
Oracle Linux 7
Managing Core System Configuration

F32772-08
October 2022

Oracle Linux 7 Managing Core System Configuration,

F32772-08

Copyright © 2022, Oracle and/or its affiliates.

Contents

 Preface

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility v

Diversity and Inclusion v

1 Working With the GRUB 2 Bootloader and Configuring Boot Services

About the Boot Process 1-1

Working With the GRUB 2 Bootloader 1-2

Customizing GRUB 2 Configuration 1-2

Using the GRUB 2 Bootloader to Set the Default Boot Kernel 1-3

Kernel Boot Parameters 1-3

Modifying Kernel Boot Parameters Before Booting 1-5

Modifying Kernel Boot Parameters in GRUB 2 Configuration 1-6

2 Working With System Services

About the systemd Service Manager 2-1

About System-State Targets 2-1

Displaying the Default and Active System-State Targets 2-2

Changing the Default and Active System-State Targets 2-4

Shutting Down, Suspending, and Rebooting the System 2-5

Starting and Stopping Services 2-5

Enabling and Disabling Services 2-6

Displaying the Status of Services 2-7

Controlling Access to System Resources 2-8

Modifying systemd Configuration Files 2-9

Running systemctl on a Remote System 2-9

3 Configuring System Settings

About the /etc/sysconfig Files 3-1

iii

About the /proc Virtual File System 3-2

Virtual Files and Directories Under /proc 3-4

Changing Kernel Parameters 3-8

Parameters That Control System Performance 3-10

Parameters That Control Kernel Panics 3-11

About the /sys Virtual File System 3-12

Configuring System Date and Time Settings 3-13

4 Device Management

About Device Files 4-1

About the Udev Device Manager 4-3

About Udev Rules 4-3

Querying Udev and Sysfs 4-7

Modifying Udev Rules 4-10

5 Kernel Modules

About Kernel Modules 5-1

Listing Information about Loaded Modules 5-1

Loading and Unloading Modules 5-2

About Module Parameters 5-3

Specifying Modules To Be Loaded at Boot Time 5-5

About Weak Update Modules 5-5

iv

Preface

Oracle® Linux 7: Managing Core System Configuration provides information about
configuring Oracle Linux 7 systems, including the boot loader configuration and processes,
system devices, services and settings, as well as kernel parameters.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an action,
or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

For information about the accessibility of the Oracle Help Center, see the Oracle Accessibility
Conformance Report at https://www.oracle.com/corporate/accessibility/templates/
t2-11535.html.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry

v

https://docs.oracle.com/en/operating-systems/oracle-linux/7/osmanage/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

standards evolve. Because of these technical constraints, our effort to remove
insensitive terms is ongoing and will take time and external cooperation.

Preface

vi

1
Working With the GRUB 2 Bootloader and
Configuring Boot Services

This chapter describes the Oracle Linux boot process and how to configure and use the
GRUB 2 bootloader and other boot-related kernel parameters.

About the Boot Process
Understanding the Oracle Linux boot process can help you troubleshoot problems while
booting a system. The boot process involves several files and errors in these files are the
usual cause of boot problems.

When an Oracle Linux system boots, it performs the following operations:

1. The computer's BIOS performs a power-on self-test (POST), and then locates and
initializes any peripheral devices including the hard disk.

2. The BIOS reads the Master Boot Record (MBR) into memory from the boot device. (For
GUID Partition Table (GPT) disks, this MBR is the protective MBR on the first sector of
the disk.) The MBR stores information about the organization of partitions on that device.
On a computer with x86 architecture, the MBR occupies the first 512 bytes of the boot
device. The first 446 bytes contain boot code that points to the boot loader program,
which can be on the same device or on another device. The next 64 bytes contain the
partition table. The final two bytes are the boot signature, which is used for error
detection.

The default boot loader program that is used in Oracle Linux is the GRand Unified
Bootloader version 2 (GRUB 2).

3. The boot loader loads the vmlinuz kernel image file into memory and extracts the
contents of the initramfs image file into a temporary, memory-based file system (tmpfs).

4. The kernel loads the driver modules from the initramfs file system that are needed to
access the root file system.

5. The kernel starts the systemd process with a process ID of 1 (PID 1). systemd is the
ancestor of all processes on a system. systemd reads its configuration from files in
the /etc/systemd directory. The /etc/systemd/system.conf file controls how systemd
handles system initialization.

systemd reads the file linked by /etc/systemd/system/default.target, for
example /usr/lib/systemd/system/multi-user.target, to determine the default
system target.

Note:

You can use a kernel boot parameter to override the default system target. See
Kernel Boot Parameters.

1-1

The system target file defines the services that systemd starts.

systemd brings the system to the state defined by the system target, performing
system initialization tasks such as:

• Setting the host name.

• Initializing the network.

• Initializing SELinux based on its configuration.

• Printing a welcome banner.

• Initializing the system hardware based on kernel boot arguments.

• Mounting the file systems, including virtual file systems such as the /proc file
system.

• Cleaning up directories in /var.

• Starting swapping.

See About System-State Targets.

6. If you have made /etc/rc.local executable and you have copied /usr/lib/
systemd/system/rc-local.service to /etc/systemd/system, systemd runs any
actions that you have defined in /etc/rc.local. However, the preferred way of
running such local actions is to define your own systemd unit.

For information about systemd and on how to write systemd units, see the systemd(1),
systemd-system.conf(5), and systemd.unit(5) manual pages.

Working With the GRUB 2 Bootloader
The GRUB 2 bootloader can load many operating systems in addition to Oracle Linux
and it can chain-load proprietary operating systems. GRUB 2 understands the formats
of file systems and kernel executables, which allows it to load an arbitrary operating
system without needing to know the exact location of the kernel on the boot device.
GRUB 2 requires only the file name and drive partitions to load a kernel.

Customizing GRUB 2 Configuration
You can manage GRUB 2 configuration by using the GRUB 2 menu or by using the
command line.

Note:

Do not edit the GRUB 2 configuration file directly. On BIOS-based systems,
the configuration file is /boot/grub2/grub.cfg. On UEFI-based systems, the
configuration file is /boot/efi/EFI/redhat/grub.cfg.

The grub2-mkconfig command generates the configuration file by using
the template scripts in the /etc/grub.d file and menu configuration settings
are taken from the /etc/default/grub configuration file.

Chapter 1
Working With the GRUB 2 Bootloader

1-2

The default menu entry is determined by the value of the GRUB_DEFAULT parameter in /etc/
default/grub. The value saved allows you to use the grub2-set-default and grub2-
reboot commands to specify the default entry. grub2-set-default sets the default entry
for all subsequent reboots and grub2-reboot sets the default entry for the next reboot only.

If you specify a numeric value as the value of GRUB_DEFAULT or as an argument to either
grub2-reboot or grub2-set-default, GRUB 2 counts the menu entries in the
configuration file starting at 0 for the first entry.

Using the GRUB 2 Bootloader to Set the Default Boot Kernel
To set the UEK as the default boot kernel:

1. Display the menu entries that are defined in the configuration file, for example:

grep '^menuentry' /boot/grub2/grub.cfg

menuentry 'Oracle Linux Everything, with Linux 3.10.0-123.el7.x86_64' ... {
menuentry 'Oracle Linux Everything, with Linux 3.8.13-35.2.1.el7uek.x86_64' ... {
menuentry 'Oracle Linux Everything, with Linux 0-
rescue-052e316f566e4a45a3391cff21b4174b' ... {

In this example for a BIOS-based system, the configuration file is /boot/grub2/grub.cfg,
which contains menu entries 0, 1, and 2 that correspond to the RHCK, UEK, and the
rescue kernel respectively.

2. Enter the following commands to make the UEK (entry 1) the default boot kernel:

sudo grub2-set-default 1
sudo grub2-mkconfig -o /boot/grub2/grub.cfg

Alternatively, you can specify the value of the text of the entry as a string enclosed in
quotes.

sudo grub2-set-default 'Oracle Linux Everything, with Linux
3.8.13-35.2.1.el7uek.x86_64'
sudo grub2-mkconfig -o /boot/grub2/grub.cfg

For more information about using, configuring, and customizing GRUB 2, see the GNU
GRUB Manual, which is also installed as /usr/share/doc/grub2-tools-2.00/grub.html.

Kernel Boot Parameters
There are several kernel boot parameters that you can set. The following table lists some of
the more commonly used parameters.

Option Description

0, 1, 2, 3, 4, 5, or 6, or
systemd.unit=runlevelN.target

Specifies the nearest systemd-equivalent
system-state target to an Oracle Linux 6 run
level. N can take an integer value between 0
and 6.
For a description of system-state targets, see
About System-State Targets.

Chapter 1
Kernel Boot Parameters

1-3

http://www.gnu.org/software/grub/manual/grub.html
http://www.gnu.org/software/grub/manual/grub.html

Option Description

1, s, S, single, or
systemd.unit=rescue.target

Specifies the rescue shell. The system boots to
single-user mode prompts for the root
password.

3 or systemd.unit=multi-user.target Specifies the systemd target for multi-user,
non-graphical login.

5 or systemd.unit=graphical.target Specifies the systemd target for multi-user,
graphical login.

-b, emergency, or
systemd.unit=emergency.target

Specifies emergency mode. The system boots
to single-user mode and prompts for the root
password. Fewer services are started than
when in rescue mode.

KEYBOARDTYPE=kbtype Specifies the keyboard type, which is written
to /etc/sysconfig/keyboard in the
initramfs.

KEYTABLE=kbtype Specifies the keyboard layout, which is written
to /etc/sysconfig/keyboard in the
initramfs.

LANG=language_territory.codeset Specifies the system language and code set,
which is written to /etc/sysconfig/i18n in
the initramfs.

max_loop=N Specifies the number of loop devices (/dev/
loop*) that are available for accessing files as
block devices. The default and maximum
values of N are 8 and 255.

nouptrack Disables Ksplice Uptrack updates from being
applied to the kernel.

quiet Reduces debugging output.

rd_LUKS_UUID=UUID Activates an encrypted Linux Unified Key
Setup (LUKS) partition with the specified UUID.

rd_LVM_VG=vg/lv_vol Specifies an LVM volume group and volume to
be activated.

rd_NO_LUKS Disables detection of an encrypted LUKS
partition.

rhgb Specifies that the Red Hat graphical boot
display should be used to indicate the progress
of booting.

rn_NO_DM Disables Device-Mapper (DM) RAID detection.

rn_NO_MD Disables Multiple Device (MD) RAID detection.

ro root=/dev/mapper/vg-lv_root Specifies that the root file system is to be
mounted read only, and specifies the root file
system by the device path of its LVM volume
(where vg is the name of the volume group).

rw root=UUID=UUID Specifies that the root (/) file system is to be
mounted read-writable at boot time, and
specifies the root partition by its UUID.

selinux=0 Disables SELinux.

Chapter 1
Kernel Boot Parameters

1-4

Option Description

SYSFONT=font Specifies the console font, which is written
to /etc/sysconfig/i18n in the initramfs.

The kernel boot parameters that were last used to boot a system are recorded in /proc/
cmdline, as shown in the following example:

cat /proc/cmdline

BOOT_IMAGE=/vmlinuz-3.10.0-123.el7.x86_64
root=UUID=52c1cab6-969f-4872-958d-47f8518267de
ro rootflags=subvol=root vconsole.font=latarcyrheb-sun16 crashkernel=auto
vconsole.keymap=uk
rhgb quiet LANG=en_GB.UTF-8

For more information, see the kernel-command-line(7) manual page.

Modifying Kernel Boot Parameters Before Booting
To modify boot parameters before booting a kerne, follow these stepsl:

1. When presented with the GRUB boot menu, use the arrow keys to highlight the required
kernel and then press the space bar.

