

Oracle® Agile Product Lifecycle Management for Process
Reporting Guide
Feature Pack 4.3
E79191-01

May 2017

Copyrights and Trademarks
Agile Product Lifecycle Management for Process

Copyright © 1995, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end
users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, shall be subject to license terms and license
restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which
may create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe
use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of
Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 3

Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 4

Contents

PREFACE ... 7
Audience ... 7

Variability of Installations ... 7

Documentation Accessibility ... 7

Access to Oracle Support .. 7

Software Availability ... 7

CHAPTER 1—PLM FOR PROCESS REPORTING INTRODUCTION ... 8
Purpose ... 8

Overview ... 8

Custom Report Configuration: Example Click Stream ... 9

BI Publisher Integration: Example Click Stream .. 10

CHAPTER 2—REPORT PACKS ... 11
ADMN Report Pack ... 12

eQ Report Pack ... 15

GSM Report Pack .. 17

PQM Report Pack .. 28

SCRM Report Pack .. 38

CHAPTER 3—CUSTOM REPORT CONFIGURATION .. 44
Overview ... 44

Report Generation Screen .. 44

Configuring the CustomReportExtensions.xml File ... 45

File Structure Overview... 45

Configuring Report Parameter Types .. 45

Global Report Parameters... 46

<ParameterTypes> Node .. 46

<ParameterType> Node .. 46

<DataSource> Node .. 48

<Model> Node .. 49

Configuring Reports .. 50

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 5

<ReportContext> Node ... 50

<ContextCriteria> Node .. 50

<ReportGroup> Node .. 50

<Parameters> Node .. 52

<Parameter> Node .. 52

<Reports> Node .. 53

<Report> Node .. 53

<AllowedOutputTypes> Node ... 55

<AllowedOutputType> Node .. 55

Configuring Common Reports ... 56

Configuring Contextual Reporting ... 57

Adding Custom Reports to Supplier Portal ... 60

Setting Up Contextual Custom Reports in Supplier Portal .. 60

Add Links to Supplier Portal .. 60

CHAPTER 4—BI PUBLISHER INTEGRATION .. 62
PLM for Process Reporting Database Layer .. 62

BI Publisher Installation .. 62

Installing a PLM for Process Reference Implementation Report Pack .. 62

Uploading the Report Folder... 62

Configuring the Proper Data Model – Oracle or SQL Server ... 63

Copy Reference Reports to another Directory for Customization... 63

Report Security ... 64

Report is Called using PLM for Process Reporting Application .. 64

BI Publisher Report is Called Directly either through a Link or the BI Publisher UI 64

Multilingual ... 64

Calling a BI Publisher Report Directly from a Link in PLM for Process ... 65

Report Dialog .. 66

Installing Report Dialog ... 67

Configuring Report Dialog ... 67

Creating Links within a Report .. 70

Oracle BIP Features ... 71

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 6

Parameters.. 71

Interactive Filters .. 72

Conditional Formatting ... 72

Use of Workflow Tags in PQM Report Pack .. 73

APPENDIX A—CREATING CUSTOM REPORT PARAMETER TYPES 74
Methods of Retrieving Data .. 74

Displaying Search Parameters ... 74

EQT Models ... 74

DataSources .. 77

Existing DataSources ... 77

Custom DataSources ... 80

APPENDIX B—APPLYING SECURITY TO REPORTS ... 81
Overview ... 81

Existing Security Plug-ins... 81

UserRoleBasedSecurityPluginFactory ... 81

UserPropertyBasedSecurityPluginFactory... 81

UserGroupBasedSecurityPluginFactory .. 82

APPENDIX C—OBJECT LOADER URLS .. 83
Format .. 83

Common Usage ... 83

APPENDIX D—THIRD PARTY EXTERNAL APPLICATION INTEGRATION 84
Programmatic Interfaces .. 84

Implementing IReportGenerationService ... 84

Implementing IReportGenerationService ... 85

Configuration Changes .. 87

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 7

Preface

Audience
This guide is intended for client programmers involved with integrating Oracle Agile Product Lifecycle
Management for Process. Information about using Oracle Agile PLM for Process resides in application-
specific user guides. Information about administering Oracle Agile PLM for Process resides in the Oracle
Agile Product Lifecycle Management for Process Administrator User Guide.

Variability of Installations
Descriptions and illustrations of the Agile PLM for Process user interface included in this manual may not
match your installation. The user interface of Agile PLM for Process applications and the features
included can vary greatly depending on such variables as:

 Which applications your organization has purchased and installed
 Configuration settings that may turn features off or on
 Customization specific to your organization
 Security settings as they apply to the system and your user account

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Software Availability
Oracle Software Delivery Cloud (OSDC) provides the latest copy of the core software. Note the core
software does not include all patches and hot fixes. Access OSDC at:

http://edelivery.oracle.com

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 8

Chapter 1—PLM for Process Reporting Introduction

Purpose
This guide describes how to configure custom reports for the Oracle Agile Product Lifecycle
Management (PLM) for Process Reporting module.

Overview
All reports will use a reporting service like Oracle BI Publisher or SQL Server Reporting Services.
However, PLM for Process allows you to execute these reports in different ways. Depending on your
usability needs, environment requirements and security requirements around parameters, either choice
is valid.

1. Custom Report Configuration – This approach allows you to execute the report from within PLM
for Process. You can use the PLM for Process custom report UI interface and the report can be
returned to the user in PDF format. While this involves more complexity during the
configuration of the report, this keeps the user within the PLM for Process application and
security filtering can be applied to report parameters. For example, if a specification is required
as a parameter, PLM for Process UI tools can be used to filter the user’s available choices using
core application security rules like GSM BU Security. You would also use this approach when you
don’t want to set up user access in the reporting application. More information around
configuring this approach can be found in the Custom Report Configuration Section of this
guide.

2. BI Publisher Integration – This approach allows the user to execute reports within a reporting
application. We recommend Oracle BI Publisher and offer out of the box reports that can be
leveraged. If the user has appropriate roles in BI publisher they can customize the report layouts
as well as create new reports based on the provided data models. More information around
configuring this approach can be found in the BI Publisher Integration Section of this guide.

As you can see in the example click streams below, PLM for Process offers navigation extensibility
that allows both approaches to be contextually called from a specific object. For example, if the user
is on Material Specification ABC they can launch a report by clicking on a link within PLM for Process.
“Material Specification ABC” can be sent as a report parameter to the reporting method of choice.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 9

Custom Report Configuration: Example Click Stream

 1

Contextually link to the report using an icon
or a Text link in the action menu.

The following example shows the “Where
Used – Parents” report.

 2

PLM for Process Custom Report popup
opens. User is able to select parameters
using PLM for Process UI tools. Any report
parameter can be configured here.

You can even add parameters that allow you
to search for objects like specifications.
When the user searches for a specification
all application security will be respected.

 3

Report is returned in PDF format.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 10

BI Publisher Integration: Example Click Stream

 1

Contextually link to the report using an icon
or a text link in the action menu.

The following example shows the “Where
Used – Parents” report.

 2

The BI Publisher application is open in a new
window. The user is presented with an
interactive report. They are able to select
any parameters and see the results instantly.
There are also interactive filtering features
the user can participate in. If they have
admin access they can adjust the reports
they have access to by changing layout,
column display etc.

This approach can also leverage the Report
Dialog application. Learn more in the Report
Dialog section below.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 11

Chapter 2—Report Packs
There are “out of the box” BI Publisher reports available as reference implementations, known as Report
Packs. This section describes the intent of each released report.

All of the reports are deployed using Oracle BI Publisher and can be accessed using Custom Report
Configuration or the BI Publisher Integration method.

The following report packs are available:

ADMN Report Pack

 Access Report
 Access Details
 Basic Statistics

EQ Report Pack

 eQ Dashboard
 eQ Dashboard – Supplier Portal

GSM Report Pack

 Approval / Audit Trail
 Hierarchy Object Status
 Material Cost Matrix
 Spec Lineage History
 Supporting Document Review
 Where Used Parents
 Where Used Parents and Children
 Nutrition Facts Panel Report Pack

SCRM Report Pack

 Supplier Review
 Sourcing Approval Risk
 Supplier Rationalization
 Supplier Compliance Report – Companies & Facilities
 Supplier Compliance Report – Sourcing Approvals
 Supplier Compliance Report – Supplier Portal

PQM Report Pack

 Individual Supplier Quality
 Individual Supplier Quality – Supplier Portal
 Alternate Supplier
 Quality Analyst Dashboard
 Quality Manager Dashboard
 Audits by Spec
 Audits by Suppliers
 Open Issues by SAC
 Open Issues by Spec
 Open Issues by Spec Hierarchy
 Open Issues by Supplier

IMPORTANT: All Report Packs are released as reference implementations. These reports should be
copied to another folder before using. It is expected that they will then be customized to meet your
specific requirements.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 12

ADMN Report Pack
The admin report pack includes data models and reports that would be beneficial to PLM for Process
administrators.

Access Report (ADMN)

Who has access to this specification?

The Access Report is intended for specific system admin users responsible for UGM and/or WFA
security. This report should be launched from a GSM specification using a navigation extension that is
only exposed to the system admin. This report pulls all UGM groups, permitted users, and special
permitted users (i.e. Authors, Owners or Signators) that have access to the GSM specification on a
specific workflow at a specific status.

The report has two parameters: WFA Permission and Spec PKID. The specification PKID is passed to the
report via navigation extension. WFA Permission has three values: Read, Write, and Workflow. The
report contains only one tab (or view) called Access. This report should work with the UGM Access
Detail report, as the Access Detail report can be launched from within this report to expose more
security detail for a specific user.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 13

Access Details (ADMN)

What kind of access does a specific user have to this specification?

The Access Details report should be launched from a hyperlink within the UGM Access report, providing
the access detail for the specified specification and user from which the report was launched. This
report pulls user specific security access such as BU access, [SPEC_ADMIN] role assignment, workflow
visibility access, workflow permission, special access (Author, Owner and Signator) and summarizes the
Read, Workflow, and Write permissions. At a glance, the system admin can determine if a user has Read,
Write, or Workflow permission and view details that allows or denies the user access to the
specification. The report contains only one tab (or view) called Access Details.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 14

Basic Statistics (ADMN)

How many active users, approved suppliers, GSM, NPD and PQM objects are in the system?

The Basic Statistics report should be launched from ADMN or PLM for Process Portal. The report could
be used by system executives that would like to have a high level understanding of the utilization of the
PLM for Process application, which will lead to a better understanding of the impact that the PLM for
Process application (and investment) has on their business. This report pulls all basic counts of active
users, approved suppliers, GSM specifications (by workflow, specification type and Category), NPD
objects (Projects, Strategic Briefs and Innovation Sales Pipelines) and PQM objects (Issues, Actions and
Audits). The report contains four tabs (or views): GSM Basic Statistics, NPD Basic Statistics, UGM Basic
Statistics, and PQM Basic Statistics.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 15

eQ Report Pack
The eQ report pack includes data models and dashboards that will be beneficial to eQ administrators as
well as suppliers who have been sent eQuestionnaires.

eQ Dashboard (eQ)

The eQ Dashboard should be launched from eQ or the PLM for Process Portal. Any eQ user or
administrator can utilize it. This report enables a view into open and completed eQs across eQ owners,
suppliers and eQ types. The eQ Dashboard also exposes trending information on supplier response times
and total open eQ counts by supplier. This report helps better manage the eQ business process by
exposing vital eQ information across eQ users and suppliers. This report has four parameters: Months
Back, SCRM Company, eQ Type and Primary Owner. The report contains 2 tabs (or views): Open eQs and
All eQs.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 16

eQ Dashboard – Supplier Portal (eQ)

The Supplier Portal eQ Dashboard should be launched from Supplier Portal and utilized by a supplier eQ
user. This report enables a supplier to view open and completed eQs across supplier contacts and also
exposes trending information on supplier response times and total open eQ counts. This report helps
the supplier better manage the eQ business process by exposing vital eQ information. This report has
one parameter called Supplier Rep PKID, which should be hidden prior to releasing this report. As with
all Supplier Portal reports, this report should be released in pdf format and use the custom report
configuration method.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 17

GSM Report Pack
The GSM report pack includes data models and reports that would be beneficial to GSM users in all sorts
of functional areas.

Approval / Audit Trail (GSM)

What is the historical overview of a specification, including workflow, signature documents, cross-
reference associations and event table entries?

This report was designed to be launched from the Hierarchy Object Status Report, but it can be
configured to launch from a GSM specification or the Hierarchy Navigator. The report exposes the Event
History, Lineage/History, Signature Document History, and the Event Model tables in one consolidated
report, which allows the user to quickly review the entire history of the specification. This report
contains one parameter, Object (Spec) PKID. The specification PKID is passed to the report via navigation
extension. This report contains two tabs (or views) called Approval / Audit Trail and Event Model.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 18

Note: In order for the Event Model to populate, the Common.Auditing.LifecycleEvents.Enabled
configuration must be set to “true”.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 19

Hierarchy Object Status (GSM)

What are the statuses of all the objects in the current hierarchy?

