
Legal Notices

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be

trademarks of their respective owners.

License Restrictions, Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing

restrictions on use and disclosure and are protected by intellectual property laws. Except as

expressly permitted in your license agreement or allowed by law, you may not use, copy, repro-

duce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or dis-

play any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation

of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be

error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone

licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated

software, any programs installed on the hardware, and/or documentation, delivered to U.S.

Government end users are “commercial computer software” pursuant to the applicable Federal

Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,

disclosure, modification, and adaptation of the programs, including any operating system, integ-

rated software, any programs installed on the hardware, and/or documentation, shall be subject

to license terms and license restrictions applicable to the programs. No other rights are granted

to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management

applications. It is not developed or intended for use in any inherently dangerous applications,

including applications that may create a risk of personal injury. If you use this software or hard-

ware in dangerous applications, then you shall be responsible to take all appropriate failsafe,

backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affil-

iates disclaim any liability for any damages caused by use of this software or hardware in dan-

gerous applications.

- 1 -

OIPA - Extensibility, Release 11.0.0.0

Third Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products and ser-

vices from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all war-

ranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates

will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,

products, or services.

.

- 2 -

OIPA - Extensibility, Release 11.0.0.0

Introduction

Extensibility is a critical factor when selecting an architecture that can be enhanced with the speed of your organ-

izations' needs. The ability to extend the system and hook in new system capability without making major infra-

structure changes is necessary for system maintainability and for avoiding early obsolescence. The Oracle

Insurance Policy Administration (OIPA) system provides several mechanisms for extensibility. Currently, all exten-

sions are implemented as Java classes that are injected into specific points or levels in the OIPA infrastructure.

Extension developers need only implement the requisite Java interfaces in order to access this powerful OIPA fea-

ture.

Note: Creating custom extensions should be viewed as a means to enhance the functionality of OIPA only when

there are no means to achieve the same using OIPA's built-in configuration ability and when there are no such

planned enhancements announced for near-future versions of the software.

Customer Support
If you have any questions about the installation or use of our products, please visit the My Oracle Support web-

site: https://support.oracle.com, or call (800) 223-1711.

Oracle customers have access to electronic support through My Oracle Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.or-

acle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Coding custom extensions requires a great deal of knowledge about the internal data structures and logical processes used

by OIPA. Improperly used, such extensions can adversely affect the operational accuracy and/or efficiency of the system. For

that reason, Oracle recommends that, with a few exceptions, (redirecting the Login page start method to accomplish single

sign-on, for example), extensions only be used when critical functionality cannot be attained by the use of OIPA's native con-

figuration language and such functionality is not planned for a future version of OIPA that is to be released in a time frame

suitable to the customer.

Further, because there is no guarantee that the internal code structures utilized by the extension framework will not change

from one release of OIPA to the next, when it is deemed necessary to code an extension, Oracle also recommends that the cus-

tomer informs Oracle or Oracle's implementation partner about such usage so that the customer may be advised of any

internal change that might affect their custom extension code or its usage.

- 3 -

https://support.oracle.com/
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

OIPA - Extensibility, Release 11.0.0.0

Overview

Primarily, there are three types of extensions: Anonymous, Feature Specific and Named.

1. The Anonymous extensions allow for invocation of custom logic using pre-defined meth-

odologies.

2. The Feature Specific extensions allow for extending specific OIPA features.

3. The Named extensions allow for custom logic at pre-defined points through the lifecycle of spe-

cific system events. Named extensions allow for fine-tuned customization.

Anonymous Extensions
Anonymous extensions are provided with data from running transactions, making them powerful tools for integ-

ration. Anonymous extensions can execute when an activity is run or when the FileReceived web service is

invoked. In the example below, the policy lifecycle includes the OIPA transactions Premium Receipt, Issue and

Billing. The first two transactions illustrate how the system can perform messaging over an enterprise service bus

(ESB). The last transaction, Billing, illustrates MQ series integration.

Feature Specific Extensions
Feature Specific extensions provide the ability to enhance a specific OIPA feature. There is only one Feature Spe-

cific extension at this time called External Client Integration which can be used to enhance OIPA's client and role

management feature to interact with an external agent database.

Named Extensions
When fine-tuned control over the application's lifecycle is required, Named extensions can be employed. Named

extensions are provided through the Extensibility Framework, which is discussed later in this document.

Below is a simplified rules engine processing example that illustrates how Named extensions can provide pre- or

post-processing, or can replace a processing step altogether.

- 4 -

OIPA - Extensibility, Release 11.0.0.0

Default implementation

Pre-processing added via an extension

Post-processing added via an extension

Math processing lifecycle step is replaced with custom math via an extension

- 5 -

OIPA - Extensibility, Release 11.0.0.0

Anonymous Extensions

There are several facilities in place that enable extensibility using Anonymous extensions. They are in the Math

processing of a transaction rule, via the ExternalProcess business rule and through the FileReceived Web Service.

Each mechanism is explained in detail below. Anonymous Extensions are not included in a configuration file. Their

invocation is governed by configuration of OIPA rules.

Math Type Process
Some tasks may require interaction with custom Java code during the math processing of rules. OIPA has a ded-

icated math variable type for this purpose, which can be added to any XML math section that contains the

<MathVariable> element. The math variable type is PROCESS. This has the advantage of allowing for business

rule logic to dictate which extension should execute and which parameters should be passed. Refer to the OIPA

XML Configuration Guide for further detail about the math variable type.

Example XML Configuration
This example illustrates the PROCESS type <MathVariable> and the available attributes and parameter passing.

<MathVariable NAME="VariableName"

TYPE="PROCESS"

NAMESPACE="com.example.package"

OBJECT="ClassName"

ISARRAY="YES|NO"

DATATYPE="DataType*">

<Parameters>

<Parameter NAME="InputVar" TYPE="INPUT">Literal|VariableName</Parameter>

<Parameter NAME="OutputVar" TYPE="OUTPUT">VariableName</Parameter>

</Parameters>

</MathVariable>

Note: Data type can be one of the following: TEXT, INTEGER, DECIMAL, BOOLEAN, DATE.

Java Implementation Details
The above example requires that a class, com.example.package.ClassName, implement the interface IPro-

cessableObject. This class must be present on the class path of the application's class loader. The IPro-

cessableObject interface is defined as follows:

public interface IProcessableObject {

public Object execute(Map<String, Object> inputParameterMap,

Map<String, Object> outputParameterMap)

throws Exception;

}

- 6 -

OIPA - Extensibility, Release 11.0.0.0

The implementation will receive two java.util.Map instances. The first, inputParameterMap, contains all of the val-

ues defined as input parameters in the Math XML, keyed on the parameter name. Similarly, the out-

putParamaterMap contains all of the values defined as output parameters in the Math XML, keyed on the

parameter name. Output parameters will be copied back to the original variable name specified as the value of the

parameter. In other words, the value of the output variables will be passed into the extension. Any changes to

that value will be applied to the variable that is provided by the parameter definition. In essence, the variable is

"passed by reference" to the extension.