The following figure shows the GRUB menu with the Unbreakable Enterprise Kernel
(UEK) boot entry selected.

Figure 1-1 GRUB Menu with UEK boot entry selected

2. Press E to edit the boot configuration for the kernel.

3. Using the arrow keys, scroll down the screen until the cursor is at the start of the boot
configuration line for the kernel (which starts linux16).

4. Edit this line to change the boot parameters.

Chapter 1
Modifying Kernel Boot Parameters Before Booting

1-5

For example, press End to go to the end of the line and enter an additional boot
parameter.

The following figure shows the kernel boot line with the additional parameter
systemd.target=runlevel1.target, which starts the rescue shell.

Figure 1-2 Kernel Boot Line with an Additional Parameter to Select the
Rescue Shell

5. Press Ctrl+X to boot the system.

Modifying Kernel Boot Parameters in GRUB 2 Configuration
To modify boot parameters in the GRUB 2 configuration so that they are applied by
default at every reboot, follow these steps:

1. Edit the /etc/default/grub file and modify the parameters in the
GRUB_CMDLINE_LINUX definition, for example:

GRUB_CMDLINE_LINUX="vconsole.font=latarcyrheb-sun16 vconsole.keymap=uk
crashkernel=auto rd.lvm.lv=ol/swap rd.lvm.lv=ol/root biosdevname=0
rhgb quiet systemd.unit=runlevel3.target"

The previous example adds the systemd.unit=runlevel3.target parameter so
that the system boots into multi-user, non-graphical mode by default.

2. Rebuild the /boot/grub2/grub.cfg file as follows:

sudo grub2-mkconfig -o /boot/grub2/grub.cfg

This change takes effect for subsequent system reboots of all configured kernels.

Chapter 1
Modifying Kernel Boot Parameters in GRUB 2 Configuration

1-6

2
Working With System Services

This chapter describes how to manage system processes, services, and resources on a
running Oracle Linux system. Information about how to change the systemd target for a
system, as well as how to configure the services that are available for a target is also
provided.

About the systemd Service Manager
The systemd service manager replaces the Upstart init daemon in Oracle Linux 7, while
also providing backward compatibility for legacy Oracle Linux 6 service scripts. The systemd
service manager offers the following benefits over the init daemon:

• Services are started in parallel wherever possible by using socket-based activation and
D-Bus.

• Daemons can be started on demand.

• Processes are tracked by using control groups (cgroups).

• Snapshotting of the system state and restoration of the system state from a snapshot is
supported.

• mount points can be configured as systemd targets.

The systemd process is the first process that starts after the system boots and is the final
process that is running when the system shuts down. systemd controls the final stages of
booting and prepares the system for use. systemd also speeds up booting by loading
services concurrently.

systemd enables you to manage various types of units on a system, including services
(name .service) and targets (name .target), devices (name .device), file system mount
points (name .mount), and sockets (name .socket).

For example, the following command instructs the system to mount the temporary file system
(tmpfs) on /tmp at boot time:

sudo systemctl enable tmp.mount

About System-State Targets
The systemd service manager defines system-state targets that allow you to start a system
with only those services that are required for a specific purpose. For example, a server can
run more efficiently with multi-user.target, because it does not run the X Window System
at that run level. You should perform diagnostics, backups, and upgrades with rescue.target
only when root can use the system. Each run level defines the services that systemd stops
or starts. For example, systemd starts network services for multi-user.target and the X
Window System for graphical.target; whereas, it stops both of these services for
rescue.target.

2-1

The following table describes commonly used system-state targets and their
equivalent run-level targets, where compatibility with Oracle Linux 6 run levels is
required.

Table 2-1 System-State Targets and Equivalent Run-Level Targets

System-State Targets Equivalent Run-Level
Targets

Description

graphical.target runlevel5.target Set up a multi-user system
with networking and
display manager.

multi-user.target runlevel2.target
runlevel3.target
runlevel4.target

Set up a non-graphical
multi-user system with
networking.

poweroff.target runlevel0.target Shut down and power off
the system.

reboot.target runlevel6.target Shut down and reboot the
system.

rescue.target runlevel1.target Set up a rescue shell.

The runlevel* targets are implemented as symbolic links.

The nearest equivalent systemd target to the Oracle Linux 6 run levels 2, 3, and 4 is
multi-user.target.

For more information, see the systemd.target(5) manual page.

Displaying the Default and Active System-State Targets
To display the default system-state target, use the systemctl get-default
command:

sudo systemctl get-default

graphical.target

To display the currently active targets on a system, use the systemctl list-units
command:

sudo systemctl list-units --type target

UNIT LOAD ACTIVE SUB DESCRIPTION
basic.target loaded active active Basic System
cryptsetup.target loaded active active Encrypted Volumes
getty.target loaded active active Login Prompts
graphical.target loaded active active Graphical Interface
local-fs-pre.target loaded active active Local File Systems (Pre)
local-fs.target loaded active active Local File Systems
multi-user.target loaded active active Multi-User System
network.target loaded active active Network
nfs.target loaded active active Network File System Server
paths.target loaded active active Paths
remote-fs.target loaded active active Remote File Systems
slices.target loaded active active Slices
sockets.target loaded active active Sockets

Chapter 2
About System-State Targets

2-2

sound.target loaded active active Sound Card
swap.target loaded active active Swap
sysinit.target loaded active active System Initialization
timers.target loaded active active Timers

LOAD = Reflects whether the unit definition was properly loaded.
ACTIVE = The high-level unit activation state, i.e. generalization of SUB.
SUB = The low-level unit activation state, values depend on unit type.

17 loaded units listed. Pass --all to see loaded but inactive units, too.
To show all installed unit files use 'systemctl list-unit-files'.

The previous example output for a system with the graphical target active shows that this
target depends on 16 other active targets, including network and sound to support networking
and sound.

To display the status of all targets on the system, specify the --all option:

sudo systemctl list-units --type target --all

UNIT LOAD ACTIVE SUB DESCRIPTION
basic.target loaded active active Basic System
cryptsetup.target loaded active active Encrypted Volumes
emergency.target loaded inactive dead Emergency Mode
final.target loaded inactive dead Final Step
getty.target loaded active active Login Prompts
graphical.target loaded active active Graphical Interface
local-fs-pre.target loaded active active Local File Systems (Pre)
local-fs.target loaded active active Local File Systems
multi-user.target loaded active active Multi-User System
network-online.target loaded inactive dead Network is Online
network.target loaded active active Network
nfs.target loaded active active Network File System Server
nss-lookup.target loaded inactive dead Host and Network Name Lookups
nss-user-lookup.target loaded inactive dead User and Group Name Lookups
paths.target loaded active active Paths
remote-fs-pre.target loaded inactive dead Remote File Systems (Pre)
remote-fs.target loaded active active Remote File Systems
rescue.target loaded inactive dead Rescue Mode
shutdown.target loaded inactive dead Shutdown
slices.target loaded active active Slices
sockets.target loaded active active Sockets
sound.target loaded active active Sound Card
swap.target loaded active active Swap
sysinit.target loaded active active System Initialization
syslog.target not-found inactive dead syslog.target
time-sync.target loaded inactive dead System Time Synchronized
timers.target loaded active active Timers
umount.target loaded inactive dead Unmount All Filesystems

LOAD = Reflects whether the unit definition was properly loaded.
ACTIVE = The high-level unit activation state, i.e. generalization of SUB.
SUB = The low-level unit activation state, values depend on unit type.

28 loaded units listed.
To show all installed unit files use 'systemctl list-unit-files'.

For more information, see the systemctl(1) and systemd.target(5) manual pages.

Chapter 2
About System-State Targets

2-3

Changing the Default and Active System-State Targets
Use the systemctl set-default command to change the default system-state
target:

sudo systemctl set-default multi-user.target
sudo rm '/etc/systemd/system/default.target'
sudo ln -s '/usr/lib/systemd/system/multi-user.target' '/etc/systemd/system/
default.target'

Note:

This command changes the target to which the default target is linked, but
does not change the state of the system.

To change the currently active system target, use the systemctl isolate
command:

sudo systemctl isolate multi-user.target

Listing all of the targets shows that the graphical and sound targets are not active:

sudo systemctl list-units --type target --all

UNIT LOAD ACTIVE SUB DESCRIPTION
basic.target loaded active active Basic System
cryptsetup.target loaded active active Encrypted Volumes
emergency.target loaded inactive dead Emergency Mode
final.target loaded inactive dead Final Step
getty.target loaded active active Login Prompts
graphical.target loaded inactive dead Graphical Interface
local-fs-pre.target loaded active active Local File Systems (Pre)
local-fs.target loaded active active Local File Systems
multi-user.target loaded active active Multi-User System
network-online.target loaded inactive dead Network is Online
network.target loaded active active Network
nfs.target loaded active active Network File System Server
nss-lookup.target loaded inactive dead Host and Network Name Lookups
nss-user-lookup.target loaded inactive dead User and Group Name Lookups
paths.target loaded active active Paths
remote-fs-pre.target loaded inactive dead Remote File Systems (Pre)
remote-fs.target loaded active active Remote File Systems
rescue.target loaded inactive dead Rescue Mode
shutdown.target loaded inactive dead Shutdown
slices.target loaded active active Slices
sockets.target loaded active active Sockets
sound.target loaded inactive dead Sound Card
swap.target loaded active active Swap
sysinit.target loaded active active System Initialization
syslog.target not-found inactive dead syslog.target
time-sync.target loaded inactive dead System Time Synchronized
timers.target loaded active active Timers
umount.target loaded inactive dead Unmount All Filesystems

LOAD = Reflects whether the unit definition was properly loaded.
ACTIVE = The high-level unit activation state, i.e. generalization of SUB.

Chapter 2
About System-State Targets

2-4

SUB = The low-level unit activation state, values depend on unit type.

28 loaded units listed.
To show all installed unit files use 'systemctl list-unit-files'.

For more information, see the systemctl(1) manual page.

Shutting Down, Suspending, and Rebooting the System
The following list describes the systemctl commands that are used to shut down, reboot, or
otherwise suspend the operation of a system:

• systemctl halt: Halt the system.

• systemctl hibernate: Put the system into hibernation.

• systemctl hybrid-sleep: Put the system into hibernation and suspend its operration.

• systemctl poweroff: Halt and power off the system.

• systemctl reboot: Reboot the system.

• systemctl suspend: Suspend the system.

For more information, see the systemctl(1) manual page.

Starting and Stopping Services
To start a service, use the systemctl command with the start argument:

sudo systemctl start sshd

For legacy scripts in the /etc/init.d file that have not been ported as systemd services, you
can run the script directly with the start argument, for example:

/etc/init.d/yum-cron start

To stop a service, use the stop argument to systemctl:

sudo systemctl stop sshd

Note:

Changing the state of a service only lasts as long as the system remains at the
same state. If you stop a service and then change the system-state target to one in
which the service is configured to run (for example, by rebooting the system), the
service restarts. Similarly, starting a service does not enable the service to start
following a reboot. See Enabling and Disabling Services for details.

The systemctl service manager supports the disable, enable, reload, restart,
start, status, and stop actions for services. For other actions, you must either run the
script that the service provides to support these actions; or, for legacy scripts, the /etc/
init.d script with the required action argument. For legacy scripts, omitting the argument to
the script displays a usage message, for example:

/etc/init.d/yum-cron

Chapter 2
About System-State Targets

2-5

Usage: /etc/init.d/yum-cron {start|stop|status|restart|reload|force-reload|
condrestart}

For more information, see the systemctl(1) manual page.

Enabling and Disabling Services
You can use the systemctl command to enable or disable a service from starting
when the system starts, for example:

sudo systemctl enable httpd
sudo ln -s '/usr/lib/systemd/system/httpd.service' '/etc/systemd/system/multi-
user.target.wants/httpd.service'

The previous command enables a service by creating a symbolic link for the lowest-
level system-state target at which the service should start. In the example, the
command creates the symbolic link httpd.service for the multi-user target.