The Hierarchy Object Status Report is designed to launch from the Hierarchy Navigator to reveal a
workflow status review of all specification types, GSM activities, and specification-related sourcing
approvals associated to the specification’s hierarchy. The report also exposes the related NPD projects
and project numbers. The report contains an embedded link to the Approval / Audit Trail report, which
gives the user visibility to an historical overview of the entire hierarchy in just a few clicks. This report
contains one parameter, Spec PKID. The specification PKID is passed to the report via navigation
extension. This report contains one tab (or view) called Hierarchy Object Status.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 20

Material Cost Matrix (GSM)

How much does this material or packaging specification cost per facility?

This report was designed to be launched from a material, trade, formulation or packaging specification.
The report returns cost book information associated to the GSM object. If the cost book is populated,
this report can be utilized by formulators to quickly view the cost information for a specific GSM objects
across all Cost Sets (or Facilities). This report contains one parameter, Spec PKID. The specification PKID
is passed to the report via navigation extension. This report contains one tab (or view) called Material
Cost Matrix.

The report includes specific calculated extended attributes. These attributes can be used to calculate
total cost including any additional calculations needed like labor and overhead costs. The Agile Product
Lifecycle Management for Process Extended Attribute Calculation Guide contains a sample of a created
extended attribute that you can refer to. The following extended attribute IDs are pulled into the
report: CostTRD, CostFRM, CostPKG.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 21

Spec Lineage History (GSM)

What specifications have been associated to the same cross-reference?

The Spec Lineage History report was designed to be launched from a specification. This report can be
utilized by GSM users who would like to be able to view a specification’s complete lineage history based
on the specification’s cross reference information. For example, in change management scenarios new
system specification numbers are created when a material change occurs. This report allows you to see
the specification’s lineage based on the cross reference instead of just the specification number. The
report uses the Spec PKID as a parameter. This report contains one tab (or view) called Spec Lineage
History.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 22

Supporting Document Review (GSM)

Show me all supporting documents related to this hierarchy or specification.

This report should be launched from a GSM specification or a specification listed in the hierarchy
navigator panel. It provides the user easy access to the supporting documents for the entire GSM
hierarchy, including supplier documents. The report has two parameters: Spec ID and Level. The Level
parameter decides whether it pulls documents from the entire hierarchy or the single specification level,
while the Spec parameter is used as the top level specification in the hierarchy. The report contains one
tab.

This report respects all application security including object level security.

IMPORTANT: Hierarchy Denormalization Service is required for this report. You can learn more about
this service in the Agile Product Lifecycle Management for Process Hierarchy Denormalization Guide.

Report Setup

The Attachment Web Services are required to open attachments directly from this report. To use this
report, first set up the attachment web service as described in the Agile Product Lifecycle Management
for Process Web Services Guide, and then configure BI Publisher to call the service.

To configure BI Publisher to use the attachment service:

1. Download the GetAttachment.html file from

<EP_Pack_Root>\ReferenceImplementations\ReferenceReportPacks\GSM\

2. Copy the file to the following folder in BI Publisher environment.

3. Create the custom_pages folder if it does not exist.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 23

<BI Publisher Main
Directory>\bip\server\wls\user_projects\applications\bipdomain\xmlpserver\custom_pages\

Here, <BI Publisher Main Directory> is the root directory for the BI Publisher installation.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 24

Where Used - Parents (GSM)

Show me every parent where a specific specification is used.

This report was designed to be launched from any GSM specification. The report returns all parent
specifications where a specific specification is used. The report has the following parameters: Spec
Segment Level 1, Spec Segment Level 2, Spec Segment Level 3, Category, Sub Category, Group, GSM BU
lvl 1, GSM BU lvl 2, GSM BU lvl 3, Spec ID, and Hierarchy Type. There are two tabs, Hierarchy and Type.
The Hierarchy tab is used to display the hierarchy of specifications that consumes the driving
specification for this report. The Type tab is used to show similar data but grouped by type, without
displaying the hierarchy.

The Hierarchy tab has two tables, an upper and a lower one. The upper one displays the top level
specifications where the main specification is being used and only of the type selected in the Hierarchy
Type parameter. For example, if you want to see all top level trade specifications that consume the main
specification, select Trade. If you are only concerned about formulations, select Formulation. The lower
table shows all the hierarchies between the main specification and each row in the top table.

The Type tab also has two tables. The upper table shows a count of all the specifications where the main
specification is used, grouped by type. For example, a user can see in the top table how many trade
specifications consume the main specification, by setting the Hierarchy Type to Trade.
The lower table shows all the specification contained within each row of the upper table, grouped all
together by type.

This report respects all application security. If you want to improve performance and read security is
not important, the Where Used – Parents [No Restrictions] report is available. Where Used – Parents –
No Restrictions is the same report but does not check for specification read access.

IMPORTANT: Hierarchy Denormalization Service is required for this report. You can learn more about
this service in the Agile Product Lifecycle Management for Process Hierarchy Denormalization Guide.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 25

Where Used - Parents and Children (GSM)

Show me every parent and child of hierarchies where a specific specification is used.

This report was designed to be launched from any GSM specification. The report returns all parent and
child specifications where a specific specification is used. The report has the following parameters: Spec
Segment Level 1, Spec Segment Level 2, Spec Segment Level 3, Category, Sub Category, Group, GSM BU
lvl 1, GSM BU lvl 2, GSM BU lvl 3, Spec ID, and Hierarchy Type. Hierarchy Type decides what type of
hierarchies is returned. For example, if you want to see all trade specification hierarchies affected select
trade. If you are only concerned about formulations select formulation.

The Where Used and the Where Used - Parents and Children reports will return the same data in the
upper table, 'Hierarchies Affected'. The difference is that in this report the lower table 'All Specifications
Affected Items' will include children as well as the parents.

Due to performance concerns this report does not respect application security. Users will see all
specifications listed even if they don’t have read access to the specification. However, if the users were
to try to open the specification, PLM for Process security will still prevent them from reading the
specification. This report is named "Where Used - Parents and Children No Restrictions".

IMPORTANT: Hierarchy Denormalization Service is required for this report. You can learn more about
this service in the Agile Product Lifecycle Management for Process Hierarchy Denormalization Guide.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 26

Nutrition Facts Panel Report Pack

The Nutrition Facts Panel Report Pack spans across formulation specifications, nutrient profiles and
trade specifications. This reporting solution utilizes calculated extended attributes embedded in custom
sections to create nutrition facts panel data as defined by Canadian Food Inspection Agency and the
United States Food and Drug Administration.

Each report can be executed in English, Spanish or French, and each bilingual report will display the
Nutritional Facts Panel in any two of the aforementioned languages. The reports include the following
Nutrition Facts Panel formats:

• Standard Format
• Bilingual Standard Format
• Dual Format
• Bilingual Dual Format
• Aggregate Format (up to five products)
• Bilingual Aggregate Format (up to five products)

Where applicable, reports also include Allergens, Label Claims, Complies With, and Ingredient Statement
information.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 27

US Standard Report Canada Bilingual Aggregate Report

For additional information regarding the Nutrition Facts Panel reports, please refer to Oracles Agile
Product Lifecycle Management for Process Fact Panel Reporting Guide.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 28

PQM Report Pack
The PQM report pack includes data models, dashboards and reports that would be beneficial to not only
quality managers but supplier and specification managers as well.

Individual Supplier Quality (PQM)

The Individual Supplier Quality dashboard focuses on PQM Issues, Actions and Audits for a specific
Supplier (Company). This report should be used by personnel responsible for ensuring suppliers are
addressing quality related issues in timely manner and/or for helping better understand risks associated
with a supplier. The report contains two parameters: Months and Companies. The report contains three
tabs (or views): Supplier Dashboard, Issues Trend, and Action Trend.

Note: The Alternate Supplier report can be launched from the Individual Supplier Quality report from a
defined column within tables on both the Issues Trend and Actions Trend tab.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 29

Alternate Suppliers (PQM)

What other suppliers can provide this same material?

The Alternate Suppliers report focuses on aiding users to locate an alternate supplier for a GSM
specification. The Alternate Supplier report was designed to be launched from within the Individual
Supplier Quality report from a defined column within tables on both the Issues Trend and Actions Trend
tab. The report has one parameter that is used to pass the specification PKID from the Individual
Supplier report to pull the appropriate report information. This report contains one tab (or view) called
Alternate Suppliers.

Note: The Individual Supplier Quality report can be launched from defined columns within tables on
Alternate Suppliers. This feature allows user to perform a side-by-side comparison of two different
suppliers via the Individual Supplier Quality report.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 30

Individual Supplier Quality – Supplier Portal (PQM)

The Individual Supplier Quality – Supplier Portal dashboard focuses on PQM Issues, Actions and Audits
for a specific Supplier (SCRM Company) that is accessible to the supplier through Supplier PQM. This
report should be used by the supplier to self evaluate their quality performance. The report only returns
issues that are related to the SCRM company to which the user is associated. The report has two
parameters, Supplier and Months. The report also contains one tab (or view) called Supplier Report.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 31

Quality Analyst Dashboard (PQM)

The Quality Analyst dashboard focuses on open PQM Issues, Actions and Audits and should be used by
personnel responsible for ensuring these PQM objects are being addressed by the appropriate
personnel in a timely manner. The report has two parameters, Company and Facility. The report also
contains three tabs (or views): Issues Dashboard, Action Dashboard, and Audit Dashboard.

Quality Manager Dashboard (PQM)

The Quality Manager dashboard focuses on all PQM Issues, Actions and Audits and should be used by
personnel responsible for reviewing and analyzing PQM data to identify possible areas in the quality
landscape that need improvement or attention. The report has three parameters, Company, Facility and
Months Back. The report also contains two tabs (or views): Issues and Actions.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 32

Audits by Spec (PQM)

Show me all PQM Audits for this specification (Planned or Executed).

The Audits by Spec report focuses on all PQM Audits related to a specific GSM specification. This report
should be launched from a GSM specification and grants the user easy access to the quality audit results
for the GSM specification. The report has one parameter specification PKID. The report contains one tab
(or view), All Audits.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 33

Audits by Suppliers (PQM)

Show me all PQM Audits for this supplier (Planned or Executed).

The Audits by Supplier report focuses on all audits related to a specific SCRM company or facility. This
report should be launched from a SCRM company or facility and grants the user easy access to the
quality audit results for the SCRM company or facility. The report has two parameters Company PKID
and Facility PKID. The report contains one tab (or view), All Audits.

.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 34

Open Issues by SAC (PQM)

Show me all PQM Issues for this sourcing approval relationship.

The Open Issues by SAC report focuses on open PQM issues related to a specific SCRM sourcing approval
relationship. This report should be launched from an SCRM sourcing approval and grants the user easy
access to the open quality issues for the GSM specification associated to the sourcing approval. The
report has three parameters: Issue Specific, Facility ID and Spec PKID. The Issue Specific parameter can
be use to make the report specification “issue” specific or not. The report contains two tabs (or views);
Open Issues and All Issues.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 35

Open Issues by Spec (PQM)

Show me all PQM Issues for this specification.

The Open Issues by Spec report focuses on all PQM issues related to a specific GSM specification. This
report should be launched from a GSM specification to grant the user easy access to the quality issues
for that GSM specification. The report has two parameters: Issue Specific and Spec PKID. The Issue
Specific parameter can be use to make the report specification “issue” specific or not. The report
contains two tabs (or views): Open Issues and All Issues.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 36

Open Issues by Spec Hierarchy (PQM)

Show me all PQM Issues for this entire specification hierarchy.

The Open Issues by Spec Hierarchy report focuses on all PQM issues related to a specific GSM hierarchy.
This report should be launched from a GSM specification or a specification listed in the hierarchy
navigator panel. It grants the user easy access to the quality issues for the entire GSM hierarchy. The
report has the Spec PKID parameter, which is used to pass the PKID of the top level specification in the
hierarchy. The report contains two tabs (or views): Open Issues and All Issues. In the example below you
can see that the “Tropical Fruit Cooler” finished goods have quality issues with raw materials as well as
packaging.

IMPORTANT: Hierarchy Denormalization Service is required for this report. You can learn more about
this service in the Agile Product Lifecycle Management for Process Hierarchy Denormalization Guide.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 37

Open Issues by Supplier (PQM)

Show me all PQM Issues for this Company or Facility.

The Open Issues by Supplier report focuses on all PQM issues related to a specific SCRM company or
facility. This report should be launched from a SCRM company or facility and grants the user easy access
to the quality issues for that SCRM company or facility. The report has two parameters: Facility and
Company. The report contains two tabs (or views): Open Issues and All Issues.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 38

SCRM Report Pack
The SCRM report pack includes data models and reports that are beneficial to sourcing managers.

Supplier Review (SCRM)

What suppliers are involved in this hierarchy?

