
 

[1] Oracle® Communications IP Service Activator
API Developer's Guide 

Release 7.3.4 

E75634-01

June 2016



Oracle Communications IP Service Activator API Developer's Guide, Release 7.3.4   

E75634-01

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on 
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your 
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, 
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse 
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is 
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If 
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it 
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, 
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users 
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and 
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and 
adaptation of the programs, including any operating system, integrated software, any programs installed on 
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to 
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management 
applications. It is not developed or intended for use in any inherently dangerous applications, including 
applications that may create a risk of personal injury. If you use this software or hardware in dangerous 
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other 
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages 
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of 
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks 
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, 
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced 
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, 
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and 
expressly disclaim all warranties of any kind with respect to third-party content, products, and services 
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its 
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of 
third-party content, products, or services, except as set forth in an applicable agreement between you and 
Oracle.



iii

Contents

Preface .................................................................................................................................................................    v

Audience.......................................................................................................................................................     v
Accessing Oracle Communications Documentation..............................................................................     v
Documentation Accessibility .....................................................................................................................     v
Document Revision History ......................................................................................................................    vi

1 API Overview 

About this Guide ......................................................................................................................................   1-1
About IP Service Activator APIs ...........................................................................................................   1-1

2 Working with the OJDL API 

About the OJDL API................................................................................................................................   2-1
System Architecture .................................................................................................................................   2-1
Prerequisites for Installing OJDL .........................................................................................................   2-3
Installing OJDL ........................................................................................................................................   2-4
Using the OJDL API ................................................................................................................................   2-4

Java Development Environment......................................................................................................   2-4
OJDL Directory and File Structure ..................................................................................................   2-4

The doc Directory........................................................................................................................   2-5
The lib Directory .........................................................................................................................   2-5
The Samples Directory ...............................................................................................................   2-6

JavaDocs ..............................................................................................................................................   2-6
Java Classes .........................................................................................................................................   2-6
Best Practices for Minimizing Commits .........................................................................................   2-7

Managing Configuration Policies Using the OJDL API...................................................................   2-8
Initial Setup .........................................................................................................................................   2-8
Creating a Configuration Policy ......................................................................................................   2-9

Creating the Configuration Policy Data Type ........................................................................   2-9
Creating the RuleGeneric Object to Contain the Configuration Policy ..............................   2-9
Assigning the Configuration Policy to the Required Device and Interface Roles..........    2-10

Modifying a Configuration Policy................................................................................................    2-10
Querying the EOM for the Configuration Policy ................................................................    2-10
Modifying the Policy Definition ............................................................................................    2-10

Registering an Interface Policy......................................................................................................    2-10
Creating a Subinterface ...........................................................................................................    2-11



iv

Creating a Main Interface .......................................................................................................    2-12
Decorating an Interface ...........................................................................................................    2-12
Comparing Created and Discovered Interfaces ..................................................................    2-12

Configuration Policy Classes.........................................................................................................    2-12
Example Source Code.....................................................................................................................    2-16

3 Working with the Programmatic Intent-Based Network REST API 

About the REST API ................................................................................................................................   3-1
About REST API Methods......................................................................................................................   3-1
About Installing the REST API .............................................................................................................   3-2
Setting Up WebLogic Server Security ..................................................................................................   3-2

Configuring Identity and Trust Keystores in WebLogic Server .................................................   3-2
Testing the SSL Configuration .........................................................................................................   3-3
Security and Authentication.............................................................................................................   3-3

Working with the Groovy Scripting Language ..................................................................................   3-4
Developing Custom Groovy Scripts................................................................................................   3-5
Groovy Script Examples....................................................................................................................   3-5

Example: Generating CTM Commands...................................................................................   3-6
Example: Deleting a Layer 2 Ethernet Service........................................................................   3-8

About Transactions ...............................................................................................................................    3-10
About Polling Using the GET Method .............................................................................................    3-11
About Logging .......................................................................................................................................    3-11

Logging Using WebLogic Server Configuration ........................................................................    3-11
Configuring EOM Logging Using the IP Service Activator Configuration GUI ...................    3-11
Configuring Additional Logging Using Groovy Scripts...........................................................    3-12

4 Working with the Web Service API

About the Web Service API....................................................................................................................   4-1
About Web Services and OIM ...............................................................................................................   4-1
Design Studio for IP Service Activator ................................................................................................   4-2
Configuring Web Services......................................................................................................................   4-2

Pre-requisites for Web Services........................................................................................................   4-2
Configuring Web Services ................................................................................................................   4-2
Configuring OSS Integration Manager ...........................................................................................   4-4

Deploying and Undeploying Web Services........................................................................................   4-4
About Web Service Security ..................................................................................................................   4-6
About OSM Data Providers ...................................................................................................................   4-6
Finding and Retrieving Data..................................................................................................................   4-9

Finding Objects...................................................................................................................................   4-9
Retrieving Objects ...........................................................................................................................    4-11
Retrieving Other Data ....................................................................................................................    4-14

Web Service Operations.......................................................................................................................    4-15



v

Preface

This guide provides information about developing application programming 
interfaces (APIs) to Oracle Communications IP Service Activator.

This guide provides information about the following APIs:

■ OSS Java Development Library (OJDL) API

■ REST API 

■ Web Services API

Audience
This guide is intended for systems integrators and developers who will be using any 
of the supported APIs to develop their own interfaces to IP Service Activator. For 
example, you can use OJDL to develop customized web-based applications for 
Customer Network Management.

It assumes that readers have the following knowledge:

■ Familiarity with the core IP Service Activator features

■ Knowledge of the Oracle Solaris operating system and its commands

Accessing Oracle Communications Documentation
IP Service Activator for Oracle Communications documentation, and additional 
Oracle documentation, is available from Oracle Help Center:

http://docs.oracle.com

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle 
Accessibility Program website at 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support 
through My Oracle Support. For information, visit 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing 
impaired.



vi

Document Revision History
The following table lists the revision history for this guide.

Version Date Description

E75634-01 June 2016 Initial release



1

API Overview 1-1

1API Overview

[2] This guide provides information that you can use when working with Oracle 
Communications IP Service Activator application programming interfaces (APIs). The 
IP Service Activator APIs can be extended through custom code. The APIs, or 
extended APIs, can be called from various places, such as from custom rulesets, 
custom Web services, or customized portions of the user interface (UI).

About this Guide
This guide provides information about common things you need to do when working 
with any of the IP Service Activator APIs, such as working with transactions, handling 
errors, and logging messages.

The IP Service Activator APIs documented in this guide describe API usage patterns 
and best practices for implementing common business scenarios. Code samples are 
provided to show how to use the APIs and what to expect when implementing the 
APIs. 

This guide provides information about managing configuration policies using the 
APIs, entity manager classes, and examples of code that show common methods. 

This guide does not include detailed Javadoc information, nor does it cover model and 
domain information that are provided in other IP Service Activator documentation. 
This guide assumes that you are familiar with IP Service Activator functionality, and 
are planning to extend IP Service Activator functionality by implementing a custom 
solution based on information provided in IP Service Activator developer 
documentation.

About IP Service Activator APIs
The following APIs are provided with IP Service Activator and are documented in this 
guide:

■ OSS Java Development Library (OJDL) API: Allows you to use Java to develop 
or customize interfaces, including web-based or intranet-based user interfaces.

■ REST API: Allows you to create customized Groovy scripts with common REST 
methods that you can use to make calls through a REST web service interface to 
retrieve, update, delete, and create resources. You can use this API from Oracle 
Communications Order and Service Management (OSM) or any client that is 
capable of using the REST protocol.

■ Web Services API: Provides a web service interface through which OSM can 
manage service activation transactions. This web service is usable only from the 
activation task in OSM.



About IP Service Activator APIs

1-2 IP Service Activator API Developer’s Guide



2

Working with the OJDL API 2-1

2Working with the OJDL API

[3] This chapter outlines OSS Java Development Library (OJDL) for Oracle 
Communications IP Service Activator, including the Java classes provided for 
developers.

The OJDL provides a Java-based Application Programming Interface (API) to IP 
Service Activator. It includes a set of Java classes with some code samples, and an 
example web interface.

This chapter assumes you have the following:

■ Knowledge of the OSS Integration Manager (OIM), including the External Object 
Model (EOM), the OIM command language, and the ability to write scripts. See IP 
Service Activator OSS Integration Manager Guide for more information.

■ Experience using the Java programming language and Java technologies.

About the OJDL API
The OJDL API is a generic Java API for IP Service Activator, which allows Java 
developers to develop or customize interfaces, including web-based or intranet-based 
user interfaces.

The OJDL package includes:

■ Java classes

■ Java code samples

You can use the OJDL to develop Java-based interfaces that are used to integrate IP 
Service Activator with components of your environment. These could include, for 
example, your internal Operational Support System (OSS) environment or an external 
Customer Network Management solution.

System Architecture
Figure 2–1 shows the relationship between the OJDL and the rest of the IP Service 
Activator system:



System Architecture

2-2 IP Service Activator API Developer's Guide

Figure 2–1 OJDL in the IP Service Activator System

The OJDL uses the OSS Integration Manager (OIM) interface and provides access to 
the External Object Model (EOM), a simplified version of IP Service Activator’s 
internal object model used by the OIM API. The OJDL is OSS compliant.

In effect, the OJDL provides additional layers that are built on top of OIM, which in 
turn sits on top of the core IP Service Activator system, as shown in Figure 2–2.



Prerequisites for Installing OJDL

Working with the OJDL API 2-3

Figure 2–2 OJDL in the IP Service Activator Architecture Layers

The EOM is a subset of IP Service Activator’s internal object model. It defines all the 
objects that can be accessed or updated by external applications, including their 
attributes and the relationships between them. The EOM allows you to create and 
access data objects without requiring knowledge of the underlying complexity of the 
entire object model.

The OJDL Java classes provide access to the objects in the EOM. The OJDL provides 
the same functionality as the OIM CLI, allowing you to create objects, get and set 
attributes, search for objects, manage transactions, and report errors.

Prerequisites for Installing OJDL
There are no restrictions on where to install the OJDL directory on the host system.

The prerequisites for using the OJDL are:

■ Your IP Service Activator installation must include an instance of the OIM. For 
more information, see IP Service Activator Installation Guide.

■ If you are developing Java code or running web-based applications, a suitable Java 
development environment must be installed, such as the Java Platform, Standard 
Edition (Java SE). For more information, see "Java Development Environment".

■ You must have IP Service Activator configured to allow users to log in 
concurrently, so that you can log in to IP Service Activator using OJDL. By default, 
the user that is created during IP Service Activator installation does not have this 
option enabled. For more information about enabling this option, see the section 
about changing the default user in IP Service Activator System Administrator’s Guide.



Installing OJDL

2-4 IP Service Activator API Developer's Guide

Installing OJDL
The OJDL package is not installed as part of the IP Service Activator standard 
installation. It is a separate package that you can download from the Oracle software 
delivery website.

To install the OJDL:

1. Log in to the Oracle software delivery Web site and select Product Downloads. 
Select Oracle Communications IP Service Activator, and then select the 
Components folder for the release that you want.

2. Download the ojdlpackage-versionNum.zip file available at the following path on 
the Oracle software delivery website:

Oracle Communications IP Service Activator Media Pack -> Oracle 
Communications IP Service Activator Software for Solaris

where versionNum is the version of IP Service Activator.

3. Move the file to the desired directory on the host where you are installing OJDL. 
There are no restrictions on that directory path that you choose.

4. Unzip the file to create the OJDL directory. The name of the OJDL directory is in 
the following format: ojdlpackage-versionNum. 

