In your organization, use BDD as the center of your data lab, as a
unified environment for navigating and exploring all of your data sources in
Hadoop, and to create projects and BDD applications.
Using BDD in the data lab
The data lab is a center of innovation that makes analytics creativity possible
for everyone who works with data. It supports a large portfolio of data
projects, and is integrated with the production environment for
commercialization and feedback.
The data lab is a complete set of descriptive, diagnostic, predictive,
and prescriptive analytics solutions. It is a place for collaboration between a
select group of analysts who work together as a team and have easy access to
multiple data sets. The data lab serves as an easy sandbox for ad-hoc data
experiments.
When used in the data lab, Big Data Discovery lets you:
- Define projects in BDD and
share them with others in your research data lab.
- Use BDD to quickly develop
ideas, build prototypes and models, and invent ways of deriving value from
data. For example, you can try out new approaches, quickly discard the ones
that are not working, and move on to try new ways of working with your data.
- Shape data in your
projects in multiple ways, from making easy single-row changes, such as
trimming, editing, splitting, or null-filling, to advanced data shaping
techniques, such as aggregations, joins, and custom transformations.
- Let others in your
organization consume models created in the data lab, and publish insights to
decision-making groups inside your organization.
Using BDD to navigate and explore data sets in Hadoop
When used as the navigator on top of your data
sources in Hadoop, BDD visually represents all data available to you in your
environment. You see all the data in Studio's Catalog and can find interesting
data sets quickly. You can filter, edit metadata on data sets, and create new
data sets for others in your team.
Using BDD to create BDD applications
BDD lets you create
BDD applications for well-established and known problems,
to suit your business needs. For example, you can:
- Create BDD projects from
scratch, improve them, and share them with wider groups of users in the
organization.
- Serve as the author of all
discovery solution elements: data sets, information models, discovery
applications, and transformation scripts.
- Run discovery repeatedly
and transparently to others in your group, and on different large-scale data
sets arriving periodically from various sources.