Oracle® Retail Invoice Matching
Operations Guide

Release 13.0.5.2

August 2011

ORACLE

Oracle Retail Invoice Matching Operations Guide, Release 13.0.5.2 for Windows

Copyright © 2011, Oracle and/or its affiliates. All rights reserved
Primary Author: Susan McKibbon

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Value-Added Reseller (VAR) Language
Oracle Retail VAR Applications

The following restrictions and provisions only apply to the programs referred to in this section and licensed
to you. You acknowledge that the programs may contain third party software (VAR applications) licensed to
Oracle. Depending upon your product and its version number, the VAR applications may include:

(i) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail Data
Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(ii) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of Kirkland,
Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory Management.

(iii) the software component known as Access Via™ licensed by Access Via of Seattle, Washington, and
imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(iv) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of San Jose,
California, and imbedded in Oracle Retail Promotion Planning & Optimization application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR Applications.
Oracle will not deliver source code to the VAR Applications to you. Notwithstanding any other term or
condition of the agreement and this ordering document, you shall not cause or permit alteration of any VAR
Applications. For purposes of this section, "alteration" refers to all alterations, translations, upgrades,
enhancements, customizations or modifications of all or any portion of the VAR Applications including all
reconfigurations, reassembly or reverse assembly, re-engineering or reverse engineering and recompilations
or reverse compilations of the VAR Applications or any derivatives of the VAR Applications. You
acknowledge that it shall be a breach of the agreement to utilize the relationship, and/or confidential
information of the VAR Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall not attempt,
cause, or permit the alteration, decompilation, reverse engineering, disassembly or other reduction of the
VAR Applications to a human perceivable form. Oracle reserves the right to replace, with functional
equivalent software, any of the VAR Applications in future releases of the applicable program.

Contents

SenNd US YOUIr COMMENLES ...t XV
PUrOIACE ...ttt es e XVii
AN S Lo 1< U< TSRS XVii
REIATEA DIOCUIMIEIES ..ottt e et e e ettt e s et e esateesateesaateesanteessseessnsaeessaesssnteesanses XVii
CUSLOMET SUPPOTL..ovviiiiiiiiiiiii e Xviii
Review Patch DOCUIMENTATIONooovvviiieiiieceieeceeeeeeee ettt e et e e st e e seae e e s sateeseaaeeenaeesssaeeesnnes XViii
Oracle Retail Documentation on the Oracle Technology Networkccccocoviiviviciiinicnennnen. xviii
(@) A7) 415 [0 1< RPN XViii

1 Introduction

What is Retail Invoice Matching?cccooiiiiiiiiiiiiies 1-1
A Note About Oracle Retail-Based Enterprises.............ccocovviniiinninnnnnicn, 1-2
Technical Architecture OVeIVIEWcccccciririiiiiniriiieiiiriniecctre ettt 1-2

2 Backend System Administration and Configuration

System ASSUMPLIONS ..o 2-1
reim.properties File ... 2-2
Database Configuration Settingscccooiieiiiiiiiiii e, 2-2
Datasource Connection Pool Configuration Settingsccccovveeieiniciniicieeceece, 2-3
Document SEtNGSc.oviuiieiiiciee e 2-3
Date SEtHINGScvouiiieiiiiiiec s 2-4
Array Process Size Settings.........cccovvviiiiiiiiiiiiiii s 2-4
EDIL PrOPerti@s...c.cucucieiiieiiieiiieiiiie s 2-5
Lockout Timeout Variables...........ccccooiiiiiiiiiiiiiiiii s 2-5
Credit Note AutoMatch Batch Multithreading Optionsc.cccoovvvnnninnnnnnncceae. 2-6
Credit Note AutoMatch Workspace Cleanup Settingccoooreioiiiiiiiiiiiccce, 2-7
Invoice AutoMatch Specific Properties..........coooovrueiiiiciiiniiieceec e, 2-7
Generic Threading Options (EdiUpload and AutoMatch)cccccccceevvvinnninnnnnnrcene. 2-7
Translation Caching TimeOULScoorveieiiiiieiic e 2-8
Logging Configuration SEttings...........cccccociuiiiiiiiiiiiiii e 2-8
Authentication SETNESc.coceuiiiiiiiiiiceeecce e 2-9

vii

system.properties File............ccooiiii s 2-9

Dynamic / Non-Dynamic GL Optionscccoureiiiiieiiicccc e 2-9
Mapping of Document Types to Action COdesccoueuiimiicmieicciciceeeeeeeieeeneeeeeeees 2-10
Labeling Child INVOICES........ccviiiririeiiiicie e 2-11
Setting the Audit Period............ccccoiiiiiiiiiiiiiiii s 2-11
Data Translation OPptions.........cccccciviiiiiiiniiiiiii s 2-11
Set 0f BOOKS OPtiON......cuouiieiiici 2-12
Duplicate Items OPtioncccccuiiiiiiiiiiiiiiii s 2-12
integrations.properties File ... 2-12
Web Service Provider URL for Drill FOrwardcccooveceiieeieniieieeeieeeeeeeeeee e 2-12
Web Service Provider URL for Account Validationccccceeeeienieiieinininenieeeeeeeeeeiene 2-13
Web Service Provider URL for Account User Name Validationcccceeeeveveevenieenieereenennn. 2-13
Web Service Provider URL for Account Password Validationc..ccccecevenenenecieiecncnienne. 2-13
Logging Configuration............cccooiiiiiiiiiiiiiicc e 2-13
LOg4] CONVENETIONSovviiiiiieticicte it 2-13
LOGA] PIOPETTIES «...ovivvitititititiictcttttttt s 2-14
INternationaliZationoc.oooviiiiiiiiiieceecee ettt ettt et e re et e re e be e ra et e ra e beere e reenes 2-14
TLANSIATION ..eevviiiiieeiei ettt te et e et e et e sreessesbeessesseesseessessesssessesseessesseessenses 2-14
Language Configurationcoocruiiiiiiiiiiiccce e 2-14
Supported Date FOrmatsccccciiiiiiiiiiiiicccce s 2-14
Cache Sizes for Translation SEIVICEcccevieieririeerieeieteeeete ettt e et e reebe e e aesseeseesaesseesaesseas 2-15
ReIMRESOUICES. PIOPETILIESevuvvviniieietcecieettc e 2-15
IM_USER_AUTHORIZATIONcctitiieietirtirierieieieieieteeeessessessessessessessessessessssessessessessessenses 2-15

3 Technical Architecture

viii

OVEIVIOW ... bbb 3-1
The Layering Model...........ccccooiiiiiiiiiiiiii 3-1
Presentation Layer ... 3-2
IMEAALE THET ...ttt 3-3
Service Layer Responsible for Business LOZIC........cccccoeiiiiiicieiicicccccceeceieeenes 3-3
BUSINESS ODJECES ... e 3-3

Data Access Layer (DAL)......ccccciiiiiiiiciicceccrsee e 3-3
Database Layer ... 3-3
Technical SEIVICEScciviiiiiiiiiiiii s 3-4
Application Parameter SEIVICE..........cccciuiuiiiimiiiiiiiiiiiiiiciceceeece e 3-4

System Parameter SEIVICE.......oovviiiiiiiiiiiiiiieeee e 3-4
Transaction SEIVICEccovuiiiiiiiiiiiiiiii s 3-4

Error Logging ServiCe........ciiiiiiiiiiiiiiicciicc s 3-5

LOGAS ettt 3-5
Internationalization SETVICE..........cciiiiiiiiiiiiiiiii s 3-5
CUITENCY SETVICE ..ottt 3-5

TIME /DATE SEIVICE ..veeeevviiiieee ettt eee e et e s et e s e e e saaeeseaaesssaaesesnseessneeesnneeesnnees 3-5
SECUTILY SEIVICE ..ottt s 3-5

Third Party LIDIaries ...t 3-5
ReIM-Related Java Terms and Standards...........c.cocceeiviineiineineincnncncncneeereeeeteeeeneeenene 3-6

4 Functional Design

Invoice and Credit Note Matching Process FIOW ... 4-1
Invoice Auto-Matching ... 4-5
VAT on Header Level Only INVOICESc.cuovviiurieiiiiicict s 4-6
Cost Pre-MatChingcccccvviiiiiiiiiiiiiiii s 4-6
PO/Location Summary Group MatChing ... 4-6
One-to-One Invoice MatChing ..o 4-9
Elibigility for Line-Level MatChingccccoiviiiiiiiiiiiiiiciccc s 4-12
Line-Level MatChing ...ttt eeseeees 4-13
Recycling and Overall FIOWcccioiiiiiiiicic e 4-15
Partially Matched ReCeiptscccccuiuiiiiiiiiiiiiiiiiiiiiiicc s 4-16
Matching TOIEranCes...........cviiuiiiiiiiiiicici s 4-17
History and MetriCs ..ot 4-18
Best Terms Calculations ... 4-18
Terms Ranking OVeIVIEWccccviiiiiiiiiiiiiiiiiiiicc s 4-18
SUPPLEr OPHONS ...t 4-18
TEITNS DIALE ..ot 4-19
Assumptions and Dependencies ... 4-19
Credit Note Auto-Matching ... 4-19
Configurable Keys (Flexible POOL KeYS)ccccceeuiiiiiiiiiiiiiiiiiiciciciciciccrccccccecs 4-20
Summary Group Matching Algorithim.........cccooiiii 4-21
One-to-One Invoice Matching Algorithm ..o, 4-25

Line Level Matching AIZOTithimccccovviiiiiiiiiic 4-28
Discrepancy Creation and Resolution in Line Level Matching ..., 4-29

Role of the Reason Code Action Rollup Batch in Credit Note Matchingcccccoeeeenee.. 4-31
TOLETATICEScveviiiii e 4-32
CUITEICIES ...ttt 4-32
VAT MatChingc.cocvoiiiiiiiiiiiiiiiii s 4-32
History and Record Keepingcccccciiiiiiiiiiiiiiiiicccccecee s 4-33
Data PUIZE...c.ooiiieiiieii e 4-33

5 Integration

Integration OVEIrVIEW ... 5-1
From the Supplier (to EDI) to ReIMcccocoviiiiiiiiiiiiiiiiiiiciiieccie 5-2
From ReIM (to EDI) to the SUPPLETcccccoiiiiiiiiiiicccee 5-2
From RelIM to the Staging Table for Financial Systems Interface...........c.cccocoevvrrrnnncrncnnnce. 5-2
From the Merchandising System to ReIM (Directly and Through EDI)..........cccccccceviriinnnne. 5-2
From ReIM to Receiver Unit and Cost Staging Tables to RMScccccccoiiiiiiiiniiiienas 5-4
From RelIM to the Merchandising System...........ccccocoeiiniiiiiiniiiiiiics 5-4
From Workspace to ReIM and from RelM to Workspace............cccoceueveiirurieiiccieieiceee 5-4

Electronic Data Interchange (EDI) Tables and Files.............cccoccciiiiiniininiiieeceee 5-5
The EDI Reject Table.........ooiiiiiiiiiiicc e 5-6
The EDI REJECt Fileoviiieiie s 5-6

EDI Invoice Upload File Layout (Based on EDI 810).........cccccevviiiininiiiininiiiiiniiincne, 5-6

I/0 SPeCifiCationcccccuiiiiiiiiiiiiiiiiiiii s 5-6

All Files Layouts Input and OUtputc.cccccceeciiiiiiiiceiceeceree e 5-6
INOLES e 5-20
EDI Invoice Download File Layout (Based on EDI 812)ccccccceviviniiniiiinninininiiiine 5-21
I/0 SPeCIiCAtIONcouviviiiiiciciciiccccc ettt 5-21

All File Layouts Input and Output...........ccooiiiiiic 5-21
Financial System INterfacecccccocoiiiiiiiiiiiiiiiniii s 5-26
Foundation Financial Data OVeIVIEWccccceeeiiiiiiiiiiiniiiiccce s 5-26
Location Account SEgmeNtsc.ouoiiuriiiiiiieiic 5-27
Department/Class Account SeZmentsccooveerueieiiiceininiice e 5-27
Financial Transactions ... s 5-27
Complex and Fixed Deal-Related POStING...........ccoooiiiiiiiiiiiiiiccc 5-27
Non-merchandise Fixed Deals in Multiple Sets of Books Environment............cc.cc.c...... 5-27
ResoIUtion POSHINGcoiuiiiiiiiiiiiiicciccc s 5-28
Tracking Receipt POSEScccuiiiiriiii e 5-28
Tables Related to Tracking Receipt POStS.........cccoviiuiiiiiiccieiiiceic 5-28
Multiple Lines for an Individual Receipt Item ..o 5-29
Matching and Tracking Receipt Posts Processing............ccoceuevinieiiiicieiciiieeccicea 5-29
POSHINE ..ot 5-30
REPOTHNG ..ttt 5-30
Integration with Oracle E-Business Suite.............cccccoceeiiiiiiiiiiiiiiice, 5-30
Posting Transaction Codes to AP Staging Tablecccccccovivniiiiiinniiiinccee 5-31
Integration with Non-Oracle Financials Systems..........cccccooiiiiiiniiiiiiecc 5-35
LDAP and Other User Interfaces..............ccooiiiiiiiiiiiiiiiiccccee e 5-36
LDAP. ...t 5-36
Additional LDAP RESOUICEScceuimimiiimiiiiiiiiiiiiiiiiciiie s 5-36
REIM USET TaDIE......cuiiiiiiiciiiicicecet ettt 5-36

6 Technical Design

Locking Design SUIMIMATIYc.cooiiiiiiiiiiicc s 6-1
Locking and Tables ..o 6-1
Locking Management ..o 6-2

Currency Design SUMMATIY ... 6-3
Merchandising System (such as RMS) and ReIM Assumptions............ccccoevevieerernicenereccnnnnn, 6-3
Currency Conversion Process for Amount TOLErancesccoevvevevvererrnenensreeceeseccceeeene 6-3
Currency-Related System Validationsccccoeviiiiiiiiiiininiiiiiiiics 6-3
Java Currency FOrmatting..........ccooooviiiiiiiiiiiiicc 6-4

Oracle Single Sign-0n OVeIVIEW ..o 6-4
What is Single Sign-On? ... 6-4
What Do I Need for Oracle Single Sign-On?..........cccooviiiininiiniiiicccicccccceeceeneenes 6-4
Can Oracle Single Sign-On Work with Other SSO Implementations?............ccccceevvviniiinininnen. 6-5
Oracle Single Sign-on Terms and Definitions...........ccccovviiiiiiinnniiie, 6-5

AUthentiCatioN ... s 6-5
Dynamically Protected URLS...........cccocoviiiniiiniiiiiiiiii s 6-5
Identity Management INfrastructure...........ccocoeiiiiiiiiiiiininiiiii, 6-5
MOD_OSSO ..ottt 6-5

Oracle Internet Dir€CtOryccoviiiiiiiiiiiiiiiiiiic s 6-5

Partner APplCationccccccciiiiiiiiiiiiiiii s 6-6
= 0o 1SS 6-6
Statically Protected URLS........cccccooviiiiiiiiiiiiiciiiccc s 6-6
What Single Sign-On is NOt ..o 6-6
How Oracle Single Sign-On WOTKSc.cccccciiiiiiiiiiiiceercerreees e 6-6
Statically Protected URLS..........cooiuiiiiiiieiicc e 6-7
Dynamically Protected URLSccccccoviiiiiiiiiiiiiiiiii s 6-7
Single Sign-0n TOPOLOZYcciiiiiiiiiiiiiiii s 6-8
INStAllatioN OVEIVIEWooivieiiiiieiieieceee ettt ettt et s re b a e beeba e s e ssaesseeseessesseessessnessenneas 6-8
Infrastructure Installation and Configuration ... 6-8
OID USEE DAt ...eeeiieeieiieieiieiereete sttt ete et e et et e seessesseessesseessesseessesssessesssessessesssensennes 6-9
OID with Multiple Realmscccccoiiiiiiiiiiiiiiiiiiiias 6-9
User Managementcciiiiiiiiiiiicct st es s 6-9
OID DIAS. ..ottt ettt et e ettt e st e e et e b e et b e b e e st e s s e estesseessesseassesseessesseessansaessenseessensennes 6-9
LDIE SCIIPLS wovevevieiiiiitetiicieetcsc ettt s 6-9
User Data Sychnronization..........cccciiiiiiiiiiiiiccccceeeeeeeeesssen s 6-10
Configuring ReIM for Oracle Single Sign-on ..o 6-10

PeopleSoft Enterprise Financials Integration

Participating Applications............ccocoooiiiiiiiiiii s 7-1
Release and Packaging Considerations ..o 7-2
Back@roUndc.ooiii 7-2
CUSLOMET OPHIONS ..ot 7-2
Option 1 - No Integration with PeopleSoft Enterprise Financialsccccoooieirieinnne. 7-2

Option 2 - Licensed Oracle Retail Integration with PeopleSoft Enterprise Financials 7-2
Assumptions and Dependencies...........cccveiririreniiiininieeneeneeneeeree ettt 7-3
Data CoNStraints ... 7-4
Data SEtUP......c.oooviii e 7-4
RMS Data Setup and Configuration...........ccocovvviiiniiiiiiies 7-4
RMS System OpPtions........cccueueiiiieieiiiiicie ettt 7-4
Organization UNIES ..o s 7-4
Currency Exchange Rates ... 7-5
Supplier Address TYPeS.......coirueiiiiiieieieecie e 7-5
COUNETY COES....ouiiiiiiiiiciceee s 7-6
Financial Calendar ... 7-6

Freight TeImS.......oeeiei e 7-6
Payment Terms and Currency Exchange Rates ... 7-6
PeopleSoft Enterprise Financials Org Units and Site IDs ..o, 7-7

Store and Warehouse Maintenance.............ccccccvuciiiiiiiiiiniiiiiiinns 7-7

RMS General Ledger SETUPccvuiueiririeiiiriirrrcre e 7-9

RMS General Ledger Cross Reference ..o 7-9

ReSA General Ledger Cross Reference.............ccccoevuiiiiiiiiniiiniiiiiiiniiicceces 7-10
Configuring Drill Back and Forward Web Servicescccoocevvevvvervvnrrrrcccrne 7-10

xi

ReIM Data Setup and Configuration.............cooeueiiiiieiiiiicicice e 7-11

System OPHIONSc.cueuiiiieieiiiiiicc s 7-11
IM_CURRENCY_LOCALE ...ttt ettt sae st s e ss s e sa e senseensenseenes 7-11

Chart of ACCOUNES SELUPcvoviviviviiiiiiiicicicc s 7-11
Segment Mapping........ccocoveiiiiiiiiiic e 7-13
Running the Initial Load from PeopleSoft Enterprise Financialscccccccocvuvuevrerrncncne. 7-14
integration.properties File Setup ... 7-14
REPOTHING ..ottt 7-14

ReIM Transactional MaiNteNANCEccocceeeveriiecierieiiesieeteseeteseesseeseesseeseessesssessesssessesssessesssesseenes 7-16
Calculation of TRANS_AMOUNTooi ottt saae e st e e sae e e snaees 7-16
Generation of Outgoing Datacccccccviviiiiiiiiiiiiii s 7-16
Validation of Accounts When Posting Financial Entriescccccovviiiiiiiiniiniiinns 7-17
Maintenance Of Valid ACCOUNESccicieriiiieriiciieieie ettt et et eeve e se s e eseereeaesssesaeennas 7-17
Building and Posting Reference IDs..........c.cccccciiiiiiiiiiiiininiiiiicccccccs 7-18
Drilling Back to RMS, ReSA and ReIM - OVerViewcccovvvviiiiiiiiiiiiinineeceeees 7-18
Drilling Back to RMS and ReSA - Detail..........cccoooiiiii 7-19
Drilling Back From ReIM - Detail ... 7-19
Drilling FOIrWardcccooiiiiiiiiiiiiicc s 7-20
Drilling Forward From RMS/ReSA to PeopleSoft Enterprise Financials.............ccccccouvvenne 7-20
Drilling Forward From ReIM to PeopleSoft Enterprise Financials..........ccccccceevviriiininninnes 7-21
AIA DVM Mapping Examples.........ccooerieiiiiioiiiiicecicc s 7-21

8 Batch Processes

Batch Architectural OVerVIeW ... s 8-1
GeNETIC FIlE .o 8-2
Class Pathi ..o 8-2

OS SPECIf SEHNES.vvviiiicicieieiciccetee et 8-2
Execute Batch Jobs Using Arguments from the Merchandising Batch Schedule.............. 8-2
EDI-Related File-Based Batch ProCeSSESscccovieuiviiiiiiuiiiniiiciiiniccccsne e 8-2
Internal Batch ProCesSescoovviviviiiiiiiiiiiiciiiccc 8-2
Internal Batch Processes that Write to Staging Tables............c.ccccooiiiiiiice, 8-3
Batch Processes that Extract from Merchandising System (RMS) Staging Tables 8-3
Batch INAIMES ... 8-3
Functional Descriptions and Dependenciesccccoovivviiiiniiiinn, 8-4
Features of the Batch Processes ... 8-7
Scheduler and the Command Lineccccoeeiiiiiiiiiiiniiiiic e, 8-7
Batch Return Values.........cocoiiiiiiiiiiiccc s 8-7
Batch Log and Error File Paths.........cccccociiiiiiiiccccr e 8-8
Multi Threading Batch Processes...........ooeiueiiiiiiiiiiii 8-8
Complex Deal Upload (ComplexDealUploadBatch)...........ccceuomiiriiiiiii 8-8

Fixed Deal Upload (FixedDealUploadBatch)cccccceueueuruririiininirniriirrccreecceeaee 8-8

EDI Invoice Upload (EdiUploadBatch)ccccocovieiiiiiiiiiiiiiiiiiiine, 8-8
Auto-Match (AutoMatchBatch)c.co.eevieiniiiniiiiicc e 8-8

A Note about Restart and RECOVETYcccciuiiiiiiiiiiiiiciricrrrcrr e 8-8
Executing Batch Processes ... 8-8

Xii

USAZE....eiitieciietc et 8-9

MaJOT MOAUIES........coiiiiiiciiccee e 8-9
MajJOr TabLes.......oieieiie 8-9
FinancialPostingWorkspacePurgeBatch ..., 8-9
USAGE ..t 8-9
Major MOAUIES........cuoviiei 8-9
MajOr TabLes......coiviiiiiiiii s 8-10
Batch Purge Batch Design..........ccccoiiiiiiiiiiiiii s 8-10
USAGE....uietieietetete et 8-10

SOL QUETIES ...veeuteeeetieieeeteeteeete ettt e ettt e e e eteesteessbeebeessaeessaesssaessaassaeassassseessseansaessesnseenseensses 8-10
Manual Propagation (Cascade) of Deletes to Child Tablescccocovvviiiininiiinnns 8-11
Cascade RelationShips.........ccuoviiiiiiic s 8-11
Assumptions and Scheduling NOtes ..o, 8-11
MaJOr MOAUIES........cooiiiiiiiiicc s 8-11
BatchPurgeBatch ..o 8-11
Primary Tables INVOIVEd.........ccccociiiiiiiiiiiiiiiiccc s 8-12
Discrepancy Purge Batch Designc.ccccoeviiiiiiiiiiiiiiiicc s 8-12
MajJOr MOAUIES........cooviiiiiiiiii s 8-12
MaJOT TADLES ... s 8-12
EDI Invoice Upload Batch DeSignccccoiiiiiiiiiiiiicesana 8-13
Assumptions and Scheduling INOtescccccoviviiiiniiiiii 8-13
Restart and RECOVETY ..o 8-13
Primary Tables INVOIVed..........couiriiiiiii 8-13
Invoice Auto-Match Batch Design...........ccooiiiiiiiiiiiiice 8-14
ALGOTIERINS ..o 8-14
Assumptions and Scheduling NOtescccooueiiiiiiiiiiiiiic 8-15
POSt PTOCESSINGcovvviiiiiiciciicc s 8-16
High-Level FIOW DIagramccccceuiiiiiiiiiiiiiiiiiiiiiiiccecieeeeieieeeie e nees 8-16
Primary Tables INVOIVed........c.cooiiiiii e 8-16
Credit Note Auto-Match Batch Design ... 8-17
ALGOTIEINS ..ot 8-18
Assumptions and Scheduling NOtesccoeueieiiiiiiiiiiiiiec e 8-19
POSt PTOCESSINGcovvviiiiiciciiicic s 8-19
High-Level FIow Diag@ram........ccocooueiiiiiiiiiiiicicci e 8-20
Primary Tables INVOIVEQcccccciuiiiiiiiiiiiiiciccceeeee s 8-21
Receipt Write-Off Batch DeSign ... 8-23
Assumptions and Scheduling INOtESccccvvviiiiiiiiiiiii s 8-23
High-Level FIOW DIagramc.cccccvuiiiuiiiiiiiiiiiiicieecieceeeeeeeeeeeeeete e senesesnes 8-24
Primary Tables INVOIVed..........cooiiiiiiiii 8-24
REIM ..ottt 8-24

RMS oo 8-24

Reason Code Action Rollup Batch Design............ccocoiiiiiiiiiiiiiiicccccas 8-24
Assumptions and Scheduling INOtESccccviviiiiiiiiiiiiiiir s 8-25
High-Level FIOW Diagram.......cccccocvviiiiiiiiiiiiiiiicieiciieeee s 8-26
Primary Tables INVOIVed.........cooriiiiii 8-26

xiii

Disputed Credit Memo Action Rollup Batch Designcccccocovviiiiiiniiiiiiccc 8-26

Assumptions and Scheduling NOtes ..o 8-27
Primary Tables INVOIVEd.......cccccciuiiiiiiiiiiiicccccceceeeecece e 8-27
Financial Posting Batch Design............ccccccooiiiiiiiiiic s 8-27
Assumptions and Scheduling INOtesccccccviiiiiiiiiin 8-28
Primary Tables INVOIVEd.......ccccciiiiiiiiiiiiiiiiccccceeeece e 8-28
Lookup Tables that Must be Populated..............cooeuoiiiiiiiii 8-28

Table to Which the Process Posts Datacccccccevviiiniiiiiniiiiiiniiiiiicnin 8-28

EDI Invoice Download Batch Designcccoviiiiiniiiiiiniiiics 8-30
Assumptions and Scheduling NOtescooueueiiiiiiiiiiiec e 8-30
Primary Tables INVOIVEd........ccccccooiiiiiiiiiiiiiiiiii s 8-31
Restart and RECOVEIYcviiiiiiiiiiiiiiiicc s 8-31
Complex Deal Upload Batch Design..............ccccoiiiiiiiiiiiiiiiices 8-31
Assumptions and Scheduling NOteSccccocuiiiiiiiiiiiiiiiii s 8-31
Primary Tables INVOIVed. ... 8-31
Fixed Deal Upload Batch Designcccccouviiiiiiiiiiiiiiiiiiiis 8-32
Assumptions and Scheduling NOtESccccccuiiiiiiiiriiiiiiiii s 8-32
Primary Tables INVOIVed..........cooiiiiii 8-32

9 RETL Program Overview for the RelM Extraction Program

Xiv

Architectural DeSign..........cccooiiiiiiiiiiiiiii e 9-1
ReIM Extraction ArchiteCture..........ccoiiiiiiiiiiiiiiiiiiiiiiiccccc e 9-2
CONFIGUIALION ... s 9-2
RETL..ooteee e 9-2
RETL User and PermiSSionsccceiuiiiiiiiiiiiiiiiiiiiiciciieiicteseie et sesesnes 9-2
Environment Variables..........cocoiiiiiiiicc e 9-2
AWI_CONFIZ.ENV SETHINGScvvvviiiiiiieiiiicieecteie e 9-3
Steps to Configure RETL...........cooiiiii e 9-3
Program Features ... 9-3
Program Status Control Files...........iiiiiiiiiiiiiccc 9-4
File Naming CONVENtONSc.ooiuiiiiicicieiicie e e 9-4

Restart and RECOVETYccciuiiiiiiiiiiiiiiiccecc e 9-4
BOOKMATK File.....cviviiiiiiiiiiiccc s 9-5
MeSSage LOGZING....cuoeieiiiiiiiiiieietiieie s 9-5
Daily Lo File.....cuciiiiiciiiiceiccecece e 9-5
FOIM@L ...t 9-5
Program EITOr File ... 9-6
ReIME Reject Files........ccviiiiiiiiiiiiiiiiiiic e 9-6
Schema FIles ..o 9-6
RESOUICE FLES ...t 9-7
Command Line Parameters ..o 9-7

A Non-File Based Module that Requires Parameters.............cccoooeeiiiiriieiiicniiiiicee 9-7
Typical Run and Debugging Situations ..., 9-7
RETL Extraction Program List.............ccccccooiiiiiniiiiiiiiiic s 9-9

Application Programming Interface (API) Flat File Specificationsccccccovvnnnnnn, 9-9

APT FOIMAL......oiiiiiiiiiiecieeecee ettt et e et e et estt e e te e tae st e essbeesbeesseesssaesseesssaensaassseensaaessesnssesssaesenns 9-9
FAIE LAY OUL ...ttt 9-9
General Business Rules and Standards Common to All APIS......ccccccveveeieveeceevieeiee e 9-10
SINCILAAIMLEXE coveivieiieieet ettt ettt eve b e st ebe e be e beesa e beessesseessaseesseseessesrsensensean 9-11

XV

XVi

Send Us Your Comments

Oracle Retail Invoice Matching Operations Guide, Release 13.0.5.2

Oracle welcomes customers' comments and suggestions on the quality and usefulness
of this document.

Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:

= Are the implementation steps correct and complete?

= Did you understand the context of the procedures?

» Did you find any errors in the information?

= Does the structure of the information help you with your tasks?

= Do you need different information or graphics? If so, where, and in what format?
= Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell
us your name, the name of the company who has licensed our products, the title and
part number of the documentation and the chapter, section, and page number (if
available).

Note: Before sending us your comments, you might like to check
that you have the latest version of the document and if any concerns
are already addressed. To do this, access the new Applications Release
Online Documentation CD available on My Oracle Support and
www.oracle.com. It contains the most current Documentation Library
plus all documents revised or released recently.

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number
(optional).

If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at www.oracle.com.

xvii

xviii

Audience

Preface

Oracle Retail Operations Guides are designed so that you can view and understand
the application’s behind-the-scenes processing, including such information as the
following:

= Key system administration configuration settings
s Technical architecture

= Functional integration dataflow across the enterprise

This document is intended for anyone with an interest in developing a deeper
understanding of the underlying processes and archtecture supporting Oracle Retail
Invoice Matching (ReIM) functionality. There are three audiences in general for whom
this guide is written:

= Business analysts looking for information about processes and interfaces to
validate the support for business scenarios within ReIM and other systems across
the enterprise (within a merchandising system such as RMS, for example).

= System analysts and system operations personnel:

- who are looking for information about ReIM processes, internally or in
relation to the systems across the enterprise.

- who operate ReIM regularly.

= Integrators and implementation staff with overall responsibility for implementing
ReIM.

Related Documents

For more information, see the following documents in the Oracle Retail Invoice
Matching Release 13.0.5.2 documentation set:

» Oracle Retail Invoice Matching Data Model

» Oracle Retail Invoice Matching Release Notes

Xix

Customer Support

To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following:

= Product version and program/module name

= Functional and technical description of the problem (include business impact)
» Detailed step-by-step instructions to re-create

= Exact error message received

» Screen shots of each step you take

Review Patch Documentation

When you install the application for the first time, you install either a base release (for
example, 13.0) or a later patch release (for example, 13.0.4). If you are installing the
base release, additional patch, and bundled hot fix releases, read the documentation
for all releases that have occurred since the base release before you begin installation.
Documentation for patch and bundled hot fix releases can contain critical information
related to the base release, as well as information about code changes since the base
release.

Oracle Retail Documentation on the Oracle Technology Network

Documentation is packaged with each Oracle Retail product release. Oracle Retail
product documentation is also available on the following Web site:

http://www.oracle.com/technology/documentation/oracle_retail.html
(Data Model documents are not available through Oracle Technology Network. These

documents are packaged with released code, or you can obtain them through My
Oracle Support.)

Documentation should be available on this Web site within a month after a product
release.

Conventions

XX

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction

Oracle Retail Invoice Matching (ReIM) provides a critical control function to verify
invoices against corresponding merchandise purchase receipts prior to payment of the
supplier invoice. ReIM naturally complements the Oracle Retail Merchandising
System (RMS), which supports ordering, receiving, and other inventory management
functions in the purchasing cycle.

ReIM accurately and efficiently verifies supplier invoices against corresponding
receipt data. When total invoice cost and quantity is supported by one or more receipts
(that is, the quantity received in the system, valued at the negotiated purchase order
cost) within pre-defined tolerances, the invoice is verified or 'matched’ and is ready for
payment. Where differences exist between invoice and receipt, a dialog supports the
resolution process. Invoices with resolved discrepancies can be paid. Invoices verified
for payment are staged in a table for a retailer to extract to their accounts payable and
general ledger solutions.

ReIM is designed as a standalone application, with logic built in to reference any
merchandising system. However, integration between ReIM and RMS is very robust
and offers a compelling business case to the retailer.

What is Retail Invoice Matching?

Invoice matching describes a control procedure designed to ensure the retailer pays
the negotiated cost for actual quantities received. Invoice verification or matching is a
fundamental and critical control procedure for every retailer.

ReIM is designed to support the invoice verification process with accuracy and
efficiency, focusing resources on exception management. ReIM accepts electronic
invoice data uploads (EDI), and provides for rapid on-line summary entry of invoices.
ReIM supports automated and on-line processes allowing one or more invoices to be
matched against one or more receipts. When an invoice cost and quantities are
matched within tolerance, it is ready for payment and staged to a table to allow a
retailer to extract to their accounts payable solution.

If a cost or quantity difference between the invoice and receipts is outside tolerance, a
discrepancy is recognized and must be resolved. A flexible resolution process allows
discrepancies to be directed to the most appropriate user group for disposition.
Reviewers are empowered to assign one or more reason codes that they are authorized
to use, to resolve the discrepancy.

Introduction 1-1

A Note About Oracle Retail-Based Enterprises

Each reason code is associated to a type of action (for example, create chargeback or
receiver cost adjustment). Many reason codes may be associated with a particular
action type, allowing for more granular reporting, and so on. Actions drive document
creation and EDI downloads to suppliers, inventory adjustments, and accounting
activities. Actions also allow the invoice to be extracted by the retailer and posted for
payment.

ReIM is highly integrated with RMS to drive efficiency, lower mainetnance costs and
improve control. ReIM integration provides access to the following data and more:

= RMS foundation data (organizational and merchandising hierarchies, supplier
data, currency, exchange rates, and so on)

= Receipts tables and receiver adjustments

s Self-billing transactions (consignment purchases, direct store deliveries, and so on)
s RTV billings

= Deals and rebate bill-backs

Other functionality within ReIM supports credit note matching against credit note
requests (issued in resolution of invoice discrepancies, as well as for RTVs and so on),
supplier-disputed debit memos, best terms and terms date processing, flexible
tolerance definition dialog, and so on.

A Note About Oracle Retail-Based Enterprises

Although ReIM has been developed as a stand-alone product, the most efficient
implementation would be as part of the Oracle Retail product suite. This integration
provides the following imporatnt benefits:

s The number of interface points that need to be maintained is minimized.

s The amount of redundant data and processes within the retail organization is
limited.

s Future enhancements allow for greater extensibility into the retail enterprise.

= Delays in product introductions can be minimized.

Technical Architecture Overview

The Java architecture is built upon a layering model. That is, layers of the application
communicate with one another through an established hierarchy and are able to
communicate only with neighboring layers.

For more information, see Chapter 3, "Technical Architecture.”

1-2 Oracle Retail Invoice Matching Operations Guide

2

Backend System Administration and
Configuration

This chapter of the operations guide is intended for administrators who provide
support and monitor the running system.

The content in this chapter is not procedural, but is meant to provide descriptive
overviews of the key system parameters that establish the ReIM environment.

See the Oracle Retail Invoice Matching Installation Guide for hardware and software
requirements and Oracle Retail application software compatibility information.

System Assumptions

Unit of Measure

For invoices sent from RMS with quantities representing weight rather than
number of eaches, ReIM assumes that the unit of measure (UOM) on the invoice
and the UOM on the receipt are always the same--and equal to the cost unit of
measure (CUOM). (Unit of measure is not displayed on the invoice nor on the
receipt.)

ReIM expects all invoices to be in eaches or the standard unit of measure (SUOM)
converted to eaches. No other units of measure can be invoiced using ReIM.

ReIM uses non-merchandise codes defined on the RMS table NON_MERCH _
CODE_HEAD. The form that allows users to enter non-merchandise codes in RMS
is not available when the RMS invoice match indicator (SYSTEM_
OPTIONS.INVC_MATCH_IND) is set to no. Instead, non-merchandise codes
should be added to the NON_MERCH_CODE_HEAD table using the database.

A record must be inserted into the IM_SYSTEM_OPTIONS table in order to allow
successful login to the application.

Supplier options

All suppliers must have options defined for their invoices to be processed by the
system, and the terms defined for those suppliers must be completely updated in
RMS. To support the use of suppliers in ReIM, terms must have the following
properties on the TERMS_DETAIL table:

— ENABLED_FLAG is set to Y.
- START_DATE_ACTIVE must be defined.
— END_DATE_ACTIVE must be defined.

Backend System Administration and Configuration 2-1

reim.properties File

GL account maintenance

All reason codes, non-merchandise codes, and basic transactions must be mapped
through GL account maintenance to support posting to the retailer's financial
solution. Transactions are posted to a staging table in ReIM, the extract to update
the accounts payable/financial solution is the retailer's responsibility.

Multiview

The Document Find, Group Entry List, and Group Entry pages allow the retailer to
define how certain fields display in these screens. The Multiview functionality
allows the user to move fields around on the pages and save those views for future
use. In order for Multiview to work and for these screens to populate correctly,
IM_GLOBAL_PREFERENCES must be populated.

VAT

If VAT is turned on, the retailer must have VAT regions, VAT items, and VAT codes
set up in the merchandising system (such as RMS) to support validation of
invoiced VAT charges. Verify the following values on the IM_SYSTEM_OPTIONS
table:

Note: The values below should not be changed after initial setup.
Changing them can cause errors in the system.

VAT INDissettoY.

VAT_VALIDATION_TYPE is set to Reconcile Vat, Always Use Invoice VAT, or
Always use System VAT.

The DEFAULT_VAT_HEADER is set to Y or N.
VAT_DOCUMENT_CREATION_LVL is set to ITEM or FULL_INVOICE.

reim.properties File

Retailer-defined configurations for ReIM are located in the reim.properties file. Every
setting in the reim.properties file is configurable, according to the retailer's specific
business requirements. Some of these settings also are discussed in
"Internationalization" later in this chapter.

The key system parameters contained in this file are described in the tables below.
Although default values are given in some instances, retailers are responsible for
setting these fields appropriately for their installation and hardware profile, rather
than assuming these default values are the best choice.

Database Configuration Settings

These settings are dependent on the retailer's unique database installation, except for
the bean driver, which should remain at the default value (unless customization is
performed.)

Parameter

Description Comments

datasource.url

The URL connection string used to connect to
the database

datasource.username

datasource.password

The datasource credentials for the application
database user.

2-2 Oracle Retail Invoice Matching Operations Guide

reim.properties File

Parameter

Description

Comments

datasource.schema.owner

The owning schema used to resolve database
types.

datasource.bean.driver

The bean driver for this installation. This should
not change unless customization has been
performed.

Default is com.retek.reim.

foundation.rms12.

Datasource Connection Pool Configuration Settings

These settings are dependent on the retailer's implementation. The pool size refers to
the number of available database connections that the retailer intends to keep

available.
Parameter Description Comments
pool.name Default is reim.
pool.min The least number of database connections Default is 20.
available, based on anticipated number of users.
pool.max The highest number of database connections Default is 200.
available, based on anticipated number of users.
pool.connectionWait Default is 5.

Timeout

pool.propertyCheck
Interval

Sets the time interval. The cache daemon thread
"sleeps" between checks to enforce the timeout
limits.

Default is 900 (seconds).

pool.timeToLiveTimeout

Sets the minimum time, in seconds. A
checked-out connection can remain outside of
the cache before it becomes a candidate to be
closed by the connection cache thread.

For example, 1200.

Default is 0, which disables
timeout.

pool.inactivyTimeout

Sets the minimum time, in seconds. A
connection can remain idle before it becomes a
candidate to be closed by the connection cache
thread when the current cache size is greater
than the pool minimum.

For example, 600.

Default is 0, which disables
timeout.

pool.abandoned

Sets the minimum time, in seconds. A

For example, 900.

ConnectionTimeout checked-out connection can remain unused (no Default is 0, which disables
SQL activity) before it becomes a candidate to be timeout.
closed by the connection cache thread. '
Document Settings
Parameter Description Comments
document.search. The maximum number of documents to be Default is 10000.
records.maximum returned by the document search screens. This
value will depend on the hardware profile.
(Integer)
document.quantity. The decimal precision to which quantity is Default is 0.

decimals.allowed

stored on a document. Typically used by
grocery retailers. Value is expressed as an
integer. For example, to display 4 decimals, this
property is set to 4.

Backend System Administration and Configuration

2-3

reim.properties File

Parameter

Description

Comments

document.batch.date.
format

The date format used for processing and
validating EDI files. (String)

Default format is
yyyyMMddHHmmss.

document.header.quantity.
required

For documents that contain a supplier that does
not belong to a supplier group, the value of this
field dictates if the total header quantity is
required on that document. (Integer)

Default is true.

document.rtv.extdocid.
separators

Character used to differentiate similar external
document IDs for EDI upload. It allows
documents with external document IDs already
in use to pass EDI validation. Value must be a
valid invoice number character, as defined by
the parameter, document.validation.regexpr. If
not, the underscore character is defaulted.
(Character)

If this property is set to 1, for
example, a posted document
with an external ID of MYDOC
will be named MYDOC_1.

Defaultis _.

document.validation.
regexpr

Indicates the characters allowed in an external
document (invoice) ID. For example, 0-9, A-Z,
space, minus sign, plus sign and underscore. If
this property is omitted, the system defaults the
setting to alphanumeric. The
document.rtv.extdocid.separator value is
validated against this field. (String)

For example, A[0-9A-Za-z\
\N+\-_]+$

Default is alphanumeric,
expressed as \\p{Alnum}+

document.number.
allow.leading.zero

Indicates whether document IDs may be entered
with a leading zero.

Valid values:

true - document IDs may be
entered with a leading 0.

false - document IDs may NOT
be entered with a leading 0.

document.purge.deals.day | Indicates when to purge deals from the Invoice | Default is 10.
s Matching tables after they have been
successfully uploaded (in number of days). This
field is read during the purge batch.
Date Settings
Parameter Description Comments

date.cache.poll.interval

This parameter dictates how frequently the
system updates the stored VDATE. (Integer)

Default is 15 minutes, expressed
as 900000.

(1000 * 60 * 15 = 900000)

Array Process Size Settings

This setting establishes the size of the batch updates to the database. The value is
expressed in number of records.

Parameter

Description Comments

ARRAY_PROCESS_SIZE

The threshold representing the maximum Default is 30.
number of records to be part of a single INSERT
or UPDATE operation in classes created by the

DALGenerator. (Integer)

2-4 Oracle Retail Invoice Matching Operations Guide

reim.properties File

EDI Properties

This property establishes the size of the batch updates to the database. An array in this
context is a collection of data. The value is in records.

Parameter Description Comments
edi.data.generator.path The path used for the data generator files.

(Ignore in production.)

(String: @deploy.data.path@)
edi.default.location The default location assigned to Default is 10000000001.

non-merchandise invoices when they come in.
(Integer)

edi.upload.multithreaded

Indicates whether EDI uploads are
single-threaded (False) or multithreaded (True).

Default is true.

edi.docbulk.size

The maximum number of documents that EDI
will process before issuing an INSERT statement.

Default is 1000..

Lockout Timeout Variables

These settings express the number of seconds until the timeout occurs. Variables are in
milliseconds. Conversion: millisecond = 1; second = 1000; hour = 3600000; day =
86400000; month = 25992000000; no_expire = -1.

Invoice Matching locks records at the application level to prevent multiple users from

manipulating the same data. The following settings dictate how long locks on these

records can be maintained before timing out. Use any mathematical expression with
the time units listed above. For example, 1 * hour.

Parameter

Description

Comments

business_roles_lock_
timeout

Amount of time until the user's control of (or
"lock" on) the business_roles table ends (times
out).

Default is 1 * hour.

reason_codes_lock_
timeout

Amount of time until the user's control of (or
"lock" on) the reason_codes table ends (times
out).

Default is 1 * hour.

doc_group_list_lock_
timeout

Amount of time until the user's control of (or
"lock" on) the doc_group_list table ends (times
out).

Default is 12 * hour.

doc_head_lock_timeout

Amount of time until the user's control of (or
"lock" on) the doc_head_lock table ends (times
out).

Default is no_expire.

edi_reject_doc_lock_
timeout

Amount of time until the user's control of (or
"lock" on) the edi_reject_doc table ends (times
out).

Defaultis 1 * hour.

supplier_options_lock_
timeout

Amount of time until the user's control of (or
"lock" on) the supplier_options table ends (times
out).

Defaultis 1 * hour.

system_options_lock_
timeout

Amount of time until the user's control of (or
"lock" on) the system_options table ends (times
out).

Default is 1 * hour.