By supporting output parameters, the extension can return any number of values. By default, the extension

returns a single value, which is stored in the variable given by the VARIABLENAME attribute from the XML Con-

figuration example above.

Example Use of Math Extension
Assume there is a service available in the enterprise that will validate that a postal code provided by the user

matches the city also provided by the user. The extension will return a Boolean value indicating whether or not

the postal code/city pair matches. It will also return the valid city name for the given postal code in the event that

the city and postal code do not match.

Example XML Configuration

<MathVariable NAME="PostalCodeMV"

TYPE="FIELD" DATATYPE="TEXT">Policy:IssuePostalCode</MathVariable>

<MathVariable NAME="CityMV"

TYPE="FIELD" DATATYPE="TEXT">Policy:IssueCity</MathVariable>

<MathVariable NAME="CorrectCityMV"

TYPE="VALUE" DATATYPE="TEXT"></MathVariable>

<MathVariable NAME="PostalCodeAndCityMatch"

TYPE="PROCESS"

NAMESPACE="com.example.package"

OBJECT="VerifyPostalCode"

ISARRAY="NO"

DATATYPE="BOOLEAN">

<Parameters>

<Parameter NAME="PostalCode" TYPE="INPUT">PostalCodeMV</Parameter>

<Parameter NAME="City" TYPE="INPUT">CityMV</Parameter>

<Parameter NAME="CorrectedCity" TYPE="OUTPUT">CorrectCityMV</Parameter>

</Parameters>

</MathVariable>

Extension Pseudo-Code

class VerifyPostalCode implements IProcessableObject {

public Object execute(Map <String, Object> inputVariableMap,

Map <String, Object> outputVariableMap) throws Exception {

String postalCode = (String)inputVariableMap.get("PostalCode");

- 7 -

OIPA - Extensibility, Release 11.0.0.0

String city = (String)inputVariableMap.get("City");

VerificationResult result = ExternalService.verifyPostalCode(postalCode, city);

if(result.isValid()) {

return true;

}

else {

outputVariableMap.put("CorrectedCity", result.getCorrectedCity());

return false;

}

}

}

- 8 -

OIPA - Extensibility, Release 11.0.0.0

ExternalProcess Business Rule

Every transaction in OIPA can have business rules associated with it. These business rules are responsible for

applying logic during the transaction lifecycle. Typical business rules will perform actions at a higher level than the

transaction itself, such as generating a suspense account or writing data to fields (i.e. policy, role, client, etc.).

In order to facilitate greater flexibility, OIPA includes a special business rule that is capable of calling custom Java

code called ExternalProcess.

Implementing ExternalProcess requires the following:

1. A business rule named ExternalProcess attached to the transaction. The business rule will

describe the Java class to be executed.

2. The business rule name must exist in the TransactionBusinessRulePacket business rule in the

order it should be executed relative to other attached business rules.

3. An extension class that implements the IApeExtension interface.

Example XML Configuration

<ExternalProcess>

<Namespace>com.example.extension</Namespace>

<Object>ExternalProcessImpl</Object>

<Parameters>

<Parameter NAME="ParameterName">ParameterValue</Parameter>

</Parameters>

</ExternalProcess>

Java Implementation Details
The previous example requires that a class, com.example.extension.ExternalProcessImpl, implement the inter-

face IApeExtension. This class must be present on the class path of the application's class loader. The IApeEx-

tension interface is defined as follows:

public interface IApeExtension {

public void process(IActivityBll activityBll, Map <String, String> para-

meterCollection);

public void processUndo(IActivityBll activityBll, Map <String, String> para-

meterCollection);

}

The process(..) method is executed during forward processing. The processUndo(..) method is executed during

reversal.

The activityBll parameter exposes the necessary surface area for extension. It's critical to understand that activ-

ities are executed as a single unit of work. That is, if any operation fails, then no changes will have been made to

the system. To enable this, insert, change and delete operations are exposed by IActivityBll. All data changes

should be made through these mechanisms, as they ensure proper transactional integrity.

- 9 -

OIPA - Extensibility, Release 11.0.0.0

Note: Direct modification of the database can lead to undesirable or inaccurate results.

- 10 -

OIPA - Extensibility, Release 11.0.0.0

FileReceived Web Service

The FileReceived Web Service, sometimes referred to as AsFile, exposes extensions before and after the insert

operation occurs. The FileReceived lifecycle is illustrated below, along with the associated insert extension oppor-

tunities.

1. The basic lifecycle for the FileReceived Web Service is:
2. The FileReceived Web Service receives a request via a SOAP message.
3. The AsFile entry is looked up using the FileID specified in the request.
4. The math in the AsFile entry's XMLData is processed.
5. The attributes in the AssignAttributes section of the AsFile entry's XMLData are processed.
6. The XSLT maps the request XML to AsXml.
7. The transformed AsXml is mapped to data objects.
8. PreInsert operations are performed on the objects.
9. Objects are inserted into the database.

10. PostInsert operations are performed on the objects.
11. Output XSLT is loaded from AsFileOutput based on the attributes in AssignAttributes.
12. Response XML is built.
13. If the ValidationError section is configured in the XSLT, then a SOAP fault is created (with embedded

response XML) and sent to the caller. Otherwise, response AsXml is returned.

Example XML Configuration

<File>

<RequestType>...</RequestType>

<Math ID="MathVariablePrefix">

<MathVariables>

<MathVariable>...</MathVariable>

...

</MathVariables>

</Math>

<AssignAttributes>...</AssignAttributes>

<PreInsert>

<Object CLASS="com.example.extension.PreInsertExtension">

<Parameters>

<Parameter NAME="Name">Value</Parameter>

<Parameter NAME="Name">Value</Parameter>

...

</Parameters>

</Object>

<Object CLASS="com.example.extension.PreInsertExtension2" />

</PreInsert>

- 11 -

OIPA - Extensibility, Release 11.0.0.0

<PostInsert>

<Object CLASS="com.example.extension.PostInsertExtension" />

<Object CLASS="com.example.extension.PostInsertExtension2" />

...

</PostInsert>

</File>

Java Implementation Details
The PreInsert and PostInsert extensions must implement the IFilePreInsertProcessorBll and IFilePostIn-

sertProcessorBll, respectively. If the Parameters element is present, the specified parameters will be passed to the

extension. The text of the Parameter elements should contain either a constant or the name of an attribute from

the AssignAttributes section. This allows for the passage of data to the defined extensions.

