
Oracle® Developer Studio 12.6: Discover
and Uncover User's Guide

Part No: E77795
June 2017

Oracle Developer Studio 12.6: Discover and Uncover User's Guide

Part No: E77795

Copyright © 2016, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are
not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement
between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Référence: E77795

Copyright © 2016, 2017, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions d'utilisation et
de divulgation. Sauf stipulation expresse de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence, transmettre,
distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute
ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous
invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l'accompagne, est livré sous licence au Gouvernement des Etats-Unis, ou à quiconque qui aurait souscrit la licence de ce logiciel pour le
compte du Gouvernement des Etats-Unis, la notice suivante s'applique :

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des informations. Ce logiciel ou matériel n'est pas conçu ni n'est destiné à être
utilisé dans des applications à risque, notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou ce matériel dans le cadre
d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans
des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l'utilisation de ce logiciel ou matériel pour des
applications dangereuses.

Oracle et Java sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à d'autres propriétaires
qu'Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une
marque déposée de The Open Group.

Ce logiciel ou matériel et la documentation qui l'accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services émanant de
tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers, sauf mention contraire stipulée
dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des
dommages causés par l'accès à des contenus, produits ou services tiers, ou à leur utilisation, sauf mention contraire stipulée dans un contrat entre vous et Oracle.

Accès aux services de support Oracle

Les clients Oracle qui ont souscrit un contrat de support ont accès au support électronique via My Oracle Support. Pour plus d'informations, visitez le site http://www.oracle.com/
pls/topic/lookup?ctx=acc&id=info ou le site http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs si vous êtes malentendant.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Contents

Using This Documentation ...  9

1 Introduction ...  11
Memory Error Discovery Tool Oracle Developer Studio (discover) .......................  11
Code Coverage Tool (uncover) ..  12

2 Memory Error Discovery Tool (discover) ...  13
Requirements for Using discover ..  13

Supported Binaries ..  13
Binaries That Use Preloading or Auditing Are Incompatible ..........................  14

Simple Program Example ...  15
Instrumenting a Binary ...  16

Caching Shared Libraries ..  17
Instrumenting Shared Libraries ..  17
Ignoring Libraries ..  18
Checking Parts of a Library or an Executable ...  18
Command-Line Options .. 18
bit.rc Initialization Files ...  22

Running an Instrumented Binary ..  23
Hardware-Assisted Checking Using Silicon Secured Memory (SSM) ......................  23

Using the libdiscoverADI Library to Find Memory Access Errors .................  24
Custom Memory Allocators and the discover ADI Library ........................... 26
Requirements and Limitations of Using libdiscoverADI ..............................  30
Example of Using discover ADI Mode ..  31

Analyzing discover Reports ...  35
Analyzing the HTML Report ...  36
Analyzing the ASCII Report ...  41

discover APIs and Environment Variables ..  44

5

Contents

discover APIs ..  45
SUNW_DISCOVER_OPTIONS Environment Variable ..  50

Memory Access Errors and Warnings ...  50
Memory Access Errors ...  50
Memory Access Warnings ... 55

Interpreting discover Error Messages ...  56
Partially Initialized Memory ..  57
Speculative Loads .. 57
Uninstrumented Code ...  58

Limitations When Using discover ...  59
Non-Annotated Code Might Cause False Results ... 60
Machine Instruction Might Differ From Source Code ...................................  60
Compiler Options Affect the Generated Code ...  60
System Libraries Can Affect the Errors Reported ..  61
Custom Memory Management Can Affect the Accuracy of the Data ...............  61

3 Code Coverage Tool (uncover) ...  63
Requirements for Using uncover .. 63
Using uncover ..  64

Instrumenting the Binary ..  64
Running the Instrumented Binary ...  65
Generating and Viewing the Coverage Report ... 65
Coverage for Shared Libraries ...  67

Understanding the Coverage Report in Performance Analyzer ...............................  68
Overview Screen ...  68
Functions View ...  69
Source View ...  72
Disassembly View ...  73
Instruction Frequency View ...  73

Understanding the ASCII Coverage Report ..  74
Understanding the HTML Coverage Report ...  78
Limitations When Using uncover ...  80

Only Annotated Code Can Be Instrumented ...  80
Compiler Options Affect Generated Code ..  80
Machine Instructions Might Differ From Source Code .................................. 81

6 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Contents

Index ..  85

7

8 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Using This Documentation

■ Overview – Describes how to use the Memory Error Discovery Tool (discover) to find
memory-related errors in binaries, and the Code Coverage Tool (uncover) to measure code
coverage of applications.

■ Audience – Application developers, system developers, architects, support engineers
■ Required knowledge – Programming experience, software development testing, experience

in building and compiling software products

Product Documentation Library

Documentation and resources for this product and related products are available at http://www.
oracle.com/pls/topic/lookup?ctx=E77782-01.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

Using This Documentation 9

http://www.oracle.com/pls/topic/lookup?ctx=E77782-01
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01
http://www.oracle.com/goto/docfeedback

10 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

 1 ♦ ♦ ♦ C H A P T E R 1

Introduction

Oracle Developer Studio 12.6 Discover and Uncover User's Guide describes how to use the
following tools:

■ “Memory Error Discovery Tool Oracle Developer Studio (discover)” on page 11
■ “Code Coverage Tool (uncover)” on page 12

Memory Error Discovery Tool Oracle Developer Studio
(discover)

The Memory Error Discovery Tool (discover) software is an advanced development tool
for detecting memory access errors. The discover utility works on binaries compiled with
Sun Studio 12 Update 1, Oracle Solaris Studio 12.2-12.4 or Oracle Developer Studio 12.5 or
12.6 compilers. It works on a SPARC–based or x86–based system running at least one of the
following operating systems: Solaris 10 10/11, Oracle Solaris 11.3, Oracle Enterprise Linux 6.x,
or Oracle Enterprise Linux 7.x.

Memory-related errors in programs are notoriously difficult to find. The discover utility
enables you to find such errors easily by pointing out the exact place where the problem exists
in the source code. For example, if your program allocates an array but does not initialize it, and
then tries to read from one of the array locations, the program will probably behave erratically.
The discover utility can catch this problem when you run the program in the normal way.

Other errors detected by discover include:

■ Reading from and writing to unallocated memory
■ Accessing memory beyond allocated array bounds
■ Incorrect use of freed memory
■ Freeing the wrong memory blocks
■ Freeing the same memory block multiple times

Chapter 1 • Introduction 11

Code Coverage Tool (uncover)

■ Memory leaks
■ Overlapping memory copy
■ Stale pointer accesses
■ Incorrect parameters to system library functions

Because discover catches and reports memory access errors dynamically during program
execution, if a portion of user code is not executed at runtime, errors in that portion are not
reported.

The discover utility is simple to use. Any binary (even a fully optimized binary) can be
instrumented with a single command, then run in the normal way. For information on how best
to instrument your binary, see “Supported Binaries” on page 13. During the run, discover
produces a report of the memory anomalies, which you can view as a text file or as HTML in a
web browser.

Code Coverage Tool (uncover)

The uncover utility is a simple and easy to use command-line tool for measuring code coverage
of applications. Code coverage is an important part of software testing. It provides information
about which areas of your code are exercised in testing, enabling you to improve your test suites
to test more of your code. The coverage information that uncover reports can be at a function,
statement, basic block, or instruction level.

The uncover utility provides a unique feature called uncoverage, which enables you to quickly
find major functional areas that are not being tested. Other advantages of uncover code
coverage are:

■ The slowdown relative to uninstrumented code is fairly small.
■ Because uncover operates on binaries, it can work with any optimized binary.
■ Measurements can be done simply by instrumenting the shipping binary. You do not have to

build the application differently for coverage testing.
■ The uncover utility provides a simple procedure for instrumenting the binary, running tests,

and displaying the results.
■ The uncover utility is multithread safe and multiprocess safe.

12 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

 2 ♦ ♦ ♦ C H A P T E R 2

Memory Error Discovery Tool (discover)

The Memory Error Discovery Tool (discover) software is an advanced development tool for
detecting memory access errors.
This chapter includes information about the following:

■ “Requirements for Using discover” on page 13
■ “Simple Program Example” on page 15
■ “Instrumenting a Binary” on page 16
■ “Running an Instrumented Binary” on page 23
■ “Hardware-Assisted Checking Using Silicon Secured Memory (SSM)” on page 23
■ “Analyzing discover Reports” on page 35
■ “Memory Access Errors and Warnings” on page 50
■ “Interpreting discover Error Messages” on page 56
■ “Limitations When Using discover” on page 59

Requirements for Using discover

This section describes requirements for using discover and achieving the best results and
contains the following topics:

■ “Supported Binaries” on page 13
■ “Binaries That Use Preloading or Auditing Are Incompatible” on page 14

Supported Binaries

The discover utility works on binaries compiled with Sun Studio 12 Update 1, Oracle Solaris
Studio 12.2-12.4 or Oracle Developer Studio 12.5 or 12.6 compilers. It works on a SPARC–

Chapter 2 • Memory Error Discovery Tool (discover) 13

Requirements for Using discover

based or x86–based system running at least one of the following operating systems: Solaris 10
10/08, Oracle Solaris 11, Oracle Enterprise Linux 5.x, or Oracle Enterprise Linux 6.x.

The discover utility issues an error and does not instrument a binary if it does not meet
these requirements. However, you can instrument a binary that does not meet these
requirements and use the -l option to detect a limited number of errors. See “Instrumentation
Options” on page 20.

A compiled binary includes information called annotations to help discover instrument it
correctly. The addition of this small amount of information does not affect the performance of
the binary or its runtime memory usage.

Use the -g option to generate debug information when compiling the binary so discover can
display source code and line number information while reporting errors and warnings, and
produce more accurate results. If your binary is not compiled with the -g option, discover
displays only the program counters of the corresponding machine level instructions. Also,
compiling with the -g option helps discover produce more accurate reports. While discover
can work with many optimized binaries, the use of -g is still recommended. For more
information, see “Interpreting discover Error Messages” on page 56.

For best results, binaries should be compiled with no optimization options and with the -g
option. Optimized code can vary from the source code due to optimizations, such as use of same
memory locations for different variables and generation of speculative code. Using advanced
optimization options while compiling can cause discover to report incorrect errors or fail to
report errors.

Note - discover supports binaries that redefine the standard memory allocation functions:
malloc(), calloc(), memalign(), valloc(), and free().

For more information, see “Limitations When Using discover” on page 59.

Binaries That Use Preloading or Auditing Are
Incompatible

Because discover uses some special features of the runtime linker, you cannot use it with
binaries that use preloading or auditing.

If a program requires the setting of the LD_PRELOAD environment variable, it probably will not
work correctly with discover because discover needs to interpose on certain system functions,
and it cannot do so if the function has been preloaded.

14 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Simple Program Example

Similarly, if a program uses runtime auditing, either because the binary was linked with the -p
option or the -P option or it requires the LD_AUDIT environment variable to be set, this auditing
will conflict with discover's use of auditing. If the binary was linked with auditing, discover
fails at instrumentation time. If you set the LD_AUDIT environment variable at runtime, the
results are undefined.

Simple Program Example

The following example illustrated preparing a program, instrumenting it with discover, and
then running it and producing a report on the detected memory access errors. This example uses
a simple program that accesses uninitialized data.

% cat test_UMR.c

#include <stdio.h>

#include <stdlib.h>

int main()

{

// UMR: accessing uninitialized data

int *p = (int*) malloc(sizeof(int));

printf("*p = %d\n", *p);

free(p);

}

% cc -g test_UMR.c

% a.out

*p = 131464

% discover a.out

% a.out

The discover output indicates where the uninitialized memory was used and where it was
allocated, along with a summary of results, as shown in the following figure.

Chapter 2 • Memory Error Discovery Tool (discover) 15

Instrumenting a Binary

Instrumenting a Binary

Instrumenting a targeted binary adds code in strategic places so that discover can keep track of
memory operations while the binary is running.

Note - For 32-bit binary on SPARC V8 architecture, discover inserts V8plus code while
instrumenting. As a result, the output binary is always v8plus regardless of binary input.

You instrument a binary using the discover command. For example, the following command
instruments the binary a.out and overwrites the input a.out with the instrumented a.out:

discover a.out

When you run the instrumented binary, discover monitors the program's use of memory.
During the run, discover writes a report detailing any memory access errors to an HTML file
that you can view in your web browser. The default file name is a.out.html. To request that
the report be written to an ASCII file or to stderr, use the -w option when you instrument the
binary.

When discover instruments a binary, if it finds any code that it cannot instrument because it is
not annotated, it displays a warning like the following:

16 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Instrumenting a Binary

discover: (warning): a.out: 80% of code instrumented (16 out of 20 functions)

Non-annotated code could come from assembly language code linked into the binary, or from
modules compiled with compilers or on operating systems older than those listed in “Supported
Binaries” on page 13.

Caching Shared Libraries

When discover instruments a binary, it adds code to the binary that works with the runtime
linker to instrument dependent shared libraries when they are loaded at runtime. The
instrumented libraries are stored in a cache where they can be reused if the original has
not changed since it was last instrumented. By default, the cache directory is $HOME/
SUNW_Bit_Cache. You can change the directory with the -D option.

Instrumenting Shared Libraries

The discover utility produces the most accurate results if the entire program, including all
shared libraries, is instrumented. By default, discover checks and reports memory errors only
in executables. To specify that you want discover to skip checking for errors in executables,
use the -n option.