Backend System Administration and Configuration

2-5

reim.properties File

Parameter

Description

Comments

tolerance_dept_lock_
timeout

Amount of time until the user's control of (or
"lock" on) the tolerance_dept table ends (times
out).

Default is 1 * hour.

tolerance_supp_lock_
timeout

Amount of time until the user's control of (or
"lock" on) the tolerance_supp table ends (times
out).

Default is 1 * hour.

tolerance_supp_trait_lock_
timeout

Amount of time until the user's control of (or
"lock" on) the tolerance_supp_trait table ends
(times out).

Default is 1 * hour.

tolerance_system_lock_
timeout

Amount of time until the user's control of (or
"lock" on) the tolerance_system table ends (times
out).

Defaultis 1 * hour.

receipt_lock_timeout

Amount of time until the user's control of (or
"lock" on) the receipt_lock table ends (times out).

Defaultis 1 * hour.

parent_invoice_lock_
timeout

Amount of time until the user's control of (or
"lock" on) the parent_invoice table ends (times
out).

Default is 1 * hour.

Credit Note AutoMatch Batch Multithreading Options

Thread Pool Sizing Guidelines are as follows:

= Nthreads = optimal number of threads

= Ncpu = number of available CPUs

s Ucpu = target CPU utilization, 0 <= Ucpu <=1

s W/C =ratio of wait time to compute time

s Nthreads = Ncpu * Ucpu * (1 + (W/C))

Parameter

Description

Comments

thread.creditnoteauto
match.batch.multithreade
d

Indicates whether credit note automatch batch
processing is in single-threaded mode (False) or
multithreaded mode (True)

Valid values are:
True - multithreaded mode

False - single-threaded mode

thread.creditnoteauto
matchbatch.consumer
ThreadKeepAlive

The amount of time (in milliseconds) that the
batch will keep threads alive after they have
completed processing when the current number
of runnable threads exceeds the minimum pool
size.

Default is 60000.

thread.creditnoteauto
matchbatch.consumer
ThreadPoolMin

Minimum thread pool size.

Default is 10.

thread.creditnoteauto
matchbatch.consumer
ThreadPoolMax

Maximum thread pool size.

Default is 20.

2-6 Oracle Retail Invoice Matching Operations Guide

reim.properties File

Credit Note AutoMatch Workspace Cleanup Setting

Parameter

Description

Comments

creditnoteautomatchbatch.
workspace.cleanup

This setting determines whether IM_MATCH_*
tables are purged after the Credit Note
AutoMatch Batch runs. If not purged, data from
the previous matching batch process will remain
in the workspace tables.

Valid values are:

True - After the Credit Note
AutoMatch Batch runs, data is
purged from IM-MATCH_*
tables (except for IM_MATCH_
*_HIST).

False - After the Credit Note
AutoMatch Batch runs, data
remains in the workspace tables.

Invoice AutoMatch Specific Properties

Parameter

Description

Comments

thread.invoiceautomatch
batch.threadBy

Indicates the criteria on which invoice
automatch threading is based. This setting is
depends on the hardware profile and the volume
of the thread by groups in implementation (such
as areas, locations, and chains). Value should be
determined through testing. (String)

Valid values are:
NoThread
ThreadByLocation
ThreadByDistrict (default)
ThreadByRegion
ThreadByArea
ThreadByChain

invoiceautomatchbatch.
process.locks

Indicates whether the automatch batch process
should exclude locked documents.

Valid values are:

True - Locked documents are
excluded from matching.

False - Locked documents are
included in matching.

Generic Threading Options (EdiUpload and AutoMatch)

These threadings settings are expressed in milliseconds. They are utilized by the
EdiUpload process and the Invoice AutoMatch batch process.

Timeout

Used for executing the transactions for both
EdiUpload and AutoMatch.

Parameter Description Comments
thread.backgroundThread | The amount of time the log-writing thread polls | Default is 1800000.
Timeout the empty work queue before shutting down.

Used only by EdiUpload for rejection files.
thread.consumerThread | The amount of time the consumer pool threads. | Default is 60000.

thread.consumerThread
KeepAlive

The amount of time (in milliseconds) that the
batch will keep threads alive after they have
completed processing when the current number
of runnable threads exceeds the minimum pool
size.

Default is 60000.

thread.consumerThread
PoolMin

Minimum thread pool size.

Default is 10.

Backend System Administration and Configuration

2-7

reim.properties File

Parameter

Description

Comments

thread.consumerThread
PoolMax

Maximum thread pool size.

Default is 100.

Translation Caching Timeouts

Invoice Matching caches (or stores) translated descriptions for item names and

supplier names, for example.

Parameter Description Comments
translation.caches_ The number of seconds that elapse before the Default is 43200.
refresh_interval_in_ translation cache is refreshed.
seconds
translation.locations_ The number of entries within the locations' Default is 100000.
desc_cache_size description cache that the system is allowed to

use for processing of translated information.
translation.suppliers_ The number of entries within the suppliers’ Default is 100000.

desc_cache_size

description cache that the system is allowed to
use for processing of translated information.

translation.items_desc_
cache_size

The number of entries within the items'
description cache that the system is allowed to
use for processing of translated information.

Default is 100000.

Logging Configuration Settings

These settings are used only for installation. After installation, they can be changed by

manually altering the logging configuration in log4j.properties.

Parameter

Description

Comments

log.online.file

Used to define the path for generating log files.

log.batch.file

Establishes the name and directory of the batch
log file.

log.batch.error.file

Establishes the name and directory of the batch
error files. All errors and routine processing
messages for a given program on a given day go
into this error file.

log.level

Indicates the lowest level at which messages
should be logged. For example, if value=4, all
errors labeled warn, error and fatal are logged.

Valid values are:
2 - fatal

3 - error

4 - warn

5 - validation

6 - info

7 - debug

8 - performance
999 - unknown

2-8 Oracle Retail Invoice Matching Operations Guide

system.properties File

Authentication Settings

These settings pertain to user security privileges.

Parameter

Description

Comments

authentication_source

Valid values are:
DATABASE
LDAP

IConnectionSettingsDAO

Default is:
com.retek.reim.merch.utils.PropertyFileLdapSettingDao

ISecurityDao

Default is:

com.retek.reim.merch.utils. ReIMLddapSecurityDao

ISecurityRelationshipDA
O

Default is:

com.retek.reim.merch.utils. LDAPSecurityRelationshipDA
O

security.ssl_mode Default is 2.
security.port_non_ssl Default is 8080.
security.port_ssl Default is 8443.
sso_url

sso_conf

sso_util

sso_factory_initial

system.properties File

This file includes system options settings that cannot be accessed through the
graphical user interface (GUI)--because they cannot be changed once ReIM has been
implemented.

Dynamic / Non-Dynamic GL Options

The parameters in this section of the file determine whether the retailer's segments for
the IM_GL_OPTIONS table are dynamic or non-dynamic. Rather than being
hard-coded, dynamic segments are populated by company/location or
department/class numbers from the invoice. This reduces the amount of maintenance
necessary to support posting to the retailer's financial solution.

If the retailer's segments are non-dynamic, all settings are N.

If the retailer's segments are dynamic, note the following:

s The system allows a maximum of four dynamic segments.

s Those GL options that are dynamic can be set up to represent the following;:

Company

Location

Department

Class

Backend System Administration and Configuration 2-9

system.properties File

Note: Company and location are always paired together, and
department and class are always paired together.

The table below illustrates how dynamic GL options are set up to correspond with the
retailer's hierarchy parameters. Where mapping occurs, the GL option assumes the

value of the corresonding parameter, as determined by the invoice.

GL Options

Business Concept Mapping for Dynamic Segments

system.gl_option_dynamic_1=Y

system.gl_option_dynamic_mapping_1=COMPANY

system.gl_option_dynamic_2=Y

system.gl_option_dynamic_mapping 2=LOCATION

system.gl_option_dynamic_3=N

system.gl_option_dynamic_mapping 3=

system.gl_option_dynamic_4=Y

system.gl_option_dynamic_mapping 4=DEPARTMENT

system.gl_option_dynamic_5=Y

system.gl_option_dynamic_mapping 5=CLASS

system.gl_option_dynamic_6=N

system.gl_option_dynamic_mapping_6=

system.gl_option_dynamic_7=N

system.gl_option_dynamic_mapping_7=

system.gl_option_dynamic_8=N

system.gl_option_dynamic_mapping_8=

system.gl_option_dynamic_9=N

system.gl_option_dynamic_mapping 9=

system.gl_option_dynamic_10=N

system.gl_option_dynamic_mapping 10=

system.gl_option_dynamic_11=N

system.gl_option_dynamic_mapping 11=

system.gl_option_dynamic_12=N

system.gl_option_dynamic_mapping_12=

system.gl_option_dynamic_13=N

system.gl_option_dynamic_mapping_13=

system.gl_option_dynamic_14=N

system.gl_option_dynamic_mapping_14=

Mapping of Document Types to Action Codes

The table below lists default action codes, based on document type.

Parameter Description Action Code Default
CRDNT Credit Note
CRDNRC Credit Note Request Price CBC
CRDNRQ Credit Note Request Quantity CBQ
CRDNRV Credit Note Request VAT CNRVI

Valid Values:

CNRVI, if IM_SYSTEM_OPTIONS.VAT_DOCUMENT_

CREATION_

LVL =ITEM

CNRVE if IM_SYSTEM_OPTIONS.VAT _DOCUMENT _

CREATION_

LVL = FULL INVOICE
CRDMEC Credit Memo Price CMC
CRDMEQ Credit Memo Quantity CMQ
DEBMEC Debit Memo Price CBC
DEBMEQ Debit Memo Quantity CBQ

2-10 Oracle Retail Invoice Matching Operations Guide

system.properties File

Parameter Description Action Code Default

DEBMEV Debit Memo VAT DMVI
Valid Values:

DMV, if IM_SYSTEM_OPTIONS.VAT_DOCUMENT _
CREATION_

LVL = ITEM

DMVE if IM_SYSTEM_OPTIONS.VAT_DOCUMENT_
CREATION_

LVL = FULL INVOICE

Labeling Child Invoices

When a parent invoice enters the system, the system can split the invoice into its child
invoices. (A parent invoice can contain many locations; a child invoice contains only
one.) The retailer determines a string, which the system uses to label a child invoice.
This string contains the parent invoice ID plus the system.child_invoice_indicator
value plus the location number to which the child invoice is associated.These

Parameter Description Comments
system.child_invoice_ Used in conjunction with the parent invoice ID | LOC
indicator and location number to label a child invoice.

Setting the Audit Period

The parameter determines how many days the system retains audit trail data before it

is purged.
Parameter Description Comments
system.purge_tolerance_ ~ Number of days the system retains audit trail 2
audit_period data before it is purged.

Data Translation Options

These options indicate types of language translation within the system.

Parameter Description Comments
system.language_ Determines whether the system will perform False
translation_active language translation.
system.single_language_ | Determines whether the system will perform SL
translation single-language data translation.
system.multiple_ Determines whether the system will perform ML
language_translation multi-language data translation.
system.item_description_ | Determines whether the system will perform SL
language_option single-language multi-language data translation

of the Description parameter.
system.location_name_ Determines whether the system will perform SL
language_option single-language multi-language data translation

of the Location parameter.

Backend System Administration and Configuration 2-11

integrations.properties File

Parameter

Description Comments

system.supplier_name_ Determines whether the system will perform SL

language_option

single-language multi-language data translation
of the Name parameter.

Set of Books Option

Parameter

Description Comments

ssystem.default_set_of | The default label assigned to the retailer's set of | 1

books_id

books.

Duplicate ltems Option

Parameter Description Comments
system.duplicate_items_ | Determines whether the same item from a Y
lov different supplier can appear more than once in

the item list of values (LOV).

integrations.properties File

Configuration of the integration.properties file is required for Web service enablement.
The file includes settings that affect drill forward capabilities and the validation of user
account information (such as user name and password).

The integration.properties file is set in place by the installer. However, it must be
manually configured for Web services to function properly.

The file is here: ORACLE_
HOME/j2ee/<instancename>/applications/<appname>/<appname>/WEB-INF/cla
sses/com/retek/reim

Web Service Provider URL for Drill Forward

This portion of the file identifies the URL used for drilling forward from the ReIM
application. In this case, the installer produces a file similar to the following example
(where input.webservice.drill.forward only represents an actual URL):

#webservice provider URL for drill forward
#webservice.financial.drill.forward=${input.webservice.drill.forward}

2-12 Oracle Retail Invoice Matching Operations Guide

Logging Configuration

Web Service Provider URL for Account Validation

This portion of the file identifies the URL for validating accounts. In this case, the
installer produces a file similar to the following example (where
input.webservice.account.validation only represents an actual URL):

#webservice provider URL for account validation
#webservice.financial.account.validation=${input.webservice.account.validation}

Web Service Provider URL for Account User Name Validation

This portion of the file identifies the URL for validating account user names. In this
case, the installer produces a file similar to the following example (where
input.webservice.account.validation only represents an actual URL):

#webservice username and password for account validation
#webservice.financial.account.validation.username=${input.webservice.account.valid
ation.username}

Web Service Provider URL for Account Password Validation

This portion of the file identifies the URL for validating account passwords. In this
case, the installer produces a file similar to the following example (where
input.webservice.account.validation.password only represents an actual URL):

#webservice username and password for account validation
#webservice.financial.account.validation.password=${input.webservice.account.valid
ation.password}

Logging Configuration

Oracle Retail Invoice Matching utilizes the industry-standard Apache Log4j logging
framework to log system messages and exceptions. This framework is embedded in
the application code to allow for configurable logging to suit the needs of the retailer.

Log4dJ Conventions
The Log4j API system utilizes three main configurable entities:
= Loggers
= Appenders
= Layouts

Loggers are responsible for defining exactly what gets logged. Typically, loggers
define a specific level of detail (the log level) for a specific java package name as well
as an appender the logger is assigned to. These criteria are then delegated to the
appropriate appender for the specific logger. A single logger can be assigned to
multiple appenders.

Appenders are used to dictate where logged content is directed to for a given logger.
For example, the retailer may wish to configure a log appender to publish a log to a
database table, a flat file, or an e-mail address. For each of these options, a separate
appender would be defined and assigned to a specific logger.

Layouts are leveraged by the appender to dictate the exact content of the log message.
Relevant information may include: date, time, and origin of the error message. These
values can all be configured through the log layout.

Backend System Administration and Configuration 2-13

Internationalization

Log4J Properties

The log4j.properties file holds all of the information relevant to logging throughout the
application. Oracle Retail Invoice Matching ships with a sample log configuration that
will log basic messages to a standard file located on the application host machine.
Retailers wishing to configure specific Invoice Matching loggers should consult the
sample configuration log4j.properties file and the Apache Log4j documentation
(http:/ /logging.apache.org/log4;).

Internationalization

Internationalization is the process of creating software that is able to be translated
more easily. Changes to the code are not specific to any particular market. ReIM has
been internationalized to support multiple languages.

This section describes configuration settings and features of the software that ensure
that the base application can handle multiple languages.

See "Java Currency Formatting" in Chapter 6, "Technical Design."

Translation

Translation is the process of interpreting and adapting text from one language into
another. Although the code itself is not translated, components of the application that
are translated may include the following, among others:

= Graphical user interface (GUI)

s Error messages

Language Configuration

The reim.properties file points the application to the location of the user's properties
file based on the locale specified for the user on the IM_USER_AUTHORIZATION
table.

The properties files ReIMResources and ReIMMessages must include the translations
for all user interface strings. The translated properties files are identified by the ISO
language code for each language. For example: ReIMResources_de.properties contains
the German language resources. Translated properties files for Brazilian Portuguese
and Traditional Chinese are further differentiated by the ISO language + country code.
For example: ReIMResources_pt_BR.properties for Brazilian Portuguese and
ReIMResources_zh_TW.properties for Traditional Chinese.

The Java compiler and other Java tools can only process files which contain Latin-1
and/or Unicode-encoded (\udddd notation) characters. The JDK native2ascii tool
converts files which contain other character encodings into files containing Latin-1
and/or Unicode-encoded charaters. The translated properties files are all shipped in
the Unicode-encoded (\udddd notation).

Supported Date Formats

The system's date formats support either two or four digit year designations. Date
formats support month name abbreviations or month numbers. Date formats support
limited sequencing: year-month-day, month-day-year, and day-month-year. Date
formats support either dash (-) or backslash (/) delimiters. Date formats must be
specified in the DateParameters.properties file.

2-14 Oracle Retail Invoice Matching Operations Guide

Internationalization

Cache Sizes for Translation Service

To enhance the system's performance speed, the system utilizes a cache when
performing data translations into another language.

For example, suppose the system has been configured to offer French translations.
When a French user encounters a location name, the system retrieves the translated
location name from the database and then stores it in a cache. If the system needs to
retrieve the same translated location name at a later time (for another user, for
example), the system would retrieve it from the cache rather than from the database.
This reim.properties value represents the number of entries within the cache that the
system is allowed to use for such processing.

For example:

translation.items_desc_cache_size=100000

See the "ReIM User Table" in Chapter 5, "Integration.”

RelMResources.properties

This file contains a key value pair for every label visible through the GUI at run time.
Text labels and error messages have been identified, separated from the core source
code, and placed into the properties file. The contents of the file can be used for
retailer-specific configuration purposes (such as for the creation of custom labels or
error messages).

IM_USER_AUTHORIZATION

Functionality exists within the system to allow a retailer to change the language
displayed in the UI for a specific user. The retailer can write an update statement for
the IM_USER_AUTHORIZATION table. The update statement would specify the
following for the user name:

» A language for a user using the two letter language code (for example, zh, for
Chinese)

= A country for the user using the two-letter country code (for example, CN, for
China)

Once the retailer has run the query, performed a commit, and logged out and into the
application, the Ul reflects the new language and locale.

Note: The language/locale combination must be valid and
supported by the system, or when the retailer logs back into the
application, the default language is displayed.

Backend System Administration and Configuration 2-15

Internationalization

2-16 Oracle Retail Invoice Matching Operations Guide

3

Overview

Technical Architecture

This chapter describes the overall software architecture for ReIM. The chapter
provides a high-level discussion of the general structure of the system, including the
various layers of Java code.

Note that at the end of this chapter, a description of ReIM-related Java terms and
standards is provided for your reference.

The system's Java architecture is built upon a layering model. That is, layers of the
application communicate with one another through an established hierarchy and are
only able to communicate with neighboring layers.

The application is divided into a presentation layer, a middle tier consisting of services
and business objects, and a database access/driver layer. Technical services provide
the 'glue’ that holds the application together, offering the application frameworks for
error logging, internationalization, transaction management, application security, and
so on.

The segregation of layers has the following advantages, among others:

» The separation of presentation, business logic, and data makes the software
cleaner, more maintainable, and easier to modify.

s The look and feel of the application can be updated more easily because the GUI is
not tightly coupled to the back end.

= A layered architecture has become an industry standard.

= Portions of the data access layer (DAL) can be radically changed without effecting
business logic or user interface code.

s The application takes advantage of Java database connectivity (JDBC), minimizing
the number of interface points that must be maintained.

= Market-proven and industry-standard technology is utilized (for example, JSPs,
JDBC, and so on).

The Layering Model

The following diagram, together with the explanations that follow, offers a high-level
conceptual view of the layers and their responsibilities within the architecture. Key
areas of the diagram are described in more detail in the sections that follow.

Technical Architecture 3-1

The Layering Model

Web Browser (Internet Explorer)

I

Presentation Layer JSP/Struts
Services Responsible for Business Logic/ P
Middle Tier Business Objects
ﬂ H Technical
: Services
- : RelM Data
Merchandising System :
Data Access : Access
Data Access Layer ;
ARARA R R RR R
Custom
RMS Driver RMS Driver
| fassssssssnssnnsnnd *

I T\
T N o,

RMS RelM
Gustom Tables Tables
Tables

Presentation Layer

This area of the architecture encapsulates the graphical user interface (GUI)
processing. A web browser accesses JSP pages using a Struts tag library.

JSPs consist of JavaScript and standard HTML. They make calls to tag-libraries. An
extension of Java servlet technology, JSPs are compiled into servlets. JSPs provide a
user interface that can be separated from most of the business logic that resides on the
server. This separation of presentation from content offers a greater possibility for ease
of maintenance, both with regard to the page that the user sees and the underlying
logic. The look and feel of the GUI is easy to customize, and dynamic functionality is
easy to create.

Struts provide an open source framework for building Web applications. The core of
Struts is a flexible control layer based upon Java servlets, JavaBeans, ResourceBundles,
and Extensible Markup Language (XML). Struts provide an industry standard
approach to enforcing the division between user interface code and business logic.
Struts also provide standard functionality for error display, internationalization/screen
translation, and so on. The Struts framework is part of the Jakarta Project, sponsored
by the Apache Software Foundation (http:/ /www.apache.org/). The official Struts
home page is http:/ /jakarta.apache.org/struts.

The presentation layer only interacts with the middle tier services.

3-2 Oracle Retail Invoice Matching Operations Guide

The Layering Model

Middle Tier

Service Layer Responsible for Business Logic

The service layer consists of a collection of Java classes that implement business logic
(data retrieval, updates, deletions, and so on) via one or more high-level methods. In
other words, the service layer controls the workflow. For example, when a user clicks
OK on a page, the server must follow a given series of steps to accomplish business
functionality. The service layer controls how those steps are accomplished.

The service layer is the entry point to the middle tier and separates the presentation
layer from the database layer. Generally the methods that are exposed by service layer
classes accept and/or return business objects. The service layer encapsulates the
business logic by calling down into business objects and the data access layer, thus
making the code more maintainable.

Business Objects

Within ReIM, business objects are beans (that is, Java classes that have one or more
attributes and corresponding set/get methods) that represent a functional entity. In
other words, business objects can be thought of as data containers, which by
themselves have almost no business functionality. (In those unusual cases where
business logic resides within a business object, the logic pertains to a discreet business
concept.) Two examples of business objects are Document and Supplier.

There is not necessarily a one-to-one relationship between a business object and a
database table. The service layer may utilize more than one class from the data access
layer in order to combine the data from more than one database table to fully populate
a business object.

Data Access Layer (DAL)

The data access layer interacts only with the middle tier and the database. Classes in
the DAL abstract the actual persistence mechanism that is being used to persist
business objects. The DAL provides the mechanism that allows ReIM to be associated
to a different persistence engine. Ideally, in those cases, only the DAL would need to
be modified due to the change. The remainder of ReIM would continue to operate
unchanged.

The ReIM DAL consists of two very distinct portions: a DAL to ReIM owned tables
and an interface DAL to merchandising system tables. The two distinct types of Java
code are described below.

Database Layer

The database layer is the application's storage platform, containing the physical data
(user and system) used throughout the application. This layer is only intended to deal
with the storage and retrieval of information and is not involved in the manipulation
of the data.

Technical Architecture 3-3

The Layering Model

Technical Services

In order to increase the maintainability of the code, and enhance the rapid
development of new business logic, a number of base technical services are provided.

Technical services hold the application together by providing common services to the
application, services that are not necessarily driven by business requirements.

Technical services include application frameworks such as error logging,
internationalization, transaction management, application security, and so on.

A brief description of each technical service follows the diagram.

Application System .
Security
parameter parameter _ Log4.
. . service
service service
Persistent co .
ersiste © de Transaction
genearation sorvice
service
Error loggin Internationalization . .
caging . Time/date service
service service
Currency service

Application Parameter Service

This service allows application configuration parameters to be stored within the
database on a single database table. Developers can retrieve these parameters using a
high level interface.

System Parameter Service

Similar to the application parameter service, this service is used only for technical
configuration parameters. Although most configurable parameters are hosted in a
system parameter table, some parameters are located in a properties file. See Chapter
2, "Backend System Administration and Configuration," for more information.

Transaction Service

Note: The transaction service does not provide checkpoint
transaction management or multi-phase commit.

This service provides a simplified management of rollback/commit semantics. In
order to avoid the need to pass the database connection between the middle tier
method calls and the data access layer classes, the transaction service uses thread local
variables to maintain the current connection for a thread until that thread has
committed or rolled back the transaction. This service thus simplifies transaction
management.

3-4 Oracle Retail Invoice Matching Operations Guide

The Layering Model

Error Logging Service

This service incorporates a standard ReIMException class to raise and handle Java
exceptions (shown below). The ReIMException class automatically logs itself to the
application log file. The level of logging may be raised or lowered in the properties
file. For example, an operator could configure the system to only display INFO and
above. See Chapter 2, "Backend System Administration and Configuration," for
information.

The system's coding pattern ensures that the error messages, no matter where they
originate, remain detailed in their presentation to the operator.

Log4J

This service provides the error logging services with a standard method for logging
information to a flat text file. Log4]J is an open source product.

Internationalization Service

This service uses resource files to provide configurability for on-screen messages (such
as on screen labels or error messages). To change the language for the ReIM GUI
screens, a replacement set of resource files can be created. Note that although this
service supports any number of languages, the screen flow remains left to right, top to
bottom.

Currency Service

This service provides a high-level mechanism for developers to represent a currency
amount. This service provides the formatted representation of that currency.

Time/Date Service

This service provides a high level interface to the Java time/date constructs along with
some formatting methods for displaying these constructs on the GUI screens.

Security Service

The security service provides basic authorization and authentication functionality
during user logon. The association of the user to security roles controls user access to
the functional areas of the application. The security service validates a user's identity
against a security store and retrieves the role memberships and role authorizations for
that user upon a successful logon. The physical implementation of the security
information for each user, role, functional authorizations, and field authorizations is
independently configurable among the database or LDAP server locations.

Third Party Libraries

ReIM base development uses the following third party libraries:
s Oracle JDBC library

s Logd4]

s JUnit from www.junit.org

s Struts from jakarta.apache.org

s ICU4J from IBM

s Spring Framework from www.springframework.org

Technical Architecture 3-5

RelM-Related Java Terms and Standards

RelM-Related Java Terms and Standards
ReIM is deployed using the technologies and versions described in this section.
The Java 2 Enterprise Edition (J2EE)

The Java standard infrastructure for developing and deploying multi-tier applications.
Implementations of J2EE provide enterprise-level infrastructure tools that enable such
important features as database access, client-server connectivity, distributed
transaction management, and security.

Java Database Connection (JDBC)

JDBC is a means for Java-architected applications such as ReIM to execute SQL
statements against an SQL-compliant database, such as Oracle. JDBC is part of Sun
J2EE specification. Most database vendors implement this specification.

JDBC provides the support that allows ReIM to submit SQL queries to the database
and receive the result set for further processing.

Java Development Kit (JDK)
Standard Java development tools from Sun Microsystems.
Java Server Pages (JSP)

JSPs enable Java and HTML to be combined within a web page. To the user, a JSP
appears in the Web browser as a file with a .jsp extension. The JSP source is
dynamically compiled into a servlet by the servlet container running in the web server.
The servlet generates the necessary HTML content that the user sees.

Java Servlet

A servlet is a Java platform technology that allows a web application easier access to
server side resources. The HTTP request from the client's browser is routed to the
servlet, which then can process it as necessary and provide the applicable response to
the user.

LOG4J

LOG4] is an open source sub-project of the Jakarta Project. It provides a configurable
framework for logging information gathered during the execution of an application.

Naming Conventions in Java
= Packages: The prefix of a unique package name is written in all-lowercase letters.

» Classes: These descriptive names are unabbreviated nouns that have both lower
and upper case letters. The first letter of each internal word is capitalized.

= Interfaces: These descriptive names are unabbreviated nouns that have both lower
and upper case letters. The first letter of each internal word is capitalized.

= Methods: Methods begin with a lowercased verb. The first letter of each internal
word is capitalized.

3-6 Oracle Retail Invoice Matching Operations Guide

RelM-Related Java Terms and Standards

Struts

An open source web development framework from the Jakarta Project and sponsored
by the Apache Foundation. The framework includes three major components:

= A controller servlet that dispatches requests to applicable ReIM Action classes.

= JSP custom tag libraries, and associated support in the controller servlet, that
support ReIM in providing an interactive form-based application.

s Utility classes to support the following:
- XML parsing

— The automatic population of JavaBeans properties based on the Java reflection
APlIs

— The internationalization of prompts and messages

Technical Architecture 3-7

RelM-Related Java Terms and Standards

3-8 Oracle Retail Invoice Matching Operations Guide

4

Functional Design

This chapter provides a diagram and description of the invoice matching process flow.
It also describes the auto-match process through a series of detailed examples. The
various levels of auto-matching are explained, including one-to-one invoice matching
and line-level matching. The chapter concludes with a discussion of best terms
calculations.

Invoice and Credit Note Matching Process Flow

This section provides a high-level explanation of the process flow in ReIM for each of
the following areas:

= Data entry
= Matching

= Discrepancy resolution

Data entry Matching Discrepancy
resolution
EDI
Merchandise invoices —
Non-merchandise } Merchandise invoices ‘
invoices
Credit notes — — — .I
r Auto matching Rollup resulting Post to
*Summa in
. mary I Discrepancies “Disbit mamos staging
Group entry Detail cost, quantity “Credit note table for
—— .) Cost/Quantity quests
I'r:ﬂerchandhse ::r|1_\.r0|ces . — — ——— Routing resolution T aos | financial
ren-merchandise *Reason codes | systems
invoices interface.
Credit notes v — — .
Manual matching 5
. . ISCrepancies
Single entry _— enat, quantity
All of above

Debit memaos
Credit note requests
Credit memos

Note: Documents drop out of the flow when they need no further
processing. For example, if an invoice is matched in Step 2, Matching,
the document would not continue to Step 3, Discrepancy Resolution.
The document would be posted directly to the financial (AP/GL)
staging table after Step 2.

Functional Design 4-1

Invoice and Credit Note Matching Process Flow

1. Data Entry

There are three ways in which invoices and other documents enter the ReIM
system:

Electronic Data Interchange (EDI)

Invoices and credit notes uploaded as part of a batch are assigned a common
control number, which is retained on the invoice table as a reference. The
control number is assigned by the sender of the EDI file. It is displayed on the
Invoice Maintenance screen and may be used for client reporting purposes.

As necessary, the EDI load process allows for the uploading of supplier's
vendor product number (VPN) when neither the document number nor the
UPC has been provided. The VPN and the supplier number, then, are used to
look up the Oracle Retail item number. ReIM assumes the VPN is related to
the supplier associated with the document. Note that the VPN number is not
stored in RelM,; it is used to find the Oracle Retail item number which is then
retained and used for processing within ReIM.

Allowing VPN to be used to find the Oracle Retail item number is optional.
EDI allows ReIM to upload the following documents.
— Merchandise Invoices

The bills for goods or services received from a supplier or partner. Mer-
chandise invoices may have both of the following:

Merchandise Costs: Costs that are associated with items on documents.
Any other costs on an invoice are non-merchandise costs. Teh sum of hte
merchandise costs and non-merchandise costs is the total document cost.

Non-Merchandise Costs: Costs that are indirectly associated with invoice
items, such as freight or handling charges.

— Non-merchandise Invoices

Bills for non-merchandise costs only (a snow plowing service, for exam-
ple). Non-merchandise invoices cannot contain items. Either suppliers or
partners can create non-merchandise invoices.

— Credit Notes

Documents received from the supplier, often issued in response to a credit
note request from the retailer, which results in a reduction of the retailer's
balance owing to a supplier. A credit note request, may be raised in lieu of
a deduction from invoice (that is, a debit memo) resulting from invoice
over-charges, RTVs, rebate bill backs, and so on. Credit notes follow a
functional process flow separate from the invoice flow, where credit notes
are matched against credit note requests.

Group Entry

Group entry facilitates summarized, on-line entry of paper documents. The
group entry process accommodates the same types of documents as supported
through the EDI process.

Invoices are entered as part of a batch and assigned a group number, which is
retained on the invoice table as a reference. This group number is displayed on
the Invoice Maintenance screen and may be used for reporting purposes.

4-2 Oracle Retail Invoice Matching Operations Guide

Invoice and Credit Note Matching Process Flow

Because group entry is intended to quickly get invoices into RelM, entry of
item details is not required. Adding item details for an invoice can be done
later through the Invoice Maintenance screen.

Single Entry

Single entry is designed as an exception-handling tool made for invoices and
documents not entered (for whatever reason) within a group.

Note: Merchandise invoices entered by way of single entry also are
assigned a group/transaction number. However, since each document
will be assigned its own group number, some retailers may not want
to generate so many additional group IDs. Retailers that require a
group/transaction number for tracking purposes may want to restrict
access to the single invoice entry screen. Single entry may be
controlled for a user group by setting the Invoice Entry option on the
User Group Details screen to Modify only. This allows users to change
an existing invoice but prevents them from creating a single-entry
invoice. In turn, this forces all manual entry to be done as group entry.

Single entry accommodates the same types of documents supported in the EDI
and group entry processes, as well as the following items (if not created
automatically through other processes):

— Debit Memo

A document created to support a deduction from the invoice being paid.
Deductions may result from a price or quantity discrepancy. A debit
memo also refers supplier billing for rebates, RTVs, and so on. Debit
memos also can be created as 'stand-alone' documents (that is, created
on-line, but not supported by any processes in ReIM or the merchandis-
ing system).

— Credit Note Request (CNR)

A document sent from the retailer to the supplier, requesting a credit note
for an over-invoiced amount (discrepancy) or in support of various billing
activities (for example, rebates, RTVs). If a credit note request is not satis-
fied by the supplier in a timely manner, ReIM provides the ability to con-
vert it into a debit memo (and include the number of the invoice to which
it is assigned). Credit note requests also may be created as stand-alone
documents.

— Credit Memos

A document created to refund a supplier for an under-invoiced or
over-billed amount (for example, for rebates not meeting threshold perfor-
mance levels) amount. Credit memos also may be created as stand-alone
documents.

Note: If the credit memo is the result of a reversed debit memo, the
ID number of the invoice to which the debit memo is associated
should be assigned to the credit memo, particularly if the invoice is
being held for payment. Assigning the ID number in this manner
ensures related documents are released to accounts payable at the
same time.

Functional Design 4-3

Invoice and Credit Note Matching Process Flow

2. Matching
= Invoice Auto-Matching

Merchandise invoices are grouped by common PO/location; ReIM requires
these attributes in all merchandise invoices. ReIM accesses the merchandising
system to determine what shipments (receipts) were created for the
PO/location. The auto-matching process attempts to support invoice cost and
quantities against receipt quantities at PO cost within user defined tolerances.

If the auto-matching process identifies cost or quantity differences outside of
the pre-established tolerance range, the system creates corresponding
discrepancies (cost or quantity). Otherwise, matched invoices are posted to the
financial staging table.

For header-level-only invoices, VAT validation is performed as a final
validation step, after cost and quantity matching has been performed.

For more functional information about summary and detail-level
auto-matching, see "Invoice Auto-Matching" in this chapter.

s Credit Note Auto-Matching

For functional information, see "Credit Note Auto-Matching" in this chapter.
= On-line Matching

- Invoices

The on-line matching dialog provides users with the ability match
invoices with even greater flexibility than the auto-match process. Invoices
are initially grouped by their PO/location, but the groups can be modi-
fied beyond the common PO/location relationship based on available
(that is, 'unmatched') invoices and receipts, to support matches.

On-line matching either matches a document, which is posted to the finan-
cial staging table, or supports creation and resolution of a cost and/or
quantity discrepancy.

— Credit Notes and CNRs

Typically, invoices for which CNRs are generated are sent to accounts pay-
able even if matching credit notes have not yet been received. The retailer,
then, is issued an invoice that actually is higher than it should be and will
have to wait until credit notes are processed before receiving credit for the
overcharge. The supplier, in turn, may be overpaid. To avoid this ineffi-
ciency, ReIM allows invoices with unmatched CNRs to be held (not paid)
until all corresponding credit notes are received-at which time the invoice
automatically is sent to accounts payable. Depending on user group secu-
rity, the user can manually control when the invoice is released to accounts
payable-even before all credit notes are received.

When a credit note request is matched to a credit note through online
matching, the ID number of the invoice to which they are associated is
assigned to the credit note. In this way, the invoice and all related docu-
ments may be released to accounts payable at the same time.

When matching CNRs to credit notes on a held invoice, the original
invoice should be checked for other open discrepancies. If none exist, the
Hold Invoice indicator on the Supplier Options screen should be "turned
off" so that the invoice and all related documents can be released to the
financial system.

4-4 Oracle Retail Invoice Matching Operations Guide

Invoice Auto-Matching

3. Discrepancy Resolution

Users assign pre-defined reason codes against cost and quantity discrepancies to
support resolutions. The reason codes direct the system to take a specific action.

Cost and quantity discrepancies are routed to on-line lists by user group.
(Pre-established user groups and routing rules determine which discrepancies
populate which user group list.) For example, in many companies the
merchant/buyer is responsible for verification of invoice cost against the PO. To
support this functionality, a user group of buyers by department or class might be
a logical association to assign to an on-line Cost Discrepancy Review List. (Each
user group would see only discrepancies assigned to it). Each user group is
empowered to resolve discrepancies according to their authorization. Similarly, it
may be logical to assign users groups to Quantity Discrepancy Review Lists based
on receiving location.

ReIM does not require the resolution of discrepancies through the routing process;
the application will support a more centralized business process for resolving
discrepancies using only the on-line matching dialog.

Once all discrepancies are resolved for the document, it is posted to the financial
staging table along with any corresponding debit memos, and so on, for posting to
the retailer's accounts payable solution.

Documents supporting discrepancy resolution (such as debit memos, credit note
requests, and credit memos) are available for EDI download to the supplier. (Or
the retailer may develop reporting from these values stored in the ReIM tables).
These document records (except credit note requests) also are posted to the
financial staging table.

If there is a discrepancy between a credit note and a credit note request, a new
credit note should be created. Further, CNRs created inadvertently can be voided
and fully reversed to expedite resolution. (It is assumed that if all CNRs related to
a "held" invoice are voided, that invoice is released for payment.)

Invoice Auto-Matching

Invoices in ready for match, unresolved, and multi-unresolved status are retrieved
from the database to be processed through the auto-match algorithm. These invoices
are grouped with receipts based upon PO/location.

If no receipts exist for the PO/location, invoices process through the cost pre-matching
algorithm.

If receipts do exist, the system attempts to match all invoices and receipts for the
common PO/location (referred to as 'group matching'), within summary-level
tolerances.

If group matching fails, the system attempts to match each invoice to a single receipt in
the one-to-one matching algorithm. If all invoices are matched in this fashion, then the
next PO/location is processed.

If only some of the invoices can be matched and a multi-unresolved scenario results,
the matched invoices remain matched and the non-matched invoices are given a
multi-unresolved status. No further processing occurs for this PO/location.

If an unmatched invoice is eligible for line level matching, an attempt is made to match
each line on the invoice to an unmatched receipt line.

Functional Design 4-5

Invoice Auto-Matching

VAT on Header Level Only Invoices

The auto-matching process determines whether the VAT values on header level-only
invoices are correct. The system only processes invoices that do not have any
unresolved VAT discrepancies.

The invoice status determines whether an invoice can be processed by the Auto-match
batch process (AutoMatchService). Only invoices in ready-for-match status are
processed. Those with a status of VAT discrepancy are not processed by the batch. See
Chapter 8, "Batch Processes," for more information.

Invoices created without details are not able to have their VAT information validated
at invoice creation. All header level-only invoices are created with a status of
ready-for-match. These invoices must have a VAT validation executed as part of the
invoice matching process. This validation determines whether a header level-only
invoice that was matched to a receipt should continue in the matching and posting
process or whether it should be marked as having a VAT discrepancy and removed
from the matching process.

Cost Pre-Matching

Cost pre-matching occurs only for PO locations that meet the following conditions:
= Invoices that have never been processed by auto-match exist.
m No receipts exist.

Each invoice line unit cost is compared with the PO item location's unit cost. If the unit
costs match within tolerance, the invoice and lines are processed again by auto-match
once receipts come in for the PO location.

If there is a discrepancy, then the invoice is processed again once receipts arrive.
However, the lines that contain a discrepancy are immediately routed for cost
resolution. Once invoices are run through the cost pre-matching algorithm, they are
not re-run when the next auto-match run occurs if there are still no receipts.

Scenarios can arise where no receipt lines exist, and no order line corresponds to an
invoice line. The assumption is that validation occurs in the EDI upload process and in
the manual invoice entry screens prevent these invoices from entering the system.
Therefore, auto-match ignores this situation.

PO/Location Summary Group Matching

PO/location summary group matching processes the following:
= Invoices that have never been processed before by auto-match.

= Invoices that have been processed previously by auto-match but remain
unresolved.

= Invoices that have been processed previously by auto-match but that have been
identified as multi-unresolved.

First, the system attempts to match the total extended cost of the invoices with the
total extended cost of the receipts. Extended cost is defined as the unit cost for an item
multiplied by the quantity received or the quantity invoiced. For this comparison, all
extended costs are summed for the group of invoices and receipts and compared. The
total extended cost for each invoice is taken from the invoice header. The process,
however, calculates the total extended cost of the receipts.

4-6 Oracle Retail Invoice Matching Operations Guide

Invoice Auto-Matching

Quantity matching is also sometimes required. Whether quantity matching is
performed is determined by a supplier option. Quantity matching compares the total
quantity invoiced for the PO location with the total quantity received for the PO
location. As in cost matching, the total quantity invoiced for each invoice is taken from
the invoice header. For receipts, the process calculates this sum.

For invoices with quantities representing weight rather than number of eaches, total
quantity displayed in the invoice header is represented as the sum of item quantities in
"abstract UOM."

Invoice auto-match processing first attempts to match the total extended costs, and
optionally the total quantities, exactly. If the costs and quantities do not match exactly,
then the system attempts to match them within tolerance. If a match is achieved, all of
the invoices, receipts, and their lines for the PO location are assumed to be matched. If
a match is not achieved, all invoices and receipts for the PO location are unresolved.
These invoices and receipts are processed further with one-to-one invoice matching.

Invoice auto-match accounts for the actions taken by cost reviewers that fully resolve a
cost discrepancy when attempting to match at the summary level. If a match is
achieved at the summary level, auto-match deletes any outstanding unresolved cost
discrepancies and any partially resolved cost discrepancies along with their partial

resolutions for the PO location from the system.

Example 1

The following example illustrates a successful match:

Invoices for a

Total Extended

PO/Location Cost Total Quantity
Invoice 1 $50,000 1,000
Invoice 2 $150,000 5,000
Totals: $200,000 6,000

Receipts for a

Total Extended

PO/Location Cost Total Quantity
Receipt 1 $50,000 2,000
Receipt 2 $50,000 2,000
Receipt 3 $100,000 2,000
Totals: $200,000 6,000

In the example, the total extended costs and the total quantities match for the PO
location. Therefore, all invoices and receipts will be set to matched status.

Example 2

The following example illustrates a successful match, but where quantity matching is
not required by the supplier.

Receipts for a Total Extended

PO/Location Cost Total Quantity
Invoice 1 $50,000 2,000

Invoice 2 $150,000 5,000

Totals $200,000 7,000

Functional Design 4-7

Invoice Auto-Matching

Receipts for a
PO/Location

Total Extended
Cost

Total Quantity

Receipt 1 $50,000 2,000
Receipt 2 $50,000 2,000
Receipt 3 $100,000 2,000
Totals $200,000 6,000

In the example, only the total extended costs match. However, quantity matching is
not required for this supplier. Therefore, these invoices and receipts are considered
matched by the auto-matching algorithm.

Example 3

The following example illustrates an unsuccessful match, where quantity matching is

required by the supplier.

Receipts for a
PO/Location

Total Extended
Cost

Total Quantity

Invoice 1 $50,000 1,000
Invoice 2 $150,000 5,500
Totals: $200,000 6,500

Receipts for a

Total Extended

PO/Location Cost Total Quantity
Receipt 1 $50,000 2,000
Receipt 2 $50,000 2,000
Receipt 3 $100,000 2,000
Totals: $200,00 6,000

In the example, because quantity matching is required for the supplier, the match is
unsuccessful despite the fact that the costs do match. The invoices and receipts will be
set to unresolved status, and an attempt will be made to match them at a one-to-one
level.

4-8 Oracle Retail Invoice Matching Operations Guide

Invoice Auto-Matching

Example 4

The following example illustrates a successful match within tolerance.

Receipts for a

Total Extended

PO/Location Cost Total Quantity
Invoice 1 $50,035 1.000
Invoice 2 $150,100 5,000
Totals: $200,135 6,000

Receipts for a

Total Extended

PO/Location Cost Total Quantity
Receipt 1 $50,000 2,000
Receipt 2 $50,000 2,000
Receipt 3 $100,000 2,000
Totals: $200,000 6,000

One-to-One Invoice Matching

One-to-one invoice matching attempts to match each invoice for the PO/location with
a single receipt for the PO/location. First, the system attempts a match between the
total extended costs. If the extended costs match, the system may, depending upon a
supplier option, attempt a match between the total quantities. If there is either an exact
match or a match within tolerance, the invoice and receipt along with their lines are
considered to be matched. If no match can be found for the invoice, it is left

unresolved.

One-to-one matching may result in a multi-unresolved scenario. If any invoices within
the PO/location can be successfully matched with one and only one receipt and that
receipt can be matched to only one invoice for the PO location, then those invoices and
receipts are considered to be matched. If no unmatched invoices remain, then
processing stops for the PO/location and all invoices are considered matched. Only
when one unmatched invoice exists for the PO/location can line level matching occur.
If more than one invoice remains after one-to-one matching, then all remaining
unmatched invoices and receipts are considered to be multi-unresolved.

