
Oracle® Developer Studio 12.6: dbxtool
Tutorial
June 2017

Part No: E77794

■ “Introduction” on page 2
■ “Example Program” on page 2
■ “Configuring dbxtool” on page 3
■ “Diagnosing a Core Dump” on page 9
■ “Using Breakpoints and Stepping” on page 13
■ “Using Advanced Breakpoint Techniques” on page 22
■ “Using Breakpoint Scripts to Patch Your Code” on page 39

Introduction

This tutorial uses a “buggy” example program to demonstrate how to use dbxtool, the stand-alone graphical
user interface (GUI) for the dbx debugger, effectively. It starts with the basics and then moves on to more
advanced features.

Example Program

This tutorial uses a simplified and somewhat artificial simulation of the dbx debugger. The source code
for this C++ program is available in the sample applications zip file on the Oracle Developer Studio 12.6
downloads web page at http://www.oracle.com/technetwork/server-storage/developerstudio/
downloads/index.html.

After accepting the license and downloading, you can extract the zip file in a directory of your choice.

1. If you have not already done so, download the sample applications zip file, and unpack the file in a
location of your choice. The debug_tutorial application is located in the Debugger subdirectory of the
OracleDeveloperStudio12.5-Samples directory.

2. Build the program.

$ make

CC -g -c main.cc

CC -g -c interp.cc

CC -g -c cmd.cc

CC -g -c debugger.cc

CC -g -c cmds.cc

CC -g main.o interp.o cmd.o debugger.o cmds.o -o a.out

The program is made up of the following modules:

cmd.h cmd.cc Class Cmd, a base for implementing debugger commands

interp.h interp.cc Class Interp, a simple command interpreter

debugger.h debugger.cc Class Debugger, mimics the main semantics of a debugger

cmds.h cmds.cc Implementations of various debugging commands

main.h main.cc The main() function and error handling. Sets up an Interp,
creates various commands and assigns them to the Interp.
Runs the Interp.

Run the program and try a few dbx commands.

$ a.out

Oracle® Developer Studio 12.6: dbxtool Tutorial 2

http://www.oracle.com/technetwork/server-storage/developerstudio/downloads/index.html
http://www.oracle.com/technetwork/server-storage/developerstudio/downloads/index.html

> display var

will display 'var'

> stop in X

> run running ...

stopped in X

var = {

 a = '100'

 b = '101'

 c = '<error>'

 d = '102'

 e = '103'

 f = '104'

}

> quit

Goodby

$

Configuring dbxtool

Start dbxtool by typing:

install-dir/bin/dbxtool

The first time you start dbxtool, the window probably looks like the following:

Note - Figures in this tutorial might differ from what you see when you use dbxtool.

If you need more room for other applications like a web browser, you might want to customize dbxtool to
take up less space.

Oracle® Developer Studio 12.6: dbxtool Tutorial 3

The following are examples of the various ways you can customize dbxtool.

■ Make the toolbar icons smaller.
■ Right-click anywhere in the toolbar and choose Small Toolbar Icons.

■ Move the Call Stack window out of the way.

1. Click the header of the Call Stack window and drag the window downward and to the right. Let it go
when the red outline is in the position in the following illustration:

2. Click the minimize button in the header of the Call Stack window.

The Call Stack window is minimized in the right margin.

Oracle® Developer Studio 12.6: dbxtool Tutorial 4

If you hold the cursor over the minimized Call Stack icon, the Call Stack window is maximized until
you transfer focus to another window. If you click the minimized Call Stack icon, the Call Stack
window is maximized until you click the icon again.

3. Narrow the main window to half-screen:

Oracle® Developer Studio 12.6: dbxtool Tutorial 5

■ Minimize the windows grouping:
dbxtool can group windows together. You can perform actions on groups of windows in addition to
individual windows. Each window belongs to a group that you can minimize/restore, drag to a new
location, float in a separate window, or dock back into the IDE window.

Oracle® Developer Studio 12.6: dbxtool Tutorial 6

For example, if you click the Breakpoints tab and then click the minimize window button, the entire
window group minimizes.

■ Undock the Output window so you can easily interact with the input and output of programs you
are debugging while having easy access to the other tabs in the dbxtool window.
■ If you do not see the Output window, click Window → Output or press Ctrl - 4.
■ Click and hold on the header of the Output window, drag the window outside of the dbxtool window,

and drop it onto your desktop.
To re-dock the Output window in the dbxtool window, right-click in the Output window and choose
Dock Group.