You can use the -c <lib> option to specify that you want discover to check for errors in the
dependent shared libraries and libraries dynamically opened by dlopen(). You can also use the
-c option to avoid checking for errors in a specific library. Although discover does not report
any errors in that library, because it needs to track the memory state of the entire address space
to correctly detect memory errors, it records allocations and memory initializations in the entire
program including all shared libraries.

The discover utility runtime uses the linker audit interface, also called the rtld-audit or
LD_AUDIT to automatically load instrumented shared libraries from discover's cache directory.
On Oracle Solaris, the audit interface is used by default. On Linux, you need to set LD_AUDIT on
the command line while running the instrumented binary.

For 32-bit applications on Oracle Linux:

% LD_AUDIT=install-dir/lib/compilers/bitdl.so a.out

For 64-bit applications on Oracle Linux:

% LD_AUDIT=install-dir/lib/compilers/amd64/bitdl.so a.out

Chapter 2 • Memory Error Discovery Tool (discover) 17

Instrumenting a Binary

This mechanism might not work in all environments running Oracle Enterprise Linux 5.x. If
no library instrumentation is needed and LD_AUDIT is not set, there discover has no issues on
Oracle Enterprise Linux 5.x.

You should instrument all shared libraries used by the program as described in “Instrumenting a
Binary” on page 16. By default, if the runtime linker encounters an uninstrumented library,
a fatal error occurs. You can, however, tell discover to ignore one or more libraries.

Ignoring Libraries
You might not be able to instrument some libraries . You can tell discover to ignore these
libraries with the -T or -N option (see “Instrumentation Options” on page 20) or with
specifications in bit.rc files (see “bit.rc Initialization Files” on page 22). Some accuracy
might be lost.

By default, discover uses specifications in the system bit.rc file to set certain system and
compiler-supplied libraries to be ignored because they may not be annotated. The effect
on accuracy is minimal because discover knows the memory characteristics of the most
commonly used libraries.

Checking Parts of a Library or an Executable
You can specify an executable or library using the -c option. You can further qualify a target
executable or target library by restricting the memory access checking to certain object files.

For example, if the target library is libx.so and the target executable is a.out, you would use
the following command:

$ discover -c libx.so -o a.out.disc a.out

You can also limit the checking of any target by adding colon-separated files or directories.
Files can be ELF files or directories. If you specify an ELF file, all functions defined in the file
are checked. If you specify a directory, all files in the directory are recursively used.

$ discover -o a.out.disc a.out:t1.0:dir

$ discover -c libx.so:l1.o:12.o -o a.out.disc a.out

Command-Line Options
You can use the following options with the discover command to instrument a binary.

18 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Instrumenting a Binary

Output Options

-a Write the error data to binary-name.analyze/dynamic directory for use
by Code Analyzer.

-b browser Start web browser browser automatically while running the instrumented
program (off by default).

-e n Show only n memory errors in the report (default is show all errors).

-E n Show only n memory leaks in the report (default is 100).

-f Show offsets in the report (default is to hide them).

-H html-file Write discover's report on the binary in HTML format to html-file.
This file is created when you run the instrumented binary. If html-file
is a relative pathname, it is placed relative to the working directory
where you run the instrumented binary. To make the file name unique
for each time you run the binary, add the string %p to the filename to
instruct the discover runtime to include the process ID. For example,
the option -H report.%p.html generates a report file with the file name
report.process-ID.html. If you include %p in the file name more than
once, only the first instance is replaced with the process ID.

If you do not specify this option or the -w option, the report is written in
HTML format to output-file.html, where output-file is the basename of
the instrumented binary. The file is placed in the working directory where
you run the instrumented binary.

You can specify both this option and the -w option to write the report in
both text and HTML formats.

-m Show mangled names in the report (default is to show demangled
names).

-o file Write the instrumented binary to file. By default, the instrumented binary
overwrites the input binary.

-S n Show only n stack frames in the report (default is 8).

-w text-file Write discover's report on the binary to text-file. The file is created
when you run the instrumented binary. If text-file is a relative pathname,
the file is placed relative to the working directory where you run the
instrumented binary. To make the file name unique for each time you run
the binary, add the string %p to the file name to ask the discover runtime

Chapter 2 • Memory Error Discovery Tool (discover) 19

Instrumenting a Binary

to include the process ID. For example, the option -w report.%p.txt
generates a report file with the file name report.process-ID.txt. If
you include %p in the file name more than once, only the first instance is
replaced with the process ID. Specifying -w - will output in stderr.

If you do not specify this option or the -H option, the report is written in
HTML format to output-file.html, where output-file is the basename of
the instrumented binary. The file is placed in the working directory where
you run the instrumented binary.

You can specify both this option and the -H option to write the report in
both text and HTML formats.

Note - Using the full path names is recommended while using the -w and -H options. If relative
paths are used, the reports are generated in the directory relative to the run directory of the
process. So if the application changes directories and starts new processes, it is possible that the
reports might be misplaced. When applications fork new processes, discover at runtime makes
a copy of parent error report for the child process and the child process continues to write to the
copy. If the run directory of the child process is different, and a relative path was used for the
report file, it is possible that the child process will not find the parent process. Using the full
path name prevents these issues.

Instrumentation Options

-A [on | off] Turn on or off allocation/free stack traces (default is on with stack
depth 8). This flag can only be specified when instrumenting for
hardware-assisted checking, using the -i adi option. For better runtime
performance, allocation/free stack trace collection can be turned off with
this option. This option can only be used if you have Oracle Developer
Studio 12.6, 3/15 Platform Specific Enhancement (PSE) installed.

-c [‐ | library [:
scope...] | file]

Check for errors in all libraries, or in the specified library, or in the
libraries listed separated by new lines in the specified file. The default is
not to check for errors in libraries. You can limit the scope of checking
the library by adding colon-separated files or directories. Some critical
errors like bad memory write errors may still be reported even if the --c
flag is used since these errors could potentially corrupt the memory that
belongs to other binaries in the application. For more information, see
“Checking Parts of a Library or an Executable” on page 18.

-F [parent |
child | both]

Specify what you want to happen if a binary you have instrumented with
discover forks while you are running it. By default, discover continues

20 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Instrumenting a Binary

to collect memory access error data from both parent and child processes.
If you want discover to follow only the parent process, specify -F
parent. If you want Discover to follow only the child process, specify -F
child.

-i [datarace |
memcheck | adi]

Determines instrumentation type of discover (default is memcheck).

If datarace is specified, instrument for data race detection using Thread
Analyzer. When you use this option, only data race detection is done at
runtime; no other memory checking is done. The instrumented binary
must be run with the collect command to generate an experiment
that you can view in Performance Analyzer. For more information,
see Oracle Developer Studio 12.6: Thread Analyzer User’s Guide.If
memcheck is specified, instrument for memory error checking. If adi is
specified, instrument for hardware-assisted checking using the SPARC
M7 processor ADI feature. This feature is only available with Oracle
Solaris 11.3 running on SPARC M7 processor.

-K Do not read the bit.rc initialization files (see “bit.rc Initialization
Files” on page 22).

-l Run discover in lite mode. Use the -l option if you are only interested
in finding memory leaks in your program. This mode can also identify
some memory access errors without slowing down the program much.
Examples of such errors are double free of a memory area and out
of bounds access of an allocated area passed as an argument to
a memcpy() function call. It is recommended that you run your program
through lite mode in discover before running it in full mode.

-n Do not check for errors in executables. Some critical errors like memory
write errors may still be reported even if the --n flag is used, because
these errors could potentially corrupt the memory that belongs to other
binaries in the application.

-N library Do not instrument any dependent shared library matching the prefix
library. If the initial characters of a library name match library, the
library is ignored. If library begins with a slash (/), matching is done on
the full absolute pathname of the library. Otherwise, matching is done on
the basename of the library.

-P [on | off] Turn on or off precise ADI mode. Default is on. This flag can only be
specified when instrumenting for hardware-assisted checking, using the
-i adi option. For better runtime performance, you can turn off precise
ADI mode with this option.

Chapter 2 • Memory Error Discovery Tool (discover) 21

http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSTA

Instrumenting a Binary

-T Instrument the named binary only. Do not instrument any dependent
shared libraries at runtime.

Caching Options

-D cache-directory Use cache-directory as the root directory for storing cached instrumented
binaries. By default, the cache directory is $HOME/SUNW_Bit_Cache.

-k Force reinstrumentation of any libraries found in the cache.

Other Options

-h or -? Help. Print a short usage message and exit.

-v Verbose. Print a log of what discover is doing. Specify the option twice
for more information.

-V Print discover version information and exit.

bit.rc Initialization Files

The discover utility initializes its state by reading a series of bit.rc files at startup. A system
file, Oracle-Developer-Studio-installation-directory/lib/compilers/bit.rc, provides default
values for certain variables. The discover utility reads this file first, followed by $HOME/.bit.
rc if it exists, and current-directory/.bit.rc if it exists.

The bit.rc files contain commands to set, append, or remove certain variable values. When
discover reads a set command, it discards the previous value, if any, of the variable. When
it reads an append command, it appends the argument (after a colon separator) to the existing
value of the variable. When it reads a remove command, it removes the argument and its colon
separator from the existing value of the variable.

The variables set in the bit.rc files include the list of libraries to ignore when instrumenting,
and lists of functions or function prefixes to ignore when computing the percentage of non-
annotated code in a binary.

For more information, refer to the comments in the header of the system bit.rc file.

22 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Running an Instrumented Binary

Running an Instrumented Binary

After you have instrumented your binary with discover, you run the binary the same way
you normally would. Typically, if a particular combination of input causes your program to
behave unexpectedly, you would instrument it with discover and run it with the same input to
investigate potential memory problems. While the instrumented program is running, discover
writes information about any memory problems it finds to the specified output files in the
selected formats (text, HTML, or both). For information about interpreting the reports, see
“Analyzing discover Reports” on page 35.

Because of the overhead of instrumentation, your program is likely to run significantly slower
after you instrument it. Depending on the frequency of memory access, it might run as much as
50 times slower.

Hardware-Assisted Checking Using Silicon Secured
Memory (SSM)

The SPARC M7 processor from Oracle offers Software in Silicon, which enables software to
run faster and more reliably. One Software in Silicon feature is Silicon Secured Memory (SSM),
previously called Application Data Integrity (ADI), whose circuitry detects common memory
access errors that can cause run-time data corruption.

These errors can be caused by errant code or a malicious attack on a server's memory. For
example, buffer overflows are known to be a major source of security exploits. Further, in-
memory databases increase an application's exposure to such errors due to having critical data
in-memory.

Silicon Secured Memory stops memory corruptions in optimized production code by
adding version numbers to the application's memory pointers and the memory they point
to. If the pointer version number does not match the content version number, the memory
access is aborted. Silicon Secured Memory works with applications written in systems-level
programming languages such as C or C++, which are more vulnerable to memory corruption
caused by software errors.

Oracle Developer Studio 12.6 includes the libdiscoverADI.so library (also referred to as
the discover ADI library), which provides updated malloc() library routines that ensure that
adjacent data structures are given different version numbers. These version numbers enable the
processor's SSM technology to detect memory access errors, like buffer overflows. Memory
content version numbers are changed when memory structures are freed to prevent stale pointer

Chapter 2 • Memory Error Discovery Tool (discover) 23

Hardware-Assisted Checking Using Silicon Secured Memory (SSM)

accesses. For more information about the errors caught by discover and libdiscoverADI.so,
see “Errors Caught by the libdiscoverADI Library” on page 24.

In addition to using SSM in production to detect potential memory corruption issues, ,
you can use it during application development to ensure that such errors are caught during
application testing and certification. Memory corruption bugs are extremely hard to find
because applications encounter corrupted data long after the corruption happens. The discover
tool and the libdiscoverADI.so library, part of the Oracle Developer Studio developer tool
suite, provide you with additional application information that makes locating and fixing the
errant code easier.

Using the libdiscoverADI Library to Find Memory
Access Errors

The discover ADI library libdiscoverADI.so reports programming errors that result in
invalid memory accesses. You can use in it two ways:

■ By preloading the discover ADI library into your application with the LD_PRELOAD_64.
environment variable. This method runs all 64-bit binaries in the application in ADI mode,
For example, if you normally run an application named server, the command would be as
follows:

$ LD_PRELOAD_64=install-dir/lib/compilers/sparcv9/libdiscoverADI.so server
■ By using ADI mode with the discover command with the -i adi option on a specific

binary.

% discover -i adi a.out

% a.out

The errors are reported in an a.out.html file by default. For more information about
discover reports, see “Analyzing discover Reports” on page 35 and “Output
Options” on page 19.

See “Requirements and Limitations of Using libdiscoverADI” on page 30.

Errors Caught by the libdiscoverADI Library

The libdiscoverADI.so library catches the following errors:

■ Array out of Bounds Access (ABR/ABW)

24 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Hardware-Assisted Checking Using Silicon Secured Memory (SSM)

■ Freed Memory Access (FMR/FMW)
■ Stale Pointer Access (A special type of FMR/FMW)
■ Unallocated Read/Write (UAR/UAW)
■ Double Free Memory (DFM)

For more information about each of these types of errors, see “Memory Access Errors and
Warnings” on page 50.

For a full example, see “Example of Using discover ADI Mode” on page 31.

Instrumentation Options for discover ADI Mode

The following options determine the precision and amount of information generated in the
discover report when instrumenting with ADI.

-A [on | off] When this flag is set to on, the discover ADI library reports the location
of the error and the error stack trace. This information is sufficient
to catch the error, but it is not always sufficient to fix the error. See
“SUNW_DISCOVER_OPTIONS Environment Variable” on page 50 on
how to change runtime behavior for this option.
This flag also generates information about where the offending memory
area was allocated and freed. For example, the output might say that an
error was an Array out of Bounds Access and where that array was
allocated. If set to off, allocations and stack trace are not reported. The
default is on.

