

Oracle® Invoice Matching
Operations Guide

Release 13.1

June 2009

Oracle Retail Invoice Matching Operations Guide, Release 13.1

Copyright © 2009, Oracle and/or its affiliates. All rights reserved.

Primary Author: Susan McKibbon

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Value-Added Reseller (VAR) Language

Oracle Retail VAR Applications

The following restrictions and provisions only apply to the programs referred to in this section and licensed
to you. You acknowledge that the programs may contain third party software (VAR applications) licensed to
Oracle. Depending upon your product and its version number, the VAR applications may include:

(i) the software component known as ACUMATE developed and licensed by Lucent Technologies Inc. of
Murray Hill, New Jersey, to Oracle and imbedded in the Oracle Retail Predictive Application Server -
Enterprise Engine, Oracle Retail Category Management, Oracle Retail Item Planning, Oracle Retail
Merchandise Financial Planning, Oracle Retail Advanced Inventory Planning, Oracle Retail Demand
Forecasting, Oracle Retail Regular Price Optimization, Oracle Retail Size Profile Optimization, Oracle Retail
Replenishment Optimization applications.

(ii) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail Data
Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(iii) the SeeBeyond component developed and licensed by Sun MicroSystems, Inc. (Sun) of Santa Clara,
California, to Oracle and imbedded in the Oracle Retail Integration Bus application.

(iv) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of Kirkland,
Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory Management.

(v) the software component known as Crystal Enterprise Professional and/or Crystal Reports Professional
licensed by SAP and imbedded in Oracle Retail Store Inventory Management.

(vi) the software component known as Access Via™ licensed by Access Via of Seattle, Washington, and
imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(vii) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of San Jose,
California, and imbedded in Oracle Retail Promotion Planning & Optimization application.

(viii) the software component known as Style Report™ developed and licensed by InetSoft Technology
Corp. of Piscataway, New Jersey, to Oracle and imbedded in the Oracle Retail Value Chain Collaboration
application.

(ix) the software component known as DataBeacon™ developed and licensed by Cognos Incorporated of
Ottawa, Ontario, Canada, to Oracle and imbedded in the Oracle Retail Value Chain Collaboration
application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR Applications.
Oracle will not deliver source code to the VAR Applications to you. Notwithstanding any other term or
condition of the agreement and this ordering document, you shall not cause or permit alteration of any VAR
Applications. For purposes of this section, "alteration" refers to all alterations, translations, upgrades,
enhancements, customizations or modifications of all or any portion of the VAR Applications including all
reconfigurations, reassembly or reverse assembly, re-engineering or reverse engineering and recompilations
or reverse compilations of the VAR Applications or any derivatives of the VAR Applications. You
acknowledge that it shall be a breach of the agreement to utilize the relationship, and/or confidential
information of the VAR Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall not attempt,
cause, or permit the alteration, decompilation, reverse engineering, disassembly or other reduction of the
VAR Applications to a human perceivable form. Oracle reserves the right to replace, with functional
equivalent software, any of the VAR Applications in future releases of the applicable program.

v

Contents

Preface ... xiii

Audience... xiii
Related Documents ... xiii
Customer Support ... xiv
Review Patch Documentation ... xiv
Oracle Retail Documentation on the Oracle Technology Network ... xiv
Conventions ... xiv

1 Introduction

What is Retail Invoice Matching? ... 1-1
Oracle Retail-Based Enterprises .. 1-2
Technical Architecture Overview .. 1-2

2 Backend System Administration and Configuration

System Assumptions ... 2-1
reim.properties File .. 2-2

Connection Information for the Database .. 2-2
Authentication Section .. 2-3
Minimum and Maximum Pool Size .. 2-3
Security Ports .. 2-3
Standard Formats ... 2-3

Batch Date Format .. 2-3
Quantity Decimals Allowed.. 2-4

Size of Batch Updates .. 2-4
Set the End of Week Day for the System .. 2-4
Locking Timeout Variable .. 2-4
Auto-Match Threading Options .. 2-5
Generic Threading Options .. 2-5

Parameter Used by EdiUpload Only ... 2-5
Parameters Used by EdiUpload, AutoMatch, ComplexDealUpload, and FixedDealUpload.
2-6

Number of New Documents that EDI Invoice Upload Should Insert at a Time 2-6

vi

Invoice Characters.. 2-6
Allowable Invoice Characters ... 2-6
Invoices Beginning with Zero ... 2-6

Deal Detail Purge Parameter .. 2-7
system.properties File.. 2-7

Determine Which General Ledger (GL) Options are Dynamic... 2-7
Child Invoice Indicator.. 2-8
Set the Audit Period... 2-8
Mapping of Document Types to Action Codes ... 2-8

integration.properties File .. 2-8
Web Service Provider URL for Drill Forward ... 2-8
Web Service Provider URL for Account Validation ... 2-9
Web Service Provider URL for Account Username Validation .. 2-9
Web Service Provider URL for Account Password Validation ... 2-9

Logging Configuration.. 2-9
Log4J Conventions ... 2-9
Log4J Properties .. 2-10

Internationalization .. 2-10
Translation ... 2-10
Language Configuration .. 2-11
Supported Date Formats .. 2-11
Cache Sizes for Translation Service .. 2-11
ReIMResources.properties ... 2-11
IM_USER_AUTHORIZATION ... 2-12

3 Technical Architecture

Overview .. 3-1
The Layering Model... 3-2

Presentation Layer ... 3-2
Middle Tier.. 3-3

Service Layer Responsible for Business Logic .. 3-3
Business Objects .. 3-3

Data Access Layer (DAL).. 3-3
Database Layer .. 3-3
Technical Services .. 3-4

Application Parameter Service.. 3-4
System Parameter Service.. 3-4
Transaction Service ... 3-4
Error Logging Service... 3-5
Log4J ... 3-5
Internationalization Service... 3-5
Currency Service ... 3-5
Time/Date Service .. 3-5
Security Service ... 3-5

Third Party Libraries ... 3-5
ReIM-Related Java Terms and Standards .. 3-6

vii

4 Functional Design

Invoice and Credit Note Matching Process Flow ... 4-1
The Auto-Match Process ... 4-6

TAX on Header Level Only Invoices... 4-6
Cost Pre-Matching ... 4-6
PO/Location Summary Group Matching .. 4-7
One-to-One Invoice Matching... 4-10
Elibigility for Line-Level Matching .. 4-13
Line-Level Matching... 4-13
Recycling and Overall Flow... 4-17
Partially Matched Receipts .. 4-18
Matching Tolerances... 4-19
History and Metrics .. 4-19

Best Terms Calculations ... 4-20
Terms Ranking Overview.. 4-20
Supplier Options ... 4-20
Terms Date ... 4-20
Assumptions and Dependencies .. 4-21

5 Integration

Integration Overview .. 5-1
From the Supplier (to EDI) to ReIM .. 5-2
From ReIM (to EDI) to the Supplier .. 5-2
From ReIM to the Staging Table for Financial Systems Interface ... 5-2
From the Merchandising System to ReIM (Directly and Through EDI).................................... 5-2
From ReIM to Receiver Unit and Cost Staging Tables to RMS ... 5-4
From ReIM to the Merchandising System.. 5-4
From Workspace to ReIM and from ReIM to Workspace.. 5-4

Electronic Data Interchange (EDI) Tables and Files .. 5-5
The EDI Reject Table.. 5-5
The EDI Reject File ... 5-6
EDI Invoice Upload File Layout (Based on EDI 810) .. 5-6

All Files Layouts Input and Output ... 5-6
Notes .. 5-19

EDI Invoice Download File Layout (Based on EDI 812) ... 5-21
All File Layouts Input and Output.. 5-21

Financial System Interface .. 5-26
Foundation Financial Data Overview.. 5-26

Location Account Segments ... 5-26
Department/Class Account Segments ... 5-26

Financial Transactions .. 5-26
Complex and Fixed Deal-Related Posting.. 5-26
Financial Posting .. 5-27

viii

Tracking Receipt Posts ... 5-27
Tables Related to Tracking Receipt Posts ... 5-27
Multiple Lines for an Individual Receipt Item .. 5-28
Matching and Tracking Receipt Posts Processing... 5-28
Posting ... 5-28
Reporting... 5-29
Integration with Financials Systems ... 5-29

LDAP and Other User Interfaces.. 5-30
LDAP... 5-30
ReIM User Table .. 5-30

6 Technical Design

Locking Design Summary .. 6-1
Locking and Tables .. 6-1
Locking Management .. 6-2

Currency Design Summary .. 6-3
Merchandising System (such as RMS) and ReIM Assumptions ... 6-3
Currency Conversion Process for Amount Tolerances .. 6-3
Currency-Related System Validations .. 6-3
Java Currency Formatting... 6-4

Oracle Single Sign-on Overview... 6-4
What is Single Sign-On?.. 6-4
What Do I Need for Oracle Single Sign-On?.. 6-4
Can Oracle Single Sign-On Work with Other SSO Implementations?....................................... 6-5
Oracle Single Sign-on Terms and Definitions.. 6-5

Authentication... 6-5
Dynamically Protected URLS.. 6-5
Identity Management Infrastructure... 6-5
MOD_OSSO... 6-5
Oracle Internet Directory ... 6-5
Partner Application .. 6-6
Realm .. 6-6
Statically Protected URLs... 6-6

What Single Sign-On is Not.. 6-6
How Oracle Single Sign-On Works ... 6-6

Statically Protected URLs... 6-7
Dynamically Protected URLs .. 6-7
Single Sign-on Topology.. 6-8

Installation Overview .. 6-8
Infrastructure Installation and Configuration .. 6-8
OID User Data ... 6-9
OID with Multiple Realms .. 6-9

User Management .. 6-9
OID DAS... 6-9
LDIF Scripts ... 6-9
User Data Sychnronization... 6-10

Configuring ReIM for Oracle Single Sign-on ... 6-10

ix

7 Batch Processes

Batch Architectural Overview.. 7-1
EDI-Related File-Based Batch Processes .. 7-1
Internal Batch Processes .. 7-2
Internal Batch Processes that Write to Staging Tables.. 7-2
Batch Processes that Extract from Merchandising System (RMS) Staging Tables 7-2

Batch Names .. 7-3
Functional Descriptions and Dependencies ... 7-3
Features of the Batch Processes ... 7-6

Scheduler and the Command Line .. 7-6
Batch Return Values... 7-6
Batch Log and Error File Paths... 7-6
Multi Threading Batch Processes... 7-6

Complex Deal Upload (ComplexDealUploadBatch)... 7-6
Fixed Deal Upload (FixedDealUploadBatch) ... 7-6
EDI Invoice Upload (EdiUploadBatch) ... 7-7
Auto-Match (AutoMatchBatch) .. 7-7

A Note about Restart and Recovery .. 7-7
Executing Batch Processes .. 7-7
Batch Purge Batch Design... 7-8

Usage... 7-8
SQL Queries ... 7-8
Manual Propagation (Cascade) of Deletes to Child Tables .. 7-8
Cascade Relationships.. 7-9

Assumptions and Scheduling Notes ... 7-9
Major Modules.. 7-9

BatchPurgeBatch ... 7-9
Primary Tables Involved.. 7-10

Accounts Purge Batch Design ... 7-10
Usage.. 7-10

Major Modules... 7-10
Major Tables... 7-10

Discrepancy Purge Batch Design ... 7-10
Major Modules... 7-11
Major Tables... 7-11

EDI Invoice Upload Batch Design ... 7-11
Assumptions and Scheduling Notes .. 7-12
Restart and Recovery.. 7-12
Primary Tables Involved.. 7-12

Auto-Match Batch Design.. 7-13
Algorithms ... 7-13
Assumptions and Scheduling Notes .. 7-14
Post Processing .. 7-14
High-Level Flow Diagram ... 7-15
Primary Tables Involved.. 7-15

x

Receipt Write-Off Batch Design ... 7-16
Assumptions and Scheduling Notes .. 7-16
High-Level Flow Diagram ... 7-17
Primary Tables Involved.. 7-17

REIM .. 7-17
RMS.. 7-17

Reason Code Action Rollup Batch Design ... 7-17
Assumptions and Scheduling Notes .. 7-18
High-Level Flow Diagram ... 7-19
Primary Tables Involved.. 7-19

Disputed Credit Memo Action Rollup Batch Design .. 7-19
Assumptions and Scheduling Notes .. 7-20
Primary Tables Involved.. 7-20

Financial Posting Batch Design .. 7-21
Assumptions and Scheduling Notes .. 7-21
Primary Tables Involved.. 7-21

Lookup Tables that Must be Populated.. 7-21
Tables to Which the Process Posts Data .. 7-22

EDI Invoice Download Batch Design ... 7-24
Assumptions and Scheduling Notes .. 7-24
Primary Tables Involved.. 7-24
Restart and Recovery.. 7-24

Complex Deal Upload Batch Design ... 7-24
Assumptions and Scheduling Notes .. 7-24
Primary Tables Involved.. 7-25

Fixed Deal Upload Batch Design ... 7-25
Assumptions and Scheduling Notes .. 7-25
Primary Tables Involved.. 7-26

8 RETL Program Overview for the ReIM Extraction Program

Architectural Design.. 8-1
ReIM Extraction Architecture... 8-2

Configuration .. 8-2
RETL... 8-2
RETL User and Permissions ... 8-2
Environment Variables.. 8-2
dwi_config.env Settings .. 8-3

Steps to Configure RETL.. 8-3
Program Features .. 8-4

Program Status Control Files.. 8-4
File Naming Conventions.. 8-4

Restart and Recovery... 8-4
Bookmark File... 8-5
Message Logging.. 8-5
Daily Log File.. 8-5
Format.. 8-6
Program Error File ... 8-6

xi

ReIME Reject Files.. 8-6
Schema Files.. 8-7
Resource Files ... 8-7
Command Line Parameters .. 8-7

A Non-File Based Module that Requires Parameters.. 8-7
Typical Run and Debugging Situations .. 8-8
RETL Extraction Program List.. 8-9
Application Programming Interface (API) Flat File Specifications ... 8-9
API Format ... 8-9

File Layout... 8-9
General Business Rules and Standards Common to All APIs.. 8-10
sincilddm.txt .. 8-12

xii

xiii

Preface

Oracle Retail Operations Guides are designed so that you can view and understand
the application’s behind-the-scenes processing, including such information as the
following:

■ Key system administration configuration settings

■ Technical architecture

■ Functional integration dataflow across the enterprise

■ Batch processing

Audience
Anyone who has an interest in understanding the inner workings of Oracle Retail
Invoice Matching (ReIM) system can find valuable information in this guide . There
are three audiences in general for whom this guide is written:

■ Systems analysts and system operations personnel who need information about
Oracle Retail Invoice Matching processes.

■ Integrators and implementers who are responsible for implementing Oracle Retail
Invoice Matching.

■ Business analysts who need information about Oracle Retail Invoice Matching
processes and interfaces.

Related Documents
For more information, see the following documents in the Oracle Retail 13.1
documentation set:

■ Oracle Retail Invoice Matching Data Model

■ Oracle Retail Invoice Matching Installation Guide

■ Oracle Retail Invoice Matching Online Help

■ Oracle Retail Invoice Matching Release Notes

■ Oracle Retail Invoice Matching User Guide

■ Oracle Retail Merchandising Batch Schedule

■ Oracle Retail Merchandising Implementation Guide

■ Oracle Retail Merchandising Licensing Information

■ Oracle Retail Extract, Transform, and Load documentation

xiv

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:

■ https://metalink.oracle.com

When contacting Customer Support, please provide the following:

■ Product version and program/module name

■ Functional and technical description of the problem (include business impact)

■ Detailed step-by-step instructions to recreate

■ Exact error message received

■ Screen shots of each step you take

Review Patch Documentation
If you are installing the application for the first time, you install either a base release
(for example, 13.0) or a later patch release (for example, 13.0.2). If you are installing a
software version other than the base release, be sure to read the documentation for
each patch release (since the base release) before you begin installation. Patch
documentation can contain critical information related to the base release and code
changes that have been made since the base release.

Oracle Retail Documentation on the Oracle Technology Network
In addition to being packaged with each product release (on the base or patch level),
all Oracle Retail documentation is available on the following Web site (with the
exception of the Data Model which is only available with the release packaged code):

http://www.oracle.com/technology/documentation/oracle_retail.html

Documentation should be available on this Web site within a month after a product
release. Note that documentation is always available with the packaged code on the
release date.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

https://metalink.oracle.com
http://www.oracle.com/technology/documentation/oracle_retail.html

1

Introduction 1-1

1Introduction

Oracle Retail Invoice Matching (ReIM) provides a critical control function to verify
invoices against corresponding merchandise purchase receipts prior to payment of the
supplier invoice. ReIM naturally complements the Oracle Retail Merchandising
System (RMS), which supports ordering, receiving, and other inventory management
functions in the purchasing cycle.

ReIM accurately and efficiently verifies supplier invoices against corresponding
receipt data. When total invoice cost and quantity is supported by one or more receipts
(that is, the quantity received in the system, valued at the negotiated purchase order
cost) within pre-defined tolerances, the invoice is verified or "matched" and is ready
for payment. Where differences exist between invoice and receipt, a dialog supports
the resolution process. Invoices with resolved discrepancies can be paid. Invoices
verified for payment are staged in a table for a retailer to extract to their accounts
payable and general ledger solutions.

ReIM is designed as a standalone application, with logic built in to reference any
merchandising system. However, integration between ReIM and RMS is very robust
and offers a compelling business case to the retailer.

What is Retail Invoice Matching?
Invoice matching describes a control procedure designed to ensure the retailer pays
the negotiated cost for actual quantities received. Invoice verification or matching is a
fundamental and critical control procedure for every retailer.

ReIM is designed to support the invoice verification process with accuracy and
efficiency, focusing resources on exception management. ReIM accepts electronic
invoice data uploads (EDI), and provides for rapid on-line summary entry of invoices.
ReIM supports automated and on-line processes allowing one or more invoices to be
matched against one or more receipts. When an invoice cost and quantities are
matched within tolerance, it is ready for payment and staged to a table to allow a
retailer to extract to their accounts payable solution.

If a cost or quantity difference between the invoice and receipts is outside tolerance, a
discrepancy is recognized and must be resolved. A flexible resolution process allows
discrepancies to be directed to the most appropriate user group for disposition.
Reviewers are empowered to assign one or more reason codes that they are authorized
to use, to resolve the discrepancy.

Oracle Retail-Based Enterprises

1-2 Oracle Retail Invoice Matching Operations Guide

Each reason code is associated to a type of action (for example, create chargeback or
receiver cost adjustment). Many reason codes may be associated with a particular
action type, allowing for more granular reporting, and so on. Actions drive document
creation and EDI downloads to suppliers, inventory adjustments, and accounting
activities. Actions also allow the invoice to be extracted by the retailer and posted for
payment.

ReIM is highly integrated with RMS to drive efficiency, lower mainetnance costs and
improve control. ReIM integration provides access to the following data and more:

■ RMS foundation data (organizational and merchandising hierarchies, supplier
data, currency, exchange rates, and so on)

■ Receipts tables and receiver adjustments

■ Self-billing transactions (consignment purchases, direct store deliveries, and so on)

■ RTV billings

■ Deals and rebate bill-backs

Other functionality within ReIM supports credit note matching against credit note
requests (issued in resolution of invoice discrepancies, as well as for RTVs and so on),
supplier-disputed debit memos, best terms and terms date processing, flexible
tolerance definition dialog, and so on.

Oracle Retail-Based Enterprises
Although ReIM has been developed as a stand-alone product, the most efficient
implementation would be as part of the Oracle Retail product suite. This integration
provides the following imporatnt benefits:

■ The number of interface points that need to be maintained is minimized.

■ The amount of redundant data and processes within the retail organization is
limited.

■ Future enhancements allow for greater extensibility into the retail enterprise.

■ Delays in product introductions can be minimized.

Technical Architecture Overview
The Java architecture is built upon a layering model. That is, layers of the application
communicate with one another through an established hierarchy and are able to
communicate only with neighboring layers.

For more information, see Chapter 3, "Technical Architecture".

2

Backend System Administration and Configuration 2-1

2Backend System Administration and
Configuration

This chapter of the operations guide is intended for administrators who provide
support and monitor the running system.

The content in this chapter is not procedural, but is meant to provide descriptive
overviews of the key system parameters that establish the ReIM environment.

See the Oracle Retail Invoice Matching Installation Guide for hardware and software
requirements and Oracle Retail application software compatibility information.

System Assumptions
■ Unit of Measure

For invoices sent from RMS with quantities representing weight rather than
number of eaches, ReIM assumes that the unit of measure (UOM) on the invoice
and the UOM on the receipt are always the same and equal to the cost unit of
measure (CUOM). (Unit of measure is not displayed on the invoice nor on the
receipt.)

■ ReIM expects all invoices to be in eaches or the standard unit of measure (SUOM)
converted to eaches. No other units of measure can be invoiced using ReIM.

■ ReIM uses non-merchandise codes defined on the RMS table NON_MERCH_
CODE_HEAD. The form that allows users to enter non-merchandise codes in RMS
is not available when the RMS invoice match indicator (SYSTEM_
OPTIONS.INVC_MATCH_IND) is set to no. Instead, non-merchandise codes
should be added to the NON_MERCH_CODE_HEAD table using the database.

■ A record must be inserted into the IM_SYSTEM_OPTIONS table in order to allow
successful login to the application.

■ Supplier options

All suppliers must have options defined for their invoices to be processed by the
system, and the terms defined for those suppliers must be completely updated in
RMS. To support the use of suppliers in ReIM, terms must have the following
properties on the TERMS_DETAIL table:

– ENABLED_FLAG is set to Y

– START_DATE_ACTIVE must be defined

– END_DATE_ACTIVE must be defined

reim.properties File

2-2 Oracle Retail Invoice Matching Operations Guide

■ GL account maintenance

All reason codes, non-merchandise codes, and basic transactions must be mapped
through GL account maintenance to support posting to the retailer's financial
solution. Transactions are posted to a staging table in ReIM, the extract to update
the accounts payable/financial solution is the retailer's responsibility.

■ Multiview

The Document Find, Group Entry List, and Group Entry pages allow the retailer to
define how certain fields display in these screens. The Multiview functionality
allows the user to move fields around on the pages and save those views for future
use. In order for Multiview to work and for these screens to populate correctly,
IM_GLOBAL_PREFERENCES must be populated.

■ TAX

If TAX is turned on, the retailer must have TAX regions, TAX items, and TAX
codes set up in the merchandising system (such as RMS) to support validation of
invoiced TAX charges. Verify the following values on the IM_SYSTEM_OPTIONS
table:

■ NUM_TAX_ALLOW is set to S (single) TAX, N (no) TAX.

TAX_VALIDATION_TYPE is set to RECON (Reconcile TAX), VENDR (Always
Use Vendor TAX), or RETLR (Always use Retail TAX).

■ The DEFAULT_TAX_HEADER is set to Y or N.

■ TAX_DOCUMENT_CREATION_LVL is set to ITEM or FULL_INVOICE.

reim.properties File
Retailer-defined configurations for ReIM are located in the reim.properties file. The
key system parameters contained in this file are described in this section.

In the properties file, certain values are preceded by a # sign. This indicates the line is a
comment and is not used as a setting

Every setting in the reim.properties file is configurable. When retailers implement
code in their environment, they must update these values to their specific settings,
taking system performance, for example, into consideration.

See the section, "Internationalization", in this chapter for additional descriptions of
reim.properties values.

Connection Information for the Database
This portion of the file identifies what JDBC driver the system is utilizing. (For more
information about JDBC, see Chapter 3, "Technical Architecture".) This data also
includes what datasource (merchandising system) that ReIM is utilizing for its
foundation data and the environment information associated to that datasource. The
following settings—with example values—apply:

Note: The values below should not be changed after initial setup.
Changing them can cause errors in the system.

reim.properties File

Backend System Administration and Configuration 2-3

Datasource configuration
datasource.url=jdbc:oracle:thin:@mspvip72.us.oracle.com:1521:dvolr021
datasource.username=rmssedev121user
datasource.password=password
datasource.schema.owner=rmssedev121
datasource.bean.driver=com.retek.reim.foundation.rms12

Authentication Section
Authentication within ReIM addresses the legitimacy and the security privileges of
users, an important aspect of the system's security handling process.

Within the authentication section of this file, the retailer selects either LDAP or
DATABASE, depending upon which is applicable.

For retailers selecting LDAP, see Chapter 5, "Integration", and see the Oracle ReIM
Installation Guide for more settings and information.

Minimum and Maximum Pool Size
The pool size pertains to the number of available database connections that the retailer
intends to keep available in the pool. A system administrator is encouraged to adjust
these values per configuration to match the retailer's anticipated number of users. The
default values are intended to be a mere starting point.

In the example below, a minimum of 5 connections are available, and no more than 10
are available.

Minimum and maximum pool size to maintain
pool.min=5
pool.max=10

Security Ports
Within the enterprise, a port is an endpoint to a logical connection and the way a client
program specifies a specific server program on a computer in the network. A security
port is analogous to an address for a given machine. The security port 'listens' at this
address, and if the system needs to process security-related data, it must 'talk' only to
that address to do so. The security-related processing can only occur at the place
where the 'listening' is occurring.

Security Ports
security.ssl_mode=2
security.port_non_ssl=8080
security.port_ssl=8443

Standard Formats

Batch Date Format
With regard to incoming EDI sent data, retailers can define (through their vendors) the
batch date format that they would prefer the system to receive. The system uses the
batch date format that the operator enters in this section of the file. For example:

batch_date_format=yyyyMMddhhmmss

reim.properties File

2-4 Oracle Retail Invoice Matching Operations Guide

Quantity Decimals Allowed
The database tables within the system allow for quantities to be held in decimals (for
example, 12.5). Quantity decimals allowed means how many decimals the system
displays for a quantity field. In general, quantity decimals are utilized by grocery
retailers.

This is an integer value. ReIM is set to 0 because the system assumes eaches. If a
retailer wished to show four decimals, the value would be 4.

Size of Batch Updates
This property establishes the size of the batch updates to the database. An array in this
context is a collection of data. The value is in records.

For example:

Bulk insert and update array size
ARRAY_PROCESS_SIZE=30

Set the End of Week Day for the System
The system administrator establishes this value to inform the system what that end of
the weekday is. Sunday is equal to 1, and Saturday is equal to 7.

Locking Timeout Variable
When users try to commit information to the database, the system checks to determine
whether they continue to have a lock, because locks can time out. The number of
seconds until the time out occurs is the locking timeout variable, defined in this file. If
the user no longer has a lock, the user receives a message saying that changes cannot
be saved.

The retailer should set the timeout period that makes the most sense for its business
needs. Ideally, the timeout period should be long enough so that users can finish
working on one record, but short enough so that unintentional locks (during lunch,
and so on) do not delay other users an inordinate amount.

During a session, when the system has been idle for longer than the locking timeout
variable, the system does not release the lock. Rather, if a second user attempts to lock
the same table, the system's locking service determines whether the locking timeout
variable has been exceeded. If the locking timeout variable has been exceeded, the
locking service continues locking the table but for the second user. For the first user,
the lock on the table has expired.

ReIM has a lock table defined for the bulleted areas below. For example, the table IM_
DOC_HEAD locks the corresponding values from IM_DOC_HEAD_LOCK. To
establish the duration of the timeout, the retailer can enter a mathematical expression
using the variables. In the list below, the retailer has set the tables, with one exception,
to be released after one hour of session inactivity. The table is only released at the end
of the user's session or, in the case of a system crash, at the beginning of the next user's
session.

Note: The EDI invoice upload batch process does not use this
property. For a description of the property that the EDI invoice upload
batch process uses, see the section, "Number of New Documents that
EDI Invoice Upload Should Insert at a Time"," in this chapter.

reim.properties File

Backend System Administration and Configuration 2-5

■ business_roles_lock_timeout=1*hour

■ doc_group_list_lock_timeout=1*hour

■ doc_head_lock_timeout=no_expire

■ edi_reject_doc_lock_timeout=1*hour

■ supplier_options_lock_timeout=1*hour

■ system_options_lock_timeout=1*hour

■ tolerance_dept_lock_timeout=1*hour

■ tolerance_supp_lock_timeout=1*hour

■ tolerance_supp_trait_lock_timeout=1*hour

■ tolerance_system_lock_timeout=1*hour

Locking timeout variables are in milliseconds. Conversion data is provided below for
the retailer's convenience.

■ millisecond=1

■ second=1000

■ hour=3600000

■ day=86400000

■ month=2592000000

■ no_expire=-1

Auto-Match Threading Options
These parameters are used to configure auto-match threading. Auto-match can either
be run as a single thread, or it can be threaded by the location hierarchy. Currently, this
parameter is defaulted to thread auto-match by district. Changing the thread
parameter is as simple as commenting out one parameter and commenting out
another.

For example:

auto_match_thread_by=ThreadByDistrict

Generic Threading Options
For more information about the batch processes mentioned below, see Chapter 7,
"Batch Processes" .

Parameter Used by EdiUpload Only
The thread.backgroundThreadTimeout parameter is currently only used by EdiUpload
for rejection files. The value represents how long the log writing thread polls an empty
work queue before shutting down. Units are expressed in milliseconds.

For example:

thread.backgroundThreadTimeout=1800000

reim.properties File

2-6 Oracle Retail Invoice Matching Operations Guide

Parameters Used by EdiUpload, AutoMatch, ComplexDealUpload, and
FixedDealUpload
The thread.consumerThreadTimeout parameter represents how long the consumer
pool threads. The value is used for executing the transactions for both EdiUpload and
AutoMatch. Units are expressed in milliseconds.

For example:

thread.consumerThreadTimeout=60000
The thread.consumerThreadKeepAlive parameter represents how long the
consumer/worker stays alive. Units are expressed in milliseconds.

For example:

thread.consumerThreadKeepAlive=60000
The thread.consumerThreadPoolMin and thread.consumerThreadPoolMax parameters
represent the range of consumer/worker threads that can be created for the pool.

