request pipeline: Sign Message and
Encrypt.

3. Configure the Sign Message and Encrypt policy step in the request pipeline, as
follows:

a. Set Encryption Algorithm to AES-128.

b. Set Key Transport Algorithm to RSA-OAEP-MGF1P.

c. Configure the keystore properties for message signing and encryption. The
configuration should be in accordance with the keystore used on the server
side.

Mutual Authentication with Message Protection (WS-Security 1.0)

2-12 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

4. Attach the following policy step in the response pipeline: Decrypt and Verify
Signature.

5. Configure the Decrypt and Verify Signature policy step in the response pipeline, as
follows:

a. Configure the keystore properties for decryption and signature verification.
The configuration should be in accordance with the keystore used on the
server side.

6. Update the following property in the gateway-config-installer.properties file
located at
ORACLE_HOME/j2ee/oc4j_instance/applications/gateway/gateway/WEB-INF:

pep.securitysteps.signBinarySecurityToken=true

7. Restart OWSM 10g Gateway.

8. Navigate to the OWSM Test page and enter the virtualized URL of the web
service.

9. Invoke the web service.

2.7.2 Configuring an OWSM 10g Web Service and an OWSM 12c Client
The following instructions tell how to configure an OWSM 10g web service and an
OWSM 12c client to implement mutual authentication with message protection that
conform to the WS-Security 1.0 standard:

To Configure the OWSM 10g Web Service:

1. Register the web service (above) with the OWSM 10g Gateway.

"Registering Web Services to an OWSM Gateway" in the OWSM Administrator's
Guide 10g at:
http://download.oracle.com/docs/cd/E12524_01/web.1013/e12575/gateways.h
tm

2. Attach the following policy steps in the request pipeline: Decrypt and Verify.

3. Configure the Decrypt and Verify Signature policy step in the request pipeline, as
follows:

a. Configure the keystore properties for decryption and signature verification.
The configuration should be in accordance with the keystore used on the
server side.

4. Attach the following policy steps in the response pipeline: Sign Message and
Encrypt.

5. Configure the Sign Message and Encrypt policy step in the response pipeline, as
follows:

a. Set Encryption Algorithm to AES-128.

b. Set Key Transport Algorithm to RSA-OAEP-MGF1P.

c. Configure the keystore properties for message signing and encryption. The
configuration should be in accordance with the keystore used on the server
side.

To Configure the OWSM 12c Client:

1. Create a client proxy using the virtualized URL of the web service registered on
the OWSM Gateway.

Username Token Over SSL

Interoperability with OWSM 10g Security Environments 2-13

2. Clone the following policy:
oracle/wss10_x509_token_with_message_protection_client_policy.

For more information, see "Cloning a Web Service Policy" in Securing Web Services
and Managing Policies with Oracle Web Services Manager

3. Edit the policy settings, as follows:

a. Disable the Include Timestamp configuration setting.

b. Leave the default configuration set for all other configuration settings.

4. Attach the policy to the web service client.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

5. Configure the policy.

"oracle/wss10_x509_token_with_message_protection_client_policy" in Securing
Web Services and Managing Policies with Oracle Web Services Manager

6. Invoke the web service.

2.8 Username Token Over SSL
This section tells how to implement username token over SSL, in the following
interoperability scenarios:

■ "Configuring an OWSM 12c Web Service and an OWSM 10g Client" on page 2-13

■ "Configuring an OWSM 10g Web Service and an OWSM 12c Client" on page 2-14

For more information about:

■ Configuring SSL on WebLogic Server, see "Configuring Transport-Level Security
(SSL)" in Securing Web Services and Managing Policies with Oracle Web Services
Manager.

■ Configuring SSL on OC4J, see
http://download.oracle.com/docs/cd/B14099_19/web.1012/b14013/configssl.
htm.

2.8.1 Configuring an OWSM 12c Web Service and an OWSM 10g Client
The following instructions tell how to configure an OWSM 12c web service and an
OWSM 10g client to implement username token over SSL:

To Configure the OWSM 12c Web Service:

1. Configure the server for SSL.

For more information, see "Configuring Transport-Level Security (SSL)" in
Securing Web Services and Managing Policies with Oracle Web Services Manager

2. Attach the following policy: wss_username_token_over_ssl_service_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

To Configure the OWSM 10g Client:

1. Configure the server for SSL

For more information, see " Configuring OC4J and SSL" in Oracle Application Server
Containers for J2EE Security Guide at

Username Token Over SSL

2-14 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

http://download.oracle.com/docs/cd/B14099_19/web.1012/b14013/configssl.
htm

2. Register the web service (above) with the OWSM 10g Gateway.

"Registering Web Services to an OWSM Gateway" in the OWSM Administrator's
Guide 10g at:
http://download.oracle.com/docs/cd/E12524_01/web.1013/e12575/gateways.h
tm

3. Navigate to the OWSM Test page and enter the virtualized URL of the web
service.

4. Select the Include Header checkbox against WS-Security and provide valid
credentials.

5. Invoke the web service.

2.8.2 Configuring an OWSM 10g Web Service and an OWSM 12c Client
The following instructions tell how to configure an OWSM 10g web service and an
OWSM 12c client to implement username token over SSL:

To Configure the OWSM 10g Web Service:

1. Configure the server for SSL

For more information, see " Configuring OC4J and SSL" in Oracle Application Server
Containers for J2EE Security Guide at
http://download.oracle.com/docs/cd/B14099_19/web.1012/b14013/configssl.
htm

2. Register the web service (above) with the OWSM 10g Gateway.

"Registering Web Services to an OWSM Gateway" in the OWSM Administrator's
Guide 10g at:
http://download.oracle.com/docs/cd/E12524_01/web.1013/e12575/gateways.h
tm

3. Attach the following policy steps to the request pipeline:

a. Extract Credentials

b. File Authenticate

Note: You can substitute File Authenticate with LDAP Authenticate,
Oracle Access Manager Authenticate, Active Directory Authenticate,
or SiteMinder Authenticate.

4. Configure the Extract Credentials policy step in the request pipeline, as follows:

a. Configure the Credentials Location as WS-BASIC.

5. Configure the File Authentication policy step in the request pipeline with the
appropriate credentials.

To Configure the OWSM 12c Client:

1. Create a client proxy using the virtualized URL of the web service registered on
the OWSM Gateway. Ensure that when generating the client, HTTP is specified in
the URL along with the HTTP port number.

SAML Token (Sender Vouches) Over SSL (WS-Security 1.0)

Interoperability with OWSM 10g Security Environments 2-15

2. Clone the following policy:
oracle/wss_username_token_over_ssl_client_policy.

For more information, see "Cloning a Web Service Policy" in Securing Web Services
and Managing Policies with Oracle Web Services Manager

3. Edit the policy settings, as follows:

a. Disable the Include Timestamp configuration setting.

b. Leave the default configuration set for all other configuration settings.

4. Attach the policy to the web service client.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

5. Configure the policy.

For more information, see "oracle/wss_username_token_over_ssl_client_policy" in
Securing Web Services and Managing Policies with Oracle Web Services Manager

6. Invoke the web service.

2.9 SAML Token (Sender Vouches) Over SSL (WS-Security 1.0)
This section tells how to implement SAML token (sender vouches) over SSL that
conforms to the WS-Security 1.0 standard, in the following interoperability scenarios:

■ "Configuring an OWSM 12c Web Service and an OWSM 10g Client" on page 2-15

■ "Configuring an OWSM 10g Web Service and OWSM 12c Client" on page 2-16

For more information about:

■ Configuring SSL on WebLogic Server, see "Configuring Transport-Level Security
(SSL)" in Securing Web Services and Managing Policies with Oracle Web Services
Manager.

■ Configuring SSL on OC4J, see
http://download.oracle.com/docs/cd/B14099_19/web.1012/b14013/configssl.
htm.

2.9.1 Configuring an OWSM 12c Web Service and an OWSM 10g Client
The following instructions tell how to configure an OWSM 12c web service and an
OWSM 10g client to implement SAML token (sender vouches) over SSL that conforms
to the WS-Security 1.0 standard:

To Configure the OWSM 12c Web Service:

1. Configure the server for two-way SSL.

For more information, see "Configuring Transport-Level Security (SSL)" in
Securing Web Services and Managing Policies with Oracle Web Services Manager

2. Clone the following policy: oracle/wss_saml_token_over_ssl_service_policy.

For more information, see "Cloning a Web Service Policy" in Securing Web Services
and Managing Policies with Oracle Web Services Manager

3. Edit the policy settings, as follows:

a. Disable the Include Timestamp configuration setting.

SAML Token (Sender Vouches) Over SSL (WS-Security 1.0)

2-16 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

For more information, see "Cloning a Web Service Policy" in Securing Web Services
and Managing Policies with Oracle Web Services Manager

4. Attach the policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

To Configure the OWSM 10g Client:

1. Configure the server for two-way SSL.

For more information, see " Configuring OC4J and SSL" in Oracle Application Server
Containers for J2EE Security Guide at
http://download.oracle.com/docs/cd/B14099_19/web.1012/b14013/configssl.
htm

2. Register the web service (above) with the OWSM 10g Gateway.

For more information, see "Registering Web Services to an OWSM Gateway" in the
OWSM Administrator's Guide 10g at:
http://download.oracle.com/docs/cd/E12524_01/web.1013/e12575/gateways.h
tm

3. Attach the following policy steps to the request pipeline:

a. Extract Credentials

b. SAML—Insert WSS 1.0 Sender-Vouches Token

4. Configure the Extra Credentials policy step in the request pipeline, as follows:

a. Configure the Credentials Location as WS-BASIC.

5. Configure the SAML—Insert WSS 1.0 Sender-Vouches Token policy step in the
request pipeline, as follows:

a. Configure the Subject Name Qualifier as www.oracle.com

b. Configure the Assertion Issuer as www.oracle.com

c. Configure the Subject Format as UNSPECIFIED.

d. Configure the Sign the assertion as false.

6. Navigate to the OWSM Test page and enter the virtualized URL of the web
service.

7. Select Include Header checkbox against WS-Security and provide valid
credentials.

8. Invoke the web service.

2.9.2 Configuring an OWSM 10g Web Service and OWSM 12c Client
The following instructions tell how to configure an OWSM 10g web service and an
OWSM 12c client to implement SAML token (sender vouches) over SSL that conforms
to the WS-Security 1.0 standard:

To Configure the OWSM 10g Web Service:

1. Configure the server for two-way SSL.

For more information, see " Configuring OC4J and SSL" in Oracle Application Server
Containers for J2EE Security Guide at
http://download.oracle.com/docs/cd/B14099_19/web.1012/b14013/configssl.
htm

SAML Token (Sender Vouches) Over SSL (WS-Security 1.0)

Interoperability with OWSM 10g Security Environments 2-17

2. Register the web service (above) with the OWSM 10g Gateway.

For more information, see "Registering Web Services to an OWSM Gateway" in the
OWSM Administrator's Guide 10g at:
http://download.oracle.com/docs/cd/E12524_01/web.1013/e12575/gateways.h
tm

3. Attach the policy step: SAML—Verify WSS 1.0 Token

4. Configure the SAML—Verify WSS 1.0 Token policy step in the request pipeline, as
follows:

a. Under Signature Verification Properties, set Allow signed assertions only to
false.

b. Set the Trusted Issuer Name to www.oracle.com.

To Configure the OWSM 12c Client:

1. Configure the server for two-way SSL.

For more information, see "Configuring SSL on WebLogic Server (Two-Way)" in
Securing Web Services and Managing Policies with Oracle Web Services Manager

2. Create a client proxy using the virtualized URL of the web service registered on
the OWSM gateway.

3. s: oracle/wss_saml_token_over_ssl_client_policy.

For more information, see "Cloning a Web Service Policy" in Securing Web Services
and Managing Policies with Oracle Web Services Manager

4. Edit the policy settings, as follows:

a. Disable the Include Timestamp configuration setting.

b. Leave the default configuration set for all other configuration settings.

5. Attach the policy to the web service client.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

6. Configure the policy.

For more information, see "oracle/wss_username_token_over_ssl_client_policy" in
Securing Web Services and Managing Policies with Oracle Web Services Manager

7. Invoke the web service.

SAML Token (Sender Vouches) Over SSL (WS-Security 1.0)

2-18 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

3

Interoperability with Oracle Containers for Java EE (OC4J) 10g Security Environments 3-1

3Interoperability with Oracle Containers for Java
EE (OC4J) 10g Security Environments

[4] This chapter describes the most common Oracle Containers for Java EE (OC4J) 10g
interoperability scenarios based on the following security requirements:
authentication, message protection, and transport.

This chapter includes the following sections:

■ Overview of Interoperability with OC4J 10g Security Environments

■ Anonymous Authentication with Message Protection (WS-Security 1.0)

■ Username Token with Message Protection (WS-Security 1.0)

■ SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)

■ Mutual Authentication with Message Protection (WS-Security 1.0)

■ Username Token Over SSL

■ SAML Token (Sender Vouches) Over SSL (WS-Security 1.0)

3.1 Overview of Interoperability with OC4J 10g Security Environments
In OC4J 10g, you configure your security environment, as described in the following
documents.

■ For information about using Application Server Control to configure the web
service, see Oracle Application Server Advanced Web Services Developer's Guide at
http://download.oracle.com/docs/cd/B31017_01/web.1013/b28975/toc.htm.

■ For information about using JDeveloper to develop and configure your client-side
application, see Developing Applications with Oracle JDeveloper.

■ For information about how to modify the XML-based deployment descriptor files,
see Oracle Application Server Web Services Security Guide 10g (10.1.3.1.0) at:
http://download.oracle.com/docs/cd/B31017_01/web.1013/b28976/toc.htm

With OWSM 12c, you attach policies to web service endpoints. Each policy consists of
one or more assertions, defined at the domain-level, that define the security
requirements. A set of predefined policies and assertions are provided out-of-the-box.

For more information about:

■ OWSM predefined policies, see "Predefined Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

Overview of Interoperability with OC4J 10g Security Environments

3-2 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

■ Configuring and attaching OWSM 12c policies, see "Securing Web Services" and
"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web
Services Manager.

Table 3–2 and Table 3–2 summarize the most common OC4J 10g interoperability
scenarios based on the following security requirements: authentication, message
protection, and transport.

Note: In the following scenarios, ensure that you are using a
keystore with v3 certificates. By default, the JDK 1.5 keytool generates
keystores with v1 certificates.

Table 3–1 OWSM 12c Service Policy and Oracle OC4J 10g Client Policy Interoperability

Identity Token
WS-Security
Version

Message
Protection

Transport
Security Service Policy Client Policy

Anonymous 1.0 Yes No oracle/wss10_message
_protection_service_
policy

See Table 3–4 ,
" Configuring the OC4J
10g Client" on page 3-4

Username 1.0 Yes No oracle/wss10_usernam
e_token_with_message
_protection_service_
policy

See Table 3–10,
" Configuring the OC4J
10g Client" on page 3-8

SAML 1.0 Yes No oracle/wss10_saml_to
ken_with_message_pro
tection_service_poli
cy

See Table 3–4,
" Configuring the OC4J
10g Client" on page 3-11

Mutual
Authentication

1.0 Yes No oracle/wss10_x509_to
ken_with_message_pro
tection_service_poli
cy

See Table 3–10,
" Configuring the OC4J
10g Client" on page 3-15

Username over SSL 1.0 and 1.1 No Yes oracle/wss_username_
token_over_ssl_servi
ce_policy

OR

oracle/wss_saml_or_u
sername_token_over_s
sl_service_policy

See Table 3–16,
" Configuring the OC4J
10g Client" on page 3-19

SAML over SSL 1.0 and 1.1 No Yes oracle/wss_saml_toke
n_over_ssl_service_p
olicy

OR

oracle/wss_saml_or_u
sername_token_over_s
sl_service_policy

See Table 3–22,
" Configuring the OC4J
10g Client" on page 3-25

Table 3–2 Oracle OC4J 10g Service Policy and OWSM 12c Client Policy Interoperability

Identity Token
WS-Security
Version

Message
Protection

Transport
Security Service Policy Client Policy

Anonymous 1.0 Yes No See Table 3–6,
" Configuring the OC4J
10g Web Service" on
page 3-5

oracle/wss10_message_p
rotection_client_polic
y

Username 1.0 Yes No See Table 3–12,
" Configuring the OC4J
10g Web Service" on
page 3-10

oracle/wss10_username_
token_with_message_pro
tection_client_policy

SAML 1.0 Yes No See Table 3–6,
" Configuring the OC4J
10g Web Service" on
page 3-12

oracle/wss10_saml_toke
n_with_message_protect
ion_client_policy

Mutual
Authentication

1.0 Yes No See Table 3–12,
" Configuring the OC4J
10g Web Service" on
page 3-16

oracle/wss10_x509_toke
n_with_message_protect
ion_client_policy

Username over SSL 1.0 and 1.1 No Yes See Table 3–18,
" Configuring the OC4J
10g Web Service" on
page 3-20

oracle/wss_username_to
ken_over_ssl_client_po
licy

SAML over SSL 1.0 and 1.1 No Yes See Table 3–24,
" Configuring the OC4J
10g Web Service" on
page 3-24

oracle/wss_saml_token_
over_ssl_client_policy

Anonymous Authentication with Message Protection (WS-Security 1.0)

Interoperability with Oracle Containers for Java EE (OC4J) 10g Security Environments 3-3

3.2 Anonymous Authentication with Message Protection (WS-Security
1.0)

This section tells how to implement anonymous authentication with message
protection that conforms to the WS-Security 1.0 standard, in the following
interoperability scenarios:

■ "Configuring an OWSM 12c Web Service and an OC4J 10g Client"

■ "Configuring an OC4J 10g Web Service and an OWSM 12c Client"

3.2.1 Configuring an OWSM 12c Web Service and an OC4J 10g Client
The following instructions tell how to configure an OWSM 12c web service and an
OWSM 10g client to implement anonymous authentication with message protection
that conforms to the WS-Security 1.0 standard:

To Configure the OWSM 12c Web Service:

1. Create a web service application.

2. Attach the following policy to the entry point of the web service:
oracle/wss10_message_protection_service_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

To Configure the OC4J 10g Client:

1. Create a client proxy for the web service using Oracle JDeveloper.

For more information, see "Developing and Securing Web Services" in Developing
Applications with Oracle JDeveloper.

Anonymous Authentication with Message Protection (WS-Security 1.0)

3-4 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

2. Use the Oracle JDeveloper wizard to secure the proxy by right-clicking on the
proxy project and selecting Secure Proxy.

3. Click Authentication in the Proxy Editor navigation bar and set the following
options:

a. Select No Authentication.

4. Click Inbound Integrity in the Proxy Editor navigation bar and set the following
options:

a. Select Verify Inbound Signed Request Body.

b. Select Verify Timestamp and Creation Time Required in Timestamp.

c. Enter the Expiration Time (in seconds).

d. Select all options under Acceptable Signature Algorithms.

5. Click Outbound Integrity in the Proxy Editor navigation bar and set the following
options:

a. Select Sign Outbound Messages.

b. Select Add Timestamp to Outbound Messages and Creation Time Required
in Timestamp.

c. Enter the Expiration Time (in seconds).

6. Click Inbound Confidentiality in the Proxy Editor navigation bar and set the
following options:

a. Select Decrypt Inbound Message Content.

b. Select all options under Acceptable Signature Algorithms.

7. Click Outbound Confidentiality in the Proxy Editor navigation bar and set the
following options:

a. Select Encrypt Outbound Messages.

b. Set the Algorithm to AES-128.

8. Click Keystore Options in the Proxy Editor navigation bar and configure the
keystore properties, as required.

Note: Ensure that you are using keystore with v3 certificates. By
default, the JDK 1.5 keytool generates keystores with v1 certificates.

9. Click OK to close the wizard.

10. In the Structure pane, click <appname>Binding_Stub.xml and edit the file as
described in next section.

11. Invoke the web service method from the client.

To edit the <appname>Binding_Stub.xml File:

1. Provide the keystore password and sign and encryption key passwords.

2. In the inbound signature, specify the following:

<inbound><verify-signature><tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd" local-part="Timestamp"/>

Anonymous Authentication with Message Protection (WS-Security 1.0)

Interoperability with Oracle Containers for Java EE (OC4J) 10g Security Environments 3-5

...
3. In the outbound signature, specify that the timestamp should be signed, as

follows:

<outbound>/<signature>/<tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-utility-1.0.xsd" local-part="Timestamp"/>
...

4. In the outbound encryption, specify the key transport algorithm, as follows:

<outbound><encrypt>
<keytransport-method>RSA-OAEP-MGF1P</keytransport-method>
...

3.2.2 Configuring an OC4J 10g Web Service and an OWSM 12c Client
The following instructions tell how to configure an OC4J 10g web service and an
OWSM 12c client to implement anonymous authentication with message protection
that conforms to the WS-Security 1.0 standard:

To configure the OC4J 10g Web Service:

1. Create and deploy a web service application.

2. Use Application Server Control to secure the deployed web service.

3. Click Authentication tab and ensure that no options are selected.

4. Click Integrity tab of the Inbound Policies page and set the following options:

a. Select Require Message Body to Be Signed.

b. Select Verify Timestamp and Creation Time Required in Timestamp.

c. Enter the Expiration Time (in seconds).

5. Click Integrity tab of the Outbound Policies page and set the following options:

a. Select Sign Body Element of Message.

b. Set the Signature Method to RSA-SHA1.

c. Select Add Timestamp and Creation Time Required in Timestamp.

d. Enter the Expiration Time (in seconds).

6. Click Confidentiality tab of the Inbound Policies page and set the following
options:

a. Select Require Encryption of Message Body.

7. Click Confidentiality tab of the Outbound Policies page and set the following
options:

a. Select Encrypt Body Element of Message.

b. Set the Encryption Method to AES-128.

c. Set the public key to encrypt.

8. Configure the keystore properties and identity certificates.

Note: Ensure that you are using keystore with v3 certificates. By
default, the JDK 1.5 keytool generates keystores with v1 certificates.

Username Token with Message Protection (WS-Security 1.0)

3-6 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

9. Edit the wsmgmt.xml deployment descriptor file, as described in Table 3–8,
" Editing the wsmgmt.xml File".

To configure the OWSM 12c Client:

1. Create a client proxy for the OC4J 10g web service.

2. Attach the following policy: oracle/wss10_message_protection_client_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

3. Configure the policy.

For more information, see
"oracle/wss10_username_token_with_message_protection_client_policy" in
Securing Web Services and Managing Policies with Oracle Web Services Manager

4. Invoke the web service method from the client.

To edit the wsmgmt.xml File:

1. Locate the wsmgmt.xml File under ORACLE_HOME/j2ee/oc4j_instance/config.

Tip: The wsmgmt.xml file is an instance-level configuration file, which
holds the entire security configuration for the web services deployed
in an OC4J instance.

For more information, see "Understanding the Web Services Management Schema"
in Oracle® Application Server Advanced Web Services Developer's Guide

2. In the inbound signature, specify the following:

<inbound><verify-signature><tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-utility-1.0.xsd" local-part="Timestamp"/>
...

3. In the outbound signature, specify that the timestamp should be signed, as
follows:

<outbound>/<signature>/<tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-utility-1.0.xsd" local-part="Timestamp"/>
...

4. In the outbound encryption, specify the key transport algorithm, as follows:

<outbound><encrypt>
<keytransport-method>RSA-OAEP-MGF1P</keytransport-method>
...

3.3 Username Token with Message Protection (WS-Security 1.0)
This section tells how to implement username token with message protection that
conforms to the WS-Security 1.0 standard:

■ "Configuring an OWSM 12c Web Service and an OC4J 10g Client" on page 3-6

■ "Configuring an OC4J 10g Web Service and an OWSM 12c Client" on page 3-8

Username Token with Message Protection (WS-Security 1.0)

Interoperability with Oracle Containers for Java EE (OC4J) 10g Security Environments 3-7

3.3.1 Configuring an OWSM 12c Web Service and an OC4J 10g Client
The following instructions tell how to configure an OWSM 12c web service and an
OC4J 10g client to implement username token with message protection that conforms
to the WS-Security 1.0 standard:

To Configure the OWSM 12c Web Service:

1. Create an OWSM 12c web service.

2. Attach the following policy to the web service:
oracle/wss10_username_token_with_message_protection_service_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

To configure the OC4J 10g Client:

1. Create a client proxy for the web service (above) using Oracle JDeveloper.

For more information, see "Developing and Securing Web Services" in Developing
Applications with Oracle JDeveloper.

2. Specify the username and password in the client proxy, as follows:

port.setUsername(<username>)
port.setPassword(<password>)

3. Use the Oracle JDeveloper wizard to secure the proxy by right-clicking on the
proxy project and selecting Secure Proxy.

4. Click Authentication in the Proxy Editor navigation bar and set the following
options:

a. Select Use Username to Authenticate.

b. Deselect Add Nonce and Add Creation Time.

5. Click Inbound Integrity in the Proxy Editor navigation bar and set the following
options:

a. Select Verify Inbound Signed Request Body.

b. Select Verify Timestamp and Creation Time Required in Timestamp.

c. Enter the Expiration Time (in seconds).

d. Select all options under Acceptable Signature Algorithms.

6. Click Outbound Integrity in the Proxy Editor navigation bar and set the following
options:

a. Select Sign Outbound Messages.

b. Select Add Timestamp to Outbound Messages and Creation Time Required
in Timestamp.

c. Enter the Expiration Time (in seconds).

7. Click Inbound Confidentiality in the Proxy Editor navigation bar and set the
following options:

a. Select Decrypt Inbound Message Content.

b. Select all options under Acceptable Signature Algorithms.

8. Click Outbound Confidentiality in the Proxy Editor navigation bar and set the
following options:

a. Select Encrypt Outbound Messages.

Username Token with Message Protection (WS-Security 1.0)

3-8 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

b. Set the Algorithm to AES-128.

9. Click Keystore Options in the Proxy Editor navigation bar and configure the
keystore properties, as required.

Tip: Ensure that you are using keystore with v3 certificates. By
default, the JDK 1.5 keytool generates keystores with v1 certificates.

10. Click OK to close the wizard.

11. In the Structure pane, click <appname>Binding_Stub.xml and edit the file, as
described in Table 3–11, " Editing the <appname>Binding_Stub.xml File".

12. Invoke the web service.

To edit the <appname>Binding_Stub.xml File:

1. Provide the keystore password and sign and encryption key passwords.

2. In the inbound signature, specify the following:

<inbound><verify-signature><tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-utility-1.0.xsd" local-part="Timestamp" />
...

3. In the outbound signature, specify that the timestamp and UsernameToken should
be signed, as follows:

<outbound>/<signature>/<tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd" local-part="Timestamp"/>
 <tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-secext-1.0.xsd" local-part="UsernameToken"/>
...

4. In the outbound encryption, specify the key transport algorithm, as follows:

<outbound><encrypt>
<keytransport-method>RSA-OAEP-MGF1P</keytransport-method>
...

5. In the outbound encryption, specify that the UsernameToken should be encrypted,
as follows:

<outbound>/<encrypt>/<tbe-elements>
<tbe-element local-part="UsernameToken"
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-secext-1.0.xsd" mode="CONTENT"/>
...

3.3.2 Configuring an OC4J 10g Web Service and an OWSM 12c Client
The following instructions tell how to configure an OC4J 10g web service and an
OWSM 12c client to implement username token with message protection that
conforms to the WS-Security 1.0 standard:

To configure the OC4J 10g Web Service:

1. Create and deploy a JAX-RPC web service on OC4J.

2. Use Application Server Control to secure the deployed web service.

3. Click Authentication tab and set the following options:

Username Token with Message Protection (WS-Security 1.0)

Interoperability with Oracle Containers for Java EE (OC4J) 10g Security Environments 3-9

a. Select Use Username/Password Authentication.

b. Set Password to Plain Text.

4. Click Integrity tab in Inbound Policies page and set the following options:

a. Select Require Message Body to Be Signed.

b. Select Verify Timestamp and Creation Time Required in Timestamp.

c. Enter the Expiration Time (in seconds).

5. Click Integrity tab in Outbound Policies page and set the following options:

a. Select Sign Body Element of Message.

b. Set the Signature Method to RSA-SHA1.

c. Select Add Timestamp and Creation Time Required in Timestamp.

d. Enter the Expiration Time (in seconds).

6. Click Confidentiality tab in the Inbound Policies page and set the following
options:

a. Select Require Encryption of Message Body.

7. Click Confidentiality tab in the Outbound Policies page and set the following
options:

a. Select Encrypt Body Element of Message.

b. Set the Encryption Method to AES-128.

c. Set the public key to encrypt.

8. Configure the keystore properties and identity certificates.

Tip: Ensure that you are using keystore with v3 certificates. By
default, the JDK 1.5 keytool generates keystores with v1 certificates.

9. Edit the wsmgmt.xml deployment descriptor file, as described in Table 3–14,
" Editing the wsmgmt.xml File".

To configure the OWSM 02c Client:

1. Create a client proxy for the OC4J 10g web service.

2. Attach the following policy:
oracle/wss10_username_token_with_message_protection_client_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

3. Configure the policy.

For more information, see
"oracle/wss10_username_token_with_message_protection_client_policy" in
Securing Web Services and Managing Policies with Oracle Web Services Manager

4. Invoke the web service method from the client.

To edit the wsmgmt.xml File:

1. Find the wsmgmt.xml file under ORACLE_HOME/j2ee/oc4j_instance/config/.

2. In the inbound signature, specify the following:

<inbound><verify-signature><tbs-elements>

SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)

3-10 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-utility-1.0.xsd" local-part="Timestamp"/>
...

3. In the outbound signature, specify that the timestamp should be signed, as
follows:

<outbound>/<signature>/<tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-utility-1.0.xsd" local-part="Timestamp"/>
...

4. In the outbound encryption, specify that the UsernameToken should be encrypted,
as follows:

<outbound>/<encrypt>/<tbe-elements>
<tbe-element local-part="UsernameToken"
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-secext-1.0.xsd" mode="CONTENT"/>
...

3.4 SAML Token (Sender Vouches) with Message Protection (WS-Security
1.0)

This section tells how to implement SAML token sender vouches with message
protection that conforms to the WS-Security 1.0 standard, the following
interoperability scenarios:

■ "Configuring an OWSM 12c Web Service and an OC4J 10g Client" on page 3-10

■ "Configuring an OC4J 10g Web Service and an OWSM 12c Client" on page 3-12

3.4.1 Configuring an OWSM 12c Web Service and an OC4J 10g Client
The following instructions tell how to configure an OWSM 12c web service and an
OC4J 10g client to implement SAML token sender vouches with message protection
that conforms to the WS-Security 1.0 standard:

To configure the OWSM 12c Web Service:

1. Create an OWSM 12c web service.

2. Attach the following policy to the web service:
oracle/wss10_saml_token__with_message_protection_service_policy

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

To configure the OC4J 10g client:

1. Create a client proxy for the web service (above) using Oracle JDeveloper.

For more information, see Developing and Securing Web Services" in Developing
Applications with Oracle JDeveloper.

2. Use the Oracle JDeveloper wizard to secure the proxy by right-clicking on the
proxy project and selecting Secure Proxy.

3. Click Authentication in the Proxy Editor navigation bar and set the following
options:

a. Select Use SAML Token.

SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)

Interoperability with Oracle Containers for Java EE (OC4J) 10g Security Environments 3-11

b. Click SAML Details.

c. Select Sender Vouches Confirmation and Use Signature.

d. Enter the username that needs to be propagated as the Default Subject Name.

e. Enter www.oracle.com as the Default Issuer Name.

4. Click Inbound Integrity in the Proxy Editor navigation bar and set the following
options:

a. Select Verify Inbound Signed Request Body.

b. Select Verify Timestamp and Creation Time Required in Timestamp.

c. Enter the Expiration Time (in seconds).

d. Select all options under Acceptable Signature Algorithms.

5. Click Outbound Integrity in the Proxy Editor navigation bar and set the following
options:

a. Select Sign Outbound Messages.

b. Select Add Timestamp to Outbound Messages and Creation Time Required
in Timestamp.

c. Enter the Expiration Time (in seconds).

6. Click Inbound Confidentiality in the Proxy Editor navigation bar and set the
following options:

a. Select Decrypt Inbound Message Content.

b. Select all options under Acceptable Signature Algorithms.

7. Click Outbound Confidentiality in the Proxy Editor navigation bar and set the
following options:

a. Select Encrypt Outbound Messages.

b. Set the Algorithm to AES-128.

8. Click Keystore Options in the Proxy Editor navigation bar and configure the
keystore properties, as required.

Note: Ensure that you are using keystore with v3 certificates. By
default, the JDK 1.5 keytool generates keystores with v1 certificates.

9. Click OK to close the wizard.

10. In the Structure pane, click <appname>Binding_Stub.xml and edit the file, as
described in Table 3–17, " Editing the <appname>Binding_Stub.xml File".

11. Invoke the web service method.

To Edit the <appname>Binding_Stub.xml File:

1. Provide the keystore password and sign and encryption key passwords.

2. In the inbound signature, specify the following:

<inbound><verify-signature><tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-utility-1.0.xsd" local-part="Timestamp" />
...

SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)

3-12 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

3. In the outbound signature, specify that the timestamp should be signed, as
follows:

<outbound>/<signature>/<tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-utility-1.0.xsd" local-part="Timestamp"/>
...

4. In the outbound encryption, specify the key transport algorithm, as follows:

<outbound><encrypt>
<keytransport-method>RSA-OAEP-MGF1P</keytransport-method>
...

3.4.2 Configuring an OC4J 10g Web Service and an OWSM 12c Client
The following instructions tell how to configure an OC4J 10g web service and an
OWSM 12c client to implement SAML token sender vouches with message protection
that conforms to the WS-Security 1.0 standard:

To configure the OC4J 10g Web Service:

1. Create and deploy a JAX-RPC web service on OC4J.

2. Use the Application Server Control to secure the deployed web service.

3. Click Authentication in navigation bar and set the following options:

a. Select Use SAML Authentication.

b. Select Accept Sender Vouches.

c. Deselect Verify Signature.

4. Click Inbound Integrity in the navigation bar and set the following option:

a. Select Require Message Body To Be Signed.

b. Select Verify Timestamp and Creation Time Required in Timestamp.

c. Enter the Expiration Time (in seconds).

5. Click Outbound Integrity in the navigation bar and select the following options:

a. Select Sign Body Element of Message.

b. Set the Signature Method to RSA-SHA1.

c. Select Add Timestamp and Creation Time Required in Timestamp.

d. Enter the Expiration Time (in seconds).

6. Click Inbound Confidentiality in the navigation bar and set the following option:

a. Deselect Require Encryption of Message Body.

7. Click Outbound Confidentiality in the navigation bar and set the following
option:

1. Select Encrypt Body Element of Message.

2. Set the Encryption Method to AES-128.

3. Set the public key to encrypt.

8. Configure the keystore properties and identity certificates.

Note: Ensure that you are using keystore with v3 certificates. By
default, the JDK 1.5 keytool generates keystores with v1 certificates.

Mutual Authentication with Message Protection (WS-Security 1.0)

Interoperability with Oracle Containers for Java EE (OC4J) 10g Security Environments 3-13

9. Edit the wsmgmt.xml deployment descriptor file, as described in Table 3–20,
" Editing the wsmgmt.xml File".

10. Invoke the web service.

To configure the OWSM 12c Client:

1. Create a client proxy for the OC4J 10g web service.

2. Attach the following policy:
oracle/wss10_saml_token_with_message_protection_client_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

3. Configure the policy.

For more information, see
"oracle/wss10_saml_token_with_message_protection_client_policy" in Securing
Web Services and Managing Policies with Oracle Web Services Manager

4. Invoke the web service method from the client.

To edit the wsmgmt.xml File:

1. Find the wsmgmt.xml file in ORACLE_HOME/j2ee/oc4j_instance/config.

2. In the inbound signature, specify the following:

<inbound><verify-signature><tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-utility-1.0.xsd" local-part="Timestamp"/>
...

3. In the outbound signature, specify that the timestamp should be signed, as
follows:

<outbound>/<signature>/<tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-utility-1.0.xsd" local-part="Timestamp"/>
...

4. In the outbound encryption, specify that the UsernameToken should be encrypted,
as follows:

<outbound>/<encrypt>/<tbe-elements>
<tbe-element local-part="UsernameToken"
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-secext-1.0.xsd" mode="CONTENT"/>
...

3.5 Mutual Authentication with Message Protection (WS-Security 1.0)
This section tells how to implement mutual authentication with message protection
that conforms to the WS-Security 1.0 standard, the following interoperability
scenarios:

■ "Configuring an OWSM 12c Web Service and an OC4J 10g Client" on page 3-13

■ "Configuring an OC4J 10g Web Service and an OWSM 12c Client" on page 3-15

Mutual Authentication with Message Protection (WS-Security 1.0)

3-14 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

3.5.1 Configuring an OWSM 12c Web Service and an OC4J 10g Client
The following instructions tell how to configure an OWSM 12c web service and an
OC4J 10g client to implement mutual authentication with message protection that
conforms to the WS-Security 1.0 standard:

To configure the OWSM 12c Web Service:

1. Create a web service application.

2. Attach the following policy to the web service:
oracle/wss10_x509_token_with_message_protection_service_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

To configure the OC4J 10g Client:

1. Create a client proxy for the web service (above) using Oracle JDeveloper.

For more information, see Developing and Securing Web Services" in Developing
Applications with Oracle JDeveloper.

2. Use the Oracle JDeveloper wizard to secure the proxy by right-clicking on the
proxy project and selecting Secure Proxy.

3. Click Authentication in the Proxy Editor navigation bar and set the following
options:

a. Select Use X509 To Authenticate.

4. Click Inbound Integrity in the Proxy Editor navigation bar and set the following
options:

a. Select Verify Inbound Signed Request Body.

b. Select Verify Timestamp and Creation Time Required in Timestamp.

c. Enter the Expiration Time (in seconds).

d. Select all options under Acceptable Signature Algorithms.

5. Click Outbound Integrity in the Proxy Editor navigation bar and set the following
options:

a. Select Sign Outbound Messages.

b. Select Add Timestamp to Outbound Messages and Creation Time Required
in Timestamp.

c. Enter the Expiration Time (in seconds).

6. Click Inbound Confidentiality in the Proxy Editor navigation bar and set the
following options:

a. Select Decrypt Inbound Message Content.

b. Select all options under Acceptable Signature Algorithms.

7. Click Outbound Confidentiality in the Proxy Editor navigation bar and set the
following options:

a. Select Encrypt Outbound Messages.

b. Set the Algorithm to AES-128.

8. Click Keystore Options in the Proxy Editor navigation bar and configure the
keystore properties, as required.

Note: Ensure that you are using keystore with v3 certificates. By
default, the JDK 1.5 keytool generates keystores with v1 certificates.

Mutual Authentication with Message Protection (WS-Security 1.0)

Interoperability with Oracle Containers for Java EE (OC4J) 10g Security Environments 3-15

9. Click OK to close the wizard.

10. In the Structure pane, click <appname>Binding_Stub.xml and edit the file, as
describe in Table 3–23, " Editing the <appname>Binding_Stub.xml File".

11. Invoke the web service.

To edit the <appname>Binding_Stub.xml file:

1. Provide the keystore password and sign and encryption key passwords.

2. In the inbound signature, specify the following:

<inbound><verify-signature><tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-utility-1.0.xsd" local-part="Timestamp" />
...

3. In the outbound signature, specify that the timestamp should be signed, as
follows:

<outbound>/<signature>/<tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-utility-1.0.xsd" local-part="Timestamp"/>
...

4. In the outbound encryption, specify the key transport algorithm, as follows:

<outbound><encrypt>
<keytransport-method>RSA-OAEP-MGF1P</keytransport-method>
...

3.5.2 Configuring an OC4J 10g Web Service and an OWSM 12c Client
The following instructions tell how to configure an OC4J 10g web service and an
OWSM 12c client to implement mutual authentication with message protection that
conforms to the WS-Security 1.0 standard:

To configure the OC4J 10g Web Service:

1. Create and deploy a JAX-RPC web service on OC4J.

2. Use the Application Server Control to secure the deployed web service.

3. Click Authentication tab and set the following options:

a. Select Use X509 Certificate Authentication.

4. Click Integrity tab of the Inbound Policies page and set the following options:

a. Select Require Message Body to Be Signed.

b. Select Verify Timestamp and Creation Time Required in Timestamp.

c. Enter the Expiration Time (in seconds).

5. Click Integrity tab of the Outbound Policies page and set the following options:

a. Select Sign Body Element of Message.

b. Set the Signature Method to RSA-SHA1.

Mutual Authentication with Message Protection (WS-Security 1.0)

3-16 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

c. Select Add Timestamp and Creation Time Required in Timestamp.

d. Enter the Expiration Time (in seconds).

6. Click Confidentiality tab of the Inbound Policies page and set the following
options:

1. Select Require Encryption of Message Body.

7. Click Confidentiality tab of the Outbound Policies page and set the following
options:

a. Select Encrypt Body Element of Message.

b. Set the Encryption Method to AES-128.

c. Set the public key to encrypt.

8. Configure the keystore properties and identity certificates.

Note: Ensure that you are using keystore with v3 certificates. By
default, the JDK 1.5 keytool generates keystores with v1 certificates.

9. Edit the wsmgmt.xml deployment descriptor file, as described in Table 3–26,
" Editing the wsmgmt.xml File".

To configure the OWSM 12c Client:

1. Create a client proxy to the OC4J 10g web service.

2. Attach the following policy:
oracle/wss10_x509_token_with_message_protection_client_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

3. Configure the policy.

For more information, see
"oracle/wss10_x509_token_with_message_protection_client_policy" in Securing
Web Services and Managing Policies with Oracle Web Services Manager

4. Invoke the web service.

To edit the wsmgmt.xml file:

1. Find the wsmgmt.xml file under ORACLE_HOME/j2ee/oc4j_instance/config/.

2. In the inbound signature, specify the following:

<inbound><verify-signature><tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-utility-1.0.xsd" local-part="Timestamp"/>
...

3. In the outbound signature, specify that the timestamp should be signed, as
follows:

<outbound>/<signature>/<tbs-elements>
<tbs-element
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-utility-1.0.xsd" local-part="Timestamp"/>
...

4. In the outbound encryption, specify that the UsernameToken should be encrypted,
as follows:

Username Token Over SSL

Interoperability with Oracle Containers for Java EE (OC4J) 10g Security Environments 3-17

<outbound>/<encrypt>/<tbe-elements>
<tbe-element local-part="UsernameToken"
name-space="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity
-secext-1.0.xsd" mode="CONTENT"/>
...

3.6 Username Token Over SSL
This section tells how to implement username token over SSL, in the following
interoperability scenarios:

■ "Configuring an OWSM 12c Web Service and an OC4J 10g Client"

■ "Configuring an OC4J 10g Web Service and an OWSM 12c Client"

For information about:

■ Configuring SSL on WebLogic Server, see "Configuring Transport-Level Security
(SSL)" in Securing Web Services and Managing Policies with Oracle Web Services
Manager.

■ Configuring SSL on OC4J, see
http://download.oracle.com/docs/cd/B14099_19/web.1012/b14013/configssl.
htm.

3.6.1 Configuring an OWSM 12c Web Service and an OC4J 10g Client
The following instructions tell how to configure an OWSM 12c web service and an
OC4J 10g client to implement username token over SSL:

To configure the OWSM 12c Web Service:

1. Configure the server for SSL.

For more information, see "Configuring Transport-Level Security (SSL)" in
Securing Web Services and Managing Policies with Oracle Web Services Manager

2. Attach one of the following policies to the web service:

oracle/wss_username_token_over_ssl_service_policy

oracle/wss_username_or_saml_token_over_ssl_service_policy

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

To configure the OC4J 10g Client:

1. Create a client proxy for the web service (above) using Oracle JDeveloper.

Note: Ensure that the web service endpoint references the URL with
HTTPS and SSL port configured on Oracle WebLogic Server.

For more information, see Developing and Securing Web Services" in Developing
Applications with Oracle JDeveloper.

2. Add the following code excerpt to initialize two-way SSL (at the beginning of the
client proxy code):

HostnameVerifier hv = new HostnameVerifier()
httpsURLConnection.setDefaultHostnameVerifier(hv);
System.setProperty("javax.net.ssl.trustStore","<trust_store>");

Username Token Over SSL

3-18 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

System.setProperty("javax.net.ssl.trustStorePassword","<trust_store
_password>");
System.setProperty("javax.net.ssl.keyStore","<key_store>");
System.setProperty("javax.net.ssl.keyStorePassword","<key_store_password>");
System.setProperty("javax.net.ssl.keyStoreType","JKS");

3. Use the Oracle JDeveloper wizard to secure the proxy by right-clicking on the
proxy project and selecting Secure Proxy.

4. Click Authentication in the Proxy Editor navigation bar and set the following
options:

a. Select Use Username to Authenticate.

b. Deselect Add Nonce and Add Creation Time.

5. Click Inbound Integrity in the Proxy Editor navigation bar and deselect all
options.

6. Click Outbound Integrity in the Proxy Editor navigation bar and deselect all
options.

7. Click Inbound Confidentiality in the Proxy Editor navigation bar and deselect all
options.

8. Click Outbound Confidentiality in the Proxy Editor navigation bar and deselect
all options.

9. Click Keystore Options in the Proxy Editor navigation bar and configure the
keystore properties, as required.

Note: Ensure that you are using keystore with v3 certificates. By
default, the JDK 1.5 keytool generates keystores with v1 certificates.

10. Click OK to close the wizard.

11. In the Structure pane, click <appname>Binding_Stub.xml and edit the file. as
described in. Table 3–29, " Editing the <appname>Binding_Stub.xml File"

12. Invoke the web service.

To edit the <appname>Binding_Stub.xml file:

1. Provide the keystore password and sign and encryption key passwords.

2. In the outbound signature, specify that the timestamp should be signed, as follows
(and remove all other tags):

<outbound>
 <signature>
 <add-timestamp created="true" expiry="<Expiry_Time>"/>
 </signature>
...

3.6.2 Configuring an OC4J 10g Web Service and an OWSM 12c Client
The following instructions tell how to configure an OC4J 10g web service and an
OWSM 12c client to implement username token over SSL:

To configure the OC4J 10g Web Service:

1. Configure the server for SSL.

Username Token Over SSL

Interoperability with Oracle Containers for Java EE (OC4J) 10g Security Environments 3-19

For more information, see
http://download.oracle.com/docs/cd/B14099_19/web.1012/b14013/configssl.
htm

2. Use the Application Server Control to secure the deployed web service.

3. Click Authentication tab and set the following options:

a. Select Use Username/Password Authentication.

4. Click Integrity tab of the Inbound Policies page and deselect all options.

5. Click Integrity tab of the Outbound Policies page and deselect all options.

6. Click Confidentiality tab of the Inbound Policies page and deselect all options.

7. Click Confidentiality tab of the Outbound Policies page and deselect all options.

8. Edit the wsmgmt.xml deployment descriptor file, as described in Table 3–32,
" Editing the wsmgmt.xml File".

To configure the OWSM 12c client:

1. Create a client proxy to the OC4J 10g web service using clientgen.

Note: Ensure that the web service endpoint references the URL with
HTTPS and SSL port configured on Oracle WebLogic Server.