Note - Even if -A is set to on, it is possible that ABR/ABW might sometimes be reported as
FMR/FMW or UAR/UAW, due to one of the following reasons:
■ If the buffer overflow access happens at a large offset after the end of the buffer or before

the beginning of the buffer.
■ If libdiscoverADI.so hits a resource limit. In this case, discover might be able to keep the

allocation stack trace that is needed to determine if the error is a buffer overflow.

-P [on | off] When this flag is set to off, ADI is run in non-precise mode. In non-
precise mode, memory write errors are caught a few instructions (source
lines) after the exact instruction is executed. To enable Precise mode, set
this flag to on, which is the default.

For better runtime performance, you can specify -A off, -P off, or both options can be set to
off.

Chapter 2 • Memory Error Discovery Tool (discover) 25

Hardware-Assisted Checking Using Silicon Secured Memory (SSM)

Custom Memory Allocators and the discover ADI
Library

Enterprise applications can often manage their own memory and do not use the system (libc)
malloc(3C) library. For these cases, the normal usage of libdiscoverADI.so, which interposes
on malloc() will not be able to catch memory corruptions. Oracle Developer Studio provides
APIs so the enterprise applications can tell libdiscoverADI.so when a memory area is
allocated or freed. libdiscoverADI.so manages the SSM versioning, signal handling, and error
reporting. These APIs and libdiscoverADI.so only works for memory allocated by mmap(2) or
shmget(2).

The following APIs are provided:

void

*adi_mark_malloc

(void *,

size_t);

The allocator passes a pointer to the memory about to be passed and
the size to the client requesting memory. If the memory does not have
ADI enabled, the library uses a memcntl(2) call. A versioned pointer is
returned, which the allocator must pass to the client.

void adi_mark_free
(void *, size_t);

The allocator passes a pointer and the size to the memory area to be
freed.

void
*adi_unversion
(void *);

Allocators can use pointer arithmetic to access a client memory's meta
data. Client memory is often versioned, but allocator meta data is not. In
such circumstances, you need to use this API. The allocator passes any
pointer, and gets back an equivalent unversioned pointer.

void *adi_version
(void *);

Sometimes allocators lose track of versioned pointers. This API takes in
any pointer, and returns an equivalent pointer with the correct version on
it. Any dereference with the return value will not cause an ADI SEGV.

void
*adi_clear_version
(void *, size_t);

If a memory area is being reused for a different purpose, the ADI version
needs to be cleared. For example, if a memory area was versioned for use
by an allocator client, and is now being used by the allocator for meta-
data. This function takes in a versioned or unversioned pointer and size,
sets the version for that area to 0, and returns an unversioned pointer.

Your application might manage its own memory allocation and free lists, for example by
allocating large chunks of memory and subdividing it in your program. See Using Application
Data Integrity and Oracle Solaris Studio to Find and Fix Memory Access Errors (https://
community.oracle.com/docs/DOC-912448) for information about how you can use the ADI
versioning APIs to catch errors with your managed memory.

26 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

https://community.oracle.com/docs/DOC-912448
https://community.oracle.com/docs/DOC-912448
https://community.oracle.com/docs/DOC-912448

Hardware-Assisted Checking Using Silicon Secured Memory (SSM)

Using Custom Memory Allocators

To use these APIs, include the following header file in your sources:

install-dir/lib/compilers/include/cc/discoverADI_API.h

Then, do one of the following:

■ Link your sources with install-dir/lib/compilers/sparcV9/libadiplugin.so
■ Set the environment variable LD_PRELOAD_64 to install-dir/lib/compilers/sparcV9/

libadiplugin.so

■ Run the following command: discover -i adi executable

The following is an example of using custom memory allocators.

EXAMPLE 1 Using Custom Memory Allocators

The following is an example header file:

% cat allocator.h

#define GRANULARITY 32

void *mymalloc(size_t len);

void myfree(void *ptr);

The following is example source code, using custom memory allocators and the
libdiscoverADI library:

% cat allocator.c

#include <sys/mman.h>

#include <stdio.h>

#include <stdlib.h>

#include <ucontext.h>

#include <errno.h>

#include <dlfcn.h>

#include <unistd.h>

#include <assert.h>

#include "allocator.h"

#include "discoverADI_API.h"

#pragma init (setup_allocator)

#pragma fini (takedown_allocator)

#define MAX_ALLOCATIONS 1024

Chapter 2 • Memory Error Discovery Tool (discover) 27

Hardware-Assisted Checking Using Silicon Secured Memory (SSM)

#define START_ADDRESS 0x200000000

uint64_t next_available_address = 0;

size_t allocation_table[MAX_ALLOCATIONS/GRANULARITY];

static void setup_allocator() {

 // mmap with a specific address

 void *addr = mmap((void *) START_ADDRESS, MAX_ALLOCATIONS,

 PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, 0);

 if (addr == MAP_FAILED) {

 fprintf(stderr, "mmap failed {%d}\n", errno);

 exit(1);

 }

 next_available_address = (uint64_t) addr;

}

static void takedown_allocator() {

 if (munmap((void *) START_ADDRESS, MAX_ALLOCATIONS) != 0) {

 fprintf(stderr, "munmap failed {%d}\n", errno);

 exit(1);

 }

}

// Simple malloc

void *mymalloc(size_t size) {

 void *vaddr = (void *) next_available_address;

 next_available_address += size;

 assert(next_available_address < (START_ADDRESS+MAX_ALLOCATIONS));

 int index = ((uint64_t)vaddr-START_ADDRESS)/GRANULARITY;

 allocation_table[index] = size;

 // Tell libdiscoverADI.so about the allocation, get a versioned

 // pointer

 vaddr = adi_mark_malloc(vaddr, size);

 // Return the versioned pointer

 return vaddr;

}

// Simple free

void myfree(void *ptr) {

 int index = ((uint64_t)ptr-START_ADDRESS)/GRANULARITY;

 size_t size = allocation_table[index];

 // Tell libdiscoverADI.so about the free().

 adi_mark_free(ptr, size);

28 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Hardware-Assisted Checking Using Silicon Secured Memory (SSM)

}

% cat simple.c

#include <stdio.h>

#include <stdlib.h>

#include "allocator.h"

int main() {

 // Allocate

 char *buf1 = (char *) mymalloc(GRANULARITY*2);

 buf1[0] = 'x';

 // Read before free

 printf("Read buf1[0] before free: [0x%p] %c\n", buf1, buf1[0]);

 // Allocate

 char *buf2 = (char *) mymalloc(GRANULARITY*2);

 // Buf1fer overflow buf1

 printf("Read buf1[%d] past end: [0x%p] %c\n", GRANULARITY*2,

 buf1+GRANULARITY*2, buf1[GRANULARITY*2]);

 // Free

 myfree(buf1);

 // Read after free

 printf("Read buf1[0] after free: [0x%p] %c\n", buf1, buf1[0]);

 return 0;

}

To compile and run this example:

% cc –m64 –g –I install-dir/lib/compilers/include/cc allocator.c simple.c install-dir/lib/
compilers/sparcv9/libadiplugin.so –o simple

% ./simple

The following is the resulting generated HTML report:

Chapter 2 • Memory Error Discovery Tool (discover) 29

Hardware-Assisted Checking Using Silicon Secured Memory (SSM)

Requirements and Limitations of Using
libdiscoverADI

You can use ADI mode of discover only with 64-bit applications on a SPARC M7 chip
running at least Oracle Solaris 11.2.8 or Oracle Solaris 11.3.

Similar to instrumenting for memory checking, preloaded libraries might conflict if functions
of libdiscoverADI.so interpose on the same allocation functions. See “Binaries That Use
Preloading or Auditing Are Incompatible” on page 14 for more information.

Other limitations for checking your code with libdiscoverADI include the following:

30 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Hardware-Assisted Checking Using Silicon Secured Memory (SSM)

■ Only heap-checking is available. There is no stack checking, no static array-out-of-bounds
checking, and no leak detection.

■ Does not work with applications which use the unused bits in 64-bit addresses for storing
meta data. Some 64-bit applications might use the currently unused high bits in 64-bit
addresses for storing meta-data, for instance, locks. Such applications will not work with
discover in ADI mode because the feature works by using the 4 highest bits in the 64-bit
address to store version information.

■ Might not work for applications that do pointer arithmetic with assumptions about heap
addresses, for example, the distance between two successive allocations.

■ Unlike in memcheck mode (instrumenting with -i memcheck), ADI mode does not catch
errors if the application redefines standard memory allocation functions in the executable.
If the application redefines the standard memory allocation functions in a library, then ADI
mode works.

■ Resolution for buffer overflow is 64 bytes. For allocations that are 64-byte-aligned,
libdiscoverADI.so will catch any overflow by 1 byte or more. For allocations that are not
aligned at 64 bytes, it might miss the buffer overflow by a few bytes. In general, overflow
by 1 to 63 bytes might not be caught depending on the alignment of the allocation and
where libdiscoverADI.so places the allocation in the cache line.

■ There is a slight chance that binaries compiled with -xipo=2 might have a memory-
optimized code that manipulates addresses in a way that will lead to false positive SSM
errors and as a result also lead to performance degradation due to trap handling.

Example of Using discover ADI Mode

This section provides a code sample with Array-out-of-bounds errors, which are then caught
and reported by discover using ADI mode.

Assume the following sample code resides in a file named testcode.c.

#include <stdio.h>

#include <stdlib.h>

#define STRSZ 64

int main()

{

char *arr1 = (char*)malloc(sizeof(char)*STRSZ);

char *arr2 = (char*)malloc(sizeof(char)*STRSZ);

// Buffer overflow due to using "<=" instead of "<"

for (int i=0; i <= STRSZ; i++)

arr1[i] = arr2[i]; // ABR/ABW

free(arr1);

Chapter 2 • Memory Error Discovery Tool (discover) 31

Hardware-Assisted Checking Using Silicon Secured Memory (SSM)

free(arr2);

char *arr3 = (char*)malloc(sizeof(char)*STRSZ);

arr3[0] = arr2[0]; // FMR

arr2[0] = arr3[3]; // FMW

arr3[1] = arr1[1]; // Possible stale pointer/FMR

free(arr2); // Double Free

return 0;

}

You would build the test code with the following command:

$ cc testcode.c -g -m64

To execute this sample application with ADI mode, use the following command:

$ discover -w - -i adi -o a.out.adi a.out

$./a.out.adi

This command generates the following output, in a discover report. For more
information about reading and understanding these reports, see “Analyzing discover
Reports” on page 35.

ERROR 1 (ABR): reading memory beyond array bounds at address 0x3fffffff7d47e080 {memory:

 v8}:

 main() + 0x48 <a.c:13>

 10:

 11: // Buffer overflow due to using "<=" instead of "<"

 12: for (int i=0; i <= STRSZ; i++)

 13:=> arr1[i] = arr2[i]; // ABR/ABW

 14:

 15: free(arr1);

 16: free(arr2);

 was allocated at (0x3fffffff7d47e040, 64 bytes):

 main() + 0x1c <a.c:9>

 6: {

 7:

 8: char *arr1 = (char*)malloc(sizeof(char)*STRSZ);

 9:=> char *arr2 = (char*)malloc(sizeof(char)*STRSZ);

 10:

 11: // Buffer overflow due to using "<=" instead of "<"

 12: for (int i=0; i <= STRSZ; i++)

ERROR 2 (ABW): writing to memory beyond array bounds at address 0x2fffffff7d47e040

 {memory: v3}:

 main() + 0x54 <a.c:13>

 10:

32 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Hardware-Assisted Checking Using Silicon Secured Memory (SSM)

 11: // Buffer overflow due to using "<=" instead of "<"

 12: for (int i=0; i <= STRSZ; i++)

 13:=> arr1[i] = arr2[i]; // ABR/ABW

 14:

 15: free(arr1);

 16: free(arr2);

 was allocated at (0x2fffffff7d47e000, 64 bytes):

 main() + 0x8 <a.c:8>

 5: int main()

 6: {

 7:

 8:=> char *arr1 = (char*)malloc(sizeof(char)*STRSZ);

 9: char *arr2 =(char*)malloc(sizeof(char)*STRSZ);

 10:

 11: // Buffer overflow due to using "<=" instead of "<"

ERROR 3 (FMR): reading from freed memory at address 0x3fffffff7d47e040 {memory: v10}:

 main() + 0xa0 <a.c:20>

 17:

 18: char *arr3 = (char*)malloc(sizeof(char)*STRSZ);

 19:

 20:=> arr3[0] = arr2[0]; // FMR

 21: arr2[0] = arr3[3]; // FMW

 22: arr3[1] = arr1[1]; // Possible stale pointer/FMR

 23:

 was allocated at (0x3fffffff7d47e040, 64 bytes):

 main() + 0x1c <a.c:9>

 6: {

 7:

 8: char *arr1 = (char*)malloc(sizeof(char)*STRSZ);

 9:=> char *arr2 = (char*)malloc(sizeof(char)*STRSZ);

 10:

 11: // Buffer overflow due to using "<=" instead of "<"

 12: for (int i=0; i <= STRSZ; i++)

 freed at (0x3fffffff7d47e040, 64 bytes):

 main() + 0x80 <a.c:16>

 13: arr1[i] = arr2[i]; // ABR/ABW

 14:

 15: free(arr1);

 16:=> free(arr2);

 17:

 18: char *arr3 = (char*)malloc(sizeof(char)*STRSZ);

 19:

ERROR 4 (FMW): writing to freed memory at address 0x3fffffff7d47e040 {memory: v10}:

 main() + 0xb8 <a.c:21>

 18: char *arr3 = (char*)malloc(sizeof(char)*STRSZ);

 19:

 20: arr3[0] = arr2[0]; // FMR

 21:=> arr2[0] = arr3[3]; // FMW

Chapter 2 • Memory Error Discovery Tool (discover) 33

Hardware-Assisted Checking Using Silicon Secured Memory (SSM)

 22: arr3[1] = arr1[1]; // Possible stalepointer/FMR

 23:

 24: free(arr2); // Double Free

 was allocated at (0x3fffffff7d47e040, 64 bytes):

 main() + 0x1c <a.c:9>

 6: {

 7:

 8: char *arr1 = (char*)malloc(sizeof(char)*STRSZ);

 9:=> char *arr2 =(char*)malloc(sizeof(char)*STRSZ);

 10:

 11: // Buffer overflow due to using "<=" instead of "<"

 12: for (int i=0; i <= STRSZ; i++)

 freed at (0x3fffffff7d47e040, 64 bytes):

 main() + 0x80 <a.c:16>

 13: arr1[i] = arr2[i]; // ABR/ABW

 14:

 15: free(arr1);

 16:=> free(arr2);

 17:

 18: char *arr3 = (char*)malloc(sizeof(char)*STRSZ);

 19:

ERROR 5 (FMR): reading from freed memory at address 0x2fffffff7d47e001 {memory: v3}:

 main() + 0xc0 <a.c:22>

 19:

 20: arr3[0] = arr2[0]; // FMR

 21: arr2[0] = arr3[3]; // FMW

 22:=> arr3[1] = arr1[1]; // Possible stale pointer/FMR

 23:

 24: free(arr2); // Double Free

 25:

 was allocated at (0x2fffffff7d47e000, 64 bytes):

 main() + 0x8 <a.c:8>

 5: int main()

 6: {

 7:

 8:=> char *arr1 = (char*)malloc(sizeof(char)*STRSZ);

 9: char *arr2 = (char*)malloc(sizeof(char)*STRSZ);

 10:

 11: // Buffer overflow due to using "<=" instead of "<"

 freed at (0x2fffffff7d47e000, 64 bytes):

 main() + 0x74 <a.c:15>

 12: for (int i=0; i <= STRSZ; i++)

 13: arr1[i] = arr2[i]; //ABR/ABW

 14:

 15:=> free(arr1);

 16: free(arr2);

34 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Analyzing discover Reports

 17:

 18: char *arr3 = (char*)malloc(sizeof(char)*STRSZ);

ERROR 6 (DFM): double freeing memory at address 0x3fffffff7d47e040 {memory: v10}:

 main() + 0xd0 <a.c:24>

 21: arr2[0] = arr3[3]; // FMW

 22: arr3[1] = arr1[1]; // Possible stale pointer/FMR

 23:

 24:=> free(arr2); // Double Free

 25:

 26: return 0;

 27: }

 was allocated at (0x3fffffff7d47e040, 64 bytes):

 main() + 0x1c <a.c:9>

 6: {

 7:

 8: char *arr1 = (char*)malloc(sizeof(char)*STRSZ);

 9:=> char *arr2 = (char*)malloc(sizeof(char)*STRSZ);

 10:

 11: // Buffer overflow due to using "<=" instead of "<"

 12: for (int i=0; i <= STRSZ; i++)

 freed at (0x3fffffff7d47e040, 64 bytes):

 main() + 0x80 <a.c:16>

 13: arr1[i] = arr2[i]; // ABR/ABW

 14:

 15: free(arr1);

 16:=> free(arr2);

 17:

 18: char *arr3 = (char*)malloc(sizeof(char)*STRSZ);

 19:

DISCOVER SUMMARY:

 unique errors : 6 (6 total)

Analyzing discover Reports

The discover report provides you with information to effectively pinpoint and fix the problems
in your source code.

By default, the report is written in HTML format to output-file.html, where output-file is the
basename of the instrumented binary. The file is placed in the working directory where you run
the instrumented binary.

When you instrument your binary, you can use the -H option to request that the HTML output be
written to a specified file, or the -w option to request that it be written to a text file.

Chapter 2 • Memory Error Discovery Tool (discover) 35

Analyzing discover Reports

After your binary is instrumented, if you want to write the report to a different file for a
subsequent run of the program, you can change the settings of the -H and -w options for the
report through the SUNW_DISCOVER_OPTIONS environment variable. For more information, see
“SUNW_DISCOVER_OPTIONS Environment Variable” on page 50.

Note - If you specify the -a option while instrumenting your code, you must use Code Analyzer
or the codean command to read the report.

Analyzing the HTML Report

The HTML report format provides interactive analysis of your program. The data in HTML
format can easily be shared between developers using email or placement on a web page.
Combined with JavaScript interactive features, this format provides a convenient way to
navigate through the discover messages.

This section describes the HTML report, which includes the following tabs:

■ “Using the Errors Tab” on page 36
■ “Using the Warnings Tab” on page 38
■ “Using the Memory Leaks Tab” on page 39

The Errors tab, Warnings tab , and Memory Leaks tab let you navigate through error messages,
warning messages, and the memory leak report, respectively.

The control panel on the left enables you to change the contents of the tab that is currently
displayed on the right. See “Using the Control Panel” on page 41.

Using the Errors Tab

When you first open an HTML report in your browser, the Errors tab is selected and displays
the list of memory access errors that occurred during execution of your instrumented binary:

36 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Analyzing discover Reports

When you click an error, the stack trace at the time of the error is displayed:

Chapter 2 • Memory Error Discovery Tool (discover) 37

Analyzing discover Reports

If you compiled your code with the -g option, you can see the source code for each function in
the stack trace by clicking the function:

Using the Warnings Tab

The Warnings tab displays all of the warning messages for possible access errors. When you
click a warning, the stack trace at the time of the warning is displayed. If you compiled your
code with the -g option, you can see the source code for each function in the stack trace by
clicking the function:

38 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Analyzing discover Reports

Using the Memory Leaks Tab

The Memory Leaks tab displays the total number of blocks remaining allocated at the end of the
program's run at the top, with the blocks listed below.:

Chapter 2 • Memory Error Discovery Tool (discover) 39

Analyzing discover Reports

When you click a block, the stack trace for the block is displayed. If you compiled your code
with the -g option, you can see the source code for each function in the stack trace by clicking
the function:

40 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Analyzing discover Reports

Using the Control Panel

To see the stack traces for all of the errors, warnings, and memory leaks, click Expand All in the
Stack Traces section of the control panel. To see the source code for all of the functions, click
Expand All in the Source Code section of the control panel.

To hide the stack traces or source code for all of the errors, warnings, and memory leaks, click
the corresponding Collapse All.

The Show Errors or Show Warnings sections of the control panel is displayed when the relevant
tab is selected. By default, the options for all of the detected errors or warnings are checked. To
hide a type of error or warning, deselect it.

A summary of the report listing the total numbers of errors and warnings, and the amount of
leaked memory, is displayed at the bottom of the control panel.

Analyzing the ASCII Report

The ASCII (text) format of the discover report is suitable for processing by scripts or when
you do not have access to a web browser. The following example shows a sample ASCII report.

$ a.out

ERROR 1 (UAW): writing to unallocated memory at address 0x50088 (4 bytes) at:

main() + 0x2a0 <ui.c:20>

17: t = malloc(32);

18: printf("hello\n");

19: for (int i=0; i<100;i++)

20:=> t[32] = 234; // UAW

21: printf("%d\n", t[2]); //UMR

22: foo();

23: bar();

ERROR 2 (UMR): accessing uninitialized data from address 0x50010 (4 bytes) at:

main() + 0x16c <ui.c:21>$

18: printf("hello\n");

19: for (int i=0; i<100;i++)

20: t[32] = 234; // UAW

21:=> printf("%d\n", t[2]); //UMR

22: foo();

23: bar();

24: }

was allocated at (32 bytes):

main() + 0x24 <ui.c:17>

14: x = (int*)malloc(size); // AZS warning

Chapter 2 • Memory Error Discovery Tool (discover) 41

Analyzing discover Reports

15: }

16: int main() {

17:=> t = malloc(32);

18: printf("hello\n");

19: for (int i=0; i<100;i++)

20: t[32] = 234; // UAW

0

WARNING 1 (AZS): allocating zero size memory block at:

foo() + 0xf4 <ui.c:14>

11: void foo() {

12: x = malloc(128);

13: free(x);

14:=> x = (int*)malloc(size); // AZS warning

15: }

16: int main() {

17: t = malloc(32);

main() + 0x18c <ui.c:22>

19: for (int i=0; i<100;i++)

20: t[32] = 234; // UAW

21: printf("%d\n", t[2]); //UMR

22:=> foo();

23: bar();

24: }

***************** Discover Memory Report *****************

1 block at 1 location left allocated on heap with a total size of 128 bytes

1 block with total size of 128 bytes

bar() + 0x24 <ui.c:9>

6: 7: void bar() {

8: int *y;

9:=> y = malloc(128); // Memory leak

10: }

11: void foo() {

12: x = malloc(128);

main() + 0x194 <ui.c:23>

20: t[32] = 234; // UAW

21: printf("%d\n", t[2]); //UMR

22: foo();

23:=> bar();

24: }

ERROR 1: repeats 100 times

DISCOVER SUMMARY:

unique errors : 2 (101 total, 0 filtered)

unique warnings : 1 (1 total, 0 filtered)

42 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Analyzing discover Reports

The report consists of error and warning messages followed by a summary.

ASCII Warning and Error Message Descriptions

The error message starts with the word ERROR and contains a three-letter code, an ID number,
and an error description (writing to unallocated memory in the example). Other details
include the memory address that was accessed and the number of bytes read or written.
Following the description is a stack trace at the time of the error that pinpoints the location of
the error in the process life cycle.

If you compiled the program with the -g option, the stack trace includes the source file name
and line number. If the source file is accessible, the source code in the vicinity of the error is
printed. The target source line in each frame is indicated by the ⇒ symbol.

When the same kind of error at the same memory location with the same number of bytes
repeats, the complete message including the stack trace is printed only once. Subsequent
occurrences of the error are counted and a repetition count, as shown in the following example,
is listed at the end of the report for each identical error that occurs multiple times.

ERROR 1: repeats 100 times

If the address of the faulty memory access is on the heap, then information on the
corresponding heap block is printed after the stack trace. The information includes the block
starting address and size, and a stack trace at the time the block was allocated. If the block was
freed, the report includes a stack trace of the deallocation point.

Warning messages appear in the same format as error messages except that they start with the
word WARNING. In general, these messages alert you to conditions that do not affect application
functionality but provide useful information that you can use to improve the program. For
example, allocating memory of zero size is not harmful but if it happens too often, it can
potentially degrade performance.

ASCII Memory Leak Report

The memory leak report contains information about memory blocks allocated on the heap but
not released at program exit. The following example shows a sample memory leak report.

$ DISCOVER_MEMORY_LEAKS=1 ./a.out

...

***************** Discover Memory Report *****************

Chapter 2 • Memory Error Discovery Tool (discover) 43

discover APIs and Environment Variables

2 blocks left allocated on heap with total size of 44 bytes

block at 0x50008 (40 bytes long) was allocated at:

malloc() + 0x168 [libdiscoverADI.so:0xea54]

f() + 0x1c [a.out:0x3001c]

<discover_example.c:9>:

8: {

9:=> int *a = (int *)malloc(n * sizeof(int));

10: int i, j, k;

main() + 0x1c [a.out:0x304a8]

<discover_example.c:33>:

32: /* Print first N=10 Fibonacci numbers */

33:=> a = f(N);

34: printf("First %d Fibonacci numbers:\n", N);

...

The first line following the header summarizes the number of heap blocks left allocated on the
heap and their total size. The reported size is from the developer's perspective, that is, it does
not include the bookkeeping overhead of the memory allocator.

ASCII Stack Trace Report

After the memory leak summary, detailed information is provided on each unfreed heap block
with a stack trace of its allocation point. The stack trace report is similar to the one described
for error and warning messages.

ASCII Report Summary

The discover report concludes with an overall summary. It reports the number of unique
warnings and errors and, in parentheses, the total numbers of errors and warnings, including
repeated ones. For example:

DISCOVER SUMMARY:

unique errors : 3 (3 total)

unique warnings : 1 (5 total)

discover APIs and Environment Variables

There are several discover APIs and environment variables that you can specify in your code.

44 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

discover APIs and Environment Variables

discover APIs

Oracle Developer Studio 12.6 implements six new discover functions that you can call from
your program to receive memory leak and memory allocation information. These functions
print the information on stderr. At the end of the program output, discover by default prints
the final memory report with the memory leaks in the program. To use these APIs, the source
file of the application needs to include the header file for discover: #include <discoverAPI.
h>.

The functions and what they report are as follows:

discover_report_all_inuse()

Reports all memory allocations

discover_report_unreported_inuse()

Reports all memory allocations not previously reported.

discover_mark_all_inuse_as_reported()

Marks all memory allocations thus far as reported.

discover_report_all_leaks()

Reports all memory leaks.

discover_report_unreported_leaks()

Reports all memory leaks not previously reported.

discover_mark_all_leaks_as_reported()

Marks all memory leaks thus far as reported

This section describes some methods for working with discover APIs.

Note - The discover APIs will not work with ADI mode.

Finding Memory Leaks With discover APIs

For each function specified in your code, discover reports the stack of where the memory was
allocated. Memory leaks are allocated memory that is unreachable in the program.