One-to-one matching is driven by invoices. Therefore, if there are unmatched receipts
remaining but no unmatched invoices for the PO/location, no further processing
occurs. The receipts remain unresolved but no discrepancies are generated.

Functional Design 4-9

Invoice Auto-Matching

Example 1

The following example illustrates how one invoice matches with one and only one
receipt. One invoice and two receipts are unresolved.

Invoices for a

Total Extended

Status Post

PO/Location Cost Total Quantity Matching
Invoice 1 $50,000 5,000 Matched
Invoice 2 $100,000 10,000 Unresolved

Invoices for a

Total Extended

Status Post

PO/Location Cost Total Quantity Matching
Receipt 1 $50,000 5,000 Matched
Receipt 2 $25,000 2,500 Unresolved
Receipt 3 $35,000 2,500 Unresolved

In the example, Invoice 1 matches with Receipt 1. However, the remaining invoice and
receipts do not match one-to-one. Because there are two unmatched receipts remaining
and only one unmatched invoice, the remaining unmatched invoice and receipts are
considered to be unresolved. If they are eligible for detail matching, they are sent to
the detail-matching algorithm.

Example 2

The following example illustrates a multi-unresolved match, with no successful

matches.

Invoices for a

Total Extended

Status Post

PO/Location Cost Total Quantity Matching

Invoice 1 $50,000 5,000 Multi-unresolved
Invoice 2 $25,000 2,500 Multi-unresolved
Invoice 2 $35,000 3,000 Multi-unresolved

Invoices for a

Total Extended

Status Post

PO/Location Cost Total Quantity Matching

Receipt 1 $40,00 4,000 Multi-unresolved
Receipt 2 $25,000 2,500 Multi-unresolved
Receipt 3 $25,000 2,500 Multi-unresolved
Receipt 4 $10,000 1,000 Multi-unresolved

In the example, Invoice 2 can be successfully matched to both Receipt 2 and Receipt 3.
Therefore, no match can be obtained for Invoice 2. All invoices and receipts are set to
multi-unresolved status.

4-10 Oracle Retail Invoice Matching Operations Guide

Invoice Auto-Matching

Example 3

The following example illustrates another multi-unresolved match, with no successful

matches.

Invoices for a

Total Extended

Status Post

PO/Location Cost Total Quantity Matching

Invoice 1 $40,000 4,000 Multi-unresolved
Invoice 2 $25,000 2,500 Multi-unresolved
Invoice 3 $25,000 2,500 Multi-unresolved
Invoice 4 $10,000 1,000 Multi-unresolved

Invoices for a
PO/Location

Total Extended
Cost

Total Quantity

Status Post
Matching

Receipt 1 $50,000 5,000 Multi-unresolved
Receipt 2 $25,000 2,500 Multi-unresolved
Receipt 3 $35,000 3,500 Multi-unresolved

In the example, Receipt 2 can be successfully matched to both Invoice 2 and Invoice 3.
All invoices and receipts are set to multi-unresolved status.

Example 4

The following example illustrates a multi-unresolved match, but one with successful

matches.

Invoices for a

Total Extended

Status Post

PO/Location Cost Total Quantity Matching
Invoice 1 $50,000 5,000 Multi-unresolved
Invoice 2 $25,000 2,500 Multi-unresolved
Invoice 3 $35,000 3,500 Matched

Invoices for a
PO/Location

Total Extended
Cost

Total Quantity

Status Post
Matching

Receipt 1 $40,000 4,000 Multi-unresolved
Receipt 2 $25,000 2,500 Multi-unresolved
Receipt 3 $25,000 2,500 Multi-unresolved
Receipt 4 $35,000 3,000 Matched

In the example, Invoice 2 can be successfully matched with both Receipt 2 and Receipt
3. Invoice 3, however, can be successfully matched only with Receipt 4. Therefore,
Invoice 3 and Receipt 4 are set to matched status. All other invoices and receipts for
the PO location are set to multi-unresolved status.

Functional Design 4-11

Invoice Auto-Matching

Example 5

The following example illustrates a scenario in which all invoices match, but there are
remaining unresolved receipts.

Invoices for a Total Extended Status Post
PO/Location Cost Total Quantity Matching
Invoice 1 $50,000 5,000 Matched
Invoice 2 $25,000 2,500 Matched
Invoice 3 $35,000 3,000 Matched
Invoices for a Total Extended Status Post
PO/Location Cost Total Quantity Matching
Receipt 1 $50,000 5,000 Matched
Receipt 2 $25,000 2,500 Matched
Receipt 3 $15,000 2,500 Unresolved
Receipt 4 $35,000 3,000 Matched
Receipt 5 $75,000 10,000 Unresolved

In the example, all three invoices can be successfully matched to one and only one
receipt. However, two unmatched receipts remain. The invoices are still considered
matched, and the receipts remain unresolved.

Elibigility for Line-Level Matching

In auto-matching, matching can be performed for entire invoices or broken down to
the line level. PO location level matching and one-to-one invoice matching are
performed for entire invoices and receipts. Line level matching is performed by item.

In order to be eligible for line level matching, an invoice or receipt must meet the
following conditions:

1. Neither the invoice nor receipt can be in multi-unresolved status: If the invoice or
receipt is in multi-unresolved status, it is assumed that human intervention is
required. No further attempts are made to match the applicable invoice at the line
level.

2. Lines must be present on the invoice: Auto-matching assumes that invoices either
have all lines in the system or no lines. The system neither validates nor processes
partial invoices. If any lines are present, auto-matching assumes that all lines are
present.

3. The number of days to routing must be exceeded: The system uses settings and a
formula to arrive at its determination of routing days. A supplier option is used to
define how long the system should wait before routing discrepancies for invoices
for that supplier. However, if the invoice is due sooner than the routing date, then
discrepancies may be routed earlier than the route date. A system option
determines the maximum number of days before an invoice due date that
discrepancies will be routed. The earliest date between the routing date defined by
the supplier option and the routing date dictated by the system option is the date
on which auto-match routes discrepancies for an invoice.

4-12 Oracle Retail Invoice Matching Operations Guide

Invoice Auto-Matching

Supplier option: routing days = x days

System option: maximum days before due date = y days
Supplier driven routing date = invoice date + x days
System driven routing date = invoice due date - y days

The date of actual routing is the earlier of the supplier driven routing date and the
system-driven routing date.

Line-Level Matching

If only one invoice remains unmatched and zero-to-many receipts are unmatched for
the PO location and the invoice is eligible, the system attempts to match each line item
on the invoice to receipt line items on the receipts for the same item. If a match is not
found, price and/or quantity discrepancies are created and routed. Once line level
matching is complete for a PO location, if all lines have been matched, then the entire
invoice and all of the receipts are considered matched. Otherwise, they remain
unresolved.

When invoice lines are sent through line level matching, all existing unresolved or
partially resolved cost discrepancies are deleted along with any partial resolutions. If
line level matching produces new discrepancies, they are created and routed, thus
ensuring that discrepancies are routed with the latest information available about the
invoice and receipt lines.

If no receipt lines correspond to an invoice line, cost matching is attempted for the
applicable invoice line using the PO's unit cost. The system assumes the invoice line
exists on the order. If there is a discrepancy, a cost discrepancy is created and routed. In
this scenario, a quantity discrepancy is automatically created and routed where the
entire invoiced quantity is the discrepant quantity.

For line-level matching, cost and quantity matching are always performed. If cost
matching fails, quantity matching is still performed in order to route potential quantity
discrepancies that may be discovered. When discrepancies are created, the PO's
supplier is associated with the discrepancy.

For quantity line level matching, the comparison is made between the quantity
invoiced and the sum of the quantities received across the receipts for that item. If a
quantity match cannot be obtained, then a quantity discrepancy is generated and
routed for the invoice line and the receipt lines for that item.

Example 1

The following example illustrates a scenario in which all lines match, and the invoices
and receipts are set to matched status.

Invoice Lines for a Status Post
PO/Location Item Unit Cost Quantity Matching
Invoice 1 550 Matched

- Invoice line Item 1 $5.00 100 Matched

- Invoice line Ttem 2 $10.00 200 Matched

- Invoice line Item 3 $15.00 250 Matched

Functional Design 4-13

Invoice Auto-Matching

Invoice Lines for a Status Post
PO/Location ltem Unit Cost Quantity Matching
Receipt 1 565 Matched

- Receipt line Item 1 $5.02 105 Matched

- Receipt line Item 2 $10.10 210 Matched

- Receipt line Item 3 $15.03 250 Matched

In the example, assume line-level tolerances are set such that all lines match, and the
line-level statuses are set to "matched" accordingly.

Example 2

The following example illustrates a scenario in which some lines match, and the
invoices and receipts remain in unresolved status.

Invoice Lines for a Status Post
PO/Location ltem Unit Cost Quantity Matching
Invoice 1 550 Unresolved
- Invoice line Item 1 $12.00 100 Unresolved
- Invoice line Item 2 $10.00 200 Matched

- Invoice line Item 3 $12.00 250 Unresolved
Invoice Lines for a Status Post
PO/Location Item Unit Cost Quantity Matching
Receipt 1 550 Unresolved
- Receipt line Item 1 $5 100 Unresolved
- Receipt line Ttem 2 $10 200 Matched

- Receipt line Item 3 $10 250 Unresolved

In the example, the lines value for Item 2 is matched. However, because Items 1 and 3
do not match within tolerance, the receipt and invoice are unmatched.

Example 3

The following example illustrates a scenario in which some lines match, and the
invoices and receipts remain in unresolved status. Note that one invoice line has no
corresponding receipt item.

Invoice Lines for a Status Post
PO/Location Item Unit Cost Quantity Matching
Invoice 1 550 Unresolved
- Invoice line Item 1 $12.00 100 Unresolved
- Invoice line Item 2 $10.00 200 Matched

- Invoice line Item 3 $12.00 250 Unresolved

4-14 Oracle Retail Invoice Matching Operations Guide

Invoice Auto-Matching

Invoice Lines for a Status Post
PO/Location ltem Unit Cost Quantity Matching
Receipt 1 550 Unresolved
- Receipt line Item 1 $5.00 100 Unresolved
- Receipt line Item 2 $10.00 200 Matched

Order Lines for a

PO/Location ltem Unit Cost

- Order line Item 1 $5.00

- Order line Item 2 $10.00

- Order line Item 3 $12.00

In the example, Item 2 matches. A cost discrepancy is created for Item 1. No cost
discrepancy is created for Item 3 because its unit cost matches the PO's unit cost. A
quantity discrepancy is created for Item 3 where the received quantity is zero because
the item is not on the receipt.

Example 4

The following example illustrates a scenario in which one invoice line is matched to
many receipt lines.

Invoice Lines for a Status Post
PO/Location ltem Unit Cost Quantity Matching
Invoice 1 Matched

- Invoice line Item 1 $5.00 100 Matched
Invoice Lines for a Status Post
PO/Location ltem Unit Cost Quantity Matching
Receipt 1 Matched

- Receipt line Item 1 $5.00 70 Matched
Receipt 2 Matched

- Receipt line Item 1 $5.00 30 Matched

In the example, one invoice line can be matched with two receipt lines.

Recycling and Overall Flow

As soon as invoices arrive, the next auto-matching batch run processes them. If there
are no receipts, invoices are sent to cost pre-matching immediately - allowing for early
identification of cost discrepancies and correction of PO, if necessary, to improve
match rates when receipts arrive.

Once receipts arrive, the invoices and receipts are matched at the PO /location level
and at the one-to-one level. If no match exists, these invoices and receipts are recycled
through summary level matching until the routing days parameter has passed. If there
is a match, then any unresolved or partially resolved cost discrepancies are removed
from the system.

Functional Design 4-15

Invoice Auto-Matching

For discrepancies that have been fully resolved, the actions taken are reflected in the

adjusted total extended cost and adjusted total quantity of the invoices and the

receipts. The adjusted cost and quantity values will be available to support summary

matching on-line.

After the routing days parameter has passed, an invoice in unmatched status will

undergo line-level matching. In this type of scenario, all existing unresolved or

partially resolved cost discrepancies are deleted. New cost and quantity discrepancies

are created if any exist.

After line level matching is performed for an invoice (through either the auto-match or
the on-line matching process), that invoice is never processed by auto-match again.

Partially Matched Receipts

Users may choose to split a receipt item. Splitting a receipt a portion of the receipt
quantities to support a match or resolve a discrepancy online. The unmatched portion
of the receipt is available to match against future invoices. Partially matched receipts
(that is, the unmatched portion) are available to both on-line and auto-match processes

to support matches.

Example 1

The following example illustrates summary level matching:

Invoice Lines for a Extended Status Prior to Status After
PO/Location ltem Cost Quantity Matching Matching
Invoice 1 $30,000 500 Unresolved Matched
Invoice Lines for a Extended Status Prior to Status After
PO/Location Item Cost Quantity Matching Matching
$60,000 1,000 Partially Matched Matched
$30,000 500 Previously matched | Matched
$15,000 250 Unresolved Matched
$15,000 250 Unresolved Matched

In the example, a partially matched receipt is used to match an unprocessed invoice.
Only the unmatched lines for the receipt are used to determine whether the invoice
and receipt match at the summary level.

Example 2

The following example illustrates line level matching:

Invoice Lines for Extended Status Prior to Status After
a PO/Location Item Cost Quantity Matching Matching
Invoice 1 Unresolved Unresolved
- Invoice line 2 $15.00 250 Unresolved Unresolved
- Invoice line 3 $15.00 250 Unresolved Matched

4-16 Oracle Retail Invoice Matching Operations Guide

Invoice Auto-Matching

Invoice Lines for Extended Status Prior to Status After
a PO/Location Item Cost Quantity Matching Matching
Receipt 1 Partially Matched Matched

- Receipt line Item 1 $30.00 500 Previously matched | Matched

- Receipt line Item 2 $15.00 250 Previously matched | Matched

- Receipt line Item 3 $15.00 250 Unresolved Matched

In the example, the invoice remains unresolved and the receipt becomes matched.
Even though Item 2 of Invoice 1 matches with Item 2 of Receipt 1, Item 2 of Receipt 1
had already been matched to a different line on a different invoice. Therefore, it is not
reused here to make a match. Item 3 of Receipt 1 is unresolved and is therefore
available to be matched to Item 3 of Invoice 1.

Matching Tolerances

Matching tolerances are defined for:

» Costs and quantities, for both summary and detail (line-level) matching
= Discrepancies in favor of the retailer and those in favor of the supplier

= Tolerance ranges

= Supplier, department, or system level (default)

Tolerances are set up for total invoice (merchandise) cost to support summary level
matching during the auto-match and on-line processes. Summary level quantity
matching is optional, per supplier parameter; the tolerance dialog. Detail (line-level)
cost matching is performed based on the unit cost of the item. Quantity matching is
always done at the line-level, requiring a tolerance provision. Tolerances may be set up
as percentages or nominal amounts. A system option provides for definition of the
maximum percentage tolerance that can be used.

Tolerances are defined separately for discrepancies in favor of the retailer and those in
favor of the supplier. To illustrate, if the invoice cost is $20.00 and the purchase order
(receipt) cost is $30.00, the discrepancy of 10 is in favor of the retailer because the
invoice cost is less than expected.

Discrete tolerance amounts or percentages may be defined for value and quantity
ranges to hone the matching process. Ranges are defined for summary and line-level
matching.

In general, when attempting to match invoices with quantities representing weight,
the "percentage” tolerance type at the system level should be used. For these invoices,
the system would apply the same logic regardless of whether the invoice shows
number of pounds or number of packs. So using a percentage rather than a amount
would be the more effective choice.

Tolerances may be defined at the supplier level, the department level, or the
system-wide level. The matching processes first determine whether a supplier-level
tolerance applies to the invoice being matched. If a supplier-level tolerance does not
exist, a check will be made for department level. If line-level matching is being
performed, then ReIM will use the department for that item to retrieve tolerances. In
the summary matching case, an item is selected at random from the corresponding PO,
and the department for that item is used to retrieve tolerances. Finally, if supplier- and
department- level tolerances do not exist, the system-level tolerance will default.

Functional Design 4-17

Best Terms Calculations

History and Metrics

ReIM records summary and detail history for matched invoices and receipts. In
addition, the system records whether or not each match was exact or not. At the
summary level, the group of receipts and invoice numbers is stored. At the detail level,
receipt lines matching to a particular invoice line is also stored.

For each auto-match run, the following metrics about the run are stored:
s The run date.

s The number of invoices that matched exactly.

s The number of invoices that matched within tolerance.

» The total number of invoices processed.

Best Terms Calculations

The best terms calculation process compares the terms on the invoice and the terms on
the PO, selects the most favorable term (according to each term's ranking), and
determines a terms date. Best terms and terms date are subject to supplier-level option.
The best terms calculation process is called after the auto-matching and on-line
matching processes, and for pre-paid invoices.

After the best terms are calculated and the terms date is determined, the results are
written to IM_DOC_HEAD for the invoice.

Terms Ranking Overview

Terms are ranked numerically. Terms with a lower ranking are preferable to terms with
a higher ranking. During the best terms calculation, the ranks of the invoice terms and
the PO terms are compared, and the terms with the lowest rank are selected as the best
terms.

Supplier Options

The following supplier options (IM_SUPPLIER_OPTIONS) affect the best terms
calculation:

= Always Use Invoice Terms (USE_INVOICE_TERMS_IND)

When this indicator is set to Y, only invoice terms will be used, and there the
comparison against PO terms is not performed.

= ROG Date Allowed (ROG_DATE_ALLOWED_IND)

When this indicator is set to Y, the supplier allows the receipt of goods (ROG) date
to be used to when determining the terms date. This indicator can only be set to Y
if the Always Use Invoice Terms indicator is set to N.

4-18 Oracle Retail Invoice Matching Operations Guide

Credit Note Auto-Matching

Terms Date

The terms date is the later of the invoice date or the receipt of goods (ROG) date. The
ROG date replaces invoice date as the terms date when all of the following are true:

Always Use Invoice Terms (USE_INVOICE_TERMS_IND) on the supplier options
table is set to N.

ROG Date Allowed (ROG_DATE_ALLOWED_IND) on the supplier options table
issetto Y.

The ROG date is later than the invoice date.

Note: If there are multiple receipts for an invoice, the ROG date is
the date of the last receipt.

Assumptions and Dependencies

Best terms calculation applies only to merchandise invoices.

Merchandise invoices must be in Matched status before the best terms calculation
is performed.

When the supplier option, Always Use Invoice Terms, is set to Y, the invoice terms
are always used. The due date is calculated using the invoice date. The PO terms
are never considered.

The payment of invoices prior to or during matching does not update the
matching status of the invoice. In these situations, a pre-paid invoice indicator is
tripped to ensure the invoice is not paid a second time after matching and to
trigger the correct accounting distribution. The best terms process is not
re-invoked if the pre-paid indicator is set to Y.

Credit Note Auto-Matching

Credit Note Auto-Matching pairs credit note requests to corresponding credit notes
sent by the supplier. The CreditNoteAutoMatchBatch attempts auto-matching of credit
notes from suppliers, to credit note requests from the retailer without manual
intervention. The batch also creates and resolves detail level discrepancies utilizing a
predefined set of reason codes. These reason codes are defined within Invoice
Matching through the System Options Maintenance screen. In addition, the batch
utilizes a variety of configurable "keys" to allow for document groups to be matched in
ways other than just distinct purchase order and location combinations.

The following table describes under which circumstances credit notes and credit note
requests are eligible to be matched by the CreditNoteAutoMatchBatch process.

Document Document | Holding

Status Hold Status | Supplier Credit Notes | Credit Note Requests
Approved Never held | Yes N/A Eligible

Approved Held Yes Eligible N/A

Approved Released Yes Eligible N/A

Approved Never held | No Ineligible Eligible

Posted Never held | No Eligible N/A

Functional Design 4-19

Credit Note Auto-Matching

In addition to the requirements listed above, the following criteria must apply for
documents to be processed by the CreditNoteAutoMatchBatch:

s Credit notes must never have had a discrepancy created against them.
s Credit notes must never have been previously detail matched.

If the documents are eligible for matching, they are collected into a pool of matchable
documents by the batch. The batch process is multithreaded. It performs matching on
eligible documents by first grouping the eligible documents with respect to the
supplier. Once grouped with respect to the supplier, the documents are processed for
each configurable key. Each document-key set is further processed using the following
three distinct matching algorithms:

= Summary matching
= One-to-one matching
s Detail (line level) matching

In summary matching, documents are matched in groups at the summary level by
comparing the total extended costs for all the documents in the group. Quantity
matching is only attempted if the supplier options indicate it as required. If a match is
achieved, the documents are marked with the matched status, and drop out of the
matching pool.

If the summary match attempt fails for the group, the batch attempts matching at the
one-to-one level. One-to-one matching attempts to match each distinct eligible credit
note to a single credit note request. The match is again attempted by comparing the
extended cost on the credit note to that of the credit note request, and quantity
matching is only attempted depending on the supplier options. If one-to-one matches
are found, they are flagged as such and will not be processed by subsequent match
attempts.

Line level matching is the last attempted match algorithm. This algorithm attempts to
match documents at the item line level. To avoid item matching between unrelated
credit notes and credit note requests, this algorithm expects just one unmatched credit
note to be remaining in the matchable pool. In case there is more than one credit note
still in unmatched status, no match attempt will be made. Line level matching also
automatically creates and resolves discrepancies, if the appropriate system options
have been set. Once these discrepancies are created, the algorithm also attempts to
resolve the discrepancies by creating resolution actions in the system in accordance
with the nature of the discrepancies.

On the next run of the ReasonCodeActionRollupBatch, documents are generated for
any resolution action generated by the CreditNoteAutoMatchBatch.

Configurable Keys (Flexible Pool Keys)

Grouping documents into sets using configurable (flexible) pool keys allows for
matching in combinations beyond just the PO / Location combination. Note that when
we refer to a document set, the set can only contain documents within the same
supplier.

These document-key sets are categorized by common attributes which are defined on
the document itself (credit notes and credit note requests). These attributes are referred
to as Configurable or Flexible Pool Keys. By default, the credit note auto match process
aggregates document sets based on the following keys:

4-20 Oracle Retail Invoice Matching Operations Guide

Credit Note Auto-Matching

s Credit Note Request ID
s Original Invoice ID
s PO / Location combination

In case of Credit Note Request ID and Original Invoice ID, two of the four
customizable reference fields of the documents are used as place holders for the key
values. For instance, the Ref No.3 field is used to store the Credit Note Request ID, and
the Ref No. 4 field is used to store the original Invoice ID.

A document can exists in only one document-key set at a time. Note that a
document-key set will exist only if it contains both credit notes and credit note
requests. Matching will be attempted only for sets not containing both credit notes and
credit note requests. This makes it impossible to create, route and resolve discrepancies
for credit notes that are yet to be received by the retailer.

Within each document-key set, matches are attempted using three different matching
algorithms. If a match is obtained with an algorithm, the matched documents are
flagged as such, and processing continues on to the next document-key set. When all
configurable three algorithms are finished processing within a document-key sets,
processing moves to the next configurable key-set and starts again from the first
matching algorithm.

Below is the order for attempting a match in a document-key set when no match is
found.

1. Credit Note Request ID (configurable key)

= Summary Matching (matching algorithm)

= One to One Matching (matching algorithm)

= Line-level Matching (matching algorithm)
2. Original Invoice ID (configurable key)

= Summary Matching (matching algorithm)

= One to One Matching (matching algorithm)

= Line-level Matching (matching algorithm)
3. PO/Location (configurable key)

= Summary Matching (matching algorithm)

= One to One Matching (matching algorithm)

s Line-level Matching (matching algorithm)

Summary Group Matching Algorithm

Summary matching attempts to match the total extended cost of the credit notes with
the total extended cost of the credit note requests. Extended cost is defined as the unit
cost for an item multiplied by the quantity of the item on the document. The total
extended cost for each credit note and credit note request is taken from the document
header.

Quantity matching also is sometimes required. Whether quantity matching is
performed is determined by supplier options. Quantity matching compares the total
quantity on the credit note, with the total quantity on the credit note request. As in cost
matching, the total quantity for each credit note and credit note request is taken from
the header.

Functional Design 4-21

Credit Note Auto-Matching

If the costs and quantities do not match exactly, then the system attempts to match
them within tolerance. (See "Tolerances" in this section for information.) If a match is
achieved, all of the credit notes, credit note requests, and their lines for that
document-key set are assumed to be matched. If a match is not achieved, all credit
notes and credit note requests for that document-key set are left in their original
approved status. After summary matching has been completed, the credit notes and
requests become eligible to be processed with a different matching algorithm if no
match was found at the summary level.

Consider an attempted summary match where two credit notes were received for two
credit note requests. Assuming that the invoice and receipt data in the application is as
follows:

s Purchase Order: 89890
s Location: 1000001

Document Type | Document ID | Unit Cost Extended Cost Quantity
Invoice INV555 $11.00 $440 40
Receipt SHP444 $10.00 $300 30

When matched, the invoice and receipt will create a cost discrepancy of $40, and a
quantity discrepancy of $100, which will generate a credit note request cost for $40 and
a credit note request quantity for $100.

The default Invoice Matching Pool Key configuration will have the following priority
and values:

1. Credit Note Request ID

2. Invoice ID

3. PO/Location

Example 1: Matchable by credit note request ID; quantity matching not required by

supplier
The following example illustrates a successful match using the first Pool Key attribute,
Credit Note Request ID.
Total
Credit Note Extended
Request ID Cost Ref No 3 Ref No 4 Quantity
CRDNRC-123 40 CRDNRC-123 | INV555 40
CRDNRQ-456 100 CRDNRQ-456 | INV555 10
Total
Credit Note Extended
Request ID Cost Ref No 3 Ref No 4 Quantity
CRDNT-246 40 CRDNRC-123 INV555 40
CRDNT-369 100 CRDNRQ-456 INV555 10

The credit note request associated with a credit note is determined from the Ref No 3
field that should contain the credit note request ID. In the example, the total extended
cost for a credit note matches exactly with the extended cost of its respective Credit

4-22 Oracle Retail Invoice Matching Operations Guide

Credit Note Auto-Matching

Note Request. Therefore, all credit notes and credit note requests will be set to
matched status.

Example 2: Quantity matching required by supplier; outside tolerance

The following example illustrates an unsuccessful match, where quantity matching is
required by the supplier, and the tolerance level is set to 10%. It is assumed that the
documents are matchable by credit note request ID.

Total
Credit Note Extended
Request ID Cost Ref No 3 Ref No 4 Quantity
CRDNRC-123 400 CRDNRC-123 | INV555 20
CRDNRC-456 100 CRDNRQ-456 | INV555 2

Total
Credit Note Extended
Request ID Cost Ref No 3 Ref No 4 Quantity
CRDNT-246 500 CRDNRC-123 INV555 25

In the example, the match is unsuccessful, despite the fact that the extended costs do
match. The failed match is due to the requirement by the supplier to match quantities,
and the difference in quantities on the credit note request--and the credit note is more
than the allowed tolerance of 10 percent. The credit notes and credit note requests will
remain in their original status

Example 3: Quantity matching required by supplier; within tolerance

The following example illustrates an unsuccessful match when the pool key is the
credit_note_request_ID (Ref No 3), but a successful match when the pool key is
Invoice_ID. In this scenario, quantity matching is required by the supplier, and
tolerance level is set to 10.

Total
Credit Note Extended
Request ID Cost Ref No 3 Ref No 4 Quantity
CRDNRC-123 400 CRDNRC-123 INV555 20
CRDNRC-456 100 CRDNRQ-456 INV555 4

Total
Credit Note Extended
Request ID Cost Ref No 3 Ref No 4 Quantity
CRDNT-246 500 CRDNRC-123 INV555 25

In the example, the match is not successful when using Credit Note Request ID
(reference field 3) as the pool key, because the extended cost difference (500 - 400) is
outside of tolerance.

However, if the batch process was using the Invoice ID (reference field 4) as the pool
key the match would be successful because the extended costs (400 + 100 = 500) match,
and the quantities match within tolerance (20 + 4 = 24, where 24 is within 10% of 25).
All the credit note requests and credit notes will be set to the status of matched.
Example 4 illustrates a scenario in which Invoice ID is used as the pool key.

Functional Design 4-23

Credit Note Auto-Matching

Note: In case of cost discrepancies, the costs will match if the
extended cost differences between the credit note request and the
credit note are within tolerance.

Example 4: Matchable by invoice ID

If the credit notes and credit requests are not matchable by the credit note request ID.
The matching process will attempt a one-to-one, and then a line-level match before
moving to the next document key-set, which is the Invoice ID. The invoice id is
populated in the Ref 4 field of the credit note. The following example illustrates an
attempted summary match which had failed when using credit note request ID, but is
successful when the match is attempted using the second priority Pool Key attribute,

Invoice ID.

Total
Credit Note Extended
Request ID Cost Ref No 3 Ref No 4 Quantity
CRDNRC-123 20 CRDNRC-123 INV555 2
CRDNRQ-456 80 CRDNRQ-456 INV555 8

Total
Credit Note Extended
Request ID Cost Ref No 3 Ref No 4 Quantity
CRDNT-246 100 INV555 10

In the example, the Ref 3 field is empty. Therefore a match attempted with the Credit
Note Request ID fails. Assuming that one-to-one and line-level matches also fail, a
second attempt to summary match will be made in the next document-key set i.e.
using the invoice ID. In this case, since the credit note and credit note requests match
by their invoice ID, all credit notes and credit note requests will be set to matched
status.

Example 5: Matchable by PO location

If a credit note and credit request is not matchable in the document-key sets utilizing
credit note request ID, or invoice ID, then the match will be attempted using the PO
and Location combination which is the third priority in the default Pool Key Attributes
of the system.

4-24 Oracle Retail Invoice Matching Operations Guide

Credit Note Auto-Matching

Assuming that the invoice and receipt data in the in application is as follows:
s Purchase Order: 89890
s Location: 1000001

Document Document ID | Unit Cost Extended Cost Quantity
Invoice INV555 $11.00 $440 40
Receipt SHP444 $10.00 $300 30

When matched, the invoice and receipt will created a cost discrepancy of $40, and a
quantity discrepancy of $100 which will generate a credit note request cost for $40 and
a credit note request quantity for $100.

Credit Note

Request ID Total Extended Cost Ref No 3 Ref No 4 | Quantity
CRDNRC-123 40 CRDNRC-123 INV555 40
CRDNRQ-456 100 CRDNRQ-456 INV666 10
Credit Note

Request ID Total Extended Cost Ref No 3 Ref No 4 | Quantity
CRDNT-246 140 50

In the example, both the Ref No 3 and Ref No 4 fields on the credit note are empty.
Therefore matching is not even attempted at the Credit Note Request ID or invoice ID
pool keys. A third attempt to match will be made with the PO and Location
combination. As calculated from the above data, the PO and location combination for
all three documents is: 89890-1000001. Since this combination is the same for all three
documents, and the extended cost of the credit note requests match with the credit
note, all credit notes and credit note requests will be set to matched status.

One-to-One Invoice Matching Algorithm

One-to-one credit note matching is considered another form of summary matching.
The only addition to the rule is that instead of attempting matches in groups,
one-to-one matching attempts to match a single credit note with a single credit note
request.

The batch first attempts a match between the total extended costs. If the total extended
costs do not match exactly for the credit note and the credit note request pair, then
tolerances are applied to check if the cost discrepancy is within tolerance. In case
quantity matching is required by the supplier, header level quantity matching is also
attempted for the document pair within tolerance. If no match can be found, the
documents are left in their original status.

One-to-one algorithm will attempt a match only when at least one unmatched credit
note exists in the document-key set. If no unmatched credit notes remain, then
processing stops for the document-key set.

Some scenarios of one-to-one matching are listed below. Note that the examples are
given to demonstrate an understanding of one-to-one matching algorithm. It is
assumed that quantity matching is required in the supplier options, and documents
are matchable only by credit Note Request ID.

Functional Design 4-25

Credit Note Auto-Matching

Example 1: Exact match

The following example illustrates how one credit note matches with one and only one

credit note request. One credit note and two credit note requests are left in their
original approved status.

Credit Notes

Total Extended
Cost

Total Quantity

Status Post Matching

CRDNT 1 $50,000 5,000 Matched

CRDNT 2 $100,000 10,000 Approved

Credit Note Total Extended

Request Cost Total Quantity Status Post Matching
CRDNRC 1 $50,000 5,000 Matched

CRDNRC 2 $25,000 2,500 Approved

CRDNRC 3 $35,000 2,500 Approved

In the example, CRDNT 1 matches with CRDNRC 1. However, the remaining credit
(CRDNT 2) does not match with either of the two remaining credit note requests so it

remains unmatched. The remaining credit note requests (CRDNRC 2 and CRDNRC 3)

are also left in their original state. The matching algorithm will now move to the next
matching algorithm within the document-key set to consider matching these

documents.

Example 2: Match unsuccessful; one credit note but two credit note requests

The following example illustrates an unsuccessful match (no successful matches).

Credit Notes

Total Extended
Cost

Total Quantity

Status Post Matching

CRDNT 1 $50,000 5,000 Approved

CRDNT 2 $25,000 2,500 Approved

CRDNT 3 $35,000 3,000 Approved

Credit Note Total Extended

Request Cost Total Quantity Status Post Matching
CRDNRC 1 $50,000 5,000 Approved

CRDNRC 2 $25,000 2,500 Approved

CRDNRC 3 $35,000 2,500 Approved

CRDNRC 4 $10,000 1,000 Approved

In the example, CRDNT 2 can be successfully matched to both CRDNRC 2, and
CRDNRC 3. Therefore, no match can be obtained for Invoice 2. All credit notes and
credit note requests are left in their original status.

4-26 Oracle Retail Invoice Matching Operations Guide

Credit Note Auto-Matching

Example 3: Match unsuccessful; two credit notes for one credit note request

The following example illustrates another multi-unresolved match, with no successful

matches.

Credit Notes

Total Extended
Cost

Total Quantity

Status Post Matching

CRDNT 1 $40,000 4,000 Approved

CRDNT 2 $25,000 2,500 Approved

CRDNT 3 $25,000 2,500 Approved

CRDNT 4 $10,000 1,000 Approved

Credit Note Total Extended

Request Cost Total Quantity Status Post Matching
CRDNRC 1 $50,000 5,000 Approved

CRDNRC 2 $25,000 2,500 Approved

CRDNRC 3 $35,000 3,000 Approved

In the example, CRDNRC 2 can be successfully matched to both CRDNT 2 and
CRDNT 3. All credit notes and credit note requests are left in the original Approved

status.

Example 4: All credit notes are matched, but credit note requests remain

The following example illustrates a scenario in which all credit notes match, but there

are remaining unresolved credit note requests.

Credit Notes

Total Extended
Cost

Total Quantity

Status Post Matching

CRDNT 1 $50,000 5,000 Matched

CRDNT 2 $25,000 2,500 Matched

CRDNT 3 $35,000 3,000 Matched

Credit Note Total Extended

Request Cost Total Quantity Status Post Matching
CRDNRC 1 $50,000 5,000 Matched

CRDNRC 2 $25,000 2,500 Matched

CRDNRC 3 $15,000 2,500 Approved

CRDNRC 4 $35,000 3,000 Matched

CRDNRC 5 $75,000 10,000 Approved

In the example, all three credit notes are successfully matched to one and only one
credit note request. However, two unmatched credit note requests remain. Since there
are no credit notes left for matching, processing will stop for this document-key set.

Functional Design 4-27

Credit Note Auto-Matching

Line Level Matching Algorithm

Once summary matching and one-to-one matching pools have been exhausted, the
CreditNoteAutoMatchBatch proceeds to attempts match at the line level.

In addition to the eligibility requirements for summary matching, lines must be
present on the documents for Line-level matching to proceed. The batch assumes that
all lines are present and valid for that credit note and credit note request. Moreover,
the algorithm attempts matches only if there is just one credit note left unmatched in
the document-key set.

Considering that only one eligible credit note and zero-to-many credit note requests
are unmatched for a document key-set, the system attempts to match each line item on
that credit note to a credit note request line item. When a detail level match is found,
the detail on the credit note and credit note request documents are both flagged as
matched. Once line level matching is complete for a document key-set, and all lines
have been matched, then the entire credit note and all of its related credit note requests
are considered matched. Otherwise, they remain in their original approved status.

For line-level matching, cost and quantity matching are always performed. If cost
matching fails, quantity matching is still performed in order to route potential quantity
discrepancies that may be discovered.

For quantity line level matching, the comparison is made between the sum of
quantities from the credit notes and sum of the quantities on the credit note request for
that item. If a quantity match cannot be obtained, then a quantity discrepancy is
generated and routed for the credit note and the credit note request lines for that item.

Example 1: Match within tolerance

The following example illustrates a scenario in which all lines match within tolerance,
and the credit notes and credit note requests are set to matched status.

Credit Note Item Unit Cost Quantity Status Post Matching
CRDNT 1 550 Matched
- Credit note line 1 $5.00 100 Matched
- Credit note line 2 $10.00 200 Matched
- Credit note line 3 $15.00 250 Matched
Credit Note Item Unit Cost Quantity Status Post Matching
CRDNRC 1 565 Matched
- Credit note req. line | 1 $5.02 105 Matched
- Credit note req. line | 2 $10.10 210 Matched
- Credit note req. line | 3 $15.03 250 Matched

In the example, assume line-level tolerances are set such that all lines match, therefore
the line-level statuses are set to matched accordingly.

4-28 Oracle Retail Invoice Matching Operations Guide

Credit Note Auto-Matching

Example 2: Match by resolving discrepancy

The following example illustrates a scenario in which tolerances allow only one line to
matches, but the CreditNoteAutoMatchBatch is able to resolve the discrepancies in
other items, and match the credit note and credit note request.

Credit Note Item gggt Quantity Status Post Matching

CRDNT 1 550 Matched

- Credit note line 1 $12.00 100 Matched (by resolving
discrepancy)

- Credit note line 2 $10.00 200 Matched (by resolving
discrepancy)

- Credit note line 3 $12.00 250 Matched

Credit Note Item | Unit Cost | Quantity | Status Post Matching

CRDNRC 1 600 Matched

- Credit note req. line | 1 $12.00 110 Matched (by resolving discrepancy)

- Credit note req. line | 2 $10.10 200 Matched

- Credit note req. line | 3 $10.00 250 Matched (by resolving discrepancy)

In the example, the lines value for Item 2 is matched. However, items 1 and 3 do not
match within tolerance. If however, reason codes are entered in the appropriate default
columns for automatically handling Credit Note matching discrepancies in the system
options table, then discrepancies are created automatically for Item1 and Item 3, and
the two items are set to matched status on both documents.

Discrepancy Creation and Resolution in Line Level Matching

When discrepancies are created as part of the line-level matching process, they are
automatically resolved by the batch process. This resolution takes place by selecting
the appropriate reason code from the system options and then resolving those
discrepancy by creating resolution actions in the system. For instance, if a cost
discrepancy is detected, then a resolution action in the form of a Credit Note Request
for cost or a Credit Memo is generated. On the next run of the reason code action
rollup process, these newly created resolution actions will be rolled up to create the
appropriate resolution documents.

It is important to distinguish the differences between overages that are in favor of the
retailer as opposed to the supplier. In credit note matching, when a credit note is
greater than the credit note request issued for it, the overage is in the favor of the
retailer and a credit memo is issued to reconcile the discrepancy. This is because the
credit note already represents an asset to the retailer. The supplier has issued more
credit to the retailer than was appropriate based on the credit note request. If the
retailer does not wish to automatically issue credit memos when the credit note is
larger than the credit note request, then the system options, "Auto-resolution Reason
Code for Credit Memo - Cost" and "Auto-resolution Reason Code for Credit
Memo-Qty," should be left blank.

Functional Design 4-29

Credit Note Auto-Matching

Note that if the applicable system option for a resolution action code type does not
have a reason code defined in the System Options Maintenance screen then
discrepancies of that type are not generated. It is assumed that the retailer will handle
these discrepancies manually. This means that the credit note will not be matched and
processing will stop for the document set. This allows for the retailer to have the batch
resolve only specific discrepancy types. For example, many retailers may not want to
automatically generate Credit Memos in response to Credit Note overages.

Example 1: Cost discrepancy

The following example illustrates a scenario in which the first line on the credit note
matches with the first line on the credit note request. The second line has a cost
discrepancy.

Credit Note Item gggt Quantity | Status Post Matching

CRDNT 1 300 Matched

- Credit note line 1 $12.00 | 100 Matched

- Credit note line 2 $5.00 200 Matched (by resolving discrepancy)
Credit Note Item | Unit Cost | Quantity | Status Post Matching

CRDNRC 1 600 Matched

- Credit note req. line | 1 $12.00 110 Matched (by resolving discrepancy)
- Credit note req. line | 2 $10.10 200 Matched

- Credit note req. line | 3 $10.00 250 Matched (by resolving discrepancy)

In the above scenario Item 2 in credit note and credit note request has a cost
discrepancy of $5. The Line level match algorithm automatically generates a cost
discrepancy for the item, and generates a Resolution Action in the system for a Credit
Note Request - Cost, where the total extended cost on the credit note request is
$1,000.00.

Example 2: Quantity discrepancy

The following example illustrates a scenario in which the first line on the credit note
matches with the first line on the credit note request. The second line has a quantity
discrepancy.

Credit Note Item gggt Quantity Status Post Matching

CRDNT 1 300 Matched

- Credit note line 1 $12.00 100 Matched

- Credit note line 2 $10.00 200 Matched (by resolving discrepancy)
Credit Note Item | Unit Cost | Quantity | Status Post Matching

CRDNRC 1 310 Matched

- Credit note req. line | 1 $12.00 110 Matched (by resolving discrepancy)
- Credit note req. line | 2 $10.10 210 Matched

4-30 Oracle Retail Invoice Matching Operations Guide

Credit Note Auto-Matching

In the above scenario Item 2 in credit note and credit note request has a quantity
discrepancy of 10 (assumed to be above tolerance values). The Line level match

algorithm automatically generates a quantity discrepancy for the item, and generates a
resolution action in the system for a Credit Note Request - Quantity.

Note that the above discrepancies are in the favor of the supplier. In case of the
discrepancy being in the favor of the retailer, resolution actions would have been
Credit Memos (cost or quantity).

Example 3: Orphan items - credit memo

A case might exist when an item on the credit note does not exist on the credit note
request. The CreditNoteAutoMatchBatch will resolve the discrepancy of the orphan
items by utilizing the resolution actions for Credit Memos.

Credit Note Item gggt Quantity | Status Post Matching

CRDNT 1 300 Matched

- Credit note line 1 $12.00 100 Matched

- Credit note line 2 $10.00 200 Matched (by resolving discrepancy)
Credit Note Item | Unit Cost | Quantity | Status Post Matching

CRDNRC 1 150 Matched

- Credit note req. line | 1 $12.00 110 Matched

In this scenario Item 2 in credit note does not exist in the credit note request. This
orphan item creates a cost discrepancy. Since the discrepancy is in the favor of the
retailer, the Line level match algorithm will automatically generate a Resolution Action
in the system for a Credit Memo-Cost, where total cost on the memo is $2,000.00.

Role of the Reason Code Action Rollup Batch in Credit Note Matching

The ReasonCodeActionRollupBatch facilitates the CreditNoteAutoMatchBatch process
in the following ways:

s Document creation

Resolution actions created as part of the discrepancy creation process of the

CreditNoteAutoMatchBatch are converted to first class documents on the next run

of the ReasonCodeActionRollupBatch. This is an existing feature of the
ReasonCodeActionRollupBatch.

s Transfer of customizable reference fields

Currently, documents in the system have a set of four (4) customizable reference
fields. These fields are completely optional and their population is left to the
discretion of the retailer and their suppliers. If applicable (see the Systems Options
Screen section in the Oracle Retail Invoice Matching User Guide for information), the
CreditNoteAutoMatchBatch utilizes the third and fourth customizable reference
fields to facilitate matching. In such cases the ReasonCodeActionRollupBatch
makes sure that the values of those fields are transferred to the newly created
documents.

Functional Design 4-31

Credit Note Auto-Matching

Tolerances

Currencies

VAT Matching

Tolerances are handled in a manner similar to the invoice auto match batch process,
and tolerance values used for credit note auto match are same as the tolerance values
used for invoice matching.

Matching tolerances are defined at the following levels:
= Summary or Line

s Cost or Quantity

= Favor of retailer or supplier

= Amount or percentage

Summary matching and one-to-one matching are both considered types of summary
matching. Therefore, one-to-one matching also uses summary level tolerances.

During the matching process, tolerances are selected in the following order:
1. Supplier

2. Department

3. System

If no supplier level tolerances are defined, then departmental tolerances are used for a
random item in the document set. If departmental tolerances are not defined for that
item, then system level tolerances are used for the document set. Note that a document
set must have items to use department level tolerances.

Tolerance values are stored using the primary system currency. If the credit note and
the credit note request both have the same currency but that currency differs from the
system currency, an attempt will be made to convert the currency on the documents to
the system currency. This conversion is attempted only if the applicable
Merchandising system is RMS. The CreditNoteAutoMatchBatch process will attempt
conversion to the system currency utilizing the RMS currency APIs and then
determine if the documents fall within appropriate tolerances. Note that the
CreditNoteAutoMatchBatch process will not attempt to match a credit note with a
credit note request if the currency between the two documents is not the same.