■ Set the font size in the editor. After you have some source code displayed in the Editor window, do the
following to set the font size:

1. Choose Tools → Options.
2. In the Options window, select the Fonts & Colors category.
3. On the Syntax tab, make sure All Languages is selected from the Languages drop-down list.
4. Click the Browse (...) button next to the Font text box.
5. In the Font Chooser dialog box, set the font, style, and size, and click OK.
6. Click OK in the Options window.

■ Set the font size in the terminal windows. The Debugger Console and Output windows are ANSI
terminal emulators.

1. Choose Tools → Options.
2. In the Options window, select the Miscellaneous category.
3. Click the Terminal tab.
4. Select settings like Font Size and Click To Type.
5. Click OK.

■ Add a remote host to run the debugger on. dbxtool enables you to access remote servers to run
dbxtool on, as well as accessing remote files.
To add a remote host to dbxtool:

1. In the Remote tool bar, click the down-arrow of the host drop-down list and choose Manage Hosts.

Oracle® Developer Studio 12.6: dbxtool Tutorial 7

2. The Build Hosts Manager opens. Click Add to add a new server.

3. In the New Remote Host Setup wizard, choose an available server from the Network neighborhood
list and click Next.

4. Enter your login information, choose an authentication method and click Next. If you chose
Password, enter your password when prompted.

Oracle® Developer Studio 12.6: dbxtool Tutorial 8

5. When your host is connected, the summary page shows your connection status. You can choose this
remote host from the Remote toolbar while you are working.

For more information about remote hosts, see the online help in dbxtool, under the Remote Debugging
topic.

Exit dbxtool once you are finished customizing. dbxtool remembers your preferences the next time you run
it.

Diagnosing a Core Dump

To find bugs, run the example program again, and press Return without entering a command.

$ a.out

> display var

will display 'var'

>

Segmentation Fault (core dumped)

$

Start dbxtool with the executable and the core file.

$ dbxtool a.out core

Notice that the dbxtool command accepts the same arguments as the dbx command.

dbxtool displays output like the following example.

Oracle® Developer Studio 12.6: dbxtool Tutorial 9

Note the following:

■ In the Debugger Console window, you see a message like the following example:

program terminated by signal SEGV (no mapping at fault address)

0xf8cfb790: strcmp+0x0170: ld [%ol], %gl

Current function is Interp::find

■ Even though the SEGV happened in the strcmp() function, dbx automatically shows the first frame with
a function that has debugging information. See how the stack trace in the Call Stack window has a
border around the icon for the current frame.

Note that the Call Stack window shows the parameter names and values. In this example, the second
parameter passed to strcmp() is 0x0 and that the value of name is NULL.

■ In the Editor window, the lavender stripe and a triangle on line 95 instead of a green stripe and arrow
signify the location of the call to strcmp() rather than the actual location of the error.

Oracle® Developer Studio 12.6: dbxtool Tutorial 10

If you do not see parameter values, check that the dbxenv variable stack_verbose is set to on in your
.dbxrc file. You can also set verbose mode in the Call Stack window by right-clicking in the window
and selecting the Verbose option. For more information about dbxenv variables and your .dbxrc, see
Chapter 3, “Customizing dbx” in Oracle Developer Studio 12.6: Debugging a Program with dbx.

Functions usually fail when they are passed bad values as parameters. To check the values passed to
strcmp():

■ The Variables window displays all local variables automatically. Check the values of the parameters in
the Variables window.

1. Click the Variables tab.

Note that the value of name is NULL. That value is quite likely to be the cause of the SEGV, but
check the value of the other parameter, (*cp)->name().

2. In the Variables window, expand the cp node and then expand the (cp*) node. The name in question
is “quit”, which is valid.

Oracle® Developer Studio 12.6: dbxtool Tutorial 11

http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSDPblacr

If expanding the *cp node does not show additional variables, check that the dbx environment variable
output_inherited_members in your .dbxrc file is set to on. You can also turn on the display of
inherited members by right-clicking in the window and selecting the Inherited Members check box to
add a check mark.