For example:

thread.consumerThreadPoolMin=10
thread.consumerThreadPoolMax=100

Number of New Documents that EDI Invoice Upload Should Insert at a Time
The EDI invoice upload (ediupinv) uploads merchandise and non-merchandise
invoices and credit notes from the EDI into the invoice-matching tables. This
parameter, which is related to bulk processing, establishes the number of documents
that the system inserts at one time into one or more invoice-matching tables. In the
example below, 1000 documents has been established as the value.

For example:

#How many new documents should EdiUpload insert at a time
NBR_OF_EDI_DOC_BULK=1000

Invoice Characters

Allowable Invoice Characters
This validation-related parameter describes what characters are allowed on an invoice.
Note that '\' represents 'escape' characters.

For example:

#Invoice number validation regular expression.
#Allowed Characers are :0-9, A-Z, space, minus sign, plus sign and underscore.
#If this property is omitted(commented out) the system will default to
=^[0-9A-Z]+$ (only Alpha-Numeric).
INVOICE_NUMBER_VALIDATION_REGULAR_EXPRESSION=^[0-9A-Za-z\ \+\-_]+$

Invoices Beginning with Zero
This parameter either allows or disallows invoices to begin with the number zero. In
the example below invoice numbers are not allowed to begin with the number zero.

For example:

INVOICE_NUMBER_VALIDATION_ALLOW_ZERO=FALSE

system.properties File

Backend System Administration and Configuration 2-7

Deal Detail Purge Parameter
This parameter is related to the ReIM process of extracting deal-related data from
RMS. Once a document is posted, this value determines how many days ReIM waits
before deleting the detail for the document.

For example:

purge_deals_after_days=2

system.properties File
This file includes system options settings that were not built into the graphical user
interface (GUI) because they cannot be changed once ReIM has been implemented.

Determine Which General Ledger (GL) Options are Dynamic
The parameters in this section of the file determine whether the retailer's segments for
the IM_GL_OPTIONS table are dynamic or non-dynamic. Dynamic segments are those
which are driven by location or department and class numbers provided with the
invoice (as opposed to these segments' being hard-coded). This reduces the amount of
maintenance necessary to support posting to the retailer's financial solution.

If the retailer's segments are non-dynamic, all settings would equal N.

If the retailer's segments are dynamic, note the following:

■ The system allows a maximum of four segments that can be dynamic.

■ Those values that are set to dynamic (that is, set to Y) can be associated to the
following four concepts (note that company and location are always paired
together and that department and class are always paired together):

– Company

– Location

– Department

– Class

■ If the retailer's segments are dynamic by location, the location number is included
in the parameter.

For example:

#Business concept mapping for dynamic segments
system.gl_option_dynamic_mapping_1=COMPANY
system.gl_option_dynamic_mapping_2=LOCATION
system.gl_option_dynamic_mapping_3=
system.gl_option_dynamic_mapping_4=DEPARTMENT
system.gl_option_dynamic_mapping_5=CLASS
system.gl_option_dynamic_mapping_6=
system.gl_option_dynamic_mapping_7=
system.gl_option_dynamic_mapping_8=
system.gl_option_dynamic_mapping_9=
system.gl_option_dynamic_mapping_10=
system.gl_option_dynamic_mapping_11=
system.gl_option_dynamic_mapping_12=
system.gl_option_dynamic_mapping_13=
system.gl_option_dynamic_mapping_14=
system.gl_option_dynamic_mapping_15=
system.gl_option_dynamic_mapping_16=

integration.properties File

2-8 Oracle Retail Invoice Matching Operations Guide

system.gl_option_dynamic_mapping_17=
system.gl_option_dynamic_mapping_18=
system.gl_option_dynamic_mapping_19=
system.gl_option_dynamic_mapping_20=

Child Invoice Indicator
In this section, the retailer defines a string. When a parent invoice enters the system,
the system can split the invoice into its child invoices. A parent invoice can contain
many locations; a child invoice contains only one. The system continues to use the
parent invoice ID, along with both the string that is defined by this parameter and the
location number to which the child invoice is associated. For example:

system.child_invoice_indicator=LOC

Set the Audit Period
The parameter determines how many days the system retains audit trail data.

For example:

system.purge_tolerance_audit_period=2

Mapping of Document Types to Action Codes
This is the default action based on document type which limits the reasons presented
in the reason code list of values (LOV) on the document maintenance detail screen.

For example:

#CREDIT_NOTE_REQUEST_PRICE
CRDNRC=CBC

integration.properties File
Configuration of the integration.properties file is required for Web service enablement.
The file includes settings that affect drill forward capabilities and the validation of user
account information (such as username and password).

The integration.properties file is set in place by the installer. However, it must be
manually configured for Web services to function properly.

The file is here: ORACLE_
HOME/j2ee/<instancename>/applications/<appname>/<appname>/WEB-INF/cla
sses/com/retek/reim

Web Service Provider URL for Drill Forward
This portion of the file identifies the URL used for drilling forward from the ReIM
application. In this case, the installer produces a file similar to the following example
(where input.webservice.drill.forward only represents an actual URL):

#webservice provider URL for drill forward
#webservice.financial.drill.forward=${input.webservice.drill.forward}

Logging Configuration

Backend System Administration and Configuration 2-9

Web Service Provider URL for Account Validation
This portion of the file identifies the URL for validating accounts. In this case, the
installer produces a file similar to the following example (where
input.webservice.account.validation only represents an actual URL):

#webservice provider URL for account validation
#webservice.financial.account.validation=${input.webservice.account.validation}

Web Service Provider URL for Account Username Validation
This portion of the file identifies the URL for validating account usernames. In this
case, the installer produces a file similar to the following example (where
input.webservice.account.validation only represents an actual URL):

#webservice username and password for account validation
#webservice.financial.account.validation.username=${input.webservice.account.valid
ation.username}

Web Service Provider URL for Account Password Validation
This portion of the file identifies the URL for validating account passwords. In this
case, the installer produces a file similar to the following example (where
input.webservice.account.validation.password only represents an actual URL):

#webservice username and password for account validation
#webservice.financial.account.validation.password=${input.webservice.account.valid
ation.password}

Logging Configuration
Oracle Retail Invoice Matching utilizes the industry-standard Apache Log4j logging
framework to log system messages and exceptions. This framework is embedded in
the application code to allow for configurable logging to suit the needs of the retailer.

Log4J Conventions
The Log4j API system utilizes three main configurable entities:

■ Loggers

■ Appenders

■ Layouts

Loggers are responsible for defining exactly what gets logged. Typically, loggers
define a specific level of detail (the log level) for a specific java package name as well
as an appender the logger is assigned to. These criteria are then delegated to the
appropriate appender for the specific logger. A single logger can be assigned to
multiple appenders.

Appenders are used to dictate where logged content is directed to for a given logger.
For example, the retailer may wish to configure a log appender to publish a log to a
database table, a flat file, or an e-mail address. For each of these options, a separate
appender would be defined and assigned to a specific logger.

Layouts are leveraged by the appender to dictate the exact content of the log message.
Relevant information may include: date, time, and origin of the error message. These
values can all be configured through the log layout.

Internationalization

2-10 Oracle Retail Invoice Matching Operations Guide

Log4J Properties
The log4j.properties file holds all of the information relevant to logging throughout the
application. Oracle Retail Invoice Matching ships with a sample log configuration that
will log basic messages to a standard file located on the application host machine.
Retailers wishing to configure specific Invoice Matching loggers should consult the
sample configuration log4j.properties file and the Apache Log4j documentation
(http://logging.apache.org/log4j).

Internationalization
Internationalization is the process of creating software that is able to be translated
more easily. Changes to the code are not specific to any particular market. ReIM has
been internationalized to support multiple languages.

This section describes configuration settings and features of the software that ensure
that the base application can handle multiple languages. See also the section, "Java
Currency Formatting", in Chapter 6, "Technical Design."

Translation
Translation is the process of interpreting and adapting text from one language into
another. Although the code itself is not translated, components of the application that
are translated may include the following:

■ Graphical user interface (GUI)

■ Error messages

The following components are not translated:

■ Documentation (online help, release notes, installation guide, user guide,
operations guide)

■ Batch programs and messages

■ Log files

■ Configuration tools

■ Reports

■ Demonstration data

■ Training materials

The user interface for ReIM has been translated into:

■ German

■ French

■ Spanish

■ Japanese

■ Traditional Chinese

■ Simplified Chinese

■ Korean

Internationalization

Backend System Administration and Configuration 2-11

■ Brazilian Portuguese

■ Russian

■ Italian

Language Configuration
The reim.properties file points the application to the location of the user's properties
file based on the locale specified for the user on the IM_USER_AUTHORIZATION
table.

The properties files ReIMResources and ReIMMessages must include the translations
for all user interface strings. The translated properties files are identified by the ISO
language code for each language. For example: ReIMResources_de.properties contains
the German language resources. Translated properties files for Brazilian Portuguese
and Traditional Chinese are further differentiated by the ISO language + country code.
For example: ReIMResources_pt_BR.properties for Brazilian Portuguese and
ReIMResources_zh_TW.properties for Traditional Chinese.

The Java compiler and other Java tools can only process files which contain Latin-1
and/or Unicode-encoded (\udddd notation) characters. The JDK native2ascii tool
converts files which contain other character encodings into files containing Latin-1
and/or Unicode-encoded charaters. The translated properties files are all shipped in
the Unicode-encoded (\udddd notation).

Supported Date Formats
The system's date formats support either two or four digit year designations. Date
formats support month name abbreviations or month numbers. Date formats support
limited sequencing: year-month-day, month-day-year, and day-month-year. Date
formats support either '-' (dash) or '/' (backslash) delimiters. Date formats must be
specified in the DateParameters.properties file.

Cache Sizes for Translation Service
To enhance the system's performance speed, the system utilizes a cache when
performing data translations into another language.

For example, suppose the system has been configured to offer French translations.
When a French user encounters a location name, the system retrieves the translated
location name from the database and then stores it in a cache. If the system needs to
retrieve the same translated location name at a later time (for another user, for
example), the system would retrieve it from the cache rather than from the database.
This reim.properties value represents the number of entries within the cache that the
system is allowed to use for such processing.

For example:

translation.items_desc_cache_size=100000
See the section, "ReIM User Table" in Chapter 5, "Integration."

ReIMResources.properties
This file contains a key value pair for every label visible through the GUI at run time.
Text labels and error messages have been identified, separated from the core source
code, and placed into the properties file. The contents of the file can be used for
retailer-specific configuration purposes (such as for the creation of custom labels or
error messages).

Internationalization

2-12 Oracle Retail Invoice Matching Operations Guide

IM_USER_AUTHORIZATION
Functionality exists within the system to allow a retailer to change the language
displayed in the UI for a specific user. The retailer can write an update statement for
the IM_USER_AUTHORIZATION table. The update statement would specify the
following for the user name:

■ A language for a user using the two letter language code (for example, zh, for
Chinese)

■ A country for the user using the two-letter country code (for example, CN, for
China)

Once the retailer has run the query, performed a commit, and logged out and into the
application, the UI reflects the new language and locale.

Note: The language/locale combination must be valid and
supported by the system, or when the retailer logs back into the
application, the default language is displayed.

3

Technical Architecture 3-1

3Technical Architecture

This chapter describes the overall software architecture for ReIM. The chapter
provides a high-level discussion of the general structure of the system, including the
various layers of Java code.

Note that at the end of this chapter, a description of ReIM-related Java terms and
standards is provided for your reference.

Overview
The system's Java architecture is built upon a layering model. That is, layers of the
application communicate with one another through an established hierarchy and are
only able to communicate with neighboring layers.

The application is divided into a presentation layer, a middle tier consisting of services
and business objects, and a database access/driver layer. Technical services provide
the "glue" that holds the application together, offering the application frameworks for
error logging, internationalization, transaction management, application security, and
so on.

The segregation of layers has the following advantages, among others:

■ The separation of presentation, business logic, and data makes the software
cleaner, more maintainable, and easier to modify.

■ The look and feel of the application can be updated more easily because the GUI is
not tightly coupled to the back end.

■ A layered architecture has become an industry standard.

■ Portions of the data access layer (DAL) can be radically changed without effecting
business logic or user interface code.

■ The application takes advantage of Java database connectivity (JDBC), minimizing
the number of interface points that must be maintained.

■ Market-proven and industry-standard technology is utilized (for example, JSPs,
JDBC, and so on).

The Layering Model

3-2 Oracle Retail Invoice Matching Operations Guide

The Layering Model
The following diagram, together with the explanations that follow, offers a high-level
conceptual view of the layers and their responsibilities within the architecture. Key
areas of the diagram are described in more detail in the sections that follow.

Figure 3–1 ReIM Layered Architecture

Presentation Layer
This area of the architecture encapsulates the graphical user interface (GUI)
processing. A web browser accesses JSP pages using a Struts tag library.

JSPs consist of JavaScript and standard HTML. They make calls to tag-libraries. An
extension of Java servlet technology, JSPs are compiled into servlets. JSPs provide a
user interface that can be separated from most of the business logic that resides on the
server. This separation of presentation from content offers a greater possibility for ease
of maintenance, both with regard to the page that the user sees and the underlying
logic. The look and feel of the GUI is easy to customize, and dynamic functionality is
easy to create.

Struts provide an open source framework for building Web applications. The core of
Struts is a flexible control layer based upon Java servlets, JavaBeans, ResourceBundles,
and Extensible Markup Language (XML). Struts provide an industry standard
approach to enforcing the division between user interface code and business logic.
Struts also provide standard functionality for error display, internationalization/screen
translation, and so on. The Struts framework is part of the Jakarta Project, sponsored
by the Apache Software Foundation (http://www.apache.org/). The official Struts
home page is http://jakarta.apache.org/struts.

The presentation layer only interacts with the middle tier services.

The Layering Model

Technical Architecture 3-3

Middle Tier

Service Layer Responsible for Business Logic
The service layer consists of a collection of Java classes that implement business logic
(data retrieval, updates, deletions, and so on) via one or more high-level methods. In
other words, the service layer controls the workflow. For example, when a user clicks
OK on a page, the server must follow a given series of steps to accomplish business
functionality. The service layer controls how those steps are accomplished.

The service layer is the entry point to the middle tier and separates the presentation
layer from the database layer. Generally the methods that are exposed by service layer
classes accept and/or return business objects. The service layer encapsulates the
business logic by calling down into business objects and the data access layer, thus
making the code more maintainable.

Business Objects
Within ReIM, business objects are beans (that is, Java classes that have one or more
attributes and corresponding set/get methods) that represent a functional entity. In
other words, business objects can be thought of as data containers, which by
themselves have almost no business functionality. (In those unusual cases where
business logic resides within a business object, the logic pertains to a discreet business
concept.) Two examples of business objects include Document and Supplier.

There is not necessarily a one-to-one relationship between a business object and a
database table. The service layer may utilize more than one class from the data access
layer in order to combine the data from more than one database table to fully populate
a business object.

Data Access Layer (DAL)
The data access layer interacts only with the middle tier and the database. Classes in
the DAL abstract the actual persistence mechanism that is being used to persist
business objects. The DAL provides the mechanism that allows ReIM to be associated
to a different persistence engine. Ideally, in those cases, only the DAL would need to
be modified due to the change. The remainder of ReIM would continue to operate
unchanged.

The ReIM DAL consists of two very distinct portions: a DAL to ReIM owned tables
and an interface DAL to merchandising system tables. The two distinct types of Java
code are described below.

Database Layer
The database layer is the application's storage platform, containing the physical data
(user and system) used throughout the application. This layer is only intended to deal
with the storage and retrieval of information and is not involved in the manipulation
of the data.

The Layering Model

3-4 Oracle Retail Invoice Matching Operations Guide

Technical Services
To increase the maintainability of the code, and enhance the rapid development of new
business logic, a number of base technical services are provided.

Technical services include application frameworks such as error logging,
internationalization, transaction management, application security, and so on.

A brief description of each technical service follows the diagram.

Figure 3–2 ReIM Technical Services

Application Parameter Service
This service allows application configuration parameters to be stored within the
database on a single database table. Developers can retrieve these parameters using a
high level interface.

System Parameter Service
Similar to the application parameter service, this service is used only for technical
configuration parameters. Although most configurable parameters are hosted in a
system parameter table, some parameters are located in a properties file. See Chapter
2, "Backend System Administration and Configuration", for more information.

Transaction Service

This service provides a simplified management of rollback/commit semantics. In
order to avoid the need to pass the database connection between the middle tier
method calls and the data access layer classes, the transaction service uses thread local
variables to maintain the current connection for a thread until that thread has
committed or rolled back the transaction. This service thus simplifies transaction
management.

Note: The transaction service does not provide checkpoint
transaction management or multi-phase commit.

The Layering Model

Technical Architecture 3-5

Error Logging Service
This service incorporates a standard ReIMException class to raise and handle Java
exceptions (shown below). The ReIMException class automatically logs itself to the
application log file. The level of logging may be raised or lowered in the properties
file. For example, an operator could configure the system to only display INFO and
above. See Chapter 2, "Backend System Administration and Configuration", for more
information.

The system's coding pattern ensures that the error messages, no matter where they
originate, remain detailed in their presentation to the operator.

Log4J
This service provides the error logging services with a standard method for logging
information to a flat text file. Log4J is an open source product.

Internationalization Service
This service uses resource files to provide configurability for on-screen messages (such
as on screen labels or error messages). To change the language for the ReIM GUI
screens, a replacement set of resource files can be created. Note that although this
service supports any number of languages, the screen flow remains left to right, top to
bottom.

Currency Service
This service provides a high-level mechanism for developers to represent a currency
amount. This service provides the formatted representation of that currency.

Time/Date Service
This service provides a high level interface to the Java time/date constructs along with
some formatting methods for displaying these constructs on the GUI screens.

Security Service
The security service provides basic authorization and authentication functionality
during user logon. The association of the user to security roles controls user access to
the functional areas of the application. The security service validates a user's identity
against a security store and retrieves the role memberships and role authorizations for
that user upon a successful logon. The physical implementation of the security
information for each user, role, functional authorizations, and field authorizations is
independently configurable among the database or LDAP server locations.

Third Party Libraries
ReIM base development uses the following third party libraries:

■ Oracle JDBC library

■ Log4J

■ JUnit from www.junit.org

■ Struts from jakarta.apache.org

■ ICU4J from IBM

■ Spring Framework from www.springframework.org

ReIM-Related Java Terms and Standards

3-6 Oracle Retail Invoice Matching Operations Guide

ReIM-Related Java Terms and Standards
ReIM is deployed using the technologies and versions described in this section.

The Java 2 Enterprise Edition (J2EE)

The Java standard infrastructure for developing and deploying multi-tier applications.
Implementations of J2EE provide enterprise-level infrastructure tools that enable such
important features as database access, client-server connectivity, distributed
transaction management, and security.

Java Database Connection (JDBC)

JDBC is a means for Java-architected applications such as ReIM to execute SQL
statements against an SQL-compliant database, such as Oracle. JDBC is part of Sun
J2EE specification. Most database vendors implement this specification.

JDBC provides the support that allows ReIM to submit SQL queries to the database
and receive the result set for further processing.

Java Development Kit (JDK)

Standard Java development tools from Sun Microsystems.

Java Server Pages (JSP)

JSPs enable Java and HTML to be combined within a web page. To the user, a JSP
appears in the Web browser as a file with a .jsp extension. The JSP source is
dynamically compiled into a servlet by the servlet container running in the web server.
The servlet generates the necessary HTML content that the user sees.

Java Servlet

A servlet is a Java platform technology that allows a web application easier access to
server side resources. The HTTP request from the client's browser is routed to the
servlet, which then can process it as necessary and provide the applicable response to
the user.

LOG4J

LOG4J is an open source sub-project of the Jakarta Project. It provides a configurable
framework for logging information gathered during the execution of an application.

Naming Conventions in Java

■ Packages: The prefix of a unique package name is written in all-lowercase letters.

■ Classes: These descriptive names are unabbreviated nouns that have both lower
and upper case letters. The first letter of each internal word is capitalized.

■ Interfaces: These descriptive names are unabbreviated nouns that have both lower
and upper case letters. The first letter of each internal word is capitalized.

■ Methods: Methods begin with a lowercased verb. The first letter of each internal
word is capitalized.

ReIM-Related Java Terms and Standards

Technical Architecture 3-7

Struts

An open source web development framework from the Jakarta Project and sponsored
by the Apache Foundation. The framework includes three major components:

■ A controller servlet that dispatches requests to applicable ReIM Action classes.

■ JSP custom tag libraries, and associated support in the controller servlet, that
support ReIM in providing an interactive form-based application.

■ Utility classes to support the following:

– XML parsing

– The automatic population of JavaBeans properties based on the Java reflection
APIs

– The internationalization of prompts and messages

ReIM-Related Java Terms and Standards

3-8 Oracle Retail Invoice Matching Operations Guide

4

Functional Design 4-1

4Functional Design

This chapter provides a diagram and description of the invoice matching process flow.
It also describes the auto-match process through a series of detailed examples. The
various levels of auto-matching are explained, including one-to-one invoice matching
and line-level matching. The chapter concludes with a discussion of best terms
calculations.

Invoice and Credit Note Matching Process Flow
This section provides a high-level explanation of the process flow in ReIM for each of
the following areas:

■ Data entry

■ Matching

■ Discrepancy resolution

Figure 4–1 High-Level View of the Invoice and Credit Note Matching Process

Invoice and Credit Note Matching Process Flow

4-2 Oracle Retail Invoice Matching Operations Guide

1. Data Entry

There are three ways in which invoices and other documents enter the ReIM
system:

■ Electronic Data Interchange (EDI)

Invoices and credit notes uploaded as part of a batch are assigned a common
control number, which is retained on the invoice table as a reference. The
control number is assigned by the sender of the EDI file. It is displayed on the
Invoice Maintenance screen and may be used for client reporting purposes.

As necessary, the EDI load process allows for the uploading of supplier's
vendor product number (VPN) when neither the document number nor the
UPC has been provided. The VPN and the supplier number, then, are used to
look up the Oracle Retail item number. ReIM assumes the VPN is related to
the supplier associated with the document. Note that the VPN number is not
stored in ReIM; it is used to find the Oracle Retail item number which is then
retained and used for processing within ReIM.

Allowing VPN to be used to find the Oracle Retail item number is optional.

EDI allows ReIM to upload the following documents:

– Merchandise Invoices

The bills for goods or services received from a supplier or partner. Mer-
chandise invoices may have both of the following:

Merchandise Costs: Costs that are associated with items on documents.
Any other costs on an invoice are non-merchandise costs. The sum of the
merchandise costs and non-merchandise costs is the total document cost.

Non-Merchandise Costs: Costs that are indirectly associated with invoice
items, such as freight or handling charges.

– Non-Merchandise Invoices

Bills for non-merchandise costs only (a snow plowing service, for exam-
ple). Non-merchandise invoices cannot contain items. Either suppliers or
partners can create non-merchandise invoices.

– Credit Notes

Documents received from the supplier, often issued in response to a credit
note request from the retailer, which results in a reduction of the retailer's
balance owing to a supplier. A credit note request may be raised in lieu of
a deduction from invoice (that is, a debit memo) resulting from invoice
over-charges, RTVs, rebate bill backs, and so on. Credit notes follow a
functional process flow separate from the invoice flow, where credit notes
are matched against credit note requests.

Note: Documents "drop out" of the flow when they need no further
processing. For example, if an invoice is matched in Step 2, Matching,
the document would not continue to Step 3, Discrepancy Resolution.
The document would be posted directly to the financial (AP/GL)
staging table after Step 2.

Invoice and Credit Note Matching Process Flow

Functional Design 4-3

■ Group Entry

Group entry facilitates summarized, on-line entry of paper documents. The
group entry process accommodates the same types of documents as supported
through the EDI process.

Invoices are entered as part of a batch and assigned a group number, which is
retained on the invoice table as a reference. This group number is displayed
on the Invoice Maintenance screen and may be used for reporting purposes.

Because group entry is intended to quickly get invoices into ReIM, entry of
item details is not required. Adding item details for an invoice can be done
later through the Invoice Maintenance screen.

■ Single Entry

Single entry is designed as an exception-handling tool made for invoices and
documents not entered (for whatever reason) within a group.

Single entry accommodates the same types of documents supported in the EDI
and group entry processes, as well as the following items (if not created
automatically through other processes):

– Debit Memo

A document created to support a deduction from the invoice being paid.
Deductions may result from a price or quantity discrepancy. A debit
memo also refers supplier billing for rebates, RTVs, and so on. Debit
memos also can be created as 'stand-alone' documents (that is, created
on-line, but not supported by any processes in ReIM or the merchandis-
ing system).

– Credit Note Request (CNR)

A document sent from the retailer to the supplier, requesting a credit note
for an over-invoiced amount (discrepancy) or in support of various billing
activities (for example, rebates, RTVs). If a credit note request is not satis-
fied by the supplier in a timely manner, ReIM provides the ability to con-
vert it into a debit memo (and include the number of the invoice to which
it is assigned). Credit note requests also may be created as stand-alone
documents.

Note: Merchandise invoices entered by way of single entry also are
assigned a group/transaction number. However, since each
document will be assigned its own group number, some retailers may
not want to generate so many additional group IDs. Retailers that
require a group/transaction number for tracking purposes may want
to restrict access to the single invoice entry screen. Single entry may
be controlled for a user group by setting the Invoice Entry option on
the User Group Details screen to Modify only. This allows users to
change an existing invoice but prevents them from creating a
single-entry invoice. In turn, this forces all manual entry to be done
as group entry.

Invoice and Credit Note Matching Process Flow

4-4 Oracle Retail Invoice Matching Operations Guide

– Credit Memos

A document created to refund a supplier for an under-invoiced or
over-billed amount (for example, for rebates not meeting threshold perfor-
mance levels) amount. Credit memos also may be created as stand-alone
documents.

2. Matching

■ Auto-Matching

Merchandise invoices are grouped by common PO/location; ReIM requires
these attributes in all merchandise invoices. ReIM accesses the merchandising
system to determine what shipments (receipts) were created for the
PO/location. The auto-matching process attempts to support invoice cost and
quantities against receipt quantities at PO cost within user defined tolerances.

If the auto-matching process identifies cost or quantity differences outside of
the pre-established tolerance range, the system creates corresponding
discrepancies (cost or quantity). Otherwise, matched invoices are posted to the
financial staging table.

For header-level-only invoices, TAX validation is performed as a final
validation step, after cost and quantity matching has been performed.

For more functional information about summary and detail-level
auto-matching, see "The Auto-Match Process" section in this chapter.

■ On-line Matching

– Invoices

The on-line matching dialog provides users with the ability to match
invoices with even greater flexibility than the auto-match process. Invoices
are initially grouped by their PO/location, but the groups can be modi-
fied beyond the common PO/location relationship based on available
(that is, 'unmatched') invoices and receipts, to support matches.

On-line matching either matches a document, which is posted to the finan-
cial staging table, or supports creation and resolution of a cost and/or
quantity discrepancy.

Note: If the credit memo is the result of a reversed debit memo, the
ID number of the invoice to which the debit memo is associated
should be assigned to the credit memo, particularly if the invoice is
being held for payment. Assigning the ID number in this manner
ensures related documents are released to accounts payable at the
same time.

Note: Credit notes must be matched on-line against credit note
requests. Credit note matching is not supported by the automatic
matching process.

Invoice and Credit Note Matching Process Flow

Functional Design 4-5

– Credit Notes and CNRs

Typically, invoices for which CNRs are generated are sent to accounts pay-
able even if matching credit notes have not yet been received. The retailer,
then, is issued an invoice that actually is higher than it should be and will
have to wait until credit notes are processed before receiving credit for the
overcharge. The supplier, in turn, may be overpaid. To avoid this ineffi-
ciency, ReIM allows invoices with unmatched CNRs to be held (not paid)
until all corresponding credit notes are received-at which time the invoice
automatically is sent to accounts payable. Depending on user group secu-
rity, the user can manually control when the invoice is released to accounts
payable-even before all credit notes are received.

When a credit note request is matched to a credit note through online
matching, the ID number of the invoice to which they are associated is
assigned to the credit note. In this way, the invoice and all related docu-
ments may be released to accounts payable at the same time.

When matching CNRs to credit notes on a held invoice, the original
invoice should be checked for other open discrepancies. If none exist, the
Hold Invoice indicator on the Supplier Options screen should be "turned
off" so that the invoice and all related documents can be released to the
financial system.

3. Discrepancy Resolution

Users assign pre-defined reason codes against cost and quantity discrepancies to
support resolutions. The reason codes direct the system to take a specific action.

Cost and quantity discrepancies are routed to on-line lists by user group.
(Pre-established user groups and routing rules determine which discrepancies
populate which user group list.) For example, in many companies the
merchant/buyer is responsible for verification of invoice cost against the PO. To
support this functionality, a user group of buyers by department or class might be
a logical association to assign to an on-line Cost Discrepancy Review List. (Each
user group would see only discrepancies assigned to it). Each user group is
empowered to resolve discrepancies according to their authorization. Similarly, it
may be logical to assign users groups to Quantity Discrepancy Review Lists based
on receiving location.

ReIM does not require the resolution of discrepancies through the routing process;
the application will support a more centralized business process for resolving
discrepancies using only the on-line matching dialog.

Once all discrepancies are resolved for the document, it is posted to the financial
staging table along with any corresponding debit memos, and so on, for posting to
the retailer's accounts payable solution.

Documents supporting discrepancy resolution (such as debit memos, credit note
requests, and credit memos) are available for EDI download to the supplier. (Or
the retailer may develop reporting from these values stored in the ReIM tables).
These document records (except credit note requests) also are posted to the
financial staging table.

If there is a discrepancy between a credit note and a credit note request, a new
credit note should be created. Further, CNRs created inadvertently can be voided
and fully reversed to expedite resolution. (It is assumed that if all CNRs related to
a "held" invoice are voided, that invoice is released for payment.)

The Auto-Match Process

4-6 Oracle Retail Invoice Matching Operations Guide

The Auto-Match Process
■ Invoices

Invoices in ready for match, unresolved, and multi-unresolved status are retrieved
from the database to be processed through the auto-match algorithm. These
invoices are grouped with receipts based upon PO/location.

If no receipts exist for the PO/location, invoices process through the cost
pre-matching algorithm.