The following example shows how to use these APIs:

$ cat -n tdata.C

Chapter 2 • Memory Error Discovery Tool (discover) 45

discover APIs and Environment Variables

 1 #include <discoverAPI.h>

 2

 3 void foo()

 4 {

 5 int *j = new int;

 6 }

 7

 8 int main()

 9 {

 10 foo();

 11 discover_report_all_leaks();

 12

 13 foo();

 14 discover_report_unreported_leaks();

 15

 16 return 0;

 17 }

$ CC -g tdata.C

$ discover -w - a.out

$ a.out

The following example shows the expected output.

******** discover_report_all_leaks() Report ********

1 allocation at 1 location left on the heap with a total size of 4 bytes

LEAK 1: 1 allocation with total size of 4 bytes

void*operator new(unsigned) + 0x36

void foo() + 0x5e <tdata.C:5>

2:

3: void foo()

4: {

5:=> int *j = new int;

6: }

7:

8: int main()

main()+0x1a <tdata.C:10>

9: {

10:=> foo();

11: discover_report_all_leaks();

12:

13: foo();

**

******** discover_report_unreported_leaks() Report ********

1 allocation at 1 location left on the heap with a total size of 4 bytes

LEAK 1: 1 allocation with total size of 4 bytes

void*operator new(unsigned) + 0x36

void foo() + 0x5e <tdata.C:5>

46 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

discover APIs and Environment Variables

2:

3: void foo()

4: {

5:=> int *j = new int;

6: }

7:

8:int main()

main() + 0x24 <tdata.C:13>

10: foo();

11: discover_report_all_leaks();

12:

13:=> foo();

14: discover_report_unreported_leaks();

15:

16:return 0;

**

***************** Discover Memory Report *****************

2 allocations at 2 locations left on the heap with a total size of 8 bytes

LEAK 1: 1 allocation with total size of 4 bytes

void*operator new(unsigned) + 0x36

void foo() + 0x5e <tdata.C:5>

2:

3: void foo()

4: {

5:=> int *j = new int;

6: }

7:

8: int main()

main() + 0x1a <tdata.C:10>

7:

8: int main()

9: { 10:=> foo();

11: discover_report_all_leaks();

12:

13: foo();

LEAK 2: 1 allocation with total size of 4 bytes

void*operator new(unsigned) + 0x36

void foo() + 0x5e <tdata.C:5>

2:

3: void foo()

4: {

5:=> int *j = new int;

6: }

7:

8: int main()

main() + 0x24 <tdata.C:13>

10: foo();

Chapter 2 • Memory Error Discovery Tool (discover) 47

discover APIs and Environment Variables

11: discover_report_all_leaks();

12:

13:=> foo();

14: discover_report_unreported_leaks();

15:

16: return 0;

DISCOVER SUMMARY:

unique errors : 0 (0 total)

unique warnings : 0 (0 total)

Finding Leaks in a Server or Long-Running Program

If you have a long-running program or a server that never exits, you can call these discover
functions using dbx at any time, even if you have not put the calls in your code. The program
must have been run with at least the lite mode of discover using the -l option. Note that dbx
can attach to a running program. The following example shows how to find leaks in a long-
running program.

EXAMPLE 2 Finding Two Leaks in a Long Running Program

For this example, the a.out file is a long-running program with two processes, each with one
leak. Each process is assigned a process ID.

The following rl script contains the commands to ask the program to report unreported
memory leaks.

#!/bin/sh

dbx - $1 > /dev/null 2> &1 << END

call discover_report_unreported_leaks()

exit

END

Once you have a program and a script, you can use discover and run the program.

% discover -l -w - a.out

% a.out

8252: Parent allocation 64

8253: Child allocation 32

In a separate terminal window, you can run the script on the parent process.

% rl 8252

48 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

discover APIs and Environment Variables

The program reports the following information for the parent process:

******** discover_report_unreported_leaks() Report ********

1 allocation at 1 location left on the heap with a total size of 64 bytes

 LEAK 1: 1 allocation with total size of 64 bytes

 main() + 0x1e <xx.c:17>

 14:

 15: if (child > 0) {

 16:

 17:=> void *p = malloc(64);

 18: printf("%jd: Parent allocation 64\n", (intmax_t)getpid());

 19: p = 0;

 20: for (int j=0; j < 1000; j++) sleep(1);

**

Run the script again for the child process.

% rl 8253

The program reports the following information for the child process:

******** discover_report_unreported_leaks() Report ********

1 allocation at 1 location left on the heap with a total size of 32 bytes

 LEAK 1: 1 allocation with total size of 32 bytes

 main() + 0x80 <xx.c:24>

 21: }

 22:

 23: else {

 24:=> void *p = malloc(32);

 25: printf("%jd: Child allocation 32\n", (intmax_t)getpid());

 26: p = 0;

 27: for (int j=0; j < 1000; j++) sleep(1);

**

You can use the script repeatedly to find any new leaks.

Chapter 2 • Memory Error Discovery Tool (discover) 49

Memory Access Errors and Warnings

SUNW_DISCOVER_OPTIONS Environment Variable

You can change the runtime behavior of an instrumented binary by setting the
SUNW_DISCOVER_OPTIONS environment variable to a list of the command-line options -a, -A,
-b, -e, -E, -f, -F, -H, -l, -L, -m, -P, -S, and -w. For example, if you want to change the number of
errors reported to 50 and limit the stack depth in the report to 3, you would set the environment
variable to the following:

-e 50 -S 3

Memory Access Errors and Warnings

The discover utility detects and reports many memory access errors, as well as warning you
about accesses that might be errors.

Memory Access Errors

discover detects the following memory access errors:

■ ABR: beyond array bounds read
■ ABW: beyond array bounds write
■ BFM: bad free memory
■ BRP: bad reallocate address parameter
■ CGB: corrupted array guard block
■ DFM: double freeing memory
■ FMR: freed memory read
■ FMW: freed memory write
■ FRP: freed realloc parameter
■ IMR: invalid memory read
■ IMW: invalid memory write
■ Memory leak
■ OLP: overlapping source and destination
■ PIR: partially initialized read
■ SBR: beyond stack frame bounds read
■ SBW: beyond stack frame bounds write
■ UAR: unallocated memory read

50 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Memory Access Errors and Warnings

■ UAW: unallocated memory write
■ UMR: uninitialized memory read

The following sections list some simple sample programs that will produce some of these
errors.

Beyond Array Bounds Read (ABR)

Example:

 // ABR: reading memory beyond array bounds at address 0x%1x (%d byte%s)

int *a = (int*) malloc(sizeof(int[5]));

printf("a[5] = %d\n",a[5]);

The discover utility also detects static-type ABR errors.

 int globalarray[5];

 int main(){

 int i, j;

 for(i = 0; i < 7; i++) {

 j = globalarray[i-1]; // Reading memory beyond static/global array bounds

 }

 return 0;

 }

Beyond Array Bounds Write (ABW)

Example:

 // ABW: writing to memory beyond array bounds

int *a = (int*) malloc(sizeof(int[5]));

a[5] = 5;

The discover utility also detects static-type ABW errors.

int globalarray[5];

 int main(){

 int i;

 for(i = 0; i < 7; i++) {

 globalarray[i-1] = i; // Writing to memory beyond static/global array bounds

 }

 return 0;

 }

Chapter 2 • Memory Error Discovery Tool (discover) 51

Memory Access Errors and Warnings

Bad Free Memory (BFM)

Example:

 // BFM: freeing wrong memory block

int *p = (int*) malloc(sizeof(int));

free(p+1);

Bad Realloc Address Parameter (BRP)

Example:

 // BRP: bad address parameter for realloc 0x%1x

int *p = (int*) realloc(0,sizeof(int));

int *q = (int*) realloc(p+20,sizeof(int[2]));

Corrupted Guard Block (CGB)

Example:

 // CGB: writing past the end of a dynamically allocated array, or being in the "red

 zone".

 #include <stdio.h>

 #include <stdlib.h>

 int main() {

 int *p = (int *) malloc(sizeof(int)*4);

 *(p+5) = 10; // Corrupted array guard block detected (only when the code is not

 annotated)

 free(p);

 return 0;

 }

Double Freeing Memory (DFM)

Example:

 // DFM: double freeing memory

int *p = (int*) malloc(sizeof(int));

free(p);

free(p);'

52 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Memory Access Errors and Warnings

Freed Memory Read (FMR)

Example:

 // FMR: reading from freed memory at address 0x%1x (%d byte%s)

int *p = (int*) malloc(sizeof(int));

free(p);

printf("p = 0x%h\n",*p);

Freed Memory Write (FMW)

Example:

 // FMW: writing to freed memory at address 0x%1x (%d byte%s)

int *p = (int*) malloc(sizeof(int));

free(p);

*p = 1;

Freed Realloc Parameter (FRP)

Example:

 // FRP: freed pointer passed to realloc

int *p = (int*) malloc(sizeof(int));

free(0);

int *q = (int*) realloc(p,sizeof(int[2]));

Invalid Memory Read (IMR)

Example:

 // IMR: read from invalid memory address

int *p = 0;

int i = *p; // generates Signal 11...

Invalid Memory Write (IMW)

Example:

 // IMW: write to invalid memory address

int *p = 0;

Chapter 2 • Memory Error Discovery Tool (discover) 53

Memory Access Errors and Warnings

*p = 1; // generates Signal 11...

Memory Leak

Example:

 // Memory Leak: memory allocated but not freed before exit or escaping from the

 function

 int foo()

 {

 int *p = (int*) malloc(sizeof(int));

 if (x) {

 p = (int *) malloc(5*sizeof(int)); // will cause a leak of the 1st malloc

 }

 } // The 2nd malloc leaked here

Overlapping Source and Destination (OLP)

Example:

 // OLP: source and destination overlap

char *s=(char *) malloc(15);

memset(s, 'x', 15);

memcpy(s, s+5, 10);

return 0;

Partially Initialized Read (PIR)

Example:

 // PIR: accessing partially initialized data

int *p = (int*) malloc(sizeof(int));

((char)p) = 'c';

printf("*(p = %d\n",*(p+1));

Beyond Stack Bounds Read (SBR)

Example:

 // SBR: reading beyond stack frame bounds

int a[2]={0,1};

printf("a[-10]=%d\n",a[-10]);

54 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Memory Access Errors and Warnings

return 0;

Beyond Stack Bounds Write (SBW)

Example:

 // SBW: writing beyond stack frame bounds

int a[2]={0,1)'

a[-10]=2;

return 0;

Unallocated Memory Read (UAR)

Example:

 // UAR" reading from unallocated memory

int *p = (int*) malloc(sizeof(int));

printf("*(p+1) = %d\n",*(p+1));

Unallocated Memory Write (UAW)

Example:

 // UMR: accessing uninitialized data from address 0x%1x (A%d byte%s)

int *p = (int*) malloc(sizeof(int));

printf("*p = %d\n",*p);

Memory Access Warnings

The discover utility reports the following memory access warnings:

■ AZS: allocating zero size
■ SMR: speculative uninitialized memory read

The following sections gives examples of these warnings.

Allocating Zero Size (AZS)

Example:

Chapter 2 • Memory Error Discovery Tool (discover) 55

Interpreting discover Error Messages

#include <stdlib>

int main()

{

 int *p = malloc(); // Allocating zero size memory block

}

Memory Leak (MLK)

Possible causes: Memory is allocated but not freed before exit or escaping from the function.

Example:

int foo()

{

 int *p = (int*) malloc(sizeof(int));

 if (x) {

 p = (int *) malloc(5*sizeof(int)); // will cause a leak of the 1st malloc

 }

} // The 2nd malloc leaked here

Speculative Memory Read (SMR)

int i;

if (foo(&i) != 0) /* foo returns nonzero if it has initialized i */

printf("5d\n", i);

The compiler might generate the following equivalent code for the above source:

int i;

int t1, t2'

t1 = foo(&i);

t2 = i; /* value in i is loaded. So even if t1 is 0, we have uninitialized read due to

 speculative load */

if (t1 != 0)

printf("%d\n", t2);

Interpreting discover Error Messages

In some cases, discover might report an error that is not actually an error. Such cases are
called false positives. The discover utility analyzes code at instrumentation time to reduce
the occurrence of false positives compared to similar tools, but they might still occur in some

56 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Interpreting discover Error Messages

instances. This section provides a few tips that might help you to identify and possibly avoid
false positives in discover reports.

Partially Initialized Memory

You can use bit fields in C and C++ to create compact data types. For example:

struct my_struct {

unsigned int valid : 1;

char c;

};

In the example, the structure member my_struct.valid takes only one bit in memory.
However, on SPARC platforms, the CPU can modify memory only in bytes, so the whole byte
containing struct.valid must be loaded in order to access or modify the structure member.
Moreover, sometimes the compiler might load several bytes (for example, a machine word
of four bytes) at once. When discover detects such a load without additional information, it
assumes that all four bytes are used. If, for example, the field my_struct.valid was initialized
but the field my_struct.c was not and the machine word containing both fields was loaded,
discover would flag a partially initialized memory read (PIR).

Another source of false positives is initialization of a bit field. To write a part of a byte, the
compiler must first generate code that loads the byte. If the byte was not written prior to a read,
the result is an uninitialized memory read error (UMR).

To avoid false positives for bit fields, use the -g option or the -g0 option when compiling.
These options provide extra debugging information to discover to help it identify bit field
loads and initialization, which will eliminate most false positives. If you cannot compile with
the -g option for some reason, then initialize structures with a function such as memset(). For
example:

...

struct my_struct s;

/* Initialize structure prior to use */

memset(&sm 0, sizeof(struct my_struct));

...

