Oracle® Retail Merchandising Foundation Cloud
Service

Operations Guide - Volume 1 Batch Overviews and Designs
Release 16.0.22

F10824-01

November 2018

Oracle® Retail Merchandising Foundation Cloud Service Operations Guide - Volume 1 Batch
Overviews and Designs, Release 16.0.22

F10824-01

Copyright © 2018, Oracle and/ or its affiliates. All rights reserved.
Primary Author: Randy Kapelke

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or
display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S.
Government end users are "commercial computer software" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be
subject to license terms and license restrictions applicable to the programs. No other rights are
granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications,
including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/ or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information on content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services.

Value-Added Reseller (VAR) Language
Oracle Retail VAR Applications

The following restrictions and provisions only apply to the programs referred to in this section and
licensed to you. You acknowledge that the programs may contain third party software (VAR
applications) licensed to Oracle. Depending upon your product and its version number, the VAR
applications may include:

(i) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail
Data Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(if) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of
Kirkland, Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory
Management.

(iii) the software component known as Access Via™ licensed by Access Via of Seattle, Washington,
and imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(iv) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of
San Jose, California, and imbedded in Oracle Retail Promotion Planning & Optimization
application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR
Applications. Oracle will not deliver source code to the VAR Applications to you. Notwithstanding
any other term or condition of the agreement and this ordering document, you shall not cause or
permit alteration of any VAR Applications. For purposes of this section, "alteration" refers to all
alterations, translations, upgrades, enhancements, customizations or modifications of all or any
portion of the VAR Applications including all reconfigurations, reassembly or reverse assembly, re-
engineering or reverse engineering and recompilations or reverse compilations of the VAR
Applications or any derivatives of the VAR Applications. You acknowledge that it shall be a breach
of the agreement to utilize the relationship, and/or confidential information of the VAR
Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall
not attempt, cause, or permit the alteration, decompilation, reverse engineering, disassembly or
other reduction of the VAR Applications to a human perceivable form. Oracle reserves the right to
replace, with functional equivalent software, any of the VAR Applications in future releases of the
applicable program.

Contents

Send Us YOur COMIMENTSoccuiiiiiiiiiie ittt ee e XVii
PrEfaceoooeiiiei e XiX
ATUAIEIICE ...ttt ettt ettt ne e Xix
Documentation ACCeSSIDILIEYc.ceueeiiirniriririeieicicicctt et Xix
CUSOMET SUPPOTL....ciiiiiiiiiiiiiiiic s xix
Improved Process for Oracle Retail Documentation Corrections..........ccceeveveeueuenenes XX
Oracle Retail Documentation on the Oracle Technology Network...........ccccovvueueuenees XX
CONVENTIONSeoviiiiiieitetctc s XX
1 Introduction ... 21
Contents of This GUIME.......c.ccoiiirririiiecicici e 21
RMS MOAUIES ...t 21
Batch Schedule...........ooiiii 22
2 Administration Batch ... 25
OVOIVIEW ..ottt 25
Program SUMMATY ... 25
async_job_status_retry_cleanup.ksh (Purge Asynchronous Job Tables) 25
prepost (Pre/Post Helper Processes for Batch Programs).............ccccecvvnieccccininnncnans 26
dlyprg (Daily Purge of Foundation Data)ccccecevviiicieinniicccrrcceeen, 35
taxevntprg (Tax Event PUIge) ... 41
dtesys (Increment Virtual Business Date).........c.cooueueveueueuiuiininnnininieieeccccennneeeenenes 42
trunctbl.ksh (Truncate Table SCIipt) ...t 43
Scheduling CONSLIAINTScccocvivieieierereicieiiirrreeeee ettt nenen 43
rms_oi_purge.ksh (Purge Dashboard Working Tables)cccccoeeueuecioininnnnnieuennes 44
3 Foundation Data Maintenance.................ccccooiiiiiiiiiiiiiii e 47
OVEIVIBW ... 47
Batch Design SUMIMATYcccccevviiieiiieieieiiiiiirereeeeeteteieieie st nenes 47
admin_api_purge (Purge Manage Admin 1ecords)cocevvevurieuereueccnenennnneenenenes 48
batch_compeffupd (Update ELC COMPONENLS)cccovevveueuemeueeeiiinirerieieieieieeiceeeeeenes 49
batch_expprofupd (Apply Pending Rate Changes to Expense Profiles)....................... 51
batch_depchrgupd (Apply Pending Up-Charge Cost Component Changes to
DePartiments) ..o 52
batch_itmcostcompupd (Apply Pending Item Cost Component Updates).................. 53
batch_alloctsfupd (Update Allocation and Transfer Based on Changes to Up-
CRATZES) ..ot 55
batch_ordcostcompupd (Apply Pending Cost Component and ELC Changes to
PUrchase OIders).......c.cciiiririiiniiieiecccici e 56
elcexcprg (Purge Aged Cost Component EXceptions).........cccoeeeeeeucueciiininnnnnenenenes 58
dfrtbld (Build Diff Ratios Based on Sales HiStory)...........ccccoevviviiiiiiiiiiininnnes 59
Iclrbld (Rebuild Dynamic Location Lists)...........cccooverieniiiiiniiiieeecceeeee 61
batch_rfmvcurrconv (Refresh Currency Conversion Materialized View) 62

refmvlocprimaddr (Refresh Address Materialized View)ccccccceecoicinnnnnncnenenes 63

cremhierdly (Process Pending Merchandise Hierarchy Changes from External

SYSEIMIS).....cuiiiiiiiii i 63
reclsdly (Reclassify Items in Merchandise Hierarchycccooooceiiinniiccinnnnan. 65
supmth (Rollup of SUPPLET Data)c.cceueeiririrririeieieieiciietrenerereserereveiereeeeseseseeaenesenes 66
schedprg (Purge Aged Store Ship Schedule)ccccceeueiinnnnnnicceccierneenes 67
prchstprg(Purge Aged Price History Data).........cceueueeeeiininnnninieieieiccccceneneneseeenenenes 68
refmvl10entity (Refresh MV MV_LION_ENTITY) ...c.ccccecrmmmmnnereeeceienenreneeenenenes 73
likestorebatch (Like Store Batch Processing)...........ccccoceeeirerererererieiereucmcecenenenereseeenenenes 74
straddbatch.ksh(Store Add Asynchronous Process)...........ccccoevveeuereueccccnnnnneenenes 76
4 Ttem Maintenamncecoocuviiiiiiiiii e 79
OVEIVIBW ...ttt 79
Program SUMMATY ... 79
sitmain (Scheduled Item Maintenance)cocooeeueueieuciinnnnneeeecceeeereseeeeenenes 79
vatdlxpl (Mass VAT Updates for Items/Locations)..........ccccccevevrviriicneineiinnicennen, 80
iindbatch.ksh (Upload Item Data)cccocoviviririiiiiiiiiiiiceecc e 81
itm_indctn_purge (Purge Item Induction Staging Tables).............cccccccciiinnnnnncnnes 82
Pricingeventprocess.ksh (Main Processing of Executing the Price Events).................. 85
5 Custom Flexible Attributes Solutioncccocoiiiiii 89
OVOIVIEW ..ottt e 89
Program SUMIMATY ... 89
cfagen (CFAS Database Object Creation SCript)cocoevvrniiicieiennniccceiesrreeens 89
cfamigrate (CFAS Metadata Migration SCript).........cccccoceuvuvrniniicieienninicccciessseens 90
cfastgload (Bulk load of CFAS Attribute Data).........c.cccceevrirrnninirierereecceenennereenenenes 91
6 Purchase Order ..o 93
OVEIVIBW ...ttt 93
Batch DeSign SUMIMATYcccovevirieierereueieiiiirirreeeeetete vttt st sesesesesees s saeaesenenes 93
edidlord (Download of Purchase Orders from RMS to Suppliers).......c.cccccerrrurueuenenee 93
DeSiZN OVEIVIEWcuiiiiiiiiiiiice e 93
ediupack (Upload Purchase Order and Purchase Order Change Acknowledgements
from Suppliers to RMS).......ccccccoiiiiiiiiiiiccc s 103
vrplbld (Build Purchase Orders for Vendor Generated Orders)...........cccovvunununnnes 106
genpreiss (Generate Pre-Issued Order NUMDETS)c.c.ccovrivnnninieierereccininnrirenenenes 108
supcnstr (Scale Purchase Orders Based on Supplier Constraints)cccccevvevueuenenee 110
orddscnt (Apply Deal Discounts to Purchase Orders)c.cocovveeveveeecocnnnnnenenenes 111
ordupd (Update Retail Values on Open Purchase Orders)...........cccccceccirinnnennuenenes 113
ordautcl (Auto Close Purchase Orders)........ocoecevreeiririerirnieeninieineneieeneenenienesenienenes 114
ordrev (Write Purchase Order Information to Purchase Order History Tables) 117
ordprg (Purge Aged Purchase Orders).........c.cccocoveueeieiiiinnnnicicceccceneeeeeeeeenenes 118
poindbatch.ksh (Upload Order Data)ccccccevveeririerirnieenneinenecnienceneneeneeneeeseenene 123
po_indctn_purge. ksh (Purge PO Induction Staging Tables)cccccccccevvnrrnncnnes 124

2 B =71 ST 127

(@ 7<) T4 13RS 127

Program SUMMATYccccoiiiiiiii e 127
dealupld (Upload of Deals from 3rd Party Systems)..........ccccocevuvueiececcininnnnnenenes 128
batch_ditinsrt.ksh (Deal Calculation Queue Insert Multithreading)c.cccceuee.. 146
ditinsrt (Insert into Deal Calculation QUEUE)........c.cevervevirrieenineinnceinecrreceeenene 147
discotbapply (Update OTB After Deal DiscOUNLS).........ccccocvveverevururicrcrcciiininrinciennes 149
dealact (Calculate Actual Impact of Billback Deals)c.c.coceeeireinnecnnecnnccinnennes 149
dealinc (Calculate Weekly/Monthly Income Based on Turnover)..........ccccceeuvueeneeee 150
dealday (Daily Posting of Deal Income to Stock & General Ledgers) 152
dealfct (Calculates/ Update Forecasted Values for Deals)ccoceeueuecceininnnnenenenes 153
vendinvc (Stage Complex Deal Invoice Information)..........c.cccceueueueriniiccccnnnnans 154
vendinvf (Stage Fixed Deal Invoice Information)cccecevverevueuevececccninnnnenenenenes 155
dealcls (Close EXpired Deals)cccoeueueueueiiinirininieieecieieieiteirenseetetevesevescseesesesesaesenenes 157
dealprg (Purge Closed Deals).......cccoeueueueueiiininirinieieicicicicietererseete et sesaeaenenes 157
8 COMTACESooiiiiiiii i 161
OVEIVIBW ..ottt 161
Batch Design SUMIMATYcccovvvirieieieueueiiiiniirrieeteteieieieett ettt saesesenenes 161
edidlcon (Download Contracts to SUPPLETrS)........cccceuiririrererererieieieeeeiernreeeeeenenes 162
ediupavl (Upload Item Availability for Type A & D Contracts from Suppliers).......165

cntrordb (Create Replenishment Orders for Item/Locations on Type B Contracts).167
cntrprss (Apply Type A, C and D Contracts to Orders Created by Replenishment) 168

cntrmain (Contract Maintenance and Purging) ... 169
9 CoSt ChanGescccceiiiiiiiiii s 171
OVEIVIEW ..ottt 171
Batch Design SUMIMATYcccovvuiuiiiiiiiiiiiiineieeee et 171
sccext (Supplier Cost Change EXtract)cccccovvviiciiiinnnneccccccceeeeeeeeenenes 171
ccprg (Cost Change PUTIEE)ccveviviiiiiiiicc s 172
Design OVEIVIEWc.ciiiiiiiiieictctct et 172
10 OPpen to BUyccvoviiiiiiiiiic 175
OVEIVIEW ...ttt 175
Batch Design SUMMATY ... 175
otbdnld (Download Current & Future OTB by Subclass).........ccccccceeiiiiininnnnnnes 175
Integration CONLIACE.........ccocuiuiiiiiiic e 176
otbdlord (Download Summary of Outstanding Orders on OTB by Subclass)........... 178
otbupld (Upload OTB Budget from Planning Systems)c.cccoceueveveueuecirenrrneenenenes 181
otbprg (Purge Aged Open To Buy Data)cccovvueueieieiiiinnncccccccenereeeienenes 183
11 Future Cost..........c.ooiiiiiiiiii 185
OVEIVIEW ..ottt 185
Future Cost EVENtS........ccoviiiiiiiiiic 185
Future Cost Engine Run Type Configurationc.cccceeeevnvnrieiercccccnnnnreeenenes 186
Future Cost Engine Error Handlingccoveeieeiiiiiinnnnneecccccccenereeeeeeenenes 189
Future Cost Engine Threading/Chunking............cccccccoeiinnnnnncccciccinrreeenenes 189

vii

viii

FULUTE COSE PTOCESS .ottt e e e eaae e e s e e s enaaees 190

Batch Design SUMIMATYccovvvueieieueueiiiiirinirreeeteteieteieete s saeaesenenes 190
fcthreadexec (Prepare Threads for Batch Calculation/Recalculation of Future Cost
VALUES) .ttt ettt 191
fcexec (Execute Batch Calculation/Recalculation of Future Cost Values).................. 192
DeSigN OVEIVIEWccoiiiiiiiiiiiiiicicic e 192
fc_pricechg (Use Pending Price Changes to Drive Recalculation of Pricing Cost for
some Franchise Item/Locations)cccoviiiiiiiiniiiiiiccc e, 193
costeventprg (Purge Aged Cost EVents).........cccccceeuiiiiiiinnniiiiiccciiines 194
12 Invoice Matching..........ccccoiiiiiiiiiii 197
OVRIVIEW ..ottt 197
Batch Design SUMMATYcccoviiiiiiiiiiiiiiiiiics e 197
edidlinv (Download of Invoice FOr REIM)cccceeueuiiininnninninieneicccccenineneneeeenenenes 197
invclshp (Close Aged Shipments to Prevent them from Matching Open Invoices) ..204
invprg (Purge Aged INVOICES)c.cecuiiiininririeicicccctt et 205
13 RepleniSment..........coooviiiiiiiiii s 207
OVEIVIEW ...t 207
Batch Design SUMIMATYcccovvvirieueueueieiiiiirereeeteteieieieett st sesenenes 211
replsizeprofile (Update Replenishment Size Profile).........cccocovueueuerececccinnnnnincennes 212
rplatupd (Update Replenishment Calculation Attributes)c.cccccceeeeceirnrneneenennes 213
rilmaint (Update Replenishment Calculation Attributes by Item/Loc)...................... 215
repladj (Recalculate Maximum Levels for Floating Point Replenishment) 216
replroq.ksh (Calculate Net INVENtOTY)cccoovvvrueieiiiiiiiiirreccccccccereeeeienes 217
batch_reqgext.ksh (Multithreading Wrapper for regext)ccccceoeeeeccinnnnnncnenes 218

regext (ROQ Calculation and Distribution for Item/Locs Replenished from WH) ..219
rplext.ksh (ROQ Calculation and Distribution for Item/Locs Replenished from

SUPPLIET) ..ttt ettt 222
ibexpl (Determines Eligible Investment Buy Opportunities)...........c.ccccccceeenrrrcuenees 224
ibcalc (Calculate ROQ for Profitable Investment Buys).........cccooeueucccciinnnnncennes 226
rplbld (Build Replenishment Orders)c..cccevveeeererirnrecnneinnecniereeneereeseeneeseenene 227
supsplit (Split Replenishment Orders Among SUppliers).........ccccccceueuccininrrreneennas 229
rplsplit (Truck Splitting Optimization for Replenishment)c.cccccccccevnnnnncnnes 231
rplapprv (Approve Replenishment Orders)coceevveenncinncinncinnceeeeene, 233
batch_rplapprvgtax.ksh (Update Replenishment Order Taxes)..........ccccccccvuriievcncnes 235
repl_wf_order_sync.ksh (Sync Replenishment Franchise Orders)cccceuvueunenee 237
rplprg (Purge Aged Replenishment Results)cccceoierrnnnrierercceccinnnrineeeenenes 238
rplathistprg (Purge Replenishment Attribute HiStory)cocovueveveveceoccoinnnninenenenes 240
rplprg_month (Purge Replenishment Results History by Month).........cccccovrureunenee 241
14 INVENTOTYoooiiiiiiiii e 243
OVEIVIEW ..ttt ettt ettt e e s ta et e e be e beesaeeateeaeasseenseensaesseassesssesaesseenseensenans 243
Batch Design SUMIMATYcccovvviriereuereiiiiiirinirinee ettt beseseseseseesesesaesesenenes 243
edidlprd (Download Sales and Stock On Hand From RMS to Suppliers).................. 243
ordinvupld (Upload and Process Inventory Reservations from ReSA)...................... 247

wastead]j (Adjust Inventory for Wastage Items)cccccceervrrriereiccccccninnnreenenenes 250

refeodinventory (Refresh End of Day Inventory Snapshot)c.cccccccecevnnnnneuennes 251
invaprg (Purge Aged Inventory Adjustments)...........cccccoeeevvrrieiccccininnnrneeenes 252
Design OVEIVIEW ... 253
customer_order_purge.ksh (Purge Aged Customer Orders)cccccoeeeernrrrecuennes 253
15 Transfers, Allocation, and RTV ..., 255
OVEIVIEW ..ottt 255
Batch Design SUMIMATYcccoevviriiieieieiiiiiiireeeeeeeeiete e 255
docclose (Close Transactions with no Expected Appointments, Shipments or
RECEIPLS) ..ttt ettt ene e 255
dummyctn (Reconcile Received Dummy Carton IDs with Expected Cartons).......... 257
tamperctn (Detail Receive Damaged or Tampered with Cartons)..........ccccceceeuvueueneees 259
distropcpub (Stage Regular Price Changes on Open Allocations/Transfers so
Publishing Sends New Retail to Subscribing Applications)ccccceceeivinninnnnnes 260
mrt (Create Transfers for Mass Return Transfer)ccocovvveieuerccecceinnnnneenenenes 262
mrtrtv (Create Return to Vendor for Mass Return Transfer).........c.coceceeevreenrecnennen 263
DeSigN OVEIVIEWccoiiiiiiiiiiiiiicicic e 263
mrtupd (Close Mass Return Transfers).........c.cooeueueueuciininnnnnnicecccccienrseeeeeenenes 264
mrtprg (Purge Aged Mass Return Transfers and RTV).......cccooeeciiiicininnnnncennes 265
rtvprg (Purge Aged Returns to Vendors)cccccucuciiinnnnneicicccccccnreeeeienenes 267
tsfclose (Close Overdue Transfers).......co.cccveereeririeinenreeninreinesreeeereereereeseeneseseenene 268
tsfprg (Purge Aged Transfers)..........cocociirireiciiiirrcee e 269
allocbt (Create Book Transfers for Allocations Between Warehouses in the Same
Physical WarehoUse)cccovevieieieieiciiiiiireeeeieiecieett e 271
16 Sales POSHIIGc.ooiiiiiiii s 273
OVEIVIEW ..ottt 273
Batch Design SUMIMATYccocovvirieieieueiiiiiiinrreeeeteieieieett e seeaenenenes 274
uploadsales.ksh (Upload POSU File for Processing)c.coceeeeueueveececenenernereeuenenes 274
uploadsales_all.ksh (Process Multiple POSU Files)cccoevrrieieiecicininnrnneeeennes 281
salesprocess.ksh (Main Processing of Staged Sale/Return Transactions) 282
salesgenrej.ksh (Reject POSU Transactions)...........ccccccueuiurineneneneneeicrcmececcinenseneenenenas 288
salesuploadarch.ksh (Archive Successfully Posted Transactions)ccccceeuvueueneeee 289
salesuploadpurge.ksh (Purge Aged Archived POSU Transactions)...........c.c.ccceeueeee. 289
17 Sales HiStOrycccoiiiiiiiiiiiiii 291
OVEIVIEW ..ottt 291
Batch Design SUMMATYccccoviiiiiiiiiiiciee s 291
rpmmovavg (Maintain Smoothed, Moving Average Sales History for RPM) 291
hstbld (Weekly Sales History Rollup by Department, Class, and Subclass)............... 293
hstbld_diff (Weekly Sales History Rollup by Diff).......cccccevvnrrierereceiiinnnrneenenes 294
hstbldmth (Monthly Sales History Rollup By Department, Class And Subclass)296
hstbldmth_diff (Monthly Sales History Rollup By Diffs)........cccccceueueeecininnnnnienennes 297
hstmthupd (Monthly Stock on Hand, Retail and Average Cost Values Update)......298

hstwkupd (Weekly Stock on Hand and Retail Value Update for Item/Location)300

hstprg (Purge Aged Sales HiStOTY)c.cccccoiririrriririeieiciciiiiernreseeeeieeeieceese s 301

hstprg_diff (Purge Aged Sales History by Diff)c.ccccoovrnnnnieecciiiinrreeenenes 302
18 SEOCK COUNL.....c.uviiiiiiiiiii e s 305
OVEIVIEW ..o 305
Batch Design SUMIMATYcccovvvirieueueueieiiiiirereeteteieieieete et seseseae e saesenenenes 305
lifstkup (Conversion of RWMS Stock Count Results File to RMS Integration Contract)
... 305
Output File LayOout ... 307
stockcountupload.ksh (Upload Stock Count Results from Stores/Warehouses)309
stkdly (Calculate Actual Current Shrinkage and Budgeted Shrink to Apply to Stock
LedeI) ..o 311
stkprg (Purge Aged Stock Count).........ccccciiiiiiiiniiiiiiiincces 312
stkschedxpld (Create Stock Count Requests Based on Schedules)c..cccccec.e. 313
stkupd (Stock Count Snapshot Update)cccocveieineinniiiniiccnccceeenne 315
stkvar (Update Stock On Hand Based on Stock Count Results)........c.c.ccccceuvrrururuenenes 316
stkxpld (Explode Stock Count Requests to Item Level)........cccoveveueucccccininnnnniennee 317
stockcountprocess.ksh (Process Stock Count Results).........cccoeveeueveucucccininnnnenennes 319
19 Oracle Retail Trade Managementccoociiiiiiiiiniinn e, 321
OVEIVIEW ... 321
Simplified RTM Configurationc.c.cccccoernrrrrieieueueiiinreneneeeeieveveeseeeesesesesaesenenenes 321
Batch Design SUMIMATYccceviiieuiueieiiiiiireeeeeeeeeete e nenes 322
cednld (Download of Customs Entry Transactions to Brokers)...........cccccerrurueuenenee 323
htsupld (Harmonized Tariff Schedule Upload)........c.ccccooueevinnnriciciciiiinnnrncennes 330
tranupld (Transportation Upload)........cc.ccceereerriecrineinnecninieirenecnieeeneeneeseeneeeseenene 339
Icadnld (Letter of Credit Application Download)........c.cceccevreinnecnnecnneccnerecnennen 344
lemt700 (SWIFT File Conversion - Letter of Credit Application)c.cocececerveveeenennee 355
lcupld (Letter of Credit Confirmation Upload) ... 358
lemt730 (SWIFT File Conversion - Letter of Credit Confirmation)...........cccccoeuvuvuenenes 360
lemdnld (Letter of Credit Amendment Download)...........cccooviiiiiiiiiiinnnnnnes 364
lemt707 (SWIFT File Conversion - Letter of Credit Amendment).........ccccorururueunenee 369
lcup798 (Letter of Credit Drawdowns and Charges).......c.cocoveveeueveveueecirinnerreneenenenes 372
lemt798 (SWIFT File Conversion - Letter of Credit Charges and Drawdowns) 374
20 StOCK LedGET ... s 383
OVEIVIEW ... 383
Batch DeSign SUMIMATYcccovvvirieveueueiiiciirinerineeetereieveieete s besesesescae e esaesesenenes 384
salstage (Stage Stock Ledger Transactions for Additional Processing)............c.......... 385
salapnd (Append Stock Ledger Information to History Tables).........ccccerrurunuenenes 387
saldly (Daily Rollup of Transaction Data for Stock Ledger)cccccoeecicinnnnncnnes 388
salweek (Weekly Rollup of Data/Calculations for Stock Ledger)cccvvurnunees 389
salmth (Monthly Rollup of Data/Calculations for Stock Ledger).........cccccevvururuenenes 391
salmaint (Stock Ledger Table Maintenance)cccccccceeernnrereeiccnccccninnneneeeenenes 392

saleoh (End Of Half Rollup of Data/Calculations for Stock Ledger)............ccceueee. 394

salprg (Purge Stock Ledger HiStOry).......cccccoiirnnniieiciciiiiirrreeeccccceereeeeeiennes 396

nwppurge (Purge of Aged End of Year Inventory Positions)..........c.ccccccceeenrrereeueneee 397
nwpyearend (End of Year Inventory Position Snapshot)............cccccccceiiinnnnnccnnes 398
stlgdnld (Daily or Weekly Download of Stock Ledger Data)..........cccccccccveinnnnnucnnes 399
otbdlsal (Open To Buy Download Stock Ledger).........ccccevinnnnerieiccccciinirnneiennes 404
trandataload.ksh (External Transaction Data Upload).......c.cccccvveccnreinncccnnccnnnnee 413
trandataprocess.ksh (External Transaction Data Process).........c.coccccevevecrrrcccnverccnennee 416
21 Franchise Management...............c.cccooiiiiiiiiiiiiiii 419
OVOIVIEW ..ottt 419
Batch Design SUMMATYcccovuiiiiimimiiiiiiieeeeecece e 420
fcosttmplupld (Upload Cost Buildup Template)........ccovveervrreinenrecnereinnrecneneeneenene 421
fcosttmplprocess (Process Cost Buildup Template Upload)........c.ccceeeeceinnnrenecuenenee 425
fcosttmplpurge (Purge Staged Cost Template Data)cccoceviueueueuririniicccreinnians 427
fcustomerupload (Franchise Customer Upload)ccovrvnririererccecccninnnnneenenenes 428
fcustomerprocess (Process Uploaded Franchise Customers and Customer Groups)
... 431
Restart/ RECOVETY ..o 432
fcustupldpurge (Franchise Customer Staging Purge)c.ccccoeeuevnniicccrennnnans 433
wfordupld.ksh (Franchise Order Upload).........cocovvureruerererieioennnninineeienciceceenenenens 434
wi_apply_supp_cc.ksh (Apply Supplier Cost Change to Franchise Orders).............. 438
wi_apply_supp_cc (Apply Supplier Cost Change to Franchise Orders) 439
wfordcls (Franchise Order ClOSe) ...ttt seseesenenenes 440
wfordprg (Franchise Order PUIZE)........cccoovrriririeieiciciiiiirnrereieeieieeeeeceese s 441
wiretupld.ksh (Franchise Return Upload)ccccceeiiinnnnninieiciccccciinrreeiennes 442
wiretcls (Franchise Return ClOSE)coueueirieuinenieuirinieinnieiinicnerieeteeeneeeeseeeeseeiene 445
wirtnprg (Franchise Return PUIEe) ..o 447
wislsupld.ksh (Upload of Franchise Sales to RMS).........c.cccoevecnrecnecrnneceneceneenen 448
wibillex.ksh (Franchise Billing EXtract)ccccocovvviiiiiiiiinrrecccccccececenes 450
22 Competitive Pricing...........c.cccociiiiiiiiiii 455
OVEIVIEW ..ottt 455
Batch Design SUMIMATYcccouvuiiiuiiiiiiiiiiineeeeeeeet e 455
cmpupld (Upload Competitor’'s PriCes)c..ccvveerreirnieenneinnecnieneeneereeneeneeeneenene 455
cmpprg.pc (Purge Aged Competitive Pricing Data)..........cccovviiiiiiiiiiniinnnes 458
23 Ttem INductioncccooiiiiiiiiii 461
OVEIVIEW ..ottt 461
Batch Design SUMMATYccccoviiiiiiiiiiiciee s 462
loadods.ksh (Item INAUCLION)c.ccuiuimiiiiiiiiiiiiiicci e 463
iindbatch.ksh (Upload Item Data)cccccooiiiiiiiiiiiiiiiinicccccccces 464
1d_iindfiles.ksh (Upload Data From Templates)cccccevrreruruererereeccrennrrineenenenes 465
itm_indctn_purge (Purge Item Induction Staging Tables)...........ccccccceeeceirnrrnuenennes 466
24 Integration with Xstore................cccooiiiiiiiii 469
OVEIVIEW ..ottt 469

Xi

Foundation Data Bulk EXPOTtcccccciiiininiiieccciii e 469

Bulk EXPOrt Patternc.coiiiiiiieicicicicciirireee ettt 470
POINtS Of NOTE ...t 470
Base Oracle Retail USage..........coueueueuiiiiininiiiiiceicccctc e 471
Client Specific Usage Recommendations............c.cocecueueueuiiinnnnnieiceeccienrreeeeenenes 471
Batch Design SUMMATYccccovuiiiiiiiiiiiiiiiieeeeccee e 471
export_merchhier.ksh (Extract of Merchandise Hierarchy data)...........cccocoeveuenies 472
export_orghier.ksh (Extract of Organizational Hierarchy Data)...........ccccccerurnuenees 473
export_stores.ksh (Extract of Store Data)...........cceeueueueuiirinernenininiererereieeceneneneseeeenenenes 475
export_diffs.ksh (Extraction of differentiators data defined for a differentiator type)
... 476
export_diffgrp.ksh (Extraction of differentiator groups data).........cccccccceoveivrrnncnnnes 477
export_itemloc.ksh (Extraction of item location data)c.cocecevevecnvcinncccneccnennee 479
export_itemvat.ksh (Extraction of vat item data)cccoceceverveinneccnincinnceccnen 480
export_itemmaster.ksh (Extraction of item data)c.cccoerrerriererececcninnnnneienenes 482
export_vat.ksh (Extraction of vat data).......c.coceeeuereuciioinnnnnneecceccennenseeenenes 484
export_relitem.ksh (Extraction of item data).........c.cccceoeeerrrnnninierereeiiiinnrreeeenenes 485
export_stg_purge.ksh (Purging of all the extracted data)............cccccceveeeceinnnnncennes 487
25 Integration with Third Party POS..............ccooiiiiiiii e 489
Program SUMIMATY ..o 489
taxdnld (Tax Download to 3" Party POS in Global Tax [GTAX] Implementations) .489
poscdnld (Download of POS Configuration Data to 3" Party POS)ccccocvvurrenee 492
26 Integration with Advanced Inventory Planningcccocoviiiininiiicicnn, 499
OVEIVIEW ... 499
Foundation Data vs Transaction/Inventory Data..........cccoceevvruerereeeccninnnnineenenenes 499
Program SUMMATY ... e 499
rmse_aip_batch (Optional Wrapper Script to run all AIP Extracts)cccoevvueueneeee 500
pre_rmse_aip (Extract of RMS System level settings for AIP).........cccccccceevvnnnnnuennes 502
rmse_aip_merchhier (Extract of Merchandise Hierarchy for AIP)ccccoevveuenee. 507
rmse_aip_orghier (Extract of Organization Hierarchy for AIP)........cccoovnnnnnnnes 509
rmse_aip_item_master (RMS Extract of Items for AIP)......c..ccccceveccnreinncccneccnennen 510
rmse_aip_store (Extract of Stores for AIP)cccoreinnevnneinnecnncneeecneecneenee 513
rmse_aip_wh (Extract of Warehouses for AIP).........c.cccovviniiiiiiiiiiiiiicnes 514
rmse_aip_substitute_items (Extract of Substitute Items for AIP).........c.cccccccevvrreurnnnee. 516
rmse_aip_suppliers (Extract of Suppliers for AIP).........ccccovvviiiiiiiiiiiiiiienes 518
rmse_aip_alloc_in_well (Extract of Allocations in the Well Quantities for AIP) 520
rmse_aip_cl_po (Extract of AIP Generated POs, Allocations and Transfers Cancelled
or Closed in RMS fOr AIP) ... 522
rmse_aip_future_delivery_alloc (Extract of Allocation Quantities for Future Delivery
FOT ATP) ettt ettt 524

rmse_aip_future_delivery_order (Extract of Purchase Order Quantities for Future
Delivery to AIP) ... 528

rmse_aip_future_delivery_tsf (Extract On Order and In Transit Transfer Quantities
for Future Delivery for AIP) ... 531

rmse_aip_item_loc_traits (Extract of Shelf Life on Receipt Location Trait for AIP)..535

rmse_aip_item_retail (Extract of Forecasted Items for AIP)cccccccceceecvnnnnnenienenes 536
rmse_aip_item_sale (Extract of Scheduled Item Maintenance On/Off Sale
INfOrmation fO1 AIP)cccveirniiiinieinecneeerrectereee ettt 538
rmse_aip_item_supp_country (Extract of Order Multiples by Item/Supplier/Origin
COUNETY FOT AIP) .ttt 541
rmse_aip_rec_qty (Extract of Received PO, Allocation and Transfer Quantities for
ATP) o 543
rmse_aip_store_cur_inventory (Extract of Store Current Inventory data for AIP) ...546
rmse_aip_tsf_in_well (Extract of Transfer in the Well Quantities to AIP).................. 547
rmse_aip_wh_cur_inventory (Extract of Warehouse Current Inventory for AIP)550
27 Integration with General Ledger................ccoooiiiiiiiiiiii e 553
OVEIVIEW ... 553
Batch Design SUMIMATYcccovvririeueiereieiiiininirreeeteteieieieett et saesesenenes 553
dealfinc (Calculation of Fixed Deal Income for General Ledger)........cccccceevrrunuruenenes 553
fifgldn1 (Interface to General Ledger of Item/Loc Level Transactions) 555
fifgldn2 (Interface to General Ledger of Rolled Up Transactions).........cccccevururueuneees 556
fifgldn3 (Interface to General Ledger of Month Level Information)..........c.ccceeueueeee. 558
gl_extract.ksh (Extraction of General Ledger transaction data from RMS and RESA)
... 559
28 Integration with Oracle Retail Planning...............ccccoooiiiiiiiiiiii e, 563
OVEIVIEW ... 563
Foundation Data vs Transaction/Inventory Data..........cccocovverrierereeeccninnnneneenenenes 563
RPAS Integration Program SUMMATIYcccocveuiiiriiiiniciiicienceie e 563
RDF Integration Program SUMmMATIYcccccoevviiiiniiiiiiiiiceiceeeceeeeenes 564
MEFP Integration Program SUMMATYcccocciiriiiiniiiiiiniiiiicinicese s 564
pre_rmse_rpas (Extract of RMS System level settings for RPAS)ccccvrrreuennes 565
rmse_rpas_suppliers (Extract of Suppliers for RPAS)c.cccocecvveccnrcnneccnecenennen. 571
rmse_rpas_merchhier (Extract of Merchandise Hierarchy for RPAS)......................... 572
rmse_rpas_orghier (Extract of Organizational Hierarchy for RPAS)ccccccc..... 574
rmse_rpas_wh (Extract of Warehouses for RPAS)cccccovviiiiiiiiiiniiienes 575
rmse_rpas_store (Extract of Stores for RPAS) ... 577
rmse_rpas_item_master (Extract of Items for RPAS)........cccccocccivrevinncinnccnieiene, 578
rmse_rpas_domain (Extract of Domains for RPAS)........ccccovvrneieiccevcccnnnnnneenenes 580
rmse_rpas_attributes (Extract of User Defined Attributes for RPAS)c.coeuvueueeee. 582
rmse_rpas_weekly_sales (Extract of Weekly Sales of Forecasted Items for RPAS)...584
rmse_rpas_daily_sales (Extract of Daily Sales of Forecasted Items for RPAS)........... 585
rmse_rpas_stock_on_hand (Extract of Stock On Hand of Forecasted Items for RPAS)
... 587
rmse_rpas (RMS-Planning Extract Wrapper Script)cocoeveveuerereueeccoinnrrineenenenes 589
rmsl_rpas_update_retl_date (Update Last RPAS Extract Date)cccccccoenrrrunuenenee 590