The OJDL directory consists of the following subdirectories:

■ doc: Contains the Java documentation (JavaDocs)

■ lib: Contains the OJDL jar file that contains the Java classes

■ samples: Contains code samples for testing purposes

Using the OJDL API
This section outlines the OJDL, including the Java classes provided for developers.

Java Development Environment
In order to develop Java code you need a suitable development environment, such as 
the Java Platform, Standard Edition (Java SE), which includes the Java Development 
Kit (JDK). You can download Java SE from the Oracle Technology Network Web site:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

For information about the recommended JDK version for use with the OJDL, see IP 
Service Activator Installation Guide.

Java SE/JDK can be downloaded free of charge, and can be used for commercial or 
non-commercial purposes. However, you must retain the copyright notices.

This guide assumes the use of JDK, but other suitable Java tools can be used if 
required. You need to ensure they are configured correctly.

OJDL Directory and File Structure
When using the OJDL for developing Java code, you need the directories shown in 
Figure 2–3.

http://www.oracle.com/technetwork/java/javase/downloads/index.html


Using the OJDL API

Working with the OJDL API 2-5

Figure 2–3 OJDL Directories

The doc Directory
The doc directory includes HTML files that contain class and package information. 
The index.html file lists all the classes and packages, and contains links to access the 
HTML files that provide the relevant information. The doc directory contains the 
following two subdirectories:

■ doc\com\mslv\osa\ojdl\eom contains HTML files describing the EOM Java API 
classes.

■ doc\com\mslv\osa\ojdl\Oim contains HTML files describing the OIM Java API 
subclasses (for the OIM IDL).

The lib Directory
The lib directory includes the ojdl.jar file, which contains a compressed version of all 
the OJDL Java classes. Figure 2–4 shows the internal directory structure of ojdl.jar.



Using the OJDL API

2-6 IP Service Activator API Developer's Guide

Figure 2–4 Internal Directory Structure of ojdl.jar

The Samples Directory
The samples directory contains Java code samples, which provide an illustration of the 
use of the OJDL classes. The Java code samples are available in the following directory:

samples\com\oracle\communications\ipsa\ojdlSamples

For a brief explanation of the code samples, see the README.txt file in the 
ojdlSamples folder.

JavaDocs
The JavaDocs are stored in the doc directory. See "The doc Directory" for more 
information.

Java Classes
The OJDL Java classes provide access to the EOM objects. The classes can also be used 
to create Java beans which can then be used to create reusable user interface 
components for particular tasks. These may be written as Java applications, applets, or 
as scripts within a Java Server Page.

The OJDL Java classes are stored in the lib directory. See "The lib Directory" for more 
information.

The Java classes are documented as follows:

■ Information about the classes is accessed through the doc\index.htm file.

■ Details of methods and variables used are contained in the doc\index-all.htm file.

The main classes are summarized in Table 2–1. Refer to the JavaDocs for details.

Note: You must put the ojdl.jar file in the class path.



Using the OJDL API

Working with the OJDL API 2-7

Best Practices for Minimizing Commits
It is good to minimize the number of IP Service Activator transaction commits to 
complete an operation, because each commit introduces a delay when the object model 
is updated to reflect the new changes.

Table 2–1 Main Java Classes

Class Description

EomAttribute A base class for representing an attribute within the EOM.

EomAttributesSe Holds a set of EomAttribute objects.

EomConnectionManager Defines a connection manager interface for connecting to the 
OIM.

EomDebug Provides a way to enable traces.

EomDefaultConnection The default implementation of EomConnectManager using 
the JDK ORB.

EomDifferenceResolver Finds the logical difference of EomObjects contained in two 
iterators.

EomDiscovery Enables the discovery of devices.

EomException The base class for any exception thrown by the OJDL. May be 
thrown by methods interacting with the OIM.

EomExtendedSearchIterator Extends the EomSearchIterator by searching on an iterator of 
EomObjects.

EomIntersectionResolver Finds the logical intersection of EomObjects contained in two 
iterators.

EomIterator An extension of the java.util.Iterator interface. Provides a 
wrapper around the search functionality of the OIM find 
command.

EomIteratorParameters Provides a way to pass parameters to an EomSearchIterator to 
refine the search.

EomNonIntegerException Thrown when a non-integer value is being assigned to an 
integer variable.

EomObject A base class for representing objects within the EOM. Each 
object has an Id, name, and set of attributes.

EomObjectException Thrown during an EomObject creation.

EomObjectFactory A factory to build EomObjects.

EomOimException Thrown when a command cannot be executed by OIM.

EomResolver A base class for combining the results of two iterator sets.

EomSearchIterator Looks for all objects of a specific type with a given attribute.

EomSession Represents a connection to the OIM.

EomSessionException Thrown by a method in EomSession when connected to the 
OIM.

EomTransaction Models the general IP Service Activator transaction concept.

EomTransactionStateChange A base class that allows IP Service Activator to synchronously 
return configuration success or failure messages through the 
OJDL for transactions which perform adds, modifies, or 
deletes.



Managing Configuration Policies Using the OJDL API

2-8 IP Service Activator API Developer's Guide

The following example shows how commits may be minimized when an application 
generates a large number of devices for testing. These devices are all of the same type 
and use the device capabilities of an existing device.

To link the desired capabilities, you must first unlink the default capabilities that are 
linked when the device is created. In the least efficient case, the client code would take 
three commits; device create, commit, setpath to device and unlink existing caps, 
commit, link new caps, commit.

In the more efficient form, the client code could accomplish this through one commit 
by constructing a reference to the default capabilities of the device by appending the 
following to the path of the device object:

/DeviceCapabilities:"DeviceCapabilities"

The following excerpt shows how to construct an EomIdentifier that references the 
capabilities linked to the device when the transaction is committed:

EomIdentifier idForNotYetLinkedDefaultCaps = new 
EomIdentifier("DeviceCapabilities", "DeviceCapabilities", newDevice.getPath() + 
"/" + "DeviceCapabilities" + ":\"DeviceCapabilities\"");

Then the default caps are unlinked and the appropriate device caps are linked using 
the following excerpt:

itsTransaction.unlinkObjects(newDevice, 
itsSession.createEomObject(idForNotYetLinkedDefaultCaps));
itsTransaction.linkObjects(newDevice, deviceCaps);
tr = eomSession.openTransaction();
tr.commit(); 

Very large transactions can take more time to process after you commit them. This 
must be balanced against the overall number of commits you issue.

Managing Configuration Policies Using the OJDL API
This section outlines how to use the OJDL API to manage Configuration Policies in 
Oracle Communications IP Service Activator.

Initial Setup
The following JAR files are required in the application classpath in order to create 
configuration policies using the OJDL API. They are installed with the Network 
Processor.

■ servicemodelextensions.jar contains XML Bean Classes for the Configuration 
Policy Service Model Extensions.

■ xbean.jar contains Apache XML Beans API.

■ jsr173_api.jar contains streaming API for XML, provided as part of the Apache 
XML Beans API.

■ ojdl.jar contains IP Service Activator OSS Java Development Library (OJDL) API.

These files are located in the following IP Service Activator installation directory:

■ Solaris: /opt/OracleCommunications/ServiceActivator/lib/java-lib

If your development environment is on a separate machine you will have to copy the 
JAR files from an IP Service Activator machine.



Managing Configuration Policies Using the OJDL API

Working with the OJDL API 2-9

Creating a Configuration Policy
Configuration policies are optional XML extensions to the IP Service Activator object 
model that are supported by the Network Processor cartridges.

A configuration policy can be created using the OJDL API by creating a RuleGeneric 
object. A RuleGeneric object must have two parent objects: a Policy Type object, and 
the object to which you want it to apply. The latter object can be an interface, or other 
applicable objects. For details, refer to the discussion of the RuleGeneric object and the 
external object model in IP Service Activator OSS Integration Manager Guide.

There are code examples available in the additional documentation included with the 
OJDL libraries. For more information, see the 
StaticNATsConfigurationPolicyExample file in 
samples\com\oracle\communications\ipsa\ojdlSamples. The Configuration Policy 
XML definition is set in the RuleGeneric ContentValue attribute.

The structure of the XML for each configuration policy is defined by an XML Schema 
specification in servicemodelextension-api-versionNum.buildNum.zip, which is 
installed with the IP Service Activator client in the Service_Activator_
Home\SamplePolicy folder. An API is provided to programmatically construct the 
configuration policy XML data structures using Java XML Beans, using the Apache 
XML Beans technology available at the Apache web site:

http://xmlbeans.apache.org/

Creating the Configuration Policy Data Type
Each configuration policy top level XML element is represented by an XML Beans 
Document class. For example, the StaticNats configuration policy is created as a 
StaticNatsDocument object. Refer to "Configuration Policy Classes" for the complete 
configuration policy class mapping.

The content of the StaticNats object is set using the XML Beans API. 

There are code examples available in the additional documentation included with the 
OJDL libraries. For more information, see the 
StaticNATsConfigurationPolicyExample file in the samples directory.

Creating the RuleGeneric Object to Contain the Configuration Policy
Configuration Policy objects are represented in the IP Service Activator External Object 
Model (EOM) as RuleGeneric objects. The following two attributes must be set:

■ ContentType: the configuration policy type

■ ContentValue: the configuration policy xml string

The ContentValue configuration policy XML is generated by invoking the toString() 
function.

There are code examples available in the additional documentation included with the 
OJDL libraries. For more information, see the 
StaticNATsConfigurationPolicyExample file in the samples directory.

When passing XML strings into the EOM object attributes, some special characters 
need to be escaped by pre-pending an additional \ character. For example, \" and \' 
must be fully escaped to \\\" and \\\' respectively. This conversion is performed by 
the escapeForOIM() function provided in the example.

http://xmlbeans.apache.org/


Managing Configuration Policies Using the OJDL API

2-10 IP Service Activator API Developer's Guide

Assigning the Configuration Policy to the Required Device and Interface Roles
The RuleGeneric object can be created as a child of many objects in the object hierarchy 
(as documented in IP Service Activator OSS Integration Manager Guide). However, the 
policy object Concrete is applied on any of the Interface objects in the inheritance 
hierarchy that match the RuleGeneric Roles. The RuleGeneric device and interface 
roles must match the device and interface roles on the interface where the 
configuration policy is applied. 

There are code examples available in the additional documentation included with the 
OJDL libraries. For more information, see the 
StaticNATsConfigurationPolicyExample file in the samples directory.

Modifying a Configuration Policy
Modification of a configuration policy involves querying the object model for the 
current configuration policy definition, modifying the configuration policy, and 
updating the whole definition back into the object model.

Querying the EOM for the Configuration Policy
The configuration policy XML can be obtained from the RuleGeneric ContentValue 
parameter. The XML is parsed back into the XML Beans object definition of the service 
model extension. 

There are code examples available in the additional documentation included with the 
OJDL libraries. For more information, see the 
StaticNATsConfigurationPolicyExample file in the samples directory.

As with creating the configuration policy, the XML content of RuleGeneric is updated 
to handle the extra escape characters around the \" and \' characters. This conversion 
is performed by the unescapeFromOIM() function.

Modifying the Policy Definition
The configuration policy definition is modified using the XML Bean API for the 
service model extension documents. 

There are code examples available in the additional documentation included with the 
OJDL libraries. For more information, see the 
StaticNATsConfigurationPolicyExample file in the samples directory.

Registering an Interface Policy
Creating a new interface in IP Service Activator through the OIM and OJDL APIs 
involves a specialized use of configuration policies with the interface configuration 
management framework. As with interface management through IP Service Activator, 
there are three types of interface management interactions:

■ Main interface creation

■ Subinterface creation

■ Interface decoration

Each possible interaction must be registered as an Interface Policy Registration. The 
Interface Policy Registration objects can either be pre-configured in IP Service 
Activator, or created using the IP Service Activator APIs.



