
Upgrade Toolkit User Guide

Oracle FLEXCUBE Universal Banking
Release 12.2.0.0.0

Part No. E74659-01

May 2016

Upgrade Toolkit User Guide
Oracle Financial Services Software Limited

Oracle Park

Off Western Express Highway
Goregaon (East)
Mumbai, Maharashtra 400 063
India
Worldwide Inquiries:
Phone: +91 22 6718 3000
Fax: +91 22 6718 3001
www.oracle.com/financialservices/

Copyright © 2007, 2016, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer software” pursuant to
the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure,
modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use
this software or hardware in dangerous applications, then you shall be responsible to take all appropriate failsafe, backup,
redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and
are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may
not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in
any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

This software or hardware and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents

1. Preface .. 1-1
1.1 Introduction.. 1-1

1.2 Intended Audience... 1-1

1.3 Documentation Accessibility.. 1-1

1.4 Scope .. 1-1

1.5 Organization .. 1-1

1.6 Related Information Sources ... 1-2

2. Upgrade and Conversion Approach .. 2-1
2.1 Introduction.. 2-1

2.2 Approach - Data Import to Target Schema.. 2-1

2.2.1 Advantages... 2-1

2.2.2 Disadvantages.. 2-1

2.3 Upgrade Process Summary .. 2-1

3. Mock Upgrade .. 3-1
3.1 Introduction.. 3-1

3.2 Prerequisites.. 3-1

3.3 Mock Upgrade Activity... 3-2

3.3.1 Applying Temp Soft Changes... 3-2

3.3.2 Setting up Target Schema.. 3-2

3.3.3 Upgrading Database... 3-3

3.3.4 Deploying Front End Application .. 3-6

3.3.5 Impact on Existing External System Interfaces .. 3-7

3.3.6 Verifying Data after Database Upgrade.. 3-7

4. Module Upgrade ... 4-1
4.1 Introduction.. 4-1

4.2 Scope .. 4-1

4.3 Upgrade of Revamped Modules.. 4-1

4.4 Migrating Data from Loans and Deposits to Consumer Lending Module 4-2

4.4.1 Migrating Products from LD to CL .. 4-2

4.4.2 Migrating Contracts from LD to CL ... 4-2

4.4.3 Migrating Commitments.. 4-10

4.5 Migrating Data from LM Module to ELCM Module .. 4-12

4.5.1 Migration Approach .. 4-12

4.5.2 Prerequisites... 4-12

4.5.3 Enabling Triggers ... 4-13

4.5.4 Migrating Data .. 4-13

4.5.5 Truncating Database .. 4-14

4.6 Migrating Data from Branch to Retail Teller .. 4-15

4.7 ATM/POS Modules Impact .. 4-15

4.8 Upgrading Existing Modules.. 4-15

4.8.1 Generic Conversion Methods ... 4-16

4.8.2 Upgrading Core Module ... 4-17

4.8.3 Upgrading SMS Module ... 4-17

4.8.4 Upgrading Deposits Module ... 4-18

4.8.5 Dynamic Package Generation for IC Rule.. 4-18

4.8.6 Dynamic Package Generation for Products in CD/MM 4-18

4.8.7 Upgrading PC Module .. 4-18

4.8.8 LC Module - Tracers Generation .. 4-18

4.8.9 Upgrading CASA Module - Lower Case Alphabets in Account Number .. 4-18

4.9 Module Wise Verification Check Points... 4-19

5. Cut-over Upgrade Activities ... 5-1
5.1 Introduction.. 5-1

5.2 Activities in Production Environment ... 5-1

5.3 Database Upgrade in Production Environment ... 5-1

5.4 Installation of Other Components .. 5-2

6. Conversion Script Generation Tool ... 6-1
6.1 Introduction.. 6-1

6.2 Generating and Executing Scripts ... 6-1

6.2.1 Setting up Parameters.. 6-1

6.2.2 Generating Dynamic Scripts and Spooling Files .. 6-2

6.2.3 Generating Dynamic Script for Specific Modules 6-2

6.2.4 Generating Dynamic Script for Specific script_identifier............................. 6-2

6.2.5 Generating Dynamic Script for Aborted Script Identifiers 6-3

6.2.6 Spooling Module-wise Spool Files and Control File for a Run Number...... 6-3

7. Data Reconciliation ... 7-1
7.1 Introduction.. 7-1

7.2 Setting Up New Environment .. 7-1

7.3 Releasing Additional Units - Delta Release... 7-2

7.4 Changing Source and Target Schema in Existing System...................................... 7-2

7.5 Generating Reports ... 7-3

7.5.1 Generating Migration Reconciliation Report... 7-3

7.5.2 Generating Adhoc Reconciliation Report ... 7-4

7.5.3 Generating Parallel Run Reconciliation Report .. 7-5

7.5.4 Moving Extraction Data into History Table ... 7-6

8. Annexure .. 8-1
8.1 Utility Scripts.. 8-1

9. Glossary of Scripts .. 9-1

1. Preface

1.1 Introduction

Customers who use the lower versions of Oracle FLEXCUBE Universal Banking Solutions
may need to upgrade to the latest version as the support to the older versions will phase out.

This document guides you through the standard strategy for the upgrade activity. In this
document, you can find necessary information required to carry out the upgrade activity from
any lower version of Oracle FLEXCUBE Universal Banking Solutions to the latest version.

1.2 Intended Audience

This document is intended for the following audience:

 Implementation team

 Partners

1.3 Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

1.4 Scope

This document covers the upgrade strategy/methodology for migration from lower version of
Oracle FLEXCUBE Universal Banking Solutions (6.2.1.2) to the latest version (12.0.1).

Note

Upgrade from versions FCC6.3, FCC6.4 and FCC6.5 are not in the scope as the target
versions may not have all the features of the source version.

1.5 Organization

This manual is organized into the following chapters:

Chapter Description

Chapter 1
Preface gives information on the intended audience. It also lists the
various chapters covered in this User Manual.

Chapter 2
Upgrade and Conversion Approach gives an outline of the upgrade
and conversion approaches. This also provides a summary of all the
activities involved in the entire upgrade process.

Chapter 3
Mock Upgrade discusses the prerequisites and guides you through
the process of mock upgrade of Oracle FLEXCUBE Universal Bank-
ing Solutions from a lower version to higher version.

Chapter 4
Module Upgrade discusses the data migration methods specific to
Oracle FLEXCUBE Universal Banking Solutions modules, which is
part of the mock upgrade activity.
1-1

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

1.6 Related Information Sources

For more information, refer to the following documents:

 Oracle FLEXCUBE Installation Manual

 Oracle FLEXCUBE User Manuals

Chapter 5
Cut-over Upgrade Activities explains the activities that you need to
carry out during cut-over.

Chapter 6
Conversion Script Generation Tool discusses the method to use the
Dynamic Script Generation tool, which makes the target database
compatible with the front end application deployed.

Chapter 7
Data Reconciliation explains the use of Upgrade Reconciliation Tool,
which compares the data on the source and target versions after
migration and after running a parallel EOD.

Chapter 8
Annexure provides the details of utility scripts and conversion scripts
used in the upgrade process.

Chapter 9
Glossary of Scripts lists out the scripts and links to the places in the
document wherever they are used.
1-2

2. Upgrade and Conversion Approach

2.1 Introduction

This chapter gives an outline of the upgrade and conversion approaches. This also provides
a summary of all the activities involved in the entire upgrade process.

2.2 Approach - Data Import to Target Schema

In this approach, you will prepare the staging area only with the target version schema. This
is the recommended approach.

The steps involved in this method are as follows:

1. Prepare the staging area with the target version schema.

2. Insert the E-data (factory shipped static data) alone in the target schema using the
consolidated insert scripts. You can do this using the Oracle FLEXCUBE Universal
Banking Installer. The basic setup step should not be done through the installer.

3. Disable the Not null and check constraints in the target schema. Disable all the triggers
except the module specific triggers required to be enabled for the upgrade activity. For
the list of triggers to be enabled, See “Module Upgrade” on page 4-1.

4. Perform data import from the export dump of the production data.

5. Apply the conversion scripts for the columns with the not null and check constraints in the
target schema to populate them with proper business data.

6. Enable the constraints in the target schema.

The target schema will now act as the gold copy for the customer to resume the verification/
production activities.

2.2.1 Advantages

The advantages of this approach are as follows:

 Only one staging area prepared for the target version schema

 The production p-data (transaction data) is imported without loss of data as constraints
are disabled during the import

2.2.2 Disadvantages

The disadvantages of this approach are as follows:

 While enabling the constraints which are disabled earlier during the process, there
might be a few columns that violate the constraints. You need to manually handle this.

2.3 Upgrade Process Summary

A summary of the version upgrade process is provided below.

1. Complete the mock upgrade activity. The mock upgrade provides a safe platform for the
actual production environment upgrade. Mock upgrade involves the following steps:
(See “Upgrading Database” on page 3-3.)

– Identify the source database schema. The source system should be at the stage of
TI just marked on migration date.
2-1

– Setup the target database as per the installation manuals. Exit the installer
immediately after loading the static data.

– Retrofit the customization changes, if any, into the target database. Apply the DB
object changes, source file changes and static data changes.

– Take a full dump of the source schema.

– In the target schema, disable all the triggers and selective constraints.

– In the target schema, selectively enable the triggers as per the module wise
approach.

– Import the table data alone into the target database from the full dump of source
schema.

– In target schema, apply the dynamic conversion scripts. This makes the target
database compatible with the front end application deployed. (See “Conversion
Script Generation Tool” on page 6-1.)

– In the target schema, enable all the triggers and constraints.

– In target schema, proceed with LD to CL migration and then LM to ELCM migration.
Complete the module wise migration and verification checks (See “Module
Upgrade” on page 4-1.)

– In the target schema, complete the verification activities (See “Verifying Data after
Database Upgrade” on page 3-7.)

2. Complete the cut-over upgrade activity. During this, you will upgrade the production
environment database. (See “Cut-over Upgrade Activities” on page 5-1.)

– During cut-over upgrade, if conversion script needs to be applied on any specific
units, generate the required conversion script and apply it on the target schema.
(See “Conversion Script Generation Tool” on page 6-1.)

3. Reconcile the data in the source and target databases using the data reconciliation tool.
Run a parallel EOD and reconcile the data again. (See “Data Reconciliation” on page 7-
1.)
2-2

3. Mock Upgrade

3.1 Introduction

This chapter discusses the prerequisites and guides you through the process of upgrading
Oracle FLEXCUBE Universal Banking Solutions from a lower version to higher version.

The upgrade involves the following two activities:

 Mock upgrade activity

 Cut-over upgrade activity

The mock upgrade activity provides a safe platform for the actual production environment
upgrade. Once the mock upgrade is completed, you will have a ready target database which
is termed as the Gold Copy for setting up the upgraded production environment.

3.2 Prerequisites

Following are the prerequisites for the upgrade activity:

1. Prepare a copy of the production system covering all components of the product for mock
upgrade.

2. Set up the Oracle DB parameters as per the FCUBS recommendations for the destination
schema. It is ideal to follow the steps of installation of a new version.

3. Identify and list out the installed components of the production system.

4. List out new components available in the new version that the customer proposes to use.

5. Identify and list out the details missed out in the new version. Internally discuss and
suggest the actions proposed to address them.

6. Update the customer about the proposed plan and get the customer’s concurrence.

7. Following are the other interfacing teams to be involved in discussions for qualification:

– For qualifying with the new version: Address all changes required for qualification
with the new version.

– For qualifying with the existing interfacing system: Identify and address the new
interfacing requirements for the interfacing system to remain intact.

8. You need to understand the database upgrade strategy proposed below:

– Identify and document the migration steps that are planned. Identify whether any
module migrations are present and collate the migration scripts in the migration
area (like module migration from LD to CL, LM to ELCM, etc.).