■ Use Balloon Evaluation to confirm the value of a parameter. Click into the Editor window, then hover
the cursor over the name variable being passed to strcmp(). A tip is displayed showing the value of
name as NULL.

Using balloon evaluation, you can also place the cursor over an expression like (*cp)->name().
However, balloon evaluation of expressions with function calls is disabled because:
■ You are debugging a core file.
■ Function calls might have side effects that could occur as a result of casual hovering in the Editor

window.

Because the value of name should not be NULL, you need to discover which code passed this bad value to
Interp::find(). To find out:

1. Move up the call stack by choosing Debug → Stack → Make Caller Current or click the Make Caller

Current button (Alt - Page Down) on the toolbar.

Oracle® Developer Studio 12.6: dbxtool Tutorial 12

2. In the Call Stack window, double-click the frame corresponding to Interp::dispatch().
The Editor window now highlights the corresponding code:

This code is unfamiliar and does not provide any clues other than that the value of argv[0] is NULL.

Debugging this problem might be easier by dynamically using breakpoints and stepping.

Using Breakpoints and Stepping

Breakpoints enable you to stop a program before the manifestation of a bug and step through the code in the
hope of discovering what went wrong.

If you have not already done so, undock the Output window.

You ran the program from the command line earlier. Reproduce the bug by running the program in dbxtool.

1.
Click the Restart button on the toolbar or type run in the Debugger Console window.

2. Press Return in the Debugger Console window.
An alert box provides information about the SEGV.

Oracle® Developer Studio 12.6: dbxtool Tutorial 13

3. In the alert box, click Discard and Pause.

The Editor window once again highlights the call to strcmp() in Interp::find().
4.

Click the Make Caller Current button in the toolbar to go to the unfamiliar code you saw earlier in
Interp::dispatch().

5. In the next section, you will set a breakpoint a bit before the call to find() so you can step through the
code to learn why things went wrong.

Setting Breakpoints

You can set a breakpoint in several ways, such as a line breakpoint or a function breakpoint. The following
list explains the several ways to create a breakpoint.

Note - If the line numbers are not showing, enable line numbers in the editor by right-clicking in the left
margin and selecting the Show Line Numbers option.

■ Setting a Line Breakpoint
Toggle a line breakpoint by clicking in the left margin next to line 127.

Oracle® Developer Studio 12.6: dbxtool Tutorial 14

■ Setting a Function breakpoint
Set a function breakpoint.

1. Select Interp::dispatch in the Editor window.
2. Choose Debug → New Breakpoint or right-click and choose New Breakpoint.

The New Breakpoint dialog box appears.

Oracle® Developer Studio 12.6: dbxtool Tutorial 15

Notice that the Function field is seeded with the selected function name.
3. Click OK.

■ Setting a Breakpoint from the Command Line

The easiest method to set a function breakpoint is from the dbx command line. Type the stop in
command in the Debugger Console window:

(dbx) stop in dispatch

(4) stop in Interp::dispatch(char*)

(dbx)

Notice that you did not have to type Interp::dispatch. Just the function name sufficed.

Your breakpoints window and Editor probably look like the following:

To avoid clutter in the Editor, use the Breakpoints window.

1. Click the Breakpoints tab (or maximize it if you minimized it earlier).
2. Select the line breakpoint and one of the function breakpoints, right-click, and choose Delete.

For more information about breakpoints, see Chapter 6, “Setting Breakpoints and Traces” in Oracle
Developer Studio 12.6: Debugging a Program with dbx.

Oracle® Developer Studio 12.6: dbxtool Tutorial 16

http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSDPblaer
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSDPblaer

Advantages of Function Breakpoints

Setting a line breakpoint by toggling in the editor might be intuitive. However, many dbx users prefer
function breakpoints for the following reasons:

■ Typing si dispatch in the Debugger Console window means you do not have to open a file in the
editor and scroll to a line just to place a breakpoint.

■ Because you can create function breakpoints by selecting any text in the editor, you can set a breakpoint
on a function from its call site instead of opening a file.

Tip - si is an alias for stop in. Most dbx users define many aliases and put them in the dbx
configuration file ~/.dbxrc. Some common examples are:

alias si stop in

alias sa stop at

alias s step

alias n next

alias r run

For more information about customizing your .dbxrc file and dbxenv variables, see “Setting dbxenv
Variables” in Oracle Developer Studio 12.6: Debugging a Program with dbx.