CreditNoteAutoMatchBatch only detects VAT discrepancies at the detail level. This
means that when documents are being processed by the detail matching algorithm, a
check is performed prior to matching, ensuring that for each item the VAT codes and
rates on the credit note match those on the credit note request for the corresponding
item. When a discrepancy is detected, processing for that document stops and detail
matching is not performed for that document. In this circumstance, the Invoice
Matching user will have to match and resolve the VAT discrepancy manually through
the user interface.

4-32 Oracle Retail Invoice Matching Operations Guide

Credit Note Auto-Matching

History and Record Keeping

ReIM records summary and detail history for matched credit notes and credit note
requests. The existing credit note matching history data model will be leveraged to
ensure than an accurate accounting of match data is stored in the system. In addition, a
new history data model has been introduced which holds history data for a specific
match. The new history tables are populated after the completion and success of a
match.

Data Purge

When document data becomes dated, it is purged from the system through the
BatchPurgeBatch. This also is true for the CreditNoteAutoMatchBatch related data. See
"Batch Purge Batch Design" in Chapter 8 for information.

Functional Design 4-33

Credit Note Auto-Matching

4-34 Oracle Retail Invoice Matching Operations Guide

O

Integration

This chapter describes how ReIM integrates with other systems--and related interfaces
and file layouts. It includes an integration overview, a discussion of EDI (with
layouts), an explanation of how ReIM interfaces with financial systems, and details
about LDAP user authentication.

Important note about integration with PeopleSoft Enterprise Finan-
cials: Information about setting up Oracle Retail applications
(including ReIM and RMS) for integration is included in a separate
chapter in this operations guide. For all references to PeopleSoft
Enterprise Financials--and all cross-references from AIA
documentation related to this integration-- see Chapter 7, PeopleSoft
Enterprise Financials Integration.

Integration Overview

This section provides a diagram that shows the overall direction of the data among the
applications and tables. The accompanying explanations are written from a
system/staging table-to-system/staging table perspective, illustrating the movement
of data.

Integration 5-1

Integration Overview

Receiver unit

and cost staging
tables

Merchandising

system o+ SS0 Launch m—— DU:‘T;LBSR:L?I

(RMS 13.x) p
4 S50 I_launch

> RelM
EDI files _
Paper
Documents
Supplier

Staging table
for financial

systems
interface

From the Supplier (to EDI) to RelM

ReIM receives supplier invoices and credit notes via EDI or through on-line entry
processes. These document types are described later in this chapter.

From RelM (to EDI) to the Supplier

ReIM generates debit memos, credit note requests and credit memos for various
reasons (described later in this chapter). Each of these documents is recorded in ReIM
tables to allow for retailer reporting. Also, an ReIM process reads these tables and
creates a file of these documents to support the retailer’s EDI transmissions to
suppliers.

From RelM to the Staging Table for Financial Systems Interface

For a description of the data that is sent through this interface, see "Financial System
Interface" later in this chapter.

5-2 Oracle Retail Invoice Matching Operations Guide

Integration Overview

From the Merchandising System to RelM (Directly and Through EDI)

RelM is able to access foundation data, such as item, purchase order, supplier, and
other information directly from RMS tables. ReIM provides the drivers to access thse
tables without further integration work.

Receipts

Receipts are records of purchased merchandise arriving at the store or warehouse.
Receipt data is accessed in RMS, and certain data elements are extracted from RMS
into ReIM tables to support ReIM-specific actions performed against receipts (for
example, splitting receipt quantities, updating statuses, and so on).

Purchase Orders

Purchase orders (POs) are created in RMS and represent a legally binding
agreement between retailer and supplier for the purchase and sale of goods. The
retailer records the quantity, cost and delivery location of items from the supplier.
On a single PO, RMS supports different costs for the same item going to different
locations. PO costs are used to value receipt quantities.

Supplier Trait

An RMS function, supplier traits are used as a grouping mechanism for suppliers
with common characteristics. They are utilized for mass updates. This data is used
in setting up tolerances within ReIM.

Item

ReIM processes matches at the item transation-level (that is, SKUs). For reference
purposes, UPCs may be used, so they should be provided by the merchandising
system. See RMS documentation for more information about the multi-level item
structure.

Partner

A partner is a business that supplies and bills a retailer for non-merchandise
services. Examples of partners are banks, agents, and expense suppliers. A partner
cannot send merchandise invoices to retailers.

Valued Added Tax (VAT) Code and Rate

VAT is embedded in the cost of hte item. ReIM provides for validation of VAT
taxes charged on the invoice against VAT codes/rates stored in RMS tables for the
item.

Consignment

Consignment is an arrangement whereby the physical control of merchandise (but
not the title of ownership) is transferred from one business known as the
consignor (for example, the vendor) to another known as the consignee (for
example, the retailer). The title to the goods remains with the consignor until the
goods are sold. When consigned goods are sold, the consignor invoices the
consignee. On this invoice, the cost of each item is reduced to a certain proportion,
called the consignment rate. The consignment rate, predetermined by both parties,
represents the consignor’s share of the sale. Once the merchandising system
records a sale, a consignment invoice is created in ReIM for a percentage of the
sale cost. The receipt is implied based on the consignment rate applied to the
selling price; accordingly, the self-billed invoice is assumed to be in matched
status.

Integration 5-3

Integration Overview

Return to Vendor (RTV)

An RTV is a retailer-initiated purchase return of inventoried goods to an external
vendor. The merchandising system uses RTV data to update inventory positions
and write requisite transactions to the stock ledger. ReIM receives RTV data via the
merchandising system from the store and warehouse inventory systems where it is
initiated, where a charge-back document is created.

Deal Bill Backs

RMS tracks certain types of supplier deals (for example, rebates, vendor funded
markdowns, and so on) for billing back to the supplier. Information to support
these billings is receivedin ReIM through an RMS extract. ReIM creates a charge
back document for these billings, which may be subject to edit/approval in ReIM
or automatically processed to the financial staging table for export to the retailer’s
accounts payable solution, based on an RMS parameter.

Other Data Elements Received from RMS:

- Non-merchandise codes

- Currency

- Exchange rates

- Store/warehouse location type

- Supplier information

- Supplier address (invoice address, returns address, and so on)
- Merchandise hierarchy

— Business date

— Terms and terms ranking (see the discussion later in this chapter)

From RelM to Receiver Unit and Cost Staging Tables to RMS

Receiver cost and unit adjustments are initiated in ReIM update receipts held in RMS
tables. Receiver adjustments, resulting from the ReIM discrepancy resolution process,
create cost and/quantity adjustments to receipt tables in RMS, as well as to supplier
and purchase order tables for certain types of cost resolutions.

From RelM to the Merchandising System

Receipt Status

When the entire receipt is matched (all the lines to invoices), ReIM provides and
update to the invoice match status (that is, from unmatched to matched) on the
shipment table in RMS.

Shipment (Receipts) Table Quantity Matched Update

When ReIM matches a portion and/or all of a receipt line to an invoice line, ReIM
makes a corresponding update to the quantity matched column.

From Workspace to RelM and from RelM to Workspace

The Oracle Retail Workspace (ORW) installer prompts you to enter the URL for your
supported Oracle Retail applications. However, if a client installs a new application
after Oracle Retail Workspace is installed, the retail-workspace-page-config.xml file
needs to be edited to reflect the new application.

5-4 Oracle Retail Invoice Matching Operations Guide

Electronic Data Interchange (EDI) Tables and Files

The file as supplied comes with all appropriate products configured, but the
configurations of non-installed products have been "turned off". Therefore, when
"turning on" a product, locate the appropriate entry, set "rendered" to "true", and enter
the correct URL and parameters for the new application.

The entry consists of the main URL string plus one parameter named "config". The
value of the config parameter is inserted by the installer. Somewhere in the installer
property files there is a value for the properties "deploy.retail. product.reim.url" and
"deploy.retail.product.reim.config".

For example, suppose ReIM was installed on mycomputer.mycompany.com, port 7777,
using a standard install and reim configured with the application name of
"reim130sedevhpsso." If you were to access ReIM directly from your browser, you
would type in:

http://mycomputer.mycompany.com: 7777/ forms/frmservliet?config=reiml30sedevhpsso
The entry in the retail-workspace-page-config.xml after installation would resemble
the following:

<url>http://mycomputer.mycompany.com:7777/forms/frmservliet</url>
<parameters>

<parameter name="config">

<value>reiml30sedevhpsso</value>

</parameter>

</parameters>

Prior to configuring ORW, you must set up single sign-on. See "Oracle Single Sign-on
Overview" in Chapter 6, "Technical Design."

Electronic Data Interchange (EDI) Tables and Files

Electronic Data Interchange (EDI) facilitates the computer-to-computer transmission of
business information and transactions, such as invoices and purchase orders. EDI
represents a convenient method by which a retailer and its suppliers can transfer
information back and forth. The Voluntary Interindustry Commerce Standard (VICS)
EDI is used by the general merchandise retail industry.

ReIM has two file-based EDI interfaces. Note that neither follows the VICS EDI
standard. The ReIM EDI interfaces have been customized, and the retailer must
translate them.

The interfaces represent the upload of invoices or other documents from a supplier or
another application and the download of documents to suppliers. These two common
types of EDI are described below:

» EDI invoice upload is the standard description for an EDI process that uploads
documents.

» EDI invoice download is the standard description for an EDI process that
downloads Debit Memo, Credit Note Request, and Credit Memo data from ReIM
to suppliers.

For information about ReIM batch processes related to both of these types of EDI, see
Chapter 8, "Batch Processes." Note that although the vast majority of invoices are
created through either EDI upload or batch entry, users can also create invoices online
and add details, or use the online dialog to add details to an invoice that was EDI
uploaded.

Integration 5-5

Electronic Data Interchange (EDI) Tables and Files

The EDI Reject Table

The EDI invoice upload (ediupinv) batch process uploads invoices and credit notes
from the EDI into the invoice-matching tables. This process validates the information
in the file against itself and against the RMS (or equivalent merchandising
system)/RelM database. A limited set of data validation errors cause the invalid
transaction to be written to error tables (IM_EDI_REJECT_DOC_xxx) where the data
can be corrected through an online process.

The following errors are written to the EDI reject table for the user to manually correct
through the front end:

= Supplier number (or Partner ID): This value must be a valid supplier (SUPS table)
or partner (PARTNER table) in RMS (or the equivalent merchandising system).

s Order numbers: Order numbers must be approved and created for the supplier or
linked suppliers in RMS (or the equivalent merchandising system) on the
ORDHEAD table. Non-merchandise invoices may not have any order numbers
associated, so this validation should be skipped for this type of invoice.

s Order/location combination: The system validates that all order number/location
combinations in the file are valid within RMS or the equivalent merchandising
system (meaning that the relationship must exist on the ORDLOC table).

s Terms code: All terms must exist within RMS or the equivalent merchandising
system on the TERMS table.

= Invoice date: A document cannot be older than the v-date minus the post-dated
document days' system level parameter value or newer than the v-date.

= Merchandise invoices cannot be associated with a partner; they must only be
associated with a supplier.

s Credit notes from a partner cannot have item records attached unless the partner
type is a manufacturer, distributor, or wholesaler (type S1, S2, or S3).

The EDI Reject File

A limited set of data validation errors (identified in the file layout 'Validation' column)
cause the invalid transaction to be written to the reject file (named by the retailer).
When VAT processing is active within RelM, all failed validations result in EDI
uploads' being rejected to a file. There are no reject-to-table cases, and the EDI
Maintenance screens are not accessible to the retailer.

EDI Invoice Upload File Layout (Based on EDI 810)

The following describes the input and output specification for the EDI Invoice Upload
File.

I/0 Specification

All Files Layouts Input and Output

Input file format:
FHEAD (1): Start of file.

THEAD (1...n): Transaction (document) level info. Each file must have at least 1
THEAD.

5-6 Oracle Retail Invoice Matching Operations Guide

Electronic Data Interchange (EDI) Tables and Files

TDETL (0...n): Item detail records for this transaction. TDETL is optional for Credit
Note docs and debit memo docs.

TALLW (0...n): Allowance records for this item. TALLW is optional.

TNMRC (0...n): Non-merchandise records for this transaction. Required on
non-merchandise documents, optional otherwise.

TVATS (0...n): VAT breakdown by VAT code. TVATS is optional.

TTAIL (1...n): Marks the end of a THEAD record. Each THEAD requires exactly one
TTAIL.

FTAIL (1): Marks the end of the file.
TDETL and TNMRC do not need to occur in order. TALLW must follow TDETL

If records are encountered in any order other than specified above, execution of
program will halt.

Example:

FHEAD

THEAD

TNMRC

FTAIL (no TTAIL encountered)

If a record descriptor is encountered other than those specified in this document,
execution of program will halt.

Reject file will have an identical format. If no records are rejected, it will consist of only
the FHEAD and FTAIL lines.

All character variables should be right-padded with blanks and left justified; all
numerical variables should be left-padded with zeroes and right-justified. Null
variables should be blank.

Single location invoices will be inserted into IM_DOC_HEAD, IM_INVOICE_DETAIL
and IM_DOC_NON_MERCH. Multi-location invoices will be inserted into IM_
PARENT_INVOICE, IM_PARENT_INVOICE_DETAIL and IM_PARENT_NON_
MERCH.

It is assumed all values that have dependent information included in the file (for
example, location has dependent information of order no, upc, upc-supp, and so on)
are valid for the RMS system. The following is never anticipated to happen: only
locations A, B, and C exist in RMS; EDI reads a transaction that has location D. This
sort of file may not be flagged as invalid in any way.

Uploaded documents with details must have at most one associated UPC, item or
VPN identifier. When system VAT processing is enabled, documents that fail to meet
this critieria will be rejected to the file by the EDI Upload batch process. When VAT is
disabled, the document will be available for review and correction through the Invoice
Matching user interface in the EDI Maintenance screen.

Integration 5-7

Electronic Data Interchange (EDI) Tables and Files

FHEAD - File Header. First record of an upload file.

Field Name Field Type Description Req Validation
Record Char(5) Describes file record type Y Halt execution if not FHEAD.
Descriptor
Line id Number(10) Sequential file line number. | Y Halt execution if not 0000000001.
Gentran ID Char(5) The type of transaction this | Y Halt execution if not UPINV.
file represents.
Current date Char(14) File date in Y Halt execution if invalid date
YYYYMMDDHH24MISS format.
format.

THEAD - Transaction Header. Start of a document transaction.

Field Name Field Type Description Req Validation
Record descriptor | Char(5) Describes file record type | Y THEAD
Line id Number(10) Sequential file line number | Y Halt execution if not in sequence
Transaction Number(10) Sequential transaction Y Reject entire file if:
number number. All records within . . .
. . - transaction number is not numeric or
this transaction will also -
. . not in sequence
have this transaction
number. first transaction number is not
0000000001
Document Type Char(6) Describes the type of Y Reject transaction to file if document

document being uploaded.
The document type will
determine the types of
detail information that are
valid for the document
upload. Stored in IM_
DOC_HEAD.TYPE.

Valid values are:

MRCHI - Merchandise
Invoice

NMRCHI - Non
Merchandise Invoice

CRDNT - Credit Note
DBMC - Debit Memo Cost
DBMQ - Debit Memo Qty

CRDMC - Credit Memo
Cost

CNRC- Credit Note
Request Cost

CNRQ- Credit Note
Request Qty

type is null document type is not
MRCHI (merchandise invoice),
NMRCHI (non-merchandise invoice),
CRDNT (credit note), DBMC (Debit
Memo-Cost), DBMQ (Debit
Memo-Qty), CNRC (Credit Note
Request-Cost), CNRQ (Credit Note
Request-Qty), CRDMC (Credit Memo
Cost) document type is CRDNT
(credit note); vendor is not a supplier,
manufacturer, distributor, or
wholesaler. document type is CRDNT
and TALLW records exist document
type is MRCHI and item detail
records DO exist for this transaction
(this type of transaction must have no
item detail records) document type is
CRDNT,NMRCHI, DBMC, DBMQ,
CRDMC, CNRC, CNRQ and any
error occurs with the document

5-8 Oracle Retail Invoice Matching Operations Guide

Electronic Data Interchange (EDI) Tables and Files

Field Name Field Type Description Req Validation

Vendor Document | Char(30) Vendor's document Y Reject entire upload file if the same
Number number. Stored in IM_ vendor document number occurs
DOC_HEAD.EXT_DOC_ more than once in the file.

ID with all characters
converted to their upper
case (for example, s Vendor document number is
ThisDocld -> null.

THISDOCID).

Reject transaction to file if:

s Vendor document number is not
unique for this vendor.

s Vendor document number is not
alphanumeric and the property
"INVOICE_NUMBER _
VALIDATION_REGULAR_
EXPRESSION" in reim.properties
is commented out.

= Vendor document number
contains special characters that
are not specified in the property
"INVOICE_NUMBER _
VALIDATION_REGULAR_
EXPRESSION" in reim.properties
and the property is not
commented out.

s Vendor document number has
leading zero and the property
"INVOICE_NUMBER _
VALIDATION_ALLOW_ZERQO"
in reim.properties is commented
out or set to false.

Group ID Char(10) This is an optional field N
that can be used as a
control number or batch
number to track groups of
invoices. It is retained in
the IM_DOC_HEAD table
(invoice header table), but
it does not drive any ReIM
functionality. Retailers may
use this field to track a
control number from the
supplier if one is sent on
the EDI invoice. Or if a
retailer concatenates
multiple EDI files from
several vendors, a control
number (group ID) can be
assigned to all invoices in a
file.

Integration 5-9

Electronic Data Interchange (EDI) Tables and Files

Field Name Field Type Description Req Validation
Vendor Type Char(6) Type of vendor (either Y Reject transaction to file if:
iﬁf; %Lilﬁgrirtgg 3;;;1 s Vendor typeisnull or if it isnot a
IM DOC ’ valid vendor type (from Vendor
HEAD.VENDOR_TYPE class).
. . = Document type is MRCHI
Valid values are: (merchandise invoice) and
SUPP - Supplier vendor type is not Supplier.
BK - Bank
AG - Agent
FF - Freight Forwarder
IM - Importer
BR - Broker
FA - Factory
AP - Applicant
CO - Consolidator
CN - Consignee
S1 - Merch Supp level 1
52 - Merch Supp level 2
S3 - Merch Supp level 3
Vendor ID Char(10) Vendor for this document. | Y Reject transaction to file if:
Stored in IM_DOC_ d . 1
HEAD.VENDOR_TYPE = Vendor IDis null
= Vendor Type is partner, and
Vendor ID is not valid partner.
= Vendor is a supplier, and
supplier is not valid.
Reject transaction to tables if:
= Vendor is a supplier, and
supplier is valid but not linked to
the purchase order.
= Vendor is a supplier, and vendor
ID is not completely numeric.
Vendor Document | Char(14) Date document was issued | Y Reject transaction to file if:
Date l\){}\]{ﬁlﬁﬁl\‘;{ﬁg{gl—([l;{zlel 55 = Vendor document date is null
format). Stored in IM_ = Datis not a valid date format.
DOC_HEAD.DOC_DATE Reject transaction to tables if Vendor
Document Date is:
= After the VDATE.
= Before (vdate - post_dated_doc_
days) (from im_system_options).

5-10 Oracle Retail Invoice Matching Operations Guide

Electronic Data Interchange (EDI) Tables and Files

Field Name Field Type Description Req Validation
Order Number/ | Number(10) Merchandising system N Reject transaction to file if:
RTV Order order number for this s Order/RTV order number exists
Number document. Required for ;i .
L . and is not numeric.
merchandise invoices and
optional for others. Store in s Order/RTV order number is null
IM_DOC_HEAD.ORDER _ and vendor type is a supplier.
NO. s Order/RTV order number is null
This field can also contain and deal_id is null.
:ﬂg E%x Egdef;\l;m ber if s Order/RTV order number exists
) and vendor type is NOT a
supplier.

s Order/RTV order number exists
and location or location type are
null.

Reject transaction to tables if RTV flag

is null or N AND:

s Order number exists but is not
valid for the supplier or the
supplier's linked suppliers.

s Order number exists but is not
valid for the location/location
type.

Reject transaction to file if RTV flag is

'Y AND:

s RTV order number exists but is
not valid for the supplier or the
supplier's linked suppliers.

s RTV order number exists but is
not valid for the
location/location type.

Location Number(10) Merchandising system Y Reject transaction to file if:
location for this document. Location or location type do not
Required for merchandise " . ypP
. . . exist.
invoices and optional for
others. Stored in IM_DOC_ s Location exists and is not
HEAD.LOCATION. numeric.

= Location exists and location type
is not Store or Warehouse.

Reject transaction to tables if Location

and Location Type exist but are not

valid.
Location Type Char(1) Merchandising system N Reject transaction to file if Location

location type (either 'S'tore
or 'W'arehouse) for this
document. Required for
merchandise invoices and
optional for others. Stored
in IM_DOC_HEAD.LOC_
TYPE.

type exists and location is null.

Integration 5-11

Electronic Data Interchange (EDI) Tables and Files

Field Name Field Type Description Req Validation

Terms Char(15) Terms of this document. If | N Reject transaction to tables if Terms
terms are not provided, the exist and are not valid.
vendor's default terms are
associated with this record.

Stored in IM_DOC_

HEAD.TERMS. This value

is used to get the Terms

Discount Percentage to be

stored on IM_DOC_

HEAD.TERMS_DSCNT_

PCT.

Due Date Char(14) Date the amount due is N Reject transaction to file if:
due to the vendor Due date exists and is not a valid
(YYYYMMDDHH24MISS " date format
format). If due date is not ’
provided, default due date s Due date is before the vendor
is calculated based on document date.
vendor and terms. Stored
in IM_DOC_HEAD.DUE_

DATE.

Payment method | Char(6) Method for paying this N Reject transaction to file if Payment
document. Stored in IM_ method exists and is not valid.
DOC_HEAD.PAYMENT _

METHOD.

Currency code Char(3) Currency code for all Y Reject transaction to file if:
monetary amounts on this C dei M
document. Stored in IM_ " Urrency code 1s nuil
DOC_ = Currency code is not valid.
HEAD.CURRENCY_ .

CODE. s Order number exists and
currency code does not match
the order's currency.

Exchange rate Number (12,4) | Exchange rate for N Reject transaction to file if Exchange
conversion of document rate exists and is not numeric.
currency to the primary
currency. Stored in IM_

DOC_

HEAD.EXCHANGE_

RATE.

Sign Indicator Char(1) Indicates either a positive | Y Reject transaction to file if sign
(+) or a negative (-) total indicator is null or if it is not + or -.
cost amount.

Total Cost Number(20,4) | Total document cost, N Reject transaction to file if:
including all items and Total cost is null
costs on this document. " otal cost1s nuil
This value is in the s Total cost is not numeric.
icilolcltl/[m]ejnot(cjurrency. Stored = Total cost does not equal the sum
HEAD.TOTAL_COST and gf ex.tended cqsts f(?r all 1tem.
IM DOC etail records in this transaction.
HEAD.RESOLUTION_ = Total cost is not negative and
ADJUSTED_TOTAL_ vendor document type is
COST. CRDNT.

Sign Indicator Char(1) Indicates either a positive |Y Reject transaction to file if sign

(+) or a negative (-) total
vat amount.

indicator is null or if it is not + or -.

5-12 Oracle Retail Invoice Matching Operations Guide

Electronic Data Interchange (EDI) Tables and Files

Field Name Field Type Description Req Validation
Total VAT Number(20,4) | Total VAT amount, N Treat as zero if null.
Amount including all items and Rei . .
. eject transaction to file if:
costs on this document.
This value is in the s Total VAT amount is not null but
document currency. is not numeric.
= Total VAT amount does not equal
the sum of VAT for all item detail
records PLUS the sum of VAT for
all non-merch items in this
transaction PLUS the sum of VAT
for all allowances in this
transaction.
Sign Indicator Char(1) Indicates either a positive | Y Reject transaction to file if sign
(+) or a negative (-) total indicator is null or if it is not + or -.
vat amount.
Total Quantity Number(12,4) | Total quantity of itemson |Y Reject transaction to file if:
this document. This value Total quantity is null
is in EACHES (no other - ! y :
units of measure are = Total quantity is not numeric.
is:j}f&o%eodén RelM). Stored = Total quantity does not equal the
HE A]B.TOT_AL_QTY and sum.of quanh’gles fpr all 1tem.
IM DOC detail records in this transaction.
HE;%D.RESOLUTION_ = Total quantity is not zero when
ADJUSTED_TOTAL_QTY. vendor document type is
'NMRCHI'".
Sign Indicator Char(1) Indicates either a positive | Y Reject transaction to file if sign
(+) or a negative (-) total indicator is null or if it is not + or -.
vat amount.
Total Discount Number(12,4) | Total discount applied to Y Reject transaction to file if:
this document. This value . .
S = Total discount is null.
is in the document
currency. Stored in IM_ = Total discount is not numeric.
DOC_HEAD.TOTAL_
DISCOUNT
Freight Type Char(6) The freight method for this | N Reject transaction to file if Freight
document. type exists and is not valid.
Paid Ind Char(1) Indicates if this document |Y Reject transaction to file if:
has been paid. Stored in « Paid ind is null
IM_DOC_ ’
HEAD.MANUALLY_ = Paidind isnotY or N.
PAID_IND.
Multi Location Char(1) Indicates if this invoice Y Reject transaction to file if:
goes to multiple locations. . L
If Yes, the record should be = Multi-location is null
inserted to IM_PARENT_ s Multi-location is not Y or N.
INVOICE table. s Multi-location is Y and
Consignment is Y.
Consignment Char(1) Y Y Reject transaction to file if:
indicator

Do not reject transaction to table if
Consignment is Y.

Consignment indicator is null

Consignment indicator is not Y
or N

Integration 5-13

Electronic Data Interchange (EDI) Tables and Files

Field Name Field Type Description Req Validation
Deal Id Number(10) Deal Id from RMS if this N If Deal Id is not null, Deal Approval
invoice is a deal bill back indicator must be M or A.
invoice. . . .
Do not reject transaction to table if
deal id is not null.
Deal Approval Char(1) Indicates if the document | N Reject to file if not blank, M
Indicator on IM_DOC_HEAD is to Submitted status or A approved.
be created in Approved or Do not reject transaction to table if
Submitted status. .
value is not null.
RTV indicator Char(1) Indicates if this invoiceisa | Y Reject transaction to file if:
RTV invoice. s RTV indicator is null
s RTV indicatoris not Y or N
Do not reject transaction to table if
RTVisY.
Custom Char(90) This optional field is N
Document included in the upload file
Reference 1 for client customization.
No validation is performed
on this field. Stored in IM_
DOC_HEAD.CUSTOM_
REF_1.
Custom Char(90) This optional field is N
Document included in the upload file
Reference 2 for client customization.
No validation is performed
on this field. Stored in IM_
DOC_HEAD.CUSTOM_
REF_2.
Custom Char(90) This optional field is N
Document included in the upload file
Reference 3 for client customization.
No validation is performed
on this field. Stored in IM_
DOC_HEAD.CUSTOM_
REF_3.
Custom Char(90) This optional field is N
Document included in the upload file
Reference 4 for client customization.
No validation is performed
on this field. Stored in IM_
DOC_HEAD.CUSTOM_
REF_4.
Cross-reference Number(10) Document that a credit N Reject transaction to file if

document number

note is for. Blank for all
document types other than
merchandise invoices.
Stored in IM_DOC_
HEAD.REF_DOC.

Cross-reference document number
exists and is not numeric

5-14 Oracle Retail Invoice Matching Operations Guide

Electronic Data Interchange (EDI) Tables and Files

TVATS - VAT breakdown by VAT code. This information is inserted in IM_DOC_VAT

Field Name Field Type Description Req Validation
Field record Char(5) Marks costs at VAT rate Y TVATS
descriptor line. Reject entire transaction to file if this
type of record exists and the
transaction has any error. See
technical design for additional
validations.
Reject to file if in im_system_options
vat is on, but there is no TVATS.
Line id Char(10) Sequential file line number. Y Halt execution if not in sequence.
Transaction Number(10) Y Reject entire file if:
number . .
s Transaction number is not
s Transaction number is not the
same as the current transaction.
VAT code Char(6) VAT code that applies to Y Reject to file if VAT code is not valid.
cost.
VAT rate Number(20,10) VAT Rate corresponding to Y Reject to file if VAT rate is not
the VAT code. numeric.
Sign indicator Char(1) Indicates either a positive Y Reject transaction to file if sign
(+) or a negative (-) indicator is null or if it is not + or -.
Original Document
Quantity amount.
Cost at this VAT Number(20,4) Total amount that mustbe Y Reject to file if not numeric.
code taxed at the above VAT
code.

Integration 5-15

Electronic Data Interchange (EDI) Tables and Files

TDETL - Item Detail Record. This information is inserted into the IM_INVOICE_
DETALIL table for Merchandise Invoice and IM_DOC_DETAIL_REASON_CODES for

Credit Notes.

Field Name Field Type Description Req Validation

Record Char(5) Describes file record | Y TDETL

descriptor type.

Line Id Number(10) Sequential file line Y Halt execution if not in sequence.
number.

Transaction Number(10) Transaction number |Y Reject to file if VAT rate is not

number for this item detail numeric
record. s Transaction number is not

numeric.

s Transaction number is not the
same as the current transaction.

UPC Char(25) UPC for this detail Y Reject transaction to file if:
record. V.ahd 1’Fem Exclusive s UPCis null and Item is null.
number is retrieved with item
for the UPC. Stored s Both UPC and Item are not null.
in IM_INVOICE_ . . o
DETAIL.ITEM or Reject transaction to tables if:
IM_DOC_DETAIL_ s Valid item is not found for UPC
REASON_ and UPC supp.
CODES.ITEM. s Valid item is not associated with

the supplier.

s The item found is identical to
another detail item for this
transaction (no duplicate items).

UPC Supplement | Number(5) Supplement for the N Reject transaction to file if:
UPC. = UPC supplement exists and
Note: UPC Supp is UPC doesn't exist.
?1?11}]1 Vahdtfcg 9'OF s UPC supplement exists and is
piementation. or not numeric.
10.1 implementation,
this field will
ALWAYS be blank.
Item Char(25) Ttem for this detail Y Reject transaction to file if:
Fecorc.l..Item number Exclusive s UPCis null and Item is null.
is verified and stored with UPC
in IM_INVOICE_ s Both UPC and Item are not null.
%ngéligg"giL s Valid item is not associated with
RE_ASON__ - the supplier.
CODES.ITEM. s Theitem found is identical to
another detail item for this
transaction (no duplicate items).

5-16 Oracle Retail Invoice Matching Operations Guide

Electronic Data Interchange (EDI) Tables and Files

Field Name Field Type Description Req Validation
VPN Char(30) Vendor Product Y (exclusive | Reject transaction to file if:
Number provided by | with item . .
the suppl}i)er. Itis y and UPC) " XPN is nullll and UPC is null and
used to identify an M 18 i
item when an item = Atleast two of the following are
number has not been not null: UPC, VPN and ITEM.
gg)}‘)]llfyeg:i \o]rI:ItiéS Reject transaction to tables if:
Invoice Maintenance = Valid item is not found for VPN
screen and may be for the supplier.
grsfgndeurﬁgé ﬁlllr? s Theitem found is identical to
& another detail item for this
process. transaction (no duplicate items).
» There are multiple items for the
supplier with the VPN provided
and: no items on the PO for the
document OR multiple items on
the PO for the document.

Sign Indicator Char(1) Indicates either a Y Reject transaction to file if sign
positive (+) or a indicator is null or if it is not + or -.
negative (-) Original
Document Quantity
amount.

OriginalDocume | Number(1,2,4) | Quantity, in Y Reject transaction to file if:

nt Quantity EACHES, of the item Original document quantity is
on this detail record. " ﬁg ! y
Stored in IM_ nui.

INVOICE_ = Original document quantity is
DETAIL.INVOICE_ not numeric.

QTY and IM_

INVOICE_DETAIL.

RESOLUTION_

ADJUSTED_QTY.

Sign Indicator Char(1) Indicates either a Y Reject transaction to file if sign
positive (+) or a indicator is null or if it is not + or -
negative (-) Original
Unit Cost amount.

Original Unit Number(2,0.4) | Unit cost, in Y Reject transaction to file if:

Cost document currency, = Original unit cost is null
of the item on this & ’
detail record. Stored » Original unit cost is not
in IM_INVOICE_ numeric.

DETAIL.UNIT_COST
and IM_INVOICE_
DETAIL.RESOLUTIO
N_ADJUSTED_
UNIT_COST.

Original VAT Char(6) VAT code for item. Y Reject to file if VAT code is invalid.

Code

Original VAT Number(20,10) | VAT Rate for the VAT | Y Reject to file if VAT rate is not

rate code/item. numeric.

Sign Indicator Char(1) Indicates either a Y Reject transaction to file if:

positive (+) or a
negative (-) Original
Document Quantity
amount.

Sign indicator is null.

Sign indicator is not + or -.

Integration 5-17

Electronic Data Interchange (EDI) Tables and Files

Field Name

Field Type

Description

Req

Validation

Total Allowance

Number(2,0,4)

Sum of allowance Y
details for this item
detail record. If no
allowances exist for
this item detail
record, value is 0.

Reject transaction to file if:
» Total allowance is null.
s Total allowance is not numeric.

= Total allowance does not equal
the sum of allowance amounts
for all allowance records in this
item detail record.

s Total allowance is not 0 and
vendor document type is
CRDNT.

TALLW - Allowance Record. This information is inserted into IM_INVOICE_DETAIL

ALLOWANCE table.
Field Name Field Type Description Req Validation
Record Char(5) Describes file record type. | Y TALLW
descriptor
Line id Number(10) Sequential file line Y Halt execution if not in sequence.
number.
Transaction Number(10) Transaction number for Y Reject entire file if:
Number this item allowance . .
» Transaction number is not
record. :
numeric.
» Transaction number is not the
same as the current transaction.
Allowance Code | Char(6) Allowance code for this Y Reject transaction to file if:
allowance record. Stored Allowan. de is null
in IM_INVOICE_ . owance code is null.
DETAIL _ = Allowance code is not valid.
ALLOWANCE.ALLOWA
NCE_CODE.
Sign Indicator Char(1) Indicates either a positive | Y Reject transaction to file if sign
(+) or a negative (-) indicator is null or if it is not + or -.
allowance amount.
Allowance Number (20,4) | Amount of allowance in Y Reject transaction to file if allowance
Amount document currency. amount is null or not numeric.
Stored in IM_INVOICE_
DETAIL_
ALLOWANCE.ALLOWA
NCE_AMOUNT.
Allowance VAT | Char(6) VAT Code for Allowance. |Y Reject to file if VAT code is not valid.
Code
Allowance vat Number (20,10) | VAT Rate corresponding | Y Reject to file if not numeric.
rate at this VAT to the VAT code.
code

5-18 Oracle Retail Invoice Matching Operations Guide

Electronic Data Interchange (EDI) Tables and Files

TNMRC - Non-Merchandise Record. Records of this type will contain
non-merchandise costs. These costs are inserted into the IM_DOC_NON_MERCH
table. Non-merchandise costs records are only required when the document type is
non-merchandise. Non-merchandise cost records are also associated with merchandise
type documents if the vendor associated with the document allows non-merch costs
on merchandise invoices (IM_SUPPLIER_OPTIONS. MIX_MERCH_NON_MERCH _

IND).
Field Name Field Type Description Req Validation
Record Char(5) Describes file record type. | Y TNMRC
descriptor
Line id Char(5) Sequential file line Y Halt execution if not in sequence.
number.
Transaction Number(10)) Transaction number for Y Reject entire file if:
number this non-merchandise . .
s Transaction number is not
record. .
numeric.
s Transaction number is not the
same as the current transaction.
Non Char(6) Non-Merchandise code Y Reject transaction to file if:
Merchandise that describes this cost. Non-merchandise code is null
Code Stored in IM_DOC_ " :
NON_MERCH.NON_ s Non-merchandise code is not
MERCH_CODE. valid.
Sign Indicator Char(1) Indicates either a positive | Y Reject transaction to file if sign
(+) or a negative (-) Non indicator is null or if it is not + or -.
Merchandise Amt.
Non Number(20,4) Cost in the document Y Reject transaction to file if:
Merchandise currency. Stored in IM_ Non-merchandise amount is
Amt DOC_NON_ " null
MERCH.NON_MERCH_ ’
AMT. s Non-merchandise amount is
not numeric.

s Non-merchandise amount does
not have a negative value and
this is part of a credit note
document (THEAD.Vendor
Document Type = CRDNT).

Non Merch VAT | Char(6) VAT Code for Y Reject to file if VAT code is not valid.

Code Non-Merchandise.

Non Merch vat Number(20,10) | VAT Rate corresponding | Y Reject to file if not numeric.

code at this VAT to the VAT code.

code

Service Char(6) Indicates if a service has | Y Reject transaction to file if:

Performed actually been performed. Servi formed indicator i

Indicator Stored in IM_DOC_ " €rvice pertorme cator1s
NON_ null.
MERCH.SERVICE_ = Service performed indicator is
PERF_IND. not Y or N.

Store Number(10) Store at which the service | N Reject transaction to file if:
was performed. Stored in = Store exists and is not numeric
IM_DOC_NON_)
MERCH.STORE. = Service performed indicator is Y

and store is not valid.

Integration 5-19

Electronic Data Interchange (EDI) Tables and Files

TTAIL - Transaction Tail. Marks the end of a transaction.

Field Name Field Type Description Req Validation

Record Char(6) Describes file record type. | Y TTAIL

descriptor

Line id Number(10) Sequential file line Y Halt execution if not in sequence.
number.

Transaction Number(10) Transaction number for Y Reject entire file if:

number the transaction that this

s Transaction number is not

record is closing. numeric

s Transaction number is not the
same as the current transaction.

Transaction lines | Number(6) Total number of detail Y Reject transaction to file if
lines within this transaction lines is not numeric, if it
transaction. does not match the count of lines

within the transaction, or if it is zero
(transaction must have details).

FTAIL - File TAIL. Marks the end of the upload file.

Field Name Field Type Desription Req Validation

Record Char(5) Describes file record Y FTAIL

descriptor type.

Line id Number(10) Sequential file line Y Halt execution if not in sequence.
number.

Number of lines | Number(10) Total number of lines Y Halt execution if number of lines is
within this file not not numerigc, if it does not match the
counting FHEAD and count of lines within the file
FTAIL. (excluding FHEAD and FTAIL), or if

itis 2 (FHEAD and FTAIL only, file
has no transactions).

5-20

Process Notes

s The EDI document upload process can recognize only a new document type. In
FHEAD of the EDI flat file, the Document Type does not include CRDMC (credit
memo cost). When the document type in the flat file is Debit Memo Cost, Debit
Memo Qty, Credit Note Request Cost, or Credit Note Request Qty, and if the
amount (Total Cost) for a Deal Charge Back Document that is sent over from RMS
is negative a Credit Memo Cost is created.

= For the charge back documents, to decide what document type to be populated in
the database, a flow chart is displayed as follows:

" Consignment Ind="Y" Quantity
Cnsnity 7 RTV Ind="¥" Quantity
- /Daﬁu: Memo —
Dbt Memn . Cost & g
™ Chg backs —ssupplier option if "A" then, Debit Memo
If not*&°, then Crdnt Reguest

ETV Ind ="¥" Chembity
Quantty /
Creds Mote = - Crint Request —— Consigrment [nd="Y" Cost
Fequest ™, Cost

Oracle Retail Invoice Matching Operations Guide

Electronic Data Interchange (EDI) Tables and Files

s If the document type is merchandise invoice, and if the consignment indicator is Y,
the status would be matched; if the consignment indicator is not Y, the status
would be ready for match; if the document type is not merchandise invoice, the
status would be approved.

» If the consignment indicator is Y, set the terms to Due Immediately (term ID = 48),
and set the terms discount percentage to 0.

s That VAT codes and rates in the detail of documents are those known for the item
and location when the document is not an import Document. Given a combination
of TDETL.item and location, we could find a VAT. The vat code and vat rate in the
VAT should be the same as the original vat code and original vat rate in the
TDETL.

s The merchandises header VAT and detail VAT are consistent (Ex VAT basis by VAT
rate and VAT amount by VAT rate). Total header Merchandise VAT information is
calculated from total document VAT information and VAT information for non
merchandise costs. For example, for each Vat Code in TDETL and TNMRC:
Thead.Total VAT Amount at this vat code = total vat from TDETL at this vat code
+ total vat from TNMRC at this vat code. Total vat from TDETL at this vat code =
sum(original document quantity * original unit cost * original VAT rate). Total vat
from TNMRC at this vat code =sum(Non Merch VAT rate * Non Merch
Amt).Thead.Total VAT Amount at this vat code = sum(TVATS.VAT rate *
TVATS.cost at this VAT code).

s For an EDI upload document, if the Vat Region of the header is different from the
vat region of the supplier, it is an import document. Import document will not
contain VAT information. (LocVatRegion != SupplierVatRegion, then it is an
import document). If a document is not an import document, plus the system_
option.vat is on; if the TVATS is null, reject to file.

= To decide whether a VAT code is valid in the TDETL, first find the VAT code given
the information of item and location. If they are equal, then the vat code is valid; if
they are not equal, check if the VAT code exists in the effective VAT codes; if the
VAT code exists, then it is valid but is populated to the audit table.

s If RTV indicator or consignment indicator is Yes and Deal ID is not null, must
reject to file.

» If the Item field is populated and there is an error it should always reject to file. To
reject to the tables, the UPC field must be populated and not the Item field.

EDI Invoice Download File Layout (Based on EDI 812)

This section provides input/output specifications.

All File Layouts Input and Output
Output file format:

FHEAD (1): Start of file.

THEAD (1...n): Transaction (document) level info. Each file must have at least 1
THEAD.

TDETL (0...n): Item detail records for this transaction.
TNMRC (0...n): Non-merchandise records for this transaction.
Required on non-merchandise documents, optional otherwise.

TVATS (0...n): Doc Vat detail records for this transaction, optional.

Integration 5-21

Electronic Data Interchange (EDI) Tables and Files

TTAIL (1...n): Marks the end of a THEAD record. Each THEAD requires exactly one
TTAIL.

FTAIL (1): Marks the end of the file.

If records are encountered in any order other than specified above, execution of
program will halt.

Example:

FHEAD

THEAD

TNMRC

TVATS

FTAIL (no TTAIL encountered)

If a record descriptor is encountered other than those specified in this document,
execution of program will halt.

All character variables should be right-padded with blanks and left justified; all
numerical variables should be left-padded with zeroes and right-justified. Null
variables should be blank.

Note: The file is not threaded, but rather ordered by Vendor ID
(THEAD). It is assumed that this file is broken out by Vendor ID
during the translation process.

FHEAD - File Header. First record of an upload file.

Field Name Field Type Description Req Validation
Record Char(5) FHEAD Y
descriptor
Line id Number(10) Generated Sequential file line number. Y
Gentran ID Char(5) DNINV
Current date Char(14) File date in YYYYMMDDHH24MISS Y
ormat.

THEAD - Transaction Header. Start of a document transaction.

Field Name Field Type Description Req Validation
Record Char(b) THEAD Y
descriptor
Line id Number(10) Generated Sequential file line number. Y
Transaction Number(10) Sequential transaction number. All records | Y
number within this transaction will also have this
transaction number.

5-22 Oracle Retail Invoice Matching Operations Guide

Electronic Data Interchange (EDI) Tables and Files

Field Name

Field Type

Description

Req

Validation

Document
Type

Char(6)

Describes the type of document being
downloaded. The document type will
determine the types of detail information
that are valid for the document
downloaded. Retrieved from IM_DOC_
HEAD.TYPE where type is debit memo,
credit note request or credit memo and in
Approved or Posted Status.

Vendor
Document
Number

Char(30)

Vendor's document number. Retrieved
from IM_DOC_HEAD.EXT_DOC_ID.

Invoice
Number

Char(6)

Corresponding invoice resolved by the
document. Retrieved from IM_DOC_
HEAD.REF_DOC.

Vendor ID

Number(10)

Vendor for this document. Retrieved from
IM_DOC_HEAD.VENDOR

Document Date

Char(14)

Date the document was entered into the
system in YYYYMMDDHH24MISS format.
Retrieved from IM_DOC_HEAD.DOC_
DATE

Order

Number(10)

Order number for this document, if any.
Retrieved from IM_DOC_HEAD.ORDER _
NO

Location

Number(10)

Location for this document, if any.
Retrieved from IM_DOC_
HEAD.LOCATION.

Location Type

Char(1)

Location type for this document, if any.
Retrieved from IM_DOC_HEAD.LOC_
TYPE.

Terms

Char(15)

Terms of this document. Retrieved from
IM_DOC_HEAD.TERMS.

Due Date

Char(14)

Date the amount due is due from the
vendor (YYYYMMDDHH24MISS format).
Retrieved from IM_DOC_HEAD.DUE_
DATE.

Currency Code

Char(3)

Currency code for this document.
Retrieved from IM_DOC_
HEAD.CURRENCY_CODE.

Exchange Rate

Number(12,4)

Exchange rate for conversion of document
currency to the primary currency.
Retrieved from IM_DOC_
HEAD.EXCHANGE_RATE.

Sign indicator

Char(1)

Indicates either a positive (+) or a negative
(-) total cost.

Total Cost

Number(20,4)

Total document cost, including all items
and costs on this document. This value is
in the document currency. Retrieved from
IM_DOC_HEAD.TOTAL_COST.

Sign indicator

Char(1)

Indicates either a positive (+) or a negative
(-) total vat amount

Total VAT
Amount

Number(20,4)

Total VAT amount, including all items and
costs on this document. This value is in the
document currency.

