Oracle® Developer Studio 12.6: Code
Analyzer User's Guide

Part No: E77796
June 2017

ORACLE

Oracle Developer Studio 12.6: Code Analyzer User's Guide
Part No: E77796
Copyright © 2016, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous
applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are
not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement
between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Référence: E77796
Copyright © 2016, 2017, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui I'accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis a des restrictions d'utilisation et

de divulgation. Sauf stipulation expresse de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, accorder de licence, transmettre,
distribuer, exposer, exécuter, publier ou afficher le logiciel, méme partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder a toute
ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté a des fins d'interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu'elles soient exemptes d'erreurs et vous
invite, le cas échéant, a lui en faire part par écrit.

Si ce logiciel, ou la documentation qui I'accompagne, est livré sous licence au Gouvernement des Etats-Unis, ou a quiconque qui aurait souscrit la licence de ce logiciel pour le
compte du Gouvernement des Etats-Unis, la notice suivante s'applique :

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d'applications de gestion des informations. Ce logiciel ou matériel n'est pas congu ni n'est destiné a étre
utilisé dans des applications a risque, notamment dans des applications pouvant causer un risque de dommages corporels. Si vous utilisez ce logiciel ou ce matériel dans le cadre
d'applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures nécessaires a son utilisation dans
des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés par l'utilisation de ce logiciel ou matériel pour des
applications dangereuses.

Oracle et Java sont des marques déposées d'Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre a des marques appartenant a d'autres propriétaires
qu'Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d'Advanced Micro Devices. UNIX est une
marque déposée de The Open Group.

Ce logiciel ou matériel et la documentation qui I'accompagne peuvent fournir des informations ou des liens donnant accés a des contenus, des produits et des services émanant de
tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers, sauf mention contraire stipulée
dans un contrat entre vous et Oracle. En aucun cas, Oracle Corporation et ses affiliés ne sauraient étre tenus pour responsables des pertes subies, des cofits occasionnés ou des
dommages causés par l'accés a des contenus, produits ou services tiers, ou a leur utilisation, sauf mention contraire stipulée dans un contrat entre vous et Oracle.

Acceés aux services de support Oracle

Les clients Oracle qui ont souscrit un contrat de support ont acceés au support électronique via My Oracle Support. Pour plus d'informations, visitez le site http://www.oracle.com/
pls/topic/lookup?ctx=acc&id=info ou le site http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs si vous étes malentendant.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Contents

Using This DOCUMENtAtIONccoiiuiiiiiiiiiiie e e e e e eaenes 9
1 USIiNG Code ANAIYZELcoovniiiiiii e 11
Data Analyzed by Code ANALYZErc.viuuiiiniiiniiiiiieeie e 11
Static Code CheCKingcuuviuiiiiiiieeieeie et e et e e e e e e e e e ean e 12

Dynamic Memory Access Checkingcoevviiiiiiiiiiiiiieiiee e, 12

Code Coverage ChecKingc.veuuieuniiiiiiiiieeie et 12
Requirements for Using Code ANALYZEToceuviiniiiniiiiiiieiieeieeieeieeineeeeenenns 13
Code ANALYZET GUIciuiiiiiieie eennes 13
Code Analyzer Command-Line INterfaceccovvivuiiiiiniiiiiniiiineiiin e, 14
Remote Desktop DiStribUtioncc.viiuiiiniiiiiiniiieeiie et e e eaeeaneees 14

(@ NN el - A 15

Vo QUICK SEATt oottt 15

2 Collecting Data And Starting Code Analyzerccccoceeeiiiiiiiiiiiiiinennnnnns 17
Collecting StatiC EITOT Dataceuuivueereeeieiieiieeieeieeieeierieeenaerneesnessneennesenanenns 17
Collecting Dynamic Memory Access Dataceuveeuiiiniiiiiiniiniiineieeiieeieeieeanas 18

Vv How to Collect Dynamic Memory Access Data From the Binary: 19

Collecting Code CoVErage Dataceeuueererueerneernerinerieernaeenerrneerneeneeeraernnesnnees 19

v How to Collect Code Coverage Data From the Binaryc...ccccceeeenee. 20

Using the Code ANAalyzer GUIc..oiiiiiiniiiiineiie e e e e e e eens 21
Using the Code Analyzer Command-Line Tool (codean)ccevvuveuneenneennennnnnnnns 22
€OAEAN OPLIOMS ..evnetntineineit ettt ettt ettt et et et e et e e e e e e e ean e e eaneeneanes 22

codean Work Flow EXamplec.ooiuiiiiiiiiiiiiiiiiiiiii e 25

Labelling ISSUESuivvuiieiiieeieeie et e e et e et e et e e e e e e eaneeeneeaneeaneennaennns 26

Using codean N TeSt SUIES ...c.ueuniuniuiiiiiiiiiiei et eeeanes 30

A Errors Analyzed by Code ANAIYZErcoooiviiiiiiiiiiiiiiiiiieecie e 37

Code COVETABE ISSUES ...uveuniiniiieiieeie et e et e e et et et et e et e et e et e eieennaes 37

Static Code ISSUBSeeruneiiieiii ettt et ettt e e e et e e eaa e eeans 37
Beyond Array Bounds Read (ABR)couiiiiiiiiiiiiiiiiccece e 38
Beyond Array Bounds Write (ABW) ...uiiiiiiiiiiiiiiiiiiiieccceec e 38
Double Freeing Memory (DFM)c.uviuniiieeiinriineineeineeineeieeneeneeeneenaannnns 38
Explicit Type Cast VIiOlationc.oceuvieuiiiniiiiiiiiiiieineieei e 39
Freed Memory Read (FMR)c..iiuiiiiiiiiiiiiiiieii e 39
Freed Memory WIite (FIMW) ...iiniiiiiiiieeie et ei e e e e e e e e eenns 40
Infinite EMpty Loop (INF)iiuiiiiiiiieei ettt 40
Memory Leak (MLK) ..ccuuiiniiiniiiiie et 40
Missing Function Return (MFR)coviviiiiiiiiiiiiirine e 40
Missing Malloc Return Value Check (MRC)ccvuiiiiiiiiiiiiiiiiiiiniieeieeenen, 41
Uninitialized Function Return (NFR)ccooiniiiiiiiiiiiiieeeeeece e 41
Leaky Pointer Checker: Null Pointer Dereference (NUL)c.ovvvnviuneennennnnns 41
Return Freed Memory (RFM) ...cooiiiuiiiiiiiiiiiie e 42
Uninitialized Memory Read (UMR)ccoviiiiiiiiiiiiiiiiiniiie e 42
Unused Return Value (URV)vuniiiiiieiiieii e e e e e e e e 43
Out-of-Scope Local Variable Usage (VES) ...cc.viiiiiiiiiiiiiiiiiiiiie e, 43

Dynamic Memory ACCeSS EITOISc.uvuniuniiiiiiiiiiiiiiiieireeee e e e 44
Beyond Array Bounds Read (ABR)ccuvieiiiniiiiiiii e 44
Beyond Array Bounds Write (ABW)iiiiiiiiiiii e 45
Bad Free Memory (BFM)ccuiiiiiiiiiiiiiiiieeie et 45
Bad Realloc Address Parameter (BRP)coeviiiiiiiniiiiiiiiiiiieineieeeeeineennns 45
Corrupted Guard BIock (CGB) ..ovuiiniiiiiiiiiiiiiie e 45
Double Freeing Memory (DFM)c.viuuiiiiiiniiineiieiieeie et eieeaaes 46
Freed Memory Read (FIMR)oiuiiiiiiiiiieeieii et e et e e e e e e e e ennes 46
Freed Memory Write (FMW) ..o e 46
Freed Realloc Parameter (FRP)couiiniiniiiiiiieieie e 47
Invalid Memory Read (IMR)cuoviuiiiniiiiiiieeie e e e e e e e e e eans 47
Invalid Memory Write (IMW) ...couniiiiiiiiei e 47
Memory Leak (IMLK) ..ocuuiiniiiniiiiie et 48
Overlapping Source and Destination (OLP)c.cccvvviviiiiiiiiiiieineiieeieeannnn, 48
Partially Initialized Read (PIR)ccuuiiuniiiiiiiiiiiiii e, 48
Beyond Stack Bounds Read (SBR)oouuiiiiiiiiiiiiiiiiieieee e 49
Beyond Stack Bounds Write (SBW)ovvniiiniiiiieiiieeieei e 49
Unallocated Memory Read (UAR) ...ccouiiiiiiiiiiiiiiii e 49
Unallocated Memory Write (UAW) ...cuuiiuiiiiiiieiieii et 50

Oracle Developer Studio 12.6: Code Analyzer User's Guide ¢ June 2017

Contents

Uninitialized Memory Read (UMR)cccviiiiiiiiiiiiiniinii e 50

Dynamic Memory AcCCeSS WAITINES ...c.cuueneniinenieineneeeneeeneieneeneneneeeneeneneeaenenns 50
Allocating Zero Size (AZS) «..cuueuniii e 51

Memory Leak (MLK) ..ocuuiiniiiniiiiie et 51
Speculative Memory Read (SMR)vvuiiiiiiiiiiiii e e e e e e ene e 51

INAEX ...t e ettt e e e et e ettt e e e e e eeees 53

Oracle Developer Studio 12.6: Code Analyzer User's Guide ¢ June 2017

Using This Documentation

= Overview — Describes how to use the Code Analyzer tool, including collecting static,
dynamic memory, and code coverage data with the compilers, discover, and uncover; and
running the Code Analyzer GUI and codean command-line tool to analyze and display the
data.