Managing Configuration Policies Using the OJDL API

Working with the OJDL API 2-11

There are code examples available in the additional documentation included with the 
OJDL libraries. For more information, see the nterfaceManagementPolicyExample file 
in the samples directory.

Once an Interface Policy Registration is used to create or decorate an interface it cannot 
be modified or deleted until all dependent parent interfaces have been deleted or 
unlinked from the policy registration.

Creating a Subinterface
This section describes how to create a new interface in IP Service Activator so that the 
new interface configuration will also be correctly provisioned on the device.

As a prerequisite the appropriate subinterface creation Interface Policy Registration 
must be created.

Creating the Subinterface Object
Create a new subinterface object under the target interface. For consistency, it is 
recommended that you create the child subinterface with the correct ifType, although 
IP Service Activator will update this value on the next device discovery.

Create a new subinterface object under the target interface. For consistency, it is 
recommended that you create the child subinterface with the correct ifType, although 
IP Service Activator will update this value on the next device discovery.

The following example shows the creation of a new subinterface:

// Create the new subinterface interface object
String subinterfaceName = "Serial1/3.100";
attributes = new EomAttributesSet();
attributes.setAttribute("Type", "32");
EomObject subinterface = tr.createObject(parentInterface, "Subinterface",
  subinterfaceName, attributes);

Linking the New Subinterface Object to the Interface Policy Registration
The created subinterface object is linked to the previously defined Interface Policy 
Registration. The act of linking the policy registration automatically creates a new 
RuleGeneric configuration policy object with the correct data type settings based on 
the Interface Policy Registration definition.

The following example shows the linking of the subinterface object with the interface 
policy registration:

 // Link the new subinterface object to the interface policy registration
 tr.linkObjects(subinterface, registrationPolicy);
 tr.commit();

The new RuleGeneric object name consists of the interface names with -Data 
appended to it.

Modifying the Interface Configuration Policy Data
The interface management configuration policy does not contain any default settings. 
These must be manually created using the appropriate XML data structure for the 
configuration policy data type defined in the interface registration policy. The XML 
content can be created manually or using the XML Beans API provided.

There are code examples available in the additional documentation included with the 
OJDL libraries. For more information, see the InterfaceManagementPolicyExample 
file in the samples directory.



Managing Configuration Policies Using the OJDL API

2-12 IP Service Activator API Developer's Guide

Linking the New Subinterface to an Interface Role
Up to this point the new subinterface has only been created in the IP Service Activator 
object model. Before committing the subinterface creation to the device, the new 
subinterface object must be linked to an appropriate interface role.

There are code examples available in the additional documentation included with the 
OJDL libraries. For more information, see the InterfaceManagementPolicyExample 
file in the samples directory.

(Optional) Discovering the Device
Optionally, the device can be re-discovered to align any interface changes (such as to 
the ifType or VC objects) with the object model. For interface types that have child VC 
object created by the configuration (such as the framerelay DLCI) device re-discovery 
is recommended.

The following example shows the optional device discovery:

// Optionally rediscover the device the get any VC level objects (in this example
// the DLCI)
eomSession.sendCommandtoOIM("discover " + parentDeviceId);

Creating a Main Interface
The steps for main interface creation are largely the same as for subinterface creation. 
For a main interface, the new interface is created as a child of the device and is linked 
to an appropriate Interface type Interface Policy Registration object.

When creating a main interface, the Interface Policy Registration must define the 
default capabilities that the interface (and its sub-interfaces and VCs) will be assigned. 
If the default settings are used, the created interface will not have any capabilities 
assigned and a capabilities reset and re-discovery must be performed instead.

Decorating an Interface
For interface decoration, follow the same steps as with subinterface creation, with the 
exception that the interface does not need to be created first. For interface decoration, 
the existing interface must be linked to a Decorate type Interface Policy Registration 
object.

Comparing Created and Discovered Interfaces
It is possible to determine if an interface was created using the IP Service Activator 
interface configuration management framework or was initially discovered from the 
device by inspecting the IsConfigurable parameter on the Interface or SubInterface 
object.

If IsConfigurable is set to True then the interface was created within IP Service 
Activator. If it is set to False then the interface was added through discovery.

Configuration Policy Classes
Table 2–2 lists the configuration policy classes.



Managing Configuration Policies Using the OJDL API

Working with the OJDL API 2-13

Table 2–2 Configuration Policy Classes

Extension Configuration Policy Java XMLBeans Class

AtmPvcVcClassModule atmPvcVcClass com.metasolv.serviceactivator.atmpvcvcclass.
AtmPvcVcClassDocument

CatOSPolicingRuleModule catOSPolicingRule com.metasolv.serviceactivator.catospolicingr
ule.CatOSPolicingRuleDocument

CiscoEthernetPortCharacteristicsM
odule

ciscoEthernetPortCharacteri
stics

com.metasolv.serviceactivator.ciscoEthernetP
ortCharacteristics.CiscoEthernetPortCharacte
risticsDocument

CiscoQosPfcTxPortQueuesModule ciscoQosPfcTxPortQueues com.metasolv.serviceactivator.ciscoqospfctxp
ortqueues.CiscoQosPfcTxPortQueuesDocum
ent

DlswModule dlswDevice com.metasolv.serviceactivator.dlsw.DlswDevi
ceDocument

DlswModule dlswEthernetInterface com.metasolv.serviceactivator.dlsw.DlswEthe
rnetInterfaceDocument

DlswModule dlswTokenRingInterface com.metasolv.serviceactivator.dlsw.DlswToke
nRingInterfaceDocument

InterfaceConfigMgmtModule atmSubInterfaceData com.metasolv.serviceactivator.subinterface.At
mSubInterfaceDataDocument

InterfaceConfigMgmtModule backUpInterfacePolicy com.metasolv.serviceactivator.subinterface.Ba
ckUpInterfacePolicyDocument

InterfaceConfigMgmtModule basicRateInterfaceData com.metasolv.serviceactivator.subinterface.Ba
sicRateInterfaceDataDocument

InterfaceConfigMgmtModule ciscoUniversalInterface com.metasolv.serviceactivator.subinterface.Ci
scoUniversalInterfaceDocument

InterfaceConfigMgmtModule dialerInterface com.metasolv.serviceactivator.subinterface.Di
alerInterfaceDocument

InterfaceConfigMgmtModule e1ChannelizedSerialInterfac
e

com.metasolv.serviceactivator.subinterface.E1
ChannelizedSerialInterfaceDocument

InterfaceConfigMgmtModule e1Controller com.metasolv.serviceactivator.controller.E1C
ontrollerDocument

InterfaceConfigMgmtModule e3ChannelizedSerialInterfac
e

com.metasolv.serviceactivator.subinterface.E3
ChannelizedSerialInterfaceDocument

InterfaceConfigMgmtModule e3Controller com.metasolv.serviceactivator.controller.E3C
ontrollerDocument

InterfaceConfigMgmtModule frSubInterfaceData com.metasolv.serviceactivator.subinterface.Fr
SubInterfaceDataDocument

InterfaceConfigMgmtModule hsrp com.metasolv.serviceactivator.hsrp.HsrpDoc
ument

InterfaceConfigMgmtModule loopbackInterfaceData com.metasolv.serviceactivator.subinterface.L
oopbackInterfaceDataDocument

InterfaceConfigMgmtModule multilinkInterface com.metasolv.serviceactivator.subinterface.M
ultilinkInterfaceDocument

InterfaceConfigMgmtModule plPosInterfaceData com.metasolv.serviceactivator.subinterface.Pl
PosInterfaceDataDocument

InterfaceConfigMgmtModule pppMultilink com.metasolv.serviceactivator.subinterface.P
ppMultilinkDocument



Managing Configuration Policies Using the OJDL API

2-14 IP Service Activator API Developer's Guide

InterfaceConfigMgmtModule stm1ChannelizedSerialInterf
ace

com.metasolv.serviceactivator.subinterface.St
m1ChannelizedSerialInterfaceDocument

InterfaceConfigMgmtModule stm1Controller com.metasolv.serviceactivator.controller.Stm1
ControllerDocument

InterfaceConfigMgmtModule t1ChannelizedSerialInterfac
e

com.metasolv.serviceactivator.subinterface.T1
ChannelizedSerialInterfaceDocument

InterfaceConfigMgmtModule t1Controller com.metasolv.serviceactivator.controller.T1C
ontrollerDocument

InterfaceConfigMgmtModule t3ChannelizedSerialInterfac
e

com.metasolv.serviceactivator.subinterface.T3
ChannelizedSerialInterfaceDocument

InterfaceConfigMgmtModule t3Controller com.metasolv.serviceactivator.controller.T3C
ontrollerDocument

InterfaceConfigMgmtModule virtualTemplateInterface com.metasolv.serviceactivator.subinterface.Vi
rtualTemplateInterfaceDocument

InterfaceConfigMgmtModule vlanSubInterface com.metasolv.serviceactivator.subinterface.Vl
anSubInterfaceDataDocument

InterfaceConfigMgmtModule vrfExportRouteFilter com.metasolv.serviceactivator.vrfexportroute
filter.VrfExportRouteFilterDocument

IpsecModule IPsecModule com.metasolv.serviceactivator.ipsecmodule.I
psecmoduleDocument

LspModule lspTunnel com.metasolv.serviceactivator.lsp.LspTunnel
Document

L2QosModule rateLimit com.metasolv.serviceactivator.l2Qos.RateLim
itDocument

JuniperQosCosAttachmentModule juniperQosCosAttachment com.metasolv.serviceactivator.juniperqoscosa
ttachment.JuniperQosCosAttachmentDocum
ent

MiscPluginsModule atmVcClass com.metasolv.serviceactivator.vcclass.AtmVc
ClassDocument

MiscPluginsModule banners com.metasolv.serviceactivator.banner.Banner
sDocument

MiscPluginsModule bgpCE com.metasolv.serviceactivator.bgpce.BgpCED
ocument

MiscPluginsModule dailerList com.metasolv.serviceactivator.dialerList.Dial
erListDocument

MiscPluginsModule dslInterfaceData com.metasolv.serviceactivator.subinterface.D
slInterfaceDataDocument

MiscPluginsModule extendedAcl com.metasolv.serviceactivator.extendedAcl.E
xtendedAclDocument

MiscPluginsModule ipPools com.metasolv.serviceactivator.ippool.IpPools
Document

MiscPluginsModule keyChains com.metasolv.serviceactivator.keyChain.Key
ChainsDocument

MiscPluginsModule saveConfig com.metasolv.serviceactivator.saveConfig.Sa
veConfigDocument

MiscPluginsModule staticNats com.metasolv.serviceactivator.staticnat.Static
NatsDocument

Table 2–2 (Cont.) Configuration Policy Classes

Extension Configuration Policy Java XMLBeans Class



Managing Configuration Policies Using the OJDL API

Working with the OJDL API 2-15

MiscPluginsModule staticRoutes com.metasolv.serviceactivator.staticroute.Stat
icRoutesDocument

MiscPluginsModule userAuth com.metasolv.serviceactivator.userAuth.User
AuthDocument

MiscPluginsModule userData com.metasolv.serviceactivator.userData.User
DataDocument

MulticastModule multicastAutoRp com.metasolv.serviceactivator.multicast.Multi
castAutoRpDocument

MulticastModule multicastBootstrapRouter com.metasolv.serviceactivator.multicast.Multi
castBootstrapRouterDocument