Integration 5-23

Electronic Data Interchange (EDI) Tables and Files

Field Name

Field Type

Description

Req

Validation

Sign indicator

Char(1)

Indicates a positive (+) or negative (-)
quantity

Total Quantity

Number(12,4)

Total quantity of items on this document.
This value is in EACHES (no other units of
measure are supported in ReIM).
Retrieved from IM_DOC_HEAD.TOTAL_
QTY.

TDETL - Item Detail Record. This information is inserted into the IM_DOC_

DETAIL_REASON_CODES table.

Field Name

Field Type

Description

Req

Validation

Record
descriptor

Char(5)

TDETL

Line id

Number(10)

Generated Sequential file line number.

Transaction
number

Number(10)

Generated Transaction number for this
item detail record

Item

Char(25)

Internal SKU /Item for this document. This
is always sent. Retrieved from IM_DOC_
DETAIL.ITEM.

UPC

Char(25)

UPC for this detail record. Retrieved from
UPC_EAN.UPC (RMS 9.0) or ITEM_
MASTER.ITEM (RMS 10.1). This field is
sent if available.

Note: UPC is used for RMS 9.0 and
Ref-Item is used for RMS 10.1. Ref-Item
consists of UPC and UPC-Supp appended
together with a separating hyphen(-).

UPC
Supplement

Number(10)

Supplement for the UPC. Retrieved from
UPC_EAN.UPC_SUPPLEMENT. This field
is sent if available.

Note: UPC Supp is only valid for 9.0
implementation. For 10.1 implementation,
this field will always be blank.

VPN

Char(30)

Vendor Product Number. This field is sent
if available. Retrieved from ITEM_
SUPPLIER.VPN.

Comments

Char(200)

Comments associated with Reason Code.
Retrieved from IM_DOC_DETAIL_
COMMENTS.TEXT

Reason Code

Char(6)

Reason Code for this document. Retrieved
from IM_DOC_DETAIL_REASON_
CODES.REASON_CODE_ID

Reason Code
description

Char(50)

Description associated with Reason Code.
Retrieved from IM_REASON_
CODES.REASON_CODE_DESC

Sign indicator

Char(1)

Indicates a positive (+) discrepant qty.

Discrepant
Quantity

Number(12,4)

Quantity, in EACHES, of the item that is
discrepant for this detail record. Retrieved
from IM_DOC_DETAIL_REASON_
CODES.ADJUSTED_QTY.

5-24 Oracle Retail Invoice Matching Operations Guide

Electronic Data Interchange (EDI) Tables and Files

Field Name Field Type Description Req Validation
Sign indicator | Char(1) Indicates either a positive (+) or a negative | Y
(-) discrepant cost.
Discrepant cost | Number(20,4) | Unit cost, in document currency, of the Y
item that is discrepant for this detail
record. Retrieved from IM_DOC_DETAIL_
REASON_CODES.ADJUSTED_UNIT_
COST.
Original VAT Char(6) VAT code for item.
code
Original VAT Number(20,10 | VAT Rate for the VAT code/item.
rate)
TNMRC - Non-Merchandise Record. Records of this type will contain
non-merchandise costs. These costs are retrieved from the IM_DOC_NON_MERCH
table. Non-merchandise cost records are only required when the document type is
non-merchandise. Non-merchandise cost records are also associated with
merchandise type documents if the vendor associated with the document allows
non-merch costs on merchandise invoices (IM_SUPPLIER_OPTIONS. MIX_
MERCH_NON_MERCH_IND).
Field Name Field Type Description Req Validation
Record Char(5) TNMRC Y
descriptor
Line id Number(10) | Generated Sequential file line number. Y
Transaction Number(10) | Generated Transaction number for this Y
number non-merchandise record.
Non Char(6) Non-Merchandise code that describes Y
Merchandise this cost. Retrieved from IM_DOC_
Code NON_MERCH.NON_MERCH_CODE.
Sign indicator Char(1) Indicates either a positive (+) or a Y
negative (-) non merchandise amount.
Non Number(20,4) | Cost in the document currency. Retrieved | Y
Merchandise from IM_DOC_NON_MERCH.NON_
Amt MERCH_AMT.
Non Merch Char(6) VAT Code for Non_merchandise. Y
VAT code
Non Merch vat | Number(20,1 | VAT Rate corresponding to the VAT code.
code at this 0)
VAT code
TVATS - VAT Detail record.
Field Name Field Type Description Req Validation
Record Char(65) TVATS Y
descriptor
Line id Number(10) Sequential line number. Y
Transaction Number(10) Y
number

Integration 5-25

Electronic Data Interchange (EDI) Tables and Files

Field Name Field Type Description Req Validation
VAT code Char(6) VAT code that applies to cost. Y
VAT rate Number(20,10 | VAT Rate corresponding to the VAT code. | Y
)

Sign indicator | Char(1) Indicates either a positive (+) or a Y

negative (-) Original Document Quantity

amount.
VAT Basis Number(20,4) | Total amount that must be taxed at the Y

above VAT code.

TTAIL - Transaction Tail. Marks the end of a transaction.

Field Name Field Type Description Req Validation
Record Char(5) TTAIL Y
descriptor
Line id Number(10) Generated Sequential file line number. Y
Line number Number(10) Generated Transaction number for the Y

transaction that this record is closing.
Transaction Number(6) Total number of detail lines within this Y
lines transaction.

FTAIL - File TAIL. Marks the end of the upload file.

Field Name Field Type Description Req Validation
Record Char(b) FTAIL Y
descriptor
Line id Number(10) Generated Sequential file line number. Y
Number of Number(10) Total number of lines within this file, not | Y
lines including FHEAD and FTAIL.

5-26 Oracle Retail Invoice Matching Operations Guide

Financial System Interface

Financial System Interface

ReIM exports data to financial staging tables. If integrated with Oracle E-Business
Suite, there is a standard interface of data to Accounts Payable and General Ledger.
However, if the retailer is using any other financials system, the retailer must create an
interface to deliver this information to the applicable financial system.

Note: For information about how ReIM interfaces with PeopleSoft
Enterprise Financials, see Chapter 7, "PeopleSoft Enterprise Financials
Integration."

Foundation Financial Data Overview

The following types of financial information are imported in RelM:
s Terms ranking data

= Variable department/class account segments

= Variable company/location account segments

Terms ranking information is used in the best terms calculation to choose the best term
for each document. This best terms information is posted to the financial system.

Variable department/class and company/location segments are used to determine the
account segments to which a document is posted.

The retailer is responsible for populating variable department/class and
company/location segments. No API is provided.

Location Account Segments

ReIM uses location account segments in general ledger (GL) account mappings. ReIM
does not provide an interface for this information because it does not directly relate to
other information in ReIM. ReIM expects the retailer to directly populate the ReIM
location account segments table IM_DYNAMIC_SEGMENT_LOC) and keep it in sync
with the financial application.

Department/Class Account Segments

ReIM uses department account segments in GL account mappings. ReIM does not
provide an interface for this information because it does not directly relate to other
information in ReIM. ReIM expects the retailer to directly populate the ReIM
department account segment table (IM_DYNAMIC_SEGMENT_DEPT_CLASS).

Financial Transactions

To be independent of any single financial product, such as Oracle Financials, Oracle
Retail has created a generic interface. That is, Oracle Retail writes records to a single
generic table from which custom retailer code can read records and process data as
necessary. The retailer is responsible creating a process that sends transactions to the
financials system.

Complex and Fixed Deal-Related Posting

For complex and fixed deals, batch processes copy most of the data from the RMS
staging tables into ReIM detail tables IM_COMPLEX_DEAL_DETAIL, IM_FIXED_
DEAL_DETAIL). Some of the data on these tables is later referenced during the
posting process for the created documents, including Location and Item.

Integration 5-27

Financial System Interface

Non-merchandise Fixed Deals in Multiple Sets of Books Environment

The RelM posting process uses the location on the document to determine which set of
books should be applied to financial staging tables so that the general ledger is
updated correctly when the transaction is picked up by the financial system.
Non-merchandise fixed deals, however, are not associated with a location. Rather, they
are assocated with an organization unit (org_unit) in RMS. When non-merchandise
fixed deals are loaded into RelM, a location is assigned to the transaction by way of the
following process.

1. In RMS, the set of books is found for the org_unit, using the org_unit on the
non-merchandise fixed deal.

2. Using the set of books from Step 1, the FIXED_DEAL_SOB_LOC_DEFAULT table
is queried to find a location. The location returned by the query is the location
used for the fixed deal.

When the fixed deal is posted, it uses the location found in this process to determine
which set of books to apply to the transaction. If an entry is not found in the FIX_
DEAL_SOB_LOC_DEFAULT table, the system will use the default location from the
RelIM.properties file.

Resolution Posting

To understand the process that posts data from ReIM to the financials staging table
(IM_FINANCIAL_STAGE), see "Financial Posting Batch Design" in Chapter 8, "Batch
Processes."

Tracking Receipt Posts
Receipt tracking functionality allows the retailer to track what receipts have posted.

This processing helps the retailer check the integrity of its financial data.

Note that Oracle Retail does not provide packaged reporting in conjunction with this
processing. Rather, the retailer builds its own processes and creates its own reporting
mechanisms against the data resulting from the receipt tracking functionality.

Tables Related to Tracking Receipt Posts
The tables illustrated below are for the retailer's understanding, but the data on these
tables should not be used by the retailer as it builds its processes and reports.

Each area of the system that matches receipts to invoices updates the IM_RECEIPT_
ITEM_POSTING table. This table tracks how much of an individual receipt item has
been matched and posted.

IM_RECEIPT_ITEM_POSTING

Column Type Type Nullable
SEQ _NO NUMBER(10) N
RECEIPT_ID NUMBER(10) N
ITEM_ID VARCHAR(25) N
QTY_MATCHED NUMBER(12,4) Y
QTY_POSTED NUMBER(12,4) Y

5-28 Oracle Retail Invoice Matching Operations Guide

Financial System Interface

IM_RCPT_ITEM_POSTING_INVOICE

Column Type Type Nullable
SEQ_NO (from IM_RECEIPT_ NUMBER(10) N
ITEM_POSTING)

DOC_ID NUMBER(10)

STATUS VARCHAR2(1) Y

Staging Tables to be used for Reporting Once posting is completed, the following staging
tables contain all currently posted entries. Thus, to build processes and reporting that
tracks receipt posts, the retailer should use only the data from these staging tables.

IM_RECEIPT_ITEM_POSTING_STAGE

Column Type Type Nullable
SEQ_NO NUMBER(10) N
RECEIPT_ID NUMBER(10) N
ITEM_ID VARCHAR(25) N
QTY_POSTED NUMBER(12,4) N
CREATE_DATE DATE N

IM_RCPT_ITEM_POSTING_INV_STAGE

Column Type Type Nullable
SEQ_NO NUMBER(10) N
DOC_NO NUMBER(10) N

Multiple Lines for an Individual Receipt Item

For a given line item on a receipt, a line item can be split between multiple invoices.
For example, one invoice could match half of a line item; another invoice could match
the other half of the line item. Two separate lines would thus appear. The retailer
should note that these values (and those in equivalent business scenarios) need adding
together to indicate how much of a given receipt item is posted.

Matching and Tracking Receipt Posts Processing

When a match is made, the system creates an IM_RECEIPT_ITEM_POSTING record
for each invoice item matched, setting the qty_matched value to the amount matched.
In addition, the system creates an IM_RCPT_ITEM_POSTING_INVOICE record for
each invoice matched, setting the status to 'M'. Rather than adding IM_RCPT_ITEM_
POSTING_INVOICE records each time a portion of the line is matched, the system
creates new sets of records for each match to a receipt item.

With regard to summary match processing, an IM_RCPT_ITEM_POSTING_INVOICE
record exists for each invoice for each receipt line item. This record is not used to track
which invoice and receipt line are matched, but the record allows the system to detect
when to set the qty_posted amount in IM_RECEIPT_ITEM_POSTING. Also, when the
system matches at a summary level, all associated records are deleted before current
ones are created. The quantity matched amount is set up to either the receipt amount
or the resolution amount.

Integration 5-29

Financial System Interface

Posting

With regard to the posting process, the system finds each record on the IM_RCPT_
ITEM_POSTING_INVOICE table associated with the invoice being posted. When that
line is posted, the system changes the status on that table to P. The system then checks
whether or not more records exist on that table for the same seq_no. If there are more
records, the system engages in no further processing steps. If there not more records,
the system sets the qty_posted value to the amount in qty_matched for that seq_no in
IM_RECEIPT_ITEM_POSTING. Because posting can only happen when both the cost
and quantity discrepancies are resolved for an invoice, the resolution of cost
discrepancies is not tracked.

Once posting is completed, all posted records are moved to the corresponding staging
table for each table (IM_RECEIPT_ITEM_POSTING_STAGE and IM_RCPT_ITEM_
POSTING_INV_STAGE). The processing involving the staging tables has been
designed to enhance performance, so that matching and resolution functionality is not
impacted adversely by the receipt tracking functionality.

Reporting
Reporting must be run after the posting batch job has completed. Both ReIM and the

merchandising system (such as RMS) must be disabled from user input, and all other
batch jobs should be completed or disabled.

To determine the remaining amount available to be posted, all entries for a given
receipt item's qty_posted should be rolled up and subtracted from the related
SHIPSKU entry. Any receipt write-offs should be added in order to determine the final
number remaining against the receipt.

Again, the staging tables, IM_RECEIPT_ITEM_POSTING_STAGE and IM_RCPT_
ITEM_POSTING_INV_STAGE, are used in building processes and/or reports against
this data. Once posting is completed, these staging tables contain all currently posted
entries.

Integration with Oracle E-Business Suite

Additional information about integration is provided in the Oracle Retail Merchandising
System Operations Guide, Volume 3.

Note: The integration described in this section requires the
integration accelerator patch. This software patch is available from
Oracle Retail and enables the integration between Oracle E-Business
Suite and some Oracle Retail applications. For more information, see
the Oracle Retail 13.0.1 - Oracle E-Business Suite 12.0.4 Integration
Accelerator Patch Installation Guide, as included with the integration
accelerator patch.

ReIM supports multiple sets of books when integrating with Oracle Financials. When
the multiple set of books indicator is turned on in RMS, the appropriate set of books ID
is included on transactions sent to the financial staging tables. The set of books ID of
the RMS org unit associated with the location on the transaction is used.

When integrated with Oracle E-Business Suite, ReIM exports data to AP staging tables
or to financial tables, depending on the specific types of transactions. This is done if
the financial system for AP and GL is Oracle Enterprise Financials and the Oracle
Retail Merchandising System (RMS) System Options table has the following setting:

= FINANCIAL_AP=0

5-30 Oracle Retail Invoice Matching Operations Guide

Financial System Interface

Matched Invoices and Approved Documents Invoices can be matched through
auto-matching or on-line matching. Credit notes can be matched with credit note
requests in on-line matching processes. The unit cost and quantities of all items (at a
summary level) on the invoice are compared to the unit cost and quantities on the
receipt. If the cost and quantity on the invoice and receipt agree within defined
tolerances, there is a match.

Pre-Paid Invoices Invoices may be paid before matching is complete in order to meet
payment terms requirements. Users determine whether to "pre-pay" an invoice.
Pre-paid invoices are still eligible for matching against receipts; however, an indicator
on the invoice record prevents it from being paid twice. When a pre-paid invoice is
matched the results are posted to the IM_FINANCIALS_STAGE table for interface to
the General Ledger rather than the IM_AP_STAGE_HEAD and IM_AP_STAGE_
DETAIL tables for interface to Accounts Payable.

Non-Merchandise Invoices These invoices include bills for non-merchandise costs only.
Non-merchandise invoices cannot contain items. Either suppliers or partners can
create non-merchandise invoices. However, merchandise invoices can contain
non-merchandise lines.

Posting Transaction Codes to AP Staging Table

Posting transaction codes, along with Line Type Lookkup codes, helps clarify the
source of the detail entry.

IM_AP_STAGE_HEAD The Invoice Type Lookup Code in the IM_AP_STAGE_HEAD
table is used to categorize header entries as either STANDARD or CREDIT.

The Invoice Type Lookup Code for merchandise invoices and credit memos (where
IM_DOC_HEAD.TYPE is MRCHI, CRDMEC or CRDMEQ) is STANDARD. For
positive non-merchandise invoices (where IM_DOC_HEAD.TYPE is NMRCHI) the
Invoice Type Lookup Code also is STANDARD. For negative non-merchandise
invoices and all other documents, the Invoice Lookup Code is CREDIT.

IM_AP_STAGE_DETAIL The Line Type Lookup Code is used to identify the type of entity
an entry in IM_AP_STAGE_DETAIL was created from. It is used to identify if the
detail entry was calculated from merchandise items, non-merchandise components, or
taxes.

The Line Type Lookup Code is determined using the following rules:

» If the posting transaction code is UNR, VWT, REASON, or CRN, then this value is
ITEM.

= If this is a generated tax line, then this value is TAX.

= Ifnone of the above, then this value is MISCELLANEOUS. This is typical for detail
entries generated from non-merchandise components of invoices

Below is a sample entry in IM_AP_STAGE_DETAIL for invoice 12345 with a total cost
of 553.50:

LINE_TYPE_
DOC_ID TRAN_CODE LOOKUP_CODE AMOUNT
12345 UNR ITEM 500
12345 UNR TAX 50
12345 NMRCH MISCELLANEOUS | 3.50

Integration 5-31

Financial System Interface

Data Mapping Teh following tables describe the mapping of data from Oracle Retail
Invoice Matching to Oracle E-Business Suite Accounts Payable.

IM_AP_STAGE_HEAD to AP_INVOICES_INTERFACE

IM_AP_STAGE_ AP_INVOICES_

HEAD INTERFACE Comments
DOC_ID INVOICE_ID

SEQ_NO NONE

INVOICE_TYPE_
LOOKUP_CODE

INVOICE_TYPE_
LOOKUP_CODE

INVOICE_NUMBER

INVOICE_NUM

VENDOR VENDOR_ID
ORACLE_SITE_ID VENDOR_SITE_ID
CURRENCY_CODE | INVOICE_

CURRENCY_CODE

EXCHANGE_RATE_

EXCHANGE_RATE_

Expecting the value USER in this column.

TYPE TYPE

DOC_DATE INVOICE_DATE

AMOUNT INVOICE_
AMOUNT

BEST_TERMS_DATE | TERMS_DATE

SEGMENT1 ACCTS_PAY_ All segments (1-10) concatenated with - are
CODE_ mapped to ACCTS_PAY_CODE_
CONCATENATED | CONCATENATED.

SEGMENT?2 ACCTS_PAY_ All segments (1-10) concatenated with - are
CODE_ mapped to ACCTS_PAY_CODE_
CONCATENATED | CONCATENATED.

SEGMENT3 ACCTS_PAY_ All segments (1-10) concatenated with - are
CODE_ mapped to ACCTS_PAY_CODE_
CONCATENATED | CONCATENATED.

SEGMENT4 ACCTS_PAY_ All segments (1-10) concatenated with - are
CODE_ mapped to ACCTS_PAY_CODE_
CONCATENATED | CONCATENATED.

SEGMENT5 ACCTS_PAY_ All segments (1-10) concatenated with - are
CODE_ mapped to ACCTS_PAY_CODE_
CONCATENATED | CONCATENATED.

SEGMENT6 ACCTS_PAY_ All segments (1-10) concatenated with - are
CODE_ mapped to ACCTS_PAY_CODE_
CONCATENATED | CONCATENATED.

SEGMENT6 ACCTS_PAY_ All segments (1-10) concatenated with - are
CODE_ mapped to ACCTS_PAY_CODE_
CONCATENATED | CONCATENATED.

SEGMENT7?7 ACCTS_PAY_ All segments (1-10) concatenated with - are
CODE_ mapped to ACCTS_PAY_CODE_
CONCATENATED | CONCATENATED.

SEGMENTS8 ACCTS_PAY_ All segments (1-10) concatenated with - are
CODE_ mapped to ACCTS_PAY_CODE_
CONCATENATED | CONCATENATED.

5-32 Oracle Retail Invoice Matching Operations Guide

Financial System Interface

IM_AP_STAGE_ AP_INVOICES _

HEAD INTERFACE Comments

SEGMENT9 ACCTS_PAY_ All segments (1-10) concatenated with - are
CODE_ mapped to ACCTS_PAY_CODE_
CONCATENATED | CONCATENATED.

SEGMENT10 ACCTS_PAY_ All segments (1-10) concatenated with - are
CODE_ mapped to ACCTS_PAY_CODE_
CONCATENATED CONCATENATED.

CREATE_DATE _
TIME

CREATION_DATE

IM_AP_STAGE_DETAIL to AP_INVOICE_LINES_INTERFACE

IM_AP_STAGE _ AP_INVOICE _
DETAIL LINES_INTERFACE | Comments
DOC_ID INVOICE_ID
SEQ_NO LINE_NUM
TRAN_CODE NONE
LINE_TYPE_ LINE_TYPE_
LOOKUP_CODE LOOKUP_CODE
AMOUNT AMOUNT
VAT_CODE TAX_CODE
SEGMENT1 DIST_CODE_ All segments (1-10) concatenated with - are
CONCATENATED mapped to DIST_CODE_
CONCATENATED.
SEGMENT2 DIST_CODE_ All segments (1-10) concatenated with - are
CONCATENATED mapped to DIST_CODE_
CONCATENATED.
SEGMENT3 DIST_CODE_ All segments (1-10) concatenated with - are
CONCATENATED mapped to DIST_CODE_
CONCATENATED.
SEGMENT4 DIST_CODE_ All segments (1-10) concatenated with - are
CONCATENATED | mapped to DIST_CODE_
CONCATENATED.
SEGMENTS5 DIST_CODE_ All segments (1-10) concatenated with - are
CONCATENATED | mapped to DIST_CODE_
CONCATENATED.
SEGMENT6 DIST_CODE_ All segments (1-10) concatenated with - are
CONCATENATED mapped to DIST_CODE_
CONCATENATED.
SEGMENT?7 DIST_CODE_ All segments (1-10) concatenated with - are
CONCATENATED mapped to DIST_CODE_
CONCATENATED.
SEGMENTS8 DIST_CODE_ All segments (1-10) concatenated with - are
CONCATENATED | mapped to DIST_CODE_
CONCATENATED.
SEGMENT9 DIST_CODE_ All segments (1-10) concatenated with - are
CONCATENATED | mapped to DIST_CODE_

CONCATENATED.

Integration 5-33

Financial System Interface

IM_AP_STAGE _ AP_INVOICE _

DETAIL LINES_INTERFACE | Comments

SEGMENT10 DIST_CODE_ All segments (1-10) concatenated with - are
CONCATENATED mapped to DIST_CODE_

CONCATENATED.

CREATE_DATE_
TIME

IM_FINANCIALS_STAGE_V to GL_INTERFACE

IM_FINANCIALS _
STAGE_V GL_INTERFACE Comments
STATUS STATUS Hard-coded value of NEW in the view

definition.

ACTUAL_FLAG

ACTUAL_FLAG

Hard-coded value of A in the view
definition.

TRAN_CODE REFERENCE23

DEBIT_CREDIT_

IND

DOC_ID REFERENCE22

PARENT_ID

DOC_DATE ACCOUNTING_
DATE

RECEIPT_ID REFERENCE25

RECEIPT_DATE

VENDOR_TYPE

VENDOR REFERENCE20

ORDER_NO REFERENCE24

CURRENCY_CODE | CURRENCY_CODE

AMOUNT

BEST_TERMS

BEST_TERMS_DATE

MANUALLY_PAID_
IND

PRE_PAID_IND

CREATE_ID CREATED_BY
CREATE_ DATE_CREATED
DATETIME

SEGMENT1 SEGMENT1
SEGMENT2 SEGMENT2
SEGMENT3 SEGMENT3
SEGMENT4 SEGMENT4
SEGMENTS5 SEGMENT5
SEGMENT6 SEGMENT6

5-34 Oracle Retail Invoice Matching Operations Guide

Financial System Interface

IM_FINANCIALS_
STAGE_V

GL_INTERFACE

Comments

SEGMENT?

SEGMENT7

SEGMENTS

SEGMENTS

SEGMENT9

SEGMENT9

SEGMENT10

SEGMENT10

VAT_CODE

TAX_CODE

VAT_RATE

DEAL_ID

LOCAL_
CURRENCY

INCOME_LOCAL_
CURRENCY

TOTAL_COST_INC_
VAT

EXT_DOC_ID

REFERENCE21

SET_OF_BOOKS_ID

SET_OF_BOOKS_ID

USER_JE_SOURCE_
NAME

USER_JE_SOURCE_
NAME

Constant value: Retail Invoices

USER_JE_ USER_JE_ One of these values: Writeoffs,
CATEGORY_NAME | CATEGORY_NAME | Prepayments, or Manual Payments
ENTERED_DR ENTERED_DR

ENTERED_CR ENTERED_CR

Integration with Non-Oracle Financials Systems

When integrated with a financials system other than Oracle, ReIM exports data to a
financial staging table with data intended for both Accounts Payable and General
Ledger. The retailer needs to develop their own interface from the financial staging
table to their systems, based on the requirements of their financials systems.

Multiple Sets of Books ReIM supports multiple sets of books when integrating with a
financials system. When the multiple sets of books indicator is turned on in RMS, the
appropriate sets of books ID is included on transactions sent to the financial staging
tables. The sets of books ID of the RMS org unit associated with the location on the

transaction is used.

Matched Invoices and Approved Documents Invoices can be matched through
auto-matching or on-line matching. Credit notes can be matched with credit note
requests in on-line matching processes. The unit cost and quantities of all items (at a
summary level) on the invoice are compared to the unit cost and quantities on the
receipt. If the cost and quantity on the invoice and receipt agree within defined
tolerances, there is a match.

Non-Merchandise Invoices These invoices include bills for non-merchandise costs only.
Non-merchandise invoices cannot contain items. Either suppliers or partners can
create non-merchandise invoices. However, merchandise invoices can contain
non-merchandise lines.

Integration 5-35

LDAP and Other User Interfaces

LDAP and Other User Interfaces

ReIM supports two types of user authentication: LDAP and DATABASE. To indicate
the authentication method, select LDAP or DATABASE for the property called
authentication_source in the reim.properties file.

For information, see "Authentication Settings" in Chapter 2, "Backend System
Administration and Configuration."

LDAP

Light Directory Access Protocol (LDAP) is one of the means of user authentication
supported by ReIM. It defines a network protocol for accessing information in a
directory.

If selected, LDAP is used only within ReIM for user authentication. Because ReIM has
specific requirements for ReIM user roles and permissions that are easily configurable
by the retailer, they are defined in the application itself. ReIM reads standard user
information from an LDAP server.

If the retailer already stores user information using LDAP, the only interfacing
configuration required is through the LDAP-specific properties file. The entries in this
file point ReIM to the appropriate machine and port to find the LDAP server. Other
properties also may be modified to reflect the names of attributes that the retailer uses
in its LDAP schema.

Setting up the LDAP interface entails completing tasks within LDAP andReIM as
follows.

Setup Steps within LDAP
In LDAP, complete the following steps.

1. Define the following attributes (or find the existing attributes that provide the
same information) within your LDAP (actual name is not important).

s User ID (standard uid)

= Password

» First name (standard cn)
s Last name (standard sn)

» Preferred user language (identifies user locale, same as country in IM_USER_
AUTHORIZATION.LANGUAGE)

» Preferred user country (identifies user locale, same as country in IM_USER_
AUTHORIZATION.COUNTRY)

» Preferred email (standard mail)

Note: All attributes listed above should be single value and
mandatory. For attributes with multiple values, the first value is used
within ReIM.

5-36 Oracle Retail Invoice Matching Operations Guide

LDAP and Other User Interfaces

2, Create an attribute class that encompasses all the attributes above.

3. Select a container within your LDAP to hold users, which may be created directly
in the container or in enclosed containers.

4. Either create new users based on the attribute class just created above, or add the
attribute class to the existing users. Define missing values as needed.

Setup Steps within RelM
In RelM, complete the following steps.

1. Inreim.properties, change authentication_source to LDAP.

2, Inldap.properties, define the values for the parameters shown in the following

table..

Parameter

Description

connection_url

Machine and port for your LDAP server

user_dn

User name for the user defined within
LDAP that has ADMIN privileges

user_password

Password for the user above

base_dn

Name of the container for ReIM users

login_id_attribute_name

Name for user ID attribute used within the
attribute class

user_first_ name_attribute_name-

Name for the first name attribute used
within the attribute class

user_last_name_attribute_name

Name for the last name attribute used
within the attribute class

user_email_attribute_name-

Name for the email attribute used within
the attribute class

user_password_attribute_name-

Name for the password attribute used
within the attribute class

user_language_attribute_name

Name for the preferred language attribute
used within the attribute class

user_country_attribute_name—

Name for the preferred country attribute
used within the attribute class

WildCard

Wild character used to identify any search
criteria filter

Integration 5-37

LDAP and Other User Interfaces

Additional LDAP Resources

= http://www.openldap.org/
This site contains the OpenLDAP main page. This site contains introduction,
downloads, and documentation.

= http://www.it.edu/~gawojar/ldap/
This site is the LDAP browser site.

= http://ldap.akbkhome.com/
This site contains an LDAP schema view with some definitions of the standard
LDAP object classes and attributes.

RelM User Table

Retailers who choose not to use LDAP can instead enter valid users into the ReIM user
table. Note, however, that ReIM does not provide a method for inserting user
information into the ReIM user table. The retailer is responsible for the interface
associated with user information.

5-38 Oracle Retail Invoice Matching Operations Guide

6

Technical Design

This chapter contains information related to the technical design of ReIM.

Locking Design Summary

ReIM locking is accomplished using database tables that hold record level locks. The
locking of tables is performed for several reasons, including the following:

= ReIM does not necessarily maintain a single connection throughout an entire
screen/process. That is, the system opens a connection, fetches information, and
then closes the connection. At a later moment in time, the system opens another
connection to save changes and close the connection.

s ReIM cannot maintain locks in some kinds of Java session structures because the
system may be involved with more than one Java virtual machine (JVM).

Locking and Tables

Base tables that contain information to be locked (for example, IM_SUPPLIER _
OPTIONS) have a corresponding ..._LOCK table (for example, IM_SUPPLIER _
OPTIONS_LOCK). The ..._LOCK table contains the same columns as the primary key
of the base table.

When the system creates a lock, it writes the primary key values for the base table

records to be locked to the appropriate ..._LOCK table. For example, if data in the IM_
SUPPLIER_OPTIONS table is to be locked for supplier 12345, a record is written to the
IM_SUPPLIER_OPTIONS_LOCK table for supplier with the primary key value 12345.

When records in a base header table are locked, all detail records related to each locked
header record are implicitly locked. Detail records are not explicitly locked because:

= RelIM functionality must go through the header information to access detail
information. In other words, the entry point to detail records is generally through
the header.

= On screens and within backend processes that include header information, some
kind of summary of the details also exists.

The following two examples represent this type of header detail locking:

Technical Design 6-1

Locking Design Summary

Example 1

If user A is looking at the header, and user B changes the details, user A does not have
visibility to the changes and might perform an invalid action. Invoices are stored on
IM_DOC_HEAD, and the non-merchandise costs on invoices are stored on IM_DOC_
NON_MERCH. On the invoice header screen, user A can see a sum of all of the
non-merch costs for invoice 99999. If user B could somehow at the same time add new
non-merchandise costs for invoice 99999, the information that user A sees as the
summary of non-merchandise costs would be invalid.

Example 2

If auto-match has selected all documents ready for match' and is processing and then
additional data is entered for a document, the details with which the auto-match is
working would no longer be valid.

Locking Management

s When a user that has an active lock exits a screen (that is, the user selects OK or
Cancel buttons on the screen), data changes are committed (if necessary) and then
any locks on data displayed on that screen are removed. If any expired locks on
the screen data exist, they are also released upon screen exit.

= When a user tries to commit information to the database, the locking service
checks to ensure that the user has valid locks on any changed data being
committed (for example, locks could have timed out as noted below). If the user
does not have valid locks, the user receives a message noting that the user's
changes cannot be saved. In this case, the user must exit the screen, enter the
screen again, and re-enter the data changes that could not be committed due to
invalid /expired locks.

= Insituations where accidental system exits occur (for example, the server shuts
down unexpectedly from power loss), locks are not released immediately. After
the system is restored from outage, the user will log into the system and access the
main menu. At that point, any existing data locks are removed. Because this data
is no longer locked, any user with adequate security permissions can acquire new
locks on this data.

s The lock timeout interval is defined in the reim.properties file. See Chapter 2,
"Backend System Administration and Configuration," for information.

= When locks are written to the ..._LOCK table, they include an end time value.
When checking to see if a row of data is locked, the system inspects the related
lock row end time value. If the commit time is before the end time on the ..._
LOCK table record, the base table data changes may be committed. If the commit
time is equal to or exceeds the end time, the data lock will be treated as 'expired’
and the data changes will not be committed.

= If a user needs immediate access to already locked data and cannot wait for data
locks to expire or be released by the user holding the locks, a database
administrator can manually delete existing lock records from the appropriate ..._
LOCK table to release the locks. However, this does not guarantee that the user
that needs immediate access will be the next user to acquire locks on the
just-released data. The manual release of locks should be a rare event due to the
other lock release methods in the system.

6-2 Oracle Retail Invoice Matching Operations Guide

Currency Design Summary

Currency Design Summary

ReIM has been designed to handle a multiple number of currencies. This section
addresses the system's assumptions, conversion process, and validations that are
related to this capability.

Merchandising System (such as RMS) and RelM Assumptions

RMS defines one currency as the primary currency of the system (held on the RMS
SYSTEM_OPTIONS table in the CURRENCY_CODE field).

RMS specifies that each purchase order can have one currency. This purchase
order currency does not have to be the same as the RMS primary system currency
or the RMS supplier currency.

ReIM requires that each document have its currency stated (IM_DOC _
HEAD.CURRENCY_CODE). This invoice currency does not have to be the same
as the system primary currency.

ReIM assumes that a purchase order and any invoices associated with that
purchase order are in the same currency. This assumption is based on the business
reality that these currencies are almost always the same and on the development
consideration that currency conversion processes have an adverse impact on
system performance.

Currency Conversion Process for Amount Tolerances

Amount tolerances are established in the primary currency of the system.
However, because the invoices and POs to be matched could reflect a different
currency, amount tolerances must be converted before they can be applied. In
other words, the currency established for amount tolerances is converted when the
invoice/PO combination is not in the primary currency of the system. For
example, a tolerance defined as 10 US dollars (USD) has a much different meaning
than a purchase order/invoice defined in Thai Baht (10 Thai Baht is about 0.23
USD). If the system merely utilized the number 10 and failed to perform a
currency conversion, the amount tolerances would not apply correctly.

Currency conversion rates are stored on the RMS CURRENCY_RATES table. The
conversion factors on this table are in terms of the primary currency of the system.
For example, suppose a retailer wishes to convert from Thai Baht to Uruguayan
Pesos and the system's primary currency is USD. First, the system performs a
conversion from Thai Baht to USD. Second, the system converts the USD value to
Uruguayan Pesos. In other words, to perform its conversions, the system always
must go through the primary currency of the system.

Currency-Related System Validations

One of the validations performed by the EDI upload process is that it determines
whether the currency on the invoice is the same as the currency on the purchase order.
If the invoice currency is not the same as the purchase order currency, the invoice is
rejected.

The graphical user interface (GUI) invoice entry (both single invoice entry and batch
invoice entry) process also validates that the currency on the invoice is the same as the
currency on the PO associated with the invoice. If the currencies are not the same, the
user receives a warning message.

Technical Design 6-3

Oracle Single Sign-on Overview

Java Currency Formatting

Currency must be properly formatted according to its applicable locale. For example,
US currency uses a comma as a thousands separator whereas other currencies do not
use a comma as a thousands separator. Java has built-in libraries for currency
formatting that are based on locales.

ReIM uses built-in Java localization functionality mapped through the table IM_
CURRENCY_LOCALE to RMS existing currency structure. ReIM provides an
installation script that populates this table. The script creates records for every
currency that RMS supports. Note that ReIM cannot guarantee the accuracy of RMS
language data.

Oracle Single Sign-on Overview

Single Sign-On (SSO) is a term for the ability to sign onto multiple web applications
via a single user ID/Password. There are many implementations of SSO - Oracle
currently provides three different implementations: Oracle Single Sign-On (OSSO),
Java SSO (with the 10.1.3.1 release of OC4]) and Oracle Access Manager (provides
more comprehensive user access capabilities).

Most, if not all, SSO technologies use a session cookie to hold encrypted data passed to
each application. The SSO infrastructure has the responsibility to validate these
cookies and, possibly, update this information. The user is directed to log on only if the
cookie is not present or has become invalid. These session cookies are restricted to a
single browser session and are never written to a file.

Another facet of SSO is how these technologies redirect a user's Web browser to
various servlets. The SSO implementation determines when and where these redirects
occur and what the final screen shown to the user is.

Most SSO implementations are performed in an application's infrastructure and not in
the application logic itself. Applications that leverage infrastructure managed
authentication (such as deploying specifying "Basic" or "Form" authentication)
typically have little or no code changes when adapted to work in an SSO environment.

What Do | Need for Oracle Single Sign-On?

The nexus of an Oracle Single Sign-On system is the Oracle Identity Management
Infrastructure installation. This consists of the following components:

= An Oracle Internet Directory (OID) LDAP server, used to store user, role, security,
and other information. OID uses an Oracle database as the back-end storage of this
information.

= An Oracle Single Sign-On servlet, used to authenticate the user and create the
OSSO session cookie. This servlet is deployed within the infrastructure Oracle
Application Server (OAS).

6-4 Oracle Retail Invoice Matching Operations Guide

Oracle Single Sign-on Overview

s The Delegated Administration Services (DAS) application, used to administer
users and group information. This information may also be loaded or modified via
standard LDAP Data Interchange Format (LDIF) scripts.

= Additional administrative scripts for configuring the OSSO system and registering
HTTP servers.

Additional OAS servers will be needed to deploy the business applications leveraging
the OSSO technology.

Can Oracle Single Sign-On Work with Other SSO Implementations?

Yes, OSSO has the ability to interoperate with many other SSO implementations, but
some restrictions exist.

Oracle Single Sign-on Terms and Definitions

The following terms pertain to Oracle Single Sign-on.

Authentication

Authentication is the process of establishing a user's identity. There are many types of
authentication. The most common authentication process involves a user ID and
password.

Dynamically Protected URLS

A "Dynamically Protected URL" is a URL whose implementing application is aware of
the OSSO environment. The application may allow a user limited access when the user
has not been authenticated. Applications that implement dynamic OSSO protection
typically display a "Login" link to provide user authentication and gain greater access
to the application's resources.

Identity Management Infrastructure

The Identity Management Infrastructure is the collection of product and services
which provide Oracle Single Sign-on functionality. This includes the Oracle Internet
Directory, an Oracle HTTP server, and the Oracle Single Sign-On services. The Oracle
Application Server deployed with these components is typically referred as the
"Infrastructure” instance.

MOD_0SSO

mod_osso is an Apache Web Server module an Oracle HTTP Server uses to function as
a partner application within an Oracle Single Sign-On environment. The Oracle HTTP
Server is based on the Apache HTTP Server.

Oracle Internet Directory

Oracle Internet Directory (OID) is an LDAP-compliant directory service. It contains
user ids, passwords, group membership, privileges, and other attributes for users who
are authenticated using Oracle Single Sign-On.

Technical Design 6-5

Oracle Single Sign-on Overview

Partner Application

A partner application is an application that delegates authentication to the Oracle
Identity Management Infrastructure. One such partner application is the Oracle HTTP
Server (OHS) supplied with the Oracle Application Server. OHS uses the MOD_OSSO
module to configure this functionality.

All partner applications must be registered with the Oracle Single Sign-On server. An
output product of this registration is a configuration file the partner application uses to
verify a user has been previously authenticated.

Realm

A Realm is a collection users and groups (roles) managed by a single password policy.
This policy controls what may be used for authentication (such as passwords, X.509
certificates, and biometric devices). A Realm also contains an authorization policy
used for controlling access to applications or resources used by one or more
applications.

A single OID can contain multiple Realms. This feature can consolidate security for
retailers with multiple banners or to consolidate security for multiple development
and test environments.

Statically Protected URLs

A URL is considered to be "statically protected” when an Oracle HTTP server is
configured to limit access to this URL to only SSO authenticated users. Any attempt to
access a statically protected URL results in the display of a login page or an error page
to the user.

Servlets, static HTML pages, and JSP pages may be statically protected.

What Single Sign-On is not
Single Sign-On is NOT a user ID/password mapping technology.

However, some applications can store and retrieve user IDs and passwords for
non-SSO applications within an OID LDAP server. An example of this is the Oracle
Forms Web Application framework, which maps OSSO user IDs to a database logins
on a per-application basis

How Oracle Single Sign-On Works

Oracle Single Sign-On involves a couple of different components. These are:

s The Oracle Single Sign-On (OSSO) servlet, which is responsible for the back-end
authentication of the user.

» The Oracle Internet Directory LDAP server, which stores user IDs, passwords, and
group (role) membership.

» The Oracle HTTP Server associated with the web application, which verifies and
controls browser redirection to the OSSO servlet.

» If the web application implements dynamic protection, then the web application
itself is involved with the OSSO system.

6-6 Oracle Retail Invoice Matching Operations Guide

Oracle Single Sign-on Overview

Statically Protected URLs

When an unauthenticated user accesses a statically protected URL, the following
occurs:

1. The Oracle HTTP server recognizes the user has not been authenticated and
redirects the browser to the Oracle Single Sign-On servlet.

2. The OSSO servlet determines the user must authenticate, and displays the OSSO
login page.

3. The user must sign in via a valid user ID and password. If the OSSO servlet has
been configured to support multiple Realms, a valid realm must also be entered.

The user ID, password, and realm information is validated against the Oracle
Internet Directory LDAP server.

4. The OSSO servlet creates and sends the user's browser an OSSO session cookie.
This cookie is never persisted to disk and is specific only to the current browser
session. This cookie contains the user's authenticated identity. It does not contain
the user's password.

5. The OSSO servlet redirects the user back to the Oracle HTTP Server, along with
OSSO specific information.

6. The Oracle HTTP Server decodes the OSSO information, stores it with the user's
session, and allows the user access to the original URL.

Dynamically Protected URLs

When an unauthenticated user accesses a dynamically protected URL, the following
occurs:

1. The Oracle HTTP server recognizes the user has not been authenticated, but
allows the user to access the URL.

2. The application determines the user must be authenticated and sends the Oracle
HTTP server a specific status to begin the authentication process.

3. The Oracle HTTP Server redirects the user's browser session to the OSSO Servlet.

4. The OSSO servlet determines the user must authenticate, and displays the OSSO
login page

5. The user must sign in via a valid user ID and password. If the OSSO servlet has
been configured to support multiple Realms, a valid realm must also be entered.
The user ID, password, and realm information is validated against the Oracle
Internet Directory LDAP server.

6. The OSSO servlet creates and sends the user's browser an OSSO session cookie.
This cookie is never persisted to disk and is specific only to the current browser
session. This cookie contains the user's authenticated identity. It does NOT contain
the user's password.

7. The OSSO servlet redirects the user back to the Oracle HTTP Server, along with
OSSO specific information.

8. The Oracle HTTP Server decodes the OSSO information, stores it with the user's
session, and allows the user access to the original URL.

Technical Design 6-7

Oracle Single Sign-on Overview

Single Sign-on Topology

Oracle Application Server (OAS)
Mid-Tier

OC4J
Apache HTTP AJP 1.3

-

L J

Client Browser

LDAP

Redirect

v

Qracle Application Server (OAS)
Infrastructura/OIM

I
|
: HTTP
|

A
I
I
I
I
I
1

o

Oracle Internet
0Cc4) (Security Instance) [Directory (QID)
Apache HTTP | AJP1.3 LDAP LDAP Server

Server 880 ™| and database

Y

DAS LDAP

Installation Overview

Installing Oracle Single Sign-On consists of installing the following components:

1. Installing the Oracle Internet Directory (OID) LDAP server and the Infrastructure
Oracle Application Server (OAS). These are typically performed using a single
session of the Oracle Universal Installer and are performed at the same time. OID
requires an Oracle relational database and if one is not available, the installer will
also install this as well. The Infrastructure OAS includes the Delegated
Administration Services (DAS) application as wel as the OSSO servlet. The DAS
application can be used for user and realm management within OID.

2. Installing additional OAS 10.1.2 midtier instances for the Oracle Retail
applications, such as RMS, that are based on Oracle Forms technologies. These
instances must be registered with the Infrastructure OAS installed in step 1).

3. Installing additional application servers to deploy other Oracle Retail applications
and performing application specific initialization and deployment activities.

Infrastructure Installation and Configuration

The Infrastructure installation for OSSO is dependent on the environment and
requirements for its use. Deploying an Infrastructure OAS to be used in a test
environment does not have the same availability requirements as for a production
environment. Similarly, the Oracle Internet Directory (OID) LDAP server can be
deployed in a variety of different configurations. See the Oracle Application Server
Installation Guide for information.

6-8 Oracle Retail Invoice Matching Operations Guide

Oracle Single Sign-on Overview

OID User Data

Oracle Internet Directory is an LDAP v3 compliant directory server. It provides
standards-based user definitions out of the box.