2. Add the following code excerpt to initialize two-way SSL (at the beginning of the
client proxy code):

HostnameVerifier hv = new HostnameVerifier()
httpsURLConnection.setDefaultHostnameVerifier(hv);
System.setProperty("javax.net.ssl.trustStore","<trust_store>");
System.setProperty("javax.net.ssl.trustStorePassword","<trust_store
_password>");
System.setProperty("javax.net.ssl.keyStore","<key_store>");
System.setProperty("javax.net.ssl.keyStorePassword","<key_store_password>");
System.setProperty("javax.net.ssl.keyStoreType","JKS");

3. Attach the following policy:
oracle/wss_username_token_over_ssl_client_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

4. Configure the policy.

For more information, see "oracle/wss_username_token_over_ssl_client_policy" in
Securing Web Services and Managing Policies with Oracle Web Services Manager

5. Invoke the web service.

To edit the wsmgmt.xml file:

1. Find the wsmgmt.xml file under ORACLE_HOME/j2ee/oc4j_instance/config/.

2. In the outbound signature, specify that the timestamp should be signed, as follows
(and remove all other tags):

<outbound>
 <signature>
 <add-timestamp created="true" expiry="<Expiry_Time>"/>
 </signature>
...

SAML Token (Sender Vouches) Over SSL (WS-Security 1.0)

3-20 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

3.7 SAML Token (Sender Vouches) Over SSL (WS-Security 1.0)
This section tells how to implement SAML token (sender vouches) over SSL that
conforms to the WS-Security 1.0 standard, in the following interoperability scenarios:

■ "Configuring an OWSM 12c Web Service and an OC4J 10g Client"

■ "Configuring an OC4J 10g Web Service and an OWSM 12c Client"

For information about:

■ Configuring SSL on WebLogic Server, see "Configuring Transport-Level Security
(SSL)" in Securing Web Services and Managing Policies with Oracle Web Services
Manager.

■ Configuring SSL on OC4J, see
http://download.oracle.com/docs/cd/B14099_19/web.1012/b14013/configssl.
htm.

3.7.1 Configuring an OWSM 12c Web Service and an OC4J 10g Client
The following instructions tell how to configure an OWSM 12c web service and an
OC4J 10g client to implement SAML token (sender vouches) over SSL that conforms to
the WS-Security 1.0 standard:

To configure the OWSM 12c Web Service:

1. Configure the server for two-way SSL.

For more information, see "Configuring SSL on WebLogic Server (Two-Way)" in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

2. Attach the following policy to the web service:

oracle/wss_saml_token_over_ssl_service_policy

oracle/wss_username_or_saml_token_over_ssl_service_policy

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

To configure the OC4J 10g client:

1. Configure the server for two-way SSL.

For more information, see
http://download.oracle.com/docs/cd/B14099_19/web.1012/b14013/configssl.
htm

2. Create a client proxy for the web service (above) using Oracle JDeveloper.

Note: Ensure that the web service endpoint references the URL with
HTTPS and SSL port configured on Oracle WebLogic Server.

For more information, see Developing and Securing Web Services" in Developing
Applications with Oracle JDeveloper.

3. Add the following code excerpt to initialize two-way SSL (at the beginning of the
client proxy code):

HostnameVerifier hv = new HostnameVerifier()
httpsURLConnection.setDefaultHostnameVerifier(hv);
System.setProperty("javax.net.ssl.trustStore","<trust_store>");
System.setProperty("javax.net.ssl.trustStorePassword","<trust_store

SAML Token (Sender Vouches) Over SSL (WS-Security 1.0)

Interoperability with Oracle Containers for Java EE (OC4J) 10g Security Environments 3-21

_password>");
System.setProperty("javax.net.ssl.keyStore","<key_store>");
System.setProperty("javax.net.ssl.keyStorePassword","<key_store_password>");
System.setProperty("javax.net.ssl.keyStoreType","JKS");

4. Use the Oracle JDeveloper wizard to secure the proxy by right-clicking on the
proxy project and selecting Secure Proxy.

5. Click Authentication in the Proxy Editor navigation bar and set the following
options:

a. Select Use SAML Token.

b. Click SAML Details.

c. Select Sender Vouches Confirmation.

d. Enter a valid username as the Default Subject Name.

6. Click Inbound Integrity in the Proxy Editor navigation bar and set the following
option:

a. Deselect Verify Inbound Signed Message Body.

7. Click Outbound Integrity in the Proxy Editor navigation bar and deselect all
options.

8. Click Inbound Confidentiality in the Proxy Editor navigation bar and set the
following option:

a. Deselect Decrypt Inbound Message Content.

9. Click Outbound Confidentiality in the Proxy Editor navigation bar and set the
following option:

a. Deselect Encrypt Outbound Message.

10. Provide required information for the keystore to be used.

11. Click OK to close the wizard.

12. In the Structure pane, click <appname>Binding_Stub.xml and edit the file, as
described in Table 3–35, " Editing the <appname>Binding_Stub.xml File".

13. Invoke the web service.

To edit the <appname>Binding_Stub.xml file:

1. Provide the keystore password and sign and encryption key passwords.

2. In the outbound signature, specify that the timestamp should be signed, as follows
(and remove all other tags):

<outbound>
 <signature>
 <add-timestamp created="true" expiry="<Expiry_Time>"/>
 </signature>
...

3.7.2 Configuring an OC4J 10g Web Service and an OWSM 12c Client
The following instructions tell how to configure an OC4J 10g web service and an
OWSM 12c client to implement SAML token (sender vouches) over SSL that conforms
to the WS-Security 1.0 standard:

To configure the OC4J 10g Web Service:

1. Configure the server for two-way SSL.

SAML Token (Sender Vouches) Over SSL (WS-Security 1.0)

3-22 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

For more information, see
http://download.oracle.com/docs/cd/B14099_19/web.1012/b14013/configssl.
htm

2. Use the Application Server Control to secure the deployed web service.

3. Click Authentication in navigation bar and set the following options:

a. Select Use SAML Authentication.

b. Select Accept Sender Vouches.

c. Deselect Verify Signature.

4. Click Integrity tab of the Inbound Policies page and deselect all options.

5. Click Integrity tab of the Outbound Policies page and deselect all options.

6. Click Confidentiality tab of the Inbound Policies page and deselect all options.

7. Click Confidentiality tab of the Outbound Policies page and deselect all options.

8. Edit the wsmgmt.xml deployment descriptor file, as described in Table 3–38, " Edit
the wsmgmt.xml File".

To configure the OWSM 12c Client:

1. Configure the server for two-way SSL.

For more information, see "Configuring SSL on WebLogic Server (Two-Way)" in
Securing Web Services and Managing Policies with Oracle Web Services Manager

2. Create a client proxy to the OC4J 10g web service.

For more information, see Ensure that the web service endpoint references the
URL with HTTPS and SSL port configured on Oracle WebLogic Server.

3. Attach the following policy: oracle/wss_saml_token_over_ssl_client_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

4. Configure the policy.

For more information, see "oracle/wss_saml_token_over_ssl_client_policy" in
Securing Web Services and Managing Policies with Oracle Web Services Manager

5. Invoke the web service.

To edit the wsmgmt.xml file:

1. Find the wsmgmt.xml file under ORACLE_HOME/j2ee/oc4j_instance/config/,.

2. In the outbound signature, specify that the timestamp should be signed, as follows
(and remove all other tags):

<outbound>
 <signature>
 <add-timestamp created="true" expiry="<Expiry_Time>"/>
 </signature>
...

4

Interoperability with Oracle WebLogic Server 12c Web Service Security Environments 4-1

4Interoperability with Oracle WebLogic Server
12c Web Service Security Environments

[5] This chapter describes interoperability of Oracle Web Services Manager (OWSM) with
Oracle WebLogic Server 12c web service security environments.

This chapter includes the following sections:

■ Overview of Interoperability with Oracle WebLogic Server 12c Web Service
Security Environments

■ Username Token With Message Protection (WS-Security 1.1)

■ Username Token With Message Protection (WS-Security 1.1) and MTOM

■ Username Token With Message Protection (WS-Security 1.0)

■ Username Token Over SSL

■ Username Token Over SSL with MTOM

■ SAML Token (Sender Vouches) Over SSL

■ SAML Token (Sender Vouches) Over SSL with MTOM

■ SAML Token 2.0 (Sender Vouches) With Message Protection (WS-Security 1.1)

■ SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1)

■ SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1) and
MTOM

■ SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)

■ Mutual Authentication with Message Protection (WS-Security 1.0)

■ Mutual Authentication with Message Protection (WS-Security 1.1)

4.1 Overview of Interoperability with Oracle WebLogic Server 12c Web
Service Security Environments

In Oracle Fusion Middleware 12c, you can attach both OWSM and Oracle WebLogic
Server 12c web service policies to WebLogic Java EE web services.

For more information about:

■ OWSM predefined policies, see "Predefined Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

Overview of Interoperability with Oracle WebLogic Server 12c Web Service Security Environments

4-2 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

■ Configuring and attaching OWSM 12c policies, see "Securing Web Services" and
"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web
Services Manager.

For more details about the predefined Oracle WebLogic Server 12c web service
policies, see:

■ "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web
Services Manager

■ Securing WebLogic Web Services for Oracle WebLogic Server

 Table 4–1 and Table 4–2 summarize the most common Oracle WebLogic Server 12c
web service policy interoperability scenarios based on the following security
requirements: authentication, message protection, and transport. The tables are
organized as follows:

■ Table 4–1 describes interoperability scenarios with WebLogic web service policies
and OWSM client policies.

■ Table 4–2 describes interoperability scenarios with OWSM web service policies
and WebLogic web service client policies.

Table 4–1 WebLogic Web Service Policy and OWSM Client Policy Interoperability

Identity Token
WS-Securit
y Version

Message
Protection

Transport
Security Service Policy Client Policy

Username 1.1 Yes No ■ Wssp1.2-2007-Wss1
.1-UsernameTok
en-Plain-Encry
ptedKey-Basic1
28.xml

■ Wssp1.2-2007-Sign
Body.xml

■ Wssp1.2-2007-Encr
yptBody.xml

oracle/wss11_usernam
e_token_with_message
_protection_client_p
olicy

Username and
MTOM

1.1 Yes No ■ Wssp1.2-2007-Wss1
.1-UsernameTok
en-Plain-Encry
ptedKey-Basic1
28.xml

■ Wssp1.2-2007-Sign
Body.xml

■ Wssp1.2-2007-Encr
yptBody.xml

oracle/wss11_usernam
e_token_with_message
_protection_client_p
olicy

wsmtom_policy

Username 1.0 Yes No ■ Wssp1.2-wss10_use
rname_token_wi
th_message_pro
tection_owsm_p
olicy.xml

■ Wssp1.2-2007-Sign
Body.xml

■ Wssp1.2-2007-Encr
yptBody.xml

oracle/wss10_usernam
e_token_with_message
_protection_client_p
olicy

Overview of Interoperability with Oracle WebLogic Server 12c Web Service Security Environments

Interoperability with Oracle WebLogic Server 12c Web Service Security Environments 4-3

SAML 2.0 1.1 Yes No ■ Wssp1.2-wss11_sam
l_token_with_m
essage_protect
ion_owsm_polic
y.xml

■ Wssp1.2-2007-Sign
Body.xml

■ Wssp1.2-2007-Encr
yptBody.xml

oracle/wss11_saml_to
ken_with_message_pro
tection_client_polic
y

SAML 1.1 Yes No ■ Wssp1.2-wss11_sam
l_token_with_m
essage_protect
ion_owsm_polic
y.xml

■ Wssp1.2-2007-Sign
Body.xml

■ Wssp1.2-2007-Encr
yptBody.xml

oracle/wss11_saml_to
ken_with_message_pro
tection_client_polic
y

SAML and
MTOM

1.1 Yes No ■ Wssp1.2-wss11_sam
l_token_with_m
essage_protect
ion_owsm_polic
y.xml

■ Wssp1.2-2007-Sign
Body.xml

■ Wssp1.2-2007-Encr
yptBody.xml

oracle/wss11_saml_to
ken_with_message_pro
tection_client_polic
y

wsmtom_policy

Table 4–1 (Cont.) WebLogic Web Service Policy and OWSM Client Policy Interoperability

Identity Token
WS-Securit
y Version

Message
Protection

Transport
Security Service Policy Client Policy

Overview of Interoperability with Oracle WebLogic Server 12c Web Service Security Environments

4-4 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

SAML 1.0 Yes No ■ Wssp1.2-wss10_sam
l_token_with_m
essage_protect
ion_owsm_polic
y.xml

■ Wssp1.2-2007-Sign
Body.xml

■ Wssp1.2-2007-Encr
yptBody.xml

oracle/wss10_saml_to
ken_with_message_pro
tection_client_polic
y

Mutual
Authentication

1.1 Yes No ■ Wssp1.2-wss11_x50
9_token_with_m
essage_protect
ion_owsm_polic
y.xml

■ Wssp1.2-2007-Sign
Body.xml

■ Wssp1.2-2007-Encr
yptBody.xml

oracle/wss11_x509_to
ken_with_message_pro
tection_client_polic
y

Mutual
Authentication

1.0 Yes No ■ Wssp1.2-wss10_x50
9_token_with_m
essage_protect
ion_owsm_polic
y.xml

■ Wssp1.2-2007-Sign
Body.xml

■ Wssp1.2-2007-Encr
yptBody.xml

oracle/wss10_x509_to
ken_with_message_pro
tection_client_polic
y

Table 4–1 (Cont.) WebLogic Web Service Policy and OWSM Client Policy Interoperability

Identity Token
WS-Securit
y Version

Message
Protection

Transport
Security Service Policy Client Policy

Overview of Interoperability with Oracle WebLogic Server 12c Web Service Security Environments

Interoperability with Oracle WebLogic Server 12c Web Service Security Environments 4-5

Table 4–2 OWSM Web Service Policy and WebLogic Web Service Client Policy Interoperability

Identity Token
WS-Securit
y Version

Message
Protection

Transport
Security Service Policy Client Policy

Username 1.1 Yes No oracle/wss11_usern
ame_token_with_mes
sage_protection_se
rvice_policy

■ Wssp1.2-2007-Wss1.1
-UsernameToken-P
lain-EncryptedKe
y-Basic128.xml

■ Wssp1.2-2007-SignBo
dy.xml

■ Wssp1.2-2007-Encryp
tBody.xml

Username and
MTOM

1.1 Yes No oracle/wss11_usern
ame_token_with_mes
sage_protection_se
rvice_policy

■ Wssp1.2-wss10_usern
ame_token_with_m
essage_protectio
n_owsm_policy.xm
l

■ Wssp1.2-2007-SignBo
dy.xml

■ Wssp1.2-2007-Encryp
tBody.xml

Username 1.0 Yes No oracle/wss10_usern
ame_token_with_mes
sage_protection_se
rvice_policy

■ Wssp1.2-wss10_usern
ame_token_with_m
essage_protectio
n_owsm_policy.xm
l

■ Wssp1.2-2007-SignBo
dy.xml

■ Wssp1.2-2007-Encryp
tBody.xml

Username over
SSL

1.0 and 1.1 No Yes oracle/wss_usernam
e_token_over_ssl_s
ervice_policy

Wssp1.2-2007-Https-U
sernameToken-Plain.x
ml

Username over
SSL with MTOM

1.0 and 1.1 No Yes oracle/wss_usernam
e_token_over_ssl_s
ervice_policy

Wssp1.2-2007-Https-U
sernameToken-Plain.x
ml

SAML over SSL 1.0 and 1.1 No Yes oracle/wss_saml_to
ken_over_ssl_servi
ce_policy

Wssp1.2-2007-Saml1.1
-SenderVouches-Https
.xml

SAML over SSL
with MTOM

1.0 and 1.1 No Yes oracle/wss_saml_to
ken_over_ssl_servi
ce_policy

Wssp1.2-2007-Saml1.1
-SenderVouches-Https
.xml

SAML 2.0 1.1 Yes No oracle/wss11_saml_
token_with_message
_protection_servic
e_policy

■ Wssp1.2-wss11_saml_
token_with_messa
ge_protection_ow
sm_policy.xml

■ Wssp1.2-2007-SignBo
dy.xml

■ Wssp1.2-2007-Encryp
tBody.xml

Username Token With Message Protection (WS-Security 1.1)

4-6 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

4.2 Username Token With Message Protection (WS-Security 1.1)
This section tells how to implement username token with message protection that
conforms to the WS-Security 1.1 standard, in the following interoperability scenarios:

■ Interoperating with a WebLogic Web Service Policy

■ Web Service Client Policy

SAML 1.1 Yes No oracle/wss11_saml_
token_with_message
_protection_servic
e_policy

■ Wssp1.2-wss11_saml_
token_with_messa
ge_protection_ow
sm_policy.xml

■ Wssp1.2-2007-SignBo
dy.xml

■ Wssp1.2-2007-Encryp
tBody.xml

SAML with
MTOM

1.1 Yes No oracle/wss11_saml_
token_with_message
_protection_servic
e_policy

■ Wssp1.2-wss11_saml_
token_with_messa
ge_protection_ow
sm_policy.xml

■ Wssp1.2-2007-SignBo
dy.xml

■ Wssp1.2-2007-Encryp
tBody.xml

SAML 1.0 Yes No oracle/wss10_saml_
token_with_message
_protection_servic
e_policy

■ Wssp1.2-wss10_saml_
token_with_messa
ge_protection_ow
sm_policy.xml

■ Wssp1.2-2007-SignBo
dy.xml

■ Wssp1.2-2007-Encryp
tBody.xml

Mutual
Authentication

1.1 Yes No oracle/wss11_x509_
token_with_message
_protection_servic
e_policy

■ Wssp1.2-wss11_x509_
token_with_messa
ge_protection_ow
sm_policy.xml

■ Wssp1.2-2007-SignBo
dy.xml

■ Wssp1.2-2007-Encryp
tBody.xml

Mutual
Authentication

1.0 Yes No oracle/wss10_x509_
token_with_message
_protection_servic
e_policy

■ Wssp1.2-wss10_x509_
token_with_messa
ge_protection_ow
sm_policy.xml

■ Wssp1.2-2007-SignBo
dy.xml

■ Wssp1.2-2007-Encryp
tBody.xml

Table 4–2 (Cont.) OWSM Web Service Policy and WebLogic Web Service Client Policy Interoperability

Identity Token
WS-Securit
y Version

Message
Protection

Transport
Security Service Policy Client Policy

Username Token With Message Protection (WS-Security 1.1)

Interoperability with Oracle WebLogic Server 12c Web Service Security Environments 4-7

4.2.1 Interoperating with a WebLogic Web Service Policy
The following instructions tell how to implement username token with message
protection that conforms to the WS-Security 1.1 standard and ensure interoperability
between the WebLogic web service policy and the OWSM client policy:

To Attach and Configure the WebLogic Web Service Policy:

1. Create a WebLogic web service.

For more information, see "Roadmap for Implementing WebLogic (Java EE) Web
Services" in Understanding Web Services

2. Attach the following policies:

a. Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey-Basic128.xml

b. Wssp1.2-2007-SignBody.xml

c. Wssp1.2-2007-EncryptBody.xml

For more information, see "Updating the JWS File with @Policy and @Policies
Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

3. Configure identity and trust stores.

For more information, see "Configure identity and trust" in Oracle WebLogic Server
Administration Console Online Help

4. Configure message-level security.

Note: You only need to configure the Confidentiality Key for a
WS-Security 1.1 policy.

For more information, see:

■ "Configuring Message-Level Security" in Securing WebLogic Web Services for
Oracle WebLogic Server

■ "Create a Web Service security configuration" in Oracle WebLogic Server
Administration Console Online Help

5. Deploy the web service.

For more information, see "Install a Web Service" in Oracle WebLogic Server
Administration Console Online Help

To attach and Configure the OWSM Client Policy:

1. Create a client proxy for the web service created earlier using clientgen or some
other mechanism.

For more information, see "Roadmap for Implementing Oracle Fusion Middleware
Web Services" in Understanding Web Services

2. Attach the following policy to the web service client:
oracle/wss11_username_token_with_message_protection_client_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

3. Configure the policy.

Username Token With Message Protection (WS-Security 1.1)

4-8 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

For more information, see
"oracle/wss11_username_token_with_message_protection_client_policy" in
Securing Web Services and Managing Policies with Oracle Web Services Manager

4. Specify keystore.recipient.alias in the client configuration.

For more information, see
"oracle/wss11_username_token_with_message_protection_client_policy" in
Securing Web Services and Managing Policies with Oracle Web Services Manager

5. Ensure that the keystore.recipient.alias keys specified for the client exist as
trusted certificate entry in the trust store configured for the web service.

For more information, see
"oracle/wss11_username_token_with_message_protection_client_policy" in
Securing Web Services and Managing Policies with Oracle Web Services Manager

6. Provide a valid username and password as part of the configuration.

For more information, see
"oracle/wss11_username_token_with_message_protection_client_policy" in
Securing Web Services and Managing Policies with Oracle Web Services Manager

7. Invoke the web service method from the client.

For more information, see "Roadmap for Implementing Oracle Fusion Middleware
Web Services" in Understanding Web Services

4.2.2 Web Service Client Policy
The following instructions tell how to implement username token with message
protection that conforms to the WS-Security 1.1 standard and ensure interoperability
between the OWSM web service policy and the WebLogic web service client policy:

To attach and Configure the OWSM Policy:

1. Create and deploy a web service.

For more information, see "Roadmap for Implementing Oracle Fusion Middleware
Web Services" in Understanding Web Services

2. Attach the following policy to the web service:

a. oracle/wss11_username_token_with_message_protection_service_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

To attach and Configure the WebLogic Web Service Client Policy:

1. Create a client proxy for the web service created using clientgen.

For more information, see "Using the clientgen Ant Task to Generate Client
Artifacts" in Developing JAX-WS Web Services for Oracle WebLogic Server

2. Attach the following policies:

a. Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey-Basic128.xml

b. Wssp1.2-2007-SignBody.xml

c. Wssp1.2-2007-EncryptBody.xml

For more information, see "Updating the JWS File with @Policy and @Policies
Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

3. Provide the configuration for the server (encryption key) in the client.

Note: Ensure that the encryption key specified is in accordance with
the encryption key configured for the web service.

Username Token With Message Protection (WS-Security 1.1) and MTOM

Interoperability with Oracle WebLogic Server 12c Web Service Security Environments 4-9

For more information, see "Updating a Client Application to Invoke a
Message-Secured Web Service" in Securing WebLogic Web Services for Oracle
WebLogic Server

4. Invoke the web service method from the client.

For more information, see "Writing the Java Client Application Code to Invoke a
Web Service" in Developing JAX-WS Web Services for Oracle WebLogic Server

4.3 Username Token With Message Protection (WS-Security 1.1) and
MTOM

This section describes how to implement username token with message protection that
conforms to the WS-Security 1.1 standard and uses Message Transmission
Optimization Mechanism (MTOM), in the following interoperability scenarios:

■ Interoperating with a WebLogic Web Service Policy

■ Interoperating with a WebLogic Web Service Client Policy

4.3.1 Interoperating with a WebLogic Web Service Policy
The following instructions tell how to implement username token with message
protection that conforms to the WS-Security 1.1 standard and uses Message
Transmission Optimization Mechanism (MTOM), and to ensure interoperability
between the WebLogic web service policy and the OWSM client policy:

To attach and Configure the WebLogic Web Service Policy:

1. Create a WebLogic web service.

For more information, see "Roadmap for Implementing WebLogic (Java EE) Web
Services" in Understanding Web Services.

2. Use the @MTOM annotation in the web service.

For more information, see "Updating the JWS File with @Policy and @Policies
Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

To attach and configure the OWSM Client Policy:

1. Configure the client proxy for the web service using clientgen or some other
mechanism.

2. If you did not use the @MTOM annotation in the web services, attach wsmtom_policy
from the Management tab.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

4.3.2 Interoperating with a WebLogic Web Service Client Policy
The following instructions tell how to implement username token with message
protection that conforms to the WS-Security 1.1 standard and uses Message
Transmission Optimization Mechanism (MTOM), and to ensure interoperability
between the OWSM web service policy and the WebLogic web service client policy:

Username Token With Message Protection (WS-Security 1.0)

4-10 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

To attach and configure the OWSM Policy:

1. Configure the OWSM web service.

2. Attach wsmtom_policy from the Management tab.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

To attach and configure the WebLogic Web Service Client Policy:

1. Create a client proxy for the web service created using clientgen.

2. If you did not attach the wsmtom_policy, use the @MTOM annotation in the web
service client.

4.4 Username Token With Message Protection (WS-Security 1.0)
This section describes how to implement username token with message protection that
conforms to the WS-Security 1.0 standard, in the following interoperability scenarios:

■ Interoperability with a WebLogic Web Service Policy

■ Interoperability with a WebLogic Web Service Client Policy

Note: WS-Security 1.0 policy is supported for legacy applications
only. Use WS-Security 1.1 policy for maximum performance. For more
information, see "Username Token With Message Protection
(WS-Security 1.1)" on page 4-6.

4.4.1 Interoperability with a WebLogic Web Service Policy
The following instructions tell how to implement username token with message
protection that conforms to the WS-Security 1.0 standard and ensure interoperability
between the WebLogic web service policy and the OWSM client policy:

To attach and configure the WebLogic Web Service Policy:

1. Create a WebLogic web service.

For more information, see "Roadmap for Implementing WebLogic (Java EE) Web
Services" in Understanding Web Services

2. Attach the following policies:

a. Wssp1.2-2007-SignBody.xml

b. Wssp1.2-wss10_username_token_with_message_protection_owsm_policy.xml

c. Wssp1.2-2007-EncryptBody.xml

For more information, see "Updating the JWS File with @Policy and @Policies
Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

3. Configure identity and trust stores.

For more information, see "Configure identity and trust" in Oracle WebLogic Server
Administration Console Online Help.

4. Configure message-level security.

For more information, see:

■ "Configuring Message-Level Security" in Securing WebLogic Web Services for
Oracle WebLogic Server

Username Token With Message Protection (WS-Security 1.0)

Interoperability with Oracle WebLogic Server 12c Web Service Security Environments 4-11

■ "Create a Web Service security configuration" in Oracle WebLogic Server
Administration Console Online Help

5. Deploy the web service.

For more information, see Deploying Applications to Oracle WebLogic Server.

To attach and configure the OWSM Client Policy:

1. Create a client proxy to the web service created using clientgen or some other
mechanism.

For more information, see "Roadmap for Implementing Oracle Fusion Middleware
Web Services" in Understanding Web Services

2. Attach the following policy to the web service client:

a. oracle/wss10_username_token_with_message_protection_client_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

3. Configure the policy.

For more information, see
"oracle/wss10_username_token_with_message_protection_client_policy" in
Securing Web Services and Managing Policies with Oracle Web Services Manager

Note: Ensure that you use different keys for client (sign and decrypt
key) and keystore recipient alias (server public key used for
encryption). Ensure that the recipient alias is in accordance with the
keys defined in the web service policy security configuration.

4. Ensure that the signing and encryption keys specified for the client exist as trusted
certificate entries in the trust store configured for the web service.

5. Provide a valid username and password as part of the configuration.

6. Invoke the web service method from the client.

For more information, see "Roadmap for Implementing Oracle Fusion Middleware
Web Services" in Understanding Web Services

4.4.2 Interoperability with a WebLogic Web Service Client Policy
The following instructions tell how to implement username token with message
protection that conforms to the WS-Security 1.0 standard and ensure interoperability
between the OWSM web service policy and the WebLogic web service client policy:

To attach and configure the OWSM Policy:

1. Create a web service.

For more information, see "Roadmap for Implementing Oracle Fusion Middleware
Web Services" in Understanding Web Services

2. Attach the following policy to the web service:

a. oracle/wss10_username_token_with_message_protection_service_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

To attach and configure the WebLogic Web Service Client Policy:

Username Token Over SSL

4-12 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

1. Create a client proxy for the web service created using clientgen.

For more information, see "Using the clientgen Ant Task to Generate Client
Artifacts" in Developing JAX-WS Web Services for Oracle WebLogic Server

2. Attach the following policies:

a. Wssp1.2-wss10_username_token_with_message_protection_owsm_policy.xml

b. Wssp1.2-2007-SignBody.xml

c. Wssp1.2-2007-EncryptBody.xml

For more information, see "Updating the JWS File with @Policy and @Policies
Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

3. Configure the client for server (encryption key) and client certificates.

Note: Ensure that the encryption key specified is in accordance with
the encryption key configured for the web service.

For more information, see "Updating a Client Application to Invoke a
Message-Secured Web Service" in Securing WebLogic Web Services for Oracle
WebLogic Server

4. Invoke the web service method from the client.

For more information, see "Writing the Java Client Application Code to Invoke a
Web Service" in Developing JAX-WS Web Services for Oracle WebLogic Server

4.5 Username Token Over SSL
This section how to implement username token over SSL, in the following
interoperability scenario:

■ Interoperating with a WebLogic Web Service Client Policy

4.5.1 Interoperating with a WebLogic Web Service Client Policy
The following instructions tell how to implement username token over SSL and ensure
interoperability between the OWSM web service policy and the WebLogic web service
client policy:

To attach and configure the OWSM Policy:

1. Configure the server for one-way SSL.

For more information, see "Configuring SSL on WebLogic Server (One-Way)" in
Securing Web Services and Managing Policies with Oracle Web Services Manager

2. Create a web service.

For more information, see "Roadmap for Implementing Oracle Fusion Middleware
Web Services" in Understanding Web Services

3. Attach the following policy:

a. oracle/wss_username_token_over_ssl_service_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

To attach and configure the WebLogic Web Service Client Policy:

SAML Token (Sender Vouches) Over SSL

Interoperability with Oracle WebLogic Server 12c Web Service Security Environments 4-13

1. Create a client proxy for the web service created using clientgen. Provide a valid
username and password as part of the configuration for this policy in the client
proxy.

For more information, see "Using the clientgen Ant Task to Generate Client
Artifacts" in Developing JAX-WS Web Services for Oracle WebLogic Server

2. Configure WebLogic Server for SSL.

For more information, see "Configuring SSL on WebLogic Server (One-Way)" in
Securing Web Services and Managing Policies with Oracle Web Services Manager

3. Configure identity and trust stores.

For more information, see "Configure identity and trust" in Oracle WebLogic Server
Administration Console Online Help

4. Attach Wssp1.2-2007-Https-UsernameToken-Plain.xml to the web service client.

For more information, see "Updating the JWS File with @Policy and @Policies
Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

5. Provide the truststore and other required System properties in the SSL client.

For more information, see "Using SSL Authentication in Java Clients" in Developing
Applications with the WebLogic Security Service

6. Invoke the web service.

For more information, see "Writing the Java Client Application Code to Invoke a
Web Service" in Developing JAX-WS Web Services for Oracle WebLogic Server

4.6 Username Token Over SSL with MTOM
This section describes how to implement username token over SSL with Message
Transmission Optimization Mechanism (MTOM), in the following interoperability
scenario:

■ Interoperating with a WebLogic Web Service Client Policy

4.6.1 Interoperating with a WebLogic Web Service Client Policy
The following instructions tell how to implement username token over SSL with
MTOM and ensure interoperability between the OWSM web service policy and the
WebLogic web service client policy:

To attach and configure the OWSM Policy:

1. Configure the OWSM web service.

To attach and configure the WebLogic Web Service Client Policy:

1. Create a client proxy for the web service created earlier.

2. Use the @MTOM annotation in the web service client.

For more information, see "Updating the JWS File with @Policy and @Policies
Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

4.7 SAML Token (Sender Vouches) Over SSL
This section describes how to implement SAML token sender vouches with SSL, in the
following interoperability scenario:

SAML Token (Sender Vouches) Over SSL

4-14 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

■ Interoperating with a WebLogic Web Service Client Policy

4.7.1 Interoperating with a WebLogic Web Service Client Policy
The following instructions tell how to implement SAML token sender vouches with
SSL and ensure interoperability between the OWSM web service policy and the
WebLogic web service client policy:

To attach and configure the OWSM Policy:

1. Configure the oracle/wss_saml_token_over_ssl_service_policy policy for
two-way SSL.

For more information, see "oracle/wss_saml_token_over_ssl_service_policy" in
Securing Web Services and Managing Policies with Oracle Web Services Manager

2. Create a web service.

For more information, see "Roadmap for Implementing Oracle Fusion Middleware
Web Services" in Understanding Web Services

3. Attach the following policy to the web service:
oracle/wss_saml_token_over_ssl_service_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

To attach and configure the WebLogic Web Service Client Policy:

1. Configure the oracle/wss_saml_token_over_ssl_service_policy policy for
two-way SSL.

For more information, see "oracle/wss_saml_token_over_ssl_service_policy" in
Securing Web Services and Managing Policies with Oracle Web Services Manager

2. Create a web service.

For more information, see "Roadmap for Implementing Oracle Fusion Middleware
Web Services" in Understanding Web Services

3. Attach the following policy to the web service:
oracle/wss_saml_token_over_ssl_service_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

To attach and configure the WebLogic Web Service Client Policy:

1. Create a client proxy for the web service created earlier using clientgen.

For more information, see "Using the clientgen Ant Task to Generate Client
Artifacts" in Developing JAX-WS Web Services for Oracle WebLogic Server

2. Configure Oracle WebLogic Server for two-way SSL.

For more information, see "Configuring SSL on WebLogic Server (Two-Way)" in
Securing Web Services and Managing Policies with Oracle Web Services Manager

3. Configure identity and trust stores.

For more information, see "Configure identity and trust" in Oracle WebLogic Server
Administration Console Online Help

4. Attach Wssp1.2-2007-Saml1.1-SenderVouches-Https.xml to the web service
client.

SAML Token (Sender Vouches) Over SSL with MTOM

Interoperability with Oracle WebLogic Server 12c Web Service Security Environments 4-15

For more information, see "Updating the JWS File with @Policy and @Policies
Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

5. Configure a SAML credential mapping provider.

6. In the WebLogic Server Administration Console, navigate to Security Realms >
RealmName > Providers > Credential Mapping page and create a New
Credential Mapping Provider of type SAMLCredentialMapperV2.

7. Select the new provider, click on Provider Specific, and configure it as follows:

a. Set Issuer URI to www.oracle.com.

b. Set Name Qualifier to www.oracle.com.

8. Restart Oracle WebLogic Server.

For more information, see "Accessing Oracle WebLogic Administration Console"
in Administering Web Services

9. Create a SAML relying party by setting the Profile to WSS/Sender-Vouches.

10. Configure the SAML relying party as follows (leave other values set to the
defaults):

a. Target URL: <url_used_to_access_Web_service>

b. Description: <your_description>

c. Select the Enabled checkbox and click Save.

d. Ensure the Target URL is set to the URL used for the client web service.

For more information, see "Create a SAML 1.1 Relying Party" in Oracle
WebLogic Server Administration Console Online Help

11. Create a servlet and call the proxy code from the servlet.

12. Use BASIC authentication so that the authenticated subject can be created.

13. Provide the truststore and other required System properties in the SSL client.

For more information, see "Using SSL Authentication in Java Clients" in Developing
Applications with the WebLogic Security Service

14. Invoke the Web application client.

15. Enter the credentials of the user whose identity is to be propagated using the
SAML token.

For more information, see "Writing the Java Client Application Code to Invoke a
Web Service" in Developing JAX-WS Web Services for Oracle WebLogic Server

4.8 SAML Token (Sender Vouches) Over SSL with MTOM
This section describes how to implement SAML token sender vouches over SSL with
MTOM, in the following interoperability scenario:

■ Interoperating with a WebLogic Web Service Client Policy

4.8.1 Interoperating with a WebLogic Web Service Client Policy
The following instructions tell how to implement SAML token vouches over SSL with
MTOM and ensure interoperability between the OWSM web service policy and the
WebLogic web service client policy:

SAML Token 2.0 (Sender Vouches) With Message Protection (WS-Security 1.1)

4-16 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

To attach and configure the OWSM Policy:

1. Configure the OWSM web service.

For more information, see "SAML Token (Sender Vouches) Over SSL"

To attach and configure the WebLogic Web Service Client Policy:

1. Configure the Oracle WebLogic web service client policy.

For more information, see "SAML Token (Sender Vouches) Over SSL"

2. Use the @MTOM annotation in the web service client.

For more information, see "Updating the JWS File with @Policy and @Policies
Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server.

4.9 SAML Token 2.0 (Sender Vouches) With Message Protection
(WS-Security 1.1)

This section describes how to implement SAML 2.0 token sender vouches with
message protection that conforms to the WS-Security 1.1 standard, in the following
interoperability scenarios:

■ Interoperating with a WebLogic Web Service Policy

■ Interoperating with a WebLogic Web Service Client Policy

4.9.1 Interoperating with a WebLogic Web Service Policy
The following instructions tell how to implement SAML 2.0 token sender vouches
with message protection that conforms to the WS-Security 1.1 standard and ensure
interoperability between the WebLogic web service policy and the OWSM client
policy:

To attach and configure the WebLogic Web Service Policy:

1. Create a WebLogic web service.

For more information, see "Roadmap for Implementing WebLogic (Java EE) Web
Services" in Understanding Web Services

2. Attach the following policies:

■ Wssp1.2-2007-Saml2.0-SenderVouches-Wss1.1.xml

■ Wssp1.2-2007-SignBody.xml

■ Wssp1.2-2007-EncryptBody.xml

For more information, see "Updating the JWS File with @Policy and @Policies
Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

3. Configure the keystore properties for message signing and encryption. The
configuration should be in accordance with the keystore used on the server side.
Create the trust store out of the keystore by exporting both keys, and trust both of
them while importing into trust store. Configure identity and trust stores.

For more information, see "Configure identity and trust" in Oracle WebLogic Server
Administration Console Online Help.

4. Configure message-level security.

For more information, see

SAML Token 2.0 (Sender Vouches) With Message Protection (WS-Security 1.1)

Interoperability with Oracle WebLogic Server 12c Web Service Security Environments 4-17

■ "Configuring Message-Level Security" in Securing WebLogic Web Services for
Oracle WebLogic Server

■ "Create a Web Service security configuration" in Oracle WebLogic Server
Administration Console Online Help

5. Attach new configuration using the annotation:

@WssConfiguration(value="<my_security_configuration>") where
<my_security_configuration> is the name of the Web Security Configuration
created in previous step.
For more information, see "Configuring Message-Level Security" in Securing
WebLogic Web Services for Oracle WebLogic Server

6. Deploy the web service.

For more information, see Deploying Applications to Oracle WebLogic Server.

7. Create a SAML Identity Asserter.

In the WebLogic Server Administration Console, navigate to Security Realms >
RealmName > Providers > Credential Mapping page and create a New Credential
Mapping Provider of type SAML2IdentityAsserter.
For more information, see "Configure Authentication and Identity Assertion
providers" in Oracle WebLogic Server Administration Console Online Help

8. Restart WebLogic Server.

For more information, see "Start and stop servers" in the Oracle WebLogic Server
Administration Console Online Help.

9. To add the identity provider to the identity asserter created in Step 7, perform the
following steps:

a. Select the identity asserter created in Step 7 in the WebLogic Administration
Console.

b. Create a new identity provider partner, select New, and then select New
Webservice Identity Provider Partner.

c. Provide a name, and select Finish.

10. Configure the identity provider as follows:

a. Select the identity provide partner created in Step 9.

b. Select the Enabled check box.

c. Provide the Audience URI. For example:

target:*:/saml20WLSWS-Project1-context-root/Class1Port
d. Set Issuer URI to www.oracle.com.

e. Set Target URL to <url_used_to_access_Web_service>.

f. Set Profile to WSS/Sender-Vouches.

To attach and configure the OWSM Client Policy:

1. Generate a client using JDeveloper for the web service created earlier. Create a
Web project and then select New, and create a client proxy using the WSDL.

For more information, see

■ "Roadmap for Implementing Oracle Fusion Middleware Web Services" in
Understanding Web Services

SAML Token 2.0 (Sender Vouches) With Message Protection (WS-Security 1.1)

4-18 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

■ "Developing and Securing Web Services" in Developing Applications with Oracle
JDeveloper.

2. Add a servlet in the above project.

3. Attach the following policy to the web service client:
oracle/wss11_saml20_token_with_message_protection_client_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

4. Specify keystore.recipient.alias in the client configuration.

Note: Ensure that keystore.recipient.alias is same as the
decryption key specified for the web service.

For more information, see
"oracle/wss11_saml20_token_with_message_protection_cient_policy" in Securing
Web Services and Managing Policies with Oracle Web Services Manager

5. Ensure that the keystore.recipient.alias keys specified for the client exist as
trusted certificate entry in the trust store configured for the web service.

For more information, see
"oracle/wss11_saml20_token_with_message_protection_cient_policy" in Securing
Web Services and Managing Policies with Oracle Web Services Manager

6. In JDeveloper, secure web project with Form-based authentication using the
Configure ADF Security Wizard.

For more information, see Developing Applications with Oracle JDeveloper

7. Invoke the Web application client.

For more information, see "Roadmap for Implementing Oracle Fusion Middleware
Web Services" in Understanding Web Services

4.9.2 Interoperating with a WebLogic Web Service Client Policy
The following instructions tell how to implement SAML 2.0 token sender vouches
with message protection that conforms to the WS-Security 1.1 standard and ensure
interoperability between the WebLogic web service client policy and the OWSM
policy:

To attach and configure the OWSM Policy:

1. Create a web service.

For more information, see "Roadmap for Implementing Oracle Fusion Middleware
Web Services" in Understanding Web Services

2. Attach the following policy to the web service:

oracle/wss11_saml20_token_with_message_protection_service_policy.
For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

To attach and configure the WebLogic Web Service Client:

1. Create a Java EE client for the deployed web service using JDeveloper. Create a
Web project and create a proxy using WSDL proxy.

SAML Token 2.0 (Sender Vouches) With Message Protection (WS-Security 1.1)

Interoperability with Oracle WebLogic Server 12c Web Service Security Environments 4-19

For more information, see "Creating JAX-WS Web Services and Clients" in
Developing Applications with Oracle JDeveloper

2. Attach the following policies:

■ Wssp1.2-2007-Saml2.0-SenderVouches-Wss1.1.xml

■ Wssp1.2-2007-SignBody.xml

■ Wssp1.2-2007-EncryptBody.xml

Note: Extract weblogic.jar to a folder and provide the absolute
path to the above policies files.

For more information, see "Attaching Policies" in Developing Applications with
Oracle JDeveloper

3. Add servlet to above web project.

4. Configure the client for server (encryption key) and client certificates.

Note: Ensure that the encryption key specified is in accordance with
the decryption key configured for the web service.

For more information, see "Updating a Client Application to Invoke a
Message-Secured Web Service" in Securing WebLogic Web Services for Oracle
WebLogic Server

5. Secure the Web application client using BASIC Authentication.

For more information, see "Developing BASIC Authentication Web Applications"
in Developing Applications with the WebLogic Security Service

6. Deploy the Java EE Web application client.

For more information, see "Deploying Web Services Applications" in Administering
Web Services

7. Configure a SAML credential mapping provider.

■ In the Oracle WebLogic Server Administration Console, navigate to Security
Realms > RealmName > Providers > Credential Mapping page and create a
New Credential Mapping Provider of type SAML2CredentialMapper.

8. Select the new provider, click on Provider Specific, and configure it as follows:

1. Set Issuer URI to www.oracle.com.

2. Set Name Qualifier to www.oracle.com.

For more information, see "Configure Credential Mapping Providers" in Oracle
WebLogic Server Administration Console Online Help

9. Restart WebLogic Server.

For more information, see "Start and stop servers" in the Oracle WebLogic Server
Administration Console Online Help.

10. To create a new service provider partner, perform the following steps:

a. Select the credential mapper created in Step 7 in the WebLogic Administration
Console, and then select the Management tab.

SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1)

4-20 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

b. Select New, and then select New Webservice Service Provider Partner.

c. Provide a name, and select Finish.

11. Configure the service provider partner as follows:

a. Select the service provide partner created in Step 10.

b. Select the Enabled check box.

c. Provide the Audience URI.

d. Set Issuer URI to www.oracle.com.

e. Set Target URL to <url_used_to_access_Web_service>.

f. Set Profile to WSS/Sender-Vouches.

12. Invoke the Web application client.

■ Enter the credentials of the user whose identity is to be propagated using
SAML token.

For more information, see "Writing the Java Client Application Code to Invoke
a Web Service" in Developing JAX-WS Web Services for Oracle WebLogic Server

4.10 SAML Token (Sender Vouches) with Message Protection
(WS-Security 1.1)

This section describes how to implement SAML token sender vouches with message
protection that conforms to the WS-Security 1.1 standard, in the following
interoperability scenarios:

■ Interoperating with a WebLogic Web Service Policy

■ Interoperating with a WebLogic Web Service Client Policy

4.10.1 Interoperating with a WebLogic Web Service Policy
The following instructions tell how to implement SAML token sender vouches with
message protection that conforms to the WS-Security 1.1 standard and ensure
interoperability between the WebLogic web service policy and the OWSM client
policy:

To attach and configure the WebLogic Web Service Policy:

1. Create a WebLogic web service.

For more information, see "Roadmap for Implementing WebLogic (Java EE) Web
Services" in Understanding Web Services

2. Attach the following policies:

■ Wssp1.2-wss11_saml_token_with_message_protection_owsm_policy.xml

■ Wssp1.2-2007-SignBody.xml

■ Wssp1.2-2007-EncryptBody.xml

For more information, see "Updating the JWS File with @Policy and @Policies
Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server.

3. Configure identity and trust stores.

For more information, see "Configure identity and trust" in Oracle WebLogic Server
Administration Console Online Help

SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1)

Interoperability with Oracle WebLogic Server 12c Web Service Security Environments 4-21

4. Configure message-level security.

Note: Since this is a WS-Security 1.1 policy, you need to configure
Confidentiality Key only.

For more information, see

■ "Configure Message-Level Security" in Securing WebLogic Web Services for
Oracle WebLogic Server

■ "Create a Web Service security configuration" in Oracle WebLogic Server
Administration Console Online Help.

5. Deploy the web service.

For more information, see Deploying Applications to Oracle WebLogic Server.

6. Create a SAMLIdentityAsserterV2 authentication provider.

■ In the WebLogic Server Administration Console, navigate to Security Realms
> RealmName > Providers > Credential Mapping page and create a New
Credential Mapping Provider of type SAMLCredentialMapperV2.

For more information, see "Configuring Authentication and Identity Assertion
providers" in Oracle WebLogic Server Administration Console Online Help

7. Restart WebLogic Server.

For more information, see "Start and stop servers" in the Oracle WebLogic Server
Administration Console Online Help.

8. Select the authentication provider created in step 5.

9. Create a SAML asserting party.

■ Set Profile to WSS/Sender-Vouches.

For more information, see "Create a SAML 1.1 Asserting Party" in Oracle WebLogic
Server Administration Console Online Help

10. Configure the SAML asserting party as follows:

a. Set Issuer URI to www.oracle.com.

b. Set Target URL to <url_used_to_access_Web_service>.