MulticastModule multicastDevice com.metasolv.serviceactivator.multicast.Multi
castDeviceDocument

MulticastModule multicastInterface com.metasolv.serviceactivator.multicast.Multi
castInterfaceDocument

MulticastModule multicastVrf com.metasolv.serviceactivator.multicast.Multi
castVrfDocument

PrefixListModule prefixListEntries com.metasolv.serviceactivator.prefixlist.Prefix
ListEntriesDocument

QosCosAttachmentModule qosCosAttachment com.metasolv.serviceactivator.qoscosattachm
ent.QosCosAttachmentDocument

RoutePolicyModule bgpRoutePolicy com.metasolv.serviceactivator.routePolicy.Bg
pRoutePolicyDocument

RoutePolicyModule vrfRoutePolicy com.metasolv.serviceactivator.routePolicy.Vrf
RoutePolicyDocument

SubInterfaceModule plSerialInterfaceData com.metasolv.serviceactivator.subinterface.Pl
SerialInterfaceDataDocument

ServiceAssuranceModule collectorParameters com.metasolv.serviceactivator.collectorParam
eters.CollectorParametersDocument

ServiceAssuranceModule netflowParameters com.metasolv.serviceactivator.netflowParame
ters.NetflowParametersDocument

ServiceAssuranceModule rtrResponder com.metasolv.serviceactivator.rtrr.RtrRespon
derDocument

SgbpModule sgbp com.metasolv.serviceactivator.sgbp.SgbpDoc
ument

SnmpModule snmpCommunities com.metasolv.serviceactivator.snmp.SnmpCo
mmunitiesDocument

SnmpModule snmpHosts com.metasolv.serviceactivator.snmp.SnmpHo
stsDocument

VlanModule vlanDefinitions com.metasolv.serviceactivator.vlanModule.Vl
anDefinitionsDocument

VlanInterfaceModule mgmtVlanInterface com.metasolv.serviceactivator.vlanInterface.
MgmtVlanInterfaceDocument

VlanInterfaceModule vlanInterface com.metasolv.serviceactivator.vlanInterface.V
lanInterfaceDocument

Table 2–2 (Cont.) Configuration Policy Classes

Extension Configuration Policy Java XMLBeans Class



Managing Configuration Policies Using the OJDL API

2-16 IP Service Activator API Developer's Guide

Example Source Code
Code examples are available in the additional documentation included with the OJDL 
libraries.

For configuration policy example source code, see the 
StaticNATsConfigurationPolicyExample file in the samples directory.

For interface management example source code, see the 
InterfaceManagementPolicyExample file in the samples directory.

VrfCustomNamingModule vrfCustomNaming com.metasolv.serviceactivator.vrfCustomNa
ming.VrfCustomNamingDocument

VrfIPsecModule customerIPsec com.metasolv.serviceactivator.vrfipsec.Custo
merIPsecDocument

VrfIPsecModule publicIPsec com.metasolv.serviceactivator.vrfipsec.Public
IPsecDocument

Table 2–2 (Cont.) Configuration Policy Classes

Extension Configuration Policy Java XMLBeans Class



3

Working with the Programmatic Intent-Based Network REST API 3-1

3Working with the Programmatic Intent-Based
Network REST API

[4] This chapter describes the Oracle Communications IP Service Activator programmatic 
intent-based network Representational State Transfer (REST) API. You can use the 
REST API to provision customer-defined services and to integrate IP Service Activator 
with Oracle Communications Order and Service Management (OSM).

About the REST API
You can use REST constraints to create a software architecture style that is based on 
resources. A resource is an object with a type, associated data, relationships to other 
resources, and a set of methods that operate on it. It is similar to an object in an 
object-oriented programming language; however, only a few standard methods are 
defined for a resource, while an object typically has many methods.

In the REST-based architecture, you access resources by using a common interface that 
is based on HTTP standard. A REST server manages and provides access to the 
resources, and a REST client accesses and modifies the resources through the common 
API. The common API is called the REST API and the services that support the API are 
called the REST web service.

The REST API includes an API Software Development Kit (SDK) that enables you to 
define API calls with a high level of granularity, which simplifies the logic that is 
required to provision complex services. The REST API uses the Groovy scripting 
language to create high-level API functions. See "Working with the Groovy Scripting 
Language" for more information.

The REST API uses Secure Sockets Layer (SSL) so all the connections are secure and 
encrypted. See "Setting Up WebLogic Server Security" for more information.

About REST API Methods
Every resource supports some or all of the HTTP common methods. A resource is 
identified by a global ID that is typically a URI. A resource can be in a variety of 
formats, such as XML, JavaScript Object Notation (JSON), plain text, HTML, and 
user-defined data format. A REST client application can require a specific 
representation format by using the HTTP/HTTPS protocol content negotiation.

The common REST API methods are the following:

■ GET: Retrieves one or more resources. You can use this method to check the state 
of a resource.



About Installing the REST API

3-2 IP Service Activator API Developer's Guide

■ PUT: Updates a resource. The PUT method updates the full definition of a 
resource, regardless of what has changed.

■ DELETE: Removes one or more resources.

■ POST: Creates a new resource.

■ PATCH: Updates only the parts of a resource definition that have changed.

A common flow includes using a method to perform an action on a resource, and then 
using the GET method to check the state of that action. For example, you can create a 
resource using the POST method (which includes a URI that points to the new 
resource), and then, because it might take a long time for that resource to be applied to 
the network, use the GET method to periodically check the state of the new resource. 
See "About Polling Using the GET Method" for more information.

About Installing the REST API
If you want to use the REST API with IP Service Activator, you can select the Web 
Service optional integration component when you run the Oracle Universal Installer. 
Alternatively, if you are running a silent installation, you can use the Web Service 
response file to install IP Service Activator with REST API capability. For more 
information about hardware requirements, selecting the Web Service component, and 
using the Web Service response file, see IP Service Activator Installation Guide.

Installing IP Service Activator with the Web Service component allows you to use the 
REST web service. If the Web Service component was installed on a previous version 
of IP Service Activator, upgrading to the latest version and then redeploying the web 
service gives you access to the REST API.

To use a REST web service, you must set up Secure Sockets Layer (SSL) in WebLogic 
Server. See "Setting Up WebLogic Server Security" for more information.

Setting Up WebLogic Server Security
To use the REST API web service you must have an Oracle WebLogic Server installed 
and configured with SSL. For more information about installing and using WebLogic 
Server, see WebLogic Server product documentation.

Configuring Identity and Trust Keystores in WebLogic Server
To configure the WebLogic Server to use SSL, you must have an SSL certificate for the 
server that is running WebLogic. Production servers should have a trusted certificate. 
Lab and testing servers can use self-signed certificates. Use java to generate custom 
keystore files and then configure WebLogic Server to use those files.

To configure the WebLogic Server to use custom identity and trust keystore files:

1. Generate custom SSL identity and trust files by entering the following in the Java 
utility:

keytool -genkey -alias mykey -keyalg RSA -keysize 1024
        -sigalg SHA256withRSA -validity 128 -keypass 123456 -keystore 
identity.jks -storepass 123456
keytool -export -alias mykey -file root.cer
        -keystore identity.jks -storepass 123456
keytool -import -alias mykey -file root.cer -keystore trust.jks
        -storepass 123456

where mykey is the key name, and 123456 is the key password.



Setting Up WebLogic Server Security

Working with the Programmatic Intent-Based Network REST API 3-3

The system generates the following two files:

■ identity.jks

■ trust.jks

2. Copy the .jks files to the security directory of the WebLogic Server, for example, 
OracleHome/user_projects/domains/domain_name/security.

3. Log in to the WebLogic Server.

The WebLogic Administration Console is displayed.

4. In the left pane, expand Environment, and select Servers.

5. Select the server where you want to configure the identity and trust keystores.

6. Select Configuration, Keystores.

7. Select the Custom Identity and Custom Trust option, and specify the identity.jks 
and trust.jks files that you generated in step 1.

Testing the SSL Configuration
You can test whether SSL is set up correctly in the WebLogic Server.

To test the SSL configuration:

1. In a browser, go to the WebLogic Administration Console, for example, enter:

http://hostname:7001/console

If SSL is configured correctly, the browser connects to the WebLogic 
Administration Console using a secure connection and the URL changes from 
http:// to https://, for example:

https://hostname:7002/console

The default port number for SSL is 7002 and if your browser connects, SSL is 
configured correctly.

Security and Authentication
The web service supports only secure connections with authentication. 

When you deploy the REST web service, the system creates and configures a WebLogic 
group called IpsaDomainController. The REST web service user, which is called ipsa_
ws_user by default, is configured in the Web Service/Common section of the IP 
Service Activator Configuration graphical user interface (GUI). This web service user 
is automatically added to the IpsaDomainController group. See "Deploying and 
Undeploying Web Services" for information about deploying the web service for use 
with the REST API.

Note: The key name must match the key password that you entered 
when you generated the files.

Note: If you are using a self-signed certificate for authentication, the 
browser might need to import the certificate before you make the 
connection.



Working with the Groovy Scripting Language

3-4 IP Service Activator API Developer's Guide

The REST web service is configured to accept calls only from a user that belongs to the 
IpsaDomainController group, as authenticated by WebLogic Server, or is a specific 
user with the name IpsaDomainController. 

You can configure additional users and add them to this group using the WebLogic 
Administration Console. For information about managing users in the WebLogic 
Administration Console, see WebLogic Server documentation.

Working with the Groovy Scripting Language
Groovy script is a general-purpose scripting language that runs on the Java Virtual 
Machine (JVM). The syntax that is used for Groovy scripts is similar to the syntax for 
Java code. Most Java code is also valid Groovy script.

REST resources are mapped to Groovy scripts using a registry. Each REST call is done 
to a specific resource. Oracle recommends that you map each combination of REST 
method and resource to a single script.

For example, a REST request to activate an Ethernet service could be done using a 
REST PUT method to a resource called SCA_ETH_FDFr_EC. In this example, the URI 
that is called using the REST service would be the following:

https://hostname:7002/Oracle/CGBU/IPSA/DomainController/resources/data/SCA_
ETH_FDFr_EC. 

The first part of the URI references the server with the web service, that is: 
https://hostname:7002. The next part references the IP Service Activator web service 
API, that is: Oracle/CGBU/IPSA/DomainController/resources/data. The last part 
references the resource, and can also contain a hierarchy, for example, Ethernet/SCA_
ETH_FDFr_EC. The corresponding Groovy registry entry is like the following 
example:

<groovyScript>
  <name>groovy/Post_SCA_ETH_FDFr_EC.groovy</name>
  <target>SCA_ETH_FDFr_EC</target>
  <operation>POST</operation>
</groovyScript>

The registry entry has the following components:

■ Name: The name of the Groovy script that you want to run. In the example, the 
Groovy script is contained in a directory.

■ Operation: The REST methods that are supported by the script. You can include 
multiple method entries. See "About REST API Methods" for supported methods 
and their definitions.

■ Target: The resource supported by the script. This can be a single resource (for 
example, EthernetConnection), or a hierarchy with a resource (for example, 
Services/Ethernet/EthernetConnection).

The registry is loaded from the following directory: Service_Activator_
home/DomainController/groovy.registry

A sample Groovy registry and Groovy scripts are provided in the Service_Activator_
home/ServiceActivator/DomainController/sample directory. You can copy the 
registry and scripts directly into the Service_Activator_
home/ServiceActivator/DomainController directory for testing. Sample JSON input is 
also provided in corresponding .txt files.



Working with the Groovy Scripting Language

Working with the Programmatic Intent-Based Network REST API 3-5

Developing Custom Groovy Scripts
You run Groovy scripts to process REST requests. Each script is run with certain input 
and output available, and an API is provided for interacting with IP Service Activator.

