

[1] Oracle® Communications Order and Service
Management
Cartridge Guide for Oracle Application Integration Architecture

Release 2.1.2

E79217-01

March 2018

Oracle Communications Order and Service Management Cartridge Guide for Oracle Application Integration
Architecture, Release 2.1.2

E79217-01

Copyright © 2010, 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... xi

Audience... xi
Accessing Oracle Communications Documentation... xii
Documentation Accessibility .. xii
Document Revision History ... xii

1 Overview of the Order-to-Activate Cartridges

About the Application Integration Architecture Order-to-Activate Cartridges 1-1
Order-to-Activate Business Process Overview ... 1-1
Overview of the Order-to-Activate Cartridges ... 1-3
Order-to-Activate Cartridge Solution Options... 1-5
OSM Cartridge Types Supporting the Order to Cash Integration Pack for OSM Solution 1-6
Extending the Cartridges .. 1-6
Time Zones in Order-to-Activate Cartridges .. 1-7
Order Creation in the Order-to-Activate Cartridges ... 1-7
Order-to-Activate Emulators .. 1-8
About Fulfillment Topologies ... 1-8

Simple Fulfillment Topology.. 1-9
Typical and Complex Fulfillment Topologies .. 1-10

2 Performing an Interactive Installation of the Order-to-Activate Components

Cartridge Installation Overview ... 2-1
System Requirements.. 2-1

Order-to-Activate Cartridge Compatibility ... 2-2
Order-to-Activate Cartridge Pre-Installation Tasks .. 2-2
Installing the Order-to-Activate Cartridges .. 2-4

Getting the Installation Package .. 2-4
Importing the Installation Cartridge and Configuring the Installation Build File................... 2-5
Importing the OSM Order-to-Activate Cartridges for the Calculate Service Order Solution
Option 2-6
Importing the OSM Order-to-Activate Cartridges for the Solution Option Without Calculate
Service Order 2-7
Configuring WebLogic Server Resources... 2-8

Post-Installation Tasks for Multiple Simultaneous Versions .. 2-17
Building and Deploying the Order-to-Activate Cartridges .. 2-18

iv

Testing the Order-to-Activate Cartridges ... 2-19
Switching Between Live and Emulator Configurations .. 2-20
Configuring a Workspace Without Configuring WebLogic Server .. 2-21
Uninstalling Order-to-Activate Components .. 2-21

Undeploying Cartridges .. 2-22
Deleting the Oracle AIA Emulator ... 2-22
Removing the Inventory and Technical Order Management Emulators 2-22

3 Performing a Silent Installation of the Order-to-Activate Cartridges

Cartridge Installation Overview ... 3-1
Directory Placeholders Used in This Chapter .. 3-1
System Requirements.. 3-2

Order-to-Activate Cartridge Compatibility ... 3-2
Setting Up the Installation Environment .. 3-3

Getting the Installation Package .. 3-3
Setting Up Files and Directories... 3-3
Encrypting the Passwords Used by the Silent Installer.. 3-4

Encrypting the WebLogic Server Administrator Password for Connecting to WebLogic
3-4
Encrypting the WebLogic Server Administrator Password for Use with XML
Import/Export 3-5
Encrypting Passwords for the Standard Order-to-Activate User Accounts 3-5
Encrypting the UIM Application User Password .. 3-6
Encrypting the Technical Order Management Application User Password...................... 3-6
Encrypting the Password for Deploying the Cartridges... 3-7
Encrypting the Oracle AIA JMS Connection Password .. 3-7
Encrypting the UIM JMS Connection Password .. 3-8
Encrypting the Technical Order Management JMS Connection Password 3-8

Configuring the build.properties File .. 3-9
Configuring Software Path Settings .. 3-9
Configuring Solution Import Settings.. 3-10
Configuring WebLogic Server Settings.. 3-11
Configuring Solution Configuration Settings ... 3-12
Configuring Oracle AIA Connection Settings .. 3-15
Configuring UIM Connection Settings .. 3-15
Configuring Technical Order Management Connection Settings.. 3-16

Performing the Silent Installation ... 3-18
Building the Solution Cartridges .. 3-18
Building the Solution Cartridges and Configuring the WebLogic Server Resources 3-18
Deploying the Cartridges... 3-19

Testing the Order-to-Activate Cartridges ... 3-19
Switching Between Live and Emulator Configurations .. 3-19
Configuring a Workspace Without Configuring WebLogic Server .. 3-19
Uninstalling Order-to-Activate Components .. 3-19

4 Order-to-Activate Cartridge Contents

Cartridge Overview.. 4-1

v

Common Order Management Cartridges .. 4-1
Central Order Management Cartridges.. 4-2

Common Central Order Management Cartridges ... 4-2
Central Order Management Cartridges for the Calculate Service Order Solution Option......
4-3
Central Order Management Cartridges for the Solution Option Without Calculate Service
Order 4-4

Service Order Management Cartridges .. 4-5
Service Order Management Cartridges for the Calculate Service Order Solution Option
4-5
Service Order Management Cartridges for the Solution Option Without Calculate Service
Order 4-7

Conceptual Model Projects ... 4-7
Common Conceptual Model Projects .. 4-8
Conceptual Model Projects for Central Order Management.. 4-8
Conceptual Model Projects for Service Order Management .. 4-9

Common Order Management Cartridges .. 4-9
OracleComms_OSM_CommonDataDictionary .. 4-9
OracleComms_OSM_O2A_AIAEBMDataDictionary... 4-9
OracleComms_OSM_O2A_CommonUtility ... 4-10
OracleComms_OSM_O2A_ControlMap ... 4-11

Configuring Breakpoints for Central Order Management and for Service Order
Management Without Calculate Service Order 4-12
Configuring Breakpoints for Service Order Management with Calculate Service Order........
4-13
Controlling Point of No Return ... 4-14
Controlling Fault Simulation.. 4-14
Controlling Order Updates .. 4-18
Controlling Processing Granularity for FulfillBillingFunction ... 4-19

OracleComms_OSM_O2A_RecognitionFallout ... 4-19
OracleComms_OSM_O2A_SystemAdmin.. 4-20

How the Inbound Message Recovery MDB Works .. 4-21
Recovering from Inbound Message Errors Due to Suspended Orders 4-21
Recovering from Inbound Message Errors Due to Resource Issues 4-22

Common Central Order Management Cartridges .. 4-23
OracleComms_OSM_O2A_COM_Base ... 4-23

Order Events... 4-23
Processing Granularity Rules... 4-23
Abstract Orchestration Entities.. 4-25
Order Lifecycle Manager Configuration .. 4-26
XQuery Modules in the OracleComms_OSM_O2A_COM_Base Cartridge 4-26
Automation Modules in the OracleComms_OSM_O2A_COM_Base Cartridge............ 4-30
External Fulfillment States.. 4-30

OracleComms_OSM_O2A_COM_SalesOrderFulfillment .. 4-32
OracleComms_OSM_O2A_COM_Billing.. 4-33

SyncCustomerFunction... 4-34
InitiateBillingFunction... 4-37
FulfillBillingFunction .. 4-40

vi

Billing Dates for Billing Patterns.. 4-43
OracleComms_OSM_O2A_COM_Provisioning... 4-44
OracleComms_OSM_O2A_COM_Shipping_Sample .. 4-46
OracleComms_OSM_O2A_COM_Install_Sample ... 4-47
OracleComms_OSM_O2A_COM_Recognition_Sample... 4-48

Revision Number Update for Canceled Orders .. 4-48
Central Order Management Cartridges for the Calculate Service Order Solution Option 4-48

OracleComms_OSM_O2A_COM_CSO_Base ... 4-48
OracleComms_OSM_O2A_COM_CSO_Broadband_Internet_Access_CFS 4-49
OracleComms_OSM_O2A_COM_CSO_Email_CFS.. 4-49
OracleComms_OSM_O2A_COM_CSO_FulfillmentPattern... 4-49
OracleComms_OSM_O2A_COM_CSO_FulfillmentStateMap... 4-49
OracleComms_OSM_O2A_COM_CSO_Internet_Media_CFS... 4-49
OracleComms_OSM_O2A_COM_CSO_IP_Fax_CFS .. 4-49
OracleComms_OSM_O2A_COM_CSO_Model_Container .. 4-49
OracleComms_OSM_O2A_COM_CSO_Provisioning .. 4-50

External Fulfillment States ... 4-50
OracleComms_OSM_O2A_COM_CSO_SalesOrders .. 4-51
OracleComms_OSM_O2A_COM_CSO_Solution .. 4-52
OracleComms_OSM_O2A_COM_CSO_Topology .. 4-52
OracleComms_OSM_O2A_COM_CSO_VoIP_Access_CFS ... 4-53
OracleComms_OSM_O2A_COM_CSO_Web_Conferencing_CFS .. 4-53
OracleComms_OSM_O2A_COM_FulfillmentPattern... 4-53
OracleComms_OSM_O2A_COM_FulfillmentStateMap_Sample.. 4-53
OracleComms_OSM_O2A_COMSOM_CSO_Recognition... 4-55

Revision Number Update for Canceled Orders .. 4-55
OracleComms_OSM_O2A_COMSOM_CSO_Solution ... 4-56

Central Order Management Cartridges for the Solution Option Without Calculate Service Order
4-56

OracleComms_OSM_O2A_BBVoIP_FP_NP_Danube_Sample.. 4-56
OracleComms_OSM_O2A_BBVoIP_FP_NP_Nile_Sample .. 4-56
OracleComms_OSM_O2A_COM_NCSO_Base.. 4-57
OracleComms_OSM_O2A_COM_NCSO_Provisioning ... 4-57
OracleComms_OSM_O2A_COM_Simple_NP_Soln ... 4-58
OracleComms_OSM_O2A_COM_Typical_NP_Soln... 4-58
OracleComms_OSM_O2A_COMSOM_Recognition_Sample.. 4-58

Revision Number Update for Canceled Orders .. 4-59
OracleComms_OSM_O2A_COMSOM_Simple_NP_Soln .. 4-59
OracleComms_OSM_O2A_COMSOM_Typical_NP_Soln.. 4-59
OracleComms_OSM_O2A_FulfillmentPatternMap_Sample ... 4-59
OracleComms_OSM_O2A_SalesOrders_NP_Sample ... 4-61
OracleComms_OSM_O2A_SimpleTopology_Sample... 4-64
OracleComms_OSM_O2A_TypicalTopology_Sample.. 4-64

Service Order Management Cartridges for the Calculate Service Order Solution Option 4-65
OracleComms_OSM_O2A_SOM_CSO_Base.. 4-65

Order Events... 4-65
Order Lifecycle Manager Configuration .. 4-65
XQuery Modules in the OracleComms_OSM_O2A_SOM_CSO_Base Cartridge 4-66

vii

Automation Modules in the OracleComms_OSM_O2A_SOM_CSO_Base Cartridge .. 4-67
OracleComms_OSM_O2A_SOM_CSO_Broadband_Internet_Access_CFS 4-67
OracleComms_OSM_O2A_SOM_CSO_Common ... 4-67
OracleComms_OSM_O2A_SOM_CSO_CompleteProvisioning .. 4-68
OracleComms_OSM_O2A_SOM_CSO_DeliverOrder .. 4-68
OracleComms_OSM_O2A_SOM_CSO_DesignService... 4-68
OracleComms_OSM_O2A_SOM_CSO_Email_CFS .. 4-68
OracleComms_OSM_O2A_SOM_CSO_FulfillmentPattern ... 4-68
OracleComms_OSM_O2A_SOM_CSO_FulfillmentStateMap ... 4-68
OracleComms_OSM_O2A_SOM_CSO_Internet_Media_CFS ... 4-69
OracleComms_OSM_O2A_SOM_CSO_IP_Fax_CFS... 4-69
OracleComms_OSM_O2A_SOM_CSO_ModelContainer... 4-69
OracleComms_OSM_O2A_SOM_CSO_PlanDelivery... 4-69
OracleComms_OSM_O2A_SOM_CSO_Recognition... 4-70

Revision Number Update for Canceled Orders .. 4-70
OracleComms_OSM_O2A_SOM_CSO_Solution ... 4-70
OracleComms_OSM_O2A_SOM_CSO_Topology... 4-70
OracleComms_OSM_O2A_SOM_CSO_VoIP_Access_CFS.. 4-70
OracleComms_OSM_O2A_SOM_CSO_Web_Conferencing_CFS... 4-70

Service Order Management Cartridges for the Solution Option Without Calculate Service Order
4-71

OracleComms_OSM_O2A_SOM_Base .. 4-71
Order Events... 4-71
Processing Granularity Rules... 4-71
XQuery Modules in the OracleComms_OSM_O2A_SOM_Base Cartridge 4-72
Automation Modules in the OracleComms_OSM_O2A_SOM_Base Cartridge............. 4-73

OracleComms_OSM_O2A_SOM_Provisioning ... 4-74
OracleComms_OSM_O2A_SOM_Solution ... 4-75
OracleComms_OSM_O2A_SOM_Recognition_Sample.. 4-76

Revision Number Update for Canceled Orders .. 4-76
OracleComms_OSM_O2A_SomBBVoIP_FP_NP_Sample .. 4-76
OracleComms_OSM_O2A_SomProvisionBroadband_Sample ... 4-76
OracleComms_OSM_O2A_SomProvisionVoIP_Sample .. 4-78

Common Conceptual Model Projects.. 4-79
OracleComms_Model_Base... 4-79
OracleComms_Model_BaseCatalog ... 4-80
OracleComms_Model_Common .. 4-80
OracleComms_Model_O2A_Broadband_Internet_Access_CFS.. 4-80
OracleComms_Model_O2A_Broadband_Internet_Access_SA.. 4-80
OracleComms_Model_O2A_Broadband_Internet_DataModel ... 4-80
OracleComms_Model_O2A_Email_CFS ... 4-80
OracleComms_Model_O2A_Email_DataModel .. 4-81
OracleComms_Model_O2A_Email_SA ... 4-81
OracleComms_Model_O2A_Internet_Media_CFS .. 4-81
OracleComms_Model_O2A_Internet_Media_DataModel ... 4-81
OracleComms_Model_O2A_Internet_Media_SA .. 4-81
OracleComms_Model_O2A_VoIP_Access_CFS... 4-82

viii

OracleComms_Model_O2A_VoIP_Access_SA... 4-82
OracleComms_Model_O2A_VoIP_DataModel.. 4-82

Conceptual Model Projects for Central Order Management.. 4-82
OracleComms_Model_O2A_Billing_PS .. 4-83
OracleComms_Model_O2A_Broadband_Internet_Access_PS .. 4-83
OracleComms_Model_O2A_Email_PS.. 4-83
OracleComms_Model_O2A_Install_PS ... 4-83
OracleComms_Model_O2A_Internet_Media_PS... 4-84
OracleComms_Model_O2A_VoIP_PS ... 4-84

Conceptual Model Projects for Service Order Management .. 4-84
OracleComms_Model_O2A_SOM_PS ... 4-84

Oracle AIA Emulators .. 4-85

5 Extending Order-to-Activate Cartridges

Adding Custom Data Elements ... 5-1
Adding Custom Order Item Properties.. 5-1
Changing Durations for Order Components .. 5-3
Adding a New Fulfillment Function .. 5-4

Planning the Addition of a New Fulfillment Function... 5-4
Response Patterns in System Interactions .. 5-6

Single Response Pattern... 5-6
Multiple Response Pattern... 5-6

Entities to Create, Modify, or Reuse.. 5-7
Data Dictionary and Order Templates .. 5-8
About Creation Tasks... 5-9
About Query Tasks... 5-9
About Subprocesses.. 5-9

Fulfillment Function Extension Point Interface .. 5-12
Fulfillment Function Extension Point Overview... 5-13
COMPONENT-START Extension Point... 5-14
COMPONENT-COMPLETE Extension Point ... 5-16
COMPONENT-UPDATE Extension Point .. 5-18
CREATE-EBM Extension Point for do Execution Mode... 5-20
CREATE-EBM Extension Point for redo Execution Mode.. 5-23
CREATE-EBM Extension Point for undo Execution Mode .. 5-27
CREATE-EBM-CUSTOM Extension Point .. 5-31
CREATE-EBM-ALL-ORDERITEMS Extension Point .. 5-33
CREATE-EBM-ORDERITEM Extension Point for do Execution Mode............................ 5-37
CREATE-EBM-ORDERITEM Extension Point for redo Execution Mode 5-40
CREATE-EBM-ORDERITEM Extension Point for undo Execution Mode 5-44
CREATE-EBM-ORDERITEM-CUSTOM Extension Point ... 5-47
CREATE-EBM-PRIORORDERITEM Extension Point ... 5-49
CREATE-EBM-PRIORORDERITEM-CUSTOM Extension Point 5-51
VALIDATE-RESPONSE-EBM Extension Point... 5-53
COMPONENT-RESPONSE-UPDATE Extension Point... 5-54
ORDER-EXTENSION-UPDATE-STATUS-EBM Extension Point 5-56

About Fallout ... 5-60

ix

Fallout Customization... 5-61
Failure During Revision.. 5-62

Adding a New Fulfillment Function for a New Service Offering.. 5-62
Adding a New Fulfillment Provider.. 5-65
Adding a New Fulfillment Mode... 5-66
Adding a New Product Specification .. 5-67

Mapping Product Specifications to Order-to-Activate Sample Fulfillment Patterns 5-67
Creating a New Product... 5-68
Creating a New Fulfillment Pattern ... 5-69

Customizing Mapping Rules ... 5-69
Importing the New Product Specification... 5-71

Changing Processing Granularity.. 5-72
Configuring a New Processing Granularity Rule .. 5-72

Changing Fulfillment Function Dependencies... 5-74
Setting a Point of No Return ... 5-74

Modeling a PoNR.. 5-76
Configuring Fulfillment States .. 5-76

External Fulfillment States... 5-77
Fulfillment State Extension Point Interface ... 5-78

Fulfillment State Extension Point Overview.. 5-78
ORDERITEM_FULFILLMENT_STATE_UPDATED Extension Point 5-79
ORDER_FULFILLMENT_STATE_UPDATED Extension Point 5-82
ORDER_STATUS Extension Point .. 5-84
ORDER_STATUSCONTEXT Extension Point ... 5-85
ORDERITEM_MILESTONE Extension Point .. 5-88
ORDERITEM_STATUSCONTEXT Extension Point ... 5-91
REPORT_ORDERITEM_STATUS Extension Point .. 5-94
REPORT_ORDERITEM_MILESTONE Extension Point .. 5-94
REPORT_ORDERITEM_STATUSCONTEXT Extension Point ... 5-96

Adding a New Service for the Calculate Service Order Solution Option.................................. 5-97
Adding a New Service for the Service Option Without Calculate Service Order 5-100
Customizing Service Order Management .. 5-103

Service Order Management Extension Point Overview.. 5-103
SOM-CREATE-SOAP-REQUEST Extension Point... 5-104
SOM-DETECT-FAULT Extension Point .. 5-105
SOM-GET-FAULT-DATA Extension Point... 5-106
SOM-CHECK-IS-LAST-RESPONSE Extension Point .. 5-106
SOM-GET-UPDATE-DATA Extension Point ... 5-107
SOM-GET-EXTERNAL-FULFILLMENT-STATE Extension Point .. 5-107
SOM-GET-EXTERNAL-FULFILLMENT-STATE-AT-FALLOUT Extension Point 5-108
SOM-GET-NEW-CORRELATION-ID Extension Point... 5-109

Extending XQuery Modules.. 5-110
Sending Enriched Data to the CRM System .. 5-111
Considerations When Integrating with Oracle AIA... 5-111
Security Considerations When Communicating with External Systems 5-113

x

6 Performing Order-to-Activate Cartridge Operations

XQuery Transformation Logging .. 6-1
Troubleshooting Order-to-Activate Cartridges .. 6-2

Updating the JMS Redelivery Configuration Settings.. 6-2
Setting Cartridge Breakpoints .. 6-2

7 Prior Versions of Order-to-Activate Cartridges

Updating Prior Versions of the Cartridges to Work with Newer Versions of OSM 7-1
Changes from Order-to-Activate 2.1.1 to Version 2.1.2 ... 7-1

Removed Support for Asset Processing.. 7-1
Processes Changed to Use a Single Task for Sending and Receiving .. 7-1

Central Order Management Fulfillment Functions ... 7-2
Service Order Management Fulfillment Functions.. 7-2

Changes from Order-to-Activate 2.1.0.2 to Version 2.1.1 .. 7-3
Support for Asset Processing ... 7-3
Support for Order Lifecycle Management User Interface.. 7-4
Support for Processing States... 7-4

Changes from Order-to-Activate 2.1.0.1 Cartridges to Version 2.1.0.2 ... 7-4
Changes to Fulfillment Function Extension Points ... 7-4

New Extension Points .. 7-4
Extension Points Added to the Billing Components ... 7-4

Changes to Action Code Mappings... 7-5
New XML-type Parameter Added to Contain Custom Order Item Properties 7-5

Changes from Order-to-Activate 2.1.0 Cartridges to Version 2.1.0.1 .. 7-5
New Silent Installation Option... 7-5

Changes from Order-to-Activate 2.0.1 Cartridges to Version 2.1.0 ... 7-5
Support for Calculate Service Order ... 7-5

Two Solution Options: With and Without Calculate Service Order 7-6
The Calculate Service Order Solution Option .. 7-6
New Service Order Management Cartridges for the Calculate Service Order Solution
Option 7-7
Inclusion of Conceptual Model Projects .. 7-7

Large Order Support ... 7-7
Support for Sharing Groups ... 7-7

Changes from Order-to-Activate 7.2 Cartridges to Version 2.0.1 .. 7-7
Release Number Changes and Packaging Changes.. 7-8
Support for Multiple Price Lists... 7-8
Support for Importing Product Classes Directly from Oracle Product Hub............................. 7-8

Changes from Order-to-Activate 7.0.3 Cartridges to Version 7.2 .. 7-8
Cartridge Re-Factoring Overview ... 7-9
Cartridge Mapping Between Order-to-Activate 7.0.3 and Order-to-Activate 7.2 7-9

xi

Preface

Oracle Communications Order and Service Management (OSM) delivers pre-built
cartridges supporting the Order-to-Activate business process to be used with the
Oracle Communications Order to Cash Integration Pack for Oracle Communications
Order and Service Management. This guide provides information about the OSM
Order-to-Activate cartridges for the Oracle Communications Order to Cash Integration
Pack for Oracle Communications Order and Service Management. It explains how to
install and deploy the cartridges and provides detailed information and best practices
on how to extend them for your own implementation.

For more information about the Oracle Communications Order to Cash Integration
Pack for Oracle Communications Order and Service Management, see Oracle
Application Integration Architecture Oracle Communications Order to Cash Integration Pack
Implementation Guide for Siebel CRM, Oracle Communications Order and Service
Management, and Oracle Communications Billing and Revenue Management in the Oracle
Application Integration Architecture documentation.

Audience
This document is intended for programmers who have a working knowledge of:

■ System interfaces

■ Java development

■ Java Messaging Service (JMS)

■ XML Technologies (including XQuery and XPath)

Note: The Oracle Application Integration Architecture
Order-to-Activate Process Integration Pack is renamed to Oracle
Communications Order to Cash Integration Pack for Oracle
Communications Order and Service Management. The OSM
cartridges are referred to as Order-to-Activate cartridges in all OSM
documentation because they support the Order-to-Activate business
sub-process within the overall Order to Cash business process for
service providers. See "Order-to-Activate Business Process Overview"
for a description of the Order-to-Activate business sub-process.

The term Oracle Communications Order to Cash Integration Pack for
Oracle Communications Order and Service Management and the term
Order to Cash Integration Pack for OSM are used synonymously in
OSM documentation.

xii

This document assumes that you have read OSM Concepts, and have a conceptual
understanding of:

■ Cartridges

■ Topologies

■ Orders

■ Order states

■ Tasks

■ Task states

Accessing Oracle Communications Documentation
OSM documentation and additional Oracle documentation (such as database and
WebLogic Server documentation) is available from the Oracle Help Center website:

http://docs.oracle.com

Additional Oracle Communications documentation is available from the Oracle
software delivery website:

https://edelivery.oracle.com

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Document Revision History
The following table lists the revision history for this guide.

Version Date Description

E79217-01 March 2018 Initial release

1

Overview of the Order-to-Activate Cartridges 1-1

1Overview of the Order-to-Activate Cartridges

This chapter describes how to use the Oracle Communications Order and Service
Management (OSM) Order-to-Activate cartridges for the Oracle Communications
Order to Cash Integration Pack for Oracle Communications Order and Service
Management (Order to Cash Integration Pack for OSM).

About the Application Integration Architecture Order-to-Activate
Cartridges

The Order-to-Activate cartridges are pre-built OSM cartridges that support the Oracle
Order-to-Activate business process to be used with the Order to Cash Integration Pack
for OSM. See "Order-to-Activate Business Process Overview" for a discussion of the
Order-to-Activate business process.

Oracle Application Integration Architecture (Oracle AIA) integrates Oracle
applications, such as OSM, Siebel Customer Relationship Management (Siebel CRM),
Oracle Configure, Price, and Quote Cloud (Oracle CPQ Cloud), and Oracle
Communications Billing and Revenue Management (BRM). External systems, such as
workforce management applications, can also be included in the solution.

In the Order-to-Activate cartridges:

■ OSM performs central order management by orchestrating the fulfillment of
customer orders coming from Oracle AIA.

■ OSM performs service order management by orchestrating service orders sent to
fulfillment systems.

See OSM Concepts for more details.

Order-to-Activate Business Process Overview
The Oracle Order-to-Activate business process is at the core of business and
operational support systems for any Communications Service Provider (CSP). The
process extends from the time a quote or order is created to the time when the goods
and services are delivered and properly billed. The Order-to-Activate cartridges can be
used in an architecture that has Siebel CRM, Oracle CPQ Cloud, or both together.

The following are the steps for the functional flow of the Order-to-Activate business
process for orders coming from Siebel CRM:

1. A customer order is captured in Siebel CRM. For some orders, the order may
require technical qualification, such as validating that the network has enough
capacity to offer the purchased products. After an order capture is complete and

Order-to-Activate Business Process Overview

1-2 OSM Cartridge Guide for Oracle Application Integration Architecture

the order is validated in Siebel CRM, the system submits it to OSM in the central
order management role for delivery.

2. Customer orders (both Qualify and Deliver request types) received in OSM in the
central order management role are first recognized (as Oracle AIA customer
orders), mapped to fulfillment patterns, and enriched with fulfillment metadata.

3. OSM in the central order management role decomposes (and transforms, if the
calculate service order solution option is used) the customer order, dividing it into
suborders, called order components, which have cross-order components,
cross-order lines, and cross-order dependencies that reflect the specific demands of
the CSP.

4. The outcome is an order orchestration plan that is uniquely generated to match the
fulfillment needs of that order. The fulfillment flow that is produced orchestrates
fulfillment requests to different fulfillment providers (such as fulfillment system
instances or stacks) using preconfigured fulfillment functions, like sync customer,
initiate and fulfill billing, and provision order. OSM Order-to-Activate cartridges
provide out of the box ready-to-use automatic integration to Oracle AIA web
services. When the BRM pre-built integration option is in use, it takes the billing
related requests (Sync Customer, Initiate and Fulfill Billing) made by OSM in the
central order management role to Oracle AIA, from Oracle AIA to BRM. The Sync
Customer Oracle AIA process integration also uses the Siebel CRM pre-built
integration option to get customer account details.

5. OSM in the central order management role manages Order Lifecycle Management
(OLM) events. For cancel and revision requests, OSM generates and executes
compensation plans to efficiently match a change. OLM manages order data and
status updates, and order fallout.

6. Throughout the fulfillment process, OSM in the central order management role
maps fulfillment function responses to common statuses, which are then
aggregated into order line statuses and order header status values. The status
management capability updates Siebel CRM with relevant customer status and
milestone values. OSM updates Siebel CRM when order lines reach their
point-of-no-return (PoNR) to prevent the submission of new revisions. It also
updates Siebel CRM with any enrichment to order lines that may have occurred
during fulfillment. Errors may occur for many reasons. Oracle AIA reports such
errors to OSM for fallout management. Additionally, validation logic in OSM may
raise fallout incidents.

7. OSM detects, reports, and resolves order fulfillment fallout incidents such as
system, validation, and fulfillment errors. The Oracle approach creates trouble
tickets in Siebel CRM to take advantage of the rich notification, reporting, and
management capabilities of Siebel CRM.

The following are the steps for the functional flow of the Order-to-Activate business
process for orders coming from Oracle CPQ Cloud:

1. A customer order is captured in Oracle CPQ Cloud. After an order capture is
complete and the order is validated in Oracle CPQ Cloud, the system submits it to
OSM in the central order management role for delivery.

2. Customer orders received in OSM in the central order management role are first
recognized (as Oracle AIA customer orders), mapped to fulfillment patterns, and
enriched with fulfillment metadata.

3. OSM in the central order management role decomposes (and transforms, if the
calculate service order solution option is used) the customer order, dividing it into
suborders, called order components, which have cross-order components,

Overview of the Order-to-Activate Cartridges

Overview of the Order-to-Activate Cartridges 1-3

cross-order lines, and cross-order dependencies that reflect the specific demands of
the CSP.

4. The outcome is an order orchestration plan that is uniquely generated to match the
fulfillment needs of that order. The fulfillment flow that is produced orchestrates
fulfillment requests to different fulfillment providers (such as fulfillment system
instances or stacks) using preconfigured fulfillment functions, like sync customer,
initiate and fulfill billing, and provision order. OSM Order-to-Activate cartridges
provide out of the box ready-to-use automatic integration to Oracle AIA web
services. When the BRM pre-built integration option is in use, it takes the billing
related requests (Sync Customer, Initiate and Fulfill Billing) made by OSM in the
central order management role to Oracle AIA, from Oracle AIA to BRM. The Sync
Customer Oracle AIA process integration also uses the OSM Account Manager
pre-built integration option to get customer account details.

5. OSM in the central order management role manages Order Lifecycle Management
(OLM) events. For cancel and revision requests, OSM generates and executes
compensation plans to efficiently match a change. OLM manages order data and
status updates, and order fallout.

6. Throughout the fulfillment process, OSM in the central order management role
maps fulfillment function responses to common statuses, which are then
aggregated into order line statuses and order header status values. The status
management capability updates Oracle CPQ Cloud with relevant customer status
and milestone values. OSM updates Oracle CPQ Cloud when order lines reach
their point-of-no-return (PoNR) to prevent the submission of new revisions. It also
updates Oracle CPQ Cloud with any enrichment to order lines that may have
occurred during fulfillment. Errors may occur for many reasons. Oracle AIA
reports such errors to OSM for fallout management. Additionally, validation logic
in OSM may raise fallout incidents.

The Order-to-Activate business process is a sub-process within the Order to Cash
business process. The Order to Cash Integration Pack for OSM pre-built integration
provides CSPs deployment and integration accelerators that build on forward-looking
industry methodology and best practices. The Order to Cash Integration Pack for OSM
automates Business Support Systems (BSS) Concept to Launch and BSS
Order-to-Activate processes across Siebel CRM, Oracle CPQ Cloud, OSM, BRM, and
Oracle Product Hub for Communications.

For more information about the Order to Cash business process see Oracle Application
Integration Architecture Oracle Communications Order to Cash Integration Pack
Implementation Guide for Siebel CRM, Oracle Communications Order and Service
Management, and Oracle Communications Billing and Revenue Management in the Oracle
Application Integration Architecture documentation.

Overview of the Order-to-Activate Cartridges
The Order to Cash Integration Pack for OSM solution integrates several Oracle
applications that play particular roles in order processing:

■ Siebel CRM for order capture and trouble ticketing

■ Oracle CPQ Cloud for cloud-based order capture

■ OSM for order processing and service fulfillment

■ Oracle Communications Design Studio for product specification definition
including fulfillment metadata and order line to fulfillment pattern mapping

■ BRM for rating, billing, and revenue management

Overview of the Order-to-Activate Cartridges

1-4 OSM Cartridge Guide for Oracle Application Integration Architecture

■ Oracle AIA Error handling Framework for Fallout management

The order is captured by Siebel CRM or Oracle CPQ Cloud and is sent to OSM (in its
central order management role) for processing. Using the recognition rules and other
entities provided by the OSM cartridges in the Order to Cash Integration Pack for
OSM solution, OSM decomposes the order and dynamically generates an
orchestration plan that is used to manage the fulfillment of the customer's order across
other enterprise systems.

To manage service fulfillment, OSM in the central order management role creates
service orders that it sends to OSM in the service order management role. Depending
on the order, recognition rules can be used again to process the order. Each service
order is decomposed into processes and tasks that handle the order fulfillment.

In the Oracle AIA solution, OSM does not directly interact with billing, CRM, or
Provisioning systems. It interacts with Oracle AIA which in turn uses BRM
Application Business Connector Service (ABCS) for billing and CRM ABCS for Siebel
CRM.

For more details on Oracle AIA, Siebel CRM, Oracle CPQ Cloud and Oracle AIA
interactions, see OSM Concepts and Oracle Application Integration Architecture Oracle
Communications Order to Cash Integration Pack Implementation Guide for Siebel CRM,
Oracle Communications Order and Service Management, and Oracle Communications Billing
and Revenue Management.

Figure 1–1 illustrates the integration between the systems. The integration includes the
following:

■ Customer order submission from Siebel CRM and Oracle CPQ Cloud to OSM and
updates from OSM to Siebel CRM and Oracle CPQ Cloud

■ Siebel CRM or Oracle CPQ Cloud creates or updates customer assets internally in
response to status messages from OSM.

■ Customer data synchronization and order billing from OSM to BRM

■ Service provisioning from OSM central order management to OSM service order
management

■ Trouble ticket logging for fallout from OSM to Siebel CRM

Order-to-Activate Cartridge Solution Options

Overview of the Order-to-Activate Cartridges 1-5

Figure 1–1 Order-to-Activate Cartridges System Interactions Flow

Order-to-Activate Cartridge Solution Options
The Order-to-Activate cartridge solution has two options.

■ Calculate Service Order: This solution option includes conceptual model entities,
the order transformation manager, and Calculate Service Order. It provides access
to the latest improvements in OSM and enhances the functionality of the solution.

OSM Cartridge Types Supporting the Order to Cash Integration Pack for OSM Solution

1-6 OSM Cartridge Guide for Oracle Application Integration Architecture

For more information about the order transformation manager and Calculate
Service Order, see OSM Concepts.

■ Non-Calculate Service Order: This solution option does not include the order
transformation manager or Calculate Service Order. It is like the pre-2.1.0 versions
of the Order-to-Activate cartridges, but it also includes the conceptual model
entities that were not available before.

For more information about the conceptual model, see Design Studio Concepts.

The two options cannot be used together, so you must use the central order
management cartridges and service order management cartridges from the same
option.

OSM Cartridge Types Supporting the Order to Cash Integration Pack for
OSM Solution

There are two categories of cartridges that support the Order to Cash Integration Pack
for OSM solution in OSM: productized cartridges and demonstration cartridges.

Productized cartridges are customized cartridges supplied by Oracle. They support
integration with other applications.

Demonstration cartridges demonstrate the capabilities of OSM and are preconfigured
with fulfillment patterns either in Simple or Typical topologies. See "About Fulfillment
Topologies" for more details on topologies.

Demonstration cartridges complement productized cartridges to provide a working
end-to-end sample set of product specifications and fulfillment patterns. See
"Extending the Cartridges" for more details.

OSM central order management orchestrates the fulfillment of customer orders by
mapping them to the product specifications of the demonstration cartridges.

OSM entities (recognition rules, tasks, roles, decomposition sequences, and others)
play a vital role in the Order to Cash Integration Pack for OSM solution. For more
information on an entity in a cartridge, open the entity in Design Studio and click the
Information icon.

The cartridges are subclassified into central order management cartridges, or service
order management cartridges depending on the fulfillment functions they perform.

Extending the Cartridges
Using Design Studio, OSM enables you to extend the functionality of a productized
cartridge to have required functionality.

You can consider a demonstration cartridge as a starting point to understand the
capabilities it can offer and then plan to extend the productized cartridge according to
your requirements. You can extend a productized cartridge by adding product
specifications, inheriting from existing specifications, fulfillment patterns,
decomposition sequences, and modifying other entities.

See "Extending Order-to-Activate Cartridges" for more information on extending
cartridges.

Example
If you have productized and demonstration cartridges in different namespaces with
corresponding product specification type entities, you can create a customized product

Order Creation in the Order-to-Activate Cartridges

Overview of the Order-to-Activate Cartridges 1-7

specification by modifying the product specification type entity in the demonstration
cartridge and mapping it to the appropriate product specification type entity in the
productized cartridge.

To facilitate this customization, OSM derives the ProductSpec name from the property
ProductSpecMappingProperty of the OrderItemSpecifcation entity and lets you map
it to the appropriate entity in the productized cartridge under the same namespace.

Time Zones in Order-to-Activate Cartridges
OSM supports orders and users in multiple time zones. The time zone used by OSM is
configured on the server at system installation, and is used to time-stamp incoming
and outgoing orders and to schedule work for groups. See OSM Installation Guide for
more details.

When OSM uses Order-to-Activate cartridges, the OSM server accepts and processes
only those orders that have time stamps in the Coordinated Universal Time (UTC) in
the GMT time zone (also called the Z convention). For example, 2010-03-12 08:23Z.

The Order-to-Activate cartridges support only Z convention-based fields, except for
the RequestedDeliveryDateTime field.

The RequestedDeliveryDateTime field on the ProcessSalesOrderFulfillmentEBM
(incoming customer order) is mapped to the web service API's date time field for
initial order creation. This field allows the use of the +/-hh:mm convention along with
the Z convention.

The other Oracle AIA-relevant date and time fields that follow the Z convention are:

■ ActualDeliveryDateTime

■ ExpectedDeliveryDateTime

■ EarliestDeliveryDateTime

■ StartDateTime

■ EndDateTime

■ ServiceUsageStartDateTime

■ PurchaseDate

■ CycleStartDateTime

Order Creation in the Order-to-Activate Cartridges
In the course of processing a customer order that has been received and created by the
Order-to-Activate cartridges, the following additional orders are created automatically,
in this order:

1. CloseCreationFailedTroubleTicketOrder: An order of this type is created when the
customer order is created. It determines whether there are any open trouble tickets
for previous revisions of this order. If it finds any open trouble tickets for the order,
it closes them. This order is then closed automatically.

Note: A namespace is a unique qualifier that logically binds related
entities, cartridges, and specifications. To view the namespace and
other details about an entity, open the entity in Design Studio and
click the Information icon.

Order-to-Activate Emulators

1-8 OSM Cartridge Guide for Oracle Application Integration Architecture

2. ResumePendingInBoundMessage: An order of this type is created when the
customer order transitions to the In Progress state. This order checks to see
whether any messages are waiting for the order that might have been received
when the order was temporarily in a Suspended state. If any such messages are
found, they are rerouted to the normal message queue for the provisioning order.
This order is then closed automatically.

3. CloseCreationFailedTroubleTicketOrder: Another order of this type is created
when a customer order is completed successfully. It determines whether there are
any open trouble tickets for the customer order (for example, if someone has
recovered from fallout manually and not closed the trouble ticket manually). If it
finds any open trouble tickets for the order, it closes them. This order is then
closed automatically.

Order-to-Activate Emulators
Emulators are included with the Order-to-Activate cartridges. These emulators enable
you to perform testing before all of the solution components are connected. An Ant
build file is used to build and deploy emulators, which are enterprise applications
built and deployed into WebLogic for central order management and service order
management. There are different sets of emulators available with the
Order-to-Activate cartridges:

■ The Oracle AIA emulators emulate responses from Oracle AIA when a central
order management cartridge is used in a standalone (without integration with
other applications) environment.

■ The Inventory emulators emulate responses from the Unified Order Management
(UIM) software. These responses are used when service order management is used
without a connection to a live UIM system for inventory requests.

■ The technical order management emulators emulate responses from a technical
order management system, such as responses to activation commands. These
responses are used when service order management is used without a connection
to a live technical order management system.

About Fulfillment Topologies
A fulfillment topology defines the arrangement of various network elements,
processes, systems, software, that are used to perform a complete service. The Order to
Cash Integration Pack for OSM solution comes with three sample fulfillment topology
definitions:

■ Simple fulfillment topology: This topology, available for both versions of the
Order-to-Activate solution, supports a single instance of each fulfillment system.

■ Typical fulfillment topology: This topology supports one Siebel CRM or Oracle
CPQ Cloud system, three BRM system instances, and three provisioning system
instances. See "Order-to-Activate Cartridge Solution Options" for more
information about solution types.

■ Complex fulfillment topology: This topology supports multiple instances of all
fulfillment systems. See "Order-to-Activate Cartridge Solution Options" for more
information about solution types.

You can use the sample fulfillment topologies as examples to for configuring your own
topologies for providing order fulfillment services. You can build your own topologies
depending on the systems and instances required. Generally your fulfillment topology
includes all of the systems that participate in the order capture and order fulfillment.

About Fulfillment Topologies

Overview of the Order-to-Activate Cartridges 1-9

OSM uses fulfillment patterns named Danube and Nile (code names for sample
fulfillment patterns), for Simple and Typical topologies, respectively. These fulfillment
patterns:

■ Match the number of fulfillment system types used in each of the fulfillment
topology scenarios

■ Stay agnostic to the number and domain of fulfillment providers, that is, the
fulfillment patterns is independent of the number of system instances
participating (For instance, even if there are three billing system instances, the
fulfillment pattern for each product specification remains the same)

■ Provide fulfillment pattern variations that collectively provide significant coverage
of requirements

See OSM Concepts for more details on topologies.

Simple Fulfillment Topology
The Simple fulfillment topology uses one Siebel CRM or Oracle CPQ Cloud system,
one BRM system, and one provisioning system in the process of fulfilling an order.

The sample demonstration cartridge adopts the Simple fulfillment topology and
Danube fulfillment pattern in fulfilling an order. That is, in Simple fulfillment
topology, the relationship between Siebel CRM or Oracle CPQ Cloud, BRM, and
central order management is set to support communication using the Danube
fulfillment pattern in fulfilling an order.

The Danube Fulfillment Pattern
The Danube fulfillment pattern is used with the Simple fulfillment topology in the
OSM fulfillment process. Figure 1–2 illustrates a smaller portion of a sample Danube
fulfillment pattern.

Figure 1–2 Danube Fulfillment Pattern

■ The main fulfillment functions in Figure 1–2 are represented in a box and are
indicated by the bold item underlined. The activity name is followed by the target
fulfillment system instance in square brackets. For example,
InitiateBilling[BRM-ALL].

About Fulfillment Topologies

1-10 OSM Cartridge Guide for Oracle Application Integration Architecture

■ The arrows between the fulfillment functions and the fulfillment pattern represent
the dependency for starting the activity at the arrowhead end on the indicated
milestone. For example, COMPLETED.

■ Dependencies are established at the order line level. For readability purposes,
Figure 1–2 combines all dependencies between two order components into a single
arrow.

■ SyncCustomer is sensitive to only the Add(A), Update(U), and Move-Add (MA)
fulfillment functions.

■ The relevant order line item actions indicated in Figure 1–2 are a property of the
fulfillment function and not the fulfillment pattern.

Typical and Complex Fulfillment Topologies
The Typical fulfillment topology uses one Siebel CRM or Oracle CPQ Cloud system,
three BRM system instances, and three provisioning system instances in the process of
fulfilling an order.

The Complex fulfillment topology allows for multiple instances of any external
system.

To fulfill an order in a Typical fulfillment topology, the Nile fulfillment pattern is used.

The Complex topology is similar to the Typical topology, and has one or more instance
of each type of external system, depending on options selected while installing the
Order-to-Activate cartridges.

Note: Milestones track the progress of the order fulfillment process.
You can configure the milestones for each fulfillment pattern in
various topologies. OSM sends the status updates to Siebel CRM or
Oracle CPQ Cloud that include the details of the last reached
milestone for each order line item.

Note: Each customer order line in the incoming customer order has
an action code. Some fulfillment functions process order lines only
with specific action codes.

For example, SyncCustomer processes UPDATE order lines only when
there are significant updates (certain fields have updated values). The
following are some of the action codes:

■ Add: Adds a new instance

■ Update: Updates the current instance with the revised details

■ Move-Add: Adds a new instance after moving existing customer
details to a new location. For example, you can add a new service
to an existing customer after moving its details.

■ Delete: Deletes the current instance

■ Resume: Resumes the current instance

■ Suspend: Suspends the current instance

■ Move-Delete: Deletes an instance as part of moving the existing
customer details.

About Fulfillment Topologies

Overview of the Order-to-Activate Cartridges 1-11

The Nile Fulfillment Pattern
The Nile fulfillment pattern is used with the Typical and Complex fulfillment
topologies in the OSM fulfillment process. The exact systems included depend on the
options selected when installing the Order-to-Activate cartridges. Figure 1–3 depicts a
smaller portion of the actual fulfillment pattern for the Typical topology.

Figure 1–3 Nile Fulfillment Pattern

■ The main fulfillment functions in Figure 1–3 are represented in a box and are
indicated by the bold item underlined. The activity name is followed by the target
fulfillment system instance in brackets. For example,
SyncCustomer[BRM-REZBDB].

■ The arrows between the fulfillment functions and the fulfillment pattern represent
the dependency for starting the activity at the arrowhead end on the indicated
milestone. For example, COMPLETED.

■ Dependencies are established at the order line item level. For readability purposes,
Figure 1–3 combines all dependencies between two order components into a single
arrow.

■ Service Bundle (FulfillBilling processing granularity) is set to WholeItem
FulfillBilling and OSM produces a single invocation in this case.

■ SyncCustomer accepts all line items, and ProvisionOrder accepts all line items
except billing-only line items.

■ SyncCustomer is sensitive to only the Add(A), Update(U), and Move-Add(MA)
fulfillment functions.

■ The relevant order line actions indicated in Figure 1–3 are a property of the
fulfillment function and not the fulfillment pattern.

■ For Initiate - Fulfill billing fulfillment patterns, OSM fulfillment patterns are
required to compute the new and prior values for the Start Cycle Date, Start Usage
Date, and Purchase Date.

About Fulfillment Topologies

1-12 OSM Cartridge Guide for Oracle Application Integration Architecture

2

Performing an Interactive Installation of the Order-to-Activate Components 2-1

2Performing an Interactive Installation of the
Order-to-Activate Components

This chapter contains information about installing the Oracle Communications Order
and Service Management (OSM) Order-to-Activate cartridges in an OSM environment
using the interactive installer. It also provides information about uninstalling the
cartridges.

Cartridge Installation Overview
The Order-to-Activate cartridges are installed into Oracle Communications Design
Studio and deployed from there onto the OSM server. For the cartridges to work
properly, various entities must be created in Oracle WebLogic Server in the server that
contains OSM. An Ant script is provided to create these entities.

The general process for installing the OSM Order-to-Activate cartridges is:

■ Ensure that the system requirements are met. See "System Requirements."

■ Perform the pre-installation tasks, which set up the Design Studio workspace in
Eclipse for the Order-to-Activate cartridges. See "Order-to-Activate Cartridge
Pre-Installation Tasks."

■ Install the Order-to-Activate cartridges. See "Installing the Order-to-Activate
Cartridges." This activity includes:

– Importing the installation cartridge and using it to import the other
Order-to-Activate cartridges

– Configuring the WebLogic server resources, which includes adding users and
setting up communications for OSM

■ If you intend to have two versions of the Order-to-Activate cartridges deployed to
the same instance, you must ensure that the appropriate version handles any new
orders. See "Post-Installation Tasks for Multiple Simultaneous Versions."

■ Build the cartridges and deploy them to the OSM servers. See "Building and
Deploying the Order-to-Activate Cartridges."

■ (Optional) Run one or more test orders to validate that the installation was
successful. See "Testing the Order-to-Activate Cartridges."

System Requirements
To install the Order-to-Activate cartridges successfully, ensure that you have the
following software installed on your local Windows system:

Order-to-Activate Cartridge Pre-Installation Tasks

2-2 OSM Cartridge Guide for Oracle Application Integration Architecture

■ The supported version of WebLogic Server and Application Development
Framework (ADF). (See OSM Installation Guide for more information.)

■ OSM Software Development Kit (SDK) components.

■ Java JDK: Use the version of Java that matches the one being used by the OSM
server. See the discussion of software requirements in OSM Installation Guide.

■ Eclipse with Design Studio plug-ins: See Design Studio Installation Guide for
information about installing Design Studio plug-ins.

You must also have the following installed, either on your local Windows system or on
a remote system:

■ OSM server installed into the supported version of a WebLogic Server domain.

Order-to-Activate Cartridge Compatibility
To install or upgrade the Order-to-Activate cartridges, you must ensure compatibility
between the following:

■ The OSM software version and the Order-to-Activate cartridge version

OSM is compatible with all cartridges developed in the same release or a previous
release, including Order-to-Activate cartridges. For information about updating
Order-to-Activate cartridges from a previous release, see "Updating Prior Versions
of the Cartridges to Work with Newer Versions of OSM."

■ The OSM Order-to-Activate cartridge version and the Oracle Application
Integration Architecture (Oracle AIA) Order to Cash Integration Pack for OSM
version

For Order-to-Activate cartridge compatibility information see Order-to-Activate
Cartridge Product Compatibility Matrix (in the OSM Cartridges for Oracle Application
Integration Architecture section of the OSM documentation) on the Oracle Help
Center website:

http://docs.oracle.com/en/industries/communications/order-service-management/index
.html

Order-to-Activate Cartridge Pre-Installation Tasks
Before you install the Order-to-Activate cartridges, you must set Design Studio
preferences. The preferences settings ensure proper installation of the cartridges and
the correct mapping of applications such as WebLogic Server, Java SDK, and OSM.

To set Design Studio preferences:

1. Start Design Studio.

2. From the Window menu, select Preferences.

The Preferences dialog box is displayed.

3. In the Preferences navigation tree, expand Oracle Design Studio.

4. Select Order and Service Management Preferences.

Note: Be careful to set the Design Studio preferences to the correct
values. If they are set to the incorrect values, you will have to fix the
values and then perform many of the installation steps again.

http://docs.oracle.com/en/industries/communications/order-service-management/index.html
http://docs.oracle.com/en/industries/communications/order-service-management/index.html

Order-to-Activate Cartridge Pre-Installation Tasks

Performing an Interactive Installation of the Order-to-Activate Components 2-3

The Order and Service Management Preferences page includes the Deploy
Properties section in which you can provide home directories for various tools.

5. In the WebLogic Home field, enter or browse to the directory in which WebLogic
Server is installed, for example C:\Oracle Middleware\wlserver.

6. In the Java SDK Home field, enter or browse to the directory in which you have
installed the JDK for the version of Java that matches the version of Java on your
OSM server, for example, C:\Oracle Middleware\Java\jdk180_66.

7. In the OSM SDK Home field, enter or browse to the directory in which you have
installed the OSM SDK, for example, C:\Oracle Communications\OSM7\SDK.

8. Select Inherit significance from order contributors and Inherit keys from order
contributors.

9. Expand Order and Service Management Preferences and select Application
Integration Architecture (AIA) Preferences.

10. In the Oracle Middleware Home field, enter the directory in which you have
installed Oracle Middleware products, for example, C:\Oracle Middleware.

11. In the Preferences navigation tree, expand Java and select Compiler. Ensure that
Compiler compliance level is set to the appropriate value for your version of Java.
For example, if you are using Java 8, set this value to 1.8.

12. Under Java, select Installed JREs.

13. If the Java directory that you entered for Java SDK Home in step 6 is not
displayed, add it and ensure that it is selected, as shown in Figure 2–1.

Figure 2–1 Installed JREs Page (Partial)

Installing the Order-to-Activate Cartridges

2-4 OSM Cartridge Guide for Oracle Application Integration Architecture

14. Click OK.

15. From the Project menu, deselect Build Automatically.

16. If you are using WebLogic in Production mode and have a WebLogic cluster, you
must perform this step. In the domain directory on each computer containing
managed servers for your domain, create the following directories for each
managed server located on that computer:

■ O2A_SAF_managedServerName

■ O2A_UIM_SAF_managedServerName

■ O2A_TOM_SAF_managedServerName

For example, if the current computer contains the first two managed servers,
which are named osm_ms01 and osm_ms02, you would add the following
directories in that domain directory:

■ O2A_SAF_osm_ms01

■ O2A_UIM_SAF_osm_ms01

■ O2A_TOM_SAF_osm_ms01

■ O2A_SAF_osm_ms02

■ O2A_UIM_SAF_osm_ms02

■ O2A_TOM_SAF_osm_ms02

Then, if managed servers osm_ms03 and osm_ms04 were located on another
computer, you would go to the domain directory on that computer and add
directories for osm_ms03 and osm_ms04 there.

Installing the Order-to-Activate Cartridges
This section describes how to install the Order-to-Activate cartridges.

Before installing the Order-to-Activate cartridges, read the following sections:

■ Cartridge Installation Overview

■ System Requirements

■ Order-to-Activate Cartridge Pre-Installation Tasks

Getting the Installation Package
To get the Order-to-Activate installation package:

1. Go to the Oracle software delivery website:

https://edelivery.oracle.com/

2. In the Product field, select Oracle Communications Order and Service
Management Cartridge for Provisioning Fulfillment and select your platform.

3. Download the installer file for the Oracle Communications Order and Service
Management Cartridges for Application Integration Architecture.

4. Unzip the downloaded file into a directory on your Windows system.

The OracleComms_OSM_O2A_CartridgesInstaller_byyyymmdd.zip file is
created.

5. Unzip OracleComms_OSM_O2A_CartridgesInstaller_byyyymmdd.zip.

http://edelivery.oracle.com/

Installing the Order-to-Activate Cartridges

Performing an Interactive Installation of the Order-to-Activate Components 2-5

The OSM.PIP directory containing the OracleComms_OSM_O2A_Install.zip file
is created.

6. Continue with the "Importing the Installation Cartridge and Configuring the
Installation Build File" procedure.

Importing the Installation Cartridge and Configuring the Installation Build File
To import the installation cartridge and configure the installation build file:

1. Start Design Studio.

2. From the Studio menu, select Show Design Perspective.

3. From the Window menu, select Show View, and then select Other.

The Show View window is displayed.

4. Expand Ant and select Ant from below it. Click OK.

The Ant view opens.

5. From the File menu, select Import Studio Project.

The Import Projects dialog box is displayed.

6. Select Select archive file and click Browse.

7. Browse to the OSM.PIP directory and select OracleComms_OSM_O2A_
Install.zip.

8. Click Open.

The OracleComms_OSM_O2A_Install project is displayed and selected in the
Projects field.

9. Click Finish.

The OracleComms_OSM_O2A_Install project is imported.

10. Open the Ant view.

11. Right-click in the Ant view and select Add Buildfiles.

The Buildfile Selection dialog box is displayed.

12. Expand OracleComms_OSM_O2A_Install and select OSM.O2A.Installation.xml.

13. Click OK.

The OSM.O2A.Installation item is displayed in the Ant view.

14. Right-click OSM.O2A.Installation and select Run As.

15. Select Ant Build... (not Ant Build), as shown in Figure 2–2.

Installing the Order-to-Activate Cartridges

2-6 OSM Cartridge Guide for Oracle Application Integration Architecture

Figure 2–2 Run As Menu

The Edit Configuration dialog box is displayed.

16. Click the Build tab and deselect Build before launch.

17. Click the Properties tab and deselect Use global properties as specified in the
Ant runtime preferences.

18. Click the JRE tab and select Run in the same JRE as the Workspace.

19. Click Close and click Yes.

20. Continue with the appropriate procedure to import the cartridges. The
Order-to-Activate cartridge solution has two options: one includes the order
transformation manager and Calculate Service Order. The other option does not
include the order transformation manager or Calculate Service Order. You must
decide which version you want to use before importing any cartridges. See
"Order-to-Activate Cartridge Solution Options" for more information about the
solution types.

■ To use the version of the Order-to-Activate cartridges that include the order
transformation manager and Calculate Service Order, continue with the
"Importing the OSM Order-to-Activate Cartridges for the Calculate Service
Order Solution Option" procedure.

■ To use the version of the Order-to-Activate cartridges that does not include the
order transformation manager and Calculate Service Order, continue with the
"Importing the OSM Order-to-Activate Cartridges for the Solution Option
Without Calculate Service Order" procedure.

Importing the OSM Order-to-Activate Cartridges for the Calculate Service Order
Solution Option

To import the OSM Order-to-Activate cartridges for the Calculate Service Order
solution option:

1. Ensure that Design Studio is running.

Installing the Order-to-Activate Cartridges

Performing an Interactive Installation of the Order-to-Activate Components 2-7

2. In the Ant view, expand OSM.O2A.Installation and double-click import_
Solution.

3. In the first Ant Input Request window, enter y and click OK.

4. In the second Ant Input Request window, do one of the following:

■ To import the central order management cartridges to the current workspace,
enter c and click OK.

■ To import the service order management cartridges to the current workspace,
enter s and click OK.

■ To import both the central order management and service order management
cartridges to the current workspace, enter a and click OK.

The cartridges appropriate for the settings you selected are imported into the
workspace. This may take a few minutes.

5. If you see a message indicating that the Python interpreter is not configured, do
one of the following:

■ If you do not need to use Python for your custom configuration, click Don’t
ask again. You do not need to configure this for the Order-to-Activate
configuration.

■ If you need to use Python for your custom configuration, click Manual config
and configure Python according to your needs and environment.

6. Continue with the "Configuring WebLogic Server Resources" procedure.

Importing the OSM Order-to-Activate Cartridges for the Solution Option Without
Calculate Service Order

To import the OSM Order-to-Activate cartridges for the solution option without
Calculate Service Order:

1. Ensure that Design Studio is running.

2. In the Ant view, expand OSM.O2A.Installation and double-click import_
Solution.

3. In the first Ant Input Request window, enter n and click OK.

4. In the second Ant Input Request window, do one of the following:

■ To import central order management cartridges to the current workspace,
enter c and click OK.

■ To import service order management cartridges to the current workspace,
enter s and click OK.

■ To import both central order management and service order management
cartridges to the current workspace, enter a and click OK.

Note: If you configure central order management and service order
management on different OSM instances, make sure you configure
AIA to use both endpoints appropriately.

Installing the Order-to-Activate Cartridges

2-8 OSM Cartridge Guide for Oracle Application Integration Architecture

5. In the third Ant Input Request window, do one of the following:

■ To import cartridges for the Complex topology, enter c and click OK.

■ To import cartridges for the Typical topology, enter t and click OK.

■ To import cartridges for the Simple topology, enter s and click OK.

The cartridges appropriate for the settings you selected are imported into the
workspace. This may take a few minutes.

6. Continue with the "Configuring WebLogic Server Resources" procedure.

Configuring WebLogic Server Resources
This section describes how to configure the WebLogic Server resources, which also
configures the metadata for the composite cartridge.

To configure the WebLogic Server resources:

1. Ensure that Design Studio is running.

2. Open the Ant view.

3. Find the one row in Table 2–1 that matches whether you want to use calculate
service order; whether your current workspace is for central order management
(COM), service order management (SOM), or both; and your desired topology. For
the cartridge listed in the corresponding "Cartridge containing
SolutionConfig.xml" column of the table:

a. Right-click in the Ant view and select Add Buildfiles.

The Buildfile Selection dialog box is displayed.

b. Expand the appropriate cartridge from Table 2–1 and click on the
SolutionConfig.xml file.

c. Click OK.

Note: If you configure central order management and service order
management on different OSM instances, make sure you configure
AIA to use both endpoints appropriately.

Note: This procedure must be performed on each workspace you are
using for the solution. Because of this, if you have central order
management and service order management in separate workspaces,
you must perform this procedure twice: once for each of these
workspaces.

Table 2–1 Solution Configurations and Corresponding Cartridge Containing SolutionConfig.xml

Using Calculate
Service Order
Option?

Current
Workspace Is for: Topology Cartridge Containing SolutionConfig.xml

Yes COM only All OracleComms_OSM_O2A_COM_CSO_Solution

Yes SOM only All OracleComms_OSM_O2A_SOM_CSO_Solution

Yes COM and SOM All OracleComms_OSM_O2A_COMSOM_CSO_Solution

Installing the Order-to-Activate Cartridges

Performing an Interactive Installation of the Order-to-Activate Components 2-9

The XML file is displayed in the Ant view. The SolutionConfig.xml file is listed as
the name of the cartridge it was added from. For example, if you added the
SolutionConfig.xml file from OracleComms_OSM_O2A_COMSOM_
SimpleSolution, it is listed in the Ant view as OracleComms_OSM_O2A_
COMSOM_SimpleSolution.

4. Configure the build file for the SolutionConfig.xml file you have added:

a. In the Ant view, right-click the name of the cartridge for the
SolutionConfig.xml file and select Run As.

b. Select Ant Build... (not Ant Build).

The Edit Configuration dialog box is displayed.

c. Click the Build tab and deselect Build before launch.

d. Click the Properties tab and deselect Use global properties as specified in the
Ant runtime preferences.

e. Click the JRE tab and select Run in the same JRE as the Workspace.

f. Click Close and click Yes.

g. Right-click the name of the cartridge for the SolutionConfig.xml file and
select Run As again.

h. Select Ant Build... (not Ant Build).

The Edit Configuration dialog box is displayed.

i. Click the Properties tab and set the property values according to Table 2–2.

No COM only Simple OracleComms_OSM_O2A_COM_Simple_NP_Soln

No COM only Typical or
Complex

OracleComms_OSM_O2A_COM_Typical_NP_Soln

No SOM only All OracleComms_OSM_O2A_SOM_NP_Soln

No COM and SOM Simple OracleComms_OSM_O2A_COMSOM_Simple_NP_Soln

No COM and SOM Typical or
Complex

OracleComms_OSM_O2A_COMSOM_Typical_NP_Soln

Note: It is necessary to close and reopen the Edit Configuration
dialog box because after you have deselected the Use global
properties... check box, Eclipse prevents you from changing the
properties until you close and re-open the Edit Configuration dialog
box.

Note: Do not change any properties that are not listed in Table 2–2.

Table 2–1 (Cont.) Solution Configurations and Corresponding Cartridge Containing SolutionConfig.xml

Using Calculate
Service Order
Option?

Current
Workspace Is for: Topology Cartridge Containing SolutionConfig.xml

Installing the Order-to-Activate Cartridges

2-10 OSM Cartridge Guide for Oracle Application Integration Architecture

Table 2–2 Configuration Properties in the Properties Tab

Property Name Description Notes

aia.emulator.serverName Name of the cluster or server within
WebLogic Server to which you want to
deploy the emulators. Set this to one of the
following:

■ If OSM is installed to a cluster, set this
value to the name of the cluster.

■ If OSM is installed to the
administration server, set this to the
name of the administration server.

■ If OSM is installed to a single
managed server, set this value to the
managed server name.

If both central order management and
service order management are in the same
OSM server instance, set this to the name
of the cluster or server for the single OSM
instance.

If central order management and service
order management are in different OSM
server instances, set this to the name of the
cluster or server for central order
management in the central order
management build file or to the name of
the cluster or server for service order
management in the service order
management build file.

Always set this property if you are
installing the Oracle AIA
emulators.

cf.adminServerListenAddress Host name of the system where WebLogic
Server for central order management is
running. If you are in a clustered
environment, set this to the server where
the administration server is located.

Set this if the name of the cartridge
associated with the build file
contains COM or COMSOM.

cf.adminServerListenPort Port on which WebLogic Server for central
order management is listening. For a
clustered environment, set this to the port
on which the administration server is
listening.

Set this if the name of the cartridge
associated with the build file
contains COM or COMSOM.

cf.clusterName Name of the cluster for central order
management, exactly as it is shown in the
WebLogic Server Administration Console.

Set this if the name of the cartridge
associated with the build file
contains COM or COMSOM and
you are in a clustered WebLogic
environment.

cf.userName Name of a user with administrative
privileges on the WebLogic server for
listening on the port specified by
cf.adminServerListenAddress and
cf.adminServerListenPort.

Set this if the name of the cartridge
associated with the build file
contains COM or COMSOM.

lf.adminServerListenAddress Host name of the system where WebLogic
Server for service order management is
running. If you are in a clustered
environment, set this to the server where
the administration server is located.

Set this if the name of the cartridge
associated with the build file
contains SOM.

Installing the Order-to-Activate Cartridges

Performing an Interactive Installation of the Order-to-Activate Components 2-11

j. Click Close and click Yes.

5. In the Ant view, expand the name of the cartridge you are configuring and
double-click the config_All target.

6. The first Ant Input Request window requests the WebLogic administrator user
password. Enter the password for the user you entered in cf.userName or
lf.userName (whichever value you configured for the build file you are running).
Click OK.

7. In the second Ant Input Request window, enter y to use the same password for all
of the users being created or enter n to use a different password for each user.
Click OK.

8. Enter the passwords requested for the Order-to-Activate users by doing the
following.

■ If you entered y in step 7 to use the same passwords for all users, enter the
common password for the Order-to-Activate users and click OK.

■ If you entered n in step 7 to use different passwords for each user, you are
prompted for passwords for the following users: COM user (the username in
the WebLogic Administration Console is osm), COM Order Event user
(osmoe), COM Data Change Event user (osmde), COM Fallout user
(osmfallout), SOM user (osmlf), SOM Order Event user (osmoelf), and SOM
Order Abort user (osmlfaop). Enter the passwords and click OK after each
entry.

After you have entered all passwords, the system creates the users in the
WebLogic domain. This may take a few minutes.

lf.adminServerListenPort Port on which WebLogic Server for service
order management is listening. For a
clustered environment, set this to the port
on which the administration server is
listening.

Set this if the name of the cartridge
associated with the build file
contains SOM.

lf.clusterName Name of the cluster for service order
management, exactly as it is shown in the
WebLogic Server Administration Console.

Set this if the name of the cartridge
associated with the build file
contains SOM and you are in a
clustered WebLogic environment.

lf.userName Name of a user with administrative
privileges on the WebLogic server listening
on the port specified by
lf.adminServerListenAddress and
lf.adminServerListenPort.

Set this if the name of the cartridge
associated with the build file
contains SOM.

Note: Ensure that the passwords you enter meet the security
requirements of your WebLogic Server domain. By default, the
WebLogic server requires passwords of at least eight characters, with
at least one numeric or special character. However, the requirements
for your domain may be different.

Table 2–2 (Cont.) Configuration Properties in the Properties Tab

Property Name Description Notes

Installing the Order-to-Activate Cartridges

2-12 OSM Cartridge Guide for Oracle Application Integration Architecture

9. In the next Ant Input Request window, enter s if you are using a standalone
WebLogic Server environment for OSM or enter c if you are using a clustered
environment for OSM. Click OK.

10. In the next Ant Input Request window, specify whether you intend to connect to
Oracle AIA. Enter d (for development environment) if you do not intend to
connect to Oracle AIA or enter p (for production environment) if you intend to
connect to Oracle AIA. Click OK.

Queues are created in the WebLogic server. This may take several minutes.

11. If you selected d in step 10, in the next Ant Input Request window, enter d to
deploy emulators or enter n to skip deploying the emulators. Click OK and go to
step 13.

Internal changes are implemented. This may take a few minutes.

12. If you selected p in step 10, do the following:

a. In the next Ant Input Request window, do one of the following:

If Oracle AIA is deployed to the administration server, enter the host name
and port of the administration server for Oracle AIA.

If Oracle AIA is deployed to a single managed server, enter the host name and
port of the managed server for Oracle AIA.

If Oracle AIA is deployed to a cluster, enter the host names and ports of all of
the managed servers in the Oracle AIA cluster in the following format:

hostname:port,hostname:port,hostname:port

For example:

server1.host.com:7101,server1.host.com:7201,server2.host.com:7101

b. Click OK.

c. In the next Ant Input Request window, enter the user name that OSM (in the
role you are currently configuring: central order management if the current
build file contains COM or COMSOM, or service order management if the
current build file contains SOM) uses to connect to Oracle AIA, and click OK.
This user name is the one that is used to make the JMS connection to Oracle
AIA.

d. In the next Ant Input Request window, enter the password for the user name
you entered in step c, and click OK.

Note: Although config_All has now created users in the WebLogic
Server domain, it is still possible to cancel config_All at a later point
and rerun it. If config_All finds the users are already present in the
domain, it will skip adding them again and will continue with the rest
of the configuration process.

Note: If you want to change this user name or password later, go
into the WebLogic Server Administration console, access the JMS
Module oms_jms_module, click O2A_RemoteSAFContext, and
modify the user name and password there.

Installing the Order-to-Activate Cartridges

Performing an Interactive Installation of the Order-to-Activate Components 2-13

e. In the next Ant Input Request window, do one of the following to specify the
server to contain the SAF agent for Oracle AIA:

If OSM (in the role you are currently configuring: central order management if
the current build file contains COM or COMSOM, or service order
management if the current build file contains SOM) is deployed to the
administration server, enter the name of the administration server for OSM.

If OSM is deployed to a single managed server, enter the name of the managed
server for OSM.

If OSM is deployed to a cluster, enter the name of the OSM cluster.

Internal changes are implemented. This may take a few minutes.

13. If the name of the cartridge associated with the current build file contains SOM
(but not COMSOM), and you are using the option without calculate service order,
go to step 19.

14. If the name of the cartridge associated with the current build file contains COM or
COMSOM, you are using the option without calculate service order, and you are
using Simple topology, go to step 17.

15. If the name of the cartridge associated with the current build file contains COM or
COMSOM, you are using the option without calculate service order, and you are
using either Typical or Complex topology, do the following:

a. In the next Ant Input Request window, enter t to use Typical topology or enter
c to use Complex topology, and click OK.

b. If you entered t for Typical topology, go to step 17.

c. If you entered c for Complex topology, do one of the following and click OK:

Enter s to use a topology that has multiple billing and provisioning systems
and one each of install and shipping systems.

Enter m to use a topology that has multiple billing, provisioning, install, and
shipping systems.

Enter n to use a topology that has multiple billing, provisioning, and shipping
systems and one install system.

Enter p to use a topology that has multiple billing, provisioning, and install
systems and one shipping system.

d. Go to step 17.

16. If the name of the cartridge associated with the current build file contains COM or
COMSOM and you are using the calculate service order option, do the following:

a. In the next Ant Input Request window, enter s to use Simple topology, enter t
to use Typical topology, or enter c to use Complex topology, and click OK.

b. If you entered s for Simple topology or t for Typical topology, go to step 19.

c. If you entered c for Complex topology, do one of the following in the next Ant
Input Request window and click OK:

Enter s to use a topology that has multiple billing and provisioning systems
and one each of install and shipping systems.

Enter m to use a topology that has multiple billing, provisioning, install, and
shipping systems.

Installing the Order-to-Activate Cartridges

2-14 OSM Cartridge Guide for Oracle Application Integration Architecture

Enter n to use a topology that has multiple billing, provisioning, and shipping
systems and one install system.

Enter p to use a topology that has multiple billing, provisioning, and install
systems and one shipping system.

17. If the name of the cartridge associated with the current build file contains COM
(but not COMSOM), or if you are using the option without calculate service order,
go to step 19.

18. If the name of the cartridge associated with the current build file contains SOM or
COMSOM, and you are using the calculate service order option, do the following.

a. In the next Ant Input Request window, enter s if you are using a standalone
WebLogic Server environment for OSM or enter c if you are using a clustered
environment for OSM. The answer you give here should always be the same
as the answer you gave in step 9, because you are referring to the same OSM
environment. Click OK.

b. In the next Ant Input Request window, do one of the following, and click OK:

Enter l (the lower-case letter L) if you want a development environment
without installing the Oracle Communications Unified Inventory
Management (UIM) (inventory) emulator.

Enter d if you want a development environment and you want to deploy the
UIM emulator.

Enter p (for production environment) if you intend to connect to UIM.

Enter x if the connection to UIM is going to be installed by the Oracle
Communications Rapid Service Design and Order Delivery (RSDOD) installer.

c. In the next Ant Input Request window, enter the name of the UIM application
user. If you intend to connect to a live instance of UIM, use a user name that is
(or will be) also configured as a user for the UIM product (see the UIM
documentation for more information). Click OK.

d. In the next Ant Input Request window, enter the password for the UIM
application user, and click OK.

e. If you selected l, d, or x in step b, go to step j.

f. If you selected p in step b, in the next Ant Input Request window, do one of
the following to specify the server to contain the SAF agent for
UIM/inventory:

If OSM is deployed to the administration server, enter the name of the
administration server for OSM.

Note: In any of the steps below, "OSM" refers to the instance of OSM
related to the buildfile you are configuring: service order management
if the current build file contains SOM, or a combined central order
management and service order management environment if the
current build file contains COMSOM.

Note: If you want to change this user name or password later, use
the available WebLogic Server tools to change the appropriate entry in
the credential store.

Installing the Order-to-Activate Cartridges

Performing an Interactive Installation of the Order-to-Activate Components 2-15

If OSM is deployed to a single managed server, enter the name of the managed
server for OSM.

If OSM is deployed to a cluster, enter the name of the OSM cluster.

g. If you selected p in step b, in the next Ant Input Request window, do one of
the following:

If UIM is deployed to the administration server, enter the host name and port
of the administration server for UIM.

If UIM is deployed to a single managed server, enter the host name and port of
the managed server for UIM.

If UIM is deployed to a cluster, enter the host names and ports of all of the
managed servers in the UIM cluster in the following format:

hostname:port,hostname:port,hostname:port

For example:

server1.host.com:7101,server1.host.com:7201,server2.host.com:7101

h. If you selected p in step b, in the next Ant Input Request window, enter the
user name that OSM uses to connect to UIM, and click OK. This user name is
the one that is used to make the JMS connection to UIM.

i. If you selected p in step b, in the next Ant Input Request window, enter the
password for the user name you entered in step h, and click OK.

j. In the next Ant Input Request window, enter s if you are using a standalone
WebLogic Server environment for OSM or enter c if you are using a clustered
environment for OSM. The answer you give here should always be the same
as the answer you gave in step 9, because you are referring to the same OSM
environment. Click OK.

k. In the next Ant Input Request window, do one of the following, and click OK:

Enter l (the lower-case letter L) if you want a development environment
without installing the technical order management (activation) emulator.

Enter d if you want a development environment and you want to deploy the
technical order management emulator.

Enter p (for production environment) if you intend to connect to the technical
order management system.

Enter x if the connection to technical order management is going to be
installed by the RSDOD installer.

l. In the next Ant Input Request window, enter the name of the technical order
management application user. If you intend to connect to a live instance of a
technical order management system, use a user name that is (or will be) also
configured as a user for the technical order management system. Click OK.

m. In the next Ant Input Request window, enter the password for the technical
order management application user, and click OK.

Note: If you want to change this user name or password later, go
into the WebLogic Server Administration console, access the JMS
Module oms_jms_module, click O2A_UIM_RemoteSAFContext, and
modify the user name and password there.

Installing the Order-to-Activate Cartridges

2-16 OSM Cartridge Guide for Oracle Application Integration Architecture

n. If you selected l, d, or x in step k, go to step 19.

o. If you selected p in step k, in the next Ant Input Request window, do one of
the following to specify the server to contain the SAF agent for technical order
management:

If OSM is deployed to the administration server, enter the name of the
administration server for OSM.

If OSM is deployed to a single managed server, enter the name of the managed
server for OSM.

If OSM is deployed to a cluster, enter the name of the OSM cluster.

p. If you selected p in step k, in the next Ant Input Request window, do one of
the following:

If technical order management is deployed to the administration server, enter
the host name and port of the administration server for technical order
management.

If technical order management is deployed to a single managed server, enter
the host name and port of the managed server for technical order
management.

If technical order management is deployed to a cluster, enter the host names
and ports of all of the managed servers in the technical order management
cluster in the following format:

hostname:port,hostname:port,hostname:port

For example:

server1.host.com:7101,server1.host.com:7201,server2.host.com:7101

q. If you selected p in step k, in the next Ant Input Request window, enter the
user name that OSM uses to connect to technical order management, and click
OK. This user name is the one that is used to make the JMS connection to
technical order management.

r. If you selected p in step k, in the next Ant Input Request window, enter the
password for the user name you entered in step q, and click OK.

19. Wait while the system configures the rest of the WebLogic resources. This may
take a few minutes.

Note: If you want to change this user name or password later, use
the available WebLogic Server tools to change the appropriate entry in
the credential store.

Note: If you want to change this user name or password later, go
into the WebLogic Server Administration console, access the JMS
Module oms_jms_module, click O2A_TOM_RemoteSAFContext,
and modify the user name and password there.