This report should be launched from a GSM specification or a specification listed in the hierarchy
navigator panel. It grants the user easy access to the suppliers for the entire GSM hierarchy. You can
quickly see all of the suppliers involved, their status, when their next scheduled audit date is and even if
they have quality issues reported against them. The report has several parameters: SCRM Segment Level
1, SCRM Segment Level 2, SCRM Segment Level 3, SCRM BU lvl 1, SCRM BU lvl 2, SCRM BU lvl 3, SAC
Status, “Is Approved” Tag, Spec and Level. Is Approved is looking for the “Is Approved” tag on the
sourcing approval status. This allows you to see only approved suppliers. The Level parameter decides
whether it pulls documents from the entire hierarchy or the single specification level. The report
contains one tab.

IMPORTANT: Hierarchy Denormalization Service is required for this report. You can learn more about
this service in the Agile Product Lifecycle Management for Process Hierarchy Denormalization Guide.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 39

Sourcing Approval Risk (SCRM)

What materials are only sourced from a single supplier?

The Sourcing Approval Risk report was intended to be utilized by purchasing personnel to identity
packaging material specifications, printed packaging specifications, and material specifications that have
only “approved” sourcing approvals from one supplier (company), or no sourcing approvals at all. The
report has four parameters: Spec Type, Category, Subcategory, and Group. This report contains one tab
(or view) called Sourcing Approval Risk.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 40

Supplier Rationalization (SCRM)

What suppliers are being underutilized?

The Supplier Rationalization report was intended to be utilized by purchasing personnel to identify
suppliers that have limited approved sourcing approvals for GSM specifications. The report has one
parameter called “Approved Spec Count (<=)”, and when the user enters a number into parameter, the
report pulls all suppliers that have a total number of approved specifications with an approved sourcing
approval “equal to” or “less than” the parameter value entered. This report contains one tab (or view)
called Supplier Rationalization.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 41

Supplier Compliance Report – Companies & Facilities (SCRM)

Show me all supplier documents for companies and facilities.

The Supplier Compliance Report: Companies and Facilities was designed to be utilized by users that
manage supplier documents that are attached to companies or facilities. When this report is executed, it
pulls all “Non-Archived” SDM documents for companies and facilities and exposes details about supplier
documents including Days until Due and Days until Expired. The report has several parameters:
Company Segment Level 1, Company Segment Level 2, Company Segment Level 3, SCRM BU lvl 1, SCRM
BU lvl 2, SCRM BU lvl 3, Company Name, Facility Name, Document Type, Days until Due Date and Days
until Expiration Date. This report contains one tab (or view) called Supplier Compliance Report –
Companies and Facilities.

Note: The SCRM BU parameters were by designed limited to three levels. If there are more levels
defined in a specific implementation, the report still pulls documents from lower levels, but you will not
be able to limit the report by the lower BU levels without modifying the report.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 42

Supplier Compliance Report – Sourcing Approval (SCRM)

Show me all supplier documents for sourcing approvals.

The Supplier Compliance Report: Sourcing Approval was designed to be utilized by users that manage
supplier documents that are attached to sourcing approvals. When this report is executed, it pulls all
“Non-Archived” SDM documents for sourcing approvals and exposes details about supplier documents
including Days until Due and Days until Expired. The report has the following parameters: Spec Segment
Level 1, Spec Segment Level 2, Spec Segment Level 3, GSM BU lvl 1, GSM BU lvl 2, GSM BU lvl 3,
Company Name, Facility Name, Receiving Facility, Spec type, Document Type, Days until Due Date and
Days until Expiration Date. This report contains one tab (or view) called Supplier Compliance Report –
Sourcing Approvals.

Note: The GSM BU parameters were by designed limited to three levels. If there are more levels defined
in a specific implementation, the report will still pull documents from lower levels, but you will not be
able to limit the report by the lower BU levels without modifying the report.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 43

Supplier Compliance Report – Supplier Portal (SCRM)

Show the supplier all documents for their associated company, facility or sourcing approvals.

The Supplier Compliance Report – Supplier Portal report was designed to be launched from a navigation
extension from within Supplier Portal and to be utilized by suppliers that manage supplier documents
that are attached to companies, facilities or sourcing approvals. When this report is executed, it pulls all
“Non-Archived” SDM documents for companies, facilities, and sourcing approvals and exposes details
about supplier documents including Days until Due and Days until Expired. This report contains one tab
(or view) called Supplier Compliance Report – SP. As with all supplier portal reports, this report should
be released in PDF format using the custom report configuration method.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 44

Chapter 3—Custom Report Configuration

Overview
The Reporting application allows client to organize, configure, secure, and launch custom reports. The
configuration is managed in the CustomerReportExtensions.xml located in the
\Config\Extensions\ directory. Clients can configure custom reports, specify the categorization
of the reports, configure visibility rules via custom classes, and define the various report parameters to
display.

Two grouping levels categorize reports: Report Contexts and Report Groups, each of which can be
secured by configuring security classes.

Report parameters can use existing pop-ups found throughout the application, or use custom-defined
parameters. The parameter values are then sent to a reporting service, such as Oracle BI Publisher or
SQL Server Reporting Services, which process the parameters to make custom SQL queries to produce
the report output. The reporting service then returns the results to the user.

For details on configuring the reporting service, see the Agile Product Lifecycle Management for Process
Configuration Guide.

Report Generation Screen
The report generation screen allows users to select an available report, enter report parameters, select
an output format, and launch the report.

Figure 2. Sample Report Generation Screen

The Report Generation screen is comprised of three main sections:

1. Reporting—Provides a way to organize, categorize, and secure reports.

2. Report Parameters—Presents parameter input and options for each report.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 45

3. Report Output—Presents the possible reporting output formats, such as XML and PDF.

The data that is displayed to users is driven from the CustomerReportExtensions.xml file. This
guide explains how to configure this file for custom reporting needs.

Configuring the CustomReportExtensions.xml File
Customizing the report configuration primarily consists of defining any new report parameters types
that will be available to the reports, and configuring the custom reports. Any changes to the
CustomerReportExtensions.xml file will require the ProdikaReporting web application to be restarted.

File Structure Overview
Common objects, such as report parameter input types and common reports are defined in the
ServiceConfig section. The reports, their categorization, security, and parameter details are defined in
the ReportContexts section. The Contextual Reporting section defines ways to launch specific reports
from the various web applications (such as GSM, SCRM) based on several criteria.

A high-level outline of the Report Contexts and ServiceConfig hierarchies found in the
CustomerReportExtensions.xml file follows:

 ServiceConfig
o ParameterTypes

 ParameterType
o CommonReports

 ReportContexts
o ReportContext

 ContextCriteria
 ReportGroup

 Parameters
 Reports

o Report
 AllowedOutputTypes

Reports are categorized by two grouping levels: Report Contexts and Report Groups.

 Report Contexts represent the highest level of report organization, and contains multiple report
groups. These are displayed in the Report Context drop-down list.

 Report Groups provide a way to group multiple reports that all use the same report parameters.
The parameters types specified for each ReportGroup are defined in a separate section called
ServiceConfig.

The following sections contain detailed information on how to configure each of these nodes.

Configuring Report Parameter Types
All report parameter types that are used by the reports must be defined in the
\ServiceConfig\ParameterTypes section. These parameters may then be referenced by the
reports defined in the \ReportContexts section. Several predefined report parameters are available
for use, but you may also create their own custom parameter types.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 46

There are three different types of report parameters:

1. Simple type parameters – Parameter input types, such as a string or date field input
2. DataSource parameter types – Classes that are responsible for retrieving data lists for display
3. Models – Predefined Oracle Agile PLM data retrievers that are already used in the application

Each parameter type must specify a user interface element that will be used to display the report
parameter to the user. DataSource and Model report parameter types must also specify the method
used to retrieve the data to display.

Global Report Parameters
The following report parameters are automatically passed in and available to each report server
request:

1. paramCurrentUser – The current user’s PKID (40 character unique identifier string)
2. paramCurrentLanguage – The current user’s language ID setting (see SupportedLanguages

table)

Note: Currently these are only passed to Microsoft SQL Server Reporting Services.

Note: Using DataSources and Models requires detailed technical knowledge of the Oracle Agile PLM for
Process application and may require writing custom classes. See Appendix A – Creating Custom Report
Parameter Types for details.

<ParameterTypes> Node
The ParameterTypes node contains a list of ParameterType nodes. Each ParameterType defines an input
parameter that may then be used to display selection criteria for reports.

Attributes

Attribute Name Description Required?
N/A

Child Nodes
 <ParameterType>

Parent Node
 <ServiceConfig>

<ParameterType> Node
The ParameterType node defines an input parameter that may then be used to display selection criteria
for reports. Each Parameter Type must also declare the user interface control to use for displaying the
report parameter to the user. The child nodes required are based on the specified web control.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 47

Attributes

Attribute
Name

Description Required
?

type Unique identifier for this parameter type. This value will be used to refer to
the parameter type when configuring which parameters are used for each
report in a Report Group.

Yes

webControl The name of one of the following available web controls, or a custom
control:
 ReportingControls/StringInput.ascx – An input box that allows

alphanumeric entry
 ReportingControls/DateInput.ascx – A date picker control preset to

the current date
 ReportingControls/MonthYearInput.ascx – A month selection

control and a year input control
 ReportingControls/LookupInputSingleSelect.ascx – An drop-down

input allowing a single selection from data specified by a
DataSource

 ReportingControls/LookupInputMultiSelect.ascx – A pop up control
allowing multiple selections from data specified by a DataSource

 ReportingControls/TreeViewInput.ascx – A pop up control for
nested hierarchies, allowing a single or multiple selections from
data specified by a DataSource

 WebCommon/Controls/EQTInput.ascx – A pop up control with
differing behavior based on which existing EQT View is used

The following controls are available in the ReportingExtensions package
 ~/WebCommon/Extensions/Reporting/ConstantValueParameter.a

scx – A hidden control that is set to some constant value, to be
passed in automatically to the report.

 ~/WebCommon/Extensions/Reporting/SessionParamCurrentSuppli
erUser.ascx – A hidden control that is set to a specific property of
the current supplier user (such as the supplier rep PKID, email, etc),
if used via SupplierPortal

 ~/WebCommon/Extensions/Reporting/SessionParamCurrentUgmU
ser.ascx – A hidden control that is set to a specific property of the
current UGM user (such as the user PKID, email, etc).

 ~/WebCommon/Extensions/Reporting/SecuredObjectControl.ascx
– A hidden control that retrieves a given PKID from the Request,
using the supplied RequestParameterName (such as SpecID,
CompanyID, etc), and checks the user’s security of the object
specified by the PKID. The security check is performed by the
specified SecurityHandler class. Several SecurityHandler classes are
provided, but custom classes can be created using the
Oracle.PLM4P.ReportingExtensions.Security.IHostObjectSecurityHa
ndler interface

See Appendix A – Creating Custom Report Parameter Types for more details
on how each web control functions.

Yes

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 48

Child Nodes
The possible child nodes will depend on which web control is used:

 StringInput, DateInput: No child controls
 MonthYearInput : Allows for customizing the parameter names for the month and year controls

o <MonthParamNameExtension> – InnerText should be set to the name extension
o <YearParamNameExtension> – InnerText should be set to the name extension

 LookupInputSingleSelect, LookupInputMultiSelect:
o <DataSource>

 TreeViewInput:
o <DataSource>
o <MultiSelect> – InnerText should be ‘Yes’ to enable selection of multiple entries, or

‘No’ for single selection.
 EQTInput:

o <Model>

Parent Node
 <ParameterTypes>

<DataSource> Node
The DataSource element is used to specify a class that will retrieve data to be used in the given web
control. Existing DataSources may be used to retrieve data, or custom DataSource classes may be
created to fulfill more specific requirements.

Attributes

Attribute
Name

Description Required?

className The full path of the DataSource class to use, along with any parameters.
Format should be in the form of an Object Loader URL. Please see
Appendix C – Object Loader URLs for details.

Example:
Class:Xeno.Web.UI.Controls.DataSources.LookupServiceListViewD
ataSource,XenoWebControls$Allergens|Allergens

Yes

Child Nodes
 N/A

Parent Node
 <ParameterType>

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 49

<Model> Node
The Model element is used to specify an existing search model (EQTModel) that will retrieve data to be
used in the given EQTInput web control. The searches available through the EQT models may be much
more detailed and allow the user to specify exact search criteria.

Attributes

Attribute
Name

Description Required?

displayVar
iableIndex

Indicates which return value from the EQT popup selection should be
displayed. When an EQT view returns a value for display, the
/DisplayColumns/ColumnInfo element (from the Model node) includes an
attribute provideInSelectJS="true". If multiple display columns in the
EQT Model have the provideInSelectJS="true" attribute, the
displayVariableIndex attribute determines which one should be
displayed to the user. For Models that only return one display value, the
displayVariableIndex attribute should be set to “1”.

Yes

InnerText Value
 The path to the EQT Model. See Appendix A – Creating Custom Report Parameter Types for

more details.

Child Nodes
 N/A

Parent Node

 <ParameterType>

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 50

Configuring Reports

<ReportContext> Node
The ReportContext node is used to group and secure related Report Groups together. All available
Report Contexts are displayed to the user in the Report Context drop-down list of the Report Generation
Screen.