The current version of Oracle Single Sign-On only supports OID as its user storage
facility. Customers with existing corporate LDAP implementations may need to
synchronize user information between their existing LDAP directory servers and OID.
OID supports standard LDIF file formats and provides a JNDI compliant set of Java
classes as well. Moreover, OID provides additional synchronization and replication
facilities to integrate with other corporate LDAP implementations.

Each user ID stored in OID has a specific record containing user specific information.
For role-based access, groups of users can be defined and managed within OID.
Applications can thus grant access based on group (role) membership saving
administration time and providing a more secure implementation.

OID with Multiple Realms

OID and OSSO can be configured to support multiple user Realms. Each realm is
independent from each other and contains its own set of user IDs. As such, creating a
new realm is an alternative to installing multiple OID and Infrastructure instances.
Hence, a single Infrastructure OAS can be used to support many development and test
environments by defining one realm for each environment.

Realms may also be used to support multiple groups of external users, such as those
from partner companies. For more information on Realms, see the Oracle Internet
Directory Administrator’s Guide.

User Management

User Management consists of displaying, creating, updating or removing user
information. There are two basic methods of performing user management: LDIF
scripts and the Delegate Administration Services (DAS) application.

OID DAS

The DAS application is a web based application designed for both administrators and
users. A user may update their own password, change his/her telephone number of
record, or modify other user information. Users may search for other users based on
partial strings of the user's name or ID. An administrator may create new users, unlock
passwords, or delete users.

The DAS application is fully customizable. Administrators may define what user
attributes are required, optional or even prompted for when a new user is created.

Furthermore, the DAS application is secure. Administrators may also what user
attributes are displayed to other users. Administration is based on permission grants,
so different users may have different capabilities for user management based on their
roles within their organization.

LDIF Scripts

Script based user management can be used to synchronize data between multiple
LDAP servers. The standard format for these scripts is the LDAP Data Interchange
Format (LDIF). OID supports LDIF script for importing and exporting user
information. LDIF scripts may also be used for bulk user load operations.

Technical Design 6-9

Configuring RelM for Oracle Single Sign-on

User Data Sychnronization

The user store for Oracle Single Sign-On resides within the Oracle Internet Directory
(OID) LDAP server. Oracle Retail applications may require additional information
attached to a user name for application-specific purposes and may be stored in an
application-specific database. Currently, there are no Oracle Retail tools for
synchronizing changes in OID stored information with application-specific user stores.
Implementers should plan appropriate time and resources for this process. Oracle
Retail strongly suggests that you configure any Oracle Retail application using an
LDAP for its user store to point to the same OID server used with Oracle Single
Sign-On.

Configuring RelM for Oracle Single Sign-on

If you are planning to use Single Sign-On, verify that Oracle Infrastructure Server 10g
(10.1.2.2) has been installed and that the OAS HTTP server is registered with the
Infrastructure Oracle Internet Directory as a partner application.

Note: This section assumes that the Oracle Application Server HTTP
Server has already been registered with the Oracle Single Sign-On
server via the regsso.sh script. See "Oracle Single Sign-on Overview"
for details.

ReIM is a statically Single Sign-On protected application. When ReIM is being used in
an Oracle Single Sign-On environment, the ReIM root context must be protected. Edit
the mod_osso.conf file, S(ORACLE_HOME/ Apache/Apache/conf/mod_osso.conf.
The following lines should be inserted immediately before the line consisting of
</IfModule>

<Location /reim >
require valid-user
AuthType Basic
</Location>

6-10 Oracle Retail Invoice Matching Operations Guide

7

PeopleSoft Enterprise Financials Integration

This chapter describes the integration between Oracle Retail systems and PeopleSoft
Enterprise Financials, as developed and supported by Oracle Application Integration
Architecture (AIA).

When the option to integrate is chosen, selected information is shared among the
systems. Integration and validation services are in place to ensure the shared data
matches.

The primary benefit of this integration is that clients can "drill forward" or "drill back"
between the systems to research the outcome--or origin--of financial transactions.
Drilling functionality is facilitated by an AIA layer, which maps, retrieves and routes
information called by each system.

Note: This chapter addresses the points within Oracle Retail systems
that are essential to integration. For more information about the entire
integration process, including mapping to PeopleSoft Enterprise
Financials data and settings, see the AIA document, Oracle Retail
Merchandising Integration Pack for PeopleSoft Enterprise Financials 2.3 -
Implementation Guide. For more information about Web services, see
the following chapters in the Oracle Retail Merchandising System
Operations Guide, Volume 2: "Service Provider Implementations API
Designs" and "Web Services."

Participating Applications
The following applications are included in the integration covered by this chapter:
s Oracle Retail Merchandising System (RMS)
s Oracle Retail Sales Audit (ReSA)
s Oracle Retail Invoice Matching (RelM)

s Oracle Retail Integration Bus

PeopleSoft Enterprise Financials Integration 7-1

Release and Packaging Considerations

Release and Packaging Considerations

Background

This section describes customer options concerning Oracle Retail integration with
PeopleSoft Enterprise Financials.

The initial Oracle Retail 13.0.2 release occurred on January 9, 2009. This release is a
patch to RMS 13.0.1, and it includes enhancements and defect fixes.

Oracle Retail 13.0.2 applications were repackaged and released on January 30, 2009, as
the Oracle Retail 13.0.2.1 release. The only differences between the Oracle Retail
13.0.2.1 and 13.0.2 applications were in updated documentation and online help. The
repackaging was to support the release of the new Oracle Retail integration with
PeopleSoft Enterprise Financials. This integration uses Oracle Application Integration
Architecture (AIA).

Because of the integration that requires AIA and PeopleSoft software, the Oracle Retail
13.0.2.1 applications are packaged differently from other Oracle Retail releases. The
applications are included in a Process Integration Pack (PIP).

For more information about the Oracle Retail Merchandising Integration Pack for
PeopleSoft Enterprise Financials - Financial Operations Control, see the following Web
page:

http://aia.oraclecorp.com/products/indspc_retailfinancePIP.html

Customer Options

As of this date, customers have two options for installing the Oracle Retail 13.0.2
applications.

Option 1 - No Integration with PeopleSoft Enterprise Financials

Use this option if you do not require integration with PeopleSoft Enterprise Financials.
Assuming that you have installed the Oracle Retail 13.0.1 applications, install the
Oracle Retail 13.0.2 product patch releases.

13.0.1 ——-- >13.0.2

The Oracle Retail 13.0.2 patches are available for download through My Oracle
Support (formerly MetaLink):

https://metalink.oracle.com

Option 2 - Licensed Oracle Retail Integration with PeopleSoft Enterprise Financials
Use this option if you want to integrate Oracle Retail applications with PeopleSoft
Enterprise Financials.

The Oracle Retail 13.0.2.1 applications are available only as a release component of the
Oracle Application Integration Architecture RV 2.3 through Oracle E-Delivery:

https://edelivery.oracle.com
Assuming that you have installed the Oracle Retail 13.0.1 applications, install the
Oracle Retail 13.0.2.1 product patch releases.

13.0.1 ---—--- >13.0.2.1

7-2 Oracle Retail Invoice Matching Operations Guide

Assumptions and Dependencies

On the E-Delivery Media Pack Search page:

1.

In the Select a Product Pack field, select "Oracle Application Integration
Architecture.”

In the Platform field, select "Linux x86."

Download all necessary components.

Media Pack Search

@5 .
Instroctoes Freguently Asked Questions

1. Review the License List to determine which Product Pack ar » What is 4 Media Pack?

Packs you need to download. « How do [find the Media
2. Select the Product Pack and Platform and click "Go". FPack that [need?
3. If there is only one result, you will see the download page. » How do I get my license

If there are multiple results, select one and click "Continue". code?

o More...
Select a Product Pack | Oracle Application Integration Architecture v @
Platform | Linux %86 ¥

5o]

Results

Release

Select | Description Part Number

Upndated | # Parts / Size

(9 Orade Appleation Integration 23000 BS3373-01 FEB-17-2009 43§
Architecture Release 2.3 Media Pack for 136
Linuee k86

Assumptions and Dependencies

The option to integrate should be selected during initial setup of the RMS system.

ReIM accesses RMS to determine if integration is active. Initial setup of RMS must
occur prior to the integration of ReIM.

When a PeopleSoft user performs a drill back, data is presented through an Oracle
Business Intelligence Publishing report.

When drilling forward to PeopleSoft Enterprise Financials, users have view-only
access.

The URLs for the AIA Web services that are anecessary for this integration must be
maintained in the RMS_RETAIL_SERVICE_REPORT_URL table and in the ReIM
integration.properties file.

Real time account validation is done only when the financial integration with
PeopleSoft Enterprise Financials is ON.

Partners must be set up as suppliers in PeopleSoft. Then the partner must be
manually set up in RMS using the RMS Supplier ID that was generated when the
PeopleSoft supplier was interfaced to Oracle Retail. Partner functionality within
RMS and ReIM can then proceed normally. The RMS supplier generated as part of
this process is not used.

PeopleSoft Enterprise Financials Integration 7-3

Data Constraints

Data Constraints

s The Location ID field is restricted to eight characters, to accommodate PeopleSoft
Operating Unit, which has a maximum of eight characters.

» The Ext_Doc_ID field is restricted to 30 characters, because the corresponding
PeopleSoft field has only 30 characters. Characters beyond 30 are truncated.

= RMS allows for four decimals, and PeopleSoft allows only three. Truncation may
occur when data is passed to PeopleSoft Enterprise Financials.

= ReIM values in the IM_CURRENCY_LOCALE are restricted to three decimals,
because the corresponding PeopleSoft Enterprise Financials field can accept no
more than three decimal positions.

Data Setup

Integration of Oracle Retail and PeopleSoft Enterprise Financials relies on
synchronization of essential data, such as rates and terms. Through careful
discussions, users of both systems determine the common codes and descriptions that
will best serve their business needs.

Once agreement is reached, this information is set up and maintained. Depending on
volume, some shared information is set up in either Oracle Retail or PeopleSoft
Enterprise Financials-and electronically transferred to the other system. Otherwise,
shared information is set up manually within each system, and users of both systems
must ensure that codes and descriptions match.

RMS Data Setup and Configuration

This section describes setup considerations for RMS data.

RMS System Options
As part of the RMS system options setup, set the following options as indicated:

= FINANCIAL_ IND =Y

This system_option indicates that the Oracle Retail system is integrated with a
financial system:

= FINANCIAL AP =A

A value of A indicates that the financial system to which RMS is interfaced is Oracle
Peoplesoft Enterprise Financials through Oracle Application Integration Architecture
(AIA).

= GL_ROLL_UP canbe D/S/C

« MULTIPLE_SET_OF_BOOKS_IND =Y
s SUPPLIER_SITE_IND =Y

= ORG_UNIT_IND=Y

Organization Units

Use the Organizational Unit window (RMS Start Menu > Control > Setup > Org Unit
>Edit) to define organizational units in RMS that match those being set up in
Peoplesoft Enterprise Financials. When an organizational unit is entered in RMS, the
valid organizational units are those that are associated with the set of books (SOB) that
is being used for the general ledger interface.

7-4 Oracle Retail Invoice Matching Operations Guide

Data Setup

Currency Exchange Rates

Currency exchange rate is used to translate the monetary value of one currency in
terms of another. Depending on business needs, a Currency Exchange Rate Type of
Operational or Consolidation is selected for use in all transactions.

This value is set up manually in RMS and mapped to PeopleSoft Enterprise Financials
through the Currency Exchange Type mapping Window. Currency Exchange Rate data
is owned by PeopleSoft Enterprise Financials, and updates are sent to Oracle Retail
applications.

Determine the Exchange Type being sent by Oracle PeopleSoft Financials (for example,
Consolidation or Operational) that you want RMS to use. Then update the FIF_
CURRENCY_XREEF for mapping the external exchange type being sent by Oracle
Peoplesoft Financials with RMS Exchange Type.

For example, for Consolidation and Operational exchange types, the FIF_
CURRENCY_XREEF table holds the following entries:

FIF_EXCHANGE_TYPE RMS_EXCHANGE_TYPE
C C
(@) O

Supplier Address Types

Within RMS, supplier information (such as Order From and Remit To addresses) is
used in generating purchase orders. PeopleSoft uses supplier information for payment
generation. It is important, then, that this information is synchronized.

© Pariner Org Unit {supporg) M= B
8 DrafiaR

FPartrer Type [Supplier Site
Pariner 2000 Local Supplier #1

Primary
Org Unit 1D Dezcription Pay Site

Org Unit I 1111111111 |4 (Org Und id - MA

PeopleSoft Enterprise Financials Integration 7-5

Data Setup

Suppliers are created in Peoplesoft Enterprise Financials and exported to RMS. When
FINANCIAL_AP is set to A, suppliers cannot be created using the RMS forms.
However, after the supplier exists in RMS, all data values for the supplier (except
supplier name and status) continue to be updated using the RMS forms. The
association of supplier sites to organization units is accessed only in view mode
through RMS forms. One supplier site per supplier organization unit combination can
be marked as primary payment site.

Where SYSTEM_OPTIONS.FINANCIAL_AP is A, disable auto generate
supplier/partner numbers and associated check boxes.

Note: Supplier information is created, updated and inactivated only
in the PeopleSoft Enterprise Financials accounting system. This
information is transferred from PeopleSoft Enterprise Financials to
Oracle Retail, where additional retail-specific attributes may be
maintained.

Country Codes
When country codes are defined and seeded in RMS, ensure that country codes are

mapped to PeopleSoft country codes through AIA DVM mapping. The following is an
example of AIA DVM Mapping for COUNTRY_CODE:

COUNTRY_CODE

PSFT_01 COMMON RETL_01
USA 700 uUs
CAN 701 CA

Note: For more mapping examples, see "AIA DVM Mapping
Examples" later in this chapter.

Financial Calendar

The financial calendar within Oracle Retail systems is manually set up and maintained
separately from the PeopleSoft financial calendar.

Freight Terms

A freight term is an agreement between the retailer and a supplier regarding
transportation charges for goods delivered by the supplier. Freight terms are used by
RMS as purchase orders are generated.

Within the RMS system, freight terms are set up and maintained manually. They also
are maintained in PeopleSoft Enterprise Financials.

Payment Terms and Currency Exchange Rates

This data is created and updated in Oracle PeopleSoft Financials and exported to RMS.
It is not created or updated in RMS.

7-6 Oracle Retail Invoice Matching Operations Guide

Data Setup

PeopleSoft Enterprise Financials Org Units and Site IDs

The data concepts of Org Units and Site IDs in RMS mirror the data maintained in
Oracle PeopleSoft Enterprise Financials. RMS forms are used to manage and view
Oracle Org Units and Site IDs. The RMS windows for Store and Warehouse
maintenance allows for the association of each store and warehouse with an Org Unit.
The following is an example of the Organizational Unit form:

O Organizational Unit {orgunif) M=
¢ Jhag=
Org Uind ID Description Set of Books ID S&t of Books Description
&
£
PEy
IS
£
£
B
i
P H
£
- £
e s N

Store and Warehouse Maintenance

The organizational unit is found on the Store Maintenance and Warehouse forms,
which allow the PeopleSoft Enterprise Financials operating unit to be associated with
the store or warehouse. When RMS is set up for single-channel operation, the
organizational unit is set at the physical warehouse level. When RMS is set up for
multi-channel operation, the organizational unit is set up at the virtual warehouse
level. Financial sales audit and inventory information can then be identified through
interface routines and posted to the appropriate general ledger accounts. An
organizational unit must be designated for each store and warehouse location in RMS.
The following are examples of the Store Maintenance and Warehouse Maintenance
forms:

Note: When working with PeopleSoft Enterprise Financials, be sure
to create locations names (such as stores, WH, and virtual WH) with
eight or fewer characters. Locations in Oracle Retail applications are
mapped to Operating Unit in PeopleSoft Enterprise Financials, where
operating unit cannot exceed eight characters.

PeopleSoft Enterprise Financials Integration 7-7

Data Setup

Store Type [Company =)
Store | 11 [Secandary hame |
Manager [Tom Spangler {10chars) [Jacksorel
Fhane Mumber [404.277.3388 (3chars) [Jac
Fce Mumbser | Totsarea [6000 sqRt
Email Address | mh&,imsqn
VAT Region | 1000 4 Vet Region 1000 Liveas Distonce | | Famd
District | 113l Flerida Store Class [Class Stoves B+
Trmlum[lnl;luml‘rmlqml ﬂuuombmﬁmﬂ
Store Formad | 10 4 Core Business Start Order Days [60
P Store CbseDate [
channel [1 4 Brick & Martar Stop Order Days [

Detmut Warehouse | 10001 (4 Store Supply scquredDate | i
cureecy [U5 Stk Remoss ol | @
Language | + ol Engish Unique TranNo By [Store »)

DUNS Mumber | DUMS Location Mumber |
Sister Stace | & ¥ Irkegrated POS
Transier Ertily | 1000 4 Reguisr Stores ¥ Slockhoiding
7] POS Inchudes VAT?
orgUrt 0 [1111910171 i org Lintid - A e
| o || Ok+Bepest || Adwegs || peiete -|:;mi'ﬁgLo|:s | ek Thiough | | gancal

LT]

it e eroute L

Privncal Visetaute | V23 text

WA

Pricitg Locaton
Type Orarnel Charewd Descrplion Fricing Lecsion Desctipton

Transne' Erity
Transser Enitty Dezciplin

Firisber Qg Link I

7-8 Oracle Retail Invoice Matching Operations Guide

Ca)l

b — IEIID
Wirual Warehouse | 1734557 Rest FrorgLocaben | 1125] orcom - Bodder dunclion
Sacoreery Homa ezt Trarter Erify | 1000 il Mo Secres |
v Type | '.‘SM!,GSQI Frazher o)
Charesd | 4 i Brek & bortwr CrguneD [111011000 Degra i A

Data Setup

RMS General Ledger Setup

Within RMS and ReSA, manual setup is required for the initial load of chart of
accounts information, including valid segment combinations of Chart of Accounts
segment/ChartField values for each business unit. Valid segment combinations are
created and stored in general ledger cross reference tables. Once setup is complete,
transaction data can be assigned to specific account codes.

Ongoing maintenance of Chart of Accounts information (such as adding, changing or
deleting segment/ChartField values) also is completed manually. Any segment
combination that is valid in Oracle Retail applications also must be valid in PeopleSoft
Enterprise Financials. In this regard, PeopleSoft Enterprise Financials is the system of
record, in that it verifies segment combinations created or updated within Oracle
Retail. PeopleSoft Enterprise Financials issues a message when an Oracle Retail
segment combination is invalid, and the retail user must correct the appropriate cross
reference table.

The RMS table FIF_GL_SETUP holds the PeopleSoft Enterprise Financials Set of Books
IDs to post financials. This table requires manual setup after the Set of Books IDs are
determined. Where system indicator Multiple Set of Books ID is set to N, FIF_GL_
SETUP must hold a single Set of Books (SOB)record.

The Set of Books IDs is associated with the chart of accounts when setting up general
ledger cross reference.

RMS General Ledger Cross Reference

Navigate: RMS main menu > Finance> GL Cross Reference. The General Ledger
Search window opens. Map Chart of Accounts to department, class, subclass, set of
books, location, and transaction codes using the GL cross reference form in RMS.

O (. Crnes Aufirente (gemasr HmED
Comzord st a2 il Appare (1edsd hased) Tran Dok 0 M Puechases
Chaa 1 Al "Ad Cimsnen Trmn Mad ke 4
Supcimty 1 A Sunciauses Lire: Ty MEM i hers
Selof Beaks | 1101 JERETEIT] Ml Dervs ot 04 Beins CofResl | Relsl
Location 2300001 'l Apple Visbery
b Ascourt 1t .
Segrtari 1 Segnant 11 Sagrert | et 11
Segmert I Sogrent 11 Segmerd Segment 12
aonant 3 gt 1 o] 3 Legmant 13
sgrrerd 4 Sograil 14 agmerd 4 Segment 14
agmact 4 sgmane 10 Smgrrert et 14
Cagment € Sagment 14 agmenrt o Eegment 18
Segment 7 Sagrent 17 Sagmert T Sogmert 17
Segment & Sagrend 15 Sagrent 2 Togmant 10
Segrrert § Sogmert 19 Sacprert 5 Cagment 18
Segment 19 Sagment 20 Sexgreant 10 Sepgment X
Fafrags Fird Arcount Hitrah Tyl Accoart
oM] Conieta Cancel

PeopleSoft Enterprise Financials Integration 7-9

Data Setup

ReSA General Ledger Cross Reference

Navigate: ReSA main menu > Action > Sales Audit > Control > Setup > GL Account
Maintenance. The General Ledger Search Form window opens. Where SYSTEM_
OPTIONS.FINANCIAL_AP is A, the form requires the entry of valid segment
combinations.

© 0L Accound Maintenance {saplitros)

& I8
Total CetcacH O Testng Set ot Books | vy i Demo set of books

Ref. Ma.2 [Shoen 1l "80 Locsbons

Raf, M. 3 |1

Raf. Mo 1 |1
Dbt CODy Creat COD
G 1 Saspuenoa 11 Saqusnos 1 Cagusrts 11
Capatroe O Secpuencs 17 Sagquehos 2 Tagqusrics 12
Sagasrcs 3 Sequence 13 Sequence 3 Saquerce 13
Sapuasnce 4 Seapsnid 14 Sequence & Sequercs 14
Seqence S Sequence 15 SHOuBnHos 5 Sagaated 15
Saquence § Saquence 18 Soquence & Sequerce 16
Saqusrcs 7 Sapuernca 17 Sequence T Saquarcs 17
Segusnce B Ssquence 18 Shioshis B Saviarea 18
Saquence 3 Saquence 19 Sequence § Sequence 13
Sequance 10 Saquence X Sequence 10 Sequerce 30

Ratresh Fird Asceurt Retrasth Fied Aceourt
o G +Bepest Delete Gancel

Configuring Drill Back and Forward Web Services

Retail web services table, RETAIL_SERVICE_REPORT_URL, must be updated with
appropriate URLs to integrate with PeopleSoft Enterprise Financials.

» The records in the table for Services (indicated by RS_TYPE=S) for Account
Validation (RAV) and Drill Forward (RDF), must be updated with the URL
information from AIA where the services are hosted.

Note: If Web services are secure, then the SYS_ ACCOUNT column
must be populated with authentication information in the form of
username/password.

s The records in the table for Reports (indicated by RS_TYPE=R) for both RMS and
ReIM reports , must be updated with the URL information from the BIP Server
where the reports are hosted.

7-10 Oracle Retail Invoice Matching Operations Guide

Data Setup

RelM Data Setup and Configuration

This section describes setup considerations for ReIM data.

System Options
As part of the RMS system options setup script, set the following options as indicated:

= FINANCIAL IND =Y
= FINANCIAL AP =A

As part of the ReIM system options setup script, DEFAULT_PAY_NOW_TERMS
should be updated with the default term ID.

B Oracle Retall Involce Matr hing - Microsaft Intermet Exploner

Fle Edt Vew Faortes Tool Heo

Qe - O - 4 3 -) semch e 0 3- LG EH S

e |] o meodevie. s orade. comi TR BT isODtone 0o
e

11 LML sdtes crnasim i reuceell T in coenche et TATY plipaliS Duty et vt vl
A5 % Jam s ool et g e Driing b

System Options

Discumass Hatary Days = Cioae Dpen Reoept Days. & Rsotipl Vorts: 047 8 af Days L
Fond Daded Siocumend Cayn -} Czaf Rrscifion Do Dayy

Dtk U S Dy 1 Gry Frspnga Dve Dary

Uis Tesrines % 100500 i e forr Dom Dilie
Rt By P Tarem 1 Q

Pt VAT Paresning WAT Resinoa De Duys

Caic Teiorasce (=) Paroest) Amgendt 15560 W VAT Vakdeten Tyoe

Tl meacier VAT trom Detads VAT Docement Treafon Level

Dbat Wiy Pt -C il D Detst Wb Pafu-Oty =]
Crect Note Rngeest Prefa-Copt =14 Croct icte Raguest Prefe-ty ChQ
Creat Wem) Prehe-Lost cug Crsa Wlgsms. Pra f Oty [
Dwtet ey Predn. AT Dby Croot hcte Bequest Prefu VAT W

[hlaw ek tems by VP

Mote: To scievate any By siem ogon changes made, you musi firet log ot of lrvosce Waichang.

(o] comcn]

IM_CURRENCY_LOCALE

Because PeopleSoft Enterprise Financials uses only three decimals, the transactions
generated by the Oracle Retail ReIM application must not include more than three
decimals.

Update im_currency_locale set currency_cost_dec=3.

Prerequisite: The currency_rates table in RMS should be loaded initially by PeopleSoft
Enterprise Financials.

Chart of Accounts Setup

The chart of accounts is set up manually in Oracle Retail applications and in
PeopleSoft Enterprise Financials. All account combinations are set up in each Set of
Books. The following is an example of the GL Cross Reference screen:

PeopleSoft Enterprise Financials Integration 7-11

Data Setup

Crecss-rederence Type 0.
Segrern | Segrent 2 Lopmant) S & Lot
oy Lecainn ApCrerd Depan=en Ciaas
111 123333331 200010 4111 E111
Lo R

Note: Chart of Accounts is updated in Oracle Retail applications
only after the account is validated through PeopleSoft Enterprise
Financials.

7-12 Oracle Retail Invoice Matching Operations Guide

Data Setup

Segment Mapping

The retailer determines how many segments are populated. Up to 20 account segments
may be specified. The following is an example of how segments are mapped between
the ReIM transaction table and PeopleSoft Enterprise Financials:

PeopleSoft Enterprise
RelM Segments Financials Fields
Segment 1 PRODUCT
Segment 2 ACCOUNT
Segment 3 ALTACCT
Segment 4 OPERATING_UNIT
Segment 5 FUND_CODE
Segment 6 DEPTID
Segment 7 PROGRAM_CODE
Segment 8 CLASS_FLD
Segment 9 BUDGET_REF
Segment 10 BUSINESS_UNIT_PC
Segment 11 PROJECT_ID
Segment 12 ACTIVITY_ID
Segment 13 RESOURCE_TYPE
Segment 14 RESOURCE_
CATEGORY
Segment 15 RESOURCE_SUB_CAT
Segment 16 CHARTFIELD1
Segment 17 CHARTFIELD2
Segment 18 CHARTFIELD3
Segment 19 AFFILIATE
Segment 20 AFFILIATE_INTRA1

If any one of the values in the 20 segments does not match the corresponding
PeopleSoft field value, the account combination is considered invalid. The following
error message is issued to the user: "Account combination is invalid in the financial
system."

Segments 1 and 2 may be set up as dynamic at the Location level, or Segments 4 and 5
can be dynamic at the Department and Class level respectively. Segments defined as
dynamic are allowed to be null for certain types of Basic Transaction or Reason Code
cross-reference types. When a segment is null, the segment is assigned dynamically
when transactions are posted. (Non-dynamic segments cannot be blank.) Validation
applies to the segment combination, not to individual segments.

Note: For Tran code TAP, all segments must have a value regardless
of whether the segment is dynamic.

PeopleSoft Enterprise Financials Integration 7-13

Data Setup

Running the Initial Load from PeopleSoft Enterprise Financials

The initial load for ReIM is run by PeopleSoft Enterprise Financials and includes the
following information:

= Suppliers
= Payment Terms

s Currency Rates

Note: The view, mv_currency_conversion_rates should be refreshed
once the initial loads of currencies from PeopleSoft Enterprise
Financials are loaded to ReIM.

integration.properties File Setup

To accommodate integration, the integration.properties file within ReIM must be
updated with the appropriate URLs for the account validation and drill forward Web
services, as listed below:

#webservice provider URL for drill forward
webservice.financial.drill.forward=@webservice.drill. forward@

#webservice provider URL for account validation
webservice. financial.account.validation=@webservice.account.validation@

#webservice username and password for account validation
webservice.financial.account.validation.username=@webservice.account.validation.us
ername@
webservice.financial.account.validation.password=@webservice.account.validation.pa
ssword

@

Reporting

Reports are created by Business Intelligence Publisher for the following:
= Merchandise Invoice

= Non-Merchandise Invoice

n Credit Note

s Credit Memo

= Debit Memo

= Receipt Write-Off

7-14 Oracle Retail Invoice Matching Operations Guide

Data Setup

The URL for each report must be updated in the table, retail_service_report_url. The

following table provides sample URLs:

Document Type

Report Name

Sample Report URL

MRCHI

Merchandise invoice
document Report

http://mspdvl126.us.oracle
.com:7777/xmlpserver_
nonsso/

Guest/REIM13/Finance/invr
eport/invreport.xdo

NMRCHI

Non-Merchandise invoice
document Report

http://mspdvl126.us.oracle
.com:7777/xmlpserver_
nonsso/

Guest/REIM13/Finance/invr
eport/invreport.xdo

CRDNT

Credit Note document
Report

http://mspdvl126.us.oracle
.com:7777/xmlpserver_
nonsso/

Guest/REIM13/Finance/invr
eport/crnreport.xdo

CRDMEC

Credit Memo cost
document Report

http://mspdvl126.us.oracle
.com:7777/xmlpserver_
nonsso/

Guest/REIM13/Finance/invr
eport/memoreport .xdo

CRDMEQ

Credit Memo quantity
document Report

http://mspdvl126.us.oracle
.com:7777/xmlpserver_
nonsso/

Guest/REIM13/Finance/invr
eport/memoreport .xdo

DEBMEC

Debit Memo cost document
Report

http://mspdvl126.us.oracle
.com:7777/xmlpserver_
nonsso/

Guest/REIM13/Finance/invr
eport/imemoreport.xdo

DEBMEQ

Debit Memo quantity
document Report

http://mspdvl126.us.oracle
.com:7777/xmlpserver_
nonsso/

Guest/REIM13/Finance/invr
eport/memoreport .xdo

DEBMEV

Debit Memo VAT document
Report

http://mspdvl126.us.oracle
.com:7777/xmlpserver_
nonsso/

Guest/REIM13/Finance/invr
eport/memoreport .xdo

RWO

Receipt Write Off document
Report

http://mspdvl126.us.oracle
.com:7777/xmlpserver_
nonsso/

Guest/REIM13/Finance/invr
eport/rworeport.xdo

PeopleSoft Enterprise Financials Integration 7-15

RelM Transactional Maintenance

RelM Transactional Maintenance

Integration to PeopleSoft Enterprise Financials includes a number of transactions, as
described below.

Calculation of TRANS_AMOUNT

The TRANS_AMOUNT field in the im_financial_stage table stores the value of the
journal entry to be posted to PeopleSoft Enterprise Financials. (The currency for the
calculated amount is the currency assigned to the transaction.) The TRANS_AMOUNT
value is calculated as follows:

DEBIT_CREDIT_
Row Description IND TRANS_AMOUNT Value
Normal Debit Transaction Amount
Normal Credit (-1) * Transaction Amount
VAT Debit Transaction Amount * VAT Rate
VAT Credit (-1) * Transaction Amount * VAT Rate

Note: Transaction Amount is taken from the database column, IM_
FINANCIALS_STAGE.AMOUNT.

Generation of Outgoing Data

A staging table accommodates the outgoing transfer of data. The reference key
assigned to each document or receipt is used to find data on this table.

Outgoing Data

From To Transactions

Invoices
Debit Memos
Credit Memos
Credit Notes

RelM PeopleSoft Accounts Payable

ReIM PeopleSoft General Ledger General Ledger accounting entries

resulting from the Invoice Matching
process, including:

Pre-paid invoices

Receipt Write-offs

RMS PeopleSoft General Ledger Accounting entry data (potentially very

high volume)

ReSA PeopleSoft General Ledger Accounting entry data (potentially very

high volume)

7-16 Oracle Retail Invoice Matching Operations Guide

RelM Transactional Maintenance

Validation of Accounts When Posting Financial Entries

Valid accounts are stored in the ReIM table, IM_VALID_ACCOUNTS, which includes
the Set of Books ID (sob_id) and 20 segments. An AIA Web service validates accounts
against the PeopleSoft Enterprise Financials system. Valid accounts are posted to IM_
VALID_ACCOUNTS; invalid accounts are posted to IM_POSTING_DOC_ERROR. The
following steps describe the validation process:

1. The RelM system invokes the account validation Web service to validate the
account. (A URL for the AIA Web service is configured in the
integration.properties file.)

2. The posting batch job checks the accounts to be posted against the IM_VALID_
ACCOUNTS table.

3. If the account entries are in the table, the transaction is posted to the G/L or AP
tables.

4. If the account does not exist in the table, a collection of accounts is built. These
collected accounts are validated against the PeopleSoft Enterprise Financials
system, and a status is returned.

s If the status of the collected accounts is valid, the accounts are inserted in the
IM_VALID_ACCOUNTS table, and the transactions are posted to the staging
tables.

» If the status of the accounts is NOT valid, the entire collection is flagged as
errors, and transactions are postedto IM_POSTING_DOC_ERROR.

Note: ReIM completes the first level of account validation and posts
the transaction to staging tables. It is assumed the second level of
account validation is done at the end of the extraction process (where
transactions are moved from RelM staging tables to PeopleSoft). If
account validation fails at this point, Oracle Data Integrator (ODI) or
PeopleSoft must change the account information before transactions
are loaded to PeopleSoft, and the account change must be
communicated to ReIM .

Maintenance of Valid Accounts

As account information is changed in the PeopleSoft system, the same changes are
communicated to, and manually completed in, the ReIM system. After ReIM is
updated accordingly, the AccountPurge Batch is run to clear the valid accounts
maintained locally in ReIM.

The AccountPurge Batch can clear all valid accounts in the IM_VALID_ACCOUNTS
table or only those that are considered updates in PeopleSoft.

Usage:

AccountPurge userid/password PURGE [ALL | <Accounts>]
Where

The first argument is a combination of user id and password.
The second argument is the word PURGE.

The third argument is either ALL or specific accounts to be deleted from the local
table.

PeopleSoft Enterprise Financials Integration 7-17

Drilling Back to RMS, ReSA and RelM - Overview

Building and Posting Reference IDs

Drill back and drill forward functionality uses Reference ID to locate documents and
receipts. A Reference ID is a combination of document type and document (or receipt)
ID, as illustrated in the table below:

Type Doc ID Receipt ID Reference ID
Merchandise Invoice 101 Null MRCHI#101

Non-Merchandise Invoice 102 Null NMRCHI#102
Receipt Null 103 RECEIPT#103

For documents, the Financial Posting Batch program builds the Reference ID using the
standard, Document Type + DeLimiter + Doc_id. For receipts, the program builds the
Reference ID using the standard, Document Type + DeLimiter + Receipt_id.

To enable drill down functionality, Reference IDs are loaded to staging tables.
FinancialsAPStageDao and FinancialsGLStageDao are populated, as are IM_RWO_
SHIPMENT_HIST and IM_RWO_SHIPSKU_HIST.

Drilling Back to RMS, ReSA and RelM - Overview

Drilling back allows users to view the source of posted PeopleSoft transactions that
originated in Oracle Retail systems (from a voucher to an invoice, for example).

When drilling back from PeopleSoft Enterprise Financials, users are not directed to an
actual screen within RMS, ReIM or ReSA. Rather, a retail Web service generates and
launches a URL to a BI Publisher report. The report contains the information that
typically appears on the appropriate retail screen.

Depending on the information requested by the user, the AIA layer maps a common
ID (for example, Transaction ID or Document ID) to the appropriate retail application.
As part of the extraction process, the Reference_ID in the staging tables is considered
the retail key, which is sent to AIA. The AIA layer invokes the retail exposed Web
service for the BI Publisher report URL using a common function like the following;:

GET_REPORT_URL () -

O_error_message IN OUT RTK_ERRORS.RTK_TEXT$TYPE
O_rpt_url IN OUT RETAIL_SERVICE_REPORT URL.URL%TYPE
I_ref_key IN KEY_MAP_GL.REFERENCE_TRACE_ID%TYPE

Information from the reference key determines what kind of report URL to issue. For
example, if the retail key has a prefix of RMS, the RMS_REPORT_URL function is
called. Similarly, if the retail key has a prefix of ReIM, the ReIM_REPORT_URL
function is called to retreive the appropriate ReIM URL. If the key does not have a
prefix (or does not match any key in the retail systems), an error message is launched.

7-18 Oracle Retail Invoice Matching Operations Guide

Drilling Back to RMS, ReSA and RelM - Overview

Drilling Back to RMS and ReSA - Detail

The following function determines which RMS report to return to the user:

RMS_REPORT URL() -

O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE
O_rpt_url IN OUT RETAIL_SERVICE_REPORT_URL.URL®TYPE
I_ref key IN KEY_MAP_GL.REFERENCE_TRACE_ID%TYPE

The appropriate report URL is found and issued as follows:

1. Theref trace_type is found on KEY_MAP_GL by matching I_ref key with the
KEY_MAP_GL.REFERENCE_TRACE_ID column.

2. When ref type is determined, the re_trace_type is used to find the appropriate
report URL on the RETAIL_SERVICE_REPORT_URL table.

3. The value of I_ref_key is appended to the end of the URL retrieved from the table.
4. The URL is sent back to the calling function.

5. IfI ref key does not exist on KEY_MAP_GL, an error message is sent back to the
calling function.

Drilling Back From RelM - Detail

The following drill back options are available for viewing information within the ReIM
system:

= Using Document ID, users can drill back to ReIM to view information related to a
voucher or payment. The report includes information from im_doc_head and im_
invoice_detail, the same data shown on the Document Maintenance Header screen
within ReIM.

= Using the Receipt ID, users can drill back to view information from the Receipt
Write-off History screen. Receipt write-offs occur either when an open receipt is
closed in RelM or if a receipt is purged in RMS before it is fully matched. Details
come from the IM_RWO_SHIPMENT_HIST and IM_RWO_SHIPSKU_HIST tables.

The function below determines which of the two ReIM reports to return to the user:

RMS_REPORT URL() -

O_error_message IN OUT RTK_ERRORS.RTK_TEXT$TYPE
O_rpt_url IN OUT RETAIL_SERVICE_REPORT URL.URL%TYPE
I_ref_key IN KEY_MAP_GL.REFERENCE_TRACE_ID%TYPE

The I_ref_key contains the reference ID, which ultimately determines the type of
report required. The appropriate BI Publisher report URL is found on the RETAIL_
SERVICE_REPORT_URL table.

In general, if the reference ID has a prefix of RECEIPT, the report type (RS_CODE) is
RCPT. Otherwise, the report type is DOC. For example:

Reference ID Report Type (RS_CODE)
MRCHI#101 DOC

NMRCHI#102 DOC

RECEIPT#103 RCPT

PeopleSoft Enterprise Financials Integration 7-19

Drilling Forward

The following is an example of a Bl Publisher URL that is generated upon drilling back
to PeopleSoft Enterprise Financials for information on an invoice in RelM, using
Document ID as the search parameter:

http://mspdev6970vip:7777/BIPublisher/Guest/ReIM/13.0.3/doc/tsf_det.xdo ?doc_
id=101
Where

= http://mspdev6970vip:7777 /BIPublisher = the BI Publisher application server
address and port

= Guest/ReIM/13.0.3 = the directory/folder location
s doc/tsf_det.xdo ? = report name (Document Report)
s doc_id=101 = the parameter name and value (Document ID 101)

The following is an example of an Oracle Business Intelligence Publisher URL that is
generated upon drilling back to PeopleSoft Enterprise Financials for information on an
invoice in RelM, using Receipt ID as the search parameter:

http://mspdev6970vip:7777/BIPublisher/Guest/ReIM/13.0.3/doc/tsf_det.xdo ?receipt_
id=101
Where

s http://mspdev6970vip:7777 /BIPublisher = the BI Publisher application server
address and port

s Guest/ReIM/13.0.3 = the directory/folder location
s doc/tsf_det.xdo ? = report name (Receipt Report)
» receipt_id=101 = the parameter name and value (Receipt ID 101)

Drilling Forward

Drilling forward allows users to see detailed information about retail transactions that
have been posted to PeopleSoft Enterprise Financials. When drilling forward, users are
directed to selected "view-only" screens.

Drilling Forward From RMS/ReSA to PeopleSoft Enterprise Financials
The following forms may be used to drill forward from RMS/ReSA:

s RMS StartMenu->Finance->Transaction Data View (trandata.fmb)

= RMS StartMenu->Ordering->Fixed Deals->Fixed Deal Transaction Data View
(fdltrandata.fmb)

s RMS StartMenu->Action->Sales Audit->Sales Audit Transaction Data View
(satrandata.fmb)

7-20 Oracle Retail Invoice Matching Operations Guide

Drilling Forward

Drilling Forward From RelM to PeopleSoft Enterprise Financials

For drilling forward, the AIA Web service uses the Invoice ID and Accounting Entry
parameters. The ReIM system uses these parameters together as the Reference ID.

s From the Document Maintenance screen, users can drill forward to PeopleSoft
Enterprise Financials accounts payable to view voucher and payment status. The
information is displayed on a read-only Payment Doc Status Inquiry screen. Drill
forward access to the accounts payable system is available only for pre-paid
invoices (but not for manually pre-paid invoices).

To drill down to the payables screens, the user invokes the Web service as follows:

Invoice ID parameter = Reference ID
Accounting Entry parameter = null

= From the Receipt Write-off History screen in ReIM, users can drill forward to the
PeopleSoft G/L system to view the status of related journal entries. Drill forward
access to the G/L system is available only for pre-paid and manually pre-paid
invoices.

Note: For more information on drilling forward, see the Oracle Retail
Merchandising Integration Pack for PeopleSoft Enterprise Financials 2.3 -
Implementation Guide.

AIA DVM Mapping Examples
The following tables illustrate possible AIA DVM Mapping values:

Note: Cross references for the following examples are: Set of Books
to General Ledger Business Unit, and Org Unit to Accounts Payable
Business Unit.

BUSINESS_UNIT

PSFT_01 COMMON RETL_01
Us001 100 111111111111111
CANO1 101 222222222222222

BUSINESS_UNIT_AP

PSFT_01 COMMON RETL_01

Us001 200 333333333333333
Us002 201 444444444444444
CANO1 202 555555555555555

LANGUAGE_CODE
PSFT_01 COMMON RETL_01
ENG 500 1

PeopleSoft Enterprise Financials Integration 7-21

Drilling Forward

7-22 Oracle Retail Invoice Matching Operations Guide

STATE

PSFT_01 COMMON RETL_01
CA 900 CA

NY 901 NY

MD 902 MD

MI 903 MI

NF 904 NF

CURRENCYEXCHANGE_CONVERSIONTYPECODE

PSFT_01 COMMON RETL_01
CRRNT 600 C
CURRENCY_CODE

PSFT_01 COMMON RETL_01
USD 400 USD
CAD 401 CAD
AUD 402 AUD
ESP 403 ESP
EUR 404 EUR
FRF 405 FRF

GBP 406 GBP
INR 407 INR

JPY 408 JPY
SUPPLIERPARTY_STATUSCODE

PSFT_01 COMMON RETL_01
E 800 I

A 801 A

I 802 I

X 803 I
SUPPLIERPARTY_ADDRESSTYPE

PSFT_01 COMMON RETL_01
REMT 1000 06
ORDR 1001 04

Drilling Forward

CHARTOFACCOUNTS_ACCOUNTSTATUS

COMMON PSFT_01 RETL_01
true true valid
false false invalid

PeopleSoft Enterprise Financials Integration 7-23

Drilling Forward

7-24 Oracle Retail Invoice Matching Operations Guide

8

Batch Processes

This chapter provides the following:
= Anoverview of the batch architecture
= A functional summary of each batch process, along with its dependencies

= A description of some of the features of the batch processes (batch return values,
batch threading, and so on)

= Development designs for each batch process

Batch Architectural Overview

ReIM batch processes are run as Java applications. Batch processes engage in their own
primary processing. However, they utilize services when they must engage in actions
outside their primary processing (for example, when they utilize a helper method,
touch the database, and so on).

Services retrieve the data on which the batch processes work to complete their tasks.
As noted in Chapter 3, "Technical Architecture," the service layer consists of a
collection of Java classes that implements business logic (data retrieval, updates,
deletions, and so on) through one or more high-level methods.

The business logic occurs within the service code, while the technical processing
occurs within the batch code.

Note the following characteristics of the ReIM batch processes:

s They are not accessible through a graphical user interface (GUI).
s They are scheduled by the retailer.

s They are designed to process large volumes of data.

= Although RelM is a 24 x 7 system, it is recommended that batch processes should
be executed during off-hours (that is, during a time when users are not in the
system, such as nights).

Batch Processes 8-1

Batch Architectural Overview

Generic File

The batches are run using a generic file. The generic file is a template for setting the
class path, environment specific configuration, and how the batches will be run.