Post-Installation Tasks for Multiple Simultaneous Versions

Performing an Interactive Installation of the Order-to-Activate Components 2-17

20. When the config_All process is finished, shut down any affected WebLogic
domains and restart them.

Post-Installation Tasks for Multiple Simultaneous Versions
If you intend to have multiple versions of the Order-to-Activate cartridges deployed to
the same OSM instance, you must change the relevancy of the recognition rules that
you want to use to handle new orders.

The recognition rules that are provided with the Order-to-Activate cartridges depend
on the type of installation you have chosen. Table 2–3 provides links to more
information about the cartridges containing the provided recognition rules:

You must increase the value of the Relevancy field in all of the recognition rules in the
relevant cartridge for the version of the Order-to-Activate cartridges you wish to use
to process new orders. For more information about the Relevancy field, see the
discussion of the Order Recognition Rule editor in the Design Studio Modeling OSM
Orchestration Help.

Note: There is no further configuration needed for the SAF
communication to work. Some previous versions of the
Order-to-Activate cartridges required further external configuration,
but this is no longer required.

Note: If you have made a mistake setting the Design Studio
preferences and it causes this procedure to fail, the Console view in
Design Studio will display "BUILD FAILED." First, correct the
preferences using the instructions in "Order-to-Activate Cartridge
Pre-Installation Tasks." Next, go to the Properties tab of the Edit
Configuration dialog box, select Use global properties as specified in
the Ant runtime preferences to update the values, and then deselect
Use global properties as specified in the Ant runtime preferences
again. Then, select Clean from the Project menu and clean and build
the OracleComms_OSM_O2A_Install project. Exit and restart Design
Studio, and then begin the procedure for configuring the WebLogic
Server resources again.

Table 2–3 Recognition Rule Cartridges

Cartridge Deployment Configuration

OracleComms_OSM_O2A_COM_Recognition_
Sample

Central-order-management-only OSM instance, with or
without Calculate Service Order

OracleComms_OSM_O2A_COMSOM_CSO_
Recognition

Central order management and service order management on
the same OSM instance, with Calculate Service Order

OracleComms_OSM_O2A_COMSOM_
Recognition_Sample

Central order management and service order management on
the same OSM instance, without Calculate Service Order

OracleComms_OSM_O2A_SOM_CSO_
Recognition

Service-order-management-only OSM instance, with
Calculate Service Order

OracleComms_OSM_O2A_SOM_Recognition_
Sample

Service-order-management-only OSM instance, without
Calculate Service Order

Building and Deploying the Order-to-Activate Cartridges

2-18 OSM Cartridge Guide for Oracle Application Integration Architecture

Building and Deploying the Order-to-Activate Cartridges

To build and deploy the Order-to-Activate cartridges:

1. Start Design Studio.

2. In the Project menu, ensure that Build Automatically is deselected.

3. From the Project menu, select Clean.

The Clean window is displayed.

4. Ensure that Clean all projects, Start a build immediately, and Build the entire
workspace are all selected, and click OK.

5. Ensure that all of the cartridges have built successfully by looking for "BUILD
SUCCESSFUL" in the Console view and ensuring that there are no error markers
for the cartridges in the Problems view.

6. Create a new Studio environment project and a new Studio environment. See the
Design Studio Help for details on creating a Studio Environment project and a
Studio environment.

If you are connecting to a WebLogic Server cluster, use the proxy port in the
connection address in the Studio Environment editor.

7. From the Studio menu, select Show Environment Perspective.

8. Open the Design Studio environment in which the cartridges are to be deployed.

The Cartridge Management section is displayed and shows a list of available
cartridges.

9. Find the one or more rows in Table 2–4 that match whether you want to use
calculate service order; whether your current workspace is for central order
management (COM), service order management (SOM), or both; and your desired
topology. For the cartridge listed in the corresponding "Cartridge to Deploy from
Workspace" column of the table, click Deploy.

If you have central order management and service order management the same
workspace, you should deploy the cartridges for both central order management
and service order management to the same OSM instance. If you have central
order management and service order management in different workspaces, you
can deploy them to either separate OSM instances or the same OSM instance.

Note: The WebLogic Server resources must be configured in the
target environment before you can build and deploy the
Order-to-Activate cartridges. See "Configuring WebLogic Server
Resources."

Note: If you are deploying central order management and service
order management to different OSM server instances, you need two
environment entities: one pointing to the central order management
cluster or standalone server and the other pointing to the service order
management cluster or standalone server.

Testing the Order-to-Activate Cartridges

Performing an Interactive Installation of the Order-to-Activate Components 2-19

When the cartridges have finished deploying, a confirmation dialog box is displayed.

See the Design Studio Help for more details on deploying cartridges.

Testing the Order-to-Activate Cartridges
To test the Order-to-Activate cartridges:

1. Open Design Studio in the Cartridge or Package Explorer view.

2. If you have already connected to the environment with a user other than osm, do
the following:

a. Right-click the cartridge containing the sales orders for your solution:

For the calculate service order solution option: OracleComms_OSM_O2A_
COM_CSO_SalesOrders

For the service option without calculate service order: OracleComms_OSM_
O2A_SalesOrders_NP_Sample

b. Select Submit Test, then select the Studio environment for your central order
management instance, and then select Clear Environment Credentials.

3. Then submit the test order by doing the following:

a. Right-click the cartridge containing the sales orders for your solution:

For the calculate service order solution option: OracleComms_OSM_O2A_
COM_CSO_SalesOrders

For the service option without calculate service order: OracleComms_OSM_
O2A_SalesOrders_NP_Sample

b. Select Submit Test, then select the Studio environment for your central order
management instance, and then select the order that you would like to submit.

The Test Environment Connection dialog box is displayed.

For information about the test orders, see "OracleComms_OSM_O2A_COM_CSO_
SalesOrders" or "OracleComms_OSM_O2A_SalesOrders_NP_Sample."

4. In the User Name field, enter osm.

Table 2–4 Solution Configurations and Corresponding Cartridge to Deploy

Using Calculate
Service Order
Option?

Current
Workspace Is for: Topology Cartridge to Deploy from Workspace

Yes COM only All OracleComms_OSM_O2A_COM_CSO_Solution

Yes SOM only All OracleComms_OSM_O2A_SOM_CSO_Solution

Yes COM and SOM All OracleComms_OSM_O2A_COMSOM_CSO_Solution

No COM only Simple OracleComms_OSM_O2A_COM_Simple_NP_Soln

No COM only Typical or
Complex

OracleComms_OSM_O2A_COM_Typical_NP_Soln

No SOM only All OracleComms_OSM_O2A_SOM_NP_Soln

No COM and SOM Simple OracleComms_OSM_O2A_COMSOM_Simple_NP_Soln

No COM and SOM Typical or
Complex

OracleComms_OSM_O2A_COMSOM_Typical_NP_Soln

Switching Between Live and Emulator Configurations

2-20 OSM Cartridge Guide for Oracle Application Integration Architecture

5. In the Password field, enter the password for the osm user.

If the test is successful, the order is submitted and the OSM Order Management
web client is launched in Design Studio.

6. Log in to the Order Management web client with your OSM user credentials.

The Orchestration plan, order summary, and other details are displayed.

Switching Between Live and Emulator Configurations
If you initially configured your system to connect to emulators and would like to
change to using live configurations, or vice versa, remove the existing queues and
create new queues using the following procedure.

To switch between live and emulator configurations:

1. Start Design Studio with the workspace from which you deployed the
Order-to-Activate cartridges.

2. Open the Ant view.

3. In the Ant view, expand the SolutionConfig.xml build file for your workspace.
The name of the build file will be the name of the cartridge it was added from, as
indicated in Table 2–1.

4. If necessary, configure any build file properties that might have changed since the
cartridges were deployed. For example, a password might have changed. See step
4 in "Configuring WebLogic Server Resources" for more information about
configuring the build file.

5. Double-click the unconfig_Resource target for the build file.

6. In the first Ant Input Request window, enter the password for the WebLogic
administrator user name specified by the cf.userName or lf.userName (whichever
value you configured for the build file you are running) property in the build file
configuration. Click OK.

7. In the second Ant Input Request window, enter s if you are using a standalone
WebLogic Server environment or enter c if you are using a clustered environment.
Click OK.

8. In the next Ant Input Request window, specify whether you intend to connect to
Oracle AIA. Enter d (for development environment) if you do not intend to
connect to Oracle AIA or enter p (for production environment) if you intend to
connect to Oracle AIA. Click OK.

The system removes WebLogic queue configuration. This may take a few minutes.

9. Perform the steps in "Configuring WebLogic Server Resources." When you are
prompted for information about whether you want to use emulators or connect to
a live system, select the options you would like to use going forward. Existing
WebLogic Server users will not be removed or re-created in this process.

Note: The values you enter in this step should be the values that are
currently configured for the solution, not any values you want to use
in the future. The unconfig_Resource target is requesting information
about what it should remove.

Uninstalling Order-to-Activate Components

Performing an Interactive Installation of the Order-to-Activate Components 2-21

Configuring a Workspace Without Configuring WebLogic Server
You can configure a workspace to contain the Order-to-Activate cartridges without
configuring a WebLogic Server domain. You might do this if more than one person
will be using Design Studio with the same instance of OSM. To do this, first follow the
instructions located in these sections:

■ Getting the Installation Package

■ Importing the Installation Cartridge and Configuring the Installation Build File

■ Importing the OSM Order-to-Activate Cartridges for the Calculate Service Order
Solution Option

or

Importing the OSM Order-to-Activate Cartridges for the Solution Option Without
Calculate Service Order

Then, do the following:

1. In the Ant view, expand the name of the cartridge you are configuring and
double-click the config_Metadata_And_ModelVariable target.

■ If you are using the solution option without calculate service order, the target
runs without any prompts and the process is complete.

■ If you are using the calculate service order solution option, continue with the
rest of the steps in this procedure.

2. In the first Ant Input Request window, enter s to use Simple topology, enter t to
use Typical topology, or enter c to use Complex topology, and click OK.

■ If you selected the Simple or Typical topology, the target runs without any
further prompts and the process is complete.

■ If you selected Complex topology, continue with the rest of the steps in this
procedure.

3. If you entered c for Complex topology, do one of the following in the next Ant
Input Request window and click OK:

■ Enter s to use a topology that has multiple billing and provisioning systems
and one each of install and shipping systems.

■ Enter m to use a topology that has multiple billing, provisioning, install, and
shipping systems.

■ Enter n to use a topology that has multiple billing, provisioning, and shipping
systems and one install system.

■ Enter p to use a topology that has multiple billing, provisioning, and install
systems and one shipping system.

The target runs without any further prompts and the process is complete.

Uninstalling Order-to-Activate Components
You can uninstall the Order-to-Activate components that are no longer needed by
undeploying the cartridges and deleting the Oracle AIA emulators.

Uninstalling Order-to-Activate Components

2-22 OSM Cartridge Guide for Oracle Application Integration Architecture

Undeploying Cartridges
You can undeploy an individual cartridge that is not required. See the Design Studio
Modeling OSM Processes Help for information about how to undeploy individual
cartridges.

To undeploy all of the cartridges, undeploy any composite cartridges that you have in
your workspace. The composite cartridges provided as part of the Order-to-Activate
cartridges are listed below.

■ OracleComms_OSM_O2A_COM_CSO_Solution

■ OracleComms_OSM_O2A_COM_SimpleSolution

■ OracleComms_OSM_O2A_COM_TypicalSolution

■ OracleComms_OSM_O2A_COMSOM_SimpleSolution

■ OracleComms_OSM_O2A_COMSOM_TypicalSolution

■ OracleComms_OSM_O2A_SOM_CSO_Solution

■ OracleComms_OSM_O2A_SOM_Solution

Deleting the Oracle AIA Emulator
To delete an Oracle AIA emulator:

1. Ensure that the WebLogic server is running.

2. Open the WebLogic Server Administration Console.

3. Click the Deployments link.

The Summary of Deployments page is displayed.

4. From the Deployments table, select the emulator to delete.

5. Click Stop.

6. Click Delete.

A confirmation dialog box is displayed.

7. Click OK.

Removing the Inventory and Technical Order Management Emulators
To undeploy the inventory and technical order management emulators:

1. Ensure that Design Studio is running and that you are in the workspace that
contains the service order management cartridges.

2. In the Ant view, expand the cartridge name and double-click unconfig_inv_tom_
MDBs_Emulators.

The inventory and technical order management queues will be removed and the
inventory and technical order management emulators will be undeployed.

3

Performing a Silent Installation of the Order-to-Activate Cartridges 3-1

3Performing a Silent Installation of the
Order-to-Activate Cartridges

This chapter contains information about installing and deploying the Oracle
Communications Order and Service Management (OSM) Order-to-Activate cartridges
in an OSM environment without running the interactive installers.

Cartridge Installation Overview
The Order-to-Activate cartridges are installed into Oracle Communications Design
Studio and deployed from there onto the OSM server. For the cartridges to work
properly, various entities must be created in Oracle WebLogic Server in the server that
contains OSM. An Ant script is provided to create these entities.

The general process for installing the OSM Order-to-Activate cartridges is:

■ Ensure that the system requirements are met. See "System Requirements."

■ Perform the pre-installation tasks, which set up the environment for running the
silent installation. See "Setting Up the Installation Environment."

■ Configure the build.properties file. See "Configuring the build.properties File."

■ Build the cartridges and deploy them to the OSM servers. See "Performing the
Silent Installation."

■ (Optional) Run one or more test orders to validate that the installation was
successful. See "Testing the Order-to-Activate Cartridges."

Directory Placeholders Used in This Chapter
Table 3–1 contains the placeholders that are used in this chapter.

Table 3–1 Placeholders Used in This Chapter

Placeholder Directory Description

MW_home The location where Oracle Fusion Middleware components are installed.
This directory contains the base directory for WebLogic Server and the
oracle_common directory, among other files and directories.

domain_home The directory that contains the configuration for the domain into which
OSM is installed. The default is MW_home/user_
projects/domains/domain_name (where domain_name is the name of the
OSM domain), but it is frequently set to some other directory at
installation.

System Requirements

3-2 OSM Cartridge Guide for Oracle Application Integration Architecture

System Requirements
To install the Order-to-Activate cartridges successfully, ensure that you have the
following software installed on your local Windows system:

■ The supported version of WebLogic Server and Application Development
Framework (ADF). (See OSM Installation Guide for more information.)

■ OSM Software Development Kit (SDK) components.

■ Java JDK: Use the version of Java that matches the one being used by the OSM
server. See the discussion of software requirements in OSM Installation Guide.

■ Apache Ant version 1.8.4 or later. Ensure that you have installed it properly
according to the Ant documentation, including setting or updating the ANT_
HOME, Path, and JAVA_HOME environment variables. The JAVA_HOME
environment variable should point to a JDK, rather than a JRE.

■ Eclipse with Design Studio plug-ins: See Design Studio Installation Guide for
information about installing Design Studio plug-ins. You do not need to run the
GUI for this application during the silent installation, but it must present on your
system so that the silent installer can access the libraries.

You must also have the following installed, either on your local Windows system or on
a remote system:

■ OSM server installed into the supported version of a WebLogic Server domain.

Order-to-Activate Cartridge Compatibility
To install or upgrade the Order-to-Activate cartridges, you must ensure compatibility
between the following:

■ The OSM software version and the Order-to-Activate cartridge version

OSM is compatible with all cartridges developed in the same release or a previous
release, including Order-to-Activate cartridges. For information about updating
Order-to-Activate cartridges from a previous release, see "Updating Prior Versions
of the Cartridges to Work with Newer Versions of OSM."

■ The OSM Order-to-Activate cartridge version and the Oracle Application
Integration Architecture (Oracle AIA) Order to Cash Integration Pack for OSM
version

For Order-to-Activate cartridge compatibility information see Order-to-Activate
Cartridge Product Compatibility Matrix (in the OSM Cartridges for Oracle Application
Integration Architecture section of the OSM documentation) on the Oracle Help
Center website:

http://docs.oracle.com/en/industries/communications/order-service-management/index
.html

silent_install_dir The headlessBuild directory under the directory into which you have
extracted the Order-to-Activate software; for example
C:\O2A\install\headlessBuild.

Table 3–1 (Cont.) Placeholders Used in This Chapter

Placeholder Directory Description

http://docs.oracle.com/en/industries/communications/order-service-management/index.html
http://docs.oracle.com/en/industries/communications/order-service-management/index.html

Setting Up the Installation Environment

Performing a Silent Installation of the Order-to-Activate Cartridges 3-3

Setting Up the Installation Environment
Before you can perform a silent installation of the Order-to-Activate cartridges, you
must set up the installation environment.

Getting the Installation Package
To get the Order-to-Activate installation package:

1. Go to the Oracle software delivery website:

https://edelivery.oracle.com/

2. In the Product field, select Oracle Communications Order and Service
Management Cartridge for Provisioning Fulfillment and select your platform.

3. Download the installer file for the Oracle Communications Order and Service
Management Cartridges for Application Integration Architecture.

4. Unzip the downloaded file into a directory on your Windows system.

The OracleComms_OSM_O2A_CartridgesInstaller_byyyymmdd.zip file is
created.

5. Unzip OracleComms_OSM_O2A_CartridgesInstaller_byyyymmdd.zip.

The headlessBuild directory containing files needed for the silent installation is
created. This directory will be referred to in this chapter as silent_install_dir.

The OSM.PIP directory containing the OracleComms_OSM_O2A_Install.zip file,
which is also used by the silent installation, is also created.

Setting Up Files and Directories
To set up the files and directories:

1. Back up and edit the silent_install_dir/build.properties file.

2. In the file, edit the value of the osm.sdk.home parameter so that it points to your
local copy of the OSM SDK.

You do not need to edit any other properties in the file at this time.

3. Save and close the file.

4. Create the silent_install_dir/security directory.

5. If you are using WebLogic in Production mode and have a WebLogic cluster, you
must perform this step. In the domain directory on each computer containing
managed servers for your domain, create the following directories for each
managed server located on that computer:

■ O2A_SAF_managedServerName

■ O2A_UIM_SAF_managedServerName

■ O2A_TOM_SAF_managedServerName

Note: Use (forward) slashes in the path, rather than the backward
slash usually used in Windows paths.

http://edelivery.oracle.com/

Setting Up the Installation Environment

3-4 OSM Cartridge Guide for Oracle Application Integration Architecture

For example, if the current computer contains the first two managed servers,
which are named osm_ms01 and osm_ms02, you would add the following
directories in that domain directory:

■ O2A_SAF_osm_ms01

■ O2A_UIM_SAF_osm_ms01

■ O2A_TOM_SAF_osm_ms01

■ O2A_SAF_osm_ms02

■ O2A_UIM_SAF_osm_ms02

■ O2A_TOM_SAF_osm_ms02

Then, if managed servers osm_ms03 and osm_ms04 were located on another
computer, you would go to the domain directory on that computer and add
directories for osm_ms03 and osm_ms04 there.

Encrypting the Passwords Used by the Silent Installer
There are several passwords you will need for the silent installer. For security reasons,
these passwords must all be encrypted.

Encrypting the WebLogic Server Administrator Password for Connecting to
WebLogic
This password is always needed when running the silent installer. Configure it by
running WebLogic Scripting Tool (WLST).

To encrypt the WebLogic Server administrator password for connecting to WebLogic:

1. In a command shell on the Windows system, change to the MW_home/oracle_
common/common/bin directory.

2. Run the wlst.cmd command.

3. Enter the following command:

connect(’username’,’password’,’protocol://hostname:port’)

where:

■ username is the name of the WebLogic Server user that belongs to the
Administrators group

■ password is the clear-text password for that user

■ protocol is t3s if connecting to an SSL port on WebLogic Server, otherwise it is
t3.

■ hostname is the IP address or name of the system on which the WebLogic
Server domain for OSM is running

■ port is a port on which the administration server is listening

for example:

connect(’weblogic’,’password1’,’t3://host1.example.com:7001’)

4. Enter the following command:

storeUserConfig(’configFilePath/ConfigFile.secure’,
’keyFilePath/KeyFile.secure’)

Setting Up the Installation Environment

Performing a Silent Installation of the Order-to-Activate Cartridges 3-5

where:

■ configFilePath is the path, formatted for WLST, to store the configuration file.
This path can be any directory to which you have write access, but the files
will eventually need to be located in the silent_install_dir, so you may want to
enter that directory here now.

■ keytFilePath is the path, formatted for WLST, to store the key file. This path can
be any directory to which you have write access, but the files will eventually
need to be located in the silent_install_dir, so you may want to enter that
directory here now.

for example:

storeUserConfig(’C:/O2A/install/headlessBuild/ConfigFile.secure’,
’C:/O2A/install/headlessBuild/KeyFile.secure’)

5. Exit WLST using the following command:

exit()

6. If you saved the files to a different location than silent_install_dir, copy the files to
the silent_install_dir directory now.

Encrypting the WebLogic Server Administrator Password for Use with XML
Import/Export
This password is always needed when running the silent installer. Configure it by
running Ant.

To encrypt the WebLogic Server administrator password for use with XML
Import/Export:

1. In a command shell on the Windows system, change to the silent_install_dir
directory.

2. Enter the following command:

ant create-osm-admin-server-xmlie-encrypted-password-properties-file

3. When prompted to enter the user name, enter the name of a WebLogic Server user
that belongs to the Administrators group.

4. When prompted to enter the password, enter the plain-text password for the user.

5. When prompted to enter the password again, reenter the password for the user.

The script will finish and create the following files in the silent_install_dir/security
directory:

■ osm_admin_server.xmlie.password.salt.store

■ osm_admin_server.xmlie.properties

Encrypting Passwords for the Standard Order-to-Activate User Accounts
These passwords are always needed when running the silent installer. Configure them
by running Ant.

Note: For WLST, use a (forward) slash in the path, rather than the
backward slashes usually used in Windows paths.

Setting Up the Installation Environment

3-6 OSM Cartridge Guide for Oracle Application Integration Architecture

To encrypt the passwords for the standard Order-to-Activate user accounts:

1. In a command shell on the Windows system, change to the silent_install_dir
directory.

2. Enter the following command:

ant create-comsom-encrypted-password-properties-file

3. When prompted, enter and reenter the passwords for the Order-to-Activate users.

The script will finish and create the following files in the silent_install_dir/security
directory:

■ osm.password.salt.store

■ osmde.password.salt.store

■ osmfallout.password.salt.store

■ osmlf.password.salt.store

■ osmlfaop.password.salt.store

■ osmoe.password.salt.store

■ osmoelf.password.salt.store

■ userConfig.properties

Encrypting the UIM Application User Password
The Unified Inventory Manager (UIM) password is needed when running the silent
installer to configure Order-to-Activate for the service order management role.
Configure it by running Ant.

To encrypt the UIM application user password:

1. In a command shell on the Windows system, change to the silent_install_dir
directory.

2. Enter the following command:

ant create-uim-encrypted-password-properties-file

3. When prompted to enter the user name, enter the name of a user defined to the
UIM application. If you intend to use UIM emulators, you can enter any value that
is validly formatted for a user name here.

4. When prompted to enter the password, enter the plain-text password for the user.

5. When prompted to enter the password again, reenter the password for the user.

The script will finish and create the following files in the silent_install_dir/security
directory:

■ uim.password.salt.store

■ uimUserConfig.properties

Encrypting the Technical Order Management Application User Password
This password is needed when running the silent installer to configure
Order-to-Activate for the service order management role. Configure it by running Ant.

To encrypt the technical order management application user password:

Setting Up the Installation Environment

Performing a Silent Installation of the Order-to-Activate Cartridges 3-7

1. In a command shell on the Windows system, change to the silent_install_dir
directory.

2. Enter the following command:

ant create-tom-encrypted-password-properties-file

3. When prompted to enter the user name, enter the name of a user defined to the
technical order management application. If you intend to use technical order
management emulators, you can enter any value that is validly formatted for a
user name here.

4. When prompted to enter the password, enter the plain-text password for the user.

5. When prompted to enter the password again, reenter the password for the user.

The script will finish and create the following files in the silent_install_dir/security
directory:

■ tom.password.salt.store

■ tomUserConfig.properties

Encrypting the Password for Deploying the Cartridges
This password is always needed when running the silent installer. Configure it by
running Ant.

To encrypt the password for deploying the cartridges:

1. In a command shell on the Windows system, change to the silent_install_dir
directory.

2. Enter the following command:

ant create-cmt-encrypted-password-properties-file

3. When prompted to enter the user name, enter the name of a WebLogic Server user
that is a member of the Cartridge_Management_WebService group.

4. When prompted to enter the password, enter the plain-text password for the user.

5. When prompted to enter the password again, reenter the password for the user.

The script will finish and create the following files in the silent_install_dir/security
directory:

■ cmt.admin.password.salt.store

■ cmtUserConfig.properties

Encrypting the Oracle AIA JMS Connection Password
This password is needed when running the silent installer if you are connecting to a
live instance of Oracle AIA. Configure it using the WebLogic Server utility
weblogic.security.Encrypt.

To encrypt the Oracle AIA JMS connection password:

1. On the system where the OSM server is installed (as opposed to the Windows
system on which you are performing the silent installation, if they are different
systems), open a command shell and change to the domain_home/bin directory.

2. Do one of the following:

■ On UNIX or Linux, source the setDomainEnv.sh file, for example:

Setting Up the Installation Environment

3-8 OSM Cartridge Guide for Oracle Application Integration Architecture

. setDomainEnv.sh

■ On Windows, run the setDomainEnv.cmd file.

3. Enter the following command:

java weblogic.security.Encrypt password

where password is the plain-text password for the Oracle AIA JMS connection.

4. Copy the resulting value and save it for later to paste it as the value for the
solution.saf.password parameter in the build.properties file.

Encrypting the UIM JMS Connection Password
This password is needed when running the silent installer to configure
Order-to-Activate for the service order management role if you are using a live
connection to UIM. Configure it using the WebLogic Server utility
weblogic.security.Encrypt.

To encrypt the UIM JMS connection password:

1. On the system where the OSM server is installed (as opposed to the Windows
system on which you are performing the silent installation, if they are different
systems), open a command shell and change to the domain_home/bin directory.

2. Do one of the following:

■ On UNIX or Linux, source the setDomainEnv.sh file, for example:

. setDomainEnv.sh

■ On Windows, run the setDomainEnv.cmd file.

3. Enter the following command:

java weblogic.security.Encrypt password

where password is the plain-text password for the UIM JMS connection.

4. Copy the resulting value and save it for later to paste it as the value for the
solution.uim.saf.password parameter in the build.properties file.

Encrypting the Technical Order Management JMS Connection Password
This password is needed when running the silent installer to configure
Order-to-Activate for the service order management role if you are using a live
connection to technical order management. Configure it using the WebLogic Server
utility weblogic.security.Encrypt.

To encrypt the technical order management JMS connection password:

1. On the system where the OSM server is installed (as opposed to the Windows
system on which you are performing the silent installation, if they are different
systems), open a command shell and change to the domain_home/bin directory.

2. Do one of the following:

■ On UNIX or Linux, source the setDomainEnv.sh file, for example:

. setDomainEnv.sh

■ On Windows, run the setDomainEnv.cmd file.

3. Enter the following command:

Configuring the build.properties File

Performing a Silent Installation of the Order-to-Activate Cartridges 3-9

java weblogic.security.Encrypt password

where password is the plain-text password for the technical order management JMS
connection.

4. Copy the resulting value and save it for later to paste it as the value for the
solution.tom.saf.password parameter in the build.properties file.

Configuring the build.properties File
This section describes how to configure the build.properties file for the
Order-to-Activate cartridge silent installation.

The build.properties file is located in the silent_install_dir directory. Edit the file using
any standard text editor.

Configuring Software Path Settings
The software path settings, listed in Table 3–2, must be configured in all situations
when performing a silent installation.

Note: Every parameter in this file must have a value. In some
situations, you will not need to set a specific value for a particular
parameter, but in that case, leave the sample value provided in the
file. Do not remove the value and leave it blank.

Note: You may want to ensure that the products below are installed
into paths that do not have spaces in them. However, if your path
does contain a space, enclose the whole path in double quotation
marks.

Table 3–2 Software Path Settings in the build.properties File

Parameter Name Sample Value Description

osm.sdk.home C:/OSM/SDK Set this value to the directory on the local system that
contains the OSM SDK.

Note: Use (forward) slashes in the path, rather than
the backward slashes usually used in Windows
paths.

jdk.home "C:/Program
Files/Java/jdk1.7.0_80"

Set this value to the directory on the local system
containing the same release of the JDK that the OSM
server is using.

Note: Use (forward) slashes in the path, rather than
the backward slashes usually used in Windows
paths.

weblogic.home C:/Oracle/Middleware/wlse
rver

Set this value to MW_home/wlserver on the local
system, the base directory for the WebLogic Server
core files.

Note: Use (forward) slashes in the path, rather than
the backward slashes usually used in Windows
paths.

Configuring the build.properties File

3-10 OSM Cartridge Guide for Oracle Application Integration Architecture

Configuring Solution Import Settings
The solution import settings, listed in Table 3–3, must be configured in all situations
when performing a silent installation.

oracle.middleware.home C:/Oracle/Middleware Set this value to MW_home on the local system, the
location where Oracle Fusion Middleware
components are installed

Note: Use (forward) slashes in the path, rather than
the backward slashes usually used in Windows
paths.

studio.home C:\\Eclipse\\Luna Set this value to the location of an instance on the
local system of Eclipse with Design Studio installed
into it.

Note: For this path, use double backward slashes
rather than the single backward slashes usually used
in Windows paths.

ant.home C:/Ant/apache-ant Set this value to the local standalone installation of
Ant.

Note: Use (forward) slashes in the path, rather than
the backward slashes usually used in Windows
paths.

Table 3–3 Solution Import Settings in the build.properties File

Parameter Name Sample Value Description

o2a.cso.type y Set this to one of the following values:

■ y to import the calculate service order solution
option

■ n to import the solution option without calculate
service order

Table 3–2 (Cont.) Software Path Settings in the build.properties File

Parameter Name Sample Value Description

Configuring the build.properties File

Performing a Silent Installation of the Order-to-Activate Cartridges 3-11

Configuring WebLogic Server Settings
The WebLogic Server settings, listed in Table 3–4, must be configured in all situations
when performing a silent installation.

o2a.solution.type y.t.a Used for the calculate service order solution only.

If you are using the service option without calculate
service order, the value of this parameter does not
matter, so leave it with the original value set in the
file or set it to any of the values below.

Set this to one of the following values:

■ y.t.a to import both central order management
and service order management

■ y.t.c to import central order management only

■ y.t.s to import service order management only

Note: If you configure central order management and
service order management on different OSM
instances, make sure you configure AIA to use both
endpoints appropriately.

o2a.topology.deployment.
type

c.c Do not change the value of this parameter.

o2a.topology.deployment.
product.type

a.t.n Used for the option without calculate service order
only.

If you are using the calculate service order solution
option, the value of this parameter does not matter,
so leave it with the original value set in the file or set
it to any of the values below.

Set this to one of the following values:

■ a.s.n to import both central order management
and service order management with simple
topology

■ a.t.n to import both central order management
and service order management with typical or
complex topology

■ c.s.n to import central order management only
with simple topology

■ c.t.n to import central order management only
with typical or complex topology

■ s.s.n to import service order management only

Note: If you configure central order management and
service order management on different OSM
instances, make sure you configure AIA to use both
endpoints appropriately.

Table 3–3 (Cont.) Solution Import Settings in the build.properties File

Parameter Name Sample Value Description

Configuring the build.properties File

3-12 OSM Cartridge Guide for Oracle Application Integration Architecture

Configuring Solution Configuration Settings
The solution configuration settings, listed in Table 3–5, must be configured in all
situations when performing a silent installation.

Table 3–4 WebLogic Server Settings in the build.properties File

Parameter Name Sample Value Description

weblogic.admin.user.nam
e

ConfigFile.secure This value refers to a file that is created in the
"Encrypting the WebLogic Server Administrator
Password for Connecting to WebLogic" section.

Set this value to the name of the first file you created
in the storeUserConfig command. This file must be
located in silent_install_dir.

weblogic.admin.user.pass
word

KeyFile.secure This value refers to a file that is created in the
"Encrypting the WebLogic Server Administrator
Password for Connecting to WebLogic" section.

Set this value to the name of the second file you
created in the storeUserConfig command. This file
must be located in silent_install_dir.

weblogic.admin.server.ho
st

host1.example.com Set this value to the host name or IP address of the
WebLogic Server on which you want to create
WebLogic Server resources. If OSM is deployed to a
cluster, use the server on which the administration
server is located.

weblogic.admin.server.po
rt

7001 Set this value to the port of the WebLogic Server on
which you want to create WebLogic Server resources.
If OSM is deployed to a cluster, use the port on which
the administration server is listening.

osm.server.name cluster1 Do one of the following:

■ If OSM is deployed to a single managed server,
set this to the name of the managed server.

■ If OSM is deployed to a cluster, set this to the
name of the cluster.

■ If OSM is deployed to a single administration
server, set this to the name of the administration
server.

Configuring the build.properties File

Performing a Silent Installation of the Order-to-Activate Cartridges 3-13

Table 3–5 Solution Configuration Settings in the build.properties File

Parameter Name Sample Value Description

o2a.release.version 2.1.0 Do not change the value of this parameter.

o2a.architecture.bridge.ty
pe

s.n Set this to one of the following values:

■ s.n if OSM is in a standalone environment and
you would like to set up local queues for Oracle
AIA (for example, if you are using the Oracle
AIA emulators)

■ c.n if OSM is in a clustered environment and you
would like to set up local queues for Oracle AIA
(for example, if you are using the Oracle AIA
emulators)

■ s.s if OSM is in a standalone environment and
you would like to set up a Store-and-forward
(SAF) agent to connect to a live Oracle AIA
instance

■ c.s if OSM is in a clustered environment and you
would like to set up a SAF agent to connect to a
live Oracle AIA instance

o2a.deploy.emulators.mod
e

d Set this to one of the following values:

■ d to deploy the Oracle AIA emulators

■ n not to deploy the Oracle AIA emulators

topology.type c If you are using the service option without calculate
service order, the value of this parameter does not
matter, so leave it with the original value set in the
file or set it to any of the values below.

If you are using the calculate service order solution
option, set this to one of the following values:

■ s to configure the solution to use the simple
topology

■ t to configure the solution to use the typical
topology

■ c to configure the solution to use the complex
topology

complex.topology.options x Set this to one of the following values:

■ x if you are using the service option without
calculate service order. Also set the value to x if
you are using the calculate service order solution
option and you have entered s or t for the
topology.type parameter.

■ s to use a topology that has multiple billing and
provisioning systems and one each of install and
shipping systems

■ m to use a topology that has multiple billing,
provisioning, install, and shipping systems

■ n to use a topology that has multiple billing,
provisioning, and shipping systems and one
install system

■ p to use a topology that has multiple billing,
provisioning, and install systems and one
shipping system

Configuring the build.properties File

3-14 OSM Cartridge Guide for Oracle Application Integration Architecture

osm.deployment.server.ho
st

host1.example.com Set this value to the host name or IP address of the
WebLogic Server to which you will deploy the
cartridges. If OSM is deployed to a cluster, use the
server on which the proxy server is located.

osm.deployment.server.po
rt

7001 Set this value to the port of the WebLogic Server to
which you will deploy the cartridges. If OSM is
deployed to a cluster, use the server on which the
proxy server is located.

solution.com.saf.serverUR
Ls

N/A Do not change the value of this parameter.

solution.som.saf.serverUR
Ls

N/A Do not change the value of this parameter.

bea.aia.user N/A Do not change the value of this parameter.

bea.aia.password N/A Do not change the value of this parameter.

bea.aia.host N/A Do not change the value of this parameter.

bea.aia.port N/A Do not change the value of this parameter.

aia.server.name N/A Do not change the value of this parameter.

solution.com.saf.passwor
d

N/A Do not change the value of this parameter.

solution.som.saf.password N/A Do not change the value of this parameter.

solution.com.deployment
Target

cluster1 If you are configuring an environment for service
order management only, do not change the value of
this parameter.

If you are configuring an environment for both
central order management and service order
management or for central order management only,
do one of the following:

■ If OSM is deployed to a single managed server,
set this to the name of the managed server.

■ If OSM is deployed to a cluster, set this to the
name of the cluster.

■ If OSM is deployed to a single administration
server, set this to the name of the administration
server.

solution.som.deployment
Target

cluster2 If you are configuring an environment for both
central order management and service order
management or for central order management only,
do not change the value of this parameter.

If you are configuring an environment for service
order management only, do one of the following:

■ If OSM is deployed to a single managed server,
set this to the name of the managed server.

■ If OSM is deployed to a cluster, set this to the
name of the cluster.

■ If OSM is deployed to a single administration
server, set this to the name of the administration
server.

Table 3–5 (Cont.) Solution Configuration Settings in the build.properties File

Parameter Name Sample Value Description

Configuring the build.properties File

Performing a Silent Installation of the Order-to-Activate Cartridges 3-15

Configuring Oracle AIA Connection Settings
The Oracle AIA connection settings, listed in Table 3–6, must be configured if you
intend to connect to a live instance of Oracle AIA.

Configuring UIM Connection Settings
The UIM connection settings, listed in Table 3–7, must be configured if you intend to
connect to a live instance of UIM and are configuring both central order management
and service order management or service order management only.

Table 3–6 Oracle AIA Connection Settings in the build.properties File

Parameter Name Sample Value Description

solution.saf.userName aiauser Set this value to the name of the user for opening a
JMS connection to Oracle AIA.

solution.saf.password {AES}sw97PfpHI0uCrpGYIX
HDAYivSHo3iBTDX3tslkPR1
xA=

Set this to the value generated in the "Encrypting the
Oracle AIA JMS Connection Password" section.

solution.saf.serverURLs host1.example.com If Oracle AIA is deployed to the administration
server, enter the host name and port of the
administration server for Oracle AIA.

If Oracle AIA is deployed to a single managed server,
enter the host name and port of the managed server
for Oracle AIA.

If Oracle AIA is deployed to a cluster, enter the host
names and ports of all of the managed servers in the
Oracle AIA cluster in the following format:

hostname:port,hostname:port,hostname:port

For example:

server1.host.com:7101,server1.host.com:7201,se
rver2.host.com:7101

Configuring the build.properties File

3-16 OSM Cartridge Guide for Oracle Application Integration Architecture

Configuring Technical Order Management Connection Settings
The technical order management connection settings, listed in Table 3–8, must be
configured if you intend to connect to a live instance of technical order management

Table 3–7 UIM Connection Settings in the build.properties File

Parameter Name Sample Value Description

o2a.som.cso.inv.architectu
re.bridge.type

s.n Note: The first character in this value must match the
first character of the value of
o2a.architecture.bridge.type.

Set this to one of the following values:

■ s.n if OSM is in a standalone environment and
you would like to set up local queues for UIM
(for example, if you are using the UIM emulator)

■ c.n if OSM is in a clustered environment and you
would like to set up local queues for UIM (for
example, if you are using the UIM emulator)

■ s.s if OSM is in a standalone environment and
you would like to set up a SAF agent to connect
to a live UIM instance

■ c.s if OSM is in a clustered environment and you
would like to set up a SAF agent to connect to a
live UIM instance

■ s.x if OSM is in a standalone environment and
you would not like to set up any queues for UIM

■ c.x if OSM is in a clustered environment and you
would not like to set up any queues for UIM

o2a.som.cso.inv.mdb.mod
e

d Set this value to n if
o2a.som.cso.inv.architecture.bridge.type is s.s, c.s,
s.x, or c.x.

If o2a.som.cso.inv.architecture.bridge.type is s.n or
c.n, set to d to deploy the emulators, or set to n if you
want to create the local queues and not deploy the
emulators.

solution.uim.saf.userNam
e

uimuser Set this value to the name of the user for opening a
JMS connection to UIM.

solution.uim.saf.password {AES}sw97PfpHI0uCrpGYIX
HDAYivSHo3iBTDX3tslkPR1
xA=

Set this to the value generated in the "Encrypting the
UIM JMS Connection Password" section.

solution.uim.saf.serverUR
Ls

host1.example.com If UIM is deployed to the administration server, enter
the host name and port of the administration server
for UIM.

If UIM is deployed to a single managed server, enter
the host name and port of the managed server for
UIM.

If UIM is deployed to a cluster, enter the host names
and ports of all of the managed servers in the UIM
cluster in the following format:

hostname:port,hostname:port,hostname:port

For example:

server1.host.com:7101,server1.host.com:7201,se
rver2.host.com:7101

Configuring the build.properties File

Performing a Silent Installation of the Order-to-Activate Cartridges 3-17

and are configuring both central order management and service order management or
service order management only.

Table 3–8 Technical Order Management Connection Settings in the build.properties File

Parameter Name Sample Value Description

o2a.som.cso.tom.architect
ure.bridge.type

s.n Note: The first character in this value must match the
first character of the value of
o2a.architecture.bridge.type.

Set this to one of the following values:

■ s.n if OSM is in a standalone environment and
you would like to set up local queues for
technical order management (for example, if you
are using the technical order management
emulator)

■ c.n if OSM is in a clustered environment and you
would like to set up local queues for technical
order management (for example, if you are using
the technical order management emulator)

■ s.s if OSM is in a standalone environment and
you would like to set up a SAF agent to connect
to a live technical order management instance

■ c.s if OSM is in a clustered environment and you
would like to set up a SAF agent to connect to a
live technical order management instance

■ s.x if OSM is in a standalone environment and
you would not like to set up any queues for
technical order management

■ c.x if OSM is in a clustered environment and you
would not like to set up any queues for technical
order management

o2a.som.cso.tom.mdb.mo
de

d Set this value to n if
o2a.som.cso.tom.architecture.bridge.type is s.s, c.s,
s.x, or c.x.

If o2a.som.cso.tom.architecture.bridge.type is s.n or
c.n, set to d to deploy the emulators, or set to n if you
want to create the local queues and not deploy the
emulators.

Performing the Silent Installation

3-18 OSM Cartridge Guide for Oracle Application Integration Architecture

Performing the Silent Installation
To build and deploy the Order-to-Activate cartridges you run Ant scripts that build
the solution cartridges, configure the WebLogic Server resources, and deploy the
cartridges.

Building the Solution Cartridges
If you have not yet configured the WebLogic Server queues, resources, and users in the
OSM domain, do not perform this procedure, but instead see "Building the Solution
Cartridges and Configuring the WebLogic Server Resources." You build the cartridges
by running Ant.

To build the solution cartridges:

1. In a command shell on the Windows system, change to the silent_install_dir
directory.

2. Enter the following command:

ant headless.build.deploy

The script will finish and create a file in the silent_install_dir/workspace/solution_
cart_name/cartridgeBuild directory, where solution_cart_name is the name of the
composite cartridge corresponding to the settings you have selected. See Table 2–1
for a list of the composite cartridges and the situations to which they apply. The
file that is created is named solution_cart_name.par.

Building the Solution Cartridges and Configuring the WebLogic Server Resources
You must build the solution cartridges and configure the WebLogic Server resources
before you can use the Order-to-Activate cartridges. If you have already configured

solution.tom.saf.userNam
e

tomuser Set this value to the name of the user for opening a
JMS connection to technical order management.

solution.tom.saf.password {AES}sw97PfpHI0uCrpGYIX
HDAYivSHo3iBTDX3tslkPR1
xA=

Set this to the value generated in the "Encrypting the
Technical Order Management JMS Connection
Password" section.

solution.tom.saf.serverUR
Ls

host1.example.com If technical order management is deployed to the
administration server, enter the host name and port
of the administration server for technical order
management.

If technical order management is deployed to a single
managed server, enter the host name and port of the
managed server for technical order management.

If technical order management is deployed to a
cluster, enter the host names and ports of all of the
managed servers in the technical order management
cluster in the following format:

hostname:port,hostname:port,hostname:port

For example:

server1.host.com:7101,server1.host.com:7201,se
rver2.host.com:7101

Table 3–8 (Cont.) Technical Order Management Connection Settings in the build.properties File

Parameter Name Sample Value Description

Uninstalling Order-to-Activate Components

Performing a Silent Installation of the Order-to-Activate Cartridges 3-19

the WebLogic Server queues, resources, and users in the OSM domain, do not perform
this procedure, but instead see "Building the Solution Cartridges." You build the
cartridges and configure the WebLogic Server resources by running Ant.

To build the solution cartridges and configure the WebLogic Server resources:

1. In a command shell on the Windows system, change to the silent_install_dir
directory.

2. Enter the following command:

ant headless.build.resource.deploy

The script will finish after a few minutes and in addition to creating resources in
the WebLogic Server domain, will create a file in the silent_install_
dir/workspace/solution_cart_name/cartridgeBuild directory, where solution_cart_
name is the name of the composite cartridge corresponding to the settings you
have selected. See Table 2–1 for a list of the composite cartridges and the situations
to which they apply. The file that is created is named solution_cart_name.par.

Deploying the Cartridges
You deploy the Order-to-Activate cartridges by running Ant.

To deploy the cartridges:

1. In a command shell on the Windows system, change to the silent_install_dir
directory.

2. Enter the following command:

ant headless.deploy

Testing the Order-to-Activate Cartridges
To test the Order-to-Activate cartridges, you must open Design Studio. For
information about how to do this, see "Testing the Order-to-Activate Cartridges."

Switching Between Live and Emulator Configurations
Using the interactive installer, you can change your configuration between connecting
to emulators and connecting to live systems. For information about how to do this, see
"Switching Between Live and Emulator Configurations."

Configuring a Workspace Without Configuring WebLogic Server
Using the interactive installer, you can configure a workspace to contain the
Order-to-Activate cartridges without configuring a WebLogic Server domain. This
operation cannot be performed silently. For information about how to do this, see
"Configuring a Workspace Without Configuring WebLogic Server."

Uninstalling Order-to-Activate Components
You can uninstall the Order-to-Activate components that are no longer needed by
undeploying the cartridges and deleting the Oracle AIA emulators. For information
about how to do this, see "Uninstalling Order-to-Activate Components."

Uninstalling Order-to-Activate Components

3-20 OSM Cartridge Guide for Oracle Application Integration Architecture

4

Order-to-Activate Cartridge Contents 4-1

4Order-to-Activate Cartridge Contents

This chapter describes the various Order-to-Activate cartridges, their entities, and how
these entities can be extended.

Cartridge Overview
Following is an overview of the cartridges. You should not modify productized
cartridges, but demonstration cartridges are sample cartridges provided so that you
can modify them to meet your needs.

Common Order Management Cartridges
Common order management cartridges contain data and entities that are available in
all solution options and topologies.

Table 4–1 lists and describes the common order management cartridges.

Note: In the Oracle Communications Order to Cash solution, Oracle
Communications Order and Service Management (OSM) does not
directly interact with Oracle Communications Billing and Revenue
Management (BRM), Siebel Customer Relationship Management
(Siebel CRM), or provisioning systems. OSM uses Oracle Application
Integration Architecture (Oracle AIA), which in turn uses BRM
Application Business Connector Service (ABCS) for billing and CRM
ABCS for Siebel CRM.

Table 4–1 Common Order Management Cartridges

Cartridge Name Description

OracleComms_OSM_CommonDataDictionary Productized cartridge. Orchestration Common
ControlData dictionary (core Oracle Communications
Design Studio product cartridge)

OracleComms_OSM_O2A_
AIAEBMDataDictionary

Productized cartridge. This data dictionary cartridge
contains the data schema that defines the data elements
from the Oracle AIA Enterprise Business Message (EBM)
schema.

OracleComms_OSM_O2A_CommonUtility Productized cartridge. This data dictionary cartridge
contains the data schema that defines the data elements
for modeling orchestration entities in OSM.

Cartridge Overview

4-2 OSM Cartridge Guide for Oracle Application Integration Architecture

Central Order Management Cartridges
Central order management cartridges contain the processes for the central order
management functionality and also the Oracle AIA interaction mechanism which in
turn interacts with Siebel CRM, BRM, and OSM in its service order management role.

Some central order management cartridges are common to both the solution option
that uses calculate service order and the solution option that does not. Other cartridges
are specific to one solution option or the other.

Common Central Order Management Cartridges
Table 4–2 lists the central order management cartridges that are used by both the
calculate service order solution option and the service option without calculate service
order.

OracleComms_OSM_O2A_ControlMap Productized cartridge. This cartridge provides testing
utilities including breakpoints, point of no return
disabling, and support for fault simulation.

OracleComms_OSM_O2A_RecognitionFallout Productized cartridge. This cartridge generates Oracle
AIA trouble ticket creation request messages for
unrecognizable customer order messages.

OracleComms_OSM_O2A_SystemAdmin Productized cartridge. This cartridge works in
conjunction with the Inbound Message Recovery
message-driven bean (MDB) to create fallout tasks that
help you recover from inbound message processing
errors.

Table 4–2 Common Central Order Management Cartridges

Cartridge Name Description

OracleComms_OSM_O2A_COM_Base Productized cartridge. This cartridge supports the
orchestration of customer orders from Oracle AIA.

OracleComms_OSM_O2A_COM_
SalesOrderFulfillment

Productized cartridge. This cartridge supports the
communications between central order management and
fulfillment systems.

OracleComms_OSM_O2A_COM_Billing Productized cartridge. This cartridge supports billing
fulfillment functions.

OracleComms_OSM_O2A_COM_Provisioning Productized cartridge. This cartridge supports
provisioning fulfillment functions.

OracleComms_OSM_O2A_COM_Shipping_Sample Demonstration cartridge. This cartridge supports
shipping fulfillment functions.

OracleComms_OSM_O2A_COM_Install_Sample Demonstration cartridge. This cartridge supports
installation fulfillment functions.

OracleComms_OSM_O2A_COM_Recognition_
Sample

Demonstration cartridge. This cartridge recognizes a
customer order from Oracle AIA and triggers the creation
of a COM_SalesOrderFulfillment order. It is used for both
solution options when the workspace contains only
central order management.

Table 4–1 (Cont.) Common Order Management Cartridges

Cartridge Name Description

Cartridge Overview

Order-to-Activate Cartridge Contents 4-3

Central Order Management Cartridges for the Calculate Service Order Solution
Option
Table 4–3 lists and describes the central order management cartridges for the Calculate
Service Order solution option.

Table 4–3 Central Order Management Cartridges for the Calculate Service Order Solution Option

Cartridge Name Description

OracleComms_OSM_O2A_COM_CSO_Base Productized cartridge. This cartridge contains entities, like
orchestration processes, order items, and transformation
sequences, that support the orchestration of orders for the
calculate service order solution option.

OracleComms_OSM_O2A_COM_CSO_
Broadband_Internet_Access_CFS

Demonstration cartridge. This cartridge contains the
mapping rules and order item parameter bindings
associated with the customer facing service for broadband
internet access.

OracleComms_OSM_O2A_COM_CSO_Email_CFS Demonstration cartridge. This cartridge contains the
mapping rules and order item parameter bindings
associated with the customer facing service for email
service.

OracleComms_OSM_O2A_COM_CSO_
FulfillmentPattern

Productized cartridge. This cartridge contains fulfillment
patterns and orchestration dependencies for the calculate
service order solution option.

OracleComms_OSM_O2A_COM_CSO_
FulfillmentStateMap

Productized cartridge. This cartridge contains fulfillment
state maps and transformed order item fulfillment state
composition rule sets specific to the calculate service order
solution option.

OracleComms_OSM_O2A_COM_CSO_Internet_
Media_CFS

Productized cartridge. This cartridge contains the
mapping rules and order item parameter bindings
associated with the customer facing service for Internet
media service.

OracleComms_OSM_O2A_COM_CSO_IP_Fax_CFS Productized cartridge. This cartridge contains the
mapping rules and order item parameter bindings
associated with the customer facing service for IP fax
service.

OracleComms_OSM_O2A_COM_CSO_Model_
Container

Demonstration cartridge. This cartridge defines the
common model projects that contain elements that might
need to be included in the deployment and contains the
transformation manager for the calculate service order
solution option.

OracleComms_OSM_O2A_COM_CSO_
Provisioning

Demonstration cartridge. This cartridge contains order
components for provisioning that are specific to the
calculate service order solution option.

OracleComms_OSM_O2A_COM_CSO_SalesOrders Demonstration cartridge. This cartridge contains sample
customer orders for use with the calculate service order
solution option.

OracleComms_OSM_O2A_COM_CSO_Solution Demonstration composite cartridge. This cartridge
references all cartridges required when the calculate
service order solution option is used and the current
workspace is for central order management only.

OracleComms_OSM_O2A_COM_CSO_Topology Productized cartridge. This cartridge contains
decomposition rules and order components for the
topology you selected when installing the
Order-to-Activate cartridges.

Cartridge Overview

4-4 OSM Cartridge Guide for Oracle Application Integration Architecture

Central Order Management Cartridges for the Solution Option Without Calculate
Service Order
Table 4–4 lists and describes the central order management cartridges for the solution
option without Calculate Service Order.

OracleComms_OSM_O2A_COM_CSO_VoIP_
Access_CFS

Demonstration cartridge. This cartridge contains the
mapping rules and order item parameter bindings
associated with the customer facing service for Voice over
Internet Protocol (VoIP) access.

OracleComms_OSM_O2A_COM_CSO_Web_
Conferencing_CFS

Productized cartridge. This cartridge contains the
mapping rules and order item parameter bindings
associated with the customer facing service for web
conferencing service.

OracleComms_OSM_O2A_COM_
FulfillmentPattern

Productized cartridge. This cartridge contains the base
fulfillment pattern from which other fulfillment patterns
can inherit.

OracleComms_OSM_O2A_COM_
FulfillmentStateMap_Sample

Demonstration cartridge. This cartridge contains
fulfillment state entities used by the solution.

OracleComms_OSM_O2A_COMSOM_CSO_
Recognition

Demonstration cartridge. This cartridge recognizes a
customer order from Oracle AIA and triggers the creation
of a COM_SalesOrderFulfillment order. It is used when
the current workspace includes both central order
management and service order management.

OracleComms_OSM_O2A_COMSOM_CSO_
Solution

Demonstration composite cartridge. This cartridge
references all cartridges required when the calculate
service order solution option is used and the current
workspace is for both central order management and
service order management.

Table 4–4 Central Order Management Cartridges for the Solution Option Without Calculate Service Order

Cartridge Name Description

OracleComms_OSM_O2A_BBVoIP_FP_NP_
Danube_Sample

Demonstration cartridge. This cartridge contains
fulfillment patterns and orchestration dependencies for
the Simple topology.

OracleComms_OSM_O2A_BBVoIP_FP_NP_Nile_
Sample

Demonstration cartridge. This cartridge contains
fulfillment patterns and orchestration dependencies for
the Typical or Complex topologies.

OracleComms_OSM_O2A_COM_NCSO_Base Productized cartridge. This cartridge supports the
orchestration of customer orders from Oracle AIA.

OracleComms_OSM_O2A_COM_NCSO_
Provisioning

Productized cartridge. This cartridge supports
provisioning fulfillment functions.

OracleComms_OSM_O2A_COM_Simple_NP_Soln Demonstration composite cartridge. This cartridge
references all cartridges required for the Simple topology
for central order management.

OracleComms_OSM_O2A_COM_Typical_NP_Soln Demonstration composite cartridge. This cartridge
references all cartridges required for the Typical or
Complex topologies for central order management.

Table 4–3 (Cont.) Central Order Management Cartridges for the Calculate Service Order Solution Option

Cartridge Name Description

Cartridge Overview

Order-to-Activate Cartridge Contents 4-5

Service Order Management Cartridges
Service order management cartridges contain the OSM functionality that handles a
provisioning request as a service order from central order management and completes
the predetermined tasks to fulfill the service order.

Service order management cartridges are specific to either the solution option that uses
calculate service order or the solution option that does not.

Service Order Management Cartridges for the Calculate Service Order Solution
Option
Table 4–5 lists and describes the service order management cartridges for the Calculate
Service Order solution option.

OracleComms_OSM_O2A_COMSOM_
Recognition_Sample

Demonstration cartridge. This cartridge recognizes a
customer order from Oracle AIA and triggers the creation
of a COM_SalesOrderFulfillment order. It is used when
the current workspace includes both central order
management and service order management.

OracleComms_OSM_O2A_COMSOM_Simple_NP_
Soln

Demonstration composite cartridge. This cartridge
references all cartridges required for the Simple topology.
It is used when the current workspace includes both
central order management and service order
management.

OracleComms_OSM_O2A_COMSOM_Typical_
NP_Soln

Demonstration composite cartridge. This cartridge
references all cartridges required for the Typical or
Complex topologies. It is used when the current
workspace includes both central order management and
service order management.

OracleComms_OSM_O2A_FulfillmentPatternMap_
Sample

Demonstration cartridge. This cartridge contains the
mappings between product specifications and fulfillment
patterns.

OracleComms_OSM_O2A_SalesOrders_NP_
Sample

Demonstration cartridge. This cartridge contains sample
customer orders.

OracleComms_OSM_O2A_SimpleTopology_
Sample

Demonstration cartridge. This cartridge contains
decomposition rules and order components for the Simple
topology.

OracleComms_OSM_O2A_TypicalTopology_
Sample

Demonstration cartridge. This cartridge contains
decomposition rules and order components for the
Typical or Complex topology

Note: Danube and Nile are the names for the process fulfillment
patterns in the Simple and Typical topologies, respectively. See "About
Fulfillment Topologies" for more details on topologies.

Table 4–4 (Cont.) Central Order Management Cartridges for the Solution Option Without Calculate Service

Cartridge Name Description

Cartridge Overview

4-6 OSM Cartridge Guide for Oracle Application Integration Architecture

Table 4–5 Service Order Management Cartridges for the Calculate Service Order Solution Option

Cartridge Name Description

OracleComms_OSM_O2A_SOM_CSO_Base Productized cartridge. This cartridge supports the
orchestration of service orders.

OracleComms_OSM_O2A_SOM_CSO_Broadband_
Internet_Access_CFS

Demonstration cartridge. This cartridge contains the order
item parameter bindings associated with the customer
facing service for broadband internet access.

OracleComms_OSM_O2A_SOM_CSO_Common Productized cartridge. This cartridge contains data
elements and fulfillment modes for service order
management with the calculate service order solution
option.

OracleComms_OSM_O2A_SOM_CSO_
CompleteProvisioning

Demonstration cartridge. This cartridge supports
provisioning fulfillment functions for service order
management.

OracleComms_OSM_O2A_SOM_CSO_
DeliverOrder

Demonstration cartridge. This cartridge supports order
delivery fulfillment functions for service order
management.

OracleComms_OSM_O2A_SOM_CSO_
DesignService

Demonstration cartridge. This cartridge supports service
design functions for service order management.

OracleComms_OSM_O2A_SOM_CSO_Email_CFS Demonstration cartridge. This cartridge contains the order
item parameter bindings associated with the customer
facing service for email service.

OracleComms_OSM_O2A_SOM_CSO_
FulfillmentPattern

Productized cartridge. This cartridge contains fulfillment
patterns for service order management.

OracleComms_OSM_O2A_SOM_CSO_
FulfillmentStateMap

Productized cartridge. This cartridge contains fulfillment
state entities for service order management.

OracleComms_OSM_O2A_SOM_CSO_Internet_
Media_CFS

Demonstration cartridge. This cartridge contains the order
item parameter bindings associated with the customer
facing service for Internet media service.

OracleComms_OSM_O2A_SOM_CSO_IP_Fax_CFS Demonstration cartridge. This cartridge contains the order
item parameter bindings associated with the customer
facing service for IP fax service.

OracleComms_OSM_O2A_SOM_CSO_
ModelContainer

Demonstration cartridge. This cartridge defines the
common model projects that contain elements that might
need to be included in the deployment.

OracleComms_OSM_O2A_SOM_CSO_
PlanDelivery

Demonstration cartridge. This cartridge supports delivery
planning functions for service order management

OracleComms_OSM_O2A_SOM_CSO_Recognition Demonstration cartridge. This cartridge recognizes a
service order from central order management and triggers
the creation of a SOM_ProvisionServiceOrderFulfillment
order. Catches all in-bound messages not recognized by
any other provisioning recognition rules.

OracleComms_OSM_O2A_SOM_CSO_Solution Demonstration composite cartridge. This cartridge
references all cartridges required when the calculate
service order solution option is used and the current
workspace is for service order management only.

Cartridge Overview

Order-to-Activate Cartridge Contents 4-7

Service Order Management Cartridges for the Solution Option Without Calculate
Service Order
Table 4–6 lists and describes the service order management cartridges for the solution
option without Calculate Service Order.

Conceptual Model Projects
Conceptual model projects contain the relationships between your commercial
products, the services that they represent, and the resources that are required to
implement the services. These projects are not deployed, but the information in them
that is needed for deployment is deployed with the OracleComms_OSM_O2A_COM_
CSO_Model_Container cartridge.

For more information about the conceptual model, see Design Studio Concepts.

OracleComms_OSM_O2A_SOM_CSO_Topology Productized cartridge. This cartridge contains entities,
such as decomposition rules and order components, for
service order management.

OracleComms_OSM_O2A_SOM_CSO_VoIP_
Access_CFS

Demonstration cartridge. This cartridge contains the order
item parameter bindings associated with the customer
facing service for VoIP access.

OracleComms_OSM_O2A_SOM_CSO_Web_
Conferencing_CFS

Demonstration cartridge. This cartridge contains the order
item parameter bindings associated with the customer
facing service for web conferencing service.

Table 4–6 Service Order Management Cartridges for the Solution Option Without Calculate Service Order

Cartridge Name Description

OracleComms_OSM_O2A_SOM_Base Productized cartridge. This cartridge supports the
orchestration of service orders, including handling status
and data updates from fulfillment requests back to central
order management.

OracleComms_OSM_O2A_SOM_Provisioning Productized cartridge. This cartridge supports
provisioning fulfillment functions in service order
management.

OracleComms_OSM_O2A_SOM_Solution Demonstration composite cartridge. This cartridge
references all cartridges required for service order
management.

OracleComms_OSM_O2A_SOM_Recognition_
Sample

Demonstration cartridge. This cartridge recognizes a
service order from central order management and triggers
the creation of a SOM_ProvisionServiceOrderFulfillment
order. Catches all in-bound messages not recognized by
any other provisioning recognition rules.

OracleComms_OSM_O2A_SomBBVoIP_FP_NP_
Sample

Demonstration cartridge. This cartridge contains
fulfillment patterns, decomposition rules, and order
components for service order management functions.

OracleComms_OSM_O2A_
SomProvisionBroadband_Sample

Demonstration cartridge. This cartridge supports service
orders for broadband services.

OracleComms_OSM_O2A_SomProvisionVoIP_
Sample

Demonstration cartridge. This cartridge supports service
orders for VoIP services.

Table 4–5 (Cont.) Service Order Management Cartridges for the Calculate Service Order Solution Option

Cartridge Name Description

Cartridge Overview

4-8 OSM Cartridge Guide for Oracle Application Integration Architecture

Common Conceptual Model Projects
Table 4–7 lists the conceptual model projects that are present in both central order
management and service order management workspaces.

Conceptual Model Projects for Central Order Management
Table 4–8 lists the conceptual model projects that are only present in workspaces with
central order management installed.

Table 4–7 Common Conceptual Model Projects

Cartridge Name Description

OracleComms_Model_Base Productized cartridge. This cartridge contains entities, like
provider functions and functional areas, that support
conceptual modeling.

OracleComms_Model_BaseCatalog Productized cartridge. This cartridge contains conceptual
model fulfillment patterns.

OracleComms_Model_Common Productized cartridge. This cartridge contains a data
schema with common data element definitions.

OracleComms_Model_O2A_Broadband_Internet_
Access_CFS

Productized cartridge. This cartridge contains the
customer facing services for broadband Internet access.

OracleComms_Model_O2A_Broadband_Internet_
Access_SA

Productized cartridge. This cartridge contains the actions
for broadband Internet access.

OracleComms_Model_O2A_Broadband_Internet_
DataModel

Productized cartridge. This cartridge contains a data
schema for data specific to broadband Internet access.

OracleComms_Model_O2A_Email_CFS Productized cartridge. This cartridge contains the
customer facing services for email.

OracleComms_Model_O2A_Email_DataModel Productized cartridge. This cartridge contains a data
schema for data specific to email.

OracleComms_Model_O2A_Email_SA Productized cartridge. This cartridge contains the actions
for email.

OracleComms_Model_O2A_Internet_Media_CFS Productized cartridge. This cartridge contains the
customer facing services for Internet media.

OracleComms_Model_O2A_Internet_Media_
DataModel

Productized cartridge. This cartridge contains a data
schema for data specific to Internet media.

OracleComms_Model_O2A_Internet_Media_SA Productized cartridge. This cartridge contains the actions
for Internet media.

OracleComms_Model_O2A_VoIP_Access_CFS Productized cartridge. This cartridge contains the
customer facing services for VoIP.

OracleComms_Model_O2A_VoIP_Access_SA Productized cartridge. This cartridge contains the actions
for VoIP.

OracleComms_Model_O2A_VoIP_DataModel Productized cartridge. This cartridge contains a data
schema for data specific to VoIP.

Common Order Management Cartridges

Order-to-Activate Cartridge Contents 4-9

Conceptual Model Projects for Service Order Management
Table 4–9 lists the conceptual model projects that are only present in workspaces with
service order management installed.

Common Order Management Cartridges
The following cartridges provide common data dictionary elements that are used by or
referenced by other Order-to-Activate cartridges.

OracleComms_OSM_CommonDataDictionary
The OracleComms_OSM_CommonDataDictionary cartridge is a productized data
dictionary cartridge. It contains the data schema that defines the data elements for
modeling orchestration entities in OSM.

This cartridge is referenced by many other cartridges, including OracleComms_OSM_
O2A_COM_Base, OracleComms_OSM_O2A_SOM_CSO_Base, and OracleComms_
OSM_O2A_SOM_Base.

OracleComms_OSM_O2A_AIAEBMDataDictionary
The OracleComms_OSM_O2A_AIAEBMDataDictionary cartridge is a productized
data dictionary cartridge that is part of the core OSM product. It contains the data
schema that defines the data elements from the Oracle AIA EBM schema. Cartridges
that must include data elements from Oracle AIA EBM can reuse the elements defined
in this cartridge.

This cartridge is referenced by the OracleComms_OSM_O2A_COM_Base cartridge.

Table 4–8 Conceptual Model Projects for Central Order Management

Cartridge Name Description

OracleComms_Model_O2A_Billing_PS Productized cartridge. This cartridge contains the
domains and products for billing services.

OracleComms_Model_O2A_Broadband_Internet_
PS

Productized cartridge. This cartridge contains the
domains and products for broadband Internet access
services.

OracleComms_Model_O2A_Email_PS Productized cartridge. This cartridge contains the
domains and products for email services.

OracleComms_Model_O2A_Install_PS Productized cartridge. This cartridge contains the
domains and products for installation services.

OracleComms_Model_O2A_Internet_Media_PS Productized cartridge. This cartridge contains the
domains and products for Internet media services.

OracleComms_Model_O2A_VoIP_PS Productized cartridge. This cartridge contains the
domains and products for VoIP services.

Table 4–9 Conceptual Model Projects for Service Order Management

Cartridge Name Description

OracleComms_Model_O2A_SOM_PS Productized cartridge. This cartridge contains the
products for service order management. This cartridge is
only present when the service option without calculate
service order is used.

Common Order Management Cartridges

4-10 OSM Cartridge Guide for Oracle Application Integration Architecture

OracleComms_OSM_O2A_CommonUtility
The OracleComms_OSM_O2A_CommonUtility cartridge is a productized component
cartridge. It contains the data schema that defines the data elements for
Order-to-Activate cartridges. Cartridges that extend Order-to-Activate cartridges can
reuse the elements defined in this cartridge.

This cartridge is referenced by many other cartridges, including OracleComms_OSM_
O2A_COM_Base, OracleComms_OSM_O2A_SOM_CSO_Base, and OracleComms_
OSM_O2A_SOM_Base.

Table 4–10 describes the data schema elements that can be reused when extending
Order-to-Activate cartridges:

Table 4–11 describes the XQuery modules in the cartridge.

Table 4–10 OracleComms_OSM_O2A_CommonUtility Extensible Data Dictionary Elements

Data Dictionary Element Extension

Order Component New fulfillment functions should use this data dictionary element or its
extended type as the base fulfillment function type.

Table 4–11 OracleComms_OSM_O2A_CommonUtility XQuery Modules

XQuery Module Extendable Description

AIAEBMUtilityModule No Provides utilities for manipulating Oracle AIA EBM.

AIAFaultMsgEBMUtilityModule No Provides utilities for handling Oracle AIA fault
messages.

BreakpointControlModule No Provides services related to breakpoint control in
Order-to-Activate. Please refer to the OracleComms_
OSM_O2A_ControlMap cartridge for an extensible
way to control breakpoints.

ComponentDataManagementModule No Manipulates data structures for fulfillment functions.

ExtensionPointModule No Defines XQuery extension points for fulfillment
functions.

ExtensionPointSelector No Sets the order of the fulfillment function’s extension
points based on priority.

FalloutLifecycleModule No Provides services related to message fallout and
trouble ticket tracking.

FalloutSimulationModule No Simulates fallout.

FulfillmentOrderEventModule No Manages the fulfillment request’s events in central
order management and service order management.

FulfillmentOrderLifecycle-Management
Module

No Provides services related to the fulfillment request’s
order lifecycle management.

LogModule No Provides logging facility for Order-to-Activate
cartridges.

OrderComponentMetadataBuilder No Provides an internal framework for data discrepancy
detection.

OrderExtensionPointModule No Provides support for order event extension points.

OrderExtensionPointSelector No Provides support for order event extension point
selection.

Common Order Management Cartridges

Order-to-Activate Cartridge Contents 4-11

OracleComms_OSM_O2A_ControlMap
The OracleComms_OSM_O2A_ControlMap cartridge is a productized cartridge that
provides the ability to:

■ Stop at a breakpoint when OSM executes central order management tasks

■ Disable a point of no return

■ Simulate a fallout scenario

■ Configure the processing granularity of billing fulfillment functions dynamically

■ Manage the frequency of order updates to the upstream system for debugging

To use these functions:

OrderLifecycleModule No Provides services related to the fulfillment request’s
external fulfillment state, milestone tracking, upstream
order status map, and status context calculation.

OSMEBMUtilityModule No Provides utilities for manipulating EBM in central
order management.

OsmWebServiceModule No Provides services for OSM web service requests.

PerspectiveModule No Provides utilities for retrieving historical perspectives.

ProductClassToFulfillmentPatternModul
e

No Provides utilities for order line retrieval for both
fulfillment request and service order.

ProductClassToProductSpec Yes Provides services related to the mapping between
product specifications and fulfillment patterns.

ProvisionOrderLifecycle-ManagementMo
dule

No Provides services related to service order
management-to-fulfillment request lifecycle
management.

ServiceActionCodeModule No Provides services related to service action calculation.

SOMEBMUtilityModule No Provides utilities for manipulating the EBM in service
order management.

SomProductClassToProductSpec Yes Provides services related to the mapping between
product specifications and fulfillment patterns in SOM.

SystemConfigModule No Provides constants and utilities for the calculate service
order solution option.

SystemInteractionModule No Provides services related to message sequencing and
generation and order locking.

TargetMapping No Returns the target system name for a given active
interaction ID during fallout handling.

TargetSystemManagementModule No Provides services related to target system information
such as target system identifier and code.

Topology No Calculates the system topology for the calculate service
order solution option.

TroubleTicket No Provides utilities for trouble ticketing during fallout
handling.

UpdateServiceOrderStatusFunctionsMod
ule

No Provides services to create EBM message for the
service provisioning order to update the service order
management order.

Table 4–11 (Cont.) OracleComms_OSM_O2A_CommonUtility XQuery Modules

XQuery Module Extendable Description

Common Order Management Cartridges

4-12 OSM Cartridge Guide for Oracle Application Integration Architecture

1. Create a control file in XML, using the parameters listed in the following sections.
The same control file can contain more than one control function.

2. Validate your control file against the BFPMap.xsd schema located in
OracleComms_OSM_O2A_ControlMap\resource.

You must validate your control file against the schema because OSM will not
validate control files and report errors during order processing. If the file is not a
valid XML file, the entire file will be ignored by OSM. If a file contains an invalid
element or value, the control function containing the invalid element or value will
be ignored.

3. Put your control file into the OracleComms_OSM_O2A_ControlMap\resource
directory.

4. When you want to use the control file for an order, preface the order number with
the name of the control file inside square brackets and without the .xml extension.
For example, if you have a control file named control001.xml in the
OracleComms_OSM_O2A_ControlMap\resource directory, and you want to use
it with an order numbered VOIP01, send the order in with the orderID
[control001]VOIP01.

Configuring Breakpoints for Central Order Management and for Service Order
Management Without Calculate Service Order
This section applies to configuring breakpoints for central order management for both
the calculate service order solution option and the service option without calculate
service order and configuring breakpoints for service order management for the
solution option without calculate service order. For information about configuring
breakpoints for service order management with the calculate service order solution
option, see "Configuring Breakpoints for Service Order Management with Calculate
Service Order."

If you enable breakpoint control, you can set a breakpoint in the order process to cause
the order to go through a particular manual task or a special automated task before or
after an interaction with an external system. This enables you to do things like check
status and define data.

A breakpoint task for central order management or for service order management for
the solution option without calculate service order is defined by:

■ BreakComponent: This is an order component name; for example,
SyncCustomerFunction

■ ExecutionMode: do, redo, undo, and amend_do

■ Event: Component_PRESTART (before the component has started), only
applicable to FulfillBillingFunction), Component_START (after the component
has started), and Component_COMPLETE (after the component has completed)

■ TargetSystem: ANY, or a particular target system such as BRM-ALL

Example 4–1 contains a control file to configure a breakpoint before
FulfillBillingFunction starts.

Example 4–1 Control File to Configure a Breakpoint in FulfillBillingFunction

<?xml version="1.0" encoding="UTF-8"?>
<oms:ControlMap xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:com:metasolv:oms:xmlapi:1 BFPMap.xsd"
 xmlns="urn:com:metasolv:oms:xmlapi:1"
 xmlns:oms="urn:com:metasolv:oms:xmlapi:1">

Common Order Management Cartridges

Order-to-Activate Cartridge Contents 4-13

 <oms:BreakPointControlMap>
 <oms:BreakComponent>FulfillBillingFunction</oms:BreakComponent>
 <oms:ExecutionMode>do</oms:ExecutionMode>
 <Event>Component_PRESTART</Event>
 <TargetSystem>ANY</TargetSystem>
 </oms:BreakPointControlMap>
</oms:ControlMap>

The valid component names for central order management are:

■ SyncCustomerFunction

■ InitiateBillingFunction

■ ProvisionOrderFunction

■ FulfillBillingFunction

The valid component names for service order management for the solution option
without calculate service order are:

■ SomProvisionOrderFunction

Configuring Breakpoints for Service Order Management with Calculate Service
Order
This section applies to configuring breakpoints for service order management for the
calculate service order solution option. For information about configuring breakpoints
for other situations, see "Configuring Breakpoints for Central Order Management and
for Service Order Management Without Calculate Service Order."

If you enable breakpoint control, you can set a breakpoint in the order process to cause
the order to go through a particular manual task or a special automated task before or
after an interaction with an external system. This enables you to do things like check
status and define data.

A breakpoint task for service order management for the calculate service order
solution option is defined by:

■ BreakComponent: This is an order component name; for example,
DesignServiceFunction

■ ExecutionMode: do, redo, undo, and amend_do

■ Event: The task name in the sub-process of the component

■ TargetSystem: ANY, or a particular target system such as SOM_DeliverySystem

Table 4–12 describes the components and events used for breakpoints for service order
management with the calculate service order option.

Table 4–12 Breakpoint Events for Service Order Management with the Calculate Service
Order Solution Option

Component Name Events

DesignServiceFunction CaptureBITask

ProcessBITask

ApproveBITask

PlanDeliveryFunction IssueBITask

CalculateTechnicalActionsTask

DeliverOrderFunction CreateTechnicalOrderTask

Common Order Management Cartridges

4-14 OSM Cartridge Guide for Oracle Application Integration Architecture

Example 4–2 contains a control file to configure a breakpoint before
FulfillBillingFunction starts.