– Set up the utilities for data comparison and data migration, if any, in the migration
area.

– Identify and document the verification strategy.

– Prepare the staging area for both source schema and target schema (staging area
for source schema is required only if the strategy followed mandates it; otherwise it
is not required).

– Identify the conversion scripts to be applied post-upgrade.

9. Prepare a plan with timeline considering all changes required for a smooth upgrade.
3-1

3.3 Mock Upgrade Activity

The mock upgrade activity provides a safe platform for the actual production environment
upgrade. You need to prepare a test area where the mock activity can be carried out.

During mock activity, you need to perform user acceptance testing (UAT) for the new modules
and the functionality that are added in the higher versions. While performing the actual
migration, you need to take the maintenances and parameterizations done in UAT to the
production environment.

The target database after the mock upgrade serves as a Gold Copy for you to set up the
upgraded production environment.

You can truncate the p-Data tables from the Gold Copy and re-import from the production
area. In the time between starting mock run activity and starting the actual production upgrade
activity, if any of the static data is changed, then you need to handle such data manually.

Mock upgrade involves the following steps:

 Upgrade Oracle database to the new version

 Identify temp soft changes to and take appropriate action to setup target version with
temp soft changes (temp soft changes refer to the customization changes and bug fixed
on the source version)

 Setup target version of Oracle FLEXCUBE Universal banking Solutions

 Perform module specific changes if any

 Set up interfaces and adapters

 After upgrade, test the target version along with all interfaces and adapters

 Get sign off on the production environment upgrade

3.3.1 Applying Temp Soft Changes

Temp soft changes refer to the customization changes and bug fixes that are applied on the
source version of the application used by the customer. You need to identify the temp soft
changes that should be applied in the target version.

Source File Changes

You can use DIFF tools to compare the base version of the source application and the version
used by the customer.

Static Data Changes

For identifying the differences in the factory shipped data, use utility/scripts mentioned in the
Annexure.

3.3.2 Setting up Target Schema

You need to set up the target schema. For the purpose of illustration, let us consider a schema
by name ‘DESTSCHEMA’.

You can use the Oracle FLEXCUBE Universal Banking Installer to set up the target schema.
Follow the steps given below.

1. Create the target version database using the target version Installer. Refer to the
installation manual of the required version for details on setting up database.

2. Load the static data using installer. Refer to the installation manual of the required version
for details on loading static data.
3-2

3. Exit the installer immediately after loading the static data. The basic setup step should not
be done through the installer.

4. At this point all data structures will be in place and static data tables will have the data
populated as of the target version. But all schema objects like the source packages,
triggers, procedures, functions, constraints, indexes, views, sequences, etc. would be
available as of the base Kernel version.

5. If there are any customization changes that needs to retro-fitted in the target version
schema, you may compile them now. You can also make the related static data changes.
While doing the TEMPSOFT changes, you need to take care of the following:

– If the source version had an additional column with data, you need to manually
move the same as the import of data from production has already been done.

– Apply the additional static data onto the upgraded schema.

6. You need to create a dummy schema in the same oracle instance as that of target
schema. The dummy schema will have the same name as that of the source schema
(from which dump was exported). Provide necessary grants for import/export. This is
necessary to connect and import data later on from the dump.

3.3.3 Upgrading Database

The activities involved in database upgrade are given in the table below:

Activi
ty No.

Activity Details
Source/
Desti-
nation

Depen-
dency

1 For illustration purpose, consider that the name of the
source schema used by the customer is
'SOURCESCHEMA'. This contains the production data
of the bank and the complete set of DB objects
including tables, constraints, index sequences, source
packages, triggers, etc.

 Disable the running Oracle jobs, if any.

 Create a full schema dump using the ‘expdp’ utility in
the SOURCESCHEMA. Name the export dump file as
‘SITE_FULL_DUMP.DMP’. The parameter file
‘Export_Site_FULL_Dump.par’ can be used for this
export (See “Annexure” on page 8-1).

Source No
Depen
dency.
You
can do
this
while
the tar-
get
schem
a is
setup.

2 Configure the TNS in source and destination database
to create DB link.

Com-
mon
3-3

3 Run the schema difference utility (See “Annexure” on
page 8-1). This utility lists out the schema differences
for the Tables and Columns.

 Run ‘Create_DB_Link.sql’ in the destination schema. It
will prompt for the site schema name, password and
database name. Upon providing the details, MIG_DB
database link will be created connecting source
schema.

 In case creating a DB link to the production schema is
disallowed, a staging area can be created and the DB
link can be created to point to the same.

 Run ‘TableDiff_Source_Dest.sql’ utility to identify the
table difference between the SOURCESCHEMA and
DESTSCHEMA. Copy the results to an Excel file.

 Run ‘Existing_Table_Column_Diff.sql’ to identify the
Table Column difference between the
SOURCESCHEMA and DESTSCHEMA. Copy the
spooled result to Excel file.

 This Excel file will act as a reference point of the
schema differences between source DB and target DB.

 This file has the column level information and details
like whether null values are allowed or not. For all the
‘not null’ columns that are newly introduced in the
target version, you need to handle the data import with
special consideration because the import for these
tables will fail if the records are present in the
SOURCESCHMA for the same.

 Based on the column differences, generate the scripts
to disable the constraints for the new not null columns
in the DESTSCHEMA, Along with this, generate the
scripts to disable all the triggers.

 Use the stub ‘Constraint_Trigger_Disable_Script.sql’
(See “Annexure” on page 8-1) to generate the following
scripts.

– ALTER_TRIGGER_DISABLE.sql - This sql
contains the scripts to disable all the triggers.

– ALTER_CONSTRAINTS_DISABLE.sql - This sql
contains the script to disable only the not null,
unique constraints and check constraints for a
column without default value.

 Execute the above two scripts before importing the
table data from site dump to the DESTSCHEMA.

 You may need to enable any specific triggers during
import as a special case. Certain ELCM triggers need
to be enabled during the data import process. For
details on enabling ELCM related triggers, See
“Enabling Triggers” on page 4-13.

Destina-
tion

Activity
1 and
Activity
2

Activi
ty No.

Activity Details
Source/
Desti-
nation

Depen-
dency
3-4

4 Note that we have already created a dummy schema
with the same name as the source schema to facilitate
impdp command, which is used in the below command.

 Import the table data from the site dump using the par
file given below:

– Data pump import command: IMPDP
source_schema_name/pwd@target_instance
PARFILE=<parameter file name with path>

 The parameter file ‘Import_P-M_data.par’ can be used
to import P Data, M-Data and P-M Data into the
DESTSCHEMA (See “Annexure” on page 8-1).

 The parameter file ‘Import_EM_data.par’ can be used
to import the E-M data into the DESTSCHEMA (See
“Annexure” on page 8-1).Refer the import log to ensure
that all the table data is imported without any error.

 If there is any failure in the import, you need to analyse
and handle it manually.

 While comparing the SOURCESCHEMA and
DESTSCHEMA the stub ‘Drop_Sequence_Script.sql’
generates the drop script for the common sequences.
The drop script file name will be
‘DROP_SEQUENCES.sql’. Execute this script to drop
the common sequences from DESTSCHEMA.

 After dropping the sequence, import the sequences
from SITE_FULL_DUMP.DMP using the import par file
‘Import_Sequence.par’.

Destina-
tion

Activity
1,
Activity
2 and
Activity
3

5 Ensure that all the triggers and selected constraints are
disabled as mentioned in Activity 3.

 Generate and apply the module wise conversion
scripts, EXCEPT for LD to CL and LM to ELCM
migration. (For details on conversion script generation
and application, See “Conversion Script Generation
Tool” on page 6-1).

 Enable all the triggers and constraints once the module
wise conversion scripts are generated and applied.
You need to manually handle the errors encountered
while enabling the triggers and constraints.

 Once the triggers and constraints are enabled, migrate
LD module to CL module and LM module to EL
module.

 Note that conversion from LD module to CL module
and LM module to EL module should be separately
handled as they are re-vamped modules. You may
carry out these two migration activities after enabling
the triggers and constraints. (See “Upgrade of
Revamped Modules” on page 4-1).

Destina-
tion

Activity
4

Activi
ty No.

Activity Details
Source/
Desti-
nation

Depen-
dency
3-5

3.3.3.1 Post Import Activities

Once the data import is completed, you need to perform the following post import activities:

 Recompile invalid objects

3.3.3.2 Issues in Data Import using IMPDP Utility

You may encounter any the following issues while importing data using IMPDP utility.

3.3.4 Deploying Front End Application

For deploying the front end application, follow the steps below:

1. Refer to the installation manual of the required version of the application.

2. Apply the temp soft changes, if any.

6 The target database is now ready. Carry out the post-
import activities provided in the next section. Carry out
the post upgrade verification activities.

 You need to preserve the scripts applied while carrying
out these activities to use them again if required.

Destina-
tion

Activity
5

Issue Problem Cause Resolution

Import
options not
recognized

Some of the import
options may not be ena-
bled in the server. One
such example is the
DATA_OPTIONS clause
of the import, which is
used in the E-M Data
import par file.

Oracle parameter setup DBA needs to
enable the
same

Data Import
fails because
of new
indexes

If the value for a column
is null in the imported
data which is going to be
part of an index in the tar-
get then the import fails.

The existing column
would have been added
as part of a newly created
unique index in the
DESTSCHEMA. So, if the
data for this column con-
tains null values then the
uniqueness is violated.

Disable the
index, do the
import, supply
values to this
column

Data Import
fails due to
long columns

If a varchar2 column was
changed to long column
in the higher versions,
then the import fails.

IMPDP does not support
importing varchar2 col-
umns into long columns.
It is given in oracle docu-
mentation that long col-
umns are deprecated and
not recommended to cre-
ate tables using long data
type. Instead CLOB to be
used.

As a
workaround,
instead of
impdp utility,
use the imp util-
ity to import the
tables affected
by this issue.

Activi
ty No.

Activity Details
Source/
Desti-
nation

Depen-
dency
3-6

3. Ensure that the deployed EAR points to the upgraded database.

3.3.5 Impact on Existing External System Interfaces

If the customer has any external interfaces maintained in the source application, you need to
follow the steps below:

1. Communicate any format level changes (GI files, Gateway XSDs) in existing interfaces to
the external systems.

2. Communicate the changes in queues configuration, file locations, etc to the external
systems

3. Communicate the changes in the tag names of the XSD files which are shared with other
systems to the respective external system owners

3.3.6 Verifying Data after Database Upgrade

Once the database is upgraded, you need to do the following verifications:

 System wide data verification of reports and other check points

 Interface testing to check the connectivity

 Module-wise data verification of reports and other check points

 Converted deals testing

 New deals testing

 New product maintenance testing

 Signoff

These verifications are explained in detail under the following headings.

3.3.6.1 System wide Data Verification

This verification includes the following steps.

Generic Checks

generic check includes the following:

 Check the main parameter table ‘cstb_param’ for the parameter values.

 Menu organization is as per the static factory shipped data and handled from the import.
ELCM and CL modules are not handled by the script. You need to remove the LD and
Limits menu functions and add the ELCM and CL menu functions.

 The bank may need to modify their user roles. You need to take care of the change of
user roles for the new modules. A script will introduce all such roles into ALLROLES.

 Unlock and save all modules maintenance such as Products, ICCF Rule, ICCF Class,
UDF etc.