Disabling a service removes the symbolic link, for example:

sudo systemctl disable httpd
sudo rm '/etc/systemd/system/multi-user.target.wants/httpd.service'

You can use the is-enabled subcommand to check whether a service is enabled:

sudo systemctl is-enabled httpd

disabled

sudo systemctl is-enabled nfs

enabled

After running the systemctl disable command, the service can still be started or
stopped by user accounts, scripts and other processes. If that is not your desired
behavior, use the systemctl mask command to disable the service completely:

sudo systemctl mask httpd

Created symlink from '/etc/systemd/system/multi-user.target.wants/httpd.service'
to '/dev/null'

If you try to run the service, you will see an error message stating that the unit has
been masked because the service reference was changed to /dev/null:

sudo systemctl start httpd

Failed to start httpd.service: Unit is masked.

To re-link the service reference back to the matching service unit configuration file, use
the systemctl unmask command:

sudo systemctl unmask httpd

For more information, see the systemctl(1) manual page.

Chapter 2
About System-State Targets

2-6

Displaying the Status of Services
You can use the is-active subcommand to check whether a service is running (active) or
not running (inactive):

sudo systemctl is-active httpd

active

sudo systemctl is-active nfs

inactive

You can use the status action to view a detailed summary of the status of a service,
including a tree of all the tasks in the control group (cgroup) that the service implements:

sudo systemctl status httpd

httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; enabled)
 Active: active (running) since Mon 2014-04-28 15:02:40 BST; 1s ago
 Main PID: 6452 (httpd)
 Status: "Processing requests..."
 CGroup: /system.slice/httpd.service
 ├─6452 /usr/sbin/httpd -DFOREGROUND
 ├─6453 /usr/sbin/httpd -DFOREGROUND
 ├─6454 /usr/sbin/httpd -DFOREGROUND
 ├─6455 /usr/sbin/httpd -DFOREGROUND
 ├─6456 /usr/sbin/httpd -DFOREGROUND
 └─6457 /usr/sbin/httpd -DFOREGROUND

Apr 28 15:02:40 localhost.localdomain systemd[1]: Started The Apache HTTP Ser...
Hint: Some lines were ellipsized, use -l to show in full.

A cgroup is a collection of processes that are bound together so that you can control their
access to system resources. In the previous example, the cgroup for the httpd service is
httpd.service, which is in the system slice.

Slices divide the cgroups on a system into different categories. To display the slice and
cgroup hierarchy, use the systemd-cgls command:

sudo systemd-cgls

├─1 /usr/lib/systemd/systemd --system --deserialize 17
├─user.slice
│ ├─user-0.slice
│ │ └─session-3.scope
│ │ └─9313 /usr/sbin/anacron -s
│ └─user-1000.slice
│ └─session-5.scope
│ ├─15980 sshd: root [priv]
│ ├─15983 sshd: root@pts/1
│ ├─15984 -bash
│ ├─17605 sudo systemd-cgls
│ ├─17607 systemd-cgls
│ └─17608 less
└─system.slice
 ├─rngd.service
 │ └─1042 /sbin/rngd -f

Chapter 2
About System-State Targets

2-7

 ├─irqbalance.service
 │ └─1067 /usr/sbin/irqbalance --foreground
 ├─libstoragemgmt.service
 │ └─1057 /usr/bin/lsmd -d
 ├─systemd-udevd.service
 │ └─24714 /usr/lib/systemd/systemd-udevd
 ├─polkit.service
 │ └─1064 /usr/lib/polkit-1/polkitd --no-debug
 ├─chronyd.service
 │ └─1078 /usr/sbin/chronyd
 ├─auditd.service
 │ └─1012 /sbin/auditd
 ├─tuned.service
 │ └─2405 /usr/bin/python2 -Es /usr/sbin/tuned -l -P
 ├─systemd-journald.service
 │ └─820 /usr/lib/systemd/systemd-journald
 ├─atd.service
 │ └─1824 /usr/sbin/atd -f
 ├─sshd.service

system.slice contains services and other system processes, while user.slice
contains user processes, which run within transient cgroups called scopes. In the
example, the processes for the user with ID 1000 are running in the session-5.scope
scope, under the /user.slice/user-1000.slice slice.

You can use the systemctl command to limit the CPU, I/O, memory, and other
resources that are available to the processes in service and scope cgroups. See
Controlling Access to System Resources.

For more information, see the systemctl(1) and systemd-cgls(1) manual pages.

Controlling Access to System Resources
You use the systemctl command to control a cgroup's access to system resources,
for example:

sudo systemctl set-property httpd.service CPUShares=512 MemoryLimit=1G

CPUShare controls access to CPU resources. As the default value is 1024, a value of
512 halves the access that the processes in the cgroup have to CPU time. Similarly,
MemoryLimit controls the maximum amount of memory that the cgroup can use.

Note:

You do not need to specify the .service extension to the name of a service.

If you specify the --runtime option, the setting does not persist across system
reboots.

sudo systemctl --runtime set-property httpd CPUShares=512 MemoryLimit=1G

Alternatively, you can change the resource settings for a service under the [Service]
heading in the service's configuration file in /usr/lib/systemd/system. After editing
the file, direct systemd to reload its configuration files and then restart the service, as
shown in the following example:

Chapter 2
About System-State Targets

2-8

sudo systemctl daemon-reload
sudo systemctl restart service

You can run general commands within scopes and use the systemctl command to control
the access that these transient cgroups have to system resources.

To run a command within in a scope, use the systemd-run command:

sudo systemd-run --scope --unit=group_name [--slice=slice_name] command

If you do not want to create the group under the default system slice, you can specify another
slice or the name of a new slice.

Note:

If you do not specify the --scope option, the control group is a created as a
service rather than as a scope.

For example, run a command named mymonitor in mymon.scope under myslice.slice:

sudo systemd-run --scope --unit=mymon --slice=myslice mymonitor

Running as unit mymon.scope.

You can then use the systemctl command to control the access that a scope has to system
resources in the same way as for a service. However, unlike a service, you must specify
the .scope extension, for example:

sudo systemctl --runtime set-property mymon.scope CPUShares=256

For more information see the systemctl(1), systemd-cgls(1), and systemd.resource-
control(5) manual pages.

Modifying systemd Configuration Files
If you want to change the configuration of systemd, copy the service, target, mount, socket
or other file from /usr/lib/systemd/system to /etc/systemd/system and edit this copy of
the original file. Note that the version of the file in /etc/systemd/system takes precedence
over the version in /usr/lib/systemd/system and is not overwritten when you update a
package that touches files in /usr/lib/systemd/system. To make systemd revert to using the
original version of the file, either rename or delete the modified copy of the file in /etc/
systemd/system.

Running systemctl on a Remote System
If the sshd service is running on a remote Oracle Linux 7 system, you can use the -H option
with systemctl to control the system remotely, as shown in the following example:

sudo systemctl -H root@10.0.0.2 status sshd

root@10.0.0.2's password: password
sshd.service - OpenSSH server daemon
 Loaded: loaded (/usr/lib/systemd/system/sshd.service; enabled)
 Active: active (running) since Fri 2014-05-23 09:27:22 BST; 5h 43min ago

Chapter 2
About System-State Targets

2-9

 Process: 1498 ExecStartPre=/usr/sbin/sshd-keygen (code=exited, status=0/
SUCCESS)
 Main PID: 1524 (sshd)
 CGroup: /system.slice/sshd.service

For more information see the systemctl(1) manual page.

Chapter 2
About System-State Targets

2-10

3
Configuring System Settings

This chapter describes the files and virtual file systems that you can use to change
configuration settings for your system.

About the /etc/sysconfig Files
The /etc/sysconfig directory contains files that control your system's configuration. The
contents of this directory depend on the packages that you have installed on your system.

Some of the files that you might find in the /etc/sysconfig directory include:

atd
Specifies additional command line arguments for the atd daemon.

authconfig
Specifies whether various authentication mechanisms and options may be used. For
example, the entry USEMKHOMEDIR=no disables the creation of a home directory for a user
when he or she first logs in.

autofs
Defines custom options for automatically mounting devices and controlling the operation of
the automounter.

crond
Passes arguments to the crond daemon at boot time.

firewalld
Passes arguments to the firewall daemon (firewalld) at boot time.

grub
Specifies default settings for the GRUB 2 boot loader. This file is a symbolic link to /etc/
default/grub. For more information, see Working With the GRUB 2 Bootloader.

init
Controls how the system appears and functions during the boot process.

keyboard
Specifies the keyboard.

modules (directory)
Contains scripts that the kernel runs to load additional modules at boot time. A script in the
modules directory must have the extension .modules and it must have 755 executable
permissions. For an example, see the bluez-uinput.modules script that loads the uinput
module. For more information, see Specifying Modules To Be Loaded at Boot Time.

named
Passes arguments to the name service daemon at boot time. The named daemon is a
Domain Name System (DNS) server that is part of the Berkeley Internet Name Domain

3-1

(BIND) distribution. This server maintains a table that associates host names with IP
addresses on the network.

nfs
Controls which ports remote procedure call (RPC) services use for NFS v2 and v3.
This file allows you to set up firewall rules for NFS v2 and v3. Firewall configuration
for NFS v4 does not require you to edit this file.

ntpd
Passes arguments to the network time protocol (NTP) daemon at boot time.

samba
Passes arguments to the smbd, nmbd, and winbindd daemons at boot time to support
file-sharing connectivity for Windows clients, NetBIOS-over-IP naming service, and
connection management to domain controllers.

selinux
Controls the state of SELinux on the system. This file is a symbolic link to /etc/
selinux/config. For more information, see Oracle® Linux: Administering SELinux.

snapper
Defines a list of btrfs file systems and thinly-provisioned LVM volumes whose contents
can be recorded as snapshots by the snapper utility. For more information, see Oracle
Linux 7: Managing File Systems.

sysstat
Configures logging parameters for system activity data collector utilities such as
sadc.

For more information, see /usr/share/doc/initscripts*/sysconfig.txt.

Note:

In previous releases of Oracle Linux, the host name of the system was
defined in /etc/sysconfig/network. The host name is now defined in /etc/
hostname and can be changed by using the hostnamectl command. The
host name must be a fully qualified domain name (FQDN), for example,
host20.mydomain.com, instead of a simple short name.

Additionally, system-wide default localization settings such as the default
language, keyboard, and console font were defined in /etc/sysconfig/i18n.
These settings are now defined in /etc/locale.conf and /etc/
vconsole.conf.

For more information, see the hostname(5), hostnamectl(1),
locale.conf(5), and vconsole.conf(5) manual pages.

About the /proc Virtual File System
The files in the /proc directory hierarchy contain information about your system
hardware and the processes that are running on the system. You can change the
configuration of the kernel by writing to certain files that have write permission.

Chapter 3
About the /proc Virtual File System

3-2

https://docs.oracle.com/en/operating-systems/oracle-linux/selinux/
https://docs.oracle.com/en/operating-systems/oracle-linux/7/fsadmin/
https://docs.oracle.com/en/operating-systems/oracle-linux/7/fsadmin/

The name of the proc file system stems from its original purpose on the Oracle Solaris
operating system, which was to allow access by debugging tools to the data structures inside
running processes. Linux added this interface and extended it to allow access to data
structures in the kernel. Over time, /proc became quite disordered and the sysfs file system
was created in an attempt to tidy it up. For more information, see About the /sys Virtual File
System.

Files under the /proc directory are virtual files that the kernel creates on demand to present a
browsable view of the underlying data structures and system information. As such, /proc is
an example of a virtual file system. Most virtual files are listed as zero bytes in size, but they
contain a large amount of information when viewed.