= Audience — Application developers, system developers, architects, support engineers

m Required knowledge — Programming experience, software development testing, experience
in building and compiling software products

Product Documentation Library

Documentation and resources for this product and related products are available at http://www.
oracle.com/pls/topic/lookup?ctx=E77782-01.

Feedback

Provide feedback about this documentation at http://www.oracle.com/goto/docfeedback.

Using This Documentation 9

http://www.oracle.com/pls/topic/lookup?ctx=E77782-01
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01
http://www.oracle.com/goto/docfeedback

10 Oracle Developer Studio 12.6: Code Analyzer User's Guide ¢ June 2017

¢ e CHAPTER 1

Using Code Analyzer

Oracle Developer Studio Code Analyzer is an integrated set of tools that can help developers of
C and C++ applications for Oracle Solaris produce secure, robust, and quality software.

This chapter includes information about the following:

= “Data Analyzed by Code Analyzer” on page 11

m “Requirements for Using Code Analyzer” on page 13
= “Code Analyzer GUI” on page 13

m “Code Analyzer Command-Line Interface” on page 14
= “Remote Desktop Distribution” on page 14

= “Quick Start” on page 15

Data Analyzed by Code Analyzer

Code Analyzer analyzes three types of data:

m Static code errors detected during compilation

® Dynamic memory access errors and warnings detected by the discover utility, the memory
error discovery tool

® Code coverage data measured by the uncover utility, the code coverage tool

In addition to providing you access to each individual type of analysis, Code Analyzer
integrates static code checking with dynamic memory access analysis and code coverage
analysis, to enable you to find many important errors in your applications that cannot be found
by other error detection tools working separately.

Code Analyzer also pinpoints the core issues in your code, that, when fixed, are likely to
eliminate the other issues. A core issue usually combines several other issues because, for
example, the issues have a common allocation point, or occur at the same data address in the
same function.

Chapter 1 « Using Code Analyzer 11

Data Analyzed by Code Analyzer

12

Static Code Checking

Static code checking detects common programming errors in your code during compilation. The
-xprevise=yes option for the C and C++ compilers leverages the compilers' control and data
flow analysis frameworks to analyze your application for potential programming and security
flaws.

Note - You can also use the -xanalyze=code option to collect static code errors, but this option
is EOL. Using the -xprevise=yes option is recommended.

For information on collecting static error data, see “Collecting Static Error
Data” on page 17.

For a list of the static code errors Code Analyzer analyzes, see “Static Code
Issues” on page 37.

Dynamic Memory Access Checking

Memory-related errors in your code are often difficult to find. When you instrument your
program with discover before running it, discover catches and reports memory access errors
dynamically during program execution. For example, if your program allocates an array and
does not initialize it and then tries to read from a location in the array, the program is likely to
behave erratically. If you instrument the program with discover and then run it, discover will
catch the error.

For information about collecting dynamic memory access error data, see “Collecting Dynamic
Memory Access Data” on page 18.

For a list of the dynamic memory access issues that Code Analyzer analyzes, see “Dynamic
Memory Access Errors” on page 44.

Code Coverage Checking

Code coverage provides information on which areas of your code are exercised in testing
and which are not, enabling you to improve your test suites to test more of your code. Code
Analyzer uses data collected by uncover to determine which functions in your program are
uncovered and the percentage of coverage that will be added to the total coverage for the
application if a test covering the relevant function is added.

Oracle Developer Studio 12.6: Code Analyzer User's Guide ¢ June 2017

Requirements for Using Code Analyzer

For information about collecting code coverage data, see “Collecting Code Coverage
Data” on page 19.

Requirements for Using Code Analyzer

Code Analyzer works with static error data, dynamic memory access error data, and code
coverage data collected from binaries compiled with the Oracle Developer Studio 12.3, 12.4,
12.5, or 12.6 C or C++ compiler.

Code Analyzer runs on a SPARC-based or x86-based system running at least Oracle Solaris
10 10/08 operating system at least Oracle Solaris 11, Oracle Enterprise Linux 5.x, or Oracle
Enterprise Linux 6.x.

Code Analyzer GUI

After collecting data with the compiler, discover, or uncover, you can start the Code Analyzer
GUI to display and analyze the issues by issuing the code-analyzer command.

For each issue, Code Analyzer displays the issue description, the path name of the source file
in which the issue was found, and a code snippet from that file with the relevant source line
highlighted.

Code Analyzer enables you to do the following:

m Display more details for an issue. For a static issue, the details include the Error Path. For a
dynamic memory access issue, the details include a Call Stack and if the data is available,
include an Allocation Stack and a Free Stack.

= Open the source file in which an issue was found.

= Move from a function call in the Error Path or stack to the associated source code line.
m Find all of the usages of a function in your program.

= Move to the declaration of a function.

= Move to the declaration of an overridden or overriding function.

= Display the call graph for a function.

m Display more information about each issue type, including a code example and possible
causes.

= Filter the displayed issues by analysis type, issue type, and source file.
m Hide issues you have already reviewed, and close issues that you are not interested in.

Chapter 1 « Using Code Analyzer 13

Code Analyzer Command-Line Interface

For detailed information about using the GUI, see the online help in the GUI and Oracle
Developer Studio 12.6: Code Analyzer Tutorial.

Code Analyzer Command-Line Interface

The command-line interface version of Code Analyzer, codean, reads the analytics file as input
and generates output in text and HTML formats, using static code checking, discover, and
uncover. It also provides a mechanism to store data in an history archive for later comparison
of newer data with historic data. codean enables you to do the following:

m Read in the report in API format and transform the information into text and HTML format.
codean saves text output to a .type.html file, where type can be either static, dynamic, or
coverage.

= Show only the new or fixed issues in the latest report and compare it to previously saved
reports.

® Specify what type of data to collect: dynamic, static, coverage, or all.
= Display the full path name.

m Display issues in specific source files.

= Display a certain number of lines from the source code.

= Save the latest reports.

m Overwrite the last saved report with the same tag name.

m Specify the directory in which to save your reports.

= Filter the types of errors and warnings to display.

For more information, see codean(1).

Remote Desktop Distribution

14

You can create a remote desktop distribution of Code Analyzer that will run on almost any
operating system and use the Oracle Developer Studio compilers and tools on a remote server.
When you generate a remote desktop distribution during installation and check the Export User
Settings From Default Directory option, Code Analyzer will recognize the server on which

you generated the distribution as a remote host and access the tool collection in your Oracle
Developer Studio installation. This option is not checked by default.

To start Code Analyzer on a remote operating system, run the appropriate executable:

Oracle Developer Studio 12.6: Code Analyzer User's Guide ¢ June 2017

http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCT
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCT
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSRMcodean-1

Quick Start

./codeanalyzer/bin/codeanalyzer.exe

For information about how to install a Remote Desktop Distribution, see Oracle Developer
Studio 12.6: Installation Guide.

For information about remote desktop distribution, see the Code Analyzer GUI online help.

Quick Start

The following is an example of the steps required to gather information about your code and
how to view the results with Code Analyzer, using a sample C program.

¥ Quick Start

1. Compile a program to collect static data.

% CC -Xprevise=yes *.c

Note - Previously, you could compile with the -xanalyze=code option. This option is still valid
for Oracle Developer Studio12.5 but is EOL.

2. Recompile program with debug information.

% €C -g *.c

3. Instrument program with discover and run program to collect dynamic memory
access data.

o0

cp a.out a.out.save
discover -a a.out
a.out

o0

o
i)

4. Instrument program with uncover and run program to collect code coverage data.

o°

cp a.out.save a.out
uncover a.out

a.out

uncover -a a.out.uc

o of

o°

5. After the information has been gathered, you can choose to use Code Analyzer
with the GUI or the codean command-line tool to display the collected data.

Chapter 1 « Using Code Analyzer 15

http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSIG
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSIG

Quick Start

m For accessing Code Analyzer with the GUI, use the following command:

% code-analyzer a.out

m For accessing Code Analyzer with the command-line tool, use the following
command:

% codean a.out

16 Oracle Developer Studio 12.6: Code Analyzer User's Guide ¢ June 2017

* e CHAPTER 2

Collecting Data And Starting Code Analyzer

The data you collect for analysis by Code Analyzer is stored in the binary-name.analyze
directory in the directory that contains your source code files. The binary-name.analyze
directory is created by the compiler, discover, or uncover.