If receipts do exist, the system attempts to match all invoices and receipts for the
common PO/location (referred to as 'group matching'), within summary-level
tolerances.

If group matching fails, the system attempts to match each invoice to a single
receipt in the one-to-one matching algorithm. If all invoices are matched in this
fashion, then the next PO/location is processed.

If all of the invoices cannot be matched and a multi-unresolved scenario results,
the matched invoices remain matched and the non-matched invoices are given a
multi-unresolved status. No further processing occurs for this PO/location.

If an unmatched invoice is eligible for line level matching, an attempt is made to
match each line on the invoice to an unmatched receipt line.

■ Credit Notes

Credit notes must be matched on-line against credit note requests. Credit note
matching is not supported by the automatic matching process.

TAX on Header Level Only Invoices
The auto-matching process determines whether the TAX values on header level-only
invoices are correct. The system only processes invoices that do not have any
unresolved TAX discrepancies.

The invoice status determines whether an invoice can be processed by the Auto-match
batch process (AutoMatchService). Only invoices in ready-for-match status are
processed. Those with a status of TAX discrepancy are not processed by the batch. See
Chapter 7, "Batch Processes", for more information.

Invoices created without details are not able to have their TAX information validated
at invoice creation. All header level-only invoices are created with a status of
ready-for-match. These invoices must have a TAX validation executed as part of the
invoice matching process. This validation determines whether a header level-only
invoice that was matched to a receipt should continue in the matching and posting
process or whether it should be marked as having a TAX discrepancy and removed
from the matching process.

Cost Pre-Matching
Cost pre-matching occurs only for PO locations that meet the following conditions:

■ Invoices that have never been processed by auto-match exist.

■ No receipts exist.

Each invoice line unit cost is compared with the PO item location's unit cost. If the unit
costs match within tolerance, the invoice and lines are processed again by auto-match
once receipts come in for the PO location.

The Auto-Match Process

Functional Design 4-7

If there is a discrepancy, then the invoice is processed again once receipts arrive.
However, the lines that contain a discrepancy are immediately routed for cost
resolution. Once invoices are run through the cost pre-matching algorithm, they are
not re-run when the next auto-match run occurs if there are still no receipts.

Scenarios can arise where no receipt lines exist, and no order line corresponds to an
invoice line. The assumption is that validation occurs in the EDI upload process and in
the manual invoice entry screens prevent these invoices from entering the system.
Therefore, auto-match ignores this situation.

PO/Location Summary Group Matching
PO/location summary group matching processes the following:

■ Invoices that have never been processed before by auto-match.

■ Invoices that have been processed previously by auto-match but remain
unresolved.

■ Invoices that have been processed previously by auto-match but that have been
identified as multi-unresolved.

First, the system attempts to match the total extended cost of the invoices with the
total extended cost of the receipts. Extended cost is defined as the unit cost for an item
multiplied by the quantity received or the quantity invoiced. For this comparison, all
extended costs are summed for the group of invoices and receipts and compared. The
total extended cost for each invoice is taken from the invoice header. The process,
however, calculates the receipts' total extended cost.

Quantity matching is also sometimes required. Whether quantity matching is
performed is determined by a supplier option. Quantity matching compares the total
quantity invoiced for the PO location with the total quantity received for the PO
location. As in cost matching, the total quantity invoiced for each invoice is taken from
the invoice header. For receipts, the process calculates this sum.

For invoices with quantities representing weight rather than number of eaches, total
quantity displayed in the invoice header is represented as the sum of item quantities in
"abstract UOM."

Auto-match processing first attempts to match the total extended costs, and optionally
the total quantities, exactly. If the costs and quantities do not match exactly, then the
system attempts to match them within tolerance. If a match is achieved, all of the
invoices, receipts, and their lines for the PO location are assumed to be matched. If a
match is not achieved, all invoices and receipts for the PO location are unresolved.
These invoices and receipts are processed further with one-to-one invoice matching.

Auto-match accounts for the actions taken by cost reviewers that fully resolve a cost
discrepancy when attempting to match at the summary level. If a match is achieved at
the summary level, auto-match deletes any outstanding unresolved cost discrepancies
and any partially resolved cost discrepancies along with their partial resolutions for
the PO location from the system.

The Auto-Match Process

4-8 Oracle Retail Invoice Matching Operations Guide

Example 1

The following example illustrates a successful match:

In the example, the total extended costs and the total quantities match for the PO
location. Therefore, all invoices and receipts will be set to matched status.

Example 2

The following example illustrates a successful match, but where quantity matching is
not required by the supplier.

In the example, only the total extended costs match. However, quantity matching is
not required for this supplier. Therefore, these invoices and receipts are considered
matched by the auto-matching algorithm.

Invoices for a
PO/Location Total Extended Cost Total Quantity

Invoice 1 $50,000 1,000

Invoice 2 $150,000 5,000

Totals: $200,000 6,000

Receipts for a
PO/Location Total Extended Cost Total Quantity

Receipt 1 $50,000 2,000

Receipt 2 $50,000 2,000

Receipt 3 $100,000 2,000

Totals: $200,000 6,000

Receipts for a
PO/Location Total Extended Cost Total Quantity

Invoice 1 $50,000 2,000

Invoice 2 $150,000 5,000

Totals $200,000 7,000

Receipts for a
PO/Location Total Extended Cost Total Quantity

Receipt 1 $50,000 2,000

Receipt 2 $50,000 2,000

Receipt 3 $100,000 2,000

Totals $200,000 6,000

The Auto-Match Process

Functional Design 4-9

Example 3

The following example illustrates an unsuccessful match, where quantity matching is
required by the supplier.

In the example, because quantity matching is required for the supplier, the match is
unsuccessful despite the fact that the costs do match. The invoices and receipts will be
set to unresolved status, and an attempt will be made to match them at a one-to-one
level.

Example 4

The following example illustrates a successful match within tolerance.

Receipts for a
PO/Location

Total Extended
Cost Total Quantity

Invoice 1 $50,000 1,000

Invoice 2 $150,000 5,500

Totals: $200,000 6,500

Receipts for a
PO/Location Total Extended Cost Total Quantity

Receipt 1 $50,000 2,000

Receipt 2 $50,000 2,000

Receipt 3 $100,000 2,000

Totals: $200,00 6,000

Receipts for a
PO/Location Total Extended Cost Total Quantity

Invoice 1 $50,035 1.000

Invoice 2 $150,100 5,000

Totals: $200,135 6,000

Receipts for a
PO/Location Total Extended Cost Total Quantity

Receipt 1 $50,000 2,000

Receipt 2 $50,000 2,000

Receipt 3 $100,000 2,000

Totals: $200,000 6,000

The Auto-Match Process

4-10 Oracle Retail Invoice Matching Operations Guide

One-to-One Invoice Matching
One-to-one invoice matching attempts to match each invoice for the PO/location with
a single receipt for the PO/location. First, the system attempts a match between the
total extended costs. If the extended costs match, the system may, depending upon a
supplier option, attempt a match between the total quantities. If there is either an exact
match or a match within tolerance, the invoice and receipt along with their lines are
considered to be matched. If no match can be found for the invoice, it is left
unresolved.

One-to-one matching may result in a multi-unresolved scenario. If any invoices within
the PO/location can be successfully matched with one and only one receipt and that
receipt can be matched to only one invoice for the PO location, then those invoices and
receipts are considered to be matched. If no unmatched invoices remain, then
processing stops for the PO/location and all invoices are considered matched. Only
when one unmatched invoice exists for the PO/location can line level matching occur.
If more than one invoice remains after one-to-one matching, then all remaining
unmatched invoices and receipts are considered to be multi-unresolved.

One-to-one matching is driven by invoices. Therefore, if there are unmatched receipts
remaining but no unmatched invoices for the PO/location, no further processing
occurs. The receipts remain unresolved but no discrepancies are generated.

Example 1

The following example illustrates how one invoice matches with one and only one
receipt. One invoice and two receipts are unresolved.

In the example, Invoice 1 matches with Receipt 1. However, the remaining invoice and
receipts do not match one-to-one. Because there are two unmatched receipts remaining
and only one unmatched invoice, the remaining unmatched invoice and receipts are
considered to be unresolved. If they are eligible for detail matching, they are sent to
the detail-matching algorithm.

Invoices for a
PO/Location Total Extended Cost Total Quantity

Status Post
Matching

Invoice 1 $50,000 5,000 Matched

Invoice 2 $100,000 10,000 Unresolved

Invoices for a
PO/Location Total Extended Cost Total Quantity

Status Post
Matching

Receipt 1 $50,000 5,000 Matched

Receipt 2 $25,000 2,500 Unresolved

Receipt 3 $35,000 2,500 Unresolved

The Auto-Match Process

Functional Design 4-11

Example 2

The following example illustrates a multi-unresolved match, with no successful
matches.

In the example, Invoice 2 can be successfully matched to both Receipt 2 and Receipt 3.
Therefore, no match can be obtained for Invoice 2. All invoices and receipts are set to
multi-unresolved status.

Example 3

The following example illustrates another multi-unresolved match, with no successful
matches.

In the example, Receipt 2 can be successfully matched to both Invoice 2 and Invoice 3.
All invoices and receipts are set to multi-unresolved status.

Invoices for a
PO/Location Total Extended Cost Total Quantity

Status Post
Matching

Invoice 1 $50,000 5,000 Multi-unresolved

Invoice 2 $25,000 2,500 Multi-unresolved

Invoice 2 $35,000 3,000 Multi-unresolved

Invoices for a
PO/Location Total Extended Cost Total Quantity

Status Post
Matching

Receipt 1 $40,00 4,000 Multi-unresolved

Receipt 2 $25,000 2,500 Multi-unresolved

Receipt 3 $25,000 2,500 Multi-unresolved

Receipt 4 $10,000 1,000 Multi-unresolved

Invoices for a
PO/Location Total Extended Cost Total Quantity

Status Post
Matching

Invoice 1 $40,000 4,000 Multi-unresolved

Invoice 2 $25,000 2,500 Multi-unresolved

Invoice 3 $25,000 2,500 Multi-unresolved

Invoice 4 $10,000 1,000 Multi-unresolved

Invoices for a
PO/Location Total Extended Cost Total Quantity

Status Post
Matching

Receipt 1 $50,000 5,000 Multi-unresolved

Receipt 2 $25,000 2,500 Multi-unresolved

Receipt 3 $35,000 3,500 Multi-unresolved

The Auto-Match Process

4-12 Oracle Retail Invoice Matching Operations Guide

Example 4

The following example illustrates a multi-unresolved match, but one with successful
matches.

In the example, Invoice 2 can be successfully matched with both Receipt 2 and Receipt
3. Invoice 3, however, can be successfully matched only with Receipt 4. Therefore,
Invoice 3 and Receipt 4 are set to matched status. All other invoices and receipts for
the PO location are set to multi-unresolved status.

Example 5

The following example illustrates a scenario in which all invoices match, but there are
remaining unresolved receipts.

In the example, all three invoices can be successfully matched to one and only one
receipt. However, two unmatched receipts remain. The invoices are still considered
matched, and the receipts remain unresolved.

Invoices for a
PO/Location Total Extended Cost Total Quantity

Status Post
Matching

Invoice 1 $50,000 5,000 Multi-unresolved

Invoice 2 $25,000 2,500 Multi-unresolved

Invoice 3 $35,000 3,500 Matched

Invoices for a
PO/Location Total Extended Cost Total Quantity

Status Post
Matching

Receipt 1 $40,000 4,000 Multi-unresolved

Receipt 2 $25,000 2,500 Multi-unresolved

Receipt 3 $25,000 2,500 Multi-unresolved

Receipt 4 $35,000 3,000 Matched

Invoices for a
PO/Location Total Extended Cost Total Quantity

Status Post
Matching

Invoice 1 $50,000 5,000 Matched

Invoice 2 $25,000 2,500 Matched

Invoice 3 $35,000 3,000 Matched

Invoices for a
PO/Location Total Extended Cost Total Quantity

Status Post
Matching

Receipt 1 $50,000 5,000 Matched

Receipt 2 $25,000 2,500 Matched

Receipt 3 $15,000 2,500 Unresolved

Receipt 4 $35,000 3,000 Matched

Receipt 5 $75,000 10,000 Unresolved

The Auto-Match Process

Functional Design 4-13

Elibigility for Line-Level Matching
In auto-matching, matching can be performed for entire invoices or broken down to
the line level. PO location level matching and one-to-one invoice matching are
performed for entire invoices and receipts. Line level matching is performed by item.

In order to be eligible for line-level matching, an invoice or receipt must meet the
following conditions:

1. Neither the invoice nor receipt can be in multi-unresolved status: If the invoice or
receipt is in multi-unresolved status, it is assumed that human intervention is
required. No further attempts are made to match the applicable invoice at the line
level.

2. Lines must be present on the invoice: Auto-matching assumes that invoices either
have all lines in the system or no lines. The system neither validates nor processes
partial invoices. If any lines are present, auto-matching assumes that all lines are
present.

3. The number of days to routing must be exceeded: The system uses settings and a
formula to arrive at its determination of routing days. A supplier option is used to
define how long the system should wait before routing discrepancies for invoices
for that supplier. However, if the invoice is due sooner than the routing date, then
discrepancies may be routed earlier than the route date. A system option
determines the maximum number of days before an invoice due date that
discrepancies will be routed. The earliest date between the routing date defined by
the supplier option and the routing date dictated by the system option is the date
on which auto-match routes discrepancies for an invoice.

Supplier option: routing days = x days

System option: maximum days before due date = y days

Supplier driven routing date = invoice date + x days

System driven routing date = invoice due date - y days

The date of actual routing is the earlier of the supplier driven routing date and the
system-driven routing date.

Line-Level Matching
If only one invoice remains unmatched and zero-to-many receipts are unmatched for
the PO location and the invoice is eligible, the system attempts to match each line item
on the invoice to receipt line items on the receipts for the same item. If a match is not
found, price and/or quantity discrepancies are created and routed. Once line level
matching is complete for a PO location, if all lines have been matched, then the entire
invoice and all of the receipts are considered matched. Otherwise, they remain
unresolved.

When invoice lines are sent through line level matching, all existing unresolved or
partially resolved cost discrepancies are deleted along with any partial resolutions. If
line level matching produces new discrepancies, they are created and routed, thus
ensuring that discrepancies are routed with the latest information available about the
invoice and receipt lines.

If no receipt lines correspond to an invoice line, cost matching is attempted for the
applicable invoice line using the PO's unit cost. The system assumes the invoice line
exists on the order. If there is a discrepancy, a cost discrepancy is created and routed. In
this scenario, a quantity discrepancy is automatically created and routed where the
entire invoiced quantity is the discrepant quantity.

The Auto-Match Process

4-14 Oracle Retail Invoice Matching Operations Guide

For line-level matching, cost and quantity matching are always performed. If cost
matching fails, quantity matching is still performed in order to route potential quantity
discrepancies that may be discovered. When discrepancies are created, the PO's
supplier is associated with the discrepancy.

For quantity line level matching, the comparison is made between the quantity
invoiced and the sum of the quantities received across the receipts for that item. If a
quantity match cannot be obtained, then a quantity discrepancy is generated and
routed for the invoice line and the receipt lines for that item.

Example 1

The following example illustrates a scenario in which all lines match, and the invoices
and receipts are set to matched status.

In the example, assume line-level tolerances are set such that all lines match, and the
line-level statuses are set to "matched" accordingly.

Invoice Lines for a
PO/Location Item Unit Cost Quantity

Status Post
Matching

Invoice 1 550 Matched

- Invoice line Item 1 $5.00 100 Matched

- Invoice line Item 2 $10.00 200 Matched

- Invoice line Item 3 $15.00 250 Matched

Invoice Lines for a
PO/Location Item Unit Cost Quantity

Status Post
Matching

Receipt 1 565 Matched

- Receipt line Item 1 $5.02 105 Matched

- Receipt line Item 2 $10.10 210 Matched

- Receipt line Item 3 $15.03 250 Matched

The Auto-Match Process

Functional Design 4-15

Example 2

The following example illustrates a scenario in which some lines match, and the
invoices and receipts remain in unresolved status.

In the example, the lines value for Item 2 is matched. However, because Items 1 and 3
do not match within tolerance, the receipt and invoice are unmatched.

Invoice Lines for a
PO/Location Item Unit Cost Quantity

Status Post
Matching

Invoice 1 550 Unresolved

- Invoice line Item 1 $12.00 100 Unresolved

- Invoice line Item 2 $10.00 200 Matched

- Invoice line Item 3 $12.00 250 Unresolved

Invoice Lines for a
PO/Location Item Unit Cost Quantity

Status Post
Matching

Receipt 1 550 Unresolved

- Receipt line Item 1 $5 100 Unresolved

- Receipt line Item 2 $10 200 Matched

- Receipt line Item 3 $10 250 Unresolved

The Auto-Match Process

4-16 Oracle Retail Invoice Matching Operations Guide

Example 3

The following example illustrates a scenario in which some lines match, and the
invoices and receipts remain in unresolved status. Note that one invoice line has no
corresponding receipt item.

In the example, Item 2 matches. A cost discrepancy is created for Item 1. No cost
discrepancy is created for Item 3 because its unit cost matches the PO's unit cost. A
quantity discrepancy is created for Item 3 where the received quantity is zero because
the item is not on the receipt.

Invoice Lines for a
PO/Location Item Unit Cost Quantity

Status Post
Matching

Invoice 1 550 Unresolved

- Invoice line Item 1 $12.00 100 Unresolved

- Invoice line Item 2 $10.00 200 Matched

- Invoice line Item 3 $12.00 250 Unresolved

Invoice Lines for a
PO/Location Item Unit Cost Quantity

Status Post
Matching

Receipt 1 550 Unresolved

- Receipt line Item 1 $5.00 100 Unresolved

- Receipt line Item 2 $10.00 200 Matched

Order Lines for a
PO/Location Item Unit Cost

- Order line Item 1 $5.00

- Order line Item 2 $10.00

- Order line Item 3 $12.00

The Auto-Match Process

Functional Design 4-17

Example 4

The following example illustrates a scenario in which one invoice line is matched to
many receipt lines.

In the example, one invoice line can be matched with two receipt lines.

Recycling and Overall Flow
As soon as invoices arrive, the next auto-matching batch run processes them. If there
are no receipts, invoices are sent to cost pre-matching immediately - allowing for early
identification of cost discrepancies and correction of PO, if necessary, to improve
match rates when receipts arrive.

Once receipts arrive, the invoices and receipts are matched at the PO/location level
and at the one-to-one level. If no match exists, these invoices and receipts are recycled
through summary level matching until the routing days parameter has passed. If there
is a match, then any unresolved or partially resolved cost discrepancies are removed
from the system.

For discrepancies that have been fully resolved, the actions taken are reflected in the
adjusted total extended cost and adjusted total quantity of the invoices and the
receipts. The adjusted cost and quantity values will be available to support summary
matching on-line.

After the routing days parameter has passed, an invoice in unmatched status will
undergo line-level matching. In this type of scenario, all existing unresolved or
partially resolved cost discrepancies are deleted. New cost and quantity discrepancies
are created if any exist.

After line level matching is performed for an invoice (through either the auto-match or
the on-line matching process), that invoice is never processed by auto-match again.

Invoice Lines for a
PO/Location Item Unit Cost Quantity

Status Post
Matching

Invoice 1 Matched

- Invoice line Item 1 $5.00 100 Matched

Invoice Lines for a
PO/Location Item Unit Cost Quantity

Status Post
Matching

Receipt 1 Matched

- Receipt line Item 1 $5.00 70 Matched

Receipt 2 Matched

- Receipt line Item 1 $5.00 30 Matched

The Auto-Match Process

4-18 Oracle Retail Invoice Matching Operations Guide

Partially Matched Receipts
Users may choose to 'split' a receipt item. Splitting a receipt a portion of the receipt
quantities to support a match or resolve a discrepancy online. The unmatched portion
of the receipt is available to match against future invoices. Partially matched receipts
(that is, the unmatched portion) are available to both on-line and auto-match processes
to support matches.

Example 1

The following example illustrates summary level matching:

In the example, a partially matched receipt is used to match an unprocessed invoice.
Only the unmatched lines for the receipt are used to determine whether the invoice
and receipt match at the summary level.

Example 2

The following example illustrates line level matching:

In the example, the invoice remains unresolved and the receipt becomes matched.
Even though Item 2 of Invoice 1 matches with Item 2 of Receipt 1, Item 2 of Receipt 1
had already been matched to a different line on a different invoice. Therefore, it is not
reused here to make a match. Item 3 of Receipt 1 is unresolved and is therefore
available to be matched to Item 3 of Invoice 1.

Invoice Lines for a
PO/Location Item Extended Cost Quantity

Status Prior to
Matching

Status After
Matching

Invoice 1 $30,000 500 Unresolved Matched

Invoice Lines for a
PO/Location Item Extended Cost Quantity

Status Prior to
Matching

Status After
Matching

$60,000 1,000 Partially Matched Matched

$30,000 500 Previously matched Matched

$15,000 250 Unresolved Matched

$15,000 250 Unresolved Matched

Invoice Lines for a
PO/Location Item Extended Cost Quantity

Status Prior to
Matching

Status After
Matching

Invoice 1 Unresolved Unresolved

- Invoice line 2 $15.00 250 Unresolved Unresolved

- Invoice line 3 $15.00 250 Unresolved Matched

Invoice Lines for a
PO/Location Item

Extended
Cost Quantity

Status Prior to
Matching

Status After
Matching

Receipt 1 Partially Matched Matched

- Receipt line Item 1 $30.00 500 Previously matched Matched

- Receipt line Item 2 $15.00 250 Previously matched Matched

- Receipt line Item 3 $15.00 250 Unresolved Matched

The Auto-Match Process

Functional Design 4-19

Matching Tolerances
Matching tolerances are defined for:

■ Costs and quantities, for both summary and detail (line-level) matching

■ Discrepancies in favor of the retailer and those in favor of the supplier

■ Tolerance ranges

■ Supplier, department, or system level (default)

Tolerances are set up for total invoice (merchandise) cost to support summary level
matching during the auto-match and on-line processes. Summary level quantity
matching is optional, per supplier parameter; the tolerance dialog. Detail (line-level)
cost matching is performed based on the unit cost of the item. Quantity matching is
always done at the line-level, requiring a tolerance provision. Tolerances may be set up
as percentages or nominal amounts. A system option provides for definition of the
maximum percentage tolerance that can be used.

Tolerances are defined separately for discrepancies in favor of the retailer and those in
favor of the supplier. To illustrate, if the invoice cost is $20.00 and the purchase order
(receipt) cost is $30.00, the discrepancy of 10 is in favor of the retailer because the
invoice cost is less than expected.

Discrete tolerance amounts or percentages may be defined for value and quantity
ranges to hone the matching process. Ranges are defined for summary and line-level
matching.

In general, when attempting to match invoices with quantities representing weight,
the "percentage" tolerance type at the system level should be used For these invoices,
the system would apply the same logic regardless of whether the invoice shows
number of pounds or number of packs. So using a percentage rather than an amount
would be the more effective choice.

Tolerances may be defined at the supplier level, the department level, or the
system-wide level. The matching processes first determine whether a supplier-level
tolerance applies to the invoice being matched. If a supplier-level tolerance does not
exist, a check will be made for department level. If line-level matching is being
performed, then ReIM will use the department for that item to retrieve tolerances. In
the summary matching case, an item is selected at random from the corresponding PO,
and the department for that item is used to retrieve tolerances. Finally, if supplier- and
department- level tolerances do not exist, the system-level tolerance will default.

History and Metrics
ReIM records summary and detail history for matched invoices and receipts. In
addition, the system records whether or not each match was exact or not. At the
summary level, the group of receipts and invoice numbers is stored. At the detail level,
receipt lines matching to a particular invoice line is also stored.

For each auto-match run, the following metrics about the run are stored:

■ The run date.

■ The number of invoices that matched exactly.

■ The number of invoices that matched within tolerance.

■ The total number of invoices processed.

Best Terms Calculations

4-20 Oracle Retail Invoice Matching Operations Guide

Best Terms Calculations
The best terms calculation process compares the terms on the invoice and the terms on
the PO, selects the most favorable term (according to each term's ranking), and
determines a terms date. Best terms and terms date are subject to supplier-level option.
The best terms calculation process is called after the auto-matching and on-line
matching processes, and for pre-paid invoices.

After the best terms are calculated and the terms date is determined, the results are
written to IM_DOC_HEAD for the invoice.

Terms Ranking Overview
Terms are ranked numerically. Terms with a lower ranking are preferable to terms with
a higher ranking. During the best terms calculation, the ranks of the invoice terms and
the PO terms are compared, and the terms with the lowest rank are selected as the best
terms.

Supplier Options
The following supplier options (IM_SUPPLIER_OPTIONS) affect the best terms
calculation:

■ Always Use Invoice Terms (USE_INVOICE_TERMS_IND): When this indicator is
set to Y, only invoice terms will be used, and there the comparison against PO
terms is not performed.

■ ROG Date Allowed (ROG_DATE_ALLOWED_IND): When this indicator is set to
Y, the supplier allows the receipt of goods (ROG) date to be used to when
determining the terms date. This indicator can only be set to Y if the Always Use
Invoice Terms indicator is set to N.

Terms Date
The terms date is the later of the invoice date or the receipt of goods (ROG) date. The
ROG date replaces invoice date as the terms date when all of the following are true:

■ Always Use Invoice Terms (USE_INVOICE_TERMS_IND) on the supplier options
table is set to N.

■ ROG Date Allowed (ROG_DATE_ALLOWED_IND) on the supplier options table
is set to Y.

■ The ROG date is later than the invoice date.

Note: If there are multiple receipts for an invoice, the ROG date is
the date of the last receipt.

Best Terms Calculations

Functional Design 4-21

Assumptions and Dependencies
■ Best terms calculation applies only to merchandise invoices.

■ Merchandise invoices must be in "matched" status before the best terms
calculation is performed.

■ When the supplier option Always Use Invoice Terms is set to Y, the invoice terms
are always used. The due date is calculated using the invoice date. The PO terms
are never considered.

■ The payment of invoices prior to or during matching does not update the
matching status of the invoice. In these situations, a pre-paid invoice indicator is
tripped to ensure the invoice is not paid a second time after matching and to
trigger the correct accounting distribution. The best terms process is not
re-invoked if the pre-paid indicator is set to Y.

Best Terms Calculations

4-22 Oracle Retail Invoice Matching Operations Guide

5

Integration 5-1

5Integration

This chapter describes how ReIM integrates with other systems, related interfaces,
and file layouts. It includes an integration overview, a discussion of EDI (with
layouts), an explanation of how ReIM interfaces with financial systems, and a
summary of LDAP user authentication.

Integration Overview
This section provides a diagram that shows the overall direction of the data among the
applications and tables. The accompanying explanations are written from a
system/staging table-to-system/staging table perspective, illustrating the movement
of data.

Figure 5–1 ReIM Dataflow Across the Enterprise

Integration Overview

5-2 Oracle Retail Invoice Matching Operations Guide

From the Supplier (to EDI) to ReIM
ReIM receives supplier invoices and credit notes via EDI or through on-line entry
processes. These document types are described later in this chapter.

From ReIM (to EDI) to the Supplier
ReIM generates debit memos, credit note requests and credit memos for various
reasons. Each of these documents is recorded in ReIM tables to allow for retailer
reporting. Also, an ReIM process reads these tables and creates a file of these
documents to support the retailer’s EDI transmissions to suppliers.

From ReIM to the Staging Table for Financial Systems Interface
For a description of the process that posts data from ReIM to the staging table (IM_
FINANCIAL_STAGE), see "Financial Posting Batch Design" in Chapter 7, "Batch
Processes."

From the Merchandising System to ReIM (Directly and Through EDI)
ReIM is able to access foundation data, such as item, purchase order, supplier, and
other information directly from RMS tables. ReIM provides the drivers to access thse
tables without further integration work.

■ Receipts

Receipts are records of purchased merchandise arriving at the store or warehouse.
Receipt data is accessed in RMS, and certain data elements are extracted from RMS
into ReIM tables to support ReIM-specific actions performed against receipts (for
example, splitting receipt quantities, updating statuses, and so on).

■ Purchase Orders

Purchase orders (POs) are created in RMS and represent a legally binding
agreement between retailer and supplier for the purchase and sale of goods. The
retailer records the quantity, cost and delivery location of items from the supplier.
On a single PO, RMS supports different costs for the same item going to different
locations. PO costs are used to value receipt quantities.

■ Supplier Trait

An RMS function, supplier traits are used as a grouping mechanism for suppliers
with common characteristics. They are utilized for mass updates. This data is used
in setting up tolerances within ReIM.

■ Item

ReIM processes matches at the item transation-level (that is, SKUs). For reference
purposes, UPCs may be used, so they should be provided by the merchandising
system. See the RMS documentation for more information about the multi-level
item structure.

■ Partner

A partner is a business that supplies and bills a retailer for non-merchandise
services. Examples of partners are banks, agents, and expense suppliers. A partner
cannot send merchandise invoices to retailers.

Integration Overview

Integration 5-3

■ Valued Added Tax (TAX) Code and Rate

TAX is embedded in the cost of the item. ReIM provides for validation of taxes
charged on the invoice against TAX codes/rates stored in RMS tables for the item.

■ Consignment

Consignment is an arrangement whereby the physical control of merchandise (but
not the title of ownership) is transferred from one business known as the
consignor (for example, the vendor) to another known as the consignee (for
example, the retailer). The title to the goods remains with the consignor until the
goods are sold. When consigned goods are sold, the consignor invoices the
consignee. On this invoice, the cost of each item is reduced to a certain proportion,
called the consignment rate. The consignment rate, predetermined by both parties,
represents the consignor’s share of the sale. Once the merchandising system
records a sale, a consignment invoice is created in ReIM for a percentage of the
sale cost. The receipt is implied based on the consignment rate applied to the
selling price; accordingly, the self-billed invoice is assumed to be in matched
status.