Xiii

Xiv

soutdnld (Stockout Download)........c.coeevreiirieiinnieineicereere s 592

ftmednld (Download of Time Hierarchy for Planning Systems)cccccevrurueuenenee 593
rmsl_rpas_forecast (RMS Load of Forecast from RPAS)cccccccceciicinnnnnncennes 596
festprg (Purge Forecast Data)c.cccciiriniriniricicicciiiireeeeeeeeeecceeses e 598
rmse_rdf_daily_sales (Extract of Daily Sales of Forecasted Items for RPAS)............. 599
rmse_rdf weekly_sales (Extract of Weekly Sales of Forecasted Items for RPAS)601
rmse_mfp_inventory (Extract of Inventory Aggregation for MFP)...........ccccccceeueee. 602
rmse_mfp_onorder (Extract of On Order for MEP)ccccoveinnecnncinncineccnenen 604
onictext (On Inter-Company Transfer Exhibit).........c.cococeociievnniiiiiiinicee, 606
onordext (On Order EXTract) ..o 608
gradupld (Upload of Store Grade Classifications from RPAS)ccccccovviiicuennnne. 611
onorddnld (On Order Download to Financial Planning)........c.cccececeeueeceininnnnnuennes 613
29 Oracle Retail Sales Audit Batch Process and Designs..............ccccooiiiiiniiniiiinnns 615
Oracle Retail Sales Audit Dataflow Diagram...........ccccccevrniniicicenniniiccceerneens 615
Oracle Retail Sales IMport PrOCESS ...ttt 615
Total Calculations and Rules.............cccccuiiiiiiiiiiiiiicc s 617
Oracle Retail Sales EXPOrt PrOCESS.c.ccciviriririririeieieieiiiiiirinesesieieieveveieiecesesesesaesesenenes 617
Batch Design Summary of ReSA Modulescccccciiinnnnnnicceccccnneeeeenes 618
sastdycr (Create Store Day for Expected Transactions).........c.ceceeeueueueucccrinneneneeuenenes 619
sagetref (Get Reference Data for Sales Audit Import Processing)..........cccccovuvurueueneeee 621

saimptlog/saimptlogi (Import of Unaudited Transaction Data from POS to ReSA) 630
saimptlogtdup_upd (Processing to Allow Re-Upload of Deleted Transactions).......672

saimptlogfin (Complete Transaction Import Processing)ccccccoceecieinrrnnennes 673
savouch (Sales Audit Voucher Upload)...........ccocoviuiiiiiiiiiiiniiiicicciiiiines 675
saimpadj (Import Total Value Adjustments From External Systems to ReSA).......... 679
satotals (Calculate Totals based on Client Defined Rules)ccccccceiiiiinnnnnnes 681
sarules (Evaluate Transactions and Totals based on Client Defined Rules)............... 683
sapreexp (Prevent Duplicate Export of Total Values from ReSA)cccvrrrnuenees 685
saexprms (Export of POS transactions from ReSA to RMS)c.ccccceveccinnnnnnenenes 687
saordinvexp (Export Inventory Reservation/Release for In Store Customer Order &
Layaway Transactions from ReSA)cccoooeoiiiiiiiiiccec s 692
saexpdw (Export from ReSA to Oracle Retail Analytics)........c.cccoceoeeiiiinininnnnnnnes 696
saexpsim (Export of Revised Sale/Return Transactions from ReSA to SIM) 723
saexpim (Export DSD and Escheatment from ReSA to Invoice Matching) 727
saexpgl (Post User Defined Totals from ReSA to General Ledger)........cccerrurunuenenee 729
ang_saplgen (Extract of POS Transactions by Store/Date from ReSA for Web Search)
... 731
saescheat (Download of Escheated Vouchers from ReSA for Payment)..................... 733
saescheat_nextesn (Generate Next Sequence for Escheatment Processing)................ 735
saexpach (Download from ReSA to Account Clearing House (ACH) System) 736
saexpuar (Export to Universal Account Reconciliation System from ReSA).............. 743
saprepost (Pre/Post Helper Processes for ReSA Batch Programs)cccccevuvueueneeee 745

sapurge (Purge Aged Store/Day Transaction, Total Value and Error Data from

ReSA)

XV

Audience

Send Us Your Comments

Oracle Retail Merchandising Foundation Cloud Service Operations Guide - Volume 1
Batch Overviews and Designs, Release 16.0.22

Oracle welcomes customers' comments and suggestions on the quality and usefulness of
this document.

Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:

= Are the implementation steps correct and complete?

= Did you understand the context of the procedures?

= Did you find any errors in the information?

* Does the structure of the information help you with your tasks?

* Do you need different information or graphics? If so, where, and in what format?
= Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us
your name, the name of the company who has licensed our products, the title and part
number of the documentation and the chapter, section, and page number (if available).

Note: Before sending us your comments, you might like to
check that you have the latest version of the document and if
any concerns are already addressed. To do this, access the
new Applications Release Online Documentation CD
available on My Oracle Support and www.oracle.com. It
contains the most current Documentation Library plus all
documents revised or released recently.

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com
Please give your name, address, electronic mail address, and telephone number
(optional).

If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at www.oracle.com.

Send Us Your Comments xvii

http://www.oracle.com/
mailto:retail-doc_us@oracle.com
http://www.oracle.com/

Audience

Audience

Preface

This Oracle Retail Merchandising Foundation Cloud Service Operations Guide - Volume 1 Batch
Overviews and Designs provides critical information about the processing and operating
details of the Oracle Retail Merchandising System (RMS), including the following:

= System configuration settings

* Technical architecture

* Functional integration dataflow across the enterprise
* Batch processing

This guide is for:

* Systems administration and operations personnel
* Systems analysts

* Integrators and implementers

* Business analysts who need information about Merchandising System processes and
interfaces

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through
My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

* Oracle Retail Sales Audit documentation

* Oracle Retail Trade Management documentation

Customer Support

To contact Oracle Customer Support, access My Oracle Support at the following URL:
https:/ /support.oracle.com

When contacting Customer Support, please provide the following:

* Product version and program/module name

* Functional and technical description of the problem (include business impact)

= Detailed step-by-step instructions to re-create

= Exact error message received

= Screen shots of each step you take

Preface xix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://support.oracle.com/

Improved Process for Oracle Retail Documentation Corrections

To more quickly address critical corrections to Oracle Retail documentation content,
Oracle Retail documentation may be republished whenever a critical correction is
needed. For critical corrections, the republication of an Oracle Retail document may at
times not be attached to a numbered software release; instead, the Oracle Retail
document will simply be replaced on the Oracle Technology Network Web site, or, in the
case of Data Models, to the applicable My Oracle Support Documentation container
where they reside.

An updated version of the applicable Oracle Retail document is indicated by Oracle part
number, as well as print date (month and year). An updated version uses the same part
number, with a higher-numbered suffix. For example, part number E123456-02 is an
updated version of a document with part number E123456-01.

If a more recent version of a document is available, that version supersedes all previous
versions.

Oracle Retail Documentation on the Oracle Technology Network

Oracle Retail product documentation is available on the following web site:
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

(Data Model documents are not available through Oracle Technology Network. You can
obtain them through My Oracle Support.)

Conventions

Navigate: This is a navigate statement. It tells you how to get to the start of the procedure
and ends with a screen shot of the starting point and the statement “the Window Name
window opens”.

This is a code sample
It is used to display examples of code

xx Oracle Retail Merchandising Foundation Cloud Service

1

Introduction

Welcome to the Oracle Retail Merchandising Operations Guide. The guide is designed to
inform you about the ‘backend” of RMS: data inputs, processes, and outputs. As a
member of the Oracle Retail family, RMS provides the many benefits of enterprise
application integration (EAI).

A primary benefit of EAI is the near real-time view of data that results from message-
based processes between RMS and other products on the Oracle Retail Integration Bus
(RIB). RIB integration allows RMS to overcome time lags to data updates. As a result,
RMS is less dependent upon the batch window.

Contents of This Guide

The major components of the Operations Guide include the two volumes described
below.

Volume 1 - Batch Overviews and Designs

Batch overviews tie a functional area description to the batch processes illustrated in the
designs.

Batch designs describe how, on a technical level, an individual batch module works and
the database tables that it affects. In addition, batch designs contain file layout
information that is associated with the batch process.

Batch designs can be referenced by name through the table of contents of this volume.

Volume 2 — Message Publication and Subscription Designs

Oracle Retail Integration Bus (RIB) RMS functional overviews are incorporated into the
publication and subscription designs. Therefore, the retailer can extract the business
rationale behind each publication or subscription as well as the technical details that
describe, on a technical level, how RMS publishes messages to the RIB or how RMS
subscribes to messages from the RIB. A chapter in this volume also addresses how RMS
utilizes the Oracle Retail Service Layer (RSL).

External Subscription RIB APIs

Subscription APIs that are designated as “External” are designed to be interfaces for
external systems that maintain the applicable data. In other words, RMS is not the
‘system of record’ for maintaining the data. Instead, RMS subscribes to consume the data
when it is published so that the corresponding data in RMS can be kept in sync with the
external system that maintains the data.

RMS Modules

For RMS retailers who purchase additional modules, the guide includes descriptions of
the batch programs related to the following;:

= Oracle Retail Trade Management™ (RTM)

Batch Schedule

The batch schedule is a program list with pre/post dependencies for each batch job. For
each individual user, the schedule is a suggested starting point for the installation. Some
programs are specific to products that may not be installed, so these programs may not
be used at all.

Order is critical when running batch programs. Some tasks need to be performed before
others. A batch schedule ensures that every time batch processing is performed, the
correct tasks are performed in the proper order.

Pro*C Input and Output Formats

Oracle Retail batch processing utilizes input from both tables and flat files. Further, the
outcome of processing can both modify data structures and write output data. Interfacing
Oracle Retail with external systems is the main use of file based I/O.

General Interface Discussion

To simplify the interface requirements, Oracle Retail requires that all in-bound and out-
bound file-based transactions adhere to standard file layouts. There are two types of file
layouts, detail-only and master-detail, which are described in the sections below.

An interfacing API exists within Oracle Retail to simplify the coding and the
maintenance of input files. The API provides functionality to read input from files,
ensure file layout integrity, and write and maintain files for rejected transactions.

Standard File Layouts

The RMS interface library supports two standard file layouts; one for master/detail
processing, and one for processing detail records only. True sub-details are not
supported within the RMS base package interface library functions.

A 5-character identification code or record type identifies all records within an I/O file,
regardless of file type. The following includes common record type values:

» FHEAD —File Header

» FDETL —File Detail

» FTAIL—File Tail

» THEAD —Transaction Header
= TDETL—Transaction Detail

= TTAIL—Transaction Tail

Each line of the file must begin with the record type code followed by a 10-character
record ID.

Detail-Only Files
File layouts have a standard file header record, a detail record for each transaction to be
processed, and a file trailer record. Valid record types are FHEAD, FDETL, and FTAIL.
Example:
FHEADOOOOO0O0001STKU1996010100000019960929
FDETL0O000000002SKU100000040000011011
FDETLO000000003SKU100000050003002001
FDETL0O000000004SKU100000050003002001
FTAIL0O0000000050000000003

22 Oracle Retail Merchandising Foundation Cloud Service

Batch Schedule

Master and Detail Files

File layouts consists of:

» Standard file header record

= Set of records for each transaction to be processed

= File trailer record.

The transaction set consists of:

» Transaction set header record

» Transaction set detail for detail within the transaction

» Transaction trailer record

Valid record types are FHEAD, THEAD, TDETL, TTAIL, and FTAIL.

Example:

FHEADOOOOOOOOO1IRTV 19960908172000
THEADOOOOOQ000200000000000001199609091202000000000003R
TDETL0O00000000300000000000001000001SKU10000012
TTATIL0O000000004000001
THEADOOOO00000500000000000002199609091202001215720131R
TDETL0O00000000600000000000002000001UPC400100002667
TDETL0O000000007000000000000020000021UPC400100002643 0
TTATIL0O000000008000002

FTAIL0O0000000090000000007

Record Name Field Name Field Type Default Value Description
File Header File Type Record Char(5) FHEAD Identifies file
Descriptor record type.
File Line Number(10) Specified by Line number of
Identifier external system the current file.
File Type Char(4) n/a Identifies
Definition transaction type.
File Create Date Date Create date Date file was
written by
external system.
Transaction File Type Record Char(5) THEAD Identifies file
Header Descriptor record type.
File Line Number(10) Specified by Line number of
Identifier external system the current file.
Transaction Set Char(14) Specified by Used to force
Control Number external system unique transaction
check.
Transaction Date Char(14) Specified by Date the
external system transaction was
created in external
system.
Transaction File Type Record Char(5) TDETL Identifies file
Detail Descriptor record type.
File Line Number(10) Specified by Line number of
Identifier external system the current file.

Introduction 23

Record Name Field Name Field Type Default Value Description
Transaction Set Char(14) Specified by Used to force
Control Number external system unique transaction
check.
Detail Sequence = Char(6) Specified by Sequential
Number external system number assigned
to detail records
within a
transaction.
Transaction File Type Record Char(5) TTAIL Identifies file
Trailer Descriptor record type.
File Line Number(10) Specified by Line number of
Identifier external system the current file.
Transaction Number(6) Sum of detail lines ~ Sum of the detail
Detail Line Count lines within a
transaction.
File Trailer File Type Record Char(5) FTAIL Identifies file
Descriptor record type.
File Line Number(10) Specified by Line number of
Identifier external system the current file.
Total Transaction Number(10) Sum of all All lines in file less

Line Count

transaction lines

the file header and
trailer records.

24 Oracle Retail Merchandising Foundation Cloud Service

2

Administration Batch

Overview

This chapter contains information about a number of batch processes perform
administrative processes in RMS. These processes range from incrementing the ‘current
business date for transactions’ (known in RMS as vdate) to purging unused data and
auditing database transactions.

Program Summary

Program Description
async_job_status_retry_cleanup.ksh Purge Asynchronous Job Tables

pre/ post Pre/Post Helper Processes for Batch Programs
dlyprg.pc Daily Purge of Foundation Data
taxevntprg.pc Tax Event Purge

dtesys.pc Increment Virtual Business Date

trunctbl Truncate Table Script

rms_oi_purge.ksh Purge Dashboard Working Tables

async_job_status_retry_cleanup.ksh (Purge Asynchronous Job Tables)

Module Name async_job_status_retry_cleanup.ksh
Description Purge Asynchronous Job Tables
Functional Area Administration

Module Type Admin

Module Technology ksh

Catalog ID RMS180

Runtime Parameters

Design Overview

This is a batch job that will clean up the RMS asynchronous jobs tables. The
asynchronous job management tables (RMS_ASYNC_STATUS and
RMS_ASYNC_RETRY) track each asynchronous call that is made. These tables are used
to see error information and help with retrying failed calls.

This program will be run Adhoc and will accept a parameter of # days of information
that will be deleted.

prepost (Pre/Post Helper Processes for Batch Programs)

Scheduling Constraints

Schedule Information Description
Frequency As Needed (regular intervals recommended)
Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A
Restart/Recovery
N/A
Key Tables Affected
Table Select Insert Update Delete
RMS_ASYNC_STATUS No No No Yes
RMS_ASYNC_RETRY No No No Yes
Input/Out Specification
N/A

prepost (Pre/Post Helper Processes for Batch Programs)

Module Name Prepost.pc

Description Pre/Post Helper Processes for Batch Programs
Functional Areas Administration

Module Type Business Processing

Module Technology ProC

Catalog ID Individual Pre/Post Jobs have Catalog IDs
Runtime Parameters

Design Overview

The pre/post module facilitates multi-threading by allowing general system
administration functions (such as table deletions or mass updates) to be completed after
all threads of a particular program have been processed.

This program will take three parameters: username/ password to log on to Oracle, a
program before or after which this script must run and an indicator telling whether the
script is a pre or post function. It will act as a shell script for running all pre-program and
post-program updates and purges.

Pre/Post contains the following helper functions, which are should be individually
scheduled with the related main programs.

26 Oracle Retail Merchandising Foundation Cloud Service

prepost (Pre/Post Helper Processes for Batch Programs)

Catalog ID Prepost Job Related Main Related Main Program
Program
Catalog ID

RMS400 prepost rpl pre RMS315 rplext

RMS401 prepost salweek post RMS346 salweek

RMS402 prepost salmth post RMS343 salmth

RMS403 prepost rplapprv pre RMS300 rplapprv

RMS404 prepost rplatupd pre RMS313 rplatupd

RMS405 prepost rplatupd post RMS313 rplatupd

RMS406 prepost rilmaint pre RMS311 rilmaint

RMS407 prepost rilmaint post RMS311 rilmaint

RMS408 prepost supmth post RMS369 supmth

RMS409 prepost sccext post RMS355 sccext

RMS410 prepost hstbld pre RMS239 hstbld

RMS411 prepost hstbld post RMS239 hstbld

RMS413 prepost edidlprd post RMS47 edidlprd

RMS414 prepost edidlprd pre RMS47 edidlprd

RMS417 prepost cntrordb post RMS232 cntrordb

RMS418 prepost fsadnld post

RMS419 prepost btcheycl No related main process. Is
used to enable DB policies
that might have been
disabled in order to run
batch

RMS421 prepost poscdnld post poscdnld

RMS423 prepost htsupld pre htsupld

RMS424 prepost onordext pre onordext

RMS425 prepost reclsdly pre RMS302 reclsdly

RMS426 prepost reclsdly post RMS302 reclsdly

RMS427 prepost ibcalc pre RMS249 ibcalc

RMS428 prepost fcstprg pre RMS227 festprg

RMS429 prepost fcstprg post RMS249 festprg

RMS430 prepost regext pre RMS310 regext

RMS431 prepost regext post RMS310 regext

RMS432 prepost stkupd pre Stkupd

RMS433 prepost replroq pre RMS308 Replroq

RMS434 prepost rplext post RMS315 Rplext

RMS438 prepost saleoh pre RMS337 Saleoh

RMS440 prepost salweek pre RMS346 salweek

Administration Batch 27

prepost (Pre/Post Helper Processes for Batch Programs)

Catalog ID Prepost Job Related Main Related Main Program
Program
Catalog ID

RMS441 prepost dealinc pre RMS211 Dealinc

RMS442 prepost dealday pre RMS208 dealday

RMS443 prepost dealday post RMS208 dealday

RMS444 prepost dealact_nor pre RMS206 Dealact

RMS445 prepost dealact_po pre RMS206 Dealact

RMS446 prepost dealact_sales pre RMS206 Dealact

RMS447 prepost dealfct pre RMS209 Dealfct

RMS448 prepost dealcls post RMS209 Dealcls

RMS449 prepost hstbldmth post RMS241 hstbldmth

RMS450 prepost vendinvc pre vendinvc

RMS451 prepost vendinvf pre vendinvf

RMS452 prepost vendinvc post vendinvc

RMS453 prepost vendinvf post vendinvf

RMS454 prepost docclose pre RMS219 docclose

RMS455 prepost stkprg post RMS360 stkprg

RMS456 prepost wfordupld pre RMS392 wfordupld

RMS457 prepost wiretupld pre wiretupld

RMS458 prepost replsizeprofile pre RMS309 replsizeprofile

RMS459 prepost supsplit pre RMS370 supsplit

RMS461 prepost RMS190 batch_ordcostcompupd
batch_ordcostcompupd pre

RMS462 prepost RMS190 batch_ordcostcompupd
batch_ordcostcompupd post

RMS463 prepost batch_costcompupd RMS190 batch_ordcostcompupd
post

RMS465 prepost dlyprg post RMS218 dlyprg

RMS466 prepost tsfprg pre RMS380 tsfprg

RMS467 prepost tsfprg post RMS380 tsfprg

RMS468 prepost fcexec pre RMS223 fcexec

RMS469 prepost start_batch pre Sets the batch running ind

to Y’ to limit front end use
of the system
RMS470 prepost end_batch post Sets the batch running ind

to’N’ to reenable all front
end use of the system.

This should be the last job in
the batch schdule.

28 Oracle Retail Merchandising Foundation Cloud Service

prepost (Pre/Post Helper Processes for Batch Programs)

Catalog ID Prepost Job Related Main Related Main Program
Program
Catalog ID
RMS488 prepost btcheycl post This job reenables all
policies in the RMS owning
schema.
RMS489 prepost dealfct post RMS209 dealfct
Scheduling Constraints
Schedule Information Description
Frequency Daily
Scheduling Considerations N/A
Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A
Restart/Recovery
N/A
Key Tables Affected
Table Select Insert Update Index Delete Truncate Trigger Refresh
ALL_CONST Y N N N N N N N
RAINTS
ALL_IND_P Y N N N N N N N
ARTITIONS
ALL_POLICI Y N N N N N N N
ES
ALLOC_DET Y N N N N N Y N
AIL
ALLOC_HEA Y N N N N N Y N
DER
CLASS Y N N N N N N N
CLASS_SALE N N N Y N Y N N
S_FORECAS
T
CLASS SALE N N N N Y N N N
S_HIST
CLASS_SALE Y N N N Y N N N
S_HIST_MTH
COST_COMP N N N N Y N N N
_UPD_STG

Administration Batch 29

prepost (Pre/Post Helper Processes for Batch Programs)

Table Select Insert Update Index Delete Truncate Trigger Refresh

COST_SUSP_ N N Y N N N N N
SUP_HEAD

CUSTOMER_ N N N N N Y N N
SEGMENT_P
OS_STG

DAILY_DAT Y N N N N N N N
A

DAILY_DAT N N N N N Y N N
A_BACKPOS
T

DAILY DAT Y N N N N Y N N
A_TEMP

DBA_INDEX Y N N N N N N N
ES

DEALFCT_T N Y N N N Y N N
EMP

DEAL_ACTU Y N N N N N N N
ALS_FOREC
AST

DEAL_ACTU Y Y N N N N N N
ALS_ITEM_L
OoC

DEAL_BB_N N Y N N N Y N N
O_REBATE_
TEMP

DEAL_ BB_R N Y N N N Y N N
EBATE_PO_T
EMP

DEAL_ BB R Y N N N N Y N N
ECEIPT_SAL
ES_TEMP

DEAL_HEA Y N Y N N N N N
D

DEAL_DETA Y N N N N N N N
IL

DEAL_PERF_ Y N N N N N N N
TRAN_DAT
A

DEAL_ITEM Y N N N N N N N
_LOC_EXPL
ODE

DEAL_TRAN N Y N N N Y N N
_DATA_TEM
P

DEAL_ITEM N N Y N N N N N
LOC_ITEM

30 Oracle Retail Merchandising Foundation Cloud Service

prepost (Pre/Post Helper Processes for Batch Programs)

Table Select Insert Update Index Delete Truncate Trigger Refresh
DEAL_ITEM N N Y N N N N N
LOC_PAREN

T_DIFF

DEAL_ITEM N N Y N N N N N
LOC_DCS

DEAL_ITEM N N Y N N N N N
LOC_DIV_G

RP

DEPS Y N N N N N N N
DEPT_SALES N N N Y N Y N N
_FORECAST

DEPT_SALES N N N N Y N N N
_HIST

DEPT_SALES Y N N N Y N N N
_HIST_MTH

DOC_CLOSE N Y N N Y N N N
_QUEUE

DOC_CLOSE Y Y N N N N N N
_QUEUE_TE

MP

DOC_PURGE N Y N N N Y N N
_QUEUE

DOMAIN_C N N Y N N N N N
LASS

DOMAIN_D N N Y N N N N N
EPT

DOMAIN_S N N Y N N N N N
UBCLASS

EDI_DAILY_ N N N N Y N N N
SALES

EDI_ORD_TE N N N Y N Y N N
MP

EDI_SUPS.T N Y N N N N N N
EMP

FIXED_DEAL Y N Y N N N N N
FIXED_DEAL N N Y N N N N N
_DATES

FORECAST_ N N N Y N Y N N
REBUILD

GROUPS Y N N N N N N N
HIST_REBUI Y N N Y N Y N N
LD_MASK

IB_RESULTS N N Y N N N N N

Administration Batch 31

prepost (Pre/Post Helper Processes for Batch Programs)

Table Select Insert Update Index Delete Truncate Trigger Refresh
INVC_DETAI N N Y N N N N N
L

INVC_DETAI Y N N N N Y N N
L_TEMP

INVC_DETAI N N N N N Y N N
L_TEMP2

INVC_HEAD N N Y N N N N N
INVC_HEAD Y N N N N Y N N
_TEMP

ITEM_FORE N N N Y N N N N
CAST

ITEM_LOC Y N N N N N N N
ITEM_MAST Y N N N N N N N
ER

MC_REJECTI N N N Y N Y N N
ONS

MOD_ORDE N N N N Y N N N
R_ITEM_HTS

MV_RESTAR N N N N N N N Y
T_STORE_W

H

MV_LOC_PR N N N N N N N Y
IM_ADDR

MV_L1ION_E N N N N N N N Y
NTITY

ON_ORDER_ N N N Y N Y N N
TEMP

ORD_MISSE N N N Y N Y N N
D

ORD_TEMP N N N Y N Y N N
ORDHEAD Y N N N N N N N
ORDLOC Y N N N N N N N
ORDSKU Y N N N N N N N
OTB N Y Y N N N N N
OTB_CASCA Y N N N N Y N N
DE_STG

PERIOD Y N N
POS_COUPO N N Y N N N N
N_HEAD

POS_MERCH N N Y N N N N N
_CRITERIA

POS_PROD_ N N Y N N N N N
REST_HEAD

32 Oracle Retail Merchandising Foundation Cloud Service

prepost (Pre/Post Helper Processes for Batch Programs)

Table

Select

Insert

Update

Index

Delete

Truncate

Trigger

Refresh

POS_STORE

POS_TENDE
R_TYPE_HE
AD

RECLASS_IT
EM

RECLASS_IT
EM_TEMP

REPL_ATTR_
UPDATE_EX
CLUDE

REPL_ATTR_
UPDATE_HE
AD

REPL_ATTR_
UPDATE_ITE
M

REPL_ATTR_
UPDATE_LO
C

REPL_ITEM_
LOC

REPL_ITEM_
LOC_UPDAT
ES

RESTART_C
ONTROL

RESTART_PR
OGRAM_HIS
TORY

RMS_BATCH
_STATUS

RMS_SIZE_P
ROFILE

RPL_ALLOC
_IN_TMP

RPL_DISTRO
_TMP

RPL_NET_IN
VENTORY_T
MP

RTV_HEAD

SALWEEK_C
_DAILY

SALWEEK_C
_WEEK

N
N

z

z

z

N
N

Administration Batch 33

prepost (Pre/Post Helper Processes for Batch Programs)

Table Select Insert Update Index Delete Truncate Trigger Refresh
SALWEEK_R Y Y Y N N Y N N
ESTART_DE

PT

SHIPMENT N N N N Y N N N
SHIPMENT_ N N N N Y N N N
PUB_INFO

SHIPMENT_ Y N N N N Y N N
PURGE_TEM

P

STAGE_COM N N N N N Y N N
PLEX_DEAL

_DETAIL

STAGE_COM N N N N N Y N N
PLEX_DEAL

_HEAD

STAGE_FIXE N N N N N Y N N
D_DEAL_DE

TAIL

STAGE_FIXE N N N N N Y N N
D_DEAL_HE

AD

STAKE_HEA Y N N N N N N N
D

STAKE_PRO Y N N N N N N N
D_LOC

STAKE_PRO N N N N Y N N N
DUCT

STAKE_SKU Y N N N N N N N
_LOC

STORE Y N N N N N N N
SUBCLASS S N N N Y N N N N
ALES_FORE

CAST

SUBCLASS S N N N N Y N N N
ALES_HIST

SUBCLASS S Y N N N Y N N N
ALES_HIST_

MTH

SUPS Y N N N N N N N
SUP_DATA N N N N Y N N N
SUPS_MIN_F N N N Y N Y N N
AIL

SVC_WF_OR N N N N N Y N N
D_DETAIL

34 Oracle Retail Merchandising Foundation Cloud Service

dlyprg (Daily Purge of Foundation Data)

Table Select Insert Update Index Delete Truncate Trigger Refresh
SVC_WF_OR N N N N N Y N N
D_HEAD

SVC_WF_OR N N N N N Y N N
D_TAIL

SVC_WF_RE N N N N N Y N N
T_DETAIL

SVC_WF_RE N N N N N Y N N
T_HEAD

SVC_WF_RE N N N N N Y N N
T_TAIL

SYSTEM_OP Y N N N N N N N
TIONS

SYSTEM_VA Y N Y N N N N N
RIABLES

TEMP_TRAN Y N N Y N Y N N
_DATA

TEMP_TRAN N Y N Y N Y N N
_DATA_SUM

TIF_EXPLOD N N N Y N Y N N
E

TRAN_DAT N Y N N N N N N
A

TSFHEAD Y N Y N Y N N N
TSFHEAD_C N N N N Y N N N
FA_EXT

VAT_CODE_ Y N N N N N N N
RATES

VAT_ITEM Y N N N N N N N
VENDINVC_ N Y N N N Y N N
TEMP

WEEK_DAT Y N N N N N N N
A

WH Y N N N N N N N
ALLOC_PUR N Y N N N N N N
GE_QUEUE

COUNTRY_ Y N N N N N N N
ATTRIB

dlyprg (Daily Purge of Foundation Data)

Module Name

dlyprg.pc

Description

Daily Purge of Foundation Data

Functional Area

Administration

Administration Batch 35

dlyprg (Daily Purge of Foundation Data)

Module Name dlyprg.pc
Module Type Admin
Module Technology ProC
Catalog ID RMS218
Runtime Parameters n/a

Design Overview
The purpose of this program is to delete specific Foundation Data entities from RMS.