Table 3–1 lists and describes the variables that are available for creating custom 
Groovy scripts.

Groovy Script Examples
The examples in this section are intended to give further guidance about using the 
sample Groovy scripts that are provided with IP Service Activator.

Note: When using sample Groovy scripts, you must change the 
input to match the specific devices and interfaces that are configured 
in IP Service Activator.

Table 3–1 Variables for Creating Custom Groovy Scripts

Variable Description

json The input JSON format payload, converted to a map 
representation. If no JSON payload is provided (for example, 
with a GET method), this variable is an empty map.

output An ArrayList of strings. These are the OIM commands that the 
script will generate. They are processed as a single transaction 
after the Groovy script returns its results. 

For information about commands and their formats, see IP 
Service Activator OSS Integration Manager Guide.

returnedJson Map of the output JSON resource that will be returned. This 
gets converted from a map back into JSON when it is returned 
to the caller.

uriArray An array of the elements of the URI. This is useful when you are 
specifying a hierarchy in the registry with multiple resources 
mapping to the same script. This allows the script to see what 
resource and hierarchy it is called with.

queryMap Map of any query parameters passed on the request. For 
example, a GET request might specify:

https://.../Layer3Ethernet?Customer=MyCustomer

The parts after the '?' will be parsed into the queryMap.

transactionNameArray An array of strings that are used when constructing the name of 
the transaction.

helper The API that is provided for assistance. This API has its own 
javadocs, but is provided for doing IP Service Activator 
operations (for example, looking up resources or attributes) and 
constructing some OIM commands automatically without 
needing to explicitly create and add them to the output variable.

return This is not a variable, but is the return code from the script. It is 
returned as the status of the REST call. If the status is not 
successfully, for example it is 400 or greater, any IP Service 
Activator operations are not performed. If the script returns 
successfully, the REST call might still receive an error if the 
methods are invalid or if IP Service Activator does not accept 
the transaction.



Working with the Groovy Scripting Language

3-6 IP Service Activator API Developer's Guide

Example: Generating CTM Commands
This example implements a REST-based mechanism for generating CTM commands. 
The sample Groovy script is available in the following location: Service_Activator_
home/DomainController/sample/groovy/Post_CTM.groovy.

Step 1: Configuring JSON
Using JSON format, you must first design the input/output of the service that you 
want to implement. The input must indicate the template that you want to use (name, 
versions, driver type, and so on), as well as a list of attributes (name/value pairs). 

The input is the following:

{
  "templateName":"String",
  "deviceRoll":"String",
  "interfaceRoll":"String",
  "schemaRelease":"Number",
  "templateVersion":"Number",
  "driverType":"String",
  "objectType":"String",
  "interfaceType":"String",
  "templateVariables": {
      "Name1":"Value1",
      "Name2":"Value2",
      …
  }
}

In this example, the template name is mandatory and all other template information is 
optional. You can use wildcards in the CTM call for non-mandatory template 
information. The structure of the templateVariables attribute contains a list of the 
variables that are part of the template. The list of variables depends on the type of 
template that you are using. The Groovy script does not enforce the variables in the 
list; however, CTM generates an error if the variables are incorrect for the template.

The output is the following simple JSON with an array of strings that contain the 
generated commands:

{
    "Commands": [
        "StringCommand1",
        "StringCommand2",
        …
        "StringCommandN"
    ]
}

Step 2: Developing the Groovy Script
This section of the example shows the Groovy script that you can develop to 
accomplish the task of implementing a REST-based mechanism for generating CTM 
commands.

Note: Oracle recommends using the POST method to implement this 
script because generating these commands is similar to the commands 
for creating a resource, even though this example does not create 
resources.



Working with the Groovy Scripting Language

Working with the Programmatic Intent-Based Network REST API 3-7

You can use the helper API to check for the mandatory parts of the incoming JSON 
code. Create a map that contains the parts of the JSON code that are mandatory, in this 
example that is the templateName and templateVariables. Note that this example 
does not check for specific variable names in the templateVariables because these can 
change based on the specific template.

The input JSON is located in the variable json, which is included in the call to 
isJsonValid, as in the following:

def expectedJson = [ templateName:"",
                     templateVariables:""
                   ]
if (!helper.isJsonValid(expectedJson, json)) {
    returnedJson.BadRequestErrorType = [ "title":"Exception",
                 "detail":'Invalid ctm input json']
    logger.log(Level.SEVERE, "Input is missing required ctm fields")
    return 400;
}

The next part of this step is to put the variables into a hashtable so that they can be 
passed to CTM when generating the template. Groovy provides a way to iterate over 
the items in the JSON format map, and allows you to add each key/value pair to the 
new hashtable. Using validation, you can ensure that all the types are strings, in case 
an incorrect structure was accidentally passed into this part of the JSON. Even numeric 
fields are strings because JSON format does not differentiate numbers from strings. 
For example:

def Hashtable<String, String> fieldMap = new Hashtable<String, String>()
json.templateVariables.each { key, value ->
    if (value.getClass() == String) {
        fieldMap.put(key, value)
    }
}

You create Groovy variables that store the values that are needed to specify the 
template. In this way, you can also check when a value is not specified and then set it 
to null. Null is used by the CTM call to indicate that the value should not be used 
when searching for the template and acts as a wildcard. The template name is also 
stored in a variable for convenience. For example:

def templateName = json.templateName
def deviceRoll = null
if (json.containsKey("deviceRoll")) {
    deviceRoll = json.deviceRoll
}
 
def interfaceRoll = null
if (json.containsKey("interfaceRoll")) {
    interfaceRoll = json.interfaceRoll
}
 
def schemaRelease = null
if (json.containsKey("schemaRelease")) {
    schemaRelease = Integer.valueOf(json.schemaRelease)
}
templateVersion = null
if (json.containsKey("templateVersion")) {
    templateVersion = json.templateVersion
}
 



Working with the Groovy Scripting Language

3-8 IP Service Activator API Developer's Guide

def driverType = null
if (json.containsKey("driverType")) {
    driverType = json.driverType
}
 
def objectType = null
if (json.containsKey("objectType")) {
    objectType = json.objectType
}
 
def interfaceType = null
if (json.containsKey("interfaceType")) {
    interfaceType = json.interfaceType
}

All the data that is required for generating the commands from the template is now 
prepared, and you can call the CTM method using the helper API. This returns a 
vector containing the string commands:

def Vector<String> cmds = helper.generateCtmCommands(templateName, deviceRoll, 
interfaceRoll, schemaRelease, templateVersion, driverType, objectType, 
interfaceType, fieldMap)

If there is an error and the commands could not be generated, the helper API returns 
null. If this occurs, you can construct a different JSON output that indicates the failure. 
Use the variable returnedJson to construct the JSON map that gets sent back. In this 
example, the JSON has two elements, a "title" and "detail." It also returns a status 400, 
which indicates a "Bad Request," because something was wrong with the data that 
prevented the commands from being generated. This return code is passed back to the 
calling system.

if (cmds == null)
{
    returnedJson.BadRequestErrorType = [ "title":"Exception",
             "detail":'Error generating template']
    return 400
}

If the command vector is successfully generated, you can put the vector into the 
Commands element of the returned JSON. The vector maps to an array in the JSON 
and then returns the status of 200 to indicate that it was successful.

returnedJson.Commands = cmds
 
 
return 200

The result is that the registry is edited with the following entry added for this service:

<groovyScript>
  <name>groovy/Post_CTM.groovy</name>
  <target>CTM</target>
  <operation>POST</operation>
</groovyScript>

Example: Deleting a Layer 2 Ethernet Service
This example is for deleting a layer 2 service by using the sample that is in the 
following location: Service_Activator_home/DomainController/sample/groovy/ Post_
SCA_ETH_FDFr_EC.groovy. This example uses Groovy functions.



Working with the Groovy Scripting Language

Working with the Programmatic Intent-Based Network REST API 3-9

The first Groovy function is used to substitute all ':' characters in a string with '_' and 
return the result, as in the following:

def String sanitizeIdentifier(String source)
{
    if (source == null)
        return null
    return source.replaceAll(':', '_')
}

One of the results of creating this service is that subinterfaces that do not already exist 
might be created. This method searches for all the subinterfaces under the customer. 
Subinterfaces are IP Service Activator objects. For information about finding and 
retrieving IP Service Activator objects, see IP Service Activator OSS Integration Manager 
Guide. 

The following Groovy script searches all the subinterfaces and uses the helper API to 
find a generic rule with a specific name that matches the one used in the creation of the 
subinterface. For information about the RuleGeneric object type, see IP Service 
Activator OSS Integration Manager Guide. If the script locates a subinterface, it adds the 
delete command with the object ID to the variable output. This output is what gets 
processed when the script returns and performs operations on the OIM.

def void deleteGeneratedInterfaces(customerPath)
{
    // First, find all the subs
    subs = helper.findObjects("Subinterface", customerPath, [:])
    for (Map sub : subs)
    {
        // Now look for the subinterface creation policy underneath each
        subifCreation = helper.findObjectPath("RuleGeneric",
                                                 sub.id,
                                                 ["name":sub.name + "-Data"])
        if (subifCreation != null && !subifCreation.isEmpty())
        {
            output.add("delete [" + sub.id + "]")
        }
    }
}

This is a delete method, so there is no JSON output. Instead, the parameters that are 
used to specify the instance that you want to delete are provided as part of the URI. 
For example: 

https://hostname:7002/Oracle/CGBU/IPSA/DomainController/resources/data/SCA_
ETH_FDFr_EC?evcCfgIdentifier=EVC_BOA_001_1_BOA_002

A "?" separates the resource (SCA_ETH_FDFr_EC) from the parameters. In this 
example, you must specify a parameter called evcCfgIdentifier, which identifies the 
specific instance of the resource that is to be deleted. Not specifying this parameter 
results in the following error:

if (queryMap.evcCfgIdentifier == null)
{
    returnedJson.BadRequestErrorType = [ "title":"Exception",
                 "detail":"No evcCfgIdentifier specified on delete operation" ]
    return 400
}



About Transactions

3-10 IP Service Activator API Developer's Guide

Begin deleting the service by using the evcCfgIdentifier parameter in the queryMap. 
This is a map that is provided with all the query parameters. You can do this using a 
loop that will support multiple evcEvcIdentifier parameters using a single URI.

Run the character conversion function on each identifier (which is also done on create), 
to get an ID without ':' characters. Then you can search for the customer that matches 
that ID. If there is no result, you can assume it is already removed and ignore the ID. 
In this way, if there is a duplicate or resent request, the system does not generate an 
error (idempotent).

If you find the customer, you can add a delete method to the output to delete the 
customer. Doing this also deletes everything contained within that customer (for 
example, sites, VPNs, and so on). At this point, the customer has not yet been deleted, 
but the delete command has been added to the output array.

Now you can call the method to remove any generated subinterfaces.

{
    def String deleteId=sanitizeIdentifier(id)
    String customerPath = helper.findObjectPath("Customer", "/",
                                              ["name":"CE_" + deleteId])
    if (customerPath != null) {
        // Start by removing any created interfaces
        output.add("delete " + customerPath)
        deleteGeneratedInterfaces(customerPath)
    }
}

Next, you return a success code 202, accepted for processing. The processing of the 
output happens in the background after this returns.

return 202 // Accepted for processing, not completed

Finally, you must add an entry to the Groovy registry for this script, for example:

<groovyScript>
  <name>groovy/Delete_SCA_ETH_FDFr_EC.groovy</name>
  <target>SCA_ETH_FDFr_EC</target>
  <operation>DELETE</operation>
</groovyScript>

About Transactions
If REST methods are intended to modify the system, the system creates transactions. 
REST methods such as POST, PUT, PATCH, and DELETE can modify the system. If 
there are no commands in the output map, the system does not need to be modified 
and no transaction is created. See IP Service Activator Concepts for information about 
transactions.