For more information, see "Create a SAML 1.1 Asserting Party" in Oracle
WebLogic Server Administration Console Online Help

To attach and configure the OWSM Client Policy:

1. Create a client proxy to the web service created earlier using clientgen or some
other mechanism.

For more information, see "Roadmap for Implementing Oracle Fusion Middleware
Web Services" in Understanding Web Services

2. Attach the following policy to the web service client:

■ oracle/wss11_saml_token_with_message_protection_client_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

3. Configure the policy, as described in
oracle/wss11_saml_token_with_message_protection_client_policy.

SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1)

4-22 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

For more information, see
"oracle/wss11_saml_token_with_message_protection_client_policy" in Securing
Web Services and Managing Policies with Oracle Web Services Manager

4. Specify keystore.recipient.alias in the client configuration.

Note: Ensure that keystore.recipient.alias is the same as the
decryption key specified for the web service.

For more information, see
"oracle/wss11_saml_token_with_message_protection_client_policy" in Securing
Web Services and Managing Policies with Oracle Web Services Manager

5. Ensure that the keystore.recipient.alias keys specified for the client exist as
trusted certificate entry in the trust store configured for the web service.

For more information, see
"oracle/wss11_saml_token_with_message_protection_client_policy" in Securing
Web Services and Managing Policies with Oracle Web Services Manager

6. Provide a valid username whose identity needs to be propagated using SAML
token in the client configuration.

For more information, see
"oracle/wss11_saml_token_with_message_protection_client_policy" in Securing
Web Services and Managing Policies with Oracle Web Services Manager

7. Invoke the Web application client.

■ Enter the credentials of the user whose identity is to be propagated using
SAML token.

For more information, see "Roadmap for Implementing Oracle Fusion
Middleware Web Services" in Understanding Web Services

4.10.2 Interoperating with a WebLogic Web Service Client Policy
The following instructions tell how to implement SAML 2.0 sender vouches with
message protection that conforms to the WS-Security 1.1 standard and ensure
interoperability between the OWSM web service policy and the WebLogic web service
client policy:

To attach and configure the OWSM Policy:

1. Create a web service.

For more information, see "Roadmap for Implementing Oracle Fusion Middleware
Web Services" in Understanding Web Services

2. Attach the following policy to the web service:

■ oracle/wss11_saml_token_with_message_protection_service_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

To attach and configure the WebLogic Web Service Client Policy:

1. Create a client proxy for the web service (above) using clientgen.

For more information, see "Using the clientgen Ant Task to Generate Client
Artifacts" in Developing JAX-WS Web Services for Oracle WebLogic Server

SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1)

Interoperability with Oracle WebLogic Server 12c Web Service Security Environments 4-23

2. Attach the following policies:

■ Wssp1.2-wss11_saml_token_with_message_protection_owsm_policy.xml

■ Wssp1.2-2007-SignBody.xml

■ Wssp1.2-2007-EncryptBody.xml

For more information, see "Updating the JWS File with @Policy and @Policies
Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

3. Configure the client for server (encryption key) and client certificates.

Note: Ensure that the encryption key specified is in accordance with
the decryption key configured for the web service.

For more information, see "Updating a Client Application to Invoke a
Message-Secured Web Service" in Securing WebLogic Web Services for Oracle
WebLogic Server

4. Secure the Web application client using BASIC Authentication.

For more information, see "Developing BASIC Authentication Web Applications"
in Developing Applications with the WebLogic Security Service.

5. Deploy the web service client.

For more information, see "Deploying Web Services Applications" in Administering
Web Services

6. Configure a SAML credential mapping provider.

■ In the Oracle WebLogic Server Administration Console, navigate to Security
Realms > RealmName > Providers > Credential Mapping page and create a
New Credential Mapping Provider of type SAMLCredentialMapperV2.

7. Select the new provider, click on Provider Specific, and configure it as follows:

a. Set Issuer URI to www.oracle.com.

b. Set Name Qualifier to www.oracle.com.

For more information, see "Configure Credential Mapping Providers" in Oracle
WebLogic Server Administration Console Online Help

8. Restart WebLogic Server.

For more information, see "Start and stop servers" in the Oracle WebLogic Server
Administration Console Online Help.

9. Create a SAML relying party.

■ Set the Profile to WSS/Sender-Vouches.

For more information, see "Create a SAML 1.1 Relying Party" and "Configure a
SAML 1.1 Relying Party" in Oracle WebLogic Server Administration Console
Online Help

10. Configure the SAML relying party.

■ Ensure the Target URL is set to the URL used for the client web service.

For more information, see "Configure a SAML 1.1 Relying Party" in Oracle
WebLogic Server Administration Console Online Help

11. Invoke the Web application client.

SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1) and MTOM

4-24 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

■ Enter the credentials of the user whose identity is to be propagated using
SAML token.

For more information, see "Writing the Java Client Application Code to Invoke
a Web Service" in Developing JAX-WS Web Services for Oracle WebLogic Server

4.11 SAML Token (Sender Vouches) with Message Protection
(WS-Security 1.1) and MTOM

This section describes how to implement SAML token with sender vouches and
message protection that conforms to the WS-Security 1.1 standard and uses Message
Transmission Optimization Mechanism (MTOM), in the following interoperability
scenarios:

■ Interoperating with a WebLogic Web Service Policy

■ Interoperating with a WebLogic Web Service Client Policy

4.11.1 Interoperating with a WebLogic Web Service Policy
The following instructions tell how to implement SAML token sender vouches with
message protection that conforms to the WS-Security 1.1 standard and MTOM and
ensure interoperability between the WebLogic web service policy and the OWSM
client policy:

To attach and configure the WebLogic Web Service Policy:

1. Create a WebLogic web service, as described in Section 4.10, "SAML Token (Sender
Vouches) with Message Protection (WS-Security 1.1)"

For more information, see "Roadmap for Implementing WebLogic (Java EE) Web
Services" in Understanding Web Services

2. Use the @MTOM annotation in the web service in Step 2 of " Attaching and
Configuring the WebLogic Web Service Policy".

For more information, see "Updating the JWS File with @Policy and @Policies
Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

To attach and configure the OWSM Client Policy:

1. Create a client proxy to the web service created earlier, as described in Section 4.10,
"SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1)"

For more information, see "Roadmap for Implementing Oracle Fusion Middleware
Web Services" in Understanding Web Services

2. Attach wsmtom_policy from the Management tab.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

4.11.2 Interoperating with a WebLogic Web Service Client Policy
The following instructions tell how to implement SAML token sender vouches with
message protection that conforms to the WS-Security 1.1 standard and MTOM and
ensure interoperability between the OWSM web service policy and the WebLogic web
service client policy:

To attach and configure the OWSM Policy:

1. Create and deploy a web service.

SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)

Interoperability with Oracle WebLogic Server 12c Web Service Security Environments 4-25

For more information, see "Roadmap for Implementing Oracle Fusion Middleware
Web Services" in Understanding Web Services

2. Attach the following policy to the web service:

■ oracle/wss11_username_token_with_message_protection_service_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

To attach and configure the WebLogic Web Service Client Policy:

1. Create a client proxy for the web service created earlier using clientgen.

For more information, see "Using the clientgen Ant Task to Generate Client
Artifacts" in Developing JAX-WS Web Services for Oracle WebLogic Server

2. Attach the following policies:

■ Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey-Basic128.xml

■ Wssp1.2-2007-SignBody.xml

■ Wssp1.2-2007-EncryptBody.xml

For more information, see "Updating the JWS File with @Policy and @Policies
Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

3. Provide the configuration for the server (encryption key) in the client.

Note: Ensure that the encryption key specified is in accordance with
the encryption key configured for the web service.

For more information, see "Updating a Client Application to Invoke a
Message-Secured Web Service" in Securing WebLogic Web Services for Oracle
WebLogic Server

4. Invoke the web service method from the client.

For more information, see "Writing the Java Client Application Code to Invoke a
Web Service" in Developing JAX-WS Web Services for Oracle WebLogic Server

4.12 SAML Token (Sender Vouches) with Message Protection
(WS-Security 1.0)

This section describes how to implement SAML token with sender vouches and
message protection that conforms to the WS-Security 1.0 standard, in the following
interoperability scenarios:

■ Interoperating with a WebLogic Web Service Policy

■ Interoperating with a WebLogic Web Service Client Policy

Note: WS-Security 1.0 policy is supported for legacy applications
only. Use WS-Security 1.1 policy for maximum performance. For more
information, see "SAML Token (Sender Vouches) with Message
Protection (WS-Security 1.1)" on page 4-20.

SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)

4-26 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

4.12.1 Interoperating with a WebLogic Web Service Policy
The following instructions tell how to implement SAML token with sender vouches
and message protection that conforms to the WS-Security 1.0 standard and ensure
interoperability between the WebLogic web service policy and the OWSM client
policy:

To attach and configure the WebLogic Web Service Policy:

1. Create a WebLogic web service.

For more information, see "Roadmap for Implementing WebLogic (Java EE) Web
Services" in Understanding Web Services

2. Attach the following policies:

■ Wssp1.2-wss10_saml_token_with_message_protection_owsm_policy.xml

■ Wssp1.2-2007-SignBody.xml

■ Wssp1.2-2007-EncryptBody.xml

3. Configure identity and trust stores.

For more information, see "Configure identity and trust" in Oracle WebLogic Server
Administration Console Online Help

4. Configure message-level security.

For more information, see

■ "Configuring Message-Level Security" in Securing WebLogic Web Services for
Oracle WebLogic Server

■ "Create a Web Service security configuration" in Oracle WebLogic Server
Administration Console Online Help

5. Deploy the web service.

For more information, see Deploying Applications to Oracle WebLogic Server.

6. Create a SAMLIdentityAsserterV2 authentication provider.

■ In the WebLogic Server Administration Console, navigate to Security Realms
> RealmName > Providers > Credential Mapping page and create a New
Credential Mapping Provider of type SAMLCredentialMapperV2.

For more information, see "Configure Authentication and Identity Assertion
providers" in Oracle WebLogic Server Administration Console Online Help

7. Restart WebLogic Server.

For more information, see "Start and stop servers" in the Oracle WebLogic Server
Administration Console Online Help.

8. Select the authentication provider created in step 5.

9. Create a SAML asserting party.

■ Set Profile to WSS/Sender-Vouches.

For more information, see "Create a SAML 1.1 Asserting Party" in Oracle
WebLogic Server Administration Console Online Help

10. Configure the SAML asserting party as follows (leave other values set to the
defaults):

a. Set Issuer URI to www.oracle.com.

SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)

Interoperability with Oracle WebLogic Server 12c Web Service Security Environments 4-27

b. Set Target URL to <url_used_by_client>.

For more information, see "Configure a SAML 1.1 Asserting Party" in Oracle
WebLogic Server Administration Console Online Help

To attach and configure the OWSM Client Policy:

1. Create a client proxy to the web service created earlier using clientgen or some
other mechanism.

For more information, see "Roadmap for Implementing Oracle Fusion Middleware
Web Services" in Understanding Web Services

2. Attach the following policy to the web service client:

■ oracle/wss10_saml_token_with_message_protection_client_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

3. Configure the policy.

For more information, see
"oracle/wss10_saml_token_with_message_protection_client_policy" in Securing
Web Services and Managing Policies with Oracle Web Services Manager

4. Ensure that you use different keys for client (sign and decrypt key) and keystore
recipient alias (server public key used for encryption). Ensure that the recipient
alias is in accordance with the keys defined in the web service policy security
configuration.

For more information, see
"oracle/wss10_saml_token_with_message_protection_client_policy" in Securing
Web Services and Managing Policies with Oracle Web Services Manager

5. Ensure that the signing and encryption keys specified for the client exist as trusted
certificate entries in the trust store configured for the web service.

For more information, see
"oracle/wss10_saml_token_with_message_protection_client_policy" in Securing
Web Services and Managing Policies with Oracle Web Services Manager

6. Provide valid username whose identity needs to be propagated using SAML token
in the client configuration.

For more information, see
"oracle/wss10_saml_token_with_message_protection_client_policy" in Securing
Web Services and Managing Policies with Oracle Web Services Manager

7. Invoke the web service method.

For more information, see "Roadmap for Implementing Oracle Fusion Middleware
Web Services" in Understanding Web Services

4.12.2 Interoperating with a WebLogic Web Service Client Policy
The following instructions tell how to implement SAML token with message
protection that conforms to the WS-Security 1.0 standard and ensure interoperability
between the OWSM web service policy and the WebLogic web service client policy:

To attach and configure the OWSM Policy:

1. Create a web service.

SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)

4-28 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

For more information, see "Roadmap for Implementing Oracle Fusion Middleware
Web Services" in Understanding Web Services

2. Attach the following policy to the web service:

■ oracle/wss10_saml_token_with_message_protection_service_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

To attach and configure the WebLogic Web Service Client Policy:

1. Create a client proxy for the web service (above) using clientgen.

For more information, see "Using the clientgen Ant Task to Generate Client
Artifacts" in Developing JAX-WS Web Services for Oracle WebLogic Server

2. Attach the following policies:

■ Wssp1.2-wss10_saml_token_with_message_protection_owsm_policy.xml

■ Wssp1.2-2007-SignBody.xml

■ Wssp1.2-2007-EncryptBody.xml

For more information, see "Updating the JWS File with @Policy and @Policies
Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

3. Configure the client for server (encryption key) and client certificates.

Note: Ensure that the encryption key specified is in accordance with
the decryption key configured for the web service.

For more information, see "Updating a Client Application to Invoke a
Message-Secured Web Service" in Securing WebLogic Web Services for Oracle
WebLogic Server

4. Secure the Web application client using BASIC Authentication.

For more information, see "Developing BASIC Authentication Web Applications"
in Developing Applications with the WebLogic Security Service

5. Deploy the web service client.

For more information, see "Deploying Web Services Applications" in Administering
Web Services

6. Configure a SAML credential mapping provider.

■ In the WebLogic Server Administration Console, navigate to Security Realms
> RealmName > Providers > Credential Mapping page and create a New
Credential Mapping Provider of type SAMLCredentialMapperV2.

For more information, see "Configure Credential Mapping Providers" in Oracle
WebLogic Server Administration Console Online Help

7. Select the SAMLCredentialMapperV2, click on Provider Specific, and configure it
as follows:

a. Set Issuer URI to www.oracle.com.

b. Set Name Qualifier to www.oracle.com.

8. Restart WebLogic Server.

Mutual Authentication with Message Protection (WS-Security 1.0)

Interoperability with Oracle WebLogic Server 12c Web Service Security Environments 4-29

For more information, see "Start and stop servers" in the Oracle WebLogic Server
Administration Console Online Help.

9. Create a SAML relying party. Set the profile to WSS/Sender-Vouches.

For more information, see "Create a SAML 1.1 Relying Party" in Oracle WebLogic
Server Administration Console Online Help

10. Configure the SAML relying party.

Note: Ensure the target URL is set to the URL used for the client web
service.

For more information, see "Configure a SAML 1.1 Relying Party" in Oracle
WebLogic Server Administration Console Online Help

11. Invoke the Web application client and enter the appropriate credentials.

For more information, see "Writing the Java Client Application Code to Invoke a
Web Service" in Developing JAX-WS Web Services for Oracle WebLogic Server

4.13 Mutual Authentication with Message Protection (WS-Security 1.0)
This section tells how to implement mutual authentication with message protection
that conform to the WS-Security 1.0 standard, in the following interoperability
scenarios:

■ Interoperating with a WebLogic Web Service Policy

■ Interoperating with a WebLogic Web Service Client Policy

4.13.1 Interoperating with a WebLogic Web Service Policy
The following instructions tell how to implement mutual authentication with message
protection that conforms to the WS-Security 1.0 standard and ensure interoperability
between the WebLogic web service policy and the OWSM client policy:

To attach and configure the WebLogic Web Service Policy:

1. Create a WebLogic web service.

For more information, see "Roadmap for Implementing WebLogic (Java EE) Web
Services" in Understanding Web Services

2. Attach the following policies:

a. Wssp1.2-wss10_x509_token_with_message_protection_owsm_policy.xml

b. Wssp1.2-2007-SignBody.xml

c. Wssp1.2-2007-EncryptBody.xml

For more information, see "Updating the JWS File with @Policy and @Policies
Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

3. Configure identity and trust stores.

For more information, see "Configure identity and trust" in Oracle WebLogic Server
Administration Console Online Help

4. Configure message-level security.

For more information, see

Mutual Authentication with Message Protection (WS-Security 1.0)

4-30 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

■ "Configuring Message-Level Security" in Securing WebLogic Web Services for
Oracle WebLogic Server

■ "Create a Web Service security configuration" in Oracle WebLogic Server
Administration Console Online Help

5. Create and configure token handlers for X.509 and for username token. In
WebLogic Administration Console, navigate to the Web Service Security page of
the domain and create the token handlers as described below.

6. Create a token handle for username token and configure the following:

a. Name: <name>

b. Class name:

weblogic.xml.crypto.wss.UsernameTokenHandler
c. Token Type: ut

d. Handling Order: 1

7. Create a token handler for X.509 and configure the following:

a. Name: <name>

b. Class name:

weblogic.xml.crypto.wss.BinarySecurityTokenHandler
c. Token Type: x509

d. Handling Order: 0

8. For the X.509 token handler, add the following properties:

a. Name: UserX509ForIdentity

b. Value: true

c. IsEncrypted: False

9. Configure a credential mapping provider. Create a PKICredentialMapper and
configure it as follows (leave all other values set to the defaults):

a. Keystore Provider: N/A

b. Keystore Type: jks

c. Keystore File Name: default_keystore.jks

d. Keystore Pass Phrase: <password>

e. Confirm Keystore Pass Phrase: <password>

10. Configure Authentication by Selecting the Authentication tab and configure as
follows:

a. Click DefaultIdentityAsserter and add X.509 to Chosen active types

b. Click Provider Specific and configure the following:

Default User Name Mapper Attribute Type: CN

Active Types: X.509

Use Default User Name Mapper: True

For more information, see "Configure Authentication and Identity Assertion
providers" in Oracle WebLogic Server Administration Console Online Help.

Mutual Authentication with Message Protection (WS-Security 1.0)

Interoperability with Oracle WebLogic Server 12c Web Service Security Environments 4-31

11. If the users are not added, add the Common Name (CN) user specified in the
certificate.

For more information, see "Create users" in Oracle WebLogic Server Administration
Console Online Help

12. Restart Oracle WebLogic Server.

13. Deploy the web service.

For more information, see "Install a Web Service" in Oracle WebLogic Server
Administration Console Online Help

To attach and configure the OWSM Client Policy:

1. Create a client proxy to the web service created earlier using clientgen or some
other mechanism.

For more information, see "Roadmap for Implementing Oracle Fusion Middleware
Web Services" in Understanding Web Services

2. Attach the following policy to the client:

wss10_x509_token_with_message_protection_client_policy
For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

3. Provide the configuration for the server (encryption key) in the client.

Note: Ensure that the encryption key specified is in accordance with
the encryption key configured for the web service.

For more information, see "Updating a Client Application to Invoke a
Message-Secured Web Service" in Securing WebLogic Web Services for Oracle
WebLogic Server

4. Invoke the web service method from the client.

For more information, see "Roadmap for Implementing Oracle Fusion Middleware
Web Services" in Understanding Web Services

4.13.2 Interoperating with a WebLogic Web Service Client Policy
The following instructions tell how to implement username token with message
protection that conforms to the WS-Security 1.0 standard and ensure interoperability
between the OWSM web service policy and the WebLogic web service client policy:

To attach and configure the OWSM Policy:

1. Create and deploy a web service application.

For more information, see "Roadmap for Implementing Oracle Fusion Middleware
Web Services" in Understanding Web Services

2. Attach the following policy to the web service:

oracle/wss10_x509_token_with_message_protection_service_policy.
To attach and configure the WebLogic Web Service Client Policy:

1. Create a client proxy for the web service created earlier using clientgen.

For more information, see "Using the clientgen Ant Task to Generate Client
Artifacts" in Developing JAX-WS Web Services for Oracle WebLogic Server

Mutual Authentication with Message Protection (WS-Security 1.1)

4-32 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

2. Attach the following policies:

■ Wssp1.2-wss10_x509_token_with_message_protection_owsm_policy.xml

■ Wssp1.2-2007-SignBody.xml

■ Wssp1.2-2007-EncryptBody.xml

For more information, see "Updating the JWS File with @Policy and @Policies
Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

3. Provide the configuration for the server (encryption key) in the client.

Note: Ensure that the encryption key specified is in accordance with
the encryption key configured for the web service.

For more information, see "Updating a Client Application to Invoke a
Message-Secured Web Service" in Securing WebLogic Web Services for Oracle
WebLogic Server

4. Invoke the web service method from the client.

For more information, see "Writing the Java Client Application Code to Invoke a
Web Service" in Developing JAX-WS Web Services for Oracle WebLogic Server

4.14 Mutual Authentication with Message Protection (WS-Security 1.1)
This section tells how to implement mutual authentication with message protection
that conform to the WS-Security 1.1 standards, in the following interoperability
scenarios:

■ Interoperating with a WebLogic Web Service Policy

■ Interoperating with a WebLogic Web Service Client Policy

4.14.1 Interoperating with a WebLogic Web Service Policy
The following instructions tell how to implement mutual authentication with message
protection that conforms to the WS-Security 1.1 standard and ensure interoperability
between the WebLogic web service policy and the OWSM client policy:

To attach and configure the WebLogic Web Service Policy:

1. Create a WebLogic web service.

For more information, see "Roadmap for Implementing WebLogic (Java EE) Web
Services" in Understanding Web Services

2. Attach the following policies:

■ Wssp1.2-wss11_x509_token_with_message_protection_owsm_policy.xml

■ Wssp1.2-2007-SignBody.xml

■ Wssp1.2-2007-EncryptBody.xml

For more information, see "Updating the JWS File with @Policy and @Policies
Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

3. Configure identity and trust stores.

For more information, see "Configure identity and trust" in Oracle WebLogic Server
Administration Console Online Help

Mutual Authentication with Message Protection (WS-Security 1.1)

Interoperability with Oracle WebLogic Server 12c Web Service Security Environments 4-33

4. Configure message-level security.

For more information, see

■ "Configuring Message-Level Security" in Securing WebLogic Web Services for
Oracle WebLogic Server

■ "Create a Web Service security configuration" in Oracle WebLogic Server
Administration Console Online Help

5. Create and configure token handlers for X.509 and for username token. In
WebLogic Administration Console, navigate to the Web Service Security page of
the domain and create the token handlers as described below.

6. Create a token handle for username token and configure the following:

■ Name: <name>

■ Class name: weblogic.xml.crypto.wss.UsernameTokenHandler

■ Token Type: ut

■ Handling Order: 1

■ Create a token handle for username token and configure the following:

Create a token handler for X.509 and configure the following:

■ Name: <name>

■ Class name: weblogic.xml.crypto.wss.BinarySecurityTokenHandler

■ Token Type: x509

■ Handling Order: 0

For the X.509 token handler, add the following properties:

■ Name: UserX509ForIdentity

■ Value: true

■ IsEncrypted: False

For more information, see "Create a token handler of a Web Service security
configuration" in Oracle WebLogic Server Administration Console Online Help.

7. Configure a credential mapping provider by creating a PKICredentialMapper and
configure it as follows (leave all other values set to the defaults):

■ Keystore Provider: N/A

■ Keystore Type: jks

■ Keystore File Name: default_keystore.jks

■ Keystore Pass Phrase: <password>

■ Confirm Keystore Pass Phrase: <password>

For more information, see "Configure Credential Mapping Providers" in Oracle
WebLogic Server Administration Console Online Help

8. Configure Authentication by selecting the Authentication tab and configure as
follows:

■ Click DefaultIdentityAsserter and add X.509 to Chosen active types

■ Click Provider Specific and configure the following:

■ Default User Name Mapper Attribute Type: CN

Mutual Authentication with Message Protection (WS-Security 1.1)

4-34 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

■ Active Types: X.509

■ Use Default User Name Mapper: True

9. If the users are not added, add the Common Name (CN) user specified in the
certificate.

For more information, see "Create users" in Oracle WebLogic Server Administration
Console Online Help

10. Restart Oracle WebLogic Server.

11. Deploy the web service.

For more information, see "Install a Web Service" in Oracle WebLogic Server
Administration Console Online Help

To attach and configure the OWSM Client Policy:

1. Create a client proxy for the web service created earlier using clientgen or some
other mechanism.

For more information, see "Roadmap for Implementing Oracle Fusion Middleware
Web Services" in Understanding Web Services

2. Attach the following policy to the client

wss11_x509_token_with_message_protection_client_policy
3. Edit the policy as follows:

<orasp:x509-token
 orasp:sign-key-ref-mech="thumbprint"
 orasp:enc-key-ref-mech="thumbprint"/>
For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

4. Provide the configuration for the server (encryption key) in the client.

Note: Ensure that the encryption key specified is in accordance with
the encryption key configured for the web service.

For more information, see "Updating a Client Application to Invoke a
Message-Secured Web Service" in Securing WebLogic Web Services for Oracle
WebLogic Server.

5. Invoke the web service method from the client.

For more information, see "Roadmap for Implementing Oracle Fusion Middleware
Web Services" in Understanding Web Services

4.14.2 Interoperating with a WebLogic Web Service Client Policy
The following instructions tell how to implement mutual authentication with message
protection that conforms to the WS-Security 1.1 standard and ensure interoperability
between the OWSM web service policy and the WebLogic web service client policy:

To attach and configure the OWSM Policy:

1. Create and deploy a web service.

For more information, see "Roadmap for Implementing Oracle Fusion Middleware
Web Services" in Understanding Web Services

2. Attach the following policy to the web service:

Mutual Authentication with Message Protection (WS-Security 1.1)

Interoperability with Oracle WebLogic Server 12c Web Service Security Environments 4-35

oracle/wss11_x509_token_with_message_protection_service_policy.
For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

To attach and configure the WebLogic Web Service Client Policy:

1. Create a client proxy for the web service created earlier using clientgen.

For more information, see "Using the clientgen Ant Task to Generate Client
Artifacts" in Developing JAX-WS Web Services for Oracle WebLogic Server

2. Attach the following policies:

■ Wssp1.2-wss11_x509_token_with_message_protection_owsm_policy.xml

■ Wssp1.2-2007-SignBody.xml

■ Wssp1.2-2007-EncryptBody.xml

For more information, see "Updating the JWS File with @Policy and @Policies
Annotations" in Securing WebLogic Web Services for Oracle WebLogic Server

3. Provide the configuration for the server (encryption key) in the client.

Note: Ensure that the encryption key specified is in accordance with
the encryption key configured for the web service.

For more information, see "Updating a Client Application to Invoke a
Message-Secured Web Service" in Securing WebLogic Web Services for Oracle
WebLogic Server

4. Invoke the web service method from the client.

For more information, see "Writing the Java Client Application Code to Invoke a
Web Service" in Developing JAX-WS Web Services for Oracle WebLogic Server

Mutual Authentication with Message Protection (WS-Security 1.1)

4-36 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

5

Interoperability with Microsoft WCF/.NET 3.5 Security Environments 5-1

5 Interoperability with Microsoft WCF/.NET 3.5
Security Environments

[6] This chapter describes interoperability of Oracle Web Services Manager (OWSM) with
Microsoft WCF/.NET 3.5 security environments.

This chapter includes the following sections:

■ Overview of Interoperability with Microsoft WCF/.NET 3.5 Security
Environments

■ Message Transmission Optimization Mechanism (MTOM)

■ Username Token With Message Protection (WS-Security 1.1)

■ Username Token Over SSL

■ Mutual Authentication with Message Protection (WS-Security 1.1)

■ Kerberos with Message Protection

■ Kerberos with Message Protection Using Derived Keys

■ Kerberos with SPNEGO Negotiation

■ Kerberos with SPNEGO Negotiation and Credential Delegation

■ WCF/.NET 3.5 Client with Microsoft Active Directory Federation Services 2.0
(ADFS 2.0) STS

5.1 Overview of Interoperability with Microsoft WCF/.NET 3.5 Security
Environments

In conjunction with Microsoft, Oracle has performed interoperability testing to ensure
that the web service security policies created using OWSM 12c can interoperate with
web service policies configured using Microsoft Windows Communication Foundation
(WCF)/.NET 3.5 Framework and vice versa.

For more information about Microsoft WCF/.NET 3.5 Framework, see
http://msdn.microsoft.com/en-us/netframework/aa663324.aspx.

For more information about:

■ OWSM predefined policies, see "Predefined Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

■ Configuring and attaching OWSM 12c policies, see "Securing Web Services" and
"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web
Services Manager.

Note: In most cases, you can attach OWSM policies in source code,
before deploying an application, or you can attach policies post
deployment, using WLST or Fusion Middleware Control. To simplify
the instructions in this chapter, it is assumed that you are attaching
policies at runtime. If a situation requires that you attach a policy
before deploying, it is described that way in the instructions.

Note: Some of the procedures described in this chapter instruct you
to use the Microsoft ServiceModel Metadata Utility Tool
(SvcUtil.exe) to create a client proxy and configuration file from the
deployed web service. However, SvcUtil.exe does not work with
certain security policy assertions used with OWSM. As a workaround
when generating a WCF proxy for a web service protected by an
OWSM policy, do the following:

■ Detach the policy.

■ Generate the proxy using SvcUtil.exe.

■ Re-attach the policy.

For more information about SvcUtil.exe, see
http://msdn.microsoft.com/en-us/library/aa347733%28v=vs.90%2
9.aspx.

Overview of Interoperability with Microsoft WCF/.NET 3.5 Security Environments

5-2 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

Table 5–1 and Table 5–2 summarize the most common Microsoft .NET 3.5
interoperability scenarios based on the following security requirements:
authentication, message protection, and transport.

Note: In the following scenarios, ensure that you are using a
keystore with v3 certificates. By default, the JDK 1.5 keytool generates
keystores with v1 certificates.

In addition, ensure that the keys use the proper extensions, including
DigitalSignature, Non_repudiation, Key_Encipherment, and
Data_Encipherment.

Table 5–1 OWSM 12c Service Policy and Microsoft WCF/.NET 3.5 Client Policy Interoperability

Identity Token
WS-Security
Version

Message
Protection

Transport
Security Service Policy Client Policy

MTOM NA NA NA oracle/wsmtom_policy See Table 5–4,
" Configuring the
Microsoft WCF/.NET 3.5
Client" on page 5-4

Username or SAML 1.1 Yes No oracle/wss11_usernam
e_token_with_message
_protection_service_
policy

OR

oracle/wss11_saml_or
_username_token_with
_message_protection_
service_policy

See Table 5–8,
" Configuring the
Microsoft WCF/.NET 3.5
Client"See on page 5-8

Username 1.0 and 1.1 No Yes oracle/wss_saml_or_u
sername_token_over_s
sl_service_policy

OR

oracle/wss_username_
token_over_ssl_servi
ce_policy

See Table 5–12,
" Configuring the
Microsoft WCF/.NET 3.5
Client"See on page 5-16

Mutual
Authentication

1.1 Yes No oracle/wss11_x509_to
ken_with_message_pro
tection_service_poli
cy

See Table 5–15,
" Configuring the
Microsoft WCF/.NET 3.5
Client" on page 5-20

Kerberos 1.1 Yes No oracle/wss11_kerbero
s_token_with_message
_protection_service_
policy

See Table 5–21,
" Configuration
Prerequisites for
Interoperability" on
page 5-29

Table 5–2 Microsoft WCF/.NET 3.5 Service Policy and OWSM 12c Client Policy Interoperability

Identity Token
WS-Security
Version

Message
Protection

Transport
Security Service Policy Client Policy

MTOM NA NA NA See Table 5–5,
" Configuring the
Microsoft WCF/.NET
3.5 Web Service" on
page 5-5

oracle/wsmtom_policy

Username 1.1 Yes No See Table 5–9,
" Configuring the
Microsoft WCF/.NET
3.5 Web Service" on
page 5-12

oracle/wss11_username_
token_with_message_pro
tection_client_policy

Mutual
Authentication

1.1 Yes No See Table 5–10,
" Configuring the
OWSM 02c Client"

oracle/wss11_x509_toke
n_with_message_protect
ion_client_policy

Message Transmission Optimization Mechanism (MTOM)

Interoperability with Microsoft WCF/.NET 3.5 Security Environments 5-3

5.2 Message Transmission Optimization Mechanism (MTOM)
This section describes how to implement MTOM in the following interoperability
scenarios:

■ Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client

■ Configuring a Microsoft WCF/.NET 3.5 Web Service and an OWSM 12c Client

Message Transmission Optimization Mechanism (MTOM)

5-4 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

5.2.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client
The following instructions tell how to configure an OWSM 12c web service and a
Microsoft WCF/.NET 3.5 Client to implement Message Transmission Optimization
Mechanism (MTOM).

To Configure the OWSM 12c Web Service:

1. Create and deploy a web service application.

2. Attach the following policy to the web service: oracle/wsmtom_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

To Configure the Microsoft WCF/.NET 3.5 Client:

1. Use the Microsoft SvcUtil utility to create a client proxy and configuration file
from the deployed web service. See Example 5–1, "app.config File for MTOM
Interoperability".

http://msdn.microsoft.com/en-us/library/aa347733%28v=vs.90%29.aspx

2. Run the client program.

See the app.config File for MTOM Interoperability sample:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.serviceModel>
 <bindings>
 <customBinding>
 <binding name="CustomBinding_IMTOMService">
 <mtomMessageEncoding maxReadPoolSize="64"
 maxWritePoolSize="16"
 messageVersion="Soap12" maxBufferSize="65536"
 writeEncoding="utf-8">
 <readerQuotas maxDepth="32" maxStringContentLength=
 "8192" maxArrayLength="16384"
 maxBytesPerRead="4096"
maxNameTableCharCount="16384" />
 </mtomMessageEncoding>
 <httpTransport manualAddressing="false"
maxBufferPoolSize="524288"
 maxReceivedMessageSize="65536" allowCookies="false"
 authenticationScheme="Anonymous"
 bypassProxyOnLocal="false"
hostNameComparisonMode="StrongWildcard"
 keepAliveEnabled="true" maxBufferSize="65536"
 proxyAuthenticationScheme="Anonymous"
 realm="" transferMode="Buffered"
 unsafeConnectionNtlmAuthentication="false"
 useDefaultWebProxy="true" />
 </binding>
 </customBinding>
 </bindings>
 <client>
 <endpoint address="<endpoint_url>"
 binding="customBinding"
bindingConfiguration="CustomBinding_IMTOMService"
 contract="IMTOMService" name="CustomBinding_IMTOMService" >
 </endpoint>
 </client>
 </system.serviceModel>

Message Transmission Optimization Mechanism (MTOM)

Interoperability with Microsoft WCF/.NET 3.5 Security Environments 5-5

</configuration>

5.2.2 Configuring a Microsoft WCF/.NET 3.5 Web Service and an OWSM 12c Client
The following instructions tell how to configure a Microsoft WCF/.NET 3.5 web
service and an OWSM 12c client to implement Message Transmission Optimization
Mechanism (MTOM).

To Configure the Microsoft WCF/.NET 3.5 Web Service:

1. Create a .NET web service.

For an example, see Example 5–2, ".NET Web Service for MTOM Interoperability".

For more information, see "How to: Define a Windows Communication
Foundation Service Contract" at
http://msdn.microsoft.com/en-us/library/ms731835.aspx.

2. Deploy the application.

To Configure the OWSM 12c Client:

1. Using JDeveloper, create a SOA composite that consumes the .NET web service.

For more information, see Developer's Guide for SOA Suite.

2. Attach the following policy to the web service client:

oracle/wsmtom_policy

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

See the following .NET Web Service for MTOM Interoperability sample:

static void Main(string[] args)
{
 string uri = "http://host:port/TEST/MTOMService/SOA/MTOMService";
 // Step 1 of the address configuration procedure: Create a URI to serve as
the base address.
 Uri baseAddress = new Uri(uri);

 // Step 2 of the hosting procedure: Create ServiceHost
 ServiceHost selfHost = new ServiceHost(typeof(MTOMService), baseAddress);

 try {
 HttpTransportBindingElement hb = new HttpTransportBindingElement();
 hb.ManualAddressing = false;
 hb.MaxBufferPoolSize = 2147483647;
 hb.MaxReceivedMessageSize = 2147483647;
 hb.AllowCookies = false;
 hb.AuthenticationScheme = System.Net.AuthenticationSchemes.Anonymous;
 hb.KeepAliveEnabled = true;
 hb.MaxBufferSize = 2147483647;
 hb.ProxyAuthenticationScheme =
System.Net.AuthenticationSchemes.Anonymous;
 hb.Realm = "";
 hb.TransferMode = System.ServiceModel.TransferMode.Buffered;
 hb.UnsafeConnectionNtlmAuthentication = false;
 hb.UseDefaultWebProxy = true;
 MtomMessageEncodingBindingElement me = new
MtomMessageEncodingBindingElement();

Username Token With Message Protection (WS-Security 1.1)

5-6 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

 me.MaxReadPoolSize=64;
 me.MaxWritePoolSize=16;
 me.MessageVersion=System.ServiceModel.Channels.MessageVersion.Soap12;
 me.WriteEncoding = System.Text.Encoding.UTF8;
 me.MaxWritePoolSize = 2147483647;
 me.MaxBufferSize = 2147483647;
 me.ReaderQuotas.MaxArrayLength = 2147483647;
 CustomBinding binding1 = new CustomBinding();
 binding1.Elements.Add(me);
 binding1.Elements.Add(hb);
 ServiceEndpoint ep = selfHost.AddServiceEndpoint(typeof(IMTOMService),
binding1,
 "MTOMService");
 EndpointAddress myEndpointAdd = new EndpointAddress(new Uri(uri),
 EndpointIdentity.CreateDnsIdentity("WSMCert3"));
 ep.Address = myEndpointAdd;

 // Step 4 of the hosting procedure: Enable metadata exchange.
 ServiceMetadataBehavior smb = new ServiceMetadataBehavior();
 smb.HttpGetEnabled = true;
 selfHost.Description.Behaviors.Add(smb);
 using (ServiceHost host = new ServiceHost(typeof(MTOMService)))
 {
 System.ServiceModel.Description.ServiceDescription svcDesc =
 selfHost.Description;
 ServiceDebugBehavior svcDebug =
 svcDesc.Behaviors.Find<ServiceDebugBehavior>();
 svcDebug.IncludeExceptionDetailInFaults = true;
 }

 // Step 5 of the hosting procedure: Start (and then stop) the service.
 selfHost.Open();
 Console.WriteLine("The service " + uri + " is ready.");
 Console.WriteLine("Press <ENTER> to terminate service.");
 Console.WriteLine();
 Console.ReadLine();
 // Close the ServiceHostBase to shutdown the service.
 selfHost.Close();
 }
 catch (CommunicationException ce)
 {
 Console.WriteLine("An exception occurred: {0}", ce.Message);
 selfHost.Abort();
 }
}

5.3 Username Token With Message Protection (WS-Security 1.1)
This section describes how to implement username token with message protection that
conforms to the WS-Security 1.1 standard--with or without secure conversation
enabled--in the following interoperability scenarios:

■ Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client

■ Configuring a Microsoft WCF/.NET 3.5 Web Service and an OWSM 12c Client

5.3.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client
The following instructions tell how to configure a OWSM 12c web service and a
Microsoft WCF/.NET 3.5 client to implement username token with message protection

Username Token With Message Protection (WS-Security 1.1)

Interoperability with Microsoft WCF/.NET 3.5 Security Environments 5-7

that conforms to the WS-Security 1.1 standard, both with and without secure
conversation enabled.

To Configure the OWSM 12c Web Service:

1. Create a web service application.

2. Select the policy to use based on whether or not you want to enable secure
conversation:

If you do not want to enable secure conversation, clone either of the following
policies:

oracle/wss11_username_token_with_message_protection_service_policy

oracle/wss11_saml_or_username_token_with_message_protection_service_pol
icy

To enable secure conversation, clone the following policy:

oracle/wss11_username_token_with_message_protection_wssc_service_policy

Note: In the case of secure conversation enabled, you will have to
configure the app.config file somewhat differently, as described in
Table 5–8.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

3. Export the X.509 certificate file from the keystore on the service side to a .cer file
(for example, alice.cer) using the following command:

keytool -export -alias alice -file C:\alice.cer -keystore default-keystore.jks

To Configure the Microsoft WCF/.NET 3.5 Client:

1. Import the certificate file (exported previously) to the keystore on the client server
using Microsoft Management Console (mmc), as follows:

a. Open a command prompt.

b. Type mmc and press Enter.

c. Select File > Add/Remove snap-in.

d. Select Add and Choose Certificates.

Note: To view certificates in the local machine store, you must be in
the Administrator role.

e. Select Add.

f. Select My user account and finish.

g. Click OK.

h. Expand Console Root > Certificates -Current user > Personal > Certificates.

i. Right-click on Certificates and select All tasks > Import to launch Certificate
import Wizard.

j. Click Next, select Browse, and navigate to the .cer file that was exported
previously.

Username Token With Message Protection (WS-Security 1.1)

5-8 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

k. Click Next and accept defaults and finish the wizard.

For more information, see "How to: View Certificates with the MMC Snap-in" at
http://msdn.microsoft.com/en-us/library/ms788967.aspx.

2. Generate a .NET client using the WSDL of the web service.

For more information, see "How to: Create a Windows Communication
Foundation Client" at
http://msdn.microsoft.com/en-us/library/ms733133(v=vs.90).aspx.

3. In the Solution Explorer of the client project, add a reference by right-clicking on
references, selecting Add reference, and browsing to C:\Windows\Microsoft.NET\
framework\v3.0\Windows Communication
Foundation\System.Runtime.Serialization.dll.

4. Edit the app.config file in the .NET project to update the certificate file and
disable replays, as shown in Example 5–3, "app.config File" (Changes are
identified in bold.)

If you follow the default key setup, then <certificate_cn> should be set to alice.

5. Edit the app.config file as needed to enable to enable secure conversation or not.

If you do not want to enable secure conversation, edit the app.config as shown
in Example 5–3:

■ Set the authenticationMode property of the <security> element to
UserNameOverTransport.

■ Do not configure the properties of the secureConversationBootstrap
element.

To enable secure conversation, edit the app.config file as shown the comments in
bold italics in Example 5–3:

■ Set the authenticationMode property of the <security> element to
SecureConversation.

■ Configure the secureConversationBootstrap element with additional
properties, as shown in the example.

6. Compile the project.

7. Open a command prompt and navigate to the project's Debug folder.

8. Enter <client_project_name>.exe and press Enter.

See the following app.config file sample:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.serviceModel>
 <behaviors>
 <endpointBehaviors>
 <behavior name="secureBehaviour">
 <clientCredentials>
 <serviceCertificate>
 <defaultCertificate findValue="<certificate_cn>"
 storeLocation="CurrentUser" storeName="My"
 x509FindType="FindBySubjectName"/>
 </serviceCertificate>
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
 </behaviors>

Username Token With Message Protection (WS-Security 1.1)

Interoperability with Microsoft WCF/.NET 3.5 Security Environments 5-9

 <bindings>
 <customBinding>
 <binding name="HelloWorldSoapHttp">
 <!-- To enable secrure conversation, use
 authenticationMode="SecureConversation"
 instead of the value for authenticationMode shown below -->
 <security
 authenticationMode="UserNameOverTransport"
 defaultAlgorithmSuite="Basic128"
 requireDerivedKeys="false"
 securityHeaderLayout="Lax"
 includeTimestamp="true"
 keyEntropyMode="CombinedEntropy"
 messageProtectionOrder="SignBeforeEncrypt"

messageSecurityVersion="WSSecurity11WSTrustFebruary2005WSSecureConversationFebr
uary2005WSSecurityPolicy11BasicSecurityProfile10"
 requireSignatureConfirmation="true">
 <localClientSettings
 cacheCookies="true"
 detectReplays="false"
 replayCacheSize="900000"
 maxClockSkew="00:05:00"
 maxCookieCachingTime="Infinite"
 replayWindow="00:05:00"
 sessionKeyRenewalInterval="10:00:00"
 sessionKeyRolloverInterval="00:05:00"
 reconnectTransportOnFailure="true"
 timestampValidityDuration="00:05:00"
 cookieRenewalThresholdPercentage="60"/>
 <localServiceSettings detectReplays="true"
issuedCookieLifetime="10:00:00"
 maxStatefulNegotiations="128"
 replayCacheSize="900000"
 maxClockSkew="00:05:00"
 negotiationTimeout="00:01:00" replayWindow="00:05:00"
 inactivityTimeout="00:02:00"
 sessionKeyRenewalInterval="15:00:00"
 sessionKeyRolloverInterval="00:05:00"
 reconnectTransportOnFailure="true" maxPendingSessions="128"
 maxCachedCookies="1000" timestampValidityDuration="00:05:00" />
 <secureConversationBootstrap />
 <!--
 To enable secure conversation, add the following properties to
 the <secureConversationBootstrap> element:
 <secureConversationBootstrap
 authenticationMode="UserNameOverTransport"
 requireDerivedKeys="false"
 securityHeaderLayout="Lax"
 includeTimestamp="true"
 keyEntropyMode="CombinedEntropy"
 messageProtectionOrder="SignBeforeEncrypt"

messageSecurityVersion="WSSecurity11WSTrustFebruary2005WSSecureConversationFebr
uary2005WSSecurityPolicy11BasicSecurityProfile10"
 requireSignatureConfirmation="true"/> -->
 -->
 </security>
 <textMessageEncoding
 maxReadPoolSize="64"

Username Token With Message Protection (WS-Security 1.1)

5-10 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

 maxWritePoolSize="16"
 messageVersion="Soap11"
 writeEncoding="utf-8">
 <readerQuotas
 maxDepth="32"
 maxStringContentLength="8192"
 maxArrayLength="16384"
 maxBytesPerRead="4096"
 maxNameTableCharCount="16384" />
 </textMessageEncoding>
 <HttpTransport
 manualAddressing="false"
 maxBufferPoolSize="524288"
 maxReceivedMessageSize="65536"
 allowCookies="false"
 authenticationScheme="Anonymous"
 bypassProxyOnLocal="false"
 hostNameComparisonMode="StrongWildcard"
 keepAliveEnabled="true"
 maxBufferSize="65536"
 proxyAuthenticationScheme="Anonymous"
 realm=""
 transferMode="Buffered"
 unsafeConnectionNtlmAuthentication="false"
 useDefaultWebProxy="true" />
 </binding>
 </customBinding>
 </bindings>
 <client>
 <endpoint address="<endpoint_url>"
 binding="customBinding"
 bindingConfiguration="HelloWorldSoapHttp"
 contract="HelloWorld"
 name="HelloWorldPort"
 behaviorConfiguration="secureBehaviour" >
 <identity>
 <dns value="<certificate_cn>"/>
 </identity>
 </endpoint>
 </client>
 </system.serviceModel>
</configuration>

5.3.2 Configuring a Microsoft WCF/.NET 3.5 Web Service and an OWSM 12c Client
The following instructions tell how to configure a Microsoft WCF/.NET 3.5 web
service and an OWSM 12c client to implement username token with message
protection that conforms to the WS-Security 1.1 standard.

To Configure the Microsoft WCF/.NET 3.5 Web Service:

1. Create a .NET web service.

Be sure to create a custom binding for the web service using the
SymmetricSecurityBindingElement. For an example, see Example 5–4, "Example
of .NET Web Service".

For more information, see "How to: Define a Windows Communication
Foundation Service Contract" at
http://msdn.microsoft.com/en-us/library/ms731835.aspx.