Attributes

Attribute Name Description Required?
Name The name of the report context that will be displayed to the

user in the Report Generation screen.
Yes

SecurityFactoryRef The security plug-in to use to limit access to this Report
Context. See Appendix B – Applying Security to Reports for
more details.

No

Child Nodes
 <ReportGroup>
 <ContextCriteria>

Parent Node
 <ReportContexts>

<ContextCriteria> Node
This node is currently not used.

Child Nodes
 <Parameters>

Parent Node
 <ReportContext>

<ReportGroup> Node
The ReportGroup node is used to group and secure related Report Groups together. All available Report
Contexts are displayed to the user in the Report Context drop-down list of the Report Generation
Screen.

Attributes

Attribute Name Description Required?
name Used to uniquely identify this report group in the

configuration files.
Yes

label The display name that will appear to users or the
translation lookup key. See isLabelTranslatable below.

Yes

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 51

Attribute Name Description Required?
isLabelTranslatable true – Uses the value of the label attribute to look up the

report group name in the translation caches, using the
translationCache attribute, and returns the translation.

false – Uses the value of the label attribute as the display
name of the report group.

No

translationCache The name of the translation cache used to look up the
translation for the label value, if the isLabelTranslatable
attribute is set to true.

Yes if
isLabelTranslatable
is true

securityFactoryRef The security plugin to use to limit access to this Report
Context. The value must be a valid Object Loader URL.
See Appendix B – Applying Security to Reports for more
details.

No

serviceLocation If present, will use the given value as the web service
location to use to process all reports in this report group;
otherwise, will use the serviceLocation attribute value in
the\ServiceConfig\ReportingService element.

No

reportEngineName If present this will specify which report engine all reports
within that group will use. The options are:

 SQLReportingService
 OracleBIPublisher11_1_1_9

OracleBIPublisher12_2_1_2

Refer to the Agile Product Lifecycle Management for
Process Install_Upgrade Guide for setting the report
engine configuration entries.

If no report engine is specified it will use the default
report engine: SQLReportingService

Note: the default report engine can be changed in the
EnvironmentSettings.config file, by setting the
default=”true” attribute to the desired reportEngine
entry in the /ProdikaReporting/ServiceConfig child nodes.

No

Child Nodes

 Parameters
 Reports

Parent Node
 <ReportContext>

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 52

<Parameters> Node
The Parameters node contains a list of Parameter nodes. Each Parameter will be used as input criteria
for the reports in the current ReportGroup.

Attributes

Attribute Name Description Required?
N/A

Child Nodes
 Parameter

Parent Node

 <ReportGroup>

<Parameter> Node
The Parameter node will be used as an input criterion for the reports in the current ReportGroup. The
parameter declared here uses a Parameter Type that must be defined in the ServiceConfig section of the
configuration.

Attributes

Attribute Name Description Required?
name The name of the parameter that will be passed to the

Report Server. Must be unique within the <Parameters>
node.

Yes

label The display name that will appear to users or the
translation lookup key. See isLabelTranslatable below.

Yes

isLabelTranslatable true – Uses the value of the label attribute to look up the
parameter name in the translation cache of the parent
ReportGroup and returns the translation.

false – Uses the value of the label attribute as the display
name of the parameter.

No – Will use
false if not
specified

type The name of the ParameterType from the
\ServiceConfig\ParameterTypes list.

Yes

Required true – This parameter will be a required criterion for
launching the report.

false – This parameter will be an optional criterion for
launching the report.

No – Will use
false if not
specified

Child Nodes
 N/A

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 53

Parent Node
 <Parameters>

<Reports> Node
The Reports node contains a list of Report elements. Each Report will use the same Report Parameters
as input criteria in the current ReportGroup.

Attributes

Attribute Name Description Required?
N/A

Child Nodes

 <Report>

Parent Node
 <ReportGroup>

<Report> Node
The Report node represents an individual report that can be launched using the report parameters
defined by the current report group. Reports can reference previously declared common reports and
use the attribute values defined for that original report.

Attributes

Attribute Name Description Required?
id Used to uniquely identify reports that can be reused

throughout the reporting configuration. If any other report
in the configuration matches the id value, an error is
thrown. See the Configuring Common Reports section on
page 56.

No

idref May be used to reference a previously declared Common
Report entry. The idref value must match the unique id
value of the desired report. If a matching reference report
is found, no other attributes from this element are used. If
no matching report is found, an error is thrown. See the
Configuring Common Reports section on page 56.

No

name Used to uniquely identify this report in the configuration
files within the report group.

Yes, unless id
attribute is
used

label The display name that will appear to users or the
translation lookup key. See isLabelTranslatable below.

Yes

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 54

Attribute Name Description Required?
isLabelTranslatable true – Uses the value of the label attribute to look up the

report name in the translation cache of the parent
ReportGroup and returns the translation.

false – Uses the value of the label attribute as the display
name of the report.

No – Will use
false if not
specified

reportPath Path to the individual report on the reporting server. Yes
serviceLocation If present, uses the given value as the web service location

to use to process this report; otherwise, uses the
ReportGroup’s value.

No

translationCache If present, uses the given value as the name of the
translation cache to use to process this report’s label;
otherwise, uses the ReportGroup’s value.

No

SecurityFactoryRef The security plug-in to use to limit access to this report. The
value must be a valid Object Loader URL.
See Appendix B – Applying Security to Reports and
Appendix C – Object Loader URLs for more details.

No

template The name of the BI Publisher layout template to use for the
report output.

Yes if using BI
Publisher for
report
generation;
No otherwise

reportEngineName If present this will specify which report engine this report
will use. The options are:

 SQLReportingService
 OracleBIPublisher11_1_1_9
 OracleBIPublisher12_2_1_2

Refer to the Agile Product Lifecycle Management for
Process Install_Upgrade Guide for setting the report engine
configuration entries.

If no report engine is specified it will use the default report
engine: SQLReportingService

Note: the default report engine can be changed in the
EnvironmentSettings.config file, by setting the
default=”true” attribute to the desired reportEngine entry
in the /ProdikaReporting/ServiceConfig child nodes.

No

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 55

Child Nodes
 <AllowedOutputTypes>

Parent Node

 <Reports>

<AllowedOutputTypes> Node
The AllowedOutputTypes node contains a list of OutputType nodes indicating the possible output
formats available for the report. Individual reports therefore restrict the full list of allowed output types
defined in the \ServiceConfig\ActiveReportOutputTypes node.

Attributes

Attribute Name Description Required?
N/A

Child Nodes
 AllowedOutputType

Parent Node

 <Report>

<AllowedOutputType> Node
The AllowedOutputType node indicates a possible output format available for the given report. Entries
are limited to values defined in the reporting framework’s list, such as EXCEL, PDF.

Attributes

Attribute Name Description Required?
key Unique identifier for the output type Yes
value The display name Yes
extension File extension (ex: “.pdf”) Yes

Child Nodes
 N/A

Parent Node
 <AllowedOutputTypes>

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 56

Configuring Common Reports
A <Report> node may also be defined in the /ServiceConfig/CommonReports section of the
configuration and then referenced in other report groups. This allows a report to be defined once, but
used multiple times. If, for instance, a particular report exists in multiple report groups, it would be
beneficial to define the report in this section, and then reference it in those report groups.

For example, the following section declares a common report that can then be used anywhere else in
the configuration:

<CommonReports configChildKey="name" >
 <Report id="ExampleCommonReport" label="Example Common Report"
isLabelTranslatable="false" reportPath="/ExampleReport/ExampleCommonReport">
 <AllowedOutputTypes configChildKey="key">
 <OutputType key="PDF" value="PDF" extension=".pdf"/>
 </AllowedOutputTypes>
 </Report>
</CommonReports>

The id attribute represents the unique key that will need to be referenced if this report is to be included
elsewhere. To include this report in a ReportGroup, simply declare the Report node with the idref
attribute assigned to the above id. For example, the following ReportGroup declares a new report and
also includes the ExampleCommonReport from the CommonReports section:

<Reports configChildKey="name">
 <Report name="ExampleReportA" label="Example Report A "
isLabelTranslatable="false" reportPath="/ExampleReport/ExampleReportA">
 </Report>
 <Report idref="ExampleCommonReport" />
</Reports>

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 57

Configuring Contextual Reporting
Individual Reports can be launched from most locations
throughout the application suite (GSM, SCRM, NPD, PQS, CACS,
NSM, CC, eQ Admin) by using Contextual Reporting.

Report links are added by extending the Action Navigation and
adding new menu item nodes. Each new menu item entry
specifies which report context, report group, and individual
report should be loaded, and can send specific data to the
reporting application to pre-populate specific report
parameters. The visibility of each report link can be configured
easily, such as specifying that the report link is only available
when the user is on a Packaging specification and if the user is a
member of group “Packaging Reports.” See the Navigation
Extensibility Guide for more information around how to add
new navigational items and configure their visibility.

Clicking the report link will launch the Reporting application in a
popup window, allowing the user to maintain their current
context.

You can display the active object’s name inside your report parameter fields. For example, if the user is
on the Cajun Spice Blend specification and the report takes in a specification parameter, the string
“Cajun Spice Blend” can appear in the specification parameter field as a pre-selected value. For
SpecInstanceReport items, the target Report must contain a Parameter with name="paramObjectPKID"
using a parameter type that is one of the pop‐up parameter types. Setting the parameter type this way
will allow for the name of the object to be displayed. Setting the parameter type to a parameter type
string will simply display the PKID itself.

For Contextual Reporting, the new navigation item must be assigned an XML attribute, called
ClientSideCommand, which is configured with the following possible behaviors:

1. Launching reports using the report parameter screen, which allows users to select other report
parameters

a. LaunchSpecificObjectPKIDReport – will launch the specified report, sending the current
business object’s PKID and name to the Reporting Application. If the specified report has
a report parameter with a name=”paramObjectPKID”, it will be pre-filled with the
object’s name for display, and the object’s PKID for the value.
Required parameters:

i. report context name
ii. report group name

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 58

iii. report name

Example:
If you have a NLEA Fact Panel (report name: NLEAPanel) report inside the context Material
Reports (context name: Material) and group Nutritional Reports (group name: Nutritional)
and you want to call that report using contextual reporting you would use the following
function:

LaunchSpecificObjectPKIDReport('Material', 'Nutritional', 'NLEAPanel');

If you want to show the navigation item on a material specification when it’s in read
mode, the menu item node would look something like this:

<MenuItem ID="GSMNavSpec" configChildKey="ID">

<MenuItem ID="NLEAPAnel" DisplayText="NLEA Panel"
ClientSideCommand="LaunchSpecificObjectPKIDReport('Material', 'Nutritional',
'NLEAPanel');" Visible="eval:${ObjectType}==1004 && ${IsInReadMode}" />

</MenuItem>

b. LaunchObjectTypeReport – will launch the specified report, sending the current

business object’s 4-digit object Type value to the Reporting Application. If the specified
report has a report parameter with a name=”paramObjectType”, it will be pre-filled with
the object’s 4-digit type for the parameter value.
Required parameters:

i. report context name
ii. report group name

iii. report name

2. Automatically launching reports with no further user entry. This feature requires the
ReportingExtensions package, available in the Utils folder, and contains a report launch page
and various report parameter controls.
To launch a report automatically, the ClientSideCommand specifies the following:

a. Open a new popup window using a URL pointing to the
/Reporting/WebCommon/Extensions/Reporting/AutoReportLauncher.aspx, available in
the ReportingExtensions package.

b. the report context, group, and report name using a pipe delimiter and assigning it to the
ReportConfig parameter

i. For example: ReportConfig=Material|Nutritional|NLEAPanel
c. the current object’s parameter name and assigning it to the Javascript function

GetObjectHeader_ObjectPKID()
i. For example: . . . &SpecID=' + GetObjectHeader_ObjectPKID()

d. The popup window properties

For example:
<MenuItem ID="GSMNavSpec" DisplayText="**GSM" IsInEditMode="${IsInEditMode}" >

 <MenuItem ID="lblOpenIssuesBySpec" Text="Open Issues By Spec Report"

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 59

 ClientSideCommand="var win =
window.open('/Reporting/WebCommon/Extensions/Reporting/AutoReportLauncher.aspx?ReportCo
nfig=PQM Reports|OpenIssues|OpenIssuesbySpec&SpecID=' +
GetObjectHeader_ObjectPKID(),'Reporting',
 'height=600,width=800,status=no,toolbar=no,menubar=no,location=no,dependent=yes,
scrollbars=yes,resizable=1');win.focus();" />

 </MenuItem>

Note that for auto launching reports, all report parameters for the given report must be configured
using the IsHidden xml element. For instance, the sample report, Open Issues By Spec, is configured
using two report parameters, IssueSpecific and SpecID:

<ReportGroup name="OpenIssues" label="Open Issues by Spec" isLabelTranslatable="false"
translationCache="Reporting">
 <Parameters configChildKey="name">

<Parameter name="IssueSpecific" label="IssueSpecific" isLabelTranslatable="false"
type="Constant_IssueSpecific" Required="true"/>

<Parameter name="SpecID" label="SpecID" isLabelTranslatable="false"
type="SecuredSpec" Required="true"/>

 </Parameters>

 <Reports configChildKey="name">

 <Report name="OpenIssuesbySpec" ReportEngine="OracleBIPublisher11_1_1_9" label="Open
Issues by Spec" isLabelTranslatable="false"
 reportPath="/PLMforProcess_Reference/PQM/Reports/Open Issues by Spec.xdo"
template="Open Issues">
 <AllowedOutputTypes configChildKey="key"><OutputType key="PDF" value="PDF"
extension=".pdf"/></AllowedOutputTypes>
 </Report>
 </Reports>
</ReportGroup>

There report parameters use the Constant_IssueSpecific and the SecuredSpec report Parameter Types,
defined as follows:

<ParameterType type="Constant_IssueSpecific"
webControl="~/WebCommon/Extensions/Reporting/ConstantValueParameter.ascx" >

 <Value>True</Value>
 <IsHidden>true</IsHidden>

</ParameterType>

<ParameterType type="SecuredSpec"
webControl="~/WebCommon/Extensions/Reporting/SecuredObjectControl.ascx" >

<SecurityHandler>Class:Oracle.PLM4P.ReportingExtensions.Security.UGMUserSpecSecurityHandler,Re
portingExtensions</SecurityHandler>

 <RequestParameterName>SpecID</RequestParameterName>
 <IsHidden>true</IsHidden>
</ParameterType>

Note that the RequestParameterName (SpecID) in the SecuredSpec ParameterType must match the
parameter name assigned to the GetObjectHeader_ObjectPKID() function in the URL above.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 60

Adding Custom Reports to Supplier Portal
You can now provide links to custom reports in Supplier Portal.