This chapter includes information about the following topics:

m “Collecting Static Error Data” on page 17

= “Collecting Dynamic Memory Access Data” on page 18
= “Collecting Code Coverage Data” on page 19

m “Using the Code Analyzer GUI” on page 21

Collecting Static Error Data

To collect static error data on your C or C++ program, compile the program using Oracle
Solaris Studio 12.3 or 12.4, or Oracle Developer Studio 12.5 or 12.6 C or C++ compiler with
the -xprevise=yes option. Previously, you used the -xanalyze=code option, but this option

is EOL and it is recommended to use the -xprevise=yes option instead. The -xprevise=yes
option is not available in the compilers in previous releases of Oracle Developer Studio. When
you use this option, the compiler automatically extracts static errors and writes the data to the
static subdirectory in the binary-name.analyze directory.

If you compile your program with the -xprevise option and link it in a separate step, you must
also include the -xprevise option in the link step.

On Linux, you must specify the -xannotate option with -xprevise=yes in order to collect static
error data. For example:

% CC -Xprevise=yes -xannotate -g t.c

Note that the compilers cannot detect all of the static errors in your code.

Chapter 2 ¢ Collecting Data And Starting Code Analyzer 17

Collecting Dynamic Memory Access Data

= Some errors depend on data that is available only at runtime. For example, given the
following code, the compiler would not detect an ABW (beyond array bounds write) error
because it could not detect that the value of ix, read from a file, lies outside the range [0,9]:

void f(int fd, int array[10])
{
int ix;
read(fd, &ix, sizeof(ix));
array[ix] = 0;
}
m Some errors are ambiguous,and also might not be actual errors. The compiler does not
report these errors.

= Some complex errors are not detected by the compilers in this release.

After collecting static error data, you can start Code Analyzer's GUI or the command-line
tool (codean) to analyze and display the data or recompile the program so that you can collect
dynamic memory access or code coverage data.

Collecting Dynamic Memory Access Data

18

Collecting dynamic memory access data on your C or C++ program is a two-step process:
instrumenting the binary with discover and then running the instrumented binary.

To instrument your program with discover to collect data for Code Analyzer, you must have
compiled the program with Oracle Solaris Studio version 12.3 or 12.4, or Oracle Developer
Studio version 12.5 or 12.6 C or C++ compiler. Compiling with the -g option generates debug
information that enables Code Analyzer to display source code and line number information for
dynamic memory access errors and warnings.

discover provides the most complete detection of memory errors at the source code level if you
compile your program without optimization. If you compile with optimization, some memory
errors will not be detected.

For information about specific types of binaries that Discover can or cannot instrument, see
“Supported Binaries” in Oracle Developer Studio 12.6: Discover and Uncover User’s Guide
and “Binaries That Use Preloading or Auditing Are Incompatible” in Oracle Developer Studio
12.6: Discover and Uncover User’s Guide.

Oracle Developer Studio 12.6: Code Analyzer User's Guide ¢ June 2017

http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSDUgjxpl
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSDUgjxqj
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSDUgjxqj

How to Collect Dynamic Memory Access Data From the Binary:

Note - You can build your program once for use with both discover and uncover. However,
because you cannot instrument a binary that is already instrumented, if you are also planning
to use uncover to collect coverage data, save a copy of the binary for this purpose before
instrumenting it with discover. For example:

% cp a.out a.out.save

¥ How to Collect Dynamic Memory Access Data
From the Binary:

1. Instrument the binary with Discover using the -a option:

% discover -a binary_name

Note - You must use the version of discover in Oracle Solaris Studio version 12.3 or 12.4 or
Oracle Developer Studio version 12.5 or 12.6. The -a option is not available in earlier versions
of discover.

2. Run the instrumented binary.

The dynamic memory access data is written to the dynamic subdirectory in the
binary_name.analyze directory.

Note - For additional instrumentation options you can specify when instrumenting the binary
with discover, see “Instrumentation Options” in Oracle Developer Studio 12.6: Discover and
Uncover User’s Guide or the discover man page.

3. (Optional) Start Code Analyzer's GUI or the command-line tool (codean) to analyze
and display the data, along with any static code data you might have previously
collected. Or, you can use an uninstrumented copy of the binary to collect code
coverage data.

Collecting Code Coverage Data

Collecting code coverage data on your C or C++ program is a three-step process:

1. Instrumenting the binary with uncover.

Chapter 2 ¢ Collecting Data And Starting Code Analyzer 19

http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSDUgjygd
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSDUgjygd

How to Collect Code Coverage Data From the Binary

v

Before You Begin

2. Running the instrumented binary.

3. Running uncover again to generate a coverage report for use by Code Analyzer.

You can run the instrumented binary multiple times after instrumenting it, and accumulate data
over all of the runs before generating the coverage report.

How to Collect Code Coverage Data From the
Binary

To instrument your program with uncover to collect data for use by Code Analyzer, you must
have compiled the program with Oracle Developer Studio version 12.3, 12.4, 12.5, or 12.6 C
or C++ compiler. Compiling with the -g option generates debug information that enables Code
Analyzer to use source code level coverage information.

Note - If you saved a copy of the binary when you compiled your program for instrumenting
with discover, you can rename the copy to the original binary name and use it for
instrumenting with uncover. For example:

cp a.out.save a.out

Instrument the binary with Uncover:

°

% uncover binary-name

Run the instrumented binary one or more times.

The code coverage data is written to a binary-name . uc directory.

Generate the code coverage report from the accumulated data using Uncover
with the -a option:

% uncover -a binary-name.uc

The coverage report is written to the coverage subdirectory in the binary-name.analyze
directory.

Note - You must use the version of uncover in Oracle Solaris Studio version 12.3 or12.4 or,
Oracle Developer Studio version 12.5 or 12.6. The -a option is not available in earlier versions
of uncover.

20 Oracle Developer Studio 12.6: Code Analyzer User's Guide ¢ June 2017

Using the Code Analyzer GUI

Using the Code Analyzer GUI

You can use the Code Analyzer GUI to analyze up to three types of data. To start the GUI, type
the code-analyzer command and the path to the binary for which you want to analyze error
data you have collected:

% code-analyzer binary-name

The Code Analyzer GUI opens and displays the data in the binary-name.analyze directory, as
shown in the following figure.

File wiew Tools Window Help

Issues Sources = = \% B4 previse allc x r B samplel.c = r B9 sample2.c xr:; Results =

lssues: (@ Core () All

? @Analysls Showing 15 Issues Show: | Snippets ‘ lgnored | Mew || Ei

] Dynamic (3) @ UMR Uninitialized Memory Read: at address 40628 (4 bytes) on the heap
[Coverage (12) | /demolf StudioS 1 odeAnalyzer/s. lefsamplel.c
7 & Severity 7: #include =stdlib.h=
[] @ ErROR (3] 9: void add @ 1 _put_in 2(int *p) 3
[s WARNING {12} 04
¢ W Bug type E . pl21 = plol + pll1]; L
[] UMR {Uninitialized Memory Read) (3]
[] Uncovered Function (12} @ UMR Uninitialized Memory Read: at address ffbffo38 (4 bytes) on the stack
¢ = Binaries | fdemol/Studios I deAnalyzer/ I le3.c
[] a.out (15) 2: #include <=stdlib.h>
¢ @ Files 18: int uninitialized_local_l{int *p}
[] %] previse_all.c (91 s
= 1175 return *p;
[samplez ¢ (31 12: 1
18] sampled.c (2)
DEI samplel.c (1) © UMR Uninitialized Memory Read: at address ffbffo38 (4 bytes) on the stack
- d 1/Studios 1 deAnalyzer/ 1 le3.c
13: F
15: int uninitialized_local_2{int *p}
16: {
17: return *p;
18: ¥
4 Uncovered Function: Potential Coverage 12.1%
= test_for_memoryleak
ydemol/StudioS les/CodeAnalyzer/ le/previse_all.c
37 Menory leak errors#eeessessshes
38: gdefine N 20
48: void test_for_memoryleak({void)
a1: {
42: int *ptra, sum = 8;
4 Uncovered Function: Potential Coverage 9.7% =

| (d) Motifications | Running Analyses |] @] NS

When the Code Analyzer GUI is running, you can switch to displaying the data you have
collected for a different binary by choosing Open — File and navigating to the binary.

The online help in the GUI describes how to use all of features to filter the displayed results,
show or hide issues, and show more information about specific issues. The Oracle Developer
Studio 12.6: Code Analyzer Tutorial guides you through a complete scenario of data collection
and analysis using a sample program.