Username Token With Message Protection (WS-Security 1.1)

Interoperability with Microsoft WCF/.NET 3.5 Security Environments 5-11

2. Create and import a certificate file to the keystore on the web service server.

Using Microsoft Visual Studio, the command would be similar to the following:

makecert -r -pe -n "CN=wsmcert3" -sky exchange -ss my C:\wsmcert3.cer
This command creates and imports a certificate in mmc.

If the command does not provide expected results, then try the following sequence
of commands. You need to download Windows Developer Kit (WDK) at
http://www.microsoft.com/whdc/devtools/WDK/default.mspx.

makecert -r -pe -n "CN=wsmcert3" -sky exchange -ss my -sv wscert3.pvk
C:\wsmcert3.cer
pvk2pfx.exe -pvk wscert3.pvk -spc wsmcert3.cer -pfx PRF_WSMCert3.pfx -pi
welcome1
Then, in mmc, import PRF_WSMCert3.pfx.

3. Import the certificate created on the web service server to the client server using
the keytool command. For example:

keytool -import -alias wsmcert3 -file C:\wsmcert3.cer -keystore
<owsm_client_keystore>

4. Right-click on the web service Solution project in Solutions Explorer and click
Open Folder In Windows Explorer.

5. Navigate to the bin/Debug folder.

6. Double-click the <project>.exe file. This command runs the web service at the
URL provided.

To Configure the OWSM 12c Client:

1. Using JDeveloper, create a SOA composite that consumes the .NET web service.

For more information, see Developer's Guide for SOA Suite.

2. In JDeveloper, create a partner link using the WSDL of the .NET service.

3. Attach the following policy to the web service client:
oracle/wss11_username_token_with_message_protection_client_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

4. Provide configurations for the csf-key and keystore.recipient.alias.

You can specify this information when attaching the policy, by overriding the
policy configuration. For more information.

Ensure that you configure the keystore.recipient.alias as the alias of the
certificate imported in step 1 (wsmcert3). For example:

<wsp:PolicyReference
 URI="oracle/wss11_username_token_with_message_protection_client_policy"
 orawsp:category="security"
 orawsp:status="enabled"/>
 <property
 name="csf-key"
 type="xs:string"
 many="false">
 basic.credentials
 </property>
 <property
 name="keystore.recipient.alias"
 type="xs:string"

Username Token With Message Protection (WS-Security 1.1)

5-12 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

 many="false">
 wsmcert3
 </property>
For more information, see "Overriding Policy Configuration Properties" in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

See the following .NET Web Service sample:

static void Main(string[] args)
{
 // Step 1 of the address configuration procedure: Create a URI to serve as
the
 // base address.
 // Step 2 of the hosting procedure: Create ServiceHost
 string uri = "http://host:port/TEST/NetService";
 Uri baseAddress = new Uri(uri);

 ServiceHost selfHost = new ServiceHost(typeof(CalculatorService),
baseAddress);

 try
 {
 SymmetricSecurityBindingElement sm =

SymmetricSecurityBindingElement.CreateUserNameForCertificateBindingElement();
 sm.DefaultAlgorithmSuite =
System.ServiceModel.Security.SecurityAlgorithmSuite.Basic128;
 sm.SetKeyDerivation(false);
 sm.SecurityHeaderLayout = SecurityHeaderLayout.Lax;
 sm.IncludeTimestamp = true;
 sm.KeyEntropyMode = SecurityKeyEntropyMode.CombinedEntropy;
 sm.MessageProtectionOrder = MessageProtectionOrder.SignBeforeEncrypt;
 sm.MessageSecurityVersion =

MessageSecurityVersion.WSSecurity11WSTrustFebruary2005WSSecureConversationFebru
ary2005
 WSSecurityPolicy11BasicSecurityProfile10;
 sm.RequireSignatureConfirmation = true;
 sm.LocalClientSettings.CacheCookies = true;
 sm.LocalClientSettings.DetectReplays = true;
 sm.LocalClientSettings.ReplayCacheSize = 900000;
 sm.LocalClientSettings.MaxClockSkew = new TimeSpan(00, 05, 00);
 sm.LocalClientSettings.MaxCookieCachingTime = TimeSpan.MaxValue;
 sm.LocalClientSettings.ReplayWindow = new TimeSpan(00, 05, 00); ;
 sm.LocalClientSettings.SessionKeyRenewalInterval = new TimeSpan(10, 00,
00);
 sm.LocalClientSettings.SessionKeyRolloverInterval = new TimeSpan(00,
05, 00); ;
 sm.LocalClientSettings.ReconnectTransportOnFailure = true;
 sm.LocalClientSettings.TimestampValidityDuration = new TimeSpan(00, 05,
00); ;
 sm.LocalClientSettings.CookieRenewalThresholdPercentage = 60;
 sm.LocalServiceSettings.DetectReplays = false;
 sm.LocalServiceSettings.IssuedCookieLifetime = new TimeSpan(10, 00,
00);
 sm.LocalServiceSettings.MaxStatefulNegotiations = 128;
 sm.LocalServiceSettings.ReplayCacheSize = 900000;
 sm.LocalServiceSettings.MaxClockSkew = new TimeSpan(00, 05, 00);
 sm.LocalServiceSettings.NegotiationTimeout = new TimeSpan(00, 01, 00);
 sm.LocalServiceSettings.ReplayWindow = new TimeSpan(00, 05, 00);
 sm.LocalServiceSettings.InactivityTimeout = new TimeSpan(00, 02, 00);

Username Token With Message Protection (WS-Security 1.1)

Interoperability with Microsoft WCF/.NET 3.5 Security Environments 5-13

 sm.LocalServiceSettings.SessionKeyRenewalInterval = new TimeSpan(15,
00, 00);
 sm.LocalServiceSettings.SessionKeyRolloverInterval = new TimeSpan(00,
05, 00);
 sm.LocalServiceSettings.ReconnectTransportOnFailure = true;
 sm.LocalServiceSettings.MaxPendingSessions = 128;
 sm.LocalServiceSettings.MaxCachedCookies = 1000;
 sm.LocalServiceSettings.TimestampValidityDuration = new TimeSpan(15,
00, 00);
 HttpTransportBindingElement hb = new HttpTransportBindingElement();
 hb.ManualAddressing = false;
 hb.MaxBufferPoolSize = 524288;
 hb.MaxReceivedMessageSize = 65536;
 hb.AllowCookies = false;
 hb.AuthenticationScheme = System.Net.AuthenticationSchemes.Anonymous;
 hb.KeepAliveEnabled = true;
 hb.MaxBufferSize = 65536;
 hb.ProxyAuthenticationScheme =
System.Net.AuthenticationSchemes.Anonymous;
 hb.Realm = "";
 hb.TransferMode = System.ServiceModel.TransferMode.Buffered;
 hb.UnsafeConnectionNtlmAuthentication = false;
 hb.UseDefaultWebProxy = true;
 TextMessageEncodingBindingElement tb1 = new
TextMessageEncodingBindingElement();
 tb1.MaxReadPoolSize = 64;
 tb1.MaxWritePoolSize = 16;
 tb1.MessageVersion =
System.ServiceModel.Channels.MessageVersion.Soap12;
 tb1.WriteEncoding = System.Text.Encoding.UTF8;
 CustomBinding binding1 = new CustomBinding(sm);
 binding1.Elements.Add(tb1);
 binding1.Elements.Add(hb);
 ServiceEndpoint ep = selfHost.AddServiceEndpoint(typeof(ICalculator),
binding1,
 "CalculatorService");

 EndpointAddress myEndpointAdd = new EndpointAddress(
 new Uri(uri),
 EndpointIdentity.CreateDnsIdentity("WSMCert3"));
 ep.Address = myEndpointAdd;

 // Step 4 of the hosting procedure: Enable metadata exchange.
 ServiceMetadataBehavior smb = new ServiceMetadataBehavior();
 smb.HttpGetEnabled = true;
 selfHost.Description.Behaviors.Add(smb);

selfHost.Credentials.ServiceCertificate.SetCertificate(StoreLocation.CurrentUse
r,
 StoreName.My,
 X509FindType.FindBySubjectName, "WSMCert3");

selfHost.Credentials.ClientCertificate.Authentication.CertificateValidationMode
=
 X509CertificateValidationMode.PeerOrChainTrust;

selfHost.Credentials.UserNameAuthentication.UserNamePasswordValidationMode =
 UserNamePasswordValidationMode.Custom;
 CustomUserNameValidator cu = new CustomUserNameValidator();

Username Token Over SSL

5-14 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

selfHost.Credentials.UserNameAuthentication.CustomUserNamePasswordValidator =
cu;
 using (ServiceHost host = new ServiceHost(typeof(CalculatorService)))
 {
 System.ServiceModel.Description.ServiceDescription svcDesc =
selfHost.Description;
 ServiceDebugBehavior svcDebug =
svcDesc.Behaviors.Find<ServiceDebugBehavior>();
 svcDebug.IncludeExceptionDetailInFaults = true;
 }

 // Step 5 of the hosting procedure: Start (and then stop) the service.
 selfHost.Open();
 Console.WriteLine("The Calculator service is ready.");
 Console.WriteLine("Press <ENTER> to terminate service.");
 Console.WriteLine();
 Console.ReadLine();
 selfHost.Close();
 }
 catch (CommunicationException ce)
 {
 Console.WriteLine("An exception occurred: {0}", ce.Message);
 selfHost.Abort();
 }
}

5.4 Username Token Over SSL
This section describes how to implement username token over SSL in the following
interoperability scenario:

■ Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client

5.4.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client
The following instructions tell how to configure an OWSM 12c web service and a
Microsoft WCF/.NET 3.5 client to implement username token over SSL, both with and
without secure conversation enabled.

To Configure the OWSM 12c Web Service:

1. Configure the server for SSL.

For more information, see "Configuring Transport-Level Security (SSL)" in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

2. Create an OWSM web service.

3. Select the policy to use based on whether or not you want to enable secure
conversation.

If you do not want to enable secure conversation, use either of the following
policies:

oracle/wss_username_token_over_ssl_service_policy

oracle/wss_saml_or_username_token_over_ssl_service_policy

To enable secure conversation, use the following policy:

oracle/wss_username_token_over_ssl_wssc_service_policy

Note: In the case of secure conversation enabled, you will have to
configure the app.config file somewhat differently, as described in
Table 5–12:

Username Token Over SSL

Interoperability with Microsoft WCF/.NET 3.5 Security Environments 5-15

For more information, see "Cloning a Web Service Policy" in Securing Web Services
and Managing Policies with Oracle Web Services Manager.

4. Edit the policy settings, as follows:

a. Disable the Creation Time Required configuration setting.

b. Disable the Nonce Required configuration setting.

c. Leave the default configuration set for all other configuration settings.

5. Attach the policy.

"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web
Services Manager.

To Configure the Microsoft WCF/.NET 3.5 Client:

1. Generate a .NET client using the WSDL of the web service.

For more information, see "How to: Create a Windows Communication
Foundation Client" at
http://msdn.microsoft.com/en-us/library/ms733133(v=vs.90).aspx.

2. In the Solution Explorer of the client project, add a reference by right-clicking on
references, selecting Add reference, and browsing to
C:\Windows\Microsoft.NET\framework\v3.0\Windows Communication
Foundation\System.Runtime.Serialization.dll.

3. Edit the app.config, as shown in Example 5–5.

4. Edit the app.config file as needed to enable to enable secure conversation or not.

If you do not want to enable secure conversation, edit the app.config as shown
in regular typeface in Example 5–3:

■ Set the authenticationMode property of the <security> element to
UserNameOverTransport.

■ Do not configure the properties of the secureConversationBootstrap
element.

To enable secure conversation, edit the app.config as shown the comments in
bold italics in Example 5–3:

■ Set the authenticationMode property of the <security> element to
SecureConversation.

■ Configure the secureConversationBootstrap element with additional
properties, as shown in the example.

5. Compile the project.

6. Open a command prompt and navigate to the project's Debug folder.

7. Type <client_project_name>.exe and press Enter.

See the following app.config file sample:

<?xml version="1.0" encoding="utf-8"?>
<configuration>

Username Token Over SSL

5-16 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

 <system.serviceModel>
 <bindings>
 <customBinding>
 <binding name="BPELProcess1Binding">
 <!-- To enable secrure conversation, you must use
 authenticationMode="SecureConversation"
 instead of the value for authenticationMode shown below, under
<security -->
 <security defaultAlgorithmSuite="Basic128"
 authenticationMode="UserNameOverTransport"
 requireDerivedKeys="false" securityHeaderLayout="Lax"
includeTimestamp="true"
 keyEntropyMode="CombinedEntropy"
messageProtectionOrder="SignBeforeEncrypt"

messageSecurityVersion="WSSecurity11WSTrustFebruary2005WSSecureConversation
 February2005WSSecurityPolicy11BasicSecurityProfile10"
 requireSignatureConfirmation="true">
 <localClientSettings cacheCookies="true" detectReplays="false"
 replayCacheSize="900000" maxClockSkew="00:05:00"
 maxCookieCachingTime="Infinite"
 replayWindow="00:05:00" sessionKeyRenewalInterval="10:00:00"
 sessionKeyRolloverInterval="00:05:00"
reconnectTransportOnFailure="true"
 timestampValidityDuration="00:05:00"
 cookieRenewalThresholdPercentage="60"/>
 <localServiceSettings detectReplays="true"
issuedCookieLifetime="10:00:00"
 maxStatefulNegotiations="128" replayCacheSize="900000"
 maxClockSkew="00:05:00"
 negotiationTimeout="00:01:00" replayWindow="00:05:00"
 inactivityTimeout="00:02:00"
 sessionKeyRenewalInterval="15:00:00"
 sessionKeyRolloverInterval="00:05:00"
 reconnectTransportOnFailure="true" maxPendingSessions="128"
 maxCachedCookies="1000" timestampValidityDuration="00:05:00" />
 <secureConversationBootstrap />
 <!-- To enable secure conversation, add the following properties to
 the <secureConversationBootstrap> element:
 <secureConversationBootstrap
 authenticationMode="UserNameOverTransport"
 requireDerivedKeys="false"
 securityHeaderLayout="Lax"
 includeTimestamp="true"
 keyEntropyMode="CombinedEntropy"
 messageProtectionOrder="SignBeforeEncrypt"

messageSecurityVersion="WSSecurity11WSTrustFebruary2005WSSecureConversationFebr
uary2005WSSecurityPolicy11BasicSecurityProfile10"
 requireSignatureConfirmation="true"/> -->
 </security>
 <textMessageEncoding
 maxReadPoolSize="64"
 maxWritePoolSize="16"
 messageVersion="Soap11"
 writeEncoding="utf-8">
 <readerQuotas
 maxDepth="32"
 maxStringContentLength="8192"
 maxArrayLength="16384"

Mutual Authentication with Message Protection (WS-Security 1.1)

Interoperability with Microsoft WCF/.NET 3.5 Security Environments 5-17

 maxBytesPerRead="4096"
 maxNameTableCharCount="16384" />
 </textMessageEncoding>
 <httpsTransport
 manualAddressing="false"
 maxBufferPoolSize="524288"
 maxReceivedMessageSize="65536"
 allowCookies="false"
 authenticationScheme="Anonymous"
 bypassProxyOnLocal="false"
 hostNameComparisonMode="StrongWildcard"
 keepAliveEnabled="true"
 maxBufferSize="65536"
 proxyAuthenticationScheme="Anonymous"
 realm=""
 transferMode="Buffered"
 unsafeConnectionNtlmAuthentication="false"
 useDefaultWebProxy="true" requireClientCertificate="false"/>
 </binding>
 </customBinding>
 </bindings>
 <client>
 <endpoint
 address="
https://host:port/soa-infra/services/default/IO_NET6/bpelprocess1_client_ep"
 binding="customBinding"
bindingConfiguration="BPELProcess1Binding"
 contract="BPELProcess1" name="BPELProcess1_pt" />
 </client>
 </system.serviceModel>
</configuration>

5.5 Mutual Authentication with Message Protection (WS-Security 1.1)
This section describes how to implement mutual authentication with message
protection that conform to the WS-Security 1.1 standards in the following
interoperability scenarios:

■ Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client

■ Configuring a Microsoft WCF/.NET 3.5 Web Service and an OWSM 12c Client

Before configuring the web service and client in either of the above scenarios, follow
the instructions in "Configuration Prerequisites".

5.5.1 Configuration Prerequisites
The following procedure describes how to perform prerequisite configuration tasks for
implementing mutual authentication with message protection that conform to the
WS-Security 1.1 standards.

To Configure Prerequisites for Interoperability:

1. Export the X.509 certificate file from the keystore on the service side to a .cer file
(for example, alice.cer) using the following command:

keytool -export -alias alice -file C:\alice.cer -keystore default-keystore.jks

2. Import the certificate file (exported previously) to the keystore on the client server
using Microsoft Management Console (mmc).

Mutual Authentication with Message Protection (WS-Security 1.1)

5-18 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

a. Open a command prompt.

b. Type mmc and press ENTER.

c. Select File > Add/Remove snap-in.

d. Select Add and Choose Certificates.

Note: To view certificates in the local machine store, you must be in the
Administrator role.

e. Select Add.

f. Select My user account and finish.

g. Click OK.

h. Expand Console Root > Certificates -Current user > Personal > Certificates.

i. Right-click on Certificates and select All tasks > Import to launch Certificate
import Wizard.

j. Click Next, select Browse, and navigate to the .cer file that was exported
previously.

k. Click Next and accept defaults and finish the wizard.

For more information, see "How to: View Certificates with the MMC Snap-in" at
http://msdn.microsoft.com/en-us/library/ms788967.aspx.

5.5.2 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client
The following instructions tell how to configure an OWSM 12c web service and a
Microsoft WCF/.NET 3.5 client to implement mutual authentication with message
protection that conform to the WS-Security 1.1 standards.

To Configure the OWSM 12c Web Service:

1. Create a SOA composite and deploy it.

2. Using Fusion Middleware Control, attach the following policy to the web service:

oracle/wss11_x509_token_with_message_protection_service_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

To Configure the Microsoft WCF/.NET 3.5 Client:

1. Use the Microsoft SvcUtil utility to create a client proxy (see Table 5–7, "Client
Program") and configuration file from the deployed web service.

For more information, see
http://msdn.microsoft.com/en-us/library/aa347733%28v=vs.90%29.aspx

2. In the Solution Explorer of the client project, add a reference by right-clicking on
references, selecting Add reference, and browsing to C:\Windows\Microsoft.NET\
framework\v3.0\Windows Communication
Foundation\System.Runtime.Serialization.dll.

3. Create an app.config configuration file, including the following steps.

An example of the complete file is shown in Example 5–6, "app.config File". The
steps listed below are called out in bold type in the example.

a. Define behaviors with credentials.

b. Create a custom binding.

Mutual Authentication with Message Protection (WS-Security 1.1)

Interoperability with Microsoft WCF/.NET 3.5 Security Environments 5-19

c. Diable the message replay detection.

d. Modify endpoint behavior.

4. Compile the project.

5. Open a command prompt and navigate to the project's Debug folder.

6. Enter <client_project_name>.exe and press Enter.

See the following app.config file sample:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.serviceModel>

 <!-- 1. Define behaviors with credentials
--- -->
 <behaviors>
 <endpointBehaviors>
 <behavior name="secureBehaviour">
 <clientCredentials>
 <serviceCertificate>
 <defaultCertificate findValue="<certificate_cn>"
 storeLocation="CurrentUser"
 storeName="My"
 x509FindType="FindBySubjectName"/>
 </serviceCertificate>
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 <!--

-->

 <bindings>
 <customBinding>
 <binding name="BPELProcess1Binding">

 <!-- --- 2. Create a custom binding
--- -->
 <security defaultAlgorithmSuite="Basic128"
authenticationMode="MutualCertificate"
 <!--

-->

 requireDerivedKeys="false" securityHeaderLayout="Lax"
includeTimestamp="true"
 keyEntropyMode="CombinedEntropy"
messageProtectionOrder="SignBeforeEncrypt"

messageSecurityVersion="WSSecurity11WSTrustFebruary2005WSSecureConversation
 February2005WSSecurityPolicy11BasicSecurityProfile10"
 requireSignatureConfirmation="true">

 <!-- --- 3. Disable the message replay detection
----------------------------------- -->

Mutual Authentication with Message Protection (WS-Security 1.1)

5-20 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

 <localClientSettings cacheCookies="true" detectReplays="false"
 replayCacheSize="900000" maxClockSkew="00:05:00"
 maxCookieCachingTime="Infinite"
 <!--

-->

 replayWindow="00:05:00"
sessionKeyRenewalInterval="10:00:00"
 sessionKeyRolloverInterval="00:05:00"
reconnectTransportOnFailure="true"
 timestampValidityDuration="00:05:00"
cookieRenewalThresholdPercentage="60" />
 <localServiceSettings detectReplays="true"
 issuedCookieLifetime="10:00:00"
 maxStatefulNegotiations="128"
 replayCacheSize="900000" maxClockSkew="00:05:00"
 negotiationTimeout="00:01:00" replayWindow="00:05:00"
 inactivityTimeout="00:02:00"
 sessionKeyRenewalInterval="15:00:00"
sessionKeyRolloverInterval="00:05:00"
 reconnectTransportOnFailure="true" maxPendingSessions="128"
 maxCachedCookies="1000"
timestampValidityDuration="00:05:00" />
 <secureConversationBootstrap />
 </security>
 <textMessageEncoding maxReadPoolSize="64" maxWritePoolSize="16"
 messageVersion="Soap11" writeEncoding="utf-8">
 <readerQuotas maxDepth="32" maxStringContentLength="8192"
maxArrayLength="16384"
 maxBytesPerRead="4096" maxNameTableCharCount="16384" />
 </textMessageEncoding>
 <httpTransport manualAddressing="false"
maxBufferPoolSize="524288"
 maxReceivedMessageSize="65536" allowCookies="false"
 authenticationScheme="Anonymous"
 bypassProxyOnLocal="false"
hostNameComparisonMode="StrongWildcard"
 keepAliveEnabled="true" maxBufferSize="65536"
 proxyAuthenticationScheme="Anonymous"
 realm="" transferMode="Buffered"
unsafeConnectionNtlmAuthentication="false"
 useDefaultWebProxy="true" />
 </binding>
 </customBinding>

 </bindings>
 <client>

 <!-- - 4. Modify endpoint behavior
--- -->
 <endpoint address="http://<server>:<port>//MyWebService1SoapHttpPort"
 binding="customBinding"
bindingConfiguration="MyWebService1SoapHttp"
 contract="MyWebService1"
 name="MyWebService1SoapHttpPort"
 behaviorConfiguration="secureBehaviour" >
 <identity>
 <dns value="<certificate_cn>"/>

Mutual Authentication with Message Protection (WS-Security 1.1)

Interoperability with Microsoft WCF/.NET 3.5 Security Environments 5-21

 </identity>
 </endpoint>
 <!--

-->

 </client>
 </system.serviceModel>
</configuration>

See the following Client Program sample:

 namespace IO_NET10_client
{
 class Program
 {
 static void Main(string[] args)
 {

 BPELProcess1Client client = new BPELProcess1Client();

 client.ClientCredentials.ClientCertificate.SetCertificate(
 StoreLocation.CurrentUser,
 StoreName.My,
 X509FindType.FindBySubjectName, "WSMCert3");

 client.ClientCredentials.ServiceCertificate.SetDefaultCertificate(
 StoreLocation.CurrentUser,
 StoreName.My,
 X509FindType.FindBySubjectName, "Alice");

 process proc = new process();
 proc.input = "Test wss11_x509_token_with_message_protection_policy
- ";
 Console.WriteLine(proc.input);
 processResponse response = client.process(proc);

 Console.WriteLine(response.result.ToString());
 Console.WriteLine("Press <ENTER> to terminate Client.");
 Console.ReadLine();
 }
 }
}

5.5.3 Configuring a Microsoft WCF/.NET 3.5 Web Service and an OWSM 12c Client
The following instructions tell how to configure a Microsoft WCF/.NET 3.5 web
service and an OWSM 12c client to implement mutual authentication with message
protection that conform to the WS-Security 1.1 standards.

To Configure the Microsoft WCF/.NET 3.5 Web Service:

1. Create a .NET web service.

For an example, see Example 5–4, "Example of .NET Web Service".

For more information, see "How to: Define a Windows Communication
Foundation Service Contract" at
http://msdn.microsoft.com/en-us/library/ms731835%28v=vs.90%29.aspx

2. Create a custom binding for the web service using the
SymmetricSecurityBindingElement.

Kerberos with Message Protection

5-22 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

The following is a sample of the SymmetricSecurityBindingElement object:

SymmetricSecurityBindingElement sm =
(SymmetricSecurityBindingElement)SecurityBindingElement.CreateMutualCertificate
BindingElement();

sm.DefaultAlgorithmSuite =
System.ServiceModel.Security.SecurityAlgorithmSuite.Basic128;sm.SetKeyDerivati
on(false);
sm.SecurityHeaderLayout = SecurityHeaderLayout.Lax;sm.IncludeTimestamp =
true;
sm.KeyEntropyMode = SecurityKeyEntropyMode.CombinedEntropy;
sm.MessageProtectionOrder =
MessageProtectionOrder.SignBeforeEncrypt;sm.MessageSecurityVersion =
MessageSecurityVersion.WSSecurity11WSTrustFebruary2005WSSecureConversation
February2005WSSecurityPolicy11BasicSecurityProfile10;
sm.RequireSignatureConfirmation =
true;

For more information, see "How to: Create a Custom Binding Using the
SecurityBindingElement" at
http://msdn.microsoft.com/en-us/library/ms730305(v=vs.90).aspx.

3. Deploy the application.

To Configure the OWSM 12c Client:

1. Using JDeveloper, create a SOA composite that consumes the .NET web service.

For more information, see Developer's Guide for SOA Suite.

2. In JDeveloper, create a partner link using the WSDL of the .NET service and add
the import as follows:

<wsdl:import namespace="<namespace>" location="<WSDL location>"/>
3. In Fusion Middleware Control, attach the following policy to the web service

client:

oracle/wss11_x509_token_with_message_protection_client_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

4. Provide configurations for the keystore.recipient.alias.

You can specify this information when attaching the policy, by overriding the
policy configuration.

Ensure that you configure the keystore.recipient.alias as the alias of the
certificate imported in step 4 (wsmcert3).

For more information, see "Overriding Policy Configuration Properties" in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

5. Invoke the web service method from the client.

5.6 Kerberos with Message Protection
This section describes how to implement Kerberos with message protection in the
following interoperability scenario:

■ Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client

Kerberos with Message Protection

Interoperability with Microsoft WCF/.NET 3.5 Security Environments 5-23

5.6.1 Performing Prerequisite Tasks for Interoperability
To Configure Prerequisites for Interoperability:

1. Configure the Key Distribution Center (KDC) and Active Directory (AD).

For more information, see "To Configure Windows Active Directory and Domain
Controller" (the domain controller can serve as KDC) at
http://download.oracle.com/docs/cd/E19316-01/820-3746/gisdn/index.html.

2. Set up the Kerberos configuration file krb5.conf in c:\winnt as shown in
Example 5–8, "Kerberos Configuration File".

See the following Kerberos Configuration File sample:

[logging]
default = c:\log\krb5libs.log
kdc = c:\log\krb5kdc.log
admin_server = c:\log\kadmind.log
[libdefaults]
default_realm = MYCOMPANY.LOCAL
dns_lookup_realm = false
dns_lookup_kdc = false
default_tkt_enctypes = rc4-hmac
default_tgs_enctypes = rc4-hmac
permitted_enctypes = rc4-hmac
kdc = hostname
[realms]
MYCOMPANY.LOCAL =
{ kdc = host:port admin_server = host:port
 default_domain = <domainname>
}
 [domain_realm]
.<domainname> = MYCOMPANY.LOCAL
 <domainname> = MYCOMPANY.LOCAL
[appdefaults]
pam =
{ debug = false ticket_lifetime = 36000 renew_lifetime = 36000 forwardable
=
 true krb4_convert = false }

5.6.2 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client
The following instructions tell how to configure an OWSM 12c web service and a
Microsoft WCF/.NET 3.5 client to implement Kerberos with message protection.

To Configure the OWSM 12c Web Service:

1. Create and deploy a web service application.

2. Clone the following policy:
oracle/wss11_kerberos_token_with_message_protection_service_policy.

For more information, see "Cloning a Web Service Policy" in Securing Web Services
and Managing Policies with Oracle Web Services Manager.

3. Edit the policy settings to set Algorithm Suite to Basic128Rsa15.

4. Attach the policy to the web service.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

To Configure the Microsoft WCF/.NET 3.5 Client:

Kerberos with Message Protection

5-24 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

1. Create a user in AD to represent the host where the web service is hosted. By
default the user account is created with RC4-HMAC encryption. For example,
foobar with user name is HTTP/foobar.

2. Use the following ktpass command to create a keytab file on the Windows AD
machine where the KDC is running:

ktpass -princ HTTP/foobar@MYCOMPANY.LOCAL -pass Oracle123 -mapuser
foobar -out foobar.keytab -ptype KRB5_NT_PRINCIPAL -kvno 4

where HTTP/foobar is the SPN, mapped to a user "foobar". Do not set "/desonly or
cyrpto as "des-cbc-crc". MYCOMPANY.LOCAL is the default Realm for the KDC
and is available in the krb5.ini file. The pass password must match the password
created during the user creation.

Use FTP binary mode to move the generated keytab file to the machine where the
SOA Composite web service is hosted.

3. Use the following setSpn command to map the service principal to the user:

setSpn -A HTTP/foobar@MYCOMPANY.LOCAL foobar

setSpn -L foobar

Only one SPN must be mapped to the user. If there are multiple SPNs mapped to
the user, remove them using the command setSpn -D <spname> <username>.

4. Use the Microsoft svcutil utility to create a client proxy and configuration file from
the deployed web service.

Add the files generatedProxy.cs and app.config by right clicking the application
(in the Windows Explorer) and selecting Add Existing Item.

In the endpoint element of the app.config, add an "identity" element with service
principal name as "HTTP/foobar@MYCOMPANY.LOCAL" (the same value used
for creating keytab).

<client>
 <endpoint address="http://host:port/HelloServicePort"
 binding="customBinding"
bindingConfiguration="NewHelloSoap12HttpPortBinding"
 contract="NewHello" name="HelloServicePort">
 <identity>
 <servicePrincipalName value ="HTTP/foobar@MYCOMPANY.LOCAL"/>
 </identity>
 </endpoint>

 </client>
A sample binding is provided in Example 5–9, "Custom Binding".

For more information, see
http://msdn.microsoft.com/en-us/library/aa347733%28v=vs.90%29.aspx.

5. Run the client program.

See the following Custom Binding sample:

<customBinding>
 <binding name="NewHelloSoap12HttpPortBinding">
 <!--Added by User: Begin-->
 <security defaultAlgorithmSuite="Basic128"
 authenticationMode="Kerberos"
 requireDerivedKeys="false" securityHeaderLayout="Lax"
 includeTimestamp="true"
 keyEntropyMode="CombinedEntropy"

Kerberos with Message Protection Using Derived Keys

Interoperability with Microsoft WCF/.NET 3.5 Security Environments 5-25

 messageProtectionOrder="SignBeforeEncrypt"
 messageSecurityVersion="WSSecurity11WSTrustFebruary2005
 WSSecureConversationFebruary2005WSSecurityPolicy11BasicSecurity
 Profile10"
 requireSignatureConfirmation="true">
 <localClientSettings cacheCookies="true" detectReplays="true"
 replayCacheSize="900000" maxClockSkew="00:05:00"
 maxCookieCachingTime="Infinite"
 replayWindow="00:05:00"
 sessionKeyRenewalInterval="10:00:00"
 sessionKeyRolloverInterval="00:05:00"
 reconnectTransportOnFailure="true"
 timestampValidityDuration="00:05:00"
 cookieRenewalThresholdPercentage="60" />
 <localServiceSettings detectReplays="true"
 issuedCookieLifetime="10:00:00"
 maxStatefulNegotiations="128" replayCacheSize="900000"
 maxClockSkew="00:05:00"
 negotiationTimeout="00:01:00" replayWindow="00:05:00"
 inactivityTimeout="00:02:00"
 sessionKeyRenewalInterval="15:00:00"
 sessionKeyRolloverInterval="00:05:00"
 reconnectTransportOnFailure="true"
 maxPendingSessions="128"
 maxCachedCookies="1000"
 timestampValidityDuration="00:05:00" />
 <secureConversationBootstrap />
 </security>
 <!--Added by User: End-->
 <textMessageEncoding maxReadPoolSize="64"
 maxWritePoolSize="16"
 messageVersion="Soap12" writeEncoding="utf-8">
 <readerQuotas maxDepth="32" maxStringContentLength="8192"
 maxArrayLength="16384"
 maxBytesPerRead="4096" maxNameTableCharCount="16384" />
 </textMessageEncoding>
 <!--Added by User: Begin-->
 <httpTransport manualAddressing="false"
 maxBufferPoolSize="524288"
 maxReceivedMessageSize="65536" allowCookies="false"
 authenticationScheme="Anonymous"
 bypassProxyOnLocal="false"
 hostNameComparisonMode="StrongWildcard"
 keepAliveEnabled="true" maxBufferSize="65536"
 proxyAuthenticationScheme="Anonymous"
 realm="" transferMode="Buffered"
 unsafeConnectionNtlmAuthentication="false"
 useDefaultWebProxy="true" />
 <!--Added by User: End-->
 </binding>
</customBinding>

5.7 Kerberos with Message Protection Using Derived Keys
This section describes how to implement Kerberos with message protection using
derived keys in the following interoperability scenario:

■ Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client

Kerberos with Message Protection Using Derived Keys

5-26 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

Before configuring the web service and client in the above scenario, follow the
instructions in Section 5.7.1, "Configuration Prerequisites."

5.7.1 Configuration Prerequisites
The following procedure describes how to perform prerequisite configuration tasks for
implementing Kerberos with message protection using derived keys.

To Configure Prerequisites for Interoperability:

1. Configure the Key Distribution Center (KDC) and Active Directory (AD).

For more information, see the following topics:

■ "To Configure Windows Active Directory and Domain Controller" (the domain
controller can serve as KDC) at
http://download.oracle.com/docs/cd/E19316-01/820-3746/gisdn/index.h
tml

■ "Configuring Kerberos Tokens" in Securing Web Services and Managing Policies
with Oracle Web Services Manager

2. Set up the Kerberos configuration file krb5.conf in c:\winnt as shown in the
example "Kerberos Configuration File".

[logging]
default = c:\log\krb5libs.log
kdc = c:\log\krb5kdc.log
admin_server = c:\log\kadmind.log
[libdefaults]
default_realm = MYCOMPANY.LOCAL
dns_lookup_realm = false
dns_lookup_kdc = false
default_tkt_enctypes = rc4-hmac
default_tgs_enctypes = rc4-hmac
permitted_enctypes = rc4-hmac
kdc = hostname
[realms]
MYCOMPANY.LOCAL =
{ kdc = host:port admin_server = host:port
 default_domain = <domainname>
}
 [domain_realm]
.<domainname> = MYCOMPANY.LOCAL
 <domainname> = MYCOMPANY.LOCAL
[appdefaults]
pam =
{ debug = false ticket_lifetime = 36000 renew_lifetime = 36000 forwardable
=
 true krb4_convert = false }

5.7.2 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client
The following instructions tell how to configure an OWSM 12c web service and a
Microsoft WCF/.NET 3.5 client to implement Kerberos with message protection.

To Configure the OWSM 12c Web Service:

1. Create and deploy a web service application.

2. Clone the following policy:
wss11_kerberos_token_with_message_protection_basic128_service_policy.

Kerberos with Message Protection Using Derived Keys

Interoperability with Microsoft WCF/.NET 3.5 Security Environments 5-27

For more information, see "Cloning a Web Service Policy" in Securing Web Services
and Managing Policies with Oracle Web Services Manager.

3. Edit the policy settings to enable the Derived Keys option.

4. Attach the policy to the web service.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

To Configure the Microsoft WCF/.NET 3.5 Client:

1. Create a user in AD to represent the host where the web service is hosted. By
default the user account is created with RC4-HMAC encryption. For example,
foobar with user name as "HTTP/foobar".

2. Use the following ktpass command to create a keytab file on the Windows AD
machine where the KDC is running:

ktpass -princ HTTP/foobar@MYCOMPANY.LOCAL -pass Oracle123 -mapuser
foobar -out foobar.keytab -ptype KRB5_NT_PRINCIPAL -kvno 4

where HTTP/foobar is the SPN, mapped to a user "foobar". Do not set "/desonly
or cyrpto as "des-cbc-crc". MYCOMPANY.LOCAL is the default Realm for the
KDC and is available in the krb5.ini file. The pass password must match the
password created during the user creation.

Use FTP binary mode to move the generated keytab file to the machine where the
SOA Composite web service is hosted.

3. Use the following setSpn command to map the service principal to the user:

setSpn -A HTTP/foobar@MYCOMPANY.LOCAL foobar

setSpn -L foobar

Only one SPN must be mapped to the user. If there are multiple SPNs mapped to
the user, remove them using the command setSpn -D <spname> <username>.

4. Use the Microsoft SvcUtil utility to create a client proxy and configuration file
from the deployed web service.

Add the files generatedProxy.cs and app.config by right clicking the application
(in the Windows Explorer) and selecting Add Existing Item.

In the endpoint element of the app.config, add an "identity" element with service
principal name as "HTTP/foobar@MYCOMPANY.LOCAL" (the same value used
for creating keytab).

<client>
 <endpoint address="http://host:port/HelloServicePort"
 binding="customBinding"
bindingConfiguration="NewHelloSoap12HttpPortBinding"
 contract="NewHello" name="HelloServicePort">
 <identity>
 <servicePrincipalName value ="HTTP/foobar@MYCOMPANY.LOCAL"/>
 </identity>
 </endpoint>

 </client>
A sample binding is provided in Example 5–11, "Custom Binding".

5. Run the client program.

See the following Custom Binding sample:

Kerberos with Message Protection Using Derived Keys

5-28 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

<customBinding>
 <binding name="NewHelloSoap12HttpPortBinding">
 <!--Added by User: Begin-->
 <security defaultAlgorithmSuite="Basic128"
 authenticationMode="Kerberos"
 requireDerivedKeys="true" securityHeaderLayout="Lax"
 includeTimestamp="true"
 keyEntropyMode="CombinedEntropy"
 messageProtectionOrder="SignBeforeEncrypt"
 messageSecurityVersion="WSSecurity11WSTrustFebruary2005
 WSSecureConversationFebruary2005WSSecurityPolicy11BasicSecurity
 Profile10"
 requireSignatureConfirmation="true">
 <localClientSettings cacheCookies="true" detectReplays="true"
 replayCacheSize="900000" maxClockSkew="00:05:00"
 maxCookieCachingTime="Infinite"
 replayWindow="00:05:00"
 sessionKeyRenewalInterval="10:00:00"
 sessionKeyRolloverInterval="00:05:00"
 reconnectTransportOnFailure="true"
 timestampValidityDuration="00:05:00"
 cookieRenewalThresholdPercentage="60" />
 <localServiceSettings detectReplays="true"
 issuedCookieLifetime="10:00:00"
 maxStatefulNegotiations="128" replayCacheSize="900000"
 maxClockSkew="00:05:00"
 negotiationTimeout="00:01:00" replayWindow="00:05:00"
 inactivityTimeout="00:02:00"
 sessionKeyRenewalInterval="15:00:00"
 sessionKeyRolloverInterval="00:05:00"
 reconnectTransportOnFailure="true"
 maxPendingSessions="128"
 maxCachedCookies="1000"
 timestampValidityDuration="00:05:00" />
 <secureConversationBootstrap />
 </security>
 <!--Added by User: End-->
 <textMessageEncoding maxReadPoolSize="64"
 maxWritePoolSize="16"
 messageVersion="Soap12" writeEncoding="utf-8">
 <readerQuotas maxDepth="32" maxStringContentLength="8192"
 maxArrayLength="16384"
 maxBytesPerRead="4096" maxNameTableCharCount="16384" />
 </textMessageEncoding>
 <!--Added by User: Begin-->
 <httpTransport manualAddressing="false"
 maxBufferPoolSize="524288"
 maxReceivedMessageSize="65536" allowCookies="false"
 authenticationScheme="Anonymous"
 bypassProxyOnLocal="false"
 hostNameComparisonMode="StrongWildcard"
 keepAliveEnabled="true" maxBufferSize="65536"
 proxyAuthenticationScheme="Anonymous"
 realm="" transferMode="Buffered"
 unsafeConnectionNtlmAuthentication="false"
 useDefaultWebProxy="true" />
 <!--Added by User: End-->
 </binding>
</customBinding>

Kerberos with SPNEGO Negotiation

Interoperability with Microsoft WCF/.NET 3.5 Security Environments 5-29

5.8 Kerberos with SPNEGO Negotiation
This section describes how to implement Kerberos with SPNEGO negotiation in the
following interoperability scenario:

■ Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client

5.8.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client
The following instructions tell how to configure an OWSM 12c web service and a
Microsoft WCF/.NET 3.5 client to implement Kerberos with SPNEGO negotiation.

To Configure the OWSM 12c Web Service:

1. Create and deploy a web service application.

2. Create a policy that uses the http_spnego_token_service_template assertion
template.

For more information, see Configuring Kerberos With SPNEGO Negotiation" in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

3. Attach the policy to the web service.

To Configure the Microsoft WCF/.NET 3.5 Client:

1. Use the Microsoft SvcUtil utility to create a client proxy and configuration file
from the deployed web service.

For more information, see
http://msdn.microsoft.com/en-us/library/aa347733%28v=vs.90%29.aspx.

2. Add the files generatedProxy.cs and app.config by right clicking the application
(in the Windows Explorer) and selecting Add Existing Item.

3. Edit the app.config file as shown in Example 5–12, "app.config File".

In this listing, note that the values of the contract and name attributes of the
endpoint element are obtained from the generatedProxy.cs file.

4. Compile the client.

5. After attaching the OWSM policy to the deployed web service, run the client.

See the following app.config file sample:

<configuration>
 <system.serviceModel>
 <bindings>
 <basicHttpBinding>
 <binding name="BPELProcessBinding">
 <security mode= "TransportCredentialOnly">
 <transport clientCredentialType="Windows"/>
 </security>
 </binding>
 </basicHttpBinding>
 </bindings>
 <client>
 <endpoint
 address="http://host:port/soa-infra/services/default/SOAProxy/bpelpro
cess_client_ep"
 binding="basicHttpBinding"
 bindingConfiguration="BPELProcessBinding"
 contract="BPELProcess" name="BPELProcess_pt"
 <identity>

Kerberos with SPNEGO Negotiation and Credential Delegation

5-30 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

 <servicePrincipalName value ="HTTP/host:port@MYCOMPANY.LOCAL" />
 </identity>
 </endpoint>
 </client>
 </system.serviceModel>
</configuration>

5.9 Kerberos with SPNEGO Negotiation and Credential Delegation
This section describes how to implement Kerberos with SPNEGO negotiation and
credential delegation in the following interoperability scenario:

■ Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client

5.9.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client
The following instructions tell how to configure an OWSM 12c web service and a
Microsoft WCF/.NET 3.5 client to implement Kerberos with SPNEGO negotiation and
credential delegation.

To Configure the OWSM 12c Web Service:

1. Create and deploy a web service application.

2. Create a policy that uses the http_spnego_token_service_template assertion
template.

For more information, see "Configuring Kerberos With SPNEGO Negotiation" in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

3. Attach the policy to the web service.

4. Set the value of the credential.delegation configuration setting to true.

You can specify this information when attaching the policy, by overriding the
policy configuration.

For more information, see "Overriding Policy Configuration Properties" in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

To Configure the Microsoft WCF/.NET 3.5 Client:

1. Use the Microsoft SvcUtil utility to create a client proxy and configuration file
from the deployed web service.

For more information, see
http://msdn.microsoft.com/en-us/library/aa347733%28v=vs.90%29.aspx.

2. Add the files generatedProxy.cs and app.config by right clicking the application
(in the Windows Explorer) and selecting Add Existing Item.

3. Edit the app.config file as shown in Example 5–13, "app.config File".

In the example, note that the values of the contract and name attributes of the
endpoint element are obtained from the generatedProxy.cs file.

4. Compile the client.

5. After attaching the OWSM policy to the deployed web service, run the client.

See the following app.config file sample:

<configuration>
 <system.serviceModel>

WCF/.NET 3.5 Client with Microsoft Active Directory Federation Services 2.0 (ADFS 2.0) STS

Interoperability with Microsoft WCF/.NET 3.5 Security Environments 5-31

 <bindings>
 <basicHttpBinding>
 <binding name="BPELProcess1Binding">
 <security mode= "TransportCredentialOnly">
 <transport clientCredentialType="Windows"/>
 </security>
 </binding>
 </basicHttpBinding>
 </bindings>
 <client>
 <endpoint
 address="http://host:port/soa-infra/services/default/SOAProxy/bpelpro
cess1_client_ep"
 binding="basicHttpBinding"
 bindingConfiguration="BPELProcess1Binding"
 contract="BPELProcess1" name="BPELProcess1_pt"
 behaviorConfiguration="CredentialDelegation">
 <identity>
 <servicePrincipalName value ="HTTP/host:port@MYCOMPANY.LOCAL" />
 </identity>
 </endpoint>
 </client>
 <behaviors>
 <endpointBehaviors>
 <behavior name="CredentialDelegation">
 <clientCredentials>
 <windows allowedImpersonationLevel="Delegation"
 allowNtlm="false"/>
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

5.10 WCF/.NET 3.5 Client with Microsoft Active Directory Federation
Services 2.0 (ADFS 2.0) STS

This section tells how to secure a WCF/.NET 3.5 client with Microsoft Active Directory
Federation Services 2.0 (ADFS 2.0) secure token service (STS), using a policy utilizing
SAML bearer token over one-way SSL.

Note: The SAML sender vouches token is not supported in this use
case.

The procedure described in this section assumes that you install and configure ADFS
2.0 on a Windows Server 2008 or Windows Server 2008 R2 system. This system is set
up in the STS role.

The section includes the following topics:

■ Section 5.10.1, "Install and Configure Active Directory Federation Services (ADFS)
2.0"

■ Section 5.10.2, "Configure ADFS 2.0 STS As Trusted SAML Token Issuer"

■ Section 5.10.3, "Configure Users in Oracle Internet Directory"

WCF/.NET 3.5 Client with Microsoft Active Directory Federation Services 2.0 (ADFS 2.0) STS

5-32 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

■ Section 5.10.4, "Attach the Policy"

■ Section 5.10.5, "Register the Web Service as a Relying Party in ADFS 2.0"

■ Section 5.10.6, "Secure WCF/.NET 3.5 Client with ADFS 2.0"

5.10.1 Install and Configure Active Directory Federation Services (ADFS) 2.0
The following instructions tell how to install and configure ADFS 2.0:

To Install and Configure Active Directory Federation Services (ADFS) 2.0:

1. Install and configure Active Directory.

For more information, see
http://technet.microsoft.com/en-us/windowsserver.

2. Install ADFS 2.0 and configure it using the wizard.

As you configure ADFS 2.0 using the wizard, on the Server Role page be sure to
click Federation server.