Virtual files such as /proc/interrupts, /proc/meminfo, /proc/mounts, and /proc/
partitions provide a view of the system’s hardware. Others, such as /proc/filesystems
and the files under /proc/sys provide information about the system's configuration and allow
this configuration to be modified.

Files that contain information about related topics are grouped into virtual directories. For
example, a separate directory exists in /proc for each process that is currently running on the
system, and the directory's name corresponds to the numeric process ID. /proc/1
corresponds to the systemd process, which has a PID of 1.

You can use commands such as cat, less, and view to examine virtual files within /proc.
For example, /proc/cpuinfo contains information about the system's CPUs:

sudo cat /proc/cpuinfo

processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 42
model name : Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz
stepping : 7
cpu MHz : 2393.714
cache size : 6144 KB
physical id : 0
siblings : 2
core id : 0
cpu cores : 2
apicid : 0
initial apicid : 0
fpu : yes
fpu_exception : yes
cpuid level : 5
wp : yes
...

Certain files under /proc require root privileges for access or contain information that is not
human-readable. You can use utilities such as lspci, free, and top to access the
information in these files. For example, lspci lists all PCI devices on a system:

sudo lspci

00:00.0 Host bridge: Intel Corporation 440FX - 82441FX PMC [Natoma] (rev 02)
00:01.0 ISA bridge: Intel Corporation 82371SB PIIX3 ISA [Natoma/Triton II]
00:01.1 IDE interface: Intel Corporation 82371AB/EB/MB PIIX4 IDE (rev 01)
00:02.0 VGA compatible controller: InnoTek Systemberatung GmbH VirtualBox Graphics
Adapter

Chapter 3
About the /proc Virtual File System

3-3

00:03.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet
Controller (rev 02)
00:04.0 System peripheral: InnoTek Systemberatung GmbH VirtualBox Guest Service
00:05.0 Multimedia audio controller: Intel Corporation 82801AA AC'97 Audio
Controller (rev 01)
00:06.0 USB controller: Apple Inc. KeyLargo/Intrepid USB
00:07.0 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 08)
00:0b.0 USB controller: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family)
USB2 EHCI Controller
00:0d.0 SATA controller: Intel Corporation 82801HM/HEM (ICH8M/ICH8M-E) SATA
Controller [AHCI mode]
 (rev 02)
...

Virtual Files and Directories Under /proc
The following table lists the most useful virtual files and directories under the /proc
directory hierarchy.

Table 3-1 Useful Virtual Files and Directories Under /proc

Virtual File or Directory Description

PID (Directory) Provides information about the process
with the process ID (PID). The directory's
owner and group is same as the process's.
Useful files under the directory include:

cmdline
Command path.

cwd
Symbolic link to the process's current
working directory.

environ
Environment variables.

exe
Symbolic link to the command executable.

fd/N
File descriptors.

maps
Memory maps to executable and library
files.

root
Symbolic link to the effective root
directory for the process.

stack
The contents of the kernel stack.

status
Run state and memory usage.

Chapter 3
About the /proc Virtual File System

3-4

Table 3-1 (Cont.) Useful Virtual Files and Directories Under /proc

Virtual File or Directory Description

buddyinfo Provides information for diagnosing
memory fragmentation.

bus (directory) Contains information about the various
buses (such as pci and usb) that are
available on the system. You can use
commands such as lspci, lspcmcia, and
lsusb to display information for such
devices.

cgroups Provides information about the resource
control groups that are in use on the
system.

cmdline Lists parameters passed to the kernel at
boot time.

cpuinfo Provides information about the system's
CPUs.

crypto Provides information about all installed
cryptographic cyphers.

devices Lists the names and major device numbers
of all currently configured characters and
block devices.

dma Lists the direct memory access (DMA)
channels that are currently in use.

driver (directory) Contains information about drivers used
by the kernel, such as those for non-volatile
RAM (nvram), the real-time clock (rtc), and
memory allocation for sound (snd-page-
alloc).

execdomains Lists the execution domains for binaries
that the Oracle Linux kernel supports.

filesystems Lists the file system types that the kernel
supports. Entries marked with nodev are
not in use.

fs (directory) Contains information about mounted file
systems, organized by file system type.

interrupts Records the number of interrupts per
interrupt request queue (IRQ) for each CPU
since system startup.

iomem Lists the system memory map for each
physical device.

ioports Lists the range of I/O port addresses that
the kernel uses with devices.

irq (directory) Contains information about each IRQ. You
can configure the affinity between each
IRQ and the system CPUs.

Chapter 3
About the /proc Virtual File System

3-5

Table 3-1 (Cont.) Useful Virtual Files and Directories Under /proc

Virtual File or Directory Description

kcore Presents the system's physical memory in
core file format that you can examine
using a debugger such as crash or gdb.
This file is not human-readable.

kmsg Records kernel-generated messages, which
are picked up by programs such as dmesg.

loadavg Displays the system load averages (number
of queued processes) for the past 1, 5, and
15 minutes, the number of running
processes, the total number of processes,
and the PID of the process that is running.

locks Displays information about the file locks
that the kernel is currently holding on
behalf of processes. The information
provided includes:
• lock class (FLOCK or POSIX)
• lock type (ADVISORY or MANDATORY)
• access type (READ or WRITE)
• process ID
• major device, minor device, and inode

numbers
• bounds of the locked region

mdstat Lists information about multiple-disk RAID
devices.

meminfo Reports the system's usage of memory in
more detail than is available using the
free or top commands.

modules Displays information about the modules
that are currently loaded into the kernel.
The lsmod command formats and displays
the same information, excluding the kernel
memory offset of a module.

mounts Lists information about all mounted file
systems.

net (directory) Provides information about networking
protocol, parameters, and statistics. Each
directory and virtual file describes aspects
of the configuration of the system's
network.

partitions Lists the major and minor device numbers,
number of blocks, and name of partitions
mounted by the system.

scsi/device_info Provides information about supported SCSI
devices.

scsi/scsi and

scsi/sg/*
Provide information about configured SCSI
devices, including vendor, model, channel,
ID, and LUN data .

Chapter 3
About the /proc Virtual File System

3-6

Table 3-1 (Cont.) Useful Virtual Files and Directories Under /proc

Virtual File or Directory Description

self Symbolic link to the process that is
examining /proc.

slabinfo Provides detailed information about slab
memory usage.

softirqs Displays information about software
interrupts (softirqs). A softirq is similar to a
hardware interrupt (hardirq) and allow the
kernel to perform asynchronous
processing that would take too long during
a hardware interrupt.

stat Records information about the system
since it was started, including:

cpu
Total CPU time (measured in jiffies) spent
in user mode, low-priority user mode,
system mode, idle, waiting for I/O,
handling hardirq events, and handling
softirq events.

cpuN
Times for CPU N.

swaps Provides information about swap devices.
The units of size and usage are kilobytes.

sys (directory) Provides information about the system and
also allows you to enable, disable, or
modify kernel features. You can write new
settings to any file that has write
permission. See Changing Kernel
Parameters.

The following subdirectory hierarchies of /
proc/sys contain virtual files, some of
whose values you can usefully alter:

dev
Device parameters.

fs
File system parameters.

kernel
Kernel configuration parameters.

net
Networking parameters.

Chapter 3
About the /proc Virtual File System

3-7

Table 3-1 (Cont.) Useful Virtual Files and Directories Under /proc

Virtual File or Directory Description

sysvipc (directory) Provides information about the usage of
System V Interprocess Communication
(IPC) resources for messages (msg),
semaphores (sem), and shared memory
(shm).

tty (directory) Provides information about the available
and currently used terminal devices on the
system. The drivers virtual file lists the
devices that are currently configured.

vmstat Provides information about virtual
memory usage.

For more information, see the proc(5) manual page.

Changing Kernel Parameters
Some virtual files under /proc, and under /proc/sys in particular, are writable and you
can use them to adjust settings in the kernel. For example, to change the host name,
you can write a new value to /proc/sys/kernel/hostname:

echo www.mydomain.com > /proc/sys/kernel/hostname

Other files take value that take binary or Boolean values. For example, the value of /
proc/sys/net/ipv4/ip_forward determines whether the kernel forwards IPv4 network
packets.

cat /proc/sys/net/ipv4/ip_forward

0

echo 1 > /proc/sys/net/ipv4/ip_forward
cat /proc/sys/net/ipv4/ip_forward

1

You can use the sysctl command to view or modify values under the /proc/sys
directory.

Note:

Even root cannot bypass the file access permissions of virtual file entries
under /proc. If you attempt to change the value of a read-only entry such
as /proc/partitions, there is no kernel code to service the write() system
call.

To display all of the current kernel settings:

sudo sysctl -a

Chapter 3
About the /proc Virtual File System

3-8

kernel.sched_child_runs_first = 0
kernel.sched_min_granularity_ns = 2000000
kernel.sched_latency_ns = 10000000
kernel.sched_wakeup_granularity_ns = 2000000
kernel.sched_shares_ratelimit = 500000
...

Note:

The delimiter character in the name of a setting is a period (.) rather than a slash
(/) in a path relative to /proc/sys. For example, net.ipv4.ip_forward represents
net/ipv4/ip_forward and kernel.msgmax represents kernel/msgmax.

To display an individual setting, specify its name as the argument to sysctl:

sudo sysctl net.ipv4.ip_forward

net.ipv4.ip_forward = 0

To change the value of a setting, use the following form of the command:

sudo sysctl -w net.ipv4.ip_forward=1

net.ipv4.ip_forward = 1

Changes that you make in this way remain in force only until the system is rebooted. To make
configuration changes persist after the system is rebooted, you must add them to the /etc/
sysctl.d directory as a configuration file. Any changes that you make to the files in this
directory take effect when the system reboots or if you run the sysctl --system
command, for example:

echo 'net.ipv4.ip_forward=1' > /etc/sysctl.d/ip_forward.conf
grep -r ip_forward /etc/sysctl.d

/etc/sysctl.d/ip_forward.conf:net.ipv4.ip_forward=1

sudo sysctl net.ipv4.ip_forward

net.ipv4.ip_forward = 0

sudo sysctl --system

* Applying /usr/lib/sysctl.d/00-system.conf ...
net.bridge.bridge-nf-call-ip6tables = 0
net.bridge.bridge-nf-call-iptables = 0
net.bridge.bridge-nf-call-arptables = 0
* Applying /usr/lib/sysctl.d/50-default.conf ...
kernel.sysrq = 16
kernel.core_uses_pid = 1
net.ipv4.conf.default.rp_filter = 1
net.ipv4.conf.all.rp_filter = 1
net.ipv4.conf.default.accept_source_route = 0
net.ipv4.conf.all.accept_source_route = 0
net.ipv4.conf.default.promote_secondaries = 1
net.ipv4.conf.all.promote_secondaries = 1
fs.protected_hardlinks = 1
fs.protected_symlinks = 1

Chapter 3
About the /proc Virtual File System

3-9

* Applying /etc/sysctl.d/99-sysctl.conf ...
* Applying /etc/sysctl.d/ip_forward.conf ...
net.ipv4.ip_forward = 1
* Applying /etc/sysctl.conf ...
sysctl net.ipv4.ip_forward
net.ipv4.ip_forward = 1

For more information, see the sysctl(8) and sysctl.d(5) manual pages.