Note: The commands put in the output are buffered and not 
executed in real time. They are processed only when the script 
completes, which makes it safe for the method 
deleteGeneratedInterfaces to search on the customer, even though the 
previous line adds the command to delete the customer to the output. 
It would not be safe for this method to reference the customer object in 
anything it added to the output buffer.



About Logging

Working with the Programmatic Intent-Based Network REST API 3-11

Add the commands in the output map to a single transaction, which ensures that the 
transaction has been successfully submitted into IP Service Activator before the REST 
response is sent. The transaction could still fail and have configuration that could not 
be applied. Further GET methods should be performed when the status of the changes 
is required.

About Polling Using the GET Method
The REST protocol does not automatically poll resources. If you want to know when 
the state of a resource has changed, you must poll manually. Use the GET method to 
retrieve the current state of the resource.

It is important to plan your strategy for using the GET method to poll a resource for a 
state change (for example, when creating a resource). Running the GET method too 
frequently can negatively affect system performance, whereas running the GET 
method too infrequently means the system might not be responsive enough.

Determine the polling strategy by considering how long it takes for the service to 
typically be applied to the network and routers. For example, if the sample Ethernet 
service takes a minimum of 20 minutes to apply to the network (with slow routers and 
low bandwidth), it would not be useful to poll for the status every 20 seconds. In this 
case, polling in 5-minute intervals is more acceptable, although the polling interval 
also depends on the calling system’s latency requirements.

About Logging
You can configure logging using the WebLogic Administration Console and the IP 
Service Activator Configuration GUI. You can configure logging for the REST web 
service by using Groovy scripts and the Java logging utilities.

Logging Using WebLogic Server Configuration
You can configure and manage logging by using WebLogic Server. You set logging 
levels in WebLogic for the server that is running the REST web service.

By default, the system logs errors at the ERROR level. When you are troubleshooting 
REST web service errors, you can change the logging to report DEBUG logs. If you 
change the logging option, you might have to restart the WebLogic server for changes 
to take effect. 

For more information about setting up logging in WebLogic Server, see WebLogic 
Server documentation.

Configuring EOM Logging Using the IP Service Activator Configuration GUI
Configuring EOM logging by using the IP Service Activator Configuration GUI 
provides logging information only about the connection between the REST web 
service and IP Service Activator. See "Configuring Web Services" for information about 
setting log levels in the configuration GUI. 

If you change this configuration, you must redeploy the REST web service for the 
change to take effect. 

See IP Service Activator System Administrator’s Guide for information about using 
configuration GUI log files.



About Logging

3-12 IP Service Activator API Developer's Guide

Configuring Additional Logging Using Groovy Scripts
You can use Groovy scripts to configure additional logging on the REST web service 
by using the Java logging framework. This log output is included in the set of logs that 
is managed by WebLogic Server. See "Working with the Groovy Scripting Language" 
for more information.

Add logging to a Groovy script by importing the Java logging utilities at the beginning 
of the script, as in the following:

import java.util.logging.Level
import java.util.logging.Logger
 
def Logger logger = Logger.getLogger("MyClassOrFileName")

You can then use the logger within the Groovy script, for example:

logger.log(Level.SEVERE, "Error msg")



4

Working with the Web Service API 4-1

4Working with the Web Service API

[5] This chapter describes the Oracle Communications IP Service Activator web service 
API, which can be used to integrate IP Service Activator with Oracle Communications 
Order and Service Management (OSM). 

About the Web Service API
IP Service Activator provides a web service interface through which OSM can manage 
service activation transactions. For more information about OSM, see OSM Concepts. 

Web services for IP Service Activator is an optional component that is available during 
IP Service Activator installation. For information about installing and configuring web 
services, see IP Service Activator Installation Guide.

Web services is deployed on WebLogic Server. For information about WebLogic Server, 
see WebLogic Server documentation.

The web service is an OSS/J-based interface that provides an external API for system 
integration. IP Service Activator transactions can be managed by the web service. Each 
IP Service Activator request that is sent to the web service contains a list of commands. 
These commands are then performed using a single transaction, without the need to 
specify the beginning and ending of the transaction. The web service monitors these 
transactions and provides status notifications based on the result.

The external transport protocols for using web services are HTTP, HTTPS, and JMS, 
and the data service formats are SOAP v1.1 and 1.2. Access-level security is provided 
through the implementation of the WebLogic WS-Policy specification, which enforces 
authentication. See "About OSM Data Providers" for more information about using 
SOAP as the data provider.

About Web Services and OIM
The IP Service Activator web service supports the use of multiple OSS Integration 
Manager (OIM) instances connected to a single instance of IP Service Activator. Use 
multiple OIM instances to improve performance by allowing operations to be directed 
to OIMs on the basis of operation type, and also to allow for load sharing.

You can configure web services to use previously configured OIMs using the web 
services Configuration graphical user interface (GUI). For information about 
configuring web services as a post-installation task, see IP Service Activator Installation 
Guide. For information about the Configuration GUI, see IP Service Activator System 
Administrator’s Guide.



Design Studio for IP Service Activator

4-2 IP Service Activator API Developer's Guide

Design Studio for IP Service Activator
An IP Service Activator activation cartridge is provided with the installation. This 
cartridge includes service action definitions that map to all IP Service Activator 
operations that are supported by the IP Service Activator web services API.

Activation tasks within Design Studio provide integration between OSM and IP 
Service Activator. You must install OSM, IP Service Activator, and the IP Service 
Activator integration cartridge in Design Studio.

For information about working with activation tasks, see Design Studio online Help.

Configuring Web Services
The web service is an optional component for an IP Service Activator installation. If 
you selected the Web Services component during installation, or if you selected the 
option to install all components, the web service is available. If correctly installed, the 
IP Service Activator Configuration GUI shows the Web Service folder in the tree view. 
You can install web services on the same server with other IP Service Activator 
components, or you can install it as a standalone component. See IP Service Activator 
Installation Guide for more information.

Use the IP Service Activator Configuration GUI to configure the web service and 
deployment parameters, and then deploy the web service.

Pre-requisites for Web Services
In order to use the web service API to integrate with Oracle Communications Order 
and Service Management, you must complete the following tasks in sequential order: 
install a WebLogic server, install Oracle Application Development Framework (ADF), 
and create a WebLogic domain. For information about installing WebLogic and ADF, 
see Order and Service Management Installation Guide.

Configuring Web Services
Use the IP Service Activator Configuration GUI to configure the web service and 
deployment parameters, and to deploy or undeploy the web service. For information 
about web service parameters, see IP Service Activator Installation Guide, 
Post-Installation Tasks.

For information about configuring other components in the Configuration GUI, see IP 
Service Activator System Administrator’s Guide.

Configure web services using the IP Service Activator Configuration GUI. 

To configure web services:

Note: The database and CORBA components must also be 
configured for the Web service to function correctly. See IP Service 
Activator System Administrator’s Guide for information about 
configuring other components using the Configuration GUI. 

Note: When you change IP Service Activator web service 
parameters, re-deploy the web service to ensure that the changes take 
effect.



Configuring Web Services

Working with the Web Service API 4-3

1. In the Configuration GUI tree view, double-click the Web Service folder.

2. Click Common.

3. Enter the configuration parameters.

For information about web service configuration parameters, see Table 4–1.

Table 4–1 Web Service Configuration Parameters

Parameter Description

IPSA ORB Initial Host The host machine for IPSA CORBA. Default is 127.0.0.1.

IPSA ORB Initial Port The host port for IPSA CORBA. Default is 2809.

Database Server IP Address Database server IP address.

Database Server Port The database server port. Default is 1521.

Database Service Name The database service name. Default is IPSA.WORLD.

Database User Id The database user ID. Default is admin.

Database User Password The database user password.

Confirm Database User Password Re-enter the database user password.

IPSA User Name The IP Service Activator user name. Default is admin.

IPSA User password The IP Service Activator web service user password.

Confirm IPSA User password Re-enter the IP Service Activator web service user 
password.

IPSA Web Service User Name The IP Service Activator web service user name. Default 
is ipsa_ws_user.

IPSA Web Service User password The IP Service Activator web service user password.

Maximum Query Load The maximum query load in bytes. Default is 1024000.

EOM Debug Level Select an option to define the IP Service Activator EOM 
Debug level.

OFF: logging is disabled

ERROR: unexpected exceptions are logged at this level 
(default)

TRACE: all logging is enabled. OIM commands and 
responses are logged at this level.

DEBUG: lower logging level than Trace

INFO: informational logging. Lower logging level than 
Debug.

Maximum Retry on Connection 
Failure

The maximum number of retries on recoverable 
conditions, for example, database/OIM failures. 
Default is 3.

OIM Session Timeout OSS Integration Manager session timeout in seconds. 
Default is 1200.

OJDL Transaction Short Watch 
Interval

The OJDL transaction short watch interval in seconds. 
Default is 5.

OJDL Transaction Short Watch 
Period

The OJDL transaction short watch period in seconds. 
Default is 300.

OJDL Transaction Long Watch 
Interval

The OJDL transaction long watch interval in seconds. 
Default is 60.



Deploying and Undeploying Web Services

4-4 IP Service Activator API Developer's Guide

Configuring OSS Integration Manager
If you have an OSS Integration Manager (OIM), or multiple OIMs on multiple servers, 
that you previously installed and configured in IP Service Activator, you can configure 
the parameters that allow the web service to interact with those OIMs.

Using the OIM Configuration component in IP Service Activator Configuration GUI, 
you can add, delete, and modify the OIM configurations that are used for web 
services.

For more information about installing and configuring OIMs in IP Service Activator, 
see IP Service Activator OSS Integration Manager Guide.

To configure OIM for Web services:

1. In the Configuration GUI tree view, double-click the Web Service folder.

2. Click OIM Configuration.

3. Enter the configuration parameters for the OIM that you want to configure.

For information about OIM configuration parameters, see Table 4–2.

Deploying and Undeploying Web Services
Deploy the web service after you configure all parameters, including the deployment 
parameters, in the IP Service Activator Configuration GUI. For information about web 
service parameters, see "Configuring Web Services". For information about OIM 
configuration parameters, see "Configuring OSS Integration Manager". 

You can also undeploy the web service.

OJDL Transaction Long Watch 
Period

The OJDL transaction long watch period in seconds. 
Default is 3600.

OJDL Transaction Commit Period The OJDL transaction commit period in seconds. 
Default is 60.

Default Failed Transaction Rollback 
Behavior

Specifies if failed transactions are automatically rolled 
back by default. Default is False.

Note: You can override this default by specifying 
different rollback behavior.

Note: IP Service Activator does not support multiple OIMs on a 
single server.

Table 4–2 OIM Configuration Parameters

Parameter Description

Name The CORBA name of the integration manager.

Maximum Sessions The maximum number of OIM sessions. Default is 10.

Minimum Idle Sessions The minimum number of idle sessions. Default is 5.

Read Only Select this option if you want to use the integration manager 
for read only. Deselect this option if you want to use it for 
both reading and writing.

Table 4–1 (Cont.) Web Service Configuration Parameters

Parameter Description



Deploying and Undeploying Web Services

Working with the Web Service API 4-5

For information about WebLogic, see WebLogic product documentation. For 
information about OSM, see Order and Service Management Concepts. For information 
about installing OSM, see Order and Service Management Installation Guide.