For more information, see
http://technet.microsoft.com/en-us/windowsserver/dd448613.

For download information, see
http://go.microsoft.com/fwlink/?linkid=151338.

3. Create and configure a self-signed server authentication certificate in IIS and bind
it to the default Web site using the Internet Information Services (IIS) Manager
console. When done, enable SSL server authentication.

The AD FS 2.0 Setup Wizard automatically installed the Web server (IIS) server
role on the system.

Creating a self-signed server authentication certificate is described generally in
http://technet.microsoft.com/en-us/library/cc771041%28v=ws.10%29.aspx.
The steps in this section provides use case-specific information.

a. Open the Internet Information Services (IIS) Manager console.

b. On the Start menu, click All Programs, point to Administrative Tools, and
then click Internet Information Services (IIS) Manager.

c. In the console tree, click the root node that contains the name of the system,
and then, in the details pane, double-click the icon named Server Certificates
in the IIS grouping.

d. In the Actions pane, click Create Self-Signed Certificate.

e. In the console tree, click Default Web Site.

f. In the Actions pane, click Bindings.

g. In the Site Bindings dialog box, click Add.

h. In the Add Site Binding dialog box, select https in the Type drop-down list.
Select the certificate you just created in the SSL certificate drop-down list, click
OK, and then click Close.

i. Close the Internet Information Services (IIS) Manager console. Enable SSL
Server Authentication.

4. Configure the system as a standalone federation server.

For more information, see
http://technet.microsoft.com/en-us/library/ee913579%28v=ws.10%29.aspx.

WCF/.NET 3.5 Client with Microsoft Active Directory Federation Services 2.0 (ADFS 2.0) STS

Interoperability with Microsoft WCF/.NET 3.5 Security Environments 5-33

5. Export the ADFS 2.0 token-signing certificate.

For a self-signed certificate, select DER encoded binary X.509 (.cer).

If the signing certificate is not self-signed, select Cryptographic Message Syntax
Standard – PKCS 7 certificates (.p7b) and check Include all the certificates in the
certification path if possible.

For more information, see
http://technet.microsoft.com/en-us/library/dd378922%28v=ws.10%29.aspx#B
KMK_4.

6. Create users and include an email address. You later enable the STS to send the
email address as the subject name id in the outgoing SAML assertions for the
service.

Follow these steps to add a sample user to Active Directory. Make sure to set the
email address for each user.

a. Log in to the system with domain administrator credentials.

b. Click Start, click Administrative Tools, and then click Active Directory Users
and Computers.

c. In the console tree, right-click the Users folder. Click New, and then click User.

d. On the New Object – User page, add the user, and then click Next.

e. Provide a password, clear the User must change password at next logon
check box, and then click Next.

f. Click Finish.

g. In the right-most pane of Active Directory Users and Computers, right-click
the new user object, and then click Properties.

h. On the General tab, in the E-mail box, type the email address of the user, and
then click OK.

5.10.2 Configure ADFS 2.0 STS As Trusted SAML Token Issuer
The following instructions tell how to configure OWSM to trust the SAML assertions
issued by an ADFS 2.0 STS.

To Configure ADFS 2.0 STS As Trusted SAML Token Issuer:

1. Get the STS signing certificates you exported in Table 5–28, " Install and Configure
Active Directory Federation Services (ADFS) 2.0".

For a .p7b file for a certificate chain, open the file in IE and copy each certificate in
the chain in a .cer file.

2. Import the certificates into the location of the default keystore using keytool.

keytool –importcert –file <sts-signing-certs-file> –trustcacerts –alias
<alias> –keystore default-keystore.jks

3. Add http://domain-name/adfs/services/trust as a SAML trusted issuer.

For more information, see "Configuring SAML Trusted Issuers and DN Lists" in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

4. Add the Subject DN (as defined in RFC 2253) of the STS certificate in the Trusted
STS Servers section. Use a string that conforms to RFC 2253, such as CN=abc. You
can use the mechanism of your choice, such as keytool, to view the certificate and
determine the Subject DN.

WCF/.NET 3.5 Client with Microsoft Active Directory Federation Services 2.0 (ADFS 2.0) STS

5-34 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

For more information, see "Configuring SAML Trusted Issuers and DN Lists" in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

5.10.3 Configure Users in Oracle Internet Directory
For each user, configure the mail attribute to match the user email address set in
ADFS.

See Managing Directory Entries for Creating a User in Oracle Fusion Middleware
Administrator's Guide for Oracle Internet Directory for information on configuring users
in Oracle Internet Directory.

5.10.4 Attach the Policy
Attach any of the following OWSM policies to the web service:

■ oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_policy

■ oracle/wss_saml_token_bearer_over_ssl_service_policy

■ oracle/wss11_saml_or_username_token_with_message_protection_service_polic
y

These policies enforce message protection (integrity and confidentiality) and
SAML-based authentication using credentials provided in SAML tokens with the
bearer confirmation method in the WS-Security SOAP header. They also verify that the
transport protocol provides SSL message protection.

See "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web
Services Manager for information on attaching policies.

5.10.5 Register the Web Service as a Relying Party in ADFS 2.0
Configure ADFS 2.0 to issue the SAML assertion to the web service with the email
address or the name ID (SAM-Account-Name) as the subject name id.

See http://technet.microsoft.com/en-us/library/dd807108%28v=ws.10%29.aspx
for general information on relying parties.

This section provides use case-specific information.

To add the Web Service as a Relying Party:

1. In the AD FS 2.0 Management console, click AD FS 2.0.

2. In the details pane, click Add a trusted relying party to start the Add Relying
Party Wizard.

3. On the Welcome page, click Start to begin.

4. Select Enter data about the relying party manually.

5. Provide a display name and enter any notes you want.

6. Select ADFS 2.0 Profile.

7. On the Configure Certificate page, click Next.

Configuring a token encryption certificate on this page is optional. Configure one
on this page if you require that the token be encrypted. If you do not configure a
token encryption certificate, the token issued by STS is not encrypted for the
service.

8. WS-Trust is always enabled. Click Next.

WCF/.NET 3.5 Client with Microsoft Active Directory Federation Services 2.0 (ADFS 2.0) STS

Interoperability with Microsoft WCF/.NET 3.5 Security Environments 5-35

9. For the Relying Party Trust Identifier, enter the service URL and click Add.

10. Permit all users to access this relying party.

11. Click Next and then Close.

5.10.5.1 Configure the Claim Rules for the Service
To enable the STS to send the email address or the name ID as the subject name id in
the outgoing SAML assertions for the service, use the steps in this section to create a
chain of two claim rules with different templates.

See http://technet.microsoft.com/en-us/library/ee913578%28v=ws.10%29.aspx
for general information on claim rules. See
http://technet.microsoft.com/en-us/library/dd807115%28v=ws.10%29.aspx to
create a rule to send LDAP attributes as claims.

This section provides use case-specific information.

1. Right-click on the Relying Party for the service and select Edit Claim Rules.

2. On the Issuance Transform Rules tab select Add Rule.

3. Select Send LDAP Attribute as Claims as the claim rule template to use.

4. Give the Claim a name, such as Get LDAP Attributes.

5. Set the Attribute Store to Active Directory, the LDAP Attribute to
E-Mail-Addresses, and the Outgoing Claim Type to E-mail Address.

If you want to instead use the name ID as the subject name ID, under LDAP
Attribute, select SAM-Account-Name.

6. Select Finish.

7. If you use the name ID as the subject name ID, click OK to close the property page
and save the changes to the relying party trust.

If you use the email address as the subject name ID, continue to add a rule.

8. Select Add Rule.

9. Select Transform an Incoming Claim as the claim rule template to use.

10. Give it a name, such as Email to Name ID.

11. Set the Incoming claim type as E-mail Address. (It must match the Outgoing Claim
Type in the previous rule.)

12. Set the Outgoing claim type as Name ID and the Outgoing name ID format as
Email (urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress).

13. Pass through all claim values and click Finish.

14. Click OK to close the property page and save the changes to the relying party
trust.

5.10.6 Secure WCF/.NET 3.5 Client with ADFS 2.0
Perform the following steps to secure WCF/.NET 3.5 Client with ADFS 2.0:

1. Install .NET 3.5 and Microsoft Visual Studio 2008.

2. Import the SSL server certificates for STS and the service into Windows.

WCF/.NET 3.5 Client with Microsoft Active Directory Federation Services 2.0 (ADFS 2.0) STS

5-36 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

If the SSL server certificate for STS or the service is not issued from a trusted CA,
or self-signed, then it needs to be imported with MMC tool, as described in
Table 5–18, " Configuration Prerequisites for Interoperability".

3. Create and Configure the WCF Client.

ADFS 2.0 STS supports multiple security and authentication mechanisms for token
insurance. Each is exposed as a separate endpoint. For username/password
authentication, two endpoints are provided:

■ http://<adfs.domain>/adfs/services/trust/13/username — This endpoint
is for username token with message protection.

■ https://<adfs.domain>/adfs/services/trust/13/usernamemixed — This
endpoint is for username token with transport protection (SSL).

The WCF client uses the
https://<adfs.domain>/adfs/services/trust/13/usernamemixed endpoint for
username token on SSL to obtain the SAML bearer token for the service.

a. Generate the WCF Client with the service WSDL.

See http://msdn.microsoft.com/en-us/library/ms733133(v=vs.90) for
information on creating a Windows Communication Foundation client.

b. Configure the client with ws2007FederationHttpBinding:

In the Solution Explorer of the client project, add a reference by right-clicking
on references, selecting Add reference, and browsing to
C:\Windows\Microsoft.NET\framework\v3.0\Windows Communication
Foundation\System.Runtime.Serialization.dll.

Edit the app.config file. (See
http://msdn.microsoft.com/en-us/library/bb472490.aspx for information
on WS 2007 Federation HTTP Binding.) Consider the following sample:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.serviceModel>
 <behaviors>
 <endpointBehaviors>
 <behavior name="secureBehaviour">
 <clientCredentials>
 <serviceCertificate>
 <defaultCertificate findValue="weblogic"
 storeLocation="LocalMachine"
 storeName="My"
 x509FindType="FindBySubjectName"/>
 </serviceCertificate>
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 <bindings>
 <ws2007FederationHttpBinding>
 <binding
name="JaxWsWss11SamlOrUsernameOrSamlBearerOverSSLSoapHttp">
 <security mode="TransportWithMessageCredential">
 <message negotiateServiceCredential="false"
 algorithmSuite="Basic128"
 issuedTokenType
="http://docs.oasis-open.org/wss/oasis-wss-saml-token-

WCF/.NET 3.5 Client with Microsoft Active Directory Federation Services 2.0 (ADFS 2.0) STS

Interoperability with Microsoft WCF/.NET 3.5 Security Environments 5-37

profile-1.1#SAMLV1.1"
 issuedKeyType="BearerKey">
 <issuer address
="https://domain-name/adfs/services/trust/13/usernamemixed"
 binding ="ws2007HttpBinding"

bindingConfiguration="ADFSUsernameMixed"/>
 </message>
 </security>
 </binding>
 </ws2007FederationHttpBinding>
 <ws2007HttpBinding>
 <binding name="ADFSUsernameMixed">
 <security mode="TransportWithMessageCredential">
 <message clientCredentialType="UserName"
establishSecurityContext="false" />
 </security>
 </binding>
 </ws2007HttpBinding>
 </bindings>
 <client>
 <endpoint

address="https://adc2170989:8002/JaxWsWss11SamlOrUsernameOrSamlBearerOverSS
L/JaxWsWss11Sam

lOrUsernameOrSamlBearerOverSSLService"
 binding="ws2007FederationHttpBinding"

bindingConfiguration="JaxWsWss11SamlOrUsernameOrSamlBearerOverSSLSoapHttp"
 contract="JaxWsWss11SamlOrUsernameOrSamlBearerOverSSL"

name="JaxWsWss11SamlOrUsernameOrSamlBearerOverSSLPort">
 <identity>
 <dns value="weblogic" />
 </identity>
 </endpoint>
 </client>
 </system.serviceModel>
</configuration>

c. Edit the program.cs file to make the service call.

If not already present, create a .cs file in the project and name it program.cs
(or any name of your choice.) Edit it to match the following:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.ServiceModel;

namespace Client
{
 class Program
 {
 static void Main(string[] args)
 {
 JaxWsWss11SamlOrUsernameOrSamlBearerOverSSLClient client =
 New JaxWsWss11SamlOrUsernameOrSamlBearerOverSSLClient();

WCF/.NET 3.5 Client with Microsoft Active Directory Federation Services 2.0 (ADFS 2.0) STS

5-38 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

 client.ClientCredentials.UserName.UserName = "joe";
 client.ClientCredentials.UserName.Password = "eoj";

System.Net.ServicePointManager.ServerCertificateValidationCallback =
 ((sender, certificate, chain, sslPolicyErrors) => true);

 Console.WriteLine(client.echo("Hello"));
 Console.Read();
 }

 }
}
In this sample program.cs file:

 joe is the username and eoj is the password used by the client to authenticate
to the STS.

System.Net.ServicePointManager.ServerCertificateValidationCallback
= ((sender, certificate, chain, sslPolicyErrors) => true); has been
added to validate the server side self-signed certificate. This is not required if
the server certificate is issued by a trusted CA. If using a self-signed certificate
for testing, add this method to validate the certificate on the client side.

6

Interoperability with Microsoft WCF/.NET 4.5 Security Environments 6-1

6Interoperability with Microsoft WCF/.NET 4.5
Security Environments

[7] This chapter describes interoperability of Oracle Web Services Manager (OWSM) with
Microsoft WCF/.NET 4.5 security environments.

This chapter includes the following sections:

■ Overview of Interoperability with Microsoft WCF/.NET 4.5 Security
Environments

■ Message Transmission Optimization Mechanism (MTOM)

■ Username Token With Message Protection (WS-Security 1.1)

■ Username Token Over SSL

■ Mutual Authentication with Message Protection (WS-Security 1.1)

■ Kerberos with Message Protection

■ Kerberos with Message Protection Using Derived Keys

■ Kerberos with SPNEGO Negotiation

■ Kerberos with SPNEGO Negotiation and Credential Delegation

■ WCF/.NET 4.5 Client with Microsoft Active Directory Federation Services 2.0
(ADFS 2.0) STS

6.1 Overview of Interoperability with Microsoft WCF/.NET 4.5 Security
Environments

Oracle has performed interoperability testing to ensure that the web service security
policies created using OWSM 12c can interoperate with web service policies
configured using Microsoft Windows Communication Foundation (WCF)/.NET 4.5
Framework and vice versa.

For more information about the Microsoft .NET 4.5 (and earlier) Framework, see ".NET
Development" at
http://msdn.microsoft.com/en-us/library/ff361664%28v=vs.110%29.aspx.

For more information about:

■ OWSM predefined policies, see "Predefined Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

■ Configuring and attaching OWSM 12c policies, see "Securing Web Services" and
"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web
Services Manager.

Note: In most cases, you can attach OWSM policies in source code,
before deploying an application, or you can attach policies post
deployment, using WLST or Fusion Middleware Control. To simplify
the instructions in this chapter, it is assumed that you are attaching
policies post deployment. If a situation requires that you attach a
policy before deploying, it is described that way in the instructions.

Note: Some of the procedures described in this chapter instruct you
to use the Microsoft ServiceModel Metadata Utility Tool
(SvcUtil.exe) to create a client proxy and configuration file from the
deployed web service. However, SvcUtil.exe does not work with
certain security policy assertions used with OWSM. As a workaround
when generating a WCF proxy for a web service protected by an
OWSM policy, do the following:

■ Detach the policy.

■ Generate the proxy using SvcUtil.exe.

■ Re-attach the policy.

For more information about SvcUtil.exe, see
http://msdn.microsoft.com/en-us/library/aa347733%28v=vs.110%
29.aspx.

Overview of Interoperability with Microsoft WCF/.NET 4.5 Security Environments

6-2 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

Table 6–1 and Table 6–2 summarize the most common Microsoft .NET 4.5
interoperability scenarios based on the following security requirements:
authentication, message protection, and transport.

Note: In the following scenarios, ensure that you are using a
keystore with v3 certificates. By default, the JDK 1.5 keytool generates
keystores with v1 certificates.

In addition, ensure that the keys use the proper extensions, including
DigitalSignature, Non_repudiation, Key_Encipherment, and
Data_Encipherment.

Table 6–1 OWSM 12c Service Policy and Microsoft WCF/.NET 4.5 Client Policy Interoperability

Identity Token
WS-Security
Version

Message
Protection

Transport
Security Service Policy Client Policy

MTOM NA NA NA oracle/wsmtom_policy See Table 6–4,
" Configuring the
Microsoft WCF/.NET 4.5
Client" on page 6-4

Username or SAML 1.1 Yes No oracle/wss11_usernam
e_token_with_message
_protection_service_
policy

OR

oracle/wss11_saml_or
_username_token_with
_message_protection_
service_policy

See Table 6–8,
" Configuring the
Microsoft WCF/.NET 4.5
Client" on page 9,
Table 6–3, " Configuring
the Microsoft WCF/.NET
4.5 Client" on page 15,
and

 Section 6.10.6, "Step 6:
Secure WCF/.NET 4.5
Client with ADFS 2.0," on
page 6-34.

Username 1.0 and 1.1 No Yes oracle/wss_saml_or_u
sername_token_over_s
sl_service_policy

OR

oracle/wss_username_
token_over_ssl_servi
ce_policy

See Table 6–3,
" Configuring the
Microsoft WCF/.NET 4.5
Client" on page 6-15

Mutual
Authentication

1.1 Yes No oracle/wss11_x509_to
ken_with_message_pro
tection_service_poli
cy

See Table 6–5,
" Configuring the
Microsoft WCF/.NET 4.5
Client" on page 6-19

Kerberos 1.1 Yes No oracle/wss11_kerbero
s_token_with_message
_protection_service_
policy

See Table 6–9,
" Configuring the
Microsoft WCF/.NET 4.5
Client" on page 6-24

SAML Bearer 1.0 No Yes oracle/wss_sts_issue
d_saml_bearer_token_
over_ssl_service_pol
icy

OR

oracle/wss_saml_toke
n_bearer_over_ssl_se
rvice_policy

See Section 6.10.6, "Step 6:
Secure WCF/.NET 4.5
Client with ADFS 2.0," on
page 6-34

Overview of Interoperability with Microsoft WCF/.NET 4.5 Security Environments

Interoperability with Microsoft WCF/.NET 4.5 Security Environments 6-3

Table 6–2 Microsoft WCF/.NET 4.5 Service Policy and OWSM 12c Client Policy Interoperability

Identity Token
WS-Security
Version

Message
Protection

Transport
Security Service Policy Client Policy

MTOM NA NA NA See Table 6–5,
" Configuring the
Microsoft WCF/.NET
4.5 Web Service" on
page 6-5

oracle/wsmtom_policy

Message Transmission Optimization Mechanism (MTOM)

6-4 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

6.2 Message Transmission Optimization Mechanism (MTOM)
This section describes how to implement MTOM in the following interoperability
scenarios:

■ Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client

■ Configuring a Microsoft WCF/.NET 4.5 Web Service and an OWSM 12c Client

6.2.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client
The following instructions tell how to configure an OWSM 12c web service and a
Microsoft WCF/.NET 4.5 Client to implement Message Transmission Optimization
Mechanism (MTOM).

To Configure the OWSM 12c Web Service:

1. Create and deploy a web service application.

For more information, see "Deploying Web Service Applications" in Administering
Web Services.

2. Attach the following policy to the web service: oracle/wsmtom_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

To Configure the Microsoft WCF/.NET 4.5 Client:

1. Use the Microsoft SvcUtil utility to create a client proxy and configuration file
from the deployed web service. See Example 6–1, "app.config File for MTOM
Interoperability".

For more information, see "ServiceModel Metadata Utility Tool (Svcutil.exe)" at
http://msdn.microsoft.com/en-us/library/aa347733%28v=vs.110%29.aspx.

2. Run the client program.

See the following app.config File for MTOM Interoperability sample:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.serviceModel>
 <bindings>
 <customBinding>

Username 1.1 Yes No See Table 6–9,
" Configuring the
Microsoft WCF/.NET
4.5 Web Service" on
page 6-11

oracle/wss11_username_
token_with_message_pro
tection_client_policy

Username Token
Over SSL

1.0 No Yes See Table 6–4,
" Configuring the
Microsoft WCF/.NET
4.5 Web Service" on
page 6-16

oracle/wss_username_to
ken_over_ssl_client_po
licy

Mutual
Authentication

1.1 Yes No See Table 6–6,
" Configuring the
Microsoft WCF/.NET
4.5 Web Service" on
page 6-21

oracle/wss11_x509_toke
n_with_message_protect
ion_client_policy

Table 6–2 (Cont.) Microsoft WCF/.NET 4.5 Service Policy and OWSM 12c Client Policy Interoperability

Identity Token
WS-Security
Version

Message
Protection

Transport
Security Service Policy Client Policy

Message Transmission Optimization Mechanism (MTOM)

Interoperability with Microsoft WCF/.NET 4.5 Security Environments 6-5

 <binding name="CustomBinding_IMTOMService">
 <mtomMessageEncoding maxReadPoolSize="64"
 maxWritePoolSize="16"
 messageVersion="Soap12" maxBufferSize="65536"
 writeEncoding="utf-8">
 <readerQuotas maxDepth="32" maxStringContentLength=
 "8192" maxArrayLength="16384"
 maxBytesPerRead="4096"
maxNameTableCharCount="16384" />
 </mtomMessageEncoding>
 <httpTransport manualAddressing="false"
maxBufferPoolSize="524288"
 maxReceivedMessageSize="65536" allowCookies="false"
 authenticationScheme="Anonymous"
 bypassProxyOnLocal="false"
hostNameComparisonMode="StrongWildcard"
 keepAliveEnabled="true" maxBufferSize="65536"
 proxyAuthenticationScheme="Anonymous"
 realm="" transferMode="Buffered"
 unsafeConnectionNtlmAuthentication="false"
 useDefaultWebProxy="true" />
 </binding>
 </customBinding>
 </bindings>
 <client>
 <endpoint address="<endpoint_url>"
 binding="customBinding"
bindingConfiguration="CustomBinding_IMTOMService"
 contract="IMTOMService" name="CustomBinding_IMTOMService" >
 </endpoint>
 </client>
 </system.serviceModel>
</configuration>

6.2.2 Configuring a Microsoft WCF/.NET 4.5 Web Service and an OWSM 12c Client
The following instructions tell how to configure a Microsoft WCF/.NET 4.5 web
service and an OWSM 12c client to implement Message Transmission Optimization
Mechanism (MTOM).

To Configure the Microsoft WCF/.NET 4.5 Web Service:

1. Create a .NET web service.

For an example, see Example 6–2, ".NET Web Service for MTOM Interoperability".
For more information, see "How to: Define a Windows Communication
Foundation Service Contract" at
http://msdn.microsoft.com/en-us/library/ms731835.aspx.

2. Deploy the application.

See the following .NET Web Service for MTOM Interoperability sample:

static void Main(string[] args)
{
 string uri = "http://host:port/TEST/MTOMService/SOA/MTOMService";
 // Step 1 of the address configuration procedure: Create a URI to serve as
the base address.
 Uri baseAddress = new Uri(uri);

Message Transmission Optimization Mechanism (MTOM)

6-6 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

 // Step 2 of the hosting procedure: Create ServiceHost
 ServiceHost selfHost = new ServiceHost(typeof(MTOMService), baseAddress);

 try {
 HttpTransportBindingElement hb = new HttpTransportBindingElement();
 hb.ManualAddressing = false;
 hb.MaxBufferPoolSize = 2147483647;
 hb.MaxReceivedMessageSize = 2147483647;
 hb.AllowCookies = false;
 hb.AuthenticationScheme = System.Net.AuthenticationSchemes.Anonymous;
 hb.KeepAliveEnabled = true;
 hb.MaxBufferSize = 2147483647;
 hb.ProxyAuthenticationScheme =
System.Net.AuthenticationSchemes.Anonymous;
 hb.Realm = "";
 hb.TransferMode = System.ServiceModel.TransferMode.Buffered;
 hb.UnsafeConnectionNtlmAuthentication = false;
 hb.UseDefaultWebProxy = true;
 MtomMessageEncodingBindingElement me = new
MtomMessageEncodingBindingElement();
 me.MaxReadPoolSize=64;
 me.MaxWritePoolSize=16;
 me.MessageVersion=System.ServiceModel.Channels.MessageVersion.Soap12;
 me.WriteEncoding = System.Text.Encoding.UTF8;
 me.MaxWritePoolSize = 2147483647;
 me.MaxBufferSize = 2147483647;
 me.ReaderQuotas.MaxArrayLength = 2147483647;
 CustomBinding binding1 = new CustomBinding();
 binding1.Elements.Add(me);
 binding1.Elements.Add(hb);
 ServiceEndpoint ep = selfHost.AddServiceEndpoint(typeof(IMTOMService),
binding1,
 "MTOMService");
 EndpointAddress myEndpointAdd = new EndpointAddress(new Uri(uri),
 EndpointIdentity.CreateDnsIdentity("WSMCert3"));
 ep.Address = myEndpointAdd;

 // Step 4 of the hosting procedure: Enable metadata exchange.
 ServiceMetadataBehavior smb = new ServiceMetadataBehavior();
 smb.HttpGetEnabled = true;
 selfHost.Description.Behaviors.Add(smb);
 using (ServiceHost host = new ServiceHost(typeof(MTOMService)))
 {
 System.ServiceModel.Description.ServiceDescription svcDesc =
 selfHost.Description;
 ServiceDebugBehavior svcDebug =
 svcDesc.Behaviors.Find<ServiceDebugBehavior>();
 svcDebug.IncludeExceptionDetailInFaults = true;
 }

 // Step 5 of the hosting procedure: Start (and then stop) the service.
 selfHost.Open();
 Console.WriteLine("The service " + uri + " is ready.");
 Console.WriteLine("Press <ENTER> to terminate service.");
 Console.WriteLine();
 Console.ReadLine();
 // Close the ServiceHostBase to shutdown the service.
 selfHost.Close();
 }
 catch (CommunicationException ce)

Username Token With Message Protection (WS-Security 1.1)

Interoperability with Microsoft WCF/.NET 4.5 Security Environments 6-7

 {
 Console.WriteLine("An exception occurred: {0}", ce.Message);
 selfHost.Abort();
 }
}

To Configure the OWSM 12c Client:

1. Using JDeveloper, create a SOA composite that consumes the .NET web service.

For more information, see Developer's Guide for SOA Suite.

2. Attach the following policy to the web service client: oracle/wsmtom_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

6.3 Username Token With Message Protection (WS-Security 1.1)
This section describes how to implement username token with message protection that
conforms to the WS-Security 1.1 standard--with or without secure conversation
enabled--in the following interoperability scenarios:

■ Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client

■ Configuring a Microsoft WCF/.NET 4.5 Web Service and an OWSM 12c Client

6.3.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client
The following instructions tell how to configure an OWSM 12c web service and a
Microsoft WCF/.NET 4.5 client to implement username token with message protection
that conforms to the WS-Security 1.1 standard, both with and without secure
conversation enabled.

To Configure the OWSM 12c Web Service:

1. Create a SOAP 1.2 compliant web service application.

2. Select the policy to use based on whether or not you want to enable secure
conversation:

a. If you do not want to enable secure conversation, clone either of the
following policies:

oracle/wss11_saml_or_username_token_with_message_protection_service
_policy

oracle/wss11_username_token_with_message_protection_service_policy

Note: In the case of secure conversation not enabled, you will have to
set the establishSecurityContext property to false for the client, as
described in Table 6–8, " Configuring the Microsoft WCF/.NET 4.5
Client"

b. To enable secure conversation, clone the following policy:

oracle/wss11_username_token_with_message_protection_wssc_service_po
licy

For more information, see "Cloning a Web Service Policy" in Securing Web Services
and Managing Policies with Oracle Web Services Manager.

Username Token With Message Protection (WS-Security 1.1)

6-8 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

3. Edit the policy configuration settings of the cloned policy from step 2, above, as
follows:

a. Enable the X509 Token Derived Keys configuration setting.

b. Enable the Encrypt Signature configuration setting.

c. Disable the Confirm Signature configuration setting.

d. Leave the default configuration set for all other configuration settings.

Attach the policy to the web service. For more information, see "Attaching
Policies" in Securing Web Services and Managing Policies with Oracle Web Services
Manager.

4. Also attach the following policy:

oracle/wsaddr_policy

5. Export the X.509 certificate file from the keystore on the service side to a .cer file
(for example, alice.cer) using the following command:

keytool -export -alias alice -file C:\alice.cer -keystore default-keystore.jks

For more information, see "keytool - Key and Certificate Management Tool" at
http://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.ht
ml

To Configure the Microsoft WCF/.NET 4.5 Client:

1. Import the certificate file (exported previously) to the keystore on the client server
using Microsoft Management Console (mmc), as follows:

a. Open a command prompt.

b. Type mmc and press Enter.

c. Select File > Add/Remove snap-in.

d. Select Add and Choose Certificates.

Note: To view certificates in the local machine store, you must be in
the Administrator role.

e. Select Add.

f. Select My user account and finish.

g. Click OK.

h. Expand Console Root > Certificates -Current user > Personal > Certificates.

i. Right-click on Certificates and select All tasks > Import to launch Certificate
import Wizard.

j. Click Next, select Browse, and navigate to the .cer file that was exported
previously.

k. Click Next and accept defaults and finish the wizard.

For more information, see "How to: View Certificates with the MMC Snap-in" at
http://msdn.microsoft.com/en-us/library/ms788967.aspx

2. Generate a .NET client using the WSDL of the web service.

Note: You may have to set WS-Addressing action headers to prevent
the client from sending implicit wsa:Action headers, as described in
"Implicitly Associating WS-Addressing Action Properties" in
Developing JAX-WS Web Services for Oracle WebLogic Server.

Username Token With Message Protection (WS-Security 1.1)

Interoperability with Microsoft WCF/.NET 4.5 Security Environments 6-9

For more information, see "How to: Create a Windows Communication
Foundation Client" at
http://msdn.microsoft.com/en-us/library/ms733133(v=vs.110).aspx

3. Edit the app.config file in the .NET project to update the certificate file and
disable replays, as shown in Example 6–3. (Changes are identified in bold). If you
follow the default key setup, then <certificate_cn> should be set to alice.

4. The establishSecurityContext property in the app.config file must be set
according to whether you are enabling secure conversation.

By default, establishSecurityContext is set to true, enabling secure
conversation. If you are not enabling secure conversation, set
establishSecurityContext to false.

For example, see Example 6–3 (lines in bold italic).

5. Compile the project.

6. Open a command prompt and navigate to the project's Debug folder.

7. Enter <client_project_name>.exe and press Enter.

See the following app.config File for Implementing Username Token With Message Protection
(WS-Security 1.1) sample:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.serviceModel>
 <behaviors>
 <endpointBehaviors>
 <behavior name="secureBehaviour">
 <clientCredentials>
 <serviceCertificate>
 <defaultCertificate findValue="<certificate_cn>"
 storeLocation="CurrentUser" storeName="My"
 x509FindType="FindBySubjectName"/>
 </serviceCertificate>
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 <bindings>
 <ws2007HttpBinding>
 <binding
name="Wss11UsernameTokenWithMessageProtectionWSSCServicePortBinding" >
 <security mode="Message">
 <message clientCredentialType="UserName"
 negotiateServiceCredential="false"
 algorithmSuite="Basic128"
 establishSecurityContext="true" />
 <!-- extablishSecurityContext is true by default and therefore
does not
 have to be specified to enable secure conversation.
 Set establishSecurityContext to false if secure conversation is
not enabled -->

Username Token With Message Protection (WS-Security 1.1)

6-10 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

 </security>
 </binding>
 </ws2007HttpBinding>
 </bindings>
 <client>
 <endpoint
address="http://10.244.167.70:7003/OWSMTestApp-Project1-context-root/ws11_usern
ame_token_with_message_protection_wsscPort?wsdl"
 behaviorConfiguration="PMCert"
 binding="ws2007HttpBinding"

bindingConfiguration="Wss11UsernameTokenWithMessageProtectionWSSCServicePortBin
ding"

contract="ServiceReference1.ws11_username_token_with_message_protection_wssc"
 name="ws11_username_token_with_message_protection_wsscPort">
 <identity>
 <dns value="orakey" />
 </identity>
 </endpoint>
 </client>
 </system.serviceModel>
</configuration>

6.3.2 Configuring a Microsoft WCF/.NET 4.5 Web Service and an OWSM 12c Client
The following instructions tell how to configure a Microsoft WCF/.NET 4.5 web
service and an OWSM 12c client to implement username token with message
protection that conforms to the WS-Security 1.1 standard.

To Configure the Microsoft WCF/.NET 4.5 Web Service:

1. Create a .NET web service.

a. Create a custom binding for the web service using the
SymmetricSecurityBindingElement, as shown in Example 6–4. This example
shows a web service without secure conversation enabled.

To enable secure conversation, make the following adjustments to the code in the
example:

a. Create another SymmetricSecurityBindingElement element based on the one
created (sm), for example:

SymmetricSecurityBindingElement scsm =
SymmetricSecurityBindingElement.createSecureConversationBindingELement(sm,
false)

b. Create a new custom binding:

CustomBinding binding1 = new CustomBinding(scsm);
For more information, see "How to: Define a Windows Communication
Foundation Service Contract" at
http://msdn.microsoft.com/en-us/library/ms731835.aspx

2. Create and import a certificate file to the keystore on the web service server.

Using Microsoft Visual Studio, the command would be similar to the following:

makecert -r -pe -n "CN=wsmcert3" -sky exchange -ss my C:\wsmcert3.cer
This command creates and imports a certificate in mmc. If the command does not
provide expected results, then try the following sequence of commands. You need
to download Windows Developer Kit (WDK) at
http://www.microsoft.com/whdc/devtools/WDK/default.mspx

Username Token With Message Protection (WS-Security 1.1)

Interoperability with Microsoft WCF/.NET 4.5 Security Environments 6-11

makecert -r -pe -n "CN=wsmcert3" -sky exchange -ss my -sv wscert3.pvk
C:\wsmcert3.cer
pvk2pfx.exe -pvk wscert3.pvk -spc wsmcert3.cer -pfx PRF_WSMCert3.pfx -pi
welcome1
Then, in mmc, import PRF_WSMCert3.pfx.

3. Import the certificate created on the web service server to the client server using
the keytool command. For example:

keytool -import -alias wsmcert3 -file C:\wsmcert3.cer -keystore
<owsm_client_keystore>
For more information, see "keytool - Key and Certificate Management Tool" at
http://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.ht
ml

4. Right-click on the web service Solution project in Solutions Explorer and click
Open Folder In Windows Explorer.

5. Navigate to the bin/Debug folder.

6. Double-click the <project>.exe file. This command runs the web service at the
URL provided.

See the following .NET Web Service sample:

static void Main(string[] args)
{
 // Step 1 of the address configuration procedure: Create a URI to serve as
the
 // base address.
 // Step 2 of the hosting procedure: Create ServiceHost
 string uri = "http://host:port/TEST/NetService";
 Uri baseAddress = new Uri(uri);

 ServiceHost selfHost = new ServiceHost(typeof(CalculatorService),
baseAddress);

 try
 {
 SymmetricSecurityBindingElement sm =

SymmetricSecurityBindingElement.CreateUserNameForCertificateBindingElement();
 sm.DefaultAlgorithmSuite =
System.ServiceModel.Security.SecurityAlgorithmSuite.Basic128;
 sm.SetKeyDerivation(false);
 sm.SecurityHeaderLayout = SecurityHeaderLayout.Lax;
 sm.IncludeTimestamp = true;
 sm.KeyEntropyMode = SecurityKeyEntropyMode.CombinedEntropy;
 sm.MessageSecurityVersion =

MessageSecurityVersion.WSSecurity11WSTrustFebruary2005WSSecureConversationFebru
ary2005
 WSSecurityPolicy11BasicSecurityProfile10;
 sm.LocalClientSettings.CacheCookies = true;
 sm.LocalClientSettings.DetectReplays = true;
 sm.LocalClientSettings.ReplayCacheSize = 900000;
 sm.LocalClientSettings.MaxClockSkew = new TimeSpan(00, 05, 00);
 sm.LocalClientSettings.MaxCookieCachingTime = TimeSpan.MaxValue;
 sm.LocalClientSettings.ReplayWindow = new TimeSpan(00, 05, 00); ;
 sm.LocalClientSettings.SessionKeyRenewalInterval = new TimeSpan(10, 00,
00);
 sm.LocalClientSettings.SessionKeyRolloverInterval = new TimeSpan(00,

Username Token With Message Protection (WS-Security 1.1)

6-12 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

05, 00); ;
 sm.LocalClientSettings.ReconnectTransportOnFailure = true;
 sm.LocalClientSettings.TimestampValidityDuration = new TimeSpan(00, 05,
00); ;
 sm.LocalClientSettings.CookieRenewalThresholdPercentage = 60;
 sm.LocalServiceSettings.DetectReplays = false;
 sm.LocalServiceSettings.IssuedCookieLifetime = new TimeSpan(10, 00,
00);
 sm.LocalServiceSettings.MaxStatefulNegotiations = 128;
 sm.LocalServiceSettings.ReplayCacheSize = 900000;
 sm.LocalServiceSettings.MaxClockSkew = new TimeSpan(00, 05, 00);
 sm.LocalServiceSettings.NegotiationTimeout = new TimeSpan(00, 01, 00);
 sm.LocalServiceSettings.ReplayWindow = new TimeSpan(00, 05, 00);
 sm.LocalServiceSettings.InactivityTimeout = new TimeSpan(00, 02, 00);
 sm.LocalServiceSettings.SessionKeyRenewalInterval = new TimeSpan(15,
00, 00);
 sm.LocalServiceSettings.SessionKeyRolloverInterval = new TimeSpan(00,
05, 00);
 sm.LocalServiceSettings.ReconnectTransportOnFailure = true;
 sm.LocalServiceSettings.MaxPendingSessions = 128;
 sm.LocalServiceSettings.MaxCachedCookies = 1000;
 sm.LocalServiceSettings.TimestampValidityDuration = new TimeSpan(15,
00, 00);
 HttpTransportBindingElement hb = new HttpTransportBindingElement();
 hb.ManualAddressing = false;
 hb.MaxBufferPoolSize = 524288;
 hb.MaxReceivedMessageSize = 65536;
 hb.AllowCookies = false;
 hb.AuthenticationScheme = System.Net.AuthenticationSchemes.Anonymous;
 hb.KeepAliveEnabled = true;
 hb.MaxBufferSize = 65536;
 hb.ProxyAuthenticationScheme =
System.Net.AuthenticationSchemes.Anonymous;
 hb.Realm = "";
 hb.TransferMode = System.ServiceModel.TransferMode.Buffered;
 hb.UnsafeConnectionNtlmAuthentication = false;
 hb.UseDefaultWebProxy = true;
 TextMessageEncodingBindingElement tb1 = new
TextMessageEncodingBindingElement();
 tb1.MaxReadPoolSize = 64;
 tb1.MaxWritePoolSize = 16;
 tb1.MessageVersion =
System.ServiceModel.Channels.MessageVersion.Soap12;
 tb1.WriteEncoding = System.Text.Encoding.UTF8;
 CustomBinding binding1 = new CustomBinding(sm);
 binding1.Elements.Add(tb1);
 binding1.Elements.Add(hb);
 ServiceEndpoint ep = selfHost.AddServiceEndpoint(typeof(ICalculator),
binding1,
 "CalculatorService");

 EndpointAddress myEndpointAdd = new EndpointAddress(
 new Uri(uri),
 EndpointIdentity.CreateDnsIdentity("WSMCert3"));
 ep.Address = myEndpointAdd;

 // Step 4 of the hosting procedure: Enable metadata exchange.
 ServiceMetadataBehavior smb = new ServiceMetadataBehavior();
 smb.HttpGetEnabled = true;
 selfHost.Description.Behaviors.Add(smb);

Username Token With Message Protection (WS-Security 1.1)

Interoperability with Microsoft WCF/.NET 4.5 Security Environments 6-13

selfHost.Credentials.ServiceCertificate.SetCertificate(StoreLocation.CurrentUse
r,
 StoreName.My,
 X509FindType.FindBySubjectName, "WSMCert3");

selfHost.Credentials.ClientCertificate.Authentication.CertificateValidationMode
=
 X509CertificateValidationMode.PeerOrChainTrust;

selfHost.Credentials.UserNameAuthentication.UserNamePasswordValidationMode =
 UserNamePasswordValidationMode.Custom;
 CustomUserNameValidator cu = new CustomUserNameValidator();

selfHost.Credentials.UserNameAuthentication.CustomUserNamePasswordValidator =
cu;
 using (ServiceHost host = new ServiceHost(typeof(CalculatorService)))
 {
 System.ServiceModel.Description.ServiceDescription svcDesc =
selfHost.Description;
 ServiceDebugBehavior svcDebug =
svcDesc.Behaviors.Find<ServiceDebugBehavior>();
 svcDebug.IncludeExceptionDetailInFaults = true;
 }

 // Step 5 of the hosting procedure: Start (and then stop) the service.
 selfHost.Open();
 Console.WriteLine("The Calculator service is ready.");
 Console.WriteLine("Press <ENTER> to terminate service.");
 Console.WriteLine();
 Console.ReadLine();
 selfHost.Close();
 }
 catch (CommunicationException ce)
 {
 Console.WriteLine("An exception occurred: {0}", ce.Message);
 selfHost.Abort();
 }
}

To Configure the OWSM 12c Client:

1. Using JDeveloper, create a SOA composite that consumes the .NET web service.
For more information, see Developer's Guide for SOA Suite.

2. In JDeveloper, create a partner link using the WSDL of the .NET service.

3. Attach the following policy to the web service client:
oracle/wss11_username_token_with_message_protection_client_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

4. Provide configurations for the csf-key and keystore.recipient.alias.

You can specify this information when attaching the policy, by overriding the
policy configuration. For more information.

Ensure that you configure the keystore.recipient.alias as the alias of the
certificate imported in step 1 (wsmcert3). For example:

<wsp:PolicyReference
 URI="oracle/wss11_username_token_with_message_protection_client_policy"

Username Token Over SSL

6-14 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

 orawsp:category="security"
 orawsp:status="enabled"/>
 <property
 name="csf-key"
 type="xs:string"
 many="false">
 basic.credentials
 </property>
 <property
 name="keystore.recipient.alias"
 type="xs:string"
 many="false">
 wsmcert3
 </property>
For more information, see "Overriding Policy Configuration Properties" in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

6.4 Username Token Over SSL
This section describes how to implement username token over SSL in the following
interoperability scenario:

■ Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client

6.4.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client
The following instructions tell how to configure a OWSM 12c web service and a
Microsoft WCF/.NET 4.5 client to implement username token over SSL, both with and
without secure conversation enabled.

To Configure the OWSM 12c Web Service:

1. Configure the server for SSL.

For more information, see "Configuring Transport-Level Security (SSL)" in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

2. Create an OWSM web service.

3. Select the policy to use based on whether or not you want to enable secure
conversation:

If you do not want to enable secure conversation, attach any of the following
policies:

oracle/wss_username_token_over_ssl_service_policy

oracle/wss_saml_or_username_token_over_ssl_service_policy

oracle/wss11_saml_or_username_token_with_message_protection_service_policy

Note: In the case of secure conversation not enabled, you will have to
set the establishSecurityContext property to false for the client, as
described in Table 6–8, " Configuring the Microsoft WCF/.NET 4.5
Client"

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager and "Predefined Policies" in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

Username Token Over SSL

Interoperability with Microsoft WCF/.NET 4.5 Security Environments 6-15

4. Specify that addressing is to be used, as follows:

For an Oracle Infrastructure web service:

Attach the following policy:

oracle/wssaddr_policy

For a Java EE web service:

Only a subset of OWSM security policies are supported for Java EE web services
and clients, so you cannot attach oracle/wssaddr_policy to a Java EE web
service. Rather you must add addressing information using the @Addressing
annotation in the source code for the service, as shown in Example 6–5.

For more information, see the following:

■ "Attaching Policies" in Securing Web Services and Managing Policies with Oracle
Web Services Manager

■ "Which OWSM Policies Are Supported for Java EE Web Services and Clients?"
in Securing Web Services and Managing Policies with Oracle Web Services Manager

■ "Attaching Policies to Java EE Web Services and Clients at Design TIme" in
Securing Web Services and Managing Policies with Oracle Web Services Manager

See the following Java EE Web Service with Addressing sample:

package oracle.wsm.qa.wls.service.soap12;
import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebService;
import javax.xml.ws.BindingType;
import javax.xml.ws.soap.Addressing;
import javax.xml.ws.soap.SOAPBinding;
import weblogic.wsee.jws.jaxws.owsm.SecurityPolicy;
@WebService
@BindingType(SOAPBinding.SOAP12HTTP_BINDING)
@Addressing(enabled=true)
public class wss_username_token_over_ssl {
 public wss_username_token_over_ssl() {
 super();
 }
 @WebMethod
 public String sayHello(@WebParam(name = "arg0") String name){
 return "hello "+ name;
 }
}

To Configure the Microsoft WCF/.NET 4.5 Client:

1. Generate a .NET client using the WSDL of the web service.

For more information, see "How to: Create a Windows Communication
Foundation Client" at
http://msdn.microsoft.com/en-us/library/ms733133(v=vs.110).aspx

2. The establishSecurityContext property in the app.config file must be set
according to whether you are enabling secure conversation.

By default, establishSecurityContext is set to true, enabling secure
conversation. If you are not enabling secure conversation, set
establishSecurityContext to false.

For example, see Example 6–6 (lines in bold italic).

Username Token Over SSL

6-16 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

3. Compile the project.

4. Open a command prompt and navigate to the project's Debug folder.

5. Type <client_project_name>.exe and press Enter.

See the following app.config file sample:

<configuration>
 <system.serviceModel>
 <bindings>
 <ws2007HttpBinding>
 <binding name="wss_username_over_ssl_client">
 <security mode="TransportWithMessageCredential">
 <transport clientCredentialType="None" />
 <message clientCredentialType="UserName"
 negotiateServiceCredential="false"
 establishSecurityContext="true" />
 <!-- extablishSecurityContext is true by default and therefore
does not
 have to be specified to enable secure conversation.
 Set establishSecurityContext to false if secure conversation is
not enabled -->
 </security>
 </binding>
 </ws2007HttpBinding>
 </bindings>
 <client>
 <endpoint
address="https://10.244.167.70:7004/OWSMTestApp-Project1-context-root/wss_usern
ame_token_over_sslPort"
 binding="ws2007HttpBinding"
 bindingConfiguration="wss_username_over_ssl_client"
 contract="ServiceReference1.wss_username_token_over_ssl"
 name="wss_username_token_over_sslPort" />
 </client>
 </system.serviceModel>
</configuration>

6.4.2 Configuring a Microsoft WCF/.NET 4.5 Web Service and an OWSM 12c Client
The following instructions tell how to configure a Microsoft WCF/.NET 4.5 web
service and an OWSM 12c client to implement username token over SSL.