■ Return to Vendor (RTV)

An RTV is a retailer-initiated purchase return of inventoried goods to an external
vendor. The merchandising system uses RTV data to update inventory positions
and write requisite transactions to the stock ledger. ReIM receives RTV data via the
merchandising system from the store and warehouse inventory systems where it is
initiated, where a charge-back document is created.

■ Deal Bill Backs

RMS tracks certain types of supplier deals (for example, rebates, vendor funded
markdowns, and so on) for billing back to the supplier. Information to support
these billings is receivedin ReIM through an RMS extract. ReIM creates a charge
back document for these billings, which may be subject to edit/approval in ReIM
or automatically processed to the financial staging table for export to the retailer’s
accounts payable solution, based on an RMS parameter.

■ Other Data Elements Received from RMS:

– Non-merchandise codes

– Currency

– Exchange rates

– Store/warehouse location type

– Supplier information

– Supplier address (invoice address, returns address, and so on)

– Merchandise hierarchy

– Business date

– Terms and terms ranking (see the discussion later in this chapter)

Integration Overview

5-4 Oracle Retail Invoice Matching Operations Guide

From ReIM to Receiver Unit and Cost Staging Tables to RMS
Receiver cost and unit adjustments are initiated in ReIM update receipts held in RMS
tables. Receiver adjustments, resulting from the ReIM discrepancy resolution process,
create cost and/quantity adjustments to receipt tables in RMS, as well as to supplier
and purchase order tables for certain types of cost resolutions.

From ReIM to the Merchandising System
■ Receipt Status

When the entire receipt is matched (all the lines to invoices), ReIM provides and
update to the invoice match status (that is, from unmatched to matched) on the
shipment table in RMS.

■ Shipment (Receipts) Table Quantity Matched Update

When ReIM matches a portion and/or all of a receipt line to an invoice line, ReIM
makes a corresponding update to the quantity matched column.

From Workspace to ReIM and from ReIM to Workspace
The Oracle Retail Workspace (ORW) installer prompts you to enter the URL for your
supported Oracle Retail applications. However, if a client installs a new application
after Oracle Retail Workspace is installed, the retail-workspace-page-config.xml file
needs to be edited to reflect the new application.

The file as supplied comes with all appropriate products configured, but the
configurations of non-installed products have been "turned off". Therefore, when
"turning on" a product, locate the appropriate entry, set "rendered" to "true", and enter
the correct URL and parameters for the new application.

The entry consists of the main URL string plus one parameter named "config". The
value of the config parameter is inserted by the installer. Somewhere in the installer
property files there is a value for the properties "deploy.retail.product.reim.url" and
"deploy.retail.product.reim.config".

For example, suppose ReIM was installed on mycomputer.mycompany.com, port 7777,
using a standard install and reim configured with the application name of
"reim130sedevhpsso". If you were to access ReIM directly from your browser, you
would type in:

http://mycomputer.mycompany.com:7777/forms/frmservlet?config=reim130sedevhpsso
The entry in the retail-workspace-page-config.xml after installation would resemble
the following:

<url>http://mycomputer.mycompany.com:7777/forms/frmservlet</url>
<parameters>
<parameter name="config">
<value>reim130sedevhpsso</value>
</parameter>
</parameters>
Prior to configuring ORW, you must set up single sign-on. See "Oracle Single Sign-on
Overview" in Chapter 6, "Technical Design," for additional information.

Electronic Data Interchange (EDI) Tables and Files

Integration 5-5

Electronic Data Interchange (EDI) Tables and Files
Electronic Data Interchange (EDI) facilitates the computer-to-computer transmission of
business information and transactions, such as invoices and purchase orders. EDI
represents a convenient method by which a retailer and its suppliers can transfer
information back and forth. The Voluntary Interindustry Commerce Standard (VICS)
EDI is used by the general merchandise retail industry.

ReIM has two file-based EDI interfaces. Note that neither follows the VICS EDI
standard. The ReIM EDI interfaces have been customized, and the retailer must
translate them.

The interfaces represent the upload of invoices or other documents from a supplier or
another application and the download of documents to suppliers. These two common
types of EDI are described below:

■ EDI invoice upload is the standard description for an EDI process that uploads
documents.

■ EDI invoice download is the standard description for an EDI process that
downloads Debit Memo, Credit Note Request, and Credit Memo data from ReIM
to suppliers.

For information about ReIM batch processes related to both of these types of EDI, see
Chapter 7, "Batch Processes". Note that although the vast majority of invoices are
created through either EDI upload or batch entry, users can also create invoices online
and add details, or use the online dialog to add details to an invoice that was EDI
uploaded.

The EDI Reject Table
The EDI invoice upload (ediupinv) batch process uploads invoices and credit notes
from the EDI into the invoice-matching tables. This process validates the information
in the file against itself and against the RMS (or equivalent merchandising
system)/ReIM database. A limited set of data validation errors cause the invalid
transaction to be written to error tables (IM_EDI_REJECT_DOC_xxx) where the data
can be corrected through an online process.

The following errors are written to the EDI reject table for the user to manually correct
through the front end:

■ Supplier number (or Partner ID): This value must be a valid supplier (SUPS table)
or partner (PARTNER table) in RMS (or the equivalent merchandising system).

■ Order numbers: Order numbers must be approved and created for the supplier or
linked suppliers in RMS (or the equivalent merchandising system) on the
ORDHEAD table. Non-merchandise invoices may not have any order numbers
associated, so this validation should be skipped for this type of invoice.

■ Order/location combination: The system validates that all order number/location
combinations in the file are valid within RMS or the equivalent merchandising
system (meaning that the relationship must exist on the ORDLOC table).

■ Terms code: All terms must exist within RMS or the equivalent merchandising
system on the TERMS table.

■ Invoice date: A document cannot be older than the v-date minus the post-dated
document days' system level parameter value or newer than the v-date.

Electronic Data Interchange (EDI) Tables and Files

5-6 Oracle Retail Invoice Matching Operations Guide

■ Item number: Item numbers must exist within RMS on the ITEM_MASTER table.
Items must be transaction level. If a UPC or reference number is passed, this
number should also be validated. The item number should also exist for the
supplier.

■ Merchandise invoices cannot be associated with a partner; they must only be
associated with a supplier.

■ Credit notes from a partner cannot have item records attached unless the partner
type is a manufacturer, distributor, or wholesaler (type S1, S2, or S3).

■ The system determines whether the invoice ID is valid if given.

■ If the total quantity is given, the system determines whether the individual item
quantities sum to total (the system only needs to check this if the supplier -level
Match Total Qty indicator is Yes).

■ The system determines whether the total merchandise cost on the THEAD line
matches the sum of costs from the TDETL lines (the sum of unit cost *qty).

■ Either an item or a reference item must be specified on all documents except
non-merchandise invoices or credit notes from a partner.

■ The paid indicator must be either Yes or No.

The EDI Reject File
A limited set of data validation errors (identified in the file layout Validation column)
cause the invalid transaction to be written to the reject file (named by the retailer).
When VAT processing is active within ReIM, all failed validations result in EDI
uploads' being rejected to a file. There are no reject-to-table cases, and the EDI
Maintenance screens are not accessible to the retailer.

EDI Invoice Upload File Layout (Based on EDI 810)
The following describes the input and output specification for the EDI Invoice Upload
File.

All Files Layouts Input and Output
Input file format:

FHEAD (1): Start of file.

THEAD (1…n): Transaction (document) level info. Each file must have at least 1
THEAD.

TDETL (0…n): Item detail records for this transaction. TDETL is optional for Credit
Note docs and debit memo docs.

TALLW (0…n): Allowance records for this item. TALLW is optional.

TNMRC (0…n): Non-merchandise records for this transaction. Required on
non-merchandise documents, optional otherwise.

TVATS (0…n): VAT breakdown by VAT code. TVATS is optional.

TTAIL (1…n): Marks the end of a THEAD record. Each THEAD requires exactly one
TTAIL.

FTAIL (1): Marks the end of the file.

TDETL and TNMRC do not need to occur in order. TALLW must follow TDETL

Electronic Data Interchange (EDI) Tables and Files

Integration 5-7

If records are encountered in any order other than specified above, execution of
program will halt.

Example:

FHEAD

THEAD

TNMRC

FTAIL (no TTAIL encountered)

If a record descriptor is encountered other than those specified in this document,
execution of program will halt.

Reject file will have an identical format. If no records are rejected, it will consist of only
the FHEAD and FTAIL lines.

All character variables should be right-padded with blanks and left justified; all
numerical variables should be left-padded with zeroes and right-justified. Null
variables should be blank.

Single location invoices will be inserted into IM_DOC_HEAD, IM_INVOICE_DETAIL
and IM_DOC_NON_MERCH. Multi-location invoices will be inserted into IM_
PARENT_INVOICE, IM_PARENT_INVOICE_DETAIL and IM_PARENT_NON_
MERCH.

It is assumed all values that have dependent information included in the file (for
example, location has dependent information of order no, upc, upc-supp, and so on)
are valid for the RMS system. The following is never anticipated to happen: only
locations A, B, and C exist in RMS; EDI reads a transaction that has location D. This
sort of file may not be flagged as invalid in any way.

Uploaded documents with details must have at most one associated UPC, item or
VPN identifier. When system VAT processing is enabled, documents that fail to meet
this critieria will be rejected to the file by the EDI Upload batch process. When VAT is
disabled, the document will be available for review and correction through the Invoice
Matching user interface in the EDI Maintenance screen.

FHEAD - File Header. First record of an upload file.

Field Name Field Type Description Req Validation

Record
Descriptor

Char(5) Describes file record type Y Halt execution if not FHEAD.

Line id Number(10) Sequential file line number. Y Halt execution if not 0000000001.

Gentran ID Char(5) The type of transaction this
file represents.

Y Halt execution if not UPINV.

Current date Char(14) File date in
YYYYMMDDHH24MISS
format.

Y Halt execution if invalid date
format.

Electronic Data Interchange (EDI) Tables and Files

5-8 Oracle Retail Invoice Matching Operations Guide

THEAD - Transaction Header. Start of a document transaction.

Field Name Field Type Description Req Validation

Record descriptor Char(5) Describes file record type Y THEAD

Line id Number(10) Sequential file line number Y Halt execution if not in sequence

Transaction
number

Number(10) Sequential transaction
number. All records within
this transaction will also
have this transaction
number.

Y Reject entire file if:

transaction number is not numeric or
not in sequence

first transaction number is not
0000000001

Document Type Char(6) Describes the type of
document being uploaded.
The document type will
determine the types of
detail information that are
valid for the document
upload. Stored in IM_
DOC_HEAD.TYPE.

Valid values are:

MRCHI - Merchandise
Invoice

NMRCHI - Non
Merchandise Invoice

CRDNT - Credit Note

DBMC - Debit Memo Cost

DBMQ - Debit Memo Qty

CRDMC - Credit Memo
Cost

CNRC- Credit Note
Request Cost

CNRQ- Credit Note
Request Qty

Y Reject transaction to file if document
type is null document type is not
MRCHI (merchandise invoice),
NMRCHI (non-merchandise invoice),
CRDNT (credit note), DBMC (Debit
Memo-Cost), DBMQ (Debit
Memo-Qty), CNRC (Credit Note
Request-Cost), CNRQ (Credit Note
Request-Qty), CRDMC (Credit Memo
Cost) document type is CRDNT
(credit note); vendor is not a supplier,
manufacturer, distributor, or
wholesaler. document type is CRDNT
and TALLW records exist document
type is MRCHI and item detail
records DO exist for this transaction
(this type of transaction must have no
item detail records) document type is
CRDNT,NMRCHI, DBMC, DBMQ,
CRDMC, CNRC, CNRQ and any error
occurs with the document

Electronic Data Interchange (EDI) Tables and Files

Integration 5-9

Vendor Document
Number

Char(6) Vendor's document
number. Stored in IM_
DOC_HEAD.EXT_DOC_ID
with all characters
converted to their upper
case (for example,
ThisDocId -> THISDOCID).

Y Reject entire upload file if the same
vendor document number occurs
more than once in the file.

Reject transaction to file if:

■ Vendor document number is null.

■ Vendor document number is not
unique for this vendor.

■ Vendor document number is not
alphanumeric and the property
"INVOICE_NUMBER_
VALIDATION_REGULAR_
EXPRESSION" in reim.properties
is commented out.

■ Vendor document number
contains special characters that
are not specified in the property
"INVOICE_NUMBER_
VALIDATION_REGULAR_
EXPRESSION" in reim.properties
and the property is not
commented out.

■ Vendor document number has
leading zero and the property
"INVOICE_NUMBER_
VALIDATION_ALLOW_ZERO"
in reim.properties is commented
out or set to false.

Vendor Type Char(6) Type of vendor (either
supplier or partner) for this
document. Stored in IM_
DOC_HEAD.VENDOR_
TYPE

Valid values are:

SUPP - Supplier

BK - Bank

AG - Agent

FF - Freight Forwarder

IM - Importer

BR - Broker

FA - Factory

AP - Applicant

CO - Consolidator

CN - Consignee

S1 - Merch Supp level 1

S2 - Merch Supp level 2

S3 - Merch Supp level 3

Y Reject transaction to file if:

■ Vendor type is null or if it is not a
valid vendor type (from Vendor
class).

■ Document type is MRCHI
(merchandise invoice) and
vendor type is not Supplier.

Reject transaction to tables if:

■ Vendor is a supplier and supplier
is not valid.

■ Vendor is a supplier and vendor
ID is not completely numeric.

Field Name Field Type Description Req Validation

Electronic Data Interchange (EDI) Tables and Files

5-10 Oracle Retail Invoice Matching Operations Guide

Vendor ID Char(10) Vendor for this document.
Stored in IM_DOC_
HEAD.VENDOR_TYPE

Y Reject transaction to file if:

■ Vendor document date is null.

■ Date is not a valid date format.

Reject transaction to tables if Vendor
Document Date is:

■ After the vdate.

■ Before (vdate - post_dated_doc_
days) (from im_system_options).

Vendor Document
Date

Char(14) Date document was issued
by the vendor (in
YYYYMMDDHH24MISS
format). Stored in IM_
DOC_HEAD.DOC_DATE

Y

Order Number/
RTV Order
Number

Number(10) Merchandising system
order number for this
document. Required for
merchandise invoices and
optional for others. Store in
IM_DOC_HEAD.ORDER_
NO.

This field can also contain
the RTV order number if
the RTV flag is 'Y'

N Reject transaction to file if:

■ Order/RTV order number exists
and is not numeric.

■ Order/RTV order number is null
and vendor type is a supplier.

■ Order/RTV order number is null
and deal_id is null.

■ Order/RTV order number exists
and vendor type is NOT a
supplier.

■ Order/RTV order number exists
and location or location type are
null.

Reject transaction to tables if RTV flag
is null or 'N' AND:

■ Order number exists but is not
valid for the supplier or the
supplier's linked suppliers.

■ Order number exists but is not
valid for the location/location
type.

Reject transaction to file if RTV flag is
'Y' AND:

■ RTV order number exists but is
not valid for the supplier or the
supplier's linked suppliers.

■ RTV order number exists but is
not valid for the
location/location type.

Location Number(10) Merchandising system
location for this document.
Required for merchandise
invoices and optional for
others. Stored in IM_DOC_
HEAD.LOCATION.

Y Reject transaction to file if:

■ Location or location type do not
exist.

■ Location exists and is not
numeric.

■ Location exists and location type
is not 'S'tore or 'W'arehouse.

Reject transaction to tables if Location
and Location Type exist but are not
valid.

Field Name Field Type Description Req Validation

Electronic Data Interchange (EDI) Tables and Files

Integration 5-11

Location Type Char(1) Merchandising system
location type (either 'S'tore
or 'W'arehouse) for this
document. Required for
merchandise invoices and
optional for others. Stored
in IM_DOC_HEAD.LOC_
TYPE.

N Reject transaction to file if Location
type exists and location is null.

Terms Char(15) Terms of this document. If
terms are not provided, the
vendor's default terms are
associated with this record.
Stored in IM_DOC_
HEAD.TERMS. This value
is used to get the Terms
Discount Percentage to be
stored on IM_DOC_
HEAD.TERMS_DSCNT_
PCT.

N Reject transaction to tables if Terms
exist and are not valid.

Due Date Char(14) Date the amount due is due
to the vendor
(YYYYMMDDHH24MISS
format). If due date is not
provided, default due date
is calculated based on
vendor and terms. Stored
in IM_DOC_HEAD.DUE_
DATE.

N Reject transaction to file if:

■ Due date exists and is not a valid
date format.

■ Due date is before the vendor
document date.

Payment method Char(6) Method for paying this
document. Stored in IM_
DOC_HEAD.PAYMENT_
METHOD.

N Reject transaction to file if Payment
method exists and is not valid.

Currency code Char(3) Currency code for all
monetary amounts on this
document. Stored in IM_
DOC_HEAD.CURRENCY_
CODE.

Y Reject transaction to file if:

■ Currency code is null.

■ Currency code is not valid.

■ Order number exists and
currency code does not match the
order's currency.

Exchange rate Number (12,4) Exchange rate for
conversion of document
currency to the primary
currency. Stored in IM_
DOC_HEAD.EXCHANGE_
RATE.

N Reject transaction to file if Exchange
rate exists and is not numeric.

Sign Indicator Char(1) Indicates either a positive
(+) or a negative (-) total
cost amount.

Y Reject transaction to file if sign
indicator is null or if it is not '+' or '-'.

Field Name Field Type Description Req Validation

Electronic Data Interchange (EDI) Tables and Files

5-12 Oracle Retail Invoice Matching Operations Guide

Total Cost Number(20,4) Total document cost,
including all items and
costs on this document.
This value is in the
document currency. Stored
in IM_DOC_
HEAD.TOTAL_COST and
IM_DOC_
HEAD.RESOLUTION_
ADJUSTED_TOTAL_COST.

N Reject transaction to file if:

■ Total cost is null.

■ Total cost is not numeric.

■ Total cost does not equal the sum
of extended costs for all item
detail records in this transaction.

■ Total cost is not negative and
vendor document type is
CRDNT.

Sign Indicator Char(1) Indicates either a positive
(+) or a negative (-) total
vat amount.

Y Reject transaction to file if sign
indicator is null or if it is not '+' or '-'.

Total VAT Amount Number(20,4) Total VAT amount,
including all items and
costs on this document.
This value is in the
document currency.

N Treat as zero if null.

Reject transaction to file if:

■ Total VAT amount is not null but
is not numeric.

■ Total VAT amount does not equal
the sum of VAT for all item detail
records PLUS the sum of VAT for
all non-merch items in this
transaction PLUS the sum of VAT
for all allowances in this
transaction.

Sign Indicator Char(1) Indicates either a positive
(+) or a negative (-) total
vat amount.

Y Reject transaction to file if sign
indicator is null or if it is not '+' or '-'.

Total Quantity Number(12,4) Total quantity of items on
this document. This value
is in EACHES (no other
units of measure are
supported in ReIM). Stored
in IM_DOC_
HEAD.TOTAL_QTY and
IM_DOC_
HEAD.RESOLUTION_
ADJUSTED_TOTAL_QTY.

Y Reject transaction to file if:

■ Total quantity is null.

■ Total quantity is not numeric.

■ Total quantity does not equal the
sum of quantities for all item
detail records in this transaction.

■ Total quantity is not zero when
vendor document type is
'NMRCHI'.

Sign Indicator Char(1) Indicates either a positive
(+) or a negative (-) total
vat amount.

Y Reject transaction to file if sign
indicator is null or if it is not '+' or '-'.

Total Discount Number(12,4) Total discount applied to
this document. This value
is in the document
currency. Stored in IM_
DOC_HEAD.TOTAL_
DISCOUNT

Y Reject transaction to file if:

■ Total discount is null.

■ Total discount is not numeric.

Freight Type Char(6) The freight method for this
document.

N Reject transaction to file if Freight
type exists and is not valid.

Paid Ind Char(1) Indicates if this document
has been paid. Stored in
IM_DOC_
HEAD.MANUALLY_
PAID_IND.

Y Reject transaction to file if:

■ Paid ind is null.

■ Paid ind is not Y or N.

Field Name Field Type Description Req Validation

Electronic Data Interchange (EDI) Tables and Files

Integration 5-13

Multi Location Char(1) Indicates if this invoice
goes to multiple locations.
If Yes, the record should be
inserted to IM_PARENT_
INVOICE table.

Y Reject transaction to file if:

■ Multi-location is null.

■ Multi-location is not Y or N.

■ Multi-location is Y and
Consignment is Y.

Consignment
indicator

Char(1) Y Y Reject transaction to file if:

■ Consignment indicator is null

■ Consignment indicator is not Y or
N

Do not reject transaction to table if
Consignment is Y.

Deal Id Number(10) Deal Id from RMS if this
invoice is a deal bill back
invoice.

N If Deal Id is not null, Deal Approval
indicator must be 'M' or 'A'.

Do not reject transaction to table if
deal id is not null.

Deal Approval
Indicator

Char(1) Indicates if the document
on IM_DOC_HEAD is to be
created in Approved or
Submitted status.

N Reject to file if not blank, 'M'
Submitted status or 'A' approved.

Do not reject transaction to table if
value is not null.

RTV indicator Char(1) Indicates if this invoice is a
RTV invoice.

Y Reject transaction to file if:

■ RTV indicator is null

■ RTV indicator is not Y or N

Do not reject transaction to table if
RTV is Y.

Custom Document
Reference 1

Char(30) This optional field is
included in the upload file
for client customization. No
validation is performed on
this field. Stored in IM_
DOC_HEAD.CUSTOM_
REF_1.

N

Custom Document
Reference 2

Char(30) This optional field is
included in the upload file
for client customization. No
validation is performed on
this field. Stored in IM_
DOC_HEAD.CUSTOM_
REF_2.

N

Custom Document
Reference 3

Char(30) This optional field is
included in the upload file
for client customization. No
validation is performed on
this field. Stored in IM_
DOC_HEAD.CUSTOM_
REF_3.

N

Custom Document
Reference 4

Char(30) This optional field is
included in the upload file
for client customization. No
validation is performed on
this field. Stored in IM_
DOC_HEAD.CUSTOM_
REF_4.

N

Field Name Field Type Description Req Validation

Electronic Data Interchange (EDI) Tables and Files

5-14 Oracle Retail Invoice Matching Operations Guide

TVATS - VAT breakdown by VAT code. This information is inserted in IM_DOC_
VAT

TDETL - Item Detail Record. This information is inserted into the IM_INVOICE_
DETAIL table for Merchandise Invoice and IM_DOC_DETAIL_REASON_CODES
for Credit Notes.

Cross-reference
document number

Number(10) Document that a credit note
is for. Blank for all
document types other than
merchandise invoices.
Stored in IM_DOC_
HEAD.REF_DOC.

N Reject transaction to file if
Cross-reference document number
exists and is not numeric

Field Name Field Type Description Req Validation

Field record
descriptor

Char(5) Marks costs at VAT rate
line.

Y TVATS

Reject entire transaction to file if this
type of record exists and the
transaction has any error. See
technical design for additional
validations.

Reject to file if in im_system_options
vat is on, but there is no TVATS.

Line id Char(10) Sequential file line number. Y Halt execution if not in sequence.

Transaction
number

Number(10) Y Reject entire file if:

■ Transaction number is not
numeric.

■ Transaction number is not the
same as the current transaction.

VAT code Char(6) VAT code that applies to
cost.

Y Reject to file if VAT code is not valid.

VAT rate Number(20,10) VAT Rate corresponding to
the VAT code.

Y Reject to file if VAT rate is not
numeric.

Sign indicator Char(1) Indicates either a positive
(+) or a negative (-)
Original Document
Quantity amount.

Y Reject transaction to file if sign
indicator is null or if it is not '+' or '-'.

Cost at this VAT
code

Number(20,4) Total amount that must be
taxed at the above VAT
code.

Y Reject to file if not numeric.

Field Name Field Type Description Req Validation

Record descriptor Char(5) Describes file record
type.

Y TDETL

Line Id Number(10) Sequential file line
number.

Y Halt execution if not in sequence.

Field Name Field Type Description Req Validation

Electronic Data Interchange (EDI) Tables and Files

Integration 5-15

Transaction
number

Number(10) Transaction number
for this item detail
record.

Y Reject to file if VAT rate is not
numeric

■ Transaction number is not
numeric.

■ Transaction number is not the
same as the current transaction.

UPC Char(25) UPC for this detail
record. Valid item
number is retrieved
for the UPC. Stored in
IM_INVOICE_
DETAIL.ITEM or IM_
DOC_DETAIL_
REASON_
CODES.ITEM.

Y

Exclusive
with item

Reject transaction to file if:

■ UPC is null and Item is null.

■ Both UPC and Item are not null.

Reject transaction to tables if:

■ Valid item is not found for UPC
and UPC supp.

■ Valid item is not associated with
the supplier.

■ The item found is identical to
another detail item for this
transaction (no duplicate items).

UPC Supplement Number(5) Supplement for the
UPC.

Note: UPC Supp is
only valid for 9.0
implementation. For
10.1 implementation,
this field will
ALWAYS be blank.

N Reject transaction to file if:

■ UPC supplement exists and UPC
doesn't exist.

■ UPC supplement exists and is
not numeric.

Item Char(25) Item for this detail
record. Item number
is verified and stored
in IM_INVOICE_
DETAIL.ITEM or IM_
DOC_DETAIL_
REASON_
CODES.ITEM.

Y

Exclusive
with UPC

Reject transaction to file if:

■ UPC is null and Item is null.

■ Both UPC and Item are not null.

■ Valid item is not associated with
the supplier.

■ The item found is identical to
another detail item for this
transaction (no duplicate items).

VPN Char(30) Vendor Product
Number provided by
the supplier. It is
used to identify an
item when an item
number has not been
provided. VPN is
displayed on the
Invoice Maintenance
screen and may be
used during the
on-line matching
process.

Y (exclusive
with item
and UPC)

Reject transaction to file if:

■ VPN is null and UPC is null and
Item is null.

■ At least two of the following are
not null: UPC, VPN and ITEM.

Reject transaction to tables if:

■ Valid item is not found for VPN
for the supplier.

■ The item found is identical to
another detail item for this
transaction (no duplicate items).

■ There are multiple items for the
supplier with the VPN provided
and: no items on the PO for the
document OR multiple items on
the PO for the document.

Field Name Field Type Description Req Validation

Electronic Data Interchange (EDI) Tables and Files

5-16 Oracle Retail Invoice Matching Operations Guide

Sign Indicator Char(1) Indicates either a
positive (+) or a
negative (-) Original
Document Quantity
amount.

Y Reject transaction to file if sign
indicator is null or if it is not '+' or '-'.

OriginalDocumen
t Quantity

Number(1,2,4) Quantity, in EACHES,
of the item on this
detail record. Stored
in IM_INVOICE_
DETAIL.INVOICE_
QTY and IM_
INVOICE_DETAIL.
RESOLUTION_
ADJUSTED_QTY.

Y Reject transaction to file if:

■ Original document quantity is
null.

■ Original document quantity is
not numeric.

Sign Indicator Char(1) Indicates either a
positive (+) or a
negative (-) Original
Unit Cost amount.

Y Reject transaction to file if sign
indicator is null or if it is not '+' or '-'

Original Unit
Cost

Number(2,0.4) Unit cost, in
document currency,
of the item on this
detail record. Stored
in IM_INVOICE_
DETAIL.UNIT_COST
and IM_INVOICE_
DETAIL.RESOLUTIO
N_ADJUSTED_
UNIT_COST.

Y Reject transaction to file if:

■ Original unit cost is null.

■ Original unit cost is not numeric.

Original VAT
Code

Char(6) VAT code for item. Y Reject to file if VAT code is invalid.

Original VAT rate Number(20,10) VAT Rate for the VAT
code/item.

Y Reject to file if VAT rate is not
numeric.

Sign Indicator Char(1) Indicates either a
positive (+) or a
negative (-) Original
Document Quantity
amount.

Y Reject transaction to file if:

■ Sign indicator is null.

■ Sign indicator is not '+' or '-'.

Total Allowance Number(2,0,4) Sum of allowance
details for this item
detail record. If no
allowances exist for
this item detail
record, value is 0.

Y Reject transaction to file if:

■ Total allowance is null.

■ Total allowance is not numeric.

■ Total allowance does not equal
the sum of allowance amounts
for all allowance records in this
item detail record.

■ Total allowance is not 0 and
vendor document type is
CRDNT.

Field Name Field Type Description Req Validation

Electronic Data Interchange (EDI) Tables and Files

Integration 5-17

TALLW - Allowance Record. This information is inserted into IM_INVOICE_
DETAIL_ALLOWANCE table.

TNMRC - Non-Merchandise Record. Records of this type will contain
non-merchandise costs. These costs are inserted into the IM_DOC_NON_MERCH
table. Non-merchandise costs records are only required when the document type is
non-merchandise. Non-merchandise cost records are also associated with
merchandise type documents if the vendor associated with the document allows
non-merch costs on merchandise invoices (IM_SUPPLIER_OPTIONS. MIX_
MERCH_NON_MERCH_IND).

Field Name Field Type Description Req Validation

Record descriptor Char(5) Describes file record type. Y TALLW

Line id Number(10) Sequential file line
number.

Y Halt execution if not in sequence.

Transaction
Number

Number(10) Transaction number for
this item allowance record.

Y Reject entire file if:

■ Transaction number is not
numeric.

■ Transaction number is not the
same as the current transaction.

Allowance Code Char(6) Allowance code for this
allowance record. Stored
in IM_INVOICE_DETAIL_
ALLOWANCE.ALLOWA
NCE_CODE.

Y Reject transaction to file if:

■ Allowance code is null.

■ Allowance code is not valid.

Sign Indicator Char(1) Indicates either a positive
(+) or a negative (-)
allowance amount.

Y Reject transaction to file if sign
indicator is null or if it is not '+' or '-'.

Allowance
Amount

Number (20,4) Amount of allowance in
document currency. Stored
in IM_INVOICE_DETAIL_
ALLOWANCE.ALLOWA
NCE_AMOUNT.

Y Reject transaction to file if allowance
amount is null or not numeric.

Allowance VAT
Code

Char(6) VAT Code for Allowance. Y Reject to file if VAT code is not valid.