EOD and Performance Testing

This verification includes the following:

 Configure the following as part of FCJ configuration:

– Install Oracle Web cache which is present in the Sizing document

– Change the Internet Explorer setting as per DBA server sizing document
(recommended IE settings)

– Ensure that onsite changes are not done to introduce ‘no-cache’ in the code

– Configure realistic user roles against the usual ALLROLES

 Launch basic screens of high volume module sand process them onsite
3-7

 Record and review the EOD and EOM timelines before and after upgrade to check if
there are any major variances

 Check if all the programmes maintained in the EOD window is run without being skipped

 Check if all aspects of the EOD, i.e. module functionality and reports generation are
covered

 Test on a masked dump of the site if it is done offshore

3.3.6.2 Interface Testing to Check Connectivity

As part of this verification, you need to perform the following activities:

 Test incoming and outgoing interfaces, conversion of FLEXML formats to gateway,
EMS to JEMS and ATM/POS using the SWIG interface

 Check for all the channels that receive information from Oracle FCUBS

3.3.6.3 Module-wise Data Verification of Reports and other Check Points

See “Module Upgrade” on page 4-1

3.3.6.4 Converted Deals Testing

You need to test the converted deals as follows:

 As part of the upgrade, the system will have new tables as well as new columns in the
existing tables. Check the sanctity of the conversion utility and populate the additional
fields and tables by testing the converted/migrated data.

 Perform basic life cycle testing for the converted contracts.

 Check the product maintenances and static maintenances for modifications.

3.3.6.5 New Deals Testing

You need to test the new deals as follows:

 Create new contracts on existing products and observe the validation of default values.

 Test the basic life cycle of new deals.

3.3.6.6 New Product Maintenance Testing

Once the upgrade is completed, create a new product in each module.

3.3.6.7 Signoff

Get the customer signoff to go ahead with the upgrade of production environment.

3.3.6.8 Gold Copy

Gold Copy - DB Schema Setup

Once the above activities are completed, you can use the DESTSCHEMA as the Gold Copy
to set up the database during production environment upgrade.

Gold Copy - Front End Setup and Interface

Use the latest available executables to set up the various components for production upgrade.

All interface related changes available in various files need to be deployed.
3-8

4. Module Upgrade

4.1 Introduction

This chapter discusses the data migration methods specific to Oracle FLEXCUBE Universal
Banking Solutions modules. This step is part of the mock upgrade activity. The following
points are discussed in detail in this chapter:

 Scope

 Upgrade of revamped modules

 Upgrade of existing modules

 Module-wise verification checkpoints

4.2 Scope

The scope of the Oracle FCUBS module upgrade is discussed below.

Upgrade of Revamped Modules

The Oracle FCUBS modules such as LD and LM in the older versions are revamped and
upgraded to CL and ELCM modules. This migration requires the bank’s consent and such
cases must be handled separately.

As the target version application may refer to a new set of tables, you need to move the data
from the old set of tables to the new set.

Upgrade of Existing Modules

In the target version, new tables and columns may have been added as part of functional
enhancements. You need to use the module wise conversion scripts to migrate the data from
such modules.

You need to separately handle the customization changes done at site. Involve the bank
authorities in the discussions and decide whether data migration is required for the tables
added as part of customization. Identify such requirements and document that as an
addendum to this guide.

For the existing tables, if data conversion scripts are not provided for newly added columns
or existing columns, you need to analyze and handle them manually.

4.3 Upgrade of Revamped Modules

Data migration scripts are provided for the following operations:

 Migration from Loans and Deposits (LD) module to Consumer Lending (CL) module:
The CL module was introduced instead of LD in the Kernel version FCUBS
7.1.0.0.0.0.2. The module architecture has changed during this.

 Migration from LM module to ELCM module: The ELCM module was introduced instead
of LM in Kernel version FCUBS 11.0.0. The module architecture has changed during
this.

 Migration from WebBranch module to Retail Teller: Retail Teller module was introduced
instead of Web Branch in Kernel version FCUBS 10.3.0.
4-1

4.4 Migrating Data from Loans and Deposits to Consumer
Lending Module

The loans portion of LD module has been replaced with CL module in the versions later than
FCUBS 7.1.0.0.0.0.2. You can use the migration scripts to upload all active loans from LD
module to CL module.

This involves the following steps:

 Migrate LD products to CL module

 Migrate LD contracts to CL module

 Understand the migration strategy

 Migrate commitments

You must migrate commitments before loans. For ease of reference, this document first
discusses the loans migration strategy and then the commitment migration strategy.

4.4.1 Migrating Products from LD to CL

You cannot migrate the product data from LD module to CL module. You must create the
products in CL manually.

4.4.2 Migrating Contracts from LD to CL

The method of migrating LD contracts to CL module is explained below.

Prerequisites for Source

The below set of instructions are applicable for the source environment

You need to first identify the LD contracts which are not eligible for migration. You can identify
such contracts using the script ‘Prelim_src_data_chk.sql’. This script is available in the
location ‘SOFT\TOOLS\Upgradeto2olkit\Soft\Migration\LD-CL\SCRIPTS\SOURCE’.

Execute the script ‘Prelim_src_data_chk.sql’ to populate the LD contracts which are not
eligible for migration.

The following objects needs to be compiled in the source environment for successful
execution of this script.

 DDL

 CSTB_LD_CONTRACT_CHECK

 FNC

 FN_LD_CONTRACT_CHECK.FNC

Once you execute the script ‘Prelim_src_data_chk.sql’ in the source environment, it will print
the following output:

querying from CSTB_LD_CONTRACT_CHECK...

COUNT(1)

 0

query should return ZERO rows....
4-2

If the count is greater than zero, then the details of the contracts that are not eligible for
migration will be populated in ‘CSTB_LD_CONTRACT_CHECK’. You need to scrutinize
them.

Note

If you are not able to correct the non-eligible contracts, you need o manually reverse such
LD contracts.

Prerequisites for Target

For target version, you need to do the following maintenances:

 Create conversion GLs

 Maintain CL branch parameters and bank parameters

 Do the mapping between LD product code and CL product code

 Do the mapping between LD component name and CL component name

 Replicate the status codes maintained for LD module in CL module

 Temporarily make the UDFs non mandatory before migration

 Temporarily waive the charges

 Temporarily suppress the advices for Book, Init and Disbursement events

 Uncheck the flag ‘Liquidated Back Value Schedules’ before migration and revert the
same to its original value after migration

 Maintain the interest calculation method

 Maintain the Holiday details in line with the source environment for all the branches

 Change ‘Manual Disbursement’ to ‘Auto Disbursement’ before migration and revert the
same to its original value after migration

Once the above maintenances are done, you can execute the scripts for migration. These
scripts will migrate the eligible LD contracts to CL module.

You must execute the following scripts in the order given below:

1. 1_pre-migration-upd.sql

2. 2_ld-comt-extraction.sql

3. 3_commitment-upload.sql

4. 4_ld-loan-extraction.sql

5. postextraction_check_html.sql

6. 5_cl-upload.sql

7. 5.1.post-migration-checks.sql

8. 6_limits-update.sql

9. 7_bills-update.sql

10. 8_post_migration_updates.sql

When contracts should be migrated again, you need to execute the following scripts in the
order given below.

1. cl_account_creation_rollback.sql

2. ld_extraction_rollback.sql
4-3

Note

– You need to create the CL products manually through front end.

– Characteristics of LD module like GL mapping, tenor, transaction code, holiday
period, exchange rate code etc. must be the maintained AS IS in CL. There should
not be any deviation.

– Once the migration is completed, irrespective of the Interest period basis for
contracts in LD, the corresponding CL accounts will be based on ‘Include from’ and
‘Exclude to’.

– Schedules pertaining to capitalized LD contract in CL would not be reflected after
migration. Nevertheless, capitalization will be handled on the schedule due date.

4.4.2.1 General Migration Strategy

The strategy for migration of LD contracts to CL module is given below.

1. LD loans portfolio is migrated to CL module.

2. Only active LD contracts are considered for migration. Inactive, liquidated or reversed
contracts will not be migrated.

3. Contract Reference Number in LD module is stored as Alternate Account Number in CL
module. This Alternate Account Number can be used for future references.

4. The status of the LD contracts migrated to CL module will be updated as ‘M’ to indicate
that they were migrated contracts. Changes will be done in the batches to ignore all
contracts with status ‘M’.

5. All the loans migrated to CL module will start with version 1 and event DSBR.

6. The value date of the LD contracts will be the original start date of the CL accounts. Incase
the original start date is available in the LD contract, then it will be taken as the original
start date of the CL account.

7. Value date of the migrated CL accounts will be determined from the Last Fully Paid
Schedule's Due Date (LFPSD) irrespective of the schedule type, payment method, status
and interest rates (fixed / floating). This LFPSD will be the Last fully Paid Schedule for
Principal/Interest component.

Example - Case 1

In the below example, Principal and Interest components are fully paid on April 15, 2012
and Interest is fully paid on May 16, 2012. whereas Principal component for May 16, 2012
is Outstanding. So, the LFPS would be on April 15, 2012.

Contract Reference
Number

Component Due Date
Amount
Due

Amount
Settled

406LILP10040000Z INTEREST 1/17/2012 120 120

406LILP10040000Z PRINCIPAL 1/17/2012 1000 1000

406LILP10040000Z INTEREST 2/15/2012 120 120

406LILP10040000Z PRINCIPAL 2/15/2012 1000 1000

406LILP10040000Z INTEREST 3/15/2012 110 110

406LILP10040000Z PRINCIPAL 3/15/2012 1000 1000

406LILP10040000Z INTEREST 4/15/2012 110 110
4-4

Example - Case 2

In this example, the Principal component is fully paid on March 30, 2012 and the Interest
component is fully paid on April 15, 2012. LFPS in this case would be March 30, 2012.

8. Migration date plays a vital role in this strategy. No operations (payments, amendment,
rollover, reversals) are allowed on migrated loans prior to the migration date.

9. The LD outstanding principal amount as on the migration date is taken as ‘Amount
Disbursed’ and ‘Amount Financed’ in CL account. Original loan amount has to be stored
as a UDF at CL contract level. Contracts with fully paid principal amounts will be migrated
with 0.01 as ‘Amount Disbursed’ / ‘Amount Financed’.

Example - Case 1

The principal outstanding from the last fully paid schedule (No partial payment after
LFPS).

Loan Date: December 15, 2011

LFPS: April 15, 2012

406LILP10040000Z PRINCIPAL 4/15/2012 1000 1000

406LILP10040000Z INTEREST 5/16/2012 100 100

406LILP10040000Z PRINCIPAL 5/16/2012 1000 0

406LILP10040000Z INTEREST 6/15/2012 100

406LILP10040000Z PRINCIPAL 6/15/2012 1000 0

406LILP10040000Z INTEREST 7/15/2012 100

406LILP10040000Z PRINCIPAL 7/15/2012 1000 0

Contract Reference
Number

Component Due Date
Amount
Due

Amount
Settled

406LILP10040000Z INTEREST 1/17/2012 120 120

406LILP10040000Z INTEREST 2/15/2012 120 120

406LILP10040000Z INTEREST 3/15/2012 110 110

406LILP10040000Z PRINCIPAL 3/30/2012 1000 1000

406LILP10040000Z INTEREST 4/15/2012 110 110

406LILP10040000Z INTEREST 5/16/2012 100 50

406LILP10040000Z INTEREST 6/15/2012 100 0

406LILP10040000Z PRINCIPAL 6/30/2012 1000 0

Contract Reference
Number

Component Due Date
Amount
Due

Amount
Settled
4-5

Migration Date: June 30, 2012

Principal Outstanding = 87000 - 28811.96 = 58188.04

In the above case, since the principal outstanding is 58188.04 on the migration date -

CL Account Disbursement Amount = 58188.04

Amount Financed = 58188.04

Original disbursement amount 87000 has to be stored as UDF at the CL account Level.

To summarize, the least of the last fully paid schedule among the components pertaining
to a loan will be considered as the value date of the account.