Parameters That Control System Performance
The following parameters control aspects of system performance:

fs.file-max
Specifies the maximum number of open files for all processes. Increase the value of
this parameter if you see messages about running out of file handles.

net.core.netdev_max_backlog
Specifies the size of the receiver backlog queue, which is used if an interface receives
packets faster than the kernel can process them. If this queue is too small, packets
are lost at the receiver, rather than on the network.

net.core.rmem_max
Specifies the maximum read socket buffer size. To minimize network packet loss, this
buffer must be large enough to handle incoming network packets.

net.core.wmem_max
Specifies the maximum write socket buffer size. To minimize network packet loss, this
buffer must be large enough to handle outgoing network packets.

net.ipv4.tcp_available_congestion_control
Displays the TCP congestion avoidance algorithms that are available for use. Use the
modprobe command if you need to load additional modules such as tcp_htcp to
implement the htcp algorithm.

net.ipv4.tcp_congestion_control
Specifies which TCP congestion avoidance algorithm is used.

net.ipv4.tcp_max_syn_backlog
Specifies the number of outstanding SYN requests that are allowed. Increase the value
of this parameter if you see synflood warnings in your logs, and investigation shows
that they are occurring because the server is overloaded by legitimate connection
attempts.

net.ipv4.tcp_rmem
Specifies minimum, default, and maximum receive buffer sizes that are used for a
TCP socket. The maximum value cannot be larger than net.core.rmem_max.

net.ipv4.tcp_wmem
Specifies minimum, default, and maximum send buffer sizes that are used for a TCP
socket. The maximum value cannot be larger than net.core.wmem_max.

vm.swappiness
Specifies how likely the kernel is to write loaded pages to swap rather than drop
pages from the system page cache. When set to 0, swapping only occurs to avoid an

Chapter 3
About the /proc Virtual File System

3-10

out of memory condition. When set to 100, the kernel swaps aggressively. For a desktop
system, setting a lower value can improve system responsiveness by decreasing latency.
The default value is 60.

Caution:

This parameter is intended for use with laptops to reduce power consumption by
the hard disk. Do not adjust this value on server systems.

Parameters That Control Kernel Panics
The following parameters control the circumstances under which a kernel panic can occur:

kernel.hung_task_panic
(UEK R3 only) If set to 1, the kernel panics if any kernel or user thread sleeps in the
TASK_UNINTERRUPTIBLE state (D state) for more than kernel.hung_task_timeout_secs
seconds. A process remains in D state while waiting for I/O to complete. You cannot kill or
interrupt a process in this state.
The default value is 0, which disables the panic.

Tip:

To diagnose a hung thread, you can examine /proc/PID/stack, which displays the
kernel stack for both kernel and user threads.

kernel.hung_task_timeout_secs
(UEK R3 only) Specifies how long a user or kernel thread can remain in D state before a
warning message is generated or the kernel panics (if the value of kernel.hung_task_panic
is 1). The default value is 120 seconds. A value of 0 disables the timeout.

kernel.nmi_watchdog
If set to 1 (default), enables the non-maskable interrupt (NMI) watchdog thread in the kernel.
If you want to use the NMI switch or the OProfile system profiler to generate an undefined
NMI, set the value of kernel.nmi_watchdog to 0.

kernel.panic
Specifies the number of seconds after a panic before a system will automatically reset itself.
If the value is 0, the system hangs, which allows you to collect detailed information about the
panic for troubleshooting. This is the default value.
To enable automatic reset, set a non-zero value. If you require a memory image (vmcore),
allow enough time for Kdump to create this image. The suggested value is 30 seconds,
although large systems will require a longer time.

kernel.panic_on_io_nmi
If set to 0 (default), the system tries to continue operations if the kernel detects an I/O
channel check (IOCHK) NMI that usually indicates a uncorrectable hardware error. If set to 1,
the system panics.

Chapter 3
About the /proc Virtual File System

3-11

kernel.panic_on_oops
If set to 0, the system tries to continue operations if the kernel encounters an oops or
BUG condition. If set to 1 (default), the system delays a few seconds to give the
kernel log daemon, klogd, time to record the oops output before the panic occurs.
In an OCFS2 cluster. set the value to 1 to specify that a system must panic if a kernel
oops occurs. If a kernel thread required for cluster operation crashes, the system
must reset itself. Otherwise, another node might not be able to tell whether a node is
slow to respond or unable to respond, causing cluster operations to hang.

kernel.panic_on_stackoverflow
(RHCK only) If set to 0 (default), the system tries to continue operations if the kernel
detects an overflow in a kernel stack. If set to 1, the system panics.

kernel.panic_on_unrecovered_nmi
If set to 0 (default), the system tries to continue operations if the kernel detects an
NMI that usually indicates an uncorrectable parity or ECC memory error. If set to 1,
the system panics.

kernel.softlockup_panic
If set to 0 (default), the system tries to continue operations if the kernel detects a soft-
lockup error that causes the NMI watchdog thread to fail to update its time stamp for
more than twice the value of kernel.watchdog_thresh seconds. If set to 1, the
system panics.

kernel.unknown_nmi_panic
If set to 1, the system panics if the kernel detects an undefined NMI. You would
usually generate an undefined NMI by manually pressing an NMI switch. As the NMI
watchdog thread also uses the undefined NMI, set the value of
kernel.unknown_nmi_panic to 0 if you set kernel.nmi_watchdog to 1.

kernel.watchdog_thresh
Specifies the interval between generating an NMI performance monitoring interrupt
that the kernel uses to check for hard-lockup and soft-lockup errors. A hard-lockup
error is assumed if a CPU is unresponsive to the interrupt for more than
kernel.watchdog_thresh seconds. The default value is 10 seconds. A value of 0
disables the detection of lockup errors.

vm.panic_on_oom
If set to 0 (default), the kernel’s OOM-killer scans through the entire task list and
attempts to kill a memory-hogging process to avoid a panic. If set to 1, the kernel
panics but can survive under certain conditions. If a process limits allocations to
certain nodes by using memory policies or cpusets, and those nodes reach memory
exhaustion status, the OOM-killer can kill one process. No panic occurs in this case
because other nodes’ memory might be free and the system as a whole might not yet
be out of memory. If set to 2, the kernel always panics when an OOM condition
occurs. Settings of 1 and 2 are for intended for use with clusters, depending on your
preferred failover policy.

About the /sys Virtual File System
In addition to /proc, the kernel exports information to the /sys virtual file system
(sysfs). Programs such as the dynamic device manager, udev, use /sys to access
device and device driver information. The implementation of /sys has helped to tidy up
the /proc file system as most hardware information has been moved to /sys.

Chapter 3
About the /sys Virtual File System

3-12

Note:

/sys exposes kernel data structures and control points, which implies that it might
contain circular references, where a directory links to an ancestor directory. As a
result, a find command used on /sys might never terminate.

The following list identifies useful virtual directories under the /sys directory hierarchy.

• block
Contains subdirectories for block devices. For example: /sys/block/sda.

• bus
Contains subdirectories for each supported physical bus type, such as pci, pcmcia, scsi,
or usb. Under each bus type, the devices directory lists discovered devices, and the
drivers directory contains directories for each device driver.

• class
Contains subdirectories for every class of device that is registered with the kernel.

• devices
Contains the global device hierarchy of all devices on the system. The platform directory
contains peripheral devices such as device controllers that are specific to a particular
platform. The system directory contains non-peripheral devices such as CPUs and
APICs. The virtual directory contains virtual and pseudo devices. See Device
Management.

• firmware
Contains subdirectories for firmware objects.

• module
Contains subdirectories for each module loaded into the kernel. You can alter some
parameter values for loaded modules. See About Module Parameters.

• power
Contains attributes that control the system's power state.

For more information, see https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt.

Configuring System Date and Time Settings
System time is based on the POSIX time standard, where time is measured as the number of
seconds that have elapsed since 00:00:00 Coordinated Universal Time (UTC), Thursday, 1
January 1970. A day is defined as 86400 seconds and leap seconds are subtracted
automatically.

Date and time representation on a system can be set to match a specific timezone. To list all
of the available timezones, run:

sudo timedatectl list-timezones

To set the system timezone to match a value returned from the available timezones, you can
run:

Chapter 3
Configuring System Date and Time Settings

3-13

https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt

sudo timedatectl set-timezone America/Los_Angeles

Substitute America/Los_Angeles with a valid timezone entry.

This command sets a symbolic link from /etc/localtime to point to the appropriate
zone information file in /usr/share/zoneinfo/. The setting takes effect immediately.
Some long running processes that might use /etc/localtime to detect the current
system timezone, may not detect a subsequent change in system timezone until the
process is restarted.

Note that timezones are largely used for display purposes or to handle user input.
Changing timezone does not change the time for the system clock. You can change
the presentation for system time in any console by setting the TZ environment variable.
For example, to see the current time in Tokyo, you can run:

TZ="Asia/Tokyo" date

You can check your system's current date and time configuration by running the
timedatectl command on its own:

sudo timedatectl

 Local time: Thu 2018-10-25 13:11:30 BST
 Universal time: Thu 2018-10-25 12:11:30 UTC
 RTC time: Thu 2018-10-25 12:11:17
 Time zone: Europe/London (BST, +0100)
 NTP enabled: yes
NTP synchronized: yes
 RTC in local TZ: no
 DST active: yes
 Last DST change: DST began at
 Sun 2018-03-25 00:59:59 GMT
 Sun 2018-03-25 02:00:00 BST
 Next DST change: DST ends (the clock jumps one hour backwards) at
 Sun 2018-10-28 01:59:59 BST
 Sun 2018-10-28 01:00:00 GMT

To set system time manually, you can use the timedatectl set-time command.
For example. you can run:

sudo timedatectl set-time "2018-10-28 01:59:59"

This command sets the current system time based on the time specified assuming the
currently set system timezone. The command also updates the system Real Time
Clock (RTC).

Consider configuring your system to use network time synchronization for accurate
time-keeping. This can be particularly important when setting up high-availability or
when using network-based file systems.

If you configure an NTP service, you can enable NTP by running the following
command:

sudo timedatectl set-ntp true

This command enables and starts the chronyd service, if available.

Chapter 3
Configuring System Date and Time Settings

3-14

4
Device Management

This chapter describes how the system uses device files and how the udev device manager
dynamically creates or removes device node files.

About Device Files
The /dev directory contains device files (also sometimes known as device special files and
device nodes) that provide access to peripheral devices such as hard disks, to resources on
peripheral devices such as disk partitions, and pseudo devices such as a random number
generator.

The /dev directory has several subdirectory hierarchies, each of which holds device files that
relate to a certain type of device. For example, the /dev/disk/id-by-uuid directory contains
device files for hard disks named according to the universally unique identifier (UUID) for the
disk. The device files in subdirectories such as these are actually implemented as symbolic
links to device files in /dev. You can access the same device using the file in /dev or the
corresponding link to the file listed in /dev/disk/id-by-uuid.