Allowance vat
rate at this VAT
code

Number (20,10) VAT Rate corresponding
to the VAT code.

Y Reject to file if not numeric.

Field Name Field Type Description Req Validation

Record descriptor Char(5) Describes file record type. Y TNMRC

Line id Char(5) Sequential file line
number.

Y Halt execution if not in sequence.

Transaction
number

Number(10)) Transaction number for
this non-merchandise
record.

Y Reject entire file if:

■ Transaction number is not
numeric.

■ Transaction number is not the
same as the current transaction.

Electronic Data Interchange (EDI) Tables and Files

5-18 Oracle Retail Invoice Matching Operations Guide

Non Merchandise
Code

Char(6) Non-Merchandise code
that describes this cost.
Stored in IM_DOC_NON_
MERCH.NON_MERCH_
CODE.

Y Reject transaction to file if:

■ Non-merchandise code is null.

■ Non-merchandise code is not
valid.

Sign Indicator Char(1) Indicates either a positive
(+) or a negative (-) Non
Merchandise Amt.

Y Reject transaction to file if sign
indicator is null or if it is not '+' or '-'.

Non Merchandise
Amt

Number(20,4) Cost in the document
currency. Stored in IM_
DOC_NON_
MERCH.NON_MERCH_
AMT.

Y Reject transaction to file if:

■ Non-merchandise amount is
null.

■ Non-merchandise amount is not
numeric.

■ Non-merchandise amount does
not have a negative value and
this is part of a credit note
document (THEAD.Vendor
Document Type = CRDNT).

Non Merch VAT
Code

Char(6) VAT Code for
Non-Merchandise.

Y Reject to file if VAT code is not valid.

Non Merch vat
code at this VAT
code

Number(20,10) VAT Rate corresponding
to the VAT code.

Y Reject to file if not numeric.

Sign Indicator Char(1) Indicates either a positive
(+) or a negative (-) Non
Merchandise Amt.

Y Reject transaction to file if sign
indicator is null or if it is not '+' or '-'

Service
Performed
Indicator

Char(6) Indicates if a service has
actually been performed.
Stored in IM_DOC_NON_
MERCH.SERVICE_PERF_
IND.

Y Reject transaction to file if:

■ Service performed indicator is
null.

■ Service performed indicator is
not Y or N.

Store Number(10) Store at which the service
was performed. Stored in
IM_DOC_NON_
MERCH.STORE.

N Reject transaction to file if:

■ Store exists and is not numeric.

■ Service performed indicator is Y
and store is not valid.

Field Name Field Type Description Req Validation

Electronic Data Interchange (EDI) Tables and Files

Integration 5-19

TTAIL - Transaction Tail. Marks the end of a transaction.

FTAIL - File TAIL. Marks the end of the upload file.

Notes
1. The EDI document upload process has the ability to recognize only a new

document type. In FHEAD of the EDI flat file, the Document Type does not
include CRDMC (credit memo cost). When the document type in the flat file is
Debit Memo Cost, Debit Memo Qty, Credit Note Request Cost, or Credit Note
Request Qty, and if the amount (Total Cost) for a Deal Charge Back Document that
is sent over from RMS is negative a Credit Memo Cost is created.

2. For the charge back documents, to decide what document type to be populated in
the database, a flow chart is displayed as follows:

Figure 5–2 Chargeback Document Flow

Field Name Field Type Description Req Validation

Record descriptor Char(6) Describes file record type. Y TTAIL

Line id Number(10) Sequential file line
number.

Y Halt execution if not in sequence.

Transaction
number

Number(10) Transaction number for
the transaction that this
record is closing.

Y Reject entire file if:

■ Transaction number is not
numeric.

■ Transaction number is not the
same as the current transaction.

Transaction lines Number(6) Total number of detail
lines within this
transaction.

Y Reject transaction to file if transaction
lines is not numeric, if it does not
match the count of lines within the
transaction, or if it is zero
(transaction must have details).

Field Name Field Type Desription Req Validation

Record descriptor Char(5) Describes file record type. Y FTAIL

Line id Number(10) Sequential file line
number.

Y Halt execution if not in sequence.

Number of lines Number(10) Total number of lines
within this file not
counting FHEAD and
FTAIL.

Y Halt execution if number of lines is
not numeric, if it does not match the
count of lines within the file
(excluding FHEAD and FTAIL), or if
it is 2 (FHEAD and FTAIL only, file
has no transactions).

Electronic Data Interchange (EDI) Tables and Files

5-20 Oracle Retail Invoice Matching Operations Guide

3. If the document type is "merchandise invoice", and if the consignment indicator is
'Y', the status would be "matched"; if the consignment indicator is not 'Y', the
status would be "ready for match"; if the document type is not "merchandise
invoice", the status would be "approved".

4. If the consignment indicator is Y, then set the terms to the "Due Immediately"
terms (term id = "48"), and set the terms discount percentage to 0.

5. That VAT codes and rates in the detail of documents are those known for the item
and location when the document is not an import Document. Given a combination
of TDETL.item and location, we could find a VAT. The vat code and vat rate in the
VAT should be the same as the original vat code and original vat rate in the
TDETL.

6. The merchandises header VAT and detail VAT are consistent (Ex VAT basis by VAT
rate and VAT amount by VAT rate). Total header Merchandise VAT information is
calculated from total document VAT information and VAT information for non
merchandise costs. For example, for each Vat Code in TDETL and TNMRC:
Thead.Total VAT Amount at this vat code = total vat from TDETL at this vat code
+ total vat from TNMRC at this vat code. Total vat from TDETL at this vat code =
sum(original document quantity * original unit cost * original VAT rate). Total vat
from TNMRC at this vat code =sum(Non Merch VAT rate * Non Merch
Amt).Thead.Total VAT Amount at this vat code = sum(TVATS.Vat rate *
TVATS.cost at this VAT code).

7. For an EDI upload document, if the Vat Region of the header is different from the
vat region of the supplier, it is an import document. Import document will not
contain VAT information. (LocVatRegion != SupplierVatRegion, then it is an
import document). If a document is not an import document, plus the system_
option.vat is on; if the TVATS is null, reject to file.

8. To decide whether a VAT code is valid in the TDETL, first find the VAT code given
the information of item and location. If they are equal, then the vat code is valid; if
they are not equal, check if the VAT code exists in the effective VAT codes; if the
VAT code exists, then it is valid but is populated to the audit table.

9. If RTV indicator or consignment indicator is Yes and deal ID is not null, it must
reject to file.

10. If Item field is populated and there is an error it should always reject to file. In
order to reject to the tables, we must have the UPC field populated and not the
Item field.

Electronic Data Interchange (EDI) Tables and Files

Integration 5-21

EDI Invoice Download File Layout (Based on EDI 812)

All File Layouts Input and Output
Output file format:

FHEAD (1): Start of file.

THEAD (1…n): Transaction (document) level info. Each file must have at least 1
THEAD.

TDETL (0…n): Item detail records for this transaction.

TNMRC (0…n): Non-merchandise records for this transaction.

Required on non-merchandise documents, optional otherwise.

TVATS (0…n): Doc Vat detail records for this transaction, optional.

TTAIL (1…n): Marks the end of a THEAD record. Each THEAD requires exactly one
TTAIL.

FTAIL (1): Marks the end of the file.

If records are encountered in any order other than specified above, execution of
program will halt.

Example:

FHEAD

THEAD

TNMRC

TVATS

FTAIL (no TTAIL encountered)

If a record descriptor is encountered other than those specified in this document,
execution of program will halt.

All character variables should be right-padded with blanks and left justified; all
numerical variables should be left-padded with zeroes and right-justified. Null
variables should be blank.

FHEAD - File Header. First record of an upload file.

Note: The file is not threaded, but rather ordered by vendor id
(THEAD). It is assumed that this file is broken out by vendor id
during the translation process.

Field Name Field Type Description Req Validation

Record
descriptor

Char(5) FHEAD Y

Line id Number(10) Generated Sequential file line number. Y

Gentran ID Char(5) DNINV Y

Current date Char(14) File date in YYYYMMDDHH24MISS
format.

Y

Electronic Data Interchange (EDI) Tables and Files

5-22 Oracle Retail Invoice Matching Operations Guide

THEAD - Transaction Header. Start of a document transaction.

Field Name Field Type Description Req Validation

Record
descriptor

Char(5) THEAD Y

Line id Number(10) Generated Sequential file line number. Y

Transaction
number

Number(10) Sequential transaction number. All records
within this transaction will also have this
transaction number.

Y

Document Type Char(6) Describes the type of document being
downloaded. The document type will
determine the types of detail information
that are valid for the document
downloaded. Retrieved from IM_DOC_
HEAD.TYPE where type is debit memo,
credit note request or credit memo and in
Approved or Posted Status.

Y

Vendor
Document
Number

Char(30) Vendor's document number. Retrieved
from IM_DOC_HEAD.EXT_DOC_ID.

Y

Invoice Number Char(6) Corresponding invoice resolved by the
document. Retrieved from IM_DOC_
HEAD.REF_DOC.

Y

Vendor ID Number(10) Vendor for this document. Retrieved from
IM_DOC_HEAD.VENDOR

Y

Document Date Char(14) Date the document was entered into the
system in YYYYMMDDHH24MISS format.
Retrieved from IM_DOC_HEAD.DOC_
DATE

Y

Order Number(10) Order number for this document, if any.
Retrieved from IM_DOC_HEAD.ORDER_
NO

N

Location Number(10) Location for this document, if any.
Retrieved from IM_DOC_
HEAD.LOCATION.

N

Location Type Char(1) Location type for this document, if any.
Retrieved from IM_DOC_HEAD.LOC_
TYPE.

N

Terms Char(15) Terms of this document. Retrieved from
IM_DOC_HEAD.TERMS.

N

Due Date Char(14) Date the amount due is due from the
vendor (YYYYMMDDHH24MISS format).
Retrieved from IM_DOC_HEAD.DUE_
DATE.

N

Currency Code Char(3) Currency code for this document.
Retrieved from IM_DOC_
HEAD.CURRENCY_CODE.

N

Exchange Rate Number(12,4) Exchange rate for conversion of document
currency to the primary currency.
Retrieved from IM_DOC_
HEAD.EXCHANGE_RATE.

N

Sign indicator Char(1) Indicates either a positive (+) or a negative
(-) total cost.

Y

Electronic Data Interchange (EDI) Tables and Files

Integration 5-23

TDETL - Item Detail Record. This information is inserted into the IM_DOC_
DETAIL_REASON_CODES table.

Total Cost Number(20,4) Total document cost, including all items
and costs on this document. This value is in
the document currency. Retrieved from
IM_DOC_HEAD.TOTAL_COST.

Y

Sign indicator Char(1) Indicates either a positive (+) or a negative
(-) total vat amount

Y

Total VAT
Amount

Number(20,4) Total VAT amount, including all items and
costs on this document. This value is in the
document currency.

N

Sign indicator Char(1) Indicates a positive (+) or negative (-)
quantity

Y

Total Quantity Number(12,4) Total quantity of items on this document.
This value is in EACHES (no other units of
measure are supported in ReIM). Retrieved
from IM_DOC_HEAD.TOTAL_QTY.

Y

Field Name Field Type Description Req Validation

Record
descriptor

Char(5) TDETL Y

Line id Number(10) Generated Sequential file line number. Y

Transaction
number

Number(10) Generated Transaction number for this
item detail record

Y

Item Char(25) Internal SKU/Item for this document. This
is always sent. Retrieved from IM_DOC_
DETAIL.ITEM.

Y

UPC Char(25) UPC for this detail record. Retrieved from
UPC_EAN.UPC (RMS 9.0) or ITEM_
MASTER.ITEM (RMS 10.1). This field is
sent if available.

Note: UPC is used for RMS 9.0 and
Ref-Item is used for RMS 10.1. Ref-Item
consists of UPC and UPC-Supp appended
together with a separating hyphen(-).

N

UPC
Supplement

Number(10) Supplement for the UPC. Retrieved from
UPC_EAN.UPC_SUPPLEMENT. This field
is sent if available.

Note: UPC Supp is only valid for 9.0
implementation. For 10.1 implementation,
this field will always be blank.

N

VPN Char(30) Vendor Product Number. This field is sent
if available. Retrieved from ITEM_
SUPPLIER.VPN.

N

Comments Char(200) Comments associated with Reason Code.
Retrieved from IM_DOC_DETAIL_
COMMENTS.TEXT

Y

Reason Code Char(6) Reason Code for this document. Retrieved
from IM_DOC_DETAIL_REASON_
CODES.REASON_CODE_ID

Y

Field Name Field Type Description Req Validation

Electronic Data Interchange (EDI) Tables and Files

5-24 Oracle Retail Invoice Matching Operations Guide

TNMRC - Non-Merchandise Record. Records of this type will contain
non-merchandise costs. These costs are retrieved from the IM_DOC_NON_MERCH
table. Non-merchandise cost records are only required when the document type is
non-merchandise. Non-merchandise cost records are also associated with
merchandise type documents if the vendor associated with the document allows
non-merch costs on merchandise invoices (IM_SUPPLIER_OPTIONS. MIX_
MERCH_NON_MERCH_IND).

Reason Code
description

Char(50) Description associated with Reason Code.
Retrieved from IM_REASON_
CODES.REASON_CODE_DESC

Sign indicator Char(1) Indicates a positive (+) discrepant qty. Y

Discrepant
Quantity

Number(12,4) Quantity, in EACHES, of the item that is
discrepant for this detail record. Retrieved
from IM_DOC_DETAIL_REASON_
CODES.ADJUSTED_QTY.

Y

Sign indicator Char(1) Indicates either a positive (+) or a negative
(-) discrepant cost.

Y

Discrepant cost Number(20,4) Unit cost, in document currency, of the
item that is discrepant for this detail
record. Retrieved from IM_DOC_DETAIL_
REASON_CODES.ADJUSTED_UNIT_
COST.

Y

Original VAT
code

Char(6) VAT code for item.

Original VAT
rate

Number(20,10) VAT Rate for the VAT code/item.

Field Name Field Type Description Req Validation

Record
descriptor

Char(5) TNMRC Y

Line id Number(10) Generated Sequential file line number. Y

Transaction
number

Number(10) Generated Transaction number for this
non-merchandise record.

Y

Non
Merchandise
Code

Char(6) Non-Merchandise code that describes this
cost. Retrieved from IM_DOC_NON_
MERCH.NON_MERCH_CODE.

Y

Sign indicator Char(1) Indicates either a positive (+) or a
negative (-) non merchandise amount.

Y

Non
Merchandise
Amt

Number(20,4) Cost in the document currency. Retrieved
from IM_DOC_NON_MERCH.NON_
MERCH_AMT.

Y

Non Merch VAT
code

Char(6) VAT Code for Non_merchandise. Y

Non Merch vat
code at this VAT
code

Number(20,10
)

VAT Rate corresponding to the VAT code.

Field Name Field Type Description Req Validation

Electronic Data Interchange (EDI) Tables and Files

Integration 5-25

TVATS - VAT Detail record.

TTAIL - Transaction Tail. Marks the end of a transaction.

FTAIL - File TAIL. Marks the end of the upload file.

Field Name Field Type Description Req Validation

Record
descriptor

Char(5) TVATS Y

Line id Number(10) Sequential line number. Y

Transaction
number

Number(10) Y

VAT code Char(6) VAT code that applies to cost. Y

VAT rate Number(20,10) VAT Rate corresponding to the VAT code. Y

Sign indicator Char(1) Indicates either a positive (+) or a
negative (-) Original Document Quantity
amount.

Y

VAT Basis Number(20,4) Total amount that must be taxed at the
above VAT code.

Y

Field Name Field Type Description Req Validation

Record
descriptor

Char(5) TTAIL Y

Line id Number(10) Generated Sequential file line number. Y

Line number Number(10) Generated Transaction number for the
transaction that this record is closing.

Y

Transaction
lines

Number(6) Total number of detail lines within this
transaction.

Y

Field Name Field Type Description Req Validation

Record
descriptor

Char(5) FTAIL Y

Line id Number(10) Generated Sequential file line number. Y

Number of
lines

Number(10) Total number of lines within this file, not
including FHEAD and FTAIL.

Y

Financial System Interface

5-26 Oracle Retail Invoice Matching Operations Guide

Financial System Interface
ReIM exports data to financial staging tables. There is a standard interface of data to
Accounts Payable and General Ledger. The retailer must create an interface to deliver
this information to the applicable financial system.

Foundation Financial Data Overview
The following types of financial information are imported in ReIM:

■ Terms ranking data

■ Variable department/class account segments

■ Variable company/location account segments

Terms ranking information is used in the best terms calculation to choose the best term
for each document. This best terms information is posted to the financial system.

Variable department/class and company/location segments are used to determine the
account segments to which a document is posted.

The retailer is responsible for populating variable department/class and
company/location segments. No API is provided.

Location Account Segments
ReIM uses location account segments in general ledger (GL) account mappings. ReIM
does not provide an interface for this information because it does not directly relate to
other information in ReIM. ReIM expects the retailer to directly populate the ReIM
location account segments table (IM_DYNAMIC_SEGMENT_LOC) and keep it in sync
with the financial application.

Department/Class Account Segments
ReIM uses department account segments in GL account mappings. ReIM does not
provide an interface for this information because it does not directly relate to other
information in ReIM. ReIM expects the retailer to directly populate the ReIM
department account segment table (IM_DYNAMIC_SEGMENT_DEPT_CLASS).

Financial Transactions
Oracle Retail writes records to a single generic table from which custom retailer code
can read records and process data as necessary. The retailer is responsible creating a
process that sends transactions to the financials system.

Complex and Fixed Deal-Related Posting
For complex and fixed deals, batch processes copy most of the data from the RMS
staging tables into ReIM detail tables (IM_COMPLEX_DEAL_DETAIL, IM_FIXED_
DEAL_DETAIL). Some of the data on these tables is later referenced during the
posting process for the created documents, including:

■ Location

■ Item

Financial System Interface

Integration 5-27

Financial Posting
To understand the process that posts data from ReIM to the financials staging table
(IM_FINANCIAL_STAGE), see "Financial Posting Batch Design" in Chapter 7 - "Batch
Processes."

Tracking Receipt Posts
Receipt tracking functionality allows the retailer to track what receipts have posted.
This processing helps the retailer check the integrity of its financial data.

Note that Oracle Retail does not provide packaged reporting in conjunction with this
processing. Rather, the retailer builds its own processes and creates its own reporting
mechanisms against the data resulting from the receipt tracking functionality.

Tables Related to Tracking Receipt Posts
In-Process Tables

The tables illustrated below are for the retailer's understanding, but the data on these
tables should not be used by the retailer as it builds its processes and reports.

Each area of the system that matches receipts to invoices updates the IM_RECEIPT_
ITEM_POSTING table. This table tracks how much of an individual receipt item has
been matched and posted.

IM_RECEIPT_ITEM_POSTING

IM_RCPT_ITEM_POSTING_INVOICE

Staging Tables to be used for Reporting Once posting is completed, the following staging
tables contain all currently posted entries. Thus, to build processes and reporting that
tracks receipt posts, the retailer should use only the data from these staging tables.

IM_RECEIPT_ITEM_POSTING_STAGE

Column Type Type Nullable

SEQ_NO NUMBER(10) N

RECEIPT_ID NUMBER(10) N

ITEM_ID VARCHAR(25) N

QTY_MATCHED NUMBER(12,4) Y

QTY_POSTED NUMBER(12,4) Y

Column Type Type Nullable

SEQ_NO (from IM_RECEIPT_
ITEM_POSTING)

NUMBER(10) N

DOC_ID NUMBER(10) N

STATUS VARCHAR2(1) Y

Column Type Type Nullable

SEQ_NO NUMBER(10) N

RECEIPT_ID NUMBER(10) N

Financial System Interface

5-28 Oracle Retail Invoice Matching Operations Guide

IM_RCPT_ITEM_POSTING_INV_STAGE

Multiple Lines for an Individual Receipt Item
For a given line item on a receipt, a line item can be split between multiple invoices.
For example, one invoice could match half of a line item; another invoice could match
the other half of the line item. Two separate lines would thus appear. The retailer
should note that these values (and those in equivalent business scenarios) need adding
together to indicate how much of a given receipt item is posted.

Matching and Tracking Receipt Posts Processing
When a match is made, the system creates an IM_RECEIPT_ITEM_POSTING record
for each invoice item matched, setting the qty_matched value to the amount matched.
In addition, the system creates an IM_RCPT_ITEM_POSTING_INVOICE record for
each invoice matched, setting the status to 'M'. Rather than adding IM_RCPT_ITEM_
POSTING_INVOICE records each time a portion of the line is matched, the system
creates new sets of records for each match to a receipt item.

With regard to summary match processing, an IM_RCPT_ITEM_POSTING_INVOICE
record exists for each invoice for each receipt line item. This record is not used to track
which invoice and receipt line are matched, but the record allows the system to detect
when to set the qty_posted amount in IM_RECEIPT_ITEM_POSTING. Also, when the
system matches at a summary level, all associated records are deleted before current
ones are created

The quantity matched amount is set to either the receipt amount or the resolution
amount.

Posting
With regard to the posting process, the system finds each record on the IM_RCPT_
ITEM_POSTING_INVOICE table associated with the invoice being posted. When that
line is posted, the system changes the status on that table to 'P'. The system then
checks whether or not more records exist on that table for the same seq_no. If there are
more records, the system engages in no further processing steps. If there are not more
records, the system sets the qty_posted value to the amount in qty_matched for that
seq_no in IM_RECEIPT_ITEM_POSTING. Because posting can only happen when
both the cost and quantity discrepancies are resolved for an invoice, the resolution of
cost discrepancies is not tracked.

Once posting is completed, all posted records are moved to the corresponding staging
table for each table (IM_RECEIPT_ITEM_POSTING_STAGE and IM_RCPT_ITEM_
POSTING_INV_STAGE). The processing involving the staging tables has been
designed to enhance performance, so that matching and resolution functionality is not
impacted adversely by the receipt tracking functionality.

ITEM_ID VARCHAR(25) N

QTY_POSTED NUMBER(12,4) N

CREATE_DATE DATE N

Column Type Type Nullable

SEQ_NO NUMBER(10) N

DOC_NO NUMBER(10) N

Column Type Type Nullable

Financial System Interface

Integration 5-29

Reporting
Reporting must be run after the posting batch job has completed. Both ReIM and the
merchandising system (such as RMS) must be disabled from user input, and all other
batch jobs should be completed or disabled.

To determine the remaining amount available to be posted, all entries for a given
receipt item's qty_posted should be rolled up and subtracted from the related
SHIPSKU entry. Any receipt write-offs should be added in order to determine the final
number remaining against the receipt.

Again, the staging tables, IM_RECEIPT_ITEM_POSTING_STAGE and IM_RCPT_
ITEM_POSTING_INV_STAGE, are used in building processes and/or reports against
this data. Once posting is completed, these staging tables contain all currently posted
entries.

Integration with Financials Systems
ReIM exports data to a financial staging table with data intended for both Accounts
Payable and General Ledger. Retailers must develop their own interface from the
financial staging table to their systems, based on the requirements of their financials
systems.

Multiple Sets of Books ReIM supports multiple sets of books when integrating with a
financials system. When the multiple sets of books indicator is turned on in RMS, the
appropriate sets of books ID is included on transactions sent to the financial staging
tables. The sets of books ID of the RMS org unit associated with the location on the
transaction is used.

Matched Invoices and Approved Documents Invoices can be matched through
auto-matching or on-line matching. Credit notes can be matched with credit note
requests in on-line matching processes. The unit cost and quantities of all items (at a
summary level) on the invoice are compared to the unit cost and quantities on the
receipt. If the cost and quantity on the invoice and receipt agree within defined
tolerances, there is a match.

Non-Merchandise Invoices These invoices include bills for non-merchandise costs only.
Non-merchandise invoices cannot contain items. Either suppliers or partners can
create non-merchandise invoices. However, merchandise invoices can contain
non-merchandise lines.

Note: Oracle Retail Invoice Matching 13.1 does not integrate with
Oracle E-Business Suite.

LDAP and Other User Interfaces

5-30 Oracle Retail Invoice Matching Operations Guide

LDAP and Other User Interfaces
There are two types of user authentication supported in ReIM: LDAP and database. A
simple switch in the reim.properties file instructs the application as to which method
to utilize. See Chapter 2, "Backend System Administration and Configuration", for
more information.

LDAP
LDAP stands for Light Directory Access Protocol. The LDAP standard defines a
network protocol for accessing information in a directory.

LDAP is one of the means of user authentication that ReIM supports. If it is used,
LDAP is only used within ReIM for user authentication. Because ReIM has specific
requirements for ReIM user roles and permissions that are easily retailer configurable,
these are defined in the application itself. ReIM reads standard user information from
an LDAP server.

If the retailer already stores user information using LDAP, the only interfacing
configuration that needs to be done is in an LDAP-specific properties file. The entries
in this file point ReIM to the appropriate machine, port, and so on to find the LDAP
server. Other properties may need to be modified to reflect the names of attributes that
the retailer uses in its LDAP schema.

ReIM User Table
A retailer that does not use LDAP has the option of entering valid users into the ReIM
user table. Note, however, that ReIM does not provide any method for inserting user
information into the ReIM user table. The retailer is responsible for this interface
associated with user information.

6

Technical Design 6-1

6Technical Design

This chapter contains information related to the technical design of ReIM.

Locking Design Summary
ReIM locking is accomplished using database tables that hold record level locks. The
locking of tables is performed for several reasons, including the following:

■ ReIM does not necessarily maintain a single connection throughout an entire
screen/process. That is, the system opens a connection, fetches information, and
then closes the connection. At a later moment in time, the system opens another
connection to save changes and close the connection.

■ ReIM cannot maintain locks in some kinds of Java session structures because the
system may be involved with more than one Java virtual machine (JVM).

Locking and Tables
Base tables that contain information to be locked (for example, IM_SUPPLIER_
OPTIONS) have a corresponding …_LOCK table (for example, IM_SUPPLIER_
OPTIONS_LOCK). The …_LOCK table contains the same columns as the primary key
of the base table.

When the system creates a lock, it writes the primary key values for the base table
records to be locked to the appropriate …_LOCK table. For example, if data in the IM_
SUPPLIER_OPTIONS table is to be locked for supplier '12345', a record is written to
the IM_SUPPLIER_OPTIONS_LOCK table for supplier with the primary key value
'12345'.

When records in a base header table are locked, all detail records related to each locked
header record are implicitly locked. Detail records are not explicitly locked because:

■ ReIM functionality must 'go through' the header information to access detail
information. In other words, the entry point to detail records is generally through
the header.

■ On screens and within backend processes that include header information, some
kind of summary of the details also exists.

Locking Design Summary

6-2 Oracle Retail Invoice Matching Operations Guide

The following two examples represent this type of header detail locking:

Example 1

If user A is looking at the header, and user B changes the details, user A does not have
visibility to the changes and might perform an invalid action. Invoices are stored on
IM_DOC_HEAD, and the non-merchandise costs on invoices are stored on IM_DOC_
NON_MERCH. On the invoice header screen, user A can see a sum of all of the
non-merch costs for invoice 99999. If user B could somehow at the same time add new
non-merchandise costs for invoice 99999, the information that user A sees as the
summary of non-merchandise costs would be invalid.

Example 2

If auto-match has selected all documents 'ready for match' and is processing and then
additional data is entered for a document, the details with which the auto-match is
working would no longer be valid.

Locking Management
■ When a user that has an active lock exits a screen (that is, the user selects OK or

Cancel buttons on the screen), data changes are committed (if necessary) and then
any locks on data displayed on that screen are removed. If any expired locks on
the screen data exist, they are also released upon screen exit.

■ When a user tries to commit information to the database, the locking service
checks to ensure that the user has valid locks on any changed data being
committed (for example, locks could have timed out as noted below). If the user
does not have valid locks, the user receives a message noting that the user's
changes cannot be saved. In this case, the user must exit the screen, enter the
screen again, and re-enter the data changes that could not be committed due to
invalid/expired locks.

■ In situations where accidental system exits occur (for example, the server shuts
down unexpectedly from power loss), locks are not released immediately. After
the system is restored from outage, the user will log into the system and access the
main menu. At that point, any existing data locks are removed. Because this data
is no longer locked, any user with adequate security permissions can acquire new
locks on this data.

■ The lock timeout interval is defined in the reim.properties file. See Chapter 2,
"Backend System Administration and Configuration", for more information.

■ When locks are written to the …_LOCK table, they include an 'end time' value.
When checking to see if a row of data is locked, the system inspects the related
lock row 'end time' value. If the commit time is before the end time on the …_
LOCK table record, the base table data changes may be committed. If the commit
time is equal to or exceeds the end time, the data lock will be treated as 'expired'
and the data changes will not be committed.

■ If a user needs immediate access to already locked data and cannot wait for data
locks to expire or be released by the user holding the locks, a database
administrator can manually delete existing lock records from the appropriate …_
LOCK table to release the locks. However, this does not guarantee that the user
that needs immediate access will be the next user to acquire locks on the
just-released data. The manual release of locks should be a rare event due to the
other lock release methods in the system.

Currency Design Summary

Technical Design 6-3

Currency Design Summary
ReIM has been designed to handle a multiple number of currencies. This section
addresses the system's assumptions, conversion process, and validations that are
related to this capability.

Merchandising System (such as RMS) and ReIM Assumptions
■ RMS defines one currency as the primary currency of the system (held on the RMS

SYSTEM_OPTIONS table in the CURRENCY_CODE field).

■ RMS specifies that each purchase order can have one currency. This purchase
order currency does not have to be the same as the RMS primary system currency
or the RMS supplier currency.

■ ReIM requires that each document have its currency stated (IM_DOC_
HEAD.CURRENCY_CODE). This invoice currency does not have to be the same
as the system primary currency.

■ ReIM assumes that a purchase order and any invoices associated with that
purchase order are in the same currency. This assumption is based on the business
reality that these currencies are almost always the same and on the development
consideration that currency conversion processes have an adverse impact on
system performance.

Currency Conversion Process for Amount Tolerances
■ Amount tolerances are established in the primary currency of the system.