Chapter 2 ¢ Collecting Data And Starting Code Analyzer 21

http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCT
http://www.oracle.com/pls/topic/lookup?ctx=E77782-01&id=OSSCT

Using the Code Analyzer Command-Line Tool (codean)

Using the Code Analyzer Command-Line Tool (codean)

22

You can also use the Code Analyzer command-line tool codean to analyze up to three types of
data. To start codean, type the codean command, any options, and the path of the executable or
directory.

codean options executable-path|directory

The codean tool displays text output on the screen. You can also view the results in a
.type.html file in the same place the executable resides. This section describes the command
options.

codean Options

The following sections explain the different options you can use for codean..

Data Type Options

The following options determine which type of data to collect.

-s Process and display static data.
-d Process and display dynamic data.
-c Process and display coverage data.

You can specify multiple options or none. If none are selected, than the default is to process all
possible options, depending on whether the .analyze/type/latest file exists, where type can
be static, dynamic, or coverage.

Displaying Options

The following options determine the content of the text output of your results.

--fullpath Display the full file's path name.

Oracle Developer Studio 12.6: Code Analyzer User's Guide ¢ June 2017

Using the Code Analyzer Command-Line Tool (codean)

-f source-file Display only the issues in the specified source file.
-n number Display the specified number of lines of the source code.
-V Print version and exit without any further processing.

Filtering Options

The following options determine which issues are reported in the results by filtering with the
types of errors and warnings, the hash string, or the label name.

The error or warning type can be one of the following:

m A three-letter error code or a three-letter warning code. For a list of possible errors and
warnings, see Appendix A, “Errors Analyzed by Code Analyzer”.

® MLK or mlk, for memory leaks.

® ALL or all, for all warnings or errors.
If the error or warning is not specified, the default is all.

The filtering options are:

--showerrors Show only errors of the specified error type.
error-type
--showwarnings Show only warnings of the specified warning type.

warning-type

--hideerrors Do not show errors of the specified error type.
error-type
--hidewarnings Do not show warnings of the specified warning type.

warning-type

Labelling Options

You can use hash strings to label issues. codean provides the following three labels:
false positive, verified, wont be fixed. For more information on using these labelling
options, see “Labelling Issues” on page 26.

--showhash hash Display hash string associated with each issue.

Chapter 2 ¢ Collecting Data And Starting Code Analyzer 23

Using the Code Analyzer Command-Line Tool (codean)

24

--showlabel
[verified |
false positive |
wont_be fixed]

--hidelabel
[verified |
false positive |
wont be fixed]

--findhash hash
[:hash2 ...]

Display only issues with the specified label.

Hide issues with the specified label.

Display only issues associated with the specified hash string hash. You
can list more than one hash string.

Saving Results Options

You can save your latest results in a file, placed in a specific directory with specific tag names.

--Save

--tag tag-name

-t

-D directory

Save the latest reports.

When paired with --save, names the saved copy with the tag name tag-
name. If a saved copy has the same tag name, codean issues a warning
message and then exits without overwriting the file. If no tag name is
specified, codean checks the last modified time of the latest report of the
executable and uses the time stamp as the tag name.

Overwrite the saved report with the same tag name.

Save the report to the directory directory.

Comparing Results Options

The following options enable you to compare your results to a previously generated report.

--whatisnew

--whatisfixed

--tag tag-name

Show only new issues. This option cannot be used with --whatisfixed.
Show only fixed issues. This option cannot be used with --whatisnew.

When paired with --whatisnew or --whatisfixed, uses the historic copy
of the report with tag name tag-name to compare against newly generated
report. If no tag name is specified, the latest report is compared against
the last saved copy.

Oracle Developer Studio 12.6: Code Analyzer User's Guide ¢ June 2017

Using the Code Analyzer Command-Line Tool (codean)

--ref file|directory Must be paired with --whatisnew or --whatisfixed and must have a
path name following it. This option specifies which file or directory to
compare the new report against.

Test Suite Options

You can use the --union option of codean to process multiple test reports to display, save, show
new issues, or show fixed issues, of results from running discover on a test suite. For more
information, see “Using codean in Test Suites” on page 30.

--union Present multiple dynamic reports. When specified with - -save, --
whatisnew, and - -whatisfixed, it will save, show new issues, and show
fixed issues of multiple dynamic reports respectively. The details of an
issue that appear in multiple reports will be only displayed once.

codean Work Flow Example

This section provides an example of monitoring the effect of a bug fix.

EXAMPLE 1 Work Flow example

1. Compile the target source before the fix.

% €C -g *.c

2. Instrument the binary using Discover and make sure it generates Analytics output.

% discover -a a.out
3. Run the instrumented binary.

4. Use codean to store the analytics output. The history archive is created at a.out.analyze/
history/before bugfix and a history file called dynamic is created in this directory.

% codean --save --tag before_bugfix -d a.out
5. Fix the bug.
6. Compile the target source again.

% cC -g *.c

7. Instrument the binary again using discover.

% discover -a a.out

Chapter 2 ¢ Collecting Data And Starting Code Analyzer 25

How to Label Issues

8. Run the instrumented binary.

o

% a.out

9. Show comparison results and ensure that the invalid memory access caused by the bug is
fixed.

% codean --whatisfixed --tag before_bugfix -d a.out

This produces a new Analytics output file at a.out.analyze/dynamic/
fixed before bugfix and that contains only fixed dynamic issues. You can use codean or
the Code Analyzer GUI to view these fixed issues.

10. (Optional) Run codean to ensure you did not introduce any new bugs.
% codean --whatisnew --tag before_bugfix -d a.out

This command produces a new analytics file at a.out.analyze/dynamic/
new_before bugfix that contains only new dynamic issues.

Labelling Issues

The following section describes the typical work flow of using labels to sort and display your
issues.

How to Label Issues

Use the --showhash option to display hashes associated with issues.
Identify the issues that you want to label and their hash strings.

Create a labels subdirectory for your binary.
For example, if your binary is a.out, create a.out.analyze/labels.

Put the (hash, label) pairs of the issues that you want to label into the following
three files:

B a.out.analyze/labels/static_report labels
® 3.out.analyze/labels/dynamic_report labels
® 3.out.analyze/labels/coverage report labels

Each directory contains issues in the static, dynamic and coverage report respectively. The
format of the label files is hash-name: label-name : comment.

26 Oracle Developer Studio 12.6: Code Analyzer User's Guide ¢ June 2017

How to Show or Hide Issues with a Label

Example 2

The following is an example of a label file:

$ cat a.out.analyze/labels/dynamic_report_labels
54f3a6f0160dceb58156be03d07090a2: false positive:bug 12345678 has been filed
3b7ee9d573847e2dbf80652b7a89026e: false positive
6c575302146d147f5f1d2d2e6el710a5: false positive

When you use codean to process reports of a.out, if an issue has a matching label, the label
name will be displayed after the issue by default as additional information.

How to Show or Hide Issues with a Label
To show an issue, use the --showlabel option.
For example, if you only want to see false positives:

% codean --showlabel false_positive a.out

To hide an issue, use the --hidelabel option.
For example, if you want to hide the wont be fixed labelled issues:

% codean --hidelabel wont_be_fixed a.out

How to Find a Particular Hash

To find out whether a particular hash in a label file is out-of-date, use --findhash
hash-string to tell codean to only display issues matching that hash.

To find multiple hashes, list the hash-strings separated by a colon (:). For example:
% codean --findhash 54f3a6f0160dceb58156be03d07090a2:3b7ee9d573847e2dbf80652b7a89026e a.
out

Using Labels

The following is an example of using labels:

$ cat t.c
#include <stdlib.h>

int main()

{

int *p = (int *)malloc(sizeof(int));
int i = *p;

free(p);

Chapter 2 ¢ Collecting Data And Starting Code Analyzer 27

How to Find a Particular Hash

return i;

}

$ cc -g t.c
$ discover -a -0 a.out.disc a.out
$./a.out.disc

$ codean -d --showhash a.out

DYNAMIC report of a.out:

ERROR 1 (UMR): accessing uninitialized data in "*p" at address 0x1001208e@ (4 bytes) on
the heap:

hash: 79b6elb242a057deec8762328b6860e6

main() + Oxac <t.c : 6>

3: int main()

4: {

5: int *p = (int *)malloc(sizeof(int));

6:=> int i = *p;

7: free(p);

_start() + 0x108

was allocated at (4 bytes):

main() + 0x20 <t.c : 5>

1: #include <stdlib.h>

3: int main()

4: {

5:=> int *p = (int *)malloc(sizeof(int));

6: int 1 = *p;

_start() + 0x108

DISCOVER SUMMARY for a.out: 1 non-leak issues, @ leak issues
unique errors : 1 (1 total)

unique warnings : @ (0 total)

unique leaks : @ (@ blocks, 0 bytes)

unique possible leaks : @ (0 blocks, @ bytes)

$ cat a.out.analyze/labels/dynamic_report labels
79b6e1b242a057deec8762328b6860e6:verified:I have verified that this is a bug.