10. During migration from LD to CL module, the fully paid schedules are not considered. Only
the partially paid and unpaid schedules are migrated to CL module. History of the fully
paid schedules have to be viewed from LD screens.

11. All overdue schedules (partial/full overdue) for all components are moved to CL with the
current outstanding amount as it is without any further calculations. This table is stored in
a table and contains the data as is from LD module. This table contains data for all
schedules between LFPSD and migration date. Current running schedule will also be
present in this table. This will be applicable to outstanding interest, penalty, unpaid
principal amount and up-front fees collected.

12. All the future schedules from migration date onwards are calculated automatically in CL
module based on the schedule definition at the contract level.

13. When the minimum tenor of a CL product is higher than the tenor of the active pending
loans of the corresponding LD contracts, the product definition of CL product has to be
modified manually for the migration purpose. You can later update it to the actual tenor.
During migration, the minimum tenor will be updated as one day and once the contract

Contract
Reference Number

Component Due Date
Amount
Due

Amount Settled

406LILP10040000X PRINCIPAL 1/17/2012 6734.310 6734.310

406LILP10040000X PRINCIPAL 2/15/2012 7394.010 7394.010

406LILP10040000X PRINCIPAL 3/15/2012 7571.560 7571.560

406LILP10040000X PRINCIPAL 4/15/2012 7112.080 7112.080 (LFPS)

406LILP10040000X PRINCIPAL 5/16/2012 7130.450 0.000

406LILP10040000X PRINCIPAL 6/15/2012 7306.740 0.000

406LILP10040000X PRINCIPAL 7/15/2012 7325.000 0.000

406LILP10040000X PRINCIPAL 8/15/2012 7186.670 0.000

406LILP10040000X PRINCIPAL 9/15/2012 7205.240 0.000

406LILP10040000X PRINCIPAL 10/17/2012 7068.410 0.000

406LILP10040000X PRINCIPAL 11/15/2012 7551.820 0.000

406LILP10040000X PRINCIPAL 12/15/2012 7413.71 0.000 - Maturity

TOTAL 87000 28811.96
4-6

migration is over, the CL products should be updated to its original minimum tenor as in
the LD product.

14. Contracts having only bullet schedule for principal and interest components are migrated
with the original value date.

15. For a given contract, the following values are migrated from LD to CL module for a given
contract

16. For a given contract, the following details are migrated from LD to CL module:

4.4.2.2 Accounting Strategy

During the migration process, accounting entries will not be passed in CL module during. All
the relevant tables, especially GL balances, will be populated from LD to CL module.

GL mapping between CL tables and LD tables should be the same. Otherwise you may notice
inconsistencies in the GL balances.

LD (Loans) CL (Loans)

Contract Reference Number Alternate Account Number

Last Fully Paid Schedule's Due Date
(LFPSD)

Value Date

Book Date Book date will be the Migration Date

Maturity Date Maturity Date

Outstanding principal amount as on
migration date

Loan Amount

Original Start Date Original Start Date

Value Date Original Start Date (if original start date is null
in LD)

Number of Schedules Derived (LD original schedules as on
LFPSD)

Frequency Same as in LD from LFPSD

No of Units Derived from LFPSD

LD (Loans) CL (Loans)

Contract CL Account Upload

Parties CL Account Parties Upload

Components CL Component Upload

Schedules CL Component Schedule Upload

Interest Rates CL Account UDE Upload

Linkages CL Linkages Upload

Settlement Details CL Account Settlement Upload

MIS Details Migrated as is from LD contract
4-7

4.4.2.3 Interest and Accrual

The accrued interest is populated in one table which will have CL replica of LD from last fully
paid schedule due of LD till the migration date including the current running schedule. This is
applicable to outstanding interest, penalty, unpaid principal amount and up-front fees
collected.

During the migration process, accounting entries will not be passed in CL module during. All
the relevant tables will be populated as they are from LD module starting from the last fully
paid schedule till the migration date including the current running schedule. Accruals from the
migration date onwards will continue in CL module.

Example

Consider the following details:

Loan Contract: 550AMN208086xxxx

Loan Book Date: January, 25 2012

LFPSD: May 26, 2012

Migration Date: July 20, 2012

In the above example since till 26 May, 2012 the interest has been fully paid by the customer.
Accrued interest in above example will be 61.68.

At the time of migration, the system will migrate schedules which are partially paid/unpaid. LD
partially paid/unpaid schedule will be migrated and populated in the CL table
‘cltb_mig_account_schedule’ as given below.

Contract Reference
Number

Component Due Date
Amount
Due

Accrued
Amount

Amount
Settled

550AMN208086xxxx AMN2-INTER 1/26/2012 56.020 56.020 56.020

550AMN208086xxxx AMN2-INTER 2/28/2012 52.960 52.960 52.960

550AMN208086xxxx AMN2-INTER 3/28/2012 37.570 37.570 37.570

550AMN208086xxxx AMN2-INTER 4/26/2012 31.170 31.170 31.170

550AMN208086xxxx AMN2-INTER 5/26/2012 24.170 24.170 (LFPS)
24.170

550AMN208086xxxx AMN2-INTER 6/27/2012 17.120 17.120 0.000

550AMN208086xxxx AMN2-INTER 7/26/2012 55.860 44.56 0.000

Total 274.870 263.57 201.890

Contract Reference
Number

Component Due Date
Amount
Due

Accrued
Amount

Amount
Settled

550AMN208086xxxx AMN2-INTER 6/27/2011 17.120 17.120 0.000

550AMN208086xxxx AMN2-INTER 7/26/2012 55.860 44.56 0.000

Total 72.980 61.68 0.000
4-8

Note

From the migration date onwards, accrual will continue as per the existing CL calculation.

4.4.2.4 Status Change Rules

Status change rules are applicable to automatic as well as manual status changes.

Automatic Status Change Rules

After migration, irrespective of the status in LD module, all the CL accounts have ‘NORM’
status.

During migration when the CL account upload happens, the system processes status change,
by suppressing the CL status. This action will move the status depending on the status
change rule maintained for the CL products after the CL account upload. The status change
rule should to be maintained with the same conditions as in the LD module to ensure that the
account status will change from ‘NORM’ to the new status. The status of the LD contract is
matched against the changed status of the CL account, to ensure that the status has not
changed after migration.

Note

During migration, the status change of CL accounts is strictly based on the rules defined
at product level. Statuses that are supposed to be manual must be maintained as ‘Manual’
at CL Product level in order to avoid incorrect status derivation.

Manual Status Change Rules

There may be loan contracts in the LD modules whose status has been manually
changed.Such contracts will be migrated to CL module with the status ‘NORM’. Once the
migration is completed, you need to manually change the status of these accounts to their
respective statuses in LD module. You also need to manually reverse the accounting entries
passed during manual status change.

4.4.2.5 Limits Utilization

During CL account migration process, the limit utilization will be disabled. After migration, the
ELCM tables will be updated with the new CL account number in place of loans reference
number.

After the migration process, the component wise balances, interest rates, schedule definition,
UDF fields, calculation method, date fields etc. have to be compared and verified with LD
module contracts.

4.4.2.6 Commitments Linkage

You need to update the commitment linkages separately after the migration of both
commitment and loans contracts.

4.4.2.7 MIS

During the CL account migration process, the MIS update is disabled. After the migration, the
MIS tables will be updated with the new CL account number in place of loans reference
number.
4-9

4.4.2.8 UDF

You need to associate the user defined fields defined at the LD product level with the CL
products. Account level UDFs attached to the LD contracts will be automatically migrated to
CL accounts based on the product mapping done in CL. New UDFs has to be created for
storing the original loan amount.

4.4.2.9 SMS

The customer needs to define the SMS roles for new function IDs. Since the LD - CL function
ID mapping is not always one-one, the bank needs to manually do the new role configuration.

4.4.2.10 Exceptions in Migration Strategy

The exceptions in the migration strategy are as follows:

 If a loan is of type Rule-78, you need to migrate it with its original value date.

 Holiday treatment in CL module is only at the product level. For CL accounts, the holiday
treatment is defaulted from the corresponding CL product. For the LD contracts, if the
holiday treatment is different from the corresponding CL product, there may be
parameter differences in the schedule definition.

 Acquiring unamortized portion of the discounted/premium on charge or fees component
in CL side is not supported by automated migration.

4.4.3 Migrating Commitments

Commitment migration strategy is similar to the loans migration strategy except for the
derivation of commitment amount and value date.

See “Migrating Data from Loans and Deposits to Consumer Lending Module” on page 4-2 for
the migration flow of loans. You can follow the same method for commitment migration except
for derivation of commitment amount and value date.

Derivation logic for commitment amount and value date is given below.

Example

This example explains the derivation of parameters for non-revolving and revolving
commitments. Assume that the commitment does not have VAMI events and the loans have
simple BOOK and LIQD events.

Type Value Date Amount Maturity Date
Linking
Strategy

Non-revolving Min value date
(active loans
outstanding)

Sum (active
loans outstand-
ing) + Unutilized
as on migration
date

Same as origi-
nal commit-
ment

During CL
migrations, uti-
lize the com-
mitment

Revolving Min value date
(active loans
outstanding)

Original commit-
ment amount

Same as origi-
nal commit-
ment

During CL
migrations, uti-
lize the com-
mitment
4-10

Non-revolving:

Contract L1 is liquidated on 01 May, 2012. Hence L1 is not migrated.

C1 is migrated as CX1, L2 is migrated as LX2 and L3 is migrated as LX3.

Migration Date: 15 June, 2012

Commitment Value Date: 01 May, 2012 (Minimum of value date of active loan (L2,L3))

Commitment amount: 350 + 550 = 900 (sum of outstanding loans (L2,L3) + Un-utilized)

Utilization is as follows:

Revolving:

Commitment Event Date Utilized
Un-
utilized

LD
Contract

Event Amount

C1 (1000) 01-Jan-12 0 1000

01-Feb-12 100 900 L1 BOOK 100

01-Mar-12 300 700 L2 BOOK 200

01-May-12 300 700 L1 LIQD** 100

01-Jun-12 150 550 L3 BOOK 150

Commitment
Event
Date

Utilized Un-utilized
LD
Contract

Event Amount

CX1 (900)

01-Mar-09 0 900

01-Mar-09 200 700 LX2 BOOK 200

01-Jun-09 350 550 LX3 BOOK 150

Commitment Event Date Utilized
Un-
utilized

LD
Contract

Event Amount

C2 (1000) 01-Jan-12 0 1000

01-Feb-12 100 900 L11 BOOK 100

01-Mar-12 70 930 L11 PAYM 30

01-Mar-12 270 730 L12 BOOK 200

01-Apr-12 240 760 L11 PAYM 30

01-Apr-12 190 810 L12 PAYM 50

01-May-12 150 850 L11 LIQD** 40

01-Jun-12 300 700 L13 BOOK 150
4-11

Contract L1 is liquidated on 01 May, 2012. Hence L11 is not migrated.

C2 is migrated as CX2, L12 is migrated as LX12 and L13 migrated as LX13.

Migration Date: 15 June, 2012

Commitment Value Date: 01 March, 2012 (Minimum of value date of active loan (L12, L13))

Commitment amount: 1000 (Original amount)

Utilization is as follows:

4.5 Migrating Data from LM Module to ELCM Module

The LM module in the source version may have been revamped as ELCM module in the target
version. You need to migrate the LM data to the ELCM module. This involves the following
steps:

 Understand the migration approach

 Ensure that the prerequisites are met

 Table mapping

 Enable EL specific triggers

 Migrate data to the target version

 Truncate database, if required

4.5.1 Migration Approach

The migration approach is as follows:

 Before starting LM to ELCM data migration, LD to CL migration must be completed.

 The migration of data from old set of tables to new set of tables is effected through a
package. The DDLs corresponding to the package are also available in the shipment
media.