To deploy the web service:

1. In the Configuration GUI tree view, double-click the Web Service folder.

2. Click Deployment.

3. Enter the configuration parameters for the Web service deployment.

4. Click Deploy.

The configuration tool does the following:

■ Updates the IpsaWebService.ear file with the parameter values that you 
entered in the web service node.

■ Creates a JMS Server, a JMS Module, and JMS queues in WebLogic, if they are 
not already created.

■ Creates a web service security user group and a user in WebLogic, if they are 
not already created.

■ Deploys the IpsaWebService.ear file to WebLogic.

For information about web service deployment parameters, see Table 4–3.

To undeploy the web service:

1. In the Configuration GUI tree view, double-click the Web Service folder.

2. Click Deployment.

3. Click Undeploy.

Note: To configure the web service deployment, you require 
information about the WebLogic server on which the Order and 
Service Management (OSM) server is deployed. WebLogic parameters 
are required to connect to a Oracle WebLogic Server.

Table 4–3 Web Service Deployment Parameters

Parameter Description

Weblogic Host The WebLogic host. Default is 127.0.0.1.

Weblogic Port The port number for the WebLogic server. Default is 
7001.

Weblogic Admin User Name The WebLogic administrator user name. Default is 
weblogic.

Weblogic Admin User Password The WebLogic administrator user password.

Confirm Weblogic Admin User 
Password

Re-enter the WebLogic administrator user password.

Weblogic Secure Connection Select this option if you want to use a secure connection 
to the WebLogic server. Check box is selected by 
default.

Weblogic Target Server The WebLogic target server where you want to deploy 
the IP Service Activator web service.

Weblogic Home The directory where WebLogic is installed on the server.



About Web Service Security

4-6 IP Service Activator API Developer's Guide

About Web Service Security
IP Service Activator access control security for web services determines the 
functionality to which each user has access. To set up access control security, create a 
security role. Give this role the privilege to start IP Service Activator web services. 
When the web service client accesses the web service, the client needs to authenticate 
itself to the Oracle WebLogic Server hosting IP Service Activator Web Service. See 
Oracle WebLogic Administration Guide for information about setting up access security.

The web service allow only access level security. Clients must use a user id that is a 
member of the IPSA_WS_USERS_GROUP group to communicate with IP Service 
Activator web services. The web.xml file defines the security role IPSA_WS_USERS 
and the weblogic.xml file defines the security principal name as IPSA_WS_USERS_
GROUP. 

Running the installer creates a default user. For information about the default user 
names and passwords used with web services, see IP Service Activator Installation 
Guide. This user is a member of the IPSA_WS_USERS_GROUP group. Due to 
limitations of the WebLogic console, information created by the command line tools, 
such as the role name, might not be available on the console.

About OSM Data Providers
A data provider is used to retrieve data in an XML format from external systems.

The data provider type for IP Service Activator web service is SOAP, which enables 
you access to web services from OSM and use the responses within behaviors. The 
required parameter is soap.endpoint, which is an element that identifies the URL to 
which the SOAP request is sent. Specify the soap.endpoint as: 

http://ws_IP:Port/Oracle/IPSAView/Ws/Http

Where ws_IP:Port is the IP Service Activator web service IP and port.

The soap.action parameter contains the URI that identifies the intent of the message. 
There are several actions that you can specify in the soap.action parameter for IP 
Service Activator web services. Table 4–4 lists these actions and their corresponding 
parameters. For more information about the built-in SOAP data provider parameters, 
and about using data instance behaviors, see Order and Service Management Developer's 
Guide.

Note: Oracle WebLogic access control security protects only 
WebLogic Server resources and does not cover secure communication 
with IP Service Activator web services. As a result, SOAP messages 
transmitted between the web service and its clients are in plain text.

Table 4–4 Action Parameters

soap.action Parameters

tns/getObject <soap:Body 
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:ws="http://www.oracle.com/cgbu/ipsa/osmipsa/ws">

<ws:getObject><-- Mandatory. Path to an object -->

</ws:getObject>

</soap:Body>



About OSM Data Providers

Working with the Web Service API 4-7

tns/getId <soap:Body 
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:ws="http://www.oracle.com/cgbu/ipsa/osmipsa/ws">

<ws:getId><-- Mandatory. Path to an object -->

</ws:getId>

</soap:Body>

tns/getPath <soap:Body 
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:ws="http://www.oracle.com/cgbu/ipsa/osmipsa/ws">

<ws:getPath><-- Mandatory. Object ID whose path is required -->

</ws:getPath>

</soap:Body>

tns/getName <soap:Body 
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:ws="http://www.oracle.com/cgbu/ipsa/osmipsa/ws">

<ws:getName><-- Mandatory. Path to an object or its ID -->

</ws:getName>

</soap:Body>

tns/getParents <soap:Body 
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:ws="http://www.oracle.com/cgbu/ipsa/osmipsa/ws">

<ws:getParents><-- Mandatory. Path to an object or its ID -->

</ws:getParents>

</soap:Body>

tns/getChildren <soap:Body 
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:ws="http://www.oracle.com/cgbu/ipsa/osmipsa/ws">

<ws:getChildren><-- Mandatory. Path to an object or its ID -->

</ws:getChildren>

</soap:Body>

tns/getAttributes <soap:Body 
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:ws="http://www.oracle.com/cgbu/ipsa/osmipsa/ws">

<ws:getAttributes>

<-- Mandatory. Path to an object or its ID -->

</ws:getAttributes>

</soap:Body>

tns/getTransactionS
tatus

<soap:Body 
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:ws="http://www.oracle.com/cgbu/ipsa/osmipsa/ws">

<ws: getTransactionStatus>

<-- Mandatory. Path to an object or its ID -->

</ws: getTransactionStatus>

</soap:Body>

Table 4–4 (Cont.) Action Parameters

soap.action Parameters



About OSM Data Providers

4-8 IP Service Activator API Developer's Guide

tns/getTargets <soap:Body 
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:ws="http://www.oracle.com/cgbu/ipsa/osmipsa/ws">

<ws:getTargets>

<-- Mandatory. Path to a ParameterSetInstance object or its ID -->

</ws:getTargets>

</soap:Body>

tns/find <soap:Body 
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:ws="http://www.oracle.com/cgbu/ipsa/osmipsa/ws">

<ws:find>

<-- Mandatory. Path to an object or its ID. This is the start point of the 
search -->

 <ws:objectId></ws:objectId>

<-- Mandatory. Type of object to find such as Device, Interface, etc. -->

<ws:type>Interface</ws:type>

<-- Mandatory. Name of the object to find. -->

<-- Wildcards are allowed: * (any number of characters), or ? (any single 
character) -->

<ws:name>Serial*</ws:name>

<-- Optional. Indicates the direction of the search. Possible values are: 
parent, child. -->

<-- parent - to search upwards through the hierarchy. -->

<-- child - to search downwards through the hierarchy (this is the 
default) -->

<ws:findDirection>child</ws:findDirection>

<-- Optional. attribute=value pairs on which to search. -->

<-- Wildcards are allowed in string arguments: * (any number of 
characters), or ? (any single character) -->

<ws:attr1Name></ws:attr1Name>

<ws:attr1Value></ws:attr1Value>

<ws:attr2Name></ws:attr2Name>

<ws:attr2Value></ws:attr2Value>

<ws:attr3Name></ws:attr3Name>

<ws:attr3Value></ws:attr3Value>

<ws:attr4Name></ws:attr4Name>

<ws:attr4Value></ws:attr4Value>

<ws:attr5Name></ws:attr5Name>

<ws:attr5Value></ws:attr5Value>

</ws:find>

</soap:Body>

Table 4–4 (Cont.) Action Parameters

soap.action Parameters



Finding and Retrieving Data

Working with the Web Service API 4-9

Finding and Retrieving Data
Using parameters for search criteria, you can find and retrieve data, such as objects, in 
IP Service Activator. When searching, the supported wildcard characters are “*” and 
“?”.

For more information, see Order and Service Management Developer’s Guide.

Finding Objects
Find objects parameters allow you to find objects in IP Service Activator. For 
information about objects in IP Service Activator, see OSS Integration Manager Guide.

Use the find objects parameters listed in Table 4–5 to find IP Service Activator objects.

tns/findParameters <soap:Body 
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:ws="http://www.oracle.com/cgbu/ipsa/osmipsa/ws">

<ws:findParameters>

<-- Mandatory. Path to an object or its ID. This is the start point of the 
search -->

 <ws:objectId><ws:objectId>

 

<-- Mandatory. Type of object to find such as Device, Interface, etc. -->

<ws:type>Interface</ws:type>

 

<-- Mandatory. Name of the object to find. -->

<-- Wildcards are allowed: * (any number of characters), or ? (any single 
character) -->

<ws:name>Serial*</ws:name>

 

<-- Optional. Indicates the direction of the search. Possible values are: 
parent, child. -->

<-- parent - to search upwards through the hierarchy. -->

<-- child - to search downwards through the hierarchy (this is the 
default) -->

Table 4–5 Find Objects Parameters

Find Objects Parameters Definition

parentID The starting path for the IP Service Activator FIND command.

type The type of object to find in IP Service Activator.

name The name of the object to find in IP Service Activator.

direction Search direction; either parent or child.

attr1Name The first attribute name.

attr1Value The first attribute value.

attr2Name The second attribute name.

attr2Value The second attribute value.

Table 4–4 (Cont.) Action Parameters

soap.action Parameters



Finding and Retrieving Data

4-10 IP Service Activator API Developer's Guide

The following is an example service request:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
  <env:Header />
    <env:Body>
    <find xmlns="http://www.oracle.com/cgbu/ipsa/osmipsa/ws">
      <parentId>/Policy:"policy"</parentId>
      <type>Concreteobject</type>
      <name>*</name>
      <direction>child</direction>
      <!--Optional:-->
      <att1Name>state</att1Name>
      <!--Optional:-->
      <att1Value>installed</att1Value>
      <!--Optional:-->
      <att2Name />
      <!--Optional:-->
      <att2Value />
      <!--Optional:-->
      <att3Name />
      <!--Optional:-->
      <att3Value />
      <!--Optional:-->
      <att4Name />
      <!--Optional:-->
      <att4Value />
      <!--Optional:-->
      <att5Name />
      <!--Optional:-->
      <att5Value />
    </find>
  </env:Body>
  </env:Envelope>
  Service Response
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
  <env:Header />
    <env:Body>
    <ws:findResponse xmlns:ws="http://www.oracle.com/cgbu/ipsa/osmipsa/ws">
      <ws:eomObject>
        <ws:objectId>1425</ws:objectId>
        <ws:objectName>1111 on Serial2/0/1.1/1/1/1:2</ws:objectName>
        <ws:objectType>ConcreteObject</ws:objectType>
      </ws:eomObject>
      <ws:eomObject>
        <ws:objectId>1430</ws:objectId>
        <ws:objectName>111 on Serial2/0/1.1/1/1/1:2</ws:objectName>
        <ws:objectType>ConcreteObject</ws:objectType>

attr3Name The third attribute name.

attr3Value The third attribute value.

attr4Name The fourth attribute name.

attr4Value The fourth attribute value.

attr5Name The fifth attribute name.

attr5Value The fifth attribute value.

Table 4–5 (Cont.) Find Objects Parameters

Find Objects Parameters Definition



Finding and Retrieving Data

Working with the Web Service API 4-11

      </ws:eomObject>
    </ws:findResponse>
  </env:Body>
  </env:Envelope>

Retrieving Objects
Use find parameters to retrieve objects in IP Service Activator.

Use the parameters listed in Table 4–6 to retrieve IP Service Activator objects to which 
a ParameterSetInstance object applies.