If you use the ls -l command to list the files under /dev, you see that some device files are
shown as being either type b for block or type c for character. These devices have a pair of
numbers associated with them instead of a file size. These major and minor numbers identify
the device to the system.

ls -l /dev

total 0
crw-rw----. 1 root root 10, 56 Mar 17 08:17 autofs
drwxr-xr-x. 2 root root 640 Mar 17 08:17 block
drwxr-xr-x. 2 root root 80 Mar 17 08:16 bsg
drwxr-xr-x. 3 root root 60 Mar 17 08:16 bus
lrwxrwxrwx. 1 root root 3 Mar 17 08:17 cdrom -> sr0
drwxr-xr-x. 2 root root 2880 Mar 17 08:17 char
crw-------. 1 root root 5, 1 Mar 17 08:17 console
lrwxrwxrwx. 1 root root 11 Mar 17 08:17 core -> /proc/kcore
drwxr-xr-x. 4 root root 100 Mar 17 08:17 cpu
crw-rw----. 1 root root 10, 61 Mar 17 08:17 cpu_dma_latency
drwxr-xr-x. 6 root root 120 Mar 17 08:16 disk
brw-rw----. 1 root disk 253, 0 Mar 17 08:17 dm-0
brw-rw----. 1 root disk 253, 1 Mar 17 08:17 dm-1
...
crw-rw-rw-. 1 root root 1, 3 Mar 17 08:17 /dev/null
...
drwxr-xr-x. 2 root root 0 Mar 17 08:16 pts
...
crw-rw-rw-. 1 root root 1, 8 Mar 17 08:17 random
...
brw-rw----. 1 root disk 8, 0 Mar 17 08:17 sda
brw-rw----. 1 root disk 8, 1 Mar 17 08:17 sda1
brw-rw----. 1 root disk 8, 2 Mar 17 08:17 sda2
...
lrwxrwxrwx. 1 root root 15 Mar 17 08:17 stderr -> /proc/self/fd/2

4-1

lrwxrwxrwx. 1 root root 15 Mar 17 08:17 stdin -> /proc/self/fd/0
lrwxrwxrwx. 1 root root 15 Mar 17 08:17 stdout -> /proc/self/fd/1
...
crw--w----. 1 root tty 4, 0 Mar 17 08:17 tty0
crw--w----. 1 root tty 4, 1 Mar 17 08:17 tty1
...
crw-rw-rw-. 1 root root 1, 9 Mar 17 08:17 urandom
...
crw-rw-rw-. 1 root root 1, 5 Mar 17 08:17 zero

Block devices support random access to data, seeking media for data, and usually
allow data to be buffered while it is being written or read. Examples of block devices
include hard disks, CD-ROM drives, flash memory, and other addressable memory
devices. The kernel writes data to or reads data from a block device in blocks of a
certain number of bytes. In the sample output, sda is the block device file that
corresponds to the hard disk, and it has a major number of 8 and a minor number of 0.
sda1 and sda2 are partitions of this disk, and they have the same major number as sda
(8), but their minor numbers are 1 and 2.

Character devices support streaming of data to or from a device, and data is not
usually buffered nor is random access permitted to data on a device. The kernel writes
data to or reads data from a character device one byte at a time. Examples of
character devices include keyboards, mice, terminals, pseudo-terminals, and tape
drives. tty0 and tty1 are character device files that correspond to terminal devices
that allow users to log in from serial terminals or terminal emulators. These files have
major number 4 and minor numbers 0 and 1.

Pseudo-terminals worker or secondary (slave) devices emulate real terminal devices
to interact with software. For example, a user might log in on a terminal device such
as /dev/tty1, which then uses the pseudo-terminal primary (master)
device /dev/pts/ptmx to interact with an underlying pseudo-terminal device. The
character device files for worker and primary pseudo-terminals are located in
the /dev/pts directory:

ls -l /dev/pts

total 0
crw--w----. 1 guest tty 136, 0 Mar 17 10:11 0
crw--w----. 1 guest tty 136, 1 Mar 17 10:53 1
crw--w----. 1 guest tty 136, 2 Mar 17 10:11 2
c---------. 1 root root 5, 2 Mar 17 08:16 ptmx

Some device entries, such as stdin for the standard input, are symbolically linked via
the self subdirectory of the proc file system. The pseudo-terminal device file to which
they actually point depends on the context of the process.

ls -l /proc/self/fd/[012]

total 0
lrwx------. 1 root root 64 Mar 17 10:02 0 -> /dev/pts/1
lrwx------. 1 root root 64 Mar 17 10:02 1 -> /dev/pts/1
lrwx------. 1 root root 64 Mar 17 10:02 2 -> /dev/pts/1

Character devices such as null, random, urandom, and zero are examples of pseudo-
devices that provide access to virtual functionality implemented in software rather than
to physical hardware.

/dev/null is a data sink. Data that you write to /dev/null effectively disappears but
the write operation succeeds. Reading from /dev/null returns EOF (end-of-file).

Chapter 4
About Device Files

4-2

/dev/zero is a data source of an unlimited number of zero-value bytes.

/dev/random and /dev/urandom are data sources of streams of pseudo-random bytes. To
maintain high-entropy output, /dev/random blocks if its entropy pool does not contains
sufficient bits of noise. /dev/urandom does not block and, as a result, the entropy of its output
might not be as consistently high as that of /dev/random. However, neither /dev/random
nor /dev/urandom are considered to be truly random enough for the purposes of secure
cryptography such as military-grade encryption.

You can find out the size of the entropy pool and the entropy value for /dev/random from
virtual files under /proc/sys/kernel/random:

cat /proc/sys/kernel/random/poolsize

4096

cat /proc/sys/kernel/random/entropy_avail

3467

For more information, see the null(4), pts(4), and random(4) manual pages.

About the Udev Device Manager
The udev device manager dynamically creates or removes device node files at boot time or if
you add a device to or remove a device from the system with a 2.6 version kernel or later.
When creating a device node, udev reads the device’s /sys directory for attributes such as
the label, serial number, and bus device number.

Udev can use persistent device names to guarantee consistent naming of devices across
reboots, regardless of their order of discovery. Persistent device names are especially
important when using external storage devices.

The configuration file for udev is /etc/udev/udev.conf. The file contains the variable
udev_log which indicates the logging priority. The variable can be set to err, info and debug.
The default value is err.

For more information, see the udev(7) manual page.

About Udev Rules
Udev uses rules files that determine how it identifies devices and creates device names. The
udev service (systemd-udevd) reads the rules files at system startup and stores the rules in
memory. If the kernel discovers a new device or an existing device goes offline, the kernel
sends an event action (uevent) notification to udev, which matches the in-memory rules
against the device attributes in /sys to identify the device. As part of device event handling,
rules can specify additional programs that should run to configure a device. Rules files, which
have the file extension .rules, are located in the following directories:

/lib/udev/rules.d
Contains default rules files. Do not edit these files.

/etc/udev/rules.d/*.rules
Contains customized rules files. You can modify these files.

Chapter 4
About the Udev Device Manager

4-3

/dev/.udev/rules.d/*.rules
Contains temporary rules files. Do not edit these files.

Udev processes the rules files in lexical order, regardless of which directory they are
located. Rules files in /etc/udev/rules.d override files of the same name in /lib/
udev/rules.d.

The following rules are extracted from the file /lib/udev/rules.d/50-udev-
default.rules and illustrate the syntax of udev rules.

do not edit this file, it will be overwritten on update

SUBSYSTEM=="block", SYMLINK{unique}+="block/%M:%m"
SUBSYSTEM!="block", SYMLINK{unique}+="char/%M:%m"

KERNEL=="pty[pqrstuvwxyzabcdef][0123456789abcdef]", GROUP="tty", MODE="0660"
KERNEL=="tty[pqrstuvwxyzabcdef][0123456789abcdef]", GROUP="tty", MODE="0660"
...
mem
KERNEL=="null|zero|full|random|urandom", MODE="0666"
KERNEL=="mem|kmem|port|nvram", GROUP="kmem", MODE="0640"
...
block
SUBSYSTEM=="block", GROUP="disk"
...
network
KERNEL=="tun", MODE="0666"
KERNEL=="rfkill", MODE="0644"

CPU
KERNEL=="cpu[0-9]*", MODE="0444"
...
do not delete static device nodes
ACTION=="remove", NAME=="", TEST=="/lib/udev/devices/%k", \
 OPTIONS+="ignore_remove"
ACTION=="remove", NAME=="?*", TEST=="/lib/udev/devices/$name", \
 OPTIONS+="ignore_remove"

Comment lines begin with a # character. All other non-blank lines define a rule, which
is a list of one or more comma-separated key-value pairs. A rule either assigns a value
to a key or it tries to find a match for a key by comparing its current value with the
specified value. The following list shows the assignment and comparison operators
that you can use:

• =: Assign a value to a key, overwriting any previous value.

• +=: Assign a value by appending it to the key's current list of values.

• :=: Assign a value to a key. This value cannot be changed by any further rules.

• ==: Match the key's current value against the specified value for equality.

• !=: Match the key's current value against the specified value for equality.

You can use the following shell-style pattern matching characters in values:

• ?: Matches a single character.

• *: Matches any number of characters, including zero.

• []: Matches any single character or character from a range of characters specified
within the brackets. For example, tty[sS][0-9] would match ttys7 or ttyS7.

Chapter 4
About Udev Rules

4-4

The following list shows commonly used match keys in rules.

• ACTION
Matches the name of the action that led to an event. For example, ACTION="add" or
ACTION="remove".

• ENV{key}
Matches a value for the device property key. For example, ENV{DEVTYPE}=="disk".

• KERNEL
Matches the name of the device that is affected by an event. For example, KERNEL=="dm-
*" for disk media.

• NAME
Matches the name of a device file or network interface. For example, NAME="?*" for any
name that consists of one or more characters.

• SUBSYSTEM
Matches the subsystem of the device that is affected by an event. For example,
SUBSYSTEM=="tty".

• TEST
Tests if the specified file or path exists. For example, TEST=="/lib/udev/
devices/$name", where $name is the name of the currently matched device file.

Other match keys include ATTR{filename}, ATTRS{filename}, DEVPATH, DRIVER, DRIVERS,
KERNELS, PROGRAM, RESULT, SUBSYSTEMS, and SYMLINK.

The following list shows commonly used assignment keys in rules.

• ENV{key}
Specifies a value for the device property key. For example, GROUP="disk".

• GROUP
Specifies the group for a device file. For example, GROUP="disk".

• IMPORT{type}:

Specifies a set of variables for the device property, depending on type:

– cmdline: Import a single property from the boot kernel command line. For simple
flags, udev sets the value of the property to 1. For example,
IMPORT{cmdline}="nodmraid".

– db: Interpret the specified value as an index into the device database and import a
single property, which must have already been set by an earlier event. For example,
IMPORT{db}="DM_UDEV_LOW_PRIORITY_FLAG".

– file: Interpret the specified value as the name of a text file and import its contents,
which must be in environmental key format. For example, IMPORT{file}="keyfile".

– parent: Interpret the specified value as a key-name filter and import the stored keys
from the database entry for the parent device. For example IMPORT{parent}="ID_*".

– program: Run the specified value as an external program and imports its result, which
must be in environmental key format. For example IMPORT{program}="usb_id --
export %p".

Chapter 4
About Udev Rules

4-5

• MODE
Specifies the permissions for a device file. For example, MODE="0640".

• NAME
Specifies the name of a device file. For example, NAME="em1".

• OPTIONS
Specifies rule and device options. For example, OPTIONS+="ignore_remove",
which means that the device file is not removed if the device is removed.

• OWNER
Specifies the owner for a device file. For example, GROUP="root".

• RUN
Specifies a command to be run after the device file has been created. For
example, RUN+="/usr/bin/eject $kernel", where $kernel is the kernel name of
the device.

• SYMLINK
Specifies the name of a symbolic link to a device file. For example,
SYMLINK+="disk/by-uuid/$env{ID_FS_UUID_ENC}", where $env{} is substituted
with the specified device property.

Other assignment keys include ATTR{key}, GOTO, LABEL, RUN, and WAIT_FOR.

The following list shows string substitutions that are commonly used with the GROUP,
MODE, NAME, OWNER, PROGRAM, RUN, and SYMLINK keys:

• $attr{file} or %s{file}
Specifies the value of a device attribute from a file under /sys. For example,
ENV{MATCHADDR}="$attr{address}".

• $devpath or %p
The device path of the device in the sysfs file system under /sys. For example,
RUN+="keyboard-force-release.sh $devpath common-volume-keys".

• $env{key} or %E{key}
Specifies the value of a device property. For example, SYMLINK+="disk/by-id/md-
name-$env{MD_NAME}-part%n".

• $kernel or %k
The kernel name for the device.

• $major or %M
Specifies the major number of a device. For example, IMPORT{program}="udisks-
dm-export %M %m".

• $minor or %m
Specifies the minor number of a device. For example,
RUN+="$env{LVM_SBIN_PATH}/lvm pvscan --cache --major $major --
minor $minor".

• $name

Chapter 4
About Udev Rules

4-6

Specifies the device file of the current device. For example, TEST=="/lib/udev/
devices/$name".