Class Path

reim classpath for java
for FILE in "1ls SREIMLIBRARIES"

do
if ["SREIMCLASSPATH" = ""];then
REIMCLASSPATH=$REIMLIBRARIES/SFILE
else
REIMCLASSPATH=$REIMCLASSPATH: SREIMLIBRARIES/SFILE
fi
done

REIMCLASSPATH=$REIMCLASSPATH: SREIMCLASSES
REIMCLASSPATH=$0RACLE_HOME/jdbc/lib/ojdbcl4.jar: SREIMCLASSPATH

OS Specif Settings

need to set library paths for use of JDBC thick client

Solaris and Linux: LD_LIBRARY_ PATH

AIX: LIBPATH

HP-UX: SHLIB_PATH

if [-d "SORACLE_HOME/1ib32"] ; then
LD_LIBRARY_ PATH=$ORACLE_HOME/1ib32:S$LD_LIBRARY_PATH; export LD_LIBRARY_ PATH
LIBPATH=$ORACLE_HOME/11ib32:$LIBPATH; export LIBPATH
SHLIB_PATH=$ORACLE_HOME/1ib32:$SHLIB_PATH; export SHLIB_PATH

else
LD_LIBRARY PATH=$ORACLE_HOME/lib:$LD_LIBRARY PATH; export LD_LIBRARY PATH
LIBPATH=$ORACLE_HOME/lib:$SLIBPATH; export LIBPATH
SHLIB_PATH=$SORACLE_HOME/lib:$SHLIB_PATH; export SHLIB_PATH

Fi

Execute Batch Jobs Using Arguments from the Merchandising Batch Schedule

Refer to the Merchandising Batch Schedule for the arguments (or run parameters)
required to execute each batch process.

EDI-Related File-Based Batch Processes

ReIM EDI-related batch processes are file based. For example, they either input a flat
file into the system (EDI invoice upload) from outside the system, or they output a flat
file from the system (EDI invoice download) to be sent to another system (that of a
vendor). Both the EDI invoice upload and the EDI invoice download batch processes
are described later in this chapter.

Internal Batch Processes

Other batch processes within ReIM do not input or output files. Rather, the goal of
these batch processes is to take a snapshot of potentially large amounts of data from
the key tables within the database, transform that data through processing, and then
return it.

8-2 Oracle Retail Invoice Matching Operations Guide

Batch Names

Internal batch processes that are described later in this chapter include:

Internal Batch Processes that Write to Staging Tables

Auto-match

Account purge

Batch purge

Discrepancy purge

Disputed credit memo action rollup

Reason credit action rollup

The third type of batch process within ReIM takes a snapshot of potentially large
amounts of data from the key tables within the database, transforms that data through
processing, and then writes that data to staging tables.

This communication process has been designed with the assumption that, during
production, ReIM will reside within the same database as the merchandising system.
Presumably, during implementation, the retailer will develop an optimum way to
move the applicable data from the staging tables to the appropriate location for that
data.

The internal batch processes that write to staging tables are described later in this
chapter. They include the following:

Financial posting

Receiver adjustment

Batch Processes that Extract from Merchandising System (RMS) Staging Tables

The fourth type of batch process within ReIM extracts data from merchandising
system staging tables, create documents with the data, and write the data to ReIM
tables. The batch processes that follow this processing pattern include the following;:

Batch Names

Complex deal upload
Fixed deal upload

The following table describes ReIM batch processes. The table order reflects the
dependencies that exist among the ReIM batch processes but does not include any
dependencies that exist between ReIM and the merchandising system it interacts with.

Batch Name

Class (oracle.retail.reim.batch.jobs)

Program Name (Merchandising Batch
Schedule)

Account purge

AccountWorkspacePurgeBatch

reimaccountworkspacepurge

Financial Posting

FinancialPostingWorkspacePurgeBatch

reimfinancialpostingworkspacepurge

Workspace purge

Batch purge BatchPurgeBatch reimpurge
Discrepancy purge DiscrepancyPurgeBatch reimdiscrepancypurge
EDI Invoice upload EdiUploadBatch reimediinvupload
Invoice Auto-match InvoiceAutoMatchBatch reimautomatch

Batch Processes 8-3

Functional Descriptions and Dependencies

Program Name (Merchandising Batch

Batch Name Class (oracle.retail.reim.batch.jobs) Schedule)

Credit Note CreditNoteAutoMatchBatch reimcreditnoteautomatch

Auto-match

Receipt write-off ReceiptWriteOffBatch reimreceiptwriteoff

Reason code action ReasonCodeActionRollupBatch reimrollup

rollup

Disputed credit DisputedCreditMemoResolutionRollupBatch | reimrollup

memo action rollup

Resolution posting FinancialPostingBatch reimposting

EDI Invoice EdiDownloadBatch reimediinvdownload

download

Complex deal upload | ComplexDealUploadBatch reimcomplexdealupload

Fixed deal upload FixedDealUploadBatch reimfixeddealupload
Note: "reimrollup" is the common program to execute the batches,

"Reason code action rollup" and "Disputed credit resolution memo
action rollup." The reimrollup program executes the Reason Code
Action Rollup Batch first, followed by Disputed Credit Memo

Resolution ActionRollup.

Functional Descriptions and Dependencies

The following table summarizes ReIM batch processes and includes both a description
of each batch process's business functionality and its batch dependencies:

Batch Processes

Details

Batch Dependencies

Account purge

ACCOUNTS table.

This process deletes the accounts maintained
locally in the ReIM application. This process
deletes the accounts from the IM_VALID_

Financial Posting

This batch purges data from the workspace tables

Workspace purge used during posting. This batch can be run by
retailers who want to purge workspace tables
because they do not need the data in these tables
(for example, im_posting_doc_errors.)

BatchPurgeBatch This process deletes data from database tables

certain number of days, and so on).

while maintaining database integrity. This process
deletes records from the ReIM application that
meet certain business criteria (for example, records
that are marked for deletion by the application
user, records that linger in the system beyond

DiscrepancyPurgeBatch

The discrepancy purging program deletes data

from database tables while maintaining database
integrity. This program deletes records from ReIM
that have discrepancies of zero.

8-4 Oracle Retail Invoice Matching Operations Guide

Functional Descriptions and Dependencies

Batch Processes

Details

Batch Dependencies

EdiUploadBatch

This batch process uploads merchandise,
non-merchandise invoices, credit notes, debit
memos, and credit note requests from the EDI into
the invoice-matching tables.

= EDI upload (Invoice
Matching)

= Receipt upload
(Merchandising system,
such as RMS)

InvoiceAutoMatchBatch

InvoiceAutoMatchBatch is a system batch process
that attempts to match invoices to receipts without
manual intervention. Invoices that are in ready for
match, unresolved, or multi-unresolved status are
retrieved from the database to be run through the
auto-match algorithm. The processing consists of
three levels - summary, detail, and header (VAT
only).

EDI upload (Invoice
Matching)

Receipt upload
(Merchandising system, such
as RMS)

CreditNoteAutoMatch CreditNoteAutoMatchBatch is a system batch EDI upload (Invoice
Batch process that attempts to match credit notes to Matching)
credit note requests without manual intervention. .
- . . Receipt upload
Within a chosen grouping, matching attempts are .
(Merchandising system, such
made at the summary level, on a one-to-one level as RMS)
(credit note to CNR) and on a detail level. As
matches are made, the document ID of invoice to
which the CNR is associated is assigned to the
credit note.
ReceiptWriteOffBatch In order for retailers to track received goods not Auto-match and any

invoiced, they must have the ability to 'write-off’
these goods for financial tracking. ReIM has a
system parameter (which can be overwritten at the
supplier level) defining the maximum amount of
time an open, non-fully matched receipt will be
available for matching. Every time the Receipt
write-off process is run, each non-fully matched
open receipt received date is compared with the
current date minus the system parameter. If the
received date is before this difference, the receipt is

'written-off,' and the invoice match status is closed.

associated processing must
run prior to this batch.

Batch Processes 8-5

Functional Descriptions and Dependencies

Batch Processes

Details

Batch Dependencies

ReasonCodeActionRollup
Batch

This batch process sweeps the action staging table
and creates debit memos, credit memos, and credit
note requests as needed. Only a single debit or
credit memo is created per invoice/discrepancy
type, with line details from all related actions for
the same discrepancy type. If hold invoice
functionality is on, each generated document is
assigned the invoice number to which it
corresponds to ensure all related documents are
released to accounts payable at the same time. This
process deletes these records when completed;
they are deleted after posting. Note that a separate,
retailer-created batch process sweeps the receiver
adjustment table. The action staging table is used
during posting to post the reason code actions to
the financial staging table. A separate,
retailer-created batch process sweeps the receiver
adjustment table. The process compares the unit
cost and/or quantity received for the item on the
shipment with the expected unit cost and/or
quantity on the IM_RECEIVER_COST_ADJUST
and/or IM_RECEIVER_UNIT_ADJUST tables. If a
match exists, the receiver cost and/or unit
adjustment has occurred in RMS (or the equivalent
merchandising system). As a result, the process
sets the 'pending adjustment' flag on IM_
INVOICE_DETAIL table to false for the invoice
line. The reason code actions are rolled up for an
invoiceonly if no invoice lines on the invoice have
any pending adjustments.

DisputedCreditMemo
ActionRollup

The disputed credit memo action rollup process
checks the records on the IM_REVERSAL _
RESOLUTION_ACTION table and rolls up the
credit memo detail lines by
document/item/reason code. The rollup occurs
only if all lines on a disputed credit memo have
been completely resolved (that is, no cost or
quantity discrepancy records remain for the credit
memo).

After the rollup, a new set of detail lines associated
with the resolution reason codes replace the
original set of detail lines associated with the debit
reason codes on the IM_DOC_DETAIL_

REASON_CODES table.

The disputed credit memo
action rollup must occur
before resolution posting
and after receiver
adjustment.

FinancialPostingBatch

A recurring resolution posting process retrieves all
matched invoices and approved documents. If
hold invoice functionality is used, then matched
Credit Notes rather than approved Credit Notes
are processed.

For each invoice, the batch process writes
applicable financial accounting transactions to
either of the following tables: IM_FINANCIALS_
STAGE

The AP staging tables, IM_AP_STAGE_HEADER
and IM_AP_STAGE_DETAIL, if the RMS
System-Options table: INANCIAL_AP = O.

8-6 Oracle Retail Invoice Matching Operations Guide

Features of the Batch Processes

Batch Processes

Details

Batch Dependencies

EdiDownloadBatch

The EdiDownload module creates a flat file to
match the EDI invoice download file format. The
module retrieves all header, detail, and
non-merchandise information and formats the data
as needed.

In other words, the EDI invoice download process
retrieves debit memos, credit note requests, and
credit memos in 'approved' status from the
resolution posting process and creates a flat file.
The client converts the flat file into an EDI format
by the client and sends it via the EDI invoice
download transaction set.

Auto-match must run prior
to the EDI invoice download.

ComplexDealUploadBatch

This module reads data from RMS staging tables,
creates credit memos, debit memos, and credit
note requests out of the data, and stores the
supporting deal data on a ReIM table for later use
during posting.

The RMS staged data must
be purged after the upload

FixedDealUpload

This module reads data from RMS staging tables,
creates credit memos, debit memos, and credit
note requests out of those, and stores the
supporting deal data on a ReIM table for later use
during posting.

The RMS staged data must
be purged after the upload

Features of the Batch Processes

This section describes batch process features.

Scheduler and the Command Line

If the client uses a scheduler, batch process arguments are placed into the scheduler.

If the client does not use a scheduler, batch process parameters must be passed in at
the UNIX command line.

Each of these scripts interacts with the generic shell script. These scripts take any and
all arguments that their corresponding batch process would take when executing.

Batch Return Values

The following guidelines describe the batch process return values that ReIM batch
processes utilize:

» SUCCESS=0

s FAILED_INIT =1

s FAILED_PROCESS =2

= FAILED_WRAPUP =3

s SUCCESS_WITH_REJECTS_TO_DB =4

s SUCCESS_WITH_REJECTS_TO_FILE = 5

» SUCCESS_WITH_REJECTS_TO_DB_AND_FILE =6
= UNKNOWN =-1

Batch Processes 8-7

Executing Batch Processes

Batch Log and Error File Paths

Log file locations are determined by the retailer through the logj4.properties file. If an
error occurs that causes a batch process to suddenly come to a complete halt, the
system writes to the the configured log appender. See Chapter 2, Backend System
Administration and Configuration"Backend System Administration and
Configuration," for more information.

Multi Threading Batch Processes

The following batch processes shown below have multi-threading capabilities. The
settings related to the multi-threading options for each batch process are established in
the reim.properties file. See Chapter 2, "Backend System Administration and
Configuration,” for information.

Complex Deal Upload (ComplexDealUploadBatch)

This process is threaded by a group (or, 'bulk’) of deals. Each group (or, bulk)
constitutes a thread.

Fixed Deal Upload (FixedDealUploadBatch)

This process is threaded by a group (or bulk) of deals. Each group (or, bulk) constitutes
a thread.

EDI Invoice Upload (EdiUploadBatch)

This process is threaded by each transaction in the file (THEAD record to TTAIL
record). Each thread handles transaction validation and insertion into the database (as
valid or rejected) or facilitates the writing to a reject file.

Auto-Match (AutoMatchBatch)

Auto-match can either be run as a single thread or it can be threaded by the location
hierarchy.

A Note about Restart and Recovery

Most ReIM batch processes do not utilize any type of restart and recovery procedures.
Rather, if a restart is required, the process can simply be restarted, and it will start
where it left off.

This solution is true for all batch processes other than those noted below:

= EDI invoice upload (its restart and recovery methods is described in its design
below).

s EDI invoice download (its restart and recovery methods is described in its design
below).

Executing Batch Processes

For the process used to run ReIlM batches, a common class has been added. This new
common class is represented by the classpath within the generic file used to execute
ReIM batch processes. The script in generic file has changed so that it will add the
required jar files into the class path from the WEB-INF/lib folder of ReIM home. If a
script is used to run batches, retailers also must make the same change to the classpath
within that script.

8-8 Oracle Retail Invoice Matching Operations Guide

FinancialPostingWorkspacePurgeBatch

Once the updates are made to the generic file and to the script, batches can be run
using the appropriate arguments for each job, as defined in the Merchandising Batch
Schedule.

For example, to run the ReIM batch process called AutoMatchBatch, the command is
as follows:

scriptnameusedtorunbatches <<Batch name as per the merchandise batch schedule
document>> username/password

Account Purge Batch Design

Major Modules

Major Tables

This process deletes the accounts maintained locally in the ReIM application. The
batch retrieves the accounts in IM_VALID_ACCOUNTS table and validates the
account against the integrated financial system. Accounts that are invalid in the
financial system are deleted from IM_VALID_ACCOUNTS table.

Note: Run the batch whenever account information changes are
communicated to ReIM.

Usage
The following arguments are applicable for the AccountWorkspacePurgeBatch
process:

AccountWorkspacePurgeBatch userid/password
Where the first argument is a combination of user id and password.

AccountWorkspacePurge

IM_VALID_ACCOUNTS

FinancialPostingWorkspacePurgeBatch

Usage

Major Modules

This batch process deletes all records from the financial posting workspace tables.
These tables must be purged regularly to avoid performance issues.

The following arguments are applicable for the FinancialPostingWorkspacePurgeBatch
process:

FinancialPostingWorkspacePurgeBatch userid/password

FinancialPostingWorkspacePurge

Batch Processes 8-9

Batch Purge Batch Design

Major Tables
= IM_POSTING_DOC_ERRORS

s IM_POSTING_DOC_AMOUNTS
s IM_POSTING_DOC_DEPTCLASS
s IM_POSTING_DOC

s IM_POSTING_STATUS

Batch Purge Batch Design

The batch purging process deletes data from database tables while maintaining
database integrity. This process deletes records from the ReIM application that meet
certain business criteria (for example, records that are marked for deletion by the
application user, records that linger in the system beyond certain number of days, and
so on). The BatchPurge process does not generate any cascade relationships and/or
SQL queries on the fly. The main features of the process are illustrated below:

Usage
The following arguments are applicable for the BatchPurgeBatch process:

BatchPurgeBatch userid/password PURGE [ALL\<table name>] [NOCOMMIT|COMMIT]

The first argument is a combination of user ID and password. The second argument is
the word PURGE. The third argument is either ALL or a single table name. Table name
can be any one of the following:

» IM_DOC_GROUP_LIST

= IM_DOC_GROUP_HEAD

= IM_PARENT_INVOICE

= IM_REASON_CODES

s IM_PARTIALLY_MATCHED_RECEIPTS
= IM_TOLERANCE_DEPT_AUDIT

» IM_TOLERANCE_SUPP_AUDIT

» IM_TOLERANCE_SUTRT_AUDIT

» IM_TOLERANCE_SYS_AUDIT

ALL deletes data from all of the above tables. Finally, the fourth argument can be
either NOCOMMIT or COMMIT. If there is no fourth argument, the default is
NOCOMMIT.

SQL Queries

Delete statements have been optimized by minimizing the usage of nested SELECT
statements and by maximizing the 'table joins' in the WHERE clause. Any additions
and/or modifications to the database require manual additions and/or modifications,
respectively, to the existing SQL queries. All of the delete statements belonging to one
cascade structure are added to a batch and executed at the end. It uses a single
connection for each parent/children tree. Every cascade structure is a logical group.

8-10 Oracle Retail Invoice Matching Operations Guide

Batch Purge Batch Design

Manual Propagation (Cascade) of Deletes to Child Tables

Every time there is a change in the relationship between tables, this process must be
modified to reflect that change. Table relationship changes occur when clients decide
to make significant customizations to the application.

Cascade Relationships

The developer must manually code the parent/child relationships between tables. For
example, in order to delete records for the IM_DOC_HEAD table, records must be
deleted from children tables in the following sequence of steps. Note that table
sequence is not important within a single step.

Step 1

Delete from: IM_DETAIL_MATCH_INVC_HISTORY
Delete from: IM_INVOICE_DETAIL_ALLOWANCE
Delete from: IM_QTY DISCREPANCY_ROLE
Delete from: IM_QTY DISCREPANCY_RECEIPT
Step 2

Delete from: IM DOC_DETAIL_COMMENTS

Delete from: IM MANUAL_GROUP_INVOICES
Delete from: IM DOC_HEAD_COMMENTS

Delete from: IM_INVOICE_DETAIL

Delete from: IM_DOC_HEAD_ LOCK

Delete from: IM_FINANCIALS_STAGE

Delete from: IM_COST DISCREPANCY

Delete from: IM_RESOLUTION_ACTION

Delete from: IM_REVERSAL_RESOLUTION_ACTION
Delete from: IM_SUMMARY_MATCH_INVC_HISTORY
Delete from: IM_QTY_DISCREPANCY

Delete from: IM_DOC_DETAIL_REASON_CODES
Delete from: IM FINANCIALS_STAGE_ERROR
Delete from: IM_DOC_NON_MERCH

Delete from: IM_DOC_VAT

Step 3

Delete from: IM_DOC_HEAD

Cascade relationships are wired in the BatchPurge.java.

Assumptions and Scheduling Notes

Every time there is a change in the relationships among tables, the BatchPurge process
has to be updated to accommodate these changes.

Major Modules

BatchPurgeBatch
This class implements the batch delete process for the ReIM base application.

Batch Processes 8-11

Discrepancy Purge Batch Design

Primary Tables Involved
The following list includes the tables on which the purging algorithm is applied:

» IM_DOC_GROUP_LIST
= IM_DOC_HEAD

» IM_PARENT _HEAD

= IM_REASON_CODES

Other tables of less significance also get purged.

Discrepancy Purge Batch Design

The discrepancy purging program deletes data from database tables while maintaining
database integrity. This program deletes records from ReIM that have discrepancies of
zero. Main features of the process are as follows:

s Usage
The following arguments are applicable for the DiscrepancyPurgeBatch process:

DiscrepancyPurgeBatch userid/password PURGE [ALL|<table name>]
[NOCOMMIT | COMMIT]

Where the first argument is combination of user id and password. The second
argument is the word PURGE. The third argument is either ALL or a single table
name. Table name can be anyone of the following;:

- IM_COST_DISCREPANCY
- IM_QTY_DISCREPANCY

ALL will delete data from all of the above-mentioned tables. Finally, the fourth
argument can be either NOCOMMIT or COMMIT. If there is no fourth
argument, the default will be NOCOMMIT.

s SQL Queries

The tables mentioned above are checked for merchandise invoices with cost
and/or quantity discrepancies of zero. If they exist, the record is deleted from the
table and the corresponding invoice detail line to will be updated to cost or qty
matched. If the invoice line is now cost and gty matched the status of the line is set
to matched and in return if all of the invoice lines are matched, the invoice itself is
set to matched.

Major Modules

DiscrepancyPurge

Major Tables
= IM_COST_DISCREPANCY

» IM_QTY_DISCREPANCY

» IM_QTY_DISCREPANCY_RECEIPT
s IM_QTY_DISCREPANCY_ROLE

« IM_DOC_HEAD

» IM_INVOICE_DETAILS

8-12 Oracle Retail Invoice Matching Operations Guide

EDI Invoice Upload Batch Design

ORDSKU(RMS)
ORDLOC(RMS)

EDI Invoice Upload Batch Design

EDI invoice upload is a standardized file format specification designed for vendors to
send invoicing information electronically. The EDI invoice upload batch process
performs the following:

Reads each transaction within the file.

Runs a file format validation (verifying file descriptors and line numbers; ensuring
that numeric fields are all numeric and that character fields are all characters;
looking for the invalid ordering of record type-THEAD followed directly by
another THEAD; and so on). Certain file formatting errors cause the process to
terminate with a message indicating the problem. A limited set of data validation
errors cause the invalid transaction to be written to error tables (IM_EDI_REJECT_
DOC_xxx) where the data can be corrected through an online process. The rest of
the data validation errors cause the invalid transaction to be written to a reject file
where a user must correct the problems and re-run the file.

Validates the data against the ReIM system and the merchandising system (such as
RMS).

Any errors found are recorded in an error log so that users can fix any transactions
that were rejected to file.

Adds the data to the ReIM system. All valid transactions are written to the IM_
DOC_xxx, IM_INVOICE_xxx, IM_PARENT_xxx tables.

Assumptions and Scheduling Notes

Consider the following assumptions and scheduling notes

This process must be run before the auto-match process.

All quantities are assumed to be in 'EA'ches when uploaded.

Restart and Recovery

If the EDI invoice upload aborts without processing an entire file, the file needs to
simply be rerun. When this action is completed, there will be multiple errors for the
transactions that were successfully uploaded and the other transactions will be
uploaded at that time as well. If the cause of the aborted process is software related,
this fix may not solve the issue. Other steps may be required to ensure that the process
completes its entire initial run.

Primary Tables Involved

IM_DOC_HEAD
IM_INVOICE_DETAIL
IM_INVOICE_DETAIL _ALLOWANCE
IM_DOC_NON_MERCH
IM_DOC_DETAIL_REASON_CODES
IM_PARENT_INVOICE

Batch Processes 8-13

Invoice Auto-Match Batch Design

= IM_PARENT INVOICE_DETAIL

= IM_PARENT NON_MERCH

= IM_EDI_REJECT_DOC_DETAIL

= IM_EDI_REJECT_DOC_DETAIL_ALLOW
= IM_EDI_REJECT_DOC_HEAD

= IM_EDI_REJECT_DOC_NON_MERCH

= IM_DOC_VAT

Invoice Auto-Match Batch Design

Algorithms

Invoice Auto-match is a system batch process that attempts to match invoices to
receipts without manual intervention. Invoices that are in ready-for-match,
unresolved, or multi-unresolved status are retrieved from the database to be run
through the auto-match algorithm.

The three inputs into the auto-match process include the following;:
1. Invoices

2. Receipts

3. Purchase orders

ReIM "owns" invoices, while receipts and purchase orders are owned by a
merchandising system, such as RMS.

The processing consists of three levels: summary, detail, and header. Summary-level
matching attempts to match all invoices to receipts at a summary level. Detail-level
matching attempts to match all invoices (that do not match at a summary level) to
receipts at a line item level. Header level matching attempts to validate VAT before
continuing to attempt to match all invoices.

The auto-match process attempts to match the invoices to receipts to the best of its
abilities. The process assign different statuses according to the level of matching
achieved.

If an invoice arrives prior to a receipt (for a particular PO), the auto-match process
attempts only to match invoice unit cost to PO unit cost.

When a complete match cannot be made, manual intervention is required through
online processes.

The invoice auto-match process comprises the following algorithms.
Cost Pre-matching

This process identifies any cost discrepancies prior to the arrival of receipts. If no
receipts exist for the PO location, the invoices are sent to the cost pre-matching
algorithm. Cost pre-matching is where unit costs on the invoice are compared with
unit costs on the purchase order at a line level. If a match can be obtained, the invoice
remains in ready-for-match status and is retrieved again for matching once the receipt
comes in. If no match can be obtained, a cost discrepancy is created and routed
immediately.

8-14 Oracle Retail Invoice Matching Operations Guide

Invoice Auto-Match Batch Design

Summary Matching

Invoices are grouped with receipts based upon purchase order location. A match is
attempted for all invoices and receipts for the PO location. The invoices' total extended
costs are summed and compared with the receipts' total extended costs. Based on a
supplier option, the invoices' total quantity is summed and compared with the
receipts' summed total quantity. If a match is achieved, all invoices and receipts are set
to matched status. Otherwise, one-to-one matching is attempted for the PO location.

One to One Invoice Matching

This processing attempts to match a single invoice to a single receipt for the applicable
PO location. If all invoices and receipts are set to matched status, the next PO location
is processed.

If a multi-unresolved scenario exists (where more than one invoice can be matched
with one or more receipts), all un-matched invoices are given the multi-unresolved
status and no further processing occurs for this PO location.

Detail Matching

During detail matching processing, an attempt is made to match each line on the
invoice to an unmatched receipt line for the same item. Both the unit cost and quantity
are always compared at the line level. If both the cost and quantity match, the invoice
line and receipt line are placed into matched status. If the cost fails or the quantity
fails, the cost or quantity discrepancies are generated and routed.

Header Matching

Invoices created without details are not able to have their VAT information validated
at invoice creation. All header level only invoices are created with a status of Ready for
Match. For VAT validation, this processing determines whether a header level only
invoice that has been matched to a receipt should continue in the matching and
posting process or whether it should be marked as having a VAT discrepancy and
removed from the matching process.

Assumptions and Scheduling Notes

Consider the followign assumptions and scheduling notes.

s Although not recommended, auto-match can be run during the day when there
are users online interacting with the system.

= Both the invoice unit cost and the unit cost of the PO must be expressed in the
same currency. In order to compare the invoice unit costs with the PO's unit costs,
auto-match does not engage in currency conversion.

The system assumes that tolerance costs are always in the system's primary
currency. If RMS is the applicable merchandising system, auto-match performs
currency conversion if the currency on the order is different from the primary
currency. RMS existing currency conversion engine is used to perform this
conversion. If RMS is not being utilized, another currency conversion engine must
be provided to support this functionality.

s The quantities on the invoice must be expressed in the same unit of measure as the
quantities on the receipt. Auto-match performs no unit of measure conversion.

Batch Processes 8-15

Invoice Auto-Match Batch Design

Post Processing

The batch process runs after EDI upload (Invoice Matching) and Receipt upload
(Merchandising system, such as RMS).

Supplier options

All suppliers must have options defined in order for their invoices to be processed
by the system, and the terms defined for those suppliers have to be completely
updated in RMS. In order to support the use of suppliers in RelM, the ENABLED_
FLAG (set to Y), START_DATE_ACTIVE and END_DATE_ACTIVE are the
required entries in the TERMS_DETAIL table in RMS.

Auto-match automatically invokes the best terms calculation for invoices that it
matches.

Auto-match automatically posts invoices that it matches.

High-Level Flow Diagram

The following diagram offers a high-level view of the processing logic utilized within
the auto-match batch process.

Get invoices,
recaipts and PO

Cost Pre-Matching

Summary One-to-One . Headerdevel
Matching — Matching —| Detail Matching | Matching
(VAT only)

Primary Tables Involved

IM_DOC_HEAD
IM_INVOICE_DETAIL
SHIPMENT(RMS)

SHIPSKU(RMS)
IM_PARTIALLY_MATCHED_RECEIPTS
ORDHEAD(RMS)

ORDSKU(RMS)

ORDLOC(RMS)
IM_TOLERANCE_DEPT
IM_TOLERANCE_SUPP
IM_TOLERANCE_SYSTEM
IM_COST_DISCREPANCY
IM_QTY_DISCREPANCY
IM_QTY_DISCREPANCY_RECEIPT
IM_QTY_DISCREPANCY_ROLE

8-16 Oracle Retail Invoice Matching Operations Guide

Credit Note Auto-Match Batch Design

= IM_SUPPLIER_OPTIONS
= IM_SYSTEM_OPTIONS

Credit Note Auto-Match Batch Design

The CreditNoteAutoMatchBatch attempts auto-matching of credit notes with credit
note requests without manual intervention. Depending on the matching algorithm
being used, the batch can also create and resolves detail level discrepancies utilizing a
predefined set of reason codes.

When invoked, the batch creates a pool of matchable credit notes and credit note
requests. The candidates are selected depending on which customizable fields are
populated and a status of credit notes and credit note requests.

Once a pool of matchable documents is established, the batch proceeds to group the
documents with respect to unique suppliers listed on the documents. Basically,
suppliers are the first layer of grouping, which facilitates further processing of each
group in parallel using threads.

If threading is enabled for the batch, each supplier based group is processed in its own
thread. Each supplier based group further divides the documents for that supplier into
smaller document-key sets. These document-key sets are categorized by common
attributes defined on the document itself. The attributes, also referred to as
Configurable or Flexible Pool Keys allow documents to be grouped in several
combinations in addition to the distinct purchase order and location combination
(which is the only combination possible in the current Invoice Auto-Matching
framework).

Matching will not be attempted for groups not containing both credit notes and credit
note requests. By default the CreditNoteAutoMatch process creates document-key sets
based on the following key distinctions:

n Credit Note Request ID
s Original Invoice ID
s PO / Location combination

To enable the use of all three keys, the customizable reference fields in the credit notes
and credit note requests must be populated. The customizable Ref No 3 field holds the
credit note request ID, and the Ref No 4 field holds the original invoice ID. In case

none of the customizable fields are populated with the required data, the PO/Location
combination will be the only key available to the CreditNoteAutoMatchBatch process.

Within each document-key set, matching is attempted using three algorithms:
summary, one-to-one matching, and detail level matching. Summary-level matching
attempts to match all credit notes with credit note requests at a summary level by
comparing extended costs, or quantities within tolerance. One-to-one matching
requires that extended costs or quantities of one distinct credit note match to only one
distinct credit note request within tolerance. Line-level matching is only attempted if
there is one unmatched credit note left. It attempts to match the line items of an
unmatched credit note with line items of all unmatched credit note requests.

Batch Processes 8-17

Credit Note Auto-Match Batch Design

Algorithms

Below is the flow for attempting a match in a document-key set when no match is
found:

1. Credit Note Request ID (configurable key)

= Summary Matching (matching algorithm)

= One to One Matching (matching algorithm)

s Line -level Matching (matching algorithm)
2. Original Invoice ID (configurable key)

= Summary Matching (matching algorithm)

s One to One Matching (matching algorithm)

s Line -level Matching (matching algorithm)
3. PO / Location (configurable key)

= Summary Matching (matching algorithm)

= One to One Matching (matching algorithm)

s Line -level Matching (matching algorithm)

If VAT is enabled in the system, CreditNoteAutoMatchBatch only detects VAT
discrepancies at the detail level. This means that when documents are being processed
by the detail matching algorithm, a check is performed prior to matching, ensuring
that the VAT codes and rates for each item on the credit note match those on the credit
note request for the corresponding item. When a discrepancy is detected, processing
for that document stops and detail matching is not performed for that document. In
such a case, the Invoice Matching user will have to match and resolve the VAT
discrepancy manually through the user interface.

Tolerances are handled in a manner similar to the Invoice auto-match batch process.
The tolerances are first selected with respect to supplier, then the department and
lastly with respect to the system (see "Credit Note Auto-Matching" in Chapter 4,
"Functional Design").

If a match is achieved, the information related to the matched document is migrated to
the history tables, and all CreditNoteAutoMatch Batch related tables are purged for
those documents. The migration process is enabled depending on the value of the
creditnoteautomatchbatch.workspace.cleanup property in the reim.properties file.

In case of an unsuccessful match manual intervention is required through online
processes, and the match attempt related data for those documents is not cleaned up
from the respective tables (see "Primary Tables Involved" in this section).

The CreditNoteAutoMatch process is composed of the following algorithms:
= Summary Matching

Credit notes and credit note requests in the document set are matched at the
summary level by comparing extended costs. If the extended costs of the
document set falls within tolerances, the documents are considered matched and
flagged as such, processing continues with the next set. Note that since total
extended costs are being compared, only total merchandise amounts will be
factored into the actual matching calculations. If the documents in the set are from
a supplier that requires quantity matching, quantity matching will be performed
within tolerances as well.

8-18 Oracle Retail Invoice Matching Operations Guide

Credit Note Auto-Match Batch Design

One to One Matching

One to one matching is a variation of summary matching. It requires that one
distinct credit note matches to only one distinct credit note request within
tolerance for the document set. Extended costs are compared and quantities are
also compared if the supplier option for quantity matching is enabled.

Detail Matching

For a given document set, when only one credit note remains unmatched and
multiple credit note requests remain unmatched, the system will attempt to match
line items from the credit note to the credit note request at the line level. If a match
is not found, discrepancies are created and routed for resolution. When
discrepancies are created as part of the detail (line-level) matching process, they
are automatically resolved by the batch process. This resolution will take place by
selecting the appropriate pre-defined reason code from the system options and
resolving the discrepancy. During the reason code action rollup process, these
newly created resolution actions will be rolled up to create the appropriate
resolution documents. In case no applicable reason codes exist in the system for
the discrepancy, the credit note will not be matched and processing will stop for
the document set.

Assumptions and Scheduling Notes

Consider the following assumptions anda scheduling notes.

Post Processing

Both the credit note and credit note request unit cost must be expressed in the
same currency. If the currency on the credit note and credit request is the same, but
differs from the primary system currency, then an attempt will be made to perform
currency conversion only if RMS is the applicable merchandising system.

The quantities on the credit note must be expressed in the same unit of measure as
the quantities on the credit note requests. The batch performs no unit of measure
conversion.

CreditNoteAutoMatch updates the status of qualified documents that have been
matched.

The CreditNoteAutoMatch workspace is cleaned up depending on the related
setting in the reim.properties file (see "Credit Note AutoMatch Workspace
Cleanup Setting" in Chapter 2, "Backend System Administration and
Configuration").

The batch creates and resolves discrepancies by utilizing pre-defined reason codes.
The Reason Code Rollup Batch must ensure that the respective documents are
created.

Batch Processes 8-19

Credit Note Auto-Match Batch Design

High-Level Flow Diagram

Documents will be grouped using

T three (3) Pool Configuration

Group Matchable options:
1. by Credit Note Request ID

Documents by
Pool Configuration 2. by Invoice ID
3. by PO/Location
L A document may be considered
on multiple Pool Configurations

o Hgﬂgﬁtﬁn‘m but it can only be matched under
one (1) configuration.

M B NO »(END)

YES
¥
|dentify Unique
Suppliers within
Pool

Configuration

4
More
Suppliers?

YES

Maybe executed in parallel
across unique suppliers +

Atternpt Summary
Matching Pools of
Documents within
Pool Configuration

¥

Attempt One-To-One
Maiching Pools of
Documents within
Pool Configuration

¥
Attempt Detail Level
Matching Pools of
Documents within
Pool Configuration

¥

Perform completion tasks

{workspace cleanup and
histary bogs), and returm
status

8-20 Oracle Retail Invoice Matching Operations Guide

Credit Note Auto-Match Batch Design

Primary Tables Involved
The following are lookup tables that must be populated.

IM_DOC_HEAD

Holds the credit notes and credit note requests with relevant information e.g.
supplier, status etc.

IM_SUPPLIER_GROUP_MEMBERS
Holds the supplier group related information.
IM_DOC_DETAIL_REASON_CODES

Holds the Item Detail Record for Credit Notes. Data related to items needs to exist
in this table to enable Line level matching.

IM_TOLERANCE_SUPP

Holds the tolerance properties associated with a supplier. The data is required
when performing matches within tolerances, at the supplier level.

IM_TOLERANCE_DEPT

Holds the tolerance properties associated with a department. The data is required
when performing matches within tolerances, at the department level.

IM_TOLERANCE_SYSTEM

Holds the tolerance properties associated with the system. The data is required
when performing matches within tolerances, at the system level.

IM_SYSTEM_OPTIONS

Holds properties associated with the Invoice Matching application, for example,
enable VAT or enable tolerances.

The following table contains configuration data for the matching process

IM_MATCH_POOL_CONFIG

The table stores data for the actual matching process. This data will determine
which groupings the system will utilize when attempting to match and also
dictate which order those groupings will run in.

The following tables are populated during the auto batch process with data related to
potential matches. Successful matches will be moved from these tables to history
tables (described later in this section) at the end of the batch run. Unsucessful matches
will be removed from these tables at the end of the match process:

IM_MATCH_DOC

Holds the pool of documents that CreditNoteAutoMatchBatch will attempt to
match.

IM_MATCH_POOL_TOLERANCES
Holds the calculated tolerances for the each candidate document to be matched.
IM_MATCH_POOL_RESULTS

Holds the cost and qty total for a document set being matched, and the variance
between the documents being matched, and also indicate which party the variance
favors (retailer or supplier).

Batch Processes 8-21

Credit Note Auto-Match Batch Design

IM_MATCH_POOL_ITEM

Holds the actual item detail unit cost and quantities to be used for matching.
Details may be from IM_DOC_DETAIL_REASON_CODES or IM_INVOICE_
DETAILS depending on the type of match being performed.

IM_MATCH_QTY_VAR
IM_MATCH_COST_VAR

These two tables hold the quantity and cost discrepancy calculated while
attempting a match in a document set.

The following tables are populated for compatibility with the existing Invoice
Matching discrepancy related data model:

IM_QTY_DISCREPANCY

Holds quantity discrepancy recordsl

IM_QTY_DISCREPANCY_ROLE

Holds the roles of the associates who will have access to generated discrepancies.
IM_QTY_DISCREPANCY_CNR

Holds quantity discrepancies on credit note gets ssociated with participating credit
note requests.

IM_COST_DISCREPANCY
Holds cost discrepancy records.
IM_COST_DISCREPANCY_CNR

Holds Cost discrepancies on credit note gets associated with participating credit
note requests.

The following new history tables are being populated on the successful completion of
the CreditNoteAutoMatchBatch. The tables allow the retailer to track match history
and locate aggregate data in the other match history tables based on the appropriate
match and document type:

IM_MATCH_DOC_HIST

On successful completion of the matching process, documents contained in IM_
MATCH_DOC are moved to this history table.

IM_MATCH_POOL_ITEM_HIST
Holds the history of the items that were on the credit note when matched
IM_MATCH_POOL_RESULTS_HIST

Data from the MATCH_POOL_RESULTS table is moved to history table after a
successful match

IM_MATCH_QTY_VAR_HIST
IM_MATCH_COST_VAR_HIST

These tables hold the history related to any quantity or cost variance detected
during the match.

8-22 Oracle Retail Invoice Matching Operations Guide

Receipt Write-Off Batch Design

The following tables are populated for compatibility with the existing Invoice
Matching history maintenance data model:

» IM_CN_SUMMARY_MATCH_HIS
» IM_CN_SUMMARY_MATCH_HIS
» IM_CN_DETAIL_MATCH_HIS

Receipt Write-Off Batch Design

Retailers track received goods that are not invoiced, and they must have the ability to
write off these goods for financial tracking. Two types of processes can determine
when these written-off goods will be written to financials: purged receipts from
merchandising system, and 'close open receipts' from invoice matching. Because
receipts can be purged outside of the invoice matching dialogue, these purged receipts
must be maintained until their unmatched amount has been accounted for. These
receipts are tracked through STAGE_PURGED_SHIPMENTS and STAGE_PURGED_
SHIPSKUS. Every purged shipment record that is not fully matched will have a record
by item written to the stage tables. In addition, invoice matching has a system
parameter (which can be overwritten at the supplier level) defining the maximum
amount of time an open, non-fully matched receipt will be available for matching.

Every time the write-off process is ran, each non-fully matched open receipt received
date is compared with the current date minus the system parameter. If the received
date is before this difference, then the receipt will be written off and the invoice match
status is closed.

The department/class of each receipt item must be identified to ensure accurate
accounting. The form of the accounting distribution is as follows:

Transaction Type Sign Value Notes
Unmatched receipt Debit Value of unmatched
items on receipt
Receipt write-Off Credit Same as above
Trade accounts Credit 0 Written as a matter
payable of form

This account distribution mapping is set up through the account cross-reference
screen.

Note: If IM_SUPPLIER OPTIONS.CLOSE_OPEN_RECEIPT
MONTHS is not defined, the value is retrieved from IM_SYSTEM_
OPTIONS.CLOSE_OPEN_RECEIPT _MONTHS.

Assumptions and Scheduling Notes

Consider the following assumptions and scheduling notes.

= When setting up the Close Open Receipt Months in ReIM Supplier Options
and/or System Options, the value should be less than or equal to RMS UNIT_
OPTIONS.ORDER_HISTORY_MONTHS if the intention is to have invoice

matching pick up receipts prior to purging.

= Auto-match and any associated processing must be run prior to this batch
processing.

Batch Processes 8-23

Reason Code Action Rollup Batch Design

High-Level Flow Diagram

Get all receipts not fully
matched and that are

unmalched items on these receipls o ——— for receipls nol
IM_FINANCIALS STAGE table P
. = purged

before today’s date minus
the close open receipts
) o i Set invoice match
Wi fi f Il
rite financial information for a status to "C'losed

Get all receipts purged
from merchandising
system

Primary Tables Involved

REIM
= IM_FINANCIALS_STAGE

= IM_SYSTEM_OPTION
= IM_SUPPLIER_OPTIONS
s IM_PARTIALLY MATCHED_RECEIPTS

RMS

= UNIT_OPTIONS

= SHIPMENT

s STAGE_PURGED_SHIPMENT
= SHIPSKU

s STAGE_PURGE_SHIPSKU

Reason Code Action Rollup Batch Design

Reason code actions are resolutions assigned at the discrepancy line level. A number
of fixed actions are available to resolve a line item discrepancy; the specific results
depend on the action.

The resolution posting process sweeps the IM_RESOLUTION_ACTION table and
creates debit and credit memos as needed. Only a single debit or credit memo is
created per invoice/discrepancy type, with line details from all related actions for the
same discrepancy type.

This process does not delete these records when completed; rather, they are deleted
after posting.

A separate, client-created batch process sweeps the receiver adjustment table. The
action staging table is used during posting to post the reason code actions to the
financial staging table.

8-24 Oracle Retail Invoice Matching Operations Guide

Reason Code Action Rollup Batch Design

To resolve a cost discrepancy, the user can select a Receiver Cost Adjustment action
from the cost resolution screen. Similarly, to resolve a quantity discrepancy, the user
can select a Receiver Unit Adjustment action from the quantity resolution screen. The
actions are written to the IM_RESOLUTION_ACTION table in an unrolled status with
the amount of adjustment. The IM_INVOICE_DETAIL table also receives a flag that
signifies pending adjustment for the invoice line.

At the same time, the actions are written to the IM_RECEIVER_COST_ADJUST and
IM_RECEIVER_QTY_ADJUST tables to indicate the expected receiver adjustment
amount on the RMS (or equivalent merchandising system) side. In sum, these two
tables serve as the staging tables for the RMS (or equivalent merchandising system)
process to actually perform the adjustment.

For a receiver cost adjustment, IM_RECEIVER_COST_ADJUST holds the order unit
cost for the item after the adjustment. For a receiver unit adjustment, IM_RECEIVER _
UNIT_ADJUST holds the received quantity for the item on the shipment after the
adjustment.

The process compares the unit cost and/or quantity received for the item on the
shipment with the expected unit cost and/or quantity on the IM_RECEIVER_COST_
ADJUST and/or IM_RECEIVER_UNIT_ADJUST tables. If a match exits, the receiver
cost and/or unit adjustment has occurred in RMS (or the equivalent merchandising
system). As a result, the process sets the ‘pending adjustment' flag on IM_INVOICE_
DETAIL table to false for the invoice line. The reason code actions are only rolled up
for an invoice if no invoice lines on the invoice have any pending adjustments.

Because ReIM cannot control when and how the receiver adjustments are happening
on the RMS side (or the equivalent merchandising system), records written to the IM_
RECEIVER_COST_ADJUST and IM_RECEIVER_UNIT_ADJUST tables are considered
final.

As a result, when the user resolves a cost or quantity discrepancy, the receiver
adjustment must fully resolve a discrepancy before the user leaves the screen, and
there should be no re-route actions involved. On the RMS side, the amount of
adjustment must be exactly the same as expected.

The IM_PARTIALLY_MATCHED_RECEIPTS table holds the amount of a receipt item
that has been matched during invoice matching. The quantity received on the
SHIPSKU table subtracts the quantity matched on the IM_PARTIALLY _MATCHED_
RECEIPT table, giving the available to match quantity for the receipt item.
Auto-match, summary matching, detail matching and quantity discrepancy resolution
processes all keep track of the matched quantity bucket to determine how much of the
receipt item has already been matched and how much of the receipt item remains
available to be matched. In the case of a Receiver Unit Adjustment, the IM_
PARTIALLY_MATCHED_RECEIPTS table is updated to reserve the entire remaining
unmatched bucket for the receipt item. This logic prevents the adjusted receipt
quantity from being used for any other matching or quantity resolutions.

Assumptions and Scheduling Notes

The memo staging table sweep must occur before the posting batch process, or a delay
of one day results before posting can occur.

Batch Processes 8-25

Disputed Credit Memo Action Rollup Batch Design

High-Level Flow Diagram

The following diagram offers a high-level view of the processing logic utilized within
the reason code action rollup batch process.