However, because the invoices and POs to be matched could reflect a different
currency, amount tolerances must be converted before they can be applied. In
other words, the currency established for amount tolerances is converted when the
invoice/PO combination is not in the primary currency of the system. For
example, a tolerance defined as 10 US dollars (USD) has a much different meaning
than a purchase order/invoice defined in Thai Baht (10 Thai Baht is about 0.23
USD). If the system merely utilized the number 10 and failed to perform a
currency conversion, the amount tolerances would not apply correctly.

■ Currency conversion rates are stored on the RMS CURRENCY_RATES table. The
conversion factors on this table are in terms of the primary currency of the system.
For example, suppose a retailer wishes to convert from Thai Baht to Uruguayan
Pesos and the system's primary currency is USD. First, the system performs a
conversion from Thai Baht to USD. Secondly, the system converts the USD value
to Uruguayan Pesos. In other words, to perform its conversions, the system always
must 'go through' the primary currency of the system.

Currency-Related System Validations
One of the validations performed by the EDI upload process is that it determines
whether the currency on the invoice is the same as the currency on the purchase order.
If the invoice currency is not the same as the purchase order currency, the invoice is
rejected.

The graphical user interface (GUI) invoice entry (both single invoice entry and batch
invoice entry) process also validates that the currency on the invoice is the same as the
currency on the PO associated with the invoice. If the currencies are not the same, the
user receives a warning message.

Oracle Single Sign-on Overview

6-4 Oracle Retail Invoice Matching Operations Guide

Java Currency Formatting
Currency must be properly formatted according to its applicable locale. For example,
US currency uses a comma as a thousands separator whereas other currencies do not
use a comma as a thousands separator. Java has built-in libraries for currency
formatting that are based on locales.

ReIM uses built-in Java localization functionality mapped through the table IM_
CURRENCY_LOCALE to RMS existing currency structure. ReIM provides an
installation script that populates this table. The script creates records for every
currency that RMS supports. Note that ReIM cannot guarantee the accuracy of RMS
language data.

Oracle Single Sign-on Overview

What is Single Sign-On?
Single Sign-On (SSO) is a term for the ability to sign onto multiple web applications
via a single user ID/Password. There are many implementations of SSO - Oracle
currently provides three different implementations: Oracle Single Sign-On (OSSO),
Java SSO (with the 10.1.3.1 release of OC4J) and Oracle Access Manager (provides
more comprehensive user access capabilities).

Most, if not all, SSO technologies use a session cookie to hold encrypted data passed to
each application. The SSO infrastructure has the responsibility to validate these
cookies and, possibly, update this information. The user is directed to log on only if the
cookie is not present or has become invalid. These session cookies are restricted to a
single browser session and are never written to a file.

Another facet of SSO is how these technologies redirect a user's Web browser to
various servlets. The SSO implementation determines when and where these redirects
occur and what the final screen shown to the user is.

Most SSO implementations are performed in an application's infrastructure and not in
the application logic itself. Applications that leverage infrastructure managed
authentication (such as deploying specifying "Basic" or "Form" authentication)
typically have little or no code changes when adapted to work in an SSO environment.

What Do I Need for Oracle Single Sign-On?
The nexus of an Oracle Single Sign-On system is the Oracle Identity Management
Infrastructure installation. This consists of the following components:

■ An Oracle Internet Directory (OID) LDAP server, used to store user, role, security,
and other information. OID uses an Oracle database as the back-end storage of
this information.

■ An Oracle Single Sign-On servlet, used to authenticate the user and create the
OSSO session cookie. This servlet is deployed within the infrastructure Oracle
Application Server (OAS).

Oracle Single Sign-on Overview

Technical Design 6-5

■ The Delegated Administration Services (DAS) application, used to administer
users and group information. This information may also be loaded or modified
via standard LDAP Data Interchange Format (LDIF) scripts.

■ Additional administrative scripts for configuring the OSSO system and registering
HTTP servers.

Additional OAS servers will be needed to deploy the business applications leveraging
the OSSO technology.

Can Oracle Single Sign-On Work with Other SSO Implementations?
Yes, OSSO has the ability to interoperate with many other SSO implementations, but
some restrictions exist.

Oracle Single Sign-on Terms and Definitions

Authentication
Authentication is the process of establishing a user's identity. There are many types of
authentication. The most common authentication process involves a user ID and
password.

Dynamically Protected URLS
A "Dynamically Protected URL" is a URL whose implementing application is aware of
the OSSO environment. The application may allow a user limited access when the
user has not been authenticated. Applications that implement dynamic OSSO
protection typically display a "Login" link to provide user authentication and gain
greater access to the application's resources.

Identity Management Infrastructure
The Identity Management Infrastructure is the collection of product and services
which provide Oracle Single Sign-on functionality. This includes the Oracle Internet
Directory, an Oracle HTTP server, and the Oracle Single Sign-On services. The Oracle
Application Server deployed with these components is typically referred as the
"Infrastructure" instance.

MOD_OSSO
mod_osso is an Apache Web Server module an Oracle HTTP Server uses to function as
a partner application within an Oracle Single Sign-On environment. The Oracle HTTP
Server is based on the Apache HTTP Server.

Oracle Internet Directory
Oracle Internet Directory (OID) is an LDAP-compliant directory service. It contains
user ids, passwords, group membership, privileges, and other attributes for users who
are authenticated using Oracle Single Sign-On.

Oracle Single Sign-on Overview

6-6 Oracle Retail Invoice Matching Operations Guide

Partner Application
A partner application is an application that delegates authentication to the Oracle
Identity Management Infrastructure. One such partner application is the Oracle HTTP
Server (OHS) supplied with the Oracle Application Server. OHS uses the MOD_OSSO
module to configure this functionality.

All partner applications must be registered with the Oracle Single Sign-On server. An
output product of this registration is a configuration file the partner application uses to
verify a user has been previously authenticated.

Realm
A Realm is a collection users and groups (roles) managed by a single password policy.
This policy controls what may be used for authentication (for example, passwords,
X.509 certificates, and biometric devices). A Realm also contains an authorization
policy used for controlling access to applications or resources used by one or more
applications.

A single OID can contain multiple Realms. This feature can consolidate security for
retailers with multiple banners or to consolidate security for multiple development
and test environments.

Statically Protected URLs
A URL is considered to be "Statically Protected" when an Oracle HTTP server is
configured to limit access to this URL to only SSO authenticated users. Any attempt to
access a "Statically Protected URL" results in the display of a login page or an error
page to the user.

Servlets, static HTML pages, and JSP pages may be statically protected.

What Single Sign-On is Not
Single Sign-On is not a user ID/password mapping technology.

However, some applications can store and retrieve user IDs and passwords for
non-SSO applications within an OID LDAP server. An example of this is the Oracle
Forms Web Application framework, which maps OSSO user IDs to a database logins
on a per-application basis

How Oracle Single Sign-On Works
Oracle Single Sign-On involves a couple of different components. These are:

■ The Oracle Single Sign-On (OSSO) servlet, which is responsible for the back-end
authentication of the user.

■ The Oracle Internet Directory LDAP server, which stores user IDs, passwords, and
group (role) membership.

■ The Oracle HTTP Server associated with the Web application, which verifies and
controls browser redirection to the OSSO servlet.

■ If the web application implements dynamic protection, the Web application itself
is involved with the OSSO system.

Oracle Single Sign-on Overview

Technical Design 6-7

Statically Protected URLs
When an unauthenticated user accesses a statically protected URL, the following
occurs:

1. The Oracle HTTP server recognizes the user has not been authenticated and
redirects the browser to the Oracle Single Sign-On servlet.

2. The OSSO servlet determines the user must authenticate, and displays the OSSO
login page.

3. The user must sign in via a valid user ID and password. If the OSSO servlet has
been configured to support multiple Realms, a valid realm must also be entered.
The user ID, password, and realm information is validated against the Oracle
Internet Directory LDAP server.

4. The OSSO servlet creates and sends the user's browser an OSSO session cookie.
This cookie is never persisted to disk and is specific only to the current browser
session. This cookie contains the user's authenticated identity. It does NOT
contain the user's password.

5. The OSSO servlet redirects the user back to the Oracle HTTP Server, along with
OSSO specific information.

6. The Oracle HTTP Server decodes the OSSO information, stores it with the user's
session, and allows the user access to the original URL.

Dynamically Protected URLs
When an unauthenticated user accesses a dynamically protected URL, the following
occurs:

1. The Oracle HTTP server recognizes the user has not been authenticated, but
allows the user to access the URL.

2. The application determines the user must be authenticated and sends the Oracle
HTTP server a specific status to begin the authentication process.

3. The Oracle HTTP Server redirects the user's browser session to the OSSO Servlet.

4. The OSSO servlet determines the user must authenticate, and displays the OSSO
login page

5. The user must sign in via a valid user ID and password. If the OSSO servlet has
been configured to support multiple Realms, a valid realm must also be entered.
The user ID, password, and realm information is validated against the Oracle
Internet Directory LDAP server.

6. The OSSO servlet creates and sends the user's browser an OSSO session cookie.
This cookie is never persisted to disk and is specific only to the current browser
session. This cookie contains the user's authenticated identity. It does NOT
contain the user's password.

7. The OSSO servlet redirects the user back to the Oracle HTTP Server, along with
OSSO specific information.

8. The Oracle HTTP Server decodes the OSSO information, stores it with the user's
session, and allows the user access to the original URL.

Oracle Single Sign-on Overview

6-8 Oracle Retail Invoice Matching Operations Guide

Single Sign-on Topology

Figure 6–1 Single Sign-on Topology

Installation Overview
Installing Oracle Single Sign-On consists of installing the following components:

1. Installing the Oracle Internet Directory (OID) LDAP server and the Infrastructure
Oracle Application Server (OAS). These are typically performed using a single
session of the Oracle Universal Installer and are performed at the same time. OID
requires an Oracle relational database and if one is not available, the installer will
also install this as well. The Infrastructure OAS includes the Delegated
Administration Services (DAS) application as wel as the OSSO servlet. The DAS
application can be used for user and realm management within OID.

2. Installing additional OAS 10.1.2 midtier instances for the Oracle Retail
applications, such as RMS, that are based on Oracle Forms technologies. These
instances must be registered with the Infrastructure OAS installed in Step 1).

3. Installing additional application servers to deploy other Oracle Retail applications
and performing application specific initialization and deployment activities.

Infrastructure Installation and Configuration
The Infrastructure installation for OSSO is dependent on the environment and
requirements for its use. Deploying an Infrastructure OAS to be used in a test
environment does not have the same availability requirements as for a production
environment. Similarly, the Oracle Internet Directory (OID) LDAP server can be
deployed in a variety of different configurations. See the Oracle Application Server
Installation Guide and the Oracle Internet Directory Installation Guide for more
details.

Oracle Single Sign-on Overview

Technical Design 6-9

OID User Data
Oracle Internet Directory is an LDAP v3 compliant directory server. It provides
standards-based user definitions out of the box.

The current version of Oracle Single Sign-On only supports OID as its user storage
facility. Customers with existing corporate LDAP implementations may need to
synchronize user information between their existing LDAP directory servers and OID.
OID supports standard LDIF file formats and provides a JNDI compliant set of Java
classes as well. Moreover, OID provides additional synchronization and replication
facilities to integrate with other corporate LDAP implementations.

Each user ID stored in OID has a specific record containing user specific information.
For role-based access, groups of users can be defined and managed within OID.
Applications can thus grant access based on group (role) membership saving
administration time and providing a more secure implementation.

OID with Multiple Realms
OID and OSSO can be configured to support multiple user Realms. Each realm is
independent from each other and contains its own set of user IDs. As such, creating a
new realm is an alternative to installing multiple OID and Infrastructure instances.
Hence, a single Infrastructure OAS can be used to support many development and test
environments by defining one realm for each environment.

Realms may also be used to support multiple groups of external users, such as those
from partner companies. For more information on Realms, see the Oracle Internet
Directory Administrators Guide.

User Management
User Management consists of displaying, creating, updating or removing user
information. There are two basic methods of performing user management: LDIF
scripts and the Delegate Administration Services (DAS) application.

OID DAS
The DAS application is a web based application designed for both administrators and
users. A user may update their own password, change his/her telephone number of
record, or modify other user information. Users may search for other users based on
partial strings of the user's name or ID. An administrator may create new users,
unlock passwords, or delete users.

The DAS application is fully customizable. Administrators may define what user
attributes are required, optional or even prompted for when a new user is created.

Furthermore, the DAS application is secure. Administrators may also what user
attributes are displayed to other users. Administration is based on permission grants,
so different users may have different capabilities for user management based on their
roles within their organization.

LDIF Scripts
Script based user management can be used to synchronize data between multiple
LDAP servers. The standard format for these scripts is the LDAP Data Interchange
Format (LDIF). OID supports LDIF script for importing and exporting user
information. LDIF scripts may also be used for bulk user load operations.

Configuring ReIM for Oracle Single Sign-on

6-10 Oracle Retail Invoice Matching Operations Guide

User Data Sychnronization
The user store for Oracle Single Sign-On resides within the Oracle Internet Directory
(OID) LDAP server. Oracle Retail applications may require additional information
attached to a user name for application-specific purposes and may be stored in an
application-specific database. Currently, there are no Oracle Retail tools for
synchronizing changes in OID stored information with application-specific user stores.
Implementers should plan appropriate time and resources for this process. Oracle
Retail strongly suggests that you configure any Oracle Retail application using an
LDAP for its user store to point to the same OID server used with Oracle Single
Sign-On.

Configuring ReIM for Oracle Single Sign-on
If you are planning to use Single Sign-On, verify that Oracle Infrastructure Server 10g
(10.1.2.2) has been installed and that the OAS HTTP server is registered with the
Infrastructure Oracle Internet Directory as a partner application.

ReIM is a statically Single Sign-On protected application. When ReIM is being used in
an Oracle Single Sign-On environment, the ReIM root context must be protected. Edit
the mod_osso.conf file, $ORACLE_HOME/Apache/Apache/conf/mod_osso.conf.
The following lines should be inserted immediately before the line consisting of
</IfModule>

<Location /reim >
 require valid-user
 AuthType Basic
</Location>

Note: This section assumes that the Oracle Application Server HTTP
Server has already been registered with the Oracle Single Sign-On
server via the regsso.sh script. See the Oracle Single Sign-On
documentation for details.

7

Batch Processes 7-1

7Batch Processes

This chapter provides the following:

■ An overview of the batch architecture

■ A functional summary of each batch process, along with its dependencies

■ A description of some of the features of the batch processes (batch return values,
batch threading, and so on)

■ Development designs for each batch process

Batch Architectural Overview
ReIM batch processes are run as Java applications. Batch processes engage in their own
primary processing. However, they utilize services when they must engage in actions
outside their primary processing (for example, when they utilize a helper method,
touch the database, and so on).

Services retrieve the data on which the batch processes work to complete their tasks.
As noted in Chapter 3, "Technical Architecture", the service layer consists of a
collection of Java classes that implements business logic (data retrieval, updates,
deletions, and so on) via one or more high-level methods.

The business logic occurs within the service code, while the technical processing
occurs within the batch code.

Note the following characteristics of the ReIM batch processes:

■ They are not accessible through a graphical user interface (GUI).

■ They are scheduled by the retailer.

■ They are designed to process large volumes of data.

■ Although ReIM is a 24 x 7 system, it is recommended that batch processes should
be executed during 'off-hours' (that is, during a time when users are not in the
system such as nights).

EDI-Related File-Based Batch Processes
ReIM EDI-related batch processes are file based. For example, they either input a flat
file into the system (EDI invoice upload) from outside the system, or they output a flat
file from the system (EDI invoice download) to be sent to another system (that of a
vendor). Both the EDI invoice upload and the EDI invoice download batch processes
are described later in this chapter.

Batch Architectural Overview

7-2 Oracle Retail Invoice Matching Operations Guide

Internal Batch Processes
Other batch processes within ReIM do not input or output files. Rather, the goal of
these batch processes is to take a snapshot of potentially large amounts of data from
the key tables within the database, transform that data through processing, and then
return it.

Internal batch processes that are described later in this chapter include:

■ Auto-match

■ Batch purge

■ Account purge

■ Discrepancy purge

■ Disputed credit memo action rollup

■ Reason credit action rollup

Internal Batch Processes that Write to Staging Tables
The third type of batch process within ReIM takes a snapshot of potentially large
amounts of data from the key tables within the database, transforms that data through
processing, and then writes that data to staging tables.

This communication process has been designed with the assumption that, during
production, ReIM will reside within the same database as the merchandising system.
Presumably, during implementation, the retailer will develop an optimum way to
move the applicable data from the staging tables to the appropriate location for that
data.

The internal batch processes that write to staging tables are described later in this
chapter. They include the following:

■ Financial posting

■ Receiver adjustment

Batch Processes that Extract from Merchandising System (RMS) Staging Tables
The fourth type of batch process within ReIM extracts data from merchandising
system staging tables, create documents with the data, and write the data to ReIM
tables. The batch processes that follow this processing pattern include the following:

■ Complex deal upload

■ Fixed deal upload

Functional Descriptions and Dependencies

Batch Processes 7-3

Batch Names
The following table describes ReIM batch processes. The table order reflects the
dependencies that exist among the ReIM batch processes but does not include any
dependencies that exist between ReIM and the merchandising system it interacts with.

Functional Descriptions and Dependencies
The following table summarizes ReIM batch processes and includes both a description
of each batch process's business functionality and its batch dependencies:

Batch Name Class (oracle.retail.reim.batch.jobs)

Batch purge BatchPurgeBatch

Account purge AccountWorkspacePurgeBatch

Discrepancy purge DiscrepancyPurgeBatch

EDI Invoice upload EdiUploadBatch

Auto-match AutoMatchBatch

Receipt write-off ReceiptWriteOffBatch

Reason code action
rollup

ReasonCodeActionRollupBatch

Disputed credit memo
action rollup

DisputedCreditMemoResolutionRollupBatch

Financial posting FinancialPostingBatch

EDI Invoice download EdiDownloadBatch

Complex deal upload ComplexDealUploadBatch

Fixed deal upload FixedDealUploadBatch

Batch Processes Details Batch Dependencies

Batch purge This process deletes data from database tables
while maintaining database integrity. This process
deletes records from the ReIM application that
meet certain business criteria (for example, records
that are marked for deletion by the application
user, records that linger in the system beyond
certain number of days, and so on).

Account purge This process deletes the accounts maintained
locally in the ReIM application.

Discrepancy purge The discrepancy purging program deletes data
from database tables while maintaining database
integrity. This program deletes records from ReIM
that have discrepancies of zero.

EDI invoice upload This batch process uploads merchandise,
non-merchandise invoices, credit notes, debit
memos, and credit note requests from the EDI into
the invoice-matching tables.

■ EDI upload (Invoice
Matching)

■ Receipt upload
(Merchandising system,
such as RMS)

Functional Descriptions and Dependencies

7-4 Oracle Retail Invoice Matching Operations Guide

Auto-match Auto-match is a system batch process that attempts
to match invoices to receipts without manual
intervention. Invoices that are in ready for match,
unresolved, or multi-unresolved status are
retrieved from the database to be run through the
auto-match algorithm. The processing consists of
three levels - summary, detail, and header (VAT
only).

Receipt write-off In order for retailers to track received goods not
invoiced, they must have the ability to 'write-off'
these goods for financial tracking. ReIM has a
system parameter (which can be overwritten at the
supplier level) defining the maximum amount of
time an open, non-fully matched receipt will be
available for matching. Every time the Receipt
write-off process is run, each non-fully matched
open receipt received date is compared with the
current date minus the system parameter. If the
received date is before this difference, the receipt is
'written-off,' and the invoice match status is closed.

Auto-match and any
associated processing must
run prior to this batch
processing.

Reason code action rollup This batch process sweeps the action staging table
and creates debit memos, credit memos, and credit
note requests as needed. Only a single debit or
credit memo is created per invoice/discrepancy
type, with line details from all related actions for
the same discrepancy type. If hold invoice
functionality is on, each generated document is
assigned the invoice number to which it
corresponds to ensure all related documents are
released to accounts payable at the same time. This
process deletes these records when completed; they
are deleted after posting. Note that a separate,
retailer-created batch process sweeps the receiver
adjustment table. The action staging table is used
during posting to post the reason code actions to
the financial staging table. A separate,
retailer-created batch process sweeps the receiver
adjustment table. The process compares the unit
cost and/or quantity received for the item on the
shipment with the expected unit cost and/or
quantity on the IM_RECEIVER_COST_ADJUST
and/or IM_RECEIVER_UNIT_ADJUST tables. If a
match exists, the receiver cost and/or unit
adjustment has occurred in RMS (or the equivalent
merchandising system). As a result, the process sets
the 'pending adjustment' flag on IM_INVOICE_
DETAIL table to false for the invoice line. The
reason code actions are rolled up for an invoice
only if no invoice lines on the invoice have any
pending adjustments.

Batch Processes Details Batch Dependencies

Functional Descriptions and Dependencies

Batch Processes 7-5

Disputed credit memo
action rollup

The disputed credit memo action rollup process
checks the records on the IM_REVERSAL_
RESOLUTION_ACTION table and rolls up the
credit memo detail lines by document/item/reason
code. The rollup occurs only if all lines on a
disputed credit memo have been completely
resolved (that is, no cost or quantity discrepancy
records remain for the credit memo).

After the rollup, a new set of detail lines associated
with the resolution reason codes replace the
original set of detail lines associated with the debit
reason codes on the IM_DOC_DETAIL_

REASON_CODES table.

The disputed credit memo
action rollup must occur
before resolution posting and
after receiver adjustment.

Financial posting A recurring resolution posting process retrieves all
matched invoices and approved documents. If hold
invoice functionality is used, then matched Credit
Notes rather than approved Credit Notes are
processed.

For each invoice, the batch process writes
applicable financial accounting transactions to
either of the following tables: IM_FINANCIALS_
STAGE

The AP staging tables, IM_AP_STAGE_HEADER
and IM_AP_STAGE_DETAIL, if the RMS
System-Options table: FINANCIAL_AP = O.

EDI invoice download The EdiDownload module creates a flat file to
match the EDI invoice download file format. The
module retrieves all header, detail, and
non-merchandise information and formats the data
as needed.

In other words, the EDI invoice download process
retrieves debit memos, credit note requests, and
credit memos in 'approved' status from the
resolution posting process and creates a flat file.
The client converts the flat file into an EDI format
by the client and sends it via the EDI invoice
download transaction set.

Auto-match must run prior
to the EDI invoice download.

Complex deal upload This module reads data from RMS staging tables,
creates credit memos, debit memos, and credit note
requests out of the data, and stores the supporting
deal data on a ReIM table for later use during
posting.

The RMS staged data must be
purged after the upload

Fixed deal upload This module reads data from RMS staging tables,
creates credit memos, debit memos, and credit note
requests out of those, and stores the supporting
deal data on a ReIM table for later use during
posting.

The RMS staged data must be
purged after the upload

Batch Processes Details Batch Dependencies

Features of the Batch Processes

7-6 Oracle Retail Invoice Matching Operations Guide

Features of the Batch Processes

Scheduler and the Command Line
If the client uses a scheduler, batch process arguments are placed into the scheduler.

If the client does not use a scheduler, batch process parameters must be passed in at
the UNIX command line.

Each of these scripts interacts with the 'generic' shell script. These scripts take any and
all arguments that their corresponding batch process would take when executing.

Batch Return Values
The following guidelines describe the batch process return values that ReIM batch
processes utilize:

■ SUCCESS = 0

■ FAILED_INIT = 1

■ FAILED_PROCESS = 2

■ FAILED_WRAPUP = 3

■ SUCCESS_WITH_REJECTS_TO_DB = 4

■ SUCCESS_WITH_REJECTS_TO_FILE = 5

■ SUCCESS_WITH_REJECTS_TO_DB_AND_FILE = 6

■ UNKNOWN = -1

Batch Log and Error File Paths
Log file locations are determined by the retailer through the logj4.properties file. If an
error occurs that causes a batch process to suddenly come to a complete halt, the
system writes to the the configured log appender. See Chapter 2, "Backend System
Administration and Configuration", for more information.

Multi Threading Batch Processes
The following batch processes shown below have multi-threading capabilities. The
settings related to the multi-threading options for each batch process are established in
the reim.properties file. See Chapter 2, "Backend System Administration and
Configuration", for more information.

Complex Deal Upload (ComplexDealUploadBatch)
This process is threaded by a group (or, 'bulk') of deals. Each group (or, bulk)
constitutes a thread.

Fixed Deal Upload (FixedDealUploadBatch)
This process is threaded by a group (or, 'bulk') of deals. Each group (or, bulk)
constitutes a thread.

Executing Batch Processes

Batch Processes 7-7

EDI Invoice Upload (EdiUploadBatch)
This process is threaded by each transaction in the file (THEAD record to TTAIL
record). Each thread handles transaction validation and insertion into the database (as
valid or rejected) or facilitates the writing to a reject file.

Auto-Match (AutoMatchBatch)
Auto-match can either be run as a single thread or it can be threaded by the location
hierarchy.

A Note about Restart and Recovery
Most ReIM batch processes do not utilize any type of restart and recovery procedures.
Rather, if a restart is required, the process can simply be restarted, and it will start
where it left off.

This solution is true for all batch processes other than those noted below:

■ EDI invoice upload (its restart and recovery methods is described in its design
below).

■ EDI invoice download (its restart and recovery methods is described in its design
below).

Executing Batch Processes
Batch processes are executed through the BatchRunner framework. This framework is
responsible for bootstrapping the Spring container and ensuring that the batch job is
passed the appropriate arguments. The arguments for the batch runner are as follows:

■ Batch job class name

■ Username and password

■ Batch arguments

Below is an example of how the batch runner would be utilized to execute the
EdiUploadBatch process:

BatchRunner EdiUploadBatch userID/password /dir/input.dat /dir2/output.dat
Note that the BatchRunner requires the application libraries (JAR files) to be on the
classpath in order to execute successfully. Retailers wishing to configure the
BatchRunner manually should consult the generic UNIX batch script generated during
the install process for assistance in determining which libraries should be included for
a particular batch process.

Batch Purge Batch Design

7-8 Oracle Retail Invoice Matching Operations Guide

Batch Purge Batch Design
The batch purging process deletes data from database tables while maintaining
database integrity. This process deletes records from the ReIM application that meet
certain business criteria (for example, records that are marked for deletion by the
application user, records that linger in the system beyond certain number of days, and
so on). The BatchPurge process does not generate any cascade relationships and/or
SQL queries on the fly. The main features of the process are illustrated below:

Usage
The following arguments are applicable for the BatchPurgeBatch process:

BatchPurgeBatch userid/password PURGE [ALL|<table name>] [NOCOMMIT|COMMIT]
The first argument is a combination of user id and password. The second argument is
the word PURGE. The third argument is either ALL or a single table name. Table name
can be any one of the following:

■ IM_DOC_GROUP_LIST

■ IM_DOC_GROUP_HEAD

■ IM_PARENT_INVOICE

■ IM_REASON_CODES

■ IM_PARTIALLY_MATCHED_RECEIPTS

■ IM_TOLERANCE_DEPT_AUDIT

■ IM_TOLERANCE_SUPP_AUDIT

■ IM_TOLERANCE_SUTRT_AUDIT

■ IM_TOLERANCE_SYS_AUDIT

ALL deletes data from all of the above tables. Finally, the fourth argument can be
either NOCOMMIT or COMMIT. If there is no fourth argument, the default is
NOCOMMIT.

SQL Queries
Delete statements have been optimized by minimizing the usage of nested SELECT
statements and by maximizing the 'table joins' in the WHERE clause. Any additions
and/or modifications to the database require manual additions and/or modifications,
respectively, to the existing SQL queries. All of the delete statements belonging to one
cascade structure are added to a batch and executed at the end. It uses a single
connection for each parent/children tree. Every cascade structure is a logical group.

Manual Propagation (Cascade) of Deletes to Child Tables
Every time there is a change in the relationship between tables, this process must be
modified to reflect that change. Table relationship changes occur when clients decide
to make significant customizations to the application.

Batch Purge Batch Design

Batch Processes 7-9

Cascade Relationships
The developer must manually code the parent/child relationships between tables. For
example, in order to delete records for the IM_DOC_HEAD table, records must be
deleted from children tables in the following sequence of steps. Note that table
sequence is not important within a single step.

Step 1

Delete from: IM_DETAIL_MATCH_INVC_HISTORY
Delete from: IM_INVOICE_DETAIL_ALLOWANCE
Delete from: IM_QTY_DISCREPANCY_ROLE
Delete from: IM_QTY_DISCREPANCY_RECEIPT
Step 2

Delete from: IM_DOC_DETAIL_COMMENTS
Delete from: IM_MANUAL_GROUP_INVOICES
Delete from: IM_DOC_HEAD_COMMENTS
Delete from: IM_INVOICE_DETAIL
Delete from: IM_DOC_HEAD_LOCK
Delete from: IM_FINANCIALS_STAGE
Delete from: IM_COST_DISCREPANCY
Delete from: IM_RESOLUTION_ACTION
Delete from: IM_REVERSAL_RESOLUTION_ACTION
Delete from: IM_SUMMARY_MATCH_INVC_HISTORY
Delete from: IM_QTY_DISCREPANCY
Delete from: IM_DOC_DETAIL_REASON_CODES
Delete from: IM_FINANCIALS_STAGE_ERROR
Delete from: IM_DOC_NON_MERCH
Delete from: IM_COMPLEX_DEAL_DETAIL_TAX
Delete from: IM_DOC_DETAIL_RC_TAX
Delete from: IM_DOC_NON_MERCH_TAX
Delete from: IM_FIXED_DEAL_DETAIL_TAX
Delete from: IM_INVOICE_DETAIL_ALLW_TAX
Delete from: IM_INVOICE_DETAIL_TAX
Delete from: IM_ITEM_TAX_AUDIT
Delete from: IM_ORDER_ITEM_TAX_AUDIT
Delete from: IM_TAX_DISCREPANCY
Delete from: IM_DOC_TAX
Step 3

Delete from: IM_DOC_HEAD
Cascade relationships are wired in the BatchPurge.java.