When users ‘delete” a record in the RMS user interface, information is generally not
immediately deleted at the database level; instead, data is marked as being in deleted
status and also inserted into the DAILY_PURGE table.

Complex referential integrity relationships determine whether data can actually be
deleted from the database (for example, a store can not be deleted if any transactions
related to the store are still on current transaction tables). Dlyprg.pc checks these
complex rules. If the deletion request passes the rules, dlyprg.pc deletes the data. If
dlyprg.pc is not able to delete the data, it writes a record to the
DAILY_PURGE_ERROR_LOG table for further investigation. Dlyprg will continue to
attempt to delete marked data until all references have been purged from the system and
the deletion of the foundation data entity finally succeeds.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations This program runs early in the batch schdule to

ensure that deleted entities are not included in any
subsequent processing

Pre-Processing N/A

Post-Processing prepost dlyprg post

Threading Scheme N/A
Restart/Recovery

This program has inherent restart ability. Records that have been successfully purged are
deleted from the DAILY_PURGE table. This ensures that if the program is restarted, it
does not attempt to delete records that have been previously processed.

Key Tables Affected
Table Select Insert Update Delete
DAILY_PURGE Yes No No Yes
DAILY_PURGE_ERROR_LOG Yes Yes No Yes
LOC_LIST_DETAIL No No No Yes
MONTH_DATA_BUDGET Yes No No Yes

36 Oracle Retail Merchandising Foundation Cloud Service

dlyprg (Daily Purge of Foundation Data)

Table Select Insert Update Delete
HALF_DATA_BUDGET Yes No No Yes
VAT_DEPS Yes No No Yes
SKULIST_CRITERIA Yes No No Yes
DOMAIN_DEPT Yes No No Yes
FORECAST REBUILD Yes No No Yes
SUP_DATA Yes No No Yes
DEPT_SALES_HIST Yes No No Yes
DEPT_SALES_FORECAST Yes No No Yes
DEAL_ITEMLOC Yes No No Yes
DEPS Yes No No Yes
STOCK_LEDGER_INSERTS Yes No No Yes
STAKE_SCHEDULE Yes No No Yes
DEPT_CHRG _DETAIL Yes No No Yes
WH_DEPT Yes No No Yes
DEPT_CHRG_HEAD Yes No No Yes
SUP_BRACKET_COST Yes No No Yes
SUP_REPL_DAY Yes No No Yes
SUP_INV_MGMT Yes No No Yes
FILTER_GROUP_MERCH Yes No No Yes
IB_RESULTS Yes No No Yes
WEEK_DATA Yes No No Yes
DAILY_DATA Yes No No Yes
MONTH_DATA Yes No No Yes
TRAN_DATA_HISTORY Yes No No Yes
HALF_DATA Yes No No Yes
PARTNER Yes No No Yes
SHIPMENT Yes No No Yes
COST_ZONE_GROUP_LOC Yes No No Yes
COST_ZONE Yes No No Yes
COST_ZONE_GROUP Yes No No Yes
UDA_ITEM_DEFAULTS Yes No No Yes
DOMAIN_CLASS Yes No No Yes
CLASS_SALES_HIST Yes No No Yes
CLASS_SALES FORECAST Yes No No Yes
CLASS Yes No No Yes
Yes No No Yes

DOMAIN_SUBCLASS

Administration Batch 37

dlyprg (Daily Purge of Foundation Data)

Table Select Insert Update Delete
OTB Yes No No Yes
DIFF_RATIO_DETAIL Yes No No Yes
DIFF_RATIO_HEAD Yes No No Yes
SUBCLASS_SALES_HIST Yes No No Yes
SUBCLASS_SALES_FORECAST Yes No No Yes
SUBCLASS Yes No No Yes
MERCH_HIER_DEFAULT Yes No No Yes
WH Yes No No Yes
WH_ADD Yes No No Yes
LOC_TRAITS_MATRIX Yes No No Yes
COST_ZONE_GROUP_LOC Yes No No Yes
ITEM_EXP_DETAIL Yes No No Yes
ITEM_EXP_HEAD Yes No No Yes
EXP_PROF_DETAIL Yes No No Yes
EXP_PROF_HEAD Yes No No Yes
STORE_GRADE_STORE Yes No No Yes
DAILY_SALES_DISCOUNT Yes No No Yes
LOAD_ERR Yes No No Yes
STORE Yes No No Yes
EDI_SALES_DAILY Yes No No Yes
COMP_STORE_LINK Yes No No Yes
REPL_RESULTS Yes No No Yes
SEC_GROUP_LOC_MATRIX Yes No No Yes
LOC_CLSF_HEAD Yes No No Yes
LOC_CLSF_DETAIL Yes No No Yes
SOURCE_DLVRY_SCHED Yes No No Yes
SOURCE_DLVRY_SCHED_DAYS Yes No No Yes
SOURCE_DLVRY_SCHED_EXC Yes No No Yes
COMPANY_CLOSED_EXCEP Yes No No Yes
LOCATION_CLOSED Yes No No Yes
POS_STORE Yes No No Yes
SUB_ITEMS_DETAIL Yes No No Yes
SUB_ITEMS_HEAD Yes No No Yes
STORE_HIERARCHY Yes No No Yes
ADDR Yes No No Yes
TIF_EXPLODE Yes No No Yes

38 Oracle Retail Merchandising Foundation Cloud Service

dlyprg (Daily Purge of Foundation Data)

Table Select Insert Update Delete
WALK_THROUGH_STORE Yes No No Yes
SKULIST_DETAIL Yes No No Yes
INV_STATUS_QTY Yes No No Yes
REPL_ATTR_UPDATE_EXCLUDE Yes No No Yes
REPL_ATTR_UPDATE_LOC Yes No No Yes
REPL_ATTR_UPDATE_HEAD Yes No No Yes
MASTER_REPL_ATTR Yes No No Yes
REPL_ATTR_UPDATE_ITEM Yes No No Yes
REPL_DAY Yes No No Yes
REPL_ITEM_LOC Yes No No Yes
REPL_ITEM_LOC_UPDATES Yes Yes No Yes
COST_SUSP_SUP_DETAIL_LOC Yes No No Yes
COST_SUSP_SUP_DETAIL Yes No No Yes
ITEM_HTS_ASSESS Yes No No Yes
ITEM_HTS Yes No No Yes
REQ_DOC Yes No No Yes
ITEM_IMPORT_ATTR Yes No No Yes
TIMELINE Yes No No Yes
COND_TARIFF_TREATMENT Yes No No Yes
ITEM_IMAGE Yes No No Yes
ITEM_SUPP_UOM Yes No No Yes
DEAL_SKU_TEMP Yes No No Yes
FUTURE_COST Yes No No Yes
DEAL_DETAIL Yes No No Yes
ITEM_SUPP_COUNTRY Yes No No Yes
ITEM_SUPP_COUNTRY_DIM Yes No No Yes
RECLASS_ITEM Yes No No Yes
SUP_AVAIL Yes No No Yes
ITEM_LOC Yes No No Yes
ITEM_LOC_SOH Yes No No Yes
ITEM_SUPPLIER Yes No No Yes
ITEM_MASTER Yes No No Yes
PACK_TMPL_DETAIL Yes No No Yes
SUPS_PACK_TMPL_DESC Yes No No Yes
PACK_TMPL_HEAD Yes No No Yes
UDA_ITEM_LOV Yes No No Yes

Administration Batch 39

dlyprg (Daily Purge of Foundation Data)

Table Select Insert Update Delete
UDA_ITEM_DATE Yes No No Yes
UDA_ITEM_FF Yes No No Yes
ITEM_SEASONS Yes No No Yes
ITEM_TICKET Yes No No Yes
COMP_SHOP_LIST Yes No Yes Yes
TICKET_REQUEST Yes No No Yes
PRICE_HIST Yes Yes No Yes
ITEM_LOC_TRAITS Yes No No Yes
PACKITEM_BREAKOUT Yes No No Yes
PACKITEM Yes No No Yes
ITEM_SUPP_COUNTRY_BRACKET_COST Yes No No Yes
ITEM_SUP_COUNTRY_LOC Yes No No Yes
POS_MERCH_CRITERIA Yes No No Yes
ITEM_CHRG_HEAD Yes No No Yes
ITEM_CHRG_DETAIL Yes No No Yes
RECLASS_COST_CHG_QUEUE Yes No No Yes
ITEM_PUB_INFO Yes No No Yes
ITEM_MFQUEUE Yes No No Yes
ITEM_XFORM_HEAD Yes No No Yes
ITEM_XFORM_DETAIL Yes No No Yes
DEAL_ITEM_LOC_EXPLODE Yes No No Yes
ITEM_APPROVAL_ERROR Yes No No Yes
Input/Out Specification
N/A

40 Oracle Retail Merchandising Foundation Cloud Service

taxevntprg (Tax Event Purge)

taxevntprg (Tax Event Purge)

Module Name

Taxevntprg

Description

Tax Event Purge

Functional Area

Purchase Order

Module Type Admin
Module Technology PROC
Catalog ID RMS373

Design Overview

This batch purges the tax events from TAX_CALC_EVENT table. The records to be

purged are based on its last_update_datetime along with tax_event_result.

Scheduling Constraints

Schedule Information

Description

Frequency

Scheduling Considerations

Pre-Processing

Daily
This program can run on need basis

N/A

Post-Processing N/A
Threading Scheme N/A
Restart/Recovery
N/A
Key Tables Affected
Table Select Insert Update Delete
TAX_CALC_EVENT No No No Yes
PERIOD Yes No No No
Input/Out Specification
N/A

Administration Batch 41

dtesys (Increment Virtual Business Date)

dtesys (Increment Virtual Business Date)

Module Name dtesys.pc

Description Increment Virtual Business Date
Functional Area Administration

Module Type Admin

Module Technology ProC

Catalog ID RMS220

Runtime Parameters N/A

Design Overview

This batch program updates the PERIOD table for various dates required in RMS such as
vdate, end-of-month and end-of-week dates.

Vdate (short for virtual business date) is used by RMS to maintain a consistent ‘virtual’
business date (without regard for actual date changes at midnight or different dates in
different timezone) for accounting purposes. Note that vdate is used to determine the
business date for the financial impact of transactions. Sysdate from the database is used
to capture audit time and date stamps on transactions.

Generally, dtesys is run without additional input parameters and increments the data by

one day. However, if a specific date is passed into the program as a parameter, the

system date will be updated to that date.

Special processing also occurs:

= Weekly
When vdate = next_eow_date_unit, the program increments the last_eow_date_unit
and next_eow_date_unit columns on system_variables. The last_eow_date_unit is
updated to the current next_eow_date_unit and the next_eow_date_unit is updated
to the next end-of-week date (calculated).

= Monthly
When vdate = next_eom_date_unit, the program updates the last_eom_date_unit
and next_eom_date_unit columns on system_variables. The last_eom_date_unit is

updated to the current next_eom_date_unit and the next_eom_date_unit is updated
to the next end-of-month date (calculated).

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations This program should run at the end of the batch
schdule

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

42 Oracle Retail Merchandising Foundation Cloud Service

trunctbl.ksh (Truncate Table Script)

Restart/Recovery
N/A

Key Tables Affected

Table Select Insert Update Delete

SYSTEM_OPTIONS Yes No No No
PERIOD Yes No Yes No
SYSTEM_VARIABLES Yes No Yes No

Input/Out Specification
N/A

trunctbl.ksh (Truncate Table Script)

Module Name trunctbl.ksh
Description Truncate Table Script
Functional Area Foundation

Module Type Admin

Module Technology KSH

Catalog ID RMS475

Runtime Parameters N/A

Design Overview

This program performs truncate operation on an RMS table or a specific partition. It
accepts an input table name and an optional partition name. If no partition name is
passed, then the truncate is applied on the entire table.

Currently, the following action and tables are processed by the batch. For the runtime
parameters, refer to the Merchandising Batch Schedule.

Table Partition

NIL_INPUT_WORKING N/A

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations Suggestion is to run twice. One before the batch

window starts and another after while the affected
table is not in use

Pre-Processing N/A
Post-Processing N/A

Administration Batch 43

rms_oi_purge.ksh (Purge Dashboard Working Tables)

Schedule Information Description

Threading Scheme N/A

Restart/Recovery
N/A

Key Tables Affected
N/A

Design Assumptions
N/A

rms_oi_purge.ksh (Purge Dashboard Working Tables)

Module Name rms_oi_purge.ksh

Description Purge data from the dashboard working
tables

Functional Area Operational Insight Dashboard Reports

Module Type Admin

Module Technology Ksh

Catalog ID RMS490

Runtime Parameters $UP (database connect string)

Design Overview
This batch program calls O_UTILITY.PURGE_RMS_OI_TABLES to truncate the data in
the RMS Operational Insight Dashboard staging tables. During normal operation, the
staged data for the session are deleted when a user closes the report window. This
program provides a way to clean up and control the size of the staging tables if data
failed to be deleted due to abnormal termination of the session.

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations When no user is on-line using the OI dashboard reports.
Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
N/A

44 Oracle Retail Merchandising Foundation Cloud Service

rms_oi_purge.ksh (Purge Dashboard Working Tables)

Key Tables Affected
Table Select Insert Update Delete
RMS_OI_BUYER_EARLY_LATE_SHIP No No No Yes
RMS_OI_BUYER_ORDERS_TO_APPROVE No No No Yes
RMS_OI_INV_ANA_OPEN_ORDER No No No Yes
RMS_OI_INV_ANA_VARIANCE No No No Yes
RMS_OI_INV_CTL_NEG_INV No No No Yes
RMS_OI_INV_ORD_ERRORS No No No Yes
RMS_OI_INV_ORD_ITEM_ERRORS No No No Yes
RMS_OI_MISSING_STOCK_COUNT No No No Yes
RMS_OI_OVERDUE_SHIP_ALLOC No No No Yes
RMS_OI_OVERDUE_SHIP_TSF No No No Yes
RMS_OI_OVERDUE_SHIP_RTV No No No Yes
RMS_OI_STK_ORD_PEND_CLOSE No No No Yes
RMS_OI_STOCK_COUNT_VARIANCE No No No Yes
RMS_OI_TSF_PEND_APPROVE No No No Yes
RMS_OI_UNEXPECTED_INV No No No Yes
RMS_OI_DATA_STWRD_INCOMP_ITEMS No No No Yes

Design Assumptions
N/A

Administration Batch 45

3

Foundation Data Maintenance

Overview

Foundation Data is basic information that is required for RMS to function properly. Most
foundation data is managed through the RMS user interface or integrations (often RIB)
from external systems. However, there are some batch processes that relate to
Foundation Data. This chapter describes the batch processes that are used to maintain
general foundation data.

Programs in this chapter can be divided into five basic categories:

= Updates to Cost Components that must be applied other foundation data and
transactions

- batch_alloctsfupd.ksh
- batch_compeffupd.ksh
- batch_depchrgupd.ksh
- batch_expprofupd.ksh
- batch_itmcostcompupd.ksh
- batch_ordcostcompupd.ksh
- elcexcprg.ksh
= Rebuilds of detail information for lists/ groups

- batch_rfmvcurrconv.ksh
- dfrtbld.pc
- lclrbld.pc
- refmvlocprimadd.ksh
= Application of pending changes
- cremhierdly.pc
- reclsdly.pc
* Rollup of detailed information
- supmth.pc
* Foundation Data Purges
- admin_api_purge. ksh
- prchstprg.pc
- schedprg.pc

Note: For more information on Foundation Data, see Item Maintenance.

Batch Design Summary
The following batch designs are included in this functional area:
* admin_api_purge (Purge Manage Admin records)
* batch_compeffupd.ksh (Update ELC Components)

admin_api_purge (Purge Manage Admin records)

* batch_expprofupd.ksh (Apply Pending Rate Changes to Expense Profiles)

* batch_depchrgupd.ksh (Apply Pending to Up-Charge Cost Component Changes to
Departments)

* batch_itmcostcompupd.ksh (Apply Pending Item Cost Component Updates)

* batch_alloctsfupd.ksh (Update Allocation and Transfer Based on Changes to Up-
Charges)

* batch_ordcostcompupd.ksh (Apply Pending Cost Component and ELC Changes to
Purchase Orders)

* elcexcprg.pc (Purge Aged Cost Component Exceptions)

= dfrtbld.pc (Build Diff Ratios Based on Sales History)

= lclrbld.pc (Rebuild Dynamic Location Lists)

* batch_rfmvcurrconv.ksh (Refresh Currency Conversion Materialized View)
* refmvlocprimadd.ksh (Refresh Address Materialized View)

* cremhierdly.pc (Process Pending Merchandise Hierarchy Changes from External
Systems)

* reclsdly.pc (Reclassify Items in Merchandise Hierarchy)
= supmth.pc (Rollup of Supplier Data)

* schedprg.pc (Purge Aged Store Ship Schedule)

* prchstprg.pc (Purge Aged Price History Data)

= tcktdnld (Download of Data to be Printed on Tickets)

= refmvll0entity (Refresh MV MV_L10N_ENTITY)

admin_api_purge (Purge Manage Admin records)

Module Name admin_api_purge ksh
Description Purge Manage Admin records
Functional Area Administration

Module Type Admin

Module Technology ksh

Catalog ID

Runtime Parameters Database connection

Design Overview

This script purges data from tables used for uploading Foundation Data from
spreadsheets based on the retention days specified in the system parameter-
PROC_DATA_RETENTION_DAYS for both RMS and ReSA and will help in keeping the
size of these tables controlled.

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad Hoc

48 Oracle Retail Merchandising Foundation Cloud Service

batch_compeffupd (Update ELC Components)

Schedule Information Description
Frequency As Needed
Scheduling Considerations N/A
Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A
Restart/Recovery
N/A
Key Tables Affected
Table Select Insert Update Delete
S9T_ERRORS No No No Yes
S9T_FOLDER No No No Yes
SVC_ADMIN_UPLD_ER No No No Yes
SVC_PROCESS_TRACKER No No No Yes

I/0 Specification
N/A

batch_compeffupd (Update ELC Components)

Module Name

batch_compeffupd.ksh

Description

Apply Pending Cost Component, Up-
charge and ELC Changes

Functional Area

Foundation Data

Module Type Business Processing
Module Technology ksh

Catalog ID RMS185

Runtime Parameters N/A

Design Overview

In RMS, users are allowed to make rate changes to cost components, up-charges and
expense profiles and assign future effective dates to the changes. Additionally, when
these future rate changes are specified, users can choose to cascade these changes to
lower levels. The options for how the updates can be cascaded are described in the table

below:

Foundation Data Maintenance 49

batch_compeffupd (Update ELC Components)

Updated Entity Cascade Options

Expense Profiles (Country, Supplier, or Order, Item

Partner)

Cost Component (Expense) Country, Supplier, Partner, Item, Order
Cost Component (Assessment) Item, Order

Cost Component (Up-charge) Department, Item, Transfer/ Allocation
Department Level Up-Charges Item, Transfer/ Allocation

This batch process is used to process updates to cost components of all types at the
expense component level, updates to department level up-charges, and updates to
expense profiles at the supplier, country, or partner level. The cascading to other levels is
handled in the dependent processes which are run after this process:

Allocation and Transfer Up-charge Update (batch_alloctsfupd)
Expense Profile Update (batch_expprofupd)

Item Cost Component Update (batch_itmcostcompupd)

Purchase Order Cost Component Update (batch_ordcostcompupd)
Department Up-charge (batch_depchrgupd)

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations Must be run before the following scripts:

= batch_alloctsfupd.ksh

* batch_expprofupd.ksh

= batch_itmcostcompupd.ksh
= batch_ordcostcompupd.ksh
= batch_depchrgupd.ksh

Pre-Processing N/A

Post-Processing = batch_alloctsfupd.ksh

= batch_expprofupd.ksh
= batch_itmcostcompupd.ksh
* batch_ordcostcompupd.ksh
= batch_depchrgupd.ksh

Threading Scheme N/A

Restart/Recovery
N/A

50 Oracle Retail Merchandising Foundation Cloud Service

batch_expprofupd (Apply Pending Rate Changes to Expense Profiles)

Key Tables Affected
Table Select Insert Update Delete
COST_COMP_UPD_STG Yes No No No
DEPT_CHRG_DETAIL Yes No Yes No
EXP_PROF_DETAIL Yes No Yes No
ELC_COMP Yes No Yes No

Design Assumptions
N/A

batch_expprofupd (Apply Pending Rate Changes to Expense Profiles)

Module Name

batch_expprofupd.ksh

Description

Apply Pending Rate Changes to
Expense Profiles

Functional Area

Foundation Data

Module Type Business Processing
Module Technology ksh

Integration Catalog ID RMS188

Runtime Parameters N/A

Design Overview

In RMS, users are allowed to make rate changes to expense type cost components and
assign future effective dates to the changes. Additionally, when these future rate
changes are specified, users can choose to cascade these changes to lower levels. For
expense type cost components, this includes the ability to cascade the changes to country,
supplier, and partner expense profiles. This script will process the updates to country,
supplier, and partner expense profiles once the rate changes reach their effective date.

Scheduling Constraints

Schedule Information

Description

Frequency

Scheduling Considerations

Pre-Processing

Daily

The following scripts can be executed in parallel:

batch_alloctsfupd.ksh
batch_depchrgupd.ksh
batch_expprofupd.ksh
batch_itmcostcompupd.ksh
batch_ordcostcompupd.ksh

The pre-post job batch_costcompupd post should
be run after all 5 complete

batch_compeffupd.ksh

Foundation Data Maintenance 51

batch_depchrgupd (Apply Pending Up-Charge Cost Component Changes to Departments)

Schedule Information Description
Post-Processing batch_costcompupd post (see note above)
Threading Scheme N/A

Restart/Recovery

N/A

Key Tables Affected
Table Select Insert Update Delete
COST_COMP_UPD_GL_TEMP Yes Yes No Yes
COST_COMP_UPD_STG Yes No No No
EXP_PROF_HEAD Yes No No No
EXP_PROF_DETAIL Yes No Yes No
COST_COMP_EXC_LOG No Yes No No

Design Assumptions
N/A

batch_depchrgupd (Apply Pending Up-Charge Cost Component Changes
to Departments)

Module Name batch_depchrgupd.ksh

Description Apply Pending Up-Charge Cost
Component Changes to Departments

Functional Area Foundation Data

Module Type Business Processing

Module Technology ksh

Catalog ID RMS186

Runtime Parameters N/A

Design Overview

In RMS, users are allowed to make rate changes to up-charges and assign future effective
dates for the updates. Additionally, when these future rate changes are specified, users
can choose to cascade these changes to lower levels. For up-charges, this includes the
ability to cascade the changes made at the cost component level (for up-charge
components) to department level up-charges. This script will process the updates to
department level up-charges once the rate changes reach their effective date.

52 Oracle Retail Merchandising Foundation Cloud Service

batch_itmcostcompupd (Apply Pending Item Cost Component Updates)

Scheduling Constraints

Schedule Information

Description

Frequency

Scheduling Considerations

Pre-Processing

Post-Processing

Daily

The following scripts can be executed in parallel:
= Dbatch_alloctsfupd.ksh

* Dbatch_depchrgupd.ksh

= batch_expprofupd.ksh

* batch_itmcostcompupd.ksh

* batch_ordcostcompupd.ksh

The pre-post job batch_costcompupd post should
be run after all 5 complete
batch_compeffupd.ksh

batch_costcompupd post (see note above)

Threading Scheme N/A

Restart/Recovery

N/A

Key Tables Affected
Table Select Insert Update Delete
COST_COMP_UPD_GL_TEMP Yes Yes No Yes
COST_COMP_UPD_STG Yes No No No
DEPT_CHRG_DETAIL Yes No Yes No
COST_COMP_EXC_LOG No Yes No No

Design Assumptions
N/A

batch_itmcostcompupd (Apply Pending Item Cost Component Updates)

Module Name

batch_itmcostcompupd.ksh

Description

Apply Pending Item Cost Component
Updates

Functional Area

Foundation Data

Module Type Business Processing
Module Technology ksh

Catalog ID RMS189

Runtime Parameters N/A

Foundation Data Maintenance 53

batch_itmcostcompupd (Apply Pending Item Cost Component Updates)

Design Overview

In RMS, users are allowed to make rate changes to cost components, up-charges and
expense profiles and assign future effective dates to the changes. Additionally, when
these future rate changes are specified, users can choose to cascade these changes to
lower levels. For items, changes can be cascaded down from each of the different types:

* Expense Profiles (country, supplier, or partner)
* Cost Components (expense, assessment, or up-charge)
* Department-level Up-charges

This script will process the updates for items for each of these types of rate updates once
the rate changes reach their effective date.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations The following scripts can be executed in parallel:

* batch_alloctsfupd.ksh

* batch_depchrgupd.ksh

= batch_expprofupd.ksh

* batch_itmcostcompupd.ksh
= batch_ordcostcompupd.ksh

The pre-post job batch_costcompupd post should
be run after all 5 complete

Pre-Processing batch_compeffupd.ksh
Post-Processing batch_costcompupd post (see note above)
Threading Scheme Threaded by from_loc for item up-charges, by

supplier for item expenses. It is not threaded for
item assessments

Restart/Recovery
N/A

Key Tables Affected
Table Select Insert Update Delete
COST_COMP_UPD_GL_TEMP Yes Yes No Yes
COST_COMP_UPD_STG Yes No No No
ITEM_EXP_HEAD Yes No No No
ITEM_EXP_DETAIL Yes No Yes No
EXP_PROF_HEAD Yes No No No
COST_COMP_EXC_LOG No Yes No No
ITEM_HTS_ASSESS Yes No Yes No
ITEM_CHRG_DETAIL Yes No Yes No

54 Oracle Retail Merchandising Foundation Cloud Service

batch_alloctsfupd (Update Allocation and Transfer Based on Changes to Up-Charges)

Design Assumptions
N/A

batch_alloctsfupd (Update Allocation and Transfer Based on Changes to

Up-Charges)

Module Name

batch_alloctsfupd.ksh

Description

Update Allocation and Transfer Based on
Changes to Up-Charges

Functional Area

Foundation Data

Module Type Business Processing
Module Technology ksh

Catalog ID RMS184

Runtime Parameters N/A

Design Overview

In RMS, users are allowed to make rate changes to up-charge cost components and
department level up-charges and assign future effective dates to the changes. One of the
things that can be designated when these future rate changes are specified is whether this
update should also impact any open transfers or allocations with items in the
department. If they have been flagged to update open transfers and allocations, then this
script will process the updates once they reach their effective date.

Scheduling Constraints

Schedule Information

Description

Frequency

Scheduling Considerations

Pre-Processing
Post-Processing

Threading Scheme

Daily

The following scripts can be executed in parallel:
= batch_alloctsfupd.ksh

* batch_depchrgupd.ksh

* batch_expprofupd.ksh

= batch_itmcostcompupd.ksh

= batch_ordcostcompupd.ksh

The pre-post job batch_costcompupd post should
be run after all 5 complete
Batch_compeffupd.ksh

batch_costcompupd post (see note above)

Threaded by alloc_no and tsf_no.

Restart/Recovery
N/A

Foundation Data Maintenance 55

batch_ordcostcompupd (Apply Pending Cost Component and ELC Changes to Purchase Orders)

Key Tables Affected
Table Select Insert Update Delete
COST_COMP_UPD_GL_TEMP Yes Yes No Yes
COST_COMP_UPD_STG Yes No No No
ALLOC_CHRG Yes No Yes No
ALLOC_HEADER Yes No No No
ITEM_MASTER Yes No No No
SHIPMENT No No No Yes
SHIPSKU No No No Yes
TSFDETAIL_CHRG Yes No Yes No
TSFHEAD Yes No No No
COST_COMP_EXC_LOG No Yes No No

Design Assumptions
N/A

batch_ordcostcompupd (Apply Pending Cost Component and ELC
Changes to Purchase Orders)

Module Name batch_ordcostcompupd.ksh

Description Apply Pending Cost Component and
ELC Changes to Purchase Orders

Functional Area Foundation Data

Module Type Business Processing

Module Technology ksh

Catalog ID RMS190

Runtime Parameters N/A

Design Overview

In RMS, users are allowed to make rate changes to cost components and expense profiles
and assign future effective dates for the updates. Additionally, when these future rate
changes are specified, users can choose to cascade these changes to lower levels. For
orders, changes can be cascaded down from each of the different types:

= Expense Profiles (country, supplier, or partner)
* Cost Components (expense or assessment)

This script will process the updates for open orders for each of these types of rate
updates once the rate changes reach their effective date.

56 Oracle Retail Merchandising Foundation Cloud Service

batch_ordcostcompupd (Apply Pending Cost Component and ELC Changes to Purchase Orders)

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations The following scripts can be executed in parallel:

= Dbatch_alloctsfupd.ksh

* Dbatch_depchrgupd.ksh

= batch_expprofupd.ksh

* batch_itmcostcompupd.ksh
* batch_ordcostcompupd.ksh

The pre-post job batch_costcompupd post should
be run after all 5 complete

Pre-Processing batch_compeffupd.ksh
prepost batch_ordcostcompupd pre
Post-Processing prepost batch_ordcostcompupd post
prepost batch_costcompupd post (see note above)
Threading Scheme Threaded by order number (order_no)
Restart/Recovery
N/A
Key Tables Affected
Table Select Insert Update Delete
SYSTEM_OPTIONS Yes No No No
COST_COMP_UPD_GL_TEMP Yes Yes No Yes
COST_COMP_UPD_STG Yes No No No
ORDSKU_HTS Yes No No No
ORDSKU_HTS_ASSESS Yes No No No
CVB_DETAIL Yes No No No
CE_ORD_ITEM Yes No No No
CE_HEAD Yes No No No
ORDHEAD Yes No No No
ORDLOC Yes No No No
ORDSKU Yes No No No
ORDLOC_EXP Yes No Yes No
SHIPMENT Yes No No No
SHIPSKU Yes No No No
EXP_PROF_HEAD Yes No No No
COST_ZONE_GROUP_LOC Yes No No No
CE_CHARGES No No No Yes

Foundation Data Maintenance 57

elcexcprg (Purge Aged Cost Component Exceptions)

Table

Select Insert Update Delete

COST_COMP_EXC_LOG

No Yes No No

Design Assumptions
N/A

elcexcprg (Purge Aged Cost Component Exceptions)

Module Name ELCEXCPRG.PC

Description Purge Aged Cost Component
Exceptions

Functional Area Costing

Module Type Admin

Module Technology ProC

Catalog ID RMS222

Runtime Parameters N/A

Design Overview

In RMS, users are allowed to make rate changes to cost components, up-charges and
expense profiles with future effective dates. Additionally, when these future rate
changes are specified, users can choose to cascade these changes to lower levels. The
options for how the updates can be cascaded are described in the table below:

Updated Entity

Cascade Options

Expense Profiles (Country, Supplier, or
Partner)

Cost Component (Expense)
Cost Component (Assessment)
Cost Component (Up-charge)
Department Level Up-Charges

Order, Item

Country, Supplier, Partner, Item, Order
Item, Order
Department, Item, Transfer/ Allocation

Item, Transfer/ Allocation

When the processes that apply these changes run, they may raise exceptions if the rate
for an entity has been overwritten prior to the application of the future rate change. If so,
then exceptions are written to the COST_COMP_EXC_LOG table. This program purges
the records from this table based on a number of retention months that is passed as a

runtime parameter.