Udev expands the strings specified for RUN immediately before its program is executed, which
is after udev has finished processing all other rules for the device. For the other keys, udev
expands the strings while it is processing the rules.

For more information, see the udev(7) manual page.

Querying Udev and Sysfs
You can use the udevadm command to query the udev database and sysfs.

For example, to query the sysfs device path relative to /sys that corresponds to the device
file /dev/sda:

sudo udevadm info --query=path --name=/dev/sda

/devices/pci0000:00/0000:00:0d.0/host0/target0:0:0/0:0:0:0/block/sda

To query the symbolic links that point to /dev/sda:

sudo udevadm info --query=symlink --name=/dev/sda

block/8:0
disk/by-id/ata-VBOX_HARDDISK_VB6ad0115d-356e4c09
disk/by-id/scsi-SATA_VBOX_HARDDISK_VB6ad0115d-356e4c09
disk/by-path/pci-0000:00:0d.0-scsi-0:0:0:0

To query the properties of /dev/sda:

sudo udevadm info --query=property --name=/dev/sda

UDEV_LOG=3
DEVPATH=/devices/pci0000:00/0000:00:0d.0/host0/target0:0:0/0:0:0:0/block/sda
MAJOR=8
MINOR=0
DEVNAME=/dev/sda
DEVTYPE=disk
SUBSYSTEM=block
ID_ATA=1
ID_TYPE=disk
ID_BUS=ata
ID_MODEL=VBOX_HARDDISK
ID_MODEL_ENC=VBOX\x20HARDDISK\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20...
ID_REVISION=1.0
ID_SERIAL=VBOX_HARDDISK_VB579a85b0-bf6debae
ID_SERIAL_SHORT=VB579a85b0-bf6debae
ID_ATA_WRITE_CACHE=1
ID_ATA_WRITE_CACHE_ENABLED=1
ID_ATA_FEATURE_SET_PM=1
ID_ATA_FEATURE_SET_PM_ENABLED=1
ID_ATA_SATA=1
ID_ATA_SATA_SIGNAL_RATE_GEN2=1
ID_SCSI_COMPAT=SATA_VBOX_HARDDISK_VB579a85b0-bf6debae
ID_PATH=pci-0000:00:0d.0-scsi-0:0:0:0
ID_PART_TABLE_TYPE=dos
LVM_SBIN_PATH=/sbin
UDISKS_PRESENTATION_NOPOLICY=0
UDISKS_PARTITION_TABLE=1

Chapter 4
Querying Udev and Sysfs

4-7

UDISKS_PARTITION_TABLE_SCHEME=mbr
UDISKS_PARTITION_TABLE_COUNT=2
UDISKS_ATA_SMART_IS_AVAILABLE=0
DEVLINKS=/dev/block/8:0 /dev/disk/by-id/ata-VBOX_HARDDISK_VB579a85b0-bf6debae ...

To query all information for /dev/sda:

sudo udevadm info --query=all --name=/dev/sda

P: /devices/pci0000:00/0000:00:0d.0/host0/target0:0:0/0:0:0:0/block/sda
N: sda
W: 37
S: block/8:0
S: disk/by-id/ata-VBOX_HARDDISK_VB579a85b0-bf6debae
S: disk/by-id/scsi-SATA_VBOX_HARDDISK_VB579a85b0-bf6debae
S: disk/by-path/pci-0000:00:0d.0-scsi-0:0:0:0
E: UDEV_LOG=3
E: DEVPATH=/devices/pci0000:00/0000:00:0d.0/host0/target0:0:0/0:0:0:0/block/sda
E: MAJOR=8
E: MINOR=0
E: DEVNAME=/dev/sda
E: DEVTYPE=disk
E: SUBSYSTEM=block
E: ID_ATA=1
E: ID_TYPE=disk
E: ID_BUS=ata
E: ID_MODEL=VBOX_HARDDISK
E:
ID_MODEL_ENC=VBOX\x20HARDDISK\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20...
E: ID_SERIAL=VBOX_HARDDISK_VB579a85b0-bf6debae
E: ID_SERIAL_SHORT=VB579a85b0-bf6debae
E: ID_ATA_WRITE_CACHE=1
E: ID_ATA_WRITE_CACHE_ENABLED=1
E: ID_ATA_FEATURE_SET_PM=1
E: ID_ATA_FEATURE_SET_PM_ENABLED=1
E: ID_ATA_SATA=1
E: ID_ATA_SATA_SIGNAL_RATE_GEN2=1
E: ID_SCSI_COMPAT=SATA_VBOX_HARDDISK_VB579a85b0-bf6debae
E: ID_PATH=pci-0000:00:0d.0-scsi-0:0:0:0
E: ID_PART_TABLE_TYPE=dos
E: LVM_SBIN_PATH=/sbin
E: UDISKS_PRESENTATION_NOPOLICY=0
E: UDISKS_PARTITION_TABLE=1
E: UDISKS_PARTITION_TABLE_SCHEME=mbr
E: UDISKS_PARTITION_TABLE_COUNT=2
E: UDISKS_ATA_SMART_IS_AVAILABLE=0
E: DEVLINKS=/dev/block/8:0 /dev/disk/by-id/ata-VBOX_HARDDISK_VB579a85b0-
bf6debae ...

To display all properties of /dev/sda and its parent devices that udev has found in /
sys:

sudo udevadm info --attribute-walk --name=/dev/sda

...
 looking at device '/devices/pci0000:00/0000:00:0d.0/host0/target0:0:0/0:0:0:0/
block/sda':
 KERNEL=="sda"
 SUBSYSTEM=="block"
 DRIVER==""
 ATTR{range}=="16"

Chapter 4
Querying Udev and Sysfs

4-8

 ATTR{ext_range}=="256"
 ATTR{removable}=="0"
 ATTR{ro}=="0"
 ATTR{size}=="83886080"
 ATTR{alignment_offset}=="0"
 ATTR{capability}=="52"
 ATTR{stat}==" 20884 15437 1254282 338919 5743 8644 103994
109005 ...
 ATTR{inflight}==" 0 0"

 looking at parent device '/devices/pci0000:00/0000:00:0d.0/host0/
target0:0:0/0:0:0:0':
 KERNELS=="0:0:0:0"
 SUBSYSTEMS=="scsi"
 DRIVERS=="sd"
 ATTRS{device_blocked}=="0"
 ATTRS{type}=="0"
 ATTRS{scsi_level}=="6"
 ATTRS{vendor}=="ATA "
 ATTRS{model}=="VBOX HARDDISK "
 ATTRS{rev}=="1.0 "
 ATTRS{state}=="running"
 ATTRS{timeout}=="30"
 ATTRS{iocounterbits}=="32"
 ATTRS{iorequest_cnt}=="0x6830"
 ATTRS{iodone_cnt}=="0x6826"
 ATTRS{ioerr_cnt}=="0x3"
 ATTRS{modalias}=="scsi:t-0x00"
 ATTRS{evt_media_change}=="0"
 ATTRS{dh_state}=="detached"
 ATTRS{queue_depth}=="31"
 ATTRS{queue_ramp_up_period}=="120000"
 ATTRS{queue_type}=="simple"

 looking at parent device '/devices/pci0000:00/0000:00:0d.0/host0/target0:0:0':
 KERNELS=="target0:0:0"
 SUBSYSTEMS=="scsi"
 DRIVERS==""

 looking at parent device '/devices/pci0000:00/0000:00:0d.0/host0':
 KERNELS=="host0"
 SUBSYSTEMS=="scsi"
 DRIVERS==""

 looking at parent device '/devices/pci0000:00/0000:00:0d.0':
 KERNELS=="0000:00:0d.0"
 SUBSYSTEMS=="pci"
 DRIVERS=="ahci"
 ATTRS{vendor}=="0x8086"
 ATTRS{device}=="0x2829"
 ATTRS{subsystem_vendor}=="0x0000"
 ATTRS{subsystem_device}=="0x0000"
 ATTRS{class}=="0x010601"
 ATTRS{irq}=="21"

ATTRS{local_cpus}=="00000000,00000000,00000000,00000000,00000000,00000000,00000000,0000
0003"
 ATTRS{local_cpulist}=="0-1"
 ATTRS{modalias}=="pci:v00008086d00002829sv00000000sd00000000bc01sc06i01"
 ATTRS{numa_node}=="-1"
 ATTRS{enable}=="1"

Chapter 4
Querying Udev and Sysfs

4-9

 ATTRS{broken_parity_status}=="0"
 ATTRS{msi_bus}==""
 ATTRS{msi_irqs}==""

 looking at parent device '/devices/pci0000:00':
 KERNELS=="pci0000:00"
 SUBSYSTEMS==""
 DRIVERS==""

The command starts at the device specified by its device path and walks up the chain
of parent devices. For every device that it finds, it displays all possible attributes for the
device and its parent devices in the match key format for udev rules.

For more information, see the udevadm(8) manual page.

Modifying Udev Rules
The order in which rules are evaluated is important. Udev processes rules in lexical
order. If you want to add your own rules, you need udev to find and evaluate these
rules before the default rules.

The following example illustrates how to implement a udev rules file that adds a
symbolic link to the disk device /dev/sdb.

1. Create a rule file under /etc/udev/rules.d with a file name such as 10-
local.rules that udev will read before any other rules file.

For example, the following rule in 10-local.rules creates the symbolic link /dev/
my_disk, which points to /dev/sdb:

KERNEL=="sdb", ACTION=="add", SYMLINK="my_disk"

Listing the device files in /dev shows that udev has not yet applied the rule:

sudo ls /dev/sd* /dev/my_disk

ls: cannot access /dev/my_disk: No such file or directory
/dev/sda /dev/sda1 /dev/sda2 /dev/sdb

2. To simulate how udev applies its rules to create a device, you can use the
udevadm test command with the device path of sdb listed under the /sys/
class/block hierarchy, for example:

sudo udevadm test /sys/class/block/sdb

calling: test
version ...
This program is for debugging only, it does not run any program
specified by a RUN key. It may show incorrect results, because
some values may be different, or not available at a simulation run.
...
LINK 'my_disk' /etc/udev/rules.d/10-local.rules:1
...
creating link '/dev/my_disk' to '/dev/sdb'
creating symlink '/dev/my_disk' to 'sdb
...
ACTION=add
DEVLINKS=/dev/disk/by-id/ata-VBOX_HARDDISK_VB186e4ce2-f80f170d
 /dev/disk/by-uuid/a7dc508d-5bcc-4112-b96e-f40b19e369fe

Chapter 4
Modifying Udev Rules

4-10

 /dev/my_disk
...

3. Restart the systemd-udevd service:

sudo systemctl restart systemd-udevd

After udev processes the rules files, the symbolic link /dev/my_disk has been added:

sudo ls -F /dev/sd* /dev/my_disk

/dev/my_disk@ /dev/sda /dev/sda1 /dev/sda2 /dev/sdb
To undo the changes, remove /etc/udev/rules.d/10-local.rules and /dev/my_disk and
run systemctl restart systemd-udevd again.

Chapter 4
Modifying Udev Rules

4-11

5
Kernel Modules

This chapter describes how to load, unload, and modify the behavior of kernel modules.

About Kernel Modules
The boot loader loads the kernel into memory. You can add new code to the kernel by
including the source files in the kernel source tree and recompiling the kernel. Kernel
modules, which can be dynamically loaded and unloaded on demand, provide device drivers
that allow the kernel to access new hardware, support different file system types, and extend
its functionality in other ways. To avoid wasting memory on unused device drivers, Oracle
Linux supports loadable kernel modules (LKMs), which allow a system to run with only the
device drivers and kernel code that it requires loaded into memory.