The PreInsert interface is defined as:

public interface IFilePreInsertProcessorBll {

public <T extends AdminServerPersistentDcl> ArrayList <T> process

(ArrayList <T> dclList, String requestXml, Map <String, String>

parameterMap) throws AsExceptionUtl;

}

The PostInsert interface is defined as:

public interface IFilePostInsertProcessorBll {

public <T extends AdminServerPersistentDcl> String process

(ArrayList <T> dclList, String requestXml, Map <String, String>

parameterMap) throws AsExceptionUtl;

}

- 12 -

OIPA - Extensibility, Release 11.0.0.0

Feature Specific Extensions

External Client Integration
OIPA may be integrated with external systems that can provide client information. The external client integration

feature provides support to:

Display external client data on the OIPA Role screen.

Attach external clients to OIPA policies.

Rules Configuration
This section describes how to configure business rules to implement the OIPA external client functionality.

1. 1.Make sure that External Client Plan security is enabled (checked) in the Rules Palette Plan

Page Security.

2. Using the Rules Palette Admin Explorer, add codes for new external roles to the AsCodeRole

code set in the AsCode table—navigate to Administration | Code Names. If using the OIPA cli-

ent search option, also add codes for external client types to the AsCodeClientType code set.

The table below shows sample values for both codes:

Code Name Code Value Short Description
Long Description

System Indicator

AsCodeRole 71 External Custom

Agent

External Custom

Agent

Unchecked

AsCodeRole 72 72 External Agent Unchecked

AsCodeClientType 06 External Client External Client Unchecked

3. If needed, insert authorizations for the ExternalClient page to be able to see the Extern-

alClientDetail popup page that is used to view the details of the external client.

4. For the ExternalClientDetailsScreen rule, create a company-level override to configure which

external client role codes and fields are associated with each defined external role. The

information in the rule is used:

To validate a set of keys identifying a client in the external system; the keys are returned

when a new external role is created.

To configure the External Client Detail popup page, which is used to view and, in some

cases, to edit external client details on the Policy or Segment role page.

The external client fields configured by the rule may be classified as following:

- 13 -

OIPA - Extensibility, Release 11.0.0.0

Key fields that identify a client in an external system. They are retrieved from an external sys-

tem when a new external role is created, and stored in the AsEx-

ternalClient/AsExternalClientField tables in the OIPA database. Later, they are used as keys in

requests to an external system whenever OIPA needs to obtain external client data. The key

fields are indicated by a "No" value in the ExternalSource tag, which has its KEY attribute set to

"Yes". When a new external role is created, OIPA validates returned key values for a selected

external client against this rule to make sure keys are not empty.

OIPA-specific fields that are configured and exist in the OIPA application only. They are stored in

the OIPA database. Values for these types of fields can be entered and modified on the External

Client Detail popup page. The OIPA-specific external client fields are indicated by a "No" value in

the ExternalSource tag, which has its KEY attribute set to "No" (default value) in the Extern-

alClientDetailsScreen rule.

External fields that are always returned from an external system and never stored in the OIPA

database. They are indicated by a "Yes" value in the ExternalSource tag in the Extern-

alClientDetailsScreen rule. Fields of this type can be displayed on the External Client Detail

popup page, but cannot be modified.

Example:

<ExternalClientDetailScreen>

<Client ROLECODE="71">

<Fields>

<Field>

<Name>CLID</Name>

<Display>External ID</Display>

<DataType>Text</DataType>

<ExternalSource KEY="Yes">No</ExternalSource>

</Field>

<Field>

<Name>Address</Name>

<Display>Address</Display>

<DataType>Text</DataType>

<ExternalSource>Yes</ExternalSource>

</Field>

<Field>

<Name>PaymentMethod</Name>

<Display>Methods</Display>

<DataType>Combo</DataType>

<Query TYPE="SQL">SELECT CodeValue,LongDescription FROM AsCode …

</Query>

- 14 -

OIPA - Extensibility, Release 11.0.0.0

<DefaultValue>01</DefaultValue>

<ExternalSource>No</ExternalSource>

</Field>

</Fields>

</Client>

. . .

</ExternalClientDetailScreen>

For the PolicyScreen rule or Segment rule (for segment roles):

1. Create a plan-level override.

2. Add external client roles to the configuration.

3. Identify the name of a class that implements the IExternalClientRowRetriever interface that

must be called to retrieve a row of external client data from an external system.

<Role NAME="External Agent" EXTERNAL="Yes">

<ExternalClientRowRetriever>com.adminserver.externalClient.ExternalClientRows

</ExternalClientRowRetriever>

<RoleCode>72</RoleCode>

<RoleCount>2</RoleCount>

<RolePercent>100</RolePercent>

<ClientType>06</ClientType>

</Role>

For an implementation that uses the OIPA client search screen, the ClientSearchScreen rule needs to include con-

figuration of the client search screen for the defined external client types. The name of a class that implements

the IExternalClientSearch interface should be specified using the ExternalClientSearchRetriever tag.

Example:

<Client TYPECODE="06" EXTERNAL="Yes">

<Extern-

alClientSearchRetriever>com.adminserver.externalClient.ExternalClientSearch

</ExternalClientSearchRetriever>

<Search>

<Fields>

<Field>

<Name>LastName</Name>

<Display>Last Name</Display>

<DataType>Text</DataType>

</Field>

<Field>

<Name>FirstName</Name>

- 15 -

OIPA - Extensibility, Release 11.0.0.0

<Display>First Name</Display>

<DataType>Text</DataType>

</Field>

</Fields>

</Search>

<Results DEFAULTRESULTS="Yes">

. . .

</Client>

If the Custom screen option is implemented, the role configuration in the Policy or SegmentName rule must

include the CustomScreen tag with the name of a class that implements the IExternalClientSearchScreen inter-

face. See the bolded information in the configuration below.

<Role NAME="External Custom Agent" EXTERNAL="Yes">

<ExternalClientRowRetriever>com.adminserver.externalClient.ExternalClientRows

</ExternalClientRowRetriever>

<CustomScreen>com.adminserver.externalClient.CustomScreen</CustomScreen>

<RoleCode>71</RoleCode>

<RoleCount>2</RoleCount>

<RolePercent>100</RolePercent>

</Role>

Implementing Java Interfaces
In addition to the business rule configuration, integration with an external client system requires implementation

of several OIPA interfaces by a Java developer. The external classes that implement the interfaces described in

this section should be deployed in a shared library, as with other extension classes. Please refer to the OIPA

Deployment Installation instructions for your particular application server for information on how to configure

shared libraries.