 All maintenance data such as liabilities, collateral etc. are migrated by a simple table-to-
table movement of data.

 The utilizations migration involves calls to the underlying limits processing packages.

 LM to ELCM migration is done as a last step in the module wise conversion application
process.

4.5.2 Prerequisites

The prerequisites for this migration are as follows:

 Complete the ELCM setup in the migration environment. Refer to the installation
manuals of the target version for details on this setup.

Commitment Event Date Utilized
Un-
utilized

LD
Contract

Event Amount

CX2 (1000)

01-Mar-12 0 1000

01-Mar-12 150 850 LX12 BOOK 150

01-Jun-12 300 700 LX13 BOOK 150
4-12

 Ensure that the CSTB_PARAM values for ELCM related parameters are properly set.

 Compile the POJO jars and ELCM java files as per the ELCM setup document for target
version.

 Provide the Java grants in the schema as per ELCM setup document for target version.

 Verify all java objects in the database and ensure that they having valid status.

Note

The prerequisites given above are a few basic checks to be completed. For complete de-
tails, refer to the Installation Manuals of the target version.

4.5.3 Enabling Triggers

Before you import the data from LM to ELCM in the target schema, you need to enable certain
ELCM related triggers. You can enable the triggers using the script ‘ELCM-
TriggersEnable.sql’.

See “Annexure” on page 8-1 for details on the location and usage of the SQL file.

As per the migration strategy, by default all the triggers are disabled before the data import.
However, the triggers mentioned in this section must be enabled as exceptional cases.

The list of triggers is given below:

 Sl.
No.

Trigger Name Type Event On Table

1 ELTR_ACC_-
CLASS

AFTER
EACH ROW

INSERT OR UPDATE
OR DELETE

STTM_AC-
COUNT_CLASS

2 ELTR_CLT-
M_PRODUCT

AFTER
EACH ROW

INSERT OR UPDATE
OR DELETE

CLTM_PROD-
UCT

3 ELTR_CLT-
M_PRO-
DUCT_UDE

AFTER
EACH ROW

INSERT OR UPDATE
OR DELETE

CLTM_PRO-
DUCT_UDE

4 ELTR_GETM_LIA-
B_CUST_01

BEFORE
EACH ROW

INSERT OR UPDATE GETM_LIA-
B_CUST

5 ELTR_LDTB_-
CON-
TRACT_MASTER

AFTER
EACH ROW

INSERT OR UPDATE CSTB_CON-
TRACT

6 ELTR_PRODUCT AFTER
EACH ROW

INSERT OR UPDATE
OR DELETE

CSTM_PROD-
UCT

7 ELTR_STT-
M_CUSTOMER

BEFORE
EACH ROW

INSERT OR UPDATE STTM_CUS-
TOMER

8 ELTR_STT-
M_CUST_AC

AFTER
EACH ROW

INSERT OR UPDATE STT-
M_CUST_AC-
COUNT
4-13

4.5.4 Migrating Data

You need to migrate the data from LM to ELCM module in the target version. Follow the steps
given below:

1. Ensure that the triggers related to ELCM are enabled.

2. Use the package ‘ELPKS_LM_REPLICATION’ to migrate LM data to GE (ELCM module)
tables. You can use the stub ‘LM_EL_MIG_Stub.sql’ to call the package.

 See “Annexure” on page 8-1 for details on the location and usage of the
LM_EL_MIG_STUB.sql.

3. Use the function ‘fn_process’ for migrating maintenance entities and utilizations. You may
migrate the entities either one-by-one or all in one stretch. The parameters to the function
are as follows:

– p_user_id IN VARCHAR2,

– p_ref_no IN OUT VARCHAR2,

– p_function_id IN VARCHAR2,

– p_process_no IN NUMBER,

– p_remarks IN VARCHAR2,

– p_errs IN OUT VARCHAR2,

– p_prms IN OUT VARCHAR2

4. In the above list, the parameter ‘p_function_id’ is a mandatory parameter. You may leave
the other parameters blank. Remarks, if passed, will be used for updating the log tables.

5. The tables ‘eltb_migration_log’ and ‘eltb_mig_exception_log’ are the log tables populated
during the migration process.

6. You can control the behaviour of the migration using function ID input parameter. If you
pass the value ‘ALL’ as the input, then all liabilities, maintenance entities and utilizations
will be migrated in one step. Or we can pass individual function IDs to migrate each entity
one-by-one. The functions IDs are listed below:

– GEDMLIAB - Liabilities Maintenance

– GEDCULIK - Liability-Customer Link

– GEDCOLTY - Collateral Types Maintenance

– GEDSTYPE - Static Types Maintenance

– GEDCOLCA - Collateral Categories Maintenance

– GEDISSUR - Issuer codes Maintenance

– GEDSECTY - Securities Maintenance

– GEDCOLLT - Collaterals Maintenance

– GEDCOLTD - TD Collaterals

– GEDMPOOL - Pool Collateral Linkages

– GEDFACLT - Facilities Maintenance

– GEDTRANS - Facilities Transger

– GEDBLOCK - Facilities Block

– GEDTRKEXP - Country wise limits

– GEDUTILUPD - Utilization Upload

– GEDUTILMIG - Utilization Migration
4-14

4.5.5 Truncating Database

During upgrade, you may need to iterate the migration of LM to ELCM module. Before an
iterative migration, the EL tables in target database can be truncated to re-run the whole
process.

You can use the script ‘ELCM_TRUNCATE.sql’ to truncate.

See “Annexure” on page 8-1 for details on the location and usage of ELCM_TRUNCATE.sql.

Note

Partial truncation or partial re-migration is not supported.

4.6 Migrating Data from Branch to Retail Teller

In Oracle FCUBS 10.0 version, the branch related data has been moved to new set of tables.
Conversion or upgrade scripts are not provided for migration of branch data into retail teller.

At the time of upgrade, the implementation team needs to ensure that outstanding
transactions are not pending to be posted to the account at the time of cut-over in any of the
web-branches.

The clearing checks which are yet to be paid will come as part of the host-data-migration. That
will be available in the upgraded system.

Amendment or reversal an old transaction, which was entered before upgrade, is not
supported in the new system after upgrade.

You can setup the new Retail-Branch.

For details, refer to the chapter ‘Data Replication’ in ‘Savings’ user manual.

Note

– The table ‘FBTB_TCDENM’ will be replicated when you maintain the data in the
screen ‘Confirm Receipts’ (IVDCONFR).

– The table ‘FBTB_TCDENM_DESC’ will be replicated through the screen ‘Denomi-
nation Details’ (CSDDEMAN).

4.7 ATM/POS Modules Impact

For handling ATM/POS transactions in Oracle FCUBS, ‘Switch’ module was introduced in
version 10.3. From this version a totally new set of tables are used. Migration scripts are not
provided for the upgrade.

At the time of cut-over, all the transactions should have been posted to the accounts from the
Switches. You need to ensure that there is no pending transaction in the Switches.

Reversal of a transaction entered in the source version is not supported in the new system
after upgrade.

Maintenance table of ATM/POS terminals may have huge data. The bank may want to
migrate such data to the new system.
4-15

4.8 Upgrading Existing Modules

You need to upgrade the modules that are not revamped. The conversion scripts for new
tables, columns and functional enhancements are available in the ‘Conversion Script
Repository’ (See “Conversion Script Generation Tool” on page 6-1).

Scripts are available for the following modules for upgrade from a lower versions to a higher
version.

 Core

– ST

– CIF

– CASA

– IC

– IS

– MS

 SMS

 BC

 FA

 FT

 LC

 CD

 MM

 SI

4.8.1 Generic Conversion Methods

The generic conversion methods are discussed under the following headings.

Note

If the source data has account numbers which are in mixed case alphabet or contain char-
acters that are considered to be invalid in target version, then you need to change the re-
spective RAD XML property. You must manually uncheck the uppercase property in RAD.

4.8.1.1 Node Update

Node field is updated with the new database name in different tables across modules. The
script for node update is available in the conversion script repository.

4.8.1.2 Basic Parameters Setup

As per the upgrade strategy, E-Data tables will not get imported into target schema. The basic
application level parameters (CSTB_PARAM table) is of type E-Data. It cannot be imported
to the target version.

You can setup the basic parameters through the following methods:

 Directly through Oracle FLEXCUBE Universal Banking Installer interface - at the time of
installation, you can setup the parameters directly in the user interface screen popped
up by the Installer

 Load static data - you can use ‘Load Static Data’ option provided by the Installer
4-16

 Manual execution - you can use the INC script available for the table CSTB_PARAM in
the VERCON area

The implementation team should verify the parameter values wherever parameters are set
up.

4.8.2 Upgrading Core Module

Conversion scripts are provided for various tables related to GL, ST, CIF, CASA, IC, IS and
MS modules.

See “Conversion Script Generation Tool” on page 6-1.

Import the source data into target schema and apply the conversion scripts referred above.
Once this step is completed, you need to do some maintenances for the imported data to work
in the target environment.

In case of CIF screen, note that the data in the maintenance tables of the LOV fields (option
lists) like ‘Prefix’, ‘Customer Category’ etc. may have mixed case text. But in the new setup of
Oracle FCUBS (12.0 and higher), such data is expected to be created in upper case. FCUBS
12.0.2.0.0 accepts mixed case characters during modification of the records.

4.8.2.1 Limitations

Following are the limitations with regard to account creation:

 Location type was free text in older version, but is an LOV field in the later versions. It
has to be populated before saving the customer information.

 Invalid characters check for external account had been introduced, which might prevent
the account being saved.

Conversion scripts are not provided for the above two cases.

4.8.3 Upgrading SMS Module

4.8.3.1 Password History

During migration, if the source version is older than Oracle FCUBS 11.3, you should not move
the password history from source to target.

You can control this by updating the column ‘DATA_IMPORT_REQD’ in
‘CVTM_TABLE_TYPES’ to 'N' where TABLE_NAME ='SMTB_PASSWORD_HISTORY'.

4.8.3.2 Password Reset

Once the data upgrade activities are completed and the front end application is setup, you
may login to the new system. However, you need to reset the password.

Using the Oracle FLEXCUBE Universal Banking Installer, you can create two users with
password.

Refer to the Installation Manual ‘User Creation Utility’ for details.

You can login to new system with the user IDs created. Once logged in, you can reset the
password for any or all the users. You can use the ‘User Credentials Change’ (SMDCHPWD)
screen to reset the password.
4-17

You can directly specify the password in the field only if it is enabled. Otherwise, you will
notice the option ‘Reset Password’ as enabled.

Refer to the user manual ‘Security Management System’ for details on this screen.

4.8.4 Upgrading Deposits Module

The existing deposits in the source version will be created based on the ‘Deposit’ type of
products as part of LD (Loans and Deposits) module. These deposits will be migrated as
‘Corporate Deposits’ and can be handled through the CD (Corporate Deposits) module.

If required, you need to configure new TD products in the target version (12.0.0 or higher) to
make use of the TD functionality.

4.8.5 Dynamic Package Generation for IC Rule

A stub is provided to generate the rule based package dynamically. For each rule in IC
module, a package, which is necessary for the functioning of IC module, is generated.

The package ‘icpks_gen_new.PR_GEN_RULE’ is called for each IC rule defined.

4.8.6 Dynamic Package Generation for Products in CD/MM

A stub is provided to generate a dynamic package for each of the migrated products in CD
and MM modules.

The package ‘Ldpkss_Status_Rule_Gen.Fn_Gen_Rule’ is called for all CD and MM products.

4.8.7 Upgrading PC Module

4.8.7.1 Dynamic Package Generation for Products in PC Module

A stub is provided to generate a dynamic package for each of the migrated products in PC
module. This package will help in resolving the rule set at product level for charges
calculation.