Example 4–2 Control File to Configure a Breakpoint in DesignServiceFunction

<?xml version="1.0" encoding="UTF-8"?>
<oms:ControlMap xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:com:metasolv:oms:xmlapi:1 BFPMap.xsd"
 xmlns="urn:com:metasolv:oms:xmlapi:1"
 xmlns:oms="urn:com:metasolv:oms:xmlapi:1">
 <oms:BreakPointControlMap>
 <oms:BreakComponent>DesignServiceFunction</oms:BreakComponent>
 <oms:ExecutionMode>do</oms:ExecutionMode>
 <Event>CaptureBITask</Event>
 <TargetSystem>ANY</TargetSystem>
 </oms:BreakPointControlMap>
</oms:ControlMap>

Controlling Point of No Return
During testing, a user may want to disable OSM’s ability to set or check for points of
no return. This allows the user to submit an amendment order successfully in
situations that would not be allowed under normal circumstances.

You can disable point of no return processing either for all order components or
selectively using the following field:

■ PONRComponent: This can contain any of the following

– Order Component Name - For example, SyncCustomerFunction

– ALL - Disable point of no return setting and checking for all order components

– CONFIG - Disable point of no return checking for all order components when
an order amendment is received

Example 4–3 contains a control file that disables point of no return setting and
checking for all order components.

Example 4–3 Control File to Disable Points of No Return

<?xml version="1.0" encoding="UTF-8"?>
<oms:ControlMap xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:com:metasolv:oms:xmlapi:1 BFPMap.xsd"
 xmlns="urn:com:metasolv:oms:xmlapi:1"
 xmlns:oms="urn:com:metasolv:oms:xmlapi:1">
 <oms:PONRControlMap>
 <oms:PONRComponent>ALL</oms:PONRComponent>
 </oms:PONRControlMap>
</oms:ControlMap>

Controlling Fault Simulation
If you are using the Oracle AIA emulators included with the Order-to-Activate
cartridges, you can simulate fallout scenarios using control files.

CompleteProvisioningFunction CompleteBITask

Table 4–12 (Cont.) Breakpoint Events for Service Order Management with the Calculate
Service Order Solution Option

Component Name Events

Common Order Management Cartridges

Order-to-Activate Cartridge Contents 4-15

There are two ways to trigger the emulator to generate a fault response rather than a
successful response:

■ Using the VerbCode field in the EBM

■ Using a control file

Both methods are discussed in the following sections.

Simulating Faults in Central Order Management
To simulate a fault in central order management using the VerbCode field in the EBM,
populate the following XPath location:

ProcessSalesOrderFulfillmentEBM/EBMHeader/VerbCode

Table 4–13 lists the valid values to put in the field and their descriptions.

To create a control file to simulate fault situations in central order management, use
the following parameters:

■ FaultComponent: this is an order component name, for example,
SyncCustomerFunction

■ ExecutionMode: do, redo, undo, and amend_do

■ FaultMode:

– Fault: generate a fault to the AIA error handler

Table 4–13 VerbCode Values for Central Order Management

VerbCode Value Description

SIMULATE_FAIL_SYNCCUST_
FAULT

The SyncCustomer emulator generates a fault to the AIA
error handler.

SIMULATE_FAIL_SYNCCUST_
RESP

The SyncCustomer emulator sends back an invalid
response.

SIMULATE_FAIL_SYNCCUST_
NOTIF

The SyncCustomer emulator sends back a response with a
fault indicator.

SIMULATE_FAIL_INITBILL_
FAULT

The InitiateBilling emulator generates a fault to the AIA
error handler.

SIMULATE_FAIL_INITBILL_
RESP

The InitiateBilling emulator sends back an invalid
response.

SIMULATE_FAIL_INITBILL_
NOTIF

The InitiateBilling emulator sends back a response with a
fault indicator.

SIMULATE_FAIL_FULFILLBILL_
FAULT

The FulfillBilling emulator generates a fault to the AIA
error handler.

SIMULATE_FAIL_FULFILLBILL_
RESP

The FulfillBilling emulator sends back an invalid
response.

SIMULATE_FAIL_FULFILLBILL_
NOTIF

The FulfillBilling emulator sends back a response with a
fault indicator.

SIMULATE_FAIL_PROV_FAULT The ProvisionOrder emulator generates a fault to the AIA
error handler.

SIMULATE_FAIL_PROV_RESP The ProvisionOrder emulator sends back an invalid
response.

SIMULATE_FAIL_PROV_NOTIF The ProvisionOrder emulator sends back a response with
a fault indicator.

Common Order Management Cartridges

4-16 OSM Cartridge Guide for Oracle Application Integration Architecture

– InvalidRESP: send back an invalid response

– FailNotification: send back a response with a fault indicator

Example 4–4 contains a control file that simulates an invalid response for
SyncCustomerFunction.

Example 4–4 Control File to Simulate a Fault in Central Order Management

<?xml version="1.0" encoding="UTF-8"?>
<oms:ControlMap xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:com:metasolv:oms:xmlapi:1 BFPMap.xsd"
 xmlns="urn:com:metasolv:oms:xmlapi:1"
 xmlns:oms="urn:com:metasolv:oms:xmlapi:1">
 <oms:FaultControlMap>
 <oms:FaultComponent>SyncCustomerFunction</oms:FaultComponent>
 <oms:ExecutionMode>do</oms:ExecutionMode>
 <FaultMode>InvalidRESP</FaultMode>
 </oms:FaultControlMap>
</oms:ControlMap>

Simulating Faults in Service Order Management Without Calculate Service Order
To simulate a fault in service order management without the calculate service order
solution option using the VerbCode field in the EBM, populate the following XPath
location:

ProcessSalesOrderFulfillmentEBM/EBMHeader/VerbCode

Table 4–14 lists the valid values to put in the field and their descriptions.

To create a control file to simulate fault situations in service order management
without the calculate service order solution option, use the following parameters:

■ ExecutionMode: do, redo, undo, and amend_do

■ VerbCode: This can contain any of the values in Table 4–14.

Table 4–14 VerbCode Values for Service Order Management Without Calculate Service
Order

VerbCode Value Description

SIMULATE_FAIL_BRD_
SERVICEBUNDLE_FAULT

Service order management generates a fault to the AIA
error handler during broadband service bundle
provisioning.

SIMULATE_FAIL_BRD_
EMAILSERVICEBUNDLE_
FAULT

Service order management generates a fault to the AIA
error handler during broadband email service
provisioning.

SIMULATE_FAIL_BRD_
MEDIASERVICEBUNDLE_
FAULT

Service order management generates a fault to the AIA
error handler during broadband media service
provisioning.

SIMULATE_FAIL_BRD_CPE_
FAULT

Service order management generates a fault to the AIA
error handler during broadband customer premise
equipment provisioning.

SIMULATE_FAIL_VOIP_
SERVICEBUNDLE_FAULT

Service order management generates a fault to the AIA
error handler during VoIP service bundle provisioning.

SIMULATE_FAIL_VOIP_CPE_
FAULT

Service order management generates a fault to the AIA
error handler during VoIP customer premise equipment
provisioning.

Common Order Management Cartridges

Order-to-Activate Cartridge Contents 4-17

Example 4–5 contains a control file that simulates a failure in provisioning broadband
customer premise equipment in execution mode redo.

Example 4–5 Control File to Simulate a Fault in Service Order Management Without
Calculate Service Order

<?xml version="1.0" encoding="UTF-8"?>
<oms:ControlMap xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:com:metasolv:oms:xmlapi:1 BFPMap.xsd"
 xmlns="urn:com:metasolv:oms:xmlapi:1"
 xmlns:oms="urn:com:metasolv:oms:xmlapi:1">
 <oms:LF_FaultControlMap>
 <oms:ExecutionMode>redo</oms:ExecutionMode>
 <VerbCode>SIMULATE_FAIL_BRD_CPE_FAULT</VerbCode>
 </oms:LF_FaultControlMap>
</oms:ControlMap>

Simulating Faults in Service Order Management With Calculate Service Order
To simulate a fault in service order management with the calculate service order
solution option using the VerbCode field in the EBM, populate the following XPath
location:

ProcessSalesOrderFulfillmentEBM/EBMHeader/VerbCode

Table 4–15 lists the valid values to put in the field and their descriptions.

Table 4–15 VerbCode Values for Service Order Management With Calculate Service
Order

VerbCode Value Description

SIMULATE_FAIL_CAPTURE_BI_
RESP

The CaptureBI emulator generates a SOAP fault response
message.

SIMULATE_FAIL_CAPTURE_BI_
NOTIF

The CaptureBI emulator generates a normal response
message with missing mandatory data.

SIMULATE_FAIL_PROCESS_BI_
RESP

The ProcessBI emulator generates a SOAP fault response
message.

SIMULATE_FAIL_PROCESS_BI_
NOTIF

The ProcessBI emulator generates a normal response
message with missing mandatory data.

SIMULATE_FAIL_APPROVE_BI_
RESP

The ApproveBI emulator generates a SOAP fault response
message.

SIMULATE_FAIL_APPROVE_BI_
NOTIF

The ApproveBI emulator generates a normal response
message with missing mandatory data.

SIMULATE_FAIL_ISSUE_BI_
RESP

The IssueBI emulator generates a SOAP fault response
message.

SIMULATE_FAIL_ISSUE_BI_
NOTIF

The IssueBI emulator generates a normal response
message with missing mandatory data.

SIMULATE_FAIL_CALCULATE_
TA_RESP

The CalculateTA emulator generates a SOAP fault
response message.

SIMULATE_FAIL_CALCULATE_
TA_NOTIF

The CalculateTA emulator generates a normal response
message with missing mandatory data.

SIMULATE_FAIL_CREATE_TO_
RESP

The CreateTO emulator generates a SOAP fault response
message.

SIMULATE_FAIL_CREATE_TO_
NOTIF

The CreateTO emulator generates a normal response
message with missing mandatory data.

Common Order Management Cartridges

4-18 OSM Cartridge Guide for Oracle Application Integration Architecture

To create a control file to simulate fault situations in service order management with
the calculate service order solution option, use the following parameters:

■ ExecutionMode: do, redo, undo, and amend_do

■ VerbCode: This can contain any of the values in Table 4–15.

Example 4–6 contains a control file that simulates a failure in provisioning broadband
customer premise equipment in execution mode redo.

Example 4–6 Control File to Simulate a Fault in Service Order Management Without
Calculate Service Order

<?xml version="1.0" encoding="UTF-8"?>
<oms:ControlMap xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:com:metasolv:oms:xmlapi:1 BFPMap.xsd"
 xmlns="urn:com:metasolv:oms:xmlapi:1"
 xmlns:oms="urn:com:metasolv:oms:xmlapi:1">
 <oms:LF_FaultControlMap>
 <oms:ExecutionMode>redo</oms:ExecutionMode>
 <VerbCode>SIMULATE_FAIL_CAPTURE_BI_RESP</VerbCode>
 </oms:LF_FaultControlMap>
</oms:ControlMap>

Controlling Order Updates
In Order-to-Activate, order updates are sent by central order management to upstream
systems at every milestone update on the order, unless the order is in the Canceling
state. The milestones are defined in OracleComms_OSM_O2A_
Configuration\solution-config\ComponentMilestoneMap.xml. You can use a
control file to disable the order updates for one or more specific milestones.

Following are the attributes and elements to use in your control file to disable updates
for a breakpoint:

■ system: OracleComms_OSM_O2A_SystemAdmintarget system name defined in
the <oms:targetSystem> element of the
resources/SolutionConfig/TargetSystemMap.xml file in the Order-to-Activate
composite cartridge.

■ execMode: do, redo, and amend_do

■ ComponentMilestone: COMPONENT-START, COMPONENT-UPDATE, or
COMPONENT-COMPLETE

■ Milestone: Milestone defined by external system such as PROVISION
DESIGNED. This field is optional and only applicable to the
COMPONENT-UPDATE component milestone.

■ UpdateUpstreamSystem: Set this to false to disable the event

Example 4–7 contains a control file that disables the sending of updates for the
PROVISION START milestone.

SIMULATE_FAIL_COMPLETE_
BI_RESP

The CompleteBI emulator generates a SOAP fault
response message.

SIMULATE_FAIL_COMPLETE_
BI_NOTIF

The CompleteBI emulator generates a normal response
message with missing mandatory data.

Table 4–15 (Cont.) VerbCode Values for Service Order Management With Calculate
Service Order

VerbCode Value Description

Common Order Management Cartridges

Order-to-Activate Cartridge Contents 4-19

Example 4–7 Control File to Disable Updates for PROVISION START

<?xml version="1.0" encoding="UTF-8"?>
<oms:ControlMap xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:com:metasolv:oms:xmlapi:1 BFPMap.xsd"
 xmlns="urn:com:metasolv:oms:xmlapi:1"
 xmlns:oms="urn:com:metasolv:oms:xmlapi:1">
 <oms:MilestoneMap system="OSMPROV" systemName="*" execMode="do">
 <oms:ComponentMilestone>COMPONENT-START</oms: ComponentMilestone >
 <oms:Milestone>PROVISION START</oms:Milestone>
 <oms:UpdateUpstreamSystem>false</oms:UpdateUpstreamSystem>
 </oms: MilestoneMap>
</oms:ControlMap>

Controlling Processing Granularity for FulfillBillingFunction
In Order-to-Activate, the granularity decomposition rule for FulfillBillingFunction
uses ServiceBundle granularity by default. If you want to test Order granularity on
FulfillBillingFunction, use a control file.

Following are the elements in the control file to change processing granularity:

■ GranularityFunction: Only FulfillBillingFunction is supported for this element.
Any other value is ignored.

■ Granularity: Only Order and ServiceBundle are supported for this element. Any
other value is ignored.

Example 4–8 contains a control file that changes the processing granularity to Order:

Example 4–8 Control File to Change Processing Granularity

<?xml version="1.0" encoding="UTF-8"?>
<oms:ControlMap xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:com:metasolv:oms:xmlapi:1 BFPMap.xsd"
 xmlns="urn:com:metasolv:oms:xmlapi:1"
 xmlns:oms="urn:com:metasolv:oms:xmlapi:1">
 <oms:GranularityControlMap>
 <oms:GranularityFunction>FulfillBillingFunction</oms:GranularityFunction>
 <oms:Granularity>Order</oms: Granularity>
 </oms:GranularityControlMap>
</oms:ControlMap>

OracleComms_OSM_O2A_RecognitionFallout
The OracleComms_OSM_O2A_RecognitionFallout cartridge is a productized cartridge
that generates Oracle AIA trouble ticket creation request messages for unrecognizable
customer order messages.

Table 4–16 lists entities that are defined in this cartridge.

Table 4–16 OracleComms_OSM_O2A_RecognitionFallout Entities

Entity Name Entity Type Description

ORPFalloutPIPOrder Order The order that is created when an unrecognizable
message is received.

CreationORPFalloutTask Manual Task Creation task that is used to create an
ORPFalloutPIPOrder.

ORPQueryTask Manual Task Query task used by a manual user to view the fallout
order.

Common Order Management Cartridges

4-20 OSM Cartridge Guide for Oracle Application Integration Architecture

Table 4–17 lists XQuery modules defined in this cartridge.

Table 4–18 lists the automation modules (with their associated automated tasks)
defined in this cartridge.

OracleComms_OSM_O2A_SystemAdmin
The OracleComms_OSM_O2A_SystemAdmin cartridge is a productized cartridge that
works in conjunction with the Inbound Message Recovery MDB to create fallout tasks
that help you recover from inbound message processing errors. The OracleComms_
OSM_O2A_SystemAdmin cartridge and Inbound Message Recovery MDB handle
errors caused by the following:

■ Suspended orders (See "Recovering from Inbound Message Errors Due to
Suspended Orders")

ORPFalloutProcessErrorTask Manual Task Task that handles error when creating a fault message
in service order management or when creating a
fulfillment request for the trouble ticketing system.

ORPFalloutProcess Process and
tasks

Fallout process that creates a trouble ticket for Oracle
AIA.

orpfalloutrole Role Role with privileges to create and view fallout orders.

Table 4–17 OracleComms_OSM_O2A_RecognitionFallout XQuery Modules

XQuery Module Extendable Description

CreateErrorFault No Used by service order management to create a fault
notification.

CreateORPFalloutTroubleTicket No Creates a trouble ticket EBM for Oracle AIA indicating
an ORP error.

CreateORPFalloutTroubleTicketResponse No Handles responses from the ORP trouble ticket
request.

DetectORPFalloutHandlingType No Determines the fallout mode depending on whether
this is used in a central order management or service
order management context. For central order
management, the fallout processing requires creation
of a trouble ticket request to the upstream system. For
service order management, fallout processing requires
creation of a fault notification that is sent to the Oracle
AIA error handling queue.

Table 4–18 OracleComms_OSM_O2A_RecognitionFallout Automation Modules

Automation Module Automated Task Description

CreateErrorFaultBean CreateFaultErrorTask Calls the CreateErrorFault XQuery.

CreateORPFalloutTroubleTicke
tRequestBean

CreateORPFalloutTroubleTic
ketTask

Calls the CreateORPFalloutTroubleTicket
XQuery.

ORPTTResponseBean CreateORPFalloutTroubleTic
ketTask

External event receiver to invoke
CreateORPFalloutTroubleTicketResponse
XQuery.

DetectORPFalloutHandlingTy
peBean

DetectORPFalloutHandlingT
ypeTask

Calls the DetectORPFalloutHandlingType
XQuery.

Table 4–16 (Cont.) OracleComms_OSM_O2A_RecognitionFallout Entities

Entity Name Entity Type Description

Common Order Management Cartridges

Order-to-Activate Cartridge Contents 4-21

■ Order-to-Activate resource issues (See "Recovering from Inbound Message Errors
Due to Resource Issues")

Table 4–19 describes the XQuery modules in the cartridge.

How the Inbound Message Recovery MDB Works
The Inbound Message Recovery MDB works with the OracleComms_OSM_O2A_
SystemAdmin cartridge to handle inbound message errors. When the message cannot
be delivered to the response queue due to JMS system errors, the response queue uses
the OSM Integration Pack Fallout Queue. The Inbound Message Recovery MDB listens
to the OSM Integration Pack Fallout Queue and does the following:

1. Routes the message (response) to the OSM InBoundMessageRecoveryQueue
queue.

2. Produces a request to OSM to create the ResumePendingInBoundMessage order
(using the OracleComms_OSM_O2A_SystemAdmin cartridge) by doing the
following:

a. Running a manual task that enables order management personnel to confirm
that resource or XQuery logic errors have been resolved.

This step can be configured to redeliver the inbound message automatically,
by setting the JVM parameter pip.require.ack to NO. The number of
automatic redelivery attempts for inbound messages is configured in the
model variable named IB_MSG_MAX_RETRY in the Order-to-Activate
composite cartridge.

b. Running an automated task that moves the message from the recovery queue
to the response queue.

OSM recognizes the ResumePendingInBoundMessage order, and the OracleComms_
OSM_O2A_SystemAdmin cartridge begins to process.

Recovering from Inbound Message Errors Due to Suspended Orders
The following steps demonstrate how the Inbound Message Recovery MDB and the
OracleComms_OSM_O2A_SystemAdmin cartridge recover from an error scenario
where an inbound message is not processed because its associated order is suspended.

1. OSM sends a message to an external system using an automation task.

2. Before the automation task receives the inbound response message from the
external system, the order associated with the automation task is suspended.

3. OSM receives the response message from the external system.

4. The automation task that receives the inbound response message does the
following:

Table 4–19 OracleComms_OSM_O2A_SystemAdmin XQuery Modules

XQuery Module Extendable Description

InboundMessageHandlerDetection No Utility module for fallout recovery. Used to find out
the handling component type from the response
message based on the EBM type.

InBoundMessageRecovery No Routes the inbound message for recovery to
appropriate target system.

ResumePendingInBoundMessage_
OrderDataRule

No Module used as order data rule when recognizing the
inbound message to create the
ResumePendingInBoundMessage order.

Common Order Management Cartridges

4-22 OSM Cartridge Guide for Oracle Application Integration Architecture

a. Checks the order state while processing the response.

b. If the order state is Suspended, moves the message to the OSM Inbound
Message Recovery Queue (passing required order information such as order
ID and FulfillmentFunction name, etc.).

This logic is implemented in the resource AIAEBMResponse.xqy, which is
located in OracleComms_OSM_O2A_COM_
SalesOrderFulfillmentPIP/resources/ComponentInteraction.

5. When the order state changes from Suspended to In Progress, the order state
change event handler creates the ResumePendingInBoundMessage order (using
the OracleComms_OSM_O2A_SystemAdmin cartridge).

6. The ResumePendingInBoundMessage automation task of the process associated
with the ResumePendingInBoundMessage order moves the original response
message from the OSM Inbound Message Recovery Queue back to the response
queue.

7. The automation task that could not process the inbound message in the response
queue originally (due to its associated order being suspended) processes the
inbound message successfully.

Recovering from Inbound Message Errors Due to Resource Issues
The following steps demonstrate how the Inbound Message Recovery MDB and the
OracleComms_OSM_O2A_SystemAdmin cartridge recover from an error scenario
where an inbound message processing error occurs due to a resource issue such as a
Global Transaction Error (GTX) or an incorrect XQuery script.

1. OSM sends a message to an external system using an automation task and receives
a response back from the external system.

2. The automation task receives the inbound response message in the response queue
but cannot process the message because a resource required to process the
message is currently locked by another task.

For example, the resource could be locked because of a GTX timeout or because of
an error in the logic of an XQuery script.

3. After a few retries, the automation task raises a fallout.

4. The fallout message goes to the OSM Integration Pack Fallout Queue.

5. The Inbound Message Recovery MDB, listening on the OSM Integration Pack
Fallout Queue, moves the response message to the OSM Inbound Message
Recovery Queue.

6. The MDB creates the ResumePendingInBoundMessage order (using the
OracleComms_OSM_O2A_SystemAdmin cartridge), and its process begins to run.

7. The order process assigns a manual task (a fallout or confirmation task) to order
management personnel who manage fallout.

8. The fallout task is displayed on the worklist of the Task web client.

Note: OSM does not raise a fallout notification to inform order
management personnel that a fallout task has been created on the
worklist.

Common Central Order Management Cartridges

Order-to-Activate Cartridge Contents 4-23

9. Order management personnel resolve the resource error. For example, they correct
the XQuery script logic and restart the system.

10. In the worklist, order management personnel click the Confirm button on the task
and (optionally) specify the name of the response queue of the automation task
that could not originally process the inbound message. If the name of the response
queue is not specified, the ResumePendingInBoundMessage automated task uses
the EBM type to detect which queue is the response queue and routes the message
accordingly.

11. After the confirmation task completes, the process in the OracleComms_OSM_
O2A_SystemAdmin cartridge runs the ResumePendingInBoundMessage
automation task, which moves the original response message back to the response
queue.

12. The original automation task that could not process the inbound message in the
response queue is retried, and the message processes successfully.

Common Central Order Management Cartridges
The following cartridges operate in the central order management role, which
coordinates fulfillment functions across the Business Support Systems (BSS) and
Operations Support Systems (OSS) such as Siebel CRM, BRM, and provisioning.

OracleComms_OSM_O2A_COM_Base
The OracleComms_OSM_O2A_COM_Base cartridge is a productized cartridge
supporting the orchestration of customer orders from Oracle AIA. It includes
communication to and from fulfillment providers and handles status and data
updates.

Order Events
When the COM_SalesOrderFulfillment order reaches one of the order events listed in
Table 4–20, it triggers the listed XQuery module to send an order update to the
upstream system.

Processing Granularity Rules
There are four orchestration stages defined in the orchestration sequence to
decompose the order line items. The result of each stage of decomposition is the source
for the next stage of decomposition.

■ In the first stage, the order line items are decomposed by fulfillment function.

■ In the second stage, the order line items are decomposed by fulfillment provider.

■ In the third stage, the order line items are decomposed by granularity rule.

■ In the fourth stage, depending on the fulfillment function process, central order
management will use the fulfillment function process to determine whether to

Table 4–20 OracleComms_OSM_O2A_COM_Base Order Events

Order Event Description

stateChange Calls the OrderStateChangeHandler XQuery module to send an order update to
the Siebel CRM system.

completion Calls the OrderCompletionHandler XQuery module to send the order
completion to the Siebel CRM system.

Common Central Order Management Cartridges

4-24 OSM Cartridge Guide for Oracle Application Integration Architecture

create an executable order component with all of the order line items if a
significant change is detected on any order line item.

Granularity rules provide the configuration for the third stage of decomposition.
During orchestration plan generation at run time, the granularity rule takes as input
the order line items that have already been grouped by fulfillment function and
subdivided by fulfillment provider.

The behavior of granularity rules varies between design time and run time.

For example, during design time, a granularity rule such as ServiceBundleGranularity
or BundleGranularity is selected per fulfillment function by creating one
decomposition rule per fulfillment function for use in the third stage of
decomposition.

During run time, granularity rules group the order line items into one or more
fulfillment requests. Granularity rules group the order line items that are targeted at
the same fulfillment function and are specific to a fulfillment provider.

Table 4–21 lists the processing granularity rules.

Table 4–21 OracleComms_OSM_O2A_COM_Base Processing Granularity Rules

Name Entity Type Description

BundleGranularity Order
Component
Specification

This granularity rule selects:

■ An order line item that represents a bundle along
with bundle components and related order line
items

Nested bundles are considered components of the
root bundle and are processed in the same
fulfillment request. In Siebel CRM, a bundle is
referred to as a Commercial Bundle.

■ Order line items of any other root node on the
order along with their related order line items

OfferGranularity Order
Component
Specification

This granularity rule selects:

■ An order line item that represents an offer along
with offer components and Related order line
items

In Siebel CRM, an offer is referred to as a
promotion.

■ Order line items of any other root node on the
order along with their related order line items

Common Central Order Management Cartridges

Order-to-Activate Cartridge Contents 4-25

Abstract Orchestration Entities
Table 4–22 lists the orchestration entities that are used as base entities for fulfillment
function, fulfillment system, process granularity rule, and fulfillment function
updates.

OrderGranularity Order
Component
Specification

This granularity rule selects all lines targeted at the
same fulfillment function and specific to a fulfillment
provider make a single fulfillment request.

ServiceBundleGranularity Order
Component
Specification

This granularity rule selects:

■ An order line item that represents a service bundle
along with service bundle components and related
order line items

Nested service bundles and their components
make separate fulfillment requests.

■ Order line items of any other root node on the
order along with their related order line items

This granularity rule implements an optimization to
group together offers and non-service billing items into
a single fulfillment request to be fulfilled at the same
time

WholeItemGranularity Order
Component
Specification

This granularity rule selects:

■ An order line item that represents a whole item
along with whole item components and related
order line items

Nested whole items and their components make
separate fulfillment requests.

■ Order line items of any other root node on the
order along with their related order line items

Table 4–22 OracleComms_OSM_O2A_COM_Base Abstract Orchestration Entities

Name Type Description

COM_FulfillmentFunction Order
Component
Specification

This order component specification represents the base
fulfillment function in central order management. All
fulfillment functions, such as SyncCustomerFunction,
should extend from it.

This order component also contains the external
fulfillment state definitions.

COM_FulfillmentGranularity Order
Component
Specification

This order component specification represents the
processing granularity rule used in the orchestration
stage. All processing granularity rules should extend
from it.

COM_FulfillmentSystem Order
Component
Specification

This order component specification represents the base
fulfillment system in central order management. All
fulfillment systems, such as BRM-VOIP, should extend
from it.

COM_FulfillmentSignificantUpdates Order
Component
Specification

This order component specification represents the base
fulfillment function with significant updates in the
fourth orchestration stage.

Table 4–21 (Cont.) OracleComms_OSM_O2A_COM_Base Processing Granularity Rules

Name Entity Type Description

Common Central Order Management Cartridges

4-26 OSM Cartridge Guide for Oracle Application Integration Architecture

Order Lifecycle Manager Configuration
The Order-to-Activate order lifecycle manager is configured with the header values for
the Order Lifecycle Management user interface. It also contains mappings between
Order-to-Activate central order management fulfillment states and standard order
lifecycle manager states.

Table 4–23 displays the mappings that are configured. The high-level fulfillment states
are mapped, which causes the child states to be mapped as well.

XQuery Modules in the OracleComms_OSM_O2A_COM_Base Cartridge
Table 4–24 through Table 4–32 list the different types of XQuery modules in this
cartridge.

No table is included for the Order Item Property XQuery modules because none are
extendable and each XQuery module does the same thing: retrieves the specified order
item property from the appropriate location in the order data.

Table 4–23 Fulfillment State to Order Lifecycle Manager State Mapping

Fulfillment State Order Lifecycle Manager State

CANCELLED Canceled

COMPLETE Complete

FAILED Failed

IN_PROGRESS In Progress

Note: If you have both central order management and service order
management in the same Design Studio workspace, you will see
service order management fulfillment states in the list in the order
lifecycle manager. The names of the high-level fulfillment states for
service order management all start with SOM_. The service order
management fulfillment states do not need to be mapped here,
because they are mapped in the order lifecycle manager in the service
order management configuration. See "Order Lifecycle Manager
Configuration" for information about service order management state
mappings.

Table 4–24 OracleComms_OSM_O2A_COM_Base XQuery Modules for Constants

Constants XQuery Module Extendable Description

O2AConstants No Defines overall solution constants.

PromotionGroupConstants No Defines constants for processing promotion groups in
central order management.

QueryViewConstants No Defines constants for querying views in central order
management.

Common Central Order Management Cartridges

Order-to-Activate Cartridge Contents 4-27

Table 4–25 OracleComms_OSM_O2A_COM_Base XQuery Modules for Fallout Handling

Fallout Handling XQuery Module Extendable Description

AbortOrderRequest No Sends an order termination request for the fulfillment
request through the web service API.

AbortOrderResponse No Receives the response to the order termination request
for the fulfillment request through the web service
API.

CFwsResponseHandler No Utility module for providing retrieval and update to
central order management order.

CloseCreationFailedTroubleTickets No Sends a request to the trouble ticketing system to close
the trouble tickets for orders with the same Oracle AIA
sales order key.

CloseTroubleTicket No Creates a request to the trouble ticketing system to
close a trouble ticket.

CreateSIFalloutTroubleTicket No Creates a trouble ticket for system interaction.

CreateTroubleTicket No Creates a trouble ticket for both system interactions
and Order Request Processor (ORP) errors.

FalloutNotificationRouter No Routes fallout notifications to different fallout process
to handle updating EBM, creating a trouble ticket, and
keeping track of the trouble ticket in the OSM order.

FalloutNotificationToCFTask No Directs fallout notifications to central order
management.

FindFulfillmentOrderData No Retrieves the fulfillment request data in fallout.

FindOrderCreationFailedTroubleTickets No Finds an order that failed at creation with the Oracle
AIA sales order key.

GetCreationFailFulfillmentOrder No Retrieves the order data for an order that failed at
creation.

GetFulfillmentOrderResponse No Utility module to handle the web service response for
the find order request.

GetTroubleTicketData No Updates trouble ticket data on the OSM order.

OrderAbortPropagation No Sends an order termination request to the service order
through the Oracle AIA provisioning order queue.

OrderAbortPropagationCheck No Checks the status of the order termination request for
the service order.

OrderAbortPropagationResp No Handles the response of the order termination request
to the service order.

SuspendCFOrder No Suspends a central order management order.

SuspendCFOrderResponse No Utility module to handle the web service response for
the suspend order request.

UpdateCreationFailFulfillmentOrder No Updates the trouble ticket information back to the
OSM order that failed at creation.

UpdateFulfillmentOrder No Updates the trouble ticket data on the OSM order. This
is used by both UpdateCreationFailFulfillmentOrder
and UpdateSIFalloutTroubleTicket XQuery file.

Common Central Order Management Cartridges

4-28 OSM Cartridge Guide for Oracle Application Integration Architecture

UpdateSIFalloutTroubleTicket No Updates the trouble ticket information back to the
OSM order that has system interaction fallout.

UpdateStatusRequest No Creates an update status EBM to the Siebel CRM
system for fallout.

UpdateTroubleTicket No Creates the trouble ticket payload for the trouble
ticketing system.

Table 4–26 OracleComms_OSM_O2A_COM_Base Orchestration Sequence XQuery Modules

Orchestration Sequence XQuery
Module Extendable Description

FulfillmentModeExpression No Marshals the fulfillment mode code from the customer
order.

OrderItemSelector No Selects all order line items from the customer order.

Table 4–27 OracleComms_OSM_O2A_COM_Base Order Data Change XQuery Modules

Order Data Change XQuery Module Extendable Description

CloseFalloutTroubleTicket No Creates a request to close a trouble ticket.

CreateFalloutOrderNotification No Creates a fallout order notification to handle fallout for
an order that failed at creation.

UpdateSalesOrderFalloutStatusRequest No Creates an EBM with order status context being
populated with fallout information.

Table 4–28 OracleComms_OSM_O2A_COM_Base Order Item Hierarchy XQuery Modules

Order Item XQuery Module Extendable Description

InterOrderDependency No Determines the inter-order dependency based on the
order item’s dependencies across different orders.

LineIdKey No Retrieves the order line item’s ID.

ParentLineIdKey No Retrieves the parent order line item’s ID.

PromotionGroupKey No Retrieves the order line item’s promotion group.

PromotionGroupParentKey No Retrieves the parent order line item’s promotion group.

RelatedSalesOrderLineIdKey No Retrieves the related sales order line item’s ID.

RootParentSalesOrderLineIdKey No Retrieves the root order item business component ID.

Table 4–29 OracleComms_OSM_O2A_COM_Base Order Recognition XQuery Modules

Order Recognition XQuery Module Extendable Description

AIAOrderData No Transforms the customer order to an OSM order.

AIAOrderPriority No Retrieves the priority of the customer order.

Table 4–25 (Cont.) OracleComms_OSM_O2A_COM_Base XQuery Modules for Fallout Handling

Fallout Handling XQuery Module Extendable Description

Common Central Order Management Cartridges

Order-to-Activate Cartridge Contents 4-29

AIAOrderRecognition No Recognizes the customer order.

AIAOrderReference No Adds the -TSQ suffix to order identification if the
order is to be processed in Technical Service
Qualification mode. (This allows the same customer
order to be sent later as a DELIVER order with the
same order ID.)

AIAOrderValidation No Validates the customer order.

Table 4–30 OracleComms_OSM_O2A_COM_Base Order State XQuery Modules

Order State XQuery Module Extendable Description

OrderAbortedStateHandler No Creates an EBM to update the Siebel CRM order with
an aborted status context.

OrderCancelledStateHandler No Creates an EBM to update the Siebel CRM order with a
canceled status context.

OrderCompletedStateHandler No Creates an EBM to update the Siebel CRM order with a
completed status context.

OrderCompletionHandler No Responds to the central order management order
completion event and triggers the
OrderCompletedStateHandler module.

OrderFailedStateHandler No Creates an EBM to update the Siebel CRM order with a
failed status context.

OrderInProgressStateHandler No Creates an EBM to update the Siebel CRM order with
an in-progress status context.

OrderStateChangeHandler No Responds to the central order management order state
change event and triggers the appropriate
OrderStateHandler according to the order state.

OrderStateUtilityModule No Provides utility functions related to order state.

Table 4–31 OracleComms_OSM_O2A_COM_Base Order Transformation Manager XQuery Modules

Order Transformation Manager XQuery
Module Extendable Description

OTMMappingModule No Utilities to support the order transformation manager.

Table 4–32 OracleComms_OSM_O2A_COM_Base Processing Granularity XQuery Modules

Processing Granularity XQuery
Module Extendable Description

BundleGranularity No Groups related order items as a bundle for processing.

GranularityModule No Utility module to group order items based on service
action code.

OfferBundleGranularity No Groups related order items as an offer for processing.

OrderGranularity No Groups related order items as an order for processing.

ServiceBundleGranularity No Groups related order items as a service for processing.

WholeItemGranularity No Groups related order items as a whole item for
processing.

Table 4–29 (Cont.) OracleComms_OSM_O2A_COM_Base Order Recognition XQuery Modules

Order Recognition XQuery Module Extendable Description

Common Central Order Management Cartridges

4-30 OSM Cartridge Guide for Oracle Application Integration Architecture

Automation Modules in the OracleComms_OSM_O2A_COM_Base Cartridge
Table 4–33 lists the automation modules in the cartridge with their associated
automated tasks.

External Fulfillment States
External fulfillment states in the OracleComms_OSM_O2A_COM_Base cartridge are
defined in the COM_FulfillmentFunction order component specification,
representing the base fulfillment function. All fulfillment functions, such as
SyncCustomerFunction, extend from COM_FulfillmentFunction.

The following external fulfillment states are defined in this cartridge:

■ OPEN

Table 4–33 OracleComms_OSM_O2A_COM_Base Automation Modules

Automation Module Automated Task Description

AbortOrderRequestBean AbortFulfillmentOrderTask Calls the AbortOrderRequest XQuery.

CloseOrderCreationFailedTrou
bleTicketsBean

CloseCreationFailedTroubleT
icketTask

External event receiver to invoke
CloseCreationFailedTroubleTicket XQuery.

FindOrderCreationFailedTrou
bleTicketsBean

CloseCreationFailedTroubleT
icketTask

Calls the FindOrderCreationFailedTroubleTickets
XQuery.

CreateSIFalloutTroubleTicketR
equestBean

CreateSIFalloutTroubleTicket
Task

Calls the CreateSIFalloutTroubleTicket XQuery.

GetSIFalloutTroubleTicketResp
onse

CreateSIFalloutTroubleTicket
Task

External event receiver to invoke
GetTroubleTicketData XQuery.

FalloutnotificationRouterBean FalloutNotificationRouterTas
k

Calls the FalloutNotificationRouter XQuery.

SIFalloutNotificationToCF FalloutNotificationToCFTask Internal event receiver to invoke
FalloutNotificationToCFTask XQuery.

GetCreationFailFulfillmentOrd
erBean

GetCreationFailFulfillmentOr
derTask

Internal event receiver to invoke
GetCreationFailFulfillmentOrder XQuery.

GetFulfillmentOrder GetFulfillmentOrderTask Calls the FindFulfillmentOrderData XQuery.

GetFulfillmentOrderResponse GetFulfillmentOrderTask External event receiver to invoke
CFwsResponseHandler XQuery.

OrderAbortPropagationCheck
Plugin

OrderAbortPropagationChec
k

Calls the OrderAbortPropagationCheck XQuery.

OrderAbortPropagationPlugin OrderAbortPropagationTask Calls the OrderAbortPropagation XQuery.

OrderAbortPropagationRespPl
ugin

OrderAbortPropagationTask External event receiver to invoke
OrderAbortPropagationResp XQuery.

SuspendCFOrderPlugin SetCFOrderAbortInProgress
Task

Calls the SuspendCFOrder XQuery.

SuspendCFOrderRespPlugin SetCFOrderAbortInProgress
Task

External event receiver to invoke
CFwsResponseHandler XQuery.

UpdateCreationFailFulfillment
OrderBean

UpdateCreationFailFulfillme
ntOrderTask

Calls the UpdateCreationFailFulfillmentOrder
XQuery.

UpdateFulfillmentOrderBean UpdateFulfillmentOrderTask Calls the UpdateFulfillmentOrder XQuery.

UpdateSIFalloutTroubleTicket
Request

UpdateSIFalloutTroubleTicke
tTask

Calls the UpdateSIFalloutTroubleTicket XQuery.

UpdateStatusRequestBean UpdateStatusToCRMTask Calls the UpdateStatusRequest XQuery.

Common Central Order Management Cartridges

Order-to-Activate Cartridge Contents 4-31

■ IN_PROGRESS

■ IN_PROGRESS-FULFILL_BILLING_START

■ IN_PROGRESS-INITIATE_BILLING_START

■ IN_PROGRESS-INSTALL_START

■ IN_PROGRESS-INSTALL_PLANNED

■ IN_PROGRESS-INSTALL_COMMITTED

■ IN_PROGRESS-PROVISION_START

■ IN_PROGRESS-PROVISION_DESIGNED

■ IN_PROGRESS-SHIP_ORDER_START

■ IN_PROGRESS-SHIP_ORDER_PLANNED

■ IN_PROGRESS-SYNC_CUSTOMER_START

■ COMPLETE

■ COMPLETE-FULFILL_BILLING_COMPLETE

■ COMPLETE-INITIATE_BILLING_COMPLETE

■ COMPLETE-INSTALL_COMPLETE

■ COMPLETE-PROVISION_COMPLETE

■ COMPLETE-SHIP_ORDER_SHIPPED

■ COMPLETE-SYNC_CUSTOMER_COMPLETE

■ CANCELLED

■ CANCELLED-FULFILL_BILLING_COMPLETE

■ CANCELLED-FULFILL_BILLING_START

■ CANCELLED-INITIATE_BILLING_COMPLETE

■ CANCELLED-INITIATE_BILLING_START

■ CANCELLED-INSTALL_COMMITTED

■ CANCELLED-INSTALL_COMPLETE

■ CANCELLED-INSTALL_PLANNED

■ CANCELLED-INSTALL_START

■ CANCELLED-PROVISION_COMPLETE

■ CANCELLED-PROVISION_DESIGNED

■ CANCELLED-PROVISION_START

■ CANCELLED-SHIP_ORDER_PLANNED

■ CANCELLED-SHIP_ORDER_SHIPPED

■ CANCELLED-SHIP_ORDER_START

■ CANCELLED-SYNC_CUSTOMER_COMPLETE

■ CANCELLED-SYNC_CUSTOMER_START

■ FAILED

■ FAILED-FULFILL_BILLING_COMPLETE

Common Central Order Management Cartridges

4-32 OSM Cartridge Guide for Oracle Application Integration Architecture

■ FAILED-FULFILL_BILLING_START

■ FAILED-INITIATE_BILLING_COMPLETE

■ FAILED-INITIATE_BILLING_START

■ FAILED-INSTALL_COMMITTED

■ FAILED-INSTALL_COMPLETE

■ FAILED-INSTALL_PLANNED

■ FAILED-INSTALL_START

■ FAILED-PROVISION_COMPLETE

■ FAILED-PROVISION_DESIGNED

■ FAILED-PROVISION_START

■ FAILED-SHIP_ORDER_PLANNED

■ FAILED-SHIP_ORDER_SHIPPED

■ FAILED-SHIP_ORDER_START

■ FAILED-SYNC_CUSTOMER_COMPLETE

■ FAILED-SYNC_CUSTOMER_START

■ TSQ_Passed

■ TSQ_Passed-PROVISION_DESIGNED

■ TSQ_Failed

■ TSQ_Failed-PROVISION_DESIGNED

OracleComms_OSM_O2A_COM_SalesOrderFulfillment
The OracleComms_OSM_O2A_COM_SalesOrderFulfillment cartridge is a productized
cartridge supporting the communications between central order management and
fulfillment systems. It includes resources to generate requests to fulfillment providers
and consume their responses and to do validation and condition evaluation.

Table 4–34 lists the XQuery modules defined in this cartridge.

Table 4–34 OracleComms_OSM_O2A_COM_SalesOrderFulfillment XQuery Modules

XQuery Module Extendable Description

AIAEBMRequest_do No Generates Oracle AIA EBM requests to a fulfillment
provider.

AIAEBMRequest_redo No Generates Oracle AIA EBM requests to a fulfillment
provider for redo.

AIAEBMRequest_undo No Generates Oracle AIA EBM requests to a fulfillment
provider for undo.

AIAEBMResponse_ValidationModule No Validates Oracle AIA EBM responses from a fulfillment
provider.

AIAEBMResponse No Consumes Oracle AIA EBM responses from a
fulfillment provider.

DoublePlayComponentDependency No Order component dependency rule used to create the
orchestration plan.

FalseRevision No Utility module to detect a false revision order.

Common Central Order Management Cartridges

Order-to-Activate Cartridge Contents 4-33

OracleComms_OSM_O2A_COM_Billing
The OracleComms_OSM_O2A_COM_Billing cartridge is a productized cartridge that
supports billing fulfillment functions. These functions specify subprocesses to handle
delivery of a relevant subset of order data to the BRM ABCS, and handle responses
from BRM ABCS. The modeled interaction includes coping with fallout, order change
management, and status or data updates back to the CRM ABCS.

Table 4–35 lists the fulfillment functions defined in the cartridge.

InitiateWaitForProvisioningResponse No Initiates the wait for a provisioning response.

OrderLifecycleManagementModule No Utility module to support order lifecycle management
for order and order line items.

PostSIBreakpoint No Supports breakpoints for the automated task
FunctionPostSIBreakTask during undo.

PreSIBreakpoint No Supports breakpoints for the automated task
FunctionPreSIBreakTask during undo.

SIEntryPoint No Provides lifecycle management for both customer
order and service order. Used by automated task
FunctionEntryPointTask. (This task should be used as
the entry point task for a new fulfillment function.)

SIExitPoint No Module used by automated task FunctionExitPointTask
to simulate order item data updates for the
InstallOrder and ShipOrder fulfillment functions.

SIMilestone_doredo No Simulates milestone updates for the automated task
FunctionPlannedTask for both InstallOrder and
ShipOrder fulfillment function.

SIStartPoint No Module used by automated task FulfillBillingStartTask
to provide a breakpoint before the start of the
FulfillBilling function.

UpdateSalesOrderStatusFunctions No Provides functions for updating customer order’s
status.

FulfillmentStateModule No Contains configuration for calculating order and order
item fulfillment state.

PointOfNoReturn No Checks whether an order component or order item has
reached the point of no return.

Table 4–34 (Cont.) OracleComms_OSM_O2A_COM_SalesOrderFulfillment XQuery Modules

XQuery Module Extendable Description

Common Central Order Management Cartridges

4-34 OSM Cartridge Guide for Oracle Application Integration Architecture

Table 4–36 lists the XQuery modules in the cartridge that support component
interaction.

SyncCustomerFunction
This section provides details of SyncCustomerFunction, one of the three fulfillment
functions in the OracleComms_OSM_O2A_COM_Billing.

SyncCustomerFunction and Decomposition Rules
For the fulfillment request to be relevant for the billing provider to process, there must
be at least one order line item with a service action that is relevant for the
SyncCustomerFunction function to process. The decomposition rules in Table 4–37
ensure that SyncCustomerFunction is called only if relevant.

Table 4–35 OracleComms_OSM_O2A_COM_Billing Fulfillment Functions

Fulfillment Function Billing Pattern Description

SyncCustomerFunction Single-phase, two-phase Provides the ability to synchronize only accounts
from CRM to Billing as part of an order.
SyncCustomerFunction is used in both
single-phase and two-phase billing patterns. This
function is essential because the pre-existence of
a customer account in the billing provider is
assumed before billing.

InitiateBillingFunction Two-phase Provides the ability to start the usage cycle.
InitiateBillingFunction is the first phase in the
two-phase billing pattern. In two-phase billing
patterns, the first phase invokes
InitiateBillingFunction, and the second phase
invokes FulfillBillingFunction.

FulfillBillingFunction Single-phase, two-phase Provides the ability to start the billing cycle.
FulfillBillingFunction is the single phase in the
single-phase billing pattern and the second
phase in the two-phase billing pattern.

Table 4–36 OracleComms_OSM_O2A_COM_Billing Component Interaction XQuery Modules

Component Interaction XQuery
Module Extendable Description

BillingPatternModule No Determines the billing pattern based on order item’s
billing product type and product specification.

BillingInteractionModule No Creates a fulfillment request (in the format of an Oracle
AIA EBM) to send to the billing system.

SyncCustomerInteractionModule No Provides functions to support SyncCustomerFunction.

InitiateBillingInteractionModule No Provides functions to support InitiateBillingFunction,
using the BillingInteractionModule utility module.

FulfillBillingInteractionModule No Provides functions to support FulfillBillingFunction,
using the BillingInteractionModule utility module.

Common Central Order Management Cartridges

Order-to-Activate Cartridge Contents 4-35

The decomposition conditions in the rules above return true() if fromOrderComponent
(the order component being decomposed from) has at least one order line item that is
relevant for SyncCustomerFunction to process. An order line item property is
initialized to YES if the order line item is relevant for the billing provider's
SyncCustomerFunction to process. By default, the service actions that are relevant for
SyncCustomerFunction to process are:

■ Order line items with ServiceActionCode=ADD

■ SyncCustomer compensation-significant updates: Order line items with
ServiceActionCode=UPDATE or MOVE-ADD with compensation-significant
updates as determined by a comparison of the new and prior values from Siebel
CRM in the customer order

SyncCustomerFunction and Fulfillment Patterns
The SyncCustomerFunction order component for fulfillment mode DELIVER is
selected for each fulfillment pattern that supports the single and two-phase billing
patterns. The order component SyncCustomerFunction is included in the
BaseProductSpec fulfillment pattern. As a result, all fulfillment patterns which inherit
from BaseProductSpec include SyncCustomerFunction as part of their fulfillment
flow. This applies to each entity in the cartridge that configures fulfillment patterns,
including any custom cartridge specifying the COM_SalesOrderFulfillment
namespace.

SyncCustomerFunction XQuery Modules
Table 4–38 lists the XQuery modules defined for the SyncCustomerFunction
fulfillment function. Customers can provide their own implementation of the XQuery
modules in this fulfillment function indicated extension points. See "Extending
XQuery Modules" for more information about XQuery extension points.

Table 4–37 Decomposition Rules for SyncCustomerFunction

Configuration Cartridge Decomposition Rule

Solution option
without calculate
service order,
Simple Topology

OracleComms_OSM_O2A_
SimpleTopology_Sample

Simple_DetermineSignificantUpdates_For_
SyncCustomer

Solution option
without calculate
service order,
Typical or
Complex Topology

OracleComms_OSM_O2A_
TypicalTopology_Sample

Typical_DetermineSignificantUpdates_For_
SyncCustomer

Calculate service
order solution
option, all
topologies

OracleComms_OSM_O2A_COM_
CSO_Topology

Typical_DetermineSignificantUpdates_For_
SyncCustomer

Common Central Order Management Cartridges

4-36 OSM Cartridge Guide for Oracle Application Integration Architecture

Table 4–38 SyncCustomerFunction XQuery Modules

XQuery Module XQuery Extension Point Description

SyncCustomerComplete_Event COMPONENT-COMPLETE Invoked when the SyncCustomerFunction
component is completed.

SyncCustomerCreateAllOrderIt
emsEBM_Event

CREATE-EBM-ALL-ORDERIT
EMS

Invoked after CREATE-EBM-CUSTOM for the
SyncCustomerFunction component to create
all order items. This should always be
invoked unless you want to create only the
order header without any order items.

SyncCustomerCreateCustomEB
M_Event

CREATE-EBM-CUSTOM Invoked after CREATE-EBM for the
SyncCustomerFunction component. Invokes
extension logic on the order-level CUSTOM
element.

SyncCustomerCreateEBM_
DoEvent

CREATE-EBM

(execution mode: do)

Invoked when the EBM is created in the do
execution mode for the
SyncCustomerFunction component.

SyncCustomerCreateEBM_
ReDoEvent

CREATE-EBM

(execution mode: redo)

Invoked when the EBM is created in the redo
execution mode for the
SyncCustomerFunction component.

SyncCustomerCreateEBM_
UnDoEvent

CREATE-EBM

(execution mode: undo)

Invoked when the EBM is created in the undo
execution mode for the
SyncCustomerFunction component.

SyncCustomerCreateOrderItem
CustomEBM_Event

CREATE-EBM-ORDERITEM-
CUSTOM

Invoked after CREATE-EBM-ORDERITEM
for the SyncCustomerFunction component.
Invokes extension logic on the
order-item-level CUSTOM element.

SyncCustomerCreateOrderItem
EBM_DoEvent

CREATE-EBM-ORDERITEM

(execution mode: do)

Invoked after
CREATE-EBM-ALL-ORDERITEMS for the
SyncCustomerFunction component in do
execution mode. Invokes extension logic on
the order item element.

SyncCustomerCreateOrderItem
EBM_ReDoEvent

CREATE-EBM-ORDERITEM

(execution mode: redo)

Invoked after
CREATE-EBM-ALL-ORDERITEMS for the
SyncCustomerFunction component in redo
execution mode. Invokes extension logic on
the order item element.

SyncCustomerCreateOrderItem
EBM_UnDoEvent

CREATE-EBM-ORDERITEM

(execution mode: undo)

Invoked after
CREATE-EBM-ALL-ORDERITEMS for the
SyncCustomerFunction component in undo
execution mode. Invokes extension logic on
the order item element.

SyncCustomerCreatePriorOrder
ItemCustomEBM_Event

CREATE-EBM-PRIORORDERI
TEM-CUSTOM

Invoked after
CREATE-EBM-PRIORORDERITEM for the
SyncCustomerFunction component. Invokes
extension logic on the prior-order-item-level
CUSTOM element.

SyncCustomerCreatePriorOrder
ItemEBM_Event

CREATE-EBM-PRIORORDERI
TEM

Invoked after
CREATE-EBM-ORDERITEM-CUSTOM for
the SyncCustomerFunction component.
Invokes extension logic on the prior order
item element.

Common Central Order Management Cartridges

Order-to-Activate Cartridge Contents 4-37

SyncCustomerFunction Automation Modules
Table 4–39 lists the automation modules (with their associated automated tasks)
defined in the OracleComms_OSM_O2A_COM_Billing cartridge for the
SyncCustomerFunction fulfillment function.

InitiateBillingFunction
This section provides details of InitiateBillingFunction, one of the three fulfillment
functions in the OracleComms_OSM_O2A_COM_Billing.

InitiateBillingFunction and Decomposition Rules
For the fulfillment request to be relevant for the billing provider to process, there must
be at least one order line item with a service action that is relevant for the
InitiateBillingFunction function to process. The decomposition rules in Table 4–40
ensure that InitiateBillingFunction is called only if relevant.

SyncCustomerStart_Event COMPONENT-START Invoked when the SyncCustomerFunction
component is started.

SyncCustomerUpdate_Event COMPONENT-RESPONSE-U
PDATE

Invoked when the SyncCustomerFunction
updates are received to process order items
on the billing response.

SyncCustomerValidateResponse
EBM_Event

VALIDATE-RESPONSE-EBM Invoked to validate the EBM response for the
SyncCustomerFunction component.

Table 4–39 SyncCustomerFunction Automation Modules

Automation Module Automated Task Description

SyncCustomerEntryPointBean
_doredo

SyncCustomerEntryPointTask Calls the SIEntryPoint XQuery.

SyncCustomerRequestBean_
do

SyncCustomerSITask Calls the AIAEBMRequest_do XQuery.

SyncCustomerRequestBean_
redo

SyncCustomerSITask Calls the AIAEBMRequest_redo XQuery.

SyncCustomerRequestBean_
undo

SyncCustomerSITask Calls the AIAEBMRequest_undo XQuery.

SyncCustomerResponseBean SyncCustomerSITask External event receiver to invoke
AIAEBMResponse XQuery.

Table 4–38 (Cont.) SyncCustomerFunction XQuery Modules

XQuery Module XQuery Extension Point Description

Common Central Order Management Cartridges

4-38 OSM Cartridge Guide for Oracle Application Integration Architecture

The decomposition conditions in the rules above return true() if fromOrderComponent
(the order component being decomposed from) has at least one order line item that is
relevant for InitiateBillingFunction to process. By default, the service actions that are
relevant for InitiateBillingFunction to process are:

■ Order line items with ServiceActionCode=ADD

InitiateBillingFunction and Fulfillment Patterns
The InitiateBillingFunction order component for fulfillment mode DELIVER is
selected for each fulfillment pattern that supports the two-phase billing pattern. This
includes the OracleComms_OSM_O2A_BBVoIPFulfillmentPatternNileFlow_Sample,
OracleComms_OSM_O2A_BBVoIPFulfillmentPatternDanubeFlow_Sample, or any
custom cartridge specifying the COM_SalesOrderFulfillment namespace.

Some of the sample fulfillment patterns included in the InitiateBillingFunction in the
fulfillment flow are:

■ Service.VoIP

■ Service.CPE.VoIP (The IntiateBillingFunction order component is conditional
based on whether the VoIP CPE is contained in a VoIP service. This condition is
included in decomposition rules InitiateBillingFunction_To_
YourSystemInstanceName1… InitiateBillingFunction_To_YourSystemInstanceNameN)

■ NonService.Offer (The IntiateBillingFunction order component is conditional
based on whether the Offer contains VoIP services. This condition is included in
decomposition rules InitiateBillingFunction_To_YourSystemInstanceName1…
InitiateBillingFunction_To_YourSystemInstanceNameN)

■ NonService.BillingInitiatedItem

■ Non.Service.BillingItem

InitiateBillingFunction XQuery Modules
Table 4–41 lists the XQuery modules defined for the InitiateBillingFunction fulfillment
function. Customers can provide their own implementation of the XQuery modules in
this fulfillment function indicated extension points. See "Extending XQuery Modules"
for more information about XQuery extension points.

Table 4–40 Decomposition Rules for InitiateBillingFunction

Topology Cartridge Decomposition Rule

Solution option
without calculate
service order,
Simple Topology

OracleComms_OSM_O2A_
SimpleTopology_Sample

Simple_DetermineSignificantUpdates_For_
InitiateBilling

Solution option
without calculate
service order,
Typical or
Complex Topology

OracleComms_OSM_O2A_
TypicalTopology_Sample

Typical_DetermineSignificantUpdates_For_
InitiateBilling

Calculate service
order solution
option, all
topologies

OracleComms_OSM_O2A_COM_
CSO_Topology

Typical_DetermineSignificantUpdates_For_
InitiateBilling

Common Central Order Management Cartridges

Order-to-Activate Cartridge Contents 4-39

Table 4–41 InitiateBillingFunction XQuery Modules

XQuery Module XQuery Extension Point Description

InitiateBillingComplete_Event COMPONENT-COMPLETE Invoked when the InitiateBillingFunction
component is completed.

InitiateBillingCreateAllOrderIte
msEBM_Event

CREATE-EBM-ALL-ORDERIT
EMS

Invoked after CREATE-EBM-CUSTOM for the
InitiateBillingFunction component to create
all order items. This should always be
invoked unless you want to create only the
order header without any order items.

InitiateBillingCreateCustomEB
M_Event

CREATE-EBM-CUSTOM Invoked after CREATE-EBM for the
InitiateBillingFunction component. Invokes
extension logic on the order-level CUSTOM
element.

InitiateBillingCreateEBM_
DoEvent

CREATE-EBM

(execution mode: do)

Invoked when the EBM is created in the do
execution mode for the InitiateBillingFunction
component.

InitiateBillingCreateEBM_
ReDoEvent

CREATE-EBM

(execution mode: redo)

Invoked when the EBM is created in the redo
execution mode for the InitiateBillingFunction
component.

InitiateBillingCreateEBM_
UnDoEvent

CREATE-EBM

(execution mode: undo)

Invoked when the EBM is created in the undo
execution mode for the InitiateBillingFunction
component.

InitiateBillingCreateOrderItemC
ustomEBM_Event

CREATE-EBM-ORDERITEM-
CUSTOM

Invoked after CREATE-EBM-ORDERITEM
for the InitiateBillingFunction component.
Invokes extension logic on the
order-item-level CUSTOM element.

InitiateBillingCreateOrderItemE
BM_DoEvent

CREATE-EBM-ORDERITEM

(execution mode: do)

Invoked after
CREATE-EBM-ALL-ORDERITEMS for the
InitiateBillingFunction component in do
execution mode. Invokes extension logic on
the order item element.

InitiateBillingCreateOrderItemE
BM_ReDoEvent

CREATE-EBM-ORDERITEM

(execution mode: redo)

Invoked after
CREATE-EBM-ALL-ORDERITEMS for the
InitiateBillingFunction component in redo
execution mode. Invokes extension logic on
the order item element.

InitiateBillingCreateOrderItemE
BM_UnDoEvent

CREATE-EBM-ORDERITEM

(execution mode: undo)

Invoked after
CREATE-EBM-ALL-ORDERITEMS for the
InitiateBillingFunction component in undo
execution mode. Invokes extension logic on
the order item element.

InitiateBillingCreatePriorOrderIt
emCustomEBM_Event

CREATE-EBM-PRIORORDERI
TEM-CUSTOM

Invoked after
CREATE-EBM-PRIORORDERITEM for the
InitiateBillingFunction component. Invokes
extension logic on the prior-order-item-level
CUSTOM element.

InitiateBillingCreatePriorOrderIt
emEBM_Event

CREATE-EBM-PRIORORDERI
TEM

Invoked after
CREATE-EBM-ORDERITEM-CUSTOM for
the InitiateBillingFunction component.
Invokes extension logic on the prior order
item element.

Common Central Order Management Cartridges

4-40 OSM Cartridge Guide for Oracle Application Integration Architecture

InitiateBillingFunction Automation Modules
Table 4–42 lists the automation modules (with their associated automated tasks)
defined in the OracleComms_OSM_O2A_COM_Billing cartridge for the
InitiateBillingFunction fulfillment function.

FulfillBillingFunction
This section provides details of FulfillBillingFunction, one of the three fulfillment
functions in the OracleComms_OSM_O2A_COM_Billing.

FulfillBillingFunction and Decomposition Rules
For the fulfillment request to be relevant for the billing provider to process, there must
be at least one order line item with a service action that is relevant for the
FulfillBillingFunction function to process. The decomposition rules in Table 4–43
ensure that FulfillBillingFunction is called only if relevant.

InitiateBillingStart_Event COMPONENT-START Invoked when the InitiateBillingFunction
component is started.

InitiateBillingUpdate_Event COMPONENT-RESPONSE-U
PDATE

Invoked when the InitiateBillingFunction
updates are received to process order items
on the billing response.

InitiateBillingValidateResponse
EBM_Event

VALIDATE-RESPONSE-EBM Invoked to validate the EBM response for the
InitiateBillingFunction component.

Table 4–42 InitiateBillingFunction Automation Modules

Automation Module Automated Task Description

InitiateBillingEntryPointBean_
doredo

InitiateBillingEntryPointTask Calls the SIEntryPoint XQuery.

InitiateBillingRequestBean_do InitiateBillingSITask Calls the AIAEBMRequest_do XQuery.

InitiateBillingRequestBean_
redo

InitiateBillingSITask Calls the AIAEBMRequest_redo XQuery.

InitiateBillingRequestBean_
undo

InitiateBillingSITask Calls the AIAEBMRequest_undo XQuery.

InitiateBillingResponseBean InitiateBillingSITask External event receiver to invoke
AIAEBMResponse XQuery.

Table 4–41 (Cont.) InitiateBillingFunction XQuery Modules

XQuery Module XQuery Extension Point Description

Common Central Order Management Cartridges

Order-to-Activate Cartridge Contents 4-41

The decomposition conditions in the rules above return true() if fromOrderComponent
(the order component being decomposed from) has at least one order line item that is
relevant for FulfillBillingFunction to process. By default, the service actions that are
relevant for FulfillBillingFunction to process are:

■ Order line items with ServiceActionCode=ADD, DELETE, UPDATE, SUSPEND,
RESUME, MOVE-ADD, or MOVE-DELETE

FulfillBillingFunction and Fulfillment Patterns
The order component FulfillBillingFunction is included in the orchestration plan for
the BaseProductSpec fulfillment pattern. This ensures that FulfillBillingFunction is
included in the fulfillment flow for all fulfillment pattern entities that extend from
BaseProductSpec. This includes any cartridge specifying the COM_
SalesOrderFulfillment namespace.

All sample fulfillment patterns include FulfillBillingFunction.

Sample fulfillment patterns that include FulfillBillingFunction in a single-phase billing
pattern (without InitiateBillingFunction) in the fulfillment flow are:

■ Service.Broadband

■ Service.CPE.Broadband

■ NonService.BillingItem

FulfillBillingFunction XQuery Modules
Table 4–44 lists the XQuery modules defined for the FulfillBillingFunction fulfillment
function. Customers can provide their own implementation of the XQuery modules in
this fulfillment function indicated extension points. See "Extending XQuery Modules"
for more information about XQuery extension points.

Table 4–43 Decomposition Rules for FulfillBillingFunction

Topology Cartridge Decomposition Rule

Solution option
without calculate
service order,
Simple Topology

OracleComms_OSM_O2A_
SimpleTopology_Sample

Simple_DetermineSignificantUpdates_For_
FulfillBilling

Solution option
without calculate
service order,
Typical or
Complex Topology

OracleComms_OSM_O2A_
TypicalTopology_Sample

Typical_DetermineSignificantUpdates_For_
FulfillBilling

Calculate service
order solution
option, all
topologies

OracleComms_OSM_O2A_COM_
CSO_Topology

Typical_DetermineSignificantUpdates_For_
FulfillBilling

Common Central Order Management Cartridges

4-42 OSM Cartridge Guide for Oracle Application Integration Architecture

Table 4–44 FulfillBillingFunction XQuery Modules

XQuery Module XQuery Extension Point Description

FulfillBillingComplete_Event COMPONENT-COMPLETE Invoked when the FulfillBillingFunction
component is completed.

FulfillBillingCreateAllOrderIte
msEBM_Event

CREATE-EBM-ALL-ORDERIT
EMS

Invoked after CREATE-EBM-CUSTOM for the
FulfillBillingFunction component to create all
order items. This should always be invoked
unless you want to create only the order
header without any order items.

FulfillBillingCreateCustomEBM
_Event

CREATE-EBM-CUSTOM Invoked after CREATE-EBM for the
FulfillBillingFunction component. Invokes
extension logic on the order-level CUSTOM
element.

FulfillBillingCreateEBM_
DoEvent

CREATE-EBM

(execution mode: do)

Invoked when the EBM is created in the do
execution mode for the FulfillBillingFunction
component.

FulfillBillingCreateEBM_
ReDoEvent

CREATE-EBM

(execution mode: redo)

Invoked when the EBM is created in the redo
execution mode for the FulfillBillingFunction
component.

FulfillBillingCreateEBM_
UnDoEvent

CREATE-EBM

(execution mode: undo)

Invoked when the EBM is created in the undo
execution mode for the FulfillBillingFunction
component.

FulfillBillingCreateOrderItemCu
stomEBM_Event

CREATE-EBM-ORDERITEM-
CUSTOM

Invoked after CREATE-EBM-ORDERITEM
for the FulfillBillingFunction component.
Invokes extension logic on the
order-item-level CUSTOM element.

FulfillBillingCreateOrderItemEB
M_DoEvent

CREATE-EBM-ORDERITEM

(execution mode: do)

Invoked after
CREATE-EBM-ALL-ORDERITEMS for the
FulfillBillingFunction component in do
execution mode. Invokes extension logic on
the order item element.

FulfillBillingCreateOrderItemEB
M_ReDoEvent

CREATE-EBM-ORDERITEM

(execution mode: redo)

Invoked after
CREATE-EBM-ALL-ORDERITEMS for the
FulfillBillingFunction component in redo
execution mode. Invokes extension logic on
the order item element.

FulfillBillingCreateOrderItemEB
M_UnDoEvent

CREATE-EBM-ORDERITEM

(execution mode: undo)

Invoked after
CREATE-EBM-ALL-ORDERITEMS for the
FulfillBillingFunction component in undo
execution mode. Invokes extension logic on
the order item element.

FulfillBillingCreatePriorOrderIte
mCustomEBM_Event

CREATE-EBM-PRIORORDERI
TEM-CUSTOM

Invoked after
CREATE-EBM-PRIORORDERITEM for the
FulfillBillingFunction component. Invokes
extension logic on the prior-order-item-level
CUSTOM element.

FulfillBillingCreatePriorOrderIte
mEBM_Event

CREATE-EBM-PRIORORDERI
TEM

Invoked after
CREATE-EBM-ORDERITEM-CUSTOM for
the FulfillBillingFunction component. Invokes
extension logic on the prior order item
element.

Common Central Order Management Cartridges

Order-to-Activate Cartridge Contents 4-43

FulfillBillingFunction Automation Modules
Table 4–45 lists the automation modules (with their associated automated tasks)
defined in the OracleComms_OSM_O2A_COM_Billing cartridge for the
FulfillBillingFunction fulfillment function.

Billing Dates for Billing Patterns
Billing dates are set when usage events start being rated (usage start date time), when
cycle charges start being billed (cycle start date time), and when one time purchase
charges should be billed (purchase start time). This section discusses how billing dates
are generated.

Default Billing Dates for Two-Phase Billing Patterns
In a two-phase billing pattern, the billing dates are calculated based on data from the
customer order and the determination of whether the LATENCY or VALIDATION
pattern is used.

The billing dates are reset between the two billing phases (InitiateBillingFunction and
FulfillBillingFunction).Billing dates are only set for order line items having the
ServiceActionCode of ADD. The following order item properties are updated with the
billing dates:

■ For phase 1, order item properties in
ControlData/Functions/IntiateBillingFunction/orderItem/orderItemRef/WorkLi
neItemData/SalesOrderSchedule

– ServiceUsageStartDate

– PurchaseDate

– CycleStartDate

FulfillBillingStart_Event COMPONENT-START Invoked when the FulfillBillingFunction
component is started.

FulfillBillingUpdate_Event COMPONENT-RESPONSE-U
PDATE

Invoked when the FulfillBillingFunction
updates are received to process order items
on the billing response.

FulfillBillingValidateResponseE
BM_Event

VALIDATE-RESPONSE-EBM Invoked to validate the EBM response for the
FulfillBillingFunction component.

Table 4–45 FulfillBillingFunction Automation Modules

Automation Module Automated Task Description

FulfillBillingEntryPointBean_
doredo

FulfillBillingEntryPointTask Calls the SIEntryPoint XQuery.

FulfillBillingRequestBean_do FulfillBillingSITask Calls the AIAEBMRequest_do XQuery.

FulfillBillingRequestBean_redo FulfillBillingSITask Calls the AIAEBMRequest_redo XQuery.

FulfillBillingRequestBean_
undo

FulfillBillingSITask Calls the AIAEBMRequest_undo XQuery.

FulfillBillingResponseBean FulfillBillingSITask External event receiver to invoke
AIAEBMResponse XQuery.

FulfillBillingStart FulfillBillingStartTask Calls the SIStartPoint XQuery.

Table 4–44 (Cont.) FulfillBillingFunction XQuery Modules

XQuery Module XQuery Extension Point Description

Common Central Order Management Cartridges

4-44 OSM Cartridge Guide for Oracle Application Integration Architecture

■ For phase 2, the order item properties from phase 1 are copied into properties with
the same names in
ControlData/Functions/FulfillBillingFunction/orderItem/orderItemRef/WorkPri
orLineItemData/SalesOrderSchedule and all three Date fields are re-calculated as
indicated in the Default Billing Dates for Phase 2 column in Table 4–46.

Table 4–46 lists the default date calculations applicable to two-phase billing patterns.

Default Billing Dates for Single-Phase Billing Patterns
In a single-phase billing pattern, the billing dates are calculated based on data from the
customer order.

Billing dates are only set for order line items having the ServiceActionCode of ADD.
The following order item properties are updated with the billing dates:

■ Order item properties in
ControlData/Functions/IntiateBillingFunction/orderItem/orderItemRef/WorkLi
neItemData/SalesOrderSchedule

– ServiceUsageStartDate: This is set to SalesOrderLine/ ServiceUsageStartDate
if populated; otherwise ActualDeliveryDateTime

– PurchaseDate: This is set to SalesOrderLine/PurchaseDate if populated;
otherwise ActualDeliveryDateTime

– CycleStartDateTime: This is set to SalesOrderLine/CycleStartDateTime if
populated; otherwise Actual Delivery Date Time or Requested Delivery Date
Time, whichever is later.

OracleComms_OSM_O2A_COM_Provisioning
The OracleComms_OSM_O2A_COM_Provisioning cartridge is a productized
cartridge that supports the provisioning fulfillment functions. These functions specify

Note: The three elements above have a data type of DateTime.
However the names of the data elements as defined in the Oracle AIA
EBM do not end with DateTime but Date only. O2A is following the
names defined in the Oracle AIA EBM.

Table 4–46 Two-Phase Billing Pattern Date Calculations

Billing Pattern Default Billing Dates for Phase 1 Default Billing Dates for Phase 2

LATENCY ServiceUsageStartDate=
OrderingBaseDateTime

PurchaseDate = OrderingBaseDateTime

 CycleStartDate =
OrderingBaseDateTime + 1 year

CycleStartDate = SalesOrderLine/CycleStartDate
if populated; otherwise compute as Actual
Delivery Date Time or Requested Delivery Date
Time, whichever is later.

VALIDATION ServiceUsageStartDate=
OrderingBaseDateTime + 1 year

PurchaseDate=OrderingBaseDateTime
+ 1 year

CycleStartDate =
OrderingBaseDateTime + 1 year

ServiceUsageStartDate = SalesOrderLine/
ServiceUsageStartDate if populated; otherwise
Actual Delivery Date Time

PurchaseDate = SalesOrderLine/PurchaseDate if
populated; otherwise Actual Delivery Date Time

CycleStartDate = SalesOrderLine/ CycleStartDate
if populated; otherwise Actual Delivery Date Time
or Requested Delivery Date Time, whichever is
later.

Common Central Order Management Cartridges

Order-to-Activate Cartridge Contents 4-45

a subprocess to handle delivery of a relevant subset of order data to the provisioning
ABCS and to handle responses from the provisioning ABCS.

Table 4–47 lists the XQuery modules in the cartridge that support component
interaction.

Table 4–48 lists the XQuery modules defined for the ProvisionOrderFunction
fulfillment function. Customers can provide their own implementation of the XQuery
modules in this fulfillment function indicated extension points. See "Extending
XQuery Modules" for more information about XQuery extension points.

Table 4–47 OracleComms_OSM_O2A_COM_Provisioning Component Interaction XQuery Modules

Component Interaction XQuery
Module Extendable Description

ProvisionOrderInteractionModule No Provides functions to support ProvisionOrderFunction
when the calculate service order solution option is not
being used.

ProvisionOrderInteractionModule_base No Provides base functions to support
ProvisionOrderFunction when the calculate service
order solution option is being used.

ProvisionOrderInteractionModule_do No Provides functions to support ProvisionOrderFunction
for the do execution mode when the calculate service
order solution option is being used.

ProvisionOrderInteractionModule_
events

No Provides event-related functions to support
ProvisionOrderFunction when the calculate service
order solution option is being used.

ProvisionOrderInteractionModule_redo No Provides functions to support ProvisionOrderFunction
for the redo execution mode when the calculate service
order solution option is being used.

ProvisionOrderInteractionModule_undo No Provides functions to support ProvisionOrderFunction
for the undo execution mode when the calculate
service order solution option is being used.

Table 4–48 ProvisionOrderFunction XQuery Modules

XQuery Module XQuery Extension Point Description

ProvisionOrderComplete_Event COMPONENT-COMPLETE Invoked when the ProvisionOrderFunction
component is completed.

ProvisionOrderCreateEBM_
DoEvent

CREATE-EBM

(execution mode: do)

Invoked when the EBM is created in the do
execution mode for the
ProvisionOrderFunction component.

ProvisionOrderCreateEBM_
ReDoEvent

CREATE-EBM

(execution mode: redo)

Invoked when the EBM is created in the redo
execution mode for the
ProvisionOrderFunction component.

ProvisionOrderCreateEBM_
UnDoEvent

CREATE-EBM

(execution mode: undo)

Invoked when the EBM is created in the undo
execution mode for the
ProvisionOrderFunction component.

ProvisionOrderStart_Event COMPONENT-START Invoked when the ProvisionOrderFunction
component is started.

ProvisionOrderValidateRespons
eEBM_Event

VALIDATE-RESPONSE-EBM Invoked to validate the EBM response for the
ProvisionOrderFunction component.

ProvisionOrderUpdate_Event COMPONENT-RESPONSE-U
PDATE

Invoked when the EBM response for
ProvisionOrderFunction component is
updated.

Common Central Order Management Cartridges

4-46 OSM Cartridge Guide for Oracle Application Integration Architecture

Table 4–49 lists the automation modules (with their associated automated tasks)
defined in the OracleComms_OSM_O2A_COM_Provisioning cartridge for the
ProvisionOrderFunction fulfillment function.

OracleComms_OSM_O2A_COM_Shipping_Sample
The OracleComms_OSM_O2A_COM_Shipping_Sample cartridge is a demonstration
cartridge that supports the shipping fulfillment functions. These functions specify
subprocesses to handle delivery of a relevant subset of order data to supply chain
management.

Table 4–50 lists he XQuery modules in the cartridge that support component
interaction.

Table 4–51 lists the XQuery modules defined for the ShipOrderFunction fulfillment
function. Customers can provide their own implementation of the XQuery modules in
this fulfillment function indicated extension points. See "Extending XQuery Modules"
for more information about XQuery extension points.