Retrieving a Row of External Client Data
The IExternalClientRowRetriever interface should be implemented to retrieve client data from an external sys-

tem. The returned data are then displayed as a row in the role summary table on the OIPA Role screen. The same

interface is also used to retrieve external client information displayed on the External Client Detail screen. The

name of the implementation class (or the name of the Spring bean if the implementation class is registered as a

Spring component) should be specified for each external role in the business rules as described in the Rules Con-

figuration section above.

/**

•Interface to retrieve a row of external client data. It is used to retrieve

external

•client data displayed in the role summary table Also, used to display external

data

- 16 -

OIPA - Extensibility, Release 11.0.0.0

•on the edit external client details popup screen

•(for the fields marked with ExternalSource tag set to Yes)

*/

public interface IExternalClientRowRetriever {

/**

•Retrieves a row of external client data. Besides returning values to match

•the columnDcl list, the implementation may return value a named "ClientName"

•that will be used to display name of the client

•@param keyVariableDclList

•list of keys that identify external client

•@param columnDclList

•list of columnDcl objects that defines returned values

•@param locale

•current user locale

•@return

*/

public List <VariableDcl> retrieveRow(List <VariableDcl> keyVariableDclList,

List <ColumnDcl> columnDclList, Locale locale)

throws ExternalClientException;

}

The retrieveRow method of the IExternalClientRowRetriever interface has the following parameters:

A list of VariableDcl objects containing data to identify a client in an external system. This con-

tains keys that have been retrieved from an external system when a client has been selected.

The key data are stored in the OIPA database in the AsExternalClient/AsExternalClientField

tables and used when a client needs to be identified in the external system. A VariableDcl object

is a POJO (Plain Old Java Object) bean with the following properties:

String variableName;

String dataType;

Object value;

String currencyCode;

The values of the dataType property are listed below:

"01", //Date

"02", //Text

"03", //Integer

"04", //Float

- 17 -

OIPA - Extensibility, Release 11.0.0.0

The object type of the value property should match the type of the VariableDcl instance. The currencyCode prop-

erty should be set for the currency values.

A list of ColumnDcl objects describing what values should be returned from the method. The list

consists of columns configured in the RoleScreen business rule (for the role view), as described

in the Rules Configuration section above, that have the Group attribute set to either CLIENT or

CLIENTFIELD. A ColumnDcl object is a POJO bean that has the following properties, which areim-

portant in the context of the retrieveRow method:

private String dataType;

private String name;

The dataType property may have the following values:

public static final String DATATYPE_Date = "Date";

public static final String DATATYPE_Money = "Money";

public static final String DATATYPE_Integer = "Integer";

public static final String DATATYPE_Decimal = "Decimal";

public static final String DATATYPE_Percent = "Percent";

public static final String DATATYPE_Text = "Text";

The locale of the current user can be used to localize returned values if required.

The retrieveRow method retrieves a list of VariableDcl objects that represents search results in an external client

system based on the key values passed in the first parameter. The elements in the list should match the ele-

ments requested in the second parameter of the method. Additionally, the method may add a VariableDcl object

with the name "ClientName" to the list. This value is used by OIPA to display the client name in the left side nav-

igation bar on the role screen.

In case of failure, the method may throw an instance of the ExternalClientException exception class, derived from

the Exception class, that has the following constructors:

public class ExternalClientException extends Exception {

public ExternalClientException(String message){. . .

public ExternalClientException(Throwable cause) {. . .

public ExternalClientException(String message, Throwable cause) {. . .

Here is a simple example of the interface implementation:

@Component

@Scope("singleton")

public class ExternalClientRows implements IExternalClientRowRetriever {

public List <VariableDcl> retrieveRow(List <VariableDcl> keyVariableDclList,

List <ColumnDcl> columnDclList, Locale locale)

throws ExternalClientException {

if(keyVariableDclList == null || keyVariableDclList.size() != 1) {

throw new ExternalClientException("Missing or redundant keys");

}

- 18 -

OIPA - Extensibility, Release 11.0.0.0

VariableDcl keyVarDcl = keyVariableDclList.get(0);

int key = TypeHelperUtl.getInt(keyVarDcl.getValue());

ExClientDcl exClientDcl = ExClientDal.findClients(key);

if(exClientDcl == null) {

throw new ExternalClientException("Could not find an external client:" + key);

}

List <VariableDcl> results = new ArrayList <VariableDcl>();

for(ColumnDcl columnDcl : columnDclList) {

String value = "";

if("Name".equalsIgnoreCase(columnDcl.getName())) {

value = exClientDcl.getLastName() + ", " + exClientDcl.getFirstName();

}

else if("LastName".equalsIgnoreCase(columnDcl.getName())) {

value = exClientDcl.getLastName();

}

else if("FirstName".equalsIgnoreCase(columnDcl.getName())) {

value = exClientDcl.getFirstName();

}

else if("Address".equalsIgnoreCase(columnDcl.getName())) {

value = exClientDcl.getAddress();

}

else if("TaxId".equalsIgnoreCase(columnDcl.getName())) {

value = exClientDcl.getTaxId();

}

VariableDcl varDcl = new VariableDcl(columnDcl.getName(), value,

FieldDataType.TEXT.getTypeCode());

results.add(varDcl);

}

VariableDcl varDcl = new VariableDcl("ClientName",

exClientDcl.getLastName() + ", " + exClientDcl.getFirstName(),

FieldDataType.TEXT.getTypeCode());

results.add(varDcl);

return results;

}

}

- 19 -

OIPA - Extensibility, Release 11.0.0.0

Retrieving External Client Search Results
The IExternalClientSearch interface should be implemented for external roles that are configured to use the OIPA

client search tab on the Role screen, which is used to attach external clients to OIPA policies. This interface

provides a method to query an external system using a set of search criteria. The search criteria, and the columns

of search results returned, are configured similarly to the search configuration for clients stored in the OIPA sys-

tem. The name of the implementation class (or the name of the Spring bean if the implementation class is

registered as a Spring component) should be specified for each external role in the business rules as described in

the Rules Configuration section above.