$ codean -d a.out

DYNAMIC report of a.out:

ERROR 1 (UMR): accessing uninitialized data in "*p" at address 0x1001208e@ (4 bytes) on
the heap:

label: verified "I have verified that this is a bug."
main() + Oxac <t.c : 6>

3: int main()

4: {

5: int *p = (int *)malloc(sizeof(int));

6:=> int i = *p;

7: free(p);

_start() + 0x108

28 Oracle Developer Studio 12.6: Code Analyzer User's Guide ¢ June 2017

How to Find a Particular Hash

was allocated at (4 bytes):

main() + 0x20 <t.c : 5>

1: #include <stdlib.h>

3: int main()

4: {

5:=> int *p = (int *)malloc(sizeof(int));

6: int 1 = *p;

_start() + 0x108

DISCOVER SUMMARY for a.out: 1 non-leak issues, @ leak issues
unique errors : 1 (1 total)

unique warnings : @ (0 total)

unique leaks : @ (@ blocks, 0 bytes)

unique possible leaks : @ (0 blocks, @ bytes)

$ codean -d --showlabel verified a.out

DYNAMIC report of a.out:

ERROR 1 (UMR): accessing uninitialized data in "*p" at address 0x1001208e@ (4 bytes) on
the heap:

label: verified "I have verified that this is a bug."
main() + Oxac <t.c : 6>

3: int main()

4: {

5: int *p = (int *)malloc(sizeof(int));

6:=> int i = *p;

7: free(p);

_start() + 0x108

was allocated at (4 bytes):

main() + 0x20 <t.c : 5>

1: #include <stdlib.h>

3: int main()

4: {

5:=> int *p = (int *)malloc(sizeof(int));

6: int 1 = *p;

_start() + 0x108

DISCOVER SUMMARY for a.out: 1 non-leak issues, @ leak issues
unique errors : 1 (1 total)

unique warnings : @ (0 total)

unique leaks : @ (@ blocks, 0 bytes)

unique possible leaks : @ (0 blocks, @ bytes)

$ codean -d --hidelabel verified a.out

DYNAMIC report of a.out:
DISCOVER SUMMARY for a.out: @ issues found (1 issues suppressed)

Chapter 2 ¢ Collecting Data And Starting Code Analyzer 29

Preparing Binaries in Test Suite with discover

30

Using codean in Test Suites

You can use --union to process multiple dynamic reports with codean. It can be used to display,
save, show new issues, or show fixed issues, of results from running discover on a test suite.
The following example shows how to use discover and codean --union.

Preparing Binaries in Test Suite with discover
Use discover to instrument a. out.

Choose Analytics output: discover -a a.out.

This will clean all existing dynamic reports under a.out.analyze/dynamic/.

Run the instrumented binary a.out on a test suite.

By default, the result of each run saves in a separate file, and the latest report is a symbolic
link to the most recent one. For example, this is how a.out.analyze/dynamic/ directory looks
like after running a.out for 5 times:

$ 1s -1 a.out.analyze/dynamic/

total 11

lrwxrwxrwx 1 demoUser demo 18 May 1 15:14 latest -> ./latest.AAAvCaWri
-rwxrwxrwx 1 demoUser demo 588 Apr 30 10:05 latest.AAACRaOId
-rwxrwxrwx 1 demoUser demo 587 Apr 15 15:03 latest.AAAQcayId
-rwxrwxrwx 1 demoUser demo 587 Apr 30 10:05 latest.AAAe5aWId
-rwxrwxrwx 1 demoUser demo 587 Apr 15 15:03 latest.AAAlCaGId
-rwxrwxrwx 1 demoUser demo 587 May 1 15:14 latest.AAAvCaWri

After you've prepared reports with discover, you can process all dynamic reports under a.out.
analyze/dynamic/ using codean.

Display Reports in a Test Suite

To display individual reports:

% codean --union -d a.out

The codean command processes all individual dynamic reports under a.out.analyze/dynamic
in alphabetical order. It only produces text output (meaning no combined Analytics output or
HTML output, unlike standard codean runs). For the same issue, no matter which reports are

Oracle Developer Studio 12.6: Code Analyzer User's Guide ¢ June 2017

Preparing Binaries in Test Suite with discover

present, the detail of the issue is only shown at the first instance. For the rest of its appearances,
codean will only display limited information, like the following:

LEAK 1: repeated, 1 blocks, 4 bytes
ERROR 1: repeated 1 time

The discover information will only be shown once, at the end of the full report, to summarize
issue counts in the whole test suite. The complete codean output of the example is as follows:

$ codean --union -d a.out
Displaying dynamic report of a.out.analyze/dynamic/latest.AAACRaOId:

ERROR 1 (UMR): accessing uninitialized data in "*i" at address 0x8090010 (4 bytes) on

the heap at:

main() + Oxel <hello.c : 10>

5: {

6: int *i = malloc(sizeof(int));
8: int j = 0;

10:=> j = *i;

12: return 0;

_start() + 0x71

was allocated at (4 bytes):
main() + Ox5e <hello.c : 6>
2: #include <stdio.h>

4: int main()

5: {

6:=> int *i = malloc(sizeof(int));
8: int j = 0;

_start() + 0x71

Displaying dynamic report of a.out.analyze/dynamic/latest.AAAQcayId:

LEAK 1: 1 allocation with total size of 4 bytes
main() + Ox5e <hello.c : 6>

2: #include <stdio.h>

4: int main()

5: {

6:=> int *i = malloc(sizeof(int));

8: int j = 0;

_start() + 0x71

ERROR 1: repeated 1 time

Displaying dynamic report of a.out.analyze/dynamic/latest.AAAe5aWId:

LEAK 1: repeated, 1 blocks, 4 bytes
ERROR 1: repeated 1 time

Chapter 2 ¢ Collecting Data And Starting Code Analyzer 31

Preparing Binaries in Test Suite with discover

32

Displaying dynamic report of a.out.analyze/dynamic/latest.AAAlCaGId:

LEAK 1: repeated, 1 blocks, 4 bytes
ERROR 1: repeated 1 time

Displaying dynamic report of a.out.analyze/dynamic/latest.AAAvCaWri:

LEAK 1: repeated, 1 blocks, 4 bytes
ERROR 1: repeated 1 time

DISCOVER SUMMARY for a.out: 1 non-leak issues, 1 leak issues
unique errors : 1 (5 total)

unique warnings : @ (0 total)

unique leaks : 1 (4 blocks, 16 bytes)

unique possible leaks : @ (0 blocks, @ bytes)

Note that definite leaks and possible leaks are treated differently. For standard codean runs,
whether a leak is a definite leak or a possible leak completely depends on the confidence value
in the Analytics report. But for "test suite" codean runs, if a leak is a definite leak in any of the
dynamic reports, it will also be identified as a definite leak in the rest of the reports, no matter
the confidence value in these reports. See how LEAK 1 is presented in the following "test suite"
codean and standard codean reports:

$ codean --union -d a.out

Displaying dynamic report of a.out.analyze/dynamic/latest.AAACRaOId:

Displaying dynamic report of a.out.analyze/dynamic/latest.AAAQcayId:

LEAK 1: 1 allocation with total size of 4 bytes
main() + Ox5e <hello.c : 6>

2: #include <stdio.h>

4: int main()

5: {

6:=> int *i = malloc(sizeof(int));

8: int j = 0;

_start() + 0x71

Displaying dynamic report of a.out.analyze/dynamic/latest.AAAe5aWId:

LEAK 1: repeated, 1 blocks, 4 bytes

Displaying dynamic report of a.out.analyze/dynamic/latest.AAAlCaGId:

LEAK 1: repeated, 1 blocks, 4 bytes

Oracle Developer Studio 12.6: Code Analyzer User's Guide ¢ June 2017

Preparing Binaries in Test Suite with discover

Displaying dynamic report of a.out.analyze/dynamic/latest.AAAvCaWri:

LEAK 1: repeated, 1 blocks, 4 bytes

DISCOVER SUMMARY for a.out: 1 non-leak issues, 1 leak issues
unique errors : 1 (5 total)

unique warnings : @ (0 total)

unique leaks : 1 (4 blocks, 16 bytes)

unique possible leaks : @ (0 blocks, @ bytes)

tests$ codean -d a.out
DYNAMIC report of a.out:

LEAK (Possible leak) 1: 1 allocation with total size of 4 bytes
main() + Ox5e <hello.c : 6>

2: #include <stdio.h>

4: int main()

5: {
6:=> int *i = malloc(sizeof(int));
8: int j = 0;

_start() + 0x71

DISCOVER SUMMARY for a.out: 1 non-leak issues, 1 leak issues
unique errors : 1 (1 total)

unique warnings : @ (0 total)

unique leaks : @ (@ blocks, 0 bytes)

unique possible leaks : 1 (1 blocks, 4 bytes)

Saving Reports in a Test Suite

To save reports in a test suite:
% codean --save --union -d --tag runl a.out
Each dynamic report under a.out.analyze/dynamic/ is saved in a separate file.