Important Note: Remember security should be the primary concern when providing reports to
suppliers. If the supplier can select parameters, only allow them to select objects they have access to.

Setting Up Contextual Custom Reports in Supplier Portal
You set up a Supplier Portal report in the same way as any other custom report. See the example below
for a specific example. Notice the name “SupplierReports”.

<ReportContext name="SupplierReports" configChildKey="name">

 <ReportGroup name="QualityReports" label="Quality Reports Group"
isLabelTranslatable="false" translationCache="Reporting">

 <Parameters configChildKey="name">

 <Parameter name="paramSpecID" label="Select One Spec"
isLabelTranslatable="false" type="SupplierQuality" Required="true"/>

 </Parameters>

 <Reports configChildKey="name">

 <Report name="QualitytBIReport" label="Quality BI Report"
isLabelTranslatable="false" reportPath="/PLM for Process Sample Reports/Sample Spec Summary
Report/Sample Spec Summary Report.xdo" template="ExampleLayout">

 <AllowedOutputTypes configChildKey="key">

 <OutputType key="PDF" value="PDF" extension=".pdf"/>

 <OutputType key="EXCEL" value="EXCEL" extension=".xls"/>

 </AllowedOutputTypes>

 </Report>

</Reports>

</ReportGroup>

</ReportContext>

However, Supplier Portal does not use the Reporting web application to launch reports.

Add Links to Supplier Portal
You can add a link to the report using the following format:

<MenuItem ID="lblSampleReport" Text="Sample Report" ClientSideCommand="var
win =
window.open('/SupplierPortal/Popups/SimplePopup.aspx?ContentKey=SupplierRepor
ting&ReportConfig=<REPORT_CONTEXT_NAME>|<REPORT_GROUP_NAME>|<REPORT_NAME>
','Prodika_SupplierReporting','titlebar=no,width=800,height=450,left='+(((scr
een.width-10-800)/2)+0)+',top='+(((screen.height-35-450)/2)+0));win.focus();"
/>

NOTE: The “ReportConfig” should be a combination of the report context, group name and report name
using the pipe delimiter (|).

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 61

Example 1: Add a Report to the Primary Navigation
<MenuItem ID="SpecificationAndDocumentsListing" configChildKey="ID">

 <MenuItem ID="lblQualityReports" Text="Quality Reports"
configChildKey="ID">

 <MenuItem ID="lblSampleReport" Text="Sample Report"
ClientSideCommand="var win =
window.open('/SupplierPortal/Popups/SimplePopup.aspx?ContentKey=SupplierRepor
ting&ReportConfig=SupplierReports|QualityReports|QualitytBIReport','Prodi
ka_SupplierReporting','titlebar=no,width=800,height=450,left='+(((screen.widt
h-10-800)/2)+0)+',top='+(((screen.height-35-450)/2)+0));win.focus();" />

 </MenuItem>

</MenuItem>

You can add custom report command to object navigation also. To achieve this, please add the menu
item config as the following format:

<MenuItem ID="lblSampleReport" ClientSideCommand="var win =
window.open('/SupplierPortal/Popups/SimplePopup.aspx?ContentKey=SupplierRepor
ting&ReportConfig=<REPORT_CONTEXT_NAME>|<REPORT_GROUP_NAME>|<REPORT_NAME>
&
SpecId=${SpecID}','Prodika_SupplierReporting','titlebar=no,width=800,height=4
50,left='+(((screen.width-10-800)/2)+0)+',top='+(((screen.height-35-
450)/2)+0));win.focus();" />

This difference with primary navigation is that you should supply one more parameter: SpecId=${SpecID}

Example 2: Add a Custom Report Link to Material Specification Object Navigation
<MenuItem ID="1004">

 <MenuItem ID="lblSampleReport" ClientSideCommand="var win =
window.open('/SupplierPortal/Popups/SimplePopup.aspx?ContentKey=SupplierRepor
ting&ReportConfig=SupplierReports|QualityReports|QualitytBIReport&Spe
cId=${SpecID}','Prodika_SupplierReporting','titlebar=no,width=800,height=450,
left='+(((screen.width-10-800)/2)+0)+',top='+(((screen.height-35-
450)/2)+0));win.focus();" />

</MenuItem>

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 62

Chapter 4—BI Publisher Integration
Customers that want to execute custom reports using Oracle BI Publisher are able to do so. There are BI
Publisher reports available as reference implementations, known as Report Packs. This section discusses
how to use the reference implementations and develop new reports with BI Publisher.

PLM for Process Reporting Database Layer
To facilitate reporting, database objects such as views, stored procedures and tables were created and
are part of what is called the PLM for Process Reporting Database Layer. The Reporting Database Layer
is a prerequisite for the Report Packs. Installation instructions and a description of the Reporting
Database Layer can be found in the Feature Pack release 4.3, in the
ReferenceImplementations\ReportingDBLayer directory. Follow the installation instructions found
there.

BI Publisher Installation
It is recommended to always install the latest BI Publisher release with all the patches. BI Publisher
documentation can be found here: http://www.oracle.com/technetwork/middleware/bi-
foundation/documentation/bi-pub-096318.html

Installing a PLM for Process Reference Implementation Report Pack
Because it is believed that reports delivered by Oracle will be customized for each implementation, the
reports are delivered as a reference implementation. The reports are intended to be copied to another
BI Publisher directory where they can then be customized. If they are modified in the original directory
then they might be overwritten with the installation of the next version of the Report Pack.

The Report Packs are found in the Feature Pack 4.3 release, in the
ReferenceImplementations\ReferenceReportPacks. They are created by the PLM for Process Module
and can be installed one at a time.

Uploading the Report Folder
There is one .xdrz file per Reporting Pack. This file is a BI Publisher binary file which is the folder
containing all the reports and the BI Publisher Data Models for both Oracle and SQL Server. This file
should be uploaded to the ‘Shared Folders’ directory in BI Publisher. To upload this file you will need to
go to: ‘http://{host}:{port}/xmlpserver/servlet/catalog’ where {host} and {port} are those of your BI
Publisher installation. When you use this URL, the ‘Upload’ functionality becomes available in the lower
left panel as shown here:

http://www.oracle.com/technetwork/middleware/bi-foundation/documentation/bi-pub-096318.html
http://www.oracle.com/technetwork/middleware/bi-foundation/documentation/bi-pub-096318.html

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 63

After uploading this file, there should be a new folder under ‘Shared Folders’ called
‘PLMforProcess_Reference’. Under this folder there will be one folder per Report Pack. The following
image shows the example of the PQM Report Pack installed. If not uploaded to this location the reports
will not function.

Configuring the Proper Data Model – Oracle or SQL Server
Out of the box, under the Reporting Pack folder such as ‘PQM’, there are 2 Data Model folders, one for
Oracle and one for SQL Server. They are named ‘DataModels_’ with either ‘Oracle’ or ‘SQL Server’
appended to it. You will need to rename the one you want to use to just ‘DataModels’. If you like you
can delete the other one. Below is an example of the Data Models configured to use SQL Server.

Copy Reference Reports to another Directory for Customization
All the reports in the Report Packs are reference implementations and should not be modified directly.
Create another directory and copy the Report Pack directory into it.

In order for the reports to use the intended BI Publisher Data Models (the one in the new folder), each
report will have to be update to point to the Data Model in the newly created folder. If this is not done
then the reports will be using the Data Models in the reference implementation.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 64

Report Security
There are different types of security that can be applied depending on how the report is called.

Report is Called using PLM for Process Reporting Application
1. Report level: The report itself can be secured by using the

UserGroupBasedSecurityPluginFactory or the UserRoleBasedSecurityPluginFactory explained in
Appendix B – Applying Security to Reports.

2. Parameter Level: PLM for Process can perform security verification on the parameters passed to
the report using the SecuredObjectControl.ascx, described above.

BI Publisher Report is Called Directly either through a Link or the BI Publisher UI
1. Report level: BI Publisher roles can be used to secure access to the report. See BI Publisher

documentation for more detail.
2. Parameter Level:

 For SQL Server – A query can be executed in the report which then calls a function to
validate if the user has access to the parameter. If the user does not have access then
the query should generate an exception which will not return any data for the report.

 For Oracle – A BI Publisher ‘Before Data’ Event Trigger could be used to call an Oracle
function that validates if the user has access to the parameter. There are some
examples of this in the PQM Reporting Pack. One report is
‘OpenIssuesWithActions_BySpec’. You can see how the specification is secured by
looking at the event trigger and the function that is called.
When a user does not have access to the parameters there will be no data returned for
the report. They will not receive a message that the user does not have access.
To help the report writer test and debug the security functionality, they can turn on
security debugging which is explained in the Reporting Database Layer documentation
which can be found in the ReferenceImplementations\ReportingDBLayer of the Feature
Pack.

If accessing the report through BI Publisher directly, the users must login in order to take advantage of
the security options. If securing the parameters the user’s name will have to match that in PLM for
Process, since that is what is being used to check authorization. It is recommended that a Single Sign On
solution be used between PLM for Process and BI Publisher.

Multilingual
There are two aspects to multilingual support.

1. Labels: The report labels are controlled by the user’s setting in BI Publisher. By setting the
Report Locale and UI Language in ‘My Account’ within BI Publisher, the report labels can be
translated. In the reference implementation there are no translation files, so customers will
have to translate the labels if needed.

2. Data: The data that is returned from PLM for Process can be multilingual. The Reporting Packs
are enabled for this for Oracle only. BI Publisher provides the ability to call an Oracle function

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 65

when the database connection is established. The Reporting Packs use this feature to enable
multilingual data. The function that is called, sets a database session variable to the language ID
of the PLM for Process user. The queries executed will then take advantage of this variable. The
views in the Oracle Reporting DB Layer are designed to use this. The PLM for Process user will
have to have the same login name as the BI Publisher user. The function that is called is
configured in the ‘Pre Process Function’ field within the BI Publisher Data Source.

Calling a BI Publisher Report Directly from a Link in PLM for Process
Calling a BI Publisher report directly from a link, allows users to take advantage of the BI Publisher
Interactive output format. The interactive format allows for report filtering by selecting components of
charts and lists. See the BI Publisher documentation for more information about the interactive output
format.

Another advantage is that is that configuration is simpler. In other words a report does not need to be
configured in the PLM for Process Report Application.

The disadvantage is that in order to secure the report and parameters a Single Sign On solution will need
to be used in order to maintain a consistent user across the applications.

To configure a link within PLM for Process, please see the Agile Product Lifecycle Management for
Process Navigation Configuration Guide. This guide shows how to access contextual data depending on
the active object. For instance if the link is on a specification, it is possible to access the Spec Type and
Spec ID and if on a facility the Facility ID can be accessed. This data can be passed to a report. To
construct the report URL to be called follow the below steps:

1. Execute a report which takes parameters, directly in BI Publisher.
2. Pull down the menu from the Actions icon on the top right side of the report as shown below.

3. Select ‘Share Report Link’ and then choose one of the child menu items, depending on what you
want.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 66

4. A popup will then display the URL to access the report. Copy this URL and paste it into a text
editor.

5. Replace the parameters values with the proper JavaScript functions or variables explained in the
Navigation Extensibility Guide.