/**

•Interface to retrieve results of an external client search. This interface is

•implemented when using OIPA client search screen to retrieve results of

•the external client search

*/

public interface IExternalClientSearch {

/**

•Returns client rows found by an external search for the given search criteria

•@param criteriaFieldDataDclList

•list of criteria for external client search collected on

•the OIPA client search screen

•@param columnDclList

•list of columnDcl objects that defines returned values

•@param pageNumber

•page number of the search results

•@param pageSize

•size of the page of the search results

•@param locale

•current user locale

•@return

*/

public RowDataListDcl <ExternalClientSearchRowDcl> retrieveClientSearchResults(

List <IFieldDataDcl> criteriaFieldDataDclList,

List <ColumnDcl> columnDclList,

Integer pageNumber,

Integer pageSize,

Locale locale

) throws ExternalClientException;

}

The retrieveClientSearchResults method of the IExternalClientSearch interface has the following parameters:

- 20 -

OIPA - Extensibility, Release 11.0.0.0

A list of search criteria represented by objects that implement the IFieldDataDcl interface. The

following methods of the interface are the most important in the context of the external client

search:

public interface IFieldDataDcl {

/**

* Gets the value of the field

*/

public Object getValue();

/**

* Gets the fieldName value

*/

public String getFieldName();

/**

* Returns the value associated with the column: DateValue

*/

public Date getDateValue();

/**

* Returns the value associated with the column: FieldTypeCode

*/

public String getFieldTypeCode();

/**

* Returns the value associated with the column: FloatValue

*/

public Double getFloatValue();

/**

* Returns the value associated with the column: IntValue

*/

public Integer getIntValue();

/**

* Returns the value associated with the column: TextValue

*/

public String getTextValue();

/**

* Returns the currencyCode

*/

public String getCurrencyCode();

. . .

- 21 -

OIPA - Extensibility, Release 11.0.0.0

}

The values of the fieldTypeCode property are the same as the type values for the

VariableDcl objects:

"01", //Date

"02", //Text

"03", //Integer

"04", //Float

The developer must extract search criteria name/value pairs from the list, and pass them on to an external sys-

tem search call.

A list of ColumnDcl objects describing what values should be returned from the method. The list

consists of columns configured in the ClientSearchScreen business rule as described in the

Rules Configuration section above.

Note: The next two parameters can be used only if an external system supports paginated search. Other-

wise, all external rows found by the search may be returned. This could affect the external search per-

formance.

Page number of the search results.

The size of the search result page.

The locale of the current user, which could be used to localize the returned values if desired.

The retrieveClientSearchResults method retrieves a list of ExternalClientSearchRowDcl objects. The list contains

the search results from the external client system that satisfy the search criteria specified. The elements in the

list should match the elements requested in the second parameter of the method. The returned list is of type

RowDataListDcl. Besides a list of objects, this list also contains the total number of rows of search results. The

total number of rows may be different from the number of rows returned if the external system supports pagin-

ation of search results.

public class RowDataListDcl <T> extends ArrayList <T> {

public int getTotalRowCount()

. . .

The ExternalClientSearchRowDcl objects returned in the list represent individual rows of search results. The

ExternalClientSearchRowDcl class has the following properties that are important in the context of an

external client search:

public class ExternalClientSearchRowDcl extends RowDcl {

/**

* List of external client keys that identify client in an external system

*/

List <VariableDcl> externalKeyVariableDclList;

/**

* Client name

- 22 -

OIPA - Extensibility, Release 11.0.0.0

*/

String clientName;

. . .

public class RowDcl {

List <CellDcl> rowData;

. . .

The externalKeyVariableDclList list should be populated with the keys that identify rows of data in an external

system. When an external client is chosen by a user to map to an external role, the key data will be stored in the

OIPA database. Later, it may be used to retrieve the external client information. The clientName property may be

set so that it can be used in OIPA to display a selected client name. The rowData property is used to display client

data in the search result table. Each CellDcl object represents a value that will be displayed in a single cell in the

search result table. The type of a CellDcl object should match the type of a corresponding ColumnDcl object in the

list passed in as the second parameter of the method. This is shown in the following table:

ColumnDcl Type CellDcl Type/Constructor

Money MoneyCellDcl(Double data, CurrencyDcl currencyDcl)

Date DateCellDcl(Date data)

Integer IntegerCellDcl(Integer data)

Percent PercentCellDcl(Double data)

Decimal DecimalCellDcl(Double data)

Text TextCellDcl(String data)

For money values, an instance of the CurrencyDcl class may be created using the following constructor:

public CurrencyDcl(String currencyCode,

String currencyName,

Integer displayRoundPlaces,

Integer currencyRoundPlaces,

String currencyRoundMethod)

In case of a failure, the method may throw an instance of the ExternalClientException exception class.

Here is a simple example of the interface implementation:

public class ExternalClientSearch implements IExternalClientSearch {

/*

* An exmaple implementation that always returns a single client

* regardless of search criteria. It also ignores a list of

* columns

**/

- 23 -

OIPA - Extensibility, Release 11.0.0.0

public RowDataListDcl <ExternalClientSearchRowDcl> retrieveClientSearchResults(

List <IFieldDataDcl> criteriaFieldDataDclList,

List <ColumnDcl> columnDclList,

Integer pageNumber, Integer pageSize, Locale locale

) throws ExternalClientException {

RowDataListDcl <ExternalClientSearchRowDcl> results =

new RowDataListDcl <ExternalClientSearchRowDcl>();

ExternalClientSearchRowDcl rowDcl = new ExternalClientSearchRowDcl();

rowDcl.getRowData().add(new TextCellDcl("LastName, FirstName"));

rowDcl.getRowData().add(new TextCellDcl("123-23-8970"));

rowDcl.getRowData().add(new TextCellDcl("100 Street Town, PA 19003"));

rowDcl.setClientName("LastName, FirstName");

List <VariableDcl> varDclList = new ArrayList <VariableDcl>();

VariableDcl varDcl = new VariableDcl("CLID", "12345",

FieldDataType.TEXT.getTypeCode(), null);

varDclList.add(varDcl);

rowDcl.setExternalKeyVariableDclList(varDclList);

results.add(rowDcl);

results.setTotalRowCount(1);

return results;

}

}

Implementing Custom External Client Search Page
The IExternalClientSearchScreen interface should be implemented for external roles that are configured to use a

custom Client Search screen included on the OIPA Role screen. This interface provides methods for OIPA to find an

external page Java Server Faces (JSF) include, retrieve an external client selection made on the custom screen,

and map it to an external role. OIPA does not make any assumptions regarding the custom search screen, but

simply includes it within the OIPA Role screen. Then it requests the selection from the custom screen through the

interface. The name of the implementation class (or the name of the Spring bean if the implementation class is

registered as a Spring component) should be specified for each external role in the business rules as described in

the Rules Configuration section above.

/**

•Interface is required to implement custom client search screen. This is a state-

ful

•interface. An instance of an object that implements this interface is created

•and kept in the role page bean (request scope) maintaining the state

•of the current search for a user

- 24 -

OIPA - Extensibility, Release 11.0.0.0

*/

public interface IExternalClientSearchScreen {

/**

•Returns URL to an external JSF include. The include file should be deployed

•on a web server and accessible through HTTP. Please remember to change

•the include file extension to txt

•@return

*/

public String getScreenUrl();

/**

•Retrieves the current selection of an external client search screen.