Configuring the Microsoft WCF/.NET 4.5 Web Service:

1. Configure the server for SSL.

For more information, see "Configuring Transport-Level Security (SSL)" in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

2. Create a .NET web service.

a. Create a custom binding for the web service using the
SecurityBindingElement, as shown in Example 6–7. This example shows a
web service without secure conversation enabled.

To enable secure conversation, make the following adjustments to the code in the
example:

a. Create another SecurityBindingElement element based on the one created
(sm), for example:

SecurityBindingElement scsm =

Username Token Over SSL

Interoperability with Microsoft WCF/.NET 4.5 Security Environments 6-17

SecurityBindingElement.createSecureConversationBindingElement(sm)
b. Create the custom binding with scsm:

CustomBinding binding1 = new CustomBinding(scsm);
For more information, see "How to: Define a Windows Communication
Foundation Service Contract" at
http://msdn.microsoft.com/en-us/library/ms731835.aspx

See the following .NET Web Service sample:

static void Main(string[] args)
{
 // Step 1 of the address configuration procedure: Create a URI to serve as
the
 // base address.
 // Step 2 of the hosting procedure: Create ServiceHost
 string uri = "http://host:port/TEST/NetService";
 Uri baseAddress = new Uri(uri);

 ServiceHost selfHost = new ServiceHost(typeof(CalculatorService),
baseAddress);

 try
 {
 SecurityBindingElement sm =
 SecurityBindingElement.CreateUserNameOverTransportBindingElement();
 sm.DefaultAlgorithmSuite =
System.ServiceModel.Security.SecurityAlgorithmSuite.Basic128;
 sm.SetKeyDerivation(false);
 sm.SecurityHeaderLayout = SecurityHeaderLayout.Lax;
 sm.IncludeTimestamp = true;
 sm.KeyEntropyMode = SecurityKeyEntropyMode.CombinedEntropy;
 sm.MessageSecurityVersion =

MessageSecurityVersion.WSSecurity11WSTrustFebruary2005WSSecureConversationFebru
ary2005
 WSSecurityPolicy11BasicSecurityProfile10;
 sm.LocalClientSettings.CacheCookies = true;
 sm.LocalClientSettings.DetectReplays = true;
 sm.LocalClientSettings.ReplayCacheSize = 900000;
 sm.LocalClientSettings.MaxClockSkew = new TimeSpan(00, 05, 00);
 sm.LocalClientSettings.MaxCookieCachingTime = TimeSpan.MaxValue;
 sm.LocalClientSettings.ReplayWindow = new TimeSpan(00, 05, 00); ;
 sm.LocalClientSettings.SessionKeyRenewalInterval = new TimeSpan(10, 00,
00);
 sm.LocalClientSettings.SessionKeyRolloverInterval = new TimeSpan(00,
05, 00); ;
 sm.LocalClientSettings.ReconnectTransportOnFailure = true;
 sm.LocalClientSettings.TimestampValidityDuration = new TimeSpan(00, 05,
00); ;
 sm.LocalClientSettings.CookieRenewalThresholdPercentage = 60;
 sm.LocalServiceSettings.DetectReplays = false;
 sm.LocalServiceSettings.IssuedCookieLifetime = new TimeSpan(10, 00,
00);
 sm.LocalServiceSettings.MaxStatefulNegotiations = 128;
 sm.LocalServiceSettings.ReplayCacheSize = 900000;
 sm.LocalServiceSettings.MaxClockSkew = new TimeSpan(00, 05, 00);
 sm.LocalServiceSettings.NegotiationTimeout = new TimeSpan(00, 01, 00);
 sm.LocalServiceSettings.ReplayWindow = new TimeSpan(00, 05, 00);
 sm.LocalServiceSettings.InactivityTimeout = new TimeSpan(00, 02, 00);
 sm.LocalServiceSettings.SessionKeyRenewalInterval = new TimeSpan(15,

Username Token Over SSL

6-18 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

00, 00);
 sm.LocalServiceSettings.SessionKeyRolloverInterval = new TimeSpan(00,
05, 00);
 sm.LocalServiceSettings.ReconnectTransportOnFailure = true;
 sm.LocalServiceSettings.MaxPendingSessions = 128;
 sm.LocalServiceSettings.MaxCachedCookies = 1000;
 sm.LocalServiceSettings.TimestampValidityDuration = new TimeSpan(15,
00, 00);
 HttpTransportBindingElement hb = new HttpTransportBindingElement();
 hb.ManualAddressing = false;
 hb.MaxBufferPoolSize = 524288;
 hb.MaxReceivedMessageSize = 65536;
 hb.AllowCookies = false;
 hb.AuthenticationScheme = System.Net.AuthenticationSchemes.Anonymous;
 hb.KeepAliveEnabled = true;
 hb.MaxBufferSize = 65536;
 hb.ProxyAuthenticationScheme =
System.Net.AuthenticationSchemes.Anonymous;
 hb.Realm = "";
 hb.TransferMode = System.ServiceModel.TransferMode.Buffered;
 hb.UnsafeConnectionNtlmAuthentication = false;
 hb.UseDefaultWebProxy = true;
 TextMessageEncodingBindingElement tb1 = new
TextMessageEncodingBindingElement();
 tb1.MaxReadPoolSize = 64;
 tb1.MaxWritePoolSize = 16;
 tb1.MessageVersion =
System.ServiceModel.Channels.MessageVersion.Soap12;
 tb1.WriteEncoding = System.Text.Encoding.UTF8;
 CustomBinding binding1 = new CustomBinding(sm);
 binding1.Elements.Add(tb1);
 binding1.Elements.Add(hb);
 ServiceEndpoint ep = selfHost.AddServiceEndpoint(typeof(ICalculator),
binding1,
 "CalculatorService");

 EndpointAddress myEndpointAdd = new EndpointAddress(
 new Uri(uri),
 EndpointIdentity.CreateDnsIdentity("WSMCert3"));
 ep.Address = myEndpointAdd;

 // Step 4 of the hosting procedure: Enable metadata exchange.
 ServiceMetadataBehavior smb = new ServiceMetadataBehavior();
 smb.HttpGetEnabled = true;
 selfHost.Description.Behaviors.Add(smb);

selfHost.Credentials.ServiceCertificate.SetCertificate(StoreLocation.CurrentUse
r,
 StoreName.My,
 X509FindType.FindBySubjectName, "WSMCert3");

selfHost.Credentials.ClientCertificate.Authentication.CertificateValidationMode
=
 X509CertificateValidationMode.PeerOrChainTrust;

selfHost.Credentials.UserNameAuthentication.UserNamePasswordValidationMode =
 UserNamePasswordValidationMode.Custom;
 CustomUserNameValidator cu = new CustomUserNameValidator();

selfHost.Credentials.UserNameAuthentication.CustomUserNamePasswordValidator =

Mutual Authentication with Message Protection (WS-Security 1.1)

Interoperability with Microsoft WCF/.NET 4.5 Security Environments 6-19

cu;
 using (ServiceHost host = new ServiceHost(typeof(CalculatorService)))
 {
 System.ServiceModel.Description.ServiceDescription svcDesc =
selfHost.Description;
 ServiceDebugBehavior svcDebug =
svcDesc.Behaviors.Find<ServiceDebugBehavior>();
 svcDebug.IncludeExceptionDetailInFaults = true;
 }

 // Step 5 of the hosting procedure: Start (and then stop) the service.
 selfHost.Open();
 Console.WriteLine("The Calculator service is ready.");
 Console.WriteLine("Press <ENTER> to terminate service.");
 Console.WriteLine();
 Console.ReadLine();
 selfHost.Close();
 }
 catch (CommunicationException ce)
 {
 Console.WriteLine("An exception occurred: {0}", ce.Message);
 selfHost.Abort();
 }
}

To Configure the OWSM 12c Client:

1. Generate an OWSM client using the WSDL of the web service.

For more information, see Developer's Guide for SOA Suite.

2. Attach the following policy to the client:

oracle/wss_username_token_over_ssl_client_policy

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

6.5 Mutual Authentication with Message Protection (WS-Security 1.1)
This section describes how to implement mutual authentication with message
protection that conform to the WS-Security 1.1 standards in the following
interoperability scenarios:

■ Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client

■ Configuring a Microsoft WCF/.NET 4.5 Web Service and an OWSM 12c Client

Before configuring the web service and client in either of the above scenarios, follow
the instructions in "Configuration Prerequisites".

6.5.1 Configuration Prerequisites
The following procedure describes how to perform prerequisite configuration tasks for
implementing mutual authentication with message protection that conform to the
WS-Security 1.1 standards.

To Configure Prerequisites for Interoperability:

1. Export the X.509 certificate file from the keystore on the service side to a .cer file
(for example, alice.cer) using the following command:

keytool -export -alias alice -file C:\alice.cer -keystore default-keystore.jks

Mutual Authentication with Message Protection (WS-Security 1.1)

6-20 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

For more information, see "keytool - Key and Certificate Management Tool" at
http://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.ht
ml

2. Import the certificate file (exported previously) to the keystore on the client server
using Microsoft Management Console (mmc). See step 1 in Table 6–8,
" Configuring the Microsoft WCF/.NET 4.5 Client" for specific instructions.

For more information, "How to: View Certificates with the MMC Snap-in" at
http://msdn.microsoft.com/en-us/library/ms788967.aspx.

6.5.2 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client
The following instructions tell how to configure an OWSM 12c web service and a
Microsoft WCF/.NET 4.5 client to implement mutual authentication with message
protection that conform to the WS-Security 1.1 standards.

To Configure the OWSM 12c Web Service:

1. Create a SOAP 1.2 compliant SOA composite and deploy it.

2. Using Fusion Middleware Control, attach the following policy to the web service:

oracle/wss11_x509_token_with_message_protection_service_policy

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

3. Export wss11_x509_token_with_message_protection_service_policy_net.
Change encrypted="true" to "false", and import it back.

<orasp:x509-token
 orasp:enc-key-ref-mech="thumbprint"
 orasp:is-encrypted="false"
 orasp:is-signed="false"
 orasp:sign-key-ref-mech="direct"/>
For more information, see the following links:

■ "Exporting Web Service Policies" in Securing Web Services and Managing Policies
with Oracle Web Services Manager.

■ "Importing Web Service Policies" in Securing Web Services and Managing Policies
with Oracle Web Services Manager

4. Attach the policy to the web service.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

5. Attach the following policy:

oracle/wsaddr_policy

To Configure the Microsoft WCF/.NET 4.5 Client:

1. Use the Microsoft SvcUtil utility to create a client proxy (see Example 6–9, "Client
Program") and configuration file from the deployed web service.

For more information, see
http://msdn.microsoft.com/en-us/library/aa347733%28v=vs.110%29.aspx

2. Create a app.config configuration file, as shown in Example 6–8, "app.config
File".

3. Compile the project.

Mutual Authentication with Message Protection (WS-Security 1.1)

Interoperability with Microsoft WCF/.NET 4.5 Security Environments 6-21

4. Open a command prompt and navigate to the project's Debug folder.

5. Enter <client_project_name>.exe and press Enter.

See the following app.config file sample:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.serviceModel>
 <behaviors>
 <endpointBehaviors>
 <behavior name="secureBehaviour">
 <clientCredentials>
 <serviceCertificate>
 <defaultCertificate findValue="<certificate_cn>"
 storeLocation="CurrentUser"
 storeName="My"
 x509FindType="FindBySubjectName"/>
 </serviceCertificate>
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 <bindings>
 <ws2007HttpBinding>
 <binding name="wss_username_over_ssl_client">
 <security mode="TransportWithMessageCredential">
 <transport clientCredentialType="None" />
 <message clientCredentialType="UserName"
 negotiateServiceCredential="false"
 establishSecurityContext="false" />
 </security>
 </binding>
 </ws2007HttpBinding>
 </bindings>
 <client>
 <endpoint address="http://<server>:<port>//MyWebService1SoapHttpPort"
 binding="ws2007HttpBinding"
 contract="MyWebService1"
 name="MyWebService1SoapHttpPort"
 behaviorConfiguration="secureBehaviour" >
 <identity>
 <dns value="<certificate_cn>"/>
 </identity>
 </endpoint>
 </client>
 </system.serviceModel>
</configuration>

See the following Client Program sample:

 namespace IO_NET10_client
{
 class Program
 {
 static void Main(string[] args)
 {

 BPELProcess1Client client = new BPELProcess1Client();

 client.ClientCredentials.ClientCertificate.SetCertificate(
 StoreLocation.CurrentUser,

Mutual Authentication with Message Protection (WS-Security 1.1)

6-22 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

 StoreName.My,
 X509FindType.FindBySubjectName, "WSMCert3");

 client.ClientCredentials.ServiceCertificate.SetDefaultCertificate(
 StoreLocation.CurrentUser,
 StoreName.My,
 X509FindType.FindBySubjectName, "Alice");

 process proc = new process();
 proc.input = "Test wss11_x509_token_with_message_protection_policy
- ";
 Console.WriteLine(proc.input);
 processResponse response = client.process(proc);

 Console.WriteLine(response.result.ToString());
 Console.WriteLine("Press <ENTER> to terminate Client.");
 Console.ReadLine();
 }
 }
}

6.5.3 Configuring a Microsoft WCF/.NET 4.5 Web Service and an OWSM 12c Client
The following instructions tell how to configure a Microsoft WCF/.NET 4.5 web
service and an OWSM 12c client to implement mutual authentication with message
protection that conform to the WS-Security 1.1 standards.

To Configure the Microsoft WCF/.NET 4.5 Web Service:

1. Create a .NET web service.

For an example, see Example 6–4, "Example of .NET Web Service".

For more information, see How to: Define a Windows Communication Foundation
Service Contract" at
http://msdn.microsoft.com/en-us/library/ms731835%28v=vs.90%29.aspx

2. Create a custom binding for the web service using the
SymmetricSecurityBindingElement.

The following is a sample of the SymmetricSecurityBindingElement object:

SymmetricSecurityBindingElement sm =
(SymmetricSecurityBindingElement)SecurityBindingElement.CreateMutualCertificate
BindingElement();
sm.DefaultAlgorithmSuite =
System.ServiceModel.Security.SecurityAlgorithmSuite.Basic128;sm.SetKeyDerivati
on(false);
sm.SecurityHeaderLayout = SecurityHeaderLayout.Lax;sm.IncludeTimestamp =
true;
sm.KeyEntropyMode = SecurityKeyEntropyMode.CombinedEntropy;
sm.MessageProtectionOrder =
MessageProtectionOrder.SignBeforeEncrypt;sm.MessageSecurityVersion =
MessageSecurityVersion.WSSecurity11WSTrustFebruary2005WSSecureConversation
February2005WSSecurityPolicy11BasicSecurityProfile10;
sm.RequireSignatureConfirmation =
true;
For more information, see "How to: Create a Custom Binding Using the
SecurityBindingElement" at
http://msdn.microsoft.com/en-us/library/ms730305%28v=vs.90%29.aspx

3. Deploy the application.

Kerberos with Message Protection

Interoperability with Microsoft WCF/.NET 4.5 Security Environments 6-23

To Configure the OWSM 12c Client:

1. Using JDeveloper, create a SOA composite that consumes the .NET web service.

For more information, see Developer's Guide for SOA Suite.

2. In JDeveloper, create a partner link using the WSDL of the .NET service and add
the import as follows:

<wsdl:import namespace="<namespace>" location="<WSDL location>"/>

3. In Fusion Middleware Control, attach the following policy to the web service
client:

oracle/wss11_x509_token_with_message_protection_client_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

4. Provide configurations for the keystore.recipient.alias.

You can specify this information when attaching the policy, by overriding the
policy configuration.

Ensure that you configure the keystore.recipient.alias as the alias of the
certificate imported in step 4 (wsmcert3).

For more information, see "Overriding Policy Configuration Properties" in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

5. Invoke the web service method from the client.

6.6 Kerberos with Message Protection
This section describes how to implement Kerberos with message protection in the
following interoperability scenario:

■ Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client

6.6.1 Performing Prerequisite Tasks for Interoperability
To Configure Prerequisites for Interoperability:

1. Configure the Key Distribution Center (KDC) and Active Directory (AD).

For more information, see "To Configure Windows Active Directory and Domain
Controller" (the domain controller can serve as KDC) at
http://download.oracle.com/docs/cd/E19316-01/820-3746/gisdn/index.html.

2. Set up the Kerberos configuration file krb5.conf in c:\winnt as shown in the
following "Kerberos Configuration File" sample.

[logging]
default = c:\log\krb5libs.log
kdc = c:\log\krb5kdc.log
admin_server = c:\log\kadmind.log
[libdefaults]
default_realm = MYCOMPANY.LOCAL
dns_lookup_realm = false
dns_lookup_kdc = false
default_tkt_enctypes = rc4-hmac
default_tgs_enctypes = rc4-hmac
permitted_enctypes = rc4-hmac
kdc = hostname

Kerberos with Message Protection

6-24 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

[realms]
MYCOMPANY.LOCAL =
{ kdc = host:port admin_server = host:port
 default_domain = <domainname>
}
 [domain_realm]
.<domainname> = MYCOMPANY.LOCAL
 <domainname> = MYCOMPANY.LOCAL
[appdefaults]
pam =
{ debug = false ticket_lifetime = 36000 renew_lifetime = 36000 forwardable
=
 true krb4_convert = false }

6.6.2 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client
The following instructions tell how to configure an OWSM 12c web service and a
Microsoft WCF/.NET 4.5 client to implement Kerberos with message protection.

1. Create and deploy a web service application.

For more information, see "Deploying Web Service Applications" in Administering
Web Services.

2. Clone the following policy:
oracle/wss11_kerberos_token_with_message_protection_service_policy.

For more information, see "Cloning a Web Service Policy" in Securing Web Services
and Managing Policies with Oracle Web Services Manager.

3. Edit the policy settings to set Algorithm Suite to Basic128Rsa15.

4. Attach the policy to the web service.

"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web
Services Manager.

To Configure the Microsoft WCF/.NET 4.5 Client:

1. Create a user in AD to represent the host where the web service is hosted. By
default the user account is created with RC4-HMAC encryption. For example,
foobar with user name is HTTP/foobar.

2. Use the following ktpass command to create a keytab file on the Windows AD
machine where the KDC is running:

ktpass -princ HTTP/foobar@MYCOMPANY.LOCAL -pass Oracle123 -mapuser
foobar -out foobar.keytab -ptype KRB5_NT_PRINCIPAL -kvno 4

where HTTP/foobar is the SPN, mapped to a user "foobar". Do not set "/desonly or
cyrpto as "des-cbc-crc". MYCOMPANY.LOCAL is the default Realm for the KDC
and is available in the krb5.ini file. The pass password must match the password
created during the user creation.

Use FTP binary mode to move the generated keytab file to the machine where the
SOA Composite web service is hosted.

3. setSpn -L foobar

setSpn -A HTTP/foobar@MYCOMPANY.LOCAL foobar

Only one SPN must be mapped to the user. If there are multiple SPNs mapped to
the user, remove them using the command setSpn -D <spname> <username>.

Use the following setSpn command to map the service principal to the user:

Kerberos with Message Protection

Interoperability with Microsoft WCF/.NET 4.5 Security Environments 6-25

setSpn -A HTTP/foobar@MYCOMPANY.LOCAL foobar

setSpn -L foobar

Only one SPN must be mapped to the user. If there are multiple SPNs mapped to
the user, remove them using the command setSpn -D <spname> <username>.

4. Use the Microsoft SvcUtil utility to create a client proxy and configuration file
from the deployed web service.

Add the files generatedProxy.cs and app.config by right clicking the application
(in the Windows Explorer) and selecting Add Existing Item.

In the endpoint element of the app.config, add an "identity" element with service
principal name as "HTTP/foobar@MYCOMPANY.LOCAL" (the same value used
for creating keytab).

<client>
 <endpoint address="http://host:port/HelloServicePort"
 binding="customBinding"
bindingConfiguration="NewHelloSoap12HttpPortBinding"
 contract="NewHello" name="HelloServicePort">
 <identity>
 <servicePrincipalName value ="HTTP/foobar@MYCOMPANY.LOCAL"/>
 </identity>
 </endpoint>

 </client>
A sample binding is provided in Example 6–11, "Custom Binding".

For more information, see
http://msdn.microsoft.com/en-us/library/aa347733%28v=vs.110%29.aspx.

5. Run the client program.

See the following Custom Binding sample:

<customBinding>
 <binding name="NewHelloSoap12HttpPortBinding">
 <!--Added by User: Begin-->
 <security defaultAlgorithmSuite="Basic128"
 authenticationMode="Kerberos"
 requireDerivedKeys="false" securityHeaderLayout="Lax"
 includeTimestamp="true"
 keyEntropyMode="CombinedEntropy"
 messageProtectionOrder="SignBeforeEncrypt"
 messageSecurityVersion="WSSecurity11WSTrustFebruary2005
 WSSecureConversationFebruary2005WSSecurityPolicy11BasicSecurity
 Profile10"
 requireSignatureConfirmation="true">
 <localClientSettings cacheCookies="true" detectReplays="true"
 replayCacheSize="900000" maxClockSkew="00:05:00"
 maxCookieCachingTime="Infinite"
 replayWindow="00:05:00"
 sessionKeyRenewalInterval="10:00:00"
 sessionKeyRolloverInterval="00:05:00"
 reconnectTransportOnFailure="true"
 timestampValidityDuration="00:05:00"
 cookieRenewalThresholdPercentage="60" />
 <localServiceSettings detectReplays="true"
 issuedCookieLifetime="10:00:00"
 maxStatefulNegotiations="128" replayCacheSize="900000"
 maxClockSkew="00:05:00"

Kerberos with Message Protection Using Derived Keys

6-26 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

 negotiationTimeout="00:01:00" replayWindow="00:05:00"
 inactivityTimeout="00:02:00"
 sessionKeyRenewalInterval="15:00:00"
 sessionKeyRolloverInterval="00:05:00"
 reconnectTransportOnFailure="true"
 maxPendingSessions="128"
 maxCachedCookies="1000"
 timestampValidityDuration="00:05:00" />
 <secureConversationBootstrap />
 </security>
 <!--Added by User: End-->
 <textMessageEncoding maxReadPoolSize="64"
 maxWritePoolSize="16"
 messageVersion="Soap12" writeEncoding="utf-8">
 <readerQuotas maxDepth="32" maxStringContentLength="8192"
 maxArrayLength="16384"
 maxBytesPerRead="4096" maxNameTableCharCount="16384" />
 </textMessageEncoding>
 <!--Added by User: Begin-->
 <httpTransport manualAddressing="false"
 maxBufferPoolSize="524288"
 maxReceivedMessageSize="65536" allowCookies="false"
 authenticationScheme="Anonymous"
 bypassProxyOnLocal="false"
 hostNameComparisonMode="StrongWildcard"
 keepAliveEnabled="true" maxBufferSize="65536"
 proxyAuthenticationScheme="Anonymous"
 realm="" transferMode="Buffered"
 unsafeConnectionNtlmAuthentication="false"
 useDefaultWebProxy="true" />
 <!--Added by User: End-->
 </binding>
</customBinding>

6.7 Kerberos with Message Protection Using Derived Keys
This section describes how to implement Kerberos with message protection using
derived keys in the following interoperability scenario:

■ Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client

Before configuring the web service and client in the above scenario, follow the
instructions in Section 6.7.1, "Configuration Prerequisites."

6.7.1 Configuration Prerequisites
The section below describes how to perform prerequisite configuration tasks for
implementing Kerberos with message protection using derived keys.

To Configure Prerequisites for Interoperability:

1. Configure the Key Distribution Center (KDC) and Active Directory (AD).

For more information, see the following topics:

■ "To Configure Windows Active Directory and Domain Controller" (the domain
controller can serve as KDC) at
http://download.oracle.com/docs/cd/E19316-01/820-3746/gisdn/index.h
tml

Kerberos with Message Protection Using Derived Keys

Interoperability with Microsoft WCF/.NET 4.5 Security Environments 6-27

■ "Configuring Kerberos Tokens" in Securing Web Services and Managing Policies
with Oracle Web Services Manager

2. Set up the Kerberos configuration file krb5.conf in c:\winnt as shown in the
following "Kerberos Configuration File" sample:

[logging]
default = c:\log\krb5libs.log
kdc = c:\log\krb5kdc.log
admin_server = c:\log\kadmind.log
[libdefaults]
default_realm = MYCOMPANY.LOCAL
dns_lookup_realm = false
dns_lookup_kdc = false
default_tkt_enctypes = rc4-hmac
default_tgs_enctypes = rc4-hmac
permitted_enctypes = rc4-hmac
kdc = hostname
[realms]
MYCOMPANY.LOCAL =
{ kdc = host:port admin_server = host:port
 default_domain = <domainname>
}
 [domain_realm]
.<domainname> = MYCOMPANY.LOCAL
 <domainname> = MYCOMPANY.LOCAL
[appdefaults]
pam =
{ debug = false ticket_lifetime = 36000 renew_lifetime = 36000 forwardable
=
 true krb4_convert = false }

6.7.2 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client
The following instructions tell how to configure an OWSM 12c web service and a
Microsoft WCF/.NET 4.5 client to implement Kerberos with message protection.

To Configure the OWSM 12c Web Service:

1. Create and deploy a web service application.

For more information, see "Deploying Web Service Applications" in Administering
Web Services.

2. Clone the following policy:
wss11_kerberos_token_with_message_protection_basic128_service_policy.

For more information, see "Cloning a Web Service Policy" in Securing Web Services
and Managing Policies with Oracle Web Services Manager.

3. Edit the policy settings to enable the Derived Keys option.

4. Attach the policy to the web service.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

To Configure the Microsoft WCF/.NET 4.5 Client:

1. Create a user in AD to represent the host where the web service is hosted. By
default the user account is created with RC4-HMAC encryption. For example,
foobar with user name as "HTTP/foobar".

Kerberos with Message Protection Using Derived Keys

6-28 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

2. Use the following ktpass command to create a keytab file on the Windows AD
machine where the KDC is running:

ktpass -princ HTTP/foobar@MYCOMPANY.LOCAL -pass Oracle123 -mapuser
foobar -out foobar.keytab -ptype KRB5_NT_PRINCIPAL -kvno 4

where HTTP/foobar is the SPN, mapped to a user "foobar". Do not set "/desonly
or cyrpto as "des-cbc-crc". MYCOMPANY.LOCAL is the default Realm for the
KDC and is available in the krb5.ini file. The pass password must match the
password created during the user creation.

Use FTP binary mode to move the generated keytab file to the machine where the
SOA Composite web service is hosted.

3. Use the following setSpn command to map the service principal to the user:

setSpn -A HTTP/foobar@MYCOMPANY.LOCAL foobar

setSpn -L foobar

Only one SPN must be mapped to the user. If there are multiple SPNs mapped to
the user, remove them using the command setSpn -D <spname> <username>.

4. Use the Microsoft SvcUtil utility to create a client proxy and configuration file
from the deployed web service.

Add the files generatedProxy.cs and app.config by right clicking the application
(in the Windows Explorer) and selecting Add Existing Item.

In the endpoint element of the app.config, add an "identity" element with service
principal name as "HTTP/foobar@MYCOMPANY.LOCAL" (the same value used
for creating keytab).

<client>
 <endpoint address="http://host:port/HelloServicePort"
 binding="customBinding"
bindingConfiguration="NewHelloSoap12HttpPortBinding"
 contract="NewHello" name="HelloServicePort">
 <identity>
 <servicePrincipalName value ="HTTP/foobar@MYCOMPANY.LOCAL"/>
 </identity>
 </endpoint>
 </client>
A sample binding is provided in Example 6–13, "Custom Binding".

5. Run the client program.

See the following Custom Binding sample:

<customBinding>
 <binding name="NewHelloSoap12HttpPortBinding">
 <!--Added by User: Begin-->
 <security defaultAlgorithmSuite="Basic128"
 authenticationMode="Kerberos"
 requireDerivedKeys="true" securityHeaderLayout="Lax"
 includeTimestamp="true"
 keyEntropyMode="CombinedEntropy"
 messageProtectionOrder="SignBeforeEncrypt"
 messageSecurityVersion="WSSecurity11WSTrustFebruary2005
 WSSecureConversationFebruary2005WSSecurityPolicy11BasicSecurity
 Profile10"
 requireSignatureConfirmation="true">
 <localClientSettings cacheCookies="true" detectReplays="true"
 replayCacheSize="900000" maxClockSkew="00:05:00"

Kerberos with SPNEGO Negotiation

Interoperability with Microsoft WCF/.NET 4.5 Security Environments 6-29

 maxCookieCachingTime="Infinite"
 replayWindow="00:05:00"
 sessionKeyRenewalInterval="10:00:00"
 sessionKeyRolloverInterval="00:05:00"
 reconnectTransportOnFailure="true"
 timestampValidityDuration="00:05:00"
 cookieRenewalThresholdPercentage="60" />
 <localServiceSettings detectReplays="true"
 issuedCookieLifetime="10:00:00"
 maxStatefulNegotiations="128" replayCacheSize="900000"
 maxClockSkew="00:05:00"
 negotiationTimeout="00:01:00" replayWindow="00:05:00"
 inactivityTimeout="00:02:00"
 sessionKeyRenewalInterval="15:00:00"
 sessionKeyRolloverInterval="00:05:00"
 reconnectTransportOnFailure="true"
 maxPendingSessions="128"
 maxCachedCookies="1000"
 timestampValidityDuration="00:05:00" />
 <secureConversationBootstrap />
 </security>
 <!--Added by User: End-->
 <textMessageEncoding maxReadPoolSize="64"
 maxWritePoolSize="16"
 messageVersion="Soap12" writeEncoding="utf-8">
 <readerQuotas maxDepth="32" maxStringContentLength="8192"
 maxArrayLength="16384"
 maxBytesPerRead="4096" maxNameTableCharCount="16384" />
 </textMessageEncoding>
 <!--Added by User: Begin-->
 <httpTransport manualAddressing="false"
 maxBufferPoolSize="524288"
 maxReceivedMessageSize="65536" allowCookies="false"
 authenticationScheme="Anonymous"
 bypassProxyOnLocal="false"
 hostNameComparisonMode="StrongWildcard"
 keepAliveEnabled="true" maxBufferSize="65536"
 proxyAuthenticationScheme="Anonymous"
 realm="" transferMode="Buffered"
 unsafeConnectionNtlmAuthentication="false"
 useDefaultWebProxy="true" />
 <!--Added by User: End-->
 </binding>
</customBinding>

6.8 Kerberos with SPNEGO Negotiation
This section describes how to implement Kerberos with SPNEGO negotiation in the
following interoperability scenario:

■ Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client

6.8.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client
The following instructions tell how to configure an OWSM 12c web service and a
Microsoft WCF/.NET 4.5 client to implement Kerberos with SPNEGO negotiation.

To Configure the OWSM 12c Web Service:

Kerberos with SPNEGO Negotiation

6-30 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

1. Create and deploy a web service application.

For more information, see "Deploying Web Service Applications" in Administering
Web Services.

2. Create a policy that uses the http_spnego_token_service_template assertion
template.

For more information, see "Configuring Kerberos With SPNEGO Negotiation" in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

3. Attach the policy to the web service.

To Configure the Microsoft WCF/.NET 4.5 Client:

1. Use the Microsoft SvcUtil utility to create a client proxy and configuration file
from the deployed web service.

For more information, see
http://msdn.microsoft.com/en-us/library/aa347733%28v=vs.110%29.aspx.

2. Add the files generatedProxy.cs and app.config by right clicking the application
(in the Windows Explorer) and selecting Add Existing Item.

3. Edit the app.config file as shown in Example 6–14, "app.config File".

In this listing, note that the values of the contract and name attributes of the
endpoint element are obtained from the generatedProxy.cs file.

4. Compile the client.

5. After attaching the OWSM policy to the deployed web service, run the client.

See the following app.config file sample:

<configuration>
 <system.serviceModel>
 <bindings>
 <basicHttpBinding>
 <binding name="BPELProcessBinding">
 <security mode= "TransportCredentialOnly">
 <transport clientCredentialType="Windows"/>
 </security>
 </binding>
 </basicHttpBinding>
 </bindings>
 <client>
 <endpoint
 address="http://host:port/soa-infra/services/default/SOAProxy/bpelpro
cess_client_ep"
 binding="basicHttpBinding"
 bindingConfiguration="BPELProcessBinding"
 contract="BPELProcess" name="BPELProcess_pt"
 <identity>
 <servicePrincipalName value ="HTTP/host:port@MYCOMPANY.LOCAL" />
 </identity>
 </endpoint>
 </client>
 </system.serviceModel>
</configuration>

Kerberos with SPNEGO Negotiation and Credential Delegation

Interoperability with Microsoft WCF/.NET 4.5 Security Environments 6-31

6.9 Kerberos with SPNEGO Negotiation and Credential Delegation
This section describes how to implement Kerberos with SPNEGO negotiation and
credential delegation in the following interoperability scenario:

■ Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client

6.9.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client
The following instructions tell how to configure an OWSM 12c web service and a
Microsoft WCF/.NET 4.5 client to implement Kerberos with SPNEGO negotiation and
credential delegation.

To Configure the OWSM 12c Web Service:

1. Create and deploy a web service application.

For more information, see "Deploying Web Service Applications" in Administering
Web Services.

2. Create a policy that uses the http_spnego_token_service_template assertion
template.

3. Attach the policy to the web service.

4. Set the value of the credential.delegation configuration setting to true.

You can specify this information when attaching the policy, by overriding the
policy configuration.

For more information, see "Overriding Policy Configuration Properties" in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

To Configure the Microsoft WCF/.NET 4.5 Client:

1. Use the Microsoft SvcUtil utility to create a client proxy and configuration file
from the deployed web service.

For more information, see
http://msdn.microsoft.com/en-us/library/aa347733%28v=vs.110%29.aspx.

2. Add the files generatedProxy.cs and app.config by right clicking the application
(in the Windows Explorer) and selecting Add Existing Item.

3. Edit the app.config file as shown in Example 6–15, "app.config File".

In the example, note that the values of the contract and name attributes of the
endpoint element are obtained from the generatedProxy.cs file.

4. Compile the client.

5. After attaching the OWSM policy to the deployed web service, run the client.

See the following app.config file sample:

<configuration>
 <system.serviceModel>
 <bindings>
 <basicHttpBinding>
 <binding name="BPELProcess1Binding">
 <security mode= "TransportCredentialOnly">
 <transport clientCredentialType="Windows"/>
 </security>
 </binding>
 </basicHttpBinding>
 </bindings>

WCF/.NET 4.5 Client with Microsoft Active Directory Federation Services 2.0 (ADFS 2.0) STS

6-32 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

 <client>
 <endpoint
 address="http://host:port/soa-infra/services/default/SOAProxy/bpelpro
cess1_client_ep"
 binding="basicHttpBinding"
 bindingConfiguration="BPELProcess1Binding"
 contract="BPELProcess1" name="BPELProcess1_pt"
 behaviorConfiguration="CredentialDelegation">
 <identity>
 <servicePrincipalName value ="HTTP/host:port@MYCOMPANY.LOCAL" />
 </identity>
 </endpoint>
 </client>
 <behaviors>
 <endpointBehaviors>
 <behavior name="CredentialDelegation">
 <clientCredentials>
 <windows allowedImpersonationLevel="Delegation"
 allowNtlm="false"/>
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

6.10 WCF/.NET 4.5 Client with Microsoft Active Directory Federation
Services 2.0 (ADFS 2.0) STS

This section tells how to secure a WCF/.NET 4.5 client with Microsoft Active Directory
Federation Services 2.0 (ADFS 2.0) secure token service (STS), using the following
policies:

■ oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_policy

■ oracle/wss_saml_token_bearer_over_ssl_service_policy

■ oracle/wss11_saml_or_username_token_with_message_protection_service_polic
y

Note: The SAML sender vouches token is not supported in this use
case.

The procedure described in this section are based on an ADFS 2.0 installation on
Windows Server 2008 or Windows Server 2008 R2.

The section includes the following topics:

■ Step 1: Install and Configure Active Directory Federation Services (ADFS) 2.0

■ "Step 2: Configure OWSM to Trust SAML Assertions Issued by an ADFS 2.0 STS"

■ Step 3: Configure Users in Oracle Internet Directory

■ Step 4: Attach the Policy to the Web Service

■ Step 5: Register the Web Service as a Relying Party in ADFS 2.0

■ Step 6: Secure WCF/.NET 4.5 Client with ADFS 2.0

WCF/.NET 4.5 Client with Microsoft Active Directory Federation Services 2.0 (ADFS 2.0) STS

Interoperability with Microsoft WCF/.NET 4.5 Security Environments 6-33

6.10.1 Step 1: Install and Configure Active Directory Federation Services (ADFS) 2.0
Install and configure ADFS 2.0 on a Windows Server 2008 or Windows Server 2008 R2
system.

Configure Active Directory and ADFS as shown.

To Install and Configure Active Directory Federation Services (ADFS) 2.0:

1. Set up the system in STS role.

2. Create and configure a self-signed server authentication certificate in Internet
Information Services (IIS) and bind it to the default Web site using the IIS Manager
console. When done, enable SSL server authentication.

Note: The ADFS 2.0 Setup Wizard automatically installs the web
server (IIS) server role on the system.

3. Configure ADFS 2.0 as a stand-alone federation server.

4. Export the ADFS 2.0 token-signing certificate.

For a self-signed certificate, select DER encoded binary X.509 (.cer).

If the signing certificate is not self-signed, select Cryptographic Message Syntax
Standard – PKCS 7 certificates (.p7b) and specify that all certificates in the
certification path should be included.

5. Create users and include an e-mail address. You later enable the STS to send the
e-mail address as the subject name id in the outgoing SAML assertions for the
service.

For more information, see the following:

■ "Windows Server 2008 R2 and Windows Server 2008" at
http://technet.microsoft.com/en-us/library/dd349801%28v=ws.10%29.aspx.

■ "Active Directory Services" at
http://technet.microsoft.com/en-us/library/dd578336%28v=ws.10%29.aspx.

■ "Active Directory Federation Services" at
http://technet.microsoft.com/library/cc772128%28WS.10%29.aspx.

■ "AD FS Step-by-Step Guide" at
http://technet.microsoft.com/en-us/library/cc731443%28v=ws.10%29.aspx.

■ "AD FS 2.0 Deployment Guide" at
http://technet.microsoft.com/en-us/library/dd807092%28v=ws.10%29.aspx.

6.10.2 Step 2: Configure OWSM to Trust SAML Assertions Issued by an ADFS 2.0 STS
To Configure OWSM to trust the SAML assertions issued by an ADFS 2.0 STS:

1. Get the STS signing certificates you exported in "Step 1: Install and Configure
Active Directory Federation Services (ADFS) 2.0.".

For a .p7b file for a certificate chain, open the file in IE and copy each certificate in
the chain in a .cer file.

2. Import the certificates into the location of the default keystore using keytool.

keytool –importcert –file <sts-signing-certs-file> –trustcacerts –alias
<alias> –keystore default-keystore.jks

WCF/.NET 4.5 Client with Microsoft Active Directory Federation Services 2.0 (ADFS 2.0) STS

6-34 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

For more information, see "keytool - Key and Certificate Management Tool" at
http://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.ht
ml

3. Add http://domain-name/adfs/services/trust as a SAML trusted issuer.

4. Add the Subject DN (as defined in RFC 2253) of the STS certificate in the Trusted
STS Servers section. Use a string that conforms to RFC 2253, such as CN=abc. You
can use the mechanism of your choice, such as keytool, to view the certificate and
determine the Subject DN.

For more information, refer to the following topics:

■ "Configuring SAML Trusted Issuers and DN Lists" in Securing Web Services
and Managing Policies with Oracle Web Services Manager.

■ "keytool - Key and Certificate Management Tool" at
http://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytoo
l.html.

6.10.3 Step 3: Configure Users in Oracle Internet Directory
For each user, configure the mail attribute to match the user e-mail address set in
ADFS.

See Managing Directory Entries for Creating a User in Oracle Fusion Middleware
Administrator's Guide for Oracle Internet Directory for information on configuring users
in Oracle Internet Directory.

6.10.4 Step 4: Attach the Policy to the Web Service
Attach any of the following OWSM policies to the web service:

■ oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_policy

■ oracle/wss_saml_token_bearer_over_ssl_service_policy

■ oracle/wss11_saml_or_username_token_with_message_protection_service_polic
y

For more information, see:

■ "Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web
Services Manager

■ "Predefined Policies" in Securing Web Services and Managing Policies with Oracle Web
Services Manager

6.10.5 Step 5: Register the Web Service as a Relying Party in ADFS 2.0
Configure ADFS 2.0 to issue the SAML assertion to the web service with the e-mail
address or the name ID (SAM-Account-Name) as the subject name ID, as described
below":

1. Add the web service as a relying party.

For more information, see Create a Relying Party Trust Manually" at
http://technet.microsoft.com/en-us/library/dd807108.aspx

2. Configure the claim rules for the service.

WCF/.NET 4.5 Client with Microsoft Active Directory Federation Services 2.0 (ADFS 2.0) STS

Interoperability with Microsoft WCF/.NET 4.5 Security Environments 6-35

Enable the STS to send the e-mail address or the name ID as the subject name id
in the outgoing SAML assertions for the service, create a chain of two claim rules
with different templates.

To enable the STS to send the e-mail address or the name ID as the subject name
id in the outgoing SAML assertions for the service, use the steps in this section to
create a chain of two claim rules with different templates.

For more information, see the following topics:

■ "Checklist: Creating Claim Rules for a Relying Party Trust" at
http://technet.microsoft.com/en-us/library/ee913578%28v=ws.10%29.as
px

■ "Create a Rule to Send LDAP Attributes as Claims" at
http://technet.microsoft.com/en-us/library/dd807115%28v=ws.10%29.as
px

6.10.6 Step 6: Secure WCF/.NET 4.5 Client with ADFS 2.0
To Secure the WCF/.NET 4.5 client with ADFS 2.0:

1. Import the SSL server certificates for STS and the service into Windows.

If the SSL server certificate for STS or the service is not issued from a trusted CA,
or self-signed, then it needs to be imported with MMC tool, as described in step 1
in Table 6–8, " Configuring the Microsoft WCF/.NET 4.5 Client".

For more information, see "How to: View Certificates with the MMC Snap-in" at
http://msdn.microsoft.com/en-us/library/ms788967.aspx.

2. Create and configure the WCF./NET client, as described in steps 3 and 4, below.

ADFS 2.0 STS supports multiple security and authentication mechanisms for token
insurance. Each is exposed as a separate endpoint. For username/password
authentication, two endpoints are provided:

■ http://<adfs.domain>/adfs/services/trust/13/username — This endpoint
is for username token with message protection.

■ https://<adfs.domain>/adfs/services/trust/13/usernamemixed — This
endpoint is for username token with transport protection (SSL).

The WCF client uses the
https://<adfs.domain>/adfs/services/trust/13/usernamemixed endpoint for
username token on SSL to obtain the SAML bearer token for the service.

3. Generate the WCF Client with the service WSDL.

For more information, see "How to: Create a Windows Communication
Foundation Client" at
http://msdn.microsoft.com/en-us/library/ms733133(v=vs.110).aspx.

4. Configure the client with ws2007FederationHttpBinding, and edit the app.config
file, as follows.

 Example 6–16 shows a sample app.config for use with a web service using the
following policies:

■ oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_policy

■ oracle/wss_saml_token_bearer_over_ssl_service_policy

■ oracle/wss11_saml_or_username_token_with_message_protection_service_po
licy

WCF/.NET 4.5 Client with Microsoft Active Directory Federation Services 2.0 (ADFS 2.0) STS

6-36 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

For more information, see "WS 2007 Federation HTTP Binding" at
http://msdn.microsoft.com/en-us/library/bb472490.aspx

5. Edit the program.cs file to make the service call.

If not already present, create a .cs file in the project and name it program.cs (or
any name of your choice.) Edit it to match the code in Example 6–17.

In this example:

 joe is the username and eoj is the password used by the client to authenticate to
the STS.

System.Net.ServicePointManager.ServerCertificateValidationCallback =
((sender, certificate, chain, sslPolicyErrors) => true); has been added
to validate the server side self-signed certificate. This is not required if the server
certificate is issued by a trusted CA. If using a self-signed certificate for testing,
add this method to validate the certificate on the client side.

See the following app.config File to Implement Varieties of SAML-Based Authentication
sample:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.serviceModel>
 <behaviors>
 <endpointBehaviors>
 <behavior name="secureBehaviour">
 <clientCredentials>
 <serviceCertificate>
 <defaultCertificate findValue="weblogic"
 storeLocation="LocalMachine"
 storeName="My"
 x509FindType="FindBySubjectName"/>
 </serviceCertificate>
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 <bindings>
 <ws2007FederationHttpBinding>
 <binding name="JaxWsWss11SamlOrUsernameOrSamlBearerOverSSLSoapHttp">
 <security mode="TransportWithMessageCredential">
 <message negotiateServiceCredential="false"
 algorithmSuite="Basic128"
 issuedTokenType
="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1"
 issuedKeyType="BearerKey">
 <issuer address
="https://domain-name/adfs/services/trust/13/usernamemixed"
 binding ="ws2007HttpBinding"
 bindingConfiguration="ADFSUsernameMixed"/>
 </message>
 </security>
 </binding>
 </ws2007FederationHttpBinding>
 <ws2007HttpBinding>
 <binding name="ADFSUsernameMixed">
 <security mode="TransportWithMessageCredential">
 <message clientCredentialType="UserName"
 establishSecurityContext="false" />
 </security>

WCF/.NET 4.5 Client with Microsoft Active Directory Federation Services 2.0 (ADFS 2.0) STS

Interoperability with Microsoft WCF/.NET 4.5 Security Environments 6-37

 </binding>
 </ws2007HttpBinding>
 </bindings>
 <client>
 <endpoint
address="https://host:8002/JaxWsWss11SamlOrUsernameOrSamlBearerOverSSL/JaxWsWss
11SamlOrUsernameOrSamlBearerOverSSLService"
 binding="ws2007FederationHttpBinding"

bindingConfiguration="JaxWsWss11SamlOrUsernameOrSamlBearerOverSSLSoapHttp"
 contract="JaxWsWss11SamlOrUsernameOrSamlBearerOverSSL"
 name="JaxWsWss11SamlOrUsernameOrSamlBearerOverSSLPort">
 <identity>
 <dns value="weblogic" />
 </identity>
 </endpoint>
 </client>
 </system.serviceModel>
</configuration>
See the following pregram.cs File sample:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.ServiceModel;

namespace Client
{
 class Program
 {
 static void Main(string[] args)
 {
 JaxWsWss11SamlOrUsernameOrSamlBearerOverSSLClient client =
 New JaxWsWss11SamlOrUsernameOrSamlBearerOverSSLClient();

 client.ClientCredentials.UserName.UserName = "joe";
 client.ClientCredentials.UserName.Password = "eoj";

System.Net.ServicePointManager.ServerCertificateValidationCallback =
 ((sender, certificate, chain, sslPolicyErrors) => true);

 Console.WriteLine(client.echo("Hello"));
 Console.Read();
 }

 }
}

WCF/.NET 4.5 Client with Microsoft Active Directory Federation Services 2.0 (ADFS 2.0) STS

6-38 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

7

Interoperability with Oracle Service Bus 10g Security Environments 7-1

7Interoperability with Oracle Service Bus 10g
Security Environments

[8] This chapter describes interoperability of Oracle Web Services Manager (OWSM) with
Oracle Service Bus 10g security environments.