■ The name of a function breakpoint is descriptive in the Breakpoints window. The name of a line
breakpoint is not descriptive, although you can find what is at line 127 by right-clicking the line
breakpoint in the Breakpoints window and choosing Go To Source, or by double-clicking the
breakpoint.

■ Function breakpoints persist better. Because dbxtool persists breakpoints, line breakpoints might easily
become skewed if you edit code or do a source code control merge. Function names are less sensitive to
edits.

Using Watches and Stepping

Now that you have a single breakpoint at Interp::dispatch(), if you click Restart again and press
Return in the Debugger Console window, the program stops at the first line of the dispatch()function that
contains executable code.

Oracle® Developer Studio 12.6: dbxtool Tutorial 17

http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSDPblacv
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSDPblacv

Because you have identified the problem of the argv[0] being passed to find() use a watch on argv:

1. Select an instance of argv in the Editor window.
2. Right-click and choose New Watch. The New Watch dialog box appears seeded with the selected text:

3. Click OK.
4. To open the Watches window, choose Window → Watches (Alt + Shift 2).
5. In the Watches window, expand argv.

Note that argv is uninitialized and because it is a local variable, argv might “inherit” random values left
on the stack from previous calls. Could this be the cause of problems?

Oracle® Developer Studio 12.6: dbxtool Tutorial 18

Note - Watch variables can be viewed in the Variables window as well as the Watches window.

6.

Click Step Over (F8) twice until the green PC arrow points to int argc = 0;.
7. Because argc is going to be an index into argv, create a watch for argc also. Note that argc is also

currently uninitialized and might contain unwanted values.

Because you created the watch for argc after the watch for argv, it appears second in the Watches
window.

8. To alphabetize the watch names, click the Name column header to sort the column. Note the sort
triangle in the following illustration.:

9.

Click Step Over (F8) .

argc now shows its initialized value of 0 and is displayed in bold to signify that the value just changed.

Oracle® Developer Studio 12.6: dbxtool Tutorial 19

The application is going to call strtok().
10. Click Step Over to step over the function, and observe, for example, by using balloon evaluation, that

token is NULL.

The strtok() function helps divide a string, for example, into tokens delimited by one of the
DELIMITERS. For more information, see the strtok(3) man page.

11. Click Step Over again to assign the token to argv. Then there is a call to strtok() in a loop.
As you step over, you do not enter the loop (there are no more tokens) and instead a NULL is assigned.

12. Step over that assignment too, to reach the threshold of the call to find where the sample program
crashed.

13. To double check that the program crashes at this point, step over the call to find().
The Signal Caught alert box is displayed again.

Oracle® Developer Studio 12.6: dbxtool Tutorial 20

14. Click Discard and Pause as before.

The first call to find() after stopping in Interp::dispatch() is indeed where things go wrong.

You can quickly get back to where you originally called find().

a.

Click Make Caller Current .
b. Toggle a line breakpoint at the call site of find().
c. Open the Breakpoints window and disable the Interp::dispatch() function breakpoint.

dbxtool should look like the following illustration:

d. The downward arrow indicates that two breakpoints are set on line 141 and that one of them is
disabled.

15.
Click Restart and press Return in the Debugger Console window.

Oracle® Developer Studio 12.6: dbxtool Tutorial 21

The program returns in front of the call to find(). Note that the Restart button evokes restarting. When
debugging, you restart much more often than initially starting.)

Tip - If you rebuild your program, for example after discovering and fixing bugs, you need not exit
dbxtool and restart it. When you click the Restart button, dbx detects that the program (or any of its
constituents) has been recompiled, and reloads it.

Therefore, consider keeping dbxtool on your desktop, perhaps minimized, and ready to use on your
debugging problems.

16. Where is the bug? Look at the watches again:

Note that argv[0] is NULL because the first call to strtok() returns NULL because the line was
empty and had no tokens.
Fix this bug before proceeding with the remainder of this tutorial, if you like.
If you will be running the program under the debugger, you can patch the code in the debugger, as
described in “Using Breakpoint Scripts to Patch Your Code” on page 39.

The developer of the example code should probably have tested for this condition and bypassed the rest of
Interp::dispatch().