Table 4–52 lists the automation modules (with their associated automated tasks)
defined in the OracleComms_OSM_O2A_COM_Shipping_Sample cartridge for the
ShipOrderFunction fulfillment function.

Table 4–49 ProvisionOrderFunction Automation Modules

Automation Module Automated Task Description

ProvisionOrderEntryPointBea
n_doredo

ProvisionOrderSIEntryPoint
Task

Calls the SIEntryPoint XQuery.

ProvisionOrderRequestBean_
do

ProvisionOrderSITask Calls the AIAEBMRequest_do XQuery.

ProvisionOrderRequestBean_
redo

ProvisionOrderSITask Calls the AIAEBMRequest_redo XQuery.

ProvisionOrderRequestBean_
undo

ProvisionOrderSITask Calls the AIAEBMRequest_undo XQuery.

ProvisionOrderResponseBean ProvisionOrderSITask External event receiver to invoke
AIAEBMResponse XQuery.

Table 4–50 OracleComms_OSM_O2A_COM_Shipping_Sample Component Interaction XQuery Modules

Component Interaction XQuery
Module Extendable Description

ShipOrderInteractionModule Yes Provides functions to support ShipOrderFunction.

Table 4–51 ShipOrderFunction XQuery Modules

XQuery Module XQuery Extension Point Description

ShipOrderComplete_Event COMPONENT-COMPLETE Invoked when the ShipOrderFunction
component is completed.

ShipOrderStart_Event COMPONENT-START Invoked when the ShipOrderFunction
component is started.

Common Central Order Management Cartridges

Order-to-Activate Cartridge Contents 4-47

OracleComms_OSM_O2A_COM_Install_Sample
The OracleComms_OSM_O2A_COM_Install_Sample cartridge is a demonstration
cartridge that supports the installation fulfillment functions for High-Speed Internet.
These functions specify subprocesses to handle delivery of a relevant subset of order
data to supply chain management.

Table 4–53 lists he XQuery modules in the cartridge that support component
interaction.

Table 4–54 lists the XQuery modules defined for the InstallOrderFunction fulfillment
function. Customers can provide their own implementation of the XQuery modules in
this fulfillment function indicated extension points. See "Extending XQuery Modules"
for more information about XQuery extension points.

Table 4–55 lists the automation modules (with their associated automated tasks)
defined in the OracleComms_OSM_O2A_COM_Install_Sample cartridge for the
InstallOrderFunction fulfillment function.

Table 4–52 ShipOrderFunction Automation Modules

Automation Module Automated Task Description

ShipOrderEntryPointBean ShipOrderEntryPointTask Calls the SIEntryPoint XQuery.

ShipOrderPlannedBean ShipOrderPlannedTask Calls the SIMilestone_doredo XQuery to return
the SHIP ORDER PLANNED milestone.

ShipOrderExitPointBean ShipOrderExitPointTask Calls the SIExitPoint XQuery.

Table 4–53 OracleComms_OSM_O2A_COM_Install_Sample Component Interaction XQuery Modules

Component Interaction XQuery
Module Extendable Description

InstallOrderInteractionModule Yes Provides functions to support InstallOrderFunction.

Table 4–54 InstallOrderFunction XQuery Modules

XQuery Module XQuery Extension Point Description

InstallOrderComplete_Event COMPONENT-COMPLETE Invoked when the InstallOrderFunction
component is completed.

InstallOrderStart_Event COMPONENT-START Invoked when the InstallOrderFunction
component is started.

Table 4–55 InstallOrderFunction Automation Modules

Automation Module Automated Task Description

InstallOrderEntryPointBean InstallOrderEntryPointTask Calls the SIEntryPoint XQuery.

InstallOrderPlannedBean InstallOrderPlannedTask Calls the SIMilestone_doredo XQuery to return
the INSTALL PLANNED milestone.

InstallOrderCommittedBean InstallOrderCommittedTask Calls the SIMilestone_doredo XQuery to return
the INSTALL COMMITTED milestone.

InstallOrderExitPointBean InstallOrderExitPointTask Calls the SIExitPoint XQuery.

Central Order Management Cartridges for the Calculate Service Order Solution Option

4-48 OSM Cartridge Guide for Oracle Application Integration Architecture

OracleComms_OSM_O2A_COM_Recognition_Sample
The OracleComms_OSM_O2A_COM_Recognition_Sample cartridge is a
demonstration cartridge that recognizes a customer order from Oracle AIA and
triggers the creation of a COM_SalesOrderFulfillment order. In addition, this cartridge
recognizes order fallout notifications, trouble ticket requests, and inbound message
errors due to suspended orders or resource issues. It also catches all unrecognizable
messages.

Table 4–56 lists the order recognition rules defined in this cartridge.

Revision Number Update for Canceled Orders
When AIA receives an order that has a mode of CANCEL, or when an order is
received in which all of the order line items have an action code of NONE, AIA does
not update the revision number. Because OSM will ignore a revision order if its
revision number is the same as on a previously received order revision, the OTA
recognition cartridges update the revision number on orders of this type to 999999999.
This ensures that the cancelation is processed.

Central Order Management Cartridges for the Calculate Service Order
Solution Option

The following cartridges operate in the central order management role, which
coordinates fulfillment functions across the Business Support Systems (BSS) and
Operations Support Systems (OSS) such as Siebel CRM, BRM, and provisioning. These
cartridges are used in the calculate service order solution option.

OracleComms_OSM_O2A_COM_CSO_Base
The OracleComms_OSM_O2A_COM_CSO_Base cartridge is a productized cartridge.
It contains entities that support the orchestration of orders for the calculate service
order solution option. It includes the following entities:

■ Order Item Specification: COM_TransformedServiceLine: This order item
specification defines the order item information for transformed order items.

■ Data Schema: OracleComms_OSM_O2A_COM_CSO_Data: This data schema
contains elements relating to transformed order items.

■ Orchestration Process: COM_SalesOrderFulfillmentOrchestrationProcess: This
orchestration process invokes the order transformation manager.

Table 4–56 OracleComms_OSM_O2A_COM_Recognition_Sample Order Recognition Rules

Order Recognition Rule Description

COM_CloseTroubleTicketWorkOrder_Recognition Recognizes a request to close an order as a result of a
trouble ticket.

COM_FaultNotificationOrder_Recognition Recognizes order fallout notifications from Oracle AIA.

COM_ORPFallout_CTT_OrderRecognitionRule Recognizes an ORP fallout and triggers creation of a
fulfillment request for a trouble ticketing system.

COM_ResumePendingIbMsg_
OrderRecognitionRule

Recognizes an inbound message and triggers creation of a
ResumePendingInBoundMessage order.

COM_SalesOrderFulfillment_Recognition Recognizes an Oracle AIA customer order and triggers
the creation of a COM_SalesOrderFulfillment order.

Central Order Management Cartridges for the Calculate Service Order Solution Option

Order-to-Activate Cartridge Contents 4-49

■ Transformation Sequence: COM_OTM_Sequence: This orchestration sequence
has four stages. For more information, see the discussion of transformation
sequences in OSM Concepts.

OracleComms_OSM_O2A_COM_CSO_Broadband_Internet_Access_CFS
The OracleComms_OSM_O2A_COM_CSO_Broadband_Internet_Access_CFS
cartridge is a demonstration cartridge that contains the mapping rules and order item
parameter bindings associated with the customer facing service for broadband internet
access. It also contains XQuery modules to support the order item parameter bindings.

OracleComms_OSM_O2A_COM_CSO_Email_CFS
The OracleComms_OSM_O2A_COM_CSO_Email_CFS cartridge is a demonstration
cartridge that contains the mapping rules and order item parameter bindings
associated with the customer facing service for email service. It also contains XQuery
modules to support the order item parameter bindings.

OracleComms_OSM_O2A_COM_CSO_FulfillmentPattern
The OracleComms_OSM_O2A_COM_CSO_FulfillmentPattern cartridge is a
productized cartridge that contains fulfillment patterns and orchestration
dependencies for the calculate service order solution option.

OracleComms_OSM_O2A_COM_CSO_FulfillmentStateMap
The OracleComms_OSM_O2A_COM_CSO_FulfillmentStateMap cartridge is a
productized cartridge. It fulfillment state maps and transformed order item fulfillment
state composition rule sets specific to the calculate service order solution option.

OracleComms_OSM_O2A_COM_CSO_Internet_Media_CFS
The OracleComms_OSM_O2A_COM_CSO_Internet_Media_CFS cartridge is a
demonstration cartridge that contains the mapping rules and order item parameter
bindings associated with the customer facing service for Internet media service. It also
contains XQuery modules to support the order item parameter bindings.

OracleComms_OSM_O2A_COM_CSO_IP_Fax_CFS
The OracleComms_OSM_O2A_COM_CSO_IP_Fax_CFS cartridge is a demonstration
cartridge that contains the mapping rules and order item parameter bindings
associated with the customer facing service for IP fax service. It also contains XQuery
modules to support the order item parameter bindings.

OracleComms_OSM_O2A_COM_CSO_Model_Container
The OracleComms_OSM_O2A_COM_CSO_Model_Container cartridge is a
demonstration cartridge. It defines the common model projects that contain elements
that might need to be included in the deployment and contains the transformation
manager for the calculate service order solution option.

To see the common model projects that are contained by this cartridge, open the
Properties tab of the cartridge editor. For more information about the common model
projects included with the Order-to-Activate cartridges, see "Conceptual Model
Projects."

Central Order Management Cartridges for the Calculate Service Order Solution Option

4-50 OSM Cartridge Guide for Oracle Application Integration Architecture

OracleComms_OSM_O2A_COM_CSO_Provisioning
The OracleComms_OSM_O2A_COM_CSO_Provisioning cartridge is a demonstration
cartridge. It contains order components for provisioning that are specific to the
calculate service order solution option.

External Fulfillment States
External fulfillment states in the OracleComms_OSM_O2A_COM_CSO_Provisioning
cartridge are defined in the ProvisioningOrderFunction order component
specification for use withy the calculate service order solution option.

The following external fulfillment states are defined in this cartridge:

■ IN_PROGRESS-BROADBANDINTERNETDOMAIN_PROVISION_DESIGNED

■ IN_PROGRESS-BROADBANDINTERNETDOMAIN_PROVISION_ISSUED

■ IN_PROGRESS-VOIPDOMAIN_PROVISION_DESIGNED

■ IN_PROGRESS-VOIPDOMAIN_PROVISION_ISSUED

■ FAILED-VOIPDOMAIN_PROVISION_FAILED

■ FAILED-BROADBANDINTERNETDOMAIN_PROVISION_FAILED

■ IN_PROGRESS-BROADBANDINTERNETDOMAIN_PROVISION_START

■ IN_PROGRESS-VOIPDOMAIN_PROVISION_START

■ CANCELLED-VOIPDOMAIN_PROVISION_DESIGNED

■ CANCELLED-VOIPDOMAIN_PROVISION_START

■ CANCELLED-VOIPDOMAIN_PROVISION_ISSUED

■ CANCELLED-BROADBANDINTERNETDOMAIN_PROVISION_DESIGNED

■ CANCELLED-BROADBANDINTERNETDOMAIN_PROVISION_START

■ CANCELLED-BROADBANDINTERNETDOMAIN_PROVISION_ISSUED

■ COMPLETE-VOIPDOMAIN_PROVISION_COMPLETE

■ COMPLETE-BROADBANDINTERNETDOMAIN_PROVISION_COMPLETE

■ FAILED-BROADBANDINTERNETDOMAIN_PROVISION_AUXILIARY_FAILED

■ FAILED-VOIPDOMAIN_PROVISION_AUXILIARY_FAILED

■ IN_PROGRESS-INTERNETMEDIADOMAIN_PROVISION_START

■ IN_PROGRESS-INTERNETMEDIADOMAIN_PROVISION_DESIGNED

■ IN_PROGRESS-INTERNETMEDIADOMAIN_PROVISION_ISSUED

■ IN_PROGRESS-EMAILDOMAIN_PROVISION_START

■ IN_PROGRESS-EMAILDOMAIN_PROVISION_DESIGNED

■ IN_PROGRESS-EMAILDOMAIN_PROVISION_ISSUED

■ CANCELLED-EMAILDOMAIN_PROVISION_DESIGNED

■ CANCELLED-EMAILDOMAIN_PROVISION_START

■ CANCELLED-EMAILDOMAIN_PROVISION_ISSUED

■ CANCELLED-INTERNETMEDIADOMAIN_PROVISION_DESIGNED

■ CANCELLED-INTERNETMEDIADOMAIN_PROVISION_START

Central Order Management Cartridges for the Calculate Service Order Solution Option

Order-to-Activate Cartridge Contents 4-51

■ CANCELLED-INTERNETMEDIADOMAIN_PROVISION_ISSUED

■ COMPLETE-EMAILDOMAIN_PROVISION_COMPLETE

■ COMPLETE-INTERNETMEDIADOMAIN_PROVISION_COMPLETE

■ FAILED-EMAILDOMAIN_PROVISION_FAILED

■ FAILED-EMAILDOMAIN_PROVISION_AUXILIARY_FAILED

■ FAILED-INTERNETMEDIADOMAIN_PROVISION_FAILED

■ FAILED-INTERNETMEDIADOMAIN_PROVISION_AUXILIARY_FAILED

OracleComms_OSM_O2A_COM_CSO_SalesOrders
The OracleComms_OSM_O2A_COM_CSO_SalesOrders cartridge is a demonstration
cartridge that contains sample customer orders for use with the calculate service order
solution option. These orders are in the same format as orders that are received in an
integrated environment with Oracle AIA, Siebel CRM, and CRM ABCS. In a
standalone OSM environment, you can submit them to central order management to
generate and execute an orchestration plan. In a standalone OSM environment, EBMs
are placed on OSM JMS queues for pickup by Oracle AIA.

Table 4–57 describes the order numbers for new and change orders:

Note: Each customer order that you send must contain a unique
EBM ID. For example, the EBM ID of a cancel order request (revision
order) cannot be the same as the EBM ID of the original base order
(new order).

Table 4–57 OracleComms_OSM_O2A_COM_CSO_SalesOrders Order Descriptions

Order ID Order XML File Description

testcso-doubleplay-voip-broad
band

testcso-all.xml Adds all domain services (Broadband, VoIP,
Email and Internet Media) and creates all CFS
services lines.

testcso-bandwidth testcso-bandwidth.xml Add primary broadband line with auxiliary
line that defines upload/download bandwidth.

testcso-broadband testcso-broadband.xml Add primary basic broadband line only.

testcso-cme-voip testcso-cme-voip_base.xml Add VoIP feature services.

testcso-cme-voip testcso-cme-voip_revision.xml Revision to add extra VoIP services

testcso-doubleplay-voip-delete testcso-doubleplay-voip-broad
band.xml

Add Broadband and VoIP services.

testcso-email testcso-email.xml Add Email service.

testcso-firewall testcso-firewall.xml Add Firewall service.

TestCSO_InternetMedia_1 testcso-internetmedia.xml Add Internet Media service.

TestCSO_IP_FAX testcso-ip-fax.xml Add IP Fax service.

testcso-modem testcso-modem.xml Add Broadband Modem service.

testcso-modem testcso-modem-cancel.xml Cancel Broadband Modem service.

testcso-router testcso-router.xml Add Broadband Router service.

Central Order Management Cartridges for the Calculate Service Order Solution Option

4-52 OSM Cartridge Guide for Oracle Application Integration Architecture

OracleComms_OSM_O2A_COM_CSO_Solution
The OracleComms_OSM_O2A_COM_CSO_Solution cartridge is a demonstration
composite cartridge that references all cartridges required for central order
management in the topology you selected when installing the Order-to-Activate
cartridges.

To see the component cartridges referenced in this cartridge for your solution, open
the Dependencies tab in the composite cartridge editor.

OracleComms_OSM_O2A_COM_CSO_Topology
The OracleComms_OSM_O2A_COM_CSO_Topology cartridge is a demonstration
cartridge containing decomposition rules and order component specifications to
decompose billing, provisioning, shipping, and install fulfillment functions into the
topology you selected when installing the Order-to-Activate cartridges.

Table 4–58 contains a list of the order component specifications defined in this
cartridge.

testcso-voip-callerid testcso-voip-callerid.xml Add VoIP Caller ID service via Value Added
Services.

testcso-voip testcso-voip.xml Add VoIP Services.

testcso-web-conference testcso-web-conference.xml Add Web Conference service.

Table 4–58 OracleComms_OSM_O2A_COM_CSO_Topology Order Component Specifications

Order Component
Specification Description

BRM-ALL Represents the billing fulfillment system if there is a single billing system.

BRM-BIZBDB Represents the billing fulfillment system for business broadband customers.

BRM-REZBDB Represents the billing fulfillment system for residential broadband customers.

BRM-VIRTUAL Represents the billing fulfillment system for non-service billing functions.

BRM-VoIP Represents the billing fulfillment system for VoIP customers.

Provisioning-ALL Represents the provisioning fulfillment system if there is a single provisioning
system.

Provisioning-Broadband Represents the provisioning system for broadband customers.

Provisioning-VoIP Represents the provisioning system for VoIP customers.

Shipping-ALL Represents the shipping fulfillment system if there is a single shipping system.

Shipping-InHouse Represents the shipping system for shipments without partner involvement.

Shipping-PartnerInc Represents the shipping system for shipments with partner involvement.

WFM-A Represents the first workflow management fulfillment system if there is more
than one workflow management system.

WFM-ALL Represents the workflow management fulfillment system if there is a single
workflow management system.

WFM-B Represents the second workflow management fulfillment system if there is more
than one workflow management system.

Table 4–57 (Cont.) OracleComms_OSM_O2A_COM_CSO_SalesOrders Order Descriptions

Order ID Order XML File Description

Central Order Management Cartridges for the Calculate Service Order Solution Option

Order-to-Activate Cartridge Contents 4-53

OracleComms_OSM_O2A_COM_CSO_VoIP_Access_CFS
The OracleComms_OSM_O2A_COM_CSO_VoIP_Access_CFS cartridge is a
demonstration cartridge that contains the mapping rules and order item parameter
bindings associated with the customer facing service for VoIP access. It also contains
XQuery modules to support the order item parameter bindings.

OracleComms_OSM_O2A_COM_CSO_Web_Conferencing_CFS
The OracleComms_OSM_O2A_COM_CSO_Web_Conferencing_CFS cartridge is a
demonstration cartridge that contains the mapping rules and order item parameter
bindings associated with the customer facing service for web conferencing service. It
also contains XQuery modules to support the order item parameter bindings.

OracleComms_OSM_O2A_COM_FulfillmentPattern
The OracleComms_OSM_O2A_COM_FulfillmentPattern cartridge is a productized
cartridge. It contains the base fulfillment pattern, BaseProductSpec, from which other
fulfillment patterns can inherit.

OracleComms_OSM_O2A_COM_FulfillmentStateMap_Sample
The OracleComms_OSM_O2A_COM_FulfillmentStateMap_Sample cartridge is a
productized cartridge that contains fulfillment state entities used by the solution.

This cartridge contains the following common fulfillment state definitions, which are
used in composition rules. Listed under each main fulfillment state are its child states.

■ OPEN

■ IN_PROGRESS

– IN_PROGRESS-FULFILL_BILLING_START

– IN_PROGRESS-INITIATE_BILLING_START

– IN_PROGRESS-INSTALL_COMMITTED

– IN_PROGRESS-INSTALL_PLANNED

– IN_PROGRESS-INSTALL_START

– IN_PROGRESS-PROVISION_DESIGNED

– IN_PROGRESS-PROVISION_ISSUED

– IN_PROGRESS-PROVISION_START

– IN_PROGRESS-SHIP_ORDER_PLANNED

– IN_PROGRESS-SHIP_ORDER_START

– IN_PROGRESS-SYNC_CUSTOMER_START

■ COMPLETE

– COMPLETE-FULFILL_BILLING_COMPLETE

– COMPLETE-FULFILL_BILLING_START

– COMPLETE-INITIATE_BILLING_COMPLETE

– COMPLETE-INITIATE_BILLING_START

– COMPLETE-INSTALL_COMPLETE

Central Order Management Cartridges for the Calculate Service Order Solution Option

4-54 OSM Cartridge Guide for Oracle Application Integration Architecture

– COMPLETE-INSTALL_START

– COMPLETE-PROVISION_COMPLETE

– COMPLETE-PROVISION_DESIGNED

– COMPLETE-PROVISION_ISSUED

– COMPLETE-PROVISION_START

– COMPLETE-SHIP_ORDER_SHIPPED

– COMPLETE-SHIP_ORDER_START

– COMPLETE-SYNC_CUSTOMER_COMPLETE

– COMPLETE-SYNC_CUSTOMER_START

■ CANCELLED

– CANCELLED-FULFILL_BILLING_COMPLETE

– CANCELLED-FULFILL_BILLING_START

– CANCELLED-INITIATE_BILLING_COMPLETE

– CANCELLED-INITIATE_BILLING_START

– CANCELLED-INSTALL_COMMITTED

– CANCELLED-INSTALL_COMPLETE

– CANCELLED-INSTALL_PLANNED

– CANCELLED-INSTALL_START

– CANCELLED-PROVISION_COMPLETE

– CANCELLED-PROVISION_DESIGNED

– CANCELLED-PROVISION_ISSUED

– CANCELLED-PROVISION_START

– CANCELLED-SHIP_ORDER_PLANNED

– CANCELLED-SHIP_ORDER_SHIPPED

– CANCELLED-SHIP_ORDER_START

– CANCELLED-SYNC_CUSTOMER_COMPLETE

– CANCELLED-SYNC_CUSTOMER_START

■ FAILED

– FAILED-FULFILL_BILLING_COMPLETE

– FAILED-FULFILL_BILLING_START

– FAILED-INITIATE_BILLING_COMPLETE

– FAILED-INITIATE_BILLING_START

– FAILED-INSTALL_COMMITTED

– FAILED-INSTALL_COMPLETE

– FAILED-INSTALL_PLANNED

– FAILED-INSTALL_START

– FAILED-PROVISION_AUXILIARY

Central Order Management Cartridges for the Calculate Service Order Solution Option

Order-to-Activate Cartridge Contents 4-55

– FAILED-PROVISION_COMPLETE

– FAILED-PROVISION_DESIGNED

– FAILED-PROVISION_FAILED

– FAILED-PROVISION_ISSUED

– FAILED-PROVISION_START

– FAILED-SHIP_ORDER_PLANNED

– FAILED-SHIP_ORDER_SHIPPED

– FAILED-SHIP_ORDER_START

– FAILED-SYNC_CUSTOMER_COMPLETE

– FAILED-SYNC_CUSTOMER_START

OracleComms_OSM_O2A_COMSOM_CSO_Recognition
The OracleComms_OSM_O2A_COMSOM_CSO_Recognition cartridge is a
demonstration cartridge that recognizes a customer order from Oracle AIA and
triggers the creation of a COM_SalesOrderFulfillment order. In addition, this cartridge
recognizes order fallout notifications, trouble ticket requests, and inbound message
errors due to suspended orders or resource issues. It also catches all unrecognizable
messages.

Table 4–59 lists the order recognition rules defined in this cartridge.

Revision Number Update for Canceled Orders
When AIA receives an order that has a mode of CANCEL, or when an order is
received in which all of the order line items have an action code of NONE, AIA does
not update the revision number. Because OSM will ignore a revision order if its
revision number is the same as on a previously received order revision, the OTA
recognition cartridges update the revision number on orders of this type to 999999999.
This ensures that the cancelation is processed.

Table 4–59 OracleComms_OSM_O2A_COMSOM_CSO_Recognition Order Recognition Rules

Order Recognition Rule Description

COM_CloseTroubleTicketWorkOrder_Recognition Recognizes a request to close an order as a result of a
trouble ticket.

COM_FaultNotificationOrder_Recognition Recognizes order fallout notifications from Oracle AIA.

COM_ORPFallout_CTT_OrderRecognitionRule Recognizes an ORP fallout and triggers creation of a
fulfillment request for a trouble ticketing system.

COMSOM_CSO_Recognize_
AbortPropagationServiceOrder

Recognizes a termination request for an order.

COMSOM_CSO_RecognizeEBM_
ProvisioningOrder

Recognizes and EBM provisioning order.

COM_ResumePendingIbMsg_
OrderRecognitionRule

Recognizes an inbound message and triggers creation of a
ResumePendingInBoundMessage order.

COM_SalesOrderFulfillment_Recognition Recognizes an Oracle AIA customer order and triggers
the creation of a COM_SalesOrderFulfillment order.

Central Order Management Cartridges for the Solution Option Without Calculate Service Order

4-56 OSM Cartridge Guide for Oracle Application Integration Architecture

OracleComms_OSM_O2A_COMSOM_CSO_Solution
The OracleComms_OSM_O2A_COMSOM_CSO_Solution cartridge is a demonstration
composite cartridge that references all cartridges required for central order
management and service order management in the topology you selected when
installing the Order-to-Activate cartridges.

To see the component cartridges referenced in this cartridge for your solution, open
the Dependencies tab in the composite cartridge editor.

Central Order Management Cartridges for the Solution Option Without
Calculate Service Order

The following cartridges operate in the central order management role, which
coordinates fulfillment functions across the Business Support Systems (BSS) and
Operations Support Systems (OSS) such as Siebel CRM, BRM, and provisioning. These
cartridges are used in the solution option without calculate service order.

OracleComms_OSM_O2A_BBVoIP_FP_NP_Danube_Sample
The OracleComms_OSM_O2A_BBVoIP_FP_NP_Danube_Sample cartridge contains
fulfillment patterns and orchestration dependencies for the Simple topology.

The following fulfillment patterns are configured in this cartridge:

■ BaseProductSpec – All other fulfillment patterns extend from this.

■ NonService.BillingInitiatedItem

■ NonService.BillingItem

■ NonService.Offer

■ Service.Broadband

■ Service.CPE.Broadband

■ Service.CPE.VoIP

■ Service.Install

■ Service.VoIP

OracleComms_OSM_O2A_BBVoIP_FP_NP_Nile_Sample
The OracleComms_OSM_O2A_BBVoIP_FP_NP_Nile_Sample cartridge contains
fulfillment patterns and orchestration dependencies for the Typical or Complex
topologies.

The following fulfillment patterns are configured in this cartridge:

■ BaseProductSpec – All other fulfillment patterns extend from this.

■ NonService.BillingInitiatedItem

■ NonService.BillingItem

■ NonService.Offer

■ Service.Broadband

■ Service.CPE.Broadband

■ Service.CPE.VoIP

Central Order Management Cartridges for the Solution Option Without Calculate Service Order

Order-to-Activate Cartridge Contents 4-57

■ Service.Install

■ Service.VoIP

OracleComms_OSM_O2A_COM_NCSO_Base
The OracleComms_OSM_O2A_COM_NCSO_Base cartridge is a productized
cartridge. It contains the orchestration process, COM_
SalesOrderFulfillmentOrchestrationProcess, that supports the orchestration of orders
for the solution option without calculate service order.

OracleComms_OSM_O2A_COM_NCSO_Provisioning
The OracleComms_OSM_O2A_COM_NCSO_Provisioning cartridge is a
demonstration cartridge. It contains an order component for provisioning,
ProvisionOrderFunction, that is specific to the service option without calculate service
order.

Table 4–60 lists the XQuery modules defined for the ProvisionOrderFunction
fulfillment function. Customers can provide their own implementation of the XQuery
modules in this fulfillment function indicated extension points. See "Extending
XQuery Modules" for more information about XQuery extension points.

Table 4–61 lists the automation modules (with their associated automated tasks)
defined in the OracleComms_OSM_O2A_COM_Provisioning cartridge for the
ProvisionOrderFunction fulfillment function.

Table 4–60 ProvisionOrderFunction XQuery Modules

XQuery Module XQuery Extension Point Description

ProvisionOrderComplete_Event COMPONENT-COMPLETE Invoked when the ProvisionOrderFunction
component is completed.

ProvisionOrderCreateEBM_
DoEvent

CREATE-EBM

(execution mode: do)

Invoked when the EBM is created in the do
execution mode for the
ProvisionOrderFunction component.

ProvisionOrderCreateEBM_
ReDoEvent

CREATE-EBM

(execution mode: redo)

Invoked when the EBM is created in the redo
execution mode for the
ProvisionOrderFunction component.

ProvisionOrderCreateEBM_
UnDoEvent

CREATE-EBM

(execution mode: undo)

Invoked when the EBM is created in the undo
execution mode for the
ProvisionOrderFunction component.

ProvisionOrderStart_Event COMPONENT-START Invoked when the ProvisionOrderFunction
component is started.

ProvisionOrderValidateRespons
eEBM_Event

VALIDATE-RESPONSE-EBM Invoked to validate the EBM response for the
ProvisionOrderFunction component.

ProvisionOrderUpdate_Event COMPONENT-RESPONSE-U
PDATE

Invoked when the EBM response for
ProvisionOrderFunction component is
updated.

Central Order Management Cartridges for the Solution Option Without Calculate Service Order

4-58 OSM Cartridge Guide for Oracle Application Integration Architecture

OracleComms_OSM_O2A_COM_Simple_NP_Soln
The OracleComms_OSM_O2A_COM_Simple_NP_Soln cartridge is a demonstration
composite cartridge that references all cartridges required for central order
management in the Simple topology.

To see the component cartridges referenced in this cartridge for your solution, open
the Dependencies tab in the composite cartridge editor.

OracleComms_OSM_O2A_COM_Typical_NP_Soln
The OracleComms_OSM_O2A_COM_Typical_NP_Soln cartridge is a demonstration
composite cartridge that references all cartridges required for central order
management in the Typical or Complex topologies.

The OracleComms_OSM_O2A_COM_Simple_NP_Soln cartridge is a demonstration
composite cartridge that references all cartridges required for central order
management in the Simple topology.

OracleComms_OSM_O2A_COMSOM_Recognition_Sample
The OracleComms_OSM_O2A_COMSOM_Recognition_Sample cartridge is a
demonstration cartridge that is used when central order management and service
order management are deployed together in the same OSM instance. It recognizes a
customer order from Oracle AIA and triggers the creation of a COM_
SalesOrderFulfillment order. In addition, this cartridge recognizes order fallout
notifications, trouble ticket requests, and inbound message errors due to suspended
orders or resource issues. It also catches all unrecognizable messages.

Table 4–62 lists the order recognition rules defined in this cartridge.

Table 4–61 ProvisionOrderFunction Automation Modules

Automation Module Automated Task Description

ProvisionOrderEntryPointBea
n_doredo

ProvisionOrderSIEntryPoint
Task

Calls the SIEntryPoint XQuery.

ProvisionOrderRequestBean_
do

ProvisionOrderSITask Calls the AIAEBMRequest_do XQuery.

ProvisionOrderRequestBean_
redo

ProvisionOrderSITask Calls the AIAEBMRequest_redo XQuery.

ProvisionOrderRequestBean_
undo

ProvisionOrderSITask Calls the AIAEBMRequest_undo XQuery.

ProvisionOrderResponseBean ProvisionOrderSITask External event receiver to invoke
AIAEBMResponse XQuery.

InitiateWaitforProvisioningRes
ponseBean

ProvisionOrderSIResponseTa
sk

Calls the InitiateWaitforProvisioningResponse
XQuery.

ProvisioningResponseBean ProvisionOrderSIResponseTa
sk

External event receiver to invoke
AIAEBMResponse XQuery for do, redo and
amend-do mode.

Central Order Management Cartridges for the Solution Option Without Calculate Service Order

Order-to-Activate Cartridge Contents 4-59

Revision Number Update for Canceled Orders
For information about special revision number processing for canceled orders, see
"Revision Number Update for Canceled Orders."

OracleComms_OSM_O2A_COMSOM_Simple_NP_Soln
The OracleComms_OSM_O2A_COMSOM_Simple_NP_Soln cartridge is a
demonstration composite cartridge that references all cartridges required for central
order management and service order management in the Simple topology.

To see the component cartridges referenced in this cartridge for your solution, open
the Dependencies tab in the composite cartridge editor.

OracleComms_OSM_O2A_COMSOM_Typical_NP_Soln
The OracleComms_OSM_O2A_COMSOM_Typical_NP_Soln cartridge is a
demonstration composite cartridge that references all cartridges required for central
order management and service order management in the Typical or Complex topology

To see the component cartridges referenced in this cartridge for your solution, open
the Dependencies tab in the composite cartridge editor.

OracleComms_OSM_O2A_FulfillmentPatternMap_Sample
The OracleComms_OSM_O2A_FulfillmentPatternMap_Sample cartridge is a
demonstration cartridge. It contains the mappings between product specifications and
fulfillment patterns, where the product specifications are either imported from
customer's Siebel CRM system or manually created. In either case, this cartridge can be
extended and can contain custom product specification information.

This cartridge also contains the following common fulfillment state definitions, which
are used in composition rules. Listed under each main fulfillment state are its child
states.

■ OPEN

■ IN_PROGRESS

– IN_PROGRESS-FULFILL_BILLING_START

Table 4–62 OracleComms_OSM_O2A_COMSOM_Recognition_Sample Order Recognition Rules

Order Recognition Rule Description

COMSOM_CloseTroubleTicketWorkOrder Recognizes a request to close an order as a result of a
trouble ticket.

COMSOM_FaultNotificationOrder Recognizes order fallout notifications from Oracle AIA.

COMSOM_LFAbortOrderPropagationOrder Recognizes a termination request for an order.

COMSOM_ORPFallout_CTT_Order Recognizes an ORP fallout and triggers creation of a
fulfillment request for a trouble ticketing system.

COMSOM_ProvisionOrderFulfillment Recognizes a service order that must be executed and
creates a SOM_ProvisionOrderFulfillment order.

COMSOM_ResumePendingIbMsg Recognizes an inbound message and triggers creation of a
ResumePendingInBoundMessage order.

COMSOM_SalesOrderFulfillment Recognizes an Oracle AIA customer order and triggers
the creation of a COM_SalesOrderFulfillment order.

Central Order Management Cartridges for the Solution Option Without Calculate Service Order

4-60 OSM Cartridge Guide for Oracle Application Integration Architecture

– IN_PROGRESS-INITIATE_BILLING_START

– IN_PROGRESS-INSTALL_COMMITTED

– IN_PROGRESS-INSTALL_PLANNED

– IN_PROGRESS-INSTALL_START

– IN_PROGRESS-PROVISION_DESIGNED

– IN_PROGRESS-PROVISION_START

– IN_PROGRESS-SHIP_ORDER_PLANNED

– IN_PROGRESS-SHIP_ORDER_START

– IN_PROGRESS-SYNC_CUSTOMER_START

■ COMPLETE

– COMPLETE-FULFILL_BILLING_COMPLETE

– COMPLETE-FULFILL_BILLING_START

– COMPLETE-INITIATE_BILLING_COMPLETE

– COMPLETE-INITIATE_BILLING_START

– COMPLETE-INSTALL_COMPLETE

– COMPLETE-INSTALL_START

– COMPLETE-PROVISION_COMPLETE

– COMPLETE-PROVISION_START

– COMPLETE-SHIP_ORDER_SHIPPED

– COMPLETE-SHIP_ORDER_START

– COMPLETE-SYNC_CUSTOMER_COMPLETE

– COMPLETE-SYNC_CUSTOMER_START

■ CANCELLED

– CANCELLED-FULFILL_BILLING_COMPLETE

– CANCELLED-FULFILL_BILLING_START

– CANCELLED-INITIATE_BILLING_COMPLETE

– CANCELLED-INITIATE_BILLING_START

– CANCELLED-INSTALL_COMMITTED

– CANCELLED-INSTALL_COMPLETE

– CANCELLED-INSTALL_PLANNED

– CANCELLED-INSTALL_START

– CANCELLED-PROVISION_COMPLETE

– CANCELLED-PROVISION_DESIGNED

– CANCELLED-PROVISION_START

– CANCELLED-SHIP_ORDER_PLANNED

– CANCELLED-SHIP_ORDER_SHIPPED

– CANCELLED-SHIP_ORDER_START

Central Order Management Cartridges for the Solution Option Without Calculate Service Order

Order-to-Activate Cartridge Contents 4-61

– CANCELLED-SYNC_CUSTOMER_COMPLETE

– CANCELLED-SYNC_CUSTOMER_START

■ FAILED

– FAILED-FULFILL_BILLING_COMPLETE

– FAILED-FULFILL_BILLING_START

– FAILED-INITIATE_BILLING_COMPLETE

– FAILED-INITIATE_BILLING_START

– FAILED-INSTALL_COMMITTED

– FAILED-INSTALL_COMPLETE

– FAILED-INSTALL_PLANNED

– FAILED-INSTALL_START

– FAILED-PROVISION_COMPLETE

– FAILED-PROVISION_DESIGNED

– FAILED-PROVISION_START

– FAILED-SHIP_ORDER_PLANNED

– FAILED-SHIP_ORDER_SHIPPED

– FAILED-SHIP_ORDER_START

– FAILED-SYNC_CUSTOMER_COMPLETE

– FAILED-SYNC_CUSTOMER_START

OracleComms_OSM_O2A_SalesOrders_NP_Sample
The OracleComms_OSM_O2A_SalesOrders_NP_Sample cartridge is a demonstration
cartridge that contains sample customer orders. These orders are in the same format as
orders that are received in an integrated environment with Oracle AIA, Siebel CRM,
and CRM ABCS. In a standalone OSM environment, you can submit them to central
order management to generate and execute an orchestration plan. In a standalone
OSM environment, EBMs are placed on OSM JMS queues for pickup by Oracle AIA.

This cartridge contains sample orders in XML files. The names of the XML files use the
following conventions:

■ NSalesOrder: Order to add services

■ CSalesOrder: Change order, otherwise known as a Move Add Change Delete
(MACD) order

■ FSalesOrder: Follow-on order, used to update an order that has passed the point of
no return

■ R1, R2, R3, R4: revision order for submission after the original base order with the
same name

■ TBO: An order specifying time-based offerings

■ Cancel: Cancel order

Central Order Management Cartridges for the Solution Option Without Calculate Service Order

4-62 OSM Cartridge Guide for Oracle Application Integration Architecture

Table 4–63 describes the order numbers for new and change orders:

Following is a list of the order XML files included in the cartridge:

■ NEWPROD_NSalesOrderTBOEBM.xml

■ NEWPROD_CSalesOrderTBOEBM.xml

■ NEWPROD_GoldFSalesOrder10000F-1FFEBM.xml

■ NEWPROD_GoldNSalesOrder10000-V2EBM-Predecessor.xml

■ NEWPROD_GoldNSalesOrder10000-V2EBM-Successor.xml

■ NEWPROD_GoldNSalesOrder10000-V2EBM.xml

■ NEWPROD_GoldNSalesOrder10000F-1EBM.xml

■ NEWPROD_GoldNSalesOrder10000F-1FO1EBM.xml

■ NEWPROD_GoldNSalesOrder10000WithAdditionalFulfillmentItemCodeEBM.xml

■ NEWPROD_GoldNSalesOrder10010-V2EBM.xml

■ NEWPROD_GoldCSalesOrder10010-V2EBM.xml

■ NEWPROD_GoldCSalesOrder10020-2-1EBM.xml

■ NEWPROD_GoldCSalesOrder10020-2-1R1EBM.xml

■ NEWPROD_GoldCSalesOrder10020-V2EBM.xml

■ NEWPROD_GoldNSalesOrder10020-2-1EBM.xml

■ NEWPROD_GoldNSalesOrder10020-V2EBM.xml

■ NEWPROD_GoldNSalesOrder10030-V2EBM.xml

■ NEWPROD_GoldNSalesOrder10030_2V1EBM.xml

■ NEWPROD_GoldCSalesOrder10030-V2EBM.xml

Note: Each customer order that you send must contain a unique
EBM ID. For example, the EBM ID of a cancel order request (revision
order) cannot be the same as the EBM ID of the original base order
(new order).

Table 4–63 OracleComms_OSM_O2A_SalesOrders_NP_Sample Order Descriptions

Order Number Description

Sales Order 10000 Double Play First-Time Purchase

Sales Order 10010 Double Play Promotion change orders for broadband

Sales Order 10020 Double Play Promotion change orders for VoIP

Sales Order 10030 Double Play Change Purchased Products

Sales Order 10040 Double Play Update Attributes of a Product

Sales Order 10050 Double Play Suspend Services

Sales Order 10060 Double Play Suspend and Resume on the Same Order

Sales Order 10070 Double Play Move Services to Different Address

Sales Order 10080 Double Play Disconnect Optional Products

Central Order Management Cartridges for the Solution Option Without Calculate Service Order

Order-to-Activate Cartridge Contents 4-63

■ NEWPROD_GoldCSalesOrder10030R1_2V1EBM.xml

■ NEWPROD_GoldCSalesOrder10030R3_2V1EBM.xml

■ NEWPROD_GoldCSalesOrder10030R4_2V1EBM.xml

■ NEWPROD_GoldCSalesOrder10030_2V1EBM.xml

■ NEWPROD_GoldNSalesOrder10040-V2EBM.xml

■ NEWPROD_GoldNSalesOrder10040_2V1EBM.xml

■ NEWPROD_GoldCSalesOrder10040-V2EBM.xml

■ NEWPROD_GoldR1SalesOrder10040-V2EBM.xml

■ NEWPROD_GoldCSalesOrder10040R2_2V1EBM.xml

■ NEWPROD_GoldR3SalesOrder10040-V2EBM.xml

■ NEWPROD_GoldCSalesOrder10040R4_2V1EBM.xml

■ NEWPROD_GoldCSalesOrder10040_2V1EBM.xml

■ NEWPROD_GoldNSalesOrder10050-V2EBM.xml

■ NEWPROD_GoldCSalesOrder10050-V2EBM.xml

■ NEWPROD_GoldNSalesOrder10060-V2EBM.xml

■ NEWPROD_GoldCSalesOrder10060-V2EBM.xml

■ NEWPROD_GoldNSalesOrder10070-V2EBM.xml

■ NEWPROD_GoldCSalesOrder10070-V2EBM.xml

■ NEWPROD_GoldCSalesOrder10070R1-V2EBM.xml

■ NEWPROD_GoldNSalesOrder10080-V2EBM.xml

■ NEWPROD_GoldCSalesOrder10080-V2EBM.xml

■ NEWPROD_GoldR1SalesOrder10080-V2EBM.xml

■ NEWPROD_GoldR2SalesOrder10080-V2EBM.xml

■ NEWPROD_NSalesOrderWirelessProductsEBM.xml

■ NEWPROD_SalesOrder10000CancelEBM.xml

■ NEWPROD_SalesOrder10000DeliverEBM.xml

Table 4–64 contains information about the changes included in the specific revision
orders above:

Note: The NEWPROD_testfalloutnotification.xml file is a sample
order fallout notification but not a sample customer order. This XML
file is used to send a particular task to fallout manually by pausing the
corresponding queue.

Table 4–64 OracleComms_OSM_O2A_SalesOrders_NP_Sample Order Revision Details

Order Number Description

GoldCSalesOrder10030R1_2V1EBM ADD canceled on revision, DELETE canceled on revision

GoldCSalesOrder10030R3_2V1EBM ADD modified on revision

GoldCSalesOrder10030R4_2V1EBM New ADD on revision

Central Order Management Cartridges for the Solution Option Without Calculate Service Order

4-64 OSM Cartridge Guide for Oracle Application Integration Architecture

OracleComms_OSM_O2A_SimpleTopology_Sample
The OracleComms_OSM_O2A_SimpleTopology_Sample cartridge is a demonstration
cartridge containing decomposition rules and order component specifications to
decompose billing and provisioning fulfillment functions into the Simple topology: a
single billing instance and a single local fulfillment instance.

Table 4–65 contains a list of the order component specifications defined in this
cartridge.

OracleComms_OSM_O2A_TypicalTopology_Sample
The OracleComms_OSM_O2A_TypicalTopology_Sample cartridge is a demonstration
cartridge containing decomposition rules and order component specifications to
decompose billing, provisioning, shipping, and install fulfillment functions into the
Typical topology: multiple billing, local fulfillment, supply chain management, and
workforce management instances.

Table 4–66 contains a list of the order component specifications defined in this
cartridge.

GoldR1SalesOrder10040-V2EBM UPDATE modified on revision

GoldCSalesOrder10040R2_2V1EBM UPDATE canceled on revision

GoldR3SalesOrder10040-V2EBM New ADD on revision

GoldCSalesOrder10040R4_2V1EBM DELETE added on revision

GoldCSalesOrder10070R1-V2EBM MOVE canceled on revision

GoldR1SalesOrder10080-V2EBM DELETE modified on revision (future date)

GoldR2SalesOrder10080-V2EBM UPDATE added on revision

Table 4–65 OracleComms_OSM_O2A_SimpleTopology_Sample Order Component Specifications

Order Component
Specification Description

BRM-ALL Represents the billing fulfillment system.

Provisioning-ALL Represents the provisioning fulfillment system.

Table 4–66 OracleComms_OSM_O2A_TypicalTopology_Sample Order Component Specifications

Order Component
Specification Description

BRM-ALL Represents the billing fulfillment system if there is a single billing system.

BRM-BIZBDB Represents the billing fulfillment system for business broadband customers.

BRM-REZBDB Represents the billing fulfillment system for residential broadband customers.

BRM-VIRTUAL Represents the billing fulfillment system for non-service billing functions.

BRM-VoIP Represents the billing fulfillment system for VoIP customers.

Provisioning-ALL Represents the provisioning fulfillment system if there is a single provisioning
system.

Provisioning-DSL Represents the provisioning system for DSL customers outside the UK.

Table 4–64 (Cont.) OracleComms_OSM_O2A_SalesOrders_NP_Sample Order Revision Details

Order Number Description

Service Order Management Cartridges for the Calculate Service Order Solution Option

Order-to-Activate Cartridge Contents 4-65

Service Order Management Cartridges for the Calculate Service Order
Solution Option

The following cartridges operate in the service order management role, which
translates Oracle AIA service orders into OSM service orders and processes those
orders. These cartridges are used in the calculate service order solution option.

OracleComms_OSM_O2A_SOM_CSO_Base
The OracleComms_OSM_O2A_SOM_CSO_Base cartridge is a productized cartridge
that supports the provisioning of service orders.

Order Events
When the COM_SalesOrderFulfillment order reaches one of the order events listed in
Table 4–67, it triggers the listed XQuery module to send an order update to the
upstream system.

Order Lifecycle Manager Configuration
The Order-to-Activate order lifecycle manager is configured with the header values for
the Order Lifecycle Management user interface. It also contains mappings between
Order-to-Activate central order management fulfillment states and standard order
lifecycle manager states.

Table 4–68 displays the mappings that are configured. The high-level fulfillment states
are mapped, which causes the child states to be mapped as well.

Provisioning-UKDSL Represents the provisioning system for DSL customers inside the UK.

Provisioning-VOIP Represents the provisioning system for VoIP customers.

Shipping-ALL Represents the shipping fulfillment system if there is a single shipping system.

Shipping-InHouse Represents the shipping system for shipments without partner involvement.

Shipping-PartnerInc Represents the shipping system for shipments with partner involvement.

WFM-A Represents the first workflow management fulfillment system if there is more
than one workflow management system.

WFM-ALL Represents the workflow management fulfillment system if there is a single
workflow management system.

WFM-B Represents the second workflow management fulfillment system if there is more
than one workflow management system.

Table 4–67 OracleComms_OSM_O2A_SOM_CSO_Base Order Events

Order Event Description

creation Calls the SOMOrderCreationFailure XQuery module to determine if a failure has
occurred. If so, generates a message to central order management through the
Oracle AIA error handling framework.

completion Calls the SOMCompletionStatusSender XQuery module to send the order
completion to central order management.

Table 4–66 (Cont.) OracleComms_OSM_O2A_TypicalTopology_Sample Order Component Specifications

Order Component
Specification Description

Service Order Management Cartridges for the Calculate Service Order Solution Option

4-66 OSM Cartridge Guide for Oracle Application Integration Architecture

XQuery Modules in the OracleComms_OSM_O2A_SOM_CSO_Base Cartridge
Table 4–69 through Table 4–72 list the different types of XQuery modules in this
cartridge.

Table 4–68 Fulfillment State to Order Lifecycle Manager State Mapping

Fulfillment State Order Lifecycle Manager State

SOM_CANCELLED Canceled

SOM_COMPLETE Complete

SOM_FAILED Failed

SOM_INPROGRESS In Progress

Note: If you have both central order management and service order
management in the same Design Studio workspace, you will see
service order management fulfillment states in the list in the order
lifecycle manager. The names of the high-level fulfillment states for
central order management do not start with SOM_. The central order
management fulfillment states do not need to be mapped here,
because they are mapped in the order lifecycle manager in the central
order management configuration. See "Order Lifecycle Manager
Configuration" for information about central order management state
mappings.

Table 4–69 OracleComms_OSM_O2A_SOM_CSO_Base XQuery Modules for Fallout Handling

Fallout Handling XQuery Module Extendable Description

SendAbortLFOrderFailure No Sends a fulfillment order failure update when the
order termination request failed.

SendAbortLFOrderSuccess No Sends a fulfillment order success update when the
order termination request succeeded.

SomAbortOrder No Sends an order termination request for a given
fulfillment request.

SomFindOrder No Creates a find order request for a fulfillment request
with a given order key.

SomSuspendOrder No Creates a suspend order request for a fulfillment
request with a given order key.

SomWebServicesResponseHandler No Utility module for providing retrieval and update to
service order.

Table 4–70 OracleComms_OSM_O2A_SOM_CSO_Base Orchestration Sequence XQuery Modules

Orchestration Sequence XQuery
Module Extendable Description

SOM_FulfillmentModeExpression No Marshals the fulfillment mode code from the service
order.

SOM_OrderItemSelector No Module to select all order line items from the service
order.

Service Order Management Cartridges for the Calculate Service Order Solution Option

Order-to-Activate Cartridge Contents 4-67

Automation Modules in the OracleComms_OSM_O2A_SOM_CSO_Base Cartridge
Table 4–73 lists the automation modules in the cartridge with their associated
automated tasks.

OracleComms_OSM_O2A_SOM_CSO_Broadband_Internet_Access_CFS
The OracleComms_OSM_O2A_SOM_CSO_Broadband_Internet_Access_CFS cartridge
is a demonstration cartridge that contains the order item parameter bindings
associated with the customer facing service for broadband Internet access. It also
contains XQuery modules to support the order item parameter bindings.

OracleComms_OSM_O2A_SOM_CSO_Common
The OracleComms_OSM_O2A_SOM_CSO_Common cartridge is a productized
cartridge that contains data elements and fulfillment modes for service order
management with the calculate service order solution option.

The following fulfillment modes are defined in this cartridge:

■ SOM_CANCEL

■ SOM_DELIVER

■ SOM_TSQ

Table 4–71 OracleComms_OSM_O2A_SOM_CSO_Base Order Recognition XQuery Modules

Order Recognition XQuery Module Extendable Description

SOM_DataTransform No Transforms the Oracle AIA service order to an OSM
service order.

SOM_DataValidation No Validates the Oracle AIA service order.

Table 4–72 OracleComms_OSM_O2A_SOM_CSO_Base Order State XQuery Modules

Order State XQuery Module Extendable Description

SOM_Reference No Accesses the sales order reference.

Table 4–73 OracleComms_OSM_O2A_SOM_CSO_Base Automation Modules

Automation Module Automated Task Description

AbortSomOrderRequest AbortSomOrderTask Calls the SomAbortOrder XQuery.

AbortSomOrderResponse AbortSomOrderTask External event receiver to invoke
SomWebServicesResponseHandler XQuery.

FindSomOrderRequest FindSomOrderTask Calls the SomFindOrder XQuery.

FindSomOrderResponse FindSomOrderTask External event receiver to invoke
SomWebServicesResponseHandler XQuery.

SendAbortStatusToUpstream SendAbortStatusToUpstream
Task

Calls the SendAbortLFOrderSuccess XQuery

SuspendSomOrderRequest SuspendSomOrderTask Calls the SomSuspendOrder XQuery.

SuspendSomOrderResponse SuspendSomOrderTask External event receiver to invoke
SomWebServicesResponseHandler XQuery

Service Order Management Cartridges for the Calculate Service Order Solution Option

4-68 OSM Cartridge Guide for Oracle Application Integration Architecture

OracleComms_OSM_O2A_SOM_CSO_CompleteProvisioning
The OracleComms_OSM_O2A_COM_CSO_Base cartridge is a demonstration
cartridge that supports provisioning fulfillment functions for service order
management.

OracleComms_OSM_O2A_SOM_CSO_DeliverOrder
The OracleComms_OSM_O2A_SOM_CSO_DeliverOrder cartridge is a demonstration
cartridge that supports order delivery fulfillment functions for service order
management.

OracleComms_OSM_O2A_SOM_CSO_DesignService
The OracleComms_OSM_O2A_SOM_CSO_DesignService cartridge is a demonstration
cartridge that supports service design fulfillment functions for service order
management.

OracleComms_OSM_O2A_SOM_CSO_Email_CFS
The OracleComms_OSM_O2A_SOM_CSO_Email_CFS cartridge is a demonstration
cartridge that contains the order item parameter bindings associated with the
customer facing service for email service. It also contains XQuery modules to support
the order item parameter bindings.

OracleComms_OSM_O2A_SOM_CSO_FulfillmentPattern
The OracleComms_OSM_O2A_SOM_CSO_FulfillmentPattern cartridge is a
productized cartridge that contains service order management fulfillment patterns for
the calculate service order solution option.

OracleComms_OSM_O2A_SOM_CSO_FulfillmentStateMap
The OracleComms_OSM_O2A_COM_CSO_Base cartridge is a productized cartridge
that contains fulfillment state entities used by the solution.

This cartridge contains the following common fulfillment state definitions, which are
used in composition rules. Listed under each main fulfillment state are its child states.

■ SOM_PENDING

■ SOM_INPROGRESS

– IN_PROGRESS-BI_CAPTURED

– IN_PROGRESS-BI_ISSUED

– IN_PROGRESS-BI_PROCESSED

– IN_PROGRESS-TO_CREATE

■ SOM_COMPLETED

– COMPLETE-BI_APPROVED

– COMPLETE-BI_COMPLETED

– COMPLETE-TA_CALCULATED

– COMPLETE-TO_COMPLETED

■ SOM_CANCELLED

Service Order Management Cartridges for the Calculate Service Order Solution Option

Order-to-Activate Cartridge Contents 4-69

– CANCELLED-BI_APPROVED

– CANCELLED-BI_CAPTURED

– CANCELLED-BI_COMPLETED

– CANCELLED-BI_ISSUED

– CANCELLED-BI_PROCESSED

– CANCELLED-TA_CALCULATED

– CANCELLED-TO_COMPLETED

– CANCELLED-TO_CREATE

■ SOM_FAILED

– FAILED-BI_APPROVED

– FAILED-BI_CAPTURED

– FAILED-BI_COMPLETED

– FAILED-BI_ISSUED

– FAILED-BI_PROCESSED

– FAILED-SERVICE

– FAILED-TO_COMPLETED

– FAILED-TO_CREATE

OracleComms_OSM_O2A_SOM_CSO_Internet_Media_CFS
The OracleComms_OSM_O2A_SOM_CSO_Internet_Media_CFS cartridge is a
demonstration cartridge that contains the order item parameter bindings associated
with the customer facing service for Internet media service. It also contains XQuery
modules to support the order item parameter bindings.

OracleComms_OSM_O2A_SOM_CSO_IP_Fax_CFS
The OracleComms_OSM_O2A_COM_CSO_Base cartridge is a demonstration
cartridge that contains the order item parameter bindings associated with the
customer facing service for IP fax service. It also contains XQuery modules to support
the order item parameter bindings.

OracleComms_OSM_O2A_SOM_CSO_ModelContainer
The OracleComms_OSM_O2A_SOM_CSO_ModelContainer cartridge defines the
common model projects that contain elements that might need to be included in the
deployment.

To see the common model projects that are contained by this cartridge, open the
Properties tab of the cartridge editor. For more information about the common model
projects included with the Order-to-Activate cartridges, see "Conceptual Model
Projects."

OracleComms_OSM_O2A_SOM_CSO_PlanDelivery
The OracleComms_OSM_O2A_COM_CSO_Base cartridge is a demonstration
cartridge that supports delivery planning fulfillment functions for service order
management.

Service Order Management Cartridges for the Calculate Service Order Solution Option

4-70 OSM Cartridge Guide for Oracle Application Integration Architecture

OracleComms_OSM_O2A_SOM_CSO_Recognition
The OracleComms_OSM_O2A_SOM_CSO_Recognition cartridge is a demonstration
cartridge that recognizes a service order and triggers the creation of a SOM_
ProvisionOrderFulfillment order. In addition, this cartridge catches all in-bound
messages not recognized by any other provisioning recognition rules.

Table 4–74 lists the order recognition rules defined in this cartridge.

Revision Number Update for Canceled Orders
For information about special revision number processing for canceled orders, see
"Revision Number Update for Canceled Orders."

OracleComms_OSM_O2A_SOM_CSO_Solution
The OracleComms_OSM_O2A_SOM_CSO_Solution cartridge is a demonstration
composite cartridge that references all cartridges required for service order
management.

To see the component cartridges referenced in this cartridge for your solution, open
the Dependencies tab in the composite cartridge editor.

OracleComms_OSM_O2A_SOM_CSO_Topology
The OracleComms_OSM_O2A_SOM_CSO_Topology cartridge is a demonstration
cartridge. This cartridge contains entities, such as decomposition rules and order
components, for service order management.

OracleComms_OSM_O2A_SOM_CSO_VoIP_Access_CFS
The OracleComms_OSM_O2A_SOM_CSO_VoIP_Access_CFS cartridge is a
demonstration cartridge that contains the order item parameter bindings associated
with the customer facing service for VoIP access. It also contains XQuery modules to
support the order item parameter bindings.

OracleComms_OSM_O2A_SOM_CSO_Web_Conferencing_CFS
The OracleComms_OSM_O2A_SOM_CSO_Internet_Media_CFS cartridge is a
demonstration cartridge that contains the order item parameter bindings associated
with the customer facing service for web conferencing service. It also contains XQuery
modules to support the order item parameter bindings.

Table 4–74 OracleComms_OSM_O2A_SOM_CSO_Recognition Recognition Rules

Order Recognition Rule Description

Recognize_AbortPropagationServiceOrder Recognizes a termination request for an order.

SOM_ORPFallout_CFM_OrderRecognitionRule Recognizes an ORP fallout to create a fault message to be
sent to Oracle AIA error handling queue.

RecognizeEBM_ProvisioningOrder Recognizes a service order that must be executed and
creates a SOM_ProvisionOrderFulfillment order.

SOM_ResumePendingIbMsg_
OrderRecognitionRule

Recognizes an inbound message to create a
ResumePendingInBoundMessage order in service order
management.

Service Order Management Cartridges for the Solution Option Without Calculate Service Order

Order-to-Activate Cartridge Contents 4-71

Service Order Management Cartridges for the Solution Option Without
Calculate Service Order

The following cartridges operate in the service order management role, which
translates Oracle AIA service orders into OSM service orders and processes those
orders. These cartridges are used in the solution option without calculate service order.

OracleComms_OSM_O2A_SOM_Base
The OracleComms_OSM_O2A_SOM_Base cartridge is a productized cartridge
supporting the orchestration of service orders that have come from Oracle AIA. It
includes handling status and data updates from fulfillment requests back to central
order management.

Order Events
When the COM_SalesOrderFulfillment order reaches one of the order events listed in
Table 4–75, it triggers the listed XQuery module to send an order update to the
upstream system.

Processing Granularity Rules
There are three orchestration stages defined in the orchestration sequence to
decompose the order line items. The result of each stage of decomposition is the source
for the next stage of decomposition.

■ In the first stage, the order line items are decomposed by fulfillment function.

■ In the second stage, the order line items are decomposed by fulfillment provider.

■ In the third stage, the order line items are decomposed by granularity rule.

Granularity rules provide the configuration for the third stage of decomposition.
During orchestration plan generation at run time, the granularity rule takes as input
the order line items that have already been grouped by fulfillment function and
subdivided by fulfillment provider.

Table 4–76 lists the processing granularity rule entities.

Table 4–75 OracleComms_OSM_O2A_SOM_Base Order Events

Order Event Description

creation Calls the LFCheckCreationOrderFailure XQuery to determine if a failure has
occurred. If so, generates a message to central order management through the
Oracle AIA error handling framework.

completion Calls the ProvisionOrderCompleteEventHandler XQuery module to send the
order completion to central order management.

Table 4–76 OracleComms_OSM_O2A_SOM_Base Processing Granularity Rules

Entity Name Entity Type Description

ServiceGranularity Order
Component
Specification

This granularity rule selects:

■ An order line item that represents a service along
with service components and related order line
items

■ Order line items of any other root node on the
order along with their related order line items

Service Order Management Cartridges for the Solution Option Without Calculate Service Order

4-72 OSM Cartridge Guide for Oracle Application Integration Architecture

XQuery Modules in the OracleComms_OSM_O2A_SOM_Base Cartridge
Table 4–77 through Table 4–83 list the different types of XQuery modules in this
cartridge.

No table is included for the Order Item Property XQuery modules because none are
extendable and each XQuery module does the same thing: retrieves the specified order
item property from the appropriate location in the order data.

Table 4–77 OracleComms_OSM_O2A_SOM_Base XQuery Modules for Constants

Constants XQuery Module Extendable Description

SomQueryViewConstants No Defines constants for querying views in service order
management.

Table 4–78 OracleComms_OSM_O2A_SOM_Base XQuery Modules for Fallout Handling

Fallout Handling XQuery Module Extendable Description

AbortLFOrderRequest No Sends an order termination request for the fulfillment
request through the web service API.

FindLFOrder No Creates a find order request for a fulfillment request
with a given order key.

LFAbortOrderPropagation No Sends an order termination request for a given
fulfillment request.

LFAbortOrderPropagationCheck No Checks the status of the order termination request for
fulfillment request.

LFAbortOrderPropagationResp No Handles the response of the order termination request
for the fulfillment request.

LFwsResponseHandler No Utility module for providing retrieval and update to
service order.

SendAbortLFOrderFailure No Sends a fulfillment order failure update when the
order termination request failed.

SendAbortLFOrderSuccess No Sends a fulfillment order success update when the
order termination request succeeded.

SuspendLFOrder No Creates a suspend order request for a fulfillment
request with a given order key.

Table 4–79 OracleComms_OSM_O2A_SOM_Base Orchestration Sequence XQuery Modules

Orchestration Sequence XQuery
Module Extendable Description

FulfillmentModeExpression No Marshals the fulfillment mode code from the service
order.

OrderItemSelector No Module to select all order line items from the service
order.

Table 4–80 OracleComms_OSM_O2A_SOM_Base Order Data Change XQuery Modules

Order Data Change XQuery Module Extendable Description

CreateLFFaultToAIAEH No Creates an error message to be sent to the Oracle AIA
error handling queue.

Service Order Management Cartridges for the Solution Option Without Calculate Service Order

Order-to-Activate Cartridge Contents 4-73

Automation Modules in the OracleComms_OSM_O2A_SOM_Base Cartridge
Table 4–84 lists the automation modules in the cartridge with their associated
automated tasks.

Table 4–81 OracleComms_OSM_O2A_SOM_Base Order Item Hierarchy XQuery Modules

Order Item XQuery Module Extendable Description

LineIdKey No Retrieves the order line item’s ID.

ParentLineIdKey No Retrieves the parent order line item’s ID.

Table 4–82 OracleComms_OSM_O2A_SOM_Base Order Recognition XQuery Modules

Order Recognition XQuery Module Extendable Description

ProvisionOrderData No Transforms the Oracle AIA service order to an OSM
service order.

ProvisionOrderPriority No Retrieves the priority of the Oracle AIA service order.

ProvisionOrderRecognition No Recognizes the Oracle AIA service order.

ProvisionOrderValidation No Validates the Oracle AIA service order.

Table 4–83 OracleComms_OSM_O2A_SOM_Base Order State XQuery Modules

Order State XQuery Module Extendable Description

LFCheckCreationOrderFailure No Determines if a failure has occurred. If so, generates an
error message to central order management through
the Oracle AIA error handling framework.

ProvisionOrderCompleteEventHandler No Sends service order status update with COMPLETE
status code back to central order management.

Table 4–84 OracleComms_OSM_O2A_SOM_Base Automation Modules

Automation Module Automated Task Description

AbortLFOrderPlugin AbortLFOrderTask Calls the AbortLFOrderRequest XQuery.

AbortLFOrderRespPlugin AbortLFOrderTask External event receiver to invoke
LFwsResponseHandler XQuery.

FindLFOrderPlugin GetLFOrderTask Calls the FindLFOrder XQuery.

GetLFOrderDataPlugin GetLFOrderTask External event receiver to invoke
LFwsResponseHandler XQuery.

SendAbortLFOrderFailurePlug
in

LFAbortOrderFailureTask Calls the SendAbortLFOrderFailure XQuery.

SendAbortLFOrderSuccessPlu
gin

LFAbortOrderSuccessTask Calls the SendAbortLFOrderSuccess XQuery.

LFOrderAbortPropagationChe
ckPlugin

LFOrderAbortPropagationC
heck

Internal event receiver to invoke
LFAbortOrderPropagationCheck XQuery.

LFAbortOrderPropagationPlu
gin

LFOrderAbortPropagationTa
sk

Internal event receiver to invoke
LFAbortOrderPropagation XQuery.

Service Order Management Cartridges for the Solution Option Without Calculate Service Order

4-74 OSM Cartridge Guide for Oracle Application Integration Architecture

OracleComms_OSM_O2A_SOM_Provisioning
The OracleComms_OSM_O2A_SOM_Provisioning cartridge is a productized cartridge
that supports provisioning fulfillment functions. These functions specify a subprocess
to handle delivery of a relevant subset of order data to the provisioning system and
handle responses from the provisioning system.

Table 4–85 lists he XQuery modules in the cartridge that support component
interaction.

Table 4–86 lists the XQuery modules defined for the SomProvisionOrderFunction
fulfillment function.

LFAbortOrderPropagationRes
pPlugin

LFOrderAbortPropagationTa
sk

External event receiver to invoke
LFAbortOrderPropagationResp XQuery.

SuspendLFOrderPlugin SuspendLFOrderTask Internal event receiver to invoke
SuspendLFOrder XQuery.

SuspendLFOrderRespPlugin SuspendLFOrderTask Calls the LFwsResponseHandler XQuery.

Table 4–85 OracleComms_OSM_O2A_SOM_Provisioning Component Interaction XQuery Modules

Component Interaction XQuery
Module Extendable Description

SomProvisionOrderInteractionModule Yes Provides functions to support ProvisionOrderFunction
in service order management.

Table 4–86 SomProvisionOrderFunction XQuery Modules

XQuery Module Extendable Description

CreateProvisioningOrderRequest_do No Generates the Oracle AIA EBM requests to the external
provisioning system.

CreateProvisioningOrderRequest_redo No Generates the Oracle AIA EBM requests to the external
provisioning system.

CreateProvisioningOrderRequest_undo No Generates the Oracle AIA EBM requests to external
provisioning system for undo.

CreateProvisioningOrderResponse No Consumes the Oracle AIA EBM response from the
external provisioning system.

InitialSomProvisionOrderSIResponse No Sets the correlation context before consuming Oracle
AIA EBM response from the external provisioning
system.

RetryCreateProvisioningOrderResponse No Handles fallout in service order management’s
provisioning order by re-creating the response from
the external provisioning system.

SomProvisionOrderSIEntryPoint No Handles extension point COMPONENT-START,
updates order item properties, and reports milestones
to lifecycle management for service order management
and then to central order management.

Table 4–84 (Cont.) OracleComms_OSM_O2A_SOM_Base Automation Modules

Automation Module Automated Task Description

Service Order Management Cartridges for the Solution Option Without Calculate Service Order

Order-to-Activate Cartridge Contents 4-75

Table 4–87 lists the automation modules (with their associated automated tasks)
defined in the OracleComms_OSM_O2A_SOM_Provisioning cartridge for the
SomProvisionOrderFunction fulfillment function.

OracleComms_OSM_O2A_SOM_Solution
The OracleComms_OSM_O2A_SOM_Solution cartridge is a demonstration composite
cartridge that references all cartridges required for service order management.

To see the component cartridges referenced in this cartridge for your solution, open
the Dependencies tab in the composite cartridge editor.

SomProvisionOrderSIResponse No Consumes the Oracle AIA EBM response from the
external provisioning system.

SomProvisionOrderSIResponseFalloutPre
pare

No Handles manual retry process to re-submit EBM to the
external provisioning system.

UpdateProvisionOrderStatusFunctions No Provides functions to create an EBM that contains the
fulfillment request’s update and send the EBM to
central order management.

Table 4–87 SomProvisionOrderFunction Automation Modules

Automation Module Automated Task Description

SomProvisionOrderSIEntryPoi
ntBean

SomProvisionOrderSIEntryP
ointTask

Calls the SomProvisionOrderSIEntryPoint
XQuery.

SomProvisionOrderSIRespons
eFalloutPrepareBean

SomProvisionOrderSIRespon
seFalloutPrepareTask

Calls the
SomProvisionOrderSIResponseFalloutPrepare
XQuery.

InitialSomProvisionOrderSIRe
sponseBean

SomProvisionOrderSIRespon
seTask

Calls the InitialSomProvisionOrderSIResponse
XQuery.

SomProvisionOrderSIRespons
eBean

SomProvisionOrderSIRespon
seTask

External event receiver to invoke
SomProvisionOrderSIResponse XQuery.

RetryCreateProvisioningOrder
RequestBean

SomProvisionOrderSIRetryT
ask

Calls the CreateProvisioningOrderRequest_do
XQuery.

RetryCreateProvisioningOrder
ResponseBean

SomProvisionOrderSIRetryT
ask

External event receiver to invoke
RetryCreateProvisoningOrderResponse XQuery.

CreateProvisiongOrderReques
tBean_do

SomProvisionOrderSITask Calls the CreateProvisioningOrderRequest_do
XQuery.

CreateProvisiongOrderReques
tBean_redo

SomProvisionOrderSITask Calls the CreateProvisioningOrderRequest_redo
XQuery.

CreateProvisiongOrderReques
tBean_undo

SomProvisionOrderSITask Calls the CreateProvisioningOrderRequest_undo
XQuery.

CreateProvisioningOrderResp
onseBean

SomProvisionOrderSITask External event receiver to invoke
CreateProvisoningOrderResponse XQuery.

SomProvisionOrderSIRespons
eUndoBean

SomProvisionOrderSITask External event receiver to invoke
SomProvisionOrderSIResponse XQuery.

Table 4–86 (Cont.) SomProvisionOrderFunction XQuery Modules

XQuery Module Extendable Description

Service Order Management Cartridges for the Solution Option Without Calculate Service Order

4-76 OSM Cartridge Guide for Oracle Application Integration Architecture

OracleComms_OSM_O2A_SOM_Recognition_Sample
The OracleComms_OSM_O2A_SOM_Recognition_Sample cartridge is a
demonstration cartridge that recognizes a service order and triggers the creation of a
SOM_ProvisionOrderFulfillment order. In addition, this cartridge catches all in-bound
messages not recognized by any other provisioning recognition rules.

Table 4–88 lists the order recognition rules defined in this cartridge.

Revision Number Update for Canceled Orders
For information about special revision number processing for canceled orders, see
"Revision Number Update for Canceled Orders."

OracleComms_OSM_O2A_SomBBVoIP_FP_NP_Sample
The OracleComms_OSM_O2A_SomBBVoIP_FP_NP_Sample cartridge is a
demonstration cartridge containing fulfillment patterns, each of which configures a
fulfillment flow for provisioning fulfillment functions. The demonstration VoIP and
Broadband products map to the fulfillment patterns.

The following fulfillment patterns are configured in this cartridge:

■ SOM_Service.Provision – All other fulfillment patterns extend from this.

■ SOM_Service.Broadband

■ SOM_Service.CPE.Broadband

■ SOM_Service.CPE.VoIP

■ SOM_Service.VoIP

OracleComms_OSM_O2A_SomProvisionBroadband_Sample
The OracleComms_OSM_O2A_SomProvisionBroadband_Sample cartridge is a
demonstration cartridge supporting service orders for broadband services.

Table 4–89 to Table 4–91 list the entities in the OracleComms_OSM_O2A_
SomProvisionBroadband_Sample cartridge.

Table 4–88 OracleComms_OSM_O2A_SOM_Recognition_Sample Recognition Rules

Order Recognition Rule Description

SOM_LFAbortOrderPropagationOrder_
Recognition

Recognizes a termination request for an order.

SOM_ORPFallout_CFM_OrderRecognitionRule Recognizes an ORP fallout to create a fault message to be
sent to Oracle AIA error handling queue.

SOM_ProvisionOrderFulfillment_Recognition Recognizes a service order that must be executed and
creates a SOM_ProvisionOrderFulfillment order.

SOM_ResumePendingIbMsg_
OrderRecognitionRule

Recognizes an inbound message to create a
ResumePendingInBoundMessage order in service order
management.

Service Order Management Cartridges for the Solution Option Without Calculate Service Order

Order-to-Activate Cartridge Contents 4-77

Table 4–89 OracleComms_OSM_O2A_SomProvisionBroadband_Sample Entities

Name Type Description

OSM_O2A_SomProvisionBroadband_
Recognition

Order
Recognition
Rule

Recognizes a broadband service order and creates an
OracleComms_OSM_O2A_SomProvisionBroadband_
SampleOrder service order to manage its fulfillment.

OracleComms_OSM_O2A_
SomProvisionBroadband_SampleOrder

Order Local service order structure for managing a service
order for broadband services.

BroadbandProvisioningOrderLifeCycle Lifecycle
Policy

Defines the security permissions for order transactions.

BroadbandProvisioningRole Role Role with permissions to create and view
OracleComms_OSM_O2A_SomProvisionBroadband_
SampleOrder.

BroadbandServicesProvisioningProcess Process and
Tasks

Process to handle provisioning of broadband services
such as email, Internet and customer premise
equipment.

CreateBroadbandServicesProvisioningOr
derTask

Manual Task Creation task to create an OracleComms_OSM_O2A_
SomProvisionBroadband_SampleOrder.

OracleComms_OSM_O2A_
SomProvisionBroadband_Sample

Data Schema Data structures for managing broadband services.

Table 4–90 OracleComms_OSM_O2A_SomProvisionBroadband_Sample XQuery Modules

XQuery Module Extendable Description

ActivityRouterTask Yes Transit to the next task with different task exit status
depending on broadband provisioning service.

BroadbandServiceErrorFault Yes Creates error fault for broadband provisioning service.

BroadbandServiceOrderCompleteEventH
andler

Yes Sends broadband service order status update with
COMPLETE status code back to service order
management.

BroadbandServiceProcessEntryUndoBea
n

Yes Updates the provisioning order and sends broadband
service order status.

BroadbandServiceProvisioningOrderDat
aRule

Yes Transforms the Oracle AIA service order to an OSM
service order.

BroadbandServiceUtilityModule Yes Utility module to provide functions to support
provisioning broadband service.

ProvisionTaskComplete Yes Completes a provisioning task.

ProvisionTaskStart Yes Starts a provisioning task.

Table 4–91 OracleComms_OSM_O2A_SomProvisionBroadband_Sample Automation Modules

Automation Module Automated Task Description

ActivityRouterBean ActivityRouterTask Calls the ActivityRouterTask XQuery.

BroadbandServiceErrorFaultBe
an

BroadbandServiceErrorFault
Task

Calls the BroadbandServiceErrorFault XQuery.

BroadbandServiceErrorFaultBe
an_redo

BroadbandServiceErrorFault
Task

Calls the BroadbandServiceErrorFault XQuery
for redo mode.

BroadbandServiceProcessEntr
yUndoBean

BroadbandServiceProcessEnt
ryTask

Calls the
BroadbandServiceProcessEntryUndoBean
XQuery.

Service Order Management Cartridges for the Solution Option Without Calculate Service Order

4-78 OSM Cartridge Guide for Oracle Application Integration Architecture

OracleComms_OSM_O2A_SomProvisionVoIP_Sample
The OracleComms_OSM_O2A_SomProvisionVoIP_Sample cartridge is a
demonstration cartridge supporting service orders for VoIP services.

Table 4–92 to Table 4–94 list the entities in the OracleComms_OSM_O2A_
SomProvisionVoIP_Sample cartridge.

BroadbandServiceProcessExitB
ean

BroadbandServiceProcessExit
Task

Calls the BroadbandServiceProcessExitBean
XQuery.