Assumptions and Scheduling Notes
Every time there is a change in the relationships among tables, the BatchPurge process
has to be updated to accommodate these changes.

Major Modules

BatchPurgeBatch
This class implements the batch delete process for the ReIM base application.

Accounts Purge Batch Design

7-10 Oracle Retail Invoice Matching Operations Guide

Primary Tables Involved
The following list includes the tables on which the purging algorithm is applied:

■ IM_DOC_GROUP_LIST

■ IM_DOC_HEAD

■ IM_PARENT_HEAD

■ IM_REASON_CODES

Other tables of less significance also get purged.

Accounts Purge Batch Design
This process deletes the accounts maintained locally in the ReIM application. Batch
retrieves the accounts in IM_VALID_ACCOUNTS table and validates the account
against the integrated financial system. Accounts that are invalid in the financial
system are deleted from IM_VALID_ACCOUNTS table.

Usage
The following arguments are applicable for the AccountWorkspacePurgeBatch
process:

AccountWorkspacePurgeBatch userid/password
The first argument is a combination of user id and password.

Major Modules
AccountWorkspacePurge

Major Tables
IM_VALID_ACCOUNTS

Discrepancy Purge Batch Design
The discrepancy purging program deletes data from database tables while maintaining
database integrity. This program deletes records from ReIM that have discrepancies of
zero. Main features of the process are as follows:

■ Usage

The following arguments are applicable for the DiscrepancyPurgeBatch process:

DiscrepancyPurgeBatch userid/password PURGE [ALL|<table name>]
[NOCOMMIT|COMMIT]

Note: Run the batch whenever account information changes are
communicated to ReIM.

EDI Invoice Upload Batch Design

Batch Processes 7-11

Where the first argument is combination of user id and password. The second
argument is the word PURGE. The third argument is either ALL or a single table
name. Table name can be any one of the following:

– IM_COST_DISCREPANCY

– IM_QTY_DISCREPANCY

ALL will delete data from all of the above-mentioned tables. Finally, the fourth
argument can be either NOCOMMIT or COMMIT. If there is no fourth
argument, the default will be NOCOMMIT.

■ SQL Queries

The tables mentioned above are checked for merchandise invoices with cost
and/or quantity discrepancies of zero. If they exist, the record is deleted from the
table and the corresponding invoice detail line to will be updated to cost or qty
matched. If the invoice line is now cost and qty matched the status of the line is set
to matched and in return if all of the invoice lines are matched, the invoice itself is
set to matched.

Major Modules
DiscrepancyPurge

Major Tables
■ IM_COST_DISCREPANCY

■ IM_QTY_DISCREPANCY

■ IM_QTY_DISCREPANCY_RECEIPT

■ IM_QTY_DISCREPANCY_ROLE

■ IM_DOC_HEAD

■ IM_INVOICE_DETAILS

■ ORDSKU(RMS)

■ ORDLOC(RMS)

EDI Invoice Upload Batch Design
EDI invoice upload is a standardized file format specification designed for vendors to
send invoicing information electronically. The EDI invoice upload batch process
performs the following:

■ Reads each transaction within the file.

■ Runs a file format validation (verifying file descriptors and line numbers; ensuring
that numeric fields are all numeric and that character fields are all characters;
looking for the invalid ordering of record type-THEAD followed directly by
another THEAD; and so on). Certain file formatting errors cause the process to
terminate with a message indicating the problem. A limited set of data validation
errors cause the invalid transaction to be written to error tables (IM_EDI_REJECT_
DOC_xxx) where the data can be corrected through an online process. The rest of
the data validation errors cause the invalid transaction to be written to a reject file
where a user must correct the problems and re-run the file.

EDI Invoice Upload Batch Design

7-12 Oracle Retail Invoice Matching Operations Guide

■ Validates the data against the ReIM system and the merchandising system (such as
RMS).

■ Any errors found are recorded in an error log so that users can fix any transactions
that were rejected to file.

■ Adds the data to the ReIM system. All valid transactions are written to the IM_
DOC_xxx, IM_INVOICE_xxx, IM_PARENT_xxx tables.

Assumptions and Scheduling Notes
■ This process must be run before the auto-match process.

■ All quantities are assumed to be in eaches when uploaded.

Restart and Recovery
If the EDI invoice upload aborts without processing an entire file, the file needs to
simply be rerun. When this action is completed, there will be multiple errors for the
transactions that were successfully uploaded and the other transactions will be
uploaded at that time as well. If the cause of the aborted process is software related,
this fix may not solve the issue. Other steps may be required to ensure that the process
completes its entire initial run.

Primary Tables Involved
■ IM_DOC_HEAD

■ IM_INVOICE_DETAIL

■ IM_INVOICE_DETAIL_TAX

■ IM_INVOICE_DETAIL _ALLOWANCE

■ IM_INVOICE_DETAIL_ALLW_TAX

■ IM_DOC_NON_MERCH

■ IM_DOC_NON_MERCH_TAX

■ IM_DOC_DETAIL_REASON_CODES

■ IM_DOC_DETAIL_RC_TAX

■ IM_PARENT_INVOICE

■ IM_PARENT_INVOICE_TAX

■ IM_PARENT_INVOICE_DETAIL

■ IM_PARENT_NON_MERCH

■ IM_PARENT_NON_MERCH_TAX

■ IM_EDI_REJECT_DOC_DETAIL

■ IM_EDI_REJECT_DOC_DETAIL_ALLOW

■ IM_EDI_RJT_DOC_DTL_ALLW_TAX

■ IM_EDI_REJECT_DOC_HEAD

■ IM_EDI_REJECT_DOC_TAX

Auto-Match Batch Design

Batch Processes 7-13

■ IM_EDI_REJECT_DOC_NON_MERCH

■ IM_EDI_RJT_DOC_NON_MERCH_TAX

■ IM_DOC_TAX

Auto-Match Batch Design
Auto-match is a system batch process that attempts to match invoices to receipts
without manual intervention. Invoices that are in ready-for-match, unresolved, or
multi-unresolved status are retrieved from the database to be run through the
auto-match algorithm.

The three inputs into the auto-match process include the following:

■ Invoices

■ Receipts

■ Purchase orders

ReIM "owns" invoices, while receipts and purchase orders are "owned" by a
merchandising system, such as RMS.

The processing consists of three levels: summary, detail, and header. Summary-level
matching attempts to match all invoices to receipts at a summary level. Detail-level
matching attempts to match all invoices (that do not match at a summary level) to
receipts at a line item level. Header level matching attempts to validate TAX before
continuing to attempt to match all invoices.

The auto-match process attempts to match the invoices to receipts to the best of its
abilities. The process assign different statuses according to the level of matching
achieved.

If an invoice arrives prior to a receipt (for a particular PO), the auto-match process
attempts only to match invoice unit cost to PO unit cost.

When a complete match cannot be made, manual intervention is required through
online processes.

Algorithms
The following algorithms comprise the auto-match process:

Cost pre-matching

This process identifies any cost discrepancies prior to the arrival of receipts. If no
receipts exist for the PO location, the invoices are sent to the cost pre-matching
algorithm. Cost pre-matching is where unit costs on the invoice are compared with
unit costs on the purchase order at a line level. If a match can be obtained, the invoice
remains in ready-for-match status and is retrieved again for matching once the receipt
comes in. If no match can be obtained, a cost discrepancy is created and routed
immediately.

Summary matching

Invoices are grouped with receipts based upon purchase order location. A match is
attempted for all invoices and receipts for the PO location. The invoices' total extended
costs are summed and compared with the receipts' total extended costs. Based on a
supplier option, the invoices' total quantity is summed and compared with the
receipts' summed total quantity. If a match is achieved, all invoices and receipts are set
to matched status. Otherwise, one-to-one matching is attempted for the PO location.

Auto-Match Batch Design

7-14 Oracle Retail Invoice Matching Operations Guide

One-to-one invoice matching

This processing attempts to match a single invoice to a single receipt for the applicable
PO location. If all invoices and receipts are set to matched status, the next PO location
is processed.

If a multi-unresolved scenario exists (where more than one invoice can be matched
with one or more receipts), all un-matched invoices are given the multi-unresolved
status and no further processing occurs for this PO location.

Detail matching

During detail matching processing, an attempt is made to match each line on the
invoice to an unmatched receipt line for the same item. Both the unit cost and quantity
are always compared at the line level. If both the cost and quantity match, the invoice
line and receipt line are placed into matched status. If the cost fails or the quantity
fails, the cost or quantity discrepancies are generated and routed.

Header matching

Invoices created without details are not able to have their TAX information validated
at invoice creation. All header level only invoices are created with a status of 'Ready
for Match'. For TAX validation, this processing determines whether a header level only
invoice that has been matched to a receipt should continue in the matching and
posting process or whether it should be marked as having a TAX discrepancy and
removed from the matching process.

Assumptions and Scheduling Notes
■ Although not recommended, auto-match can be run during the day when there

are users online interacting with the system.

■ Both the invoice unit cost and the unit cost of the PO must be expressed in the
same currency. In order to compare the invoice unit costs with the PO's unit costs,
auto-match does not engage in currency conversion. The system assumes that
tolerance costs are always in the system's primary currency. If RMS is the
applicable merchandising system, auto-match performs currency conversion if the
currency on the order is different from the primary currency. RMS existing
currency conversion engine is used to perform this conversion. If RMS is not being
utilized, another currency conversion engine must be provided to support this
functionality.

■ The quantities on the invoice must be expressed in the same unit of measure as the
quantities on the receipt. Auto-match performs no unit of measure conversion.

■ The batch process runs after EDI upload (Invoice Matching) and Receipt upload
(Merchandising system, such as RMS).

■ Supplier options. All suppliers must have options defined in order for their
invoices to be processed by the system, and the terms defined for those suppliers
have to be completely updated in RMS. In order to support the use of suppliers in
ReIM, the ENABLED_FLAG (set to 'Y'), START_DATE_ACTIVE and END_DATE_
ACTIVE are the required entries in the TERMS_DETAIL table in RMS.

Post Processing
■ Auto-match automatically invokes the "best terms calculation" for invoices that it

matches.

■ Autp-match automatically posts invoices that it matches.

Auto-Match Batch Design

Batch Processes 7-15

High-Level Flow Diagram
The following diagram offers a high-level view of the processing logic utilized within
the auto-match batch process.

Figure 7–1 ReIM Auto-Match Flow

Primary Tables Involved
■ IM_DOC_HEAD

■ IM_INVOICE_DETAIL

■ SHIPMENT(RMS)

■ SHIPSKU(RMS)

■ IM_PARTIALLY_MATCHED_RECEIPTS

■ ORDHEAD(RMS)

■ ORDSKU(RMS)

■ ORDLOC(RMS)

■ IM_TOLERANCE_DEPT

■ IM_TOLERANCE_SUPP

■ IM_TOLERANCE_SYSTEM

■ IM_COST_DISCREPANCY

■ IM_QTY_DISCREPANCY

■ IM_QTY_DISCREPANCY_RECEIPT

■ IM_QTY_DISCREPANCY_ROLE

■ IM_SUPPLIER_OPTIONS

■ IM_SYSTEM_OPTIONS

Receipt Write-Off Batch Design

7-16 Oracle Retail Invoice Matching Operations Guide

Receipt Write-Off Batch Design
Retailers track received goods that are not invoiced, and they must have the ability to
'write-off' these goods for financial tracking. Two types of processes can determine
when these written-off goods will be written to financials: purged receipts from
merchandising system, and 'close open receipts' from invoice matching. Because
receipts can be purged outside of the invoice matching dialogue, these purged receipts
must be maintained until their unmatched amount has been accounted for. These
receipts are tracked through STAGE_PURGED_SHIPMENTS and STAGE_PURGED_
SHIPSKUS. Every purged shipment record that is not fully matched will have a record
by item written to the stage tables. In addition, invoice matching has a system
parameter (which can be overwritten at the supplier level) defining the maximum
amount of time an open, non-fully matched receipt will be available for matching.

Every time the write-off process is run, each non-fully matched open receipt received
date is compared with the current date minus the system parameter. If the received
date is before this difference, then the receipt will be 'written-off' and the invoice
match status is closed.

The department/class of each receipt item must be identified to ensure accurate
accounting. The form of the accounting distribution is as follows:

This account distribution mapping is set up through the account cross-reference
screen.

Assumptions and Scheduling Notes
■ When setting up the Close Open Receipt Months in ReIM Supplier Options

and/or System Options, the value should be less than or equal to RMS UNIT_
OPTIONS.ORDER_HISTORY_MONTHS if the intention is to have invoice
matching pick up receipts prior to purging.

■ Auto-match and any associated processing must be run prior to this batch
processing.

Transaction Type Sign Value Notes

Unmatched receipt Debit Value of unmatched
items on receipt

Receipt write-Off Credit Same as above

Trade accounts
payable

Credit 0 Written as a matter of
form

Note: If IM_SUPPLIER_OPTIONS.CLOSE_OPEN_RECEIPT_
MONTHS is not defined, the value is retrieved from IM_SYSTEM_
OPTIONS.CLOSE_OPEN_RECEIPT_MONTHS.

Reason Code Action Rollup Batch Design

Batch Processes 7-17

High-Level Flow Diagram

Figure 7–2 ReIM Receipt Write-Off Flow

Primary Tables Involved

REIM
■ IM_FINANCIALS_STAGE

■ IM_SYSTEM_OPTION

■ IM_SUPPLIER_OPTIONS

■ IM_PARTIALLY_MATCHED_RECEIPTS

RMS
■ UNIT_OPTIONS

■ SHIPMENT

■ STAGE_PURGED_SHIPMENT

■ SHIPSKU

■ STAGE_PURGE_SHIPSKU

Reason Code Action Rollup Batch Design
Reason code actions are resolutions assigned at the discrepancy line level. A number
of fixed actions are available to resolve a line item discrepancy; the specific results
depend on the action.

The resolution posting process sweeps the IM_RESOLUTION_ACTION table and
creates debit and credit memos as needed. Only a single debit or credit memo is
created per invoice/discrepancy type, with line details from all related actions for the
same discrepancy type.

This process does not delete these records when completed; rather, they are deleted
after posting.

A separate, client-created batch process sweeps the receiver adjustment table. The
action staging table is used during posting to post the reason code actions to the
financial staging table.

Reason Code Action Rollup Batch Design

7-18 Oracle Retail Invoice Matching Operations Guide

To resolve a cost discrepancy, the user can select a 'Receiver Cost Adjustment' action
from the cost resolution screen. Similarly, to resolve a quantity discrepancy, the user
can select a 'Receiver Unit Adjustment' action from the quantity resolution screen. The
actions are written to the IM_RESOLUTION_ACTION table in an unrolled status with
the amount of adjustment. The IM_INVOICE_DETAIL table also receives a flag that
signifies 'pending adjustment' for the invoice line.

At the same time, the actions are written to the IM_RECEIVER_COST_ADJUST and
IM_RECEIVER_QTY_ADJUST tables to indicate the expected receiver adjustment
amount on the RMS (or equivalent merchandising system) side. In sum, these two
tables serve as the staging tables for the RMS (or equivalent merchandising system)
process to actually perform the adjustment.

For a receiver cost adjustment, IM_RECEIVER_COST_ADJUST holds the order unit
cost for the item after the adjustment. For a receiver unit adjustment, IM_RECEIVER_
UNIT_ADJUST holds the received quantity for the item on the shipment after the
adjustment.

The process compares the unit cost and/or quantity received for the item on the
shipment with the expected unit cost and/or quantity on the IM_RECEIVER_COST_
ADJUST and/or IM_RECEIVER_UNIT_ADJUST tables. If a match exits, the receiver
cost and/or unit adjustment has occurred in RMS (or the equivalent merchandising
system). As a result, the process sets the 'pending adjustment' flag on IM_INVOICE_
DETAIL table to false for the invoice line. The reason code actions are only rolled up
for an invoice if no invoice lines on the invoice have any pending adjustments.

Because ReIM cannot control when and how the receiver adjustments are happening
on the RMS side (or the equivalent merchandising system), records written to the IM_
RECEIVER_COST_ADJUST and IM_RECEIVER_UNIT_ADJUST tables are considered
final.

As a result, when the user resolves a cost or quantity discrepancy, the receiver
adjustment must fully resolve a discrepancy before the user leaves the screen, and
there should be no re-route actions involved. On the RMS side, the amount of
adjustment must be exactly the same as expected.

The IM_PARTIALLY_MATCHED_RECEIPTS table holds the amount of a receipt item
that has been matched during invoice matching. The quantity received on the
SHIPSKU table subtracts the quantity matched on the IM_PARTIALLY_MATCHED_
RECEIPT table, giving the available to match quantity for the receipt item.
Auto-match, summary matching, detail matching and quantity discrepancy resolution
processes all keep track of the matched quantity bucket to determine how much of the
receipt item has already been matched and how much of the receipt item remains
available to be matched. In the case of a Receiver Unit Adjustment, the IM_
PARTIALLY_MATCHED_RECEIPTS table is updated to reserve the entire remaining
unmatched bucket for the receipt item. This logic prevents the adjusted receipt
quantity from being used for any other matching or quantity resolutions.

Assumptions and Scheduling Notes
The memo staging table sweep must occur before the posting batch process, or a delay
of one day results before posting can occur.

Disputed Credit Memo Action Rollup Batch Design

Batch Processes 7-19

High-Level Flow Diagram
The following diagram offers a high-level view of the processing logic utilized within
the reason code action rollup batch process.

Figure 7–3 ReIM Reason Code Action Rollup Flow

Primary Tables Involved
■ IM_DOC_HEAD

■ IM_INVOICE_DETAIL

■ IM_PARTIALLY_MATCHED_RECEIPTS

■ IM_RESOLUTION_ACTION

■ IM_RECEIVER_COST_ADJUST

■ IM_RECEIVER_UNIT_ADJUST

Disputed Credit Memo Action Rollup Batch Design
When a disputed credit memo is first created as a reversal to a debit memo, cost, or
quantity discrepancies are generated for each line on the credit memo, and the original
debit memo reason codes are associated with the new credit memo detail lines.

As the user takes actions to resolve the discrepancy online, a record is written to the
IM_REVERSAL_RESOLUTION_ACTION table for each resolution action taken. The
only actions allowed to resolve the discrepancy are Deny Dispute or Approve Credit in
Disputed Status. However, the user can choose multiple reason codes associated with
Deny or Approve actions to resolve the disputed line. Also, the user can either resolve
the disputed line completely, or partially resolve it. Upon complete resolution of a
disputed line, the cost or quantity discrepancy is deleted from the system.

The disputed credit memo action rollup process checks the records on the IM_
REVERSAL_RESOLUTION_ACTION table and rolls up the credit memo detail lines
by document/item/reason code. The rollup occurs only if all lines on a disputed credit
memo have been completely resolved (that is, no cost or quantity discrepancy records
remain for the credit memo).

Disputed Credit Memo Action Rollup Batch Design

7-20 Oracle Retail Invoice Matching Operations Guide

After the rollup, a new set of detail lines associated with the resolution reason codes
replace the original set of detail lines associated with the debit reason codes on the IM_
DOC_DETAIL_REASON_CODES table. The new credit memo lines are in Approved
or Denied status depending on the resolution action. The credit memo header status is
updated to Approved status. The lines that are approved are rolled up to calculate the
header level total cost and total quantity. Non-merchandise costs can be associated
with a credit memo that is created as a debit memo reversal, but no resolution actions
can be taken on non-merchandise costs. Non-merchandise costs should be included in
the credit memo's total cost.

Assumptions and Scheduling Notes
The disputed credit memo action rollup must occur before resolution posting and after
receiver adjustment.

Primary Tables Involved
The following tables are used for the debit memo reversal, resolution, and rollup
processes:

■ IM_DOC_HEAD. This table holds the document header information.

■ IM_DOC_DETAIL_REASON_CODES. This table holds the document detail
information by item/reason code. Before resolution rollup, this table holds the
document detail information based on the original debit reason codes. After
resolution rollup, this table holds the document detail information based on the
reason codes used to resolve the disputed credit memo lines.

■ IM_REVERSAL_RESOLUTION_ACTION. This table holds the resolution actions
the user takes to approve or deny the disputed credit memo line.

■ IM_COST_DISCREPANCY. This table holds the disputed credit memo lines for a
debit memo cost reversal.

■ IM_QTY_DISCREPANCY. This table holds the disputed credit memo lines for a
debit memo quantity reversal.

■ IM_QTY_DISCREPANCY_ROLE. This table holds the routing information for a
credit memo quantity.

Financial Posting Batch Design

Batch Processes 7-21

Financial Posting Batch Design
For each invoice, the batch process writes applicable financial accounting transactions
to either of the following tables:

■ The Financials staging table, IM_FINANCIALS_STAGE.

■ The AP staging tables, IM_AP_STAGE_HEADER and IM_AP_STAGE_DETAIL, or
the IM_FINANCIALS_STAGE, depending on the transaction type (if the RMS
System-Options table: FINANCIAL_AP = O).

The processing occurs after discrepancies for documents have been resolved by
resolution documents. Once all of the resolution documents for a matched invoice are
built, and all of the RCA/RUA external processing has been confirmed, the process
inserts financial accounting transactions to the financials staging table, to represent the
resolution and consequent posting of the invoice. The process also inserts financial
accounting transactions for the approved documents that are being handled.

Once all of the transactions have been written, the process switches the status of the
current invoices/documents to Posted and moves on to the next invoice/document.

If a segment look-up fails, the failed record is written to a financials error table.

Assumptions and Scheduling Notes
Before posting can occur, the following information must be set up:

■ Set up segment definitions in the system.properties.

■ Define GL account segments on the GL Options screen.

■ Specify all the accounts using the GL Cross Reference screen.

■ Country

■ Location

■ Dept

■ Class

If dynamic segments are defined, the values for the segments must be defined in the
applicable tables, IM_DYNAMIC_SEGMENT_DEPT_CLASS or IM_DYNAMIC_
SEGMENT_LOC.

Primary Tables Involved
■ IM_DOC_HEAD. Holds the matched and approved documents.

■ IM_DOC_NON_MERCH. Holds the non-merchandise costs for invoices.

Lookup Tables that Must be Populated
■ IM_GL_OPTIONS. Order of segments and dynamic segments defined.

■ IM_GL_CROSS_REF. Account values defined for account types and account
codes.

■ IM_DYNAMIC_SEGMENT_DEPT_CLASS. Accounts defined for each
department/class combination.

■ IM_DYNAMIC_SEGMENT_LOC. Accounts defined for each location/company
combination.

Financial Posting Batch Design

7-22 Oracle Retail Invoice Matching Operations Guide

Tables to Which the Process Posts Data

IM_FINANCIALS_STAGE

■ Transaction code

■ Debit/credit indicator

■ Invoice ID

■ Invoice date

■ Supplier

■ Purchase order (if available)

■ Shipment/receipt (only if unmatched receipt is being written)

■ Currency

■ Amount

■ Best terms ID

■ Terms date

■ Pre-paid indicator

■ Comments

■ Create user ID

■ Create date-time

■ Segments that determine the mapping account in the external financial system (as
defined in the IM_GL_CROSS_REF table).

IM_AP_STAGE_HEAD

■ Sequence Number: Automatically generated line numbers 1, 2, 3, and so on;
incremented for each detail record per DOC ID; for identification purpose.

■ Doc_id: Similar to IM_FINANCIALS_STAGE.

■ Invoice Type Lookup Code: If document type = MRCHI or NMRCHI, this value is
set to 'STANDARD'. Otherwise this value is set to 'CREDIT'.

■ invoice_number: The concatenated data is as follows:

– chars 1-34: the first 34 characters from the EXT DOC ID

– char 35: a hyphen

– chars 36-50: the DOC ID

■ Vendor: Same as for current im staging table.

■ Oracle_site_id:

– The loc from this transaction to read new RMS Location/Org Unit data to find
the Org Unit.

– The Org Unit to read new RMS Supplier Addr/Org Unit/Site ID data to find
Oracle Site ID.

Note: The table to which the process posts data is either IM_
FINANCIALS_STAGE or IM_AP_STAGE_HEAD

Financial Posting Batch Design

Batch Processes 7-23

■ Currency Code: Valued if this is a foreign currency invoice, otherwise null.

■ Exchange Rate: If exchange rate is valued, this should be the literal 'USER';
otherwise blank.

■ Exchange Rate Type:

■ Document Date: Same as in current im staging table.

■ Amount: The TOTAL amount including tax.

■ Best Terms Date: Same as in current im staging table.

■ Segment1: Same as in current IM financials staging table.

■ Segment2: Same as in current IM financials staging table.

■ Segment3: Same as in current IM financials staging table.

■ Segment 4: Same as in current IM financials staging table.

■ Segment 5: Same as in current IM financials staging table.

■ Segment 6: Same as in current IM financials staging table.

■ Segment 7: Same as in current IM financials staging table.

■ Segment 8: Same as in current IM financials staging table.

■ Segment 9: Same as in current IM financials staging table.

■ Segment 10: Same as in current IM financials staging table.

■ Create Date: Same as in current IM financials staging table.

■ Best Terms ID: Same as in current IM financials staging table.

IM_AP_STAGE_DETAIL

■ Doc_id

■ Sequence number: Automatically generated line numbers 1, 2, 3, and so on;
incremented for each detail record per DOC ID; for identification purpose.

■ Transaction Code

■ Line Type Lookup Code: This value varies. The rules are:

– If the tran-code is 'UNR' or 'VWT' or 'REASON' or 'CRN' then this value is
'ITEM.'

– If this is a generated tax line, then this value will be 'TAX'.

– If none of the above, then this value will be 'MISCELLANEOUS'.

■ Amount

■ Vat Code: Same as in current im staging table. EXCEPT - for generated tax lines,
the amount for this line should be the amount from the taxable line times the tax
rate

■ Segment1: For regular lines, same as in current staging table; for generated tax
line, use values from source line.

■ Segment2: (see rules for segment 1)

■ Segment3: (see rules for segment 1)

■ Segment4: (see rules for segment 1)

■ Segment5: (see rules for segment 1)

EDI Invoice Download Batch Design

7-24 Oracle Retail Invoice Matching Operations Guide

■ Segment6: (see rules for segment 1)

■ Segment7: (see rules for segment 1)

■ Segment8: (see rules for segment 1)

■ Segment9: (see rules for segment 1)

■ Segment10: (see rules for segment 1)

■ Create Date: Same as in current IM staging table.

EDI Invoice Download Batch Design
The EDI invoice download process retrieves debit memos, credit note requests, and
credit memos in 'approved' or 'posted' status from the resolution posting process and
creates a flat file. The client converts the flat file into an EDI format and sends it via the
EDI invoice download transaction set to the respective vendors.

Assumptions and Scheduling Notes
■ All data is valid in the IM_DOC_HEAD tables. ReIM does not validate details.

■ Auto-match must run prior to the EDI invoice download.

Primary Tables Involved
The EDI invoice download batch process reads from the following tables:

■ IM_DOC_HEAD

■ IM_DOC_DETAIL_REASON_CODES

■ IM_DOC_NON_MERCH

■ IM_DOC_DETAIL_COMMENTS

Restart and Recovery
If the EDI invoice download aborts while processing, an incomplete file is generated.
To generate a complete file, the process simply needs to be rerun and allowed to fully
process. If the cause of the aborted process is software related, this action might not
solve the issue; other steps may be required to ensure that the process completes its
entire initial run.

Complex Deal Upload Batch Design
The Complex Deal Upload batch process reads data from header and detail complex
deals staging tables in RMS.

For each combination of deal ID and deal detail ID on the RMS staging tables, the
batch process creates a credit memo, a debit memo, or a credit note request, depending
upon an indicator on the staging tables.

The batch process also copies most of the data from the RMS staging tables into one
ReIM detail table (IM_COMPLEX_DEAL_DETAIL). This data is later referenced
during the posting process for the created documents.

Assumptions and Scheduling Notes
The RMS staging header and detail must be purged nightly after the upload has run.

Fixed Deal Upload Batch Design

Batch Processes 7-25

Primary Tables Involved

■ STAGE_COMPLEX_DEAL_HEAD (RMS table)

■ STAGE_COMPLEX_DEAL_DETAIL (RMS table)

■ IM_DOC_HEAD. This table holds general information for documents of all types.
Documents include merchandise invoices, non-merchandise invoices,
consignment invoices, credit notes, credit note requests, credit memos, and debit
memos. Documents remain on this table for SYSTEM_OPTIONS.DOC_HISTORY_
MONTHS after they are posted to the ledger.

■ IM_DOC_DETAIL_REASON_CODES. This table contains quantity/unit cost
adjustments for a given document/item/reason code.

■ IM_DOC_TAX. This table associates the document with its value added tax (VAT)
information.

■ IM_COMPLEX_DEAL_DETAIL. This table holds the details of the complex deal
stored in ReIM. It is used during complex deal detail posting.

■ IM_COMPLEX_DEAL_DETAIL_TAX. This table holds the tax information of the
complex deal.

Fixed Deal Upload Batch Design
The Fixed Deal Upload batch process reads data from header and detail fixed deals
staging tables in RMS.

For each deal ID on the RMS staging tables, the batch process creates a credit memo, a
debit memo, or a credit note request, depending upon an indicator on the staging
tables.

The batch process also copies most of the data from the RMS staging tables into one
ReIM detail table (IM_FIXED_DEAL_DETAIL). This data is later referenced during the
posting process for the created documents.

For non-merchandise fixed deals that are not associated with an RMS location, the org
unit has been added to the RMS staging table. During the Fixed Deal upload process,
the set of books ID associated with this org unit is used to access a new table (FIXED_
DEAL_SOB_LOC_DEFAULT) to get the location to use for the deal document in IM_
DOC_HEAD. Then, the resolution posting job populates the financial staging tables
with the set of books ID associated with the location just like it does with all other
documents.

Assumptions and Scheduling Notes
The RMS staging header and detail must be purged nightly after the upload has run.

Note: For descriptions of RMS tables, see the latest RMS data model.