Discussion

The example illustrates the most common debugging pattern, where you stop the misbehaving program at
some point before things have gone wrong and then step through the code comparing the intent of the code
with the way the code actually behaves.

The next section describes some advanced techniques for using breakpoints to avoid some of the stepping
and watches that you used in this example.

Using Advanced Breakpoint Techniques

This section demonstrates some advanced techniques for using breakpoints:

■ Using breakpoint counts

Oracle® Developer Studio 12.6: dbxtool Tutorial 22

■ Using bounded breakpoints
■ Picking a useful breakpoint count
■ Watchpoints
■ Using breakpoint conditions
■ Micro replay using pop
■ Using fix and continue

This section, and the example program, are inspired by an actual bug discovered in dbx using much the
same sequence described in this section.

Note - To get the correct output as shown in this section, the example program must still be "buggy". If
you fixed the bug, re-download the OracleDeveloperStudio12.5-Samples directory from “Example
Program” on page 2.

The source code includes a sample input file named in, which triggers a bug in the example program. in
contains the following code:

display nonexistent_var # should yield an error

display var

stop in X # will cause one "stopped" message and display

stop in Y # will cause second "stopped" message and display

run

cont

cont

run

cont

cont

When you run the program with the input file, the output is as follows:

$ a.out < in

> display nonexistent_var

error: Don't know about 'nonexistent_var'

> display var

will display 'var'

> stop in X

> stop in Y

> run

running ...

stopped in X

var = {

 a = '100'

 b = '101

 c = '<error>'

 d = '102

 e = '103'

 f = '104'

 }

> cont

stopped in Y

var = {

 a = '105'

 b = '106'

 c = '<error>'

 d = '107'

 e = '108'

 f = '109'

 }

> cont

Oracle® Developer Studio 12.6: dbxtool Tutorial 23

exited

> run

running ...

stopped in X

var = {

 a = '110'

 b = '111'

 c = '<error>'

 d = '112'

 e = '113'

 f = '114'

 }

> cont

stopped in Y

var = {

 a = '115'

 b = '116'

 c = '<error>'

 d = '117'

 e = '118'

 f = '119'

 }

> cont

exited

> quit

Goodby

This output might seem voluminous but the point of this example is to illustrate techniques to be used with
long running, complex programs where stepping through code or tracing just are not practical.

Notice that when showing the value of field c, you get a value of <error>. Such a situation might occur if
the field contains a bad address.

The Problem

Notice that when you ran the program a second time, you received additional error messages that you did
not get on the first run:

error: cannot get value of 'var.c'

The error() function uses a variable, err_silent, to silence error messages in certain circumstances.
For example, in the case of the display command, instead of displaying an error message, problems are
displayed as c = '<error>'.

Step 1: Repeatability

The first step is to set up a debug target and configure the target so the bug can easily be repeated by

clicking Restart .
Start debugging the program as follows:

1. If you have not yet compiled the example program, do so by following the instructions in “Example
Program” on page 2.

Oracle® Developer Studio 12.6: dbxtool Tutorial 24

2. Choose Debug → Debug Executable.
3. In the Debug Executable dialog box, browse for or type the path to the executable.
4. In the Arguments field, type:

< in

The directory portion of the executable path is displayed in the Working Directory field.
5. Click Debug.

In a real world situation, you might want to populate the Environment field as well.

When debugging a program, dbxtool creates a debug target. You can use the same debugging configuration
by choosing Debug → Debug Recent and then choosing the desired executable.

You can set many of these properties from the dbx command line. They will be stored in the debug target
configuration.

The following techniques help sustain easy repeatability. As you add breakpoints, you can quickly go
to a location of interest by clicking Restart without having to click Continue on various intermediate
breakpoints.

Step 2: First Breakpoint

Put the first breakpoint inside the error() function in the case where it prints an error message. This
breakpoint will be a line breakpoint on line 33.

In a larger program, you can easily change the current function in the Editor window by typing the
following, for example, in the Debugger Console window:

(dbx) func error

The lavender stripe indicates the match found by the func command.

1. Create the line breakpoint by clicking in the left margin of the Editor window on top of the number 33.

Oracle® Developer Studio 12.6: dbxtool Tutorial 25

2.
Click Restart to run the program and upon hitting the breakpoint, the stack trace shows the error
message that is generated due to the simulated command in the in file:

> display var # should yield an error

The call to error() is expected behavior.