ProvisionCPEEntryPointBean ProvisionCPEEntryPointTask Calls the ProvisionTaskStart XQuery.

ProvisionCPEExitPointBean ProvisionCPEExitPointTask Calls the ProvisionTaskComplete XQuery.

ProvisionInternetEmailService
BundleEntryPointBean

ProvisionInternetEmailServic
eBundleEntryPointTask

Calls the ProvisionTaskStart XQuery.

ProvisionInternetEmailService
BundleExitPointBean

ProvisionInternetEmailServic
eBundleExitPointTask

Calls the ProvisionTaskComplete XQuery.

ProvisionInternetMediaService
BundleEntryPointBean

ProvisionInternetMediaServi
ceBundleEntryPointTask

Calls the ProvisionTaskStart XQuery.

ProvisionInternetMediaService
BundleExitPointBean

ProvisionInternetMediaServi
ceBundleExitPointTask

Calls the ProvisionTaskComplete XQuery.

ProvisionInternetServiceBundl
eEntryPointBean

ProvisionInternetServiceBun
dleEntryPointTask

Calls the ProvisionTaskStart XQuery.

ProvisionInternetServiceBundl
eExitPointBean

ProvisionInternetServiceBun
dleExitPointTask

Calls the ProvisionTaskComplete XQuery.

Table 4–92 OracleComms_OSM_O2A_SomProvisionVoIP_Sample Entities

Name Type Description

OSM_O2A_SomProvisionVoIP_
Recognition

Order
Recognition
Rule

Recognizes a VoIP service order and creates an
OracleComms_OSM_O2A_SomProvisionVoIP_
SampleOrder service order to manage its fulfillment.

OracleComms_OSM_O2A_
SomProvisionVoIP_SampleOrder

Order Local service order structure for managing a service
order for VoIP services.

VoIPProvisioningOrderLifeCycle Lifecycle
Policy

Defines the security permissions for order transactions.

VoIPProvisioningRole Role Role with permissions to create and view
OracleComms_OSM_O2A_SomProvisionVoIP_
SampleOrder.

VoIPServicesProvisioningProcess Process and
Tasks

Process to handle provisioning of VoIP services such as
VoIP service and customer premise equipment.

CreateVoIPServicesProvisioningOrderTas
k

Manual Task Creation task to create an OracleComms_OSM_O2A_
SomProvisionVoIP_SampleOrder.

OracleComms_OSM_O2A_
SomProvisionVoIP_Sample

Data Schema Data structures for managing VoIP services.

Table 4–91 (Cont.) OracleComms_OSM_O2A_SomProvisionBroadband_Sample Automation Modules

Automation Module Automated Task Description

Common Conceptual Model Projects

Order-to-Activate Cartridge Contents 4-79

Common Conceptual Model Projects
The following cartridges provide entities that are used by or referenced by other
Order-to-Activate cartridges.

For more information about the conceptual model, see Design Studio Concepts.

OracleComms_Model_Base
The OracleComms_Model_Base project contains entities that are used for multiple
services, including provider functions, functional areas, relationship types, action
codes, and units of measure.

Table 4–93 OracleComms_OSM_O2A_SomProvisionVoIP_Sample XQuery Modules

XQuery Module Extendable Description

VoIPActivityRouterTask Yes Transit to the next task with different task exit status
depending on VoIP provisioning service.

VoIPServiceErrorFault Yes Creates error fault for VoIP provisioning service.

VoIPServiceOrderCompleteEventHandle
r

Yes Sends VoIP service order status update with
COMPLETE status code back to service order
management.

VoIPServiceProcessEntryBean Yes Updates the provisioning order and sends VoIP service
order status.

VoIPServiceProvisioningOrderDataRule Yes Transforms the Oracle AIA service order to an OSM
service order.

VoIPServiceUtilityModule Yes Utility module to provide functions to support
provisioning VoIP service.

VoIPProvisionTaskComplete Yes Completes a provisioning task.

VoIPProvisionTaskStart Yes Starts a provisioning task.

VoIPServiceProcessExitBean Yes Completes a task using a successful status.

Table 4–94 OracleComms_OSM_O2A_SomProvisionVoIP_Sample Automation Modules

Automation Module Automated Task Description

VoIPActivityRouterBean VoIPActivityRouterTask Calls the VoIPActivityRouterTask XQuery.

VoIPServiceErrorFaultBean VoIPServiceErrorFaultTask Calls the VoIPServiceErrorFault XQuery.

VoIPServiceErrorFaultBean_
redo

VoIPServiceErrorFaultTask Calls the VoIPServiceErrorFault XQuery for redo
mode.

VoIPServiceProcessEntryBean VoIPServiceProcessEntryTask Calls the VoIPServiceProcessEntryBean XQuery.

VoIPServiceProcessExitBean VoIPServiceProcessExitTask Calls the VoIPServiceProcessExitBean XQuery.

ProvisionVoIPCPEEntryPointB
ean

ProvisionVoIPCPEEntryPoint
Task

Calls the VoIPProvisionTaskStart XQuery.

ProvisionVoIPCPEExitPointBe
an

ProvisionVoIPCPEExitPointT
ask

Calls the VoIPProvisionTaskComplete XQuery.

ProvisionVoIPServiceBundleE
ntryPointBean

ProvisionVoIPServiceBundle
EntryPointTask

Calls the VoIPProvisionTaskStart XQuery.

ProvisionVoIPServiceBundleE
xitPointBean

ProvisionVoIPServiceBundle
ExitPointTask

Calls the VoIPProvisionTaskComplete XQuery.

Common Conceptual Model Projects

4-80 OSM Cartridge Guide for Oracle Application Integration Architecture

OracleComms_Model_BaseCatalog
The OracleComms_Model_BaseCatalog project contains conceptual model fulfillment
patterns. It also contains the data schema that defines the data elements from the
Oracle AIA EBM schema. Cartridges that must include data elements from Oracle AIA
EBM can reuse the elements defined in this cartridge.

OracleComms_Model_Common
The OracleComms_Model_Common project contains common data elements for all of
the services.

OracleComms_Model_O2A_Broadband_Internet_Access_CFS
The OracleComms_Model_O2A_Broadband_Internet_Access_CFS project contains the
customer facing services for broadband Internet access.

The following customer facing services are defined in this project:

■ Broadband_Internet_Access_CFS

OracleComms_Model_O2A_Broadband_Internet_Access_SA
The OracleComms_Model_O2A_Broadband_Internet_Access_SA project contains the
actions for broadband Internet access.

The following action codes are defined in this project for the customer facing service in
the OracleComms_Model_O2A_Broadband_Internet_Access_CFS project:

■ Add

■ Change

■ Disconnect

■ Modify

■ Move-Add

■ Move-Delete

■ Query

■ Remove

■ Resume

■ Suspend

OracleComms_Model_O2A_Broadband_Internet_DataModel
The OracleComms_Model_O2A_Broadband_Internet_DataModel project contains the
data schema for data specific to broadband Internet access.

OracleComms_Model_O2A_Email_CFS
The OracleComms_Model_O2A_Email_CFS project contains the customer facing
services for email service.

The following customer facing services are defined in this project:

■ Email_CFS

Common Conceptual Model Projects

Order-to-Activate Cartridge Contents 4-81

OracleComms_Model_O2A_Email_DataModel
The OracleComms_Model_O2A_Email_CFS project contains the data schema for data
specific to email service.

OracleComms_Model_O2A_Email_SA
The OracleComms_Model_O2A_Email_CFS project contains the actions for email
service.

The following action codes are defined in this project for the customer facing service in
the OracleComms_Model_O2A_Email_CFS project:

■ Add

■ Change

■ Disconnect

■ Modify

■ Move-Add

■ Move-Delete

■ Query

■ Remove

■ Resume

■ Suspend

OracleComms_Model_O2A_Internet_Media_CFS
The OracleComms_Model_O2A_Internet_Media_CFS project contains the customer
facing services for Internet media service.

The following customer facing services are defined in this project:

■ InternetMedia_CFS

OracleComms_Model_O2A_Internet_Media_DataModel
The OracleComms_Model_O2A_Internet_Media_DataModel project contains the data
schema for data specific to Internet media service.

OracleComms_Model_O2A_Internet_Media_SA
The OracleComms_Model_O2A_Internet_Media_SA project contains the actions for
internet media service.

The following action codes are defined in this project for the customer facing service in
the OracleComms_Model_O2A_Internet_Media_CFS project:

■ Add

■ Change

■ Disconnect

■ Modify

■ Move-Add

■ Move-Delete

Conceptual Model Projects for Central Order Management

4-82 OSM Cartridge Guide for Oracle Application Integration Architecture

■ Query

■ Remove

■ Resume

■ Suspend

OracleComms_Model_O2A_VoIP_Access_CFS
The OracleComms_Model_O2A_VoIP_Access_CFS project contains the customer
facing services for VoIP access.

The following customer facing services are defined in this project:

■ IP_Fax_CFS

■ VoIP_Access_CFS

■ Web_Conferencing_CFS

OracleComms_Model_O2A_VoIP_Access_SA
The OracleComms_Model_O2A_VoIP_Access_CFS project contains the actions for
VoIP access.

The following action codes are defined in this project for each of the customer facing
services in the OracleComms_Model_O2A_VoIP_Access_CFS project:

■ Add

■ Change

■ Delete

■ Disconnect

■ Modify

■ Move-Add

■ Move-Delete

■ None

■ Query

■ Remove

■ Resume

■ Suspend

■ Update

OracleComms_Model_O2A_VoIP_DataModel
The OracleComms_Model_O2A_VoIP_Access_CFS project contains the data schema
for data specific to VoIP access.

Conceptual Model Projects for Central Order Management
The following cartridges provide entities that are used by or referenced by central
order management Order-to-Activate cartridges.

For more information about the conceptual model, see Design Studio Concepts.

Conceptual Model Projects for Central Order Management

Order-to-Activate Cartridge Contents 4-83

OracleComms_Model_O2A_Billing_PS
The OracleComms_Model_O2A_Billing_PS project contains the products for billing
services.

The following products are defined in this project:

■ Broadband_Pricing_Event_PS

■ Group_Member_PS

■ Group_Owner_PS

■ Offer_Sponsorship_PS

■ Pricing_Event_PS

■ Promotion_Group_PS

■ VoIP_Pricing_Event_Billing_Validation_PS

■ VoIP_Pricing_Event_PS

OracleComms_Model_O2A_Broadband_Internet_Access_PS
The OracleComms_Model_O2A_Broadband_Internet_Access_PS project contains the
domains and products for broadband Internet services.

The following domains are defined in this project:

■ BroadbandInternetDomain

The following products are defined in this project:

■ Broadband_Bandwidth_PS

■ Broadband_Modem_PS

■ Broadband_Offer_Charge_Class

■ Broadband_PS

■ Broadband_Router_PS

■ Firewall_PS

OracleComms_Model_O2A_Email_PS
The OracleComms_Model_O2A_Email_PS project contains the domains and products
for email services.

The following domains are defined in this project:

■ EmailDomain

The following products are defined in this project:

■ Email_Service_PS

OracleComms_Model_O2A_Install_PS
The OracleComms_Model_O2A_Install_PS project contains the products for
installation services.

The following products are defined in this project:

■ High_Speed_Internet_Installation_PS

Conceptual Model Projects for Service Order Management

4-84 OSM Cartridge Guide for Oracle Application Integration Architecture

OracleComms_Model_O2A_Internet_Media_PS
The OracleComms_Model_O2A_Internet_Media_PS project contains the domains and
products for Internet media services.

The following domains are defined in this project:

■ InternetMediaDomain

The following products are defined in this project:

■ Internet_Media_PS

OracleComms_Model_O2A_VoIP_PS
The OracleComms_Model_O2A_VoIP_PS project contains the domains and products
for VoIP services.

The following domains are defined in this project:

■ VoIPDomain

The following products are defined in this project:

■ Value_Added_Features_PS

■ VoIP_Adaptor_PS

■ VoIP_Fax_Service_PS

■ VoIP_Offer_Charge_Class

■ VoIP_Phone_PS

■ VoIP_PS

■ VoIP_Soft_Phone_PS

■ VoIP_Visual_Voicemail_PS

■ VoIP_Voicemail_PS

■ Web_Conferencing_PS

Conceptual Model Projects for Service Order Management
The following cartridges provide entities that are used by or referenced by service
order management Order-to-Activate cartridges when the service option without
calculate service order is used.

For more information about the conceptual model, see Design Studio Concepts.

OracleComms_Model_O2A_SOM_PS
The OracleComms_Model_O2A_SOM_PS project contains the products for service
order management services when the service option without calculate service order is
used.

The following products are defined in this project:

■ SOM_Broadband_Bandwidth_PS

■ SOM_Broadband_Modem_PS

■ SOM_Broadband_PS

■ SOM_Broadband_Router_PS

Oracle AIA Emulators

Order-to-Activate Cartridge Contents 4-85

■ SOM_Email_Service_PS

■ SOM_Firewall_PS

■ SOM_Internet_Media_PS

■ SOM_Value_Added_Features_PS

■ SOM_VoIP_Adaptor_PS

■ SOM_VoIP_Fax_Service_PS

■ SOM_VoIP_Phone_PS

■ SOM_VoIP_PS

■ SOM_VoIP_Service_Feature_Billing_Validation_PS

■ SOM_VoIP_Service_Plan_Billing_Validation_PS

■ SOM_VoIP_Soft_Phone_PS

■ SOM_VoIP_Visual_Voicemail_PS

■ SOM_VoIP_Voicemail_PS

■ SOM_Web_Conferencing_PS

Oracle AIA Emulators
The Oracle AIA emulators are used in development and testing when Oracle AIA is
not available.

Table 4–95 lists and describes the emulators contained in the OracleComms_OSM_
O2A_Install project.

Note: In the Order to Cash solution, OSM interacts with billing,
CRM, and Provisioning systems using Oracle AIA. It does not directly
interact with Siebel CRM, BRM, and provisioning systems.

Table 4–95 Emulators in OSM

Name Description

osm_AIASyncCustomerEmulator Emulates Oracle AIA billing service (for example, BRM
ABCS by generating response messages in EBM format for
requests targeted at a billing provider to synchronize
customer account details.

osm_AIAInitiateFulfillBillingEmulator Emulates Oracle AIA billing service by generating response
messages in EBM format for requests targeted at a billing
provider to initiate or fulfill billing.

osm_AIAFalloutNotificationToOrderEmulator Emulates Oracle AIA error handling by generating order
fallout notification messages for faults targeted at Oracle
AIA error handling. These are error faults generated by the
external systems (such as Provisioning). Error faults are sent
to Oracle AIA which then translate them into fallout
notifications and sent to OSM central order management.

osm_AIATroubleTicketEmulator Emulates an Oracle AIA trouble ticket Siebel CRM service
by generating response messages in EBM format for requests
targeted at Siebel CRM to create trouble tickets. Note that no
trouble ticket response is generated for Update Trouble
ticket EBMs but only for Create Trouble ticket EBMs.

Oracle AIA Emulators

4-86 OSM Cartridge Guide for Oracle Application Integration Architecture

osm_CF2LFProvisionOrderCreateEmulator Emulates an OSM service (for example, OSM ABCS) for
service order creation by wrapping EBM format messages in
OSM format for requests targeted at OSM service order
management fulfillment to process service orders.

osm_LF2CFProvisionOrderUpdateEmulator Emulates an OSM service (for example, OSM ABCS) for
order update by wrapping EBM format messages in OSM
format for messages targeted at OSM central order
management fulfillment to update service orders.

osm_AIAProvisionOrderEmulator Emulates Oracle AIA Provisioning service (for example,
order management) fulfillment by generating response
messages in EBM format for requests targeted at OSM
service order management fulfillment to process service
orders.

osm_InventoryOrderEmulator Emulates UIM by setting simulated enriched data from
inventory such as Service ID and MAC Address.

osm_TomOrderEmulator Emulates a technical order management system by returning
a successful status to requests.

Table 4–95 (Cont.) Emulators in OSM

Name Description

5

Extending Order-to-Activate Cartridges 5-1

5Extending Order-to-Activate Cartridges

This chapter describes how to extend the Order-to-Activate cartridges for Oracle
Communications Order and Service Management (OSM).

The Order-to-Activate cartridges are provided as a working foundation which you can
extend to design and build a solution. This chapter provides details and guidelines on
how to extend the base model entities.

Adding Custom Data Elements
To add custom data elements to the Order-to-Activate cartridges, please see
knowledge article 1514936.1, Data Enrichment - Extending Order to Activate
Cartridges, on the Oracle support website:

https://support.oracle.com

Adding Custom Order Item Properties
You can add custom order item properties to your order template without unsealing
any cartridges. The following XML-type variable is available in the COM_Sales_
OrderFulfillment order template:

ControlData
 OrderItem
 CustomXmlData

This data element allows the addition of custom properties, but it does not support
significance or revision, and it cannot be used for component wait dependencies.

You can populate custom properties into that element by using the following URI for
the CustomXmlData property in the Order Item Specification editor:

http://xmlns.oracle.com/communications/ordermanagement/o2a/customextensions/Custom
XmlData.xquery

After installation, the shell for the CustomXmlData.xquery file is located in the
SolutionCartridge/resources/CustomExtensions folder, where SolutionCartridge is the
cartridge for your solution, as listed in Table 5–1:

Adding Custom Order Item Properties

5-2 OSM Cartridge Guide for Oracle Application Integration Architecture

Following is a sample of a configured CustomXmlData.xquery file:

Example 5–1 Sample CustomXmlData.xquery File

import module namespace fulfillmentmodecodefn =
"http://xmlns.oracle.com/communications/ordermanagement/o2a/customextensions/fulfi
llmentmodecodefn" at
"http://xmlns.oracle.com/communications/ordermanagement/o2a/customextensions/Fulfi
llmentModeCode.xqy";
import module namespace fulfillmentcondprovfn =
"http://xmlns.oracle.com/communications/ordermanagement/o2a/customextensions/fulfi
llmentcondprovfn" at
"http://xmlns.oracle.com/communications/ordermanagement/o2a/customextensions/Fulfi
llmentCondProv.xqy";
import module namespace fulfillmentcondfn =
"http://xmlns.oracle.com/communications/ordermanagement/o2a/customextensions/fulfi
llmentcondfn" at
"http://xmlns.oracle.com/communications/ordermanagement/o2a/customextensions/Fulfi
llmentCond.xqy";
import module namespace completeshippingfn =
"http://xmlns.oracle.com/communications/ordermanagement/o2a/customextensions/compl
eteshippingfn" at
"http://xmlns.oracle.com/communications/ordermanagement/o2a/customextensions/Compl
eteShipping.xqy";

declare namespace prop = "COM_SalesOrderFulfillment";
declare namespace
salesord="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/SalesOrder/V2";

declare variable $inputDoc as document-node() external;

let $ebm := $inputDoc/GetOrder.Response/_
root/messageXmlData/salesord:ProcessSalesOrderFulfillmentEBM

Table 5–1 Solution Configurations and Corresponding Solution Cartridge Names

Using Calculate
Service Order
Option?

Current
Workspace Is for: Topology Solution Cartridge

Yes COM only All OracleComms_OSM_O2A_COM_CSO_Solution

Yes SOM only All OracleComms_OSM_O2A_SOM_CSO_Solution

Yes COM and SOM All OracleComms_OSM_O2A_COMSOM_CSO_Solution

No COM only Simple OracleComms_OSM_O2A_COM_Simple_NP_Soln

No COM only Typical or
Complex

OracleComms_OSM_O2A_COM_Typical_NP_Soln

No SOM only All OracleComms_OSM_O2A_SOM_NP_Soln

No COM and SOM Simple OracleComms_OSM_O2A_COMSOM_Simple_NP_Soln

No COM and SOM Typical or
Complex

OracleComms_OSM_O2A_COMSOM_Typical_NP_Soln

Note: If you edit the CustomXmlData.xquery file, save a copy of the
updated file to the custom-extension folder in the OracleComms_
OSM_O2A_Configuration cartridge. This ensures that your changes
will not be overwritten if you reconfigure your workspace.

Changing Durations for Order Components

Extending Order-to-Activate Cartridges 5-3

let $line := .

return
(
 <prop:CustomProperties>
 <prop:CompleteShipping>{completeshippingfn:CompleteShipping($line,
$ebm)}</prop:CompleteShipping>
 <prop:FulfillmentCond>{fulfillmentcondfn:FulfillmentCond($line,
$ebm)}</prop:FulfillmentCond>

<prop:FulfillmentCondProv>{fulfillmentcondprovfn:FulfillmentCondProv($line,
$ebm)}</prop:FulfillmentCondProv>

<prop:FulfillmentModeCode>{fulfillmentmodecodefn:FulfillmentModeCode($line,
$ebm)}</prop:FulfillmentModeCode>
 </prop:CustomProperties>
)

Changing Durations for Order Components
You can change the Optimistic, Most Likely, and Pessimistic order component
durations. If you create custom functional order components, you can change the
values in the Order Component Specification editor, like you would for any
non-Order-to-Activate configuration. However, since the standard Order-to-Activate
functional order components are in a sealed cartridge, you should not edit the order
component durations in the normal way, but instead using the instructions in this
section.

To change durations for standard Order-to-Activate functional order components:

1. Edit the workspace\OracleComms_OSM_O2A_
Configuration\solution-config\ComponentDurationMap.xml file, where
workspace is the directory containing the files for your Order-to-Activate
workspace.

You can edit this file in any text or XML editor or in Eclipse. If you use Eclipse, use
the Package Explorer view to find the file.

2. Find the entry for the order component you would like to modify. The name of the
order component is located in the OrderComponentSpec tag. The example below
shows the element tag for the SyncCustomerFunction functional order component:

<model:orderComponentSpec name="SyncCustomerFunction" namespace="COM_
SalesOrderFulfillment">

3. Update the durations you would like to change. The durations are in the standard
XML date/time format:

PnYnMnDTnHnMnS

Note: As in non-Order-to-Activate scenarios, the duration settings
for fulfillment patterns override the duration settings for order
components. Since Order-to-Activate fulfillment patterns are not in
sealed cartridges, you can edit durations for the fulfillment patterns in
the normal way, using the Fulfillment Pattern editor in Design Studio.
See Design Studio Modeling OSM Orchestration Help for more
information about setting durations for fulfillment patterns.

Adding a New Fulfillment Function

5-4 OSM Cartridge Guide for Oracle Application Integration Architecture

for example:

P0Y0M0DT0H2M0S

which indicates a duration of two minutes.

The individual elements of the format are:

■ P indicates the period

■ nY indicates the number of years

■ nM indicates the number of months

■ nD indicates the number of days

■ T indicates the start of a time section

■ nH indicates the number of hours

■ nM indicates the number of minutes

■ nS indicates the number of seconds

4. Save and close the workspace\OracleComms_OSM_O2A_
Configuration\solution-config\ComponentDurationMap.xml file.

5. In Design Studio, go to the Ant view and look for the SolutionConfig.xml build
file you added when you installed the Order-to-Activate cartridges.

6. Expand the SolutionConfig.xml build file and double-click the config_Metadata_
And_ModelVariable target.

This updates the metadata so that the system will use the new values you have
configured.

Adding a New Fulfillment Function
A fulfillment function represents an activity, for example billing or provisioning, that
must be performed to process an order item. You can add a new fulfillment function
for a new action or you can extend an existing fulfillment function to add data
elements and entities without unsealing the productized Order-to-Activate cartridges.

Planning the Addition of a New Fulfillment Function
This section contains planning considerations for adding a new fulfillment function to
a solution.

■ Is the new fulfillment function for a system type that is already modeled in the
Order-to-Activate cartridge, or is it for a new system type?

– If the new fulfillment function is for a new system type, you must know the
naming convention configured in Oracle Application Integration Architecture
(Oracle AIA) deployments for logical identifiers of instances of the new
system type. See the coverage of EBMHeader/Sender/ID and
EBMHeader/Target/ID elements for the various system interactions in Fusion

Note: If you have removed this file from your workspace, see
"Configuring WebLogic Server Resources" and follow steps 1 through
4.

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-5

Middleware Developer's Guide for Oracle Application Integration Architecture
Foundation Pack. The Sender IDs and Target IDs in the EBM messages must
match the logical identifiers for the system instances configured in the Oracle
AIA deployment. See "Considerations When Integrating with Oracle AIA."

– Following is a summary of naming conventions for fulfillment functions in
Oracle AIA:

* Naming convention used for OSM central order management instances:
OSMCFS_01, OSMCFS_02, and so on.

* Naming convention used for OSM service order management instances:
OSMPROV_01, OSMPROV_02, and so on.

* Naming convention used for Billing and Revenue Management instances:
BRM_01, BRM_02, and so on.

* Naming convention used for Siebel Customer Relationship Management
(Siebel CRM) instances: SEBL_01, SEBL_02, and so on.

■ What is the message format for the fulfillment function request and response?

– The fulfillment function request must conform to an Enterprise Business
Message (EBM).

– The fulfillment function response can be either an EBM or an
OrderFalloutNotification. Oracle AIA specifies XML schemas for the EBMs
which describe the request and response format.

■ What are the JNDI names for the source and destination queues that are used to
exchange request and response messages between OSM and Oracle AIA for the
new fulfillment function?

■ What are the data elements on the order that are compensation-significant for the
new fulfillment function? Compensation-significant data elements trigger
compensation if a revision order contains changes to the values.

■ What service action codes will apply to the current fulfillment function? The
predefined service action codes include:

– ADD: Add a new service.

– UPDATE: Make a change to an existing service.

– DELETE: Remove a service.

– SUSPEND: Suspend a service.

– RESUME: Resume a suspended service.

– MOVE-ADD: Add service as part of a service location move process.

– MOVE-DELETE: Remove service as part of a service location move process.

– NONE: Make no service change.

■ What processing is required for the different execution modes? The following
execution modes supported in the existing Order-to-Activate fulfillment function
and are mandatory:

– do is required to handle new orders and change orders

– redo is required for amendment processing to fulfill an order revision

– undo is required for order cancellation

Adding a New Fulfillment Function

5-6 OSM Cartridge Guide for Oracle Application Integration Architecture

■ What data elements from the fulfillment request XML schema must be included in
the outbound fulfillment request?

– Identify the data elements that must be copied as-is by OSM from the
customer order to the fulfillment request. This data exists in the OSM order
data in the messageXMLData element and does not need to be modeled
separately.

– Identify the data that must be generated by OSM and inserted into the
fulfillment request. Consider data generation for all OSM execution modes: do,
redo, and undo.

■ What data elements from the fulfillment response XML schema must be included
in data updates to Siebel CRM or included in subsequent fulfillment function
requests? For example, you might include a service ID returned from provisioning
that must be included in the fulfillment-data updates to Siebel CRM and in the
FulfillBilling request that takes place after provisioning is complete.

Response Patterns in System Interactions
There are two patterns of handling responses in system interactions, the
single-response pattern and the multiple-response pattern. Single-response patterns
receive a single response in a system interaction with the Oracle AIA billing service,
while multiple-response patterns can receive multiple responses.

Single Response Pattern
The single-response pattern is used in billing functions. Each billing function is
transactional. In a system interaction with the Oracle AIA billing service, a single
response is expected which is either a response EBM or an OrderFalloutNotification
created by Oracle AIA error handling framework, and not both.

If a revision order with compensation-significant updates for the billing function
arrives while the request is in progress in OSM central order management (that is,
after an EBM has been put on the queue for the Oracle AIA billing service to pick up
but before the arrival and processing of a response), the amendment is queued until
the response is processed.

In this case, a single automated task in the subprocess for the fulfillment function
(such as SyncCustomerSITask, InitiateBillingSITask, or FulfillBillingSITask) includes
automation to generate the EBM and put it on a queue in do, redo, and undo execution
modes, and the same automated task also includes automation to correlate and
process the response from Oracle AIA.

Multiple Response Pattern
The multiple-response pattern is used in the ProvisionOrderFunction. In a system
interaction with the Oracle AIA order provisioning service, multiple responses are
expected in the form of a sequence of response EBMs of type
ProcessFulfillmentOrderUpdateEBM or an OrderFalloutNotification created by the
Oracle AIA error-handling framework.

If a revision order with compensation-significant updates for the
ProvisionOrderFunction arrives while a request is in progress in OSM central order
management (that is, after a request EBM has been put on the queue for the Oracle
AIA provisioning service to pick up but before the arrival and processing of a
response), then a separate request for the revision is sent to the Oracle AIA order
provisioning service.

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-7

In this case, a separate automated task, such as ProvisionOrderSIResponseTask, is
needed in the subprocess to correlate and process the responses. The success flow
without debugging breakpoints then becomes:

1. YourFunctionNameEntryPointTask

2. YourFunctionNameSITask

3. YourFunctionNameSIResponseTask

Entities to Create, Modify, or Reuse
Table 5–2 provides an overview of the entities that may be created, modified, or reused
in the creation of a fulfillment function. Further information about many of these
entities is provided in the following sections.

Table 5–2 Entities to be Created, Modified, or Reused

Name Type Remarks

OracleComms_OSM_
CommonDataDictionary

OracleComms_OSM_O2A_
AIAEBMDataDictionary

Data Dictionary See "Data Dictionary and Order
Templates" for information about how to
make changes for the new fulfillment
function.

COM_SalesOrderFulfillment_CreationTask Manual Task See "About Creation Tasks" for information
about adding to task data for the new
fulfillment function.

COM_SalesOrderFulfillment_OrderDetails Manual Task See "About Query Tasks" for information
about adding to task data for the new
fulfillment function.

FUNCTION/YourSystemTypeFunction
extends FulfillmentFunction

FUNCTION/YourFunctionNameFunction
extends YourSystemTypeFunction

SYSTEM/YourSystemTypeSystem extends
FulfillmentSystem

UPDATES/YourFunctionNameSignificantU
pdates extends SignificantUpdates

Order Component
Specification

If your system type is an already modeled
system type such as Billing, you reuse the
existing entities, for example:
FUNCTION/BillingFunction and
SYSTEM/BillingSystem

Existing GRANULARITY order
component specifications are reusable for
new fulfillment functions without any
modifications.

SUBPROCESS/YourFunctionNameSubProce
ss

Process See "About Subprocesses."

TASK/YourFunctionNameEntryPointTask

TASK/YourFunctionNameSITask

Automated Task See "About Subprocesses" for automated
tasks to be created for the new subprocess
for the new fulfillment function.

TASK/YourFunctionNamePreSITask

TASK/YourFunctionNamePostSITask

TASK/YourFunctionNameFalloutRecoverTa
sk

TASK/YourFunctionNameWaitForAmendm
entTask

TASK/YourFunctionNameEPQTask extends
TASK/YourFunctionNameEntryPointTask

TASK/YourFunctionNameSIQTask extends
TASK/YourFunctionNameSITask

Manual Task See "About Subprocesses" for manual tasks
to be created for the new subprocess for
the new fulfillment function.

Adding a New Fulfillment Function

5-8 OSM Cartridge Guide for Oracle Application Integration Architecture

Data Dictionary and Order Templates
Additional data fields for the new fulfillment function can be defined in the cartridge
created for it. All order template entities can be placed in a separate cartridge, in an
order that extends from COM_SalesOrderFulfillment. Orchestration sequences,
processes, and tasks for the new fulfillment function can also be placed in this separate
cartridge.

An XML data type element named messageXMLdata is used to store the incoming
customer order data in an XML format inside the OracleComms_OSM_O2A_COM_
Base cartridge. This element is defined in the OracleCgbuCommonDataDictionary
data dictionary and is included in the order template. It should be added to any new
tasks that require access to the raw customer order data. The raw data is used by
automated tasks that copy some data as-is to the fulfillment request.

Model additional fields in the LineItemData structure in the data dictionary. The
element names, types, and sub-structures in LineItemData mimic the structure of the
SalesOrderLine structure in the Oracle AIA SalesOrderEBM schema. The following
sections contain information about these changes.

Order Change Management Configuration
You may need to model data for order change management configuration including
keys and data significance. Add all data elements from the customer order line that are
compensation-significant for the fulfillment function to the LineItemData structure (if
they do not already exist in the LineItemData structure).

Customize a copy of the BaseLineItemData.xquery XQuery file located in
OracleComms_OSM_O2A_COM_Base/resources/OrderItemProperties to add code
to copy compensation-significant data for the new fulfillment function from the
customer order line to the order line item property BaseLineItemData.

Data Required for Sending the Fulfillment Request or Processing the Fulfillment
Request Response
You may need to model data that must be generated by OSM and copied to the
fulfillment request, not including service order identification and service order line
identification. Add these to the LineItemData structure (if they do not already exist in
the LineItemData structure). An example of this is new and prior values for
customized billing date calculations to send to a billing provider.

You may also need to model data that can be updated back to central order
management from the fulfillment system.

Additional Control Data Required for Orchestration Logic
If the new fulfillment function can process order items with a service action code of
UPDATE or MOVE-ADD, add an element such as
OrderItemHasYourFunctionNameUpdates to the OrderItemControl structure. You can
make a copy of CommunicationsSalesOrderItemProperties_OrderItemControl.xqy
and edit the XQuery to set the property value for each order item. A value of YES
means that this order item has relevant changes for your fulfillment function to
process. A service action code has relevant changes if it is a service action code that the
fulfillment function can process, or in the case of UPDATE or MOVE-ADD, a service
action code with compensation-significant updates.

Note: Use XML catalogs to specify the location of XQuery files. Use a
unique namespace prefix to avoid naming conflicts.

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-9

Add a condition to the decomposition rule that decomposes from
YourFunctionNameFunction to YourFunctionName SignificantUpdates. The condition
checks for the existence of at least one order item in the fromOrderComponent that has
OrderItemHasYourFunctionNameUpdates set to YES. This avoids creating an
executable order component (which avoids generating and sending a fulfillment
request) when there are no order items with relevant changes for the fulfillment
function to process.

Data that Must be Modeled in the Order Template
If any additional data must be modeled in the order template:

■ Follow the same pattern as for the existing fulfillment functions model
ControlData/Functions/YourFunctionNameFunction

■ Any data that must be generated by OSM and copied to the fulfillment request or
data that can be updated back to central order management from the fulfillment
system is added to:

ControlData/OrderItem/WorkLineItemData for OSM-generated new values, or
new values from fulfillment function response

ControlData/OrderItem/WorkPriorLineItemData for OSM-generated prior values

ControlData/OrderItem/BaseLineItemData for significance information for
compensation

■ Any additional control data required for the orchestration logic

About Creation Tasks
COM_SalesOrderFulfillment_CreationTask is the creation task for the OSM COM_
SalesOrderFulfillment order. With the Order-to-Activate composite cartridge, you can
add data to this creation task through the task data contribution tab in the
Order-to-Activate composite cartridge for the new fulfillment function.

About Query Tasks
COM_SalesOrderFulfillment_OrderDetails is the query task for the OSM COM_
SalesOrderFulfillment order. With the Order-to-Activate composite cartridge, you can
add data to this query task through the task data contribution tab in the
Order-to-Activate composite cartridge for the new fulfillment function.

About Subprocesses
A system interaction configured in the OracleComms_OSM_O2A_COM_Base
cartridge handles the asynchronous communication of service order data to a
fulfillment system instance. A fulfillment system instance is also referred to as a
fulfillment provider. The system interaction should handle the delivery of a relevant
subset of service order data to the fulfillment provider. When triggered, the system
interaction also invokes the correct subprocess which represents the fulfillment
function for the order component. Additionally, the system interaction must handle
responses from the fulfillment provider and cope with messaging, fallout, status and
data updates, and order change management.

Model the subprocess following the pattern established for the existing fulfillment
functions as depicted in Figure 5–1. Prefix task names with YourFunctionName. The
flow of the process is described in Table 5–3.

Adding a New Fulfillment Function

5-10 OSM Cartridge Guide for Oracle Application Integration Architecture

Figure 5–1 Creating Subprocesses

The manual tasks YourFunctionNamePreSITask, and YourFunctionNamePostSITask are
optional. They are useful as cartridge breakpoints for a number of purposes including
providing the user the ability to control process flow before and after functions and to
examine data in the process flow for revision testing. Cartridge breakpoints stop at
manual tasks in subprocess flows for system interactions. In a success flow, the process
flows distinguish whether to exit with 'success_debug' status (to include manual tasks
in the subprocess flow) or success status (to skip the manual tasks in the subprocess
flow).

Table 5–3 lists the tasks and flows associated with subprocess.

Significance must be set in the task data for the nodes in
CreateCommunicationsSalesOrderTask and the tasks in the subprocess for the
fulfillment function YourFunctionName.

The system interaction for the fulfillment function is implemented by a subprocess
named YourFunctionNameSubProcess in the Order-to-Activate cartridges. The
automated tasks in the subprocess accomplish the following:

1. Accept input data from the original EBM message destined for the outbound
message and properties for each of the configurable data elements.

Table 5–3 Flows and Tasks

Flow patterns Tasks associated

Success flow without
debug breakpoints

Start --> YourFunctionNameEntryPointTask --> YourFunctionNameSITask --> End

Success flow with
debug breakpoints

Start --> YourFunctionNameEntryPointTask --> YourFunctionNamePreSITask
(manual) --> YourFunctionNameSITask --> YourFunctionNamePostSITask (manual) -->
End

Failure flows Start --> YourFunctionNameEntryPointTask --> YourFunctionNameSITask
-->YourFunctionNameFalloutRecoverTask (manual) -->

■ Option 1: abort End

■ Option 2: wait for amendment YourFunctionNameWaitForAmendmentTask
(manual) --> End

■ Option 3: retry

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-11

■ Input data to pass through from the original message
(ProcessSalesOrderFulfillmentEBM) to the outbound message:

– Reference to the message header (EBMHeader) from the original EBM

– Reference to the customer order header
(DataArea/ProcessSalesOrderFulfillment) from the original EBM

– References to line items from the original EBM destined for the outbound
message

The inbound message is expected to conform to the schema
AIAComponents\EnterpriseObjectLibrary\Industry\Communications\EB
O\SalesOrder\V2\SalesOrderEBM.xsd

■ Input data for the configurable elements of the outbound message:

– EBMHeader/Sender/ID and all EBMHeader/Sender element values

– EBMHeader/Target/ID

2. Automation actions in the automated task YourFunctionNameEntryPointTask
update the order item data required for the fulfillment function system interaction.
Copy the SIEntryPoint.xqy file, and customize it as needed.

Use XML catalogs to specify the location of the XQuery files. Use a unique
namespace prefix to avoid naming conflicts.

Table 5–4 lists the XML catalogs.

■ Logic for do and redo execution modes (if applicable) include updating the
order data in
ControlData/Functions/YourFunctionName/orderItem/orderItemRef/WorkLi
neItemData. Because orderItemRef is a reference, subsequent functions on the
same order line reference the same instance of the data. Any additional data
that is generated by OSM for the fulfillment function request should be
updated.

3. Automation actions YourFunctionNameRequestBean_do,
YourFunctionNameRequestBean_redo, YourFunctionNameRequestBean_undo in
automated task YourFunctionNameSITask are configured as internal XQuery
Senders to use the XQuery automation plug-in to construct the payload for the
outbound message, in do, redo, and undo modes, respectively (if applicable).

■ Outbound message format: Identify the EBM

■ Outbound message schema: Identify the Oracle AIA schema. For example, the
schema for the billing functions is:
AIAComponents\EnterpriseObjectLibrary\Industry\Communications\EB
O\FulfillmentOrder\V1\FulfillmentOrderEBM.xsd.

■ Relevant line items: all line items targeted at the same fulfillment provider

Table 5–4 XML Catalogs

Automation
Action

Executio
n Modes

Automation
Type

Event
Type Customize

'YourFunctionName
EntryPointBean_
doredo'

do, redo XQuery
Sender

Internal Customize a copy of the SIEntryPoint.xqy XQuery
file to add code to update order data before message
generation for the new fulfillment function.

Adding a New Fulfillment Function

5-12 OSM Cartridge Guide for Oracle Application Integration Architecture

4. Configure automation actions in the automated task YourFunctionNameSITask to
generate messages in the EBM format and send the XML payload over JMS. You
must specify the JNDI name of the JMS destination.

Table 5–5 lists the automation actions and the XQueries to be customized.

5. Configure automation action YourFunctionNameResponseBean in automated task
YourFunctionNameSITask as an external XQuery Automator to process responses.
You must specify the JNDI name of the JMS source.

Table 5–6 lists the automated XQueries.

■ Success response: Recognize and process a successful response. Set the
reached milestone to YOUR FUNCTION NAMECOMPLETE. A successful
response is a well-formed response message, that conforms to the response
EBM format, with an empty or non-existent EBMHeader/FaultNotification
and FaultMessage Code.

■ Failure response: Recognize and process failure responses that OSM expects to
be either a response EBM, or an OrderFalloutNotification.

■ No response: In this case OSM expects an OrderFalloutNotification from
Oracle AIA.

Fulfillment Function Extension Point Interface
The Order-to-Activate cartridges use XQuery resources to perform functions including
setting order item properties, mapping product specifications to fulfillment patterns,
managing fulfillment function dependencies, and managing the order life cycle. One
way to customize XQueries is to rewrite or add to a provided XQuery module and use
the XML catalog to enable URI reference mapping. Fulfillment function extension
points have different input parameters depending on whether you are using the

Table 5–5 Automation Actions

Automation
Action

Executio
n Modes

Automation
Type

Event
Type Customize

YourFunctionName
RequestBean_do

do XQuery
Sender

Internal Customize a copy of the AIAEBMRequest_do.xqy
XQuery file to add code to update the order data
before message generation for the new fulfillment
function.

YourFunctionName
RequestBean_redo

redo XQuery
Sender

Internal Customize a copy of the AIAEBMRequest_redo.xqy
XQuery file to add code to update the order data
before message generation for the new fulfillment
function.

YourFunctionName
RequestBean_
undo

undo XQuery
Sender

Internal Customize a copy of the AIAEBMRequest_undo.xqy
XQuery file to add code to update the order data
before message generation for the new fulfillment
function.

Table 5–6 Automated XQueries

Automation
action

Executio
n Modes

Automation
Type

Event
Type Customize

YourFunctionName
ResponseBean

N/A XQuery
Automater

External Customize a copy of the AIAEBMResponse.xqy
XQuery file to add code to update the order data
before message generation for the new fulfillment
function.

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-13

calculate service order solution option or the solution option without calculate service
order. Both sets of input parameters are provided in the tables in this section.
Extension points are defined for both fulfillment functions and fulfillment states. This
section contains information about the fulfillment function extension points. For
information about the fulfillment state extension points, see "Fulfillment State
Extension Point Interface."

XML catalogs are system-wide entities, which means an XML Catalog specified in one
cartridge will be used when processing requests for orders on other cartridges. With
the use of solution cartridges, multiple solutions can be deployed to a single system
and coexist with each other.

Each fulfillment function extension point has one XQuery API except for
CREATE-EBM, which has three: one for each execution mode (do, redo, and undo).

An XQuery extension script must be implemented in a standalone file. The file URI
must be registered to the extension configuration.

Fulfillment Function Extension Point Overview
Table 5–7 lists the XQuery extension points for fulfillment functions in the
Order-to-Activate cartridges.

Table 5–7 Fulfillment Function Extension Points

Fulfillment Function Extension
Point Description

COMPONENT-START Fulfillment function start extension point. The extension is expected to
return a list of OrderItem properties to be updated when the fulfillment
function is started.

COMPONENT-COMPLETE Fulfillment function complete extension point. The extension is expected
to return a list of OrderItem properties to be updated when the
fulfillment function is completed.

COMPONENT-UPDATE Fulfillment function update extension point. The extension is expected to
return a list of OrderItem properties to be updated when the fulfillment
function is updated.

CREATE-EBM Fulfillment function create payload extension point. The extension is
expected to return the EBM to be sent to the external system in do, redo, or
undo mode operations.

CREATE-EBM-CUSTOM Fulfillment function create payload extension point with order level
Custom XML element in the EBM.

CREATE-EBM-ALL-ORDERITEMS Fulfillment function create payload extension point for all order items.
The extension is expected to return the EBM to be sent to the external
system.

CREATE-EBM-ORDERITEM Fulfillment function extension point to create an XML fragment for a
single order item in do, redo, or undo mode operations.

CREATE-EBM-ORDERITEM-CUSTO
M

Fulfillment function extension point to create an XML fragment for a
single order item that has an order-item-level Custom XML element in
the EBM.

CREATE-EBM-PRIORORDERITEM Fulfillment function extension point to create an XML fragment for a
single prior order item.

CREATE-EBM-PRIORORDERITEM-C
USTOM

Fulfillment function extension point to create a payload with
prior-order-item-level Custom XML element in the EBM.

Adding a New Fulfillment Function

5-14 OSM Cartridge Guide for Oracle Application Integration Architecture

When a fulfillment function is introduced, you can create an ExtensionPointMap entry
for each applicable fulfillment function extension point (such as Component Start) in
the resources\SolutionConfig\ComponentExtensionPointMap.xml of the
Order-to-Activate composite cartridge. You must create a separate XQuery file for each
fulfillment function extension point.

COMPONENT-START Extension Point
This section describes the XQuery script that implements the logic to handle the
COMPONENT-START extension point.

Table 5–8 lists the input parameters for the extension point XQuery when you are
using the calculate service order solution option.

Table 5–9 lists the input parameters for the extension point XQuery when you are
using the solution option without calculate service order.

VALIDATE-RESPONSE-EBM Fulfillment function response validation extension point. The extension is
expected to validate the EBM response coming back from the external
system.

COMPONENT-RESPONSE-UPDATE Fulfillment function response update extension point. The extension is
expected to return a list of OrderItem properties to be updated when a
valid EBM response comes back from the external system.

ORDER-EXTENSION-UPDATE-STAT
US-EBM

Fulfillment function update extension point for status updates from
central order management to the upstream system. The extension is
expected to return an EBM containing sales order status and other
information. Other systems can also listen to the output of this extension
point to create or update asset information.

Table 5–8 COMPONENT-START Input Parameters for the Calculate Service Order Option

Name Type Scope Description

$extensionVersion xs:string External variable Version number of the extension
framework

$log Java Object External variable Java Type
org.apache.commons.logging.Log

Logging level related to server log.

$executionMode xs:string External variable Task execution mode

$breakpointDebugControl element() External variable Break Point Control XML fragment

$taskInputData element() External variable Task data XML fragment with the schema
for GetOrder.Response

$component element() External variable XML fragment containing the fulfillment
function data

. element() Context node Order item data XML fragment

Table 5–7 (Cont.) Fulfillment Function Extension Points

Fulfillment Function Extension
Point Description

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-15

Table 5–10 lists the return parameters for the extension point XQuery.

Example 5–2 is a sample XQuery code fragment for the COMPONENT-START
fulfillment function extension point.

Example 5–2 COMPONENT-START XQuery Code Fragment

import module namespace YourFunctionNamefn =
"http://xmlns.oracle.com/communications/ordermanagement/pip/YourFunctionNamefn" at
"http://xmlns.oracle.com/communications/ordermanagement/pip/YourFunctionNamefn/You
rFunctionNameInteractionModule.xquery";
declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";

declare variable $executionMode external;
declare variable $breakpointDebugControl external;
declare variable $taskInputData external;

(: This function registers to the YourFunctionName/START event.
 : It returns a list of elements which are the properties to be updated for
 : the given order item. :)
declare function YourFunctionNamefn:onYourFunctionNameStart(
 $execMode as xs:string,
 $lineItem as element(),
 $taskData as element(),
 $debugControl as element()) as element()*
{
 let $id := $lineItem/oms:BaseLineId
 return
 <BaseLineId>{ $id/text() }</BaseLineId>,
 (: list of order item properties to be updated :)
};

let $lineItem := .
return
 <OrderItem>
 {
 YourFunctionNamefn:onYourFunctionNameStart($executionMode, $lineItem,

Table 5–9 COMPONENT-START Input Parameters for the Option Without Calculate Service Order

Name Type Scope Description

$extensionVersion xs:string External variable Version number of the extension
framework

$log Java Object External variable Java Type
org.apache.commons.logging.Log

Logging level related to server log.

$executionMode xs:string External variable Task execution mode

$breakpointDebugControl element() External variable Break Point Control XML fragment

$taskInputData element() External variable Task data XML fragment with the schema
for GetOrder.Response

. element() Context node Order item data XML fragment

Table 5–10 COMPONENT-START Return Parameters

Output Parameter Type Description

element()* XML wrapper element that contains all the order item properties to be updated

Adding a New Fulfillment Function

5-16 OSM Cartridge Guide for Oracle Application Integration Architecture

$taskInputData, $breakpointDebugControl)
 }
 </OrderItem>

COMPONENT-COMPLETE Extension Point
This section describes the XQuery script that implements the logic to handle the
COMPONENT-COMPLETE extension point.

Table 5–11 lists the input parameters for the extension point XQuery when you are
using the calculate service order solution option.

Table 5–12 lists the input parameters for the extension point XQuery when you are
using the solution option without calculate service order.

Table 5–11 COMPONENT-COMPLETE Input Parameters for the Calculate Service Order Option

Name Type Scope Description

$extensionVersion xs:string External variable Version number of the extension
framework

$log Java Object External variable Java Type
org.apache.commons.logging.Log

Logging level related to server log

$component element() External variable XML fragment containing the fulfillment
function data

$executionMode xs:string External variable Task execution mode

$orderItemFromResponse element() External variable Order item data from the response
message

$hasFallout xs:boolean External variable Boolean indicator of whether the previous
EBM request sent to the external system
has had fallout

$falloutMessage xs:string External variable The fallout error message of this order
item

$breakpointDebugControl element() External variable Break Point Control XML fragment

$taskInputData element() External variable Task data XML fragment with the schema
for GetOrder.Response

. element() Context node Order item data XML fragment

Table 5–12 COMPONENT-COMPLETE Input Parameters for the Option Without Calculate Service Order

Name Type Scope Description

$extensionVersion xs:string External variable Version number of the extension
framework

$log Java Object External variable Java Type
org.apache.commons.logging.Log

Logging level related to server log

$executionMode xs:string External variable Task execution mode

$hasFallout xs:boolean External variable Boolean indicator of whether the previous
EBM request sent to the external system
has had fallout

$falloutMessage xs:string External variable The fallout error message of this order
item

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-17

Table 5–13 lists the return parameters for the extension point XQuery.

Example 5–3 is a sample XQuery code fragment for the COMPONENT-COMPLETE
fulfillment function extension point.

Example 5–3 COMPONENT-COMPLETE XQuery Code Fragment

import module namespace pipextensionmodule =
"http://xmlns.oracle.com/communications/ordermanagement/pip/pipextensionmodule" at
"http://xmlns.oracle.com/communications/ordermanagement/pip/pipextensionmodule/Ext
ensionPointModule.xquery";
import module namespace YourFunctionNamefn =
"http://xmlns.oracle.com/communications/ordermanagement/pip/YourFunctionNamefn" at
"http://xmlns.oracle.com/communications/ordermanagement/pip/YourFunctionNamefn/You
rFunctionNameInteractionModule.xquery";

declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";

declare variable $hasFallout external;
declare variable $falloutMessage external;

(: This function register to the YourFunctionName/COMPLETE event.
 : It return a list of elements that are the properties to be updated for
 : the given order item. :)
declare function YourFunctionNamefn:onYourFunctionNameComplete(
 $lineItem as element(),
 $hasFallout as xs:boolean,
 $falloutMessage as xs:string*) as element()*
{
 let $id := $lineItem/oms:BaseLineId
 return
 <BaseLineId>{ $id/text() }</BaseLineId>,
 (: list of order item properties to be updated :)
};

let $lineItem := .
return
 <OrderItem>
 {
 YourFunctionNamefn:onYourFunctionNameComplete($lineItem, $hasFallout,
pipextensionmodule:unWrapStringParameter($falloutMessage))
 }
 </OrderItem>

$breakpointDebugControl element() External variable Break Point Control XML fragment

$taskInputData element() External variable Task data XML fragment with the schema
for GetOrder.Response

. element() Context node Order item data XML fragment

Table 5–13 COMPONENT-COMPLETE Return Parameters

Output Parameter Type Description

element()* XML wrapper element which contains all the order item properties to be
updated

Table 5–12 (Cont.) COMPONENT-COMPLETE Input Parameters for the Option Without Calculate Service

Name Type Scope Description

Adding a New Fulfillment Function

5-18 OSM Cartridge Guide for Oracle Application Integration Architecture

COMPONENT-UPDATE Extension Point
This section describes the XQuery script that implements the logic to handle the
COMPONENT-UPDATE extension point.

Table 5–14 lists the input parameters for the extension point XQuery when you are
using the calculate service order solution option.

Table 5–15 lists the input parameters for the extension point XQuery when you are
using the solution option without calculate service order.

Table 5–14 COMPONENT-UPDATE Input Parameters for the Calculate Service Order Option

Name Type Scope Description

$extensionVersion xs:string External variable Version number of the extension
framework

$log Java Object External variable Java Type
org.apache.commons.logging.Log

Logging level related to server log

$executionMode xs:string External variable Task execution mode

$hasFallout xs:boolean External variable Boolean indicator of whether the previous
EBM request sent to the external system
has had fallout

$falloutMessage xs:string External variable The fallout error message of this order
item

$breakpointDebugControl element() External variable Break Point Control XML fragment

$taskInputData element() External variable Task data XML fragment with the schema
for GetOrder.Response

$milestoneCode xs:string External variable Injected milestone code

. element() Context node Order item data XML fragment

Table 5–15 COMPONENT-UPDATE Input Parameters for the Option Without Calculate Service Order

Name Type Scope Description

$extensionVersion xs:string External variable Version number of the extension
framework

$log Java Object External variable Java Type
org.apache.commons.logging.Log

Logging level related to server log

$executionMode xs:string External variable Task execution mode

$hasFallout xs:boolean External variable Boolean indicator of whether the previous
EBM request sent to the external system
has had fallout

$falloutMessage xs:string External variable The fallout error message of this order
item

$breakpointDebugControl element() External variable Break Point Control XML fragment

$taskInputData element() External variable Task data XML fragment with the schema
for GetOrder.Response

$milestoneCode xs:string External variable Injected milestone code

. element() Context node Order item data XML fragment

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-19

Table 5–16 lists the return parameters for the extension point XQuery.

Example 5–4 is a sample XQuery code fragment for the COMPONENT-UPDATE
fulfillment function extension point.

Example 5–4 COMPONENT-UPDATE XQuery Code Fragment

import module namespace pipextensionmodule =
"http://xmlns.oracle.com/communications/ordermanagement/pip/pipextensionmodule" at
"http://xmlns.oracle.com/communications/ordermanagement/pip/pipextensionmodule/Ext
ensionPointModule.xquery";
import module namespace YourFunctionNamefn =
"http://xmlns.oracle.com/communications/ordermanagement/pip/YourFunctionNamefn" at
"http://xmlns.oracle.com/communications/ordermanagement/pip/YourFunctionNamefn/You
rFunctionNameInteractionModule.xquery";
import module namespace pipbreakpointfn =
"http://xmlns.oracle.com/communications/ordermanagement/pip/pipbreakpointmodule"
at
"http://xmlns.oracle.com/communications/ordermanagement/pip/pipbreakpointmodule/Br
eakpointControlModule.xquery";

declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";
declare namespace
salesord="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/SalesOrder/V2";

declare variable $executionMode external;
declare variable $breakpointDebugControl external;
declare variable $taskInputData external;
declare variable $hasFallout external;
declare variable $falloutMessage external;
declare variable $milestoneCode external;

declare function YourFunctionNamefn:onYourFunctionNameUpdate(
 $execMode as xs:string,
 $lineItem as element(),
 $taskData as element(),
 $debugControl as element(),
 $milestoneCode as xs:string) as element()*
{
 let $ponrOverride := pipbreakpointfn:checkPONROverride(YourFunctionNamefn,
$debugControl)
 let $revisionPermissibleCode := if ($ponrOverride=fn:false()) then "HARD" else
"NOT YET"
 let $updateRevisionPermissibleCode := ($taskData/oms:_
root/oms:CustomerHeaders/oms:FulfillmentModeCode/text()!="TSQ")
 return
 YourFunctionNamefn:onYourFunctionNameUpdate($execMode, $lineItem,
$taskData, $milestoneCode, $updateRevisionPermissibleCode,
$revisionPermissibleCode)
};

let $lineItem := .
return

Table 5–16 COMPONENT-UPDATE Return Parameters

Output Parameter Type Description

element()* XML wrapper element which contains all the order item properties to be
updated

Adding a New Fulfillment Function

5-20 OSM Cartridge Guide for Oracle Application Integration Architecture

 <OrderItem>
 {
 YourFunctionNamefn:onYourFunctionNameUpdate($executionMode, $lineItem,
$taskInputData, $breakpointDebugControl, $milestoneCode)
 }
 </OrderItem>

CREATE-EBM Extension Point for do Execution Mode
This section describes the XQuery script that implements the logic to handle the
CREATE-EBM extension point for do execution mode.

Table 5–17 lists the input parameters for the extension point XQuery when you are
using the calculate service order solution option.

Table 5–17 CREATE-EBM Input Parameters for do Execution Mode for the Calculate Service Order Option

Name Type Scope Description

$extensionVersion xs:string External variable Version number of the extension
framework

$log Java Object External variable Java Type
org.apache.commons.logging.Log

Logging level related to server log

$orderId xs:string External variable OSM Order ID of the current order

$orderKey xs:string External variable AIA Order Number

$ebmHeader element() External variable SalesOrder request EBM header: This
element can be used as a reference to
populate the request EBM header

$salesOrderLine element() External variable XML fragment of all order lines belonging
to the current fulfillment function

$transformedOrderLines element() External variable XML fragment of all transformed order
lines belonging to the current fulfillment
function

$mappingContext element() External variable XML fragment describing the mapping
context between all sales order items and
transformed order items belonging to the
current fulfillment function

$priorSalesOrderLine element() External variable All prior order lines belonging to the
current fulfillment function

$customerHeaders element() External variable XML fragment describing the mapping of
the CustomerHeader structure

$component element() External variable XML fragment containing the fulfillment
function data

$targetIdentifier element() External variable XML fragment describing the target
system information

$idMap element() External variable XML fragment describing the mapping
between the original order line's
BusinessComponentID and the newly
generated BusinessComponentID to be
populated into the EBM request message

$ebmId xs:string External variable EBM ID to be populated into the EBM
request message

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-21

Table 5–18 lists the input parameters for the extension point XQuery when you are
using the solution option without calculate service order.

$fulfillmentOrderId xs:string External variable BusinessComponentID to be populated
into the EBM request message as the Order
ID

$fulfillmentOrderNumber xs:string External variable Cross-system order number reference

$faultMode xs:string External variable FaultMode code to control how the
emulator generates the response message:
this parameter is in effect only if the
request EBM is sent to an external system
emulator rather than a real system.

$verbCode xs:string External variable FaultMode code to control how the service
order management orchestration order
generates the response message. This
element only applies if the request EBM is
sent to service order management (SOM).

. element() Context node Fulfillment order header for the
SalesOrder request EBM

Table 5–18 CREATE-EBM Input Parameters for do Execution Mode for the Option Without Calculate
Service Order

Name Type Scope Description

$extensionVersion xs:string External variable Version number of the extension
framework

$log Java Object External variable Java Type
org.apache.commons.logging.Log

Logging level related to server log.

$ebmHeader element() External variable SalesOrder request EBM header: This
element can be used as a reference to
populate the request EBM header

$salesOrderLine element() External variable XML fragment of all order lines belonging
to the current fulfillment function

$priorSalesOrderLine element() External variable All prior order lines belonging to the
current fulfillment function

$component element() External variable XML fragment containing the fulfillment
function data

$targetIdentifier element() External variable XML fragment describing the target
system information

$idMap element() External variable XML fragment describing the mapping
between the original order line's
BusinessComponentID and the newly
generated BusinessComponentID to be
populated into the EBM request message

$ebmId xs:string External variable EBM ID to be populated into the EBM
request message

$fulfillmentOrderId xs:string External variable BusinessComponentID to be populated
into the EBM request message as the Order
ID

Table 5–17 (Cont.) CREATE-EBM Input Parameters for do Execution Mode for the Calculate Service Order

Name Type Scope Description

Adding a New Fulfillment Function

5-22 OSM Cartridge Guide for Oracle Application Integration Architecture

Table 5–19 lists the return parameters for the extension point XQuery.

Example 5–5 is a sample XQuery code fragment for the CREATE-EBM fulfillment
function extension point implementation for the do execution mode.

Example 5–5 CREATE-EBM XQuery Code Fragment for do Execution Mode

import module namespace YourFunctionNamefn =
"http://xmlns.oracle.com/communications/ordermanagement/pip/YourFunctionNamefn" at
"http://xmlns.oracle.com/communications/ordermanagement/pip/YourFunctionNamefn/You
rFunctionNameInteractionModule.xquery";

declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";

declare variable $ebmHeader external;
declare variable $salesOrderLine external;
declare variable $priorSalesOrderLine external;
declare variable $component external;
declare variable $targetIdentifier external;
declare variable $idMap external;
declare variable $ebmId external;
declare variable $fulfillmentOrderId external;
declare variable $fulfillmentOrderNumber external;
declare variable $faultMode external;

let $fulfillmentOrder := .
return
 <Ebm>
 {
 YourFunctionNamefn:createDoYourFunctionNamePayload(
 $ebmHeader,
 $fulfillmentOrder,
 $salesOrderLine,
 $priorSalesOrderLine,

$fulfillmentOrderNumber xs:string External variable Cross-system order number reference

$faultMode xs:string External variable FaultMode code to control how the
emulator generates the response message:
this parameter is in effect only if the
request EBM is sent to an external system
emulator rather than a real system.

$verbCode xs:string External variable FaultMode code to control how the service
order management orchestration order
generates the response message. This
element only applies if the request EBM is
sent to service order management (SOM).

. element() Context node Fulfillment order header for the
SalesOrder request EBM

Table 5–19 CREATE-EBM for do Execution Mode Return Parameters

Output Parameter Type Description

element()? XML wrapper element that contains the EBM: The EBM format depends on
external fulfillment provider requirements.

Table 5–18 (Cont.) CREATE-EBM Input Parameters for do Execution Mode for the Option Without Calculate
Service Order

Name Type Scope Description

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-23

 $targetIdentifier,
 $idMap,
 $ebmId,
 $fulfillmentOrderId,
 $fulfillmentOrderNumber,
 $faultMode)
 }
 </Ebm>

CREATE-EBM Extension Point for redo Execution Mode
This section describes the XQuery script that implements the logic to handle the
CREATE-EBM extension point for the redo execution mode.

Table 5–20 lists the input parameters for the extension point XQuery when you are
using the calculate service order solution option.

Table 5–20 CREATE-EBM Input Parameters for redo Execution Mode for the Calculate Service Order
Option

Name Type Scope Description

$extensionVersion xs:string External variable Version number of the extension
framework

$log Java Object External variable Java Type
org.apache.commons.logging.Log

Logging level related to server log

$orderId xs:string External variable OSM Order ID of the current order

$orderKey xs:string External variable AIA Order Number

$ebmHeader element() External variable SalesOrder request EBM header: This
element can be used as a reference to
populate the request EBM header

$salesOrderLine element() External variable XML fragment of all order lines belonging
to the current fulfillment function

$transformedOrderLines element() External variable XML fragment of all transformed order
lines belonging to the current fulfillment
function

$mappingContext element() External variable XML fragment describing the mapping
context between all sales order items and
transformed order items belonging to the
current fulfillment function

$histTransformedOrderLines element() External variable XML fragment of all transformed order
items belonging to the current fulfillment
function before the revision

$histMappingContext element() External variable XML fragment describing the pre-revision
mapping context between all sales order
items and transformed order items
belonging to the current fulfillment
function

$priorSalesOrderLine element() External variable All prior order lines belonging to the
current fulfillment function

$histSalesOrderLine element() External variable All order lines belonging to the current
fulfillment function before amendment

$histPriorSalesOrderLine element() External variable All prior order lines belonging to the
current fulfillment function before
amendment

Adding a New Fulfillment Function

5-24 OSM Cartridge Guide for Oracle Application Integration Architecture

$deletedlineItems element() External variable Order lines that were deleted by the
amendment

$deletedTransformedLineIte
ms

element() External variable XML fragment of all deleted transformed
order lines belonging to the current
fulfillment function

$deletedpriorlineItems element() External variable Prior order line data that was deleted by
the amendment

$deletedMappingContext element() External variable XML fragment describing the deleted
mapping context for all sales order items
and transformed order items belonging to
the current fulfillment function

$addedlineItems element() External variable Order line data that was added by the
amendment

$component element() External variable XML fragment containing the fulfillment
function data

$histComponent element() External variable XML fragment with the pre-amendment
fulfillment function data

$targetIdentifier element() External variable XML fragment describing the target
system information

$idMap element() External variable XML fragment describing the mapping
between the original order line's
BusinessComponentID and the newly
generated BusinessComponentID to be
populated into the EBM request message

$histIdMap element() External variable XML fragment describing the mapping
between the original order line's
BusinessComponentID and the
BusinessComponentID populated into the
earlier EBM request message

$ebmId xs:string External variable EBM ID to be populated into the EBM
request message

$fulfillmentOrderId xs:string External variable BusinessComponentID to be populated
into the EBM request message as the Order
ID

$fulfillmentOrderNumber xs:string External variable Cross-system order number reference

$hasFallout xs:boolean External variable Boolean indicator of whether the previous
EBM request sent to the external system
has had fallout

$faultMode xs:string External variable FaultMode code to control how the
emulator generates the response message:
this parameter is in effect only if the
request EBM is sent to an external system
emulator rather than a real system.

Table 5–20 (Cont.) CREATE-EBM Input Parameters for redo Execution Mode for the Calculate Service
Order Option

Name Type Scope Description

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-25

Table 5–21 lists the input parameters for the extension point XQuery when you are
using the solution option without calculate service order.

$verbCode xs:string External variable FaultMode code to control how the service
order management orchestration order
generates the response message. This
element only applies if the request EBM is
sent to service order management (SOM).

$customerHeaders element() External variable XML fragment describing the mapping of
the CustomerHeader structure

. element() Context node Fulfillment order header for the
SalesOrder request EBM

Table 5–21 CREATE-EBM Input Parameters for redo Execution Mode for the Option Without Calculate
Service Order

Name Type Scope Description

$extensionVersion xs:string External variable Version number of the extension
framework

$log Java Object External variable Java Type
org.apache.commons.logging.Log

Logging level related to server log

$ebmHeader element() External variable SalesOrder request EBM header: This
element can be used as a reference to
populate the request EBM header

$salesOrderLine element() External variable XML fragment of all order lines belonging
to the current fulfillment function

$priorSalesOrderLine element() External variable All prior order lines belonging to the
current fulfillment function

$histSalesOrderLine element() External variable All order lines belonging to the current
fulfillment function before amendment

$histPriorSalesOrderLine element() External variable All prior order lines belonging to the
current fulfillment function before
amendment

$deletedlineItems element() External variable Order lines that were deleted by the
amendment

$deletedpriorlineItems element() External variable Prior order line data that was deleted by
the amendment

$addedlineItems element() External variable Order line data that was added by the
amendment

$component element() External variable XML fragment containing the fulfillment
function data

$histComponent element() External variable XML fragment with the pre-amendment
fulfillment function data

$targetIdentifier element() External variable XML fragment describing the target
system information

Table 5–20 (Cont.) CREATE-EBM Input Parameters for redo Execution Mode for the Calculate Service
Order Option

Name Type Scope Description

Adding a New Fulfillment Function

5-26 OSM Cartridge Guide for Oracle Application Integration Architecture

Table 5–22 lists the return parameters for the extension point XQuery.

Example 5–6 is a sample XQuery code fragment for the CREATE-EBM fulfillment
function extension point implementation for the redo execution mode.

$idMap element() External variable XML fragment describing the mapping
between the original order line's
BusinessComponentID and the newly
generated BusinessComponentID to be
populated into the EBM request message

$histIdMap element() External variable XML fragment describing the mapping
between the original order line's
BusinessComponentID and the
BusinessComponentID populated into the
earlier EBM request message

$ebmId xs:string External variable EBM ID to be populated into the EBM
request message

$fulfillmentOrderId xs:string External variable BusinessComponentID to be populated
into the EBM request message as the Order
ID

$fulfillmentOrderNumber xs:string External variable Cross-system order number reference

$fulfillmentOrderStatus xs:string External variable The child order's current status (IN_
PROGRESS or COMPLETE). This element
controls how the EBM should be
generated. The EBM is expected to be
generated as a cancel order if the child
order is IN_PROGRESS or as a disconnect
order if the child order is COMPLETE.

$faultMode xs:string External variable FaultMode code to control how the
emulator generates the response message:
this parameter is in effect only if the
request EBM is sent to an external system
emulator rather than a real system.

$verbCode xs:string External variable FaultMode code to control how the service
order management orchestration order
generates the response message: This
element only applies if the request EBM is
sent to service order management (SOM).

$hasFallout xs:boolean External variable Boolean indicator of whether the previous
EBM request sent to the external system
has had fallout

. element() Context node Fulfillment order header for the
SalesOrder request EBM

Table 5–22 CREATE-EBM for redo Execution Mode Return Parameters

Output Parameter Type Description

element()? XML wrapper element that contains the EBM: The EBM format depends on
external fulfillment provider requirements.

Table 5–21 (Cont.) CREATE-EBM Input Parameters for redo Execution Mode for the Option Without
Calculate Service Order

Name Type Scope Description

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-27

Example 5–6 CREATE-EBM XQuery Code Fragment for redo Execution Mode

import module namespace pipextensionmodule =
"http://xmlns.oracle.com/communications/ordermanagement/pip/pipextensionmodule" at
"http://xmlns.oracle.com/communications/ordermanagement/pip/pipextensionmodule/Ext
ensionPointModule.xquery";
import module namespace YourFunctionNamefn =
"http://xmlns.oracle.com/communications/ordermanagement/pip/YourFunctionNamefn" at
"http://xmlns.oracle.com/communications/ordermanagement/pip/YourFunctionNamefn/You
rFunctionNameInteractionModule.xquery";

declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";

declare variable $ebmHeader external;
declare variable $salesOrderLine external; (:check null:)
declare variable $priorSalesOrderLine external; (:check null:)
declare variable $histSalesOrderLine external; (:check null:)
declare variable $histPriorSalesOrderLine external; (:check null:)
declare variable $deletedlineItems external; (:check null:)
declare variable $deletedpriorlineItems external; (:check null:)
declare variable $addedlineItems external; (:check null:)
declare variable $component external;
declare variable $targetIdentifier external;
declare variable $idMap external;
declare variable $histIdMap external;
declare variable $ebmId external;
declare variable $fulfillmentOrderId external;
declare variable $fulfillmentOrderNumber external;
declare variable $faultMode external;
declare variable $hasFallout external;

let $fulfillmentOrder := .
return
 <Ebm>
 {
 YourFunctionNamefn:createRedoYourFunctioNamePayload(
 $ebmHeader,
 $fulfillmentOrder,
 pipextensionmodule:unWrapParameter($salesOrderLine),
 pipextensionmodule:unWrapParameter($priorSalesOrderLine),
 if ($hasFallout = fn:true()) then () else
pipextensionmodule:unWrapParameter($histSalesOrderLine),
 if ($hasFallout = fn:true()) then () else
pipextensionmodule:unWrapParameter($deletedlineItems),
 $targetIdentifier,
 $idMap,
 $histIdMap,
 $ebmId,
 $fulfillmentOrderId,
 $fulfillmentOrderNumber,
 $faultMode,
 $hasFallout)
 }
 </Ebm>

CREATE-EBM Extension Point for undo Execution Mode
This section describes the XQuery script that implements the logic to handle the
CREATE-EBM extension point for the undo execution mode.

Adding a New Fulfillment Function

5-28 OSM Cartridge Guide for Oracle Application Integration Architecture

Table 5–23 lists the input parameters for the extension point XQuery when you are
using the calculate service order solution option.

Table 5–23 CREATE-EBM Input Parameters for undo Execution Mode for the Calculate Service Order
Option

Name Type Scope Description

$extensionVersion xs:string External variable Version number of the extension
framework

$log Java Object External variable Java Type
org.apache.commons.logging.Log

Logging level related to server log

$orderId xs:string External variable OSM Order ID of the current order

$orderKey xs:string External variable AIA Order Number

$ebmHeader element() External variable SalesOrder request EBM header: This
element can be used as a reference to
populate the request EBM header

$salesOrderLine element() External variable XML fragment of all order lines belonging
to the current fulfillment function

$transformedOrderLines element() External variable XML fragment of all transformed order
lines belonging to the current fulfillment
function

$mappingContext element() External variable XML fragment describing the mapping
context between all sales order items and
transformed order items belonging to the
current fulfillment function

$priorSalesOrderLine element() External variable All prior order lines belonging to the
current fulfillment function

$customerHeaders element() External variable XML fragment describing the mapping of
the CustomerHeader structure

$component element() External variable XML fragment containing the fulfillment
function data

$targetIdentifier element() External variable XML fragment describing the target
system information

$idMap element() External variable XML fragment describing the mapping
between the original order line's
BusinessComponentID and the newly
generated BusinessComponentID to be
populated into the EBM request message

$ebmId xs:string External variable EBM ID to be populated into the EBM
request message

$fulfillmentOrderId xs:string External variable BusinessComponentID to be populated
into the EBM request message as the Order
ID

$fulfillmentOrderNumber xs:string External variable Cross-system order number reference

$fulfillmentOrderStatus xs:string External variable The child order's current status (IN_
PROGRESS or COMPLETE). This element
controls how the EBM should be
generated. The EBM is expected to be
generated as a cancel order if the child
order is IN_PROGRESS or as a disconnect
order if the child order is COMPLETE

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-29

Table 5–24 lists the input parameters for the extension point XQuery when you are
using the solution option without calculate service order.

$hasFallout xs:boolean External variable Boolean indicator of whether the previous
EBM request sent to the external system
has had fallout

$faultMode xs:string External variable FaultMode code to control how the
emulator generates the response message.
this parameter is in effect only if the
request EBM is sent to an external system
emulator rather than a real system.

$verbCode xs:string External variable FaultMode code to control how the service
order management orchestration order
generates the response message: This
element only applies if the request EBM is
sent to service order management (SOM).

$priorFulfillmentOrder element() External variable Prior Fulfillment order header for the
SalesOrder request EBM

. element() Context node Fulfillment order header for the
SalesOrder request EBM

Table 5–24 CREATE-EBM Input Parameters for undo Execution Mode for the Option Without Calculate
Service Order

Name Type Scope Description

$extensionVersion xs:string External variable Version number of the extension
framework

$log Java Object External variable Java Type
org.apache.commons.logging.Log

Logging level related to server log

$ebmHeader element() External variable SalesOrder request EBM header: This
element can be used as a reference to
populate the request EBM header

$salesOrderLine element() External variable XML fragment of all order lines belonging
to the current fulfillment function

$priorSalesOrderLine element() External variable All prior order lines belonging to the
current fulfillment function

$component element() External variable XML fragment containing the fulfillment
function data

$targetIdentifier element() External variable XML fragment describing the target
system information

$idMap element() External variable XML fragment describing the mapping
between the original order line's
BusinessComponentID and the newly
generated BusinessComponentID to be
populated into the EBM request message

$ebmId xs:string External variable EBM ID to be populated into the EBM
request message

Table 5–23 (Cont.) CREATE-EBM Input Parameters for undo Execution Mode for the Calculate Service
Order Option

Name Type Scope Description

Adding a New Fulfillment Function

5-30 OSM Cartridge Guide for Oracle Application Integration Architecture

Table 5–25 lists the return parameters for the extension point XQuery.

Example 5–7 is a sample XQuery code fragment for the CREATE-EBM fulfillment
function extension point implementation for the undo execution mode.

Example 5–7 CREATE-EBM XQuery Code Fragment for undo Execution Mode

import module namespace pipextensionmodule =
"http://xmlns.oracle.com/communications/ordermanagement/pip/pipextensionmodule" at
"http://xmlns.oracle.com/communications/ordermanagement/pip/pipextensionmodule/Ext
ensionPointModule.xquery";
import module namespace YourFunctionNamefn =
"http://xmlns.oracle.com/communications/ordermanagement/pip/YourFunctionNamefn" at
"http://xmlns.oracle.com/communications/ordermanagement/pip/YourFunctionNamefn/You
rFunctionNameInteractionModule.xquery";

declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";

$fulfillmentOrderId xs:string External variable BusinessComponentID to be populated
into the EBM request message as the Order
ID

$fulfillmentOrderNumber xs:string External variable Cross-system order number reference

$fulfillmentOrderStatus xs:string External variable The child order's current status (IN_
PROGRESS or COMPLETE): This element
controls how the EBM should be
generated. The EBM is expected to be
generated as a cancel order if the child
order is IN_PROGRESS or as a disconnect
order if the child order is COMPLETE.