Discrepancy Immediate action | Action staging Receiver
resolution action | taken if needed 7| table populated " adjustment table
created populated if
needed
Aclion staging | —— Receiver
table "swept' for adjustment table is
debiticredit memo ‘swepl' by external
craation process

Primary Tables Involved
= IM_DOC_HEAD

» IM_INVOICE_DETAIL

s IM_PARTIALLY_MATCHED_RECEIPTS
= IM_RESOLUTION_ACTION

= IM_RECEIVER_COST_ADJUST

» IM_RECEIVER_UNIT_ADJUST

Disputed Credit Memo Action Rollup Batch Design

When a disputed credit memo is first created as a reversal to a debit memo, cost, or
quantity discrepancies are generated for each line on the credit memo, and the original
debit memo reason codes are associated with the new credit memo detail lines.

As the user takes actions to resolve the discrepancy online, a record is written to the
IM_REVERSAL_RESOLUTION_ACTION table for each resolution action taken. The
only actions allowed to resolve the discrepancy are Deny Dispute or Approve Credit in
Disputed Status. However, the user can choose multiple reason codes associated with
Deny or Approve actions to resolve the disputed line. Also, the user can either resolve
the disputed line completely, or partially resolve it. Upon complete resolution of a
disputed line, the cost or quantity discrepancy is deleted from the system.

The disputed credit memo action rollup process checks the records on the IM_
REVERSAL_RESOLUTION_ACTION table and rolls up the credit memo detail lines
by document/item/reason code. The rollup occurs only if all lines on a disputed credit
memo have been completely resolved (that is, no cost or quantity discrepancy records
remain for the credit memo).

After the rollup, a new set of detail lines associated with the resolution reason codes
replace the original set of detail lines associated with the debit reason codes on the IM_
DOC_DETAIL_REASON_CODES table. The new credit memo lines are in Approved
or Denied status depending on the resolution action. The credit memo header status is
updated to Approved status. The lines that are approved are rolled up to calculate the
header level total cost and total quantity. Non-merchandise costs can be associated
with a credit memo that is created as a debit memo reversal, but no resolution actions
can be taken on non-merchandise costs. Non-merchandise costs should be included in
the credit memo's total cost.

8-26 Oracle Retail Invoice Matching Operations Guide

Financial Posting Batch Design

Assumptions and Scheduling Notes

The disputed credit memo action rollup must occur before resolution posting and after
receiver adjustment.

Primary Tables Involved

The following tables are used for the debit memo reversal, resolution, and rollup
processes:

s IM_DOC_HEAD. This table holds the document header information.

s IM_DOC_DETAIL_REASON_CODES. This table holds the document detail
information by item/reason code. Before resolution rollup, this table holds the
document detail information based on the original debit reason codes. After
resolution rollup, this table holds the document detail information based on the
reason codes used to resolve the disputed credit memo lines.

s IM_REVERSAL_RESOLUTION_ACTION. This table holds the resolution actions
the user takes to approve or deny the disputed credit memo line.

s IM_COST_DISCREPANCY. This table holds the disputed credit memo lines for a
debit memo cost reversal.

s IM_QTY_DISCREPANCY. This table holds the disputed credit memo lines for a
debit memo quantity reversal.

s IM_QTY_DISCREPANCY_ROLE. This table holds the routing information for a
credit memo quantity.

Financial Posting Batch Design

For each invoice, the batch process writes applicable financial accounting transactions
to either of the following tables:

= The Financials staging table, IM_FINANCIALS_STAGE

» The AP staging tables, IM_AP_STAGE_HEADER and IM_AP_STAGE_DETAIL, or
the IM_FINANCIALS_STAGE, depending on the transaction type (if the RMS
System-Options table: INANCIAL_AP = O).

The processing occurs after discrepancies for documents have been resolved by
resolution documents. Once all of the resolution documents for a matched invoice are
built, and all of the RCA /RUA external processing has been confirmed, the process
inserts financial accounting transactions to the financials staging table, to represent the
resolution and consequent posting of the invoice. The process also inserts financial
accounting transactions for the approved documents that are being handled.

Once all of the transactions have been written, the process switches the status of the
current invoices/documents to Posted, and then moves on to the next
invoice/document.

If a segment look-up fails, the failed record is written to a financials error table.

Batch Processes 8-27

Financial Posting Batch Design

Assumptions and Scheduling Notes

Before posting can occur, the following information must be set up:
= Set up segment definitions in the system.properties.

s Define GL account segments on the GL Options screen.

= Specify all the accounts using the GL Cross Reference screen.

= Country

s Location

s Dept

s Class

If dynamic segments are defined, the values for the segments must be defined in the
applicable tables, IM_DYNAMIC_SEGMENT_DEPT_CLASS or IM_DYNAMIC_
SEGMENT_LOC.

Primary Tables Involved
= IM_DOC_HEAD. Holds the matched and approved documents.

s IM_DOC_NON_MERCH. Holds the non-merchandise costs for invoices.

Lookup Tables that Must be Populated
s IM_GL_OPTIONS. Order of segments and dynamic segments defined.

s IM_GL_CROSS_REF. Account values defined for account types and account codes.

s IM_DYNAMIC_SEGMENT_DEPT_CLASS. Accounts defined for each
department/class combination.

s IM_DYNAMIC_SEGMENT_LOC. Accounts defined for each location/company
combination.

Table to Which the Process Posts Data

Note: The table to which the process posts data is either IM_
FINANCIALS_STAGE or IM_AP_STAGE_HEAD

IM_FINANCIALS_STAGE

» Transaction code

= Debit/credit indicator

s Invoice ID

= Invoice date

= Supplier

» Purchase order (if available)

= Shipment/receipt (only if unmatched receipt is being written)
s Currency

= Amount

s Best terms ID

8-28 Oracle Retail Invoice Matching Operations Guide

Financial Posting Batch Design

Terms date
Pre-paid indicator
Comments

Create user ID
Create date-time

Segments that determine the mapping account in the external financial system (as
defined in the IM_GL_CROSS_REF table).

IM_AP_STAGE_HEAD

Sequence Number: Automatically generated line numbers 1, 2, 3, and so on;
incremented for each detail record per DOC ID; for identification purpose.

Doc_id: Similar to IM_FINANCIALS_STAGE.

Invoice Type Lookup Code: If document type = MRCHI or NMRCHI, this value is
set to STANDARD. Otherwise this value is set to CREDIT.

invoice_number: The concatenated data is as follows:

— chars 1-34: the first 34 characters from the EXT DOC ID
— char 35: a hyphen

— chars 36-50: the DOC ID

Vendor: Same as for current im staging table.
Oracle_site_id:

— The loc from this transaction to read new RMS Location/Org Unit data to find
the Org Unit.

— The Org Unit to read new RMS Supplier Addr/Org Unit/Site ID data to find
Oracle Site ID.

Currency Code: Valued if this is a foreign currency invoice, otherwise null.

Exchange Rate: If exchange rate is valued, this should be the literal USER;
otherwise blank.

Exchange Rate Type:

Document Date: Same as in current im staging table.
Amount: The TOTAL amount including tax.

Best Terms Date: Same as in current im staging table.
Segment1: Same as in current IM financials staging table.
Segment2: Same as in current IM financials staging table.
Segment3: Same as in current IM financials staging table.
Segment 4: Same as in current IM financials staging table.
Segment 5: Same as in current IM financials staging table.
Segment 6: Same as in current IM financials staging table.
Segment 7: Same as in current IM financials staging table.
Segment 8: Same as in current IM financials staging table.

Segment 9: Same as in current IM financials staging table.

Batch Processes 8-29

EDI Invoice Download Batch Design

= Segment 10: Same as in current IM financials staging table.

s Create Date: Same as in current IM financials staging table.

s Best Terms ID: Same as in current IM financials staging table.
IM_AP_STAGE_DETAIL

s DoclID

= Sequence number: Automatically generated line numbers 1, 2, 3, and so on;
incremented for each detail record per DOC ID; for identification purpose.

= Transaction Code

= Line Type Lookup Code: This value varies. The rules are:
— If the tran-code is UNR or VWT or REASON or CRN then this value is ITEM.
— If this is a generated tax line, then this value will be TAX.
— If none of the above, then this value will be MISCELLANEOUS.

= Amount

= Vat Code: Same as in current im staging table. EXCEPT - for generated tax lines,
the amount for this line should be the amount from the taxable line times the tax
rate

= Segmentl: For regular lines, same as in current staging table; for generated tax
line, use values from source line.

= Segment2: See rules for segment 1
= Segment3: See rules for segment 1
= Segment4: See rules for segment 1
= Segment5: See rules for segment 1
= Segment6: See rules for segment 1
= Segment7: See rules for segment 1
= Segment8: See rules for segment 1
= Segment9: See rules for segment 1
= Segment10: See rules for segment 1

n Create Date: Same as in current IM staging table.

EDI Invoice Download Batch Design

The EDI invoice download process retrieves debit memos, credit note requests, and
credit memos in approved or'posted status from the resolution posting process and
creates a flat file. The client converts the flat file into an EDI format and sends it via the
EDI invoice download transaction set to the respective vendors.

Assumptions and Scheduling Notes

Consider the following assumptions and scheduling notes
= All data is valid in the IM_DOC_HEAD tables. ReIM does not validate details.

= Auto-match must run prior to the EDI invoice download.

8-30 Oracle Retail Invoice Matching Operations Guide

Complex Deal Upload Batch Design

Primary Tables Involved
The EDI invoice download batch process reads from the following tables:
= IM_DOC_HEAD
= IM_DOC_DETAIL_REASON_CODES
= IM_DOC_NON_MERCH
= IM_DOC_DETAIL_COMMENTS

Restart and Recovery

If the EDI invoice download aborts while processing, an incomplete file is generated.
To generate a complete file, the process simply needs to be rerun and allowed to fully
process. If the cause of the aborted process is software related, this action might not
solve the issue; other steps may be required to ensure that the process completes its
entire initial run.

Complex Deal Upload Batch Design

The Complex Deal Upload batch process reads data from header and detail complex
deals staging tables in RMS.

For each combination of deal ID and deal detail ID on the RMS staging tables, the
batch process creates a credit memo, a debit memo, or a credit note request, depending
upon an indicator on the staging tables.

The batch process also copies most of the data from the RMS staging tables into one
RelIM detail table (IM_COMPLEX_DEAL_DETAIL). This data is later referenced
during the posting process for the created documents.

Assumptions and Scheduling Notes
The RMS staging header and detail must be purged nightly after the upload has run.

Primary Tables Involved

Note: For descriptions of RMS tables, see the Oracle Retail
Merchandising System Data Model.

» STAGE_COMPLEX_DEAL_HEAD (RMS table)
» STAGE_COMPLEX_DEAL_DETAIL (RMS table)

= IM_DOC_HEAD. This table holds general information for documents of all types.
Documents include merchandise invoices, non-merchandise invoices,
consignment invoices, credit notes, credit note requests, credit memos, and debit
memos. Documents remain on this table for SYSTEM_OPTIONS.DOC_HISTORY _
MONTHS after they are posted to the ledger.

= IM_DOC_DETAIL_REASON_CODES. This table contains quantity/unit cost
adjustments for a given document/item/reason code.

Batch Processes 8-31

Fixed Deal Upload Batch Design

s IM_DOC_VAT. This table associates the document with its value added tax (VAT)
information.

= IM_COMPLEX_DEAL_DETAIL. This table holds the details of the complex deal
stored in RelM. It is used during complex deal detail posting.

Fixed Deal Upload Batch Design

The Fixed Deal Upload batch process reads data from header and detail fixed deals
staging tables in RMS.

For each deal ID on the RMS staging tables, the batch process creates a credit memo, a
debit memo, or a credit note request, depending upon an indicator on the staging
tables.

The batch process also copies most of the data from the RMS staging tables into one
ReIM detail table (IM_FIXED_DEAL_DETAIL). This data is later referenced during the
posting process for the created documents.

For non-merchandise fixed deals that are not associated with an RMS location, the org
unit has been added to the RMS staging table. During the Fixed Deal upload process,
the set of books ID associated with this org unit is used to access a new table (FIXED_
DEAL_SOB_LOC_DEFAULT) to get the location to use for the deal document in IM_
DOC_HEAD. Then, the resolution posting job populates the financial staging tables
with the set of books ID associated with the location just like it does with all other
documents.

Assumptions and Scheduling Notes
The RMS staging header and detail must be purged nightly after the upload has run.

Primary Tables Involved

Note: For descriptions of RMS tables, see the Oracle Retail
Merchandising System Data Model.

» STAGE_FIXED_DEAL_HEAD (RMS table)
» STAGE_FIXED_DEAL_DETAIL (RMS table)

= IM_DOC_HEAD. This table holds general information for documents of all types.
Documents include merchandise invoices, non-merchandise invoices,
consignment invoices, credit notes, credit note requests, credit memos, and debit
memos. Documents remain on this table for SYSTEM_OPTIONS.DOC_HISTORY _
MONTHS after they are posted to the ledger.

8-32 Oracle Retail Invoice Matching Operations Guide

Fixed Deal Upload Batch Design

IM_DOC_NON_MERCH. This table holds various user-defined non-merchandise
costs associated with an invoice. Non merchandise costs can be associated with
merchandise invoice if the IM_SUPPLIER_OPTIONS.MIX_MERCH_NON_
MERCH_IND for the vendor is Y. If the MIX_MERCH_NON_MERCH_IND for
the vendor is N, non merchandise expenses can only be on non merchandise
invoice documents.

IM_DOC_VAT. This table associates the document with its value added tax (VAT)
information.

IM_FIXED_DEAL_DETAIL. This table holds the details of the fixed deals in the
ReIM system. It will be used during fixed deal detail posting.

Batch Processes 8-33

Fixed Deal Upload Batch Design

8-34 Oracle Retail Invoice Matching Operations Guide

9

RETL Program Overview for the RelM
Extraction Program

To facilitate the extraction of data from ReIM (that could be eventually loaded into a
data warehouse for reporting purposes, for example), ReIM works in conjunction with
the Retail Extract Transform and Load (RETL) framework. This architecture optimizes
a high performance data processing tool that can let database batch processes take
advantage of parallel processing capabilities.

Oracle Retail streamlined RETL code provides for less data storage, easier
implementation, and reduced maintenance requirements through decreased code
volume and complexity. The RETL scripts are Korn shell scripts that are executable
from a UNIX prompt. A typical run and debugging situation is provided later in this
chapter.

These extractions were initially designed for Retail Data Warehouse (RDW) but can be
used for some other application in the retailer's enterprise.

For more information about the RETL tool, see the Oracle Retail Extract, Transform, and
Load Programmer’s Guide.

Architectural Design

The diagram below illustrates the extraction processing architecture for ReIM. Instead
of managing the change captures as they occur in the source system during the day,
the process involves extracting the current data from the source system. The extracted
data is output to flat files. These flat files are then available for consumption by a
product such as Retail Data Warehouse (RDW).

The target system, (RDW, for example), has its own way of completing the
transformations and loading the necessary data into its system, where it can be used
for further processing in the environment.

ReIM modules use the same libraries, resource files, and configuration files as RMS.
All these libraries, resource files, and configure files are packed with RMS. ReIM must
have RMS installed before any ReIM RETL scripts can be kicked off.

RETL Program Overview for the RelM Extraction Program 9-1

Configuration

RelM Extraction Architecture

The architecture relies upon the use of well-defined flows specific to the ReIM
database. The resulting output is comprised of data files written in a well-defined
schema file format. This extraction includes no destination specific code.

RelM DB

r

¥
Relfd RETL
extraction process
k.

r

{in output schema format)
Configuration

Configuration requires the set up tasks described below.

RETL
Before trying to configure and run ReIM ETL, install RETL version 12.0 or later, which
is required to run ReIM RETL. Run the verify_retl script (included as part of the RETL
installation) to ensure that RETL is working properly before proceeding.

RETL User and Permissions

ReIM ETL is installed and run as the RETL user. Additionally, the permissions are set
up as per the Oracle Retail Extract, Transform, and Load Programmer’s Guide. ReIM ETL
reads data, creates, deletes, and updates tables. If these permissions are not set up
properly, extractions fail.

Environment Variables

See the Oracle Retail Extract, Transform, and Load Programmer’s Guide for RETL
environment variables that must be set up for your version of RETL. You will need to
set MMHOME to your base directory for ReIM RETL. This is the top level directory
that you selected during the installation process. In your .kshrc, you should add a line
such as the following:

export MMHOME=<base directory for RMS ETL>\dwil2.0\dev

Note: Because ReIM modules share the same libraries and
configuration files as RMS, MMHOME is the same as what is defined

in RMS.

9-2 Oracle Retail Invoice Matching Operations Guide

Program Features

dwi_config.env Settings

Make sure to review the environmental parameters in the dwi_config.env file before
executing batch modules. There are several variables you must change depending
upon your local settings:

For example:

export DBNAME=int9i

export RIM_OWNER=steffej_reimll102
export BA_OWNER=rmsint1102

export ORACLE_PORT="1524"

export ORACLE_HOST="mspdev38"

You must set up the environment variable PASSWORD in dwi_config.env. In the
example below, adding the line to the dwi_config.env causes the password
‘mypasswd' to be used to log into the database:

export PASSWORD=mypasswd

Steps to Configure RETL
1. Log in to the UNIX server with a UNIX account that will run the RETL scripts.

2. Change directories to

SMMHOME/rfx/etc.

3. Modify the dwi_config.env script:
s Change the DBNAME variable to the name of the ReIM database.

s Change the RIM_OWNER variable to the user name of the ReIM schema
owner.

= Change the BA_OWNER variable to the user name of the ReIME batch user.
s Change the ORACLE_HOST variable to the database server name.
s Change the ORACLE_PORT variable to the database port number

s Change the MAX_NUM_COLS variable to modify the maximum number of
columns from which RETL selects records.

Note: All ReIM tables must be under the RMS database. ReIM has
the same BA_OWNER as RMS. Thus, the only piece that ReIM
modifies in dwi_config.env file is to assign a value to RIM_OWNER.
The configuration file, dwi_config.env, as well as all other
configuration files, are packed with RMS.

Program Features

RETL programs use one return code to indicate successful completion. If the program
successfully runs, a zero (0) is returned. If the program fails, a non-zero is returned.

RETL Program Overview for the RelM Extraction Program 9-3

Program Features

Program Status Control Files

To prevent a program from running while the same program is already running
against the same set of data, the ReIME code utilizes a program status control file. At
the beginning of each module, dwi_config.env is run. It checks for the existence of the
program status control file. If the file exists, then a message,"${PROGRAM_NAME}
has already started," is logged and the module exits. If the file does not exist, a
program status control file is created and the module executes.

If the module fails at any point, the program status control file is not removed, and the
user is responsible for removing the control file before re-running the module.

File Naming Conventions
The naming convention of the program status control file allows a program whose
input is a text file to be run multiple times at the same time against different files.

The name and directory of the program status control file is set in the configuration file
(dwi_config.env). The directory defaults to SMMHOME/ error. The naming
convention for the program status control file itself defaults to the following dot
separated file name:

s The program name

» The first filename, if one is specified on the command line
= status

s The business virtual date for which the module was run

For example, the program status control file for the invildex program would be named
as follows for the VDATE of March 21, 2011:

SMMHOME/error/sincildex.sincilddm. txt.status.20110321

Restart and Recovery

Because RETL processes all records as a set, as opposed to one record at a time, the
method for restart and recovery must be different from the method that is used for
Pro*C. The restart and recovery process serves the following two purposes:

1. It prevents the loss of data due to program or database failure.

2. Itincreases performance when restarting after a program or database failure by
limiting the amount of reprocessing that needs to occur.

The ReIM extract module (ReIME) extracts from a source transaction database writes
to a text file.

To limit the amount of data that needs to be re-processed, more complicated modules
that require the use of multiple RETL flows utilize a bookmark method for restart and
recovery. This method allows the module to be restarted at the point of last success
and run to completion. The bookmark restart/recovery method incorporates the use of
a bookmark flag to indicate which step of the process should be run next. For each step
in the process, the bookmark flag is written to and read from a bookmark file.

Note: If the fix for the problem causing the failure requires changing
data in the source table or file, then the bookmark file must be
removed and the process must be re-run from the beginning in order
to extract the changed data.

9-4 Oracle Retail Invoice Matching Operations Guide

Program Features

Bookmark File

The name and directory of the restart and recovery bookmark file is set in the
configuration file (dwi_config.env). The directory defaults to

$MMHOME /rfx/bookmark. The naming convention for the bookmark file itself
defaults to the following dot-separated file name:

1. The program name

2. The first filename, if one is specified on the command line
3. bkm

4. The business virtual date for which the module ran

The example below illustrates the bookmark flag for the invildex program run on the
VDATE of January 5, 2011:

SMMHOME/rfx/bookmark/sincildex.sincilddm. txt.bkm.20110105

Message Logging

Daily Log File

Format

Message logs are written daily in a format described in this section.

Every RETL program writes a message to the daily log file when it starts and when it
finishes. The name and directory of the daily log file is set in the configuration file
(dwi_config.env). The directory defaults to SMMHOME/log. All log files are encoded
UTE-8.

The naming convention of the daily log file defaults to the following 'dot’' separated
file name:

s The business virtual date for which the modules are run
= .log

For example, the location and the name of the log file for the business virtual date
(VDATE) of March 21, 2011 would be the following:

SMMHOME/ 1og /20110321 . log

As the following examples illustrate, every message written to a log file has the name
of the program, a timestamp, and either an informational or error message:

sincildex 12:51:07: last max post date is 20010311000000

sincildex 12:51:07: Retrieve current max post date

sincildex 12:51:10: Loading invc_exchng_rate_temp table ...

sincildex 12:51:15: Loading po_exchng rate_temp table ...

sincildex 12:51:20: Process all records between last post date and current max
post date

sincildex 12:51:27: Drop table rmsintll0buserl.INVC_EXCHNG_RATE_TEMP

sincildex 12:51:27: Drop table rmsintll10buserl.PO_EXCHNG_RATE_TEMP

sincildex 12:51:27: Number of records in sincilddm.txt = 15

sincildex 12:51:27: Program completed successfully

If a program finishes unsuccessfully, an error file is usually written that indicates
where the problem occurred in the process. There are some error messages written to
the log file, such as "No output file specified,” that require no further explanation
written to the error file.

RETL Program Overview for the RelM Extraction Program 9-5

Program Features

Program Error File

In addition to the daily log file, each program also writes its own detail flow and error
messages. Rather than clutter the daily log file with these messages, each program
writes out its errors to a separate error file unique to each execution.

The name and directory of the program error file is set in the configuration file (dwi_
config.env). The directory defaults to SMMHOME/ error. All errors and all routine
processing messages for a given program on a given day go into this error file (for
example, it will contain both the stderr and stdout from the call to RETL). All error
files are encoded UTF-8.

The naming convention for the program's error file defaults to the following 'dot'
separated file name:

s The program name
s The first filename, if one is specified on the command line
s The business virtual date for which the module was run

For example, all errors and detail log information for the invildex program would be
placed in the following file for the batch run of March 21, 2011:

SMMHOME/error/sincildex.sincilddm. txt.20110321

RelME Reject Files

Schema Files

The ReIME extract module may produce a reject file if it encounters data related
problems, such as an inability to find data on required lookup tables. The module tries
to process all data and then indicates that records were rejected so that all data
problems can be identified in one pass and corrected; then, the module can be re-run
to successful completion. If a module does reject records, the reject file is not removed,
and the user is responsible for removing the reject file before re-running the module.

The records in the reject file contain an error message and key information from the
rejected record. The following example illustrates a record that is rejected due to
problems within the currency conversion library:

Unable to convert currency for LOC_IDNT, DAY DT|3]20011002

The name and directory of the reject file is set in the configuration file (dwi_
config.env). The directory defaults to SMMHOME/ data.

Note: A directory specific to reject files can be created. The dwi_
config.env file would need to be changed to point to that directory.

RETL uses schema files to specify the format of incoming or outgoing datasets. The
schema file defines each column's data type and format, which is then used within
RETL to format/handle the data. For more information about schema files, see the
Oracle Retail Extract, Transform, and Load Programmer’s Guide. Schema file names are
hard-coded within each module since they do not change on a day-to-day basis. All
schema files end with .schema and are placed in the rfx/schema directory.

9-6 Oracle Retail Invoice Matching Operations Guide

Typical Run and Debugging Situations

Resource Files

The ReIM Kornshell program uses resource files so that the same RETL program can
run in various language environments. For each language, there is one resource file.

Resource files contain hard-coded strings that are used by extract programs. The name
and directory of the resource file is set in the configuration file (dwi_config.env). The
default directory is {MMHOME}/rfx/include.

The naming convention for the resource file follows the two-letter ISO code standard
abbreviation for languages (for example, en for English, fr for French, ja for Japanese,
es for Spanish, de for German, and so on).

Note: Resource files are packed only with RMS.

Command Line Parameters

The module handles command line parameters in the way described in this section.
See the "RETL Extraction Program List" to determine the command line parameters for
a module.

Note: For some RETL modules across Oracle Retail products, default
output file names, and schema names correspond to RDW program
names.

A Non-File Based Module that Requires Parameters

In order for the non-file based RETL module to run, command line parameters need to
be passed in at the UNIX command line. This ReIME module requires an output_file_
path and output_file_name to be passed in. This module may allow the operator to
specify more than one output file.

For example:

sincildex.ksh output_file_path/output_file_name

Typical Run and Debugging Situations

The following examples illustrate typical run and debugging situations for types of
programs. The log, error, and so on file names referenced below assume that the
module is run on the business virtual date of March 9, 2011. the previously described
naming conventions for the location of each file.

For example:

To run sincildex.ksh:

1. Change directories to SMMHOME/rfx/src.
2. Ata UNIX prompt enter:

%sincildex.ksh $MMHOME/data/sincilddm.txt

RETL Program Overview for the RelM Extraction Program 9-7

Typical Run and Debugging Situations

If the module runs successfully, the following results:

1. Log file: Today's log file, 20110309.log, contains the messages "Program started ..."
and "Program completed successfully" for sincildex.ksh.

2. Data: The sincilddm.txt file exists in the SMMHOME/data directory and contains
the extracted records.

3. Error file: The program's error file, sincildex.sincilddm.txt.20110309, contains the
standard RETL flow (ending with "All threads complete” and "Flow ran
successfully") and no additional error messages.

4. Program status control: The program status control file, sincildex.sincilddm.txt
.status.20110309, does not exist.

5. Reject file: The reject file, sincildex.sincilddm.txt.rej.20110309, does not exist.

If the module does not run successfully, the following results:

1. Log file: Today's log file, 20110309.log, does not contain the "Program completed
successfully" message for sincildex.ksh.

2. Data: The sincilddm.txt file may exist in the data directory but may not contain all
the extracted records.

3. Error file: The program's error file, sincildex.sincilddm.txt.20110309, may contain
an error message.

4. Program status control: The program status control file,
sincildex.sincilddm.txt.status.20110309, exists.

5. Reject file: The reject file, sincildex.sincilddm.txt.rej.20110309, does not exist
because this module does not reject records.

6. Bookmark file (in certain conditions): The bookmark file,
sincildex.sincilddm.txt.bkm.20110309, exists because this module contains more
than one flow. The error occurred after the first flow (for example, during the
second flow).

To re-run a module from the beginning, perform the following actions:

1. Determine and fix the problem causing the error.

2. Remove the program's status control file.

3. Remove the bookmark file from $SMMHOME /rfx/bookmark

4. Change directories to SMMHOME /rfx/src. At a Unix prompt, enter:

%$sincildex.ksh $MMHOME/data/sincilddm.txt

Note: To understand how to engage in the restart and recovery
process, "Restart and Recovery" earlier in this chapter.

9-8 Oracle Retail Invoice Matching Operations Guide

AP| Format

RETL Extraction Program List

This section serves as a reference to the RETL extraction ReIM program.

Program

Functional
Area

Source Table or
File

Schema File

Target File

Arguments

sincildex.ksh

Supplier
Invoice Cost

IM_DOC_
HEAD, IM_

sincilddm.sche

sincilddm.txt

output_file_

ma path/filename
INVOICE_
DETAIL,
ORDLOC,
ITEM_

MASTER

Application Programming Interface (API) Flat File Specifications
This section contains APIs that describe the file format specifications for all text files.

In addition to providing individual field description and formatting information, the
APIs provide basic business rules for the incoming data.

API Format

Each API contains a business rules section and a file layout. Some general business
rules and standards are common to all APIs. The business rules are used to ensure the
integrity of the information held within RDW. In addition, each API contains a list of
rules that are specific to that particular APL

File Layout
m Field Name: Provides the name of the field in the text file.

= Description: Provides a brief explanation of the information held in the field.

= Data Type/Bytes: Includes both data type and maximum column length. Data
type identifies one of three valid data types: character, number, or date. Bytes
identifies the maximum bytes available for a field. A field may not exceed the
maximum number of bytes (note that ASCII characters usually have a ratio of 1
byte =1 character).

— Character: Can hold letters (a,b,c...), numbers (1,2,3...), and special characters
($,#,&...)

- Numbers: Can hold only numbers (1,2,3...)

— Date: Holds a specific year, month, day combination. The format is
YYYYMMDD, unless otherwise specified.

= Any required formatting for a field is conveyed in the Bytes section. For example,
Number (18,4) refers to number precision and scale. The first value is the precision
and always matches the maximum number of digits for that field; the second
value is the scale and specifies, of the total digits in the field, how many digits
exist to the right of the decimal point. For example, the number
-12345678901234.1234 would take up twenty ASCII characters in the flat file;
however, the overall precision of the number is still (18,4).

RETL Program Overview for the RelM Extraction Program 9-9

AP| Format

Field Order: Identifies the order of the field in the schema file.

Required Field: Identifies whether the field can hold a null value. This section
holds either a Yes or a No. A Yes signifies the field may not hold a null value. A
No signifies that the field may, but is not required, to hold a null value.

General Business Rules and Standards Common to All APIs

Complete "snapshot” (of what RDW refers to as dimension data): A majority of
RDW dimension code requires a complete view of all current dimensional data
(regardless of whether the dimension information has changed) once at the end of
every business day. If a complete view of the dimensional data is not provided in
the text file, invalid or incorrect dimensional data can result. For instance, not
including an active item in the prditmdm.txt file causes that item to be closed (as
of the extract date) in the data warehouse. When a sale for the item is processed,
the fact program will not find a matching "active" dimension record. Therefore, it
is essential, unless otherwise noted in each API's specific business rules section,
that a complete snapshot of the dimensional data be provided in each text file.

If there are no records for the day, an empty flat file must still be provided.

Updated and new records of (what RDW refers to as fact data): Facts being loaded
to RDW can either be new or updated facts. Unlike dimension snapshots, fact flat
files will only contain new /updated facts exported from the source system once
per day (or week, in some cases). Refer to each API's specific business rules section
for more details.

If there are no new or changed records for the day, an empty flat file must still be
provided.

Primary and local currency amount fields: Amounts will be stored in both primary
and local currencies for most fact tables. If the source system uses multi-currency,
then the primary currency column holds the primary currency amount, and the
local currency column holds the local currency amount. If the location happens to
use the primary currency, then both primary and local amounts hold the primary
currency amount. If the source system does not use multi-currency, then only the
primary currency fields are populated and the local fields hold NULL values.

Leading/trailing values: Values entered into the text files are the exact values
processed and loaded into the datamart tables. Therefore, the values with leading
and/or trailing zeros, characters, or nulls are processed as such. RDW does not
strip any of these leading or trailing values, unless otherwise noted in the
individual API's business rules section.

Indicator columns: Indicator columns are assumed to hold one of two values,
either Y for yes or N for no.

Delimiters

Note: Make sure the delimiter is never part of your data.

— Dimension Flat File Delimiter Standards (as defined by RDW): Within
dimension text files, each field must be separated by a pipe (|) character, for
example a record from prddivdm.txt may look like the following;:

1000|1 |Homewares |2006 |Henry Stubbs|2302|Craig Swanson

9-10 Oracle Retail Invoice Matching Operations Guide

AP| Format

sincilddm.txt

- Fact Flat File Delimiter Standards (as defined by RDW): Within facts text files,
each field must be separated by a semi-colon character (;). For example a
record from exchngratedm.txt may look like the following:

WIS;20010311;1.73527820592648544918

See the Oracle Retail Extract, Transform, and Load Programmer’s Guide for
information.

End of Record Carriage Return: Each record in the text file must be separated by
an end of line carriage return. For example, the three records below, in which each
record holds four values, should be entered as:

1]2]3]4

5]6]7]|8

9]10]11|12

and not as a continuous string of data, such as:

1]2|3|4|5|6|7|8]9]10]11]12

Business rules:

This interface file contains invoice and order cost information for each item on a
matched invoice.

This interface file cannot contain duplicate transactions for an item_idnt, po_idnt,
invc_idnt, supp_idnt, day_dt, and loc_idnt combination.

This interface file follows the fact flat file interface layout standard.

This interface file contains neither break-to-sell items nor packs that contain
break-to-sell component items.

Name Description Data Type/Bytes Field Order Required Field

ITEM_IDNT The unique identifier | CHARACTER(25) 1 Yes
of an item.

PO_IDNT The unique identifier | VARCHAR2(8) 2 Yes
of a purchase order.

INVC_IDNT The unique identifier | VARCHAR2(10) 3 Yes
of an invoice.

SUPP_IDNT The unique identifier | CHARACTER(10) 4 Yes
of a supplier.

DAY_DT The calendar day on | DATE 5 Yes
which the
transaction occurred.

LOC_IDNT The unique identifier | CHARACTER(10) 6 Yes
of the location.

F_SUPP_INVC_ The invoice cost, in NUMBER(18,4) 7 No

UNIT_COST_AMT | the system primary
currency.

F_SUPP_INVC_ The invoice cost, in NUMBER(18,4) 8 No

UNIT_COST_AMT_ | the local currency.

LCL

RETL Program Overview for the RelM Extraction Program 9-11

AP| Format

Name Description Data Type/Bytes Field Order Required Field
F_SUPP_INVC_QTY | The quantity of an NUMBER(12,4) 9 No

item shown on the

invoice.
F_PO_ITEM_UNIT_ | The item's purchase | NUMBER(18,4) 10 No
COST_AMT order unit cost, in

primary currency.
F_PO_ITEM_UNIT_ | The item's purchase | NUMBER(18,4) 11 No

COST_AMT_LCL

order unit cost, in
local currency.

9-12 Oracle Retail Invoice Matching Operations Guide

	Contents
	1 Introduction
	What is Retail Invoice Matching?
	A Note About Oracle Retail-Based Enterprises
	Technical Architecture Overview

	2 Backend System Administration and Configuration
	System Assumptions
	reim.properties File
	Database Configuration Settings
	Datasource Connection Pool Configuration Settings
	Document Settings
	Date Settings
	Array Process Size Settings
	EDI Properties
	Lockout Timeout Variables
	Credit Note AutoMatch Batch Multithreading Options
	Credit Note AutoMatch Workspace Cleanup Setting
	Invoice AutoMatch Specific Properties
	Generic Threading Options (EdiUpload and AutoMatch)
	Translation Caching Timeouts
	Logging Configuration Settings
	Authentication Settings

	system.properties File
	Dynamic / Non-Dynamic GL Options
	Mapping of Document Types to Action Codes
	Labeling Child Invoices
	Setting the Audit Period
	Data Translation Options
	Set of Books Option
	Duplicate Items Option

	integrations.properties File
	Web Service Provider URL for Drill Forward
	Web Service Provider URL for Account Validation
	Web Service Provider URL for Account User Name Validation
	Web Service Provider URL for Account Password Validation

	Logging Configuration
	Log4J Conventions
	Log4J Properties

	Internationalization
	Translation
	Language Configuration
	Supported Date Formats
	Cache Sizes for Translation Service
	ReIMResources.properties
	IM_USER_AUTHORIZATION

	3 Technical Architecture
	Overview
	The Layering Model
	Presentation Layer
	Middle Tier
	Service Layer Responsible for Business Logic
	Business Objects

	Data Access Layer (DAL)
	Database Layer
	Technical Services
	Application Parameter Service
	System Parameter Service
	Transaction Service
	Error Logging Service
	Log4J
	Internationalization Service
	Currency Service
	Time/Date Service
	Security Service

	Third Party Libraries

	ReIM-Related Java Terms and Standards

	4 Functional Design
	Invoice and Credit Note Matching Process Flow
	Invoice Auto-Matching
	VAT on Header Level Only Invoices
	Cost Pre-Matching
	PO/Location Summary Group Matching
	One-to-One Invoice Matching
	Elibigility for Line-Level Matching
	Line-Level Matching
	Recycling and Overall Flow
	Partially Matched Receipts
	Matching Tolerances
	History and Metrics

	Best Terms Calculations
	Terms Ranking Overview
	Supplier Options
	Terms Date
	Assumptions and Dependencies

	Credit Note Auto-Matching
	Configurable Keys (Flexible Pool Keys)
	Summary Group Matching Algorithm
	One-to-One Invoice Matching Algorithm
	Line Level Matching Algorithm
	Discrepancy Creation and Resolution in Line Level Matching

	Role of the Reason Code Action Rollup Batch in Credit Note Matching
	Tolerances
	Currencies
	VAT Matching
	History and Record Keeping
	Data Purge

	5 Integration
	Integration Overview
	From the Supplier (to EDI) to ReIM
	From ReIM (to EDI) to the Supplier
	From ReIM to the Staging Table for Financial Systems Interface
	From the Merchandising System to ReIM (Directly and Through EDI)
	From ReIM to Receiver Unit and Cost Staging Tables to RMS
	From ReIM to the Merchandising System
	From Workspace to ReIM and from ReIM to Workspace

	Electronic Data Interchange (EDI) Tables and Files
	The EDI Reject Table
	The EDI Reject File
	EDI Invoice Upload File Layout (Based on EDI 810)
	I/O Specification
	All Files Layouts Input and Output
	Process Notes

	EDI Invoice Download File Layout (Based on EDI 812)
	All File Layouts Input and Output

	Financial System Interface
	Foundation Financial Data Overview
	Location Account Segments
	Department/Class Account Segments

	Financial Transactions
	Complex and Fixed Deal-Related Posting
	Non-merchandise Fixed Deals in Multiple Sets of Books Environment
	Resolution Posting

	Tracking Receipt Posts
	Tables Related to Tracking Receipt Posts
	Staging Tables to be used for Reporting

	Multiple Lines for an Individual Receipt Item
	Matching and Tracking Receipt Posts Processing
	Posting
	Reporting
	Integration with Oracle E-Business Suite
	Matched Invoices and Approved Documents
	Pre-Paid Invoices
	Non-Merchandise Invoices

	Posting Transaction Codes to AP Staging Table
	IM_AP_STAGE_HEAD
	IM_AP_STAGE_DETAIL
	Data Mapping

	Integration with Non-Oracle Financials Systems
	Multiple Sets of Books
	Matched Invoices and Approved Documents
	Non-Merchandise Invoices

	LDAP and Other User Interfaces
	LDAP
	Setup Steps within LDAP
	Setup Steps within ReIM
	Additional LDAP Resources

	ReIM User Table

	6 Technical Design
	Locking Design Summary
	Locking and Tables
	Locking Management

	Currency Design Summary
	Merchandising System (such as RMS) and ReIM Assumptions
	Currency Conversion Process for Amount Tolerances
	Currency-Related System Validations
	Java Currency Formatting

	Oracle Single Sign-on Overview
	What Do I Need for Oracle Single Sign-On?
	Can Oracle Single Sign-On Work with Other SSO Implementations?
	Oracle Single Sign-on Terms and Definitions
	Authentication
	Dynamically Protected URLS
	Identity Management Infrastructure
	MOD_OSSO
	Oracle Internet Directory
	Partner Application
	Realm
	Statically Protected URLs

	What Single Sign-On is not
	How Oracle Single Sign-On Works
	Statically Protected URLs
	Dynamically Protected URLs
	Single Sign-on Topology

	Installation Overview
	Infrastructure Installation and Configuration
	OID User Data
	OID with Multiple Realms

	User Management
	OID DAS
	LDIF Scripts
	User Data Sychnronization

	Configuring ReIM for Oracle Single Sign-on

	7 PeopleSoft Enterprise Financials Integration
	Participating Applications
	Release and Packaging Considerations
	Background
	Customer Options
	Option 1 - No Integration with PeopleSoft Enterprise Financials
	Option 2 - Licensed Oracle Retail Integration with PeopleSoft Enterprise Financials

	Assumptions and Dependencies
	Data Constraints
	Data Setup
	RMS Data Setup and Configuration
	RMS System Options
	Organization Units
	Currency Exchange Rates
	Supplier Address Types
	Country Codes
	Financial Calendar
	Freight Terms
	Payment Terms and Currency Exchange Rates
	PeopleSoft Enterprise Financials Org Units and Site IDs
	Store and Warehouse Maintenance
	RMS General Ledger Setup
	RMS General Ledger Cross Reference
	ReSA General Ledger Cross Reference
	Configuring Drill Back and Forward Web Services

	ReIM Data Setup and Configuration
	System Options
	IM_CURRENCY_LOCALE
	Chart of Accounts Setup
	Segment Mapping
	Running the Initial Load from PeopleSoft Enterprise Financials
	integration.properties File Setup
	Reporting

	ReIM Transactional Maintenance
	Calculation of TRANS_AMOUNT
	Generation of Outgoing Data
	Validation of Accounts When Posting Financial Entries
	Maintenance of Valid Accounts
	Building and Posting Reference IDs

	Drilling Back to RMS, ReSA and ReIM - Overview
	Drilling Back to RMS and ReSA - Detail
	Drilling Back From ReIM - Detail

	Drilling Forward
	Drilling Forward From RMS/ReSA to PeopleSoft Enterprise Financials
	Drilling Forward From ReIM to PeopleSoft Enterprise Financials
	AIA DVM Mapping Examples

	8 Batch Processes
	Batch Architectural Overview
	Generic File
	Class Path
	OS Specif Settings
	Execute Batch Jobs Using Arguments from the Merchandising Batch Schedule

	EDI-Related File-Based Batch Processes
	Internal Batch Processes
	Internal Batch Processes that Write to Staging Tables
	Batch Processes that Extract from Merchandising System (RMS) Staging Tables

	Batch Names
	Functional Descriptions and Dependencies
	Features of the Batch Processes
	Scheduler and the Command Line
	Batch Return Values
	Batch Log and Error File Paths
	Multi Threading Batch Processes
	Complex Deal Upload (ComplexDealUploadBatch)
	Fixed Deal Upload (FixedDealUploadBatch)
	EDI Invoice Upload (EdiUploadBatch)
	Auto-Match (AutoMatchBatch)

	A Note about Restart and Recovery

	Executing Batch Processes
	Account Purge Batch Design
	Usage
	Major Modules
	Major Tables

	FinancialPostingWorkspacePurgeBatch
	Usage
	Major Modules
	Major Tables

	Batch Purge Batch Design
	Usage
	SQL Queries
	Manual Propagation (Cascade) of Deletes to Child Tables
	Cascade Relationships
	Assumptions and Scheduling Notes
	Major Modules
	BatchPurgeBatch

	Primary Tables Involved

	Discrepancy Purge Batch Design
	Major Modules
	Major Tables

	EDI Invoice Upload Batch Design
	Assumptions and Scheduling Notes
	Restart and Recovery
	Primary Tables Involved

	Invoice Auto-Match Batch Design
	Algorithms
	Assumptions and Scheduling Notes
	Post Processing
	High-Level Flow Diagram
	Primary Tables Involved

	Credit Note Auto-Match Batch Design
	Algorithms
	Assumptions and Scheduling Notes
	Post Processing
	High-Level Flow Diagram
	Primary Tables Involved

	Receipt Write-Off Batch Design
	Assumptions and Scheduling Notes
	High-Level Flow Diagram
	Primary Tables Involved
	REIM
	RMS

	Reason Code Action Rollup Batch Design
	Assumptions and Scheduling Notes
	High-Level Flow Diagram
	Primary Tables Involved

	Disputed Credit Memo Action Rollup Batch Design
	Assumptions and Scheduling Notes
	Primary Tables Involved

	Financial Posting Batch Design
	Assumptions and Scheduling Notes
	Primary Tables Involved
	Lookup Tables that Must be Populated
	Table to Which the Process Posts Data
	IM_FINANCIALS_STAGE
	IM_AP_STAGE_HEAD
	IM_AP_STAGE_DETAIL

	EDI Invoice Download Batch Design
	Assumptions and Scheduling Notes
	Primary Tables Involved
	Restart and Recovery

	Complex Deal Upload Batch Design
	Assumptions and Scheduling Notes
	Primary Tables Involved

	Fixed Deal Upload Batch Design
	Assumptions and Scheduling Notes
	Primary Tables Involved

	9 RETL Program Overview for the ReIM Extraction Program
	Architectural Design
	ReIM Extraction Architecture

	Configuration
	RETL
	RETL User and Permissions
	Environment Variables
	dwi_config.env Settings
	Steps to Configure RETL

	Program Features
	Program Status Control Files
	File Naming Conventions

	Restart and Recovery
	Bookmark File
	Message Logging
	Daily Log File
	Format
	Program Error File
	ReIME Reject Files
	Schema Files
	Resource Files
	Command Line Parameters
	A Non-File Based Module that Requires Parameters

	Typical Run and Debugging Situations
	RETL Extraction Program List
	Application Programming Interface (API) Flat File Specifications
	API Format
	File Layout
	General Business Rules and Standards Common to All APIs
	sincilddm.txt