3.
Click Continue to continue the process and hit the breakpoint again.
An unexpected error message appears.

Oracle® Developer Studio 12.6: dbxtool Tutorial 26

Step 3: Breakpoint Counts

It would be better to arrive at this location repeatedly on each run without having to click Continue after the
first hit of the breakpoint due to the command:

> display var # should yield an error

You can edit the program or input script and eliminate the first troublesome display command. However, the
specific input sequence you are working with might be a key to reproducing this bug so you do not want to
alter the input.
Because you are interested in the second time you reach this breakpoint, set its count to 2.

1. In the Breakpoints window, right-click the breakpoint and choose Customize.
2. In the Customize Breakpoint dialog box, type 2 in the Count Limit field.
3. Click OK.

Oracle® Developer Studio 12.6: dbxtool Tutorial 27

Now you can repeatedly arrive at the location of interest.

In this case,choosing a count of 2 was trivial. However, sometimes a place of interest is called many times.
See “Step 7: Determining the Count Value” on page 33to easily choose a good count value. But for now,
you will explore another way of stopping in error() only in the invocation you are interested in.

Step 4: Bounded Breakpoints

1. Open the Customize Breakpoint dialog box for the breakpoint inside error() and disable breakpoint
counts by selecting Always Stop from the drop-down list for the Count Limit.

2. Rerun the program.

Pay attention to the stack trace the two times you stop in error(). The first time, the stop in error()
looks like the following screen:

Oracle® Developer Studio 12.6: dbxtool Tutorial 28

The second time, the stop in error() looks like the following screen:

To arrange to stop at this breakpoint when it is called from runProgram (frame [7]), open the Customize
Breakpoint dialog box again and set the While In field to runProgram.

Oracle® Developer Studio 12.6: dbxtool Tutorial 29

Step 5: Looking for a Cause

The unwanted error message is issued because err_silent is not > 0. Take a look at the value of
err_silent with balloon evaluation.

1. Put your cursor over err_silent in line 31 and wait for its value to be displayed.

Follow the stack to see where err_silent was set.
2.

Click Make Caller Current twice to evaluateField(), which has already called
evaluateFieldPrepare() simulating a complex function that might be manipulating err_silent.

3. Click Make Caller Current again to get to printField(), where err_silent is being incremented.
printField() has also already called printFieldPrepare(), also simulating a complex function that
might be manipulating err_silent.

Oracle® Developer Studio 12.6: dbxtool Tutorial 30

Notice how err_silent++ and err_silent-- bracket some code.

err_silent could go wrong in either printFieldPrepare() or evaluateFieldPrepare(), or it might
already be wrong when control gets to printField().

Step 6: More Breakpoint Counts

To find out whether err_silent was wrong before or after the call to printField(), put a breakpoint in
printField().

1. Select printField(), right-click, and choose New Breakpoint.

The New breakpoint type is pre-selected and the Function field is pre-populated with printfield.
2. Click OK.

Oracle® Developer Studio 12.6: dbxtool Tutorial 31

3.
Click Restart .

The first time you hit the breakpoint is during the first run, on the first stop, and on the first field, var.a.
err_silent is 0, which is OK.

Oracle® Developer Studio 12.6: dbxtool Tutorial 32

4. Click Continue.

err_silent is still OK.
5. Click Continue again.

err_silent is still OK.

Reaching the particular call to printField() that resulted in the unwanted error message might take a
while. You need to use a breakpoint count on the printField breakpoint. But what shall the count be set to?
In this simple example, you could attempt to count the runs and the stops and the fields being displayed, but
in practice the process might be more difficult. There is a way to determine the count semi-automatically.

Step 7: Determining the Count Value

1. Open the Customize Breakpoint dialog box for the breakpoint on printField() and set the Count Limit
field to infinity.

This setting means that you will never stop at this breakpoint. However, it will still be counting.
2. Set the Breakpoints window to show more properties, such as counts.

a.
Click the Change Visible Columns button at the top right corner of the Breakpoints window.

b. Select Count Limit, Count, and While In.
c. Click OK.

Oracle® Developer Studio 12.6: dbxtool Tutorial 33

3. Run the program again. You will hit the breakpoint inside error(); the one bounded by runProgram().
4. Look at the count for the breakpoint on printField().