The package ‘PCPKS_CHG_CALC.Fn_Create_Body’ is called for all PC products.

4.8.7.2 Bank Clearing Network Maintenance

In lower versions of Oracle FLEXCUBE the bank network clearing maintenance was not
mandatory. However, it is mandatory in the higher versions.

Once the migration process is complete, before you start with the operations, maintenances
need to be done for the required ‘Bank Code-Network ID’ combinations.

4.8.8 LC Module - Tracers Generation

If the batch ‘LCTRACER’ is maintained as part of EOD/BOD batch, make sure that the
advices are properly maintained for TRGN event of the product. Otherwise, LC tracer will fail
due to non-maintenance of advices for TRGN event.

4.8.9 Upgrading CASA Module - Lower Case Alphabets in Account Number

In the higher versions of Oracle FCUBS, only upper case alphabets are allowed in account
numbers. However, in lower versions which needs to be upgraded, in the existing database
4-18

the account number fields may have alphabets in both upper and lower cases. You need to
handle such cases separately.

To handle such situations, after upgrade, you can correct the front end UI file to accept lower
case input in the below fields:

 Account Number

 Alternate account number

 Clearing Account Number.

 Master Account Number

 ATM Account Number

You should not set the ‘Upper Case’ property and ‘Restricted Text’ property in the RAD XML
for the above fields. The RAD XML for these fields is ‘STDCUSAC_RAD.XML’.

Once the changes are effected, you need to deploy the UI files and related back end
packages. Refer to the Installation Manuals of the target version for details.

4.9 Module Wise Verification Check Points

You need verify the modules to ensure the following:

 Module-wise maintenances - Check whether the module wise maintenances required
for the module to function are completed or not. You may unlock or save the products
or do backend updates.

 Correctness of sequences

 Correctness of parameter values

 Count of entities before and after migration - Reconciliation scripts are provided for each
module to verify the counts of different entities in the database before and after
migration.

 See “Data Reconciliation” on page 7-1 for details on reconciliation scripts.
4-19

5. Cut-over Upgrade Activities

5.1 Introduction

The upgrade activities that you need to carry out during cut-over are as follows.

 Activities in production environment

 Database upgrade in production environment

 Installation of other components

5.2 Activities in Production Environment

On the cut-over date, the following activities required to be done at the production
environment level.

 Run EOC operations and bring the system to TI (Transaction Input) stage of migration
date

 Ensure that there are no unauthorized transactions in any module

 Switch off the SWITCH interface, SWIFT and ATM

 Bring down the application server with due notification

 Bring down the Gateway server

5.3 Database Upgrade in Production Environment

In the Gold Copy, truncate the transaction data tables and re-import the same from the latest
production data dump. You can use the script files ‘Truncate-pData.sql’ and ‘Export-Source-
PData.par’ (See “Annexure” on page 8-1.) for this.

Ideally the transaction data that has gone into the production data from the time of starting
mock run to till time would be the data level change in the source. You need to handled this.
However, during the mock run and verification activities the transaction data (p-Data) might
have undergone changes. So you must truncate the p-Data tables using the scripts in the
Gold Copy.

You need to repeat the database upgrade activity performed during the mock upgrade.

See “Upgrading Database” on page 3-3.

You need not do any static data comparison at this point. The implementation team takes care
not to do any static data changes in the production environment.

Selectively apply the post upgrade check points in the upgraded production area.

See “Verifying Data after Database Upgrade” on page 3-7.

In order to make the database consistent and up-to-date, you can reapply the scripts
discussed in chapter ‘Mock Upgrade Activity’.

See “Verifying Data after Database Upgrade” on page 3-7.

See “Post Import Activities” on page 3-6.
5-1

5.4 Installation of Other Components

The Gold Copy should be used for setup in production environment for all applicable
components and various files.
5-2

6. Conversion Script Generation Tool

6.1 Introduction

You need to apply a set of conversion scripts on the target schema to upgrade the data after
the production data is imported. This is necessary to make the target database compatible
with the front end application deployed.

The new features introduced in the target version application may necessitate application of
some data conversion/upgrade scripts. Apart from this the schematic differences in the
database and constraints would necessitate certain scripts to be run in the back end before
the application is opened to the Bank's users.

The conversion utility is a set of scripts that includes repository of data upgrade scripts and
PL/SQL utility to generate the scripts dynamically to address functional enhancements and
the schema differences.

This chapter discusses the method to use the Dynamic Script Generation tool.

6.2 Generating and Executing Scripts

Following steps are involved in the generation and of execution of scripts.

 Setup parameter

 Generate the dynamic scripts and spool the module wise spool files/control file

 Generate the dynamic script for a specific modules

 Generate the dynamic script for a specific script identifier

 Generate the dynamic script for aborted script identifiers

 Spool the module wise spool files and control file for a run number

6.2.1 Setting up Parameters

Set the appropriate values for the parameters in the table ‘CVTB_PARAM’ before generating
dynamic scripts. You need to set the following parameters.

 SITE_VERSION: This refers to the Oracle FLEXCUBE version installed at the customer
site. The scripts for data migration are picked up based on this parameter as the
repository master ‘CVTM_REPOS_MASTER’ contains all the scripts.

 MIGRATION_TYPE: You can generate spool files for different table types depending on
the time of data migration. For example, conversion scripts should not be applied for P-
data during live cut-over.

 PARSE_STATEMENT: You can have 'Y' or 'N' as the value. If the value is ‘Y’, you can
check the correctness of syntax of the dynamic scripts by parsing the statement.

 WORK_AREA: This is the valid folder which is accessible and provided ‘Write’
permission. The module wise spool of the conversion scripts and the control file is
generated in this folder.

 RUN_NUMBER: It is used to identify the execution of the scripts end-to-end. if the
scripts are already executed and applied onto the database, then you need to change
the run_number. Otherwise, the same run_number can be retained.

 GENERATE_SPOOL_FILES: You can generate the scripts and spool the module files
and control file by setting the parameter GENERATE_SPOOL_FILES to 'Y'. If it is set
to 'N', the scripts are generated, but not spooled.
6-1

For scripts to be spooled later, see “Spooling Module-wise Spool Files and Control File for a
Run Number” on page 6-3.

6.2.2 Generating Dynamic Scripts and Spooling Files

Before you generate the dynamic scripts, ensure that the data in the parameter table
‘cvtb_param’ is set as per the requirement.

In order to generate and spool the scripts, execute the stub ‘call_cvpks_full_generation.sql’ in
the SQL prompt. The stub will generate the code for the script_identifier and spool the module
wise script files/control file in the folder specified in the ‘WORK_AREA’ parameter.

6.2.3 Generating Dynamic Script for Specific Modules

You can generate scripts for all the script_identifiers of a one or more specific modules. In
order to generate the scripts for specific modules, you need to execute the stub
‘call_cvpks_specific_generation.sql’.

The parameters for this file are ‘FLEXCUBE’, 'M' and the list of modules. The parameter ‘M’
denotes that it is module specific. You need to provide the list of modules separated by
comma as the third argument. The modules will be validated against the maintenance in
‘cvtm_module_seq’.

Example 1

The SQL call to generate scripts for the modules BC and SI is as follows:

cvpks_dynamic_script_gen.pr_generate_scripts ('FLEXCUBE', 'M',
'BC, SI');

In order to execute it in SQL prompt, you need to use the command EXECUTE. If the prompt
is SQL>, then the screen will have the following text:

SQL> Execute cvpks_dynamic_script_gen.pr_generate_scripts ('FLEX-
CUBE', 'M', 'BC, SI');

You can execute the same statement as a PL/SQL block within begin/end as follows:

Begin

cvpks_dynamic_script_gen.pr_generate_scripts ('FLEXCUBE', 'M',
'BC, SI');

Exception

When others then

Dbms_output.put_line ('Error :' ||sqlerrm);

End;

Example 2

The SQL call to generate scripts for the module CA is as follows:

cvpks_dynamic_script_gen.pr_generate_scripts ('FLEXCUBE', 'M',
'CA');

For generating spool files, see “Spooling Module-wise Spool Files and Control File for a Run
Number” on page 6-3.

6.2.4 Generating Dynamic Script for Specific script_identifier

You can generate scripts for specific script_identifiers. This is done by executing the stub
‘CALL_CVPKS_SPECIFIC_GENERATION.SQL’.
6-2

The parameters for this file are ‘FLEXCUBE’, 'S' and the list of script identifiers. The
parameter ‘S’ denotes that it is script_identifier specific. You need to provide the list of script
identifiers separated by comma as the third argument.

Example 1

The SQL call to generate scripts for the script identifiers CA_007, LD_001 and SI_009 is as
follows:

cvpks_dynamic_script_gen.pr_generate_scripts ('FLEXCUBE', 'S',
'CA_007, LD_001, SI_009');

Example 2

The SQL call to generate scripts for MS_009 is as follows:

cvpks_dynamic_script_gen.pr_generate_scripts ('FLEXCUBE', 'S',
'MS_009');

For generating spool files, see “Spooling Module-wise Spool Files and Control File for a Run
Number” on page 6-3.

6.2.5 Generating Dynamic Script for Aborted Script Identifiers

You can regenerate all the scripts that were aborted for a specific run_number. You can do
this by executing the stub ‘call_cvpks_specific_generation.sql’.

The parameters for this file are ‘FLEXCUBE’, 'A' and the run number. The parameter ‘A’
denotes that it is for the aborted script identifiers. The run number is the third argument.

Example 1

The SQL call to generate the scripts for aborted script identifiers is as follows:

cvpks_dynamic_script_gen.pr_generate_scripts ('FLEXCUBE', 'A',
2);

For generating spool files, see “Spooling Module-wise Spool Files and Control File for a Run
Number” on page 6-3.

6.2.6 Spooling Module-wise Spool Files and Control File for a Run Number

You can generate module-wise spool files and control file by executing the stub
call_cvpks_generate_spools.sql’. This stub creates the spool files for the code blocks that are
already generated. The files would be generated in the path maintained in CVTB_PARAM.

Yo can generate the scripts for different run numbers by specifying it in the stub itself.

The input to this stub is source_code (FLEXCUBE by default) and then the run_number.

For every run_number, the stub generates the module-wise spool files and control files
separately.
6-3

7. Data Reconciliation

7.1 Introduction

Once the data has been migrated from the source version to the target version, you need to
reconcile the data. You can use the Upgrade Reconciliation Tool to compare the data on the
source and target versions after migration and after running a parallel EOD. After data
reconciliation, you can generate the reconciliation reports.

This chapter discusses the method of using upgrade data reconciliation tool. The following
points are discussed in connection with reconciliation tool in this chapter:

 Setting up a new environment

 Releasing additional units (delta release)

 Changing the source and target schema in the existing system

 Extraction and report generation

– Generating migration reconciliation report

– Generating adhoc reconciliation report

– Generating parallel run reconciliation reports

 Moving extraction data into history table

7.2 Setting Up New Environment

When reconciliation tool is setup in a fresh environment, you need to follow the steps given
below.

1. Run the recon tool sources (dll, inc, spc,s ql, vw) in the source schema and target
schema.

2. In the source schema, complete the following activities:

– Update the source schema name, password and SID name in the script
‘1a_db_link_src.sql’ and run the script

– Run ‘1b_tab_recon_script_gen_src.sql’

– Run ‘2a-validate_recon_scripts_src.sql’

– Run ‘2b-update_inv_scripts_src.sql’

– Run ‘1d_populate_mapping_tables_scr.sql’

3. In the target schema, complete the following activities:

– Update the target schema name, password and SID name in the script
‘1a_db_link_tar.sql’ and run the script

– Run ‘1b_tab_recon_script_gen_tar.sql’

– Run ‘2a-validate_recon_scripts_tar.sql’

– Run ‘2b-update_inv_scripts_tar.sql’

– Run ‘1d_populate_mapping_tables_tar.sql’

4. Check the following parameters in the ‘CVTB_PARAM TABLE’:

Parameter Description

RECON_MODULE_LIST Module list in Tilda separated values. This list will be
taken, if the module code has been passed as ‘ALL’
during data extraction.
7-1

7.3 Releasing Additional Units - Delta Release

In case DDL files are released, it needs to be applied in both source schema and target
schema.