This chapter includes the following sections:

■ Overview of Interoperability with Oracle Service Bus 10g Security Environments

■ Implementing a Username Token with WS-Security 1.0 Message Protection

■ Implementing a SAML Sender Vouches Token with WS-Security 1.0 Message
Protection

■ Implementing a SAML or Username Token Over SSL

■ Implementing Mutual Authentication with WS-Security 1.0 Message Protection

7.1 Overview of Interoperability with Oracle Service Bus 10g Security
Environments

In Oracle Service Bus 10g, you attach policies to configure your security environment
for inbound and outbound requests. Oracle Service Bus uses the underlying WebLogic
security framework as building blocks for its security services. For information about
configuring and attaching policies, see "Using WS-Policy in Oracle Service Bus Proxy
and Business Services" in Oracle Service Bus Security Guide at
http://download.oracle.com/docs/cd/E13159_01/osb/docs10gr3/security/ws_pol
icy.html.

Note: Ensure that you have downloaded and applied the TYBN and
U37Z patches released for Oracle Service Bus 10.3 using the patch tool.

With OWSM 12c, you attach policies to web service endpoints. Each policy consists of
one or more assertions, defined at the domain-level, that define the security
requirements. A set of predefined policies and assertions are provided out-of-the-box.

Table 7–1 and Table 7–2 summarize the most common Oracle Service Bus 10g
interoperability scenarios based on the following security requirements:
authentication, message protection, and transport.

For more information about:

■ OWSM predefined policies, see "Predefined Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

Implementing a Username Token with WS-Security 1.0 Message Protection

7-2 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

■ Configuring and attaching OWSM 12c policies, see "Securing Web Services" and
"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web
Services Manager.

■ Configuring and attaching Oracle Service Bus 10g policies, see "Using WS-Policy
in Oracle Service Bus Proxy and Business Services" in Oracle Service Bus Security
Guide at
http://download.oracle.com/docs/cd/E13159_01/osb/docs10gr3/security/ws_
policy.html.

Note: In the following scenarios, ensure that you are using a
keystore with v3 certificates. By default, the JDK 1.5 keytool generates
keystores with v1 certificates.

In addition, ensure that the keys use the proper extensions, including
DigitalSignature, Non_repudiation, Key_Encipherment, and
Data_Encipherment.

Table 7–1 OWSM 12g Service Policy and Oracle Service Bus 10g Client Policy Interoperability

Identity Token
WS-Security
Version

Message
Protection

Transport
Security Service Policy Client Policy

Username 1.0 Yes No oracle/wss10_usernam
e_token_with_message
_protection_service_
policy

Encrypt.xml

Sign.xml

SAML 1.0 Yes No oracle/wss10_saml_to
ken_with_message_pro
tection_service_poli
cy

Encrypt.xml

Sign.xml

SAML or Username 1.0 and 1.1 No Yes oracle/wss_saml_or_u
sername_token_over_s
sl_service_policy

Auth.xml

Mutual
Authentication

1.0 Yes No oracle/wss10_x509_to
ken_with_message_pro
tection_service_poli
cy

Encrypt.xml

Sign.xml

Table 7–2 Oracle Service Bus 10g Service Policy and OWSM 12c Client Policy Interoperability

Identity Token
WS-Security
Version

Message
Protection

Transport
Security Service Policy Client Policy

Username 1.0 Yes No Encrypt.xml

Sign.xml

oracle/wss10_username_
token_with_message_pro
tection_client_policy

SAML 1.0 Yes Encrypt.xml

Sign.xml

oracle/wss10_saml_toke
n_with_message_protect
ion_client_policy

Mutual
Authentication

1.0 Yes No Encrypt.xml

Sign.xml

oracle/wss10_x509_toke
n_with_message_protect
ion_client_policy

7.2 Implementing a Username Token with WS-Security 1.0 Message
Protection

You can implement a username token with message WS-Security 1.0 protection. The
following interoperability scenarios are supported:

Implementing a Username Token with WS-Security 1.0 Message Protection

Interoperability with Oracle Service Bus 10g Security Environments 7-3

■ OWSM 12c web service with Oracle Service Bus 10g client

■ Oracle Service Bus 10g web service with OWSM 12c client

For either scenario, you must perform prerequisite tasks for the WebLogic Server on
which Oracle Service Bus is running. See "Overview of Prerequisites for
Interoperabilty."

After completing the prerequisite tasks, see the detailed instructions for your
supported scenario:

■ "Configuring an OWSM 12c Web Service and an Oracle Service Bus 10g Client"

■ "Configuring an Oracle Service Bus 10g Web Service and an OWSM 12c Client"

7.2.1 Overview of Prerequisites for Interoperabilty
Before you can implement a username token with WS-Security 1.0 message protection,
you must complete a number of high-level tasks.

To configure prerequisites for interoperability:

1. Copy the default-keystore.jks and trust.jks files to your domain directory.

The default-keystore.jks is used to store public and private keys for SOAP
messages within the WebLogic Domain. The trust.jks is used to store private
keys, digital certificates, and trusted certificate authority certificates that are used
to establish and verify identity and trust in the WebLogic Server environment.

2. Invoke the WebLogic Administration Console.

3. Configure the Custom Identity and Custom Trust keystores.

4. Configure SSL.

5. Specify the private key alias, as required. For example: oratest.

6. Configure a credential mapping provider.

Create a PKICredentialMapper and configure it as follows (leave all other values
set to the defaults):

a. Keystore Provider: N/A

b. Keystore Type: jks

c. Keystore File Name: default_keystore.jks

d. Keystore Pass Phrase: <password>

e. Confirm Keystore Pass Phrase: <password>

7. Restart Oracle WebLogic Server.

8. Invoke the OSB Console. For example:

http://<host name>:<port number>/servicebus

9. Create a ServiceKeyProvider.

10. Specify Encryption Key and Digital Signature Key, as required.

You must use different keys on the OWSM and Oracle Service Bus servers. You can
use the same key for encryption and signing, if desired.

Implementing a Username Token with WS-Security 1.0 Message Protection

7-4 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

7.2.2 Configuring an OWSM 12c Web Service and an Oracle Service Bus 10g Client
You can implement a username token with message WS-Security 1.0 protection using
an OWSM 12c web service and an Oracle Service Bus 10g client. Configure the web
service, then configure the client.

To configure the OWSM 12c Web Service:

1. Clone the following policy:
wss10_username_token_with_message_protection_service_policy.

"Cloning a Web Service Policy" in Securing Web Services and Managing Policies with
Oracle Web Services Manager

2. Edit the policy settings, as follows:

a. Set Encryption Key Reference Mechanism to issuerserial.

b. Set Algorithm Suite to Basic128Rsa15 to match the algorithm suite used for
Oracle Service Bus.

c. Enable the Include Timestamp configuration setting.

d. Set Is Encrypted to false for the Username token element only.

3. Attach the policy to the web service.

"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web
Services Manager

To configure the Oracle Service Bus 10g Client:

1. Clone the Encrypt.xml and Sign.xml policy files.

For example, copy the files to myEncrypt.xml and mySign.xml. It is not
recommended to edit the predefined policy files directly.

2. Edit the encryption algorithm in myEncrypt.xml file to prevent encryption
compliance failure, as follows:

<wssp:Target>
 <wssp:EncryptionAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
</wssp:Target>

3. Edit the mySign.xml policy file attached to the Oracle Service Bus business service
request only to sign the Username token by including the following target:

<wssp:Target>
 <wssp:DigestAlgorithm URI=
 "http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts Dialect=
 "http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SecurityHeader(wsse:UsernameToken)
 </wssp:MessageParts>
</wssp:Target>

4. Edit the mySign.xml policy file attached to the Oracle Service Bus business service
response only to specify that the security token is unsigned:

<wssp:Integrity SignToken="false">

Implementing a Username Token with WS-Security 1.0 Message Protection

Interoperability with Oracle Service Bus 10g Security Environments 7-5

Also, for SOA clients only, comment out the target for system headers, as shown:

<!-- wssp:Target>
 <wssp:DigestAlgorithm
 URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SystemHeaders()
 </wssp:MessageParts>
</wssp:Target -->

5. Invoke the web service method from the client.

Additional Information

"Cloning a Web Service Policy" in Securing Web Services and Managing Policies with
Oracle Web Services Manager

"Using WS-Policy in Oracle Service Bus Proxy and Business Services" in Oracle Service
Bus Security Guide at
http://download.oracle.com/docs/cd/E13159_01/osb/docs10gr3/security/ws_pol
icy.html

7.2.3 Configuring an Oracle Service Bus 10g Web Service and an OWSM 12c Client
You can implement a username token with WS-Security 1.0 message protection using
Oracle Service Bus 10g web service and an OWSM 12c client. Configure the web
service, then configure the client.

To configure the Oracle Service Bus 10g Web Service:

1. Clone the Encrypt.xml and Sign.xml policy files.

For example, copy the files to myEncrypt.xml and mySign.xml. It is not
recommended to edit the predefined policy files directly.

2. Edit the encryption algorithm in the myEncrypt.xml file to prevent encryption
compliance failure, as follows:

<wssp:Target>
 <wssp:EncryptionAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
</wssp:Target>

For more information, see "Using WS-Policy in Oracle Service Bus Proxy and
Business Services" in Oracle Service Bus Security Guide at
http://download.oracle.com/docs/cd/E13159_01/osb/docs10gr3/security/ws_
policy.html.

3. Edit the mySign.xml policy file attached to the proxy service request only to
specify that the security token is unsigned:

<wssp:Integrity SignToken="false">

Also, for SOA clients only, comment out the target for system headers, as shown:

<!-- wssp:Target>
 <wssp:DigestAlgorithm
 URI="http://www.w3.org/2000/09/xmldsig#sha1" />

Implementing a SAML Sender Vouches Token with WS-Security 1.0 Message Protection

7-6 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

 <wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SystemHeaders()
 </wssp:MessageParts>
</wssp:Target -->

4. Create a web service application that invokes the Oracle Service Bus routing
service.

To configure the OWSM 12c Client:

1. Clone the following policy:
wss10_username_token_with_message_protection_client_policy.

Edit the policy settings, as follows:

a. Set Encryption Key Reference Mechanism to issuerserial.

b. Set Recipient Encryption Key Reference Mechanism to issuerserial.

c. Set Algorithm Suite to Basic128Rsa15 to match the algorithm suite used for
Oracle Service Bus.

d. Disable the Include Timestamp configuration setting.

e. Set Is Encrypted to false.

f. Leave the default configuration set for message signing and encryption.

For more information, see "Cloning a Web Service Policy" in Securing Web Services
and Managing Policies with Oracle Web Services Manager.

2. Attach the policy to the web service client.

3. Invoke the web service from the client.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

7.3 Implementing a SAML Sender Vouches Token with WS-Security 1.0
Message Protection

You can implement SAML sender vouches with WS-Security 1.0 message protection
using an OWSM 12c Web Service with an Oracle Service Bus 10g Client.

The following are supported scenarios:

■ OWSM 12c Web Service with Oracle Service Bus 10g Client

■ Oracle Service Bus 10g Web Service with OWSM 12c Client

For either scenario, you must complete prerequisite tasks for the WebLogic Server on
which Oracle Service Bus is running. See Table 7–8, " Configuration Prerequisites for
Interoperability." After completing the prerequisite tasks, complete one of the
following tasks depending upon your specific deployment:

■ "Configuring an OWSM 12c Web Service and an Oracle Service Bus 10g Client" on
page 7-8

■ "Configuring an Oracle Service Bus 10g Web Service and an OWSM 12c Client" on
page 7-9

To configure prerequisites for interoperability:

1. Copy the default-keystore.jks and trust.jks files to your domain directory.

Implementing a SAML Sender Vouches Token with WS-Security 1.0 Message Protection

Interoperability with Oracle Service Bus 10g Security Environments 7-7

The default-keystore.jks is used to store public and private keys for SOAP
messages within the WebLogic Domain. The trust.jks is used to store private
keys, digital certificates, and trusted certificate authority certificates that are used
to establish and verify identity and trust in the WebLogic Server environment.

For more information, see "Configuring Keystores for Message Protection" in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

2. Invoke the WebLogic Administration Console.

For more information, see "Accessing Oracle WebLogic Administration Console"
in Administering Web Services.

3. Create a SAMLIdentityAsserterV2 authentication provider.

For more information, see "Configuring Authentication and Identity Assertion
providers" in Oracle WebLogic Server Administration Console Online Help.

4. Restart WebLogic Server to add the new provider to the Administration Server's
Runtime MBean server.

5. Select the authentication provider created in step 3.

6. Create and configure a SAML asserting party.

Configure the SAML asserting party as follows (leave other values set to the
defaults):

■ Profile: WSS/Sender-Vouches

■ Target URL: <OSB Proxy Service Endpoint URI>

■ Issuer URI: www.oracle.com

Select the Enabled checkbox and click Save.

7. Create a SamlCredentialMapperV2 credential mapping provider.

Select SamlCredentialMapperV2 from the drop-down list and name the credential
mapper, for example, UC2_SamlCredentialMapperV2.

For more information, see "SAML Identity Asserter V2: Create an Asserting Party"
and "SAML Identity Asserter V2: Asserting Party: Configuration" in Oracle
WebLogic Server Administration Console Online Help.

8. Restart WebLogic Server.

9. Configure the credential mapper as follows (leave other values set to the defaults):

■ Issuer URI: www.oracle.com

Note: This value is specified in the policy file.

■ Name Qualifier: oracle.com

For more information, see "Configure Credential Mapping Providers" in Oracle
WebLogic Server Administration Console Online Help.

10. Create and configure a SAML relying party.

Configure the SAML relying party as follows (leave other values set to the
defaults):

■ Profile: WSS/Sender-Vouches

■ Target URL: <OWSM 12c Web Service>

■ Description: <your_description>

Implementing a SAML Sender Vouches Token with WS-Security 1.0 Message Protection

7-8 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

Select the Enabled checkbox and click Save.

For more information, see "SAML Credential Mapping Provider V2: Create a
Relying Party" and "SAML Credential Mapping Provider V2: Relying Party:
Configuration" in Oracle WebLogic Server Administration Console Online Help.

11. Restart WebLogic Server.

7.3.1 Configuring an OWSM 12c Web Service and an Oracle Service Bus 10g Client
You can configure implement SAML sender vouches with WS-Security 1.0 message
protection using OWSM 12c web service and an Oracle Service Bus 10g client.
Configure the web service, then configure the client.

To configure the OWSM 12c Web Service:

1. Clone the following policy:
oracle/wss10_saml_token_with_message_protection_service_policy.

For more information, see "Cloning a Web Service Policy" in Securing Web Services
and Managing Policies with Oracle Web Services Manager.

a. Set Encryption Key Reference Mechanism to issuerserial.

b. Set Algorithm Suite to Basic128Rsa15 to match the algorithm suite used for
Oracle Service Bus.

c. Set Is Encrypted to false for the Username token element only.

d. Leave the default configuration set for message signing and encryption.

2. Attach the policy to the web service.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

To Configure the Oracle Service Bus 10g Client:

1. Clone the Encrypt.xml and Sign.xml policy files.

For example, to myEncrypt.xml and mySign.xml. It is not recommended to edit the
predefined policy files directly.

2. Edit the encryption algorithm in the myEncrypt.xml file to prevent encryption
compliance failure, as follows:

<wssp:Target>
 <wssp:EncryptionAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
</wssp:Target>

For more information, see "Using WS-Policy in Oracle Service Bus Proxy and
Business Services" in Oracle Service Bus Security Guide at
http://download.oracle.com/docs/cd/E13159_01/osb/docs10gr3/security/ws_
policy.html.

3. Edit the mySign.xml file attached to the Oracle Service Bus business service
request only to sign the SAML assertion by including the following target:

<wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1" />

Implementing a SAML Sender Vouches Token with WS-Security 1.0 Message Protection

Interoperability with Oracle Service Bus 10g Security Environments 7-9

 <wssp:MessageParts Dialect=
 "http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SecurityHeader(wsse:Assertion)
 </wssp:MessageParts>
</wssp:Target>

4. Edit the mySign.xml file attached to the Oracle Service Bus business service
response only to specify that the security token is unsigned, as follows:

<wssp:Integrity SignToken="false">

Also, for SOA clients only, comment out the target for system headers, as shown:

<!-- wssp:Target>
 <wssp:DigestAlgorithm
 URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SystemHeaders()
 </wssp:MessageParts>
</wssp:Target -->

5. Use the custom SAML policy file shown in the following Custom SAML Policy
sample:

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 xmlns:wsu="
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.
xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 wsu:Id="custom_saml">
 <wssp:Identity xmlns:wssp="http://www.bea.com/wls90/security/policy">
 <wssp:SupportedTokens>
 <wssp:SecurityToken
 TokenType=
"http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml-token-profile-1.0#SA
MLAssertionID">
 <wssp:Claims>
 <wssp:ConfirmationMethod>
 sender-vouches
 </wssp:ConfirmationMethod>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Identity>
 </wsp:Policy>

6. Invoke the web service from the client.

7.3.2 Configuring an Oracle Service Bus 10g Web Service and an OWSM 12c Client
You can implement SAMLsender vouches with WS-Security 1.0 message protection
using an Oracle Service Bus 10g web service and an OWSM 12c client. Configure the
web service, then configure the client.

To configure the Oracle Service Bus 10g Web Service:

1. Clone the Encrypt.xml and Sign.xml policy files.

Implementing a SAML Sender Vouches Token with WS-Security 1.0 Message Protection

7-10 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

For example, to myEncrypt.xml and mySign.xml. It is not recommended to edit the
predefined policy files directly.

2. Edit the encryption algorithm in the myEncrypt.xml policy file to prevent
encryption compliance failure, as follows:

<wssp:Target>
 <wssp:EncryptionAlgorithm
 URI="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
</wssp:Target>

For more information, see "Using WS-Policy in Oracle Service Bus Proxy and
Business Services" in Oracle Service Bus Security Guide at
http://download.oracle.com/docs/cd/E13159_01/osb/docs10gr3/security/ws_
policy.html.

3. Edit the mySign.xml policy file attached to the proxy service request only to
specify that the security token is unsigned:

<wssp:Integrity SignToken="false">

Also, for SOA clients only, comment out the target for system headers, as shown:

<!-- wssp:Target>
 <wssp:DigestAlgorithm
 URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SystemHeaders()
 </wssp:MessageParts>
</wssp:Target -->

4. Use the custom SAML policy file shown in the following Custom SAML Policy
sample:

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 xmlns:wsu="
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.
xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 wsu:Id="custom_saml">
 <wssp:Identity xmlns:wssp="http://www.bea.com/wls90/security/policy">
 <wssp:SupportedTokens>
 <wssp:SecurityToken
 TokenType=
"http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml-token-profile-1.0#SA
MLAssertionID">
 <wssp:Claims>
 <wssp:ConfirmationMethod>
 sender-vouches
 </wssp:ConfirmationMethod>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Identity>
 </wsp:Policy>

Implementing a SAML or Username Token Over SSL

Interoperability with Oracle Service Bus 10g Security Environments 7-11

To configure the OWSM 12c client:

1. Clone the following policy:
wss10_saml_token_with_message_protection_client_policy.

Edit the policy settings, as follows:

a. Set Encryption Key Reference Mechanism to issuerserial.

b. Set Recipient Encryption Key Reference Mechanism to issuerserial.

c. Set Algorithm Suite to Basic128Rsa15 to match the algorithm suite used for
Oracle Service Bus.

d. Disable the Include Timestamp configuration setting.

e. Leave the default configuration set for message signing and encryption.

For more information, see "Cloning a Web Service Policy" in Securing Web Services
and Managing Policies with Oracle Web Services Manager.

2. Attach the policy to the web service client.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

3. Invoke the web service from the client.

7.4 Implementing a SAML or Username Token Over SSL
This section describes how to implement the SAML or username token over SSL
policy, in the following interoperability scenario:

■ Oracle Service Bus 10g client and OWSM 12c web service

Note: The interoperability scenario described in this section also
applies to the SAML Token Over SSL and Username Token Over SSL
policies.

 For either scenario, you must first perform prerequisite tasks for the WebLogic Server
on which Oracle Service Bus is running, as described in the following sections:

■ Configure the username token.

■ Configure the SAML token.

■ For SAML, perform the prerequisite steps for the WebLogic Server on which
Oracle Service Bus is running.

Configuration instructions for the supported scenarios are in the following section:

■ Section 7.4.1, "Configuring an OWSM 12c Web Service and an Oracle Service Bus
10g Client"

To configure SAML prerequisites for Interoperability:

1. Create a SamlCredentialMapperV2 credential mapping provider.

Select SamlCredentialMapperV2 from the drop-down list and name the credential
mapper; for example, UC2_SamlCredentialMapperV2.

For more information, see "Configure Credential Mapping Providers" in Oracle
WebLogic Server Administration Console Online Help.

Implementing a SAML or Username Token Over SSL

7-12 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

2. Restart WebLogic Server.

3. Configure the credential mapper as follows (leave other values set to the defaults):

■ Issuer URI: www.oracle.com

Note: This value is specified in the policy file.

■ Name Qualifier: oracle.com

4. Create and configure a SAML relying party.

Configure the SAML relying party as follows (leave other values set to the
defaults):

■ Profile: WSS/Sender-Vouches

■ Target URL: <OWSM 12c Web Service>

■ Description: <your_description>

Select the Enabled checkbox and click Save.

For more information, see "SAML Credential Mapping Provider V2: Create a
Relying Party" and "SAML Credential Mapping Provider V2: Relying Party:
Configuration" in Oracle WebLogic Server Administration Console Online Help

5. Restart WebLogic Server.

7.4.1 Configuring an OWSM 12c Web Service and an Oracle Service Bus 10g Client
 You can implement the SAML or username token over SSL policy using an OWSM 12c
web service and an Oracle Service Bus 10g client..

Both the SAML token client and the username token client are supported. Configure
the web service, then configure the client.

To configure the OWSM 12c Web Service:

1. Configure the server for two-way SSL.

■ If the service policy is Username Token Over SSL, set Two Way Client Cert
Behavior to "Client Certs Requested and Not Enforced."

■ If the service policy is SAML Token Over SSL, set Two Way Client Cert
Behavior to "Client Certs Requested and Enforced."

For more information, see "Configuring SSL on WebLogic Server (Two-Way)" in
Securing Web Services and Managing Policies with Oracle Web Services Manager

2. Clone the following policy:
wss_saml_or_username_token_over_ssl_service_policy.

■ For wss_username_token_over_ssl_service_policy, disable the Create
Element and Nonce configuration settings.

■ For wss_saml_token_over_ssl_service_policy, disable the Include
Timestamp configuration setting.

For more information, see "Cloning a Web Service Policy" in Securing Web Services
and Managing Policies with Oracle Web Services Manager

3. Use JDeveloper to create a simple SOA composite.

4. Attach the copy of the wss_saml_or_username_token_over_ssl_service_policy
policy to the composite and deploy it.

Implementing a SAML or Username Token Over SSL

Interoperability with Oracle Service Bus 10g Security Environments 7-13

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

To configure the Oracle Service Bus 10g client:

1. Configure the server for two-way SSL:

■ If the client policy is the equivalent of Username Token Over SSL, then set
Two Way Client Cert Behavior to "Client Certs Requested and Not Enforced."

■ If the client policy is the equivalent of SAML Token Over SSL, then set Two
Way Client Cert Behavior to "Client Certs Requested and Enforced."

For more information, see "Configuring SSL on WebLogic Server (Two-Way)" in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

2. In the Oracle Service Bus console, import the WSDL for the relying party. Make
sure that there is no policy attached. (Policy assertions are not allowed on this
service.)

3. For SAML token, create a business service.

a. Attach the policy to the request.

Use the custom SAML policy file shown in the following Custom SAML Policy
sample:

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 xmlns:wsu="
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 wsu:Id="custom_saml">
 <wssp:Identity xmlns:wssp="http://www.bea.com/wls90/security/policy">
 <wssp:SupportedTokens>
 <wssp:SecurityToken
 TokenType=
"http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml-token-profile-1.
0#SAMLAssertionID">
 <wssp:Claims>
 <wssp:ConfirmationMethod>
 sender-vouches
 </wssp:ConfirmationMethod>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Identity>
 </wsp:Policy>

b. Change the WSDL from HTTP to HTTPS.

4. For username token, create a business service.

a. Attach the auth.xml policy to the request.

b. Change the WSDL from HTTP to HTTPS.

5. Create a proxy service, and create a route to the business service.

In HTTP Transport Configuration, set Authentication to "basic."

Implementing Mutual Authentication with WS-Security 1.0 Message Protection

7-14 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

On the Security page, associate the Service key provider. This is needed for Oracle
Service Bus to send the client cert to SOA.

6. Run the proxy service from the Oracle Service Bus console with the username and
password.

7.5 Implementing Mutual Authentication with WS-Security 1.0 Message
Protection

This section describes how toYou can implement mutual authentication with
WS-Security 1.0 message protection. The following scenarios are supported:

■ OWSM 12c web service with Oracle Service Bus 10g client

■ Oracle Service Bus 10g web service with OWSM 12c client

For either scenario, you must first perform prerequisite tasks:

■ Configuration Prerequisites for OWSM

■ Configuration Prerequisites for the Oracle WebLogic Server

After completing the prerequisite tasks, complete one of the following tasks
depending upon your specific deployment:

■ "Configuring an OWSM 12c Web Service and an Oracle Service Bus 10g Client" on
page 7-16

■ "Configuring an Oracle Service Bus 10g Web Service and an OWSM 12c Client" on
page 7-18

To configure prerequisites for the Oracle WebLogic Server:

1. Copy the default-keystore.jks and trust.jks files to your domain directory.

The default-keystore.jks is used to store public and private keys for SOAP
messages within the WebLogic Domain. The trust.jks is used to store private
keys, digital certificates, and trusted certificate authority certificates that are used
to establish and verify identity and trust in the Oracle WebLogic Server
environment.

For more information, see "Configuring Keystores for Message Protection" in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

2. Invoke the WebLogic Administration Console.

For more information, see "Accessing Oracle WebLogic Administration Console"
in Administering Web Services

3. Configure the Custom Identity and Custom Trust keystores.

For more information, see "Configure keystores" in Oracle WebLogic Server
Administration Console Online Help

4. Configure SSL.

Specify the private key alias, as required. For example: oratest.

For more information, see "Set up SSL" in Oracle WebLogic Server Administration
Console Online Help

5. Configure a credential mapping provider.

6. Create a PKICredentialMapper and configure it as follows (leave all other values
set to the defaults):

Implementing Mutual Authentication with WS-Security 1.0 Message Protection

Interoperability with Oracle Service Bus 10g Security Environments 7-15

■ Keystore Provider: N/A

■ Keystore Type: jks

■ Keystore File Name: default_keystore.jks

■ Keystore Pass Phrase: <password>

■ Confirm Keystore Pass Phrase: <password>

For more information, see "Configure Credential Mapping Providers" in Oracle
WebLogic Server Administration Console Online Help

7. Select the Authentication tab and configure as follows:

■ Click DefaultIdentityAsserter and add X.509 to Chosen active types

■ Click Provider Specific and configure the following:

– Default User Name Mapper Attribute Type: CN

– Active Types: X.509

– Use Default User Name Mapper: True

For more information, see "Configure Authentication and Identity Assertion
providers" in Oracle WebLogic Server Administration Console Online Help

8. Configure a token handler to specify that a client invoking a message-secured web
service uses an X.509 certificate to establish their identity. In WebLogic
Administration Console, navigate to the Web Service Security page of the domain
and configure the inbound and outbound messages as follows:

Note: Only username token with message protection or mutual authentication
with message protection is available at any given time. Once you enable mutual
authentication with message protection, username authentication will fail.

■ Click _SERVICE_BUS_INBOUND_WEB_SERVICE_SECURITY_MBEAN_ and
select the Token Handler tab.

■ Click X.509 token handler and configure the following:

– Name: UseX509ForIdentity

– Value: True

■ Perform the same steps for the outbound Oracle Service Bus MBean:
_SERVICE_BUS_OUTBOUND_WEB_SERVICE_SECURITY_MBEAN_

9. If the users are not added, add the Common Name (CN) user specified in the
certificate.

For more information, see "Create users" in Oracle WebLogic Server Administration
Console Online Help.

10. Restart Oracle WebLogic Server.

To configure prerequisites for OWSM:

1. Configure authentication.

Select the Authentication tab and configure as follows:

■ Click DefaultIdentityAsserter and add X.509 to Chosen active types

■ Click Provider Specific and configure the following:

– Default User Name Mapper Attribute Type: CN

– Active Types: X.509

Implementing Mutual Authentication with WS-Security 1.0 Message Protection

7-16 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

– Use Default User Name Mapper: True

For more information, see "Configure Authentication and Identity Assertion
providers" in Oracle WebLogic Server Administration Console Online Help

2. If the users are not added, add the Common Name (CN) user specified in the
certificate.

3. Restart Oracle WebLogic Server.

For more information, see "Create users" in Oracle WebLogic Server Administration
Console Online Help

7.5.1 Configuring an OWSM 12c Web Service and an Oracle Service Bus 10g Client
You can configure implement mutual authentication with WS-Security 1.0 message
protection using an OWSM 12c web service and Oracle Service Bus 10g client.
Configure the web service, then configure the client.

To configure the OWSM 12c Web Service:

1. Create and deploy a SOA composite.

2. Clone the following policy:
wss10_x509_token_with_message_protection_service_policy.

Edit the policy settings, as follows:

a. Set Encryption Key Reference Mechanism to issuerserial.

b. Set Algorithm Suite to Basic128Rsa15 to match the algorithm suite used for
Oracle Service Bus.

For more information, see "Cloning a Web Service Policy" in Securing Web Services
and Managing Policies with Oracle Web Services Manager

3. Attach the policy to the web service.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

To configure Oracle Service Bus 10g Client:

1. Create an Oracle Service Bus business service.

2. Clone the Encrypt.xml and Sign.xml policy files.

For example, copy the files to myEncrypt.xml and mySign.xml. It is not
recommended to edit the predefined policy files directly.

3. Attach the X.509 policy shown in sample at the end of this procedure, to the Oracle
Service Bus business service request.

4. Attach the Sign.xml policy file to the Oracle Service Bus business service request.

5. Edit the myEncrypt.xml policy, as shown in sample at the end of this procedure,
and attach it to the Oracle Service Bus business service request.

For more information, see "Using WS-Policy in Oracle Service Bus Proxy and
Business Services" in Oracle Service Bus Security Guide at
http://download.oracle.com/docs/cd/E13159_01/osb/docs10gr3/security/ws_
policy.html.

6. Edit the mySign.xml policy file attached to the Oracle Service Bus business service
response to specify that the security token is unsigned:

<wssp:Integrity SignToken="false">

Implementing Mutual Authentication with WS-Security 1.0 Message Protection

Interoperability with Oracle Service Bus 10g Security Environments 7-17

Also, for SOA clients only, comment out the target for system headers, as shown in
sample at the end of this procedure.

7. Attach the myEncrypt.xml policy file from Step 6 to the Oracle Service Bus
business service response.

8. Create a ServiceKeyProvider.

9. Specify Encryption Key and Digital Signature Key, as required.

You must use different keys on the OWSM and Oracle Service Bus servers. You can
use the same key for encryption and signing, if desired.

10. Create a proxy service, and create a route to the business service.

On the Security page, associate the Service key provider. This is needed for Oracle
Service Bus to send the client certificate to SOA.

11. Run the proxy service from the Oracle Service Bus console.

See the following X.509 Policy sample:

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"

xmlns:s0="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-ut
ility-1.0.xsd"
 s0:Id="X509Auth">
 <wssp:Identity xmlns:wssp="http://www.bea.com/wls90/security/policy">
 <wssp:SupportedTokens>
 <wssp:SecurityToken
TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-p
rofile-1.0#X509v3"/>
 </wssp:SupportedTokens>
 </wssp:Identity>
</wsp:Policy>

See the following myEncrypt.xml Policy sample:

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-u
tility-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 wsu:Id="X509Encrypt">
 <wssp:Confidentiality>
 <wssp:KeyWrappingAlgorithm URI="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
 <wssp:Target>
 <wssp:EncryptionAlgorithm
URI="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <wssp:MessageParts
Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">wsp:Body()</wssp:Message
Parts>
 </wssp:Target>
 <wssp:KeyInfo/>
 </wssp:Confidentiality>
</wsp:Policy>

Implementing Mutual Authentication with WS-Security 1.0 Message Protection

7-18 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

See the following mySign Policy sample:

 <?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 wsu:Id="X509Sign">
 <wssp:Integrity SignToken="false">
 <wssp:SignatureAlgorithm URI="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <wssp:CanonicalizationAlgorithm
 URI="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <!--wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SystemHeaders()
 </wssp:MessageParts>
 </wssp:Target-->
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
 Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
 wls:SecurityHeader(wsu:Timestamp)
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Target>
 </wssp:Integrity>
 <wssp:MessageAge/>
</wsp:Policy>

7.5.2 Configuring an Oracle Service Bus 10g Web Service and an OWSM 12c Client
You can implement mutual authentication with WS-Security 1.0 message protection
using Oracle Service Bus 10g web service and an OWSM 12c client. Configure the web
service, then configure the client.

To configure the Oracle Service Bus 10g Web Service:

1. Create a Oracle Service Bus proxy service.

2. Clone the Encrypt.xml and Sign.xml policy files.

For example, to myEncrypt.xml and mySign.xml. It is not recommended to edit the
predefined policy files directly.

3. Attach the X.509 policy to the proxy service request.

4. Edit the mySign.xml policy file attached to the proxy service request and comment
out the target for system headers and timestamp, as shown in the sample at the
end of this procedure.

Implementing Mutual Authentication with WS-Security 1.0 Message Protection

Interoperability with Oracle Service Bus 10g Security Environments 7-19

For more information, see "Using WS-Policy in Oracle Service Bus Proxy and
Business Services" in Oracle Service Bus Security Guide at
http://download.oracle.com/docs/cd/E13159_01/osb/docs10gr3/security/ws_
policy.html.

5. Edit the encryption algorithm in the myEncrypt.xml file attached to the proxy
service request as shown in the sample at the end of this procedure.

6. Attach mySign.xml and myEncrypt.xml policy files from the previous steps to the
proxy service response.

7. Create a Service Key Provider.

mySign.xml Policy sample:

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"

xmlns:s0="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-ut
ility-1.0.xsd"
 s0:Id="X509SignRequest">
 <wssp:Integrity
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd">
 <wssp:SignatureAlgorithm URI="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />
 <wssp:CanonicalizationAlgorithm URI="http://www.w3.org/2001/10/xml-exc-c14n#"
 />
 <!-- wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
Dialect="http://www.bea.com/wls90/security/policy/wsee#part">wls:SystemHeaders
()</wssp:MessageParts>
 </wssp:Target -->
 <!-- wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
Dialect="http://www.bea.com/wls90/security/policy/wsee#part">wls:SecurityHeader
(wsu:Timestamp)</wssp:MessageParts>
 </wssp:Target -->
 <wssp:Target>
 <wssp:DigestAlgorithm URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">wsp:Body()</wssp:Message
Parts>
 </wssp:Target>
</wsp:Policy>

myEncrypt.xml sample:

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-u
tility-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 wsu:Id="X509Encrypt">

Implementing Mutual Authentication with WS-Security 1.0 Message Protection

7-20 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

 <wssp:Confidentiality>
 <wssp:KeyWrappingAlgorithm URI="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
 <wssp:Target>
 <wssp:EncryptionAlgorithm
URI="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
 <wssp:MessageParts
Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">wsp:Body()</wssp:Message
Parts>
 </wssp:Target>
 <wssp:KeyInfo/>
 </wssp:Confidentiality>

</wsp:Policy>

To configure the OWSM 12c client:

1. Clone the following policy:
wss10_x509_token_with_message_protection_client_policy.

In Fusion Middleware Control, edit the policy settings, as follows:

a. Set Encryption Key Reference Mechanism to issuerserial.

b. Set Recipient Encryption Key Reference Mechanism to issuerserial.

c. Set Algorithm Suite to Basic128Rsa15 to match the algorithm suite used for
Oracle Service Bus.

d. Disable the Include Timestamp configuration setting.

For more information, see "Cloning a Web Service Policy" in Securing Web Services
and Managing Policies with Oracle Web Services Manager.

2. In Fusion Middleware Control, specify keystore.recipient.alias in the client
configuration. Ensure that the keystore.recipient.alias keys specified for the client
exist as trusted certificate entry in the trust store configured for the web service.

3. Attach the policy to the web service client.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

4. Invoke the web service from the client.

8

Interoperability with Axis 1.4 and WSS4J 1.5.8 Security Environments 8-1

8Interoperability with Axis 1.4 and WSS4J 1.5.8
Security Environments

[9] This chapter describes interoperability of Oracle Web Services Manager (OWSM) with
Axis 1.4 and WSS4J 1.5.8 security environments.

This chapter includes the following sections:

■ Overview of Interoperability With Axis 1.4 and WSS4J 1.5.8 Security Environments

■ Creating Required Files for Interoperability With Axis and WSS4J

■ Username Token with Message Protection (WS-Security 1.0)

■ SAML Token with Message Protection (WS-Security 1.0)

■ Username Token Over SSL

■ SAML Token (Sender Vouches) Over SSL

8.1 Overview of Interoperability With Axis 1.4 and WSS4J 1.5.8 Security
Environments

In Axis 1.4 and WSS4J 1.5.8, you configure your security environment for inbound and
outbound requests using handlers and deployment descriptors. For more information,
see the Axis Deployment Tutorial at http://ws.apache.org/wss4j/axis.html.

With OWSM 12c, you attach policies to web service endpoints. Each policy consists of
one or more assertions, defined at the domain-level, that define the security
requirements. A set of predefined policies and assertions are provided out-of-the-box.

For more information about:

■ OWSM predefined policies, see "Predefined Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

■ Configuring and attaching OWSM 12c policies, see "Securing Web Services" and
"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web
Services Manager.

■ Configuring and attaching policies on Axis and WSS4J, see the Axis Deployment
Tutorial at http://ws.apache.org/wss4j/axis.html.

Table 8–1 OWSM 12c Service Policy and Axis WSS4J Client Policy Interoperability

Identity Token
WS-Security
Version

Message
Protection

Transport
Security Service Policy Client Policy

Username 1.0 Yes No oracle/wss10_usernam
e_token_with_message
_protection_service_
policy

UsernameToken
Timestamp Signature
Encrypt

SAML 1.0 Yes No oracle/wss10_saml_to
ken_with_message_pro
tection_service_poli
cy

SAMLTokenUnsigned
Timestamp Signature
Encrypt

Username 1.0 and 1.1 No Yes oracle/wss_username_
token_over_ssl_servi
ce_policy

UsernameToken
Timestamp

SAML 1.0 and 1.1 No Yes oracle/wss_saml_toke
n_over_ssl_service_p
olicy

SAMLTokenUnsigned
Timestamp

Table 8–2 Axis WSS4J Service Policy and OWSM 12c Client Policy Interoperability

Identity Token
WS-Security
Version

Message
Protection

Transport
Security Service Policy Client Policy

Username 1.0 Yes No UsernameToken
Timestamp Signature
Encrypt

oracle/wss10_username_
token_with_message_pro
tection_client_policy

SAML 1.0 Yes No SAMLTokenUnsigned
Timestamp Signature
Encrypt

oracle/wss10_saml_toke
n_with_message_protect
ion_client_policy

Username 1.0 and 1.1 No Yes Timestamp
UsernameToken

oracle/wss_username_to
ken_over_ssl_client_po
licy

SAML 1.0 and 1.1 No Yes Timestamp
SAMLTokenUnsigned

oracle/wss_saml_token_
over_ssl_client_policy

Creating Required Files for Interoperability With Axis and WSS4J

8-2 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

8.2 Creating Required Files for Interoperability With Axis and WSS4J
Perform the following steps to create the handler and property files that are required
in each of the Axis and WSS4J interoperability scenarios:

1. Create and compile a password callback class, PWCallback.java, that can resolve
passwords required by username and keystore aliases.

The deployment descriptors defined in the following sections, contain username
information, but not password information. As a best practice, you should not
store sensitive information such as passwords in clear text within the deployment
descriptor. To obtain the password, the Axis handler calls the password callback
class. This mechanism is similar to JAAS. For more information, see the WSS4J
documentation at http://ws.apache.org/wss4j.

2. Create the keystore properties file, crypto.properties, as shown below. Include
this file in the classes directory.

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto
.Merlin
org.apache.ws.security.crypto.merlin.keystore.type=jks
org.apache.ws.security.crypto.merlin.keystore.password=welcome1
org.apache.ws.security.crypto.merlin.file=default-keystore.jks

3. Create the saml.properties file, required for SAML interoperability scenarios
only, as shown below.

Username Token with Message Protection (WS-Security 1.0)

Interoperability with Axis 1.4 and WSS4J 1.5.8 Security Environments 8-3

org.apache.ws.security.saml.issuerClass=org.apache.ws.security.saml.SAMLIssuerI
mpl
org.apache.ws.security.saml.issuer.cryptoProp.file=crypto.properties
org.apache.ws.security.saml.issuer.key.name=orakey
org.apache.ws.security.saml.issuer.key.password=orakey
org.apache.ws.security.saml.issuer=www.oracle.com
org.apache.ws.security.saml.subjectNameId.name=weblogic
org.apache.ws.security.saml.authenticationMethod=password
org.apache.ws.security.saml.confirmationMethod=senderVouches

8.3 Username Token with Message Protection (WS-Security 1.0)
This section describes how to implement username token with message protection that
conforms to the WS-Security 1.0 standard, in the following interoperability scenarios:

■ Configuring an OWSM 12c Web Service and an Axis and WSS4J Client

■ Configuring an Axis and WSS4J Web Service and an OWSM 12c Client

8.3.1 Configuring an OWSM 12c Web Service and an Axis and WSS4J Client
The following instructions tell how to configure an OWSM 12c web service and an
Axis and WSS4J client to implement username token with message protection that
conforms to the WS-Security 1.0 standard.

To configure the OWSM 12c Web Service:

1. Attach the following policy to the web service:
oracle/wss10_username_token_with_message_protection_service_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager

2. Deploy the web service.

To configure the Axis and WSS4J client:

1. Build your web service client proxy.

2. Create the password callback class, PWCallback.java, and keystore properties file,
crypto.properties.

For more information, see "Creating Required Files for Interoperability With Axis
and WSS4J" on page 8-2

3. Include the keystore file (for example, default-keystore.jks) and
crypto.properties file directly under the classes folder.

Ensure that you are using keystore with v3 certificates. By default, the JDK 1.5
keytool generates keystores with v1 certificates.

4. Edit the deployment descriptor, client_deploy.wsdd, similar to the sample at the
end of this procedure.

In the example, the receiver decrypts, verifies, and validates the username token;
the sender inserts a username token, timestamp, signs the body, username token,
and timestamp, and encrypts the body and username token. As shown in the
example, the encryption key transport is overridden to match the OWSM default
requirements

5. Set the following property within the client code to use the deployment descriptor
defined in the previous step.

Username Token with Message Protection (WS-Security 1.0)

8-4 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

System.setProperty("axis.ClientConfigFile", "client_deploy.wsdd");

6. Deploy the web service client.

See the following client_deploy.wsdd Deployment Descriptor sample:

<deployment xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
 <transport name="http"
 pivot="java:org.apache.axis.transport.http.HTTPSender"/>
 <globalConfiguration >
 <!-- wss10_username_token_with_message_protection -->
 <requestFlow>
 <handler type="java:org.apache.ws.axis.security.WSDoAllSender" >
 <parameter name="passwordCallbackClass"

value="com.oracle.xmlns.ConfigOverride_jws.CO_SOA.BPELProcess1.PWCallback"/>
 <parameter name="passwordType" value="PasswordText"/>
 <parameter name="user" value="weblogic"/>
 <parameter name="action" value="UsernameToken Timestamp Signature
Encrypt"/>
 <parameter name="encryptionKeyTransportAlgorithm"
 value="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p"/>
 <parameter name="encryptionKeyIdentifier" value="DirectReference" />
 <parameter name="encryptionPropFile" value="crypto.properties" />
 <parameter name="encryptionUser" value="orakey" />
 <parameter name="encryptionParts" value=

"{Element}{http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-s
ecext-1.0.xsd}
 UsernameToken;{Content}{http://schemas.xmlsoap.org/soap/envelope/}Body" />
 <parameter name="signatureUser" value="orakey" />
 <parameter name="signaturePropFile" value="crypto.properties" />
 <parameter name="signatureKeyIdentifier" value="DirectReference" />
 <parameter name="signatureParts" value=

"{Element}{http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-s
ecext-1.0.xsd}
UsernameToken;{Element}{http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss
-wssecurity-utility-
1.0.xsd}
Timestamp;{Element}{http://schemas.xmlsoap.org/soap/envelope/}Body" />
 </handler>
 </requestFlow>
 <responseFlow>
 <handler type="java:org.apache.ws.axis.security.WSDoAllReceiver">
 <parameter name="passwordCallbackClass"
value="com.oracle.xmlns.ConfigOverride_jws.CO
_SOA.BPELProcess1.PWCallback"/>
 <parameter name="action" value="Timestamp Signature Encrypt" />
 <parameter name="signaturePropFile" value="crypto.properties" />
 <parameter name="decryptionPropFile" value="crypto.properties" />
 <parameter name="enableSignatureConfirmation" value="false" />
 </handler>
 </responseFlow>
 </globalConfiguration >
</deployment>

Username Token with Message Protection (WS-Security 1.0)

Interoperability with Axis 1.4 and WSS4J 1.5.8 Security Environments 8-5

8.3.2 Configuring an Axis and WSS4J Web Service and an OWSM 12c Client
The following instructions tell how to configure an Axis and WSS4J web service and
an OWSM 12c client service to implement username token with message protection
that conforms to the WS-Security 1.0 standard.

To configure the Axis and WSS4J Web Service:

1. Build your web service.

2. Create the password callback class, PWCallback.java, and keystore properties file,
crypto.properties, as described in "Creating Required Files for Interoperability
With Axis and WSS4J" on page 8-2.

3. Include the keystore file (for example, default-keystore.jks) and
crypto.properties file directly under the classes folder.

Ensure that you are using keystore with v3 certificates. By default, the JDK 1.5
keytool generates keystores with v1 certificates.

4. Edit the deployment descriptor, server_deploy.wsdd, as shown in the sample at
the end of this procedure.

In the example, the receiver decrypts, verifies, and validates the username token;
the sender inserts a username token, timestamp, signs the body, username token,
and timestamp, and encrypts the body and username token. As shown in the
example, the encryption key transport is overridden to match the OWSM default
requirements.

Note: WSS4J enforces an order to the elements in the header. Ensure action
ordering is updated in server_deploy.wsdd as shown in the sample at the end of
this procedure.