The count is 15.
5. In the Customize Breakpoint window again, click the drop-down list in the Count Limit column and

select Use current Count value to transfer the current count to the count limit, and click OK.

Now when you run the program, you will stop in printField() the last time it is called before the
unwanted error message.

Step 8: Narrowing Down the Cause

Use balloon evaluation to inspect err_silent again. Now it is -1. The most likely cause is one
err_silent-- too many, or one err_silent++ too few, being executed before you got to printField().

You can locate this mismatched pair of err_silents in a small program like this example by careful code
inspection. However, a large program might contain numerous pairings of the following:

err_silent++;

Oracle® Developer Studio 12.6: dbxtool Tutorial 34

err_silent--;

A quicker way to locate the mismatched pair is by using watchpoints.

The cause of the error might not be a mismatched set of err_silent++; and err_silent--; at all, but a
rogue pointer overwriting the contents of err_silent. Watchpoints would be more effective in catching
such a problem.

Step 9: Using Watchpoints

To create a watchpoint on err_silent:

1. Select the err_silent variable, right-click, and choose New Breakpoint.
2. Set Breakpoint Type to Access.

Note how the Settings section changes and how the Address field is & err_silent.
3. Select After in the When field.
4. Select Write in the Operation field.
5. Click OK.

6. Run the program.

You stop in init(). err_silent was incremented to 1 and execution stopped after that.

Oracle® Developer Studio 12.6: dbxtool Tutorial 35

7. Click Continue.

You stop in init() again.
8. Click Continue again.

You stop in init() again.
9. Click Continue again.

You stop in init() again.
10. Click Continue again.

Now you stop in stopIn(). Things look OK here too, with no -1s.

Instead of clicking Continue over and over until err_silent is set to -1, you can set a breakpoint condition.

Step 10: Breakpoint Conditions

To add a condition to your watchpoint:

1. In the Breakpoints window, right-click the After Write breakpoint and choose Customize.
2. Verify that After is selected in the When field.

Selecting After enables you to see what the value of err_silent was changed to.
3. Set the Condition field to err_silent == -1.
4. Click OK.

5. Run the program again.

Oracle® Developer Studio 12.6: dbxtool Tutorial 36

You stop in checkThings(), which is the first time err_silent is set to -1. As you look for the
matching err_silent++ you see what looks like a bug: err_silent is incremented only in the else
portion of the function.

Could this be the bug you've been looking for?

Step 11: Verifying the Diagnosis by Popping the Stack

One way to double-check that you indeed went through the else block of the function would be to set a
breakpoint on checkThings() and run the program. But checkThings() might be called many times. You
can use breakpoint counts or bounded breakpoints to get to the right invocation of checkThings(), but a
quicker way to replay what was recently executed is to pop the stack.

1. Choose Debug → Stack → Pop Topmost Call.

Notice the Pop Topmost Call does not undo everything. In particular, the value of err_silent is already
wrong because you are switching from data debugging to control flow debugging.

The process state reverts to the beginning of the line containing the call to checkThings().
2.

Click Step Into . and observe as checkThings() is called again.

As you step through checkThings(), you can verify that the process executes the if block where
err_silent is not incremented and then is decremented to -1.

Oracle® Developer Studio 12.6: dbxtool Tutorial 37

Although you appear to have found the programming error, you might want to triple check it.

Step 12: Using Fix to Further Verify The Diagnosis

Fix the code in place and verify that the bug has indeed gone away.

1. Fix the code by putting the err_silent++ above the if statement.

2.
Choose Debug > Apply Code Changes or press the Apply Code Changes button .

3. Disable the printField breakpoint and the watchpoint but leave the breakpoint in error() enabled.

Oracle® Developer Studio 12.6: dbxtool Tutorial 38

4. Run the program again.

Note that the program completes without hitting the breakpoint in error() and its output is as expected.

Discussion

This example illustrates the same pattern as discussed at the end of “Using Breakpoints and
Stepping” on page 13, that is, you stop the misbehaving program at some point before things have gone
wrong and then steps through the code comparing the intent of the code with the way the code actually
behaves. The main difference is that finding the point before things have gone wrong is a bit more involved.