Fixed Deal Upload Batch Design

7-26 Oracle Retail Invoice Matching Operations Guide

Primary Tables Involved

■ STAGE_FIXED_DEAL_HEAD (RMS table)

■ STAGE_FIXED_DEAL_DETAIL (RMS table)

■ IM_DOC_HEAD. This table holds general information for documents of all types.
Documents include merchandise invoices, non-merchandise invoices,
consignment invoices, credit notes, credit note requests, credit memos, and debit
memos. Documents remain on this table for SYSTEM_OPTIONS.DOC_HISTORY_
MONTHS after they are posted to the ledger.

■ IM_DOC_NON_MERCH. This table holds various user-defined non-merchandise
costs associated with an invoice. Non merchandise costs can be associated with
merchandise invoice if the IM_SUPPLIER_OPTIONS.MIX_MERCH_NON_
MERCH_IND for the vendor is 'Y'. If the MIX_MERCH_NON_MERCH_IND for
the vendor is 'N', non merchandise expenses can only be on non merchandise
invoice documents.

■ IM_DOC_TAX. This table associates the document with its value added tax (VAT)
information.

■ IM_FIXED_DEAL_DETAIL. This table holds the details of the fixed deals in the
ReIM system. It will be used during fixed deal detail posting.

■ IM_FIXED_DEAL_DETAIL_TAX. This table holds the tax information of the fixed
deal.

Note: For descriptions of RMS tables, see the latest RMS data model.

8

RETL Program Overview for the ReIM Extraction Program 8-1

8RETL Program Overview for the ReIM
Extraction Program

To facilitate the extraction of data from ReIM (that could be eventually loaded into a
data warehouse for reporting purposes, for example), ReIM works in conjunction with
the Retail Extract Transform and Load (RETL) framework. This architecture optimizes
a high performance data processing tool that can let database batch processes take
advantage of parallel processing capabilities.

Oracle Retail streamlined RETL code provides for less data storage, easier
implementation, and reduced maintenance requirements through decreased code
volume and complexity. The RETL scripts are Korn shell scripts that are executable
from a UNIX prompt. A typical run and debugging situation is provided later in this
chapter.

These extractions were initially designed for Retail Data Warehouse (RDW) but can be
used for some other application in the retailer's enterprise.

For more information about the RETL tool, see the latest RETL Programmer's Guide.

Architectural Design
The diagram below illustrates the extraction processing architecture for ReIM. Instead
of managing the change captures as they occur in the source system during the day,
the process involves extracting the current data from the source system. The extracted
data is output to flat files. These flat files are then available for consumption by a
product such as Retail Data Warehouse (RDW).

The target system, (RDW, for example), has its own way of completing the
transformations and loading the necessary data into its system, where it can be used
for further processing in the environment.

ReIM modules use the same libraries, resource files, and configuration files as RMS.
All these libraries, resource files, and configure files are packed with RMS. ReIM must
have RMS installed before any ReIM RETL scripts can be "kicked off."

Configuration

8-2 Oracle Retail Invoice Matching Operations Guide

ReIM Extraction Architecture
The architecture relies upon the use of well-defined flows specific to the ReIM
database. The resulting output is comprised of data files written in a well-defined
schema file format. This extraction includes no destination specific code.

Figure 8–1 RETL extraction processing for ReIM

Configuration

RETL
Before trying to configure and run ReIM ETL, install RETL version 12.0 or later, which
is required to run ReIM 13.0 RETL. Run the 'verify_retl' script (included as part of the
RETL installation) to ensure that RETL is working properly before proceeding.

RETL User and Permissions
ReIM ETL is installed and run as the RETL user. Additionally, the permissions are set
up as per the RETL Programmer's Guide. ReIM ETL reads data, creates, deletes, and
updates tables. If these permissions are not set up properly, extractions fail.

Environment Variables
See the RETL Programmer's Guide for RETL environment variables that must be set
up for your version of RETL. You will need to set MMHOME to your base directory
for ReIM RETL. This is the top level directory that you selected during the installation
process. In your .kshrc, you should add a line such as the following:

export MMHOME=<base directory for RMS ETL>\dwi12.0\dev

Note: Because ReIM modules share the same libraries and
configuration files as RMS, MMHOME is the same as what is defined
in RMS.

Configuration

RETL Program Overview for the ReIM Extraction Program 8-3

dwi_config.env Settings
Make sure to review the environmental parameters in the dwi_config.env file before
executing batch modules. There are several variables you must change depending
upon your local settings:

For example:

export DBNAME=int9i
export RIM_OWNER=steffej_reim1102
export BA_OWNER=rmsint1102
export ORACLE_PORT="1524"
export ORACLE_HOST="mspdev38"
You must set up the environment variable PASSWORD in dwi_config.env. In the
example below, adding the line to the dwi_config.env causes the password
'mypasswd' to be used to log into the database:

export PASSWORD=mypasswd

Steps to Configure RETL
1. Log in to the UNIX server with a UNIX account that will run the RETL scripts.

2. Change directories to

 $MMHOME/rfx/etc.
3. Modify the dwi_config.env script:

■ Change the DBNAME variable to the name of the ReIM database.

■ Change the RIM_OWNER variable to the username of the ReIM schema
owner.

■ Change the BA_OWNER variable to the username of the ReIME batch user.

■ Change the ORACLE_HOST variable to the database server name.

■ Change the ORACLE_PORT variable to the database port number.

■ Change the MAX_NUM_COLS variable to modify the maximum number of
columns from which RETL selects records.

Note: All ReIM tables must be under the RMS database. ReIM has
the same BA_OWNER as RMS. Thus, the only piece that ReIM
modifies in dwi_config.env file is to assign a value to RIM_OWNER.
The configuration file, dwi_config.env, as well as all other
configuration files, are packed with RMS.

Program Features

8-4 Oracle Retail Invoice Matching Operations Guide

Program Features
RETL programs use one return code to indicate successful completion. If the program
successfully runs, a zero (0) is returned. If the program fails, a non-zero is returned.

Program Status Control Files
To prevent a program from running while the same program is already running
against the same set of data, the ReIME code utilizes a program status control file. At
the beginning of each module, dwi_config.env is run. It checks for the existence of the
program status control file. If the file exists, the message, ${PROGRAM_NAME} has
already started, is logged and the module exits. If the file does not exist, a program
status control file is created and the module executes.

If the module fails at any point, the program status control file is not removed, and the
user is responsible for removing the control file before re-running the module.

File Naming Conventions
The naming convention of the program status control file allows a program whose
input is a text file to be run multiple times at the same time against different files.

The name and directory of the program status control file is set in the configuration file
(dwi_config.env). The directory defaults to $MMHOME/error. The naming
convention for the program status control file itself defaults to the following dot
separated file name:

■ The program name

■ The first filename, if one is specified on the command line

■ "status"

■ The business virtual date for which the module was run

For example, the program status control file for the invildex program would be named
as follows for the VDATE of March 21, 2004:

$MMHOME/error/sincildex.sincilddm.txt.status.20040321

Restart and Recovery
Because RETL processes all records as a set, as opposed to one record at a time, the
method for restart and recovery must be different from the method that is used for
Pro*C. The restart and recovery process serves the following two purposes:

■ It prevents the loss of data due to program or database failure.

■ It increases performance when restarting after a program or database failure by
limiting the amount of reprocessing that needs to occur.

The ReIM extract module (ReIME) extracts from a source transaction database writes
to a text file.

To limit the amount of data that needs to be re-processed, more complicated modules
(requiring the use of multiple RETL flows) utilize a bookmark method for restart and
recovery. This method allows the module to be restarted at the point of last success
and run to completion. The bookmark restart/recovery method incorporates the use of
a bookmark flag to indicate which step of the process should be run next. For each step
in the process, the bookmark flag is written to and read from a bookmark file.

Program Features

RETL Program Overview for the ReIM Extraction Program 8-5

Bookmark File
The name and directory of the restart and recovery bookmark file is set in the
configuration file (dwi_config.env). The directory defaults to
$MMHOME/rfx/bookmark. The naming convention for the bookmark file itself
defaults to the following 'dot'-separated file name:

■ The program name

■ The first filename, if one is specified on the command line

■ "bkm"

■ The business virtual date for which the module ran

The example below illustrates the bookmark flag for the invildex program run on the
VDATE of January 5, 2004:

$MMHOME/rfx/bookmark/sincildex.sincilddm.txt.bkm.20040105

Message Logging
Message logs are written daily in a format described in this section.

Daily Log File
Every RETL program writes a message to the daily log file when it starts and when it
finishes. The name and directory of the daily log file is set in the configuration file
(dwi_config.env). The directory defaults to $MMHOME/log. All log files are encoded
UTF-8.

The naming convention of the daily log file defaults to the following 'dot' separated
file name:

■ The business virtual date for which the modules are run

■ ".log"

For example, the location and the name of the log file for the business virtual date
(VDATE) of March 21, 2004 would be the following:

$MMHOME/log/20040321.log

Note: If the fix for the problem causing the failure requires changing
data in the source table or file, then the bookmark file must be
removed and the process must be re-run from the beginning in order
to extract the changed data.

Program Features

8-6 Oracle Retail Invoice Matching Operations Guide

Format
As the following examples illustrate, every message written to a log file has the name
of the program, a timestamp, and either an informational or error message:

sincildex 12:51:07: last max post date is 20010311000000
sincildex 12:51:07: Retrieve current max post date
sincildex 12:51:10: Loading invc_exchng_rate_temp table ...
sincildex 12:51:15: Loading po_exchng_rate_temp table ...
sincildex 12:51:20: Process all records between last post date and current max
post date
sincildex 12:51:27: Drop table rmsint110buser1.INVC_EXCHNG_RATE_TEMP
sincildex 12:51:27: Drop table rmsint110buser1.PO_EXCHNG_RATE_TEMP
sincildex 12:51:27: Number of records in sincilddm.txt = 15
sincildex 12:51:27: Program completed successfully
If a program finishes unsuccessfully, an error file is usually written that indicates
where the problem occurred in the process. There are some error messages written to
the log file, such as 'No output file specified', that require no further explanation
written to the error file.

Program Error File
In addition to the daily log file, each program also writes its own detail flow and error
messages. Rather than clutter the daily log file with these messages, each program
writes out its errors to a separate error file unique to each execution.

The name and directory of the program error file is set in the configuration file (dwi_
config.env). The directory defaults to $MMHOME/error. All errors and all routine
processing messages for a given program on a given day go into this error file (for
example, it will contain both the stderr and stdout from the call to RETL). All error
files are encoded UTF-8.

The naming convention for the program's error file defaults to the following 'dot'
separated file name:

■ The program name

■ The first filename, if one is specified on the command line

■ The business virtual date for which the module was run

For example, all errors and detail log information for the invildex program would be
placed in the following file for the batch run of March 21, 2004:

$MMHOME/error/sincildex.sincilddm.txt.20040321

ReIME Reject Files
The ReIME extract module may produce a reject file if it encounters data related
problems, such as an inability to find data on required lookup tables. The module tries
to process all data and then indicates that records were rejected so that all data
problems can be identified in one pass and corrected; then, the module can be re-run
to successful completion. If a module does reject records, the reject file is not removed,
and the user is responsible for removing the reject file before re-running the module.

The records in the reject file contain an error message and key information from the
rejected record. The following example illustrates a record that is rejected due to
problems within the currency conversion library:

Unable to convert currency for LOC_IDNT, DAY_DT|3|20011002
The name and directory of the reject file is set in the configuration file (dwi_
config.env). The directory defaults to $MMHOME/data.

Program Features

RETL Program Overview for the ReIM Extraction Program 8-7

Schema Files
RETL uses schema files to specify the format of incoming or outgoing datasets. The
schema file defines each column's data type and format, which is then used within
RETL to format/handle the data. For more information about schema files, see the
latest RETL Programmer's Guide. Schema file names are hard-coded within each
module since they do not change on a day-to-day basis. All schema files end with
".schema" and are placed in the "rfx/schema" directory.

Resource Files
The ReIM Kornshell program uses resource files so that the same RETL program can
run in various language environments. For each language, there is one resource file.

Resource files contain hard-coded strings that are used by extract programs. The name
and directory of the resource file is set in the configuration file (dwi_config.env). The
default directory is ${MMHOME}/rfx/include.

The naming convention for the resource file follows the two-letter ISO code standard
abbreviation for languages (for example, en for English, fr for French, ja for Japanese,
es for Spanish, de for German, and so on).

Command Line Parameters
The module handles command line parameters in the way described in this section.
See the section, "RETL Extraction Program List", to determine the command line
parameters for a module.

A Non-File Based Module that Requires Parameters
In order for the non-file based RETL module to run, command line parameters need to
be passed in at the UNIX command line. This ReIME module requires an output_file_
path and output_file_name to be passed in. This module may allow the operator to
specify more than one output file.

For example:

sincildex.ksh output_file_path/output_file_name

Note: A directory specific to reject files can be created. The dwi_
config.env file would need to be changed to point to that directory.

Note: Resource files are packed only with RMS.

Note: For some RETL modules across Oracle Retail products, default
output file names, and schema names correspond to RDW program
names.

Typical Run and Debugging Situations

8-8 Oracle Retail Invoice Matching Operations Guide

Typical Run and Debugging Situations
The following examples illustrate typical run and debugging situations for types of
programs. The log, error, and so on file names referenced below assume that the
module is run on the business virtual date of March 9, 2004. See the previously
described naming conventions for the location of each file.

For example:

To run sincildex.ksh:

1. Change directories to $MMHOME/rfx/src.

2. At a UNIX prompt enter:

%sincildex.ksh $MMHOME/data/sincilddm.txt

If the module runs successfully, the following results:

1. Log file: Today's log file, 20040309.log, contains the messages "Program started …"
and "Program completed successfully" for sincildex.ksh.

2. Data: The sincilddm.txt file exists in the $MMHOME/data directory and contains
the extracted records.

3. Error file: The program's error file, sincildex.sincilddm.txt.20040309, contains the
standard RETL flow (ending with "All threads complete" and "Flow ran
successfully") and no additional error messages.

4. Program status control: The program status control file, sincildex.sincilddm.txt
.status.20040309, does not exist.

5. Reject file: The reject file, sincildex.sincilddm.txt.rej.20040309, does not exist.

If the module does not run successfully, the following results:

1. Log file: Today's log file, 20040309.log, does not contain the "Program completed
successfully" message for sincildex.ksh.

2. Data: The sincilddm.txt file may exist in the data directory but may not contain all
the extracted records.

3. Error file: The program's error file, sincildex.sincilddm.txt.20040309, may contain
an error message.

4. Program status control: The program status control file,
sincildex.sincilddm.txt.status.20040309, exists.

5. Reject file: The reject file, sincildex.sincilddm.txt.rej.20040309, does not exist
because this module does not reject records.

6. Bookmark file (in certain conditions): The bookmark file,
sincildex.sincilddm.txt.bkm.20040309, exists because this module contains more
than one flow. The error occurred after the first flow (for example, during the
second flow).

API Format

RETL Program Overview for the ReIM Extraction Program 8-9

To re-run a module from the beginning, perform the following actions:

1. Determine and fix the problem causing the error.

2. Remove the program's status control file.

3. Remove the bookmark file from $MMHOME/rfx/bookmark

4. Change directories to $MMHOME/rfx/src. At a Unix prompt, enter:

%sincildex.ksh $MMHOME/data/sincilddm.txt

RETL Extraction Program List
This section serves as a reference to the RETL extraction ReIM program.

Application Programming Interface (API) Flat File Specifications
This section contains APIs that describe the file format specifications for all text files.

In addition to providing individual field description and formatting information, the
APIs provide basic business rules for the incoming data.

API Format
Each API contains a business rules section and a file layout. Some general business
rules and standards are common to all APIs. The business rules are used to ensure the
integrity of the information held within RDW. In addition, each API contains a list of
rules that are specific to that particular API.

File Layout
■ Field Name: Provides the name of the field in the text file.

■ Description: Provides a brief explanation of the information held in the field.

Note: To understand how to engage in the restart and recovery
process, see the section, "Restart and Recovery", earlier in this chapter.

Program
Functional
Area

Source Table or
File Schema File Target File Arguments

sincildex.ksh Supplier Invoice
Cost

IM_DOC_
HEAD, IM_
INVOICE_
DETAIL,
ORDLOC,
ITEM_

MASTER

sincilddm.schem
a

sincilddm.txt output_file_
path/filename

API Format

8-10 Oracle Retail Invoice Matching Operations Guide

■ Data Type/Bytes: Includes both data type and maximum column length. Data
type identifies one of three valid data types: character, number, or date. Bytes
identifies the maximum bytes available for a field. A field may not exceed the
maximum number of bytes (note that ASCII characters usually have a ratio of 1
byte = 1 character).

– Character: Can hold letters (a,b,c…), numbers (1,2,3…), and special characters
($,#,&…)

– Numbers: Can hold only numbers (1,2,3…)

– Date: Holds a specific year, month, day combination. The format is
"YYYYMMDD", unless otherwise specified.

■ Any required formatting for a field is conveyed in the Bytes section. For example,
Number (18,4) refers to number precision and scale. The first value is the precision
and always matches the maximum number of digits for that field; the second
value is the scale and specifies, of the total digits in the field, how many digits
exist to the right of the decimal point. For example, the number
-12345678901234.1234 would take up twenty ASCII characters in the flat file;
however, the overall precision of the number is still (18,4).

■ Field Order: Identifies the order of the field in the schema file.

■ Required Field: Identifies whether the field can hold a null value. This section
holds either a 'yes' or a 'no'. A 'yes' signifies the field may not hold a null value. A
'no' signifies that the field may, but is not required, to hold a null value.

General Business Rules and Standards Common to All APIs
■ Complete "snapshot" (of what RDW refers to as dimension data): A majority of

RDW dimension code requires a complete view of all current dimensional data
(regardless of whether the dimension information has changed) once at the end of
every business day. If a complete view of the dimensional data is not provided in
the text file, invalid or incorrect dimensional data can result. For instance, not
including an active item in the prditmdm.txt file causes that item to be closed (as
of the extract date) in the data warehouse. When a sale for the item is processed,
the fact program will not find a matching "active" dimension record. Therefore, it
is essential, unless otherwise noted in each API's specific business rules section,
that a complete snapshot of the dimensional data be provided in each text file.

If there are no records for the day, an empty flat file must still be provided.

■ Updated and new records of (what RDW refers to as fact data): Facts being loaded
to RDW can either be new or updated facts. Unlike dimension snapshots, fact flat
files will only contain new/updated facts exported from the source system once
per day (or week, in some cases). Refer to each API's specific business rules section
for more details.

If there are no new or changed records for the day, an empty flat file must still be
provided.

■ Primary and local currency amount fields: Amounts will be stored in both
primary and local currencies for most fact tables. If the source system uses
multi-currency, then the primary currency column holds the primary currency
amount, and the local currency column holds the local currency amount. If the
location happens to use the primary currency, then both primary and local
amounts hold the primary currency amount. If the source system does not use
multi-currency, then only the primary currency fields are populated and the local
fields hold NULL values.

API Format

RETL Program Overview for the ReIM Extraction Program 8-11

■ Leading/trailing values: Values entered into the text files are the exact values
processed and loaded into the datamart tables. Therefore, the values with leading
and/or trailing zeros, characters, or nulls are processed as such. RDW does not
strip any of these leading or trailing values, unless otherwise noted in the
individual API's business rules section.

■ Indicator columns: Indicator columns are assumed to hold one of two values,
either Y for yes or N for no.

■ Delimiters:

– Dimension Flat File Delimiter Standards (as defined by RDW): Within
dimension text files, each field must be separated by a pipe (|) character, for
example a record from prddivdm.txt may look like the following:

1000|1|Homewares|2006|Henry Stubbs|2302|Craig Swanson
– Fact Flat File Delimiter Standards (as defined by RDW): Within facts text files,

each field must be separated by a semi-colon character (;). For example a
record from exchngratedm.txt may look like the following:

WIS;20010311;1.73527820592648544918
See the latest RETL Programmer's Guide for additional information.

■ End of Record Carriage Return: Each record in the text file must be separated by
an end of line carriage return. For example, the three records below, in which each
record holds four values, should be entered as:

1|2|3|4
5|6|7|8
9|10|11|12
and not as a continuous string of data, such as:

1|2|3|4|5|6|7|8|9|10|11|12

Note: Make sure the delimiter is never part of your data.

API Format

8-12 Oracle Retail Invoice Matching Operations Guide

sincilddm.txt
Business rules:

■ This interface file contains invoice and order cost information for each item on a
matched invoice.

■ This interface file cannot contain duplicate transactions for an item_idnt, po_idnt,
invc_idnt, supp_idnt, day_dt, and loc_idnt combination.

■ This interface file follows the fact flat file interface layout standard.

■ This interface file contains neither break-to-sell items nor packs that contain
break-to-sell component items.

Name Description Data Type/Bytes Field Order Required Field

ITEM_IDNT The unique identifier
of an item.

CHARACTER(25) 1 Yes

PO_IDNT The unique identifier
of a purchase order.

VARCHAR2(8) 2 Yes

INVC_IDNT The unique identifier
of an invoice.

VARCHAR2(10) 3 Yes

SUPP_IDNT The unique identifier
of a supplier.

CHARACTER(10) 4 Yes

DAY_DT The calendar day on
which the transaction
occurred.

DATE 5 Yes

LOC_IDNT The unique identifier
of the location.

CHARACTER(10) 6 Yes

F_SUPP_INVC_
UNIT_COST_AMT

The invoice cost, in
the system primary
currency.

NUMBER(18,4) 7 No

F_SUPP_INVC_
UNIT_COST_AMT_
LCL

The invoice cost, in
the local currency.

NUMBER(18,4) 8 No

F_SUPP_INVC_QTY The quantity of an
item shown on the
invoice.

NUMBER(12,4) 9 No

F_PO_ITEM_UNIT_
COST_AMT

The item's purchase
order unit cost, in
primary currency.

NUMBER(18,4) 10 No

F_PO_ITEM_UNIT_
COST_AMT_LCL

The item's purchase
order unit cost, in
local currency.

NUMBER(18,4) 11 No

	Contents
	Preface
	Audience
	Related Documents
	Customer Support
	Review Patch Documentation
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	1 Introduction
	What is Retail Invoice Matching?
	Oracle Retail-Based Enterprises
	Technical Architecture Overview

	2 Backend System Administration and Configuration
	System Assumptions
	reim.properties File
	Connection Information for the Database
	Authentication Section
	Minimum and Maximum Pool Size
	Security Ports
	Standard Formats
	Batch Date Format
	Quantity Decimals Allowed

	Size of Batch Updates
	Set the End of Week Day for the System
	Locking Timeout Variable
	Auto-Match Threading Options
	Generic Threading Options
	Parameter Used by EdiUpload Only
	Parameters Used by EdiUpload, AutoMatch, ComplexDealUpload, and FixedDealUpload

	Number of New Documents that EDI Invoice Upload Should Insert at a Time
	Invoice Characters
	Allowable Invoice Characters
	Invoices Beginning with Zero

	Deal Detail Purge Parameter

	system.properties File
	Determine Which General Ledger (GL) Options are Dynamic
	Child Invoice Indicator
	Set the Audit Period
	Mapping of Document Types to Action Codes

	integration.properties File
	Web Service Provider URL for Drill Forward
	Web Service Provider URL for Account Validation
	Web Service Provider URL for Account Username Validation
	Web Service Provider URL for Account Password Validation

	Logging Configuration
	Log4J Conventions
	Log4J Properties

	Internationalization
	Translation
	Language Configuration
	Supported Date Formats
	Cache Sizes for Translation Service
	ReIMResources.properties
	IM_USER_AUTHORIZATION

	3 Technical Architecture
	Overview
	The Layering Model
	Presentation Layer
	Middle Tier
	Service Layer Responsible for Business Logic
	Business Objects

	Data Access Layer (DAL)
	Database Layer
	Technical Services
	Application Parameter Service
	System Parameter Service
	Transaction Service
	Error Logging Service
	Log4J
	Internationalization Service
	Currency Service
	Time/Date Service
	Security Service

	Third Party Libraries

	ReIM-Related Java Terms and Standards

	4 Functional Design
	Invoice and Credit Note Matching Process Flow
	The Auto-Match Process
	TAX on Header Level Only Invoices
	Cost Pre-Matching
	PO/Location Summary Group Matching
	One-to-One Invoice Matching
	Elibigility for Line-Level Matching
	Line-Level Matching
	Recycling and Overall Flow
	Partially Matched Receipts
	Matching Tolerances
	History and Metrics

	Best Terms Calculations
	Terms Ranking Overview
	Supplier Options
	Terms Date
	Assumptions and Dependencies

	5 Integration
	Integration Overview
	From the Supplier (to EDI) to ReIM
	From ReIM (to EDI) to the Supplier
	From ReIM to the Staging Table for Financial Systems Interface
	From the Merchandising System to ReIM (Directly and Through EDI)
	From ReIM to Receiver Unit and Cost Staging Tables to RMS
	From ReIM to the Merchandising System
	From Workspace to ReIM and from ReIM to Workspace

	Electronic Data Interchange (EDI) Tables and Files
	The EDI Reject Table
	The EDI Reject File
	EDI Invoice Upload File Layout (Based on EDI 810)
	All Files Layouts Input and Output
	Notes

	EDI Invoice Download File Layout (Based on EDI 812)
	All File Layouts Input and Output

	Financial System Interface
	Foundation Financial Data Overview
	Location Account Segments
	Department/Class Account Segments

	Financial Transactions
	Complex and Fixed Deal-Related Posting
	Financial Posting

	Tracking Receipt Posts
	Tables Related to Tracking Receipt Posts
	Staging Tables to be used for Reporting

	Multiple Lines for an Individual Receipt Item
	Matching and Tracking Receipt Posts Processing
	Posting
	Reporting
	Integration with Financials Systems
	Multiple Sets of Books
	Matched Invoices and Approved Documents
	Non-Merchandise Invoices

	LDAP and Other User Interfaces
	LDAP
	ReIM User Table

	6 Technical Design
	Locking Design Summary
	Locking and Tables
	Locking Management

	Currency Design Summary
	Merchandising System (such as RMS) and ReIM Assumptions
	Currency Conversion Process for Amount Tolerances
	Currency-Related System Validations
	Java Currency Formatting

	Oracle Single Sign-on Overview
	What is Single Sign-On?
	What Do I Need for Oracle Single Sign-On?
	Can Oracle Single Sign-On Work with Other SSO Implementations?
	Oracle Single Sign-on Terms and Definitions
	Authentication
	Dynamically Protected URLS
	Identity Management Infrastructure
	MOD_OSSO
	Oracle Internet Directory
	Partner Application
	Realm
	Statically Protected URLs

	What Single Sign-On is Not
	How Oracle Single Sign-On Works
	Statically Protected URLs
	Dynamically Protected URLs
	Single Sign-on Topology

	Installation Overview
	Infrastructure Installation and Configuration
	OID User Data
	OID with Multiple Realms

	User Management
	OID DAS
	LDIF Scripts
	User Data Sychnronization

	Configuring ReIM for Oracle Single Sign-on

	7 Batch Processes
	Batch Architectural Overview
	EDI-Related File-Based Batch Processes
	Internal Batch Processes
	Internal Batch Processes that Write to Staging Tables
	Batch Processes that Extract from Merchandising System (RMS) Staging Tables

	Batch Names
	Functional Descriptions and Dependencies
	Features of the Batch Processes
	Scheduler and the Command Line
	Batch Return Values
	Batch Log and Error File Paths
	Multi Threading Batch Processes
	Complex Deal Upload (ComplexDealUploadBatch)
	Fixed Deal Upload (FixedDealUploadBatch)
	EDI Invoice Upload (EdiUploadBatch)
	Auto-Match (AutoMatchBatch)

	A Note about Restart and Recovery

	Executing Batch Processes
	Batch Purge Batch Design
	Usage
	SQL Queries
	Manual Propagation (Cascade) of Deletes to Child Tables
	Cascade Relationships
	Assumptions and Scheduling Notes
	Major Modules
	BatchPurgeBatch

	Primary Tables Involved

	Accounts Purge Batch Design
	Usage
	Major Modules
	Major Tables

	Discrepancy Purge Batch Design
	Major Modules
	Major Tables

	EDI Invoice Upload Batch Design
	Assumptions and Scheduling Notes
	Restart and Recovery
	Primary Tables Involved

	Auto-Match Batch Design
	Algorithms
	Assumptions and Scheduling Notes
	Post Processing
	High-Level Flow Diagram
	Primary Tables Involved

	Receipt Write-Off Batch Design
	Assumptions and Scheduling Notes
	High-Level Flow Diagram
	Primary Tables Involved
	REIM
	RMS

	Reason Code Action Rollup Batch Design
	Assumptions and Scheduling Notes
	High-Level Flow Diagram
	Primary Tables Involved

	Disputed Credit Memo Action Rollup Batch Design
	Assumptions and Scheduling Notes
	Primary Tables Involved

	Financial Posting Batch Design
	Assumptions and Scheduling Notes
	Primary Tables Involved
	Lookup Tables that Must be Populated
	Tables to Which the Process Posts Data
	IM_FINANCIALS_STAGE
	IM_AP_STAGE_HEAD
	IM_AP_STAGE_DETAIL

	EDI Invoice Download Batch Design
	Assumptions and Scheduling Notes
	Primary Tables Involved
	Restart and Recovery

	Complex Deal Upload Batch Design
	Assumptions and Scheduling Notes
	Primary Tables Involved

	Fixed Deal Upload Batch Design
	Assumptions and Scheduling Notes
	Primary Tables Involved

	8 RETL Program Overview for the ReIM Extraction Program
	Architectural Design
	ReIM Extraction Architecture

	Configuration
	RETL
	RETL User and Permissions
	Environment Variables
	dwi_config.env Settings
	Steps to Configure RETL

	Program Features
	Program Status Control Files
	File Naming Conventions

	Restart and Recovery
	Bookmark File
	Message Logging
	Daily Log File
	Format
	Program Error File
	ReIME Reject Files
	Schema Files
	Resource Files
	Command Line Parameters
	A Non-File Based Module that Requires Parameters

	Typical Run and Debugging Situations
	RETL Extraction Program List
	Application Programming Interface (API) Flat File Specifications
	API Format
	File Layout
	General Business Rules and Standards Common to All APIs
	sincilddm.txt