In case the INC files are released, you need to perform the following activities:

1. Apply ‘CVTB_PARAM’ table related INCs in both the source schema and the target
schema

2. Apply ‘CVTM_RECON_DYN_SCRIPTS’ table related INCs only in the target schema

3. Apply ‘CVTM_RECON_REPORTS’ table related INCs only in the target schema

4. In the source schema, complete the following activities:

– Update the source schema name, password and SID name in the script
‘1a_db_link_src.sql’ and run the script.

– Run ‘1b_tab_recon_script_gen_src.sql’

– Run ‘2a-validate_recon_scripts_src.sql’

– Run ‘2b-update_inv_scripts_src.sql’

5. Follow the below steps in Target System:

– Update the target schema name, password and SID name in the script
‘1a_db_link_tar.sql’ and run the script

– Run ‘1b_tab_recon_script_gen_tar.sql’

– Run ‘2a-validate_recon_scripts_tar.sql’

– Run ‘2b-update_inv_scripts_tar.sql’

In case spc, sql, vw (cvpks_recon_extract.sql, cvpks_recon_extract.spc) are released, you
need to execute them in both the source schema and the target schema.

7.4 Changing Source and Target Schema in Existing
System

When source schema and target schema in the existing system are changed, you need to
follow the steps given below.

1. In the source schema, complete the following activities:

– Update the source schema name, password and SID name in the script
‘1a_db_link_src.sql’ and run the script

– Run ‘1b_tab_recon_script_gen_src.sql’

RECON_REPORT_PATH Path where the Recon reports needs to be generated.

TARGET_LM_INSTALLED Target LM module installed (it can be LM or EL)

SOURCE_LM_INSTALLED Source LM module installed (it can be LM or EL)

TARGET_LOAN_INSTALLED Target Loans module installed (it can be LD or CL)

SOURCE_LOAN_INSTALLED Source Loans module installed (it can be LD or CL)

RECON_ENVIRONMENT This is the environment Name. It will be appended as
part of the report file name.

Parameter Description
7-2

– Run ‘2a-validate_recon_scripts_src.sql’

– Run ‘2b-update_inv_scripts_src.sql’

– Run ‘1d_populate_mapping_tables_scr.sql’

2. In the target system, complete the following activities:

– Update the target schema name, password and SID name in the script
‘1a_db_link_tar.sql’ and run the script

– Run ‘1b_tab_recon_script_gen_tar.sql’

– Run ‘2a-validate_recon_scripts_tar.sql’

– Run ‘2b-update_inv_scripts_tar.sql’

– Run ‘1d_populate_mapping_tables_tar.sql’

3. Check the following parameters in the ‘CVTB_PARAM TABLE’:

4. RECON_MODULE_LIST Module list in Tilda separated values. This list will be taken, if
the module code has been passed as ‘ALL’ during data extraction)

7.5 Generating Reports

You can generate various reports related to reconciliation tool. This section discusses the
methods to generate the following reports:

 Migration Reconciliation Report

 Adhoc Reconciliation Report

 Parallel Run Reconciliation Report

7.5.1 Generating Migration Reconciliation Report

Once the source data is migrated to the target version environment, you can generate the
migration reconciliation report. This is a complete reconciliation report and covers all the
entities that need to be reconciled. For generating the migration recon report, you need to
follow the steps given below:

1. Check the following details:

– Head office branch for the source schema and target schema must be the same

– The ‘Today’ column in ‘sttm_dates’ table should be same for all the branches in the
source schema and the target schema

– The report generation path available in ‘CSTB_PARAM TABLE’, PARAM_NAME:
‘RECON_REPORT_PATH’.

– The recon extraction modules available in ‘CSTB_PARAM TABLE’,
PARAM_NAME: ‘RECON_MODULE_LIST’.

Parameter Remarks

RECON_REPORT_PATH Path where the Recon reports needs to be generated.

TARGET_LM_INSTALLED Target LM module installed (it can be LM or EL)

SOURCE_LM_INSTALLED Source LM module installed (it can be LM or EL)

TARGET_LOAN_INSTALLED Target Loans module installed (it can be LD or CL)

SOURCE_LOAN_INSTALLED Source Loans module installed (it can be LD or CL)

RECON_ENVIRONMENT This is the environment name. It will be appended as
part of the report file name.
7-3

2. In the source schema, complete the following activities:

– Run ‘1b_tab_recon_script_gen_src.sql’

– Run ‘2a-validate_recon_scripts_src.sql’

– Run ‘2b-update_inv_scripts_src.sql’

3. Follow the below steps in Target System:

– Run ‘1b_tab_recon_script_gen_tar.sql’

– Run ‘2a-validate_recon_scripts_tar.sql’

– Run ‘2b-update_inv_scripts_tar.sql’

4. In the source schema, complete the following activity:

– Run ‘3_recon-migrt_src.sql’ with parameter ‘BRANCH_CODE’ as head office
branch. In normal cases it is CHO.

5. In the target schema, complete the following activities:

– Run ‘3_recon-migrt_tar.sql’ with parameter BRANCH_CODE as head office
branch. In normal cases it is CHO.

– Run ‘5_recon-reportgen_migrt.sql’ with parameter BRANCH_CODE as head office
branch. In normal cases it is CHO.

7.5.2 Generating Adhoc Reconciliation Report

You can generate the adhoc reconciliation report for individual entities that you need to verify.
For generating this report, you need to follow the steps given below:

1. Before you start the report generation, check the following:

– Head office branch for the source schema and the target schema are the same.

– The ‘Today’ column in ‘sttm_dates’ table should be the same for all the branches in
source and target system.

– The report generation path available in ‘CSTB_PARAM TABLE’, PARAM_NAME:
‘RECON_REPORT_PATH’.

– The recon extraction modules available in ‘CSTB_PARAM TABLE’,
PARAM_NAME: ‘RECON_MODULE_LIST’.

– Get the list of entities which needs to be part of the adhoc report generation (module
code, entities) and prepare the below insert statement.

insert into cvtb_recon_adhoc_entity(module_code,entity) values
('PC','PC_PERIODIC_INSTRUCTIONS');

2. In the target schema, complete the following activities:

– Run insert statements prepared in the previous step

– Run commit

3. In the source schema, complete the following activity:

– Run ‘4c_recon-parl_adhoc_src.sql’ with parameter BRANCH_CODE as ‘ALL’ for all
branch extraction. For a specific branch, the BRANCH_CODE parameter needs to
be the specific branch itself.

4. Follow the below steps in Target System:

Run ‘4c_recon-parl_adhoc_tar.sql’ with Parameter BRANCH_CODE as ‘ALL’ for all branch
extraction. For a specific branch, the BRANCH_CODE parameter needs to be the specific
branch itself.
7-4

Run ‘6e_recon-reportgen_parl_adhoc.sql’ with parameter BRANCH_CODE as ‘ALL’ for all
branch extraction. For a specific branch, the BRANCH_CODE parameter needs to be the
specific branch itself.

7.5.3 Generating Parallel Run Reconciliation Report

Once the data is migrated, you need to run EOD batch on both the source and the target
environments at the same time. You can check specific entities and mark for parallel run. The
parallel run reconciliation report provides the details of data reconciliation after the parallel
EOD batch.

For generating this report, you need to follow the steps given below:

1. Check the following:

– Head office branch for the source schema and the target schema are the same.

– The branch for which Recon is planned to be executed

– The ‘Today’ column in ‘sttm_dates’ table should be the same for the branch in
source and target system, for which the report is generated.

– The stage during which the recon is planned to be executed. It can be ‘MarkEOTI’
or ‘PostBOD’

– The Oracle FLEXCUBE logical stage is the same for source schema and target
schema

– The report generation path available in ‘CSTB_PARAM TABLE’, PARAM_NAME:
‘RECON_REPORT_PATH’

– The recon extraction modules available in ‘CSTB_PARAM TABLE’,
PARAM_NAME: ‘RECON_MODULE_LIST’

2. In the source schema, complete the following activities:

– Run ‘1b_tab_recon_script_gen_src.sql’

– Run ‘2a-validate_recon_scripts_src.sql’

– Run ‘2b-update_inv_scripts_src.sql’

3. In the target schema, complete the following activities:

– Run ‘1b_tab_recon_script_gen_tar.sql’

– Run ‘2a-validate_recon_scripts_tar.sql’

– Run ‘2b-update_inv_scripts_tar.sql’

At this stage, you need to consider two instances of parallel run at MarkEOTI stage and
PostBOD stage.

Case A: Parallel Run at MarkEOTI Stage

4. In the source schema, complete the following activity:

– Run ‘4a_recon-parl_preod_src.sql’ with parameter BRANCH_CODE as ‘ALL’ for all
branch extraction. For a specific branch, the BRANCH_CODE parameter needs to
be the specific branch itself.

5. In the target schema, complete the following activities:

– Run ‘4a_recon-parl_preod_tar.sql’ with parameter BRANCH_CODE as ‘ALL’ for all
branch extraction. For a specific branch, the BRANCH_CODE parameter needs to
be the specific branch itself.

– Run ‘46a_recon-reportgen_parl_preod.sql’ with parameter BRANCH_CODE as
‘ALL’ For all branch extraction. For a specific branch, the BRANCH_CODE
parameter needs to be the specific branch itself.
7-5

Case B: Parallel Run at PostBOD Stage

4. In the source schema, complete the following activity:

– Run ‘4b_recon-parl_pseod_src.sql’ with parameter BRANCH_CODE as ‘ALL’ for all
branch extraction. For a specific branch, the BRANCH_CODE parameter needs to
be the specific branch itself.

5. In the target schema, complete the following activities:

– Run ‘4b_recon-parl_pseod_tar.sql’ with parameter BRANCH_CODE as ‘ALL’ for all
branch extraction. For a specific branch, the BRANCH_CODE parameter needs to
be the specific branch itself.

– Run ‘6b_recon-reportgen_parl_pseod.sql’ with parameter BRANCH_CODE as
‘ALL’ for all branch extraction. For a specific branch, the BRANCH_CODE
parameter needs to be the specific branch itself.

6. Check the following parameters in the CVTB_PARAM TABLE:

7.5.4 Moving Extraction Data into History Table

For moving the extraction data into the history tables, you need to follow the steps given
below.

1. Check the following:

– Head office branch for the source schema and the target schema are the same.

– The ‘Today’ column in ‘sttm_dates’ table should be the same for all the branches in
source and target system.

– Collect the branch code, stage and extraction date for the extraction data which is
being moved into the history table.

2. In the source schema, complete the following activity:

– Run ‘1c_move_to_history_src.sql’ with parameter branch code, stage and
extraction date which has been collected in the previous step.

3. In the target schema, complete the following activity:

– Run ‘1c_move_to_history_tar.sql’ with parameter branch code, stage and
extraction date which has been collected in step 1.

Parameter Remarks

RECON_MODULE_LIST Module list in Tilda separated values. This list will be
taken if the module code has been passed as ‘ALL’
during data extraction.

RECON_REPORT_PATH Path where the Recon reports needs to be generated.

TARGET_LM_INSTALLED Target LM module installed (it can be LM or EL).

SOURCE_LM_INSTALLED Source LM module installed (it can be LM or EL).

TARGET_LOAN_INSTALLED Target Loans module installed (it can be LD or CL).