Using Breakpoint Scripts to Patch Your Code

In “Using Breakpoints and Stepping” on page 13, you discovered a bug where an empty line yields a
NULL first token and causes a SEGV. You can use a workaround to avoid the error.

1. Delete all of the breakpoints you created previously. You can do this quickly by right-clicking in the
Breakpoints window and selecting Delete All.

2. Delete the <in argument in the Debug Executable dialog box.
3. Toggle a line breakpoint at line 130 in interp.cc.

Oracle® Developer Studio 12.6: dbxtool Tutorial 39

4. In the Breakpoints window, right-click the breakpoint you just created and choose Customize.
5. In the Customize Breakpoint dialog box, type token == 0 in the Condition field.
6. Select Run Script from the Action drop-down list.
7. In the Script field, type assign token = line.

Note - You cannot assign token = “dummy” because dbx cannot allocate the dummy string in the
debugged process. On the other hand, line is known to be equal to "".

The dialog box should look like the following screen.

Oracle® Developer Studio 12.6: dbxtool Tutorial 40

8. Click OK.

Now if you run the program and enter an empty line, instead of crashing, it will warn you, as shown in the
following screen.

This workaround might be clearer if you look at the command that dbxtool sent to dbx.

when at "interp.cc":130 -if token == 0 { assign token = line; }

Conclusion

Oracle Developer Studio dbxtool enables you to pinpoint the problem area that causes your program to
crash, while using a convenient GUI format. dbxtool enables you to simply debug your code by creating
breakpoints and stepping through your code. dbxtool also enables you use advanced breakpoint techniques
with features like watchpoints, breakpoint conditions, and pop stacking, to identify bugs in your code and
enable you to fix these problems.

Oracle® Developer Studio 12.6: dbxtool Tutorial 41

42

Oracle Developer Studio 12.6: dbxtool Tutorial

Part No: E77794

Copyright © 2010, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or
display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S.
Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to
license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications,
including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The
Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not
responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you
and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except
as set forth in an applicable agreement between you and Oracle.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Référence: E77794

Copyright © 2010, 2017, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d'utilisation et de divulgation.
Sauf stipulation expresse de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence, transmettre, distribuer, exposer,
exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie inverse du logiciel,
de le désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous invite, le
cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l'accompagne, est livré sous licence au Gouvernement des Etats-Unis, ou à quiconque qui aurait souscrit la licence de ce logiciel pour le compte du
Gouvernement des Etats-Unis, la notice suivante s'applique :

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S.
Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to
license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être utilisé dans
des applications à risque, notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou ce matériel dans le cadre d'applications dangereuses,
il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans des conditions optimales de sécurité.
Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l'utilisation de ce logiciel ou matériel pour des applications dangereuses.

Oracle et Java sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d'autres propriétaires qu'Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques déposées de
SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une marque déposée de The
Open Group.

Ce logiciel ou matériel et la documentation qui l'accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant de tiers. Oracle
Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers, sauf mention contraire stipulée dans un contrat entre
vous et Oracle. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l'accès à des
contenus, produits ou services tiers, ou à leur utilisation, sauf mention contraire stipulée dans un contrat entre vous et Oracle.

Accès aux services de support Oracle

Les clients Oracle qui ont souscrit un contrat de support ont accès au support électronique via My Oracle Support. Pour plus d'informations, visitez le site http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info ou le site http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs si vous êtes malentendant.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

	Oracle® Developer Studio 12.6: dbxtool Tutorial
	Introduction
	Example Program
	Configuring dbxtool
	Diagnosing a Core Dump
	Using Breakpoints and Stepping
	Setting Breakpoints
	Advantages of Function Breakpoints
	Using Watches and Stepping
	Discussion

	Using Advanced Breakpoint Techniques
	The Problem
	Step 1: Repeatability
	Step 2: First Breakpoint
	Step 3: Breakpoint Counts
	Step 4: Bounded Breakpoints
	Step 5: Looking for a Cause
	Step 6: More Breakpoint Counts
	Step 7: Determining the Count Value
	Step 8: Narrowing Down the Cause
	Step 9: Using Watchpoints
	Step 10: Breakpoint Conditions
	Step 11: Verifying the Diagnosis by Popping the Stack
	Step 12: Using Fix to Further Verify The Diagnosis
	Discussion

	Using Breakpoint Scripts to Patch Your Code
	Conclusion