Scheduling Constraints

Schedule Information

Description

Frequency

Daily

58 Oracle Retail Merchandising Foundation Cloud Service

dfrtbld (Build Diff Ratios Based on Sales History)

Schedule Information Description

Scheduling Considerations This batch should run after all cost component
scripts and their corresponding prepost jobs have

finished execution:

= Dbatch_alloctsfupd.ksh

* Dbatch_deptchrgupd.ksh

= batch_expprofupd.ksh

* batch_itemcostcompupd.ksh
* batch_ordcostcompupd.ksh

= Prepost batch_costcompupd post

Pre-Processing Prepost batch_costcompupd post
Post-Processing N/A
Threading Scheme N/A
Restart/Recovery
N/A
Key Tables Affected
Table Select Insert Update Delete
COST_COMP_EXC_LOG No No No Yes

Design Assumptions

N/A
dfrtbld (Build Diff Ratios Based on Sales History)
Module Name dfrtbld.pc
Description Build Diff Ratios Based on Sales History
Functional Area Foundation Data
Module Type Business Processing
Module Technology ProC
Catalog ID RMS214
Runtime Parameters N/A

Design Overview

Diff ratios are used by RMS as a way to assign a ratio to a group of diffs or diff

combinations based on sales history. The parameters for how these are created are setup
online in RMS and include specifying a subclass and one or more diff groups for a
particular date range. Users also specify how often the ratios should be refreshed and
what types of sales should be considered, regular, promotional and/or clearance.

For ratios that are due to be rebuilt, this batch program uses this information and
summarizes the total sales for items with the subclass and diff groups selected. It then

Foundation Data Maintenance 59

dfrtbld (Build Diff Ratios Based on Sales History)

calculates a percent to each diff combination/store. Diff ratios are used for PO
distribution within RMS.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations This program will likely be run after sales information is

uploaded into Oracle Retail

Pre-Processing uploadsales_all.ksh
Post-Processing The SQL*Loader control file dfrtbld.ctl to load the data
from ouput file.
Threading Scheme Threaded by department
Restart/Recovery
This program is setup for multithreading and restart/recovery.
Key Tables Affected
Table Select Insert Update Delete
PERIOD Yes No No No
DIFF_RATIO_HEAD Yes No Yes No
DIFF_RATIO_DETAIL No No No Yes
DIFF_GROUP_DETAIL Yes No No No
V_RESTART_DEPT Yes No No No
ITEM_MASTER Yes No No No
ITEM_LOC_HIST Yes No No No
I/0 Specification

This batch will create a comma delimited output data file for sql loader to upload data to
table DIFF_RATIO_DETAIL. The control script for the sql loader is dfrtbld.ctl.

Input File Layout

Record Field Name Field Type Default Description
Name Value
N/A Diff _ratio_id N/A N/A

Seq_no N/A N/A

store N/A N/A

Diff 1 N/A N/A

Diff_2 N/A N/A

Diff_3 N/A N/A

60 Oracle Retail Merchandising Foundation Cloud Service

IcIrbld (Rebuild Dynamic Location Lists)

Record Field Name Field Type Default Description
Name Value

qty N/A N/A

pet N/A N/A

Design Assumptions
N/A

Icirbld (Rebuild Dynamic Location Lists)

Module Name Iclrbld.pc

Description Rebuild Dynamic Location Lists
Functional Area Foundation Data

Module Type Business Processing

Module Technology ProC

Catalog ID RMS255

Runtime Parameters N/A

Design Overview

This program is used to rebuild dynamic location lists based on the criteria defined when
the location list was created. Once run, the location list will be updated to include only
the locations that currently meet the defined criteria for the list, including adding any
new locations. Any locations which no longer fit the criteria will be removed.

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations N/A

Pre-Processing N/A

Post-Processing N/A

Threading Scheme Threaded by location list
Restart/Recovery

Table-based restart/recovery is used by the batch program.

Key Tables Affected

Table Select Insert Update Delete

LOC_LIST_HEAD Yes No Yes No

LOC_LIST_DETAIL Yes Yes No Yes

Foundation Data Maintenance 61

batch_rfmvcurrconv (Refresh Currency Conversion Materialized View)

Design Assumptions
N/A

batch_rfmvcurrconv (Refresh Currency Conversion Materialized View)

Module

batch_rfmvcurrconv.ksh

Description

Refresh Currency Conversion Materialized
View

Functional Area

Foundation Data

Module Type Admin
Module Technology ksh
Catalog ID RMS193
Runtime Parameters N/A

Design Overview

This script refreshes the materialized view MV_CURRENCY_CONVERSION_RATES.

Scheduling Constraints

Schedule Information

Description

Frequency

Scheduling Considerations

Pre-Processing
Post-Processing

Threading Scheme

Daily

It must be scheduled after receiving currency rates
from external systems

NA
NA
NA

Restart/Recovery
N/A

Key Tables Affected

Table

Select Insert Update Delete

MV_CURRENCY_CONVERSION_RATES
CURRENCY_RATES
EURO_EXCHANGE_RATE

Yes Yes Yes Yes
Yes No No No
Yes No No No

Design Assumptions
N/A

62 Oracle Retail Merchandising Foundation Cloud Service

refmvlocprimaddr (Refresh Address Materialized View)

refmvlocprimaddr (Refresh Address Materialized View)

Module Name

refmvlocprimaddr.pc

Description

Refresh Address Materialized View

Functional Area

Foundation Data

Module Type Admin
Module Technology ProC
Catalog ID RMS305
Runtime Parameters N/A

Design Overview

This batch program refreshes the materialized view MV_LOC_PRIM_ADDR based on
the ADDR and WH tables. The view will contain primary address information for all
locations, including company stores, customer stores, physical and virtual warehouses

and external finishers.

Scheduling Constraints

Schedule Information Description
Frequency As needed
Scheduling Considerations N/A
Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A
Restart/Recovery
N/A
Key Tables Affected
Table Select Insert Update Delete
ADDR Yes No No No
WH Yes No No No

Design Assumptions
N/A

cremhierdly (Process Pending Merchandise Hierarchy Changes from

External Systems)

Module Name

cremhierdly.pc

Foundation Data Maintenance 63

cremhierdly (Process Pending Merchandise Hierarchy Changes from External Systems)

Module Name cremhierdly.pc

Description Process Pending Merchandise Hierarchy Changes
from External Systems

Functional Area Foundation Data
Module Type Business Processing
Module Technology ProC

Catalog ID RMS204

Runtime Parameters N/A

Design Overview

This batch program reads merchandise hierarchy records from the
PEND_MERCH_HIER table whose effective date is tomorrow or earlier. The
PEND_MERCH_HIER table is populated by the Merchandise Hierarchy Reclass
Subscription API. Each record is then used to either insert or update existing
merchandise hierarchy data in RMS based on the action and hierarchy types. The
inserted /updated records are deleted from the PEND_MERCH_HIER table after they
have been successfully processed.

This program is only required if updates to the merchandise hierarchy in RMS are being
managed outside the application.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations Must run prior to reclsdly.pc
Pre-Processing N/A
Post-Processing reclsdly.pc
Threading Scheme N/A
Restart/Recovery

This program is setup for multithreading and restart/recovery.Key Tables Affected

Table Select Insert Update Delete
PERIOD Yes No No No
PEND_MERCH_HIER Yes No No Yes
PEND_MERCH_HIER_TL No No No Yes
DIVISION No Yes Yes No
GROUPS No Yes Yes No
DEPS No Yes Yes No
CLASS No Yes Yes No
SUBCLASS No Yes Yes No

64 Oracle Retail Merchandising Foundation Cloud Service

reclsdly (Reclassify ltems in Merchandise Hierarchy

Design Assumptions
N/A

reclsdly (Reclassify Items in Merchandise Hierarchy

Module Name Reclsdly.pc

Description Reclassify Items in Merchandise Hiearchy
Functional Area Foundation

Module Type Business Processing

Module Technology ProC

Catalog ID RMS302

Runtime Parameters N/A

Design Overview

This batch program is used to reclassify items from one department/class/subclass
combination to another. Reclassification events that are due to go into effect the next day
are processed by this batch process. Before the reclassification is executed, validation is
performed to make sure that there are no issues which would prevent the reclassification
from moving forward. If not, then the updates are made to update the item’s
merchandise hierarchy, as well as other related updates, such as moving the value of the
inventory in the stock ledger and notifying the Pricing service of the update. Any issues
that prevent the item from being reclassified raise a non-fatal error in the program and
write the error to the MC_REJECTIONS table.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations Should run after cremhierdly
Pre-Processing Prepost pre reclsdly
Post Processing Prepost reclsdly.post
Threading Scheme Threaded by reclass_no

Restart/Recovery

This program is setup for multithreading and restart/recovery.

Key Tables Affected

Table Select Insert Update Delete
RECLASS_ITEM Yes No No Yes
RECLASS_HEAD Yes No No Yes
RECLASS_HEAD_TL No No No Yes
ITEM_MASTER Yes No Yes No

Foundation Data Maintenance 65

supmth (Rollup of Supplier Data)

Table Select Insert Update Delete
DEPS Yes No No No
GROUPS Yes No No No
PACKITEM Yes No No No
DEAL_ITEM_LOC_EXPLODE Yes No No Yes
DEAL_ITEMLOC Yes No No No
DEAL_HEAD Yes No No No
ORDHEAD Yes No Yes No
ORDSKU Yes No No No
DEAL_CALC_QUEUE Yes Yes No No
HIST_REBUILD_MASK No Yes No No
RECLASS_ERROR_LOG No Yes Yes Yes
STAKE_SKU_LOC Yes Yes Yes Yes
ITEM_LOC_SOH Yes No Yes No
REPL_ITEM_LOC_UPDATES No Yes No No
TRAN_DATA No Yes No No
SKULIST_DEPT Yes Yes No No
MC_REJECTIONS No Yes No No
RPM_ITEM_MODIFICATION No Yes Yes No

Design Assumptions
N/A

supmth (Rollup of Supplier Data)

Module Name supmth.pc

Description Rollup of Supplier Data
Functional Area Inventory

Module Type Business Processing
Module Technology ProC

Catalog ID RMS369

Runtime Parameters N/A

Design Overview

The primary function of supmth.pc is to convert daily transaction data to monthly data.
After all data is converted, the daily information is deleted to reset the system for the
next period by the batch module prepost and its supmth_post function.

The supmth.pc batch accumulates SUP_DATA amounts by
department/supplier/transaction type and creates or updates one SUP_MONTH row for

66 Oracle Retail Merchandising Foundation Cloud Service

schedprg (Purge Aged Store Ship Schedule)

each department/supplier combination. Based on the transaction type on SUP_DATA,
the following transactions are written to SUP_MONTH:

= type 1 - purchases at cost (written for consignment sales and orders received at POS

or online)

* type 2 - purchases at retail (written for consignment sales and orders received at POS

or online)

= type 3 - claims at cost (written for claim dollars refunded on RTV orders)

= type 10 - markdowns at retail (net amount based on markdowns, markups,
markdown cancellations and markup cancellations)

= type 20 - order cancellation costs (written for all supplier order cancellations)

= type 30 - sales at retail (written for consignment stock sales)

* type 40 - quantity failed (written for QC shipments with failed quantities)

= type 70 - markdowns at cost (net amount based on supplier cost markdowns)

Scheduling Constraints

Schedule Information Description
Frequency Monthly
Scheduling Considerations N/A
Pre-Processing N/A
Post-Processing Prepost supmth post
Threading Scheme Threaded by department
Restart/Recovery
The logical unit of work is dept, supplier.
Key Tables Affected
Table Select Insert Update Delete
SUP_DATA Yes No No No
SUP_MONTH No Yes No No
SYSTEM_VARIABLES Yes No No No

Design Assumptions
N/A

schedprg (Purge Aged Store Ship Schedule)

Module Name

schedprg.pc

Description

Purge Aged Store Ship Schedule

Functional Area

Foundation Data

Module Type

Admin

Module Technology

ProC

Foundation Data Maintenance 67

prchstprg(Purge Aged Price History Data)

Module Name schedprg.pc
Catalog ID RMS356
Runtime Parameters N/A

Design Overview

This program will purge all old records related to store ship dates and location and
company closed dates and exceptions. Old records are determined by the Ship Schedule
History months and Location Closed History months system parameters.

Scheduling Constraints

Schedule Information Description

Frequency Monthly

Scheduling Considerations N/A

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A
Restart/Recovery

This program will periodically commit delete operations. Periodic commits are
performed to ensure that rollback segments are not exceeded in case of considerable

volume.
Key Tables Affected
Table Select Insert Update Delete
SYSTEM_OPTIONS Yes No No No
STORE_SHIP_DATE No No No Yes
COMPANY_CLOSED_EXCEP No No No Yes
COMPANY_CLOSED No No No Yes
COMPANY_CLOSED_TL No No No Yes
LOCATION_CLOSED No No No Yes
LOCATION_CLOSED_TL No No No Yes

Design Assumptions
N/A

prchstprg(Purge Aged Price History Data)

Module Name prchstprg.pc
Description Purge Aged Price History Data
Functional Area Foundation Data

68 Oracle Retail Merchandising Foundation Cloud Service

prchstprg(Purge Aged Price History Data)

Module Name prchstprg.pc
Module Type Admin
Module Technology ProC
Catalog ID RMS298
Runtime Parameters N/A

Design Overview

The PRCHSTPRG program deletes PRICE_HIST records, which are older than a number
of retention days specified SYSTEM_OPTIONS price_hist_retention_days.

This program ensures the most recent PRICE_HIST record for the item/location/tran
type combination is preserved and deletes all aged records.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Pre-Processing N/A
Post-Processing N/A

Threading Scheme

Multi threaded. Threaded by table partition

Restart/Recovery

This program will periodically commit delete operations. Restart/Recovery is achieved
by processing records that have not been deleted.

Key Tables Affected
Table Select Insert Update Delete
PERIOD Yes No No No
SYSTEM_OPTIONS Yes No No No
PRICE_HIST No No No Yes
DBA_TAB_PARTITIONS Yes No No No

Foundation Data Maintenance 69

prchstprg(Purge Aged Price History Data)

tcktdnld (Download of Data to be Printed on Tickets)

Module Name tcktdnld.pc

Description Download of Data to be Printed on
Tickets

Functional Area Foundation Data

Module Type Integration

Module Technology PROC

Catalog ID RMS59

Runtime Parameters N/A

Design Overview

This program creates an output file containing the information to be printed on a ticket

or label for a particular item/location. This program is driven by the requests for tickets
generated from RMS and RPM. The details of what should be printed on each ticket are
defined in RMS on the TICKET_TYPE_DETAIL table.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations N/A
Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A

Restart/Recovery

N/A

Key Tables Affected
Table Select Insert Update Delete
TICKET_REQUEST Yes No No Yes
STORE Yes No No No
TICKET_TYPE_HEAD Yes No No No
ITEM_MASTER Yes No No No
TICKET_TYPE_DETAIL Yes No No No
UDA_VALUES Yes No No No
UDA_VALUES_TL Yes No No No
UDA_ITEM_LOV Yes No No No
UDA Yes No No No

70 Oracle Retail Merchandising Foundation Cloud Service

prchstprg(Purge Aged Price History Data)

Table Select Insert Update Delete
UDA_TL Yes No No No
UDA_ITEM_FF Yes No No No
UDA_ITEM_FF_TL Yes No No No
UDA_ITEM_DATE Yes No No No
ITEM_TICKET Yes No No No
ITEM_LOC_SOH Yes No No No
ITEM_LOC Yes No No No
ITEM_SUPPLIER Yes No No No
ITEM_SUPP_COUNTRY_DIM Yes No No No
ITEM_SUPP_COUNTRY Yes No No No
DEPS Yes No No No
DEPS_TL Yes No No No
CLASS Yes No No No
CLASS_TL Yes No No No
SUBCLASS Yes No No No
SUBCLASS_TL Yes No No No
ORDHEAD Yes No No No
ORDSKU Yes No No No
WH Yes No No No
VAT_ITEM Yes No No No
RPM_PC_TICKET_REQUEST Yes No No Yes
GTAX_ITEM_ROLLUP Yes No No No

Integration Contract

Integration Type Download from RMS
File Name Determined by runtime parameter
Integration Contract IntCon000107

Output File Layout

Record Field Name Field Type Default Description

Name Value

FHEAD File Type Char(5) FHEAD Identifies file record type
Record
Descriptor
File Line Number(10) Line number of the current file
Sequence

Foundation Data Maintenance 71

prchstprg(Purge Aged Price History Data)

Record Field Name Field Type Default Description
Name Value
File Type Char(4) TCKT Identifies file as ‘Print Ticket
Definition Requests’
File Create Char(14) The date on which the file was
Date created in “YYYMMDDHHMISS’
format
THEAD File Type Char(5) THEAD Identifies file record type
Record
Descriptor
File Line Number(10) Line number of the current file
Sequence
ITEM Char(25) ID number of the transaction level
item for which the ticket applies.
Ticket Type Char(4) ID which indicates the ticket type to
be printed
Location Type Char(1) Identifies the type of location for
which tickets will be printed. Valid
values are store (S) and warehouse
(W).
Location Char(10) The ID of the store or warehouse for
which tickets will be printed
Quantity Number(12,4) The quantity of tickets to be printed;
which includes 4 implied decimal
places
TCOMP File Type Char(5) TCOMP Identifies file record type
Record
Descriptor
File Line Number(10) Line number of the current file
Sequence
ITEM Char(25) ID number of the item which is only
populated if the item in THEAD is a
pack item
Quantity Number(12,4) Quantity of the component item as a
part of the pack; includes 4 implied
decimal places
TDETL File Type Char(5) TDETL Identifies file record type
Record
Descriptor
File Line Number(10) Line number of the current file
Sequence
Detail Number(10) Sequential number assigned to the
Sequence detail records
Number

72 Oracle Retail Merchandising Foundation Cloud Service

refmvl10entity (Refresh MV MV_L10N_ENTITY)

Record Field Name Field Type Default Description
Name Value
Ticket Item Char(4) ID indicating the detail to be printed
on the ticket. If the attribute is a
UDA, then this will contain the ID of
the UDA. Otherwise, it is the code
associated with the attribute in RMS
(such as,. CLSS = class)
Attribute Char(120) Description of the attribute - either
Description the UDA description or the RMS
description for the attribute
Value Char(250) Detail to be printed on the ticket (for
example:. [tem number, Department
Number, Item description)
Supplement Char(120) Supplemental description to the
Value (for example:. Department
Name)
TTAIL File Type Char(5) TTAIL Identifies file record type
Record
Descriptor
File Line Number(10) Line number of the current file
Sequence
Transaction Number(6) sum of Sum of the detail lines within a
Detail Line detail lines transaction
Count
FTAIL File Type Char(5) FTAIL Identifies file record type
Record
Descriptor
File Line Number(10) Line number of the current file
Sequence

Design Assumptions
N/A

refmvl10entity (Refresh MV MV_L10N_ENTITY)

Module Name

REFMVLI10ENTITY.PC

Description

Refresh Materialized view
MV_L10N_ENTITY

Functional Area Admininstration
Module Type Admin

Module Technology ProC

Catalog ID RMS304

Foundation Data Maintenance 73

likestorebatch (Like Store Batch Processing)

Design Overview

This program refreshes the materialized view MV_L10N_ENTITY that is based on
ADDR, OUTLOC, COMPHEAD, COUNTRY_ATTRIB table.

Scheduling Constraints

Schedule Information Description
Scheduling Considerations N/A
Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A
Restart/Recovery
This batch program uses table-based restart/recovery.
Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations

N/A

Key Tables Affected
Table Select Insert Update Delete
ADDR Yes No No No
OUTLOC Yes No No No
COMPHEAD Yes No No No
COUNTRY_ATTRIB Yes No No No

likestorebatch (Like Store Batch Processing)

Module Name likestorebatch.ksh
Description Like Store Batch Processing
Functional Area Foundation

Module Type Business Processing
Module Technology Ksh

Catalog ID N/A

Runtime Parameters $UP {Connect String}

74 Oracle Retail Merchandising Foundation Cloud Service

likestorebatch (Like Store Batch Processing)

Design Overview

This batch program is used to process stores from the STORE_ADD table with like stores
to copy attributes and items from an existing store to a new store.

The likestore batch program picks up all rows from the STORE_ADD table wherein the
PROCESS_STATUS is set to 02STOREADD_POST and the LIKESTORE column is
populated.

It will then gather all items associated to the likestore and explode this to the
SVC_LIKE_STORE_STAGING table and process all the inserted records by chunk.
Chunking is based on the RMS_PL_SQL_BATCH_CONFIG.MAX_CHUNK_SIZE, and it
should be noted that there is no sorting or grouping done when chunking the rows.

For each chunk, records are inserted on the temporary table SVC_LIKE_STORE_GTT,
which will serve as the driving table for the like store process of each thread.

For each successfully processed chunk, it will delete all the matching rows from the
SVC_LIKE_STORE_STAGING. Once all rows are processed, the
STORE_ADD.PROCESS_STATUS is updated for the specific store, depending on
whether there are records remaining in the SVC_LIKE_STORE_STAGING for that store.
If there are no more entries for a store, then the store will be deleted from the
STORE_ADD table. If there are entries remaining, then the status will be updated to
05LIKESTORE_FAIL.

Scheduling Constraints

Schedule Information Description

Frequency Hourly

Scheduling Considerations N/A

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A
Restart/Recovery

In case of failure, the likestore batch will not pick up any new entries from the
STORE_ADD table until the issue has been rectified. Successfully processed records are
deleted from the SVC_LIKE_STORE_STAGING.

Key Tables Affected
Table Select Insert Update Delete
STORE _ADD Yes No Yes Yes
ITEM_EXP_HEAD No Yes No No
ITEM_EXP_DETAIL No Yes No No
ITEM_LOC No Yes No No
ITEM_LOC_SOH No Yes No No
PRICE_HIST No Yes No No
ITEM_SUPP_COUNTRY_LOC No Yes No No

Foundation Data Maintenance 75

straddbatch.ksh(Store Add Asynchronous Process)

Table Select Insert Update Delete
REPL_ITEM_LOC No Yes No No
REPL_DAY No Yes No No
REPL_ITEM_LOC_UPDATES No Yes No No
SVC_LIKE_STORE_STAGING Yes Yes No Yes
SVC_LIKE_STORE_GTT Yes Yes No Yes

Design Assumptions
N/A

straddbatch.ksh(Store Add Asynchronous Process)

Module Name straddbatch.ksh

Description Store Add Asynchronous Process
Functional Area Foundation Data

Module Type Admin

Module Technology .ksh

Catalog ID RMS496

Runtime Parameters N/A

Business Overview

This asynchronous process creates new stores in RMS, along with all their associated
records when a new store is initiated online in RMS or via the Store Subscription API.

Key Tables Affected
TABLE SELECT INSERT UPDATE DELETE
STORE _ADD Yes No No Yes
STORE Yes Yes No No
STOCK_LEDGER_INSERTS No Yes No No
RPM_ZONE No Yes No No
RPM_ZONE_LOCATION No Yes No No
RMS_ASYNC_STATUS Yes Yes Yes No
RMS_ASYNC_RETRY Yes Yes Yes No
RMS_ASYNC_JON Yes No No No
LOC_TRAITS_MATRIX No Yes No No
COST_ZONE No Yes No No
COST_ZONE_GROUP_LOC No Yes No No
STORE_HIERARCHY No Yes No No

76 Oracle Retail Merchandising Foundation Cloud Service

straddbatch.ksh(Store Add Asynchronous Process)

TABLE SELECT INSERT UPDATE DELETE
WEF_COST_RELATIONSHIP No Yes No No
SOURCE_DLVRY_SCHED No Yes No No
SOURCE_DLVRY_SCHED_EXC No Yes No No
SOURCE_DLVRY_SCHED_DAYS No Yes No No
COMPANY_CLOSED_EXCEP No Yes No No
LOCATION_CLOSED No Yes No No
POS_STORE No Yes No No
PERIOD Yes No No No
SYSTEM_OPTIONS Yes No No No
STORE_ADD_L10N_EXT Yes Yes No Yes
STORE_ADD_CFA_EXT Yes Yes No Yes

Design Assumptions

The materialized views MV_LOC_SOB, MV_L10N_ENTITY and MV_LOC_PRIM_ADDR
will be refreshed after the store has been added. It is assumed that the materialized view
will still be available to other processes during the refresh.

Queue Creation

The function RMS_ASYNC_QUEUE_SQL.CREATE_QUEUE_SUBSCRIBER is called to
drop and recreate the queue table if one already exists. This function is called with the
JOB_TYPE as STORE_ADD (for example, the constant ASYNC_JOB_STORE_ADD) to
create a queue for store processing.

Design Overview

Process Steps

This section describes the key design aspect of the store add process.

The overall process consists of 3 steps as outlined below.

1. New (status-code: 0ONEW). This is the status when store is just created.
2. Store-Add (status-code: 01STOREADD)

3. Store-Add-Post (status-code: 02STOREADD_POST)

The status-code of the current completed step of the process is updated in
store_add.process_status column.

If STORE_ADD.LIKESTORE column is not null for the store, the status will remain in
02STOREADD_POST and the record will be picked up by the likestorebatch.ksh which
runs as an hourly job. If not, then the STORE entry will be removed from the
STORE_ADD table.

Running entire store-add as batch in case of AQ issues

In case of Oracle AQ issues if store-add step is not running in async mode then entire
store-add proess can also be run in batch using below command
storeaddbatch.ksh $UP

Foundation Data Maintenance 77

straddbatch.ksh(Store Add Asynchronous Process)

This is provided only as a workaround in case of AQ issues. The recommended method
is to let store-add step be processed in Async through AQ as it is designed.

Building Schedule Dependencies between Async process and other batches

Customers may need to build scheduling dependencies between async processes and
other batch programs. For example, making pos-extract batches dependent upon
completion of Like-store step of the store-add process. To do that, create a job in
scheduler using following command and make required batches dependent upon this
job.

straddasyncwait.ksh $UP “03LIKESTORE”

Similarly, if batch program needs to be made dependent upon other steps, schedule jobs
by passing desired status.

Monitoring Progress of Store-Add Processes

The current completed step of the store-add process is updated in
store_add.process_status column. In case of a Like-Store step (which is a separate batch
program) the status of a store will remain in 02STOREADD_POST, until it is processed
by the likestore batch program, which will in turn change the status to 03LIKETORE.

Once the process is completed, the store will be subsequently removed from the
STORE_ADD table. If not, then the status will be changed to '05LIKESTORE_FAIL'

78 Oracle Retail Merchandising Foundation Cloud Service

A4

ltem Maintenance

Overview

This chapter contains information about the batch processes that related to item
maintenance. These processes include general item integration and processes to make
mass changes to low level item information.

Program Summary

Program Description

sitmain.pc Scheduled Item Maintenance

vatdIxpl.pc Mass VAT Updates for Items/Locations

iindbatch.ksh Upload item induction data through batch

itm_indctn_purge.ksh Purge Item induction staging tables

Pricingeventprocess.ksh Processing and application of Price events when
RPM is not used.

sitmain (Scheduled ltem Maintenance)

Module Name sitmain.pc

Description Scheduled Item Maintenance
Functional Area Item Maintenance

Module Type Business Processing

Module Technology ProC

Catalog ID RMS357

Runtime Parameters N/A

Design Overview

Scheduled item maintenance is a method of performing mass changes on item/location
information. Scheduled item maintenance uses item and location lists to make the
process of changing lots of information very easy for end users.

This program explodes the intersection of these item and location lists to make the
scheduled changes at the specific item/location level.

Scheduling Constraints

Schedule Information Description

Frequency Daily
Scheduling Considerations This module should run after LCLRBLD.PC.

vatdixpl (Mass VAT Updates for ltems/Locations)

Schedule Information Description

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A
Restart/Recovery

This program has inherent restart ability because records are deleted from SIT_DETAIL
as they are processed. The logical unit of work is an item/location combination.

Key Tables Affected
Table Select Insert Update Delete
SIT_EXPLODE Yes No Yes No
SIT_DETAIL Yes No No Yes
ITEM_LOC Yes Yes Yes No
MC_REJECTIONS No Yes No No
ITEM_MASTER Yes No No No
PRICE_HIST No Yes No No
ITEM_LOC_SOH No Yes No No

vatdixpl (Mass VAT Updates for Items/Locations)

Module Name vatdIxpl.pc

Description Mass VAT Updates for Items/Locations
Functional Area Item Maintenance

Module Type Business Processing

Module Technology ProC

Catalog ID RMS384

Runtime Parameters N/A

Design Overview

This batch program updates VAT information for each item associated with a given VAT
region and VAT code.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations Run as Needed
Pre-Processing N/A

80 Oracle Retail Merchandising Foundation Cloud Service

iindbatch.ksh (Upload Item Data)

Schedule Information Description

Post-Processing N/A

Threading Scheme N/A
Restart/Recovery

This batch program performs commits to the database for every pi_commit_max_ctr
number of rows.

Key Tables Affected
Table Select Insert Update Delete
PERIOD Yes No No No
SYSTEM_OPTIONS Yes No No No
VAT_CODE_RATES Yes No No No
VAT_ITEM Yes Yes Yes No
ITEM_LOC Yes No No No
ITEM_MASTER Yes No No No
STORE Yes No No No
CLASS Yes No No No

iindbatch.ksh (Upload Item Data)

Module Name iindbatch.ksh
Description Upload Item Data
Functional Area Item Maintenance
Module Type Integration
Module Technology Ksh
Catalog ID RMS474
Runtime Parameters Database connection,
Input File Name,
Template Name,
Destination (Optional Input Parameter)

Design Overview

This batch program is used to Bulk upload xml file data from template files to
S9T_FOLDER table (into content_xml column).

This batch will be responsible for validating the input parameters, below are the list of
validations.

* The Input file should exist.
* The Input file’s extension must be “.xml”.
* The template_name should be valid.

Iltem Maintenance 81

itm_indctn_purge (Purge Item Induction Staging Tables)

* Destination (Optional Parameter) should be STG or RMS. If destination is not passed
then default it to STG.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations N/A
Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A
Restart/Recovery
N/A
Key Tables Affected
Table Select Insert Update Delete
S9T_FOLDER No Yes No No
S9T_TEMPLATE Yes No No No
SVC_PROCESS_TRACKER No Yes No No
RMS_ASYNC_STATUS No Yes No No
RMS_ASYNC_RETRY No Yes No No

itm_indctn_purge (Purge Item Induction Staging Tables)

Module Name itm_indctn_purge.ksh

Description Purge item induction staging tables
Functional Area Foundation-Items

Module Type Admin

Module Technology Shell Script

Catalog ID RMS498

Runtime Parameters N/A

Design Overview

The purpose of this module is to remove old item records from the staging tables.
Records that are candidates for deletion are:

* Processes that have successfully been processed or processed with warnings that
have been uploaded to RMS or downloaded to S9T

* Processes that have status = ‘PE’, processed with errors and have no linked data

82 Oracle Retail Merchandising Foundation Cloud Service

itm_indctn_purge (Purge Item Induction Staging Tables)

* Processes in error status where all other related records containing the process ID

have been processed successfully

* Processes that have errors and are past the data retention days
(system_options.proc_data_retention_days)

* Allitem records within a process where all related records for the item in the
other staging tables are successfully uploaded to RMS. The process tracker
record for that process should not be deleted if there are other item records that

are not uploaded to RMS.

Scheduling Constraints

Schedule Information Description
Processing Cycle Ad Hoc
Frequency Daily
Scheduling Considerations N/A
Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A

Restart/Recovery

Restart ability is implied, because the records that are selected from the cursor are

deleted before the commit.