•The state of the search is maintained by storing an instance of

•this object in the role page bean

•@return

*/

public ExternalClientSearchRowDcl retrieveSelection() throws Extern-

alClientException;

}

The getScreenUrl method of the interface returns a URL to a JSF subpage that will be included in the tab normally

occupied by the client search on the OIPA Role screen. The custom JSF include should be deployed as a web applic-

ation and available to the OIPA system through HTTP protocol.

Note: Please make sure that the file extension of the resource file is changed from JSPX to TXT. In this

case, an include resource is retrieved through HTTP "as is" and included in the Role screen before the

entire page is processed by the JSF engine to render the content.If the extension of the include resource

remains JSPX, the resource file will be processed by the JSF engine prior to returning it through HTTP.

The generated content (HTML) then will be included in the Role screen instead of JSF code.

The retrieveSelection method of the IExternalClientSearchScreen interface should return the selection that the

user has made on the custom screen. An instance of the implementation class is kept as a property of the

IceFaces bean, with the name "rolePage," which is a request scope bean. This conveniently preserves the state of

the instance that can access and retrieve a custom selection. The result is returned as an object of type Extern-

alClientSearchRowDcl (described above for the IExternalClientSearch interface).

In case of a failure, the retrieveSelection method should throw an instance of the ExternalClientException excep-

tion class.

Here is a simple example of the interface implementation:

public class CustomScreen implements IExternalClientSearchScreen {

public CustomScreen() {

super();

}

public String getScreenUrl() {

- 25 -

OIPA - Extensibility, Release 11.0.0.0

return "http://localhost:8080/includes/ExternalClientSearch.txt";

}

public ExternalClientSearchRowDcl retrieveSelection() throws Extern-

alClientException {

// The selection result is hardcoded in this implementation.

// Normally, it should be retrieved from the current selection

// of the table that displays external search results.

ExternalClientSearchRowDcl rowDcl = new ExternalClientSearchRowDcl();

rowDcl.getRowData().add(new TextCellDcl("LastName, FirstName"));

rowDcl.getRowData().add(new TextCellDcl("123-30-9876"));

rowDcl.getRowData().add(new TextCellDcl("100 Street Town, PA 19003"));

rowDcl.setClientName("LastName, FirstName");

List <VariableDcl> varDclList = new ArrayList <VariableDcl>();

VariableDcl varDcl = new VariableDcl("CLID", "12345",

FieldDataType.TEXT.getTypeCode(), null);

varDclList.add(varDcl);

rowDcl.setExternalKeyVariableDclList(varDclList);

return rowDcl;

}

}

Developing a Custom Page
The OIPA role page, both for policy and segment roles, may be configured to include a custom client search page

allowing OIPA customers to customize external client search to satisfy business requirements that can't be sat-

isfied with the standard configurable OIPA client search. It has been discussed in the previous sections how to con-

figure business rules and create a Java implementation of the IExternalClientSearchScreen interface. This section

will discuss how to create an actual Java Server Face (JSF) page that will be included on the Client Search tab of

the OIPA Role screen.

Typically, a custom search should display a set of search criteria and a table with search results that allows the

selection of a single row of results before the user clicks the "Add" button to create a role mapped to the selected

external client. Please note, the "Add" buttons belongs to the OIPA role page and not the custom include subpage.

The selection is returned to OIPA through the retrieveSelection method of the IExternalClientSearchScreen inter-

face as described in the previous section. The IExternalClientSearchScreen interface is stateful, and an instance

of the implementation class is kept in the customScreen property of the IceFaces rolePage bean that has the

request scope.

Below is an example of the IexternalClientSearchScreen interface implementation.

public class CustomScreen implements IExternalClientSearchScreen {

public CustomScreen() {

super();

- 26 -

OIPA - Extensibility, Release 11.0.0.0

}

public String getScreenUrl() {

return "http://localhost:8080/includes/ExternalClientSearch.txt";

}

public ExternalClientSearchRowDcl retrieveSelection() throws Extern-

alClientException {

// The selection result is hardcoded in this implementation

// Normally, it should be retrieved from the current selection

// of the table that displays external search results

. . .

return rowDcl;

}

public String getTitleCustom() {

return "Custom Screen";

}

public String getTitleCustomContent() {

return "External Client Search";

}

}

The custom JSF include may then look like this

<f:view xmlns="http://www.w3.org/1999/xhtml"

xmlns:f="http://java.sun.com/jsf/core"

xmlns:ice="http://www.icesoft.com/icefaces/component"

xmlns:ui="http://java.sun.com/jsf/facelets"

xmlns:as="http://www.adminserver.com/jsf">

<ui:decorate template="../includes/StandardBoxTemplate.txt">

<ui:param name="style"

value="popupBoxContainer"/>

<ui:define name="standardBoxTitle">

<ice:outputText value="#{rolePage.customScreen.titleCustom}"

styleClass="boxTitle"/>

</ui:define>

<ui:define name="standardBoxContent">

<ice:outputText value="#{rolePage.customScreen.titleCustomContent}"/>

</ui:define>

</ui:decorate>

</f:view>

- 27 -

OIPA - Extensibility, Release 11.0.0.0

The simplest way to implement a more complex custom include page is to add properties needed in the JSF sub-

page to the CustomScreen class. For example, an implementation could have a list that contains the search res-

ults, along with a property that is bound to the row selector of the table that displays search results on the custom

page. Then the retrieveSelection method would need to return the selected row based on these properties.

It is important to remember that a custom JSF include should be deployed in a web server as a text resource, not

as a JSF file. This will allow retrieving the resource through HTTP protocol and including it in the JSF Role page

before generating the Role screen content.

- 28 -

OIPA - Extensibility, Release 11.0.0.0

Named Extensions

The Extensibility Framework provides a mechanism by which system event lifecycles can be extended. The vari-

ous lifecycle steps are given specific names in the system, so they have to be accessed using those names. Cus-

tom Java code can be added before or after a lifecycle step, or it can replace the lifecycle step altogether. The

Extensibility Framework is present at the transaction processing, Web Service and user interface levels. The

Extensibility Framework maps custom Java classes to named points in the system. These names vary based on

the context, and are described in detail later in this document. A single Java class can be mapped to multiple exten-

sion points and, conversely, a single extension point can have multiple Java classes mapped to it. The Extensibility

Framework allows for wildcards in the specification of the extension point name. For instance, Activity.* will call a

custom Java class for every extension point starting with Activity. If "*" is used by itself, then all extension points

will be processed by the Java class.

Wildcard Options

Specification Example Explanation

<Qualifier>.<Name> Activity.StartProcessing Only the StartProcessing event will be intercepted.