$hasFallout xs:boolean External variable Boolean indicator of whether the previous
EBM request sent to the external system
has had fallout

$faultMode xs:string External variable FaultMode code to control how the
emulator generates the response message.
this parameter is in effect only if the
request EBM is sent to an external system
emulator rather than a real system.

$verbCode xs:string External variable FaultMode code to control how the service
order management orchestration order
generates the response message: This
element only applies if the request EBM is
sent to service order management (SOM).

$priorFulfillmentOrder element() External variable Prior Fulfillment order header for the
SalesOrder request EBM

. element() Context node Fulfillment order header for the
SalesOrder request EBM

Table 5–25 CREATE-EBM for undo Execution Mode Return Parameters

Output Parameter Type Description

element()? XML wrapper element that contains the EBM: The EBM format depends on
external fulfillment provider requirements.

Table 5–24 (Cont.) CREATE-EBM Input Parameters for undo Execution Mode for the Option Without
Calculate Service Order

Name Type Scope Description

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-31

declare variable $ebmHeader external;
declare variable $salesOrderLine external; (:check null:)
declare variable $priorSalesOrderLine external; (:check null:)
declare variable $component external;
declare variable $targetIdentifier external;
declare variable $idMap external;
declare variable $ebmId external;
declare variable $fulfillmentOrderId external;
declare variable $fulfillmentOrderNumber external;
declare variable $fulfillmentOrderStatus external;
declare variable $faultMode external;
declare variable $hasFallout external;
declare variable $verbCode external;

let $fulfillmentOrder := .
return
 <Ebm>
 {
 YourFunctionNamefn:createUndoYourFunctionNamePayload(
 $ebmHeader,
 $fulfillmentOrder,
 pipextensionmodule:unWrapParameter($salesOrderLine),
 pipextensionmodule:unWrapParameter($priorSalesOrderLine),
 $component,
 $targetIdentifier,
 $idMap,
 $ebmId,
 $fulfillmentOrderId,
 $fulfillmentOrderNumber,
 $faultMode,
 $hasFallout,
 $verbCode)
 }
 </Ebm>

CREATE-EBM-CUSTOM Extension Point
This section describes the XQuery script that implements the logic to handle the
CREATE-EBM-CUSTOM extension point.

Table 5–26 lists the input parameters for the extension point XQuery. If any parameters
do not apply to the solution option without Calculate Service Order, that will be
indicated in the parameter description.

Adding a New Fulfillment Function

5-32 OSM Cartridge Guide for Oracle Application Integration Architecture

Table 5–27 lists the return parameters for the extension point XQuery.

Example 5–8 is a sample XQuery code fragment for the CREATE-EBM-CUSTOM
fulfillment function extension point.

Example 5–8 CREATE-EBM-CUSTOM XQuery Code Fragment

declare namespace log = "java:org.apache.commons.logging.Log";
declare variable $log external;
declare variable $ebmHeader external;
declare variable $component external;

Table 5–26 CREATE-EBM-CUSTOM Input Parameters

Name Type Scope Description

$log Java Object External variable Java Type
org.apache.commons.logging.Log

Logging level related to server log

$aiaEbmHelper Java Object External variable java:oracle.communications.ordermanage
ment.util.ebm.AiaEbmHelper

For more information about this object, see
knowledge article 2086727.1, Javadocs for
Order to Activate (O2A) Cartridge, on the
Oracle Support website:

https://support.oracle.com

$taskContext Java Object External variable Java Type
java:com.mslv.oms.automation.TaskContex
t

OSM-provided interface into the task. See
the OSM SDK for more information.

$orderId xs:string External variable OSM order ID of the current order

$orderKey xs:string External variable AIA order number

$componentName xs:string External variable Name of the component from which the
extension point was called.

$systemType xs:string External variable Name of the target system for the
component, for example, BRM-BIZBDB

$execMode xs:string External variable Task execution mode

$ebmHeader element() External variable SalesOrder request EBM header: This
element can be used as a reference to
populate the request EBM header

$component element() External variable XML fragment containing the fulfillment
function data

$ebmId xs:string External variable EBM ID to be populated into the EBM
request message

$customerHeaders element() External variable XML fragment describing the mapping of
the CustomerHeader structure

. element() Context node OSM component element

Table 5–27 CREATE-EBM-CUSTOM Return Parameters

Output Parameter Type Description

element()? XML wrapper element that contains the order-level custom EBM fragment

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-33

declare variable $ebmId external;
declare variable $customerHeaders external;

let $fulfillmentOrder := .
return
(
 <Ebm>
 {
 yourFuntionNamefn:createProvisioningOrderCustom(
 $log,
 $ebmHeader,
 $fulfillmentOrder,
 $component,
 $ebmId,
 $customerHeaders)
 }
 </Ebm>
)

CREATE-EBM-ALL-ORDERITEMS Extension Point
This section describes the XQuery script that implements the logic to handle the
CREATE-EBM-ALL-ORDERITEMS extension point.

Table 5–28 lists the input parameters for the extension point XQuery. If any parameters
do not apply to the solution option without Calculate Service Order, that will be
indicated in the parameter description.

Table 5–28 CREATE-EBM-ALL-ORDERITEMS Input Parameters

Name Type Scope Description

$log Java Object External variable Java Type
org.apache.commons.logging.Log

Logging level related to server log

$aiaEbmHelper Java Object External variable java:oracle.communications.ordermanage
ment.util.ebm.AiaEbmHelper

For more information about this object, see
knowledge article 2086727.1, Javadocs for
Order to Activate (O2A) Cartridge, on the
Oracle Support website:

https://support.oracle.com

$taskContext Java Object External variable Java Type
java:com.mslv.oms.automation.TaskContex
t

OSM-provided interface into the task. See
the OSM SDK for more information.

$orderId xs:string External variable OSM order ID of the current order

$orderKey xs:string External variable AIA order number

$componentName xs:string External variable Name of the component from which the
extension point was called.

$systemType xs:string External variable Name of the target system for the
component, for example, BRM-BIZBDB

$execMode xs:string External variable Task execution mode

Adding a New Fulfillment Function

5-34 OSM Cartridge Guide for Oracle Application Integration Architecture

$ebmHeader element() External variable SalesOrder request EBM header: This
element can be used as a reference to
populate the request EBM header

$salesOrderHeader element() External variable SalesOrder request EBM header: This
element can be used as a reference to
populate the request EBM header.

$salesOrderLine element() External variable XML fragment of all order lines belonging
to the current fulfillment function

$transformedOrderLines element() External variable XML fragment of all transformed order
lines belonging to the current fulfillment
function (applies to Calculate Service
Order only)

$mappingContext element() External variable XML fragment describing the mapping
context between all sales order items and
transformed order items belonging to the
current fulfillment function (applies to
Calculate Service Order only)

$priorSalesOrderLine element() External variable All prior order lines belonging to the
current fulfillment function (has the same
value as $priorLineItems)

$priorLineItems element() External variable All prior order lines belonging to the
current fulfillment function (has the same
value as $priorSalesOrderLine)

$component element() External variable XML fragment containing the fulfillment
function data

$targetIdentifier element() External variable XML fragment describing the target
system information

$idMap element() External variable XML fragment describing the mapping
between the original order line's
BusinessComponentID and the newly
generated BusinessComponentID to be
populated into the EBM request message

$ebmId xs:string External variable EBM ID to be populated into the EBM
request message

$fulfillmentOrderId xs:string External variable BusinessComponentID to be populated
into the EBM request message as the Order
ID

$fulfillmentOrderNumber xs:string External variable Cross-system order number reference

$faultMode xs:string External variable FaultMode code to control how the
emulator generates the response message:
This parameter in effect only if the request
EBM is sent to an external system emulator
rather than a real system.

$lfVerbCode xs:string External variable FaultMode code to control how the service
order management orchestration order
generates the response message. This
element only applies if the request EBM is
sent to service order management (SOM).

$customerHeaders element() External variable XML fragment describing the mapping of
the CustomerHeader structure

Table 5–28 (Cont.) CREATE-EBM-ALL-ORDERITEMS Input Parameters

Name Type Scope Description

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-35

Table 5–29 lists the return parameters for the extension point XQuery.

Example 5–9 is a sample XQuery code fragment for the
CREATE-EBM-ALL-ORDERITEMS fulfillment function extension point.

Example 5–9 CREATE-EBM-ALL-ORDERITEMS XQuery Code Fragment

declare namespace log = "java:org.apache.commons.logging.Log";
declare namespace orderActivity =
"java:oracle.communications.ordermanagement.log.LogOrderActivity";
declare namespace taskExecutionMode =
"java:oracle.communications.ordermanagement.automation.OsmPipTaskConstant";
declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";
declare namespace solutionconfig =
"java:oracle.communications.ordermanagement.config.OsmPipConfigProvider";

declare variable $ebmHeader external;
declare variable $salesOrderHeader external;
declare variable $salesOrderLine external;
declare variable $component external;

$orderMode xs:string Internal variable This parameter has the following possible
values:

■ In do mode, this parameter has the
value of DELIVER.

■ In redo mode, this parameter has the
value CHANGE if the service order
management order has completed, so
the service order management order is
being revised by sending a change
order. It has the value of REVISE if
the service order management order
has not completed, so the service
order management order is being
revised by sending an amendment
order.

■ In undo mode, this parameter has the
value CANCEL if the action codes are
going to be set to None for the order
items. It has the value of DELIVER if
the action codes are going to be set to
Disconnect for the order items.

$changeMode xs:string Internal variable This parameter is used to set action codes
appropriately. It only has a value if the
value of $orderMode is CHANGE.
Available values for this parameter are
DO, REDO, and UNDO.

. element() Context node Fulfillment order header for the
SalesOrder request EBM

Table 5–29 CREATE-EBM-ALL-ORDERITEMS Return Parameters

Output Parameter Type Description

element()? XML wrapper element that contains the XML fragment for the all order items
EBM. The EBM format depends on external fulfillment provider requirements.

Table 5–28 (Cont.) CREATE-EBM-ALL-ORDERITEMS Input Parameters

Name Type Scope Description

Adding a New Fulfillment Function

5-36 OSM Cartridge Guide for Oracle Application Integration Architecture

declare variable $idMap external;
declare variable $fulfillmentOrderId external;
declare variable $fulfillmentOrder external;
declare variable $fulfillmentOrderNumber external;
declare variable $orderId external;
declare variable $orderKey external;
declare variable $log external;
declare variable $customerHeaders external;
declare variable $aiaEbmHelper external;
declare variable $transformedOrderLines external;
declare variable $histTransformedOrderLines external;
declare variable $mappingContext external;
declare variable $orderMode external;
declare variable $changeMode external;
declare variable $execMode external;
declare variable $lineItems external;
declare variable $priorLineItems external;

let $input := .
let $isCSOEnabled := if (solutionconfig:getVariable("O2A_CSO_ENABLE_FLAG") =
"enable") then fn:true() else fn:false()

return
(
 <OrderItemEbm>
 {
 if ($isCSOEnabled = fn:true()) then
 (
 yourFuntionNamefn:createTransformedLines(
 $log,
 $aiaEbmHelper,
 $orderId,
 $orderKey,
 $ebmHeader,
 $salesOrderHeader,
 pipextensionmodule:unWrapParameter($salesOrderLine),
 pipextensionmodule:unWrapParameter($transformedOrderLines),
 pipextensionmodule:unWrapParameter($histTransformedOrderLines),
 pipextensionmodule:unWrapParameter($mappingContext),
 $component,
 $idMap,
 $fulfillmentOrder,
 $fulfillmentOrderId,
 $fulfillmentOrderNumber,
 $customerHeaders,
 $execMode,
 $orderMode,
 $changeMode)
)
 else
 (
 yourFuntionNamefn:createNormalLines(
 $log,
 $aiaEbmHelper,
 $orderId,
 $orderKey,
 $ebmHeader,
 $salesOrderHeader,
 pipextensionmodule:unWrapParameter($lineItems),
 pipextensionmodule:unWrapParameter($priorLineItems),

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-37

 $component,
 $idMap,
 $fulfillmentOrder,
 $fulfillmentOrderId,
 $fulfillmentOrderNumber,
 $customerHeaders,
 $execMode,
 $orderMode,
 $changeMode)
)
 }
 </OrderItemEbm>
)

CREATE-EBM-ORDERITEM Extension Point for do Execution Mode
This section describes the XQuery script that implements the logic to handle the
CREATE-EBM-ORDERITEM extension point for do execution mode.

Table 5–30 lists the input parameters for the extension point XQuery. If any parameters
do not apply to the solution option without Calculate Service Order, that will be
indicated in the parameter description.

Table 5–30 CREATE-EBM-ORDERITEM Input Parameters for do Execution Mode

Name Type Scope Description

$log Java Object External variable Java Type
org.apache.commons.logging.Log

Logging level related to server log

$aiaEbmHelper Java Object External variable java:oracle.communications.ordermanage
ment.util.ebm.AiaEbmHelper

For more information about this object, see
knowledge article 2086727.1, Javadocs for
Order to Activate (O2A) Cartridge, on the
Oracle Support website:

https://support.oracle.com

$taskContext Java Object External variable Java Type
java:com.mslv.oms.automation.TaskContex
t

OSM-provided interface into the task. See
the OSM SDK for more information.

$orderId xs:string External variable OSM order ID of the current order

$orderKey xs:string External variable AIA order number

$componentName xs:string External variable Name of the component from which the
extension point was called.

$systemType xs:string External variable Name of the target system for the
component, for example, BRM-BIZBDB

$execMode xs:string External variable Task execution mode

$ebmHeader element() External variable SalesOrder request EBM header: This
element can be used as a reference to
populate the request EBM header

$salesOrderHeader element() External variable SalesOrder request EBM header: This
element can be used as a reference to
populate the request EBM header.

Adding a New Fulfillment Function

5-38 OSM Cartridge Guide for Oracle Application Integration Architecture

Table 5–31 lists the return parameters for the extension point XQuery.

$serviceActionCode element() External variable Service action for order item or
transformed order item

$orderItem element() External variable XML fragment for a single order item in
the current Fulfillment function

$lineItem element() External variable Single sales order line in the current
fulfillment function

$salesOrderLine element() External variable XML fragment of all order lines belonging
to the current fulfillment function

$transformedOrderLines element() External variable XML fragment of all transformed order
lines belonging to the current fulfillment
function (applies to Calculate Service
Order only)

$mappingContext element() External variable XML fragment describing the mapping
context between all sales order items and
transformed order items belonging to the
current fulfillment function (applies to
Calculate Service Order only)

$priorSalesOrderLine element() External variable All prior order lines belonging to the
current fulfillment function

$component element() External variable XML fragment containing the fulfillment
function data

$idMap element() External variable XML fragment describing the mapping
between the original order line's
BusinessComponentID and the newly
generated BusinessComponentID to be
populated into the EBM request message

$fulfillmentOrderId xs:string External variable BusinessComponentID to be populated
into the EBM request message as the Order
ID

$fulfillmentOrderNumber xs:string External variable Cross-system order number reference

$fulfillmentOrderStatus xs:string External variable The child order's current status (IN_
PROGRESS or COMPLETE). This element
controls how the EBM should be
generated. The EBM is expected to be
generated as a cancel order if the child
order is IN_PROGRESS or as a disconnect
order if the child order is COMPLETE.

$customerHeaders element() External variable XML fragment describing the mapping of
the CustomerHeader structure

$orderMode xs:string Internal variable In do mode, this parameter has the value of
DELIVER.

$changeMode xs:string Internal variable This parameter has no value in do mode.

. element() Context node Fulfillment order item

Table 5–31 CREATE-EBM-ORDERITEM for do Execution Mode Return Parameters

Output Parameter Type Description

element()? XML wrapper element that contains the XML fragment for single order item.

Table 5–30 (Cont.) CREATE-EBM-ORDERITEM Input Parameters for do Execution Mode

Name Type Scope Description

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-39

Example 5–10 is a sample XQuery code fragment for the CREATE-EBM-ORDERITEM
fulfillment function extension point implementation for the do execution mode.

Example 5–10 CREATE-EBM-ORDERITEM XQuery Code Fragment for do Execution
Mode

declare namespace log = "java:org.apache.commons.logging.Log";
declare namespace orderActivity =
"java:oracle.communications.ordermanagement.log.LogOrderActivity";
declare namespace taskExecutionMode =
"java:oracle.communications.ordermanagement.automation.OsmPipTaskConstant";
declare namespace myContext =
"java:oracle.communications.ordermanagement.extensionpoint.XQueryExtensionUtil";
declare namespace solutionconfig =
"java:oracle.communications.ordermanagement.config.OsmPipConfigProvider";

declare variable $idMap external;
declare variable $fulfillmentOrderId external;
declare variable $orderId external;
declare variable $log external;
declare variable $transformedOrderLines external;
declare variable $transformedOrderLine external;
declare variable $serviceActionCode external;
declare variable $lineItems external;
declare variable $lineItem external;

let $input := .
let $isCSOEnabled := if (solutionconfig:getVariable("O2A_CSO_ENABLE_FLAG") =
"enable") then fn:true() else fn:false()

return
(
 let $tag := myContext:getString("tag")
 return
 (
 <OrderItemEbm>
 {
 if ($isCSOEnabled = fn:true()) then
 (
 YourFunctionNamefn:createProvisionOrderLineItemFromTransformLine(
 $log,
 $orderId,
 $tag,
 $fulfillmentOrderId,
 $lineItem,
 $transformedOrderLines,
 $transformedOrderLine,
 aiaebmfn:hasParentLine($lineItems, $lineItem),
 aiaebmfn:getRootLineItem($lineItems, $lineItem),
 $idMap,
 $serviceActionCode)
)
 else
 (
 YourFunctionNamefn:createProvisionOrderLineItem(
 $lineItems,
 $lineItem,
 aiaebmfn:hasParentLine($lineItems, $lineItem),
 aiaebmfn:getRootLineItem($lineItems, $lineItem),
 $idMap,

Adding a New Fulfillment Function

5-40 OSM Cartridge Guide for Oracle Application Integration Architecture

 $serviceActionCode,
 $lineItem)
)
 }
 </OrderItemEbm>
)
)

CREATE-EBM-ORDERITEM Extension Point for redo Execution Mode
This section describes the XQuery script that implements the logic to handle the
CREATE-EBM-ORDERITEM extension point for the redo execution mode.

Table 5–32 lists the input parameters for the extension point XQuery. If any parameters
do not apply to the solution option without Calculate Service Order, that will be
indicated in the parameter description.

Table 5–32 CREATE-EBM-ORDERITEM Input Parameters for redo Execution Mode

Name Type Scope Description

$log Java Object External variable Java Type
org.apache.commons.logging.Log

Logging level related to server log

$aiaEbmHelper Java Object External variable java:oracle.communications.ordermanage
ment.util.ebm.AiaEbmHelper

For more information about this object, see
knowledge article 2086727.1, Javadocs for
Order to Activate (O2A) Cartridge, on the
Oracle Support website:

https://support.oracle.com

$taskContext Java Object External variable Java Type
java:com.mslv.oms.automation.TaskContex
t

OSM-provided interface into the task. See
the OSM SDK for more information.

$orderId xs:string External variable OSM order ID of the current order

$orderKey xs:string External variable AIA order number

$componentName xs:string External variable Name of the component from which the
extension point was called.

$systemType xs:string External variable Name of the target system for the
component, for example, BRM-BIZBDB

$execMode xs:string External variable Task execution mode

$ebmHeader element() External variable SalesOrder request EBM header: This
element can be used as a reference to
populate the request EBM header

$salesOrderHeader element() External variable SalesOrder request EBM header: This
element can be used as a reference to
populate the request EBM header.

$orderItem element() External variable XML fragment for a single order item in
the current Fulfillment function

$lineItem element() External variable Single sales order line in the current
fulfillment function

$salesOrderLine element() External variable XML fragment of all order lines belonging
to the current fulfillment function

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-41

$transformedOrderLines element() External variable XML fragment of all transformed order
lines belonging to the current fulfillment
function (applies to Calculate Service
Order only)

$mappingContext element() External variable XML fragment describing the mapping
context between all sales order items and
transformed order items belonging to the
current fulfillment function (applies to
Calculate Service Order only)

$histTransformedOrderLines element() External variable XML fragment of all transformed order
items belonging to the current fulfillment
function before the revision (applies to
Calculate Service Order only)

$histMappingContext element() External variable XML fragment describing the pre-revision
mapping context between all sales order
items and transformed order items
belonging to the current fulfillment
function (applies to Calculate Service
Order only)

$priorSalesOrderLine element() External variable All prior order lines belonging to the
current fulfillment function

$histSalesOrderLine element() External variable All order lines belonging to the current
fulfillment function before amendment
(has the same value as $histLineItem)

$histLineItem element() External variable All order lines belonging to the current
fulfillment function before amendment
(has the same value as
$histSalesOrderLine)

$histPriorSalesOrderLine element() External variable All prior order lines belonging to the
current fulfillment function before
amendment

$deletedlineItem element() External variable Deleted order item that is currently being
processed.

$deletedlineItems element() External variable List of the order items that were deleted by
the amendment

$deletedTransformedLineIte
ms

element() External variable XML fragment of all deleted transformed
order lines belonging to the current
fulfillment function (applies to Calculate
Service Order only)

$deletedMappingContext element() External variable XML fragment describing the deleted
mapping context for all sales order items
and transformed order items belonging to
the current fulfillment function (applies to
Calculate Service Order only)

$deletedpriorlineItems element() External variable Prior order line data that was deleted by
the amendment

$addedlineItems element() External variable Order line data that was added by the
amendment

$component element() External variable XML fragment containing the fulfillment
function data

$histComponent element() External variable XML fragment with the pre-amendment
fulfillment function data

Table 5–32 (Cont.) CREATE-EBM-ORDERITEM Input Parameters for redo Execution Mode

Name Type Scope Description

Adding a New Fulfillment Function

5-42 OSM Cartridge Guide for Oracle Application Integration Architecture

Table 5–33 lists the return parameters for the extension point XQuery.

Example 5–11 is a sample XQuery code fragment for the CREATE-EBM-ORDERITEM
fulfillment function extension point implementation for the redo execution mode.

$targetIdentifier element() External variable XML fragment describing the target
system information

$idMap element() External variable XML fragment describing the mapping
between the original order line's
BusinessComponentID and the newly
generated BusinessComponentID to be
populated into the EBM request message

$histIdMap element() External variable XML fragment describing the mapping
between the original order line's
BusinessComponentID and the
BusinessComponentID populated into the
earlier EBM request message

$ebmId xs:string External variable EBM ID to be populated into the EBM
request message

$fulfillmentOrderId xs:string External variable BusinessComponentID to be populated
into the EBM request message as the Order
ID

$fulfillmentOrderNumber xs:string External variable Cross-system order number reference

$fulfillmentOrderStatus xs:string External variable The child order's current status (IN_
PROGRESS or COMPLETE). This element
controls how the EBM should be
generated. The EBM is expected to be
generated as a cancel order if the child
order is IN_PROGRESS or as a disconnect
order if the child order is COMPLETE.

$hasFallout xs:boolean External variable Boolean indicator of whether the previous
EBM request sent to the external system
has had fallout

$faultMode xs:string External variable FaultMode code to control how the
emulator generates the response message:
this parameter is in effect only if the
request EBM is sent to an external system
emulator rather than a real system.

$lfVerbCode xs:string External variable FaultMode code to control how the service
order management orchestration order
generates the response message. This
element only applies if the request EBM is
sent to service order management (SOM).

$customerHeaders element() External variable XML fragment describing the mapping of
the CustomerHeader structure

. element() Context node Fulfillment order item

Table 5–33 CREATE-EBM-ORDERITEM for redo Execution Mode Return Parameters

Output Parameter Type Description

element()? XML wrapper element that contains the XML fragment for single order item.

Table 5–32 (Cont.) CREATE-EBM-ORDERITEM Input Parameters for redo Execution Mode

Name Type Scope Description

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-43

Example 5–11 CREATE-EBM-ORDERITEM XQuery Code Fragment for redo Execution
Mode

declare namespace log = "java:org.apache.commons.logging.Log";
declare namespace orderActivity =
"java:oracle.communications.ordermanagement.log.LogOrderActivity";
declare namespace taskExecutionMode =
"java:oracle.communications.ordermanagement.automation.OsmPipTaskConstant";
declare namespace myContext =
"java:oracle.communications.ordermanagement.extensionpoint.XQueryExtensionUtil";
declare namespace solutionconfig =
"java:oracle.communications.ordermanagement.config.OsmPipConfigProvider";

declare variable $idMap external;
declare variable $fulfillmentOrderId external;
declare variable $orderId external;
declare variable $log external;
declare variable $transformedOrderLines external;
declare variable $transformedOrderLine external;
declare variable $serviceActionCode external;
declare variable $lineItems external;
declare variable $lineItem external;

let $input := .
let $isCSOEnabled := if (solutionconfig:getVariable("O2A_CSO_ENABLE_FLAG") =
"enable") then fn:true() else fn:false()

return
(
 let $tag := myContext:getString("tag")
 return
 (
 <OrderItemEbm>
 {
 if ($isCSOEnabled = fn:true()) then
 (
 YourFunctionNamefn:createProvisionOrderLineItemFromTransformLine(
 $log,
 $orderId,
 $tag,
 $fulfillmentOrderId,
 $lineItem,
 $transformedOrderLines,
 $transformedOrderLine,
 aiaebmfn:hasParentLine($lineItems, $lineItem),
 aiaebmfn:getRootLineItem($lineItems, $lineItem),
 $idMap,
 $serviceActionCode)
)
 else
 (
 YourFunctionNamefn:createProvisionOrderLineItem(
 $lineItems,
 $lineItem,
 aiaebmfn:hasParentLine($lineItems, $lineItem),
 aiaebmfn:getRootLineItem($lineItems, $lineItem),
 $idMap,
 $serviceActionCode,
 $lineItem)
)
 }

Adding a New Fulfillment Function

5-44 OSM Cartridge Guide for Oracle Application Integration Architecture

 </OrderItemEbm>
)
)

CREATE-EBM-ORDERITEM Extension Point for undo Execution Mode
This section describes the XQuery script that implements the logic to handle the
CREATE-EBM-ORDERITEM extension point for the undo execution mode.

Table 5–34 lists the input parameters for the extension point XQuery. If any parameters
do not apply to the solution option without Calculate Service Order, that will be
indicated in the parameter description.

Table 5–34 CREATE-EBM-ORDERITEM Input Parameters for undo Execution Mode

Name Type Scope Description

$log Java Object External variable Java Type
org.apache.commons.logging.Log

Logging level related to server log

$aiaEbmHelper Java Object External variable java:oracle.communications.ordermanage
ment.util.ebm.AiaEbmHelper

For more information about this object, see
knowledge article 2086727.1, Javadocs for
Order to Activate (O2A) Cartridge, on the
Oracle Support website:

https://support.oracle.com

$taskContext Java Object External variable Java Type
java:com.mslv.oms.automation.TaskContex
t

OSM-provided interface into the task. See
the OSM SDK for more information.

$orderId xs:string External variable OSM order ID of the current order

$orderKey xs:string External variable AIA order number

$componentName xs:string External variable Name of the component from which the
extension point was called.

$systemType xs:string External variable Name of the target system for the
component, for example, BRM-BIZBDB

$execMode xs:string External variable Task execution mode

$ebmHeader element() External variable SalesOrder request EBM header: This
element can be used as a reference to
populate the request EBM header

$salesOrderHeader element() External variable SalesOrder request EBM header: This
element can be used as a reference to
populate the request EBM header.

$priorSalesOrderHeader element() External variable Prior SalesOrder request EBM header: This
element can be used as a reference to
populate the request EBM header.

$component element() External variable XML fragment containing the fulfillment
function data

$orderItem element() External variable XML fragment for a single order item in
the current Fulfillment function

$lineItem element() External variable Single sales order line in the current
fulfillment function

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-45

$salesOrderLine element() External variable XML fragment of all order lines belonging
to the current fulfillment function

$transformedOrderLines element() External variable XML fragment of all transformed order
lines belonging to the current fulfillment
function (applies to Calculate Service
Order only)

$mappingContext element() External variable XML fragment describing the mapping
context between all sales order items and
transformed order items belonging to the
current fulfillment function (applies to
Calculate Service Order only)

$priorSalesOrderLine element() External variable All prior order lines belonging to the
current fulfillment function

$targetIdentifier element() External variable XML fragment describing the target
system information

$idMap element() External variable XML fragment describing the mapping
between the original order line's
BusinessComponentID and the newly
generated BusinessComponentID to be
populated into the EBM request message

$fulfillmentOrderId xs:string External variable BusinessComponentID to be populated
into the EBM request message as the Order
ID

$fulfillmentOrderNumber xs:string External variable Cross-system order number reference

$fulfillmentOrderStatus xs:string External variable The child order's current status (IN_
PROGRESS or COMPLETE). This element
controls how the EBM should be
generated. The EBM is expected to be
generated as a cancel order if the child
order is IN_PROGRESS or as a disconnect
order if the child order is COMPLETE.

$customerHeaders element() External variable XML fragment describing the mapping of
the CustomerHeader structure

$histComponent element() External variable XML fragment with the pre-amendment
fulfillment function data

$histTransformedOrderLines element() External variable XML fragment of all transformed order
items belonging to the current fulfillment
function before the revision (applies to
Calculate Service Order only)

$histMappingContext element() External variable XML fragment describing the pre-revision
mapping context between all sales order
items and transformed order items
belonging to the current fulfillment
function (applies to Calculate Service
Order only)

$histSalesOrderLine element() External variable All order lines belonging to the current
fulfillment function before amendment

$histPriorSalesOrderLine element() External variable All prior order lines belonging to the
current fulfillment function before
amendment

Table 5–34 (Cont.) CREATE-EBM-ORDERITEM Input Parameters for undo Execution Mode

Name Type Scope Description

Adding a New Fulfillment Function

5-46 OSM Cartridge Guide for Oracle Application Integration Architecture

Table 5–35 lists the return parameters for the extension point XQuery.

Example 5–12 is a sample XQuery code fragment for the CREATE-EBM-ORDERITEM
fulfillment function extension point implementation for the undo execution mode.

Example 5–12 CREATE-EBM-ORDERITEM XQuery Code Fragment for undo Execution
Mode

declare namespace log = "java:org.apache.commons.logging.Log";
declare namespace orderActivity =
"java:oracle.communications.ordermanagement.log.LogOrderActivity";
declare namespace taskExecutionMode =
"java:oracle.communications.ordermanagement.automation.OsmPipTaskConstant";
declare namespace myContext =
"java:oracle.communications.ordermanagement.extensionpoint.XQueryExtensionUtil";
declare namespace solutionconfig =
"java:oracle.communications.ordermanagement.config.OsmPipConfigProvider";

declare variable $idMap external;
declare variable $fulfillmentOrderId external;
declare variable $orderId external;
declare variable $log external;
declare variable $transformedOrderLines external;
declare variable $transformedOrderLine external;
declare variable $serviceActionCode external;
declare variable $lineItems external;
declare variable $lineItem external;

$histIdMap element() External variable XML fragment describing the mapping
between the original order line's
BusinessComponentID and the
BusinessComponentID populated into the
earlier EBM request message

$deletedlineItems element() External variable Order lines that were deleted by the
amendment

$deletedTransformedLineIte
ms

element() External variable XML fragment of all deleted transformed
order lines belonging to the current
fulfillment function (applies to Calculate
Service Order only)

$deletedMappingContext element() External variable XML fragment describing the deleted
mapping context for all sales order items
and transformed order items belonging to
the current fulfillment function (applies to
Calculate Service Order only)

$deletedpriorlineItems element() External variable Prior order line data that was deleted by
the amendment

$addedlineItems element() External variable Order line data that was added by the
amendment

. element() Context node Fulfillment order item

Table 5–35 CREATE-EBM-ORDERITEM for undo Execution Mode Return Parameters

Output Parameter Type Description

element()? XML wrapper element that contains the XML fragment for single order item.

Table 5–34 (Cont.) CREATE-EBM-ORDERITEM Input Parameters for undo Execution Mode

Name Type Scope Description

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-47

let $input := .
let $isCSOEnabled := if (solutionconfig:getVariable("O2A_CSO_ENABLE_FLAG") =
"enable") then fn:true() else fn:false()

return
(
 let $tag := myContext:getString("tag")
 return
 (
 <OrderItemEbm>
 {
 if ($isCSOEnabled = fn:true()) then
 (
 YourFunctionNamefn:createProvisionOrderLineItemFromTransformLine(
 $log,
 $orderId,
 $tag,
 $fulfillmentOrderId,
 $lineItem,
 $transformedOrderLines,
 $transformedOrderLine,
 aiaebmfn:hasParentLine($lineItems, $lineItem),
 aiaebmfn:getRootLineItem($lineItems, $lineItem),
 $idMap,
 $serviceActionCode)
)
 else
 (
 YourFunctionNamefn:createProvisionOrderLineItem(
 $lineItems,
 $lineItem,
 aiaebmfn:hasParentLine($lineItems, $lineItem),
 aiaebmfn:getRootLineItem($lineItems, $lineItem),
 $idMap,
 $serviceActionCode,
 $lineItem)
)
 }
 </OrderItemEbm>
)
)

CREATE-EBM-ORDERITEM-CUSTOM Extension Point
This section describes the XQuery script that implements the logic to handle the
CREATE-EBM-ORDERITEM-CUSTOM extension point.

Table 5–36 lists the input parameters for the extension point XQuery. If any parameters
do not apply to the solution option without Calculate Service Order, that will be
indicated in the parameter description.

Adding a New Fulfillment Function

5-48 OSM Cartridge Guide for Oracle Application Integration Architecture

Table 5–37 lists the return parameters for the extension point XQuery.

Example 5–13 is a sample XQuery code fragment for the
CREATE-EBM-ORDERITEM-CUSTOM fulfillment function extension point.

Example 5–13 CREATE-EBM-ORDERITEM-CUSTOM XQuery Code Fragment

declare namespace log = "java:org.apache.commons.logging.Log";
declare namespace orderActivity =

Table 5–36 CREATE-EBM-ORDERITEM-CUSTOM Input Parameters

Name Type Scope Description

$log Java Object External variable Java Type
org.apache.commons.logging.Log

Logging level related to server log

$aiaEbmHelper Java Object External variable java:oracle.communications.ordermanage
ment.util.ebm.AiaEbmHelper

For more information about this object, see
knowledge article 2086727.1, Javadocs for
Order to Activate (O2A) Cartridge, on the
Oracle Support website:

https://support.oracle.com

$taskContext Java Object External variable Java Type
java:com.mslv.oms.automation.TaskContex
t

OSM-provided interface into the task. See
the OSM SDK for more information.

$orderId xs:string External variable OSM order ID of the current order

$orderKey xs:string External variable AIA order number

$componentName xs:string External variable Name of the component from which the
extension point was called.

$systemType xs:string External variable Name of the target system for the
component, for example, BRM-BIZBDB

$execMode xs:string External variable Task execution mode

$ebmHeader element() External variable SalesOrder request EBM header: This
element can be used as a reference to
populate the request EBM header

$component element() External variable XML fragment containing the fulfillment
function data

$salesOrderLine element() External variable XML fragment of all order lines belonging
to the current fulfillment function

$transformedOrderLines element() External variable XML fragment of all transformed order
lines belonging to the current fulfillment
function (applies to Calculate Service
Order only)

. element() Context node OSM Component element

Table 5–37 CREATE-EBM-ORDERITEM-CUSTOM Return Parameters

Output Parameter Type Description

element()? XML wrapper element that contains the order-item-level custom EBM fragment

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-49

"java:oracle.communications.ordermanagement.log.LogOrderActivity";
declare namespace taskExecutionMode =
"java:oracle.communications.ordermanagement.automation.OsmPipTaskConstant";
declare namespace myContext =
"java:oracle.communications.ordermanagement.extensionpoint.XQueryExtensionUtil";
declare namespace solutionconfig =
"java:oracle.communications.ordermanagement.config.OsmPipConfigProvider";

declare variable $sourceLineItem external;
declare variable $transformedOrderLine external;

let $input := .

let $isCSOEnabled := if (solutionconfig:getVariable("O2A_CSO_ENABLE_FLAG") =
"enable") then fn:true() else fn:false()
let $result :=
 if ($isCSOEnabled = fn:true()) then
 (

YourFunctionNamefn:createTransformedLineCustom($sourceLineItem,$transformedOrderLi
ne)
)
 else
 (
 YourFunctionNamefn:createLineCustom($sourceLineItem)
)
return
(
 <result>
 {
 $result
 }
 </result>

CREATE-EBM-PRIORORDERITEM Extension Point
This section describes the XQuery script that implements the logic to handle the
CREATE-EBM-PRIORORDERITEM extension point.

Table 5–38 lists the input parameters for the extension point XQuery. If any parameters
do not apply to the solution option without Calculate Service Order, that will be
indicated in the parameter description.

Adding a New Fulfillment Function

5-50 OSM Cartridge Guide for Oracle Application Integration Architecture

Table 5–38 CREATE-EBM-PRIORORDERITEM Input Parameters

Name Type Scope Description

$log Java Object External variable Java Type
org.apache.commons.logging.Log

Logging level related to server log

$aiaEbmHelper Java Object External variable java:oracle.communications.ordermanage
ment.util.ebm.AiaEbmHelper

For more information about this object, see
knowledge article 2086727.1, Javadocs for
Order to Activate (O2A) Cartridge, on the
Oracle Support website:

https://support.oracle.com

$taskContext Java Object External variable Java Type
java:com.mslv.oms.automation.TaskContex
t

OSM-provided interface into the task. See
the OSM SDK for more information.

$orderId xs:string External variable OSM order ID of the current order

$orderKey xs:string External variable AIA order number

$componentName xs:string External variable Name of the component from which the
extension point was called.

$systemType xs:string External variable Name of the target system for the
component, for example, BRM-BIZBDB

$execMode xs:string External variable Task execution mode

$ebmHeader element() External variable SalesOrder request EBM header: This
element can be used as a reference to
populate the request EBM header

$component element() External variable XML fragment containing the fulfillment
function data

$salesOrderLine element() External variable XML fragment of all order lines belonging
to the current fulfillment function

$transformedOrderLines element() External variable XML fragment of all transformed order
lines belonging to the current fulfillment
function (applies to Calculate Service
Order only)

$transformedOrderLine element() External variable XML fragment of all transformed order
lines belonging to the current fulfillment
function (applies to Calculate Service
Order only)

$mappingContext element() External variable XML fragment describing the mapping
context between all sales order items and
transformed order items belonging to the
current fulfillment function (applies to
Calculate Service Order only)

$priorSalesOrderLine element() External variable All prior order lines belonging to the
current fulfillment function

$idMap element() External variable XML fragment describing the mapping
between the original order line's
BusinessComponentID and the newly
generated BusinessComponentID to be
populated into the EBM request message

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-51

Table 5–39 lists the return parameters for the extension point XQuery.

Example 5–14 is a sample XQuery code fragment for the
CREATE-EBM-PRIORORDERITEM fulfillment function extension point.

Example 5–14 CREATE-EBM-PRIORORDERITEM XQuery Code Fragment

declare namespace solutionconfig =
"java:oracle.communications.ordermanagement.config.OsmPipConfigProvider";

declare variable $priorSalesOrderLine external;

let $isCSOEnabled := if (solutionconfig:getVariable("O2A_CSO_ENABLE_FLAG") =
"enable") then fn:true() else fn:false()

let $input := .

return
(
 <OrderItemEbm>
 {
 if ($isCSOEnabled = fn:true()) then
 (
 YourFunctionNamefn:createSingleTransformedLine(
 $priorSalesOrderLine
)
 else
 (
 YourFunctionNamefn:createProvisionOrderLineItem(
 $priorSalesOrderLine
)
 }

 </OrderItemEbm>
)

CREATE-EBM-PRIORORDERITEM-CUSTOM Extension Point
This section describes the XQuery script that implements the logic to handle the
CREATE-EBM-PRIORORDERITEM-CUSTOM extension point.

$fulfillmentOrderId xs:string External variable BusinessComponentID to be populated
into the EBM request message as the Order
ID

$fulfillmentOrderNumber xs:string External variable Cross-system order number reference

$customerHeaders element() External variable XML fragment describing the mapping of
the CustomerHeader structure

. element() Context node EBM Header

Table 5–39 CREATE-EBM-PRIORORDERITEM Return Parameters

Output Parameter Type Description

element()? XML wrapper element that contains the XML fragment for the prior single order
item custom EBM

Table 5–38 (Cont.) CREATE-EBM-PRIORORDERITEM Input Parameters

Name Type Scope Description

Adding a New Fulfillment Function

5-52 OSM Cartridge Guide for Oracle Application Integration Architecture

Table 5–40 lists the input parameters for the extension point XQuery. If any parameters
do not apply to the solution option without Calculate Service Order, that will be
indicated in the parameter description.

Table 5–41 lists the return parameters for the extension point XQuery.

Example 5–15 is a sample XQuery code fragment for the
CREATE-EBM-PRIORORDERITEM-CUSTOM fulfillment function extension point.

Table 5–40 CREATE-EBM-PRIORORDERITEM-CUSTOM Input Parameters

Name Type Scope Description

$log Java Object External variable Java Type
org.apache.commons.logging.Log

Logging level related to server log

$aiaEbmHelper Java Object External variable java:oracle.communications.ordermanage
ment.util.ebm.AiaEbmHelper

For more information about this object, see
knowledge article 2086727.1, Javadocs for
Order to Activate (O2A) Cartridge, on the
Oracle Support website:

https://support.oracle.com

$taskContext Java Object External variable Java Type
java:com.mslv.oms.automation.TaskContex
t

OSM-provided interface into the task. See
the OSM SDK for more information.

$orderId xs:string External variable OSM order ID of the current order

$orderKey xs:string External variable AIA order number

$componentName xs:string External variable Name of the component from which the
extension point was called.

$systemType xs:string External variable Name of the target system for the
component, for example, BRM-BIZBDB

$execMode xs:string External variable Task execution mode

$ebmHeader element() External variable SalesOrder request EBM header: This
element can be used as a reference to
populate the request EBM header

$component element() External variable XML fragment containing the fulfillment
function data

$salesOrderLine element() External variable XML fragment of all order lines belonging
to the current fulfillment function

$transformedOrderLines element() External variable XML fragment of all transformed order
lines belonging to the current fulfillment
function (applies to Calculate Service
Order only)

. element() Context node OSM Component element

Table 5–41 CREATE-EBM-PRIORORDERITEM-CUSTOM Return Parameters

Output Parameter Type Description

element()? XML wrapper element that contains the prior-order-item-level custom EBM
fragment

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-53

Example 5–15 CREATE-EBM-PRIORORDERITEM-CUSTOM XQuery Code Fragment

declare namespace log = "java:org.apache.commons.logging.Log";
declare namespace orderActivity =
"java:oracle.communications.ordermanagement.log.LogOrderActivity";
declare namespace taskExecutionMode =
"java:oracle.communications.ordermanagement.automation.OsmPipTaskConstant";
declare namespace myContext =
"java:oracle.communications.ordermanagement.extensionpoint.XQueryExtensionUtil";
declare namespace solutionconfig =
"java:oracle.communications.ordermanagement.config.OsmPipConfigProvider";

declare variable $sourceLineItem external;
declare variable $transformedOrderLine external;

let $input := .

let $isCSOEnabled := if (solutionconfig:getVariable("O2A_CSO_ENABLE_FLAG") =
"enable") then fn:true() else fn:false()
let $result :=
 if ($isCSOEnabled = fn:true()) then
 (

YourFunctionNamefn:createTransformedLineCustom($sourceLineItem,$transformedOrderLi
ne)
)
 else
 (
 YourFunctionNamefn:createLineCustom($sourceLineItem)
)
return
(
 <result>
 {
 $result
 }
 </result>
)

VALIDATE-RESPONSE-EBM Extension Point
This section describes the XQuery script that implements the logic to handle the
VALIDATE-RESPONSE-EBM extension point.

Table 5–42 lists the input parameters for the extension point XQuery when you are
using the calculate service order solution option.

Table 5–43 lists the input parameters for the extension point XQuery when you are
using the solution option without calculate service order.

Table 5–42 VALIDATE-RESPONSE-EBM Input Parameters for the Calculate Service Order Option

Name Type Scope Description

$log Java Object External variable Java Type
org.apache.commons.logging.Log

Logging level related to server log

$executionMode xs:string External variable Task execution mode

. element() Context node Response EBM message to be validated

Adding a New Fulfillment Function

5-54 OSM Cartridge Guide for Oracle Application Integration Architecture

Table 5–44 lists the return parameters for the extension point XQuery.

Example 5–16 is a code fragment from OracleComms_OSM_O2A_COM_
Billing/resources/ExtensionPoint/SyncCustomerValidateResponseEBM_
Event.xquery demonstrates the extension implementation.

Example 5–16 VALIDATE-RESPONSE-EBM XQuery Code Fragment

import module namespace aiaebmvalidationfn =
"http://xmlns.oracle.com/communications/ordermanagement/pip/aiaebmvalidationfn" at
"http://xmlns.oracle.com/communications/ordermanagement/pip/aiaebmvalidationfn/AIA
EBMResponse_ValidationModule.xquery";

declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";
declare variable $SYNCCUST_RESPONSE_EBM :=
"ProcessFulfillmentOrderBillingAccountListResponseEBM";

declare function local:validateSyncCustomerResponse(
 $ebm as element() *) as element()
{
 if(fn:local-name($ebm) = $SYNCCUST_RESPONSE_EBM)
 then
 <oms:validationReport>
 {
 aiaebmvalidationfn:validateSyncCustomerResponse($ebm)
 }
 </oms:validationReport>
 else
 <oms:validationReport>{ $aiaebmvalidationfn:NO_VALID_EBM
}</oms:validationReport>
};

let $ebm := .
return
 <Validation>
 {
 local:validateSyncCustomerResponse($ebm)
 }
 </Validation>

COMPONENT-RESPONSE-UPDATE Extension Point
This section describes the XQuery script that implements the logic to handle the
COMPONENT-RESPONSE-UPDATE extension point.

Table 5–45 lists the input parameters for the extension point XQuery when you are
using the calculate service order solution option.

Table 5–43 VALIDATE-RESPONSE-EBM Input Parameters for the Option Without Calculate Service Order

Name Type Scope Description

. element() Context node Response EBM message to be validated

Table 5–44 VALIDATE-RESPONSE-EBM Return Parameters

Output Parameter Type Description

element()? XML wrapper element which contains an empty sequence if no error was found
or a list of XML fragments that describe the validation error if an error was
found

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-55

Table 5–46 lists the input parameters for the extension point XQuery when you are
using the solution option without calculate service order.

Table 5–45 COMPONENT-RESPONSE-UPDATE Input Parameters for the Calculate Service Order Option

Name Type Scope Description

$extensionVersion xs:string External variable Version number of the extension
framework

$log Java Object External variable Java Type
org.apache.commons.logging.Log

Logging level related to server log

$orderId xs:string External variable OSM Order ID of the current order

$orderKey xs:string External variable AIA Order Number

$component element() External variable XML fragment containing the fulfillment
function data

$executionMode xs:string External variable Task execution mode

$hasFallout xs:boolean External variable Boolean indicator of whether the previous
EBM request sent to the external system
has had fallout

$falloutMessage xs:string External variable The fallout error message of this order
item

$orderItemFromResponse element() External variable Order item data from the response
message

$mappingContext element() External variable XML fragment describing the mapping
context between all sales order items and
transformed order items belonging to the
current fulfillment function

. element() Context node The order item data XML fragment

Table 5–46 COMPONENT-RESPONSE-UPDATE Input Parameters for the Option Without Calculate Service
Order

Name Type Scope Description

$extensionVersion xs:string External variable Version number of the extension
framework

$log Java Object External variable Java Type
org.apache.commons.logging.Log

Logging level related to server log

$executionMode xs:string External variable Task execution mode

$hasFallout xs:boolean External variable Boolean indicator of whether the previous
EBM request sent to the external system
has had fallout

$orderId xs:string External variable OSM Order ID of the current order

$orderKey xs:string External variable AIA Order Number

$falloutMessage xs:string External variable The fallout error message of this order
item

$orderItemFromResponse element() External variable Order item data from the response
message

. element() Context node The order item data XML fragment

Adding a New Fulfillment Function

5-56 OSM Cartridge Guide for Oracle Application Integration Architecture

Table 5–47 lists the return parameters for the extension point XQuery.

Example 5–17 is a sample XQuery code fragment for the
COMPONENT-RESPONSE-UPDATE fulfillment function extension point.

Example 5–17 COMPONENT-RESPONSE-UPDATE XQuery Code Fragment

import module namespace YourFunctionNamefn =
"http://xmlns.oracle.com/communications/ordermanagement/pip/YourFunctionNamefn" at
"http://xmlns.oracle.com/communications/ordermanagement/pip/YourFunctionNamefn/You
rFunctionNameInteractionModule.xquery";

declare namespace oms = "urn:com:metasolv:oms:xmlapi:1";

declare variable $hasFallout external;
declare variable $falloutMessage external;
declare variable $orderItemFromResponse external;

declare function YourFunctionNamefn:onYourFunctionNameResponseUpdate(
 $lineItem as element(),
 $orderItemFromResponse as element()) as element()*
{
 let $id := $lineItem/oms:BaseLineId
 return
 <BaseLineId>{ $id/text() }</BaseLineId>,
 (: list of order item properties to be updated :)
};

let $lineItem := .
return
 <OrderItem>
 {
 YourFunctionNamefn:onYourFunctionNameResponseUpdate($lineItem,
$orderItemFromResponse)
 }
 </OrderItem>

ORDER-EXTENSION-UPDATE-STATUS-EBM Extension Point
This section describes the XQuery script that implements the logic to handle the
ORDER-EXTENSION-UPDATE-STATUS-EBM extension point.

Table 5–48 lists the input parameters for the extension point XQuery when you are
using the calculate service order solution option.

Table 5–47 COMPONENT-RESPONSE-UPDATE Return Parameters

Output Parameter Type Description

element()* XML wrapper element that contains all the order item properties to be updated

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-57

Table 5–49 lists the input parameters for the extension point XQuery when you are
using the solution option without calculate service order.

Table 5–48 ORDER-EXTENSION-UPDATE-STATUS-EBM Input Parameters for the Calculate Service Order
Option

Name Type Scope Description

$controlData element() External variable XML data fragment of the control data
from the current task that calls to this
extension point

$taskData element() External variable XML data fragment of the current task that
calls to this extension point

$ebmId xs:string External variable EBM ID to be populated into the EBM
request message

$ebm element() External variable XML data fragment of the EBM header
from the CRM system

$fulfillmentOrder element() External variable XML data fragment of the Fulfillment
Order from the CRM system

$extensionVersion xs:string External variable Version number of the extension
framework

$orderId xs:string External variable OSM Order ID of the current order

$sequenceNumber xs:string External variable EBM message unique sequence tracking
number to be populated in the update
EBM

$changeLinesStatus element()* External variable XML data fragment which contains
multiple order items that must be included
in the update EBM

$hasFalloutFlag xs:boolean External variable Boolean indicator of whether the order is
in Fallout state

$isCancelFlag xs:boolean External variable Boolean indicator for the order is being
cancelled

$log Java Object External variable Java Type
org.apache.commons.logging.Log

Logging level related to server log

$execMode xs:string External variable Task execution mode

$debugControl element() External variable XML data fragment of the order execution
control for break point and debug

$orderStatusContext xs:string External variable Order status description to be populated in
the update EBM

$includeActualDelDateTime xs:boolean External variable Boolean indicator for whether to populate
the actual delivery date/time field of the
update EBM

$includeFulfillmentData xs:boolean External variable Boolean indicator for whether to include
detailed order item data in the update
EBM

Adding a New Fulfillment Function

5-58 OSM Cartridge Guide for Oracle Application Integration Architecture

Table 5–50 lists the return parameters for the extension point XQuery.

Table 5–49 ORDER-EXTENSION-UPDATE-STATUS-EBM Input Parameters for the Option Without Calculate
Service Order

Name Type Scope Description

$controlData element() External variable XML data fragment of the control data
from the current task that calls to this
extension point

$taskData element() External variable XML data fragment of the current task that
calls to this extension point

$ebmId xs:string External variable EBM ID to be populated into the EBM
request message

$ebm element() External variable XML data fragment of the EBM header
from the CRM system

$fulfillmentOrder element() External variable XML data fragment of the Fulfillment
Order from the CRM system

$extensionVersion xs:string External variable Version number of the extension
framework

$orderId xs:string External variable OSM Order ID of the current order.

$sequenceNumber xs:string External variable EBM message unique sequence tracking
number to be populated in the update
EBM

$changeLinesStatus element()* External variable XML data fragment which contains
multiple order items that must be included
in the update EBM

$hasFalloutFlag xs:boolean External variable Boolean indicator of whether the order is
in a fallout state

$isCancelFlag xs:boolean External variable Boolean indicator of whether the order is
being cancelled

$log Java Object External variable Java Type
org.apache.commons.logging.Log

Logging level related to server log

$execMode xs:string External variable Task execution mode

$debugControl element() External variable XML data fragment of the order execution
control for break point and debug

$orderStatusContext xs:string External variable Order status description to be populated in
the update EBM

$includeActualDelDateTime xs:boolean External variable Boolean indicator for whether to populate
the actual delivery date/time field of the
update EBM

$includeFulfillmentData xs:boolean External variable Boolean indicator for whether to include
detailed order item data in the update
EBM

Table 5–50 ORDER-EXTENSION-UPDATE-STATUS-EBM Return Parameters

Output Parameter Type Description

element()? XML wrapper element that contains the Update Sales Order EBM. The EBM
format depends on external fulfillment provider requirements.

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-59

Example 5–18 is a sample XQuery code fragment for the
ORDER-EXTENSION-UPDATE-STATUS-EBM fulfillment function extension point
when you are using the calculate service order solution option.

Example 5–18 ORDER-EXTENSION-UPDATE-STATUS-EBM XQuery Code Fragment for
the Calculate Service Order Option

declare namespace log = "java:org.apache.commons.logging.Log";
declare namespace oms="urn:com:metasolv:oms:xmlapi:1";
declare namespace
salesord="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/SalesOrder/V2";
declare namespace
corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2";

declare variable $controlData external;
declare variable $taskData external;
declare variable $ebmId external;
declare variable $ebm external;
declare variable $fulfillmentOrder external;
declare variable $extensionVersion external;
declare variable $orderId external;
declare variable $sequenceNumber external;
declare variable $changeLinesStatus external;
declare variable $hasFalloutFlag external;
declare variable $isCancelFlag external;
declare variable $log external;
declare variable $execMode external;
declare variable $debugControl external;
declare variable $orderStatusContext external;
declare variable $includeActualDelDateTime external;
declare variable $includeFulfillmentData external;

if ($extensionVersion=$pipextensionmodule:EXTENSION_VERSION_2) then
(

yourOrderFunctionfn:createUpdateSalesOrderPayloadWithUserProvideOrderStatusContext
(
 $log,
 $orderId,
 $ebm,
 $fulfillmentOrder,
 $ebmId,
 $sequenceNumber,
 $controlData,
 $changeLinesStatus,
 $hasFalloutFlag,
 $isCancelFlag,
 $orderStatusContext,
 $includeActualDelDateTime,
 $includeFulfillmentData)
)
else
(
 log:warn($log, fn:concat("UpdateEBM Extension Point V2 is receiving the wrong
version! extensionVersion:[",$extensionVersion,"]"))
)

Example 5–19 is a sample XQuery code fragment for the
ORDER-EXTENSION-UPDATE-STATUS-EBM fulfillment function extension point
when you are using the solution option without calculate service order.

Adding a New Fulfillment Function

5-60 OSM Cartridge Guide for Oracle Application Integration Architecture

Example 5–19 ORDER-EXTENSION-UPDATE-STATUS-EBM XQuery Code Fragment for
the Calculate Service Order Option

declare namespace log = "java:org.apache.commons.logging.Log";
declare namespace oms="urn:com:metasolv:oms:xmlapi:1";
declare namespace
salesord="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/SalesOrder/V1";
declare namespace
corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V1";

declare variable $controlData external;
declare variable $taskData external;
declare variable $ebmId external;
declare variable $ebm external;
declare variable $fulfillmentOrder external;
declare variable $extensionVersion external;
declare variable $orderId external;
declare variable $sequenceNumber external;
declare variable $changeLinesStatus external;
declare variable $hasFalloutFlag external;
declare variable $isCancelFlag external;
declare variable $log external;
declare variable $execMode external;
declare variable $debugControl external;
declare variable $orderStatusContext external;
declare variable $includeActualDelDateTime external;
declare variable $includeFulfillmentData external;

if ($extensionVersion=$pipextensionmodule:EXTENSION_VERSION_1) then
(

yourOrderFunctionfn:createUpdateSalesOrderPayloadWithUserProvideOrderStatusContext
(
 $log,
 $orderId,
 $ebm,
 $fulfillmentOrder,
 $ebmId,
 $sequenceNumber,
 $controlData,
 $changeLinesStatus,
 $hasFalloutFlag,
 $isCancelFlag,
 $orderStatusContext,
 $includeActualDelDateTime,
 $includeFulfillmentData)
)
else
(
 log:warn($log, fn:concat("UpdateEBM Extension Point V1 is receiving the wrong
version! extensionVersion:[",$extensionVersion,"]"))
)

About Fallout
When creating a new fulfillment function, you must consider the fallout handling
needed. Information about the fallout considerations is contained in the following
sections.

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-61

Fallout Customization
The AIAResponseEBM.xqy XQuery file is called from automated tasks, for example,
SyncCustomerSITask and ProvisionOrderSITask. When adding a fulfillment function,
you must customize a copy of this file, located in OracleComms_OSM_O2A_COM_
SalesOrderFulfillment\resources\ComponentInteraction, and call it from the
automation in the SITask that processes the response coming from the Application
Business Connector Service (ABCS) for the fulfillment system. The response can be
either a response EBM or an OrderFalloutNotification.

You may need to customize the local:getEbmFromResponse function to extract the
response EBM, depending on the fulfillment function.

The function local:getCFSystem extracts the system name from the value of the
componentKey for the executable order component. Due to the four orchestration
stages defined in the orchestration sequence in the OracleComms_OSM_O2A_COM_
Base cartridge, the componentKey takes the format:

FunctionName.SystemName.Granularity.FunctionSignificantUpdates

An example of a component key for an executable FulfillBillingFunction Order
Component targeted at the BRM-VoIP billing system using ServiceBundleGranularity
processing granularity, with a base line ID of the service bundle line of
31383732333932333934333332373635 is:

FulfillBillingFunction.BRM-VOIP.ServiceBundleGranularity.3138373233393233393433333
2373635/ServiceBundleGranularity.FulfillBillingSignificantUpdates

Example 5–20 is a sample XQuery code fragment from OracleComms_OSM_O2A_
COM_Base/resources/FalloutHandling/TargetMapping.xquery.

Example 5–20 Target System Map XQuery Code Fragment

(:
 : Function to return the Target system name that the given ActiveInteractionId is
associate to.
 :)
declare function osmmappip:getCFSystem(
 $orderData as element()?,
 $activeInteractionId as xs:string) as xs:string?
{
 (: First use the $activeInteractionId to locate the FulfillmentComponent under
_root/FulfillmentOrderManagement :)
 let $ffmOrdMgr := $orderData/osm:Data/oms:_root/oms:FulfillmentOrderManagement
 let $fulfillmentComponent :=
$ffmOrdMgr/oms:FulfillmentComponent[oms:FulfillmentOrder/oms:ActiveInteractionId/t
ext()=$activeInteractionId]
 return
 if (fn:exists($fulfillmentComponent))
 then
 (
 (: FulfillmentComponent found, get the componentKey :)
 let $componentKey := $fulfillmentComponent/oms:componentKey/text()
 return
 substring-before(substring-after($componentKey, "."), ".")
)
 else ()
};

Adding a New Fulfillment Function

5-62 OSM Cartridge Guide for Oracle Application Integration Architecture

Failure During Revision
During the OSM fulfillment process, an order may fail due to various reasons like
insufficient data, incorrect data and so on. To correct the failure, you may have to
revise the failed order. In OSM, failure may occur even while revising the failed orders.
With the existing functionality of Oracle Communications Order to Cash Integration
Pack for Oracle Communications Order and Service Management, the following
events happen when fallout occurs during revision:

■ Initially, an update customer order status message, with Order Header status code
(FAILED) and description "Order will be aborted due to failure during revision,
manual intervention is required", is sent to Siebel CRM. This message contains the
corresponding OrderLine status code/descriptions.

■ The base Central Order Management/Service Order Management orders are put
into Aborted state in OSM, followed by another update customer order status
message to Siebel CRM, with Order Header status code (FAILED and description
"Order is aborted". This message does not include any OrderLine status
information.

■ After the failure is resolved manually, Siebel CRM can resend the same customer
order to OSM with the correct data.

When there are service order management and Provisioning systems involved in the
customer order processing, the following events happen:

■ The aborting request is propagated to all service order management systems and
then all provisioning systems abort all associated service orders.

■ The statuses of all associated service order management and provisioning
AbortOrder requests are propagated back to central order management.

■ While the order is in AbortInProgress state, incoming revisions are blocked.

■ The statuses of the downstream order aborting operations are stored in the central
order management or service order management order for reference.

It is mandatory that a fault thrown from a provisioning system must contain the
service order state using an AlternateObjectKey element of the sales-order
Identification element, where the ID element should have the attribute
schemeID="SERVICE_ORDER_STATE". Otherwise, the fault is not treated as a fault
during revision.

Since the AIA_CreateProvisioningOrderQueue, AIA_
CreateProvisioningOrderResponseQueue, ProcessProvisioningOrderEBM and
UpdateFulfillmentOrderEBM are reused for Abort Order Propagation,

■ A new value ABORT in the ProcessProvisioningOrderEBM for the
FulfillmentModeCode is introduced.

■ For the AIA_CreateProvisioningOrderResponseQueue, a JMS message property,
CGBUPIPCFFALLOUT, is introduced as: "CGBUPIPCFFALLOUT IS NULL"
"CGBUPIPCFFALLOUT LIKE 'ABORT%'" for AbortProvisioningOrderResponse.
So it is mandatory that this JMS message property is not stripped off or changed.

Adding a New Fulfillment Function for a New Service Offering
This procedure describes how to add a new fulfillment function for a new service
offering. For more information about performing the actions in this procedure in
Oracle Communications Design Studio, see the information about adding a new
fulfillment function in the section on extending component cartridges in the Design
Studio Modeling OSM Orchestration Help.

Adding a New Fulfillment Function

Extending Order-to-Activate Cartridges 5-63

To add a new fulfillment function:

1. Create a new OSM project to host the new fulfillment function.

2. In the Order and Service Management Project editor Properties tab, deselect the
Standalone check box.

This allows the cartridge to be referenced in the composite cartridge as part of the
solution (rather than as a standalone cartridge).

3. Delete the Order entity.

4. Create a base task for the new function from which all other new tasks will be
extended.

5. Create any other tasks required by the new function by extending them from the
base task created in the previous step.

6. Create a process that will execute when fulfilling the new function. You can create
an entirely new process or have the new process extend an existing process.

7. Create the new fulfillment function that either extends from COM_
FulfillmentFunction or its extended fulfillment function, and specify keys for the
order data at the following XPath location:

■ ./componentKey for order data/ControlData/Functions/YourFunctionName

■ ./orderItemRef/LineId for order
data/ControlData/Functions/YourFunctionName/orderItem

For more information about adding a new fulfillment function, see the information
about adding new functional order components in the Design Studio Modeling
OSM Orchestration Help.

8. If new fulfillment states are to be introduced for the new fulfillment function, add
external fulfillment states for the new fulfillment function in the form of
State-YourFunctionName_Milestone. For example, IN_
PROGRESS-YourFunctionName_START.

9. Optionally create a new fulfillment system for the fulfillment function.

When you introduce a new fulfillment function, you may often also require a new
fulfillment provider.

10. Create a new decomposition rule (with the COM_SalesOrderLine order item) that
maps from the fulfillment function to the fulfillment provider.

For example, DecompSyncCustomer_To_BRM-VoIP in the OracleComms_OSM_
O2A_TypicalTopology_Sample cartridge is a decomposition rule that maps
SyncCustomer fulfillment function to the BRM-VoIP fulfillment provider.

11. Add the following cartridge to the Dependency tab for the new cartridge you
created for the new fulfillment function:

■ OracleComms_OSM_O2A_COM_Base

If there are any other cartridges that the new cartridge depends on, add them to
the Dependency tab.

12. Add the cartridge you created for the new fulfillment function, to the Dependency
tab for the Order-To-Activate composite cartridge.

13. Create composite cartridge views in the cartridge you created for the new
fulfillment function.

Adding a New Fulfillment Function

5-64 OSM Cartridge Guide for Oracle Application Integration Architecture

■ Create a composite cartridge view that adds data to the sales order creation
task COM_SalesOrderFulfillment_CreationTask for the new fulfillment
function. This composite cartridge view should extend from the base task of
the new fulfillment function.

■ Create a composite cartridge view that adds data to the sales order query tasks
such as COM_SalesOrder_StateChangeView and COM_SalesOrder_
AggregatedOLMView for the new fulfillment function.

14. Add the data for the new tasks you created to the composite cartridge views.

15. Create a task data contribution to extend the existing sales order creation task with
the following information:

■ Order = COM_SalesOrderFulfillment

■ Process = COM_SalesOrderFulfillmentOrchestrationProcess

■ Task = COM_SalesOrderFulfillment_CreationTask

■ Composite Cartridge View = YourCompositeCartridgeViewForCreationTask

16. Create a query task data contribution to extend the existing sales order query tasks
with the following fields:

■ Order = COM_SalesOrderFulfillment

■ Role = COM_SalesOrder_AggregatedOLM_Role, COM_SalesOrder_
StateChange_Roles

■ Query Task = COM_SalesOrder_AggregatedOLMView, COM_SalesOrder_
StateChangeView

■ Composite Cartridge View = YourCompositeCartridgeViewForQueryTask

17. In the resources/SolutionConfig folder of the Order-to-Activate composite
cartridge such as OracleComms_OSM_O2A_COMSOM_TypicalSolution:

■ Add a new <Component> entry to the ComponentExtensionPointMap.xml file
for the new fulfillment function. For each applicable fulfillment function
extension point, create an XQuery file based on an existing fulfillment function
extension point XQuery file, for example, SyncCustomerComplete_
Event.xquery.

■ Add a new entry of a query task to the ComponentQueryViewMap.xml file for
the new fulfillment function.

■ If new milestones are to be introduced for the new fulfillment function:

– add a new <MilestoneMap> entry to the ComponentMilestoneMap.xml
file for the new fulfillment function

– add a new <StatusItemContext> entry for each new milestone to the
OrderItemStatusContextMap.xml file

■ If fallout simulation is needed for the new fulfillment function, add a new
<FaultModeMap> entry to the FaultModeMap.xml file.

■ Add a new <StatusMap> entry to the OrderStateMap.xml file for the new
fulfillment function per system type and fulfillment mode.

■ If a new fulfillment provider is added, add a new <targetSystem> entry for
each new fulfillment provider instance to the TargetSystemMap.xml file.

■ For each automated task in the process of the new fulfillment function, add a
new <TaskExitStatusMap> entry to the TaskExitStatusMap.xml file.

Adding a New Fulfillment Provider

Extending Order-to-Activate Cartridges 5-65

18. Package and deploy the Order-To-Activate composite cartridge.

Adding a New Fulfillment Provider
Oracle AIA has logical identifiers for fulfillment providers (for example, fulfillment
instances). There are naming conventions that must correspond to your Oracle AIA
deployment, for example, fulfillment system type and fulfillment system code.
Currently the logical identifiers and fulfillment system type and application are
defined in XML Document TargetSystemMap.xml, which is deployed with the
Order-to-Activate composite cartridge (such as OracleComms_OSM_O2A_COMSOM_
TypicalSolution). You modify this file when restructuring the fulfillment topology
definition, for example when you add more billing system instances. The Sender IDs
and Target IDs in the EBM messages must match the logical identifiers for the system
instances configured in the Oracle AIA deployment. The following is the summary for
fulfillment functions for Oracle AIA:

■ Naming convention used for OSM central order management instances: OSMCFS_
01, OSMCFS_02, and so on

■ Naming convention used for OSM service order management instances:
OSMPROV_01, OSMPROV_02, and so on

■ Naming convention used for Billing and Revenue Management instances BRM_01,
BRM_02, and so on

■ Naming convention used for Siebel CRM instances: SEBL_01, SEBL_02, and so on

When adding a fulfillment provider, such as a billing system instance, you must
customize a copy of the following files to map the Studio entity name of the system
entity to the target ID:

■ O2A_CompositeCartridge\resources\SolutionConfig\TargetSystemMap.xml

For example,

OracleComms_OSM_O2A_COM_CSO_
Solution\resources\SolutionConfig\TargetSystemMap.xml contains all
fulfillment providers and their logical identifiers used in the Order-to-Activate
cartridges in the Typical topology.

You can name the Studio entity using the Oracle AIA naming convention such as
BRM_01, BRM_02, to simplify the fulfillment system mapping to be a direct mapping.

The following procedure describes how to add a new fulfillment provider. For more
information about performing the actions in this procedure in Design Studio, see the
Design Studio Modeling OSM Orchestration Help.

To add a new fulfillment provider:

1. In the topology cartridge such as the OracleComms_OSM_O2A_TypicalTopology_
Sample cartridge, add a new order component specification that extends COM_
FulfillmentSystem with COM_SalesOrderFulfillment namespace to represent the
new fulfillment provider, and ensure the Order Component Executable check box
is deselected.

2. Open the decomposition rule in the form of Topology_
DetermineProcessingGranularity_For_FulfillmentFunction in the OracleComms_
OSM_O2A_COM_CSO_Topology, OracleComms_OSM_O2A_TypicalTopology, or
OracleComms_OSM_O2A_SimpleTopology_Sample cartridge depending on the
solution option and topology.

Adding a New Fulfillment Mode

5-66 OSM Cartridge Guide for Oracle Application Integration Architecture

For example, Typical_DetermineProcessingGranularity_For_SyncCustomer is the
decomposition rule for SyncCustomerFunction fulfillment function in the Typical
topology.

3. In the Decomposition Rule editor Source/Target tab, select the desired processing
granularity under COM_FulfillmentGranularity in the Target Order Components
section.

See "Configuring a New Processing Granularity Rule" for more information on
creating a new processing granularity.

4. (Optional) Add or Change decomposition condition in the Decomposition Rule
editor Conditions tab.

5. If you are using the Calculate Service Order option in your Order-to-Activate
cartridges and you want to add a new fulfillment provider that makes use of the
Calculate Service Order transformation sequence, create an order component that
references the Calculate Service Order provider function. You can use an existing
provisioning order component as an example of the correct way to model this.

6. Package and deploy the Order-to-Activate composite cartridge.

Adding a New Fulfillment Mode
This procedure describes how to add a new fulfillment mode. For more information
about performing the actions in this procedure in Design Studio, see the information
about adding a new fulfillment mode in the section on extending component
cartridges in the Design Studio Modeling OSM Orchestration Help.

To add a new fulfillment mode:

1. Create a new Order and Service Management project to host the new fulfillment
mode.

2. In the Order and Service Management Project editor Properties tab, deselect the
Standalone check box.

This allows the cartridge to be referenced in the composite cartridge as part of the
solution (rather than as a standalone cartridge with no dependencies).

3. Add a new fulfillment mode with COM_SalesOrderFulfillment namespace for
central order management or SOM_ProvisionOrderFulfillment namespace for
service order management.

4. Modify the order recognition rule’s XQuery to recognize the new fulfillment
mode.

a. Copy the existing OracleComms_OSM_O2A_COM_
Base/resources/OrderRecognitionRule/AIAOrderRecognition.xquery to the
resources folder of the new OSM cartridge created in step 1, if the new
fulfillment mode is for central order management. For service order
management, copy the existing OracleComms_OSM_O2A_SOM_
Base/resources/OrderRecognitionRule/ProvisionOrderRecognition.xquery
to the resources folder of the new OSM cartridge.

b. Modify the XQuery to recognize the new fulfillment mode.

c. Create an XML Catalog rewrite rule to override the order recognition rule
XQuery.

For example, for central order management’s AIAOrderRecognition.xquery

<rewriteURI

Adding a New Product Specification

Extending Order-to-Activate Cartridges 5-67

uriStartString="http://xmlns.oracle.com/communications/ordermanagement/o2ac
ombase/order_recognition/AIAOrderRecognition.xquery"
rewritePrefix="osmmodel:///<New_OSM_Cartridge>/1.0.0.0.0/resources
/AIAOrderRecognition.xquery"/>

5. Add the new fulfillment mode to the base fulfillment pattern or to any applicable
fulfillment patterns.

6. Model the orchestration plan for the new fulfillment mode for all of the affected
fulfillment patterns.

7. In the Fulfillment State Map editor, create fulfillment state mappings for the new
fulfillment mode. The fulfillment state map to edit is one of the following:

■ For the calculate service order option:

In the OracleComms_OSM_O2A_COM_CSO_FulfillmentStateMap cartridge,
edit the COM_CSO_FulfillmentStateMap entity.

■ For the solution option without calculate service order:

In the OracleComms_OSM_O2A_FulfillmentPatternMap cartridge, edit the
COM_FulfillmentStateMap entity.

8. Add the cartridge you created for the new fulfillment mode, to the Dependency
tab for the Order-to-Activate composite cartridge.

9. Open the Ant view and select Add Buildfiles to add SolutionConfig.xml in the
Order-to-Activate composite cartridge, for example OracleComms_OSM_O2A_
COMSOM_TypicalSolution.

10. In the Ant view, expand the Order-to-Activate composite cartridge and
double-click config_Metadata_And_ModelVariable to ensure that the new
fulfillment mode is visible in the Order-to-Activate composite cartridge.

11. Package and deploy the Order-to-Activate composite cartridge.

Adding a New Product Specification
This section provides information about adding a new product specification.

Mapping Product Specifications to Order-to-Activate Sample Fulfillment Patterns
There are two types of product specifications in Design Studio: conceptual model
products and OSM product specifications. You do not create a new product
specification in OSM, although OSM supports existing product specifications that
were created in OSM. Instead, to create a new product, create a new conceptual model
Product entity, which will then be mapped to a conceptual model fulfillment pattern,
which is realized into an OSM fulfillment pattern. For more information about
conceptual model products, see Design Studio Concepts.

Product specification entities can either be imported from a product catalog, such as
Oracle Product Hub, or manually created in Design Studio. If you import products, the
result will be new conceptual model products, not new OSM products as it was in
earlier releases of Design Studio and OSM.

For more information about mapping product specifications to fulfillment patterns in
OSM, see the XQuery appendix in OSM Concepts.

Each product specification can be mapped to an Order-to-Activate sample fulfillment
pattern. Design Studio generates a mapping file in the resources folder of the
OracleComms_OSM_O2A_FulfillmentPatternMap_Sample cartridge. In Oracle AIA, a

Adding a New Product Specification

5-68 OSM Cartridge Guide for Oracle Application Integration Architecture

field called fulfillment item code (FIC) is used to specify the product specification
name.

When new FulfillmentItemCodes are introduced, you must ensure a mapping of the
new FulfillmentItemCode to a fulfillment pattern that exists in the OracleComms_
OSM_O2A_FulfillmentPatternMap_
Sample/resources/productClassMapping/productClassMapping.xml file so that
product specification validation will succeed.

Creating a New Product
This section contains information about creating a new conceptual model product to
work with the Order-to-Activate cartridges. For more information about creating a
product in Design Studio, see the information about adding a new product
specification in the section on extending component cartridges in the Design Studio
Modeling OSM Orchestration Help.

A new product is created in the same way as any new conceptual model product in
Design Studio, with the following specifics:

1. If you create a new product that requires a new fulfillment pattern, add a new
conceptual model fulfillment pattern and then add a new OSM fulfillment pattern
that realizes the new conceptual model fulfillment pattern and that extends from
the base fulfillment pattern BaseProductSpec.