Key Tables Affected

Table Select Insert Update Delete
PROC_DATA_RETENTION_DAYS Yes No No No
SYSTEM_OPTIONS Yes No No No
SVC_PROCESS_TRACKER Yes No No Yes
SVC_PROCESS_ITEMS No No No Yes
SVC_ITEM_COST_DETAIL No No No Yes
SVC_ITEM_COST_HEAD No No No Yes
SVC_ITEM_COUNTRY No No No Yes
SVC_ITEM_COUNTRY_L10N_EXT No No No Yes
SVC_ITEM_MASTER No No No Yes
SVC_ITEM_MASTER_TL No No No Yes
SVC_ITEM_MASTER_CFA_EXT No No No Yes
SVC_ITEM_SUPPLIER No No No Yes
SVC_ITEM_SUPPLIER_TL No No No Yes
SVC_ITEM_SUPPLIER_CFA_EXT No No No Yes

Iltem Maintenance 83

itm_indctn_purge (Purge Item Induction Staging Tables)

Table Select Insert Update Delete
SVC_ITEM_SUPP_COUNTRY No No No Yes
SVC_ITEM_SUPP_COUNTRY_CFA_EXT No No No Yes
SVC_ITEM_SUPP_COUNTRY_DIM No No No Yes
SVC_ITEM_SUPP_MANU_COUNTRY No No No Yes
SVC_ITEM_SUPP_UOM No No No Yes
SVC_ITEM_XFORM_DETAIL No No No Yes
SVC_ITEM_XFORM_HEAD No No No Yes
SVC_ITEM_XFORM_HEAD_TL No No No Yes
SVC_PACKITEM No No No Yes
SVC_RPM_ITEM_ZONE_PRICE No No No Yes
SVC_XITEM_RIZP_LOCS No No No Yes
SVC_XITEM_RIZP No No No Yes
SVC_ITEM_SEASONS No No No Yes
SVC_UDA_ITEM_DATE No No No Yes
SVC_UDA_ITEM_FF No No No Yes
SVC_UDA_ITEM_LOV No No No Yes
SVC_VAT_ITEM No No No Yes
SVC_ITEM_IMAGE No No No Yes
SVC_ITEM_IMAGE_TL No No No Yes
CORESVC_ITEM_ERR No No No Yes
SVC_COST_SUSP_SUP_HEAD No No No Yes
SVC_COST_SUSP_SUP_DETAIL_LOC No No No Yes
SVC_COST_SUSP_SUP_DETAIL No No No Yes
SVC_CFA_EXT No No No Yes
CORESVC_ITEM_ERR No No No Yes
S9T_ERRORS No No No Yes
SVC_PROCESS_CHUNKS No No No Yes
S9T_FOLDER No No No Yes

Design Assumptions
N/A

84 Oracle Retail Merchandising Foundation Cloud Service

Pricingeventprocess.ksh (Main Processing of Executing the Price Events)

Pricingeventprocess.ksh (Main Processing of Executing the Price Events)

Module Name

pricingeventprocess.ksh

Description

Main Processing of executing the staged pricing
events

Functional Area

Price change

Module Type Business Processing
Module Technology ksh

Catalog ID RMS494

Runtime Parameters N/A

Design Overview

This batch will be used when RPM is not used for Pricing. The purpose of the
PRICINGEVENTPROCESS KSH module is to process price events from the staged data
which is populated by the Price Event RIB API The staged pricing events for the next
vdate is exploded based on the hierarchy level and is loaded into a temporary table.

The price events are grouped into threads and chunks based on item and locations. The
data is processed by thread for each chunk. The following common functions are
performed on each price event record read from the stating table:

* Explode data at item/location level

* Group the data into threads and chunks based on item/location

* Validate price event

*= Call CORESVC_XPRICE_SQL.PROCESS_DETAILS to execute the price events

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations

Pre-Processing N/A
Post-Processing N/A

Iltem Maintenance 85

Pricingeventprocess.ksh (Main Processing of Executing the Price Events)

Schedule Information Description
Threading Scheme The number of threads running in parallel is based on value in the
column

RMS_PLSQL_BATCH_CONFIG.MAX_CONCURRENT_THREADS
with the program name “CORESVC_XPRICE_SQL”. Threading is
based on chunks.

Each chunk should have a defined size. This is defined in
RMS_PLSQL_BATCH_CONFIG.MAX_CHUNK_SIZE. Chunks
could be made up of a single or multiple THEAD/Items.

Because multithreading logic based on chunks is applied, it is
possible that a record is locked by another thread. Without a
mechanism to perform waiting/retrying, record locking errors can
occur more frequently.

Note: The table RMS_PLSQL_BATCH_CONFIG,
RETRY_LOCK_ATTEMPTS contains the number of times the
thread attempts to acquire the lock for a table, and
RETRY_WAIT_TIME is the number of seconds the thread waits
before it retries.

Example
MAX_CONCURRENT_THREADS MAX_CHUNK_SIZE
4 3

In this run, threads are allocated based on the location. If there are 32 locations and the
max thread is 4, then each thread contains 8 locations. In the example, there are 4
locations, so each location is allocated with different threads.

Thread 1 Chunk 1 loc1 Item 1
Thread 1 Chunk 1 loc1 Item 2
Thread 1 Chunk 1 loc1 Item 3
Thread 2 Chunk 2 loc2 Item 2
Thread 2 Chunk 2 loc 2 Item 3
Thread 2 Chunk 2 loc 2 Item 5
Thread 3 Chunk 3 loc3 Item 6
Thread 3 Chunk 3 loc 3 Item 7
Thread 3 Chunk 3 loc 3 Item 8
Thread 4 Chunk 4 loc 4 Item 4
Thread 4 Chunk 4 loc 4 Ttem 2
Thread 4 Chunk 4 loc 4 Item 1
Restart/Recovery

The logical unit of work for this batch is a chunk. In the case of a failure of any record, the
record is marked as Failed and processing continues on to process next records. In the
case of a restart, all the failed records are updated with status, because ‘N’, chunk_id is
reassigned based on the values in RMS_PLSQL_BATCH_CONFIG table and reprocessed.

86 Oracle Retail Merchandising Foundation Cloud Service

Pricingeventprocess.ksh (Main Processing of Executing the Price Events)

Locking Strategy

Since the price event processes are run multiple times, a locking mechanism is put in
place to allow online transactions and the pricingeventprocess.ksh module to run at the
same time. The following tables would be locked for update:

= JTEM_MASTER

= ITEM_LOC
= REPL_ITEM_LOC
= SUP_DATA

Because multithreading logic based on chunks is applied, it is possible that a record is
locked by another thread. Without a mechanism to perform waiting/retrying, record
locking errors occur more frequently.

In the table RMS_PLSQL_BATCH_CONFIG, RETRY_LOCK_ATTEMPTS is the number
of times the thread attempts to acquire the lock for a table. RETRY_WAIT_TIME is the
number of seconds the thread waits before it retries. Once the number of retries is equal
to the limit defined, the whole chunk is not processed and marked as failed.

Key Tables Affected
Table Select Insert Update Delete
ITEM_LOC Yes No Yes No
ITEM_LOC_SOH Yes No No No
STORE Yes No No No
WH Yes No No No
ITEM_MASTER Yes No Yes No
DIFF_GROUP_HEAD Yes No No No
DIFF_GROUP_DETAIL Yes No No No
CHAIN Yes No No No
AREA Yes No No No
REGION Yes No No No
DISTRICT Yes No No No
CURRENCIES Yes No No No
STORE_HIERARCHY Yes No No No
ITEM_SUPP_COUNTRY_LOC Yes No No No
ITEM_SUPP_COUNTRY Yes No No No
PRICE_HIST Yes Yes No No
EMER_PRICE_HIST No Yes No No
SUP_DATA No Yes No No
TRAN_DATA No Yes No No
REPL_ITEM_LOC Yes No Yes No
SVC_PRICING_EVENT_HEAD Yes Yes Yes No
SVC_PRICING_EVENT_LOCS Yes Yes No No

Iltem Maintenance 87

Pricingeventprocess.ksh (Main Processing of Executing the Price Events)

Table Select Insert Update

Delete

SVC_PRICING_EVENT_TEMP Yes Yes Yes

No

Integration Contract

Integration Type Upload to RMS
File Name N/A
Integration Contract N/A

Design Assumptions

* Required fields are shown in the RIB documentation.

* Data being subscribed is assumed to be correct in terms of pricing information.

* Validations similar to that of conflict checking in RPM are not in scope.

= Complex Promotions are not supported.

Financial Transactions

pricingeventprocess.ksh writes transaction records to the TRAN_DATA table. For the full
list of transaction codes, see the chapter addressing general ledger batch in this volume of

the RMS Operations Guide, for the column TRAN_CODE.

pricingeventprocess.ksh writes the following:

Transaction Code Description

11 Markup (retail only)

12 Markup cancel (retail only)

13 Permanent Markdown (retail only)

14 Markdown cancel (retail only)

15 Promotional Markdown (retail only), including ‘in-

store’ markdown

16 Clearance Markdown

88 Oracle Retail Merchandising Foundation Cloud Service

S

Overview

Custom Flexible Attributes Solution

This chapter describes the batch processes related to the Custom Flexible Attributes
Solution (CFAS). CFAS consists of a series of Ul, database and batch processes that allow
clients to configure and use sophisticated custom attributes on common RMS entities.
For additional information about CFAS, including detailed flow diagrams, see the Oracle
Retail Merchandising System Custom Flex Attribute Solution Implementation Guide.

Program Summary

The following batch designs are included in this functional area:

Program Description

cfagen.ksh CFAS Database Object Creation Script
cfamigrate.ksh CFAS Metadata Migration Script
cfastgload.ksh Bulk load of CFAS Attribute Data

cfagen (CFAS Database Object Creation Script)

Module Name cfagen.ksh

Description CFAS Database Object Creation Script
Functional Area CFAS

Module Type Admin

Module Technology ksh

Catalog ID RMS471

Runtime Parameters N/A

Design Overview

This script creates the database objects required for CFAS.

For more information, see the following documents in the Oracle Retail Merchandising
System documentation set:

* Oracle Retail Merchandising System Custom Flex Attribute Solution Implementation Guide

This script only needs to be run if a client is using CFAS and changing CFAS
configuration.

Scheduling Constraints

Schedule Information Description

Frequency As Needed

cfamigrate (CFAS Metadata Migration script)

Schedule Information Description
Scheduling Considerations N/A
Pre-Processing N/A
Post-Processing N/A
Theading Scheme N/A
Restart/Recovery
N/A
Key Tables Affected
Table Select Insert Update Delete
cfa_ext_entity Yes No No No
cfa_attrib_group_set Yes No No No
system_option Yes No No No
cfa_attrib Yes No No No
cfa_attrib_group Yes No No No
cfa_ext_entity_key Yes No No No
I/0 Specification
N/A

cfamigrate (CFAS Metadata Migration script)

Module Name

cfamigrate ksh

Description

CFAS Metadata Migration Script

Functional Area

CFAS

Module Type Admin
Module Technology ksh
Catalog ID RMS472
Runtime Parameters N/A

Design Overview

This script extracts CFAS metadata from the current environment so the metadata can be
migrated to other environments. This allows CFAS metadata to be created and tested in
a development/sandbox environment, then moved to production environments when it

is fully ready.

For more information, see the following documents in the Oracle Retail Merchandising
System Release 16.0 documentation set and the Oracle Retail Merchandising System Custom

Flex Attribute Solution Implementation Guide.

This script only needs to be run if the client needs to move the CFAS configuration from

one environment to another.

90 Oracle Retail Merchandising Foundation Cloud Service

cfastgload (Bulk load of CFAS Attribute Data)

Scheduling Constraints

Schedule Information Description
Frequency As Needed
Scheduling Considerations N/A
Pre-Processing N/A
Post-Processing N/A
Theading Scheme N/A

Restart/Recovery

N/A

Key Tables Affected
Table Select Insert Update Delete
cfa_rec_group Yes Yes Yes No
cfa_rec_group_labels Yes Yes Yes No
cfa_ext_entity Yes Yes Yes No
cfa_ext_entity_key Yes Yes Yes No
cfa_ext_entity_key_labels Yes Yes Yes No
cfa_attrib_group_set Yes Yes Yes No
cfa_attrib_group_set_labels Yes Yes Yes No
cfa_attrib_group Yes Yes Yes No
cfa_attrib_group_labels Yes Yes Yes No
cfa_attrib Yes Yes Yes No
cfa_attrib_labels Yes Yes Yes No

cfastgload (Bulk load of CFAS Attribute Data)

Module Name cfastgload.ksh

Description Bulk load of CFAS Attribute Data
Functional Area CFAS

Module Type Admin

Module Technology ksh

Catalog ID RMS117

Runtime Parameters N/A

Design Overview

This script allows clients to bulk load data into CFAS attributes. This utility is handy
when upgrading from earlier versions of RMS or adding a new attribute with data
already existing in another system.

Custom Flexible Attributes Solution 91

cfastgload (Bulk load of CFAS Attribute Data)

For more information, see the following documents in the Oracle Retail Merchandising
System Release 16.0 documentation set and the Oracle Retail Merchandising System Custom
Flex Attribute Solution Implementation Guide.

This script only needs to be run if a client is using CFAS and needs to bulk load
information from an external system (including previous version of RMS).

Scheduling Constraints

Schedule Information Description
Frequency As Needed
Scheduling Considerations N/A
Pre-Processing N/A
Post-Processing N/A
Theading Scheme N/A
Restart/Recovery
N/A
Key Tables Affected
Table Select Insert Update Delete
cfa_attrib_group_set Yes No No No
cfa_ext_entity_key Yes No No No
cfa_ext_entity Yes No No No
cfa_attrib_group Yes No No No
cfa_attrib Yes No No No
/0 Specification
Integration Type Upload to RMS
File Name Determined by runtime parameter
Integration Contract IntCon000001

Note: The staging table where the data will be inserted is
determined during runtime.

92 Oracle Retail Merchandising Foundation Cloud Service

6

Purchase Order

Overview

RMS is the system of record in the Oracle Retail Suite for Purchase Orders (POs).
Purchase orders can be created via the RMS Ul, integration with products such as Oracle
Retail Advanced Inventory Planning or integration with other 3 party systems. Once

purchase orders are created in RMS, there are a number of batch processes that manage
PO data.

Batch Design Summary
The following batch designs are included in this functional area:
* edidlord.pc (Download of Purchase Order from RMS to Suppliers)

* ediupack.pc (Upload Purchase Order and Purchase Order Change
Acknowledgements from Suppliers to RMS)

= vrplbld.pc (Build Purchase Orders for Vendor Generated Orders)

= genpreiss.pc (Generate Pre-Issued Order Numbers)

= supcnstr.pc (Scale Purchase Orders Based on Supplier Constraints)

= orddscnt.pc (Apply Deal Discounts to Purchase Orders)

* ordupd.pc (Update Retail Values on Open Purchase Orders)

* ordautcl.pc (Auto Close Purchase Orders)

* ordrev.pc (Write Purchase Order Information to Purchase Order History Tables)
* ordprg.pc (Purge Aged Purchase Orders)

* poindbatch.ksh(Upload of PO induction data through batch)

* po_indctn_purge.ksh(Purge data from PO induction staging tables)

edidlord (Download of Purchase Orders from RMS to Suppliers)

Module Name edidlord.pc

Description Download of Purchase Order from RMS
to Suppliers

Functional Area Purchase Order

Module Type Integration

Module Technology ProC

Catalog ID RMS46

Runtime Parameters N/A

Design Overview

Orders created within the Oracle Retail system are written to a flat file if they are
approved and marked as EDI orders. This module is used to write new and changed
purchase order data to a flat file in the Oracle Retail standard format. The translation to
EDI format is expected to take place via a 3" party translation utility. The order revision

Design Overview

tables and allocation revision tables are also used to ensure that the latest changes are
being sent and to allow both original and modified values to be sent. These revision
tables are populated during the online ordering process and the batch replenishment
process whenever an order has been approved, and constitutes a history of all revisions
to the order.

The program sums up all quantities to the physical warehouse level from the virtual
warehouse level for an order, before writing it into the output file.

If shipments are to be pre-marked by the supplier for cross docking, then along with the
order information: allocation, location and quantities are also sent.

If the backhaul type is specified as “Calculated”, then the backhaul allowances will be
calculated.

If the order contains pack items; hierarchical pack information is sent (this may include
outer packs, inner packs, and fashion styles with associated pack templates as well as
component item information).

If the order is a Drop Ship Customer Order (location is a non-stockholding store), the
customer billing and delivery information will be written to the flat file.

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations This program needs to be scheduled after

replenishment and ordrev

Pre-Processing N/A

Post-Processing N/A

Threading Scheme Multi-threaded by supplier
Restart/Recovery

The logical unit of work for this program is set at the supplier level. Threading is
performed by the supplier using the v_restart_supplier view.

Restart ability is implied because the program updates ordhead.edi_sent_ind as records
and are written out. The commit_max_ctr field should be set to prevent excessive
rollback space usage, and to reduce the overhead of the file I/O. The recommended
commit counter setting is 10000 records.

Key Tables Affected
Table Select Insert Update Delete
ORDHEAD Yes No Yes No
ORDHEAD_REV Yes No No No
TERM Yes No No No
SUPS Yes No No No
ORDSKU Yes No No No
ORDSKU_REV Yes No No No
ITEM_MASTER Yes No No No

94 Oracle Retail Merchandising Foundation Cloud Service

Design Overview

Table Select Insert Update Delete
ORDLOC Yes No No No
ORDLOC_REV Yes No No No
ORDLOC_DISCOUNT Yes No No No
ORDCUST Yes No No No
ALLOC_HEADER Yes No No No
ALLOC_DETAIL Yes No No No
ALLOC_REV Yes No No No
WH Yes No No No
PACKITEM_BREAKOUT Yes No No No
SUPS_PACK_TMPL_DESC Yes No No No
ITEM_SUPPLIER Yes No No No
ITEM_SUPP_COUNTRY Yes No No No
ITEM_SUPP_COUNTRY_DIM Yes No No No
STORE Yes No No No
ADDR Yes No No No

Integration Contract

Integration Type Download from RMS
File Name Determined by runtime parameter
Integration Contract IntCon000012
Record Field Name Field Type Default Value Description
Name
FHEAD Record descriptor Char(5) FHEAD File head marker
Line id Number(10) 0000000001 Unique line id
Translator id Char(5) DLORD Identifies transaction type
File create date Char(14) Vdate in
YYYYMMDDHH24MISS format
TORDR Record descriptor Char(5) TORDR Order header information
Line id Number(10) Unique file line id
Transaction id Number(10) Unique transaction id
Order change type ~ Char(2) ‘CH’ (changed) or 'NW’ (new)
Order number Number(12) Internal Oracle Retail order no
Supplier Number(10) Internal Oracle Retail supplier id
Vendor order id Char(15) External vendor_order_no (if
available)

Purchase Order 95

Design Overview

Record Field Name Field Type Default Value Description
Name

Order written date ~ Char(14) Order created date in
YYYYMMDDHH24MISS format

Original order Char(14) Original order approval date in

approval date YYYYMMDDHH24MISS format

Old Currency Code Char(3) Old order currency_code (ISO
standard)

New Currency Code Char(3) Changed order currency_code
(ISO standard)

Old Shipment Char(2) Old ship_pay_method

Method of payment

New Shipment Char(2) Changed ship_pay_method

Method of Payment

Old Transportation ~ Char(2) Old fob_trans_res

Responsibility

Old Transportation Char(250) Old fob_trans_res_desc

Responsibility

Description

New Transportation Char(2) Changed fob_trans_res

Responsibility

New Trans. Resp. Char(250) New fob_trans_res_desc

Description

Old Title Passage Char(2) Old fob_title_pass

Location

New Title Passage Char(2) Changed fob_title_pass

Location

Old Title Passage Char(250) Old fob_title_pass_desc

Description

New Title Passage ~ Char(250) Changed fob_title_pass_desc

Description

Old not before date Char(14) Old not_before_date in
YYYYMMDDHH24MISS format

New not before date Char(14) Changed not_before_date in
YYYYMMDDHH24MISS format

Old not after date Char(14) Old not_after_date in
YYYYMMDDHH24MISS format

New not after date Char(14) Changed not_after_date in
YYYYMMDDHH24MISS format

Old Purchase type ~ Char(6) Old Purchase type

New Purchase type Char(6) New Purchase type

Backhaul allowance Char(20) Backhaul allowance

Old terms Char(240) Old terms description from

description terms table

96 Oracle Retail Merchandising Foundation Cloud Service

Design Overview

Record Field Name Field Type Default Value Description
Name
New terms Char(240) New terms description from
description terms table
Old pickup date Char(14) Old pickup date
YYYYMMDDHH24MISS
New pickup date Char(14) New pickup date
YYYYMMDDHH24MISS
Old ship method Char(6) Old ship method
New ship method Char(6) New ship method
Old comment Char(2000) Old comment description
description
New comment Char(2000) New comment description
description
Supplier DUNS Char(9) Supplier DUNS number
number
Supplier DUNS Char(4) Supplier DUNS location
location
Customer order Char(48) Master customer order number
number from the Order Management
System
TITEM File record Char(5) TITEM Item info
descriptor
Line id Number(10) Unique line id
Transaction id Number(10) Unique transaction id
Item Number Type Char(6) Item_number_type
Item Char(25) Item (For a pack item, this will
be the pack number)
Old Ref Item Char(6) Item_number_type for old
Number type ref_item
Old Ref Item Char(25) Old Ref_Item
New Ref Item Char(6) Item_number_type for new
Number type ref_item
New Ref Item Char(25) Changed Ref_Item
Vendor catalog Char(30) Supplier_item (VPN)
number
Free Form Char(250) Item_desc
Description
Supplier Diff 1 Char(120) Supplier’s diff 1
Supplier Diff 2 Char(120) Supplier’s diff 2
Supplier Diff 3 Char(120) Supplier’s diff 3
Supplier Diff 4 Char(120) Supplier’s diff 4

Purchase Order 97

Design Overview

Record Field Name Field Type Default Value Description
Name
Pack Size Number(12) Supplier defined pack size *
10000 (4 implied decimal places)
TPACK File record Char(5) TPACK Pack component info
descriptor
Line id Number(10) Unique line id
Transaction id Number(10) Unique transaction id
Pack id Char(25) Packitem_breakout.pack_no
(same as item for the pack item)
Inner pack id Char(25) Inner pack identification
Pack Quantity Number(12) Packitem_breakout.pack_item_q
ty*10000 (4 implied decimal
places)
Component Pack Number(12) Packitem_breakout.comp_pack_
Quantity qty*10000 (4 implied decimal
places)
Item Parent Part Number(12) Packitem_breakout.item_parent_
Quantity pt_qty*10000 (4 implied decimal
places)
Item Quantity Number(12) Packitem_breakout.item_qty*100
00 (4 implied decimal places)
Item Number Type Char(6) Item number type
Item Char(25) Item
Ref Item Number Char(6) Ref_item_number._type
Type
Ref Item Char(25) Ref_item
VPN Char(30) Supplier item (vpn)
Supplier Diff 1 Char(120) Supplier’s diff 1
Supplier Diff 2 Char(120) Supplier’s diff 2
Supplier Diff 3 Char(120) Supplier’s diff 3
Supplier Diff 4 Char(120) Supplier’s diff 4
Item Parent Char(25) Required when Pack Template is
not NULL
Pack template Number(8) Pack template associated
w/style
(packitem_breakout.pack_tmpl_i
d)
Template Char(250) Description of pack template.
description sups_pack_tmpl_desc.supp_pac
k_desc
TSHIP Record type Char(5) TSHIP Describes the file record-
shipment information
Line id Number(10) Unique file line number

98 Oracle Retail Merchandising Foundation Cloud Service

Design Overview

Record Field Name Field Type Default Value Description
Name

Transaction id Number(10) Unique transaction number

Location type Char(2) ‘ST’ store or “WH’ warehouse

Ship to location Number(10) Location value form ordloc
(store or warehouse — For
warehouse,if multichannel
option is ON, physical
warehouse value is taken from
warehouse)

Old unit cost Number(20) Old unit cost*10000 (4 implied
decimal places)

New unit cost Number(20) New unit cost*10000 (4 implied
decimal places)

Old quantity Number(12) Old qty_ordered *10000 or
qty_allocated*10000 (4 implied
decimal places)

New quantity Number(12) Changed qty_ordered*10000 or
qty_allocated*10000 (4 implied
decimal places)

Old outstanding Number(12) Old (qty_ordered-

quantity qty_received)*10000 or
(qty_allocated-qty
transferred)*10000 for an
allocation
(4 implied decimal places)

New outstanding Number(12) Changed qty_ordered-

quantity qty_received (4 implied decimal
places)(or qty_allocated-
qty_transferred, for an
allocation)

Cancel code Char(1)

Old cancelled Number(12) Previous quantity cancelled (4

quantity implied decimal places)

New cancelled Number(12) Changed quantity cancelled (4

quantity implied decimal places)

Quantity type flag ~ Char(1) ‘S’hip to “A’llocate

Store or warehouse Char(2) ‘ST’ (store) or ‘'WH’ (warehouse)

indicator

Old x-dock location ~ Number(10) Alloc_detail location (store or
wh)

New x-dock Number(10) Alloc_detail location (store or

location wh)

Case length Number(12) Case length (4 implied decimal
places)

Case width Number(12) Case width (4 implied decimal

places)

Purchase Order 99

Design Overview

Record Field Name Field Type Default Value Description
Name
Case height Number(12) Case height (4 implied decimal
places)
Case LWH unit of Char(4) Case LWH unit of measure
measure
Case weight Number(12) Case weight (4 implied decimal
places)
Case weight unit of ~ Char(4) Case weight unit of measure
measure
Case liquid volume Number(12) Case liquid volume (4 implied
decimal places)
Case liquid volume Char(4) Case liquid volume unit of
unit of measure measure
Location DUNS Char(9) Location DUNS number
number
Location DUNSloc Char(4) Location DUNS loc
Old unit cost init Number(20) Old unit cost init (4 implied
decimal places)
New unit cost init Number(20) New unit cost init (4 implied
decimal places)
Item/loc discounts ~ Number(20) Item/loc discounts (4 implied
decimal places)
TCUST Record type Char(5) TCUST Describes the file record-
customer order information
Line id Number(10) Unique file line number
Transaction id Number(10) Unique transaction number
Delivery first name Char(120) First name for the delivery
address on the order
Delivery phonetic ~ Char(120) Phonetic first name for the
first name delivery address on the
order
Delivery last name Char(120) Last name for the delivery
address on the order
Delivery phonetic ~ Char(120) Phonetic last name for the
last name delivery address on the
order
Delivery preferred Char(120) Preferred name for the
name delivery address on the
order
Delivery company Char(120) Company name for the
name delivery address on the
order
Delivery address Char(240) First line of the delivery
Line 1 address of the customer

100 Oracle Retail Merchandising Foundation Cloud Service

Design Overview

Record Field Name Field Type Default Value Description
Name

Delivery address Char(240) Second line of the delivery

Line 2 address of the customer

Delivery address Char(240) Third line of the delivery

Line 3 address of the customer

Delivery county Char(250) County portion of the
delivery address

Delivery city Char(120) City portion of the
delivery address

Delivery state Char(3) State portion of the
delivery address

Delivery country ID Char(3) Country portion of the
delivery address

Delivery post Char(30) Postal code portion of the
delivery address

Delivery jurisdiction Char(10) Jurisdiction code of the
delivery country-state
relationship

Delivery phone Char(20) Phone number in the
delivery information

Billing first name Char(120) First name for the billing address
on the order

Billing phonetic first Char(120) Phonetic first name for the

name billing address on the order

Billing last name Char(120) Last name for the billing address
on the order

Billing phonetic last Char(120) Phonetic last name for the billing

name address on the order

Billing preferred Char(120) Preferred name for the billing

name address on the order

Billing company Char(120) Company name for the billing

name address on the order

Billing address Line Char(240) First line of the billing address of

1 the customer

Billing address Line Char(240) Second line of the billing address

2 of the customer

Billing address Line Char(240) Third line of the billing address

3 of the customer

Billing county Char(250) County portion of the billing
address

Billing city Char(120) City portion of the billing
address

Billing state Char(3) State portion of the billing

address

Purchase Order 101

Design Overview

Record Field Name Field Type Default Value Description
Name
Billing country ID Char(3) Country portion of the billing
address
Billing post Char(30) Postal code portion of the billing
address
Billing jurisdiction =~ Char(10) Jurisdiction code of the billing
country-state relationship
Billing phone Char(20) Phone number in the billing
information
TTAIL Record type Char(5) TTAIL Describes file record - marks end
of order
Line id Number(10) Unique file line id
Transaction id Number(10) Unique transaction id
#Lines in Number(10) Number of lines in transaction
transaction
FTAIL Record type Char(5) FTAIL Describes file record - marks end
of file
Line id Number(10) Unique file line id
#lines Number(10) Total number of transaction lines

in file (not including FHEAD
and FTAIL)

For a new order, the “old” fields should be blank. For a changed order, both old and new
fields should hold values. If the value has changed, “old” values come from the revision
tables for the latest revision before the current one (the last one sent), while new orders
come from the ordering tables.

FHEAD - REQUIRED: File identification, one line per file.
TORDR - REQUIRED: Order level information, one line per order.
TITEM - REQUIRED: Item description, multiple lines per order possible.

TPACK - OPTIONAL: Pack contents, multiple lines per order possible. This line
will be written only for pack items.

TSHIP - REQUIRED: Ship to location and quantity, allocation location, multiple
lines per item possible. Allocation information is optional on this line — will exist if
premark_ind is “Y’.

TCUST - OPTIONAL: Customer order information, one line per order. This line will
be written only for Drop Ship Customer Orders.

TTAIL - REQUIRED: Order end, one line per order.
FTAIL - REQUIRED: End of file marker, one line per file.Output File Layout

Design Assumptions
N/A

102 Oracle Retail Merchandising Foundation Cloud Service

ediupack (Upload Purchase Order and Purchase Order Change Acknowledgements from Suppliers to RMS)

ediupack (Upload Purchase Order and Purchase Order Change
Acknowledgements from Suppliers to RMS)

Module Name ediupack.pc

Description Upload Purchase Order and Purchase Order
Change Acknowledgements from Suppliers
to RMS

Functional Area Purchase Orders

Module Type Integration

Module Technology ProC

Catalog ID RMS48

Runtime Parameters N/A

Design Overview

This program has four functions: 1) to acknowledge vendor receipt of a buyer-generated
order without changes, 2) to acknowledge vendor receipt of a buyer-generated order
with date, cost or quantity modifications, 3) to notify buyer of a vendor-generated order,
and 4) to acknowledge order cancellations.

All acknowledgements update the ORDHEAD table with acknowledgement information.

When the supplier sends the acknowledgement with modifications, they can send the
entire purchase order or only the changes. The file details are matched to the current
order. If the Not Before Date, Not After Date, Quantity, Price, and item all match the
current order, then no changes were submitted. If one of the variables is blank, for
example the price, assume that no pricing changes were made. As soon as one of the
variables does not match, the order has been changed. These changes will not be written
directly to the order; they will be written to the revision tables. Revisions will be
accepted in the on-line ordering screens and changed orders will be resubmitted via
EDIDLORD.

Vendor generated orders will create new orders by inserting new records on the EDI
temporary order tables.

For Customer Order POs created through an external Order Management System (OMS)
and Franchise Order POs, the modifications to the dates, quantity and cost are applied
automatically (and will not need to be accepted online). Also, changes to Franchise POs
through this program will not affect their associated Franchise orders.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations N/A
Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A

Purchase Order 103

ediupack (Upload Purchase Order and Purchase Order Change Acknowledgements from Suppliers to RMS)

Restart/Recovery

The files will not have enough volume to warrant the implementation of restart recovery
for commit/rollback considerations but minimal file-based restart/recovery capability
will be added. The logical unit of work is a complete transaction represented by detail
lines between the transaction header and transaction tail.

A savepoint will be issued before each transaction header record is successfully
processed. If a non-fatal error occurs, a rollback to the last savepoint will be issued so
that the rejected records are not posted to the database. If a fatal error occurs and restart
is necessary, processing will restart at the last commit point.