$ 1s -1 a.out.analyze/history/runl/

total 15

Trwxrwxrwx 1 demoUser demo 26 Sep 30 11:09 dynamic -> ./dynamic.latest.AAACRaOId
-rw-r--r-- 1 demoUser demo 674 Sep 30 11:09 dynamic.latest.AAACRaOId

-rw-r--r-- 1 demoUser demo 847 Sep 30 11:09 dynamic.latest.AAAQcayId

-rw-r--r-- 1 demoUser demo 847 Sep 30 11:09 dynamic.latest.AAAe5aWId

-rw-r--r-- 1 demoUser demo 847 Sep 30 11:09 dynamic.latest.AAAlCaGId

-rw-r--r-- 1 demoUser demo 847 Sep 30 11:09 dynamic.latest.AAAvCaWri

Chapter 2 ¢ Collecting Data And Starting Code Analyzer 33

Preparing Binaries in Test Suite with discover

Comparing Reports in a Test Suite

To compare reports in a test suite:

°

% codean --whatisnew --union -d --tag runl a.out
% codean --whatisfixed --union -d --tag runl a.out

The codean command shows the new and fixed issues of all dynamic reports that are currently
under a.out.analyze/dynamic/ as a set, against all saved dynamic reports under a.out.
analyze/history/runl/ as a set. The following is a sample output.

Note - Possible and definite leaks are treated the same as described in “Display Reports in a
Test Suite” on page 30.

$ codean --whatisnew --union -d --tag runl a.out

DYNAMIC report of a.out showing new issues:

New issues in a.out.analyze/dynamic/latest.AAARTaOxS:

ERROR 1 (ABR): reading memory beyond array bounds at address Oxfeffdef8 (4 bytes) on the
stack at:

main() + 0x68 <hello.c : 11>

6: // int *i = malloc(sizeof(int));

7: int i[30];

9: int j = 0;

11:=> j = i[35];

13: return 0;

_start() + 0x71

New issues in a.out.analyze/dynamic/latest.AAATDaGxS:

ERROR 1 is a new, but repeated error. It was first seen as ERROR 1 in latest.AAARTaOxS.

New issues in a.out.analyze/dynamic/latest.AAArcadwsS:

ERROR 1 is a new, but repeated error. It was first seen as ERROR 1 in latest.AAARTaOxS.

DISCOVER SUMMARY for a.out: 1 new non-leak issues, @ new leak issues
new unique errors : 1 (3 total)

new unique warnings : @ (@ total)

new unique leaks : @ (0 blocks, @ bytes)

new unique possible leaks : @ (@ blocks, 0 bytes)

tests$ codean --whatisfixed --union -d --tag runl a.out

DYNAMIC report of a.out showing fixed issues:

Fixed issues in a.out.analyze/history/runl/dynamic.latest.AAACRaOId:

ERROR 1 (UMR): accessing uninitialized data in "*i" at address 0x8090010 (4 bytes) on
the heap at:

(Warning: Source files have changed. Source code shown below may not be accurate.)
main() + Oxel <hello.c : 10>

6: // int *i = malloc(sizeof(int));

7: int i[30];

9: int j = 0;

34 Oracle Developer Studio 12.6: Code Analyzer User's Guide ¢ June 2017

Preparing Binaries in Test Suite with discover

11: j = i[35];

_start() + 0x71

was allocated at (4 bytes):

main() + O0x5e <hello.c : 6>

2: #include <stdio.h>

4: int main()

5: {

6:=> // int *i = malloc(sizeof(int));

7: int i[30];

_start() + 0x71

Fixed issues in a.out.analyze/history/runl/dynamic.latest.AAAQcayId:

ERROR 1 is a fixed, but repeated error. It was first seen as ERROR 1 in dynamic.latest.
AAACRaOId.

LEAK 1: 1 allocation with total size of 4 bytes

(Warning: Source files have changed. Source code shown below may not be accurate.)
main() + O0x5e <hello.c : 6>

2: #include <stdio.h>

4: int main()

5: {

6:=> // int *i = malloc(sizeof(int));

7: int i[30];

_start() + 0x71

Fixed issues in a.out.analyze/history/runl/dynamic.latest.AAAe5aWId:

ERROR 1 is a fixed, but repeated error. It was first seen as ERROR 1 in dynamic.latest.
AAACRaOId.

LEAK 1 is a fixed, but repeated leak. It was first seen as LEAK 1 in dynamic.latest.
AAAQcayId.

Fixed issues in a.out.analyze/history/runl/dynamic.latest.AAA1CaGId:

ERROR 1 is a fixed, but repeated error. It was first seen as ERROR 1 in dynamic.latest.
AAACRaOId.

LEAK 1 is a fixed, but repeated leak. It was first seen as LEAK 1 in dynamic.latest.
AAAQcayId.

Fixed issues in a.out.analyze/history/runl/dynamic.latest.AAAvCaWri:

ERROR 1 is a fixed, but repeated error. It was first seen as ERROR 1 in dynamic.latest.
AAACRaOId.

LEAK 1 is a fixed, but repeated leak. It was first seen as LEAK 1 in dynamic.latest.
AAAQcayId.

DISCOVER SUMMARY for a.out: 1 fixed non-leak issues, 1 fixed leak issues
fixed unique errors : 1 (5 total)

fixed unique warnings : 0 (@ total)

fixed unique leaks : 1 (4 blocks, 16 bytes)

fixed unique possible leaks : @ (@ blocks, @ bytes)

Chapter 2 ¢ Collecting Data And Starting Code Analyzer 35

36 Oracle Developer Studio 12.6: Code Analyzer User's Guide ¢ June 2017

* e APPENDIX A

Errors Analyzed by Code Analyzer

The compilers, discover, and uncover find static code issues, dynamic memory access issues,
and coverage issues in your code. This appendix describes the specific error types that are found
by these tools and analyzed by Code Analyzer.

m “Code Coverage Issues” on page 37

m “Static Code Issues” on page 37

= “Dynamic Memory Access Errors” on page 44

= “Dynamic Memory Access Warnings” on page 50

Code Coverage Issues

Code coverage checking determines which functions are uncovered. In the results, code
coverage issues found are labeled as Uncovered Function, with a potential coverage percentage,
indicating the percentage of coverage that will be added to the total coverage for the application
if a test covering the relevant function is added.

Possible Causes: No test might execute your function or you might have forgotten to delete
dead or old code.

Static Code Issues

Static code checking finds the following types of errors:

= “Beyond Array Bounds Read (ABR)” on page 38
= “Beyond Array Bounds Write (ABW)” on page 38
= “Double Freeing Memory (DFM)” on page 38

= “Explicit Type Cast Violation” on page 39

= “Freed Memory Read (FMR)” on page 39

Appendix A « Errors Analyzed by Code Analyzer 37

Static Code Issues

= “Freed Memory Write (FMW)” on page 40

= “Infinite Empty Loop (INF)” on page 40

= “Memory Leak (MLK)” on page 40

= “Missing Function Return (MFR)” on page 40

= “Missing Malloc Return Value Check (MRC)” on page 41
m “Uninitialized Function Return (NFR)” on page 41

m “Leaky Pointer Checker: Null Pointer Dereference (NUL)” on page 41
= “Return Freed Memory (RFM)” on page 42

= “Uninitialized Memory Read (UMR)” on page 42

= “Unused Return Value (URV)” on page 43

m “Out-of-Scope Local Variable Usage (VES)” on page 43

This section describes possible causes of the error and a code example of when the error might
occur.

Beyond Array Bounds Read (ABR)

Possible causes: Attempting to read memory beyond the array bounds.

Example:
int a[5];

printf("a[5] = %d\n",a[5]); // Reading memory beyond array bounds

Beyond Array Bounds Write (ABW)

Possible causes: Attempting to write memory beyond the array bounds.
Example:
int a [5];

a[5] = 5; // Writing to memory beyond array bounds

Double Freeing Memory (DFM)

Possible Causes: Calling free() () more than once with the same pointer. In C++, using the
delete operator more than once on the same pointer.