<Qualifier>.* Activity.* All extension points starting with Activity will be intercepted.

* * All extension points will be intercepted.

Lifecycle flow control is managed through the two methods exposed by every extension point interface, pro-

cessPre(..) and processPost(..). The processPre(..) method is executed prior to the lifecycle event. When this

method returns true, it indicates that the lifecycle step should execute and when it returns false it indicates that

that the lifecycle step and processPost(..) should be skipped. This allows for lifecycle steps to be overridden by cus-

tom code. The processPost(..) method is called after the lifecycle step has completed. If that lifecycle step gen-

erated any data, it will be present in the context map as "Result".

It's important to note that extensions are not thread-safe. That means, for performance, a single instance is cre-

ated and continually executed. The use of member variables in an extension is discouraged unless proper locking

is in place.

All extension points contain context data in the form of a java.util.Map. The contents of this map will vary depend-

ing on the extension point. This map is shared between the processPre(..) and processPost(..) methods, but it is

not shared with other extension points. Inter-extension communication can be achieved through the use of

some context data mechanism, depending on the implementation. This could be in the form of a ThreadLocal vari-

able or an HTTP/Servlet request context.

Each extension point can have one or more extensions registered to it. These extensions are executed in the

order in which they appear in the XML configuration.

Example XML Configuration

<extensions>

<extensionPoint type="com.example.extension.ExtensionPointClassName"

- 29 -

OIPA - Extensibility, Release 11.0.0.0

extensionPointName="ExtensionPoint.Name">

<register extension="com.example.extension.ExtensionClassName1" />

<register extension="com.example.extension.ExtensionClassName2" />

</extensionPoint>

</extensions>

Shared Rules Engine
The Shared Rules Engine (SRE) can be extended through the use of the extensibility framework. The SRE powers

activity processing, and can be extended at many critical lifecycle points.

Example XML Configuration

<extensionPoint type="com.adminserver.sre.extensibility.SreExtensionPoint"

extensionPointName="Activity.*">

<register extension="com.example.SreExtension" />

</extensionPoint>

All extensions written for the SreExtensionPoint must implement ISreExtension.

public interface ISreExtension {

public boolean processPre(SreExtensionContext extensionContext);

public void processPost(SreExtensionContext extensionContext);

}

SRE Extension Points
Forward Processing

Lifecycle Step Extension Point Available Variables

ActivityBll.Process Activity.InitializeProcessing ClientNumber, Activ-

ityProcessType

ActivityProcessorBll.Process Activity.StartProcessing InputVariableMap, Applic-

ationCallback, Activ-

ityProcessType

DoSuspense Activity.StartSuspense Activity, Transaction

ProcessSuspense Activity.ProcessSuspense Activity

ProcessMultiSuspense Activity.ProcessMultiSuspense Activity

DoValuation Activity.StartValuation Activity, Transaction

PolicyValuation.Value Activity.ValuePolicy ValuationInformation, Activity

DoMath Activity.ProcessMath Activity

- 30 -

OIPA - Extensibility, Release 11.0.0.0

DoBusinessLogic Activity.StartBusinessLogic Activity

ProcessRule Activity.ProcessBusinessRule BusinessRule, RuleOption,

Activity

DoAssignment Activity.StartAssignment Activity, Transaction

ProcessAssignments Activity.ProcessAssignments AssignmentList, Activity,

ExpressionValidator

ProcessAssignment Activity.ProcessAssignment Assignment, Activity

DoDisbursement Activity.StartDisbursement Activity, Transaction

ProcessDisbursements Activity.ProcessDisbursements DisbursementDetails, Activity

ProcessBalanced Activity.ProcessBalancedDisbursements DisbursementDetails, Activity,

DisbursementData

ProcessUnbalanced Activity.ProcessUnBalancedDisbursements DisbursementDetails, Activity,

DisbursementData

DoAccounting Activity.StartAccounting Activity

ProcessAccounting Activity.ProcessAccounting Activity

DoSpawn Activity.ProcessSpawn Activity, Transaction

PrepareValuationChanges Activity.CompleteValuation Activity,

PrepareActivityChanges Activity.ProcessActivityChanges Activity

DoWrite Activity.Persist ActivityProcessResult

DoWriteOnSystemError Activity.Persist Exception

Reverse Processing

Lifecycle Step Extension Point Available Variables

ActivityBll.Process Activity.InitializeProcessing ClientNumber, Activ-

ityProcessType

UndoProcessor.Process Activity.InitializeProcessing InputVariableMap, Applic-

ationCallback

DoBusinessLogicForNuvPending Activity.StartNuvPendingBusinessLogic Activity, Transaction

Rule.ProcessNuvPending Activity.ProcessBusinessRuleNuvPending BusinessRule, Activity

ProcessValuationForUndo Activity.ProcessValuationForUndo Activity, UndoActiv-

- 31 -

OIPA - Extensibility, Release 11.0.0.0

ityStatusCode

DoAccounting Activity.StartAccounting Activity

ProcessAccounting Activity.ProcessAccounting Activity

DoBusinessLogicForUndo Activity.StartUndoBusinessLogic Activity, Transaction

ProcessUndo Activity.ProcessBusinessRuleUndo BusinessRule, Activity

DoWrite Activity.Persist ActivityProcessResult

DoWriteOnSystemError Activity.SystemError Exception

Scheduled Valuation

Lifecycle Step Extension Point Available Variables

GenerateScheduledValuation ScheduledValuation.GenerateScheduledValuation ValuesRequestTask

Data Intake File Processing
Data Intake file processing can be extended through the use of the extensibility framework.

Example XML Configuration

<extensionPoint type="com.adminserver.pas.bll.extensibility.

PasExtensionPoint" extensionPointName="IntakeFile.*">

<register extension="com.example.IntakeFileExtension" />

</extensionPoint>

All extensions for the PasExtensionPoint type must implement IPasExtension, which has the following defin-

ition:

public interface IPasExtension {

public boolean processPre(PasExtensionContext extensionContext);

public void processPost(PasExtensionContext extensionContext);

}

Intake File Processing

Lifecycle Step Extension Point Available Variables

IntakeFileBll

File Submission

- 32 -

OIPA - Extensibility, Release 11.0.0.0

Lifecycle Step Extension Point Available Variables

BeginLoading IntakeFile.BeginLoading IntakeFileData

CompleteLoading IntakeFile.CompleteLoading IntakeFileData

Process IntakeFile.Process IntakeFileData

Reverse IntakeFile.Reverse IntakeFileData

File Processing

PreProcess IntakeFile.PreProcess IntakeFileData

Execute IntakeFile.Execute IntakeFileData

Validate IntakeFile.Validate IntakeFileData

CompleteProcessing IntakeFile.CompleteProcessing IntakeFileData

File Reversal

BeginReversal IntakeFile.BeginReversal IntakeFileData

CompleteReversal IntakeFile.CompleteReversal IntakeFileData

FileReceived
The FileReceived Web Service can be extended through the use of the extensibility framework by implementing

one of two interfaces.