5. Deploy the web service.

See the following server_deploy.wsdd Deployment Descriptor sample

<ns1:service name="HelloWorld" provider="java:RPC" style="wrapped"
use="literal">
<!-- wss10_username_token_with_message_protection -->
<requestFlow>
 <handler type="java:org.apache.ws.axis.security.WSDoAllReceiver">
 <parameter name="passwordCallbackClass" value="PWCallback1"/>
 <parameter name="user" value="wss4j"/>
 <parameter name="action" value="Signature UsernameToken Timestamp
Encrypt"/>
 <parameter name="signaturePropFile" value="crypto.properties" />
 <parameter name="decryptionPropFile" value="crypto.properties" />
 </handler>
</requestFlow>
<responseFlow>
 <handler type="java:org.apache.ws.axis.security.WSDoAllSender" >
 <parameter name="passwordCallbackClass" value="PWCallback1"/>
 <parameter name="user" value="orakey"/>
 <parameter name="action" value="Timestamp Signature Encrypt"/>
 <parameter name="encryptionKeyTransportAlgorithm"
 value="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p"/>
 <parameter name="signaturePropFile" value="crypto.properties" />
 <parameter name="signatureKeyIdentifier" value="DirectReference" />
 <parameter name="signatureParts"
value="{Element}{http://schemas.xmlsoap.org/soap/envelope/}Body;{Element}
{http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0
.xsd}Timestamp" />

SAML Token with Message Protection (WS-Security 1.0)

8-6 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

 <parameter name="encryptionKeyIdentifier" value="DirectReference" />
 </handler>
</responseFlow>
</ns1:service>

To configure OWSM 12c client:

1. Attach the following policy to the web service:
oracle/wss10_username_token_with_message_protection_client_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

2. For Java SE clients only, configure the web service client properties, as follows:

Note: This step is not required for Java EE clients.

myPort.setProperty(ClientConstants.WSS_KEYSTORE_TYPE,"JKS");
myPort.setProperty(ClientConstants.WSS_KEYSTORE_LOCATION,
 "/keystore-path/default-keystore.jks");
myPort.setProperty(ClientConstants.WSS_KEYSTORE_PASSWORD, "welcome1");
myPort.setProperty(ClientConstants.WSS_RECIPIENT_KEY_ALIAS,"orakey");
...

Where setProperty is defined as follows:

public void setProperty(String name, String value) {
 ((Stub) _port)._setProperty(name, value);
}

3. Deploy the web service client.

8.4 SAML Token with Message Protection (WS-Security 1.0)
This section describes how to implement SAML token with message protection that
conforms to the WS-Security 1.0 standard, in the following interoperability scenarios:

■ Configuring an OWSM 12c Web Service and an Axis an WSS4J Client

■ Configuring an Axis and WSS4J Web Service and an OWSM 12c Client

8.4.1 Configuring an OWSM 12c Web Service and an Axis an WSS4J Client
The following instructions tell how to configure an OWSM 12c web service and an
Axis and WSS4J client to implement SAML token with message protection that
conforms to the WS-Security 1.0 standard.

To configure the OWSM 12c Web Service:

1. Attach the following policy to the web service:
oracle/wss10_saml_token_with_message_protection_service_policy.

"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web
Services Manager

2. Deploy the web service.

To configure the Axis and WSS4J client:

1. Build your web service client proxy.

2. Create the password callback class, PWCallback.java, keystore properties file,
crypto.properties file, and saml.properties file, as described in "Creating

SAML Token with Message Protection (WS-Security 1.0)

Interoperability with Axis 1.4 and WSS4J 1.5.8 Security Environments 8-7

Required Files for Interoperability With Axis and WSS4J" on page 8-2.

3. Include the keystore file (for example, default-keystore.jks) and
crypto.properties file directly under the classes folder.

Ensure that you are using keystore with v3 certificates. By default, the JDK 1.5
keytool generates keystores with v1 certificates.

4. Edit the deployment descriptor, client_deploy.wsdd, similar to the sample at the
end of this procedure.

In the example, the receiver decrypts, verifies, and validates the SAML token; the
sender inserts a SAML token, timestamp, signs the body, SAML token, and
timestamp, and encrypts the body. As shown in the example, the encryption key
transport is overridden to match the OWSM default requirements.

5. Set the following property within the client code to use the deployment descriptor
defined in the previous step.

System.setProperty("axis.ClientConfigFile", "client_deploy.wsdd");

6. Deploy the web service client.

See the following client_deploy.wsdd Deployment Descriptor sample:

<deployment xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
 <transport name="http"
 pivot="java:org.apache.axis.transport.http.HTTPSender"/>
 <globalConfiguration >
<!-- wss10_saml_token_with_message_protection -->
 <requestFlow>
 <handler type="java:org.apache.ws.axis.security.WSDoAllSender" >
 <parameter name="passwordCallbackClass"

value="com.oracle.xmlns.ConfigOverride_jws.CO_SOA.BPELProcess1.PWCallback"/>
 <parameter name="passwordType" value="PasswordText"/>
 <parameter name="user" value="weblogic"/>
 <parameter name="action" value="Timestamp Signature SAMLTokenSigned
Encrypt"/>
 <parameter name="samlPropFile" value="saml.properties"/>
 <parameter name="encryptionKeyTransportAlgorithm"
 value="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p"/>
 <parameter name="encryptionKeyIdentifier" value="DirectReference" />
 <parameter name="encryptionPropFile" value="crypto.properties" />
 <parameter name="encryptionUser" value="orakey" />
 <parameter name="encryptionParts"
 value="{Content}{http://schemas.xmlsoap.org/soap/envelope/}Body" />
 <parameter name="signatureUser" value="orakey" />
 <parameter name="signaturePropFile" value="crypto.properties" />
 <parameter name="signatureKeyIdentifier" value="DirectReference" />
 <parameter name="signatureParts" value="{Element}

{http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0
.xsd}
 Timestamp;{Element}
 {http://schemas.xmlsoap.org/soap/envelope/}Body" />
 </handler>
 </requestFlow>
 <responseFlow>
 <handler type="java:org.apache.ws.axis.security.WSDoAllReceiver">
 <parameter name="passwordCallbackClass"

SAML Token with Message Protection (WS-Security 1.0)

8-8 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

value="com.oracle.xmlns.ConfigOverride_jws.CO_SOA.BPELProcess1.PWCallback" />
 <parameter name="action" value="Timestamp Signature Encrypt" />
 <parameter name="signaturePropFile" value="crypto.properties" />
 <parameter name="decryptionPropFile" value="crypto.properties" />
 <parameter name="enableSignatureConfirmation" value="false" />
 </handler>
 </responseFlow>
 </globalConfiguration >
</deployment>

8.4.2 Configuring an Axis and WSS4J Web Service and an OWSM 12c Client
The following instructions tell how to configure an Axis and WSS4J web service and
an OWSM 12c client to implement SAML token with message protection that conforms
to the WS-Security 1.0 standard.

To configure the Axis and WSS4J Web Service:

1. Build your web service.

2. Create the password callback class, PWCallback.java, keystore properties file,
crypto.properties file, and saml.properties file as described in "Creating Required
Files for Interoperability With Axis and WSS4J" on page 8-2.

3. Include the keystore file (for example, default-keystore.jks) and crypto.properties
file directly under the classes folder.

Ensure that you are using keystore with v3 certificates. By default, the JDK 1.5
keytool generates keystores with v1 certificates.

4. Edit the deployment descriptor, server_deploy.wsdd, as shown in the sample at
the end of this procedure.

In the example, the receiver decrypts, verifies, and validates the SAML token; the
sender inserts a SAML token, timestamp, signs the body, SAML token, and
timestamp, and encrypts the body. As shown in the example, the encryption key
transport is overridden to match the OWSM default requirements.

Note: WSS4J enforces an order to the elements in the header. Ensure action
ordering is updated in server_deploy.wsdd as shown in the sample at the end of
this procedure.

5. Deploy the web service.

See the following server_deploy.wsdd Deployment Descriptor sample:

<ns1:service name="HelloWorld" provider="java:RPC" style="wrapped"
use="literal">
<!-- wss10_username_token_with_message_protection -->
<requestFlow>
 <handler type="java:org.apache.ws.axis.security.WSDoAllReceiver">
 <parameter name="passwordCallbackClass" value="PWCallback1"/>
 <parameter name="user" value="wss4j"/>
 <parameter name="action" value="Signature SAMLTokenUnsigned Timestamp
Encrypt"/>
 <parameter name="signaturePropFile" value="crypto.properties" />
 <parameter name="decryptionPropFile" value="crypto.properties" />
 </handler>
</requestFlow>
<responseFlow>
 <handler type="java:org.apache.ws.axis.security.WSDoAllSender" >
 <parameter name="passwordCallbackClass" value="PWCallback1"/>

Username Token Over SSL

Interoperability with Axis 1.4 and WSS4J 1.5.8 Security Environments 8-9

 <parameter name="user" value="orakey"/>
 <parameter name="action" value="Timestamp Signature Encrypt"/>
 <parameter name="encryptionKeyTransportAlgorithm"
 value="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p"/>
 <parameter name="signaturePropFile" value="crypto.properties" />
 <parameter name="signatureKeyIdentifier" value="DirectReference" />
 <parameter name="signatureParts"
value="{Element}{http://schemas.xmlsoap.org/soap/envelope/}Body;{Element}
{http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0
.xsd}Timestamp" />
 <parameter name="encryptionKeyIdentifier" value="DirectReference" />
 </handler>
</responseFlow>
</ns1:service>

To configure the OWSM 12c client:

1. Attach the following policy to the web service:
oracle/wss10_saml_token_with_message_protection_client_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

2. For JSE clients only, configure the web service client properties, as follows:

Note: This step is not required for Java EE clients.

myPort.setProperty(ClientConstants.WSS_KEYSTORE_TYPE,"JKS");
myPort.setProperty(ClientConstants.WSS_KEYSTORE_LOCATION,
 "/keystore-path/default-keystore.jks");
myPort.setProperty(ClientConstants.WSS_KEYSTORE_PASSWORD, "welcome1");
myPort.setProperty(ClientConstants.WSS_RECIPIENT_KEY_ALIAS,"orakey");
...

Where setProperty is defined as follows:

public void setProperty(String name, String value) {
 ((Stub) _port)._setProperty(name, value);
}

3. Deploy the web service client.

8.5 Username Token Over SSL
This section describes how to implement username token over SSL, in the following
interoperability scenarios:

■ Configuring an OWSM 12c Web Service and an Axis and WSS4J Client

■ Configuring an Axis and WSS4J Web Service and an OWSM 12c Client

8.5.1 Configuring an OWSM 12c Web Service and an Axis and WSS4J Client
The following instructions tell how to configure an OWSM 12g web service and an
Axis and WSS4J client to implement username token over SSL.

To configure the OWSM 12c Web Service:

1. Configure the server for SSL.

For more information, see "Configuring Transport-Level Security (SSL)" in
Securing Web Services and Managing Policies with Oracle Web Services Manager

Username Token Over SSL

8-10 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

2. Attach the following policy to the web service:
oracle/wss_username_token_over_ssl_service_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

3. Deploy the web service.

To configure the Axis and WSS4J client:

1. Build your web service client proxy.

2. Create the password callback class, PWCallback.java, and keystore properties file,
crypto.properties, as described in "Creating Required Files for Interoperability
With Axis and WSS4J" on page 8-2.

3. Edit the deployment descriptor, client_deploy.wsdd, similar the example below. In
the example, the receiver validates the username token and timestamp; the sender
inserts a timestamp.

<deployment xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
 <transport name="http"
 pivot="java:org.apache.axis.transport.http.HTTPSender"/>
<globalConfiguration >
<!-- wss_username_token -->
<requestFlow >
 <handler type="java:org.apache.ws.axis.security.WSDoAllSender" >
 <parameter name="action" value="UsernameToken Timestamp"/>
 <parameter name="user" value="weblogic"/>
 <parameter name="passwordCallbackClass"

value="com.oracle.xmlns.ConfigOverride_jws.CO_SOA.BPELProcess1.PWCallback"/>
 <parameter name="passwordType" value="PasswordText"/>
 </handler>
</requestFlow >
</globalConfiguration >
</deployment>

4. Set the following property within the client code to use the deployment descriptor
defined in the previous step.

System.setProperty("axis.ClientConfigFile", "client_deploy.wsdd");

5. Deploy the web service client.

8.5.2 Configuring an Axis and WSS4J Web Service and an OWSM 12c Client
The following instructions tell how to configure an Axis and WSS4J web service and
an OWSM 12c client to implement username token over SSL.

To configure the Axis and WSS4J Web Service:

1. Configure the server for SSL.

2. Build your web service.

3. Create the password callback class, PWCallback.java, and crypto.properties file, as
described in "Creating Required Files for Interoperability With Axis and WSS4J"
on page 8-2.

SAML Token (Sender Vouches) Over SSL

Interoperability with Axis 1.4 and WSS4J 1.5.8 Security Environments 8-11

4. Edit the deployment descriptor, server_deploy.wsdd, similar to the example
below. In the example, the receiver validates the username token and the
timestamp; the sender inserts a timestamp.

<ns1:service name="HelloWorld" provider="java:RPC" style="wrapped"
 use="literal">
<!-- wss_username_token_over_ssl -->
 <requestFlow>
 <handler type="java:org.apache.ws.axis.security.WSDoAllReceiver">
 <parameter name="passwordCallbackClass" value="PWCallback1"/>
 <parameter name="action" value="Timestamp UsernameToken"/>
 </handler>
 </requestFlow>
 <responseFlow>
 <handler type="java:org.apache.ws.axis.security.WSDoAllSender" >
 <parameter name="action" value="Timestamp"/>
 </handler>
 </responseFlow>
</ns1:service>

5. Deploy the web service.

To configure OWSM 12c client:

1. Attach the following policy to the web service client:
wss_username_token_over_ssl_client_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

2. For JSE clients only, configure the web service client properties, as shown below.
The username and password must be set by the client for generating the username
token.

Note: This step is not required for Java EE clients.

myPort.setUsername("wss4j");
myPort.setPassword("security"););

3. Deploy the web service client.

When running the client, include the following client system property, where
default-keystore.jks specifies the keystore that contains the certificate corresponding
to the server certificate.

-Djavax.net.ssl.trustStore=default-keystore.jks

8.6 SAML Token (Sender Vouches) Over SSL
This section describes how to implement SAML token (sender vouches) over SSL, in
the following interoperability scenarios:

■ Configuring an OWSM 12c Web Service and an Axis and WSS4J Client

■ Configuring an Axis and WSS4J Web Service and an OWSM 12c Client

8.6.1 Configuring an OWSM 12c Web Service and an Axis and WSS4J Client
The following instructions tell how to configure an OWSM 12c web service and an
Axis and WSS4J client to implement SAML token (sender vouches) over SSL.

To configure the OWSM 12c Web Service:

SAML Token (Sender Vouches) Over SSL

8-12 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

1. Configure the server for SSL.

 For more information, see "Configuring Transport-Level Security (SSL)" in
Securing Web Services and Managing Policies with Oracle Web Services Manager.

2. Attach the following policy to the web service:
wss_saml_token_over_ssl_service_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

3. Deploy the web service.

To configure the Axis and WSS4J client:

1. Build your web service client proxy.

2. Create the password callback class, PWCallback.java; keystore properties file,
crypto.properties; and SAML properties file, saml.properties, as described in
"Creating Required Files for Interoperability With Axis and WSS4J" on page 8-2.

3. Edit the deployment descriptor, client_deploy.wsdd, similar the example below. In
the example, the receiver validates the SAML token and timestamp; the sender
inserts a timestamp.

<deployment xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
<transport name="http"
 pivot="java:org.apache.axis.transport.http.HTTPSender"/>
 <globalConfiguration >
<!-- wss_saml_token -->
<requestFlow >
 <handler type="java:org.apache.ws.axis.security.WSDoAllSender" >
 <parameter name="action" value="SAMLTokenSigned Timestamp"/>
 <parameter name="samlPropFile" value="saml.properties"/>
 <parameter name="user" value="weblogic"/>
 <parameter name="passwordCallbackClass"
 value="com.oracle.xmlns.ConfigOverride_jws.CO_SOA.BPELProcess1.PWCallback"/>
 <parameter name="passwordType" value="PasswordText"/>
 <parameter name="signatureUser" value="orakey" />
 <parameter name="signatureKeyIdentifier" value="DirectReference" />
 <parameter name="signaturePropFile" value="crypto.properties" />
 </handler>
</requestFlow >
</globalConfiguration >
</deployment>

4. Set the following property within the client code to use the deployment descriptor
defined in the previous step.

System.setProperty("axis.ClientConfigFile", "client_deploy.wsdd");

5. Deploy the web service client.

8.6.2 Configuring an Axis and WSS4J Web Service and an OWSM 12c Client
The following instructions tell how to configure an Axis and WSS4J web service and
an OWSM 12c client to implement SAML token (sender vouches) over SSL.

To configure the Axis and WSS4J Web Service:

1. Configure the server for SSL.

2. Build your web service.

SAML Token (Sender Vouches) Over SSL

Interoperability with Axis 1.4 and WSS4J 1.5.8 Security Environments 8-13

3. Create the password callback class, PWCallback.java, and crypto.properties file, as
described in "Creating Required Files for Interoperability With Axis and WSS4J"
on page 8-2.

4. Edit the deployment descriptor, server_deploy.wsdd, similar to the example
below.

In the example, the receiver validates the SAML token and the timestamp; the
sender inserts a timestamp.

<ns1:service name="HelloWorld" provider="java:RPC" style="wrapped"
 use="literal">
<!-- wss_saml_token_over_ssl -->
<requestFlow>
 <handler type="java:org.apache.ws.axis.security.WSDoAllReceiver">
 <parameter name="passwordCallbackClass" value="PWCallback1"/>
 <parameter name="action" value="Timestamp SAMLTokenUnsigned"/>
 </handler>
</requestFlow>
<responseFlow>
 <handler type="java:org.apache.ws.axis.security.WSDoAllSender" >
 <parameter name="action" value="Timestamp"/>
 </handler>
</responseFlow>
</ns1:service>

5. Deploy the web service.

To configure the OWSM 12c client:

1. Attach the following policy to the web service client:
wss_saml_token_over_ssl_client_policy.

For more information, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

2. For JSE clients, configure the web service client properties, as shown below. The
username must be set by the client for generating the SAML assertion.

myPort.setUsername("wss4j");

Note: This step is not required for Java EE clients.

3. Deploy the web service client.

When running the client, include the following client system property, where
default-keystore.jks specifies the keystore that contains the certificate corresponding
to the server certificate.

-Djavax.net.ssl.trustStore=default-keystore.jks

SAML Token (Sender Vouches) Over SSL

8-14 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

9

Interoperability with Oracle GlassFish Server Release 3.0.1 9-1

9Interoperability with Oracle GlassFish Server
Release 3.0.1

[10] This chapter describes interoperability of Oracle Web Services Manager (OWSM) with
Oracle Glassfish Server Release 3.0.1.

This chapter includes the following sections:

■ Overview of Interoperability With Oracle GlassFish Security Environments

■ Username Token with Message Protection (WS-Security 1.1)

■ SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1)

9.1 Overview of Interoperability With Oracle GlassFish Security
Environments

Oracle GlassFish Server Release 3.0.1 is an open source application server for the Java
EE platform. Metro is an open-source web service stack that is a part of Oracle
GlassFish Server.

With OWSM 12c, you attach policies to web service endpoints. Each policy consists of
one or more assertions, defined at the domain-level, that define the security
requirements. A set of predefined policies and assertions are provided out-of-the-box.

For more information about:

■ OWSM predefined policies, see "Predefined Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

■ Configuring and attaching OWSM 12c policies, see "Securing Web Services" and
"Attaching Policies" in Securing Web Services and Managing Policies with Oracle Web
Services Manager.

■ Configuring Oracle GlassFish, see
http://download.oracle.com/docs/cd/E18930_01/index.html.

■ Configuring Metro web services, see http://metro.java.net/guide/

 Table 9–1 and Table 9–2 summarize the most common GlassFish Server
interoperability scenarios based on the following security requirements:
authentication, message protection, and transport.

Table 9–1 OWSM 11g Service Policy and GlassFish Client Interoperability

Identity Token
WS-Security
Version

Message
Protection

Transport
Security Service Policy Client Policy

SAML 1.1 Yes No oracle/wss11_saml_to
ken_with_message_pro
tection_service_poli
cy

See "Configuring an
OWSM 12c Web Service
and a GlassFish Client" on
page 9-5

Table 9–2 GlassFish Service and OWSM 11g Client Policy Interoperability

Identity Token
WS-Security
Version

Message
Protection

Transport
Security Service Policy Client Policy

SAML 1.1 Yes No See "Configuring a
GlassFish Web Service
and an OWSM 12c Client"
on page 9-6

oracle/wss11_saml_to
ken_with_message_pro
tection_client_polic
y

Username Token with Message Protection (WS-Security 1.1)

9-2 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

9.2 Username Token with Message Protection (WS-Security 1.1)
This section describes how to implement username token with message protection that
conforms to the WS-Security 1.1 standard, in the following interoperability scenarios:

■ Configuring an OWSM 12c Web Service and a GlassFish Client

■ Configuring a GlassFish Web Service and an OWSM 12c Client

9.2.1 Configuring an OWSM 12c Web Service and a GlassFish Client
The following instructions tell how to configure an OWSM 12c web service and a
GlassFish client to implement username token with message protection that conforms
to the WS-Security 1.1 standard.

To Configure Prerequisites for Interoperability:

1. Create a default-keystore.jks file with the following command:

$JAVA_HOME/bin/keytool -genkeypair -alias orakey -keypass welcome -keyalg RSA
 -dname "CN=orakey, O=oracle C=us" -keystore default-keystore.jks -storepass
 welcome

2. Copy default-keystore.jks to the domain's fmwconfig directory.

3. Create a file user in GlassFish with the following command:

$<GLASSFISHV3_HOME>/glassfish/bin/asadmin create-file-user
For more information, see

http://download.oracle.com/docs/cd/E18930_01/html/821-2433/create-file-
user-1.html

4. Import orakey from default-keystore.jks into GlassFish keystore and truststore.
These are located in the directory <domain-dir>/config

$JAVA_HOME/bin/keytool -importkeystore -srckeystore
 <path-to>/default-keystore.jks -destkeystore
 <path-to-gf-domain>/config/cacerts.jks -srcalias orakey -destalias orakey
 -srckeypass welcome -destkeypass changeit

5. Copy jps-config.xml and default-keystore.jks from the domain's fmwconfig
directory into a local folder.

To Configure OWSM 12c Web Service:

1. Create a Web service.

Username Token with Message Protection (WS-Security 1.1)

Interoperability with Oracle GlassFish Server Release 3.0.1 9-3

2. Attach the following policy to the Web service:
oracle/wss11_username_token_with_message_protection_service_policy.

For more information, see “Attaching Policies” in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

To Configure GlassFish/Metro Client:

1. Using NetBeans, create a Metro client by selecting New Project > Java > Java
Application. Provide a project name and location and select Finish.

2. Right-click on the project. Select New > Web service Client. Follow the wizard
and provide WSDL URL for service deployed in WebLogic.

3. Select Edit Web Services Attributes.

4. Check Use Development Defaults to include Metro libraries into the project.

5. Uncheck Use Development Defaults. Provide username subject and password.

6. For a Metro SE client:

a. Edit the truststore configuration. Select the same default-keystore.jks
created in Table 9–3, " Configuration Prerequisites for Interoperability".

b. Drag and drop the Web service operation into main class, main method.

c. Right click on the project and choose run to execute the project.

7. For a Metro Java EE client:

a. Drag and drop the Web service operation into EJB or Servlet to invoke.

b. Deploy the application into GlassFish and invoke the Web service.

9.2.2 Configuring a GlassFish Web Service and an OWSM 12c Client
The following instructions tell how to configure a GlassFish web service and an
OWSM 12c client to implement username token with message protection that
conforms to the WS-Security 1.1 standard.

To Configure Prerequisites for Interoperability

1. Create a default-keystore.jks file with the following command:

$JAVA_HOME/bin/keytool -genkeypair -alias orakey -keypass welcome -keyalg RSA
 -dname "CN=orakey, O=oracle C=us" -keystore default-keystore.jks -storepass
 welcome

2. Copy default-keystore.jks to the domain's fmwconfig directory.

3. Save the credentials in credential store using WLST commands. For example:

$<ORACLE_HOME>/common/bin/wlst.sh
> connect()
> createCred(map="oracle.wsm.security", key="keystore-csf-key",
 user="keystore", password="welcome")
> createCred(map="oracle.wsm.security", key="sign-csf-key", user="orakey",
 password="welcome")
> createCred(map="oracle.wsm.security", key="enc-csf-key", user="orakey",
 password="welcome")
>createCred(map="oracle.wsm.security", key="glassfish.credentials" ,
 user="wlsUser" , password="welcome1" , description="Glassfish user
 credentials");
A file cwallet.sso is created in the directory DOMAIN_HOME/config/fmwconfig

4. Create a file user in GlassFish with the following command:

SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1)

9-4 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

$<GLASSFISHV3_HOME>/glassfish/bin/asadmin create-file-user
For more information, see
http://download.oracle.com/docs/cd/E18930_01/html/821-2433/create-file-use
r-1.html

5. Import orakey from default-keystore.jks into GlassFish keystore and truststore.
These are located in the directory <domain-dir>/config.

$JAVA_HOME/bin/keytool -importkeystore -srckeystore
 <path-to>/default-keystore.jks -destkeystore
 <path-to-gf-domain>/config/keystore.jks -srcalias orakey -destalias orakey
 -srckeypass welcome -destkeypass changeit

6. Copy cwallet.sso, jps-config.xml and default-keystore.jks from the
domain's fmwconfig directory into a local folder.

To Configure the GlassFish/Metro Web Service:

1. Create a Metro Web service. For more information, see
http://metro.java.net/guide/ch02.html#using_metro-developing_with_nb.

2. Configure the appropriate security mechanism. for more information, see
http://metro.java.net/guide/ch12.html#ahicu.

To Configure the OWSM 11g Client:

1. Using JDeveloper, create a Web service proxy for the GlassFish service. Select the
policy oracle/wss11_username_token_with_message_protection_client_policy
in the wizard.

2. Set the csf-key to glassfish.credentials in the Override Properties option for
the Web service proxy.

3. In the Web service proxy main class, set the system property of
oracle.security.jps.config to jps-config.xml from Step 6 of Table 9–5,
" Configuration Prerequisites for Interoperability".

Note: If you are using:

■ Oracle Service Bus business service, set the property overrides to
glassfish.credentials in the Security page. For more information,
see "Policy Overrides" in Oracle Fusion Middleware Developer's
Guide for Oracle Service Bus at
http://docs.oracle.com/docs/html/E15866_01/owsm.htm.

■ SOA Web service reference, set the property overrides to
glassfish.credentials in the Security page. For more information,
see Section 46.2.2 "How to Override Policy Configuration Property
Values" in Developer's Guide for SOA Suite at
http://docs.oracle.com/middleware/1213/soasuite/develop-s
oa/soa-security-policies-jdev.htm#SOASE85427.

9.3 SAML Token (Sender Vouches) with Message Protection (WS-Security
1.1)

This section tells how to implement SAML token (sender vouches) with message
protection that conforms to the WS-Security 1.1 standard, in the following
interoperability scenarios:

■ "Configuring an OWSM 12c Web Service and a GlassFish Client" on page 9-5

■ "Configuring a GlassFish Web Service and an OWSM 12c Client" on page 9-6

SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1)

Interoperability with Oracle GlassFish Server Release 3.0.1 9-5

9.3.1 Configuring an OWSM 12c Web Service and a GlassFish Client
The following instructions tell how to configure an OWSM 12c web service and a
GlassFish client to implement SAML token (sender vouches) with message protection
that conforms to the WS-Security 1.1 standard.

To Configure Prerequisites for Interoperability:

1. Create a default-keystore.jks file with the following command:

$JAVA_HOME/bin/keytool -genkeypair -alias orakey -keypass welcome -keyalg RSA
 -dname "CN=orakey, O=oracle C=us" -keystore default-keystore.jks -storepass
 welcome

2. Copy default-keystore.jks to the domain's fmwconfig directory.

3. Create a file user in GlassFish with the following command:

$<GLASSFISHV3_HOME>/glassfish/bin/asadmin create-file-user
For more information, see
http://download.oracle.com/docs/cd/E18930_01/html/821-2433/create-file-use
r-1.html

4. Add the user. For more information, see "Create users" in Oracle WebLogic Server
Administration Console Online Help.

5. Import orakey from default-keystore.jks into GlassFish keystore and truststore.
These are located in the directory <domain-dir>/config

$JAVA_HOME/bin/keytool -importkeystore -srckeystore
 <path-to>/default-keystore.jks -destkeystore
 <path-to-gf-domain>/config/cacerts.jks -srcalias orakey -destalias orakey
 -srckeypass welcome -destkeypass changeit

6. Copy jps-config.xml and default-keystore.jks from the domain's fmwconfig
directory into a local folder.

To Configure the OWSM 11g Web Service:

1. Create a web service.

2. Attach the following policy to the web service:
oracle/wss11_saml_token_with_message_protection_service_policy. For more
information, see "Attaching Policies" in Securing Web Services and Managing Policies
with Oracle Web Services Manager.

To Configure the GlassFish/Metro Client:

1. Using NetBeans, create a Metro client by selecting New Project > Java > Java
Application. Provide a project name and location. Select the server to deploy and
select Finish.

2. Right-click the project. Select New > Web Service Client. Follow the wizard and
provide WSDL URL for service deployed in WebLogic.

3. Create a SAML CallbackHandler that can be used with WSIT SAML Security
Mechanisms supported by NetBeans.

Is the link to the sample callbackhandler file an external link that is
available to customers? ---- This is a comment. Please check with the SME and
update this section with relevant conent.
a. Place the file in the source folder of the project.

b. Ensure issuer variable value is the same as in the jps-config.xml file created
in Step 5 of Table 9–8, " Configuration Prerequisites for Interoperability".

c. Set the urn reference to
urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified.

SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1)

9-6 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

d. Set the user created in Step 3 and Step 4 of Table 9–11, " Configuration
Prerequisites for Interoperability". For example, to set the user to wlsuser,
modify the file as follows: CN=wlsuser,OU=SU,O=wlsuser,L=Los
Angeles,ST=CA,C=US.

4. To configure the JVM, log on to the GlassFish Administration Console.

a. In the left pane, expand Configuration and click JVM Setting.

b. In the right pane, click JVM Option tab.

c. Click Add JVM Option. A new text field is displayed. Enter
-DWSIT_HOME=${com.sun.aas.installRoot}.

d. Click Enterprise Server in left pane.

e. Click Restart in the right pane to restart the server.

For more information, see Oracle GlassFish Server 3.1 Administration Guide at:
http://download.oracle.com/docs/cd/E18930_01/html/821-2416/gepzd.html.

5. Expand Web Services Reference node. Using NetBeans, right click Service
Reference and select Edit Web Services Attributes.

6. For SAML Callback Handler option, click Browse and select the file from Step 3.

7. Set the alias in Keystore and Truststore.

8. Open index.jsp file. Right click and select Web Service Client Reference. Select
Operation in Select Operation to Invoke dialog box and click ok.

9. Run the project.

9.3.2 Configuring a GlassFish Web Service and an OWSM 12c Client
The following instructions tell how to configure an GlassFish web service and a
OWSM 12c client to implement SAML token (sender vouches) with message
protection that conforms to the WS-Security 1.1 standard.

To Configure Prerequisites for Interoperability:

1. Create a default-keystore.jks file with the following command:

$JAVA_HOME/bin/keytool -genkeypair -alias orakey -keypass welcome -keyalg RSA
 -dname "CN=orakey, O=oracle C=us" -keystore default-keystore.jks -storepass
 welcome

2. Copy default-keystore.jks to the domain's fmwconfig directory.

3. Save the credentials in credential store using WLST commands.

For example:

$<ORACLE_HOME>/common/bin/wlst.sh
> connect()
> createCred(map="oracle.wsm.security", key="keystore-csf-key",
 user="keystore", password="welcome")
> createCred(map="oracle.wsm.security", key="sign-csf-key", user="orakey",
 password="welcome")
> createCred(map="oracle.wsm.security", key="enc-csf-key", user="orakey",
 password="welcome")
>createCred(map="oracle.wsm.security", key="glassfish.credentials" ,
 user="wlsUser" , password="welcome1" , description="Glassfish user
 credentials");
A file cwallet.sso is created in the directory DOMAIN_HOME/config/fmwconfig.

SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1)

Interoperability with Oracle GlassFish Server Release 3.0.1 9-7

4. Create a file user in GlassFish with the following command:

$<GLASSFISHV3_HOME>/glassfish/bin/asadmin create-file-user
For more information, see
http://download.oracle.com/docs/cd/E18930_01/html/821-2433/create-file-use
r-1.html

5. Import orakey from default-keystore.jks into GlassFish keystore and truststore.
These are located in the directory <domain-dir>/config.

$JAVA_HOME/bin/keytool -importkeystore -srckeystore
 <path-to>/default-keystore.jks -destkeystore
 <path-to-gf-domain>/config/keystore.jks -srcalias orakey -destalias orakey
 -srckeypass welcome -destkeypass changeit

6. Copy cwallet.sso, jps-config.xml and default-keystore.jks from the domain's
fmwconfig directory into a local folder.

To Configure GlassFish/Metro Web Service:

1. Create a Metro web service.

For more information, see
http://metro.java.net/guide/ch02.html#using_metro-developing_with_nb

2. Configure the appropriate security mechanism. For more information, see
http://metro.java.net/guide/ch12.html#ahicu

To Configure the OWSM 11g Client:

1. Using JDeveloper, create a web service proxy for the GlassFish service. Select the
policy oracle/wss11_saml_token_with_message_protection_client_policy in
the wizard.

For more information, see " Developing and Securing Web Services " in Developing
Applications with Oracle JDeveloper.

2. Set the path to jps-config.xml created in Step 6 of Table 9–11, " Configuration
Prerequisites for Interoperability".

3. Set the USERNAME_PROPERTY as follows: ((BindingProvider)
sAMLTokenEchoService).getRequestContext().put(BindingProvider.USERNAME_
PROPERTY, "wlsUser");

4. Invoke the web service.

SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1)

9-8 Oracle Fusion Middleware Interoperability Solutions Guide for Oracle Web Services Manager

	Contents
	Preface
	Documentation Accessibility
	Conventions

	What's New in This Guide
	New and Changed Features for 12c (12.2.1)
	New and Changed Features for 12c (12.1.3)
	New and Changed Features for 12c (12.1.2)
	Other Significant Changes in this Document for Release 12c (12.1.3)

	1 Overview of OWSM Interoperability
	1.1 About OWSM Policies
	1.2 OWSM Interoperability Scenarios

	2 Interoperability with OWSM 10g Security Environments
	2.1 Overview of Interoperability with OWSM 10g Security Environments
	2.2 A Note About OWSM 10g Gateways
	2.3 A Note About Third-party Software
	2.4 Anonymous Authentication with Message Protection (WS-Security 1.0)
	2.4.1 Configuring an OWSM 12c Web Service and an OWSM 10g Client
	2.4.2 Configuring an OWSM 10g Web Service and an OWSM 12c Client

	2.5 Username Token with Message Protection (WS-Security 1.0)
	2.5.1 Configuring an OWSM 12c Web Service and an OWSM 10g Client
	2.5.2 Configuring an OWSM 10g Web Service and an OWSM 12c Client

	2.6 SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)
	2.6.1 Configuring an OWSM 12c Web Service and an OWSM 10g Client
	2.6.2 Configuring an OWSM 10g Web Service and an OWSM 12c Client

	2.7 Mutual Authentication with Message Protection (WS-Security 1.0)
	2.7.1 Configuring an OWSM 12c Web Service and an OWSM 10g Client
	2.7.2 Configuring an OWSM 10g Web Service and an OWSM 12c Client

	2.8 Username Token Over SSL
	2.8.1 Configuring an OWSM 12c Web Service and an OWSM 10g Client
	2.8.2 Configuring an OWSM 10g Web Service and an OWSM 12c Client

	2.9 SAML Token (Sender Vouches) Over SSL (WS-Security 1.0)
	2.9.1 Configuring an OWSM 12c Web Service and an OWSM 10g Client
	2.9.2 Configuring an OWSM 10g Web Service and OWSM 12c Client

	3 Interoperability with Oracle Containers for Java EE (OC4J) 10g Security Environments
	3.1 Overview of Interoperability with OC4J 10g Security Environments
	3.2 Anonymous Authentication with Message Protection (WS-Security 1.0)
	3.2.1 Configuring an OWSM 12c Web Service and an OC4J 10g Client
	3.2.2 Configuring an OC4J 10g Web Service and an OWSM 12c Client

	3.3 Username Token with Message Protection (WS-Security 1.0)
	3.3.1 Configuring an OWSM 12c Web Service and an OC4J 10g Client
	3.3.2 Configuring an OC4J 10g Web Service and an OWSM 12c Client

	3.4 SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)
	3.4.1 Configuring an OWSM 12c Web Service and an OC4J 10g Client
	3.4.2 Configuring an OC4J 10g Web Service and an OWSM 12c Client

	3.5 Mutual Authentication with Message Protection (WS-Security 1.0)
	3.5.1 Configuring an OWSM 12c Web Service and an OC4J 10g Client
	3.5.2 Configuring an OC4J 10g Web Service and an OWSM 12c Client

	3.6 Username Token Over SSL
	3.6.1 Configuring an OWSM 12c Web Service and an OC4J 10g Client
	3.6.2 Configuring an OC4J 10g Web Service and an OWSM 12c Client

	3.7 SAML Token (Sender Vouches) Over SSL (WS-Security 1.0)
	3.7.1 Configuring an OWSM 12c Web Service and an OC4J 10g Client
	3.7.2 Configuring an OC4J 10g Web Service and an OWSM 12c Client

	4 Interoperability with Oracle WebLogic Server 12c Web Service Security Environments
	4.1 Overview of Interoperability with Oracle WebLogic Server 12c Web Service Security Environments
	4.2 Username Token With Message Protection (WS-Security 1.1)
	4.2.1 Interoperating with a WebLogic Web Service Policy
	4.2.2 Web Service Client Policy

	4.3 Username Token With Message Protection (WS-Security 1.1) and MTOM
	4.3.1 Interoperating with a WebLogic Web Service Policy
	4.3.2 Interoperating with a WebLogic Web Service Client Policy

	4.4 Username Token With Message Protection (WS-Security 1.0)
	4.4.1 Interoperability with a WebLogic Web Service Policy
	4.4.2 Interoperability with a WebLogic Web Service Client Policy

	4.5 Username Token Over SSL
	4.5.1 Interoperating with a WebLogic Web Service Client Policy

	4.6 Username Token Over SSL with MTOM
	4.6.1 Interoperating with a WebLogic Web Service Client Policy

	4.7 SAML Token (Sender Vouches) Over SSL
	4.7.1 Interoperating with a WebLogic Web Service Client Policy

	4.8 SAML Token (Sender Vouches) Over SSL with MTOM
	4.8.1 Interoperating with a WebLogic Web Service Client Policy

	4.9 SAML Token 2.0 (Sender Vouches) With Message Protection (WS-Security 1.1)
	4.9.1 Interoperating with a WebLogic Web Service Policy
	4.9.2 Interoperating with a WebLogic Web Service Client Policy

	4.10 SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1)
	4.10.1 Interoperating with a WebLogic Web Service Policy
	4.10.2 Interoperating with a WebLogic Web Service Client Policy

	4.11 SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1) and MTOM
	4.11.1 Interoperating with a WebLogic Web Service Policy
	4.11.2 Interoperating with a WebLogic Web Service Client Policy

	4.12 SAML Token (Sender Vouches) with Message Protection (WS-Security 1.0)
	4.12.1 Interoperating with a WebLogic Web Service Policy
	4.12.2 Interoperating with a WebLogic Web Service Client Policy

	4.13 Mutual Authentication with Message Protection (WS-Security 1.0)
	4.13.1 Interoperating with a WebLogic Web Service Policy
	4.13.2 Interoperating with a WebLogic Web Service Client Policy

	4.14 Mutual Authentication with Message Protection (WS-Security 1.1)
	4.14.1 Interoperating with a WebLogic Web Service Policy
	4.14.2 Interoperating with a WebLogic Web Service Client Policy

	5 Interoperability with Microsoft WCF/.NET 3.5 Security Environments
	5.1 Overview of Interoperability with Microsoft WCF/.NET 3.5 Security Environments
	5.2 Message Transmission Optimization Mechanism (MTOM)
	5.2.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client
	5.2.2 Configuring a Microsoft WCF/.NET 3.5 Web Service and an OWSM 12c Client

	5.3 Username Token With Message Protection (WS-Security 1.1)
	5.3.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client
	5.3.2 Configuring a Microsoft WCF/.NET 3.5 Web Service and an OWSM 12c Client

	5.4 Username Token Over SSL
	5.4.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client

	5.5 Mutual Authentication with Message Protection (WS-Security 1.1)
	5.5.1 Configuration Prerequisites
	5.5.2 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client
	5.5.3 Configuring a Microsoft WCF/.NET 3.5 Web Service and an OWSM 12c Client

	5.6 Kerberos with Message Protection
	5.6.1 Performing Prerequisite Tasks for Interoperability
	5.6.2 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client

	5.7 Kerberos with Message Protection Using Derived Keys
	5.7.1 Configuration Prerequisites
	5.7.2 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client

	5.8 Kerberos with SPNEGO Negotiation
	5.8.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client

	5.9 Kerberos with SPNEGO Negotiation and Credential Delegation
	5.9.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 3.5 Client

	5.10 WCF/.NET 3.5 Client with Microsoft Active Directory Federation Services 2.0 (ADFS 2.0) STS
	5.10.1 Install and Configure Active Directory Federation Services (ADFS) 2.0
	5.10.2 Configure ADFS 2.0 STS As Trusted SAML Token Issuer
	5.10.3 Configure Users in Oracle Internet Directory
	5.10.4 Attach the Policy
	5.10.5 Register the Web Service as a Relying Party in ADFS 2.0
	5.10.5.1 Configure the Claim Rules for the Service

	5.10.6 Secure WCF/.NET 3.5 Client with ADFS 2.0

	6 Interoperability with Microsoft WCF/.NET 4.5 Security Environments
	6.1 Overview of Interoperability with Microsoft WCF/.NET 4.5 Security Environments
	6.2 Message Transmission Optimization Mechanism (MTOM)
	6.2.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client
	6.2.2 Configuring a Microsoft WCF/.NET 4.5 Web Service and an OWSM 12c Client

	6.3 Username Token With Message Protection (WS-Security 1.1)
	6.3.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client
	6.3.2 Configuring a Microsoft WCF/.NET 4.5 Web Service and an OWSM 12c Client

	6.4 Username Token Over SSL
	6.4.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client
	6.4.2 Configuring a Microsoft WCF/.NET 4.5 Web Service and an OWSM 12c Client

	6.5 Mutual Authentication with Message Protection (WS-Security 1.1)
	6.5.1 Configuration Prerequisites
	6.5.2 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client
	6.5.3 Configuring a Microsoft WCF/.NET 4.5 Web Service and an OWSM 12c Client

	6.6 Kerberos with Message Protection
	6.6.1 Performing Prerequisite Tasks for Interoperability
	6.6.2 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client

	6.7 Kerberos with Message Protection Using Derived Keys
	6.7.1 Configuration Prerequisites
	6.7.2 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client

	6.8 Kerberos with SPNEGO Negotiation
	6.8.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client

	6.9 Kerberos with SPNEGO Negotiation and Credential Delegation
	6.9.1 Configuring an OWSM 12c Web Service and a Microsoft WCF/.NET 4.5 Client

	6.10 WCF/.NET 4.5 Client with Microsoft Active Directory Federation Services 2.0 (ADFS 2.0) STS
	6.10.1 Step 1: Install and Configure Active Directory Federation Services (ADFS) 2.0
	6.10.2 Step 2: Configure OWSM to Trust SAML Assertions Issued by an ADFS 2.0 STS
	6.10.3 Step 3: Configure Users in Oracle Internet Directory
	6.10.4 Step 4: Attach the Policy to the Web Service
	6.10.5 Step 5: Register the Web Service as a Relying Party in ADFS 2.0
	6.10.6 Step 6: Secure WCF/.NET 4.5 Client with ADFS 2.0

	7 Interoperability with Oracle Service Bus 10g Security Environments
	7.1 Overview of Interoperability with Oracle Service Bus 10g Security Environments
	7.2 Implementing a Username Token with WS-Security 1.0 Message Protection
	7.2.1 Overview of Prerequisites for Interoperabilty
	7.2.2 Configuring an OWSM 12c Web Service and an Oracle Service Bus 10g Client
	7.2.3 Configuring an Oracle Service Bus 10g Web Service and an OWSM 12c Client

	7.3 Implementing a SAML Sender Vouches Token with WS-Security 1.0 Message Protection
	7.3.1 Configuring an OWSM 12c Web Service and an Oracle Service Bus 10g Client
	7.3.2 Configuring an Oracle Service Bus 10g Web Service and an OWSM 12c Client

	7.4 Implementing a SAML or Username Token Over SSL
	7.4.1 Configuring an OWSM 12c Web Service and an Oracle Service Bus 10g Client

	7.5 Implementing Mutual Authentication with WS-Security 1.0 Message Protection
	7.5.1 Configuring an OWSM 12c Web Service and an Oracle Service Bus 10g Client
	7.5.2 Configuring an Oracle Service Bus 10g Web Service and an OWSM 12c Client

	8 Interoperability with Axis 1.4 and WSS4J 1.5.8 Security Environments
	8.1 Overview of Interoperability With Axis 1.4 and WSS4J 1.5.8 Security Environments
	8.2 Creating Required Files for Interoperability With Axis and WSS4J
	8.3 Username Token with Message Protection (WS-Security 1.0)
	8.3.1 Configuring an OWSM 12c Web Service and an Axis and WSS4J Client
	8.3.2 Configuring an Axis and WSS4J Web Service and an OWSM 12c Client

	8.4 SAML Token with Message Protection (WS-Security 1.0)
	8.4.1 Configuring an OWSM 12c Web Service and an Axis an WSS4J Client
	8.4.2 Configuring an Axis and WSS4J Web Service and an OWSM 12c Client

	8.5 Username Token Over SSL
	8.5.1 Configuring an OWSM 12c Web Service and an Axis and WSS4J Client
	8.5.2 Configuring an Axis and WSS4J Web Service and an OWSM 12c Client

	8.6 SAML Token (Sender Vouches) Over SSL
	8.6.1 Configuring an OWSM 12c Web Service and an Axis and WSS4J Client
	8.6.2 Configuring an Axis and WSS4J Web Service and an OWSM 12c Client

	9 Interoperability with Oracle GlassFish Server Release 3.0.1
	9.1 Overview of Interoperability With Oracle GlassFish Security Environments
	9.2 Username Token with Message Protection (WS-Security 1.1)
	9.2.1 Configuring an OWSM 12c Web Service and a GlassFish Client
	9.2.2 Configuring a GlassFish Web Service and an OWSM 12c Client

	9.3 SAML Token (Sender Vouches) with Message Protection (WS-Security 1.1)
	9.3.1 Configuring an OWSM 12c Web Service and a GlassFish Client
	9.3.2 Configuring a GlassFish Web Service and an OWSM 12c Client