The following is an example retrieval request:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
  <env:Header />
    <env:Body>
    <findParameters xmlns="http://www.oracle.com/cgbu/ipsa/osmipsa/ws">
      <parentId>/</parentId>
      <type>devicetype</type>
      <direction>child</direction>
      <!--Optional:-->
      <att1Name />
      <!--Optional:-->
      <att1Value />
      <!--Optional:-->
      <att2Name />
      <!--Optional:-->
      <att2Value />
      <!--Optional:-->
      <att3Name />
      <!--Optional:-->
      <att3Value />
      <!--Optional:-->
      <att4Name />
      <!--Optional:-->

Table 4–6 Find Parameters for Retrieving Objects

findParameter Definition

parentID The starting path for the IP Service Activator FIND command.

type The type of object to find in IP Service Activator.

direction Search direction; either parent or child.

attr1Name The first attribute name.

attr1Value The first attribute value.

attr2Name The second attribute name.

attr2Value The second attribute value.

attr3Name The third attribute name.

attr3Value The third attribute value.

attr4Name The fourth attribute name.

attr4Value The fourth attribute value.

attr5Name The fifth attribute name.

attr5Value The fifth attribute value.



Finding and Retrieving Data

4-12 IP Service Activator API Developer's Guide

      <att4Value />
      <!--Optional:-->
      <att5Name />
      <!--Optional:-->
      <att5Value />
    </findParameters>
  </env:Body>
  </env:Envelope>
  Service Response
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
  <env:Header />
    <env:Body>
    <ws:findParametersResponse 
xmlns:ws="http://www.oracle.com/cgbu/ipsa/osmipsa/ws">
      <ws:objects>
        <ws:objectId>551</ws:objectId>
        <ws:objectName>Huawei Quidway NetEngine 80E</ws:objectName>
        <ws:objectType>DeviceType</ws:objectType>
      </ws:objects>
      <ws:objects>
        <ws:objectId>552</ws:objectId>
        <ws:objectName>Huawei Quidway NetEngine 5000E</ws:objectName>
        <ws:objectType>DeviceType</ws:objectType>
      </ws:objects>
      <ws:objects>
        <ws:objectId>553</ws:objectId>
        <ws:objectName>Huawei Quidway NetEngine NE5000EMulti</ws:objectName>
        <ws:objectType>DeviceType</ws:objectType>
      </ws:objects>
      <ws:objects>
        <ws:objectId>554</ws:objectId>
        <ws:objectName>Huawei Quidway NetEngine NE40E</ws:objectName>
        <ws:objectType>DeviceType</ws:objectType>
      </ws:objects>
      <ws:objects>
        <ws:objectId>555</ws:objectId>
        <ws:objectName>Huawei Quidway NetEngine NE20E-4</ws:objectName>
        <ws:objectType>DeviceType</ws:objectType>
      </ws:objects>
      <ws:objects>
        <ws:objectId>556</ws:objectId>
        <ws:objectName>Huawei Quidway NetEngine NE20E-8</ws:objectName>
        <ws:objectType>DeviceType</ws:objectType>
      </ws:objects>
      <ws:objects>
        <ws:objectId>557</ws:objectId>
        <ws:objectName>Huawei Quidway NetEngine 40-4</ws:objectName>
        <ws:objectType>DeviceType</ws:objectType>
      </ws:objects>
      <ws:objects>
        <ws:objectId>558</ws:objectId>
        <ws:objectName>Huawei Quidway NetEngine 40-2</ws:objectName>
        <ws:objectType>DeviceType</ws:objectType>
      </ws:objects>
      <ws:objects>
        <ws:objectId>559</ws:objectId>
        <ws:objectName>Huawei Quidway NetEngine 40-8</ws:objectName>
        <ws:objectType>DeviceType</ws:objectType>
      </ws:objects>
      <ws:objects>



Finding and Retrieving Data

Working with the Web Service API 4-13

        <ws:objectId>560</ws:objectId>
        <ws:objectName>Huawei Quidway Eudemon 500</ws:objectName>
        <ws:objectType>DeviceType</ws:objectType>
      </ws:objects>
      <ws:objects>
        <ws:objectId>561</ws:objectId>
        <ws:objectName>Huawei Quidway Eudemon 1000</ws:objectName>
        <ws:objectType>DeviceType</ws:objectType>
      </ws:objects>
      <ws:objects>
        <ws:objectId>562</ws:objectId>
        <ws:objectName>Foundry NetIron IMR 640</ws:objectName>
        <ws:objectType>DeviceType</ws:objectType>
      </ws:objects>
      <ws:objects>
        <ws:objectId>563</ws:objectId>
        <ws:objectName>Foundry NetIron XMR 4000</ws:objectName>
        <ws:objectType>DeviceType</ws:objectType>
      </ws:objects>
      <ws:objects>
        <ws:objectId>564</ws:objectId>
        <ws:objectName>Foundry NetIron XMR 8000</ws:objectName>
        <ws:objectType>DeviceType</ws:objectType>
      </ws:objects>
      <ws:objects>
        <ws:objectId>565</ws:objectId>
        <ws:objectName>Foundry NetIron XMR 16000</ws:objectName>
        <ws:objectType>DeviceType</ws:objectType>
      </ws:objects>
      <ws:objects>
        <ws:objectId>566</ws:objectId>
        <ws:objectName>Foundry NetIron MLX-4</ws:objectName>
        <ws:objectType>DeviceType</ws:objectType>
      </ws:objects>
      <ws:objects>
        <ws:objectId>567</ws:objectId>
        <ws:objectName>Foundry NetIron MLX-8</ws:objectName>
        <ws:objectType>DeviceType</ws:objectType>
      </ws:objects>
      <ws:objects>
        <ws:objectId>568</ws:objectId>
        <ws:objectName>Foundry NetIron MLX-16</ws:objectName>
        <ws:objectType>DeviceType</ws:objectType>
      </ws:objects>
      <ws:objects>
        <ws:objectId>569</ws:objectId>
        <ws:objectName>Paradyne GranDSLAM 4200</ws:objectName>
        <ws:objectType>DeviceType</ws:objectType>
      </ws:objects>
      <ws:objects>
        <ws:objectId>570</ws:objectId>
        <ws:objectName>RedBack Networks SMS 1000</ws:objectName>
        <ws:objectType>DeviceType</ws:objectType>
      </ws:objects>
      <ws:objects>
        <ws:objectId>571</ws:objectId>
        <ws:objectName>RedBack Networks SMS 500</ws:objectName>
        <ws:objectType>DeviceType</ws:objectType>
      </ws:objects>
    </ws:findParametersResponse>



Finding and Retrieving Data

4-14 IP Service Activator API Developer's Guide

  </env:Body>
  </env:Envelope>

Retrieving Other Data
You can also use parameters to retrieve other data in IP Service Activator, for example, 
attributes, child objects, and immediate parent objects.

Use the parameters in Table 4–7 to retrieve other data in IP Service Activator.

The following is an example for getAttributes:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
  <env:Header />
    <env:Body>
    <getAttributes 
xmlns="http://www.oracle.com/cgbu/ipsa/osmipsa/ws">[13]</getAttributes>
  </env:Body>
  </env:Envelope>
  Service Response
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
  <env:Header />
    <env:Body>
    <ws:getAttributesResponse 
xmlns:ws="http://www.oracle.com/cgbu/ipsa/osmipsa/ws">
      <ws:attribute>
        <ws:attributeName>name</ws:attributeName>
        <ws:attributeValue />
      </ws:attribute>
      <ws:attribute>
        <ws:attributeName>remarks</ws:attributeName>
        <ws:attributeValue />

Table 4–7 Find Parameters for Retrieving Other Data

findParameter Definition

getAttributes Retrieves attributes of an object.

Path: the path/ID to the object.

getChildren Retrieves immediate child objects of an object.

Path: the path/ID to the objects.

getId Retrieves the ID of an object.

Path: the path/ID to the objects.

getName Retrieves the name of an objects.

Path: the path/ID to the objects.

getOrderStatus Retrieves the order status of an OSM order.

orderKey: the key of an OSM order.

getParents Retrieves the immediate parent objects of an object.

Path: the path/ID to the objects.

getPath Retrieves the path on an object.

Path: the path/ID to the object.

getTargets Retrieves the targets that a ParameterSetInstance object applies 
to.

Path: the path/ID to the object.



Web Service Operations

Working with the Web Service API 4-15

      </ws:attribute>
      <ws:attribute>
        <ws:attributeName>type</ws:attributeName>
        <ws:attributeValue>Any</ws:attributeValue>
      </ws:attribute>
      <ws:attribute>
        <ws:attributeName>id</ws:attributeName>
        <ws:attributeValue>13</ws:attributeValue>
      </ws:attribute>
    </ws:getAttributesResponse>
  </env:Body>
  </env:Envelope>

Web Service Operations
The set of operations described in Table 4–8 is provided.

Table 4–8 Web Service Operations

Operation Definition Parameter

createOrderByValue Converts an OSM order to an IP Service 
Activator transaction.

OrderValue

cancelOrderByKey The web service rolls back the 
corresponding IP Service Activator 
transaction. 

OrderId

abortOrderByKey The web service rolls back the 
corresponding IP Service Activator 
transaction.

OrderKey



Web Service Operations

4-16 IP Service Activator API Developer's Guide


	Contents
	Preface
	Audience
	Accessing Oracle Communications Documentation
	Documentation Accessibility
	Document Revision History

	1 API Overview
	About this Guide
	About IP Service Activator APIs

	2 Working with the OJDL API
	About the OJDL API
	System Architecture
	Prerequisites for Installing OJDL
	Installing OJDL
	Using the OJDL API
	Java Development Environment
	OJDL Directory and File Structure
	The doc Directory
	The lib Directory
	The Samples Directory

	JavaDocs
	Java Classes
	Best Practices for Minimizing Commits

	Managing Configuration Policies Using the OJDL API
	Initial Setup
	Creating a Configuration Policy
	Creating the Configuration Policy Data Type
	Creating the RuleGeneric Object to Contain the Configuration Policy
	Assigning the Configuration Policy to the Required Device and Interface Roles

	Modifying a Configuration Policy
	Querying the EOM for the Configuration Policy
	Modifying the Policy Definition

	Registering an Interface Policy
	Creating a Subinterface
	Creating a Main Interface
	Decorating an Interface
	Comparing Created and Discovered Interfaces

	Configuration Policy Classes
	Example Source Code


	3 Working with the Programmatic Intent-Based Network REST API
	About the REST API
	About REST API Methods
	About Installing the REST API
	Setting Up WebLogic Server Security
	Configuring Identity and Trust Keystores in WebLogic Server
	Testing the SSL Configuration
	Security and Authentication

	Working with the Groovy Scripting Language
	Developing Custom Groovy Scripts
	Groovy Script Examples
	Example: Generating CTM Commands
	Example: Deleting a Layer 2 Ethernet Service


	About Transactions
	About Polling Using the GET Method
	About Logging
	Logging Using WebLogic Server Configuration
	Configuring EOM Logging Using the IP Service Activator Configuration GUI
	Configuring Additional Logging Using Groovy Scripts


	4 Working with the Web Service API
	About the Web Service API
	About Web Services and OIM
	Design Studio for IP Service Activator
	Configuring Web Services
	Pre-requisites for Web Services
	Configuring Web Services
	Configuring OSS Integration Manager

	Deploying and Undeploying Web Services
	About Web Service Security
	About OSM Data Providers
	Finding and Retrieving Data
	Finding Objects
	Retrieving Objects
	Retrieving Other Data

	Web Service Operations