SOURCE_LOAN_INSTALLED Source Loan module installed (it can be LD or CL).

RECON_ENVIRONMENT This is the environment name. It will be appended as
part of the report file name.
7-6

8. Annexure

8.1 Utility Scripts

The utility scripts are given in the following table.

Script Name Location Remarks

Export_Site_FULL_Dump.par /SOFT/TOOLS/
Upgradetoolkit/
Soft/ImpExp/
Scripts

Param files to export the
production schema at
site.

In this par file, replace the
word ‘SOURCESCHEMA’
with the actual schema
name to be exported.
Also change the ‘DIREC-
TORY’, ‘DUMPFILE’,
‘LOGFILE’ names as per
the actual names used.
This is applicable to all
the par files supplied in
the document.

Create_DB_Link.sql /SOFT/TOOLS/
Upgradetoolkit/
Soft/ImpExp/
Scripts

Script to create database
link.

Before creating the DB
link, configure the TNS
connection between the
source and destination
database.

TableDiff_Source_Dest.sql /SOFT/TOOLS/
Upgradetoolkit/
Soft/ImpExp/
Scripts

Scripts to list out the dif-
ferences between the
source schema and target
schema.

Existing_Table_Column_Diff.sql /SOFT/TOOLS/
Upgradetoolkit/
Soft/ImpExp/
Scripts

Script to list out the differ-
ences in tables which are
existing in both the sche-
mas, but the columns are
different.

Constraint_Trigger_Disable_Script.sql /SOFT/TOOLS/
Upgradetoolkit/
Soft/ImpExp/
Scripts

Script to disable con-
straints and triggers.

Constraint_Trigger_Enable_Script.sql /SOFT/TOOLS/
Upgradetoolkit/
Soft/ImpExp/
Scripts

Script to enable con-
straints and triggers.
8-1

Drop_Sequence_Script.sql /SOFT/TOOLS/
Upgradetoolkit/
Soft/ImpExp/
Scripts

Script to drop the
sequence.

Import_P-M_data.par /SOFT/TOOLS/
Upgradetoolkit/
Soft/ImpExp/
Scripts

Param files to import
static data.

Import_EM_data.par /SOFT/TOOLS/
Upgradetoolkit/
Soft/ImpExp/
Scripts

Param files to import non-
static data.

Import_Sequence.par /SOFT/TOOLS/
Upgradetoolkit/
Soft/ImpExp/
Scripts

Par file to import
sequence.

Truncate_PData.sql /SOFT/TOOLS/
Upgradetoolkit/
Soft/ImpExp/
Scripts

Scripts to truncate p-Data.

Export_Source_PData.par /SOFT/TOOLS/
Upgradetoolkit/
Soft/ImpExp/
Scripts

Param file to export
required p_data tables.

ELCM_Triggers_Enable.sql /SOFT/TOOLS/
Upgradetoolkit/
Soft/ImpExp/
Scripts

Script to enable ELCM
related tables.

ELCM-TriggersEnable.sql SOFT/TOOLS/
Upgradetoolkit/
Soft/Migration/LM-
EL/Scripts

Script to enable ELCM
related triggers.

ELCM_TRUNCATE.sql SOFT/TOOLS/
Upgradetoolkit/
Soft/Migration/LM-
EL/Scripts

Script to truncate the
ELCM database

LM_EL_MIG_STUB.sql SOFT/TOOLS/
Upgradetoolkit/
Soft/Migration/LM-
EL/Scripts

Script to call the package
‘ELPKS_LM_REPLICA-
TION’ which migrates LM
data to GE.

Script Name Location Remarks
8-2

9. Glossary of Scripts
Numerics

1A_DB_LINK_SRC.SQL 7-1, 7-2
1A_DB_LINK_TAR.SQL 7-1, 7-3
1B_TAB_RECON_SCRIPT_GEN_S-
RC.SQL 7-1, 7-2, 7-4, 7-5
1B_TAB_RECON_SCRIPT_GEN_TAR
.SQL 7-1, 7-2, 7-3, 7-4, 7-5
1C_MOVE_TO_HISTORY_SRC.SQL
7-6
1C_MOVE_TO_HISTORY_TAR.SQL
7-6
1D_POPULATE_MAPPING_TA-
BLES_SCR.SQL7-1, 7-3
1D_POPULATE_MAPPING_TA-
BLES_TAR.SQL7-1, 7-3
1_PRE-MIGRATION-UPD.SQL 4-3
2A-VALIDATE_RECON_SCRIPTS_S-
RC.SQL 7-1, 7-2, 7-3, 7-4, 7-5
2A-VALI-
DATE_RECON_SCRIPTS_TAR.SQL
7-1, 7-2, 7-3, 7-4, 7-5
2B-UPDATE_INV_SCRIPTS_S-
RC.SQL 7-1, 7-2, 7-3, 7-4, 7-5
2B-UPDATE_IN-
V_SCRIPTS_TAR.SQL 7-1, 7-2, 7-3,
7-4,7-5
2_LD-COMT-EXTRACTION.SQL 4-3
3_COMMITMENT-UPLOAD.SQL 4-3
3_RECON-MIGRT_SRC.SQL 7-4
3_RECON-MIGRT_TAR.SQL 7-4
46A_RECON-REPORTGEN_PAR-
L_PREOD.SQL7-5
4A_RECON-PARL_PREOD_SRC.SQL
7-5
4A_RECON-PARL_PREOD_TAR.SQL
7-5
4B_RECON-PARL_PSEOD_TAR.SQL
7-6
4C_RECON-PARL_ADHOC_S-
RC.SQL7-4
4C_RECON-PARL_ADHOC_TAR.SQL
7-4
4_LD-LOAN-EXTRACTION.SQL 4-3
5.1.POST-MIGRATION-CHECKS.SQL
4-3
5_CL-UPLOAD.SQL4-3
5_RECON-REPORTGEN_MIGRT.SQL
7-4
6B_RECON-REPORTGEN_PARL_P-

SEOD.SQL 7-6
6E_RECON-REPORTGEN_PARL_AD-
HOC.SQL 7-5
6_LIMITS-UPDATE.SQL 4-3
7_BILLS-UPDATE.SQL 4-3
8_POST_MIGRATION_UP-
DATES.SQL 4-3

A

ALTER_CONSTRAINTS_DISA-
BLE.SQL 3-4
ALTER_TRIGGER_DISABLE.SQL 3-4

C

CALL_CVPKS_FULL_GENERA-
TION.SQL 6-2
CALL_CVPKS_GENER-
ATE_SPOOLS.SQL 6-3
CALL_CVPKS_SPECIFIC_GENERA-
TION.SQL 6-2, 6-3
CL_ACCOUNT_CREATION_ROLL-
BACK.SQL 4-3
CONSTRAINT_TRIGGER_DISA-
BLE_SCRIPT.SQL 3-4, 8-1
CONSTRAINT_TRIGGER_ENA-
BLE_SCRIPT.SQL 8-1
CREATE_DB_LINK.SQL 3-4, 8-1
CVPKS_RECON_EXTRACT.SPC 7-2
CVPKS_RECON_EXTRACT.SQL 7-2

D

DROP_SEQUENCES.SQL . 3-5
DROP_SEQUENCE_SCRIPT.SQL 3-
5, 8-2

E

ELCM_TRIGGERS_ENABLE.SQL 8-2
ELCM-TRIGGERSENABLE.SQL 4-13,
8-2
ELCM_TRUNCATE.SQL 4-14, 8-2
EXISTING_TA-
BLE_COLUMN_DIFF.SQL 3-4, 8-1
EXPORT_SITE_FULL_DUMP.PAR 3-
3, 8-1
EXPORT_SOURCE_PDATA.PAR 8-2
EXPORT-SOURCE-PDATA.PAR 5-1

I

IMPORT_EM_DATA.PAR 3-5, 8-2
9-1

IMPORT_P-M_DATA.PAR 3-5, 8-2
IMPORT_SEQUENCE.PAR 3-5, 8-2
L

LD_EXTRACTION_ROLLBACK.SQL
4-3
LM_EL_MIG_STUB.SQL8-2
LM_EL_MIG_STUB.SQL ..4-14

P

POSTEXTRACTION_-

CHECK_HTML.SQL 4-3
PRELIM_SRC_DATA_CHK.SQL 4-2

T

TABLEDIFF_SOURCE_DEST.SQL 3-
4, 8-1
TRUNCATE_PDATA.SQL .. 8-2
TRUNCATE-PDATA.SQL ... 5-1
9-2

	Contents
	1. Preface
	1.1 Introduction
	1.2 Intended Audience
	1.3 Documentation Accessibility
	1.4 Scope
	1.5 Organization
	1.6 Related Information Sources

	2. Upgrade and Conversion Approach
	2.1 Introduction
	2.2 Approach - Data Import to Target Schema
	2.2.1 Advantages
	2.2.2 Disadvantages

	2.3 Upgrade Process Summary

	3. Mock Upgrade
	3.1 Introduction
	3.2 Prerequisites
	3.3 Mock Upgrade Activity
	3.3.1 Applying Temp Soft Changes
	3.3.2 Setting up Target Schema
	3.3.3 Upgrading Database
	3.3.4 Deploying Front End Application
	3.3.5 Impact on Existing External System Interfaces
	3.3.6 Verifying Data after Database Upgrade

	4. Module Upgrade
	4.1 Introduction
	4.2 Scope
	4.3 Upgrade of Revamped Modules
	4.4 Migrating Data from Loans and Deposits to Consumer Lending Module
	4.4.1 Migrating Products from LD to CL
	4.4.2 Migrating Contracts from LD to CL
	4.4.3 Migrating Commitments

	4.5 Migrating Data from LM Module to ELCM Module
	4.5.1 Migration Approach
	4.5.2 Prerequisites
	4.5.3 Enabling Triggers
	4.5.4 Migrating Data
	4.5.5 Truncating Database

	4.6 Migrating Data from Branch to Retail Teller
	4.7 ATM/POS Modules Impact
	4.8 Upgrading Existing Modules
	4.8.1 Generic Conversion Methods
	4.8.2 Upgrading Core Module
	4.8.3 Upgrading SMS Module
	4.8.4 Upgrading Deposits Module
	4.8.5 Dynamic Package Generation for IC Rule
	4.8.6 Dynamic Package Generation for Products in CD/MM
	4.8.7 Upgrading PC Module
	4.8.8 LC Module - Tracers Generation
	4.8.9 Upgrading CASA Module - Lower Case Alphabets in Account Number

	4.9 Module Wise Verification Check Points

	5. Cut-over Upgrade Activities
	5.1 Introduction
	5.2 Activities in Production Environment
	5.3 Database Upgrade in Production Environment
	5.4 Installation of Other Components

	6. Conversion Script Generation Tool
	6.1 Introduction
	6.2 Generating and Executing Scripts
	6.2.1 Setting up Parameters
	6.2.2 Generating Dynamic Scripts and Spooling Files
	6.2.3 Generating Dynamic Script for Specific Modules
	6.2.4 Generating Dynamic Script for Specific script_identifier
	6.2.5 Generating Dynamic Script for Aborted Script Identifiers
	6.2.6 Spooling Module-wise Spool Files and Control File for a Run Number

	7. Data Reconciliation
	7.1 Introduction
	7.2 Setting Up New Environment
	7.3 Releasing Additional Units - Delta Release
	7.4 Changing Source and Target Schema in Existing System
	7.5 Generating Reports
	7.5.1 Generating Migration Reconciliation Report
	7.5.2 Generating Adhoc Reconciliation Report
	7.5.3 Generating Parallel Run Reconciliation Report
	7.5.4 Moving Extraction Data into History Table

	8. Annexure
	8.1 Utility Scripts

	9. Glossary of Scripts