6. Convert the URL to a valid ASCII format i.e. URL Encoding.

For example a report taking the CompanyID as a parameter could be launched from a company
profile within SCRM. The CompanyID could be retrieved and inserted as a parameter in a URL by first
getting the data using the GetObjectHeader_ObjectPKID() JavaScript function and then constructing
the URL with it. The URL would look like this after URL Encoding:

http://mysBIPServer:7001/xmlpserver/PLMforProcess/PQM/Individual%20Supplier%20Quality.xdo?_xpf
=&_xpt=0&_xdo=%2FPLMforProcess%2FPQM%2FSupplierManagement%2FIndividual%20Sup
plier%20Quality.xdo&_xmode=2&xdo%3Axdo%3A&xdo%3Axdo%3A&xdo%3Axdo%
3A&_paramsCompanyID='+GetObjectHeader_ObjectPKID()+'&_xt=Action%20List%20RTF&am
p;_xf=html&

This link holds display options such as the output format and whether or not the parameters should
appear.

Once this link is configured and it appears on a company page, a user can click it and they will be taken
to the report. If Single Sign On is set up, the report will be launched with the same user name that they
were logged into PLM for Process with.

If Single Sign On is not configured, the user will either be presented with a BI Publisher login screen or if
the report is configured for ‘Guest’ access they will be taken to the report.

Report Dialog
Sometimes the complexity of a report solution makes it very difficult for an end user to understand what
report to execute. In these situations we recommend using the Report Dialog application. The Report
Dialog will allow you to present selections to a user and then the application will determine which
report to execute. You can think of this application as a report URL builder. You can see a working
example of the Report Dialog by installing the Fact Panel Report Pack, see the Fact Panel Reporting
Guide for more information.

Example Fact Panel Report Dialog Form & Fields

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 67

Installing Report Dialog
1. Run the Report Dialog Installer, found in Apps/ReportDialog/ReportDialogSetup.exe

2. Select the Application you are planning to launch the report dialog from.

Configuring Report Dialog
Below are instructions for creating your own Report Dialog Form.

1. Create a Form by adding an entry to the REPORT_DIALOG_FORM table

REPORT_DIALOG_FORM Table
PKID New PKID
FORMID Unique ID string representing the form.
RESULT_DATASOURCE_URL The source of the form results table. We offer an out of the box datasource

class that allows you to point to an existing database table.
Class:Oracle.Agile.PlmProcess.ReportDialog.Lib.DataSource.DBResultDataSo
urce,ReportDialog$<result-table-name>

insert into REPORT_DIALOG_FORM (PKID, FORMID, RESULT_DATASOURCE_URL) SELECT <NewPkid>
', '<FormID>',<ResultDatasourceURL>' FROM DUAL WHERE NOT EXISTS(SELECT 1 FROM
REPORT_DIALOG_FORM WHERE PKID = '<NewPKID> ');

2. Create Fields by adding them to the REPORT_DIALOG_FIELD table

REPORT_DIALOG_FIELD Table
PKID New Pkid
ID Unique ID string representing the field. Do not use spaces
FIELD_TRANSLATION_ID The UI label shown with the field. See Adding a Translation below.
FIELDTYPE Currently only drop downs are supported. This should be populated with “DD”
FK_FORMID Form PKID from the REPORT_DIALOG_FORM table
SEQUENCE Sequence the field will appear in the UI
DATASOURCECLASS Datasource class pointing to the values used to populate the field. You can add

your own custom lookups using the Qualitative Lookup Configuration Toolkit
Widget. Please name these new lookups using the following naming convention
[CUSTOMERNAME]_[DATASOURCENAME]. Use the out of the box datasource
class to point to custom lookups:
'Class:Oracle.Agile.PlmProcess.ReportDialog.Lib.DataSource.CustomLookupDataS
ource,ReportDialog$<Datasource Category>|<DEFAULT VALUE –EXTERNAL ID>'

PARAM_NAME The BI Publisher parameter name that this field will map to.

insert into REPORT_DIALOG_FIELD (PKID, ID, FIELD_TRANSLATION_ID, FIELDTYPE, FK_FORMID,
SEQUENCE, DATASOURCECLASS, PARAM_NAME) SELECT '<newpkid>', '<ID>', '<TranslationID>',
'DD', '<formPKID>', <Sequence>, '<ClassPath>', '<ParameterName>' FROM DUAL WHERE NOT
EXISTS(SELECT 1 FROM REPORT_DIALOG_FIELD WHERE PKID = '<newpkid>');

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 68

Adding a Translation
A. Add a Translation Cache
insert into commonXLAExtensionCache (pkid, Name, InheritFrom, Category) SELECT
'<1058-uniquecachepkid>', N'ReportDialog/<formid>', N'ReportDialog/<formid>', N'Report
Dialog' FROM DUAL WHERE NOT EXISTS(SELECT 1 FROM commonXLAExtensionCache WHERE pkid =
'<1058-uniquecachepkid>');

B. Add a Translation Item
insert into commonXLAExtensionCacheItem (pkid, fkParent, langID, Id, Value) SELECT
'<1059-uniqueitempkid>', '<1058-xlacachepkid>', 0, N'<field-translation-id>',
N'<actual-field-translation-value>' FROM DUAL WHERE NOT EXISTS(SELECT 1 FROM
commonXLAExtensionCacheItem WHERE pkid = '<1059-uniqueitempkid>' and langID = 0);

3. Create Dependencies by adding them to the REPORT_ FIELD_DEPENDENCY table

You can specify which fields are dependent on other fields. This allows you to control which
selection options are available when the user has made a selection in a previous field. For
example, Field 1 has the options A, B, C. Field 2 is dependent on Field 1 so Field 2 won’t be
populated until a Field 1 selection has been made.

FROM_FIELD_PKID PKID of dependent field. Field 2 in the example above.
TO_FIELD_PKID PKID of controlling field. Field 1 in the example above

insert into REPORT_FIELD_DEPENDENCY (FROM_FIELD_PKID, TO_FIELD_PKID) SELECT
'<dependent-pkid>', '<controlling-pkid>' FROM DUAL WHERE NOT EXISTS(SELECT 1 FROM
REPORT_FIELD_DEPENDENCY WHERE FROM_FIELD_PKID='<dependent-pkid>' AND TO_FIELD_PKID='<
controlling -pkid>');

4. Declare Form Results in custom table named [CUSTOMERNAME]_[FORMID]

You now need to set up your report dialog form results. Create a custom table named
[CUSTOMERNAME]_[FORMID]. This name should match the RESULT_DATASOURCE_URL in the
REPORT_DIALOG_FORM table. Each row of this table will describe an available report. The
Report Dialog application will use these rows to determine the report to direct the user to.

FORMID Required Column. FormID from the REPORT_DIALOG_FORM table
FIELD_ID(s) A column should be created for each field added to the

REPORT_DIALOG_FIELD table. The name of the column should match
the field ID. This column is populated with the External ID of the data
source item.

HOSTTYPE Required Column. The object type (Use Type ID, such as 1004 etc) the report
will be launched from. For example, when the report dialog is launched from a
material spec (1004) it will show these options.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 69

REPORT_FILENAME Required Column. The file name of the BI Publisher report.
REPORT_ID Required Column. A unique string representing the report. Will be used in the

ReportDialog.xml configuration file.
PARAMETER_CLASS Required Column. Adds additional parameters including the active host object

pkid. You can write your own class here or use the default class that’s available.
Class:Oracle.Agile.PlmProcess.ReportDialog.Lib.Common.BasicSpecParameterG
enerator,ReportDialog$<param-name for active object>
This class will send the active object pkid and all field values using the field ID as
the parameter name. See Apps/ReportDialog/ReferenceImplementations for
more information.

Form Result Example

Below is an example Form Result Table. This form only has 3 fields: Region, Format and
Language. There are a total of 4 reports.

FORMID REGION FORMAT LANG HOSTTYPE REPORT_FILENAME REPORT_ID PARAMETER_CLASS
MYFORM REGION_1 SIMPLE 0,1,2,3 1004 Region1Simple.xdo Region1Simple Class:Oracle.Agile.PlmPr

ocess.ReportDialog.Lib.
Common.BasicSpecPara
meterGenerator,Report
Dialog$MatSpec

MYFORM REGION_1 COMPLEX 0 1004 Region1Complex.xdo Region1Complex Class:Oracle.Agile.PlmPr
ocess.ReportDialog.Lib.
Common.BasicSpecPara
meterGenerator,Report
Dialog$MatSpec

MYFORM REGION_2 SIMPLE 0 1004 Region2Simple.xdo Region2Simple Class:Oracle.Agile.PlmPr
ocess.ReportDialog.Lib.
Common.BasicSpecPara
meterGenerator,Report
Dialog$MatSpec

MYFORM REGION_2 COMPLEX 0,1,2,3 1004 Region2Complex.xdo Region2Complex Class:Oracle.Agile.PlmPr
ocess.ReportDialog.Lib.
Common.BasicSpecPara
meterGenerator,Report
Dialog$MatSpec

5. Map Reports to a BI Publisher report folder in Extensions/ReportDialog.xml

Create a REPORTFORM node for each form you created. This node will tell the system where to
find each report in BI Publisher.

Create a REPORTDIRECTORY node for each unique BI Publisher directory where the reports are
located. The ReportID attribute allows you to use RegEx. For example, you can declare a
specific directory for all report IDs that start with US by setting the ReportID to “US*”

You can also add additional static parameters to the URL by adding the attribute
“ADDITIONALPARAM”. For example, if you added ADDITIONALPARAM="_xmode=3" to the node
the report launched will not display parameter choices to the user.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 70

<REPORTDIALOG>
 <REPORTFORM FORMID="<FORMID>">
 <REPORTFILTER CLASSURL="CLASS:ORACLE.AGILE.PLMPROCESS.REPORTDIALOG.LIB.COMMON.REPORTRESULTFILTER,REPORTDIALOG" />
 <REPORTURLCONFIG>
 <!-- STAR SPECIAL MEANING APPLIES TO ALL -->
 <REPORTDIRECTORY REPORTID="<REPORTID>" URL="@@VAR:PRODIKA.REPORTSERVER.URL@@/<BI FOLDER PATH>" />
 <REPORTDIRECTORY REPORTID="<REPORTID>" URL="@@VAR:PRODIKA.REPORTSERVER.URL@@/<BI FOLDER PATH>" />
 </REPORTURLCONFIG>
 </REPORTFORM>
</REPORTDIALOG>

6. Add a Link in PLM4P to the new Report Dialog form

You now need to provide a link in PLM4P that will open your new report dialog form. Do this by
adding a new menu item using Navigation Extensions using the following ClientSideCommand:

window.open('/<APP>/WebCommon/ReportDialog/ReportDialog.aspx?MaintainSpec=true&FORM
_ID=<FORMID>&SPEC_ID='+GetObjectHeader_ObjectPKID(), '_blank',
'toolbar=no,height=500,width=500');

See the Fact Panel Navigation item example below.

<MenuItem ID="lblFactPanel" MenuType="icon" DisplayText="**FactPanel"
SecurityProfileRef="FactPanelProfile" Visible="eval:(${ObjectType}==2147 ||
${ObjectType}==5750 || ${ObjectType}==5816) && ${IsInReadMode}"
HotKey="alt+q" ClientSideCommand="window.open('/gsm/WebCommon/ReportDialog/ReportDialog
.aspx?MaintainSpec=true&FORM_ID=FactPanel&SPEC_ID='+GetObjectHeader_ObjectPKID(
), '_blank', 'toolbar=no,height=500,width=500');');" SortOrder="180" />

You can learn more about how to add a navigation extension in the Agile Product Lifecycle
Management for Process Navigation Configuration Guide.

Creating Links within a Report
BI Publisher reports support http links typically in a cell within a table. The link is able to be constructed
based on values being returned in the report. For instance if a table displays a list of material
specifications, a link can be constructed for each row of the table to open the specification in PLM for
Process. It is helpful to have the host name of the server generated dynamically based on a
configuration. This way when moving between environments the reports do not have to change. Also if
the server changes all that needs to change is the configuration.

The configuration for all the host names is stored in a single row of a table called ‘ApplicationURLs’,
which is part of the Reporting DB Layer. In this table you can set the host name for the following
applications:

 BI Publisher
 GSM
 SCRM
 NPD
 PQM

Examples of using this table to create links in a report can be found in the Reporting Pack Reference
Implementations. The reports are built using the BI Publisher layouts. The URL is specified by clicking on

mailto:@@VAR:Prodika.ReportServer.URL@@/xmlpserver/311Beta-10162014/PLMforProcess_Reference/GSM/Reports/Fact+Panels/US/
mailto:@@VAR:Prodika.ReportServer.URL@@/xmlpserver/311Beta-10162014/PLMforProcess_Reference/GSM/Reports/Fact+Panels/US/

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 71

a column in a table and then in the left hand pain opening the ‘Properties’ section. At the bottom there
is a URL property that can be populated to construct the URL as shown below.

An example of a PQM URL would be the following.

http://{/DATA_DS/HOSTS/PQMURL}/pqm/MainPage/PQM.aspx?ContentKey=Issue&PQMItemID={/DAT
A_DS/ISS/IID}&InitialLoad=true

The information inside the curly braces is the path to the data elements as defined by the BI Publisher
Data Model. It is case sensitive so remember to use upper case. This example shows how to dynamically
create the host for the URL as well as the Item ID for the PQM Issue.