Key Tables Affected
Table Select Insert Update Delete
PERIOD Yes No No No
SYSTEM_OPTIONS Yes No No No
EDI_ORD_TEMP No Yes Yes No
DAILY_PURGE Yes No No No
ITEM_MASTER Yes No No No
ITEM_LOC Yes No No No
ITEM_SUPPLIER Yes No No No
ITEM_SUPP_COUNTRY Yes No No No
ITEM_SUPP_COUNTRY_LOC Yes Yes Yes No
ORDHEAD Yes No Yes No
ORDLOC Yes No No No
ORDSKU Yes No No No
ORDHEAD_REV Yes Yes No No
ORDLOC_REV No Yes Yes No
ORDSKU_REV No Yes No No
ORG_UNIT Yes No No No
PARTNER_ORG_UNIT Yes No No No
SUPS Yes No No No
PRICE_HIST No Yes No No
ITEM_LOC_SOH No Yes No No
STORE Yes No No No
WH Yes No No No

Integration Contract

Integration Type Upload to RMS
File Name Determined by runtime parameter
Integration Contract IntCon000014

104 Oracle Retail Merchandising Foundation Cloud Service

ediupack (Upload Purchase Order and Purchase Order Change Acknowledgements from Suppliers to RMS)

Input File

Record Field Name Field Type Default Description
Name Value
FHEAD File head Char(5) FHEAD Describes file line type
descriptor
Line id Number(10) 0000000001 Sequential file line number
File Type Char(4) ORAK Identifies file as ‘Order
Definition Acknowledgment Import’
THEAD File record Char(5) THEAD Describes file line type
descriptor
Line id Number(10) Line number Sequential file line number
in file
Transaction Number(10) Sequential transaction number
number
Acknowledge Char(2) AP-product replenishment
type AK- Acknowledge or change
CA-cancel order (no detail)
Order number Char(15) May be external order number
(vendor order number) OR
Oracle Retail order number
Written_date Char(8) Written date in YYYYMMDD
format
Supplier number Number(10) Supplier number
Not before date Char(8) Not_before_date YYYYMMDD
Not after date Char(8) Not_after_date YYYYMMDD
Purchase type Char(6) Specifies type of purchase - may
be blank
Pickup date Char(8) Pickup_date YYYYMMDD -
may be blank
TITEM File record Char(5) TITEM Describes file line type
descriptor
Line id Number(10) Line number Sequential file line number
in file
Transaction Number(10) Sequential transaction number
number
ITEM Char(25) Item (either item or ref_item
must be defined)
Ref_item Char(25) Reference item (either item or
ref_item must be defined)
Vendor catalog ~ Char(30) VPN (Vendor Product Number)
number
Unit cost value ~ Number(20) Unit_cost * 10000 (4 implied

decimal places)

Purchase Order 105

vrplbld (Build Purchase Orders for Vendor Generated Orders)

Record Field Name Field Type Default Description
Name Value
Loc_type Char(2) ‘ST’ for store, “‘WH’ for
warehouse
Location Number(10) If NULL, apply to all locations
for this item
Pickup location =~ Char(250) Location to pick up item - may
be blank
TSHIP File record Char(5) TSHIP Describes file line type
descriptor
Line id Number(10) Line number Sequential file line number
in file
Transaction Number(10) Sequential transaction number
number
Store/wh Char(2) ‘ST’ for store, " WH’ for
indicator warehouse
Ship to location =~ Number(10) Store or warehouse number
Quantity Number(12) Quantity ordered * 10000 (4
implied decimal places)
TTAIL File record Char(5) TTAIL Describes file line type
descriptor
Line id Number(10) Line number Sequential file line number
in file
Transaction Number(10) Sequential transaction number
number
Lines in Number(6) Total number of lines in this
transaction transaction
FTAIL File record Char(5) FTAIL Marks end of file
descriptor
Line id Number(10) Line number Sequential file line number
in file
Number of Number(10) Number of lines between
transactions FHEAD and FTAIL

Design Assumptions

N/A

vrplbld (Build Purchase Orders for Vendor Generated Orders)

Module Name

vrplbld.pc

Description

Build Purchase Orders for Vendor
Generated Orders

Functional Area

Purchase Orders

Module Type

Business Processing

106 Oracle Retail Merchandising Foundation Cloud Service

vrplbld (Build Purchase Orders for Vendor Generated Orders)

Module Name vrplbld.pc
Module Technology ProC
Integration Catalog ID RMS387
Runtime Parameters N/A

Design Overview

The purpose of this module is to continue the process started by the batch program
ediupack.pc of building purchase orders that reflect the vendor-generated orders as
received through the EDI 855. This module will process records from the
EDI_ORD_TEMP table and create the purchase orders on the PO tables.

prepost vrplbld post - truncates EDI._ ORD_TEMP table.

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations Run after ediupack.pc

Pre-Processing ediupack.pc

Post-Processing prepost vrplbld post

Threading Scheme Threaded by supplier
Restart/Recovery

The logical unit of work for the program is a vendor order number, department and
supplier combination. The program’s restartability is dependent on the value of the
dept_level_orders column on the PROCUREMENT_UNIT_OPTIONS. Allowing multi-
department orders (‘N’) will restart the program from the last successfully processed
vendor order number and supplier. If the system requires a department on the orders
("Y’), then the program will restart from the last successfully processed vendor order
number, department, and supplier.

Key Tables Affected
Table Select Insert Update Delete
ITEM_MASTER Yes No No No
ITEM_SUPP_COUNTRY Yes No No No
ITEM_SUPP_COUNTRY_LOC Yes No No No
SUP_IMPORT_ATTR Yes No No No
SUPS Yes No No No
EDI_ORD_TEMP Yes No No No
WH Yes No No No
ORDSKU Yes Yes Yes No
ORDHEAD Yes Yes Yes No

Purchase Order 107

genpreiss (Generate Pre-Issued Order Numbers)

Table Select Insert Update Delete
ORDLOC No Yes No No
DEAL_CALC_QUEUE Yes Yes Yes No
PERIOD Yes No No No
SYSTEM_OPTIONS Yes No No No
PROCUREMENT_UNIT_OPTIONS Yes No No No
L10N_DOC_DETAILS_GTT Yes Yes No No
MV_L10N_ENTITY Yes No No No
COUNTRY_ATTRIB Yes No No No
L10N_PKG_CONFIG Yes No No No
TSFHEAD Yes No No No
ORDHEAD_L10N_EXT No Yes No No
TSFHEAD_L10N_EXT No Yes No No
MRT_L10N_EXT No Yes No No
FM_SYSTEM_OPTIONS Yes No No No
REV_ORDERS No No No Yes
ORDLOC_REV No Yes No No
ORDSKU_REV No Yes No No
ORDHEAD_REV Yes Yes No No

Design Assumptions
N/A

genpreiss (Generate Pre-Issued Order Numbers)

Module Name genpreiss.pc

Description Generate Pre-Issued Order Numbers
Functional Area Purchase Orders

Module Type Admin

Module Technology ProC

Catalog ID RMS237

Runtime Parameters N/A

Design Overview

Based on records on the SUPP_PREISSUE table, this batch program reserves order
numbers for suppliers that do Vendor Managed Inventory (VMI) by placing these pre-
generated order numbers on the ORD_PREISSUE table.

108 Oracle Retail Merchandising Foundation Cloud Service

genpreiss (Generate Pre-Issued Order Numbers)

Scheduling Constraints

Schedule Information Description
Frequency As Needed
Scheduling Considerations This module can be run at any stage in the batch

schdule. It is independent of other programs. If a
custom program is created to download the pre-
issued numbers, it will need to be run after
genpreiss.pc

Pre-Processing N/A

Post-Processing N/A

Threading Scheme Multi-threaded by supplier
Restart/Recovery

The logical unit of work for this program is set at thesupplier level, based on a single
record from the SUPP_PREISSUE table. It uses v_restart_supplier to achieve
restart/recovery.

The changes will be posted when the commit_max_ctr value is reached and the value of

the counter is subject to change based on implementation. The commit_max_ctr field
should be set to prevent excessive rollback space usage, and to reduce the overhead of

file I/0O.
Key Tables Affected
Table Select Insert Update Delete
SUPP_PREISSUE Yes No Yes No
ORD_PREISSUE No Yes No No

Design Assumptions
N/A

Purchase Order 109

supcnstr (Scale Purchase Orders Based on Supplier Constraints)

supcnstr (Scale Purchase Orders Based on Supplier Constraints)

Module Name supcnstr.pc

Description Scale Purchase Orders Based on
Supplier Constraints

Functional Area Purchase Orders
Module Type Business Processing
Module Technology ProC

Catalog ID RMS368

Design Overview

This batch program will process all orders eligible for scaling during the nightly
replenishment run. The purpose of this program will be to select all of the orders created
by the replenishment programs which are eligible for scaling. Once selected, the
program will serve as a wrapper program and send each order number into the supplier
constraint scaling library to actually perform the scaling on the order.

The orders which will be eligible for scaling are as follows:

If due order processing was used, only orders with a written date of today, origin type =
0 (replenishment order), due order processing indicator =“Y’, due order indicator = "Y’
and a scale order to constraint indicator = 'Y’ will be processed. This encompasses all
due orders created by replenishment which have constraints associated with them.

If due order processing was not used, only orders with a written date of today, origin
type = 0 (replenishment order), ord_approve_ind = “Y’, status = “W’orksheet, due order
processing indicator = “N’, due order indicator =“Y’, and a scale order to constraint
indicator = “Y” will be processed. This encompasses all approved orders created by
replenishment which have constraints associated with them.

For Franchise POs, their associated Franchise Orders will be updated when quantities of
the franchise POs are changed due to supplier constraint.

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations Run after rplbld and before rplsplit

Pre-Processing rplbld

Post-Processing rplsplit

Threading Scheme Threaded by supplier
Restart/Recovery

The logic unit of work for this program is an order number.

110 Oracle Retail Merchandising Foundation Cloud Service

orddscnt (Apply Deal Discounts to Purchase Orders)

Key Tables Affected
Table Select Insert Update Delete
ORDHEAD Yes No Yes No
ORD_INV_MGMT Yes No Yes No
PERIOD Yes No No No
WEF_ORDER_HEAD Yes No No No
WEF_ORDER_DETAIL Yes No Yes No

orddscnt (Apply Deal Discounts to Purchase Orders)

Module Name

orddscnt.pc

Description

Apply Deal Discounts to Purchase
Orders

Functional Area

Purchase Orders

Module Type Business Processing
Module Technology ProC

Catalog ID RMS283

Runtime Parameters N/A

Design Overview

This module applies deals to a purchase order by calculating the discounts and rebates
that are applicable to a purchase order. It will fetch orders that need to be recalculated for
cost from the DEAL_CALC_QUEUE table. Using the dealordlib shared library, it will
update the unit cost and populate the ORDLOC_DISCOUNT and
ORDHEAD_DISCOUNT tables.

Scheduling Constraints

Schedule Information

Description

Frequency

Scheduling Considerations

Pre-Processing
Post-Processing

Threading Scheme

Daily

This program should run after DITINSRT. It should run
before DISCOTBAPPLY, and before DEALCLS or DEALPRG
in the deals batch schdule

Ditinsrt, sccext, reclsdly
Discotapply, dealcls
Multithreaded by supplier

Restart/Recovery

This program has inherent restart ability, since records are deleted from deal_calc_queue
as they are processed. Recommended maximum commit counter is low.

Purchase Order 111

orddscnt (Apply Deal Discounts to Purchase Orders)

Key Tables Affected

Table Select Insert Update Delete
DISC_OTB_APPLY No Yes No No
REV_ORDERS No Yes No No
ORD_LC_AMENDMENTS No Yes Yes Yes
DEAL_CALC_QUEUE Yes No No Yes
ORDHEAD Yes No No No
SUPS Yes No No No
CURRENCIES Yes No No No
ORDLOC_INVC_COST No Yes Yes Yes
ORDLOC Yes No Yes No
ORDLOC_DISCOUNT No Yes Yes Yes
ORDHEAD_DISCOUNT No Yes No Yes
ORDLOC_DISCOUNT_BUILD No Yes No Yes
ORD_LC_AMENDMENTS No Yes Yes Yes
L10N_DOC_DETAILS _GTT Yes Yes No No
MV_L10N_ENTITY Yes No No No
COUNTRY_ATTRIB Yes No No No
L10N_PKG_CONFIG Yes No No No
TSFHEAD Yes No No No
FM_SYSTEM_OPTIONS Yes No No No
WH Yes No No No
EXCHANGE_RATES Yes No No No
STATE Yes No No No
COUNTRY Yes No No No
ADDR Yes No No No
COUNTRY_TAX_JURISDICTION Yes No No No
VAT_CODES Yes No No No
ELC_COMP Yes No No No
FM_FISCAL_UTILIZATION Yes No No No
RURAL_PROD_IND Yes No No No
RETAIL_SERVICE_REPORT_URL Yes No No No
ORD_TAX_BREAKUP Yes Yes Yes No
GTAX_ITEM_ROLLUP Yes Yes Yes No

Design Assumptions

N/A

112 Oracle Retail Merchandising Foundation Cloud Service

ordupd (Update Retail Values on Open Purchase Orders)

ordupd (Update Retail Values on Open Purchase Orders)

Module Name

ordupc.pc

Description

Update Retail Values on Open Purchase
Orders

Functional Area

Purchase Orders

Module Type Business Processing
Module Technology ProC

Integration Catalog ID RMS287

Runtime Parameters N/A

Design Overview

This program will be used to automatically change all retail prices on purchase orders
when a retail price change is implemented for an item on the order with the status of
'Worksheet’,” Submit' and ‘Approve’.

Open to buy is updated to give a more accurate picture of the retail value of open orders
if the order is “Approved” and if the department calculate the OTB as retail.

Scheduling Constraints

Schedule Information

Description

Frequency

Scheduling Considerations

Pre-Processing

Post-Processing

Daily

This program should be run after RPM price change
extraction process to ensure that all price changes have
been handled by batch processing

sccext

Otbdnld, otbdlsal, otbdlord

Threading Scheme = Multithreaded on Location
Restart/Recovery
This program does not contain restart/recovery logic.
Key Tables Affected
Table Select Insert Update Delete
ORDLOC Yes No Yes No
ORDHEAD Yes No No No
PRICE_HIST Yes No No No
OTB Yes No Yes No
ITEM_MASTER Yes No No No
DEPS Yes No No No
V_PACKSKU_QTY Yes No No No

Purchase Order 113

ordautcl (Auto Close Purchase Orders)

Table Select Insert Update Delete

SYSTEM_OPTIONS Yes No No No

Design Assumptions
N/A

ordautcl (Auto Close Purchase Orders)

Module Name ordautcl.pc

Description Auto Close Purchase Orders
Functional Area Purchase Orders

Module Type Admin

Module Technology ProC

Catalog ID RMS282

Runtime Parameters N/A

Design Overview

This batch program is used to process POs that need to be deleted or closed that meet
certain conditions. The criteria are as mentioned below:

Category 1:
= The order is not in ‘C’ompleted status and was previously approved.

= The number of days between the latest ship date and the current date is greater than
the “Approved PO Close Delay’ system parameter.

* There are no open shipments for the order.
* End of week date should not be null.

Category 2:
* The order is not in ‘C’ompleted status and was previously approved.

* A specified amount of time ("Approved PO Close Delay’ system parameter) after the
not after date of the PO has passed.

= A specified amount of time (‘Partially Received PO Close Delay’ system parameter)
after the not after date has passed.

* A specified amount of time (‘Partially Received PO Close Delay” system parameter)
after the expected receipt date (or shipped date if the expected date has not been
captured) has passed.

* There are no open appointments in the system for the order.

Category 3:
= The order has a status of worksheet or submitted, and the order has never been
previously approved.

= The number of days between the current date and the order creation date is greater
than the “Worksheet PO Clean Up Delay’ system parameter.

* The order is a manual order (not created by replenishment).

114 Oracle Retail Merchandising Foundation Cloud Service

ordautcl (Auto Close Purchase Orders)

= End of week date should not be null.

Retrieved orders are subsequently processed based on their category:

1. Category 1 orders will be closed. Closing an order involves adjusting the order
quantities, shipment quantities and OTB. Any allocation associated with the order
will also be closed if it is released ‘X’ number of days before vdate. The ‘X’ number of
days is defaulted from an external system and set on the RMS codes table for

code_type ‘DEFT".

2. For Category 2 orders, orders will be closed if there are no pending receipts or if the
‘Auto Close Partially Received” system indicator is set to “Y".

3. Category 3 orders will be deleted from the system.

Scheduling Constraints

Schedule Information

Description

Frequency

Scheduling Considerations

Daily

The program should be run with the other purging
modules

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A
Restart/Recovery

Restart recovery is implicit since the program purges and cancels records in the database

one order at a time.

Key Tables Affected
Table Select Insert Update Delete
ORDHEAD Yes No Yes Yes
SHIPMENT Yes No Yes No
APPT_HEAD Yes No No No
APPT_DETAIL Yes No No No
SHIPSKU Yes No Yes No
ORDLOC No No Yes Yes
ALLOC_DETAIL No No Yes Yes
OBLIGATION_COMP No No No Yes
WO_DETAIL No No No yes
WO_HEAD No No No Yes
WO_SKU_LOC No No No Yes
WO_WIP No No No Yes
ALLOC_CHRG No No No Yes

Purchase Order 115

ordautcl (Auto Close Purchase Orders)

Table Select Insert Update Delete
ALLOC_HEADER No No No Yes
ORDLOC_DISCOUNT No No No Yes
TIMELINE No No No Yes
ORDSKU_TEMP No No No Yes
ORDLOC_TEM No No No Yes
ALLOC_CHRG_TEMP No No No Yes
ALLOC_DETAIL_TEMP No No No Yes
ALLOC_HEADER_TEMP No No No Yes
ORDLOC_EXP_TEMP No No No Yes
ORDSKU_HTS_ASSESS_TEMP No No No Yes
ORDSKU_HTS_TEMP No No No Yes
ORDLOC_DISCOUNT_TEMP No No No Yes
TIMELINE_TEMP No No No Yes
REQ_DOC_TEMP No No No Yes
WO_DETAIL_TEMP No No No Yes
WO_HEAD_TEMP No No No Yes
ORDLOC_WKSHT No No No Yes
ORDLOC_REV No No No Yes
ORDSKU_REV No No No Yes
ORDSKU No No No Yes
ORDCUST No No No Yes
ORDHEAD_REV No No No Yes
ORDLC No No No Yes
DEAL_COMP_PROM No No No Yes
DEAL_ITEMLOC No No No Yes
DEAL_THRESHOLD No No No Yes
DEAL_DETAIL No No No Yes
DEAL_QUEUE No No No Yes
DEAL_CALC_QUEUE No No No Yes
DEAL_HEAD No No No Yes
ORD_INV_MGMT No No No Yes
REPL_RESULTS No No No Yes
REV_ORDERS No No No Yes
REQ_DOC No No No Yes

116 Oracle Retail Merchandising Foundation Cloud Service

ordrev (Write Purchase Order Information to Purchase Order History Tables)

Table Select Insert Update Delete

ORD_PREISSUE No No No Yes

Design Assumptions

N/A

ordrev (Write Purchase Order Information to Purchase Order History

Tables)

Module Name ordrev.pc

Description Write Purchase Order Information to
Purchase Order History Tables

Functional Area Purchase Orders
Module Type Admin

Module Technology ProC

Catalog ID RMS286
Runtime Parameters N/A

Design Overview

Ordrev.pc will write versions of approved orders to the order revision history tables.
When orders are approved or when approved orders are modified, this program selects
order numbers from the REV_ORDERS table and writes current order information to the
order/allocation revision tables. After the new version has been written to the order
revision tables, all records will be deleted from the REV_ORDERS table for that order_no.

This program processes order changes made by the client that may need to be sent to the
vendor. The order changes should always be referred to as ‘versions’ and kept clearly
distinct from order ‘revisions’ which are vendor changes uploaded via the ediupack
program.

If an order is not in approved status at the time the batch program runs, then none of the
above processing will occur. These records will stay on the REV_ORDERS table until the
PO is approved or deleted.

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations After orddscnt.pc and before edidlord.pc
Pre-Processing orddscnt.pc

Post-Processing edidlord.pc.

Threading Scheme Multithreading based on order_no.

Purchase Order 117

ordprg (Purge Aged Purchase Orders)

Restart/Recovery

Restart ability will be implied because the records that are selected from the driving
cursor will be deleted before the commit. Restart library functions will still be included to
ensure that rollback segments are not exceeded (by committing at intervals) and to
perform basic record keeping functionality.

Key Tables Affected
Table Select Insert Update Delete
REV_ORDERS Yes No No Yes
ORDHEAD Yes No Yes No
SUPS Yes No No No
ORDHEAD_REV Yes Yes No No
ORDSKU Yes No No No
ORDLOC Yes No No No
ALLOC_HEADER Yes No No No
ALLOC_DETAIL Yes No No No
ORDSKU_REV No Yes No No
ORDLOC_REV No Yes No No
ALLOC_REV No Yes No No
FIF_ORDHEAD No Yes No No

Design Assumptions
N/A

ordprg (Purge Aged Purchase Orders)

Module Name ordprg.pc

Description Purge Aged Purchase Orders
Functional Area Purchase Orders

Module Type Admin

Module Technology ProC

Catalog ID RMS285

Runtime Parameters N/A

Design Overview
The purpose of this module is to remove old purchase orders from the system.

If importing is not enabled in the system (as defined by the import system indicator =
‘N’) and if invoice matching is not installed, then all details associated with an order are
deleted when the order has been closed for more months than specified in ‘Order History
Months” purge parameter. Orders will only be deleted if all allocations associated, if any,
have been closed.

118 Oracle Retail Merchandising Foundation Cloud Service

ordprg (Purge Aged Purchase Orders)

If invoice matching is installed, then all details associated with an order are deleted when
the order has been closed for more months than specified in the ‘Order History Months’
purge parameter. Orders are deleted only if allocations associated have been closed,
shipments from the order have been completely matched to invoices or closed, and all
those invoices have been posted.

If importing is enabled in the system (as defined by the import system indicator = “Y’)
and if invoice matching is not installed, then all details associated with the order are
deleted when the order has been closed for more months than specified in the ‘Order
History Months” purge option. This action presupposes that all ALC records associated
with an order are in ‘Processed’ status, specified in ALC_HEAD (status) and allocations
associated to the order, if any, have been closed.

If invoice matching is installed, then all details associated with an order are deleted when
the order has been closed for more months than specified in the ‘Order History Months’
purge parameter. This action presupposes that all ALC records associated with an order
are in ‘Processed’ status, specified in ALC_HEAD (status), all allocations associated to
the order, if any, have been closed, all shipments from the order have been completely
matched to invoices or closed, and all those invoices have been posted.

If the order to be purged is an import PO and it doesn’t have a letter of credit (LC) then
purge the related records related to obligations, ALC and ICB transfers.

Scheduling Constraints

Schedule Information Description
Frequency Monthly
Scheduling Considerations Run before invprg, wirtnprg
Pre-Processing N/A
Post-Processing invprg, wirtnprg
Threading Scheme N/A
Restart/Recovery

Restart ability will be implied, because the records that are selected from the driving
cursor will be deleted before the commit. Restart library functions will still be included to
ensure that rollback segments are not exceeded (by committing at intervals) and to
perform basic record keeping functionality.

Key Tables Affected
Table Select Insert Update Delete
PURGE_CONFIG_OPTIONS Yes No No No
ORDHEAD Yes No No Yes
ORDLC Yes No No No
ALLOC_HEADER Yes No No Yes
SHIPMENT Yes No No Yes
SHIPSKU Yes No Yes Yes
INVC_HEAD Yes No No Yes

Purchase Order 119

ordprg (Purge Aged Purchase Orders)

Table Select Insert Update Delete
ORDLOC_REV No No No Yes
ORDHEAD_REV No No No Yes
ALLOC_REV No No No Yes
ALC_HEAD Yes No No Yes
ALC_COMP_LOC No No No Yes
OBLIGATION_COMP_LOC No No No Yes
OBLIGATION_COMP No No No Yes
OBLIGATION No No No Yes
TRANSPORTATION Yes No No Yes
MISSING_DOC No No No Yes
TRANS_PACKING No No No Yes
TRANS_DELIVERY No No No Yes
TRANS_CLAIMS No No No Yes
TRANS_LIC_VISA No No No Yes
TRANS_SKU No No No Yes
CE_ORD_ITEM Yes No No Yes
CE_LIC_VISA No No No Yes
CE_CHARGES No No No Yes
CE_SHIPMENT No No No Yes
CE_PROTEST No No No Yes
CE_FORMS No No No Yes
CE_HEAD v No No Yes
APPT_HEAD Yes No No Yes
APPT_DETAIL Yes No No Yes
DOC_CLOSE_QUEUE No No No Yes
DAILY_PURGE No Yes No No
ORDSKU Yes No No Yes
ITEM_MASTER Yes No No No
PACKITEM Yes No No No
PACK_TMPL_HEAD Yes No No No
RTV_DETAIL No No No Yes
WO_DETAIL No No No Yes
CARTON No No No Yes
WO_HEAD Yes No No Yes
ALLOC_CHRG No No No Yes
ALLOC_DETAIL No No No Yes

120 Oracle Retail Merchandising Foundation Cloud Service

ordprg (Purge Aged Purchase Orders)

Table Select Insert Update Delete
TIMELINE No No No Yes
ORDLOC No No No Yes
ORDLOC_DISCOUNT No No No Yes
ORDLOC_EXP No No No Yes
ORDSKU_HTS_ASSESS No No No Yes
ORDSKU_HTS No No No Yes
REQ_DOC No No No Yes
ORDSKU_REV No No No Yes
ORDLOC_INVC_COST No No Yes Yes
ORDCUST No No No Yes
ORD_XDOCK_TEMP No No No Yes
INVC_XREF No No No Yes
INVC_MATCH_WKSHT No No No Yes
ORDLOC_WKSHT No No No Yes
SUP_VIOLATION No No No Yes
REV_ORDERS No No No Yes
LC_ORDAPPLY No No No Yes
ORDHEAD_DISCOUNT No No No Yes
RUA_RIB_INTERFACE No No No Yes
ORDLOC_TEMP No No No Yes
ALLOC_CHRG_TEMP No No No Yes
ALLOC_DETAIL_TEMP No No No Yes
ALLOC_HEADER_TEMP No No No Yes
ORDSKU_TEMP No No No Yes
ORDLOC_EXP_TEMP No No No Yes
ORDSKU_HTS_ASSESS_TEMP No No No Yes
ORDSKU_HTS_TEMP No No No Yes
ORDLOC_DISCOUNT_TEMP No No No Yes
TIMELINE_TEMP No No No Yes
REQ_DOC_TEMP No No No Yes
WO_DETAIL_TEMP No No No Yes
WO_HEAD_TEMP No No No Yes
REPL_RESULTS_TEMP No No No Yes
DEAL_COMP_PROM No No No Yes
DEAL_HEAD Yes No No Yes
DEAL_THRESHOLD No No No Yes

Purchase Order 121

ordprg (Purge Aged Purchase Orders)

Table Select Insert Update Delete
DEAL_DETAIL No No No Yes
DEAL_QUEUE No No No Yes
ORD_INV_MGMT No No No Yes
REPL_RESULTS No No No Yes
INVC_DETAIL No No No Yes
INVC_NON_MERCH No No No Yes
INVC_MERCH_VAT No No No Yes
INVC_DETAIL_VAT No No No Yes
INVC_DISCOUNT No No No Yes
INVC_TOLERANCE No No No Yes
INVC_MATCH_QUEUE No No No Yes
TSFHEAD No No No Yes
TSFDETAIL No No No Yes
TSFDETAIL_CHRG No No No Yes
DEAL_ITEMLOC_ITEM No No No Yes
DEAL_ITEMLOC_DCS No No No Yes
DEAL_ITEMLOC_DIV_GRP No No No Yes
DEAL_ITEMLOC_PARENT_DIFF No No No Yes
ORDHEAD_L10N_EXT No No No Yes
ORD_TAX_BREAKUP No No No Yes
ORDHEAD_CFA_EXT No No No Yes
DEALHEAD_CFA_EXT No No No Yes
TSFHEAD_CFA_EXT No No No Yes

Design Assumptions
N/A

122 Oracle Retail Merchandising Foundation Cloud Service

poindbatch.ksh (Upload Order Data)

poindbatch.ksh (Upload Order Data)

Module Name poindbatch.ksh
Description Upload Order Data
Functional Area Purchase Order Maintenance
Module Type Integration
Module Technology Ksh
Catalog ID 234
Runtime Parameters Database connection,
Input File Name,
Template Name,
Destination (Optional Input Parameter.)

Design Overview

This batch program is used to Bulk upload xml file data from template files to
S9T_FOLDER table (into content_xml column).

This batch will be responsible for validating the input parameters, below are the list of
validations.

* The Input file should exist.
* The Input file’s extension must be “.xml”.
* The template_name should be valid.

* Destination (Optional Parameter) should be STG or RMS. If destination is not passed
then default it to STG.

Once xml data is loaded into S9T_FOLDER table, the script will do post processing.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations N/A
Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A
Restart/Recovery
N/A
Key Tables Affected
Table Select Insert Update Delete
S9T_FOLDER No Yes No No

Purchase Order 123

po_indctn_purge.ksh (Purge PO Induction Staging Tables)

Table Select Insert Update Delete
SOT_TEMPLATE Yes No No No
SVC_PROCESS_TRACKER No Yes No No
RMS_ASYNC_STATUS No Yes No No
RMS_ASYNC_RETRY No Yes No No

po_indctn_purge.ksh (Purge PO Induction Staging Tables)

Module Name po_indctn_purge.ksh
Description Purge PO induction staging tables
Functional Area Purchase Orders

Module Type Admin

Module Technology Shell Script

Catalog ID RMS499

Runtime Parameters N/A

Design Overview

The purpose of this module is to remove old purchase order records from the staging
tables. Records that are candidates for deletion are:

* Processes that have successfully been processed or processed with warnings that
have been uploaded to RMS or downloaded to S9T

= Processes that have status = ‘PE’ processed with errors and have no liked data

= Processes in error status where all other related records containing the process ID
have been processed successfully

* Processes that are passed the data retention days
(system_options.proc_data_retention_days)

= All order records within a process where all related records for the order in the other
staging tables are successfully uploaded to RMS. The process tracker record should
not be deleted if there are other orders that are not uploaded to RMS.

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations N/A

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A
Restart/Recovery

Restart ability will be implied, because the records that are selected from the cursor will
be deleted before the commit.

124 Oracle Retail Merchandising Foundation Cloud Service

po_indctn_purge.ksh (Purge PO Induction Staging Tables)

Key Tables Affected
Table Select Insert Update Delete
PROC_DATA_RETENTION_DAYS Yes No No No
SVC_PROCESS_TRACKER Yes No No Yes
SVC_ORDHEAD Yes No No Yes
SVC_ORDDETAIL Yes No No Yes
SVC_ORDLOC_EXP Yes No No Yes
SVC_ORDLC Yes No No Yes
SVC_ORDSKU_HTS Yes No No Yes
SVC_ORDSKU_HTS_ASSESS Yes No No Yes
SVC_CFA_EXT Yes No No Yes
CORESVC_PO_ERR No No No Yes
S9T_ERRORS Yes No No Yes
CORESVC_PO_CHUNKS Yes No No Yes
S9T_FOLDER Yes No No Yes

IDesign Assumptions
N/A

Purchase Order 125

7

Overview

Deals

Deals are complex business processes that can either affect the cost a retailer pays for
goods purchased from a supplier (off invoice deals) or generate income from

suppliers/ partners (billback/rebate deals). These basic types of deals require different
processing. This chapter contains information about the batch processes that support all

types of Deals.

For additional information about Deals, including detailed flow diagrams, see the
Merchandising Functional Library (Doc ID: 1585843.1).

Note: The White Papers in this library are intended only for reference
and educational purposes and may not reflect the latest version of Oracle

Retail software.

Program Summary

Program

Description

dealupld.pc

Upload of Deals from 3rd Party Systems

batch_ditinsrt.ksh

Deal Calculation Queue Insert Multithreading

ditinsrt.pc Insert into Deal Calculation Queue

discotbapply.pc Update OTB After Deal Discounts

dealact.pc Calculate Actual Impact of Billback Deals

dealinc.pc Calculate Weekly /Monthly Income Based on
Turnover

dealday.pc Daily Posting of Deal Income to Stock &
General Ledgers

dealfct.pc Calculates/Update Forecasted Values for Deals

vendinve.pc

Stage Complex Deal Invoice Information

vendinvf.pc

Stage Fixed Deal Invoice Information

dealcls.pc

Close Expired Deals

dealprg.pc

Purge Closed Deals

dealupld (Upload of Deals from 3rd Party Systems)

dealupld (Upload of Deals from 3rd Party Systems)

Module Name dealupld.pc

Description Upload of Deals from 3™ Party Systems
Functional Area Deals

Module Type Integration

Module Technology ProC

Catalog ID RMS42

Runtime Parameters N/A

Design Overview

Dealupld.pc uploads deals from external systems into RMS. Generally, deals are
uploaded from merchandise suppliers and other trading partners. Dealupld uses a
proprietary file format (not any EDI standard).

Both deals uploaded via dealupld.pc and deals created via the user interface are written
to a series of deals tables for deals processing.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Diagram This program should run as the first batch in the Deals
batch schdule

Pre-processing N/A
Post-Processing N/A

Restart/Recovery

The program uses File based restart recovery process.