Example XML Configuration

<extensionPoint type="com.adminserver.webservice.extensibility.

FileReceivedExtensionPoint"

extensionPointName="FileReceived.*">

<register extension="com.example.FileReceivedExtension" />

</extensionPoint>

All extensions written for the FileReceivedExtensionPoint must implement IFileReceivedExtension.

public interface IFileReceivedExtension {

public boolean processPre(FileReceivedExtensionContext extensionContext);

public void processPost(FileReceivedExtensionContext extensionContext);

}

Lifecycle Step Extension Point Available Variables

FileReceived FileReceived.StartProcessingFileReceived FileId, IncomingXml

- 33 -

OIPA - Extensibility, Release 11.0.0.0

Lifecycle Step Extension Point Available Variables

RetrieveFileProcessDcl FileReceived.StartRetrievingFileRecord FileId

FindByFileId FileReceived.FindRecord FileProcessData

PopulateFileProcessDcl FileReceived.CreateDataCarrier XmlHelperUtility, FilePro-

cessData

ProcessAssignAttributes FileReceived.ProcessAssignAttributes FileProcessData

ProcessRequest FileReceived.StartProcessingRequest FileProcessData

TransformtoAsXml FileReceived.TransformToXml FileProcessData

ValidateAsXml FileReceived.ValidateXml AsXmlDocument

MapXmlToObject FileReceived.Deserialize FileProcessData

ProcessImportedObject FileReceived.StartProcessingDataCarriers FileProcessData, Pend-

ingImportedObject,

AsXmlDocument

PerformPreInsert FileReceived.StartPreInsert FileProcessData, Pend-

ingInsertObjects

RetrieveDclList FileReceived.StartRetrievingDataCarriers PendingImportedObject

BuildDclListFromAsXml FileReceived.BuildDataCarriersList PendingImportedObject

DoPreInsert FileReceived.PreInsert FileProcessData, Pend-

ingInsertObjects

PerformInsert FileReceived.InsertData PendingInsertObjects

PerformPostInsert FileReceived.StartPostInsert FileProcessData, Pend-

ingInsertObjects, AsXm-

lDocument

DoPostInsertProcessing FileReceived.StartPostInsertProcessing FileProcessData, Pend-

ingInsertObjects, AsXm-

lDocument

DoPostInsert FileReceived.PostInsert FileProcessData, Pend-

ingInsertObjects

BuildResultString FileReceived.StartBuildingResult FileProcessData

LoadOutputXslt FileReceived.LoadOutputXslt FileProcessData

Example XML Configuration

- 34 -

OIPA - Extensibility, Release 11.0.0.0

<extensionPoint type="com.adminserver.webservice.extensibility.

WebserviceExtensionPoint"

extensionPointName=" XsltHelper.XmlTransform">

<register extension="com.example.WebServiceExtension" />

</extensionPoint>

All extensions written for the WebserviceExtensionPoint must

implement IWebserviceExtension.

public interface IWebserviceExtension {

public boolean processPre(WebserviceExtensionContext extensionContext);

public void processPost(WebserviceExtensionContext extensionContext);

}

This extension point allows for the overriding of the default XSLT transformer at two stages during processing of

the FileReceived web service.

1. When Input Xml is transformed to AsXml.
2. When an Xslt is applied to the response Xml.

This extension will receive the following parameters in the context map:

SourceDocument XML Document for transformation.

Parameters The parameters available for passing to the transformer. These are values of

attributes set using AssignAttribute in AsFile

In the processPost method, the context map will contain TransformedXml, which holds the result of the Xslt trans-

formation.

User Interface
The extension point names for the user interface are convention based. They take the form of

<PageName>.<StartProcessing/Process[Action]>. An example would be Policy.ProcessSave.

Example XML Configuration

<extensionPoint type="com.adminserver.pas.uip.extensibility.

UipExtensionPoint"

extensionPointName="*">

<register extension="com.example.UipExtension" />

</extensionPoint>

All extensions written for the UipExtensionPoint must implement IUipExtension.

public interface IUipExtension {

public boolean processPre(UipExtensionContext extensionContext);

public void processPost(UipExtensionContext extensionContext);

}

- 35 -

OIPA - Extensibility, Release 11.0.0.0

The UI extension point names can be discovered by writing a "catch-all" extension point and logging the exten-

sion point names. For example the following steps can be followed to discover available named extension points

on the client screen.

1. Create a Java class calledOIPAExtension.java. This class can be given any name.
2. Add the following code to the class.

public class OIPAExtension implements IUipExtension {

public boolean processPre(UipExtensionContext extensionContext){

boolean result = true;

// Use the System.out.println() or java logger to print all

extension points using extensionContext

String extensionName = extensionContext.getExtensionPoint().getName();

System.out.println(" UI Client Page Extension Name : " + extensionName);

}

@SuppressWarnings("boxing")

public void processPost(UipExtensionContext extensionContext) {

}

}

1. GenerateOIPAExtension.jar and deploy it to the application server. In WebSphere, include the absolute

path of theOIPAExtension.jar in sharedlib. In WebLogic, drop the OIPAExtension.jar within WEB-INF/lib

of the OIPA war included in the OIPA media pack.
2. Add the following to the extensions xml configuration.

<extensionPoint type="com.adminserver.pas.uip.extensibility.UipExtensionPoint"

extensionPointName="*">

<register extension="com.example.OIPAExtension" />

</extensionPoint>

3. Login to OIPA application.
4. Navigate to the Client Screen.
5. The JVM console output will list all the extension point names.

Follow the same steps for different screens.

- 36 -

	Legal Notices
	Introduction
	Customer Support

	Overview
	Anonymous Extensions
	Feature Specific Extensions
	Named Extensions

	Anonymous Extensions
	Math Type Process
	Example XML Configuration
	Java Implementation Details
	Example Use of Math Extension

	ExternalProcess Business Rule
	Example XML Configuration
	Java Implementation Details

	FileReceived Web Service
	Example XML Configuration
	Java Implementation Details

	Feature Specific Extensions
	External Client Integration
	Rules Configuration
	Implementing Java Interfaces
	Retrieving a Row of External Client Data
	Retrieving External Client Search Results
	Implementing Custom External Client Search Page
	Developing a Custom Page

	Named Extensions
	Shared Rules Engine
	SRE Extension Points

	Data Intake File Processing
	FileReceived
	User Interface