Speculative Loads

Sometimes the compiler generates a load from a known memory address under conditions
where the result of the load is not valid on all program paths. This situation often occurs on

Chapter 2 • Memory Error Discovery Tool (discover) 57

Interpreting discover Error Messages

SPARC platforms because such a load instruction can be placed in the delay slot of a branch
instruction. For example, consider this C code fragment:

int i'

if (foo(&i) != 0) { /* foo returns nonzero if it has initialized i */

printf("5d\n", i);

}

From this code, the compiler could generate code equivalent to the following example:

int i;

int t1, t2'

t1 = foo(&i);

t2 = i; /* value in i is loaded */

if (t1 != 0) {

printf("%d\n", t2);

}

Assume that in the example, the function foo() returns 0 and does not initialize i. The load
from i is still generated, even though it is not used. However, because discover will see the
load, it will report a load of an uninitialized variable (UMR).

The discover utility uses dataflow analysis to identify such cases whenever possible, but
sometimes they are impossible to detect.

You can reduce the occurrence of these types of false positives by compiling with a lower
optimization level.

Uninstrumented Code

Sometimes discover cannot instrument 100% of your program, especially if some of your code
comes from an assembly language source file or a third–party library that cannot be recompiled
and so cannot be instrumented. In some cases, discover cannot detect the memory blocks
the non-instrumented code is accessing and modifying. Assume for example that a function
from a third-party shared library initializes a block of memory that is later read by the main
(instrumented) program. If discover cannot detect that the memory has been initialized by the
library, the subsequent read generates an uninitialized memory error (UMR).

To provide a solution for such cases, the discover API includes the following functions:

void __ped_memory_write(unsigned long addr, long size, unsigned long pc);

void __ped_memory_read(unsigned long addr, long size, unsigned long pc);

void __ped_memory_copy(unsigned long src, unsigned lond dst, long size, unsigned long

 pc);

58 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Limitations When Using discover

You can call the API functions from your program to notify discover of specific events
such as a write to a memory area (__ped_memory_write()) or a read from a memory area
(__ped_memory read()). In both cases, the starting address of the memory area is passed in the
addr parameter and its size is passed in the size parameter. Set the pc parameter to 0.

Use the __ped_memory_copy function to notify discover of memory that is being copied
from one location to another. The starting address of the source memory is passed in the src
parameter, the starting address of the destination area is passed in the dst parameter, and the
size is passed in the size parameter. Set the pc parameter to 0.

To use the API, declare these functions in your program as weak. For example, include the
following code fragment in your source code.

#ifdef __cplusplus

extern "C" {

#endif

extern void __ped_memory_write(unsigned long addr, long size, unsigned long pc);

extern void __ped_memory_read(unsigned long addr, long size, unsigned long pc);

extern void __ped_memory_copy(unsigned long src, unsigned long dst, long size, unsigned

 long pc);

#prgama weak __ped_memory_write

#pragma weak __ped_memory_read

#pragma weak __ped_memory_copy

#ifdef __cplusplus

}

#endif

The internal discover library, which is linked with your program at instrumentation time,
defines the API functions. However, when your program is not instrumented, this library is
not linked and thus all calls to the API functions will cause the application to hang. Therefore,
you must disable these functions when you are not running your program under discover.
Alternatively, you can create a dynamic library with empty definitions of the API functions
and link it with your program. In this case, when you run your program without discover your
library will be used, but when you run it under discover the real API functions will be called
automatically.

Limitations When Using discover

This section describes some known limitations when using discover.

Chapter 2 • Memory Error Discovery Tool (discover) 59

Limitations When Using discover

Non-Annotated Code Might Cause False Results

The discover utility can only instrument code that has been described in “Instrumenting a
Binary” on page 16 . Uninstrumented code might come from assembly language code
linked into the binary or from modules compiled with older compilers or operating systems than
those listed in that section. If a function is not instrumented, false positive error messages might
be emitted, either for the function, its callers, or its callees. Additionally, some errors might not
be diagnosed in uninstrumented functions.

The discover utility cannot instrument assembly language modules or functions that contain
asm statements or .il templates.

Furthermore, the Oracle Developer Studio 12.6 C++ runtime libraries do not contain annotation
data because they were not compiled with an Oracle Developer Studio compiler.

Machine Instruction Might Differ From Source
Code

discover operates on machine code. The tool detects errors on machine instructions such as
loads and stores, and correlates the errors with the source code. Because some source code
statements do not have associated machine instructions, discover might not seem to detect an
obvious user error. For example, consider the following C code fragment:

int *p = (int *)malloc(sizeof(int));

int i;

i = *p; /* compiler may not generate code for this statement */

printf("Hello World!\n");

return;

Reading a value stored at the address pointed to by p is a potential user error because the
memory was not initialized. However, an optimizing compiler will detect that the variable i is
not used, so it will not generate the code for the statement reading from memory and assigning
to i. In this case, discover will not report uninitialized memory usage (UMR).

Compiler Options Affect the Generated Code
Compiler-generated code is not predictable. Because the code the compiler generates varies
depending on the compiler options you use, including the -On optimization options, the errors

60 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Limitations When Using discover

reported by discover might also vary. For example, errors reported in code generated at the -O1
optimization level might not apply to code generated at the -O4 optimization level.

Binaries compiled with the -xlinkopt flag are incompatible with discover.

System Libraries Can Affect the Errors Reported

System libraries are preinstalled with the operating system and cannot be recompiled for
instrumentation. The discover utility provides support for the common function from the
standard C library (libc.so); that is, discover knows what memory is accessed or modified by
these functions. However, if your application uses other system libraries, you might see false
positives in the discover report. If false positives are reported, you can call the discover API
from your code to eliminate them.

Custom Memory Management Can Affect the
Accuracy of the Data

The discover utility can track heap memory when it is allocated by standard programming
language mechanisms like malloc(), calloc(), free(), operator new(), and operator
delete().

If your application uses a custom memory management system with the standard functions (for
example, pool allocation management implemented with malloc()), then discover might not
guarantee to correctly report leaks or access to freed memory.

The discover utility does not support the following memory allocators:

■ Custom heap allocators that use brk(2) or sbrk(2) system calls directly
■ Standard heap management function linked statically into a binary
■ Memory allocated from the user code using mmap(2) and shmget(2)() system calls

The signaltstack(2) function is not supported.

Chapter 2 • Memory Error Discovery Tool (discover) 61

62 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

 3 ♦ ♦ ♦ C H A P T E R 3

Code Coverage Tool (uncover)

The Code Coverage Tool (uncover) software measures the code coverage of applications. This
chapter provides information about the following topics:

■ “Requirements for Using uncover” on page 63
■ “Using uncover” on page 64
■ “Understanding the Coverage Report in Performance Analyzer” on page 68
■ “Understanding the ASCII Coverage Report” on page 74
■ “Understanding the HTML Coverage Report” on page 78
■ “Limitations When Using uncover” on page 80

Requirements for Using uncover
The uncover utility works on binaries compiled with at least Sun Studio 12 Update 1, Oracle
Solaris Studio 12.2-12.4 or Oracle Developer Studio 12.5 or 12.6 compilers. It works on a
SPARC–based or x86–based system running at least one of the following operating systems:
Solaris 10 10/08, Oracle Solaris 11, Oracle Enterprise Linux 5.x, or Oracle Enterprise Linux 6.
x.

A binary compiled as described includes information that uncover uses to reliably disassemble
the binary to instrument it for coverage data collection.

To enable Uncover to use source code level coverage information use the -g option to generate
debug information when compiling the binary. If your binary is not compiled with the -g option,
Uncover uses only program counter (PC) based coverage information.

The uncover utility works with any binary built with Oracle Developer Studio compilers, but
it works best with binaries built with no optimization option. Previous releases of uncover
required at least the -O1 optimization level. If you build your binary with an optimization
option, uncover results will be better with lower optimization levels (-O1 or -O2). uncover
derives source-line level coverage by relating the instructions to line numbers using the
debug information generated when the binary is built with the -g option. At optimization

Chapter 3 • Code Coverage Tool (uncover) 63

Using uncover

levels -O3 and higher, the compiler might delete some code that might never be executed or
is redundant, which might result in no binary instructions for some source code lines. In such
cases, no coverage information is reported for those lines. See “Limitations When Using
uncover” on page 80 for more information.

Using uncover
Generating coverage information using Uncover is a three-step process:

1. “Instrumenting the Binary” on page 64
2. “Running the Instrumented Binary” on page 65
3. “Generating and Viewing the Coverage Report” on page 65
4. “Coverage for Shared Libraries” on page 67

This section covers the three steps and provides examples of using Uncover.

Instrumenting the Binary
The input binary can be an executable or a shared library. You must instrument each binary that
you want to analyze separately.

You instrument the binary with the uncover command. For example, the following command
instruments the binary a.out and overwrites the input a.out with the instrumented a.out. It
also creates a directory with the suffix .uc (a.out.uc in this case) in which the coverage data
will be collected. A copy of the input binary is saved in this directory.

If you have a binary a.out and a shared library mylib.so, instrument them as follows:

$ uncover a.out

$ uncover mylib.so

You can use the following options when instrumenting your binary:

-c Enable reporting of execution counts for instructions, blocks, and
functions. By default, only information on code that is covered or not
covered is reported. Specify this option both when instrumenting your
binary and when generating the coverage report.

-d directory Creates the coverage data directory in directory. For uncover, this option
is especially important because all three phases of its usage require
access to the same exact directory. The -d option used in conjunction
with full_path_of_coverage_directory ensures that different phases of

64 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Using uncover

uncover look for the coverage directory in the same location. If you do
not use the -d with full path names, there could be a mismatch in locating
the coverage directory, causing other issues such as multiple profile
directories with incomplete information.

-m on | off Enables or disables thread-safe profiling when collecting execution
counts with the -c runtime option. This option must be used in
conjunction with the -c option or it has no effect. The -c option enables
thread-safe profile counting by default. The default is set to on. To collect
profile counts for a single-threaded application, use the -c -m off option.
This will turn off the thread-safety feature which is unnecessary for
single threaded apps and allows a faster profile run.

-o output-binary-
file

Writes the instrumented binary file to the specified file. The default is to
overwrite the input binary file with the instrumented file.

Binaries that are already instrumented with Oracle Developer Studio12.6 can be run with
uncover. However, if you run the uncover command using a version older than Oracle
Developer Studio 12.6 on an input binary that is already instrumented, uncover issues an error
message that the binary cannot be instrumented because it is already instrumented, and that you
can run it to generate coverage data.

Running the Instrumented Binary
After you have instrumented your binary, you can run it normally. Every time you run the
instrumented binary, code coverage data is collected in the coverage data directory with the
.uc suffix that uncover created during the instrumentation. Because uncover data collection is
multi-thread safe and multi-process safe, there is no restriction on the number of simultaneous
runs or threads in the process. The coverage data is accumulated over all of the runs and
threads.

Generating and Viewing the Coverage Report

To generate a coverage report, run the uncover command on the coverage data directory. For
example with binary a.out and shared library mylib.so:

$ uncover a.out.uc

$ uncover mylib.so.uc

This command generates an Oracle Developer Studio Performance Analyzer experiment
directory called binary-name.er from the coverage data in the a.out.uc directory, starts the

Chapter 3 • Code Coverage Tool (uncover) 65

Using uncover

Performance Analyzer GUI, and displays the experiment. The presence of an .er.rc file in the
current directory or your home directory might affect the way Performance Analyzer displays
the experiment. For more information about .er.rc files, see Oracle Developer Studio 12.6:
Performance Analyzer.

You can generate the report as HTML and view it in your web browser or as ASCII to view in a
terminal window. You can also direct the data to a directory where Code Analyzer can analyze
and display it.

-a Write error data to binary-name.analyze/coverage directory for use by
Code Analyzer.

-c Enables reporting of execution counts for instructions, blocks, and
functions. By default only information on code that is covered or not
covered is reported. (Specify this option both when instrumenting your
binary and when generating the coverage report.)

-e on | off Determines whether to generate experiment directory for the coverage
report and display the experiment in the Performance Analyzer GUI. The
default is on.

-H html-directory Save the coverage data as HTML in the specified directory and
automatically display it in your web browser.

-h or -? Display help.

-n Generate coverage reports but do not start viewers like Performance
Analyzer or web browser.

-t ascii-file Generate an ASCII coverage report in the specified file.

-V Print uncover version and exit.

-v Verbose. Print a log of what Uncover is doing.

Only one output format is enabled. If you specify multiple output options, uncover uses the last
option in the command.

EXAMPLE 3 uncover Command Examples

$ uncover a.out

This command instruments the binary a.out, overwrites the input a.out, creates an a.out.
uc coverage data directory in the current directory, and saves a copy of the input a.out in the

66 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSPA
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSPA

Using uncover

a.out.uc directory. If a.out is already instrumented, a warning message is displayed and no
instrumentation is done.

$ uncover mylib.so

This command instruments the shared library mylib.so, overwrites the input mylib.so,
creates a mylib.so.uc coverage data directory in the current directory, and saves a copy of the
input mylib.so in the mylib.so.uc directory. If mylib.so is already instrumented, a warning
message is displayed and no instrumentation is performed.

$ uncover -d coverage a.out

This command creates the a.out.uc coverage directory in the directory coverage.

$ uncover a.out.uc

This command uses the data in the a.out.uc coverage directory to create a code coverage
experiment a.out.er in your working directory, and starts Performance Analyzer to display the
experiment.

$ uncover mylib.so.uc

This command uses the data in the mylib.so.uc coverage directory to create a code coverage
experiment mylib.so.er in your working directory, and starts Performance Analyzer to display
the experiment.