Key Tables Affected
Table Select Insert Update Delete
ORDHEAD Yes No No No
SUPS Yes No No No
UOM_CLASS Yes No No No
DEAL_COMP_TYPE Yes No No No
DEPS Yes No No No
GROUPS Yes No No No
ITEM_MASTER Yes No No No
ITEM_SUPPLIER Yes No No No
STORE Yes No No No

128 Oracle Retail Merchandising Foundation Cloud Service

dealupld (Upload of Deals from 3rd Party Systems)

Table Select Insert Update Delete
DISTRICT Yes No No No
REGION Yes No No No
AREA Yes No No No
CHAIN Yes No No No
WH Yes No No No
LOC_LIST_HEAD Yes No No No
LOC_LIST_DETAIL Yes No No No
COUNTRY Yes No No No
PACKITEM_BREAKOUT Yes No No No
PACKITEM Yes No No No
CODE_DETAIL Yes No No No
DEAL_HEAD No Yes No No
DEAL_DETAIL No Yes No No
DEAL_ITEM_LOC No Yes No No
POP_TERMS_DEF No Yes No No
DEAL_THRESHOLD No Yes No No
PARTNER_ORG_UNIT Yes No No No
Integration Contract
Integration Type Upload to RMS
File Name Determined by runtime parameter
Integration Contract IntCon000008

The input file structure should be as below:

deal head record

1 deal head record

FHEAD
{
THEAD of DHDTL REQUIRED for
TDETL REQUIRED
TTAIL REQUIRED end
THEAD of DCDTL REQUIRED
[
TDETL OPTIONAL for
]
TTAIL REQUIRED end
THEAD of DIDTL REQUIRED
[
TDETL OPTIONAL for
]
TTAIL REQUIRED end
THEAD of PPDTL REQUIRED for

[

TDETL OPTIONAL for
]
TTAIL REQUIRED end
THEAD of DTDTL REQUIRED

[

of deal head record
for deal component records

deal component records

of deal component records
for item-loc records

item-loc records

of item-loc records
proof of performance records

proof of performance records

of proof of performance records
for threshold records

Deals 129

dealupld (Upload of Deals from 3rd Party Systems)

OPTIONAL for threshold records
]
TTAIL REQUIRED end of threshold records
}
FTAIL
Record Field Name Field Default Value Description/Constraints
Name Type
FHEAD File Type Char(5) FHEAD Identifies file record type (the
Record beginning of the input file)
Descriptor
File Line Numeric Sequential ID of current line being read from input
Identifier ID(10) number file
Created by
program.
File Type Char(5) EDIDU Identifies file as “EDI Deals Upload’
Definition
File Create = Char(14) Create date Current date, formatted to
Date “YYYYMMDDHH24MISS
THEAD File Type Char(5) THEAD Identifies file record type to upload a
Record new deal header
Descriptor
File Line Numeric Sequential ID of current line being read from input
Identifier ID(10) number file
Created by
program.
Transaction Char(5) DHDTL Identifies file record type Deal Header.
Detail This record MUST BE FOLLOWED BY
Record Type ONE AND ONLY ONE REQUIRED
TDETL RECORD that holds the deal
head information
TDETL File Type Char(5) TDETL Identifies file record type to upload a
Record new deal
Descriptor
File Line Numeric Sequential ID of current line being read from input
Identifier ID(10) number file
Created by
program.

130 Oracle Retail Merchandising Foundation Cloud Service

dealupld (Upload of Deals from 3rd Party Systems)

Record Field Name

Name

Field
Type

Default Value

Description/Constraints

Partner Type Char(6)

Partner Id

Supplier

Type

Currency
Code

Char(10)

Number

(10)

Char(6)

Char(3)

REQUIRED

Blank (space
character
string)

Blank (space
character
string)

REQUIRED

Blank (space
character
string)

Type of the partner the deal applies to.
Valid values are ‘S’ for a supplier, 'S1'
for supplier hierarchy level 1 (for
example, the manufacturer), 'S2' for
supplier hierarchy level 2 (for example,
the distributor) and 'S3' for supplier
hierarchy level 3 (that is, the
wholesaler). Descriptions of these
codes will be held on the codes table
under a code_type of 'SUHL'

Information pertaining to a single deal
has to belong to the same supplier,
since a deal may have only one
supplier hierarchy associated with it.
Only items with the same supplier
hierarchy can be on the same deal.
Supplier hierarchy is stored at an item
/ supplier / country / location level

Level of supplier hierarchy (for
example, manufacturer, distributor or
wholesaler), set up as a partner in the
PARTNER table, used for assigning
rebates by a level other than supplier.
Rebates at this level will include all
eligible supplier/item/country records
assigned to this supplier hierarchy level

This field is required if the Partner
Type field was set to ‘S1’, ‘S2’ or ‘S3’.
This field must be blank if the Partner
Type field was set to ‘S’

Deal supplier's number. This supplier
can be at any level of supplier
hierarchy

This field is required if the Partner
Type field was set to ‘S’. This field must
be blank if the Partner Type field was
set to ‘S1’, ‘52" or “S3’

Type of the deal. Valid values are A for
annual deal, P for promotional deal, O
for PO-specific deal or M for vendor-
funded markdown. Deal types will be
held on the codes table under a code
type of 'DLHT'

Currency code of the deal's currency.
All costs on the deal will be held in this
currency

If Type is 'O, 'P' or 'A', then Currency
Code may not be blank. Currency Code
has to be blank if Type is 'M'

Deals 131

dealupld (Upload of Deals from 3rd Party Systems)

Field Name Field Default Value Description/Constraints
Type

Active Date Char(14) REQUIRED Date the deal will become active. This
date will determine when deal
components begin to be factored into
item costs. For a PO-specific deal, the
active_date will be the order's written
date

Close Date Char(14) Blank (space Date the deal will/did end. This date

character determines when deal components are

string) no longer factored into item costs. Itis
optional for annual deals, required for
promotional deals. It will be left NULL
for PO-specific deals
Close Date must not be blank if Type is
'P' or ‘M. Close Date has to be blank if
Typeis 'O’

External Char(30) Blank (space Any given external reference number

Reference character that is associated with the deal

Number string)

Order Number Blank (space Order the deal applies to, if the deal is

Number (12) character PO-specific

string)

Recalculate ~ Char(1) REQUIRED Indicates if approved orders should be

Approved recalculated based on this deal once the

Orders deal is approved. Valid values are Y
for yes or N for no
Valid values are “Y” and ‘N’

Comments Char Blank (space Free-form comments entered with the

(2000) character deal
string)

Billing Type Char(6) REQUIRED Billing type of the deal component.
Valid values are 'OI' for off-invoice, 'BB'
for bill-back, “VFP’ for vendor funded
promotion and “VFM’ for vendor
funded markdown. Billing types will
be held on the codes table under a code
type of 'DLBT'

Bill Back Char(6) Blank (space Code that identifies the bill-back period

Period character for the deal component. This field will

string) only be populated for billing types of

'BB' or 'VFP' or “VEM'. Valid bill back
period codes are ‘W', ‘M, ‘Q’, 'H’, "A’.
If Billing Type is 'BB' then Bill Back
Period must not be blank; if Billing
Type is ‘Ol’ (off invoice), then Bill back
Period has to be blank

132 Oracle Retail Merchandising Foundation Cloud Service

dealupld (Upload of Deals from 3rd Party Systems)

Record Field Name Field Default Value Description/Constraints

Name Type
Deal Char(6) Blank (space Indicates when the deal component
Application character should be applied - at PO approval or
Timing string) time of receiving. Valid values are 'O'

Threshold Char(6)
Limit Type

Threshold Char(4)
Limit Unit of
Measure

Rebate Char(1)
Indicator

Rebate Char(6)
Calculation

Type

Blank (space
character
string)

Blank (space
character
string)

REQUIRED

Blank (space
character
string)

for PO approval, 'R’ for receiving.
These values will be held on the codes
tables under a code type of 'AALC'. It
must be NULL for an M-type deal
(vendor funded markdown)

Identifies whether thresholds will be
set up as qty values, currency amount
values or percentages (growth rebates
only). Valid values are 'Q' for qty, 'A'
for currency amount. Threshold limit
types will be held on the codes table
under a code type of 'DLLT". It must be
NULL for an M-type deal (vendor
funded markdown) or if the threshold
value type is ‘Q’ (buy/ get deals).

If Growth Rebate Indicator is 'Y', then
the Threshold Limit Type has to be 'Q',
'A' or NULL

Unit of measure of the threshold limits,
if the limit type is quantity. Only Unit
of Measures with a UOM class of 'VOL!
(volume), ' MASS' or 'QTY' (quantity)
can be used in this field. Valid Unit of
Measures can be found on the
UOM_CLASS table

If the Threshold Limit Type is 'A', then
Threshold Limit Unit of Measure has to
be blank. If the Threshold Limit Type is
'Q', Threshold Limit Unit of Measure
must not be blank. If Threshold Limit
Type is blank, Threshold Limit Unit of
Measure must be blank

Indicates if the deal component is a
rebate. Deal components can only be
rebates for bill-back billing types.

Valid values are 'Y' for yes or 'N' for no.

If Billing Type is 'OI', then Rebate
Indicator must be 'N'

Indicates if the rebate should be
calculated using linear or scalar
calculation methods. Valid values are
'L' for linear or 'S' for scalar. This field
will be required if the rebate indicator
is 'Y'. Rebate calculation types will be
held on the codes table under a code
type of 'DLCT'

If Rebate Indicator is 'Y', then Rebate
Calculation Type must not be blank.
Otherwise it has to be blank

Deals 133

dealupld (Upload of Deals from 3rd Party Systems)

Record Field Name Field Default Value Description/Constraints
Name Type
Growth Char(1) REQUIRED Indicates if the rebate is a growth
Rebate rebate, meaning it is calculated and
Indicator applied based on an increase in
purchases or sales over a specified
period of time. Valid values are 'Y' for
yes or 'N' for no
If Rebate Indicator is 'N', then Growth
Rebate Indicator must be ‘N’
Historical Char(14) Blank (space The first date of the historical period
Comparison character against which growth will be measured
Start Date string) in this growth rebate. Note
performance and the rebate amount are
not calculated - this field is for
informational/ reporting purposes only
If Growth Rebate Indicator is 'Y', then
Historical Comparison Start Date must
not be blank. Otherwise it must be
blank
Historical Char(14) Blank (space The last date of the historical period
Comparison character against which growth will be measured
End Date string) in this growth rebate. Note
performance and the rebate amount are
not calculated - this field is for
informational/reporting purposes only
If Growth Rebate Indicator is 'Y', then
Historical Comparison End Date must
not be blank. Otherwise it must be
blank
Rebate Char(6) Blank (space Indicates if the rebate should be
Purchases or character applied to purchases or sales. Valid
Sales string) values are 'P' for purchases or 'S' for
Application sales. It will be required if the rebate
Indicator indicator is 'Y'. Rebate purchase/sales
indicators will be held on the codes
table under a code type of 'DLRP'
If the Rebate Indicator is 'Y', then the
Rebate Purchases or Sales Application
Indicator must not be blank. Otherwise
it has to be blank
Security Char Y Security Indicator
Indicator
TTAIL File Line Char(5) TTAIL Identifies file record type (the end of
Identifier the transaction detail)
File Line Numeric Sequential ID of current line being read from input
Identifier ID(10) number file
Created by
program.

134 Oracle Retail Merchandising Foundation Cloud Service

dealupld (Upload of Deals from 3rd Party Systems)

Record Field Name Field Default Value Description/Constraints
Name Type
Transaction Numeric Sequential Number of records/transactions in
Record ID(6) number current transaction set (only records
Counter Created by between thead and ttail). For DHDTL
program. TDETL records this will always be 1
THEAD File Type Char(5) THEAD Identifies file record type to upload a
Record new deal sub loop
Descriptor
File Line Numeric Sequential ID of current line being read from input
Identifier ID(10) number file
Created by
program.
Transaction Char(5) DCDTL Identifies file record type of sub loop as
Detail Deal Component Detail
Record Type
TDETL File Type Char(5) TDETL Identifies file record type to upload
Record deal components
Descriptor
File Line Numeric Sequential ID of current line being read from input
Identifier ID(10) number file
Created by
program.
Deal Char(6) REQUIRED Type of the deal component, user-
Component defined and stored on the
Type DEAL_COMP_TYPE table
Application Number Blank (space Number indicating the order in which
Order (10) character the deal component should be applied
string) with respect to any other deal
components applicable to the item
within the deal. This number will be
unique across all deal components
within the deal. It must be NULL for
an M-type deal (vendor funded
markdown)
Collect Start Char(14) Blank (space Date that collection of the bill-back
Date character should begin
string) If Billing Type is 'BB' then Collect Start
Date must not be blank, otherwise it
has to be blank
Collect End Char(14) Blank (space Date that collection of the bill-back
Date character should end
string) If Billing Type is 'BB' then Collect End

Date must not be blank, otherwise it
has to be blank

Deals 135

dealupld (Upload of Deals from 3rd Party Systems)

Record
Name

Field Name

Field
Type

Default Value

Description/Constraints

Cost
Application
Level
Indicator

Pricing Cost
Indicator

Deal Class

Threshold
Value Type

Buy Item

Char(6)

Char(1)

Char(6)

Char(6)

Char(25)

Blank (space
character
string)

REQUIRED

Blank (space
character
string)

Blank (space
character
string)

Blank (space
character
string)

Indicates what cost bucket the deal
component should affect. Valid values
are 'N' for net cost, 'NN' for net cost
and 'DNN' for dead net cost. These
values will be held on the codes tables
under a code type of 'DLCA'. It must
be NULL for an M-type deal (vendor
funded markdown)

Identifies deal components that should
be included when calculating a pricing
cost

Valid values are “Y’es and ‘N’o

Identifies the calculation class of the
deal component. Valid values are 'CU'
for cumulative (discounts are added
together and taken off as one lump
sum), 'CS' for cascade (discounts are
taken one at a time with subsequent
discounts taken off the result of the
previous discount) and 'EX' for
exclusive (overrides all other
discounts). 'EX' type deal components
are only valid for promotional deals.
Deal classes will be held on the codes
table under a code type of 'DLCL'. It
must be NULL for an M-type deal
(vendor funded markdown)

Identifies whether the discount values
associated with the thresholds will be
set up as qty values, currency amount
values, percentages or fixed amounts.
Valid values are 'Q' for qty, 'A' for
currency amount, 'P' for percentage or
'F' for fixed amount. Qty threshold
value (buy/ get) deals are only allowed
on off-invoice discounts. Deal
threshold value types will be held on
the codes table under a code type of
'DLL2'. It must be NULL for an M-type
deal (vendor funded markdown).

If Billing Type is 'BB/, then the
Threshold Value Type must be’A” or ‘P’

Identifies the item that must be
purchased for a quantity threshold-
type discount. This value is required
for quantity threshold value type
discounts. Otherwise it has to be blank

136 Oracle Retail Merchandising Foundation Cloud Service

dealupld (Upload of Deals from 3rd Party Systems)

Record
Name

Field Name Field Default Value

Description/Constraints

Type
Get Type Char(6) Blank (space
character
string)
Get Value Number(2 All Os.
0,4)
Buy Item Number(1 All Os.

Quantity 2,4)

Recursive Char(1) REQUIRED
Indicator

Buy Item Number(1 All Os.
Order Target 2,4)

Quantity

Average Buy Number(1l AllOs.
Item Order 24)

Target

Quantity Per

Location

Identifies the type of the 'get' discount
for a quantity threshold-type (buy/ get)
discount. Valid values include 'X'
(free), 'P' (percent), 'A' (amount) and 'F'
(fixed amount). They are held on the
codes table under a code type of
'DQGT". This value is required for
quantity threshold value deals.
Otherwise it has to be blank

Identifies the value of the 'get' discount
for a quantity threshold-type (buy/ get)
discount that is not a 'free goods' deal.
The Get Type above identifies the type
of this value. This value is required for
quantity threshold value type deals
that are not a Get Type of free.
Otherwise it has to be 0

If Get Type is ‘P’, “A’” or ‘F/, then Get
Value must not be blank. If the Get
Type is ‘X’ or blank, then Get Value has
to be blank

Identifies the quantity of the threshold
'buy' item that must be ordered to
qualify for the 'free' item. This value is
required for quantity threshold value
type discounts. Otherwise it has to be 0

For 'buy/ get free' discounts, indicates if
the quantity threshold discount is only
for the first 'buy amt.' purchased (such
as,. for the first 10 purchased, get 1
free), or if a free item will be given for
every multiple of the 'buy amt'
purchased on the order (such as,. for
each 10 purchased, get 1 free). Valid
values are 'Y' for yes or 'N' for no

If the Get Type is blank, then Recursive
Indicator has to be ‘N’

Indicates the targeted purchase level
for all locations on a purchase order.
This is the target level that will be used
for future calculation of net cost. This
value is required for quantity threshold
value type deals. Otherwise it has to be
0

Indicates the average targeted purchase
level per location on the deal. This
value will be used in future cost
calculations. This value is required for
quantity threshold value type deals.
Otherwise it has to be 0

Deals 137

dealupld (Upload of Deals from 3rd Party Systems)

Record Field Name Field
Name Type

Default Value

Description/Constraints

Get Item Char(25)

Get Quantity Number(1
2,4)

Free Item Number(2
Unit Cost 0,4)

Transaction Char(1)
Level

Discount

Indicator

Comments Char(2000
)

TTAIL File Line Char(5)
Identifier

Blank (space
character
string)

All Os.

All Os.

REQUIRED

Blank (space
character
string)

TTAIL

Identifies the 'get' item for a quantity
threshold-type (buy/get) discount.
This value is required for quantity
threshold value deals. Otherwise it has
to be blank

If Get Type is ‘P, “A’, ‘F" or X/, then
Get Item must not be blank. If the Get
Type is blank, then Get Item has to be
blank

Identifies the quantity of the identified
'get' item that will be given at the
specified 'get' discount if the 'buy amt'
of the buy item is purchased. This
value is required for quantity threshold
value type discounts. Otherwise it has
tobe 0

If Get Type is ‘P, “A’, ‘F" or X/, then
Get Quantity must not be 0. If the Get
Type is blank, then Get Quantity has to
be 0

For 'buy/ get free' discounts, identifies
the unit cost of the threshold 'free' item
that will be used in calculating the
prorated qty. discount. It will default
to the item/supplier cost, but can be
modified based on the agreement with
the supplier. It must be greater than
zero as this is the cost that would
normally be charged for the goods if no
deal applied

If Get Type is ‘P, “A’, ’F" or blank, then
Free Item Unit Cost must be 0. If the
Get Type is X/, then Free Item Unit
Cost must not be 0

Indicates if the discount is a
transaction-level discount (such as,.
10% across an entire PO)

Valid Values are 'Y' or 'N'. If set to “Y’,
Deal Class has to be ‘CU” and Billing
Type has to be ‘OI’. No DIDTL or
PPDTL records may be present for a
Transaction Level Discount DCDTL
record

Free-form comments entered with the
deal component

Identifies file record type (the end of
the transaction detail)

138 Oracle Retail Merchandising Foundation Cloud Service

dealupld (Upload of Deals from 3rd Party Systems)

Record Field Name Field Default Value Description/Constraints
Name Type
File Line Numeric Sequential ID of current line being read from input
Identifier ID(10) number file
Created by
program.
Transaction Numeric Sequential Number of records/transactions in
Record ID(6) number current transaction set (only records
Counter Created by between thead and ttail)
program.
THEAD File Type Char(5) THEAD Identifies file record type to upload a
Record new deal sub loop
Descriptor
File Line Numeric Sequential ID of current line being read from input
Identifier ID(10) number file
Created by
program.
Transaction Char(5) DIDTL Identifies file record type of sub loop as
Detail Deal Component Item-location Detail
Record Type
TDETL File Type Char(5) TDETL Identifies file record type to upload
Record deal item-location details
Descriptor
File Line Numeric Sequential ID of current line being read from input
Identifier ID(10) number file
Created by
program.
Merchandise Char(6) REQUIRED Indicates what level of the merchandise
Level hierarchy the record is at. Valid values
include '1' for company-wide (all
items), '2' for division, '3' for group, '4'
for dept, '5' for class, '6' for subclass, '7'
for line, '8' for line/ differentiator 1, '9'
for line/ differentiator 2’ '10' for
line/ differentiator 3, ‘11" for
line/ differentiator 4 and 12’ for .
These level types will be held on the
codes table under a code type of 'DIML'
Company Char(1) REQUIRED Indicates if the deal component is

Indicator

applied company-wide (that is,
whether all items in the system will be
included in the discount or rebate).
Valid values are 'Y' for yes and 'N' for
no

Deals 139

dealupld (Upload of Deals from 3rd Party Systems)

Record Field Name Field Default Value Description/Constraints
Name Type
Division Number Blank (space ID of the division included in or
@) character excluded from the deal component.
string). Valid values are on the DIVISION table
If Group is not blank, then Division
must not be blank. If Merchandise
Level is 2, then Division must not be
blank and Group, Department, Class
and Subclass must be blank
Group Number Blank (space ID of the group included in or excluded
4) character from the deal component. Valid values
string). are on the GROUPS table
If Department is not blank, then Group
must not be blank. If Merchandise
Level is 3, then Group must not be
blank and Department, Class and
Subclass must be blank
Department Number Blank (space ID of the department included in or
@) character excluded from the deal component.
string). Valid values are on the DEPS table
If Class is not blank, then Department
must not be blank. If Merchandise
Level is 4, then Department must not
be blank and Class and Subclass must
be blank
Class Number Blank (space ID of the class included in or excluded
4) character from the deal component. Valid values
string). are on the CLASS table
If Subclass is not blank, then Class
must not be blank. If Merchandise
Level is 5, then Class must not be blank
and Subclass must be blank
Subclass Number Blank (space ID of the subclass included in or
4) character excluded from the deal component.
string). Valid values are on the SUBCLASS
table
If Merchandise Level is 6 or more than
6, then Subclass must not be blank
Item Parent Char(25) Blank (space Alphanumeric value that uniquely
character identifies the item/group at the level
string) above the item. This value must exist

as an item in another row on the
ITEM_MASTER table

If Merchandise Level is 7, then Item
Parent or Item Grandparent must not
be blank (at least one of them has to be
given)

140 Oracle Retail Merchandising Foundation Cloud Service

dealupld (Upload of Deals from 3rd Party Systems)

Field Name Field Default Value Description/Constraints
Type
Item Char(25) Blank (space Alphanumeric value that uniquely
Grandparent character identifies the item/group two levels
string) above the item. This value must exist
as both an item and an item parent in
another row on the ITEM_MASTER
table
If Merchandise Level is 7, then Item
Parent or Item Grandparent must not
be blank (at least one of them has to be
given)
Differentiato Char(10) Blank (space Diff_group or diff_id that differentiates
rl character the current item from its item_parent
string) If Item Grandparent, Item Parent and
Differentiator 2 are blank, then
Differentiator 1 must be blank. If
Merchandise Level is 8, then
Differentiator 1 must not be blank
Differentiato Char(10) Blank (space Diff_group or diff_id that differentiates
r2 character the current item from its item_parent
string) If Item Grandparent, Item Parent and
Differentiator 1 are blank, then
Differentiator 2 must be blank. If
Merchandise Level is 9, then
Differentiator 2 must not be blank
Differentiato Char(10) Blank (space Diff_group or diff_id that differentiates
r3 character the current item from its item_parent
string) If Item Grandparent, Item Parent and
Differentiator 1 and 2 are blank, then
Differentiator 3 must be blank. If
Merchandise Level is 10, then
Differentiator 3 must not be blank
Differentiato Char(10) Blank (space Diff_group or diff_id that differentiates
r4 character the current item from its item_parent
string) If Item Grandparent, Item Parent and
Differentiator 1, 2 and 3 are blank, then
Differentiator 4 must be blank. If
Merchandise Level is 10, then
Differentiator 4 must not be blank
Organizatio ~ Char(6) Blank (space Indicates what level of the
nal Level character organizational hierarchy the record is
string) at. Valid values include '1' for chain, '2'

for area, '3' for region, '4' for district
and '5' for location. These level types
will be held on the codes table under a
code type of 'DIOL'

If company indicator is N, this must not
be blank. If location type is warehouse
or location list, this must be 5

Deals 141

dealupld (Upload of Deals from 3rd Party Systems)

Record Field Name Field Default Value Description/Constraints
Name Type
Chain Number Blank (space ID of the chain included in or excluded
(10) character from the deal component. Valid values
string). are on the CHAIN table
If org. level is 1, this field must not be
blank
Area Number Blank (space ID of the area included in or excluded
(10) character from the deal component. Valid values
string). are on the AREA table
If org. level is 2, this field and chain
must not be blank
Region Number Blank (space ID of the region included in or
(10) character excluded from the deal component.
string). Valid values are on the REGION table
If org. level is 3, this field, area, and
chain must not be blank
District Number Blank (space ID of the district included in or
(10) character excluded from the deal component.
string). Valid values are on the DISTRICT table
If org. level is 4, then this field, region,
area, and chain must not be blank
Location Number Blank (space ID of the location included in or
(10) character excluded from the deal component.
string). Valid values are on the STORE, WH, or
LOC_LIST_HEAD table
If org. level is 5, this field must not be
blank. Chain, area, region, and district
should be blank if the loc_type is L or
W. If the loc_type is S, then they all
must not be blank
If Location Type is not blank, then
Location must not be blank. Otherwise
it has to be blank
Origin Char(3) Blank (space Origin country of the item that the deal
Country character component should apply to
Identifier string)
Location Char(1) Blank (space Type of the location referenced in the
Type character location field. Valid values are 'S' and
string) 'W'. Location types will be held on the
codes table under the code type 'LOC3'
If location is blank then this field has to
be blank also
Item Char(25) Blank (space Unique alphanumeric value that

character
string)

identifies the item

If Merchandise Level is 10, then Item
must not be blank

142 Oracle Retail Merchandising Foundation Cloud Service

dealupld (Upload of Deals from 3rd Party Systems)

Record Field Name Field Default Value Description/Constraints
Name Type
Exclusion Char(1) REQUIRED Indicates if the deal component
Indicator item/location line is included in the
deal component or excluded from it.
Valid values are 'Y' for yes or 'N' for no
Reference Number REQUIRED This value determines which line in the
Line (10) input file this item-loc record belongs
to
TTAIL File Line Char(5) TTAIL Identifies file record type (the end of
Identifier the transaction detail)
File Line Numeric Sequential ID of current line being read from input
Identifier ID(10) number file
Created by
program.
Transaction Numeric Sequential Number of records/transactions in
Record ID(6) number current transaction set (only records
Counter Created by between thead and ttail)
program.
THEAD File Type Char(5) THEAD Identifies file record type to upload a
Record new deal sub loop
Descriptor
File Line Numeric Sequential ID of current line being read from input
Identifier ID(10) number file
Created by
program.
Transaction Char(5) PPDTL Identifies file record type of sub loop as
Detail Proof of Performance Detail
Record Type
TDETL File Type Char(5) TDETL Identifies file record type to upload
Record deal proof of performance details
Descriptor
File Line Numeric Sequential ID of current line being read from input
Identifier ID(10) number file
Created by
program.
Deal Sub Char(25) Specific transaction level (or below)
Item item that’s proof of performance is
being measured. This can be populated
when the deal itself is on a case UPC
but the proof of performance is on an
individual selling unit
Proof of Char(6) REQUIRED Code that identifies the proof of
Performance performance type (that is, the term is
Type that the item must be displayed on an

end cap for 28 days - the pop_type is
code 'ECD' for end cap display). Valid
values for this field are stored in the
code_type = 'PPT'. This field is
required by the database

Deals 143

dealupld (Upload of Deals from 3rd Party Systems)

Record Field Name Field Default Value Description/Constraints
Name Type
Proof of Number All Os. Value that describes the term of the
Performance (20,4) proof of performance type (that is, the
Value term is that the item must be displayed
on an end cap for 28 days - the
pop_value is 28). This field is required
by the database if the record has a
pop_value_type
If Proof of Performance Value is not
blank, then Proof of Performance Value
Type must not be blank. If Proof of
Performance Value is blank, then Proof
of Performance Value Type must be
blank
Proof of Char(6) Blank (space Value that describes the type of the
Performance character pop_value (that is, the term is that the
Value Type string) item must be displayed on an end cap
for 28 days - the pop_value_type is the
code 'DAYS' for days). Valid values for
this field are stored in the code_type =
'PPVT'. This field is required by the
database if the record has a pop_value
If Proof of Performance Value is not
blank, then Proof of Performance Value
Type must not be blank. If Proof of
Performance Value is blank, then Proof
of Performance Value Type must be
blank
Vendor Char(14) Blank (space This column holds the date that the
Recommend character vendor recommends that the POP
ed Start Date string) begin
Vendor Char(14) Blank (space This column holds the date that the
Recommend character vendor recommends that the POP end
ed End Date string)
Planned Char(14) Blank (space This column holds the date that the
Start Date character merchandiser/category manager plans
string) to begin the POP
Planned End Char(14) Blank (space This column holds the date that the
Date character merchandiser/category manager plans
string) to end the POP
Comment Char(255) Blank (space Free-form comments
character
string)
Reference Number REQUIRED This value determines which line in the
Line (10) input file this Proof of Performance
record belongs to
TTAIL File Line Char(5) TTAIL Identifies file record type (the end of
Identifier the transaction detail)

144 Oracle Retail Merchandising Foundation Cloud Service

dealupld (Upload of Deals from 3rd Party Systems)

Record Field Name Field Default Value Description/Constraints
Name Type
File Line Numeric Sequential ID of current line being read from input
Identifier ID(10) number file
Created by
program.
Transaction Numeric Sequential Number of records/transactions in
Record ID(6) number current transaction set (only records
Counter Created by between thead and ttail)
program.
THEAD File Type Char(5) THEAD Identifies file record type to upload a
Record new deal sub loop
Descriptor
File Line Numeric Sequential ID of current line being read from input
Identifier ID(10) number file
Created by
program.
Transaction Char(5) DTDTL Identifies file record type of sub loop as
Detail Deal Component Threshold Detail
Record Type
TDETL File Type Char(5) TDETL Identifies file record type to upload
Record deal threshold details
Descriptor
File Line Numeric Sequential ID of current line being read from input
Identifier ID(10) number file
Created by
program.
Lower Limit Number REQUIRED Lower limit of the deal component.
(20,4) This is the minimum value that must be
met in order to get the specified
discount. This value will be either a
currency amount or quantity value,
depending on the value in the
deal_detail.threshold_limit_type field
of this deal component (Threshold
Value Type field of the DCDTL record
that this DTDTL record belongs to as
specified in the reference line field)
Upper Limit Number = REQUIRED Upper limit of the deal component.

(20,4)

This is the maximum value for which
the specified discount will apply. This
value will be either a currency amount
or quantity value, depending on the
value in the
deal_detail.threshold_limit_type field
of this deal component (Threshold
Value Type field of the DCDTL record
that this DTDTL record belongs to as
specified in the reference line field)

Deals 145

batch_ditinsrt.ksh (Deal Calculation Queue Insert Multithreading)

Record Field Name Field Default Value Description/Constraints
Name Type
Value Number REQUIRED Value of the discount that will be given
(20,4) for meeting the specified thresholds for
this deal component. This value will be
either a currency amount or quantity
value, depending on the value in the
deal_detail.threshold_value_type field
of this deal component (Threshold
Value Type field of the DCDTL record
that this DTDTL record belongs to as
specified in the reference line field)
Target Level Char(1) REQUIRED Indicates if a threshold level is the
Indicator targeted purchase or sales level for a
deal component. This indicator will be
used for cost calculations. Valid values
are 'Y' for yes and 'N' for no
Reference Number REQUIRED This value determines which line in the
Line (10) input file this Threshold record belongs
to
TTAIL File Line Char(5) TTAIL Identifies file record type (the end of
Identifier the transaction detail)
File Line Numeric Sequential ID of current line being read from input
Identifier ID(10) number file
Created by
program.
Transaction Numeric Sequential Number of records/transactions in
Record ID(6) number current transaction set (only records
Counter Created by between thead and ttail)
program.
FTAIL File Line Char(5) FTAIL Identifies file record type (the end of
Identifier the input file)
File Line Numeric Sequential ID of current line being read from input
Identifier ID(10) number file
Created by
program.
File Record Numeric Sequential Number of records/transactions in
Counter ID(10) number current file (only records between head
Created by and tail)
program.

batch_ditinsrt.ksh (Deal Calculation Queue Insert Multithreading)

Module Name batch_ditinsrt.ksh

Description Deal Calculation Queue Insert
Multithreading

Functional Area Deals

146 Oracle Retail Merchandising Foundation Cloud Service

ditinsrt (Insert into Deal Calculation Queue)

Module Name batch_ditinsrt.ksh
Module Type Business Processing
Module Technology Ksh

Catalog ID RMS187

Runtime Parameters N/A

Design Overview

The purpose of this module is to multithread the ditinsrt batch program.

Scheduling Constraints

Schedule Information

Description

Frequency

Scheduling Considerations

Pre-Processing
Post-Processing

Threading Scheme

Daily

Run either batch_ditinsrt.ksh or ditinsrt.pc. See detailed
program documents for more information

N/A
orddscnt

Threaded by different suppliers

Restart/Recovery

A commit occurs when all details of a deal are processed. Inherent restart/recovery is
achieved through deleting deals from the DEAL_QUEUE table when they are processed.
Because DEAL_QUEUE is part of the driving cursor, processed deals will not be fetched

again when the program restarts.