Oracle BIP Features

Parameters
Parameters are essentially global filters for a BI Publisher report. Once a parameter(s) are selected and
applied, the report refreshes and only displays data specific to the applied parameters. For example, the
Quality Analyst report uses two parameters: Company and Facility.

The user can choose a specific company or a facility to execute against the report, or the user has the
option to execute the report against “All” companies or facilities. Parameters can be hidden, and under
certain circumstances should be hidden to meet specific security requirements.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 72

Interactive Filters
Interactive filters are configurable filters within a specific BI Publisher report. When the interactive filter
is selected, specific analytics (as defined within the report) will update. For example, the Quality Analyst
report has an interactive filter for severity. When the user clicks S1, the chart will update to reveal only
the information associated to “S1” severity.

The user can apply and remove multiple interactive filters with a report with ease, enabling the user to
dive deep into the analytics without additional reports.

Conditional Formatting
Another powerful feature with Oracle BI Publisher is conditional formatting. Conditional formatting can
be used to format against any data field in the data model with wide a range of operators to conditional
format fonts, background colors and indentations. This feature is used throughout the PQM reports. In
the following example, conditional formatting is used to color the first column to correspond to the SLA
state of the PQM object; red, green, amber or no color if object is “closed”. Conditional formatting was
also used to indent the arrow in column 2, and color the rows differently depending on the level defined
the by PQM object relationships. Conditional formatting greatly enhances the usability of the reports by
visually focusing the end user to PQM objects that need attention.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 73

Use of Workflow Tags in PQM Report Pack
Workflow Tags are used extensively in PQM Reporting to drive many of the analytics. The following
workflow tags have been created for the PQM module:

 Cancelled
 Complete
 Pending
 Released
 Review
 Submitted

In many of the reports, a simplified status was used to identify PQM objects that are Cancelled, Closed,
Pending or Open. The following table shows the mapping of the Workflow tags to corresponding
simplified status.

Workflow Tag Name Simplified Status
Cancelled Cancelled
Complete Closed
Pending Pending
Released Open
Review Open
Submitted Open

The BI Publisher data models that pull the information for PQM Reporting use this mapping in many of
the reports to determine a particular PQM object’s simple status. For example, many analytics only want
to return “Open” PQM objects, if the workflow status is “tagged” with Released, Review, or submitted,
the PQM Report analytic only displays open PQM objects. The use of these workflow tags allows end
users to create custom workflows and still allows the out-of-the box reports to work.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 74

Appendix A—Creating Custom Report Parameter Types

Methods of Retrieving Data
Clients can create custom report parameter types by leveraging existing data searches found throughout
the application (via EQT Models) or by calling data retriever classes (DataSources) to retrieve the
necessary search data.

Displaying Search Parameters
When specifying the report parameter type in the reporting configuration, a user interface control must
also be declared. The web control that will display the parameter type will depend on which of the data
retrieval approaches is used.

The Reporting module provides three web controls for DataSource parameters:

 ReportingControls/LookupInputSingleSelect.ascx – A drop-down input allowing a single
selection from data specified by a DataSource

 ReportingControls/LookupInputMultiSelect.ascx – A pop up control allowing multiple selections
from data specified by a DataSource

 ReportingControls/TreeViewInput.ascx – A pop up control for nested hierarchies, allowing a
single or multiple selections from data specified by a DataSource

The EQT Model parameters all use the following web control:

 WebCommon/Controls/EQTInput.ascx – A pop up control with differing behavior based on
which existing EQT View is used

EQT Models
The Entity Query Toolkit (EQT) is an internal framework used in Oracle Agile PLM for Process for
mapping existing internal data models to search parameters and search results. This mapping is declared
in configuration files that are available for reference. EQT Models define how a search occurs, including
which search parameters are available, which search parameters are mandatory (and therefore hidden
and always used), what data is returned, and how returned data is displayed.

Most searches throughout the application use the EQT framework. The Reporting framework can
therefore leverage some existing EQT searches to create search parameters for the desired reports.
However, some EQT searches used in the application may not function as needed when leveraged in
EQT. For instance, one SCRM facility search allows the selection of a facility based on some search
parameters. When selecting the facility, however, the facility name may not populate the web control in
the reporting screen properly, even though the facility’s unique ID (PKID) does get stored properly.

Caveat: The details of EQT are complex, difficult to interpret, and are comprised of many components.
Additionally, EQT is an internal development tool only; although it may be leveraged in the Reporting
module, it is not supported as a client facing tool. Therefore, a detailed review of EQT is beyond the
scope of this document.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 75

Oracle Consulting Services may be able to provide some assistance in leveraging EQT to meet reporting
needs.

Identifying an EQT Search to Use

To leverage an existing EQT search, the name of the searchable EQT view must first be identified. For
searches that occur in a pop-up window, the view name may be found by looking at the search pop-up
window’s properties listing (right click, select Properties) and examining the URL. The URL may include a
parameter that references the name of the EQT view.

For instance, the URL of one popup includes the following parameter:

&DataSource=SearchableView:Config:ProdikaSettings/SearchableMultiSelectViews,
PackagingSpecViewForProcessAndTradeSpecs

The EQT search view name used in this popup is PackagingSpecViewForProcessAndTradeSpecs.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 76

Return Value of the EQT Selection
Examining the EqtUIModelDefinitions.xml file and locating this view reveals some information that will
be useful:

<PackagingSpecViewForProcessAndTradeSpecs . . . >
 <AllowedModels>
 <Model active="true" name="Packaging Specification" alias="lblType1009"
orderByColumns="-" captionColumn="1" primaryKeyColumnName="SpecID">

The attribute primaryKeyColumnName specifies which field is returned upon selection. In this
instance, the SpecID property will be returned. This may be only partially informative, as the details of
the model and its properties are hidden, but it generally can give an idea of what field value is returned.

Display Value of the EQT Selection

The display columns that contain an attribute provideInSelectJS are returned and accessible to
the report parameter, so that they can fill the input box upon selection.

<DisplayColumns>
 . . .
 <ColumnInfo width="200" dataField="SpecName" dataFieldCaption="lblSpecName"
provideInSelectJS="true"/>

The columns where provideInSelectJS are set to true are then used by the <Model> node’s
displayVariableIndex attribute, representing the location/index of the desired property to display
in the selected items input field. In this example, the SpecName field is returned as the only display
item, and therefore its displayVariableIndex attribute would be set to 1.

<ParameterType type="ExampleEQTInput_PackagingSpecView"
webControl="ReportingControls/EQTInput.ascx">
 <Model
displayVariableIndex="1">SearchableView:Config:ProdikaSettings/EQTConfiguration/Search
ableMultiSelectViews,PackagingSpecViewForProcessAndTradeSpecs</Model></ParameterType>

Other Ways to Identify an EQT Model
While some EQT views can be identified by the URL of the pop-up, others views are harder to identify.
Examining the EqtUIModelDefinitions.xml file and searching for the desired information may
yield results.

Oracle Consulting Services may be able to provide more assistance in identifying a desired EQT model.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 77

Available EQT Models
Currently, only the models in the following EqtUIModelDefinitions.xml sections are supported in the
Reporting module:

 Views in the models/ProdikaReporting node (via SearchableMultiSelectViews)
 Views in the models/pqs node (via PQSSearchableMultiSelectViews)

For example, to create a report parameter to access the SpecSummaryView EQT view from
ProdikaReporting, use the following entry:

<ParameterType type="ExampleEQTInput_SpecSummary"
webControl="WebCommon/Controls/EQTInput.ascx ">
<Model
displayVariableIndex="1">SearchableView:Config:ProdikaSettings/EQTConfiguration/Search
ableMultiSelectViews,SpecSummaryView</Model>
</ParameterType>

When configuring the Model node, the syntax above always begins with
SearchableView:Config:ProdikaSettings/EQTConfiguration/ and is followed by either
SearchableMultiSelectViews (for the models in the ProdikaReporting node) or
PQSSearchableMultiSelectViews (for the models in the PQS node), then a comma, followed by the
name of the Model.

An additional and possibly more straightforward approach to creating custom search parameters is by
using DataSources.

DataSources
DataSources are classes that implement a specific interface (discussed later) whose responsibility is to
retrieve search result data for selection in a pop-up web control. Clients can leverage several existing
DataSources, or implement their own classes and plug them in easily. DataSources are referenced by
their full class name and package name. They may also include parameters in their declarations that are
then used by the class to modify its behavior. Please see Appendix C – Object Loader URLs and some of
the examples below for more details.

Here is a report parameter that uses an existing datasource (LookupServiceListViewDataSource):

<ParameterType type="ExampleGenericLookup_Allergens"
webControl="ReportingControls/LookupInputMultiSelect.ascx">
 <DataSource
className="Class:Xeno.Web.UI.Controls.DataSources.LookupServiceListViewDataSource,Xeno
WebControls$AllergensTitle|Allergens"/>
</ParameterType>

Existing DataSources
Several existing DataSources may be leveraged to retrieve data which only require parameters to
customize their results. A few are outlined here.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 78

LookupServiceListViewDataSource
There are many data lists throughout the application, such as Languages, NPDBrands, Allergens, etc.
Most lists are managed through a service that uses the database table commonLookupServiceManagers
to maintain each list and how the list is configured. The ManagerID column value of this table for the
desired lookup data must be passed in as the second parameter and is used by the
LookupServiceListViewDataSource class to retrieve that list.

See the Oracle Agile PLM Data Training for more details on how CommonLookups work.

In the example above, the DataSource used is as follows, and takes two parameters
(“AllergensTitle|Allergens”), the first for the pop-up title, and the second for the lookupManagerID.

<DataSource
className="Class:Xeno.Web.UI.Controls.DataSources.LookupServiceListViewDataSo
urce,XenoWebControls$AllergensTitle|Allergens"/>

Some lookup items are status aware, so this Datasource allows for a third parameter to be passed in to
indicate if only Active items should be displayed ('ForSearching'), or all historically valid items should be
displayed ('StatusAwareConsumer').

GenericListSelectView
This DataSource is used for specifying a table and column to search on, and the return value for the
selected item(s). Rather than pass in the table name, however, this DataSource expects a class name
which it then uses to retrieve the table name (The tablename to classname mapping can be found in the
database table orclassmetainfo). To specify the column to retrieve, this DataSource expects the class
parameter name that will then be used to retrieve the column name (The property to column name
mapping can be found in the orpropertymetainfo table). To specify the return value column name,
this DataSource expects the class parameter name that will then be used to retrieve the column name.

Example SQL to find the classname and property name:

SELECT tablename FROM orclassmetainfo where classname='complieswith'

SELECT columnName, propertyName FROM orpropertymetainfo
where fkORClassMetaInfo = (select pkid from orclassmetainfo where
classname='complieswith')

An example of using the GenericListSelectView DataSource for CompliesWith items, displays the Name
of the compliesWith item, and returns the PKID for the selected item(s).

<ParameterType type="ExampleGenericTableLookup_CompliesWith"
webControl="ReportingControls/LookupInputMultiSelect.ascx">
 <DataSource
className="Class:Xeno.Web.UI.DataSources.GenericListSelectView,XenoWebControl
s$|CompliesWith|Name|PKID"/>
</ParameterType>

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 79

TaxonomyXNodeTreeViewDataSource
This DataSource is used to load multi-level taxonomies that are managed in the
commonTaxonomyNamespace table. It requires a namespaceid parameter and must use the
TreeViewInput control. There is also the option of making the selectable data a single- or multi-select.

An example of using this DataSource to display SCRM business units in a multi-select pop-up:

<ParameterType type="ExampleGenericTaxonomy_SCRMBusinessUnit"
webControl="ReportingControls/TreeViewInput.ascx">
 <DataSource
className="Class:Xeno.Web.UI.DataSources.TaxonomyXNodeTreeViewDataSource,XenoWebContro
ls$SCRMBusinessUnit" />
 <MultiSelect>true</MultiSelect>
</ParameterType>

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 80

Custom DataSources
Clients may also create a custom DataSource class to implement their own data retrieval operations. The
class must implement the Xeno.Web.UI.Controls.IListView interface, and must include implementations
of the following interfaces from the Xeno.Web.UI.Controls namespace:

The IListView interface returns an IListDataSource, which must enumerate through the results and
return an IListItem for each entry.

public interface IListView
{

IListDataSource ListItemsByPrefix(String prefix);
 IListDataSource ListAllItems();
 String Title{ get; }
 bool AllowAddNew{ get; }
 void AddNewListItem(IListItem item);
}

public interface IListDataSource
{
 IListItem Current{ get; }
 bool Next();
}

public interface IListItem
{
 String Value{ get; }
 String DisplayValue{ get; }
}

The custom DataSource class must be compiled and placed into the Web\ProdikaReporting\bin
directory.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 81

Appendix B—Applying Security to Reports

Overview
The Reporting framework allows customers to configure security rules that govern if a Report or Report
Group should be visible to the current user. The SecurityFactoryRef attribute of the Report and
ReportGroup nodes can be declared with different security plug-ins using Object Loader syntax. Each
security plug-in takes parameters in its declaration that determine the access restrictions for that Report
or Report Group.