38 Oracle Developer Studio 12.6: Code Analyzer User's Guide ¢ June 2017

Static Code Issues

Example:

int *p = (int*) malloc(sizeof(int));

free(p);

. // p was not signed a new value between the free statements
free(p); // Double freeing memory

Explicit Type Cast Violation

Possible Causes: The explicit type cast might violate aliasing rules at alias level higher than

Example:

#include<stdio.h>
int i =2;

int *pi =&i;
short *ps;

int foo()

{
ps=(short*)pi; // type cast violation
*ps=1;
return (*pi);

}

void main()

{
printf("%d",foo());

}

Freed Memory Read (FMR)

Example:
int *p = (int*) malloc(sizeof(int));
free(p);

// Nothing assigned to p in between

printf("p = 0x%h\n", *p); // Reading from freed memory

Appendix A « Errors Analyzed by Code Analyzer 39

Static Code Issues

Freed Memory Write (FMW)

Example:

int *p = (int*) malloc(sizeof(int));

free(p);

. // Nothing assigned to p in between
*p = 1; // Writing to freed memory

Infinite Empty Loop (INF)

Example:

int x=0;
int i=0;
while (i200) {
x++; } // Infinite loop

Memory Leak (MLK)

Possible causes: Memory is allocated but not freed before exit or escaping from the function.

Example:

int foo()
{
int *p = (int*) malloc(sizeof(int));
if (x) {
p = (int *) malloc(5*sizeof(int)); // will cause a leak of the 1st malloc

}
} // The 2nd malloc leaked here

Missing Function Return (MFR)

Possible causes: Missing return values along some paths to exit.

Example:

#include <stdio.h>
int foo (int a, int b)
{

if (a)

40 Oracle Developer Studio 12.6: Code Analyzer User's Guide ¢ June 2017

Static Code Issues

{
return b;

}
} // If foo returns here, the return is uninitialized
int main ()
{

printf("%d\n", foo(0,30));
}

Missing Malloc Return Value Check (MRC)

Possible causes: Accessing a return value from malloc in C or a new operator in C++ without
checking against null.

Example:

#include <stdlib.h>
int main()

{

int *p3 = (int*) malloc(sizeof(int)); // Missing null-pointer check after malloc.
*p3 = 0;
}

Uninitialized Function Return (NFR)

Possible causes: Code is returning an uninitialized value.

Example:

foo() <nfr.c : 7>

4: int foo()
5: {

6: int 1i;
7= return i;
8: }

Leaky Pointer Checker: Null Pointer Dereference
(NUL)

Possible causes: Accessing a pointer that might equal to null, or redundant checking against
null in case the pointer is never null.

Appendix A « Errors Analyzed by Code Analyzer

41

Static Code Issues

Example:

#include <stdio.h>
#include <stdlib.h>
int gp, ctl;
int main()
{
int *p = gp;
if (ctl)
p=0;
printf ("%c\n", *p); // May be null pointer dereference
if (!p)
*p = 0; // Surely null pointer dereference

int *p2 = gp;
*p2 = 0; // Access before checking against NULL.
assert (p2!=0);

int *p3 = gp;
if (p3) {
printf ("p3 is not zero.\n");
}
*p3 = 0; // Access is not protected by previous check against NULL.
}

Return Freed Memory (RFM)

Example:

#include <stdlib.h>
int *foo ()

{
int *p = (int*) malloc(sizeof(int));
free(p);
return p; // Return freed memory is dangerous
}
int main()
{
int *p = foo();
*p = 0;
}

Uninitialized Memory Read (UMR)

Possible causes: Reading local or heap data that has not been initialized.

42 Oracle Developer Studio 12.6: Code Analyzer User's Guide ¢ June 2017

Static Code Issues

Example:

#include <stdio.h>
#include <stdlib.h>
struct ttt {
int a: 1;
int b: 1;
}

int main()

{
int *p = (int*) malloc(sizeof(int));
printf("*p = %d\n",*p); // Accessing uninitialized data

struct ttt t;
extern void foo (struct ttt *);

t.a=1;
foo (&t); // Access uninitialized bitfield data "t.b"

Unused Return Value (URV)

Possible causes: Reading local or heap data that has not been initialized.

Example:

int foo();
int main()

{

foo(); // Return value is not used.

Out-of-Scope Local Variable Usage (VES)

Possible causes: Reading local or heap data that has not been initialized.

Example:

int main()
{
int *p = (int *)0;
void bar (int *);
{
int a[10];

Appendix A « Errors Analyzed by Code Analyzer

43

Dynamic Memory Access Errors

p=a;
} // local variable 'a' leaked out
bar(p);

}

Dynamic Memory Access Errors

Dynamic memory access checking finds the following types of errors:

= “Beyond Array Bounds Read (ABR)” on page 44

= “Beyond Array Bounds Write (ABW)” on page 45

= “Bad Free Memory (BFM)” on page 45

= “Bad Realloc Address Parameter (BRP)” on page 45
m “Corrupted Guard Block (CGB)” on page 45

= “Double Freeing Memory (DFM)” on page 46

m “Freed Memory Read (FMR)” on page 46

= “Freed Memory Write (FMW)” on page 46

= “Freed Realloc Parameter (FRP)” on page 47

= “Invalid Memory Read (IMR)” on page 47

= “Invalid Memory Write (IMW)” on page 47

= “Memory Leak (MLK)” on page 48

= “Overlapping Source and Destination (OLP)” on page 48
m “Partially Initialized Read (PIR)” on page 48

= “Beyond Stack Bounds Read (SBR)” on page 49

= “Beyond Stack Bounds Write (SBW)” on page 49

m “Unallocated Memory Read (UAR)” on page 49

m “Unallocated Memory Write (UAW)” on page 50

m “Uninitialized Memory Read (UMR)” on page 50

This sections describes the possible causes of the error and a code example of when the error

would occur.

Beyond Array Bounds Read (ABR)

Possible causes: Attempting to read memory beyond the array bounds.
Example:

int a[5];

44 Oracle Developer Studio 12.6: Code Analyzer User's Guide ¢ June 2017

Dynamic Memory Access Errors

printf("a[5] = %d\n",a[5]); // Reading memory beyond array bounds

Beyond Array Bounds Write (ABW)

Possible causes: Attempting to write memory beyond the array bounds.
Example:

int a [5];

a[5] = 5; // Writing to memory beyond array bounds

Bad Free Memory (BFM)

Possible Causes: Passing a non-heap data pointer to free() () or realloc() ().
Example:

#include <stdlib.h>

int main()

{
int *p = (int*) malloc(sizeof(int));
free(p+l); // Freeing wrong memory block

}

Bad Realloc Address Parameter (BRP)

Example:

#include <stdlib.h>
int main()
{
int *p = (int*) realloc(0@,sizeof(int));
int *q = (int*) realloc(p+20,sizeof(int[2])); // Bad address parameter for realloc

}

Corrupted Guard Block (CGB)

Possible Causes: Writing past the end of a dynamically allocated array, or being in the "red
zone".

Appendix A « Errors Analyzed by Code Analyzer 45

Dynamic Memory Access Errors

Example:

#include <stdio.h>
#include <stdlib.h>

int main() {
int *p = (int *) malloc(sizeof(int)*4);
*(p+5) 10; // Corrupted array guard block detected (only when the code is not
annotated)
free(p);

return 0;

}

Double Freeing Memory (DFM)

Possible Causes: Calling free() () more than once with the same pointer. In C++, using the
delete operator more than once on the same pointer.

Example:
int *p = (int*) malloc(sizeof(int));
free(p);

. // p was not assigned a new value between the free statements
free(p); // Double freeing memory

Freed Memory Read (FMR)

Example:
int *p = (int*) malloc(sizeof(int));
free(p);

// Nothing assigned to p in between
printf("p = 0x%h\n",p); // Reading from freed memory

Freed Memory Write (FMW)

Example:

int *p = (int*) malloc(sizeof(int));
free(p);

46 Oracle Developer Studio 12.6: Code Analyzer User's Guide ¢ June 2017

Dynamic Memory Access Errors

. // Nothing assigned to p in between
*p = 1; // Writing to freed memory

Freed Realloc Parameter (FRP)

Example:
#include <stdlib.h>
int main() {
int *p = (int *) malloc(sizeof(int));

free(0);
int *q = (int*) realloc(p,sizeof(it[2])); //Freed pointer passed to realloc

}

Invalid Memory Read (IMR)

Possible causes: Reading 2, 4, or 8 bytes from an address that is not half-word aligned, word
aligned, or double-word aligned, respectively.

Example:

#include <stdlib.h>

int main()
{

int *p = 0;

int i = *p; // Read from invalid memory address
}

Invalid Memory Write (IMW)

Possible causes: Writing 2, 4, or 8 bytes from an address that is not half-word aligned, word
aligned, or double-word aligned, respectively. Writing to a text address, writing to a read-only
data section (. rodata), or writing to a page that mmap has made read-only.

Example:
int main()
{
int *p = 0;

*p = 1; // Write to invalid memory address

Appendix A « Errors Analyzed by Code Analyzer a7

Dynamic Memory Access Errors

Memory Leak (MLK)

Possible causes: Memory is allocated but not freed before exit or escaping from the function.