Note: In communications industry customer orders in AIAEBM
format, 'fulfillment item code' is a unique identifier that maps an order
line item subject to a Studio recognized fulfillment pattern entity. By
default, this is populated with the product specification name for
product specification mapping.

Alternatively you can use any combination of attribute values on the
order template to drive the mapping of order lines to fulfillment
patterns. The value 'item class name' determines some business
classification of a product and can be used for product specification
mapping. It becomes significant when you adopt a methodology that
aligns commercial product specifications with fulfillment commercial
services (fulfillment patterns).

Note: If you create a new conceptual model cartridge to contain your
new conceptual model entities, you must add that cartridge in the
Common Model Entity Container field in an appropriate cartridge. If
you are using the Calculate Service Order solution option, add the
cartridge to the OracleComms_OSM_O2A_COM_CSO_Model_
Container cartridge for a central order management (or combined
central order management and service order management)
environment, or to OracleComms_OSM_O2A_SOM_CSO_
ModelContainer for an environment that contains only service order
management. If you are using the solution option without Calculate
Service Order, add the cartridge to the recognition cartridge in your
environment or create a new OSM component cartridge to contain the
entries.

Adding a New Product Specification

Extending Order-to-Activate Cartridges 5-69

2. Specify the location of the external directory containing the fulfillment pattern.
From the Window menu, select Preferences, then expand Oracle Design Studio
in the Preferences navigation tree, then select Order and Service Management
Preferences, and then select Orchestration Preferences. Enter the appropriate
directory in the Product Specification Mapping field. For example, enter
OracleComms_OSM_O2A_COM_
FulfillmentPattern/resources/productSpecMapping if you are using the calculate
service order option or OracleComms_OSM_O2A_FulfillmentPatternMap_
Sample/resources/productSpecMapping if you are using the option without
calculate service order.

Creating a New Fulfillment Pattern
This procedure describes how to add a new fulfillment pattern. For more information
about performing the actions in this procedure in Design Studio, see the information
about adding a new fulfillment pattern in the Design Studio Modeling OSM
Orchestration Help.

To add a new fulfillment pattern:

1. Create a new Order and Service Management project to host the new fulfillment
pattern or optionally use the existing fulfillment pattern sample cartridge to host
the new fulfillment pattern.

2. In the Order and Service Management Project editor Properties tab, deselect the
Standalone check box.

This allows the cartridge to be referenced in the composite cartridge as part of the
solution (rather than as a standalone cartridge with no dependencies).

3. Add a new fulfillment pattern that extends from the base fulfillment pattern
BaseProductSpec or its extended fulfillment pattern.

4. Model the orchestration plan for the new fulfillment pattern such as indicating
which fulfillment functions are decomposed for which fulfillment mode.

5. Include the new fulfillment pattern on the appropriate decomposition rules that
map order line items from fulfillment functions to fulfillment providers. For
example, DecompSyncCustomer_To_BRM-VoIP is a decomposition rule that maps
order line items for SyncCustomerFunction to BRM-VoIP fulfillment provider.

6. If you added a new cartridge to host the new fulfillment pattern, add the cartridge
to the Dependency tab for the Order-to-Activate composite cartridge.

7. Package and deploy the Order-to-Activate composite cartridge.

Customizing Mapping Rules
The following section describes customizing rules for mapping order items to
Order-to-Activate sample fulfillment patterns.

The XQuery function osmpip:getProductSpec() defined in the OracleComms_OSM_
O2A_CommonUtility cartridge provides an API for mapping customer order items to
Order-to-Activate sample fulfillment patterns.

The XQuery function osmpip:getProductSpec() is invoked from the XQuery in the
productSpec order item property in the COM_SalesOrderLine order item
specification in the OracleComms_OSM_O2A_COM_Base cartridge. By default, the
direct mapping rules map the Fulfillment Item Code to a fulfillment pattern.

Adding a New Product Specification

5-70 OSM Cartridge Guide for Oracle Application Integration Architecture

Customize Rules for Mapping Order Items to Fulfillment Patterns
Customize a copy of the OracleComms_OSM_O2A_COM_
Base/resources/OrderItemProperties/ProductSpec.xquery file to customize the direct
mapping rule, such as to pass as input the Fulfillment Item Code, to adopt a
methodology that aligns the commercial product specifications with the fulfillment
patterns when the Fulfillment Item Code is not populated.

Customize Rules for Mapping Order Items with Product Specifications to
Fulfillment Patterns
Customize a copy of OracleComms_OSM_O2A_
CommonUtility/resources/ProductClassToProductSpec.xquery file to enable the
mapping of order items with new product specifications on the customer order to
Order-to-Activate sample fulfillment patterns. The
ProductClassToProductSpec.xquery file also provides access to common XQuery
functions across the central order management cartridges.

Table 5–51 lists the functions found in ProductClassToProductSpec.xquery:

Adding a New Product Specification

Extending Order-to-Activate Cartridges 5-71

Importing the New Product Specification
It is possible to query product specifications and transaction attributes into Design
Studio directly from the Oracle Product Hub. Design Studio users use the existing
Oracle AIA interface QueryProductClassAndAttributesSCECommsReqABCSImpl to
import product specifications from both Siebel CRM and the Product Hub. When
product specifications are queried using this interface, the interface API checks for
Product Hub implementation in the solution stack, and if it is there, the product

Table 5–51 Functions in ProductClassToProductSpec.xquery

Name Function Interface Description

getProductSpec declare function
osmpip:getProductSpec(
 $salesOrder as
element(),
 $salesOrderLine as
element(),
 $productClassName as
xs:string*) as xs:string

This function returns the fulfillment pattern entity as a string
based on the given Fulfillment Item Code of a customer order
line. If the input value is not specified, or no direct mapping is
found, the function uses mapping rules based on data provided
on the customer order.

The mapping rules, applicable when no direct mapping is
found, should check (in the order listed) whether there is a
mapping rule specific to:

1. Subject of the order line item, if one exists (One of:
Discount, Product, Service Bundle, Offer, SpecialRating, or
Unknown).

2. Subject Type (a short way to get couple of other attributes),
if one exists.

3. Unknown (as a last resort, use a default mapping rule that
maps the Order Line Item to a Fulfillment Item Code of a
special Unknown item action).

The default mapping rules achieve the following mappings:

■ Service bundle lines having no FulfillmentItemCode and
identified by ServiceInstanceIndicator=true, are mapped to
a fulfillment pattern of its child order lines.

■ OFFER lines are mapped to fulfillment pattern
'NonService.Offer'.

■ DISCOUNT, SPECIAL RATING, and BUNDLE lines
having no FulfillmentItemCode are mapped to fulfillment
pattern 'NonService.BillingItem'.

■ When a fulfillment pattern cannot be determined, it is set
to fulfillment pattern 'Service.Unknown'.

getDoublePlayP
rimaryClassifica
tionCode

declare function
osmpip:getDoublePlayPrima
ryClassificationCode(
 $orderline as
element(),
 $salesOrder as
element()) as xs:string*

This function returns the classification code of a customer order
line. The classification code is used by decomposition rule
conditions and order line item dependencies.

The classification of order line items is based on the fulfillment
topology definition. For example, for order lines in which the
fulfillment pattern itself is not sufficient to determine the billing
provider (such as offer, discount, and bundle lines) order line
items are classified into VoIP only, BroadBand only, or
combination Broadband and VoIP, based on the demonstration
Typical fulfillment topology definition to determine the
appropriate billing provider. Offer and bundle lines go to as
many different, unique billing providers as in its child lines in
the customer order. Discount lines, if contained in a service
bundle, follow the service bundle.

getBillingPattern declare function
osmpip:getBillingPattern(
 $orderline as
element()) as xs:string

Return the billing pattern of the current customer order line.

Changing Processing Granularity

5-72 OSM Cartridge Guide for Oracle Application Integration Architecture

specifications will be imported to Design Studio from the Product Hub. Otherwise, the
product specifications will be imported from Siebel CRM.

Import the new product specifications as described in the Design Studio Help. After
importing the product specifications, follow this procedure:

1. Open the newly imported or modified conceptual model product.

2. Map the new or changed product to the appropriate conceptual model fulfillment
pattern.

Changing Processing Granularity
This section provides information on changing the processing granularity for an order
item.

To change processing granularity for a fulfillment function:

1. Open the decomposition rule in the form of Topology_
DetermineProcessingGranularity_For_FulfillmentFunction in the OracleComms_
OSM_O2A_COM_CSO_Topology, OracleComms_OSM_O2A_TypicalTopology, or
OracleComms_OSM_O2A_SimpleTopology_Sample cartridge depending on the
solution option and topology.

For example, Typical_DetermineProcessingGranularity_For_SyncCustomer is the
decomposition rule for SyncCustomerFunction fulfillment function if you are
using the calculate service order option.

2. In the Decomposition Rule editor Source/Target tab, select the desired processing
granularity under COM_FulfillmentGranularity in the Target Order Components
section.

See "Configuring a New Processing Granularity Rule" for more information on
creating a new processing granularity.

3. (Optional) Add or Change decomposition condition in the Decomposition Rule
editor Conditions tab.

4. Package and deploy the Order-to-Activate composite cartridge.

Configuring a New Processing Granularity Rule
Begin by creating a new order component specification in Design Studio that extends
COM_FulfillmentGranularity and has the COM_SalesOrderFulfillment namespace
and give it a name such as YourCustomGranularity.

On the Component ID tab of the newly created order component specification, specify
an XQuery condition to return the ComponentId of an order line. Order lines with the
same ComponentId value are grouped together for the processing of order lines a
group at a time. To construct the XQuery, you can copy the XQuery expression from
the Component ID tab of an existing processing granularity rule, such as
BundleGranularity shown in Example 5–21, and in it replace BundleGranularity with
YourCustomGranularity, and replace TypeCode=(BUNDLE) with the condition that
identifies the parent of the group. If you require nested groups to make it on separate
fulfillment requests, also replace [fn:last()] with [1]. There are multiple instances of
index fn:last() in the XQuery expression; the ones to replace are highlighted below.
Otherwise, nested groups are processed on the same fulfillment request.

Example 5–21 Customizable Granularity Configuration XQuery

(: Copyright (c) 2008, 2012, Oracle and/or its affiliates. All rights reserved. :)

Changing Processing Granularity

Extending Order-to-Activate Cartridges 5-73

import module namespace comqueryviewconstants =
"http://xmlns.oracle.com/communications/ordermanagement/o2acombase/comqueryviewcon
stants" at
"http://xmlns.oracle.com/communications/ordermanagement/o2acombase/constants/Query
ViewConstants.xquery";

declare namespace
osm="http://xmlns.oracle.com/communications/ordermanagement/model";
declare namespace prop="COM_SalesOrderFulfillment";
declare namespace osmfn =
"java:oracle.communications.ordermanagement.orchestration.generation.Orchestration
XQueryFunctions";

let $ancestors := osmfn:ancestors($comqueryviewconstants:COM_ORDER_ITEN_
SPEC,$comqueryviewconstants:COM_PARENTCHILD_HIER, $comqueryviewconstants:COM_
ORDER_NAMESPACE)
let $relatedItems := osmfn:ancestors($comqueryviewconstants:COM_ORDER_ITEN_
SPEC,$comqueryviewconstants:COM_RELATEDITEM_HIER,$comqueryviewconstants:COM_ORDER_
NAMESPACE)
return
 (: to locate the bundle that this order line should be included with on a
fulfillment request, first follow the RelatedSalesOrderLineId references (if any
exist) :)
 if (osm:properties/prop:RelatedSalesOrderLineId/text() != '' and
fn:exists($relatedItems))
 then
 (
 let $topmostRelatedItem := $relatedItems[fn:last()]
 let $topmostRelatedItemAncestors :=
osmfn:ancestors($topmostRelatedItem,$comqueryviewconstants:COM_ORDER_ITEN_
SPEC,$comqueryviewconstants:COM_PARENTCHILD_HIER,$comqueryviewconstants:COM_ORDER_
NAMESPACE)
 return
 if
(fn:exists($topmostRelatedItemAncestors[osm:properties/prop:TypeCode=('BUNDLE')]))
 then
 (
 (: for the topmost related order line, follow the ParentLineId
references to locate the outermost bundle. This will cause nested bundles to make
it on the same fulfillment request. :)

concat($topmostRelatedItemAncestors[osm:properties/prop:TypeCode=('BUNDLE')][fn:la
st()]/osm:properties/prop:BaseLineId/text(),'/BundleGranularity')
)
 else
 (
 (: locate the root node, such that any other root node on the order
along with their related order items makes a separate fulfillment request :)

concat($topmostRelatedItemAncestors[fn:last()]/osm:properties/prop:BaseLineId/text
(),'/BundleGranularity')
)
)
 else
 (
 if (fn:exists($ancestors[osm:properties/prop:TypeCode=('BUNDLE')]))
 then
 (
 (: follow the ParentLineId references to locate the outermost bundle.
This will cause nested bundles to make it on the same fulfillment request. :)

Changing Fulfillment Function Dependencies

5-74 OSM Cartridge Guide for Oracle Application Integration Architecture

concat($ancestors[osm:properties/prop:TypeCode=('BUNDLE')][fn:last()]/osm:properti
es/prop:BaseLineId/text(),'/BundleGranularity')
)
 else
 (
 (: locate the root node, such that any other root node on the order
along with their related order items makes a separate fulfillment request :)

concat($ancestors[fn:last()]/osm:properties/prop:BaseLineId/text(),'/BundleGranula
rity')
)
)

Changing Fulfillment Function Dependencies
This procedure describes how to change fulfillment function dependencies. For more
information about performing the actions in this procedure in Design Studio, see the
information about the fulfillment pattern editor in the Design Studio Modeling OSM
Orchestration Help.

To change fulfillment function dependencies:

1. Open the Fulfillment Pattern editor Orchestration Plan tab for the base fulfillment
pattern or any applicable fulfillment pattern for which the dependencies between
fulfillment functions needed to be changed.

2. Select the fulfillment mode, for which the dependencies between fulfillment
functions need to be changed, in the Fulfillment Mode field.

3. Select the Dependencies tab and do one of the following:

■ In the Dependencies table, select the dependency and change the From Order
Component or To Order Component to update the fulfillment function
dependency.

■ In the Dependencies table, add a new dependency and specify the From
Order Component and To Order Component for the new fulfillment function
dependency.

4. Package and deploy the Order-to-Activate composite cartridge.

Setting a Point of No Return
A point of no return (PoNR) is a point during the orchestration process when revisions
are no longer accepted and processed for an order. The Hard PoNR indicates that it is
technically infeasible to amend the order.

A PoNR is realized when a condition is met on an order line item.

The seeded values in the Order-to-Activate cartridges are:

■ A value of NOT YET indicates that the Soft PoNR has been reached for an order
line.

■ A value of HARD indicates that a Hard PoNR has been reached for an order line,
which signifies that it is technically infeasible to revise the order beyond this point.

Each fulfillment pattern may have a PoNR set to HARD at a different fulfillment state
in the fulfillment flow.

Setting a Point of No Return

Extending Order-to-Activate Cartridges 5-75

In the Order-to-Activate cartridge, the value of PoNR for each order line item is stored
in ControlData/OrderItem/WorkLineItemData/RevisionPermissibleCode in the order
data in the format [SOFT]NOT YET or [HARD]HARD.

A fulfillment state is set before and after each fulfillment function. There may be
multiple fulfillment states during the progress of a fulfillment function, such as IN_
PROGRESS-PROVISION_DESIGNED and COMPLETE-PROVISION_COMPLETE. In
this case, the RevisionPermissibleCode value is returned in the fulfillment data
updates from provisioning and is updated into the order data.

RevisionPermissibleCode must be updated at every fulfillment function transition
because there is no guarantee on the conditions that cause fulfillment functions to be
called in a fulfillment pattern. Update the order data as follows:

■ Before every fulfillment function until PoNR is reached (if a PoNR is non-existent
or null, set RevisionPermissibleCode to NOT YET)

■ For every function transition after which the HARD PoNR is reached (if a PoNR is
non-existent, null, or has the value NOT YET, set RevisionPermissibleCode to
HARD)

■ productSpec1: (NOT YET) FunctionA --> (NOT YET)--> FunctionB--> (HARD) -->
FunctionC

■ productSpec2: (NOT YET) FunctionA --> (HARD) --> FunctionB --> (HARD) -->
FunctionC

A HARD PoNR is set at the FunctionC Start milestone for productSpec1, and at the
FunctionB Start milestone for productSpec2. Assuming that FunctionB may be skipped
if a conditional expression is not met, PoNR=HARD must be set between FunctionA
and FunctionC: (NOT YET): FunctionA --> (HARD) --> FunctionC.

For fulfillment functions, these values are implemented in the order data updates in
the automated tasks of the subprocess. For example:

Table 5–52 lists the various hard PoNRs for each fulfillment pattern.

Table 5–52 Hard Points of No Return by Fulfillment Pattern

Product Spec Fulfillment Function

HARD
PoNR
is set Fulfillment State

NonService.BillingInitatedItem FulfillBillingFunction Y IN_PROGRESS-FULFILL_BILLING_START

NonService.BillingItem FulfillBillingFunction Y IN_PROGRESS-FULFILL_BILLING_START

NonService.Offer FulfillBillingFunction Y IN_PROGRESS-FULFILL_BILLING_START

Service.Broadband ProvisionOrderFunction Y For solutions that are using the Calculate
Service Order option:

IN_PROGRESS-PROVISION_ISSUED

For solutions that are not using the
Calculate Service Order option:

IN_PROGRESS-PROVISION_DESIGNED

Service.CPE.Broadband ShipOrderFunction Y COMPLETE-SHIP_ORDER_SHIPPED

Service.CPE.VoIP ShipOrderFunction Y COMPLETE-SHIP_ORDER_SHIPPED

Service.Install InstallOrderFunction Y IN_PROGRESS-INSTALL_COMMITTED

Service.VoIP FulfillBillingFunction Y IN_PROGRESS-FULFILL_BILLING_START

Configuring Fulfillment States

5-76 OSM Cartridge Guide for Oracle Application Integration Architecture

OSM enforces HARD PoNR in the order life-cycle policy by disallowing Submit
Amendment if the PoNR value in the order data is found to be HARD (for a revised
order line item) when a revision order arrives.

PoNR (SalesOrderLine/RevisionPermissibleCode) is included in status updates to
Siebel CRM, which occur at every milestone data change. This enables Siebel CRM to
enforce the rule that a revision cannot be submitted beyond HARD PoNR for an order
line.

Modeling a PoNR
This section describes the steps to add a point of no return for a fulfillment pattern. For
more information about performing the actions in this procedure in Design Studio, see
the information about configuring points of no return in the Design Studio Modeling
OSM Orchestration Help.

To model a point of no return:

1. In the Fulfillment Pattern editor Orchestration Plan tab, select the fulfillment
mode for which a PoNR will be added for the fulfillment pattern, and also select a
fulfillment function in Order Components section at which the PoNR will be set.

2. Once a fulfillment function is selected, add an entry to the Point of No Return
Values box in the Point of No Return subtab. Either click Select and select an
existing PoNR value, or click Add and add a new PoNR value. Then select a
fulfillment state that will trigger this PoNR for the fulfillment flow of the
fulfillment pattern.

3. If you added a new PoNR value rather than selecting an existing value, it will
automatically be added as a hard PoNR. If you would like your new PoNR to be a
soft PoNR, click the Details tab in the Fulfillment Pattern editor, select your new
PoNR from the Point of No Return Values box and then deselect Hard Point of
No Return in the Details subtab.

Configuring Fulfillment States
This section describes the steps for configuring fulfillment states. For more
information about performing the actions in this procedure in Design Studio, see the
information about configuring fulfillment states in the Design Studio Modeling OSM
Orchestration Help.

To configure fulfillment states:

1. If a new fulfillment function is introduced, add external fulfillment states to
represent status information sent to OSM by fulfillment systems in the Order
Component Specification editor External Fulfillment States tab for that order
component specification. The external fulfillment states should be in the form of
State-YourFunctionName_Milestone. For example, IN_
PROGRESS-YourFunctionName_START, representing the starting of your
fulfillment function.

2. In the Fulfillment State Map editor, create fulfillment state mappings for each new
external fulfillment state for any applicable fulfillment mode for the COM_

Note: Point-of-no-return enforcement can be disabled for testing
purposes when a new fulfillment function is introduced, or when
revision or order cancellation testing is performed. See "Controlling
Point of No Return" for more information.

Configuring Fulfillment States

Extending Order-to-Activate Cartridges 5-77

SalesOrderLine order item. The fulfillment state map to edit is one of the
following:

■ For the calculate service order option:

In the OracleComms_OSM_O2A_COM_CSO_FulfillmentStateMap_Sample
cartridge, edit the COM_CSO_FulfillmentStateMap entity.

■ For the solution option without calculate service order:

In the OracleComms_OSM_O2A_FulfillmentPatternMap_Sample cartridge,
edit the COM_FulfillmentStateMap entity.

3. In the Order Item Fulfillment State Composition Rule Set editor for COM_
OrderItemStateCompositionRule (in the same cartridge as the fulfilment state
map), modify existing composition rules for the BaseProductSpec fulfillment
pattern and COM_SalesOrderLine order item if necessary.

4. In the Order Fulfillment State Composition Rule Set editor for COM_
OrderStateCompositionRule (in the same cartridge as the fulfilment state map),
modify existing composition rules for the COM_SalesOrderFulfillment order if
necessary.

5. If a new fulfillment state is introduced in addition to the base fulfillment states
(that is, OPEN, IN_PROGRESS, COMPLETE, FAILED and CANCELLED) defined
in COM_FulfillmentStateMap, modify the XQuery implementation for any
applicable fulfillment state extension points. See Table 5–53 for more information
about fulfillment state extension points.

6. If a new fulfillment state is introduced to the solution, ensure that the state is
mapped appropriately in the Order Lifecycle Manager entity in the
OracleComms_OSM_O2A_COM_Base cartridge. If you need to add or change any
mappings, you must first unseal the OracleComms_OSM_O2A_COM_Base
cartridge. Oracle recommends resealing the cartridge after you have made your
changes. See the information about the Order Lifecycle Manager entity in the
Design Studio Modeling OSM Processes Help for more information about viewing
and changing these mappings.

7. Package and deploy the Order-to-Activate composite cartridge.

External Fulfillment States
In Order-to-Activate cartridges, the following structure in the order template is
required for processing fulfillment states to support revision of orders. The default
location for this structure is in the root level of the order data. The data elements (as
opposed to the structure elements) are indicated in bold below. These values should be
populated by the task that handles the interaction with the external system.

OrderLifeCycleManagement
 OrderItemStatus
 BaseLineId
 LineType
 LineName
 OrderItemComponentStatus
 componentKey
 componentType
 systemType
 MilestoneStatusRecord
 StatusTimestamp
 ExternalFulfillmentStateCode
 MilestoneCode

Configuring Fulfillment States

5-78 OSM Cartridge Guide for Oracle Application Integration Architecture

 ExecutionMode
 componentId
 compensationId
 Status
 Code
 Description

See the information about modeling order template structures for fulfillment states in
the OSM Developer’s Guide for more information.

Fulfillment State Extension Point Interface
The Order-to-Activate cartridges use XQuery resources to perform functions including
setting order item properties, mapping product specifications to fulfillment patterns,
managing fulfillment function dependencies, and managing the order life cycle. One
way to customize XQueries is to rewrite or add to the out-of-box XQuery module and
use the XML catalog to enable URI reference mapping. Extension points are defined
for both fulfillment functions and fulfillment states. This section contains information
about the fulfillment state extension points. For information about the fulfillment
function extension points, see "Fulfillment Function Extension Point Interface."

XML catalogs are system-wide entities, which means an XML Catalog specified in one
cartridge will be used when processing requests for orders on other cartridges. With
the use of solution cartridges, multiple solutions can be deployed to a single system
and coexist with each other.

An XQuery extension script must be implemented in a standalone file. The file URI
must be registered to the extension configuration.

Fulfillment State Extension Point Overview
Table 5–53 lists the XQuery extension points for fulfillment states in the
Order-to-Activate cartridges.

Table 5–53 Fulfillment State Extension Points

Fulfillment State Extension Point Description

ORDERITEM_FULFILLMENT_
STATE_UPDATED

ORDERITEM_FULFILLMENT_STATE_UPDATED is triggered when the
OSM fulfillment state engine finishes evaluating the composite fulfillment
state for an order item. This extension point overrides the default
evaluation of the order item composite fulfillment state modeled in COM_
OrderItemStateCompositionRule to support an order with no order items
(order items had been dropped during revision), and to support the
completion of a cancellation order.

ORDER_FULFILLMENT_STATE_
UPDATED

ORDER_FULFILLMENT_STATE_UPDATED is triggered when the OSM
fulfillment state engine finishes evaluating the composite fulfillment state
for an order. This extension point overrides the default evaluation of the
order composite fulfillment state modeled in COM_
OrderStateCompositionRule to support an order with no order items
(order items had been dropped during revision), and to support the
completion of a cancellation order.

ORDER_STATUS ORDER_STATUS at the order level is triggered when the OSM fulfillment
state engine finishes evaluating the composite fulfillment state for the
order. This extension point provides order status to the upstream system.

ORDER_STATUS at the order item level is triggered when the OSM
fulfillment state engine finishes evaluating the composite fulfillment state
for an order item. This extension point provides order item status to the
upstream system.

Configuring Fulfillment States

Extending Order-to-Activate Cartridges 5-79

Fulfillment state extension points provide a means to handle additional context, such
as fulfillment mode and order types (cancel order, revision order, etc), in
Order-to-Activate cartridges. This enables you to alter the default behavior modeled in
both order composition rules and order item composition rules.

For example, in the ORDER_FULFILLMENT_STATE_UPDATED fulfillment state
extension point, the order fulfillment state is changed from what is configured in the
COM_OrderStateCompositionRule for the following scenarios:

■ If an order has no child order items (because existing lines were dropped in a
revision order), the order fulfillment state should be CANCELLED (fulfillment
mode CANCEL) or COMPLETED (fulfillment mode DELIVER) instead of
PENDING.

■ If an order is in progress, the order fulfillment state should be IN_PROGRESS
regardless of whether all of the order items have been completed.

■ If an order is completed, the order fulfillment state should be COMPLETE or, if the
order’s fulfillment mode is CANCEL, CANCEL COMPLETE.

ORDERITEM_FULFILLMENT_STATE_UPDATED Extension Point
This section describes the XQuery script that implements the logic to handle the
ORDERITEM_FULFILLMENT_STATE_UPDATED extension point. The extension
point detects an orphaned order item and sets the fulfillment state value for the
orphaned order item. For example, an order item might have no child order item and
may not invoke any components (possibly because the order itself does not have any
lines in its base order, or because existing lines or components have been removed due
to an order amendment). The core fulfillment state engine will not update the order

ORDER_STATUSCONTEXT ORDER_STATUSCONTEXT is triggered when the OSM fulfillment state
engine finishes evaluation of the composite fulfillment state for the order.
This extension point provides order status context to the upstream system.

ORDERITEM_MILESTONE ORDERITEM_MILESTONE is triggered when the OSM fulfillment state
engine finishes evaluating the composite fulfillment state for an order
item. This extension point calculates the order item milestone, taking
order cancellation into consideration.

ORDERITEM_STATUSCONTEXT ORDERITEM_STATUSCONTEXT is triggered when the OSM fulfillment
state engine finishes evaluating the composite fulfillment state for an
order item. This extension point provides order item status context to the
upstream system.

REPORT_ORDERITEM_STATUS REPORT_ORDERITEM_STATUS is triggered when the OSM fulfillment
state engine finishes calculating the composite fulfillment state for an
order item. This extension point is not currently being used in the
Order-to-Activate cartridges.

REPORT_ORDERITEM_
MILESTONE

REPORT_ORDERITEM_MILESTONE is triggered when the OSM
fulfillment state engine finishes evaluating the composite fulfillment state
for an order item. This extension point overrides the default milestone
when handling a cancellation order.

REPORT_ORDERITEM_
STATUSCONTEXT

REPORT_ORDERITEM_STATUSCONTEXT is triggered when the OSM
fulfillment state engine finishes calculating the composite fulfillment state
for an order item. This extension point overrides the default evaluation of
the order item composite fulfillment state modeled in COM_
OrderItemStateCompositionRule to support different order item status
contexts for failed order items with different order fulfillment modes.

Table 5–53 (Cont.) Fulfillment State Extension Points

Fulfillment State Extension Point Description

Configuring Fulfillment States

5-80 OSM Cartridge Guide for Oracle Application Integration Architecture

item's fulfillment state, and the order item fulfillment state will remain as PENDING
(if no order line was present) or IN_PROGRESS (if an order line has been started but
has been removed by an order amendment). In either case, the actual fulfillment state
of this order depends on the type of operation (CANCEL or DELIVER). If it is
CANCEL, this script changes the fulfillment state of the orphaned order item to
CANCELLED. If the operation is DELIVER, the script changes the fulfillment state of
the orphaned order item to COMPLETED.

Table 5–54 lists the input parameters for the extension point XQuery.

Table 5–55 lists the return parameters for the extension point XQuery.

Example 5–22 is a code fragment from OracleComms_OSM_O2A_
Configuration/fulfillment-state-extension/OnOrderItemFulfillmentStateUpdated.xq
uery that demonstrates the extension implementation.

Example 5–22 ORDERITEM_FULFILLMENT_STATE_UPDATED XQuery Code Fragment

import module namespace o2acomfulfillmentstate =
"http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/co
nstant" at

Table 5–54 ORDERITEM_FULFILLMENT_STATE_UPDATED Input Parameters

Name Type Scope Description

$fulfillmentMode xs:string External variable Fulfillment mode of the sales order
(DELIVER, CANCEL, or TSQ)

$fulfillmentState xs:string External variable Order item’s current composite fulfillment
state

$orderEventType xs:string External variable The event type when this extension is
triggered. ORDER_EVENT_UPDATE and
ORDER_EVENT_COMPLETE. ORDER_
EVENT_UPDATE is set if this is triggered
within the fulfillment function's
Sub-process's automation task. ORDER_
EVENT_COMPLETE is set if this is
triggered within OSM order complete
event handler.

$orderOperationType xs:string External variable ORDER_OPERATION_CANCEL is set if
the Oracle AIA order is doing a cancel
operation no matter the cancel is triggered
from upstream or from an OSM web client,
otherwise ORDER_OPERATION_
NORMAL is set.

$hasChildLines xs:boolean External variable True to indicate this order item has
children, otherwise false

$hasComponents xs:boolean External variable True to indicate this order item is
contained in fulfillment function,
otherwise false

. element() Context node The
OrderLifeCycleManagement/OrderItemSt
atus XML fragment for the order item

Table 5–55 ORDERITEM_FULFILLMENT_STATE_UPDATED Return Parameters

Output Parameter Type Description

xs:string Calculated fulfillment state to be set for the orphaned order item

Configuring Fulfillment States

Extending Order-to-Activate Cartridges 5-81

"http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/co
nstant/FulfillmentStateConstantModule.xquery";
import module namespace osmpiplog =
"http://xmlns.oracle.com/communications/ordermanagement/pip/omspiplog" at
"http://xmlns.oracle.com/communications/ordermanagement/pip/omspiplog/LogModule.xq
uery";
declare namespace oms="urn:com:metasolv:oms:xmlapi:1";
declare namespace fulfillmeneStateConstant =
"java:oracle.communications.ordermanagement.fulfillmentstatelifecycle.FulfillmeneS
tateConstant";

declare variable $fulfillmentMode as xs:string external;
declare variable $fulfillmentState as xs:string external;
declare variable $orderEventType as xs:string external;
declare variable $orderOperationType as xs:string external;
declare variable $hasChildLines as xs:string external;
declare variable $hasComponents as xs:string external;

declare variable $MODULE_NAME := "OnOrderItemFulfillmentStateUpdate";

declare variable $ORDER_EVENT_CANCELLED := fulfillmeneStateConstant:ORDER_EVENT_
CANCELLED();
declare variable $ORDER_EVENT_UPDATE := fulfillmeneStateConstant:ORDER_EVENT_
UPDATE();
declare variable $ORDER_EVENT_COMPLETE := fulfillmeneStateConstant:ORDER_EVENT_
COMPLETE();

declare variable $ORDER_OPERATION_NORMAL := fulfillmeneStateConstant:ORDER_
OPERATION_NORMAL();
declare variable $ORDER_OPERATION_CANCEL := fulfillmeneStateConstant:ORDER_
OPERATION_CANCEL();

declare variable $HAS_CHILDS := fulfillmeneStateConstant:HAS_CHILDS();
declare variable $HAS_COMPONENT := fulfillmeneStateConstant:HAS_COMPONENTS();

let $calculatedFulfillmentState :=
 if ($hasChildLines != $HAS_CHILDS and $hasComponents != $HAS_COMPONENT)
 then
 (
 (:
 : No current status can be detects from components or children lines,
meaning this line don't invoke any component
 : and also no children line exists, set the status to cancelled if this
is cancel order operation or set the status to complete if
 : this is not cancel operation
 :)
 if ($orderEventType = ($ORDER_EVENT_UPDATE, $ORDER_EVENT_COMPLETE))
 then
 (
 if ($orderOperationType = $ORDER_OPERATION_CANCEL)
 then $o2acomfulfillmentstate:CANCELLED_STATE
 else $o2acomfulfillmentstate:COMPLETE_STATE
)
 else $o2acomfulfillmentstate:CANCELLED_STATE
)
 else $fulfillmentState
return
 $calculatedFulfillmentState

Configuring Fulfillment States

5-82 OSM Cartridge Guide for Oracle Application Integration Architecture

ORDER_FULFILLMENT_STATE_UPDATED Extension Point
This section describes the XQuery script that implements the logic to handle the
ORDER_FULFILLMENT_STATE_UPDATED extension point. This extension point
overrides the default calculation result that is based on the COM_
OrderStateCompositionRule defined in cartridge OracleComms_OSM_O2A_
FulfillmentPatternMap_Sample. The COM_OrderStateCompositionRule only defines
the basic aggregation rule that is based on children order item's fulfillment state and
does not consider the current order's operation and event.

For example, if an order has no child order items, it maybe because the order itself
does not have any base order items, or because the existing order items were dropped
during revision. The server Fulfillment state engine may not update the order level
fulfillment state or will calculate the order level fulfillment state as PENDING (If no
line has started) or IN_PROGRESS (If line has been started but now get dropped). In
either case, the actual fulfillment state of this order should depends on the type of
operation (CANCEL or DELIVER) and if is CANCEL then this script will override it to
CANCELLED or if it is DELIVER then the script will override it to COMPLETED.

Given another example where the fulfillment state engine calculates a CANCEL or
COMPLETE state but the order is still in progress state (detected with
$orderEventType=ORDER_EVENT_UPDATE), the override value in this case is IN_
PROGRESS since the order is still in the middle of processing.

ORDER_EVENT_COMPLETE can be due to DELIVER COMPLETE or DELIVER
COMPLETE of a CANCEL order. In this case, operation type is used to detect if it is a
normal COMPLETE or CANCEL COMPLETE.

Table 5–56 lists the input parameters for the extension point XQuery.

Table 5–57 lists the return parameters for the extension point XQuery.

Table 5–56 ORDER_FULFILLMENT_STATE_UPDATED Input Parameters

Name Type Scope Description

$fulfillmentMode xs:string External variable Fulfillment mode of the sales order
(DELIVER, CANCEL, or TSQ)

$fulfillmentState xs:string External variable Order item's current composite fulfillment
state

$orderEventType xs:string External variable The event type when this extension is
triggered. ORDER_EVENT_UPDATE and
ORDER_EVENT_COMPLETE. ORDER_
EVENT_UPDATE is set if this is triggered
within the fulfillment function's
Sub-process's automation task. ORDER_
EVENT_COMPLETE is set if this is
triggered within OSM order complete
event handler.

$orderOperationType xs:string External variable ORDER_OPERATION_CANCEL is set if
the Oracle AIA order is doing a cancel
operation no matter the cancel is triggered
from upstream or from an OSM web client,
otherwise ORDER_OPERATION_
NORMAL is set.

$hasChildLines xs:boolean External variable True to indicate this order item has
children, otherwise false

. element() Context node The OrderLifeCycleManagement XML
fragment

Configuring Fulfillment States

Extending Order-to-Activate Cartridges 5-83

Example 5–23 is a code fragment from OracleComms_OSM_O2A_
Configuration/fulfillment-state-extension/OnOrderFulfillmentStateUpdated.xquery
that demonstrates the extension implementation.

Example 5–23 ORDER_FULFILLMENT_STATE_UPDATED XQuery Code Fragment

import module namespace o2acomfulfillmentstate =
"http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/co
nstant" at
"http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/co
nstant/FulfillmentStateConstantModule.xquery";
declare namespace fulfillmeneStateConstant =
"java:oracle.communications.ordermanagement.fulfillmentstatelifecycle.FulfillmeneS
tateConstant";

declare variable $fulfillmentMode as xs:string external;
declare variable $fulfillmentState as xs:string external;
declare variable $fulfillmentState as xs:string external;
declare variable $orderOperationType as xs:string external;
declare variable $hasChildLines as xs:string external;

declare variable $ORDER_EVENT_CANCELLED := fulfillmeneStateConstant:ORDER_EVENT_
CANCELLED();
declare variable $ORDER_EVENT_UPDATE := fulfillmeneStateConstant:ORDER_EVENT_
UPDATE();
declare variable $ORDER_EVENT_COMPLETE := fulfillmeneStateConstant:ORDER_EVENT_
COMPLETE();
declare variable $ORDER_OPERATION_NORMAL := fulfillmeneStateConstant:ORDER_
OPERATION_NORMAL();
declare variable $ORDER_OPERATION_CANCEL := fulfillmeneStateConstant:ORDER_
OPERATION_CANCEL();
declare variable $HAS_CHILDS := fulfillmeneStateConstant:HAS_CHILDS();

let $calculatedFulfillmentState :=
 if ($hasChildLines != $HAS_CHILDS)
 then
 (
 (: No child lines detected :)
 if ($orderEventType = $ORDER_EVENT_UPDATE)
 then $o2acomfulfillmentstate:IN_PROGRESS_STATE
 else if ($orderEventType = $ORDER_EVENT_COMPLETE)
 then
 (
 (: This is an order complete event,
 : if this is a normal order completion, the status is complete.
 : if this is a cancel order completion, the status is canceled.
 :)
 if ($orderOperationType = $ORDER_OPERATION_NORMAL)
 then $o2acomfulfillmentstate:COMPLETE_STATE
 else $o2acomfulfillmentstate:CANCELLED_STATE
)
 else $o2acomfulfillmentstate:CANCELLED_STATE
)
 else if($fulfillmentState = ($o2acomfulfillmentstate:COMPLETE_STATE,

Table 5–57 ORDER_FULFILLMENT_STATE_UPDATED Return Parameters

Output Parameter Type Description

xs:string Calculated fulfillment state for the order

Configuring Fulfillment States

5-84 OSM Cartridge Guide for Oracle Application Integration Architecture

$o2acomfulfillmentstate:CANCELLED_STATE))
 then
 (
 (: Children line exist and all completed or cancelled
 : However if the event is not an order complete or cancelled even than
need
 : to switch the status back to in progress
 :)
 if ($orderEventType != $ORDER_EVENT_COMPLETE and $orderEventType !=
$ORDER_EVENT_CANCELLED)
 then $o2acomfulfillmentstate:IN_PROGRESS_STATE
 else $fulfillmentState
)
 else
 (
 if ($orderEventType = $ORDER_EVENT_COMPLETE)
 then
 (
 if ($orderOperationType = $ORDER_OPERATION_CANCEL)
 then
 (
 (: An OSM order get cancelled by AIA or Admin then always set the
order status to cancelled :)
 $o2acomfulfillmentstate:CANCELLED_STATE
)
 else (
 (: Only set status to complete if it is not failed.
 : So OPEN and IN_PROGRESS will forced to COMPLETE but FAILED will
be remained.
 :)
 if ($fulfillmentState != $o2acomfulfillmentstate:FAILED_STATE)
 then $o2acomfulfillmentstate:COMPLETE_STATE
 else $fulfillmentState
)
)
 else $fulfillmentState
)
return
 $calculatedFulfillmentState

ORDER_STATUS Extension Point
This section describes the XQuery script that implements the logic to handle the
ORDER_STATUS extension point. This extension point generates the upstream
expected status value for the order or order item. The generated value is based on the
current composite fulfillment state value of the order or order item.

The mapping between the composite fulfillment state and the upstream status is
defined in OracleComms_OSM_O2A_
Configuration/solution-config/OrderStatusMap.xml.

Table 5–58 lists the input parameters for the extension point XQuery.

Configuring Fulfillment States

Extending Order-to-Activate Cartridges 5-85

Table 5–59 lists the return parameters for the extension point XQuery.

Example 5–24 is a code fragment from OracleComms_OSM_O2A_
Configuration/fulfillment-state-extension/OrderStatus.xquery that demonstrates the
extension implementation.

Example 5–24 ORDER_STATUS XQuery Code Fragment

import module namespace statusctxmapmodule =
"http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/st
atusctxmapmodule" at
"http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/st
atusctxmapmodule/OrderAndOrderItemStatueContextModule.xquery";

declare namespace oms="urn:com:metasolv:oms:xmlapi:1";

declare namespace fulfillmeneStateConstant =
"java:oracle.communications.ordermanagement.fulfillmentstatelifecycle.FulfillmeneS
tateConstant";

declare variable $fulfillmentMode as xs:string external;
declare variable $fulfillmentState as xs:string external;
declare variable $componentType as xs:string external;
declare variable $systemType as xs:string external;
statusctxmapmodule:getOrderStatus($fulfillmentMode, $fulfillmentState,
$componentType, $systemType)

ORDER_STATUSCONTEXT Extension Point
This section describes the XQuery script that implements the logic to handle the
ORDER_STATUSCONTEXT extension point. This extension point generates the
upstream expected description value to the status for Order. The generated value is
based on the current composite fulfillment state value of the Order.

The status context is defined in OracleComms_OSM_O2A_
Configuration/solution-config/OrderStatusContextMap.xml.

Table 5–58 ORDER_STATUS Input Parameters

Name Type Scope Description

$fulfillmentMode xs:string External variable Fulfillment mode of the sales order
(DELIVER, CANCEL, or TSQ)

$fulfillmentState xs:string External variable Current composite fulfillment state of the
order or order item

$componentType xs:string External variable Should be set to
OrderLifecycleManagement

$systemType xs:string External variable Should be set to CRM

. element() Context node OrderLifeCycleManagement/OrderItemS
tatus XML fragment if this is invoked for
an order item or
OrderLifeCycleManagement XML
fragment if this is invoked for an order

Table 5–59 ORDER_STATUS Return Parameters

Output Parameter Type Description

xs:string Calculated status value

Configuring Fulfillment States

5-86 OSM Cartridge Guide for Oracle Application Integration Architecture

Table 5–60 lists the input parameters for the extension point XQuery.

Table 5–61 lists the return parameters for the extension point XQuery.

Example 5–25 is a code fragment from OracleComms_OSM_O2A_
Configuration/fulfillment-state-extension/OrderStatusContext.xquery that
demonstrates the extension implementation.

Example 5–25 ORDER_STATUSCONTEXT XQuery Code Fragment

import module namespace statusctxmapmodule =
"http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/st
atusctxmapmodule" at
"http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/st
atusctxmapmodule/OrderAndOrderItemStatueContextModule.xquery";
import module namespace osmpiplog =
"http://xmlns.oracle.com/communications/ordermanagement/pip/omspiplog" at
"http://xmlns.oracle.com/communications/ordermanagement/pip/omspiplog/LogModule.xq
uery";
import module namespace o2acomfulfillmentstate =
"http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/co
nstant" at
"http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/co
nstant/FulfillmentStateConstantModule.xquery";

Table 5–60 ORDER_STATUSCONTEXT Input Parameters

Name Type Scope Description

$fulfillmentMode xs:string External variable Fulfillment mode of the sales order
(DELIVER, CANCEL, or TSQ)

$fulfillmentState xs:string External variable The order item’s current composite
fulfillment state

$orderEventType xs:string External variable The event type when this extension is
triggered. ORDER_EVENT_UPDATE and
ORDER_EVENT_COMPLETE. ORDER_
EVENT_UPDATE is set if this is triggered
within the fulfillment function’s
Sub-process’s automation task. ORDER_
EVENT_COMPLETE is set if this is
triggered within OSM order complete
event handler.

$orderOperationType xs:string External variable ORDER_OPERATION_CANCEL is set if
the Oracle AIA order is doing a cancel
operation no matter the cancel is triggered
from upstream or from an OSM web client,
otherwise ORDER_OPERATION_
NORMAL is set.

$doubleFailure xs:boolean External variable True to indicate this Order is in Fallout
during a revision

. element() Context node The OrderLifeCycleManagement XML
fragment

Table 5–61 ORDER_STATUSCONTEXT Return Parameters

Output Parameter Type Description

xs:string Calculated description of the current order status

Configuring Fulfillment States

Extending Order-to-Activate Cartridges 5-87

declare namespace oms="urn:com:metasolv:oms:xmlapi:1";

declare namespace fulfillmeneStateConstant =
"java:oracle.communications.ordermanagement.fulfillmentstatelifecycle.FulfillmeneS
tateConstant";

declare variable $fulfillmentMode as xs:string external;
declare variable $fulfillmentState as xs:string external;
declare variable $orderEventType as xs:string external;
declare variable $orderOperationType as xs:string external;
declare variable $doubleFailure as xs:string external;

declare variable $IS_DOUBLE_FAILURE := fulfillmeneStateConstant:DOUBLE_FAILURE_
TRUE();
declare variable $ORDER_OPERATION_CANCEL := fulfillmeneStateConstant:ORDER_
OPERATION_CANCEL();
declare variable $ORDER_EVENT_CANCELLED := fulfillmeneStateConstant:ORDER_EVENT_
CANCELLED();

declare variable $TRUE := "TRUE";
declare variable $FALSE := "FALSE";
declare variable $MODULE_NAME := "OrderStatusContext";

declare function local:hasOrderItemCancelled(
 $orderItemsFulfilmentState as element()) as xs:boolean
{

fn:exists($orderItemsFulfilmentState/oms:fulfillmentState[text()=$o2acomfulfillmen
tstate:CANCELLED_STATE])
};

declare function local:isAllOrderItemFailed(
 $orderItemsFulfilmentState as element()) as xs:boolean
{
 let $itemCount := fn:count($orderItemsFulfilmentState/oms:fulfillmentState)
 let $failCount :=
fn:count($orderItemsFulfilmentState/oms:fulfillmentState[text()=$o2acomfulfillment
state:FAILED_STATE])
 return
 if ($itemCount = $failCount)
 then fn:true()
 else fn:false()
};

let $orderItemsFulfilmentState := .
return
(
 let $statusStateInfo :=
 <oms:StatusStateInfo>
 {
 if ($fulfillmentState = $o2acomfulfillmentstate:COMPLETE_STATE)
 then
 (
 <oms:statusState>
 {
 if
(local:hasOrderItemCancelled($orderItemsFulfilmentState)=fn:true())
 then fulfillmeneStateConstant:COMPLETE_WITH_CANCELLED()
 else fulfillmeneStateConstant:COMPLETE_ALL_COMPLETE()
 }

Configuring Fulfillment States

5-88 OSM Cartridge Guide for Oracle Application Integration Architecture

 </oms:statusState>
)
 else if ($fulfillmentState = $o2acomfulfillmentstate:FAILED_STATE)
 then
 (
 <oms:statusState>
 {
 if ($orderOperationType = $ORDER_OPERATION_CANCEL or $doubleFailure
= $IS_DOUBLE_FAILURE)
 then fulfillmeneStateConstant:FAILED_REVISION_FAILED()
 else
 (
 if
(local:isAllOrderItemFailed($orderItemsFulfilmentState)=fn:true())
 then fulfillmeneStateConstant:FAILED_ALL_FAILED()
 else fulfillmeneStateConstant:FAILED_PARTIAL_FAILED()
)
 }
 </oms:statusState>
)
 else if ($fulfillmentState = $o2acomfulfillmentstate:CANCELLED_STATE)
 then
 (
 <oms:statusState>
 {
 if ($orderEventType = $ORDER_EVENT_CANCELLED)
 then fulfillmeneStateConstant:CANCELLED_BY_ADMIN()
 else fulfillmeneStateConstant:CANCELLED_BY_UPSTREAM()
 }
 </oms:statusState>,
 <oms:hasOrderItems>
 {
 if (fn:exists($orderItemsFulfilmentState/oms:fulfillmentState))
 then $TRUE
 else $FALSE
 }
 </oms:hasOrderItems>
)
 else ()
 }
 </oms:StatusStateInfo>
 return
 statusctxmapmodule:getOrderStatusContext($fulfillmentMode,
$fulfillmentState, $statusStateInfo)
)

ORDERITEM_MILESTONE Extension Point
This section describes the XQuery script that implements the logic to handle the
ORDERITEM_MILESTONE extension point. This extension point generates the
upstream expected milestone value to the order item. The implementation for this
script is to calculate the milestone value (expected by the upstream CRM system)
based on the calculated fulfillment state value and the last reported milestone. For a
fulfillment state value equal to CANCELLED, the milestone code is the last milestone
code before the cancel was applied to this order item. For other fulfillment states, the
milestone code is the current latest milestone code injected by Order-to-Activate or
reported from external system.

Also if none of the components invoked by this order item has started then if
fulfillment state value equals to CANCELLED, the milestone code is

Configuring Fulfillment States

Extending Order-to-Activate Cartridges 5-89

$o2acomfulfillmentstate:NOTSTARTED_MILESTONE, and for all other fulfillment
state value, the milestone code is $o2acomfulfillmentstate:NO_MILESTONE.

Table 5–62 lists the input parameters for the extension point XQuery.

Table 5–63 lists the return parameters for the extension point XQuery.

Example 5–26 is a code fragment from OracleComms_OSM_O2A_
Configuration/fulfillment-state-extension/OrderItemMilestone.xquery that
demonstrates the extension implementation.

Example 5–26 ORDERITEM_MILESTONE XQuery Code Fragment

import module namespace o2acomfulfillmentstate =
"http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/co
nstant" at
"http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/co
nstant/FulfillmentStateConstantModule.xquery";
import module namespace osmpiplog =
"http://xmlns.oracle.com/communications/ordermanagement/pip/omspiplog" at
"http://xmlns.oracle.com/communications/ordermanagement/pip/omspiplog/LogModule.xq
uery";

declare namespace oms="urn:com:metasolv:oms:xmlapi:1";

Table 5–62 ORDERITEM_MILESTONE Input Parameters

Name Type Scope Description

$fulfillmentMode xs:string External variable Fulfillment mode of the sales order
(DELIVER, CANCEL, or TSQ)

$fulfillmentState xs:string External variable The order item's current composite
fulfillment state.

$orderEventType xs:string External variable The event type when this extension is
triggered. ORDER_EVENT_UPDATE and
ORDER_EVENT_COMPLETE. ORDER_
EVENT_UPDATE is set if this is triggered
within the fulfillment function's
Sub-process's automation task. ORDER_
EVENT_COMPLETE is set if this is
triggered within OSM order complete
event handler.

$orderOperationType xs:string External variable ORDER_OPERATION_CANCEL is set if
the Oracle AIA order is doing a cancel
operation no matter the cancel is triggered
from upstream or from an OSM web client,
otherwise ORDER_OPERATION_
NORMAL is set.

$milestoneCode xs:string External variable The prior milestone code of the order item

$orderItemComponentfulfill
mentState

xs:string External variable The most recent fulfillment state updated
from the order component

. element() Context node The OrderLifeCycleManagement XML
fragment

Table 5–63 ORDERITEM_MILESTONE Return Parameters

Output Parameter Type Description

xs:string Calculated milestone value for the current order item

Configuring Fulfillment States

5-90 OSM Cartridge Guide for Oracle Application Integration Architecture

declare variable $fulfillmentMode as xs:string external;
declare variable $fulfillmentState as xs:string external;
declare variable $orderEventType as xs:string external;
declare variable $orderOperationType as xs:string external;

declare variable $MODULE_NAME := "OrderItemMilestone";

(:
 : Current fulfillment state is not cancelled then calculate the latest milestone
of this line for this time being.
 :)
declare function local:getLatestMilestoneFromComponents(
 $orderItemStatus as element()?) as xs:string
{
 if (fn:exists($orderItemStatus/oms:OrderItemComponentStatus))
 then
 (
 let $lookupIndex :=
fn:max($orderItemStatus/oms:OrderItemComponentStatus/oms:MilestoneStatusRecord/oms
:Status/oms:Code/@index)
 let $latestMilestoneStatusRecord :=
$orderItemStatus/oms:OrderItemComponentStatus/oms:MilestoneStatusRecord[oms:Status
/oms:Code/@index=$lookupIndex]
 return
 $latestMilestoneStatusRecord/oms:MilestoneCode/text()
)
 else $o2acomfulfillmentstate:NO_MILESTONE
};

declare function local:getLastMilestoneCodeBeforeCancel(
 $orderItemStatus as element()?) as xs:string
{
 if (fn:exists($orderItemStatus/oms:OrderItemComponentStatus))
 then
 (
 let $lookupIndex :=
fn:min($orderItemStatus/oms:OrderItemComponentStatus/oms:MilestoneStatusRecord/oms
:Status/oms:Code[text()=$o2acomfulfillmentstate:CANCELLED_STATE]/@index)
 let $cancelledMilestoneStatusRecord :=
$orderItemStatus/oms:OrderItemComponentStatus/oms:MilestoneStatusRecord[oms:Status
/oms:Code/@index=$lookupIndex]
 let $milestoneStatusRecordBeforeCancelled :=
$cancelledMilestoneStatusRecord/preceding-sibling::oms:MilestoneStatusRecord[1]
 return
 if (fn:exists($milestoneStatusRecordBeforeCancelled))
 then $milestoneStatusRecordBeforeCancelled/oms:MilestoneCode/text()
 else $o2acomfulfillmentstate:NOTSTARTED_MILESTONE
)
 else $o2acomfulfillmentstate:NOTSTARTED_MILESTONE
};

let $orderItemStatus := .
return
 if ($fulfillmentState = $o2acomfulfillmentstate:CANCELLED_STATE)
 then local:getLastMilestoneCodeBeforeCancel($orderItemStatus)
 else local:getLatestMilestoneFromComponents($orderItemStatus)

Configuring Fulfillment States

Extending Order-to-Activate Cartridges 5-91

ORDERITEM_STATUSCONTEXT Extension Point
This section describes the XQuery script that implements the logic to handle the
ORDERITEM_STATUSCONTEXT extension point. This extension point generates the
upstream expected description value to the status for order item. The generated value
is based on the current composite fulfillment state value of the order item. The
implementation for this script is to calculate the status context (Description of status)
value (expected by the upstream CRM system) based on the calculated fulfillment
state value and the current calculated milestone (The milestone code calculated by the
XQuery registered to extension ORDERITEM_MILESTONE).

For fulfillment state value equals to FAILED, the status context is the error message
map defined in OracleComms_OSM_O2A_
Configuration/solution-config/OrderMessageMap.xml.

For all other fulfillment state, the status context is the milestone code append with the
string define in OracleComms_OSM_O2A_
Configuration/solution-config/OrderItemStatusContextMap.xml

Table 5–64 lists the input parameters for the extension point XQuery.

Table 5–65 lists the return parameters for the extension point XQuery.

Example 5–27 is a code fragment from OracleComms_OSM_O2A_
Configuration/fulfillment-state-extension/OrderItemStatusContextForDeliver.xquer
y that demonstrates the extension implementation.

Table 5–64 ORDERITEM_STATUSCONTEXT Input Parameters

Name Type Scope Description

$fulfillmentMode xs:string External variable Fulfillment mode of the sales order
(DELIVER, CANCEL, or TSQ)

$fulfillmentState xs:string External variable The order item’s current composite
fulfillment state

$orderEventType xs:string External variable The event type when this extension is
triggered. ORDER_EVENT_UPDATE and
ORDER_EVENT_COMPLETE. ORDER_
EVENT_UPDATE is set if this is triggered
within the fulfillment function’s
Sub-process’s automation task. ORDER_
EVENT_COMPLETE is set if this is
triggered within OSM order complete
event handler.

$orderOperationType xs:string External variable ORDER_OPERATION_CANCEL is set if
the Oracle AIA order is doing a cancel
operation no matter the cancel is triggered
from upstream or from an OSM web client,
otherwise ORDER_OPERATION_
NORMAL is set.

$milestoneCode xs:string External variable The current milestone code of the order
item

. element() Context node The OrderLifeCycleManagement XML
fragment

Table 5–65 ORDERITEM_STATUSCONTEXT Return Parameters

Output Parameter Type Description

xs:string Calculated description of the current order item status

Configuring Fulfillment States

5-92 OSM Cartridge Guide for Oracle Application Integration Architecture

Example 5–27 ORDERITEM_STATUSCONTEXT XQuery Code Fragment

import module namespace statusctxmapmodule =
"http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/st
atusctxmapmodule" at
"http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/st
atusctxmapmodule/OrderAndOrderItemStatueContextModule.xquery";
import module namespace o2acomfulfillmentstate =
"http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/co
nstant" at
"http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/co
nstant/FulfillmentStateConstantModule.xquery";
import module namespace osmpiplog =
"http://xmlns.oracle.com/communications/ordermanagement/pip/omspiplog" at
"http://xmlns.oracle.com/communications/ordermanagement/pip/omspiplog/LogModule.xq
uery";

declare namespace oms="urn:com:metasolv:oms:xmlapi:1";

declare variable $fulfillmentMode as xs:string external;
declare variable $fulfillmentState as xs:string external;
declare variable $orderEventType as xs:string external;
declare variable $orderOperationType as xs:string external;
declare variable $milestoneCode as xs:string external;

declare variable $MODULE_NAME := "OrderItemStatusContextForDeliver";

(:
 : For DELIVER, CANCEL fulfilllmentMode order, only return the last reported
lifecycle if that is failure.
 :)
declare function local:getLatestFailedMilestoneStatusRecordsFromComponent(
 $orderItemComponentStatus as element()) as element()?
{
 let $lookupIndex :=
fn:max($orderItemComponentStatus/oms:MilestoneStatusRecord/oms:ExternalFulfillment
StateCode/@index)
 let $latestMilestoneStatusRecord :=
$orderItemComponentStatus/oms:MilestoneStatusRecord[oms:ExternalFulfillmentStateCo
de/@index=$lookupIndex]
 return
 if
($latestMilestoneStatusRecord/oms:ExternalFulfillmentStateCode/text()=$o2acomfulfi
llmentstate:FAILED_STATE)
 then
 (
 <oms:OrderItemComponentStatus>
 <oms:componentKey>{ $orderItemComponentStatus/oms:componentKey/text()
}</oms:componentKey>
 <oms:componentType>{
$orderItemComponentStatus/oms:componentType/text() }</oms:componentType>
 <oms:systemType>{ $orderItemComponentStatus/oms:systemType/text()
}</oms:systemType>
 {
 $latestMilestoneStatusRecord
 }
 </oms:OrderItemComponentStatus>
)
 else ()
};

Configuring Fulfillment States

Extending Order-to-Activate Cartridges 5-93

(:
 : Concatenate all translated error message from all components that is currently
failed.
 :)
declare function local:getStatusContextForFailedFulfillmentState(
 $orderItemStatus as element()) as xs:string
{
 if (fn:exists($orderItemStatus/oms:OrderItemComponentStatus))
 then
 (
 let $allOrderItemComponentStatus :=
$orderItemStatus/oms:OrderItemComponentStatus
 let $allFailedComponent :=
 <oms:AllFailedComponents>
 {
 for $orderItemComponentStatus in $allOrderItemComponentStatus
 return
local:getLatestFailedMilestoneStatusRecordsFromComponent($orderItemComponentStatus
)
 }
 </oms:AllFailedComponents>
 let $allFailedStatusContext :=
 <oms:AllFailedStatusContext>
 {
 for $failedComponent in
$allFailedComponent/oms:OrderItemComponentStatus
 let $failedRecord := $failedComponent/oms:MilestoneStatusRecord
 return
 if ($failedRecord/oms:Status/oms:Description/text()!="")
 then
 (
 let $errorMsg :=
statusctxmapmodule:translateErrorMessage($failedComponent/oms:componentType/text()
, $failedComponent/oms:systemType/text(),
$failedRecord/oms:Status/oms:Description/text())
 return
 <oms:context>{
fn:concat($failedRecord/oms:MilestoneCode/text(),": ", $errorMsg)}</oms:context>
)
 else ()
 }
 </oms:AllFailedStatusContext>
 return
 if (fn:exists($allFailedStatusContext/oms:context))
 then fn:string-join($allFailedStatusContext/oms:context/text(), ", ")
 else ""
)
 else ""
};

let $orderItemStatus := .
return
 if ($fulfillmentState = $o2acomfulfillmentstate:FAILED_STATE)
 then local:getStatusContextForFailedFulfillmentState($orderItemStatus)
 else statusctxmapmodule:getOrderItemStatusContext($fulfillmentMode,
$fulfillmentState, $milestoneCode)

Configuring Fulfillment States

5-94 OSM Cartridge Guide for Oracle Application Integration Architecture

REPORT_ORDERITEM_STATUS Extension Point
This section describes the XQuery script that implements the logic to handle the
REPORT_ORDERITEM_STATUS extension point. This extension point enhances the
upstream expected status value of the given order item. The enhanced value will then
be updated to order item status field.

Table 5–66 lists the input parameters for the extension point XQuery.

Table 5–67 lists the return parameters for the extension point XQuery.

REPORT_ORDERITEM_MILESTONE Extension Point
This section describes the XQuery script that implements the logic to handle the
REPORT_ORDERITEM_MILESTONE extension point. This extension point enhances
the upstream expected milestone value of the given order item. The enhanced value
will then be updated to order item milestone field.

The implementation for this script is to override the milestone value which is
generated by the XQuery registered to extension ODERITEM_MILESTONE. Due to

Table 5–66 REPORT_ORDERITEM_STATUS Input Parameters

Name Type Scope Description

$fulfillmentMode xs:string External variable Fulfillment mode of the sales order
(DELIVER, CANCEL, or TSQ)

$fulfillmentState xs:string External variable The order item’s current composite
fulfillment state

$orderEventType xs:string External variable The event type when this extension is
triggered. ORDER_EVENT_UPDATE and
ORDER_EVENT_COMPLETE. ORDER_
EVENT_UPDATE is set if this is triggered
within the fulfillment function’s
Sub-process’s automation task. ORDER_
EVENT_COMPLETE is set if this is
triggered within OSM order complete
event handler.

$orderOperationType xs:string External variable ORDER_OPERATION_CANCEL is set if
the Oracle AIA order is doing a cancel
operation no matter the cancel is triggered
from upstream or from an OSM web client,
otherwise ORDER_OPERATION_
NORMAL is set.

$orderItem Java Object External variable oracle.communications.ordermanagement.
fulfillmentstatelifecycle.OrderItemFulfillm
entStateLifecycle

. element() Context node The OrderLifeCycleManagement XML
fragment

Table 5–67 REPORT_ORDERITEM_STATUS Return Parameters

Output Parameter Type Description

xs:string The decorated status value of this order item.

Note: This extension point is not used in current Order-to-Activate
implementation.

Configuring Fulfillment States

Extending Order-to-Activate Cartridges 5-95

Oracle AIA requirements, if the order item's fulfillment state is cancelled then the
milestone value set to upstream must be empty.

Table 5–68 lists the input parameters for the extension point XQuery.

Table 5–69 lists the return parameters for the extension point XQuery.

Example 5–28 is a code fragment from OracleComms_OSM_O2A_
Configuration/fulfillment-state-extension/OnReportMilestoneDeliver.xquery that
demonstrates the extension implementation.

Example 5–28 REPORT_ORDERITEM_MILESTONE XQuery Code Fragment

import module namespace o2acomfulfillmentstate =
"http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/co
nstant" at
"http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/co
nstant/FulfillmentStateConstantModule.xquery";

declare namespace orderitem =
"java:oracle.communications.ordermanagement.fulfillmentstatelifecycle.OrderItemFul
fillmentStateLifecycle";

declare variable $fulfillmentMode as xs:string external;
declare variable $fulfillmentState as xs:string external;

Table 5–68 REPORT_ORDERITEM_MILESTONE Input Parameters

Name Type Scope Description

$fulfillmentMode xs:string External variable Fulfillment mode of the sales order
(DELIVER, CANCEL, or TSQ)

$fulfillmentState xs:string External variable The order item’s current composite
fulfillment state

$orderEventType xs:string External variable The event type when this extension is
triggered. ORDER_EVENT_UPDATE and
ORDER_EVENT_COMPLETE. ORDER_
EVENT_UPDATE is set if this is triggered
within the fulfillment function’s
Sub-process’s automation task. ORDER_
EVENT_COMPLETE is set if this is
triggered within OSM order complete
event handler.

$orderOperationType xs:string External variable ORDER_OPERATION_CANCEL is set if
the Oracle AIA order is doing a cancel
operation no matter the cancel is triggered
from upstream or from an OSM web client,
otherwise ORDER_OPERATION_
NORMAL is set.

$orderItem Java Object External variable oracle.communications.ordermanagement.
fulfillmentstatelifecycle.OrderItemFulfillm
entStateLifecycle

. element() Context node The OrderLifeCycleManagement XML
fragment

Table 5–69 REPORT_ORDERITEM_MILESTONE Return Parameters

Output Parameter Type Description

xs:string The decorated milestone value of this order item.

Configuring Fulfillment States

5-96 OSM Cartridge Guide for Oracle Application Integration Architecture

declare variable $orderEventType as xs:string external;
declare variable $orderOperationType as xs:string external;
declare variable $orderItem external;

let $fulfillmentState := orderitem:getFulfillmentState($orderItem)
return
 if ($fulfillmentState = $o2acomfulfillmentstate:CANCELLED_STATE)
 then ""
 else orderitem:getLatestMilestoneCode($orderItem)

REPORT_ORDERITEM_STATUSCONTEXT Extension Point
This section describes the XQuery script that implements the logic to handle the
REPORT_ORDERITEM_STATUSCONTEXT extension point. This extension point
enhances the upstream expected status context (Description) value of the given order
item. The decorated value will then be updated to order item status context field.

The implementation for this script is to decorate the status context value which is
generated by the XQuery registered to extension ORDERITEM_STATUSCONTEXT.

For DELIVER and CANCEL, if an order item's fulfillment state is FAILED and if the
failure is not by the order item itself (Not fail due to its invoking component) then
populate a message to indicate the failure is caused by its children, otherwise
concatenate the milestone value and the status context value.

Table 5–70 lists the input parameters for the extension point XQuery.

Table 5–71 lists the return parameters for the extension point XQuery.

Table 5–70 REPORT_ORDERITEM_STATUSCONTEXT Input Parameters

Name Type Scope Description

$fulfillmentMode xs:string External variable Fulfillment mode of the sales order
(DELIVER, CANCEL, or TSQ)

$fulfillmentState xs:string External variable The order item's current composite
fulfillment state

$orderEventType xs:string External variable The event type when this extension is
triggered. ORDER_EVENT_UPDATE and
ORDER_EVENT_COMPLETE. ORDER_
EVENT_UPDATE is set if this is triggered
within the fulfillment function's
Sub-process's automation task. ORDER_
EVENT_COMPLETE is set if this is
triggered within OSM order complete
event handler.

$orderOperationType xs:string External variable ORDER_OPERATION_CANCEL is set if
the Oracle AIA order is doing a cancel
operation no matter the cancel is triggered
from upstream or from an OSM web client,
otherwise ORDER_OPERATION_
NORMAL is set.

$orderItem Java Object External variable oracle.communications.ordermanagement.
fulfillmentstatelifecycle.OrderItemFulfillm
entStateLifecycle

. element() Context node The OrderLifeCycleManagement XML
fragment

Adding a New Service for the Calculate Service Order Solution Option

Extending Order-to-Activate Cartridges 5-97

Example 5–29 is a code fragment from OracleComms_OSM_O2A_
Configuration/fulfillment-state-extension/OnReportStatusContextForDeliver.xquer
y that demonstrates the extension implementation.

Example 5–29 REPORT_ORDERITEM_STATUSCONTEXT XQuery Code Fragment

import module namespace o2acomfulfillmentstate =
"http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/co
nstant" at
"http://xmlns.oracle.com/communications/ordermanagement/o2acom/fulfillmentstate/co
nstant/FulfillmentStateConstantModule.xquery";

declare namespace orderItem =
"java:oracle.communications.ordermanagement.fulfillmentstatelifecycle.OrderItemFul
fillmentStateLifecycle";

declare variable $fulfillmentMode as xs:string external;
declare variable $fulfillmentState as xs:string external;
declare variable $orderEventType as xs:string external;
declare variable $orderOperationType as xs:string external;
declare variable $orderItem external;

let $fulfillmentState := orderItem:getFulfillmentState($orderItem)
let $milestone := orderItem:getLatestMilestoneCode($orderItem)
let $statusContext := orderItem:getStatusContext($orderItem)
return
 if ($fulfillmentState = ($o2acomfulfillmentstate:FAILED_STATE,
$o2acomfulfillmentstate:CANCELLED_STATE))
 then $statusContext
 else
 (
 if (fn:exists($milestone) and fn:exists($statusContext) and $milestone !=
"" and $statusContext != "")
 then fn:concat($milestone, ": ", $statusContext)
 else ""
)

Adding a New Service for the Calculate Service Order Solution Option
This procedure describes how to add a new service such as broadband, VoIP, or TV to
an Order-to-Activate solution cartridge when you are using the calculate service order
option. In this example, the new service would work with new Design Studio elements
such as a new product specification, fulfillment pattern, and fulfillment provider. The
procedure uses techniques and resources discussed throughout this chapter. For more
information about performing the actions in this procedure in Design Studio, see the
information about adding a new service in the section on extending component
cartridges in the Design Studio Modeling OSM Orchestration Help.

To add a new service using Design Studio:

1. In the workspace containing the central order management cartridges, create a
new model project to contain the conceptual model entities for your new service.

Table 5–71 REPORT_ORDERITEM_STATUSCONTEXT Return Parameters

Output Parameter Type Description

xs:string The decorated status context value of this order item

Adding a New Service for the Calculate Service Order Solution Option

5-98 OSM Cartridge Guide for Oracle Application Integration Architecture

2. Configure new conceptual model entities as appropriate for the service you are
adding. This may include adding a new domain or fulfillment pattern or both, and
will include adding a new customer facing service (with a component to create a
new named relationship) and adding a new product. For more information about
the conceptual model, see Design Studio Concepts.

3. Map your conceptual model product to the appropriate conceptual model
fulfillment pattern.

4. In the workspace containing the central order management cartridges, create a
new Order and Service Management project to host the new service.

5. In the Order and Service Management Project editor Properties tab, deselect the
Standalone check box.

This allows the cartridge to be referenced in the composite cartridge as part of the
solution, rather than as a standalone cartridge with no dependencies.

6. If the new service will communicate with one or more new external systems,
create new fulfillment providers for the new systems.

See "Adding a New Fulfillment Provider" for more information about adding a
fulfillment provider.

7. If a new fulfillment provider is introduced for the new service, add decomposition
rules for the new service in the topology cartridge, for example OracleComms_
OSM_O2A_COM_CSO_Topology.

Alternatively, modify existing decomposition rules such as, for example,
DecompFulfillmentFunction_To_FulfillmentProvider for the new service in the
topology cartridge.

8. In the resources/SolutionConfig folder of the Order-to-Activate composite
cartridge, for example OracleComms_OSM_O2A_COM_CSO_Topology, make the
following modifications:

■ If new milestones are to be introduced for the new service for new fulfillment
provider, add a new <MilestoneMap> element to the
ComponentMilestoneMap.xml file for the new service without the PONR
portion.

For example:

<oms:MilestoneMap systemType="BRM" systemName="*" execMode="do redo amend_
do">
 <oms:ComponentMilestone>COMPONENT-COMPLETE</oms:ComponentMilestone>
 <oms:Milestone>SYNC CUSTOMER COMPLETE</oms:Milestone>
</oms:MilestoneMap>

Note: If you create a new conceptual model cartridge to contain your
new conceptual model entities, you must add that cartridge in the
Common Model Entity Container field in an appropriate cartridge.
For the Calculate Service Order solution option, add the cartridge to
the OracleComms_OSM_O2A_COM_CSO_Model_Container
cartridge for a central order management (or combined central order
management and service order management) environment, or to
OracleComms_OSM_O2A_SOM_CSO_ModelContainer for an
environment that contains only service order management.

Adding a New Service for the Calculate Service Order Solution Option

Extending Order-to-Activate Cartridges 5-99

■ If a new fulfillment provider is added for the new service, add a new
<targetSystem> element for each new fulfillment provider instance to the
TargetSystemMap.xml file.

9. If you are using order transformation manager for your new service, do the
following:

a. If you added a new conceptual model domain for your service, add a
transformation manager for the domain.

b. If you want to use a different transformation sequence than the one provided
with the Order-to-Activate cartridges, add and configure that transformation
sequence.

c. Create a mapping rule and create mappings for your new named relationship.

10. Create order item parameter bindings from your new conceptual model product to
the appropriate order item.

11. Add a new OSM fulfillment pattern that extends from the base specification
BaseProductSpec (or its extended fulfillment pattern) to represent the new service
in central order management. Ensure that your new fulfillment pattern realizes the
appropriate conceptual model fulfillment pattern.

See "Creating a New Fulfillment Pattern" for more information about adding a
fulfillment pattern.

12. Specify the location of the external directory containing the fulfillment pattern.
From the Window menu, select Preferences, then expand Oracle Design Studio in
the Preferences navigation tree, then select Order and Service Management
Preferences, and then select Orchestration Preferences. Enter the
YourCartridge/resources/productSpecMapping directory in the Product
Specification Mapping field.

13. Add the new central order management cartridge you created for the new service
and other cartridges on which it has dependencies to the Dependency tab for the
Order-to-Activate composite cartridge, for example OracleComms_OSM_O2A_
COM_CSO_Solution.

14. In the workspace containing the service order management cartridges, create new
conceptual model entities for the service order management services. These
should include:

■ All of the entities created for central order management: If central order
management and service order management are in separate workspaces, you
may want to export the cartridge containing the new central order
management entities from the central order management workspace and
import it into the service order management workspace.

■ Additional entities for service order management: These may include resource
facing services, resources, and technical actions.

For more information about the conceptual model, see Design Studio Concepts

15. In the workspace containing the service order management cartridges, in the
OracleComms_OSM_O2A_SOM_CSO_FulfillmentPattern cartridge, add a new
fulfillment pattern that extends from the base specification SOM_
Service.Provision (or its extended fulfillment pattern) to represent the new service
in service order management.

See "Creating a New Fulfillment Pattern" for more information about adding a
fulfillment pattern.

Adding a New Service for the Service Option Without Calculate Service Order

5-100 OSM Cartridge Guide for Oracle Application Integration Architecture

16. Add decomposition rules for the new service in the OracleComms_OSM_O2A_
SOM_CSO_Topology cartridge for service order management.

Alternatively, modify existing decomposition rules such as
DecompSomProvisionOrder_To_FulfillmentProvider for the new service in the
topology cartridge.

17. If the new service will communicate with one or more new external systems,
create a new provisioning cartridge similar to OracleComms_OSM_O2A_SOM_
CSO_Email_Mapping to provision the service.

18. Add the cartridge you created for the new service and other cartridges on which it
has dependencies to the Dependency tab for the Order-to-Activate composite
cartridge.

19. (Optional) In the appropriate workspace, add a new role for your service if
desired. If you add a new role, you must add an entry to the userConfig.xml file
for your composite cartridge by doing the following:

a. Open the Package Explorer view and expand the package for your solution
cartridge, such as OracleComms_OSM_O2A_COM_CSO_Solution.

b. Expand the userConfig folder and open the userConfig.xml file.

c. Select the Source tab and scroll to the end. Before the closing the
</userConfig> element, add an entry like the following:

<workgroup name="YourRoleName">
 <user>oms-automation</user>
 <user>osmlf</user>
</workgroup>

20. Ensure that the appropriate orders, fulfillment patterns, and recognition rules are
included in the manifest for the central order management solution cartridge.

21. Ensure that the appropriate orders, fulfillment patterns, and recognition rules are
included in the manifest for the service order management solution cartridge.

22. Package and deploy the Order-to-Activate composite cartridges for both central
order management and service order management.