Listing Information about Loaded Modules
Use the lsmod command to list the modules that are currently loaded into the kernel.

sudo lsmod

Module Size Used by
nls_utf8 1405 1
fuse 59164 0
tun 12079 0
autofs4 22739 3
...
ppdev 7901 0
parport_pc 21262 0
parport 33812 2 ppdev,parport_pc
...

Note:

This command produces its output by reading the /proc/modules file.

The output shows the module name, the amount of memory it uses, the number of processes
using the module and the names of other modules on which it depends. In the sample output,
the module parport depends on the modules ppdev and parport_pc, which are loaded in
advance of parport. Two processes are currently using all three modules.

To display detailed information about a module, use the modinfo command, for example:

sudo modinfo ahci

filename: /lib/modules/2.6.32-300.27.1.el6uek.x86_64/kernel/drivers/ata/ahci.ko
version: 3.0
license: GPL
description: AHCI SATA low-level driver

5-1

author: Jeff Garzik
srcversion: AC5EC885397BF332DE16389
alias: pci:v*d*sv*sd*bc01sc06i01*
...
depends:
vermagic: 2.6.32-300.27.1.el6uek.x86_64 SMP mod_unload modversions
parm: skip_host_reset:skip global host reset (0=don't skip, 1=skip)
(int)
parm: ignore_sss:Ignore staggered spinup flag (0=don't ignore,
1=ignore) (int)
...

The output includes the following information:

filename
Absolute path of the kernel object file.

version
Version number of the module.

description
Short description of the module.

srcversion
Hash of the source code used to create the module.

alias
Internal alias names for the module.

depends
Comma-separated list of any modules on which this module depends.

vermagic
Kernel version that was used to compile the module, which is checked against the
current kernel when the module is loaded.

parm
Module parameters and descriptions.

Modules are loaded into the kernel from kernel object (ko) files in the /lib/modules/
kernel_version/kernel directory. To display the absolute path of a kernel object file,
specify the -n option, for example:

sudo modinfo -n parport

/lib/modules/2.6.32-300.27.1.el6uek.x86_64/kernel/drivers/parport/parport.ko

For more information, see the lsmod(5) and modinfo(8) manual pages.

Loading and Unloading Modules
The modprobe command loads kernel modules, for example:

sudo modprobe nfs
sudo lsmod | grep nfs

nfs 266415 0
lockd 66530 1 nfs

Chapter 5
Loading and Unloading Modules

5-2

fscache 41704 1 nfs
nfs_acl 2477 1 nfs
auth_rpcgss 38976 1 nfs
sunrpc 204268 5 nfs,lockd,nfs_acl,auth_rpcgss

Use the -v verbose option to show if any additional modules are loaded to resolve
dependencies.

sudo modprobe -v nfs

insmod /lib/modules/2.6.32-300.27.1.el6uek.x86_64/kernel/net/sunrpc/auth_gss/
auth_rpcgss.ko
insmod /lib/modules/2.6.32-300.27.1.el6uek.x86_64/kernel/fs/nfs_common/nfs_acl.ko
insmod /lib/modules/2.6.32-300.27.1.el6uek.x86_64/kernel/fs/fscache/fscache.ko
...

To determine the dependencies, the modprobe command queries the /lib/modules/
kernel_version/modules.dep file, which the depmod utility creates when you install kernel
modules.

Note:

modprobe does not reload modules that are already loaded. You must first unload
a module before you can load it again.

Use the -r option to unload kernel modules, for example:

sudo modprobe -rv nfs

rmmod /lib/modules/2.6.32-300.27.1.el6uek.x86_64/kernel/fs/nfs/nfs.ko
rmmod /lib/modules/2.6.32-300.27.1.el6uek.x86_64/kernel/fs/lockd/lockd.ko
rmmod /lib/modules/2.6.32-300.27.1.el6uek.x86_64/kernel/fs/fscache/fscache.ko
...

Modules are unloaded in the reverse order that they were loaded. Modules are not unloaded
if a process or another loaded module requires them.

Note:

modprobe uses the insmod and rmmod utilities to load and unload modules. As
insmod and rmmod do not resolve module dependencies, do not use these utilities.

For more information, see the modprobe(8) and modules.dep(5) manual pages.

About Module Parameters
Modules accept parameters that you can specify using modprobe to modify a module's
behavior:

sudo modprobe module_name parameter=value ...

Chapter 5
About Module Parameters

5-3

Use spaces to separate multiple parameter/value pairs. Array values are represented
by a comma-separated list, for example:

sudo modprobe foo arrayparm=1,2,3,4

You can also change the values of some parameters for loaded modules and built-in
drivers by writing the new value to a file under /sys/module/module_name/parameters,
for example:

echo 0 > /sys/module/ahci/parameters/skip_host_reset

The /etc/modprobe.d directory contains .conf configuration files specify module
options, create module aliases, and override the usual behavior of modprobe for
modules with special requirements. The /etc/modprobe.conf file that was used with
earlier versions of modprobe is also valid if it exists. Entries in the /etc/
modprobe.conf and /etc/modprobe.d/*.conf files use the same syntax.

The following are commonly used commands in modprobe configuration files:

alias
Creates an alternate name for a module. The alias can include shell wildcards. For
example, create an alias for the sd-mod module:

alias block-major-8-* sd_mod

As a result, a command such as modprobe block-major-8-0 has the same effect
as modprobe sd_mod.

blacklist
Ignore a module's internal alias that is displayed by the modinfo command. This
command is typically used if the associated hardware is not required, if two or more
modules both support the same devices, or if a module invalidly claims to support a
device. For example, to blocklist the alias for the frame-buffer driver cirrusfb:

blacklist cirrusfb

The /etc/modprobe.d/blacklist.conf file prevents hotplug scripts from loading a
module, usually so that a different driver binds the module instead, regardless of
which driver happens to be probed first.

install
Runs a shell command instead of loading a module into the kernel. For example, load
the module snd-emu10k1-synth instead of snd-emu10k1:

install snd-emu10k1 /sbin/modprobe --ignore-install snd-emu10k1 && \
/sbin/modprobe snd-emu10k1-synth

options
Defines options for a module,. For example, define the nohwcrypt and qos options for
the b43 module:

options b43 nohwcrypt=1 qos=0

remove
Runs a shell command instead of unloading a module. For example, unmount /
proc/fs/nfsd before unloading the nfsd module:

Chapter 5
About Module Parameters

5-4

remove nfsd { /bin/umount /proc/fs/nfsd > /dev/null 2>&1 || :; } ; \
/sbin/modprobe -r --first-time --ignore-remove nfsd

For more information, see the modprobe.conf(5) manual page.

Specifying Modules To Be Loaded at Boot Time
The system loads most modules automatically at boot time. If necessary, you can specify an
additional module that should be loaded.

To specify a module to be loaded at boot time:

1. Create a file in the /etc/sysconfig/modules directory. The file name must have the
extension .modules, for example foo.modules.

2. Edit the file to create the script that loads the module.

The script to load a module can be a simple modprobe call, for example:

#!/bin/sh
modprobe foo

or more complex to include error handling:

#!/bin/sh
if [! -c /dev/foo] ; then
 exec /sbin/modprobe foo > /dev/null 2>&1
fi

3. Use the following command to make the script executable:

sudo chmod 755 /etc/sysconfig/modules/foo.modules

About Weak Update Modules
External modules, such as drivers installed using a driver update disk, are usually installed
into /lib/modules/kernel-version/extra. Modules stored in this directory are given
preference over matching modules included with the kernel, itself, when you attempt to load
them. This means that external drivers and modules can be installed to override kernel
modules where hardware issues may need resolution. For each subsequent kernel update, it
is important that the external module is made available to each compatible kernel to avoid
potential boot issues resulting from driver incompatibilities with the affected hardware.

Since the requirement to load the external module with each compatible kernel update is
system critical, a mechanism is in place so that external modules can be loaded as weak
update modules for compatible kernels. Weak update modules are made available by
creating symbolic links to compatible modules in the /lib/modules/kernel-version/weak-
updates directory. The package manager handles this process automatically when it detects
driver modules installed in any /lib/modules/kernel-version/extra directories for
compatible kernels. For example, installation of the kmod-megaraid_sas-uek driver update
package on the Driver Update Disk (DUD) for the Oracle Linux 7.4 might install the following:

/lib/modules/4.1.12-61.1.18.el7uek.x86_64/extra/megaraid_sas
/lib/modules/4.1.12-61.1.18.el7uek.x86_64/extra/megaraid_sas/megaraid_sas.ko

The new driver module is installed into the extra directory for the
4.1.12-61.1.18.el7uek.x86_64, which was the kernel version that was originally used to
build the module.

Chapter 5
Specifying Modules To Be Loaded at Boot Time

5-5

A subsequent kernel update means that the system is now running the
4.1.12-112.14.13.el7uek.x86_64 version of the kernel. This kernel is compatible with
the module installed for the previous kernel, so the external module is automatically
added, as a symbolic link, in the weak-updates directory as part of the installation
process:

ls -l /lib/modules/4.1.12-112.14.13.el7uek.x86_64/weak-updates/megaraid_sas/*.ko

lrwxrwxrwx. 1 root root 76 Jan 30 04:52 /lib/modules/
4.1.12-112.14.13.el7uek.x86_64\
 /weak-updates/megaraid_sas/megaraid_sas.ko \
 -> /lib/modules/4.1.12-61.1.18.el7uek.x86_64/extra/megaraid_sas/
megaraid_sas.ko

The output means that the external module is loaded for subsequent kernel updates.

In most cases, weak updates make sense and ensure that no extra work must be
done to carry an external module through subsequent kernel updates. This prevents
possible driver related boot issues after kernel upgrades and maintains the predictable
running of a system and its hardware.

In some cases you may wish to remove weak update modules for a newer kernel. For
instance, if an issue has been resolved for a driver that is shipped in the newer kernel
and you would prefer to use this driver over the external module that you installed as
part of a driver update.

You can remove weak update modules by removing the symbolic links for each kernel,
manually. For example:

sudo rm -rf /lib/modules/4.1.12-112.14.13.el7uek.x86_64/weak-updates/
megaraid_sas/

For more information about external driver modules and driver update disks, see
Oracle Linux 7: Installation Guide.

Chapter 5
About Weak Update Modules

5-6

https://docs.oracle.com/en/operating-systems/oracle-linux/7/install/

	Contents
	Preface
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Working With the GRUB 2 Bootloader and Configuring Boot Services
	About the Boot Process
	Working With the GRUB 2 Bootloader
	Customizing GRUB 2 Configuration
	Using the GRUB 2 Bootloader to Set the Default Boot Kernel

	Kernel Boot Parameters
	Modifying Kernel Boot Parameters Before Booting
	Modifying Kernel Boot Parameters in GRUB 2 Configuration

	2 Working With System Services
	About the systemd Service Manager
	About System-State Targets
	Displaying the Default and Active System-State Targets
	Changing the Default and Active System-State Targets
	Shutting Down, Suspending, and Rebooting the System
	Starting and Stopping Services
	Enabling and Disabling Services
	Displaying the Status of Services
	Controlling Access to System Resources
	Modifying systemd Configuration Files
	Running systemctl on a Remote System

	3 Configuring System Settings
	About the /etc/sysconfig Files
	About the /proc Virtual File System
	Virtual Files and Directories Under /proc
	Changing Kernel Parameters
	Parameters That Control System Performance
	Parameters That Control Kernel Panics

	About the /sys Virtual File System
	Configuring System Date and Time Settings

	4 Device Management
	About Device Files
	About the Udev Device Manager
	About Udev Rules
	Querying Udev and Sysfs
	Modifying Udev Rules

	5 Kernel Modules
	About Kernel Modules
	Listing Information about Loaded Modules
	Loading and Unloading Modules
	About Module Parameters
	Specifying Modules To Be Loaded at Boot Time
	About Weak Update Modules