$ uncover -H a.out.html a.out.uc

This command uses the data in the a.out.uc coverage directory to create an HTML code
coverage report in the directory a.out.html and displays the report in your web browser.

$ uncover -t a.out.txt a.out.uc

This command uses the data in the a.out.uc coverage directory to create an ASCII code
coverage report in the file a.out.txt.

$ uncover -a a.out.uc

This command uses the data in the a.out.uc coverage directory to create a coverage report in
the binary-name.analyze/coverage directory for use by Code Analyzer.

Coverage for Shared Libraries
Each binary in the application needs to be instrumented separately. For instance, if the
application has an executable a.out and a shared library libfoo.so, you need to instrument
each one in order to receive coverage for both.

Chapter 3 • Code Coverage Tool (uncover) 67

Understanding the Coverage Report in Performance Analyzer

This command instruments the executable a.out and shared library libfoo.so.

% uncover -d <coverage_dir> a.out

% uncover -d <coverage_dir> libfoo.so

This command runs the application to collect coverage data in <coverage_dir>/a.out.uc and
<coverage_dir>/libfoo.so.uc.

% ./a.out

This command displays the executable a.out.

% uncover <coverage_dir>/a.out.uc

This command views coverage for the shared library libfoo.so.

% uncover <coverage_dir>/libfoo.so.uc

Understanding the Coverage Report in Performance
Analyzer

By default, when you run the uncover command on the coverage directory, the coverage
report opens as an experiment in Oracle Developer Studio Performance Analyzer. This section
describes Performance Analyzer interface that displays the coverage data.

For more information about Performance Analyzer, see the integrated help and Oracle
Developer Studio 12.6: Performance Analyzer.

Overview Screen

When you open the coverage report in Performance Analyzer, the Overview screen is displayed.
This view shows the Experiment(s) that you are running, the Metrics of the experiment, and the
Metrics Preview.

The following figure shows the Overview screen in Performance Analyzer.

68 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSPA
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSPA

Understanding the Coverage Report in Performance Analyzer

Functions View

In the navigation panel, click the Functions view to display the program's functions and
exclusive metrics. To sort the data according to the value of a particular metric, click the desired
column header. Clicking the arrow under the column header reverses the sort order.

The metrics include the following:

Uncoverage Uncoverage counter, indicating the number of bytes that can be covered
for the function.

Function Count Function counter, indicating which functions are covered.

Instr Exec Instr-Exec counter, indicating if an instruction was executed in a
function.

Block Covered % Block covered % counter, indicating the percentage of blocks covered in
a function.

Chapter 3 • Code Coverage Tool (uncover) 69

Understanding the Coverage Report in Performance Analyzer

Instr Covered % Instr covered % counter, indicating the percentage of instructions covered
in a function.

The following figure shows a coverage report in Performance Analyzer, sorted by Uncoverage.

Uncoverage Counter

The Uncoverage counter is a very powerful feature of uncover. If you use this column as the
sort key in decreasing order, the top functions in the display are the functions that offer the
greatest potential to increase coverage. In the previous figure, the test_for_memory_leak()
function is at the top of the list because it has the largest number in the Uncoverage column.

The Uncoverage number for the test_for_memory_leak() function is number of bytes of code
that could potentially be covered if a test is added to the suite that causes the function to be
called. The amount that coverage would actually increase varies according to the structure of
the function. If no branches are in the function, and all the functions it calls are also straight line
functions, then coverage will increase by the stated number of bytes. However, the coverage
increase usually is less than the potential, perhaps much less.

The uncovered functions with non-zero values in the Uncoverage column are called root
uncovered functions, meaning that they are all called by covered functions. Functions that are
called only by non-root uncovered functions do not have their own Uncoverage numbers. It is
presumed that these functions will be either covered or revealed as uncovered, in subsequent
runs as the test suite is improved to cover the high-potential uncovered functions.

70 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Understanding the Coverage Report in Performance Analyzer

The coverage numbers are non-exclusive.

Function Count

The Function Count column reports the covered functions and uncovered functions. If the count
is zero, the function is not covered. If the count is non-zero, the function is covered. If any
instruction in the function is executed, the function is considered to be covered.

You can detect non-top-level uncovered functions in this column. If both the Function Count
and Uncoverage columns state zero, then the function is not a top-level covered function.

Instr Exec Counter

The Instr Exec counter displays the covered instructions and uncovered instructions. A zero
count means that the instruction is not executed; a non-zero count means that the instruction is
executed.

In the Functions view, this counter shows the total number of instructions executed for each
function. This counter also appears in the Source view and the Disassembly view.

Block Covered % Counter

For each function, the Block Covered % counter, which displays the percentage of basic
blocks in the function that are covered. This number indicates how well the function is
covered. Disregard this entry in the Total row; it is the sum of percentages in the column and is
meaningless.

Instr Covered % Counter

For each function, the Instr Covered % counter displays the percentage of instructions in the
function that are covered. This number indicates how well the function is covered. Disregard
this entry in the Total row; it is the sum of percentages in the column and is meaningless.

Chapter 3 • Code Coverage Tool (uncover) 71

Understanding the Coverage Report in Performance Analyzer

Source View

If you compiled your binary with the -g option, the Source view displays the source code of
your program. Because uncover instruments your program at the binary level and you have
compiled the program with optimization, the coverage information in this view can be difficult
to interpret.

The Instr Exec counter in the Source view shows the total number of instructions executed for
each source line, which is essentially the statement-level code coverage information. A non-
zero value implies that the statement is covered; a zero value means that the statement is not
covered. Variable declarations and comments have no Instr Exec counts.

The following figure shows an example of the Source view opened.

For source code lines that do not have any coverage information associated with them, the rows
are blank and have no numbers in any of the fields. These empty rows can occur because of the
following reasons:

■ Comments, blank lines, declarations, and other language constructs do not contain
executable code.

■ Compiler optimizations have deleted the code corresponding to the lines due to either of the
following reasons:
■ The code will never be executed (dead code).
■ The code can be executed but is redundant.

72 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Understanding the Coverage Report in Performance Analyzer

For more information, see “Limitations When Using uncover” on page 80.

Disassembly View

If you select a line in the Source view and then select the Disassembly view, Performance
Analyzer tries to find the selected line in the binary and display its disassembly.

Tip - If you do not see Disassembly in the Views pane, then select More Views... and check the
Disassembly option.

The Instr Exec counter in this view shows the number of times each instruction was executed:

Instruction Frequency View

The Instruction Frequency view displays the overall coverage summary:

Chapter 3 • Code Coverage Tool (uncover) 73

Understanding the ASCII Coverage Report

Understanding the ASCII Coverage Report

If you specify the -t option when you generate the coverage report from the coverage data
directory, uncover writes a coverage report to the specified ASCII (text file).

EXAMPLE 4 Sample ASCII Coverage Report

The following example shows a sample ASCII coverage report:

UNCOVER Code Coverage

Total Functions: 95

74 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Understanding the ASCII Coverage Report

Covered Functions: 58

Function Coverage: 61.1%

Total Basic Blocks: 568

Covered Basic Blocks: 258

Basic Block Coverage: 45.4%

Total Basic Block Executions: 564,812,760

Average Executions per Basic Block: 994,388.66

Total Instructions: 6,201

Covered Instructions: 3,006

Instruction Coverage: 48.5%

Total Instruction Executions: 4,760,934,518

Average Executions per Instruction: 767,768.83

Number of times this program was executed: unavailable

Functions sorted by metric: Exclusive Uncoverage

Excl. Excl. Excl. Excl. Name

Uncoverage Function Block Instr

Count Covered % Covered %

13404 6004876 5464 5384 <Total>

1036 0 0 0 main

980 0 0 0 iofile

748 0 0 0 do_vforkexec

732 0 0 0 callso

708 0 0 0 do_forkexec

648 0 0 0 callsx

644 0 0 0 sigprof

644 0 0 0 sigprofh

556 0 0 0 do_chdir

548 0 0 0 correlate

492 0 0 0 do_popen

404 0 0 0 pagethrash

384 0 0 0 so_cputime

384 0 0 0 sx_cputime

348 0 0 0 itimer_realprof

336 0 0 0 ldso

304 0 0 0 hrv

300 0 0 0 do_system

300 0 0 0 do_burncpu

300 0 0 0 sx_burncpu

288 0 0 0 forkcopy

276 0 0 0 masksignals

256 0 0 0 sigprof_handler

256 0 0 0 sigprof_sigaction

216 0 0 0 do_exec

196 0 0 0 iotest

176 0 0 0 closeso

156 0 0 0 gethrustime

144 0 0 0 forkchild

Chapter 3 • Code Coverage Tool (uncover) 75

Understanding the ASCII Coverage Report

144 0 0 0 gethrpxtime

136 0 0 0 whrlog

112 0 0 0 masksig

92 0 0 0 closesx

84 0 0 0 reapchildren

36 0 0 0 reapchild

32 0 0 0 doabort

8 0 0 0 csig_handler

0 1 66 72 acct_init

0 1 100 100 bounce

0 63 100 96 bounce_a

0 60 100 100 bounce-b

0 16 71 58 check_sigmask

0 1 83 77 commandline

0 1 100 98 cputime

0 1 100 98 dousleep

0 1 100 100 endcases

0 1 100 95 ext_inline_code

0 1 100 96 ext_macro_code

0 1 100 99 fitos

0 2 81 80 get_clock_rate

0 1 100 100 get_ncpus

0 1 100 100 gpf

0 1 100 100 gpf_a

0 1 100 100 gpf_b

0 10 100 93 gpf_work

0 1 100 97 icputime

0 1 100 96 inc_body

0 1 100 96 inc_brace

0 1 100 95 inc_entry

0 1 100 95 inc_exit

0 1 100 96 inc_func

0 1 100 94 inc_middle

0 1 57 72 init_micro_acct

0 1 50 43 initcksig

0 1 100 95 inline_code

0 1 100 95 macro_code

0 1 100 98 muldiv

0 6000000 100 100 my_irand

0 1 100 98 naptime

0 19 50 83 prdelta

0 21 100 100 prhrdelta

0 21 100 100 prhrvdelta

0 1 100 100 prtime

0 552 100 98 real_recurse

0 1 100 100 recurse

0 1 100 100 recursedeep

0 1 100 95 s_inline_code

76 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Understanding the ASCII Coverage Report

0 1 100 100 sigtime

0 1 100 95 sigtime_handler

0 19 100 100 snaptod

0 1 100 100 so_init

0 2 66 75 stpwtch_alloc

0 1 100 100 stpwtch_calibrate

0 2 75 66 stpwtch_print

0 2002 100 100 stpwtch_start

0 2000 90 91 stpwtch_stop

0 1 100 100 sx_init

0 1 100 99 systime

0 3 100 95 tailcall_a

0 3 100 95 tailcall_b

0 3 100 95 tailcall_c

0 1 100 100 tailcallopt

0 1 100 97 underflow

0 21 75 71 whrvlog

0 19 100 100 wlog

Instruction frequency data from experiment a.out.er

Instruction frequencies of /export/home1/synprog/a.out.uc

Instruction Executed ()

TOTAL 4760934518 (100.0)

float ops 2383657378 (50.1)

float ld st 1149983523 (24.2)

load store 1542440573 (32.4)

load 882693735 (18.5)

store 659746838 (13.9)

Instruction Executed () Annulled In Delay Slot

TOTAL 4760934518 (100.0)

add 713013787 (15.0) 16 1501335

subcc 558774858 (11.7) 0 6002

br 558769261 (11.7) 0 0

stf 432500661 (9.1) 726 36299281

ldf 408226488 (8.6) 40 103000396

faddd 391230847 (8.2) 0 0

fdtos 366200726 (7.7) 0 0

fstod 360200000 (7.6) 0 0

lddf 288250336 (6.1) 500 282200229

stw 138028738 (2.9) 26002 25974065

lduw 118004305 (2.5) 71 94000270

ldx 68212446 (1.4) 0 2000

stx 68211370 (1.4) 7 23532716

fitod 36026002 (0.8) 0 0

sethi 36002986 (0.8) 0 228

fdtoi 30000001 (0.6) 0 0

Chapter 3 • Code Coverage Tool (uncover) 77

Understanding the HTML Coverage Report

fdivd 26000088 (0.5) 0 0

call 22250348 (0.5) 0 0

srl 21505246 (0 5) 0 21

stdf 21006038 (0.4) 0 0

or 19464766 (0.4) 0 10981277

fmuls 6004907 (0.3) 0 0

jmpl 6004853 (0.1) 0 0

save 6004852 (0.1) 0 0

restore 6002294 (0.1) 0 6004852

sub 6000019 (0.1) 0 0

xor 6000000 (0.1) 0 0

fitos 6000000 (0.1) 0 0

fstoi 6000000 (0.1) 0 0

and 6000000 (0.1) 0 0

andn 6000000 (0.1) 0 0

sll 3505225 (0.1) 0 0

nop 3505219 (0.1) 0 3505219

fxtod 7763 (0.0) 0 0

bpr 6000 (0.0) 0 0

fcmped 4837 (0.0) 0 0

fbr 4837 (0.0) 0 0

fmuld 2850 (0.0) 0 0

orcc 383 (0.0) 0 0

sra 241 (0.0) 0 0

ldsb 160 (0.0) 0 0

mulx 87 (0.0) 0 0

stb 31 (0.0) 0 0

mov 21 (0.0) 0 0

fdtox 15 (0.0) 0 0

==

Understanding the HTML Coverage Report

The HTML report is similar to the report displayed in Performance Analyzer:

78 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Understanding the HTML Coverage Report

Click the function name link or the trimmed link for a function to display the disassembly data
for that function:

Click the Caller-callee link for a function to display the Caller-Callee data:

Chapter 3 • Code Coverage Tool (uncover) 79

Limitations When Using uncover

Limitations When Using uncover

This section describes known limitations when using uncover.