Adding a New Service for the Service Option Without Calculate Service
Order

This procedure describes how to add a new service such as broadband, VoIP, or TV to
an Order-to-Activate solution cartridge when you are not using the calculate service
order option. In this example, the new service would work with new Design Studio
elements such as a new product specification, fulfillment pattern, and fulfillment
provider. The procedure uses techniques and resources discussed throughout this
chapter. For more information about performing the actions in this procedure in
Design Studio, see the information about adding a new service in the section on
extending component cartridges in the Design Studio Modeling OSM Orchestration
Help.

To add a new service using Design Studio:

1. In the workspace containing the central order management cartridges, create a
new model project to contain the conceptual model entities for your new service.

Adding a New Service for the Service Option Without Calculate Service Order

Extending Order-to-Activate Cartridges 5-101

2. Configure new conceptual model entities as appropriate for the service you are
adding. This may include adding a new domain or fulfillment pattern or both, and
will include adding a new customer facing service (with a component to create a
new named relationship) and adding a new product. For more information about
the conceptual model, see Design Studio Concepts.

3. Map your conceptual model product to the appropriate conceptual model
fulfillment pattern.

4. In the workspace containing the central order management cartridges, create a
new Order and Service Management project to host the new service.

5. In the Order and Service Management Project editor Properties tab, deselect the
Standalone check box.

This allows the cartridge to be referenced in the composite cartridge as part of the
solution, rather than as a standalone cartridge with no dependencies.

6. If the new service will communicate with one or more new external systems,
create new fulfillment providers for the new systems.

See "Adding a New Fulfillment Provider" for more information about adding a
fulfillment provider.

7. If a new fulfillment provider is introduced for the new service, add decomposition
rules for the new service in the topology cartridge, for example, OracleComms_
OSM_O2A_TypicalTopology_Sample cartridge for central order management.

Alternatively, modify existing decomposition rules such as, for example,
DecompFulfillmentFunction_To_FulfillmentProvider for the new service in the
topology cartridge.

8. In the resources/SolutionConfig folder of the Order-to-Activate composite
cartridge, for example OracleComms_OSM_O2A_COMSOM_TypicalSolution,
make the following modifications:

■ If new milestones are to be introduced for the new service for new fulfillment
provider, add a new <MilestoneMap> entry to the
ComponentMilestoneMap.xml file for the new service without the PONR
portion.

For example:

 <oms:MilestoneMap systemType="BRM" systemName="*" execMode="do redo
amend_do">

<oms:ComponentMilestone>COMPONENT-COMPLETE</oms:ComponentMilestone>
 <oms:Milestone>SYNC CUSTOMER COMPLETE</oms:Milestone>
 </oms:MilestoneMap>

■ If a new fulfillment provider is added for the new service, add a new
<targetSystem> entry for each new fulfillment provider instance to the
TargetSystemMap.xml file.

Note: If you create a new conceptual model cartridge to contain your
new conceptual model entities, you must add that cartridge in the
Common Model Entity Container field in an appropriate cartridge.
For the solution option without Calculate Service Order, add the
cartridge to the recognition cartridge in your environment or create a
new OSM component cartridge to contain the entries.

Adding a New Service for the Service Option Without Calculate Service Order

5-102 OSM Cartridge Guide for Oracle Application Integration Architecture

9. Create order item parameter bindings from your new conceptual model product to
the appropriate order item.

10. Add a new OSM fulfillment pattern that extends from the base specification
BaseProductSpec (or its extended fulfillment pattern) to represent the new service
in central order management. Ensure that your new fulfillment pattern realizes the
appropriate conceptual model fulfillment pattern.

See "Creating a New Fulfillment Pattern" for more information about adding a
fulfillment pattern.

11. Specify the location of the external directory containing the fulfillment pattern.
From the Window menu, select Preferences, then expand Oracle Design Studio in
the Preferences navigation tree, then select Order and Service Management
Preferences, and then select Orchestration Preferences. Enter the appropriate
directory, for example, OracleComms_OSM_O2A_FulfillmentPatternMap_
Sample/resources/productSpecMapping, in the Product Specification Mapping
field.

12. Add the new central order management cartridge you created for the new service
and other cartridges on which it has dependencies to the Dependency tab for the
Order-to-Activate composite cartridge, for example OracleComms_OSM_O2A_
COMSOM_TypicalSolution.

13. In the workspace containing the service order management cartridges, create new
conceptual model entities for the service order management services. These
should include:

■ All of the entities created for central order management: If central order
management and service order management are in separate workspaces, you
may want to export the cartridge containing the new central order
management entities from the central order management workspace and
import it into the service order management workspace.

■ Additional entities for service order management: These may include resource
facing services, resources, and technical actions.

For more information about the conceptual model, see Design Studio Concepts

14. In the workspace containing the service order management cartridges, in the
fulfillment pattern cartridge for service order management (for example
OracleComms_OSM_O2A_SomBBVoIP_FP_NP_Sample), add a new fulfillment
pattern that extends from the base specification SOM_Service.Provision (or its
extended fulfillment pattern) to represent the new service in service order
management.

See "Creating a New Fulfillment Pattern" for more information about adding a
fulfillment pattern.

15. Add decomposition rules for the new service in the OracleComms_OSM_O2A_
SomBBVoIPFulfillmentPattern_Sample cartridge for service order management.

Alternatively, modify existing decomposition rules such as
DecompSomProvisionOrder_To_FulfillmentProvider for the new service in the
topology cartridge.

16. If the new service will communicate with one or more new external systems,
create a new provisioning cartridge similar to OracleComms_OSM_O2A_
SomProvisionVoIP_Sample to provision the service.

Customizing Service Order Management

Extending Order-to-Activate Cartridges 5-103

17. Add the cartridge you created for the new service and other cartridges on which it
has dependencies to the Dependency tab for the Order-to-Activate composite
cartridge.

18. (Optional) In the appropriate workspace, add a new role for your service if
desired. If you add a new role, you must add an entry to the userConfig.xml file
for your composite cartridge by doing the following:

a. Open the Package Explorer view and expand the package for your solution
cartridge, such as OracleComms_OSM_O2A_COMSOM_TypicalSolution.

b. Expand the userConfig folder and open the userConfig.xml file.

c. Select the Source tab and scroll to the end. Before the closing </userConfig>
element, add an entry like the following:

<workgroup name="YourRoleName">
 <user>oms-automation</user>
 <user>osmlf</user>
</workgroup>

19. Ensure that the appropriate orders, fulfillment patterns, and recognition rules are
included in the manifest for the central order management solution cartridge.

20. Ensure that the appropriate orders, fulfillment patterns, and recognition rules are
included in the manifest for the service order management solution cartridge.

21. Package and deploy the Order-to-Activate composite cartridges for both central
order management and service order management.

Customizing Service Order Management
The Order-to-Activate cartridges use XQuery resources to perform functions in service
order management including formatting request messages, processing faults, tracking
external system interactions, and processing external fulfillment states. One way to
customize XQueries is to rewrite or add to the out-of-box XQuery module and use the
XML catalog to enable URI reference mapping. Extension points are defined for both
service order management and central order management. This section contains
information about the service order management extension points. For information
about the central order management extension points, see "Fulfillment Function
Extension Point Interface" and "Fulfillment State Extension Point Interface."

XML catalogs are system-wide entities, which means an XML Catalog specified in one
cartridge will be used when processing requests for orders on other cartridges. With
the use of solution cartridges, multiple solutions can be deployed to a single system
and coexist with each other.

An XQuery extension script must be implemented in a standalone file. The file URI
must be registered to the extension configuration.

Service Order Management Extension Point Overview
Table 5–72 lists the XQuery extension points for the service order management
Order-to-Activate cartridges.

Customizing Service Order Management

5-104 OSM Cartridge Guide for Oracle Application Integration Architecture

When you customize service order management, you can create an
ExtensionPointMap entry for each applicable extension point (such as creating a SOAP
request) in the resources\SolutionConfig\SomComponenExtensionPointMap.xml
of the Order-to-Activate composite cartridge. You must create a separate XQuery file
for each extension point.

SOM-CREATE-SOAP-REQUEST Extension Point
This section describes the XQuery script that implements the logic to handle the
SOM-CREATE-SOAP-REQUEST extension point.

Table 5–73 lists the input parameters for the extension point XQuery.

Table 5–72 Service Order Management Extension Points

Service Order Management
Extension Point Description

SOM-CREATE-SOAP-REQUEST SOM-CREATE-SOAP-REQUEST at the order level is triggered when the
OSM fulfillment state engine finishes evaluating the composite fulfillment
state for the order. This extension point provides order status to the
upstream system.

ORDER_STATUS at the order item level is triggered when the OSM
fulfillment state engine finishes evaluating the composite fulfillment state
for an order item. This extension point provides order item status to the
upstream system.

SOM-DETECT-FAULT SOM-DETECT-FAULT is triggered when the OSM fulfillment state engine
finishes evaluation of the composite fulfillment state for the order. This
extension point provides order status context to the upstream system.

SOM-GET-FAULT-DATA SOM-GET-FAULT-DATA is triggered when the OSM fulfillment state
engine finishes evaluating the composite fulfillment state for an order
item. This extension point provides order item status context to the
upstream system.

SOM-CHECK-IS-LAST-RESPONSE SOM-CHECK-IS-LAST-RESPONSE is triggered when the OSM fulfillment
state engine finishes evaluating the composite fulfillment state for an
order item. This extension point calculates the order item milestone,
taking order cancellation into consideration.

SOM-GET-UPDATE-DATA SOM-GET-UPDATE-DATA is triggered when the OSM fulfillment state
engine finishes evaluating the composite fulfillment state for an order.
This extension point overrides the default evaluation of the order
composite fulfillment state modeled in COM_OrderStateCompositionRule
to support an order with no order items (order items had been dropped
during revision), and to support the completion of a cancellation order.

SOM-GET-EXTERNAL-FULFILLME
NT-STATE

SOM-GET-EXTERNAL-FULFILLMENT-STATE is triggered when the
OSM fulfillment state engine finishes evaluating the composite fulfillment
state for an order item. This extension point overrides the default
evaluation of the order item composite fulfillment state modeled in COM_
OrderItemStateCompositionRule to support an order with no order items
(order items had been dropped during revision), and to support the
completion of a cancellation order.

SOM-GET-EXTERNAL-FULFILLME
NT-STATE-AT-FALLOUT

SOM-GET-EXTERNAL-FULFILLMENT-STATE-AT-FALLOUT is triggered
when the OSM fulfillment state engine finishes calculating the composite
fulfillment state for an order item. This extension point is not currently
being used in the Order-to-Activate cartridges.

SOM-GET-NEW-CORRELATION-ID SOM-GET-NEW-CORRELATION-ID is triggered when the OSM
fulfillment state engine finishes evaluating the composite fulfillment state
for an order item. This extension point overrides the default milestone
when handling a cancellation order.

Customizing Service Order Management

Extending Order-to-Activate Cartridges 5-105

Table 5–74 lists the return parameters for the extension point XQuery.

SOM-DETECT-FAULT Extension Point
This section describes the XQuery script that implements the logic to handle the
SOM-DETECT-FAULT extension point.

Table 5–75 lists the input parameters for the extension point XQuery.

Table 5–76 lists the return parameters for the extension point XQuery.

Table 5–73 SOM-CREATE-SOAP-REQUEST Input Parameters

Name Type Scope Description

$log Java Object External variable Java type
org.apache.commons.logging.Log

Logging level related to server log

$context Java Object External variable Java type
com.mslv.oms.automation.OrderContext

Context of the request

$executionMode xs:string External variable Task execution mode

$breakpointDebugControl element() External variable Debug control XML fragment

$componentName xs:string External variable Fulfillment function name

$taskName xs:string External variable Task name

Table 5–74 SOM-CREATE-SOAP-REQUEST Return Parameters

Output Parameter Type Description

element()* Return XML message/payload to be sent to the external system. The external
system properties (for example, JMS) must be set by the extension point.

Table 5–75 SOM-DETECT-FAULT Input Parameters

Name Type Scope Description

$log Java Object External variable Java type
org.apache.commons.logging.Log

Logging level related to server log

$taskInputData element() External variable Task data XML fragment

$executionMode xs:string External variable Task execution mode

$breakpointDebugControl element() External variable Debug control XML fragment

$componentName xs:string External variable Fulfillment function name

$taskName xs:string External variable Task name

. Context
node

Context node Response message XML fragment

Customizing Service Order Management

5-106 OSM Cartridge Guide for Oracle Application Integration Architecture

SOM-GET-FAULT-DATA Extension Point
This section describes the XQuery script that implements the logic to handle the
SOM-GET-FAULT-DATA extension point.

Table 5–77 lists the input parameters for the extension point XQuery.

Table 5–78 lists the return parameters for the extension point XQuery.

SOM-CHECK-IS-LAST-RESPONSE Extension Point
This section describes the XQuery script that implements the logic to handle the
SOM-CHECK-IS-LAST-RESPONSE extension point.

Table 5–79 lists the input parameters for the extension point XQuery.

Table 5–76 SOM-DETECT-FAULT Return Parameters

Output Parameter Type Description

element() Return an XML fragment in the following format if a fault is detected:

<oms:FaultCnt><oms:Fault></oms:Fault></oms:FaultCnt>

Return an XML fragment in the following format if a fault is not detected:

<oms:FaultCnt></oms:FaultCnt>

Table 5–77 SOM-GET-FAULT-DATA Input Parameters

Name Type Scope Description

$log Java Object External variable Java type
org.apache.commons.logging.Log

Logging level related to server log

$taskInputData element() External variable Task data XML fragment

$executionMode xs:string External variable Task execution mode

$breakpointDebugControl element() External variable Debug control XML fragment

$componentName xs:string External variable Fulfillment function name

$taskName xs:string External variable Task name

. Context
node

Context node Response message XML fragment

Table 5–78 SOM-GET-FAULT-DATA Return Parameters

Output Parameter Type Description

element() Extract, transform, and return fault data from the response message into
OrderDataUpdate.

Table 5–79 SOM-CHECK-IS-LAST-RESPONSE Input Parameters

Name Type Scope Description

$log Java Object External variable Java type
org.apache.commons.logging.Log

Logging level related to server log

$taskInputData element() External variable Task data XML fragment

$executionMode xs:string External variable Task execution mode

Customizing Service Order Management

Extending Order-to-Activate Cartridges 5-107

Table 5–80 lists the return parameters for the extension point XQuery.

SOM-GET-UPDATE-DATA Extension Point
This section describes the XQuery script that implements the logic to handle the
SOM-GET-UPDATE-DATA extension point.

Table 5–81 lists the input parameters for the extension point XQuery.

Table 5–82 lists the return parameters for the extension point XQuery.

SOM-GET-EXTERNAL-FULFILLMENT-STATE Extension Point
This section describes the XQuery script that implements the logic to handle the
SOM-GET-EXTERNAL-FULFILLMENT-STATE extension point.

$breakpointDebugControl element() External variable Debug control XML fragment

$componentName xs:string External variable Fulfillment function name

$taskName xs:string External variable Task name

. Context
node

Context node Response message XML fragment

Table 5–80 SOM-CHECK-IS-LAST-RESPONSE Return Parameters

Output Parameter Type Description

element() Return an XML fragment in the following format if this is the last response:

<oms:IsLastResponseCnt><oms:LastResponse/></oms:IsLastResponseCnt>

Return an XML fragment in the following format if this is not the last response:

<oms:IsLastResponseCnt/>

Table 5–81 SOM-GET-UPDATE-DATA Input Parameters

Name Type Scope Description

$log Java Object External variable Java type
org.apache.commons.logging.Log

Logging level related to server log

$taskInputData element() External variable Task data XML fragment

$executionMode xs:string External variable Task execution mode

$breakpointDebugControl element() External variable Debug control XML fragment

$componentName xs:string External variable Fulfillment function name

$taskName xs:string External variable Task name

. Context
node

Context node Response message XML fragment

Table 5–82 SOM-GET-UPDATE-DATA Return Parameters

Output Parameter Type Description

element() Extract and transform order data from the response message into
OrderDataUpdate.

Table 5–79 (Cont.) SOM-CHECK-IS-LAST-RESPONSE Input Parameters

Name Type Scope Description

Customizing Service Order Management

5-108 OSM Cartridge Guide for Oracle Application Integration Architecture

Table 5–83 lists the input parameters for the extension point XQuery.

Table 5–84 lists the return parameters for the extension point XQuery.

SOM-GET-EXTERNAL-FULFILLMENT-STATE-AT-FALLOUT Extension Point
This section describes the XQuery script that implements the logic to handle the
SOM-GET-EXTERNAL-FULFILLMENT-STATE-AT-FALLOUT extension point.

Table 5–85 lists the input parameters for the extension point XQuery.

Table 5–83 SOM-GET-EXTERNAL-FULFILLMENT-STATE Input Parameters

Name Type Scope Description

$log Java Object External variable Java type
org.apache.commons.logging.Log

Logging level related to server log

$taskInputData element() External variable Task data XML fragment

$executionMode xs:string External variable Task execution mode

$breakpointDebugControl element() External variable Debug control XML fragment

$componentName xs:string External variable Fulfillment function name

$taskName xs:string External variable Task name

. Context
node

Context node Response message XML fragment

Table 5–84 SOM-GET-EXTERNAL-FULFILLMENT-STATE Return Parameters

Output Parameter Type Description

element() Return an XML fragment in the following format to pass back the state value
that applies to all order items:

<oms:ExternalFulfillmentStateCnt>

 <oms:ComponentFulfillmentState>$StateValue

 </oms:ComponentFulfillmentState>

</oms:ExternalFulfillmentStateCnt>

Return an XML fragment in the following format to pass back the state value for
individual order items:

<oms:ExternalFulfillmentStateCnt>

 <oms:lineItem index="123456">

 <oms:baseLineId>baseLineId</oms:baseLineId>

 <oms:milestoneCode>Milestone</oms:milestoneCode>

 <oms:statusCode>Status</oms:statusCode>

 <oms:statusContext>Description</oms:statusContext>

 <oms:lineType>LINE_TYPE_NONCSO</oms:lineType>

 </oms:lineItem>

</oms:ExternalFulfillmentStateCnt>

Customizing Service Order Management

Extending Order-to-Activate Cartridges 5-109

Table 5–86 lists the return parameters for the extension point XQuery.

SOM-GET-NEW-CORRELATION-ID Extension Point
This section describes the XQuery script that implements the logic to handle the
SOM-GET-NEW-CORRELATION-ID extension point.

Table 5–87 lists the input parameters for the extension point XQuery.

Table 5–85 SOM-GET-EXTERNAL-FULFILLMENT-STATE-AT-FALLOUT Input Parameters

Name Type Scope Description

$log Java Object External variable Java type
org.apache.commons.logging.Log

Logging level related to server log

$taskInputData element() External variable Task data XML fragment

$executionMode xs:string External variable Task execution mode

$breakpointDebugControl element() External variable Debug control XML fragment

$componentName xs:string External variable Fulfillment function name

$taskName xs:string External variable Task name

. Context
node

Context node Response message XML fragment

Table 5–86 SOM-GET-EXTERNAL-FULFILLMENT-STATE-AT-FALLOUT Return Parameters

Output Parameter Type Description

element() Return an XML fragment in the following format to pass back the state value
that applies to all order items:

<oms:ExternalFulfillmentStateCnt>

 <oms:ComponentFulfillmentState>$StateValue

 </oms:ComponentFulfillmentState>

</oms:ExternalFulfillmentStateCnt>

Return an XML fragment in the following format to pass back the state value for
individual order items:

<oms:ExternalFulfillmentStateCnt>

 <oms:lineItem index="123456">

 <oms:baseLineId>baseLineId</oms:baseLineId>

 <oms:milestoneCode>Milestone</oms:milestoneCode>

 <oms:statusCode>Status</oms:statusCode>

 <oms:statusContext>Description</oms:statusContext>

 <oms:lineType>LINE_TYPE_NONCSO</oms:lineType>

 </oms:lineItem>

</oms:ExternalFulfillmentStateCnt>

Extending XQuery Modules

5-110 OSM Cartridge Guide for Oracle Application Integration Architecture

Table 5–88 lists the return parameters for the extension point XQuery.

Extending XQuery Modules
This section contains general information about extending XQuery modules.

If it is necessary to extend XQuery modules that reside in a sealed cartridge, you must
make a copy of the XQuery file and extend it to include custom business logic using
the XML catalog.

To extend an XQuery module:

1. In Design Studio, from the Window menu, select Show View and then select
Package Explorer.

2. Copy the XQuery file that you want to extend and modify the copy to include
custom logic. It’s recommended to put the copy of the XQuery files in the
Order-to-Activate composite cartridge.

3. In the Project Explorer view, open the Order-to-Activate composite cartridge and
navigate to the xmlCatalogs/core directory.

4. Open the file catalog.xml.

5. Update the catalog.xml file by adding an entry to override the XQuery
implementation. The new entry should look like this:

<rewriteURI
uriStartString="http://xmlns.oracle.com/communications/ordermanagement/pip/<pat
h>/<XQuery>.xquery” rewritePrefix="osmmodel:///OracleComms_OSM_O2A_COMSOM_
TypicalSolution/1.0.0.0.0/resources/<path>/<XQuery>.xquery"/>

Table 5–87 SOM-GET-NEW-CORRELATION-ID Input Parameters

Name Type Scope Description

$log Java Object External variable Java type
org.apache.commons.logging.Log

Logging level related to server log

$taskInputData element() External variable Task data XML fragment

$executionMode xs:string External variable Task execution mode

$breakpointDebugControl element() External variable Debug control XML fragment

$componentName xs:string External variable Fulfillment function name

$taskName xs:string External variable Task name

. Context
node

Context node Response message XML fragment

Table 5–88 SOM-GET-NEW-CORRELATION-ID Return Parameters

Output Parameter Type Description

element() Return an XML fragment in the following format to pass back the ID:

<oms:NewCorrelationIdCnt>$correlationId</<oms:NewCorrelationIdCnt>

Note: This entry must appear on a single line in the file.

Considerations When Integrating with Oracle AIA

Extending Order-to-Activate Cartridges 5-111

Sending Enriched Data to the CRM System
Data that was not originally supplied in the order from the CRM system must often be
sent up to Siebel CRM from a downstream system; this data is referred to as enriched
data. Enriched data can be an update to an order header value or an added attribute to
a line item that was originally supplied in the order from the CRM system. Enriched
data cannot include new line items that were not part of the original order from Siebel
CRM (only modifications to existing line items).

In the Order-to-Activate cartridges, downstream systems can send enriched data up to
the CRM system using the SpecificationGroup area of each order line item.
SpecificationGroup is a structure that contains multiple substructures of the order
specification. The Specification.Name and Specification.Value parameters store the
enriched data.

The demonstration cartridges OracleComms_OSM_O2A_SomProvisionBroadband_
Sample and OracleComms_OSM_O2A_SomProvisionVoIP_Sample provide an
example of sending enriched data to the CRM system. These cartridges must populate
the EBM type ProcessProvisioningOrderUpdateEBM and send that data to the
OracleComms_OSM_O2A_SOM_Base cartridge. The OracleComms_OSM_O2A_
SOM_Base cartridge in turn creates another EBM type
ProcessFulfillmentOrderUpdateEBM that contains the SpecificationGroup structure
and sends that data to the OracleComms_OSM_O2A_COM_Base cartridge. The
OracleComms_OSM_O2A_COM_Base cartridge in turn creates the EBM type
UpdateSalesOrderEBM and sends that data to the CRM system. The
SpecificationGroup structure is defined in all of these EBM types.

For example, when the Provisioning task completes in the OracleComms_OSM_O2A_
SomProvisionBroadband_Sample cartridge, the service ID is populated and
propagated back to the CRM system, which can now use the service ID to track the
asset.

Considerations When Integrating with Oracle AIA
The following points refer to EBO attributes that use domain value maps in Oracle
AIA, and how to extend the list of seeded values in the OSM cartridges. You update
the validation rule in the OracleComms_OSM_O2A_COM_Base cartridge (either
reduce the validation level or include the new values) and describe the extensibility of
each such EBO attribute on a case-by-case basis.

Consider the following factors when integrating OSM with Oracle AIA:

■ XML tags - some fields are key fields with enumerated values. These values are
hard coded in the cartridge so they have to match. These are documented in the
data dictionary in the cartridge itself.

■ The EBO attribute values can be extended - you can add your own values, but they
have to line up in the data dictionary in the cartridge, in the customized rules in
the cartridge, for instance, where you choose a billing instance based on a value
such as BUSINESS vs. RESIDENTIAL. The value would have to come from ABCS
correctly to match. Other custom rules could be created that switch on this value.

■ Consumers of OSM generated EBMs such as OSM in its service order management
role, and ABCS should not make use of the attributes schemeID, and
schemeAgencyID in order identifications, order references, line identifications,
and line references. The following are couple of examples:

<corecom:BusinessComponentID schemeID="SALESORDER_ID" schemeAgencyID="COMMON">
<corecom:BusinessComponentID schemeID="SALESORDER_LINEID"

Considerations When Integrating with Oracle AIA

5-112 OSM Cartridge Guide for Oracle Application Integration Architecture

schemeAgencyID="COMMON">

■ Queue names have to agree if you add another billing function - you would not
have to add more queues if you were not adding more fulfillment functions. But if
you do, the queue names have to agree with the ABCS.

Table 5–89 lists the summary of JNDI names for WebLogic JMS Queues for system
interactions included in the Order-to-Activate cartridges. In support of system
interactions, OSM central order management and OSM service order management
communicate with the ABCS for the fulfillment systems such as Siebel CRM ABCS
and Oracle Communications Billing and Revenue Management (BRM) ABCS
through posting JMS messages to the queues given below.

In the WebLogic Server Administration console, queues are found by navigating
to: Home /JMS Modules /oms_jms_module.

Note: There must be an alignment of JNDI names between OSM and
the ABCSs that communicate with it. You must be aware of this
alignment if you add additional queues for new fulfillment functions.

Table 5–89 WebLogic JNDI Request/Response queues

System interaction
request/response JNDI name In-bound/Out-bound

AIA Customer Order
support

oracle/communications/ordermanagement/W
ebServiceQueue

Siebel CRM ABCS to OSM
central order management

AIA Service Order
support

oracle/communications/ordermanagement/W
ebServiceQueue

In-bound to OSM service
order management

SyncCustomer request oracle/communications/ordermanagement/W
ebServiceCreateCustomerQueue

OSM central order
management to BRM ABCS

SyncCustomer response oracle/communications/ordermanagement/W
ebServiceCreateCustomerResponseQueue

BRM ABCS to OSM central
order management

InitiateBilling request oracle/communications/ordermanagement/W
ebServiceCreateBillingOrderQueue

OSM central order
management to BRM ABCS

InitiateBilling response oracle/communications/ordermanagement/W
ebServiceCreateBillingOrderResponseQueue

BRM ABCS to OSM central
order management

FulfillBilling request oracle/communications/ordermanagement/W
ebServiceCreateBillingOrderQueue

OSM central order
management to BRM ABCS

FulfillBilling response oracle/communications/ordermanagement/W
ebServiceCreateBillingOrderResponseQueue

BRM ABCS to OSM central
order management

ProvisionOrder request oracle/communications/ordermanagement/W
ebServiceCreateProvisioningOrderQueue

OSM central order
management to Oracle AIA
destined for OSM service
order management

ProvisionOrder response
(ProcessFulfillmentOrder
Update)

oracle/communications/ordermanagement/W
ebServiceUpdateFulfillmentOrderQueue

OSM service order
management to Oracle AIA
destined for OSM central
order management

CancelProvisioningOrder
request

oracle/communications/ordermanagement/W
ebServiceCancelProvisioningOrderQueue

OSM central order
management to OSM service
order management

Security Considerations When Communicating with External Systems

Extending Order-to-Activate Cartridges 5-113

Security Considerations When Communicating with External Systems
Whenever you are integrating OSM with an external system via JMS, make sure that
you have set up security settings on the JMS module in WebLogic Server. If you use
the supplied JMS module, oms_jms_module, security settings have already been set
up. However, if you use a different JMS module, you must set up appropriate security
on it.

UpdateSalesOrder oracle/communications/ordermanagement/W
ebServiceUpdateSalesOrderQueue

OSM central order
management to Siebel CRM
ABCS

CreateTroubleTicket
request

oracle/communications/ordermanagement/C
reateTroubleTicketRequestQueue

OSM central order
management to Siebel CRM
ABCS

CreateTroubleTicket
response

oracle/communications/ordermanagement/C
reateTroubleTicketResponseQueue

Siebel CRM ABCS to OSM
central order management

UpdateTroubleTicket
request

oracle/communications/ordermanagement/U
pdateTroubleTicketRequestQueue

OSM central order
management to Siebel CRM
ABCS

CreateErrorFault oracle/communications/ordermanagement/C
reateErrorFaultQueue

OSM service order
management to Oracle AIA

Fallout for service order
management response

oracle/communications/ordermanagement/W
ebServiceFalloutLFResponseQueue

OSM service order
management to central order
management

Abort order response oracle/communications/ordermanagement/L
FAbortOrderPropagationRespQueue

OSM Provisioning to service
order management

Table 5–89 (Cont.) WebLogic JNDI Request/Response queues

System interaction
request/response JNDI name In-bound/Out-bound

Security Considerations When Communicating with External Systems

5-114 OSM Cartridge Guide for Oracle Application Integration Architecture

6

Performing Order-to-Activate Cartridge Operations 6-1

6Performing Order-to-Activate Cartridge
Operations

This chapter describes operational procedures that may be needed for the
Order-to-Activate cartridges for Oracle Communications Order and Service
Management (OSM).

XQuery Transformation Logging
To enable or disable logging for XQuery transformations, use the log4jAdmin page.
See the section on configuring severity levels in the Monitoring and Managing OSM
chapter in OSM System Administrator’s Guide for more information about using the
log4jAdmin page. The following information will help you when looking at the
generic information about using log4jAdmin that is located there:

■ If you want to set the logging level temporarily, first run an order that calls the
XQuery transformation that you want to log. This ensures that the EJB that runs it
is loaded. Otherwise you may not find the appropriate logger on the log4jAdmin
page.

■ To find the logger for the XQuery transformation that you want to change, look at
the name formats below and look up the relevant information in Oracle
Communications Design Studio.

– If the automation is an external event receiver, the logger will be listed with a
name like this:

/automation/plugin/external/SolutionCartridgeName/SolutionCartridgeVersion/
TaskOrEventName.EJBName

For example:

/automation/plugin/external/OracleComms_OSM_O2A_COMSOM_
TypicalSolution/2.0.1.2.0/FulfillBillingSITask.FulfillBillingResponseBean

– If the automation is an internal event receiver, the logger will be listed with a
name like this:

/automation/plugin/internal/AutomationType/SolutionCartridgeName/SolutionCa
rtridgeVersion/AutomationEntityName/CompensationMode

where /CompensationMode is only included for task automations.

For example:

/automation/plugin/internal/task/OracleComms_OSM_O2A_COMSOM_
TypicalSolution/2.0.1.2.0/FulfillBillingEntryPointTask/do_redo_undo

Troubleshooting Order-to-Activate Cartridges

6-2 OSM Cartridge Guide for Oracle Application Integration Architecture

Troubleshooting Order-to-Activate Cartridges
The following procedures can help you in troubleshooting issues with the
Order-to-Activate cartridges.

Updating the JMS Redelivery Configuration Settings
When the Order-to-Activate cartridges are installed, the Redelivery Delay Override
and Redelivery Limit WebLogic parameters are set during installation to 7000ms and
10, respectively. However, different values may be more effective for your OSM
environment depending on your usage of the system.

If you encounter timing-related issues for message delivery on JMS queues, there are a
number of WebLogic settings that you can modify to resolve the issue. These values
are set on every JMS queue through the WebLogic Service Console. From Home, select
JMS Modules, and then select oms_jms_module to modify the following settings:

■ Redelivery Delay Override: Delay in milliseconds before rolled back or recovered
messages are redelivered. This value overrides the Redelivery Delay setting.

■ Redelivery Limit: The number of times to attempt to redeliver a message.

To find the best values for these parameters, start with initial values less than 7000ms
for the Redelivery Delay Override and 10 for the Redelivery Limit and increase them
slightly until no occurrences of errors are observed. The actual values you finalize on
will depend on your particular implementation of OSM. See the Oracle WebLogic
documentation for complete details on these parameters.

Setting Cartridge Breakpoints
There are process flows in the cartridge with a manual task between each automated
task. With certain input data in the customer order, it causes it to go through the
automation and stop at a particular manual task.

The Order-to-Activate cartridges have been instrumented with control points in the
process flows so that a tester can control the process flow before or after functions,
examine data anywhere in the flow, do revision testing, and do point-of-no-return
testing. The flows are automated, but can be instructed to stop at a manual task before
or after normal automated tasks.

The Siebel Customer Relationship Management (Siebel CRM) sales order number is
used to control the flows by prefixing the number with format
[AIATest.Task#.Target#]. Only one breakpoint can be set.

Table 6–1 lists the task numbers and names.

Table 6–1 Task Number and Task Name

Task # Task Name

0 Any

1 Before SyncCustomer Task

2 Before InitiateBilling Task

3 Before FulfillBilling Task

7 After SyncCustomer Task

8 After InitiateBilling Task

9 After FulfillBilling Task

Troubleshooting Order-to-Activate Cartridges

Performing Order-to-Activate Cartridge Operations 6-3

Table 6–2 lists the OSM and Oracle Application Integration Architecture (Oracle AIA)
fulfillment systems.

It is also possible to disable the PoNR per-component level by setting the order key
prefix as [PONRControl.Component#].

Table 6–3 lists the OSM component levels.

10 After Provisioning Request Sent Task

11 After Provision Response Received Task

31 Before Provision InternetServiceBundle Task

32 Before Provision InternetMediaServiceBundle Task

33 Before Provision InternetEmailServiceBundle Task

34 Before Provision CPEEntryPointTask

41 Before Provision VoIPServiceBundle Task

42 Before Provision VoIPCPE Task

Table 6–2 OSM and Oracle AIA Targets

Target# OSM Fulfillment System Name AIA Logical Fulfillment System ID

0 Any Any

1 BRM-ALL BRM_01

2 BRM-VoIP BRM_02

4 BRM-REZBDB BRM_03

4 BRM-BIZBDB BRM_04

7 Provisioning-ALL OSMPROV_01

8 Provisioning-VoIP OSMPROV_02

9 Provisioning-VoIP OSMPROV_02

10 Provisioning-BRD OSMPROV_03

Table 6–3 OSM Component levels

Component # OSM Component Name Example

0 Any [PONRControl.0]

1 SyncCustomerFunction [PONRControl.1]

2 InitiateBillingFunction [PONRControl.2]

3 ProvisionOrderFunction [PONRControl.3]

4 ShipOrderFunction [PONRControl.4]

5 InstallOrderFunction [PONRControl.5]

6 FulfillBillingFunction [PONRControl.6]

7 InstallOrderFunction
ShipOrderFunction

[PONRControl.7]

Table 6–1 (Cont.) Task Number and Task Name

Task # Task Name

Troubleshooting Order-to-Activate Cartridges

6-4 OSM Cartridge Guide for Oracle Application Integration Architecture

8 ProvisionOrderFunction,

InstallOrderFunction,

ShipOrderFunction

[PONRControl.8]

Table 6–3 (Cont.) OSM Component levels

Component # OSM Component Name Example

7

Prior Versions of Order-to-Activate Cartridges 7-1

7Prior Versions of Order-to-Activate Cartridges

This chapter provides information about prior versions of Oracle Communications
Order and Service Management (OSM) Order-to-Activate cartridges. It contains
information about updating prior versions of the Order-to-Activate cartridges to work
with newer versions of OSM and describes the changes that were made in recent
versions of the cartridges.

Updating Prior Versions of the Cartridges to Work with Newer Versions of
OSM

It is possible to update prior versions of the Order-to-Activate cartridges to work with
newer versions of OSM. To update Order-to-Activate cartridges to work with OSM 7.2
and earlier, see OSM Cartridge Guide for Oracle Application Integration Architecture for
the version of OSM you want to use. To update Order-to-Activate cartridges to work
with OSM 7.2.2 or later, see OSM Installation Guide for the version of OSM you want to
use.

Changes from Order-to-Activate 2.1.1 to Version 2.1.2
This section provides a high-level description of the changes between
Order-to-Activate 2.1.1 cartridges and Order-to-Activate 2.1.2 cartridges.

Removed Support for Asset Processing
The changes that were made in version 2.1.1 to the Order-to-Activate cartridges to
support managing assets on orders that come from Oracle Configure, Price, and Quote
Cloud (Oracle CPQ Cloud) have been removed. The corresponding functionality is no
longer available in the OSM product. Oracle recommends that you use corresponding
functionality in Oracle Configure, Price, Quote (CPQ) Cloud for your hybrid cloud
solution.

Processes Changed to Use a Single Task for Sending and Receiving
Starting in the Order-to-Activate cartridges version 2.1.2, system interaction processes
have been modified to use a single task to handle both sending a message to an
external system and receiving the response messages. The purpose of this change is to
greatly simplify the process design by allowing the same task to handle all of the
normal and exception processing for the message, and complements functionality
introduced in OSM 7.3.

Changes from Order-to-Activate 2.1.1 to Version 2.1.2

7-2 OSM Cartridge Guide for Oracle Application Integration Architecture

Central Order Management Fulfillment Functions
Following is a summary of the processing for the central order management
fulfillment functions.

■ SyncCustomerFunction: The process for this function is
SyncCustomerSubProcess. The tasks are:

– SyncCustomerEntryPointTask: This task sets up the data for the system
interaction task, determines whether there are any open trouble tickets for the
current instance of the function, and if so closes them. It also provides a
breakpoint.

– SyncCustomerSITask: This task creates and sends a request to the billing
system. If the billing system has an error, it notifies fallout management
directly, and then fallout management sends a notification to this task, which
causes the state of the task to enter fallout mode and change its state to
WaitForFalloutRecovery. You can manually transition the task from this state
to the resolveFailAndRetry state to return to normal mode and retry the task.
Alternatively, an amendment can be received to retry the task automatically.
The task also provides a breakpoint if a successful response ifs received.

■ InitiateBillingFunction: The process for this function is
InitiateBillingSubProcess. The tasks are:

– InitiateBillingEntryPointTask: This task works like
SyncCustomerEntryPointTask.

– InitiateBillingSITask: This task works like SyncCustomerSITask.

■ FulfillBillingFunction: The process for this function is FulfillBillingSubProcess.
The tasks are:

– FulfullBillingStartTask: This task provides the opportunity for an extra
breakpoint for this process.

– InitiateBillingEntryPointTask: This task works like SyncCustomerEntryTask.

– InitiateBillingSITask: This task works like SyncCustomerSITask.

■ ProvisionOrderFunction: The process for this function is
ProvisionOrderSubProcess. The tasks are:

– ProvisionOrderEntryPointTask: This task works like
SyncCustomerEntryPointTask.

– ProvisionOrderSITask: This task works like SyncCustomerSITask, except that
it sends the request to the service order management system rather than the
billing system.

Service Order Management Fulfillment Functions
Following is a summary of the processing for the service order management
fulfillment functions. These fulfillment functions are available only with the Calculate
Service Order solution option.

■ DesignServiceFunction: The process for this function is DesignServiceProcess.
The tasks are:

– CaptureBITask: This task creates and sends the capture business interaction
request to the inventory system. If the inventory system has an error, it returns
a failure response directly to the task, which causes the state of the task to
enter fallout mode. You can manually retry the task by changing the state to
received, or you can transition the task to WaitForFalloutRecovery, which

Changes from Order-to-Activate 2.1.0.2 to Version 2.1.1

Prior Versions of Order-to-Activate Cartridges 7-3

causes a failure message to be sent to the central order management system.
You can manually transition the task from this state to the
resolveFailAndRetry state to return to normal mode and retry the task.
Alternatively, an amendment can be received to retry the task automatically. It
also provides a breakpoint if a successful response ifs received.

– ProcessBITask: This task creates and sends the process business interaction
request to the inventory system. If the inventory system has an error, it returns
a failure response directly to the task, which causes the state of the task to
enter fallout mode. You can manually retry the task by changing the state to
received, or you can transition the task to WaitForFalloutRecovery, which
causes a failure message to be sent to the central order management system.
You can manually transition the task from this state to the
resolveFailAndRetry state to return to normal mode and retry the task. Or you
can transition the task to clearFallout to ignore the error and complete the task
successfully. Alternatively, an amendment can be received to retry the task
automatically. The task also provides a breakpoint if a successful response ifs
received.

– ApproveBITask: This task works like ApproveBITask, except that it sends the
approve business interaction request.

■ PlanDeliveryFunction: The process for this function is PlanDeliveryProcess. The
tasks are:

– IssueBITask: This task works like ApproveBITask, except that it sends the
approve business interaction request.

– CalculateTechnicalActionsTask: This task works like ApproveBITask, except
that it sends the calculate technical actions request.

■ DeliverOrderFunction: The process for this function is DeliverOrderProcess. The
tasks are:

– CreateTechnicalOrderTask: This task works like ApproveBITask, except that it
sends the create technical order request to the technical order management
system.

■ CompleteProvisioningFunction: The process for this function is
CompleteProvisioningProcess. The tasks are:

– CompleteBITask: This task works like ApproveBITask, except that it sends the
complete business interaction request.

Changes from Order-to-Activate 2.1.0.2 to Version 2.1.1
This section provides a high-level description of the changes between
Order-to-Activate 2.1.0.2 cartridges and Order-to-Activate 2.1.1 cartridges.

Support for Asset Processing
Changes have been made to the Order-to-Activate cartridges to support managing
assets on orders that come from Oracle Configure, Price, and Quote Cloud (Oracle
CPQ Cloud). During installation of the Order-to-Activate cartridges, you can select
whether to enable asset processing using the standard OSM Customer Asset Manager,
an external asset manager, or both. If you decide to use an external asset manager, you
can configure the format of the message.

Changes from Order-to-Activate 2.1.0.1 Cartridges to Version 2.1.0.2

7-4 OSM Cartridge Guide for Oracle Application Integration Architecture

Support for Order Lifecycle Management User Interface
The Order-to-Activate cartridges have been updated to include an Order Lifecycle
Manager entity in support of the new OSM Order Lifecycle Management user
interface.

OSM order components previously included a "Minimum Processing Duration." Now,
instead of one duration, there are three: Optimistic, Most Likely, and Pessimistic
Processing Durations. These processing durations drive information in the Order
Lifecycle Manager user interface. Since the order components for the Order
-to-Activate cartridges are in sealed cartridges, changing these durations in Order
Component Specification editor is not recommended. An XML file is provided to
allow changing these durations without needing to unseal the cartridge. See
"Changing Durations for Order Components" for more information on changing
durations.

Support for Processing States
Processing states were added in OSM 7.3 at both the order item level and the order
component order item level. The use of processing states provides better visibility into
fulfillment progress, including warnings and errors that occur during the processing of
order items. The Order-to-Activate 2.1.1 cartridges incorporate this new OSM feature.

Changes from Order-to-Activate 2.1.0.1 Cartridges to Version 2.1.0.2
This section provides a high-level description of the changes between
Order-to-Activate 2.1.0.1 cartridges and Order-to-Activate 2.1.0.2 cartridges.

Changes to Fulfillment Function Extension Points
This section describes the changes to the fulfillment function extension points for the
Order-to-Activate 2.1.0.2 cartridges.

New Extension Points
The following extension points were added in version 2.1.0.2:

■ CREATE-EBM-CUSTOM

■ CREATE-EBM-ALL-ORDERITEMS

■ CREATE-EBM-ORDERITEM

■ CREATE-EBM-ORDERITEM-CUSTOM

■ CREATE-EBM-PRIORORDERITEM

■ CREATE-EBM-PRIORORDERITEM-CUSTOM

Extension Points Added to the Billing Components
XQuery files for the following extension points have been added in the OracleComms_
OSM_O2A_COM_Billing cartridge for the SyncCustomerFunction,
InitiateBillingFunction, and FulfillBillingFunction billing functions:

■ CREATE-EBM-ALL-ORDERITEMS

■ CREATE-EBM-CUSTOM

■ CREATE-EBM-ORDERITEM-CUSTOM

■ CREATE-EBM-ORDERITEM (execution mode: do)

Changes from Order-to-Activate 2.0.1 Cartridges to Version 2.1.0

Prior Versions of Order-to-Activate Cartridges 7-5

■ CREATE-EBM-ORDERITEM (execution mode: redo)

■ CREATE-EBM-ORDERITEM (execution mode: undo)

■ CREATE-EBM-PRIORORDERITEM-CUSTOM

■ CREATE-EBM-PRIORORDERITEM

■ COMPONENT-RESPONSE-UPDATE

For more information, see "OracleComms_OSM_O2A_COM_Billing."

Changes to Action Code Mappings
Some action code mappings for solutions using the Calculate Service Order solution
option were changed to support the Oracle Communications Rapid Offer Design and
Order Delivery (RODOD) and Oracle Communications Rapid Service Design and
Order Delivery (RSDOD) solutions. The changes are summarized in the following
table:

New XML-type Parameter Added to Contain Custom Order Item Properties
A new XML-type parameter is available in the COM_Sales_OrderFulfillment order
template. It allows you to add custom order item properties to your order template
without unsealing any cartridges. For more information, see "Adding Custom Order
Item Properties."

Changes from Order-to-Activate 2.1.0 Cartridges to Version 2.1.0.1
This section provides a high-level description of the changes between
Order-to-Activate 2.1.0 cartridges and Order-to-Activate 2.1.0.1 cartridges.

New Silent Installation Option
A new option to install and deploy the Order-to-Activate cartridges in an OSM
environment without running the interactive installers has been added. See
"Performing a Silent Installation of the Order-to-Activate Cartridges" for more
information.

Changes from Order-to-Activate 2.0.1 Cartridges to Version 2.1.0
This section provides a high-level description of the changes between
Order-to-Activate 2.0.1 cartridges and Order-to-Activate 2.1.0 cartridges.

Support for Calculate Service Order
The order transformation manager was introduced in OSM 7.2.4 to provide a
mechanism to transform order items from transform incoming order items into

Table 7–1 Changes to Action Code Mappings for Order-to-Activate 2.1.0.2

Upstream Action Code
Action Code Prior to Version
2.1.0.2

Action Code in Version
2.1.0.2 and later

Move-Delete Move-Delete [Action is no longer mapped]

Move-Add Move-Add Move

Update Update Change

Changes from Order-to-Activate 2.0.1 Cartridges to Version 2.1.0

7-6 OSM Cartridge Guide for Oracle Application Integration Architecture

different order items. The Order-to-Activate 2.1.0 cartridges provide the option to use
this feature.

Two Solution Options: With and Without Calculate Service Order
The Order-to-Activate 2.1.0 cartridges provide two distinct solution options: the
calculate service order solution option and the solution option without calculate
service order. Although most new Order-to-Activate users will want the increased
functionality of the calculate service order solution option, having the solution option
without calculate service order enables existing customers to access the new
functionality of Order-to-Activate 2.1.0 without using the order transformation
manager if desired.

The same Order-to-Activate cartridge installer contains both the cartridges for the
calculate service order solution option and the solution option without calculate
service order. At a high level, the two options are:

■ The calculate service order solution option incudes:

– Central order management: This includes cartridges with support for the
calculate service order implementation of the OSM order transformation
manager. It also includes enhancements like large order support and sharing
groups.

– Service order management: This includes new service order management
cartridges designed to work with the central order management cartridges
that use calculate service order. For more information, see "New Service Order
Management Cartridges for the Calculate Service Order Solution Option."

■ The solution option without calculate service order includes:

– Central order management: This includes cartridges that do not have support
for calculate service order, but do include other enhancements like large order
support and sharing groups

– Service order management: These cartridges are functionally the same as the
service order management cartridges in the Order-to-Activate 2.0.1.

For more information about the solution options, see "Order-to-Activate Cartridge
Solution Options."

The Calculate Service Order Solution Option
The calculate service order solution option uses the OSM order transformation
manager feature. It is driven by a transformation sequence that is configurable with
any number of transformation stages. Each sequence uses original order items as
input, executes simple transformation logic for each stage, and creates transformed
order items as output.

Productized Order-to-Activate cartridges are enhanced to support transformation of
customer order items to service order items using the order transformation manager.
The function that transforms customer order lines to service order lines is referred to
as calculate service order. Calculate service order is a stable and domain-agnostic
function that requires few changes when new products or services are introduced,

Note: Oracle Communications Order and Service Management
Order Transformation Manager, available in OSM 7.2.4 and later, is a
pre-requisite for using the calculate service order functionality in the
Order-to-Activate cartridges.

Changes from Order-to-Activate 7.2 Cartridges to Version 2.0.1

Prior Versions of Order-to-Activate Cartridges 7-7

which reduces the time to market for new product or service introduction. In the
Order-to-Activate 2.1.0 cartridges, the calculate service order function is added in the
central order management layer.

New Service Order Management Cartridges for the Calculate Service Order Solution
Option
New service order management cartridges are added to work with the central order
management calculate service order functionality. Domain-agnostic service order
management cartridges contain features to support different types of orders such as
new orders, revision orders, and change orders. It also has a framework to support
fallout and point-of-no-return processing. It has emulators for inventory and technical
order management (typically used for activation), so that service order management
cartridges can be tested independently of external systems.

For more information about the service order management cartridges for the calculate
service order option, see "Service Order Management Cartridges for the Calculate
Service Order Solution Option."

Inclusion of Conceptual Model Projects
Conceptual model projects were introduced in Oracle Communications Design Studio
7.2.4 to help you define the relationships between your commercial products, the
services that they represent, and the resources that are required to implement the
services. Both of the solution options include conceptual model projects.

For more information about the conceptual model, see Design Studio Concepts. For
more information about the conceptual model projects included with the
Order-to-Activate cartridges, see "Conceptual Model Projects."

Large Order Support
OSM 7.2.4.1 introduced functionality to support the processing of orders containing
thousands of lines. The Order-to-Activate 2.1.0 cartridges have incorporated this
functionality in both of the solution options (with and without calculate service order).

Support for Sharing Groups
The Sharing Groups feature allows discounts, resources and charges like free minutes
to be shared across multiple accounts. For example, if a group owner is sharing free
minutes, a member is charged for usage, and then discount credits are applied to the
member’s account and free minutes are deducted from the group owner.

This feature is introduced in the Oracle Communications Rapid Offer Design and
Order Delivery (RODOD) solution, and the central order management cartridges for
both of the solution options (with and without calculate service order) have been
enhanced to support this feature. For more information about this feature, see the
information about promotion groups in Oracle Application Integration Architecture
Oracle Communications Order to Cash Integration Pack Implementation Guide for Siebel
CRM, Oracle Communications Order and Service Management, and Oracle Communications
Billing and Revenue Management, Release 11.4.

Changes from Order-to-Activate 7.2 Cartridges to Version 2.0.1
This section provides a high-level description of the changes between
Order-to-Activate 7.2 cartridges and Order-to-Activate 2.0.1 cartridges.

Changes from Order-to-Activate 7.0.3 Cartridges to Version 7.2

7-8 OSM Cartridge Guide for Oracle Application Integration Architecture

Release Number Changes and Packaging Changes
This release of the Order-to-Activate cartridges contains changes to the way releases
are numbered and changes to the way the cartridges are packaged.

Through the OSM 7.2 release, the Order-to-Activate cartridges were released at the
same time as the OSM software, and the release numbers for OSM and
Order-to-Activate were the same. Now however, Oracle has decided to separate the
OSM and Order-to-Activate releases. The Order-to-Activate releases are now being
aligned toward the Oracle Application Integration Architecture (Oracle AIA) releases.
Because of these changes, the Order-to-Activate cartridges are being given their own
release numbers. Order-to-Activate 2.0.1 is the first in the new version number series.
Release numbers for the older versions of the Order-to-Activate cartridges are not
being updated.

Order-to-Activate cartridges are also separate from the OSM software on the Oracle
Software Delivery website, and patches for the Order-to-Activate cartridges will be
released separately from OSM patches. For more information, see Cartridges for Oracle
Application Integration Architecture Release Notes, Release 2.0.1.

Support for Multiple Price Lists
Previously, the productized integration supported only one default price list, so price
list information was not included on the order. In Order-to-Activate 2.0.1, the price list
has been added to the order so that multiple price lists can be supported.

Price list information is passed from Oracle AIA to the Order-to-Activate cartridges as
part of the ProcessSalesOrderFulfillmentEBM message. the Order-to-Activate
cartridges then populate the order item into the order template. When interacting with
the billing system, the Order-to-Activate cartridges generate a
ProcessFulfillmentOrderBillingEBM, which includes the price list information base on
the Oracle AIA EBM schema.

The price list information is populated into the following structure in OSM:

/ControlData/Functions/FunctionName/orderItemRef/orderItem/BaseLineItemData/SalesO
rderSchedule/PriceListReference

Support for Importing Product Classes Directly from Oracle Product Hub
It is possible to query product classes and transaction attributes into Design Studio
directly from the Oracle Product Hub. Design Studio users use the existing Oracle AIA
interface QueryProductClassAndAttributesSCECommsReqABCSImpl to import
product classes from both Siebel Customer Relationship Management (Siebel CRM)
and the Product Hub. When product classes are queried using this interface, the
interface API checks for Product Hub implementation in the Oracle Communications
Order to Cash implementation, and if it is there, the product classes are imported to
Design Studio from Product Hub. If Product Hub is not present in the Order to Cash
implementation, the product classes are imported into Design Studio from Siebel
CRM.

Changes from Order-to-Activate 7.0.3 Cartridges to Version 7.2
This section provides a high-level description of the changes between
Order-to-Activate 7.0.3 cartridges and Order-to-Activate 7.2 cartridges.

Changes from Order-to-Activate 7.0.3 Cartridges to Version 7.2

Prior Versions of Order-to-Activate Cartridges 7-9

Cartridge Re-Factoring Overview
In version 7.2, the Order-to-Activate cartridges have been reorganized to make use of
cartridge extensibility. The changes include:

■ The cartridges have been renamed with the prefix OracleComms_OSM_O2A_.

■ Composite cartridges have been introduced.

■ The base cartridges for central order management and service order management
have been re-factored into multiple cartridges per fulfillment system.

■ Cartridges that ordinarily should not be modified have been sealed. Cartridges
that can be modified are not sealed and have the suffix _Sample.

■ Fulfillment states have been implemented.

■ The order template for a function is now constructed from OracleComms_OSM_
CommonDataDictionary and the local data dictionary OracleComms_OSM_
O2A_COM_Function according to general recommendations for working with the
common data dictionary.

■ Composite cartridge views have been created to add task data to COM_
SalesOrderFulfillment_CreationTask, COM_SalesOrder_StateChangeView, and
COM_SalesOrder_AggregatedOLMView.

■ The order component GetCommunicationsServiceConfigurationDetails has been
removed from service order management.

Cartridge Mapping Between Order-to-Activate 7.0.3 and Order-to-Activate 7.2
Table 7–2 shows the functional mapping between the Order-to-Activate 7.0.3
cartridges and the Order-to-Activate 7.2 cartridges. See "Cartridge Overview" for
descriptions of the Order-to-Activate 7.2 cartridges.

Table 7–2 7.0.3-to-7.2 Order-to-Activate Cartridge Mapping

Order-to-Activate 7.0.3 Cartridge Order-to-Activate 7.2 Cartridge

[No equivalent] OracleComms_OSM_CommonDataDictionary

OracleCgbuOsmAIAInstallation OracleComms_OSM_O2A_Install

OracleCgbuAIAComponentsDataDictionaryPIP OracleComms_OSM_O2A_AIAEBMDataDictionary

OracleCgbuCommonDataDictionaryPIP OracleComms_OSM_O2A_CommonUtility

OracleCommSystemAdminOrders OracleComms_OSM_O2A_SystemAdmin

OracleCgbuControlMap OracleComms_OSM_O2A_ControlMap

OracleCgbuSIFalloutPIP [Merged into OracleComms_OSM_O2A_COM_Base]

CommunicationsSalesOrderFulfillmentPIP OracleComms_OSM_O2A_COM_Base

OracleComms_OSM_O2A_COM_SalesOrderFulfillment

OracleComms_OSM_O2A_COM_Shipping_Sample

OracleComms_OSM_O2A_COM_Billing

OracleComms_OSM_O2A_COM_Provisioning

OracleComms_OSM_O2A_COM_Install_Sample

OracleCgbuProvisioningFallout [Merged into OracleComms_OSM_O2A_SOM_Base]

Changes from Order-to-Activate 7.0.3 Cartridges to Version 7.2

7-10 OSM Cartridge Guide for Oracle Application Integration Architecture

CommunicationsProvisioningOrderFulfillmentPIP OracleComms_OSM_O2A_SOM_Base

OracleComms_OSM_O2A_SOM_Provisioning

OracleComms_OSM_O2A_SomBBVoIPFulfillmentPattern_
Sample

OracleCgbuCommunicationsORPFalloutPIP OracleComms_OSM_O2A_RecognitionFallout

[Drawn from various base cartridges] OracleComms_OSM_O2A_COMSOM_Recognition_Sample

[Drawn from various base cartridges] OracleComms_OSM_O2A_COM_Recognition_Sample

[Drawn from various base cartridges] OracleComms_OSM_O2A_SOM_Recognition_Sample

OracleCgbuDoublePlayProductMap OracleComms_OSM_O2A_FulfillmentPatternMap_Sample

DoublePlayProductSpecificationNile OracleComms_OSM_O2A_
BBVoIPFulfillmentPatternNileFlow_Sample

DoublePlayProductSpecificationDanube OracleComms_OSM_O2A_
BBVoIPFulfillmentPatternDanubeFlow_Sample

OracleCgbuDoublePlayProductSpecNileTdDcn OracleComms_OSM_O2A_
BBVoIPFulfillmentPatternNileFlowDcn_Sample

TypicalSalesOrderFulfillment OracleComms_OSM_O2A_TypicalTopology_Sample

SimpleSalesOrderFulfillment OracleComms_OSM_O2A_SimpleTopology_Sample

OracleCgbuTypicalSalesOrderFulfillment [Cartridge has been removed, but functionality is duplicated
in OracleComms_OSM_O2A_ControlMap]

BroadbandServicesProvisioning OracleComms_OSM_O2A_SomProvisionBroadband_Sample

VoIPServiceProvisioning OracleComms_OSM_O2A_SomProvisionVoIP_Sample

SalesOrderSubmission OracleComms_OSM_O2A_SalesOrders_Sample

Table 7–2 (Cont.) 7.0.3-to-7.2 Order-to-Activate Cartridge Mapping

Order-to-Activate 7.0.3 Cartridge Order-to-Activate 7.2 Cartridge

	Contents
	Preface
	Audience
	Accessing Oracle Communications Documentation
	Documentation Accessibility
	Document Revision History

	1 Overview of the Order-to-Activate Cartridges
	About the Application Integration Architecture Order-to-Activate Cartridges
	Order-to-Activate Business Process Overview
	Overview of the Order-to-Activate Cartridges
	Order-to-Activate Cartridge Solution Options
	OSM Cartridge Types Supporting the Order to Cash Integration Pack for OSM Solution
	Extending the Cartridges
	Time Zones in Order-to-Activate Cartridges
	Order Creation in the Order-to-Activate Cartridges
	Order-to-Activate Emulators
	About Fulfillment Topologies
	Simple Fulfillment Topology
	Typical and Complex Fulfillment Topologies

	2 Performing an Interactive Installation of the Order-to-Activate Components
	Cartridge Installation Overview
	System Requirements
	Order-to-Activate Cartridge Compatibility

	Order-to-Activate Cartridge Pre-Installation Tasks
	Installing the Order-to-Activate Cartridges
	Getting the Installation Package
	Importing the Installation Cartridge and Configuring the Installation Build File
	Importing the OSM Order-to-Activate Cartridges for the Calculate Service Order Solution Option
	Importing the OSM Order-to-Activate Cartridges for the Solution Option Without Calculate Service Order
	Configuring WebLogic Server Resources

	Post-Installation Tasks for Multiple Simultaneous Versions
	Building and Deploying the Order-to-Activate Cartridges
	Testing the Order-to-Activate Cartridges
	Switching Between Live and Emulator Configurations
	Configuring a Workspace Without Configuring WebLogic Server
	Uninstalling Order-to-Activate Components
	Undeploying Cartridges
	Deleting the Oracle AIA Emulator
	Removing the Inventory and Technical Order Management Emulators

	3 Performing a Silent Installation of the Order-to-Activate Cartridges
	Cartridge Installation Overview
	Directory Placeholders Used in This Chapter
	System Requirements
	Order-to-Activate Cartridge Compatibility

	Setting Up the Installation Environment
	Getting the Installation Package
	Setting Up Files and Directories
	Encrypting the Passwords Used by the Silent Installer
	Encrypting the WebLogic Server Administrator Password for Connecting to WebLogic
	Encrypting the WebLogic Server Administrator Password for Use with XML Import/Export
	Encrypting Passwords for the Standard Order-to-Activate User Accounts
	Encrypting the UIM Application User Password
	Encrypting the Technical Order Management Application User Password
	Encrypting the Password for Deploying the Cartridges
	Encrypting the Oracle AIA JMS Connection Password
	Encrypting the UIM JMS Connection Password
	Encrypting the Technical Order Management JMS Connection Password

	Configuring the build.properties File
	Configuring Software Path Settings
	Configuring Solution Import Settings
	Configuring WebLogic Server Settings
	Configuring Solution Configuration Settings
	Configuring Oracle AIA Connection Settings
	Configuring UIM Connection Settings
	Configuring Technical Order Management Connection Settings

	Performing the Silent Installation
	Building the Solution Cartridges
	Building the Solution Cartridges and Configuring the WebLogic Server Resources
	Deploying the Cartridges

	Testing the Order-to-Activate Cartridges
	Switching Between Live and Emulator Configurations
	Configuring a Workspace Without Configuring WebLogic Server
	Uninstalling Order-to-Activate Components

	4 Order-to-Activate Cartridge Contents
	Cartridge Overview
	Common Order Management Cartridges
	Central Order Management Cartridges
	Common Central Order Management Cartridges
	Central Order Management Cartridges for the Calculate Service Order Solution Option
	Central Order Management Cartridges for the Solution Option Without Calculate Service Order

	Service Order Management Cartridges
	Service Order Management Cartridges for the Calculate Service Order Solution Option
	Service Order Management Cartridges for the Solution Option Without Calculate Service Order

	Conceptual Model Projects
	Common Conceptual Model Projects
	Conceptual Model Projects for Central Order Management
	Conceptual Model Projects for Service Order Management

	Common Order Management Cartridges
	OracleComms_OSM_CommonDataDictionary
	OracleComms_OSM_O2A_AIAEBMDataDictionary
	OracleComms_OSM_O2A_CommonUtility
	OracleComms_OSM_O2A_ControlMap
	Configuring Breakpoints for Central Order Management and for Service Order Management Without Calculate Service Order
	Configuring Breakpoints for Service Order Management with Calculate Service Order
	Controlling Point of No Return
	Controlling Fault Simulation
	Controlling Order Updates
	Controlling Processing Granularity for FulfillBillingFunction

	OracleComms_OSM_O2A_RecognitionFallout
	OracleComms_OSM_O2A_SystemAdmin
	How the Inbound Message Recovery MDB Works
	Recovering from Inbound Message Errors Due to Suspended Orders
	Recovering from Inbound Message Errors Due to Resource Issues

	Common Central Order Management Cartridges
	OracleComms_OSM_O2A_COM_Base
	Order Events
	Processing Granularity Rules
	Abstract Orchestration Entities
	Order Lifecycle Manager Configuration
	XQuery Modules in the OracleComms_OSM_O2A_COM_Base Cartridge
	Automation Modules in the OracleComms_OSM_O2A_COM_Base Cartridge
	External Fulfillment States

	OracleComms_OSM_O2A_COM_SalesOrderFulfillment
	OracleComms_OSM_O2A_COM_Billing
	SyncCustomerFunction
	InitiateBillingFunction
	FulfillBillingFunction
	Billing Dates for Billing Patterns

	OracleComms_OSM_O2A_COM_Provisioning
	OracleComms_OSM_O2A_COM_Shipping_Sample
	OracleComms_OSM_O2A_COM_Install_Sample
	OracleComms_OSM_O2A_COM_Recognition_Sample
	Revision Number Update for Canceled Orders

	Central Order Management Cartridges for the Calculate Service Order Solution Option
	OracleComms_OSM_O2A_COM_CSO_Base
	OracleComms_OSM_O2A_COM_CSO_Broadband_Internet_Access_CFS
	OracleComms_OSM_O2A_COM_CSO_Email_CFS
	OracleComms_OSM_O2A_COM_CSO_FulfillmentPattern
	OracleComms_OSM_O2A_COM_CSO_FulfillmentStateMap
	OracleComms_OSM_O2A_COM_CSO_Internet_Media_CFS
	OracleComms_OSM_O2A_COM_CSO_IP_Fax_CFS
	OracleComms_OSM_O2A_COM_CSO_Model_Container
	OracleComms_OSM_O2A_COM_CSO_Provisioning
	External Fulfillment States

	OracleComms_OSM_O2A_COM_CSO_SalesOrders
	OracleComms_OSM_O2A_COM_CSO_Solution
	OracleComms_OSM_O2A_COM_CSO_Topology
	OracleComms_OSM_O2A_COM_CSO_VoIP_Access_CFS
	OracleComms_OSM_O2A_COM_CSO_Web_Conferencing_CFS
	OracleComms_OSM_O2A_COM_FulfillmentPattern
	OracleComms_OSM_O2A_COM_FulfillmentStateMap_Sample
	OracleComms_OSM_O2A_COMSOM_CSO_Recognition
	Revision Number Update for Canceled Orders

	OracleComms_OSM_O2A_COMSOM_CSO_Solution

	Central Order Management Cartridges for the Solution Option Without Calculate Service Order
	OracleComms_OSM_O2A_BBVoIP_FP_NP_Danube_Sample
	OracleComms_OSM_O2A_BBVoIP_FP_NP_Nile_Sample
	OracleComms_OSM_O2A_COM_NCSO_Base
	OracleComms_OSM_O2A_COM_NCSO_Provisioning
	OracleComms_OSM_O2A_COM_Simple_NP_Soln
	OracleComms_OSM_O2A_COM_Typical_NP_Soln
	OracleComms_OSM_O2A_COMSOM_Recognition_Sample
	Revision Number Update for Canceled Orders

	OracleComms_OSM_O2A_COMSOM_Simple_NP_Soln
	OracleComms_OSM_O2A_COMSOM_Typical_NP_Soln
	OracleComms_OSM_O2A_FulfillmentPatternMap_Sample
	OracleComms_OSM_O2A_SalesOrders_NP_Sample
	OracleComms_OSM_O2A_SimpleTopology_Sample
	OracleComms_OSM_O2A_TypicalTopology_Sample

	Service Order Management Cartridges for the Calculate Service Order Solution Option
	OracleComms_OSM_O2A_SOM_CSO_Base
	Order Events
	Order Lifecycle Manager Configuration
	XQuery Modules in the OracleComms_OSM_O2A_SOM_CSO_Base Cartridge
	Automation Modules in the OracleComms_OSM_O2A_SOM_CSO_Base Cartridge

	OracleComms_OSM_O2A_SOM_CSO_Broadband_Internet_Access_CFS
	OracleComms_OSM_O2A_SOM_CSO_Common
	OracleComms_OSM_O2A_SOM_CSO_CompleteProvisioning
	OracleComms_OSM_O2A_SOM_CSO_DeliverOrder
	OracleComms_OSM_O2A_SOM_CSO_DesignService
	OracleComms_OSM_O2A_SOM_CSO_Email_CFS
	OracleComms_OSM_O2A_SOM_CSO_FulfillmentPattern
	OracleComms_OSM_O2A_SOM_CSO_FulfillmentStateMap
	OracleComms_OSM_O2A_SOM_CSO_Internet_Media_CFS
	OracleComms_OSM_O2A_SOM_CSO_IP_Fax_CFS
	OracleComms_OSM_O2A_SOM_CSO_ModelContainer
	OracleComms_OSM_O2A_SOM_CSO_PlanDelivery
	OracleComms_OSM_O2A_SOM_CSO_Recognition
	Revision Number Update for Canceled Orders

	OracleComms_OSM_O2A_SOM_CSO_Solution
	OracleComms_OSM_O2A_SOM_CSO_Topology
	OracleComms_OSM_O2A_SOM_CSO_VoIP_Access_CFS
	OracleComms_OSM_O2A_SOM_CSO_Web_Conferencing_CFS

	Service Order Management Cartridges for the Solution Option Without Calculate Service Order
	OracleComms_OSM_O2A_SOM_Base
	Order Events
	Processing Granularity Rules
	XQuery Modules in the OracleComms_OSM_O2A_SOM_Base Cartridge
	Automation Modules in the OracleComms_OSM_O2A_SOM_Base Cartridge

	OracleComms_OSM_O2A_SOM_Provisioning
	OracleComms_OSM_O2A_SOM_Solution
	OracleComms_OSM_O2A_SOM_Recognition_Sample
	Revision Number Update for Canceled Orders

	OracleComms_OSM_O2A_SomBBVoIP_FP_NP_Sample
	OracleComms_OSM_O2A_SomProvisionBroadband_Sample
	OracleComms_OSM_O2A_SomProvisionVoIP_Sample

	Common Conceptual Model Projects
	OracleComms_Model_Base
	OracleComms_Model_BaseCatalog
	OracleComms_Model_Common
	OracleComms_Model_O2A_Broadband_Internet_Access_CFS
	OracleComms_Model_O2A_Broadband_Internet_Access_SA
	OracleComms_Model_O2A_Broadband_Internet_DataModel
	OracleComms_Model_O2A_Email_CFS
	OracleComms_Model_O2A_Email_DataModel
	OracleComms_Model_O2A_Email_SA
	OracleComms_Model_O2A_Internet_Media_CFS
	OracleComms_Model_O2A_Internet_Media_DataModel
	OracleComms_Model_O2A_Internet_Media_SA
	OracleComms_Model_O2A_VoIP_Access_CFS
	OracleComms_Model_O2A_VoIP_Access_SA
	OracleComms_Model_O2A_VoIP_DataModel

	Conceptual Model Projects for Central Order Management
	OracleComms_Model_O2A_Billing_PS
	OracleComms_Model_O2A_Broadband_Internet_Access_PS
	OracleComms_Model_O2A_Email_PS
	OracleComms_Model_O2A_Install_PS
	OracleComms_Model_O2A_Internet_Media_PS
	OracleComms_Model_O2A_VoIP_PS

	Conceptual Model Projects for Service Order Management
	OracleComms_Model_O2A_SOM_PS

	Oracle AIA Emulators

	5 Extending Order-to-Activate Cartridges
	Adding Custom Data Elements
	Adding Custom Order Item Properties
	Changing Durations for Order Components
	Adding a New Fulfillment Function
	Planning the Addition of a New Fulfillment Function
	Response Patterns in System Interactions
	Single Response Pattern
	Multiple Response Pattern

	Entities to Create, Modify, or Reuse
	Data Dictionary and Order Templates
	About Creation Tasks
	About Query Tasks
	About Subprocesses

	Fulfillment Function Extension Point Interface
	Fulfillment Function Extension Point Overview
	COMPONENT-START Extension Point
	COMPONENT-COMPLETE Extension Point
	COMPONENT-UPDATE Extension Point
	CREATE-EBM Extension Point for do Execution Mode
	CREATE-EBM Extension Point for redo Execution Mode
	CREATE-EBM Extension Point for undo Execution Mode
	CREATE-EBM-CUSTOM Extension Point
	CREATE-EBM-ALL-ORDERITEMS Extension Point
	CREATE-EBM-ORDERITEM Extension Point for do Execution Mode
	CREATE-EBM-ORDERITEM Extension Point for redo Execution Mode
	CREATE-EBM-ORDERITEM Extension Point for undo Execution Mode
	CREATE-EBM-ORDERITEM-CUSTOM Extension Point
	CREATE-EBM-PRIORORDERITEM Extension Point
	CREATE-EBM-PRIORORDERITEM-CUSTOM Extension Point
	VALIDATE-RESPONSE-EBM Extension Point
	COMPONENT-RESPONSE-UPDATE Extension Point
	ORDER-EXTENSION-UPDATE-STATUS-EBM Extension Point

	About Fallout
	Fallout Customization
	Failure During Revision

	Adding a New Fulfillment Function for a New Service Offering

	Adding a New Fulfillment Provider
	Adding a New Fulfillment Mode
	Adding a New Product Specification
	Mapping Product Specifications to Order-to-Activate Sample Fulfillment Patterns
	Creating a New Product
	Creating a New Fulfillment Pattern
	Customizing Mapping Rules

	Importing the New Product Specification

	Changing Processing Granularity
	Configuring a New Processing Granularity Rule

	Changing Fulfillment Function Dependencies
	Setting a Point of No Return
	Modeling a PoNR

	Configuring Fulfillment States
	External Fulfillment States
	Fulfillment State Extension Point Interface
	Fulfillment State Extension Point Overview
	ORDERITEM_FULFILLMENT_STATE_UPDATED Extension Point
	ORDER_FULFILLMENT_STATE_UPDATED Extension Point
	ORDER_STATUS Extension Point
	ORDER_STATUSCONTEXT Extension Point
	ORDERITEM_MILESTONE Extension Point
	ORDERITEM_STATUSCONTEXT Extension Point
	REPORT_ORDERITEM_STATUS Extension Point
	REPORT_ORDERITEM_MILESTONE Extension Point
	REPORT_ORDERITEM_STATUSCONTEXT Extension Point

	Adding a New Service for the Calculate Service Order Solution Option
	Adding a New Service for the Service Option Without Calculate Service Order
	Customizing Service Order Management
	Service Order Management Extension Point Overview
	SOM-CREATE-SOAP-REQUEST Extension Point
	SOM-DETECT-FAULT Extension Point
	SOM-GET-FAULT-DATA Extension Point
	SOM-CHECK-IS-LAST-RESPONSE Extension Point
	SOM-GET-UPDATE-DATA Extension Point
	SOM-GET-EXTERNAL-FULFILLMENT-STATE Extension Point
	SOM-GET-EXTERNAL-FULFILLMENT-STATE-AT-FALLOUT Extension Point
	SOM-GET-NEW-CORRELATION-ID Extension Point

	Extending XQuery Modules
	Sending Enriched Data to the CRM System
	Considerations When Integrating with Oracle AIA
	Security Considerations When Communicating with External Systems

	6 Performing Order-to-Activate Cartridge Operations
	XQuery Transformation Logging
	Troubleshooting Order-to-Activate Cartridges
	Updating the JMS Redelivery Configuration Settings
	Setting Cartridge Breakpoints

	7 Prior Versions of Order-to-Activate Cartridges
	Updating Prior Versions of the Cartridges to Work with Newer Versions of OSM
	Changes from Order-to-Activate 2.1.1 to Version 2.1.2
	Removed Support for Asset Processing
	Processes Changed to Use a Single Task for Sending and Receiving
	Central Order Management Fulfillment Functions
	Service Order Management Fulfillment Functions

	Changes from Order-to-Activate 2.1.0.2 to Version 2.1.1
	Support for Asset Processing
	Support for Order Lifecycle Management User Interface
	Support for Processing States

	Changes from Order-to-Activate 2.1.0.1 Cartridges to Version 2.1.0.2
	Changes to Fulfillment Function Extension Points
	New Extension Points
	Extension Points Added to the Billing Components

	Changes to Action Code Mappings
	New XML-type Parameter Added to Contain Custom Order Item Properties

	Changes from Order-to-Activate 2.1.0 Cartridges to Version 2.1.0.1
	New Silent Installation Option

	Changes from Order-to-Activate 2.0.1 Cartridges to Version 2.1.0
	Support for Calculate Service Order
	Two Solution Options: With and Without Calculate Service Order
	The Calculate Service Order Solution Option
	New Service Order Management Cartridges for the Calculate Service Order Solution Option
	Inclusion of Conceptual Model Projects

	Large Order Support
	Support for Sharing Groups

	Changes from Order-to-Activate 7.2 Cartridges to Version 2.0.1
	Release Number Changes and Packaging Changes
	Support for Multiple Price Lists
	Support for Importing Product Classes Directly from Oracle Product Hub

	Changes from Order-to-Activate 7.0.3 Cartridges to Version 7.2
	Cartridge Re-Factoring Overview
	Cartridge Mapping Between Order-to-Activate 7.0.3 and Order-to-Activate 7.2