Because Report nodes are children of the ReportGroup node, security is enforced hierarchically. When
considering access to a Report, the user must have access to the parent Report Group.

Existing Security Plug-ins
The following report security plug-ins are available:

UserRoleBasedSecurityPluginFactory
This plug-in secures a Report, Report Group, or Report Context based on the roles to which a user
belongs. The specified roles are evaluated using an OR relationship, meaning that if the user belongs to
any of the roles listed, they allowed access. Negation is allowed through the use of the "!" (exclamation
mark) operator as a prefix to a role name.

Example
SecurityFactoryRef="Class:Xeno.Prodika.SecurityModel.Contextual.UserRoleBased
SecurityPluginFactory,ProdikaLib$[SCRM_COMPANY_READER]|[SCRM_FACILITY_READER]
"

Note that the brackets surrounding the role name are required.

UserPropertyBasedSecurityPluginFactory
This plug-in secures a Report, Report Group, or Report Context based on the user’s application
access. The specified applications listed are evaluated in an OR relationship. It is important to note that
this type of security considers a user’s "HasAdminAccess" property, and if so, allows access regardless of
the supplied permissions.

Example
SecurityFactoryRef="Class:Xeno.Prodika.SecurityModel.Contextual.UserPropertyB
asedSecurityPluginFactory,ProdikaLib$SCRM"

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 82

UserGroupBasedSecurityPluginFactory
Note that this plug-in is available in the Feature Pack, under the Handlers package. Be sure to add the
Handlers.dll file to the web\ProdikaReporting\bin directory.

This plug-in secures a Report, Report Group, or Report Context based on the user’s group access. The
specified groups listed are evaluated in an OR relationship. There are several ways to specify the group:
using the group name or the group PKID. Negation is allowed through the use of the "!" (exclamation
mark) operator as a prefix to a group name or PKID. Additional options are detailed in the Feature Pack
documentation.

Example
SecurityFactoryRef="Class:Xeno.Prodika.SecurityModel.Contextual.UserGroupBase
dSecurityPluginFactory,Handlers$Group123|Group456"

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 83

Appendix C—Object Loader URLs
Object Loader URLs are classpaths that are used to dynamically load objects. They are used to declare
the protocol to use when loading the class, the class path, and optionally any parameters to pass to the
class.

Format
[Protocol] : [Path] $ [[param1] | param2]

 Protocol - Examples are "Class" and “Singleton".

 Path - The fully qualified class name, including the package name. For example
"Xeno.Prodika.SecurityModel.Contextual.UserRoleBasedSecurityPlugi
nFactory,ProdikaLib" where ProdikaLib is the name of the package (.dll file).

When loading an object, the loader first inspects the protocol and using lazy loading, determines an
appropriate protocol handler based on this protocol’s name. The "Class" protocol may refer to a class
that accepts parameters during instantiation which are defined after a "$" and delimited by "|"s (pipes).

Common Usage
The most common usage of this class is in configuration files. Often a factory class is supplied in a
configuration and the Object Loader bootstraps the factory, which in turn facilitates the use of the rest
of the implementation. These implementations are easily swapped by simply providing a different
factory in the configuration.

Example

Class:Xeno.Prodika.Portal.WebUI.Util.Security.UserPropertyBasedSecurityPluginFactory,ProdikaLib$NPD

"Class" is the protocol, "NPD" is a parameter, and the rest of the string between the ":" and the "$" is
the path as defined by the protocol. In this case, it is the class path of the object that is to be
instantiated.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 84

Appendix D—Third Party External Application Integration
The Oracle Agile Product Lifecycle Management for Process application allows customers to integrate
with reports that exist in an external reporting engine. Specifically, customers can configure the
application suite to gather information from within the application and provide well-formatted reports
that are generated in an external system.

Currently, the PLM for Process application supports only two reporting engines:

 Oracle BI Publisher

 SQL Server Reporting Service

This document outlines the steps necessary to integrate the PLM for Process application with any other
third party external application that can provide similar functionality.

Programmatic Interfaces
In order to achieve this integration, two classes must be created that conform to PLM for Process
interfaces.

1. IServiceFactory

2. IReportGenerationService

Implementing IReportGenerationService
The PLM for Process application expects all implementations of its report integration adapters to
implement the IReportGenerationService interface:

namespace Xeno.Prodika.Services
{
 public interface IServiceFactory
 {
 IService Create(IExecutionContext execContext, IBlockingResourcePool
servicePool);
 }
}

As the sample code illustrates, this class has two purposes:

i. Retrieve configuration information from the ReportingServiceConfig

ii. Initialize and return a Service that will be used to manage integration with a reporting engine
(which in this case is called ParameterReportGenerationService)

public class ParameterReportGenerationServiceFactory : IServiceFactory
{
 private ReportingServiceConfig _config;

 public IService Create(IExecutionContext execContext, IBlockingResourcePool
servicePool)

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 85

 {
 ExtractConfiguration();
 return new ParameterReportGenerationService(_config);
 }

 private void ExtractConfiguration()
 {
 if (_config != null)
 return;
 IXMLConfigurationManager cm = (IXMLConfigurationManager)
AppPlatformHelper.ApplicationManager.EnvironmentManager.GetConfigManager("ReportingSer
viceConfig");

 _config = (ReportingServiceConfig) cm.GetConfig("ReportingServiceConfig");

 if (_config == null)
 throw new ProdikaConfigurationException("Could not read
ReportingServiceConfig");
 }
}

Implementing IReportGenerationService
The PLM for Process application expects all implementations of its report integration adapters to
implement the IReportGenerationService interface:

namespace Xeno.Reporting.Service.ReportGenerationService
{
 public interface IReportGenerationService : IService
 {
 ReportingServiceConfig Config { get; }
 ReportResults GenerateReport(ReportConfig config, ITranslationCache
translationCache, string format, IDictionary parameters);
 }
}

This interface provides two capabilities:

i. The ability to access configuration information

ii. A method that can be converts a request for a report into the result of a report invocation

internal class ParameterReportGenerationService : IReportGenerationService
{
 private readonly ReportingServiceConfig _config;
 public ParameterReportGenerationService(ReportingServiceConfig config)
 {
 _config = config;
 }

 public ReportResults GenerateReport(ReportConfig config, ITranslationCache
translationCache, string format, IDictionary parameters)
 {
 ReportResults result = new ReportResults();
 result.ReportContent = BuildParameterReport(parameters);
 result.MimeType = format;
 return result;
 }

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 86

 private static byte[] BuildParameterReport(IDictionary parameters)
 {
 StringBuilder builder = new StringBuilder();
 foreach (DictionaryEntry parameter in parameters)
 {
 builder.AppendFormat("Parameter '{0}' has value: '{1}'
", parameter.Key,
parameter.Value);
 }
 return new ASCIIEncoding().GetBytes(builder.ToString());
 }

 public ReportingServiceConfig Config
 {
 get { return _config; }
 }
 public IServiceContext ServiceContext
 {
 get { return new ServiceContextAdapter(); }
 set { ; }
 }
}

In our example, the configuration information was passed into this class upon creation. All that needs to
be done is to provide it back in order to fulfill the contract of the IReportGenerationService.

The generation is also reasonably straightforward. The following information is provided to the method
that implements this behavior:

i. The ReportConfig, which contains information on which report is being requested as well as its
service location

ii. The translation cache that has been configured for this particular report

iii. The format of the result

iv. All parameters that have been picked by a user and are being passed into the report

As can be seen, the sample code in question does not make a call to a reporting engine. Instead, it
displays all parameters that have been provided to it in HTML.

A more realistic implementation would access the Name and ServiceLocation values off the
ReportConfig object and then use that to drive which report needed to be invoked.

It should be noted that the approach taken by PLM for Process does not assume a specific protocol
(SOAP/DB/etc). That is a decision best left up to the implementer.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 87

Configuration Changes
In order for the PLM for Process application to use custom code for report integration, you must register
it at the appropriate location. In this particular case, the correct location is the
Config/Custom/CustomerSettings.config file.

For our sample implementation, the entry for SQLReportingService in the configuration file would be
modified to this if the following assumptions about the class that implements IServiceFactory were true:

i. It is named ParameterReportGenerationServiceFactory and is in namespace
ParameterReportingServiceAdapter

ii. It is contained in the ParameterReportingServiceAdapter.dll

iii. The DLL file is available to all web applications (i.e., it is present in each Web/*/bin directory)

<SQLReportingService refscope="Session"
factory="Class:ParameterReportingServiceAdapter.ParameterReportGenerationServiceFactor
y,ParameterReportingServiceAdapter"
 configChildKey="name"
 configAttributeOverrideModifier="Replace" > </SQLReportingService>

PLM for Process must be configured with the user name and password in order integrate properly. To
set this value, please refer to the “Setup Assistant” section of the Agile Product Lifecycle Management
for Process Configuration Guide.

Agile Product Lifecycle Management for Process Reporting Guide

© 2017 Oracle Corporation 88

	Oracle® Agile Product Lifecycle Management for Process Reporting Guide
	Copyrights and Trademarks
	Contents
	Preface
	Audience
	Variability of Installations
	Documentation Accessibility
	Access to Oracle Support

	Software Availability

	Chapter 1—PLM for Process Reporting Introduction
	Purpose
	Overview

	Custom Report Configuration: Example Click Stream
	BI Publisher Integration: Example Click Stream
	Chapter 2—Report Packs
	ADMN Report Pack
	eQ Report Pack
	GSM Report Pack
	PQM Report Pack
	SCRM Report Pack

	Chapter 3—Custom Report Configuration
	Overview
	Report Generation Screen

	Configuring the CustomReportExtensions.xml File
	File Structure Overview

	Configuring Report Parameter Types
	Global Report Parameters
	<ParameterTypes> Node
	Attributes
	Child Nodes
	Parent Node

	<ParameterType> Node
	Attributes
	Child Nodes
	Parent Node

	<DataSource> Node
	Attributes
	Child Nodes
	Parent Node

	<Model> Node
	Attributes
	InnerText Value
	Child Nodes
	Parent Node

	Configuring Reports
	<ReportContext> Node
	Attributes
	Child Nodes
	Parent Node

	<ContextCriteria> Node
	Child Nodes
	Parent Node

	<ReportGroup> Node
	Attributes
	Child Nodes
	Parent Node

	<Parameters> Node
	Attributes
	Child Nodes
	Parent Node

	<Parameter> Node
	Attributes
	Child Nodes
	Parent Node

	<Reports> Node
	Attributes
	Child Nodes
	Parent Node

	<Report> Node
	Attributes
	Child Nodes
	Parent Node

	<AllowedOutputTypes> Node
	Attributes
	Child Nodes
	Parent Node

	<AllowedOutputType> Node
	Attributes
	Child Nodes
	Parent Node

	Configuring Common Reports
	Configuring Contextual Reporting
	Adding Custom Reports to Supplier Portal
	Setting Up Contextual Custom Reports in Supplier Portal
	Add Links to Supplier Portal
	Example 1: Add a Report to the Primary Navigation
	Example 2: Add a Custom Report Link to Material Specification Object Navigation

	Chapter 4—BI Publisher Integration
	PLM for Process Reporting Database Layer
	BI Publisher Installation
	Installing a PLM for Process Reference Implementation Report Pack
	Uploading the Report Folder
	Configuring the Proper Data Model – Oracle or SQL Server
	Copy Reference Reports to another Directory for Customization

	Report Security
	Report is Called using PLM for Process Reporting Application
	BI Publisher Report is Called Directly either through a Link or the BI Publisher UI

	Multilingual
	Calling a BI Publisher Report Directly from a Link in PLM for Process
	Report Dialog
	Installing Report Dialog

	Configuring Report Dialog
	Creating Links within a Report
	Oracle BIP Features
	Parameters
	Interactive Filters
	Conditional Formatting

	Use of Workflow Tags in PQM Report Pack

	Appendix A—Creating Custom Report Parameter Types
	Methods of Retrieving Data
	Displaying Search Parameters

	EQT Models
	Identifying an EQT Search to Use
	Return Value of the EQT Selection
	Display Value of the EQT Selection
	Other Ways to Identify an EQT Model
	Available EQT Models

	DataSources
	Existing DataSources
	LookupServiceListViewDataSource
	GenericListSelectView
	TaxonomyXNodeTreeViewDataSource

	Custom DataSources

	Appendix B—Applying Security to Reports
	Overview
	Existing Security Plug-ins
	UserRoleBasedSecurityPluginFactory
	Example

	UserPropertyBasedSecurityPluginFactory
	Example

	UserGroupBasedSecurityPluginFactory
	Example

	Appendix C—Object Loader URLs
	Format
	Common Usage
	Example

	Appendix D—Third Party External Application Integration
	Programmatic Interfaces
	Implementing IReportGenerationService
	Implementing IReportGenerationService

	Configuration Changes