Only Annotated Code Can Be Instrumented

The uncover utility can only instrument code that has been described in “Requirements for
Using uncover” on page 63. Non-annotated code might come from assembly language code
linked into the binary or from modules compiled with older compilers or operating systems than
those listed in that section.

uncover cannot instrument assembly language modules or functions that contain asm statements
or .il templates.

Compiler Options Affect Generated Code

uncover is incompatible with binaries built with any of the following compiler options:

■ -p
■ -pg
■ -qp

80 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Limitations When Using uncover

■ -xpg
■ -xlinkopt

Machine Instructions Might Differ From Source
Code

The uncover utility operates on machine code. It finds coverage of machine instructions and
then correlates this coverage with source code. Some source code statements do not have
associated machine instructions, so uncover might appear to not report coverage for such
statements.

EXAMPLE 5 Simple Example

Consider the following code fragment:

#define A 100

#define B 200

...

if (A>B) {

...

}

You might expect uncover to report a non-zero execution count for the if statement. However,
the compiler is likely to remove this code. uncover will not detect it during instrumentation and
no coverage will be reported for these instructions.

EXAMPLE 6 Dead Code Example

The following example shows dead code:

1 void foo()

2 {

3 A();

4 return;

5 B();

6 C();

7 D();

8 return;

9 }

Corresponding assembly shows that calls to B,C,D are deleted because this code is never
executed.

Chapter 3 • Code Coverage Tool (uncover) 81

Limitations When Using uncover

foo:

.L900000109:

/* 000000 2 */ save %sp,-96,%sp

/* 0x0004 3 */ call A ! params = ! Result =

/* 0x0008 */ nop

/* 0x000c 8 */ ret ! Result =

/* 0x0010 */ restore %g0,%g0,%g0

Therefore, no coverage will be reported for lines 5 through 7.

Excl. Excl. Excl. Excl. Excl.

Uncoverage Function Instr Block Instr

 Count Exec Covered % Covered %

1. void foo()

0 1 1 100 100

2. {

<Function: foo

0 0 2 0 0

3. A();

4. return;

5. B();

6. C();

7. D();

8. return;

0 0 2 0 0

9. }

EXAMPLE 7 Redundant Code Example

The following example shows redundant code:

1 int g;

2 int foo() {

3 int x;

4 x = g;

5 for (int i=0; i<100; i++)

6 x++;

7 return x;

8 }

At low optimization levels, the compiler can generate code for all the lines:

foo:

.L900000107:

/* 000000 3 */ save %sp,-112,%sp

/* 0x0004 5 */ sethi %hi(g),%l1

/* 0x0008 */ ld [%l1+%lo(g)],%l3 ! volatile

/* 0x000c */ add %l1,%lo(g),%l2

82 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Limitations When Using uncover

/* 0x0010 6 */ st %g0,[%fp-12]

/* 0x0014 5 */ st %l3,[%fp-8]

/* 0x0018 6 */ ld [%fp-12],%l4

/* 0x001c */ cmp %l4,100

/* 0x0020 */ bge,a,pn %icc,.L900000105

/* 0x0024 8 */ ld [%fp-8],%l1

.L17:

/* 0x0028 7 */ ld [%fp-8],%l1

.L900000104:

/* 0x002c 6 */ ld [%fp-12],%l3

/* 0x0030 7 */ add %l1,1,%l2

/* 0x0034 */ st %l2,[%fp-8]

/* 0x0038 6 */ add %l3,1,%l4

/* 0x003c */ st %l4,[%fp-12]

/* 0x0040 */ ld [%fp-12],%l5

/* 0x0044 */ cmp %l5,100

/* 0x0048 */ bl,a,pn %icc,.L900000104

/* 0x004c 7 */ ld [%fp-8],%l1

/* 0x0050 8 */ ld [%fp-8],%l1

.L900000105:

/* 0x0054 8 */ st %l1,[%fp-4]

/* 0x0058 */ ld [%fp-4],%i0

/* 0x005c */ ret ! Result = %i0

/* 0x0060 */ restore %g0,%g0,%g0

At high optimization levels, most of the executable source lines do not have any corresponding
instructions:

foo:

/* 000000 5 */ sethi %hi(g),%o5

/* 0x0004 */ ld [%o5+%lo(g)],%o4

/* 0x0008 8 */ retl ! Result = %o0

/* 0x000c 5 */ add %o4,100,%o0

Therefore, no coverage will be reported for some lines.

Excl. Excl. Excl. Excl. Excl.

Uncoverage Function Instr Block Instr

 Count Exec Covered % Covered %

1. int g;

0 0 0 0 0

2. int foo() {

<Function foo>

3. int x;

4. x = g;

Source loop below has tag L1

Induction variable substitution performed on L1

L1 deleted as dead code

Chapter 3 • Code Coverage Tool (uncover) 83

Limitations When Using uncover

0 1 3 100 100

5. for (int i=0; i<100; i++)

6. x++;

7. return x;

0 0 1 0 0

8. }

84 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Index

A
Application Data Integrity (ADI), 24

B
binaries

instrumented with discover
changing the runtime behavior of, 50
running, 23
writing to a specific file, 19

instrumented with uncover, running, 65
instrumenting for discover, 16
instrumenting for uncover, 64
preparing for discover, 13
that cannot be used by discover, 14

bit.rc initialization files, 22
telling discover not to read, 21

C
custom memory allocators, 27, 27

discover ADI, 26
example, 27
using, 27

D
Discover

requirements for using, 13
discover

API, 58
Application Data Integrity (ADI), 23

doing full read-write instrumentation of
libraries, 20
doing write-only instrumentation for
executables, 21
forcing reinstrumentation of cached libraries, 22
hardware-assisted checking, 23

allocation/free stack traces, 20
configuration options, 25
discover ADI library, 24
errors caught, 24
example, 31
libdiscoverADI.so, 23, 24
precise ADI mode, 21
using, 24

ignoring shared libraries, 18, 21
instrumenting the named binary only, 22
limitations, 59

false negatives, 60
false positives, 60

memory access error examples, 51
memory access errors, 50
memory access warnings, 55
options

-a, 19
-A, 20
-b, 19
-c, 17, 20
-D, 17, 22
-e, 19
-E, 19
-f, 19
-F, 20
-H, 19, 35, 36

85

Index

-h, 22
-i adi, 21
-i datarace, 21
-i memcheck, 21
-K, 21
-k, 22
-l, 21
-m, 19
-n, 17, 21
-N, 18, 21
-o, 19
-P, 21
-S, 19
-T, 18, 22
-v, 22
-V, 22
-w, 16, 19, 35, 36

overview, 11
running in litemode, 21
Silicon Secured Memory (SSM), 23
specifying cache directory, 22
specifying verbose mode, 22
specifying what happens if the instrumented binary
forks, 20
writing error data to directory for use by Code
Analyzer, 19

discover ADI
custom memory allocators, 26
requirements and limitations, 30

discover ADI library
errors caught, 24

discover APIs, 45
Finding leaks in a long-running program, 48
Finding leaks in a server, 48
Finding memory leaks with, 45

discover reports
ASCII, 41

error messages, 43
heap blocks left allocated, 44
memory leaks, 43
stack trace, 43, 44
summary, 44

unfreed heap blocks, 44
warning messages, 43
writing, 19

error messages, interpreting, 56
false positives, 56

avoiding, 57
caused by partially initialized memory, 57
caused by speculative loads, 57
caused by uninstrumented code, 58

HTML, 36
control panel, 41
controlling types of errors displayed, 41
controlling types of warnings displayed, 41
Errors tab, 36
Memory Leaks tab, 39
number of blocks remaining allocated, 39
showing all stack traces, 41
showing source code, 38, 38, 40
showing source code for all functions, 41
showing stack trace, 37, 38, 40
Warnings tab, 38
writing, 19

limiting number of memory errors reported, 19
limiting number of memory leaks reported, 19
limiting number of stack frames shown in, 19
showing mangled names in, 19
showing offsets in, 19

I
instrumenting a binary

for data race detection with discover, 21
for discover, 16
for hardware assisted checking with discover, 21
for memory error checking with discover, 21
for uncover, 64

L
libdiscoverADI library, 23, 24, 27
libdiscoverADI.so, 23, 24, 27

86 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

Index

N
non-annotated code

how discover treats, 16
sources of, 17

R
requirements

Discover, 13
uncover, 63

S
shared libraries

caching by discover, 17
instrumenting with discover, 17
telling discover to ignore, 18, 21

Silicon Secured Memory (SSM), 24
SUNW_DISCOVER_OPTIONS environment variable, 36,
50

U
Uncover

options
-h, 66

uncover

command examples, 66
coverage report, generating, 65
creating the coverage data directory in a specified
directory, 64
limitations, 80
options

-a, 66
-c, 64, 66
-d, 64
-e, 66
-H, 66
-m, 65
-n, 66
-o, 65

-t, 66
-V, 66
-v, 66

overview, 12
requirements for using, 63
running in verbose mode, 66
turning on reporting of execution counts for
instructions, blocks, and functions, 64, 66
turning thread-safe profiling on and off, 65
writing data to directory for use by Code
Analyzer, 66
writing the instrumented binary file to a specified
file, 65

uncover ASCII coverage report, 74
generating, 66

uncover coverage report for Performance
Analyzer, 68

Disassembly view, 73
Functions view, 69

Block Covered % counter, 71
Function Count, 71
Instr Covered % counter, 71
Instr Exec counter, 71
Uncoverage counter, 70

generating, 66
Inst–Freq view, 73
Source view, 72

uncover HTML coverage report, 78
saving, 66

87

88 Oracle Developer Studio 12.6: Discover and Uncover User's Guide • June 2017

	Oracle® Developer Studio 12.6: Discover and Uncover User's Guide
	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	Chapter 1 • Introduction
	Memory Error Discovery Tool Oracle Developer Studio (discover)
	Code Coverage Tool (uncover)

	Chapter 2 • Memory Error Discovery Tool (discover)
	Requirements for Using discover
	Supported Binaries
	Binaries That Use Preloading or Auditing Are Incompatible

	Simple Program Example
	Instrumenting a Binary
	Caching Shared Libraries
	Instrumenting Shared Libraries
	Ignoring Libraries
	Checking Parts of a Library or an Executable
	Command-Line Options
	Output Options
	Instrumentation Options
	Caching Options
	Other Options

	bit.rc Initialization Files

	Running an Instrumented Binary
	Hardware-Assisted Checking Using Silicon Secured Memory (SSM)
	Using the libdiscoverADI Library to Find Memory Access Errors
	Errors Caught by the libdiscoverADI Library
	Instrumentation Options for discover ADI Mode

	Custom Memory Allocators and the discover ADI Library
	Using Custom Memory Allocators

	Requirements and Limitations of Using libdiscoverADI
	Example of Using discover ADI Mode

	Analyzing discover Reports
	Analyzing the HTML Report
	Using the Errors Tab
	Using the Warnings Tab
	Using the Memory Leaks Tab
	Using the Control Panel

	Analyzing the ASCII Report
	ASCII Warning and Error Message Descriptions
	ASCII Memory Leak Report
	ASCII Stack Trace Report
	ASCII Report Summary

	discover APIs and Environment Variables
	discover APIs
	Finding Memory Leaks With discover APIs
	Finding Leaks in a Server or Long-Running Program

	SUNW_DISCOVER_OPTIONS Environment Variable

	Memory Access Errors and Warnings
	Memory Access Errors
	Beyond Array Bounds Read (ABR)
	Beyond Array Bounds Write (ABW)
	Bad Free Memory (BFM)
	Bad Realloc Address Parameter (BRP)
	Corrupted Guard Block (CGB)
	Double Freeing Memory (DFM)
	Freed Memory Read (FMR)
	Freed Memory Write (FMW)
	Freed Realloc Parameter (FRP)
	Invalid Memory Read (IMR)
	Invalid Memory Write (IMW)
	Memory Leak
	Overlapping Source and Destination (OLP)
	Partially Initialized Read (PIR)
	Beyond Stack Bounds Read (SBR)
	Beyond Stack Bounds Write (SBW)
	Unallocated Memory Read (UAR)
	Unallocated Memory Write (UAW)

	Memory Access Warnings
	Allocating Zero Size (AZS)
	Memory Leak (MLK)
	Speculative Memory Read (SMR)

	Interpreting discover Error Messages
	Partially Initialized Memory
	Speculative Loads
	Uninstrumented Code

	Limitations When Using discover
	Non-Annotated Code Might Cause False Results
	Machine Instruction Might Differ From Source Code
	Compiler Options Affect the Generated Code
	System Libraries Can Affect the Errors Reported
	Custom Memory Management Can Affect the Accuracy of the Data

	Chapter 3 • Code Coverage Tool (uncover)
	Requirements for Using uncover
	Using uncover
	Instrumenting the Binary
	Running the Instrumented Binary
	Generating and Viewing the Coverage Report
	Coverage for Shared Libraries

	Understanding the Coverage Report in Performance Analyzer
	Overview Screen
	Functions View
	Uncoverage Counter
	Function Count
	Instr Exec Counter
	Block Covered % Counter
	Instr Covered % Counter

	Source View
	Disassembly View
	Instruction Frequency View

	Understanding the ASCII Coverage Report
	Understanding the HTML Coverage Report
	Limitations When Using uncover
	Only Annotated Code Can Be Instrumented
	Compiler Options Affect Generated Code
	Machine Instructions Might Differ From Source Code

	Index