Example:
int foo()

{
int *p = (int*) malloc(sizeof(int));
if (x) {
p = (int *) malloc(5*sizeof(int)); // will cause a leak of the 1st malloc
}

} // The 2nd malloc leaked here

Overlapping Source and Destination (OLP)

Possible causes: Incorrect source, destination, or length is specified. When the source and
destination overlap, the behavior of the program is undefined.

Example:

#include <stlib.h>
#include <string.h>
int main() {
char *s=(char *) malloc(15);
memset(s, 'x', 15);
memcpy (s, s+5, 10);
return 0;

Partially Initialized Read (PIR)

Example:

#include <stdio.h>
#include <stdlib.h>
int main()

{
int *p = (int*) malloc(sizeof(int));
((char)p) = 'c';

48 Oracle Developer Studio 12.6: Code Analyzer User's Guide ¢ June 2017

Dynamic Memory Access Errors

printf("*(p = %d\n",*(p+1)); // Accessing partially initialized data
}

Beyond Stack Bounds Read (SBR)

Possible causes: Reading a local array past the end or before the start.
Example:
#include <stdio.h>

int main() {
int a[2] = {0, 1};
printf("a[-10]=%d\n",a[-10]); // Read is beyond stack frame bounds

return 0;

}

Beyond Stack Bounds Write (SBW)

Possible causes: Writing to a local array past the end or before the start.
Example:
#include <stdio.h>

int main() {
int a[2] = {0, 1};
a[-10] = 2; // Write is beyond stack frame bounds

return 0;

}

Unallocated Memory Read (UAR)

Possible causes: A stray pointer, overflowing the bounds of a heap block, or accessing a heap
block that has already been freed.

Example:

#include <stdio.h>
#include <stdlib>

Appendix A « Errors Analyzed by Code Analyzer

49

Dynamic Memory Access Warnings

int main()

{
int *p = (int*) malloc(sizeof(int));
printf("*(p+1l) = %d\n",*(p+1l)); // Reading from unallocated memory

}

Unallocated Memory Write (UAW)

Possible causes: A stray pointer, overflowing the bounds of a heap block, or accessing a heap
block that has already been freed.

Example:

#include <stdio.h>
#include <stdlib>

int main()
{
int *p = (int*) malloc(sizeof(int));
*(p+l) = 1; // Writing to unallocated memory
}

Uninitialized Memory Read (UMR)

Possible causes: Reading local or heap data that has not been initialized.

Example:

#include <stdio.h>
#include <stdlib>
int main()

{
int *p = (int*) malloc(sizeof(int));
printf("*p = %d\n",*p); // Accessing uninitialized data

}

Dynamic Memory Access Warnhings

Dynamic memory access checking finds the following types of warnings:

m “Allocating Zero Size (AZS)” on page 51
= “Memory Leak (MLK)” on page 51

50 Oracle Developer Studio 12.6: Code Analyzer User's Guide ¢ June 2017

Dynamic Memory Access Warnings

= “Speculative Memory Read (SMR)” on page 51

This section describes the possible causes of the warning and a code example of when the
warning might occur.

Allocating Zero Size (AZS)

Example:

#include <stdlib>
int main()
{
int *p = malloc(); // Allocating zero size memory block

}

Memory Leak (MLK)

Possible causes: Memory is allocated but not freed before exit or escaping from the function.

Example:
int foo()
{
int *p = (int*) malloc(sizeof(int));
if (x) {
p = (int *) malloc(5*sizeof(int)); // will cause a leak of the 1st malloc
}
} // The 2nd malloc leaked here

Speculative Memory Read (SMR)

Example:
int i;
if (foo(&i) != @) /* foo returns nonzero if it has initialized i */

printf("5d\n", 1i);

The compiler might generate the following equivalent code for the above source:

int i;
int t1, t2'
tl = foo(&i);

Appendix A « Errors Analyzed by Code Analyzer 51

Dynamic Memory Access Warnings

t2 = 1i; /* value in i is loaded. So even if tl1l is @, we have uninitialized read due
to speculative load */

if (t1 '= 0)

printf("%d\n", t2);

52 Oracle Developer Studio 12.6: Code Analyzer User's Guide ¢ June 2017

Index

B

binary-name.analyze directory, 17,21
coverage subdirectory, 20
static subdirectory, 17
binary_name.analyze directory
dynamic subdirectory, 19

Cc
Code Analyzer
requirements for using, 13
Code Analyzer command-line interface
features, 14
Code Analyzer GUI
features, 13
quick start, 15
starting, 21
code coverage checking, 12
code coverage issues, 37
codean, 22
features, 14
labelling issues, 26
options, 22,22, 22, 23, 23, 24, 24, 25
test suites, 30
work flow example, 25
codean command, 14
codean command-line tool, 22
collecting data
binary-name.analyze directory, 17
code coverage, 19
dynamic memory access errors, 18
static errors, 17
limitations, 17

core issues, 11

D
dynamic memory access checking, 12
dynamic memory access issues

errors, 44

warnings, 50

G
-g compiler option, 18, 20

|

instrumenting your program
with Discover, 18
with discover, 19
with Uncover, 20, 20

(0]
optimization, effect on memory errors, 18
options, 22

comparing results, 24
data type, 22
displaying, 22
filtering, 23
labelling, 23

saving results, 24
test suite, 25

53

Index

R

requirements
for instrumenting your program with Discover, 18
for instrumenting your program with uncover, 20
for using Code Analyzer, 13

S

static code checking, 12
static code issues, 37

T

test suite
options, 25

X

-xanalyze=code compiler option, 12,17
Linux, 17

-xprevise=yes compiler option, 12, 17
Linux, 17

54 Oracle Developer Studio 12.6: Code Analyzer User's Guide ¢ June 2017

	Oracle® Developer Studio 12.6: Code Analyzer User's Guide
	Contents
	Using This Documentation
	Product Documentation Library
	Feedback

	Chapter 1 • Using Code Analyzer
	Data Analyzed by Code Analyzer
	Static Code Checking
	Dynamic Memory Access Checking
	Code Coverage Checking

	Requirements for Using Code Analyzer
	Code Analyzer GUI
	Code Analyzer Command-Line Interface
	Remote Desktop Distribution
	Quick Start
	Quick Start

	Chapter 2 • Collecting Data And Starting Code Analyzer
	Collecting Static Error Data
	Collecting Dynamic Memory Access Data
	How to Collect Dynamic Memory Access Data From the Binary:

	Collecting Code Coverage Data
	How to Collect Code Coverage Data From the Binary

	Using the Code Analyzer GUI
	Using the Code Analyzer Command-Line Tool (codean)
	codean Options
	Data Type Options
	Displaying Options
	Filtering Options
	Labelling Options
	Saving Results Options
	Comparing Results Options
	Test Suite Options

	codean Work Flow Example
	Labelling Issues
	How to Label Issues
	How to Show or Hide Issues with a Label
	How to Find a Particular Hash

	Using codean in Test Suites
	Preparing Binaries in Test Suite with discover
	Display Reports in a Test Suite
	Saving Reports in a Test Suite
	Comparing Reports in a Test Suite

	Appendix A • Errors Analyzed by Code Analyzer
	Code Coverage Issues
	Static Code Issues
	Beyond Array Bounds Read (ABR)
	Beyond Array Bounds Write (ABW)
	Double Freeing Memory (DFM)
	Explicit Type Cast Violation
	Freed Memory Read (FMR)
	Freed Memory Write (FMW)
	Infinite Empty Loop (INF)
	Memory Leak (MLK)
	Missing Function Return (MFR)
	Missing Malloc Return Value Check (MRC)
	Uninitialized Function Return (NFR)
	Leaky Pointer Checker: Null Pointer Dereference (NUL)
	Return Freed Memory (RFM)
	Uninitialized Memory Read (UMR)
	Unused Return Value (URV)
	Out-of-Scope Local Variable Usage (VES)

	Dynamic Memory Access Errors
	Beyond Array Bounds Read (ABR)
	Beyond Array Bounds Write (ABW)
	Bad Free Memory (BFM)
	Bad Realloc Address Parameter (BRP)
	Corrupted Guard Block (CGB)
	Double Freeing Memory (DFM)
	Freed Memory Read (FMR)
	Freed Memory Write (FMW)
	Freed Realloc Parameter (FRP)
	Invalid Memory Read (IMR)
	Invalid Memory Write (IMW)
	Memory Leak (MLK)
	Overlapping Source and Destination (OLP)
	Partially Initialized Read (PIR)
	Beyond Stack Bounds Read (SBR)
	Beyond Stack Bounds Write (SBW)
	Unallocated Memory Read (UAR)
	Unallocated Memory Write (UAW)
	Uninitialized Memory Read (UMR)

	Dynamic Memory Access Warnings
	Allocating Zero Size (AZS)
	Memory Leak (MLK)
	Speculative Memory Read (SMR)

	Index