Key Tables Affected
Table Select Insert Update Delete
DEAL_HEAD Yes No No No
ORDHEAD Yes No No No
ORDLOC_DISCOUNT Yes No No No
DEAL_QUEUE Yes No No Yes
SUPS Yes No No No
ITEM_SUPP_COUNTRY_LOC Yes No No No
Yes Yes No No

DEAL_CALC_QUEUE

ditinsrt (Insert into Deal Calculation Queue)

Module Name

ditinsrt.pc

Description

Insert into Deal Calculation Queue

Functional Area

Deals

Deals 147

ditinsrt (Insert into Deal Calculation Queue)

Module Name ditinsrt.pc

Module Type Business Processing
Module Technology ProC

Catalog ID RMS217

Runtime Parameters N/A

Design Overview

This batch program will populate the DEAL_CALC_QUEUE table with orders that may
be affected by non vendor-funded, non PO-specific deals that are on the DEAL_QUEUE
table (for future processing by orddscnt.pc).
Orders that had been applied to deals that no longer apply will also be inserted into the

DEAL_CALC_QUEUE table. Processed records will then be deleted from the

DEAL_QUEUE table.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations

Pre-Processing N/A
Post-Processing orddscent

Threading Scheme

Handled by batch_ditinsrt.ksh

Restart/Recovery

A commit occurs when all details of a deal are processed.

Inherent restart/recovery is achieved through deleting deals from the DEAL_QUEUE
table when they are processed. Because DEAL_QUEUE is part of the driving cursor,
processed deals will not be fetched again when the program restarts.

Key Tables Affected
Table Select Insert Update Delete
DEAL_HEAD Yes No No No
ORDHEAD Yes No No No
ORDLOC_DISCOUNT Yes No No No
DEAL_QUEUE Yes No No Yes
SUPS Yes No No No
ITEM_SUPP_COUNTRY_LOC Yes No No No
Yes Yes No No

DEAL_CALC_QUEUE

148 Oracle Retail Merchandising Foundation Cloud Service

discotbapply (Update OTB After Deal Discounts)

discotbapply (Update OTB After Deal Discounts)

Module Name

discotbapply.pc

Description

Update OTB After Deal Discounts

Functional Area

Deals

Module Type Business Processing
Module Technology ProC

Catalog ID RMS215

Runtime Parameters N/A

Design Overview

Deals processing can change the cost on purchase orders. When this occurs (in the batch
program orddscnt.pc), Open To Buy (OTB) must also be updated to ensure that budgets
reflect reality. This program updates these OTB buckets.

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations This module should be run after orddscnt.pc
Pre-Processing orddscnt.pc

Post-Processing N/A

Threading Scheme

Multithreaded on department

Restart/Recovery

This program has inherent restart ability, because records are deleted from

DISC_OTB_APPLY as they are processed. Array processing is used. Records are array
fetched from DISC_OTB_APPLY table, processed and committed to the database.

Key Tables Affected
Table Insert Update Delete
DISC_OTB_APPLY No No Yes
ORDHEAD No No No
OTB No Yes No

dealact (Calculate Actual Impact of Billback Deals)

Module Name

dealact.pc

Description

Calculate Actual Impact of Billback
Deals

Functional Area

Deals

Deals 149

dealinc (Calculate Weekly/Monthly Income Based on Turnover)

Module Name dealact.pc

Module Type Business Processing
Module Technology ProC

Catalog ID RMS206

Runtime Parameters N/A

Design Overview

This program will run on a daily basis and calculate actuals information to update the
deal actuals table at the item/location level for bill back non rebate deals, bill back
purchase order rebate deals and bill back sales and receipts deals.

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations Must be run daily after SALSTAGE.PC. Otherwise
data will be lost and income cannot be calculated
retrospectively

Pre-Processing SALSTAGE.PC

prepost dealact_nor pre
prepost dealact_po_pre

prepost dealact_sales pre

Post-Processing N/A
Threading Scheme Multithreaded on Deal ID
Restart/Recovery

The database commit will take place when the number of deal_id/deal_detail_id records
processed is equal to commit max counter in the restart control table.

Key Tables Affected
Table Select Insert Update Delete
DEAL_HEAD Yes No No No
DEAL_BB_NO_REBATE_TEMP Yes No No No
DEAL_BB_REBATE_PO_TEMP Yes No No No
DEAL_TRAN_DATA_TEMP Yes No No No
DEAL_ACTUALS_ITEM_LOC No Yes Yes No

dealinc (Calculate Weekly/Monthly Income Based on Turnover)

Module Name dealinc.pc

Description Calculate Weekly/Monthly Income
Based on Turnover

150 Oracle Retail Merchandising Foundation Cloud Service

dealinc (Calculate Weekly/Monthly Income Based on Turnover)

Module Name dealinc.pc
Functional Area Deals

Module Type Business Processing
Module Technology ProC

Catalog ID RMS211

Runtime Parameters N/A

Design Overview
This program generates income for each item/location for bill-back deals.

Dealinc.pc retrieves deal attributes and actuals data from the deals tables for complex
deals. It then calculates the income and will update the actuals table with the calculated
income value. Additionally the program will insert the income value into the
TEMP_TRAN_DATA table using the tran types deal sales and deal purchases.

Subsequent programs will run to perform forecast processing for active deals and to roll
up TEMP_TRAN_DATA rows inserted by the multiple instances of this module and
insert/update DAILY_DATA with the summed values and then insert details from
TEMP_TRAN_DATA into TRAN_DATA. Income is calculated by retrieving threshold
details for each deal component and determining how to perform the calculation (that is,
Linear/Scalar, Actuals Earned/Pro-Rate).

Scheduling Constraints

Schedule Information Description
Frequency Monthly
Scheduling Considerations Must be run before SALMTH.PC, after DEALACT.PC
Pre-Processing prepost dealinc pre
Post-Processing N/A
Threading Scheme Threaded by deal ID
Restart/Recovery

A commit will take place after the number of deals records processed is equal to the
commit max counter from the RESTART_CONTROL table.

Key Tables Affected
Table Select Insert Update Delete
DEAL_HEAD Yes No No No
DEAL_DETAIL Yes No No No
DEAL_ACTUALS_FORECAST Yes No No No
GTT_DEALINC_DEALS Yes Yes No Yes
DEAL_ACTUALS_ITEM_LOC Yes No Yes No
ITEM_MASTER Yes No No No

Deals 151

dealday (Daily Posting of Deal Income to Stock & General Ledgers)

Table Select Insert Update Delete
STORE Yes No No No
WH Yes No No No
TEMP_TRAN_DATA No Yes No No

dealday (Daily Posting of Deal Income to Stock & General Ledgers)

Module Name dealday.pc

Description Daily Posting of Deal Income to Stock &
General Ledgers

Functional Area Deals

Module Type Business Processing

Module Technology ProC

Catalog ID RMS208

Runtime Parameters N/A

Design Overview
This batch module posts all the deal income records to the Stock Ledger and the Genera
Ledger.

This program extracts data inserted by dealinc.pc. In order to simplify this program, a
dealday pre function (in prepost.pc) will sum up the data into a temporary table. A
dealday post function (in prepost.pc) will copy data to transaction table and then purge
temporary tables.

Scheduling Constraints

Schedule Information Description
Frequency Monthly
Scheduling Considerations Should be run after DEALINC.PC and before SALMTH
Pre-Processing Dealinc Prepost dealday pre
Post-Processing Prepost dealday post salmth
Threading Scheme Multithreaded on Location
Restart/Recovery

A commit will take place after the number of dept/class/subclass records processed is
greater than or equal to the max counter from the RESTART_CONTROL table.

Key Tables Affected
Table Select Insert Update Delete
TEMP_TRAN_DATA_SUM Yes No No No
DAILY_DATA Yes Yes Yes No

152 Oracle Retail Merchandising Foundation Cloud Service

dealfct (Calculates/Update Forecasted Values for Deals)

Table Select Insert Update Delete

MV_LOC_SOB Yes No No No

dealfct (Calculates/Update Forecasted Values for Deals)

Module Name dealfct.pc

Description Calculates/Update Forecasted Values
for Deals

Functional Area Deals

Module Type Business Processing

Module Technology ProC

Catalog ID RMS209

Runtime Parameters N/A

Design Overview

This program aggregates income for each item/location and recalculates forecasted
values. It maintains forecast periods, deal component totals and deal totals.

After determining which active deals need to have forecast periods updated with actuals,
the program will then sum up all the actuals for the deal reporting period and update the
table with the summed values and change the period from a forecast period to a fixed
period. The program will also adjust either the deal component totals or the remaining
forecast periods to ensure that the deal totals remain correct. For each deal, the program
will also maintain values held at header level.

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations After DEALINC.PC and before SALMTH.PC

Pre-Processing prepost dealfct pre - build records in the DEALFCT_TEMP
table

Post-Processing N/A

Threading Scheme Threaded by deal ID

Restart/Recovery

A commit will take place after the number of deals records processed is equal to the
commit max counter from the RESTART_CONTROL table.

Key Tables Affected
Table Select Insert Update Delete
DEALFCT_TEMP Yes No No No
DEAL_ACTUALS_FORECAST Yes No Yes No

Deals 153

vendinvc (Stage Complex Deal Invoice Information)

Table Select Insert Update Delete

DEAL_HEAD Yes No Yes No

DEAL_DETAIL Yes No Yes No
Integration Contract

Integration Type N/A

File Name N/A

Integration Contract N/A

vendinvc (Stage Complex Deal Invoice Information)

Module Name vendinve.pc

Description Stage Complex Deal Invoice
Information

Functional Area Deals

Module Type Integration

Module Technology ProC

Catalog ID RMS122

Runtime Parameters N/A

Design Overview

The batch module creates records in invoice match staging tables dealing for complex
type deals.The invoicing logic will be driven from the billing period estimated next
invoice date for complex deals. The amount to be invoiced will be the sum of the income
accruals of the deal since the previous invoice date (or the deal start date for the first

collection).

prepost vendinvc pre - truncates STAGE_COMPLEX_DEAL_HEAD and
STAGE_COMPLEX_DEAL_DETAIL tables to remove previous days records.

prepost vendinvc post - calls the process_deal_head() function to update
est_next_invoice_date of the deal to NULL.

Scheduling Constraints

Schedule Information

Description

Frequency

Scheduling Considerations

Pre-Processing

Post-Processing

Threading Scheme

Daily

Must be run before salmnth.pc, after dealact.pc and
before the new programs, which perform forecast
processing and DAILY_DATA roll up

prepost vendinvc pre

prepost vendinvc post, salweek (at end of week),
salmth (at end of month)

Threaded by deal id

154 Oracle Retail Merchandising Foundation Cloud Service

vendinvf (Stage Fixed Deal Invoice Information)

Restart/Recovery
When the max commit point is reached, the data is updated.
Key Tables Affected
Table Select Insert Update Delete
DEAL_HEAD Yes No Yes No
DEAL_ACTUALS_ITEM_LOC Yes No No No
DEAL_ACTUALS_FORECAST Yes No No No
VAT_ITEM Yes No No No
STORE Yes No No No
WH Yes No No No
STAGE_COMPLEX_DEAL_HEAD No Yes No No
STAGE_COMPLEX_DEAL_DETAIL No Yes No No
VENDINVC_TEMP Yes No No No
PERIOD Yes No No No
SYSTEM_OPTIONS Yes No No No
SYSTEM_VARIABLES Yes No No No
SUPS_IMP_EXP Yes No No No

Integration Contract

Integration Type Download from RMS
File Name N/A
Integration Contract IntCon000009

Records are written to the stage_complex_deal_head and stage_complex_deal_detail
tables.

vendinvf (Stage Fixed Deal Invoice Information)

Module Name vendinvf.pc

Description Stage Fixed Deal Invoice Information
Functional Area Deals

Module Type Integration

Module Technology ProC

Catalog ID RMS123

Runtime Parameters N/A

Design Overview

The batch module creates records in staging tables dealing for fixed type deals.

Deals 155

vendinvf (Stage Fixed Deal Invoice Information)

The invoicing logic will be driven by the collection dates for fixed deals. The amount to
be invoiced will be retrieved directly from fixed deal tables for a given deal date.

prepost vendinvf pre - truncates STAGE_FIXED_DEAL_HEAD and
STAGE_FIXED_DEAL_DETAIL tables to remove previous days records.

prepost vendinvf post - calls the process_fixed_deal function to update the status of the
fixed deal claim to ‘I" (inactive)

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations Must be run before salmnth.pc and before the new

programs, which perform forecast processing and
DAILY_DATA roll up

Pre-Processing salstage, prepost vendinvf pre

Post-Processing prepost vendinvf post , salweek (at end of week)

salmth (at end of week)

Threading Scheme Threaded by deal id

Restart/Recovery

Data is committed to the database once the number of transactions processed reaches or
exceeds the max_commit_ctr.

Key Tables Affected
Table Select Insert Update Delete
FIXED_DEAL Yes No No No
FIXED_DEAL_DATES Yes No No No
FIXED_DEAL_MERCH Yes No No No
FIXED_DEAL_MERCH_LOC Yes No No No
SUBCLASS Yes No No No
STAGE_FIXED_DEAL_HEAD No Yes No No
STAGE_FIXED_DEAL_DETAIL No Yes No No
PERIOD Yes No No No
SYSTEM_OPTIONS Yes No No No
SYSTEM_VARIABLES Yes No No No
WH Yes No No No

Integration Contract

Integration Type Download from RMS
File Name N/A
Integration Contract IntCon000009

156 Oracle Retail Merchandising Foundation Cloud Service

dealcls (Close Expired Deals)

Records are written to the stage_fixed_deal_head and stage_fixed_deal_detail tables.

dealcls (Close Expired Deals)

Module Name dealcls.pc
Description Close Expired Deals
Functional Area Deals

Module Type Admin

Module Technology ProC

Catalog ID RMS207

Runtime Parameters N/A

Design Overview

The purpose of this module is to close any active deals that have reached their close date.
Closed deals are still available in the system for reference and audit purposes, but
because the deals are expired, they will not be applied or processed.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations N/A
Pre-Processing N/A

Post-Processing

Threading Scheme

prepost dealcls post
N/A

Restart/Recovery
N/A

Key Tables Affected

Table Select

Insert Update

Delete

DEAL_HEAD Yes
DEAL_QUEUE Yes

No Yes
Yes No

No
No

dealprg (Purge Closed Deals)

Module Name

dealprg.pc

Description

Purge Closed Deals

Functional Area

Deals

Module Type

Admin

Module Technology

ProC

Deals 157

dealprg (Purge Closed Deals)

Module Name dealprg.pc
Catalog ID RMS212
Runtime Parameters N/A

Design Overview

The purpose of this batch program is to purge deals after they have been held in the
system for the specified number of history months after they are closed. The number of
months of history is defined in the PURGE_CONFIG_OPTIONS table in the
DEAL_HISTORY_MONTHS column.

The batch program will also delete deal performance tables based on the specified
number of history months. This program will not cover PO-specific deals, which will be
purged with the PO.

Scheduling Constraints

Schedule Information Description

Frequency Monthly

Scheduling Considerations N/A

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A
Restart/Recovery

This program has inherent restart/recovery since records that were processed are deleted
from the table. As a result, the driving cursor will never fetch the same records again.

Key Tables Affected
Table Select Insert Update Delete
DEAL_HEAD Yes No No Yes
PURGE_HISTORY_MONTHS Yes No No No
ORDHEAD_DISCOUNT Yes No No No
ORDLOC_DISCOUNT Yes No No No
FIXED_DEAL Yes No No Yes
DEAL_ACTUALS_ITEM_LOC No No No Yes
DEAL_ITEM_LOC_EXPLODE No No No Yes
FUTURE_COST Yes No No Yes
RECLASS_COST_CHG_QUEUE No No No Yes
DEAL ACTUALS_FORECAST No No No Yes
DEAL_PROM No No No Yes
DEAL_THRESHOLD_REV No No No Yes

158 Oracle Retail Merchandising Foundation Cloud Service

dealprg (Purge Closed Deals)

Table Select Insert Update Delete
DEAL_QUEUE No No No Yes
DEAL_ITEMLOC No No No Yes
POP_TERMS_FULFILLMENT No No No Yes
POP_TERMS_DEF No No No Yes
DEAL_DETAIL No No No Yes
FIXED_DEAL_MERCH_LOC No No No Yes
FIXED_DEAL_MERCH No No No Yes
No No No Yes

FIXED_DEAL_DATES

Deals 159

38

Overview

Contracts

Contract batch modules create purchase orders from contracts and purge obsolete
contracts. A purchase order created from a contract has two primary differences from all
other purchase orders in RMS, they are:

* The only impact upon the order is a contract. Bracket costing and deals are not
involved in a contract purchase order.

= The cost of an item on the order is predefined in the contract and is held at the item-
supplier level.

There are four types of supplier contracts in RMS: A, B, C, and D.

= Type A (Plan/Availability): The contract contains a plan of manufacturing quantity
by ready date. Supplier availability is matched to the ready date. Orders are raised
against the plan as suggested by replenishment requirements, provided there is
sufficient supplier availability. The user can also raise manual orders.

* Type B (Plan/No Availability): The contract contains a plan of manufacturing
quantity by ready date and dispatch-to location or locations. There are one or more
ready dates, which is the date that the items are due at the dispatch-to location.
Supplier availability is not required. Orders are raised automatically from the
contract based on ready dates.

= Type C (No Plan/No Availability): The contract is an open contract with no
production schedule and no supplier availability declared. The contract lists the
items that are used to satisfy a total commitment cost. Orders are raised against the
contract based on replenishment requirements. The retailer can also raise manual
orders.

* Type D (No Plan/Availability): The contract is an open contract with no production
schedule. The supplier declares availability as stock is ready. The contract lists the
items that are used to satisfy a total commitment cost. Orders are raised against the
contract, based on replenishment requirements and supplier availability. The retailer
can raise manual orders.

Batch Design Summary

The following batch designs are included in this functional area:

= edidlcon.pc (Download Contracts to Suppliers)

* ediupavl.pc (Upload Item Availability for Type A & D Contracts from Suppliers)

* cntrordb.pc (Create Replenishment Orders for Item/Locations on Type B Contracts)
* cntrprss (Apply Type A, C & D Contracts to Orders Created by Replenishment)

* cntrmain.pc (Contract Maintenance and Purging)

edidicon (Download Contracts to Suppliers)

edidicon (Download Contracts to Suppliers)

Module Name edidlcon.pc

Description Download Contracts to Suppliers
Functional Area Contracts

Module Type Integration

Module Technology ProC

Catalog ID RMS45

Runtime Parameters N/A

Design Overview

Contacts are defined in an RMS Ul that writes to series of contracts database tables. This
program is used to send this contract information to vendors. Only approved contracts
that are flagged as EDI contracts are processed by this batch program. The output file of
this program contains all records for the supplier contract data which are in approved

status.

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations N/A

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A
Restart/Recovery

The logical unit of work for this program is set at the contract number. This program
processes one contract number at a time.

Key Tables Affected
Table Select Insert Update Delete
CONTRACT_HEADER Yes No Yes No
CONTRACT_COST Yes No No No
ITEM_MASTER Yes No No No
CONTRACT_DETAIL Yes No No No
WH Yes No No No
ITEM_SUPPLIER Yes No No No
DIFF_IDS Yes No No No

162 Oracle Retail Merchandising Foundation Cloud Service

edidicon (Download Contracts to Suppliers)

Integration Contract

Integration Type Download from RMS
File Name Determined by runtime parameter
Integration Contract IntCon000011
Record Field Name Field Type Default Value Description
Name
FHEAD File head Char(5) FHEAD Describes file line type
descriptor
Line Number Number(10) 0000000001 Sequential file line number
Gentran ID Char(4) ‘DNCN’ Identifies which translation
Gentran uses
Current date Char(14) Indicates the date that the file
was created in
YYYYMMDDHH24MISS format
THEAD File head Char(5) THEAD Describes file line type
descriptor
Line Number Number(10) Sequential file line number
Transaction Number(10) Sequential transaction number
Number
Supplier Number(10) Indicates the supplier associated
with the contract
Contract Number Number(6) Indicates the RMS contract
number
Contract type Char(1) Type of contract. Valid types are
A,B,CorD
Department Number(4) Indicates the RMS department ID
for which the contract applies
Currency code Char(3) Indicates the currency code for
the contract
Total contract Number(20) Contains the total cost of the
cost contract; includes 4 implied
decimal places
TDETL File record Char(5) TDETL Describes file line type
descriptor
Line Number Number(10) Sequential file line number
Transaction Number(10) Sequential transaction number
number
Item Number Char(6) Indicates the type of item number
Type is represented in the file. This
corresponds to the item number
type defined for items on
ITEM_MASTER
Item Number Char(25) Contains the unique ID for the

item on the contract

Contracts 163

edidicon (Download Contracts to Suppliers)

Record Field Name
Name

Field Type Default Value Description

Ref Item Number
Type

Ref [tem Number

Diffl

Diff2

Diff3

Diff4

VPN

Unit cost

Ready Date

Ready Quantity

Location Type

Location number

TTAIL File Record
descriptor

Line Number

Transaction
number

FTAIL File record
descriptor

Line number

Char(6)

Char(25)

Char(120)

Char(120)

Char(120)

Char(120)

Char(30)

Number(20)

Char(14)

Number(20)

Char(2)

Number(10)

Char(5) TTAIL

Number(10)
Number(10)

Char(5) FTAIL

Number(10)

Indicates the item number type
for the reference number
corresponding to the item
number

Contains the unique ID for the
reference number for the item

Contains the description of Diff1l
for the item

Contains the description of Diff2
for the item

Contains the description of Diff3
for the item

Contains the description of Diff4
for the item

Vendor Product Number for the
item

Contains the cost of the item on
the contract with 4 implied
decimal places

Date on which the items are to be
provided by supplier. This field
contains only values for contract
types of “A” or ‘B’

Quantity contracted with
supplier with 4 implied decimal
points. This field contains only
values for contract types of ‘A’ or
IB/

Indicates the type of location on
the contract - either ‘ST’ (store) or
‘"WH’ (warehouse). This field
contains only values for contract
types of “A” or ‘B’

Contains a location on the
contract. This field contains only
values for contract types of A’ or
I‘B/

Descibes file line type

Sequential file line number

Sequential transaction number

Marks the end of file

Sequential file line number

164 Oracle Retail Merchandising Foundation Cloud Service

ediupavl (Upload Item Availability for Type A & D Contracts from Suppliers)

Record Field Name Field Type Default Value Description
Name

Number of lines Number(10) Number of lines in file not
counting FHEAD and FTAIL

Design Assumptions

This module should only be run if contracting is turned on in the system.

ediupavl (Upload Item Availability for Type A & D Contracts from
Suppliers)

Module Name ediupavl.pc

Description Upload Item Availability for Type A & D
Contracts from Suppliers

Functional Area EDI - Contracts

Module Type Integration

Module Technology ProC

Catalog ID RMS50

Runtime Parameters N/A

Design Overview
This module runs to upload supplier availability information, which is a list of the items
that a supplier has available. This information is used by RMS for type A and D
contracts which require supplier availability information. The data uploaded is written to
the SUP_AVAIL table.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations N/A
Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/ A - file-based processing
Restart/Recovery
N/A
Key Tables Affected
Table Select Insert Update Delete
SUP_AVAIL No Yes Yes No

Contracts 165

ediupavl (Upload Item Availability for Type A & D Contracts from Suppliers)

Integration Contract

Integration Type Upload to RMS
File Name Determined by runtime parameter
Integration Contract IntCon000016
Record Field Name Field Type Default Description
Name Value
FHEAD Record descriptor Char(5) FHEAD Describes file line type
Line number Number(10) 0000000001 Sequential file line
number
File type Char(4) SPAV
Create date Char(14) File create date in
YYYYMMDDHH?24
MISS format
FDETL Record descriptor Char(5) FDETL Describes file line type
Line number Number(10) Sequential file line number
Transaction number ~ Number(14) Sequential transaction
number
Supplier Number(10) Indicates the supplier for
whom the data applies
Item type Char(3) Indicates the type of item
contained in the file. Valid
types are ‘ITM’, “UPC’, or
VPN’
Item id Char(25) Unique ID for the item
Item supplement Char(5) UPC supplement
Available quantity Number(12) Available quantity including
4 implied decimal places
FTAIL Record Char(5) FTAIL Describes file line
descriptor Type
Line number Number(10) Sequential file line
number (total #lines
in file)
Number of Number(10) Number of FDETL

detail records

lines in file

Design Assumptions

This module will only be run if contracting is turned on in the system.

166 Oracle Retail Merchandising Foundation Cloud Service

cntrordb (Create Replenishment Orders for Item/Locations on Type B Contracts)

cntrordb (Create Replenishment Orders for Item/Locations on Type B
Contracts)

Module Name cntrordb.pc

Description Create Replenishment Orders for
Item/Locations on Type B Contracts

Functional Area Contracts

Module Type Business Processing
Module Technology ProC

Catalog ID RMS232

Runtime Parameters N/A

Design Overview

This module automatically creates replenishment orders for items on an approved,
orderable type ‘B’ contract based on production dates.

Type B (Plan/No Availability) contracts contain a plan of manufacturing quantity by
ready date and dispatch-to location or locations. There are one or more ready dates,
which is the date that the items are due at the dispatch-to location. Supplier availability is
not required. This program automatically writes POs from the contract based on ready
dates.

Prepost cntrordb post - updates the system level variable last_cont_order_date to the
current vdate

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations This module only needs to be scheduled if the

client uses contracting

Must be run after repladj
Pre-Processing repladj
Post-Processing Prepost cntrordb post
Threading Scheme This module is threaded by contract

Restart/Recovery

The logical unit of work is contract no. Records are committed to the database when no
of records processed reaches commit_max_counter maintained in RESTART_CONTROL
table.

Contracts 167

cntrprss (Apply Type A, C and D Contracts to Orders Created by Replenishment)

Key Tables Affected
Table Select Insert Update Delete
SYSTEM_VARIABLES Yes No No No
SYSTEM_OPTIONS Yes No No No
PERIOD Yes No No No
CONTRACT_HEADER Yes No No No
CONTRACT_DETAIL Yes No Yes No
ORDHEAD Yes Yes Yes No
ORDSKU Yes Yes Yes No
ORDLOC Yes Yes Yes No
ORDLOC_EXP Yes No Yes No

Design Assumptions

This module should only be run if contracting is turned on in the system.

cntrprss (Apply Type A, C and D Contracts to Orders Created by
Replenishment)

Module Name cntrprss.pc

Description Apply Type A, C & D Contracts to
Orders Created by Replenishment

Functional Area Contracts

Module Type Business Processing

Module Technology ProC

Catalog ID RMS202

Runtime Parameters N/A

Design Overview

This module evaluates contracts of type A, C, and D to determine whether an order
should be created from the contract. Contracts are ranked so that orders are created off
the best contracts first, based on lead-time, cost, contract status (such as,. closed preferred
over open), and contract type (such as,. type C are preferred over D). This updates the
temporary orders created by the item replenishment extract (rplext) module with the
contract and supplier information of the best available contract for each item and
populates the repl_results table.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations Must be run after rplext and before rplbld

168 Oracle Retail Merchandising Foundation Cloud Service

cntrmain (Contract Maintenance and Purging)

Schedule Information Description

Pre-Processing rplext

Post-Processing rplbld

Threading Scheme This module is threaded by department
Restart/Recovery

As the item requirements can span across different locations, the logical unit of work
varies for each item requirement. For each item requirement, records are committed to
the database.

Key Tables Affected
Table Select Insert Update Delete
ORD_TEMP Yes Yes Yes Yes
REPL_RESULTS Yes No Yes No
PERIOD Yes No No No
SYSTEM_OPTIONS Yes No No No
CONTRACT_DETAIL Yes No Yes No
CONTRACT_HEADER Yes No Yes No
CONTRACT_COST Yes No No No
ITEM_SUPP_COUNTRY Yes No No No
ITEM_MASTER Yes No No No
SUPS Yes No No No
ORD_MISSED No Yes No No
SUP_AVAIL Yes No Yes No

Design Assumptions

This module should only be run if contracting is turned on in the system.

cntrmain (Contract Maintenance and Purging)

Module Name cntrmain.pc

Description Contract Maintenance and Purging
Functional Area Contracts

Module Type Admin

Module Technology ProC

Catalog ID RMS231

Runtime Parameters N/A

Contracts 169

cntrmain (Contract Maintenance and Purging)

Design Overview

This program is used to mark contracts that have reached their end date to completed
(for types A and B) or review status (for types C and D). This module also purges
contracts that have remained in cancelled, worksheet, submitted, or complete status for a
user-defined number of months without any orders and contacts marked for deletion.
The number of months is determined by the system parameter for order history months.

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations This module only needs to be scheduled if the

client uses contracting

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery

This batch program has two processing functions, one for purging and another for
updating contracts. The purge function (delete_contracts) deletes and commits records
via arrays whose size is defined in commit max counter while the update function
(reset_inactive) updates records in bulk based on the update criteria. The program as a
whole is inherently restartable.

Key Tables Affected
Table Select Insert Update Delete
PURGE_CONFIG_OPTIONS Yes No No No
CONTRACT_HEADER Yes No Yes Yes
CONTRACT_DETAIL No No No Yes
CONTRACT_COST No No No Yes
ORDHEAD Yes No No No

Design Assumptions
This module should only be run if contracting is turned on in the system.

170 Oracle Retail Merchandising Foundation Cloud Service

9

Cost Changes

Overview

Suppliers often change the cost of items.

Cost is an important factor in individual transactions and many financial calculations in
RMS. Changes in cost must be reflected in the information stored in RMS and pending
transactions.

Batch Design Summary
The following batch designs are included in this functional area:
= sccext.pc (Supplier Cost Change Extract)
= ccprg.pc (Cost Change Purge)

sccext (Supplier Cost Change Extract)

Module Name sccext.pc

Description Apply Pending Cost Changes to Items
Functional Area Cost Change

Module Type Business Processing

Module Technology ProC

Catalog ID RMS355

Runtime Parameters N/A

Design Overview

The sccext module selects supplier cost change records that are set to go into effect the
next day and updates the RMS item/supplier/country tables with the new cost. The
item/location tables are also updated with the new cost if the cost change impacts the
primary supplier/country for an item/location, as this is considered a base cost change.
The process also triggers a recalculation of cost and deal application for pending
purchase orders.

Scheduling Constraints

Schedule Information Description
Frequency Daily

Scheduling Considerations N/A
Pre-Processing N/A
Post-Processing prepost sccext post

Threading Scheme Threaded by cost change

ccprg (Cost Change Purge)

Restart/Recovery

The logical unit of work for the program is a cost change. The program is also restartable
from the last successfully processed cost change record.

Key Tables Affected
Table Select Insert Update Delete
COST_SUSP_SUP_HEAD Yes No No No
DEAL_CALC_QUEUE_TEMP Yes No No No
DEAL_CALC_QUEUE Yes Yes Yes No
PERIOD Yes No No No
ITEM_SUPP_COUNTRY_LOC Yes No Yes No
COST_SUSP_SUP_DETAIL Yes No No No
DEAL_SKU_TEMP No Yes No No
PRICE_HIST No Yes No No
ITEM_SUPPLIER Yes No Yes No
SUPS Yes No No No
SYSTEM_OPTIONS Yes No No No
COST_SUSP_SUP_DETAIL_LOC Tes No No No
ITEM_SUPP_COUNTRY Yes No Yes No
ITEM_SUPP_COUNTRY_BRACKET_COST Yes Yes Yes No
ITEM_MASTER Yes No No No
PACKITEM Yes No No No

Design Assumptions
N/A

ccprg (Cost Change Purge)

Module Name ceprg.pe

Description Purge Aged Cost Changes
Functional Area Cost Change

Module Type Admin

Module Technology ProC

Catalog ID RMS476

Runtime Parameters N/A

Design Overview

This program is responsible for removing old cost changes from the system. Cost
changes are removed from the system using the following criteria:

172 Oracle Retail Merchandising Foundation Cloud Service

Design Overview

* The status of the cost change is Delete, Canceled, or Extracted.

= The status of the price change is Rejected and the effective date of the cost change has
met the requirement for the number of days that rejected cost changes are held.

The number of days that rejected cost changes are held is determined by the system

parameter Retention of Rejected Cost Changes
(RETENTION_OF_REJECTED_COST_CHG).

Scheduling Constraints

Schedule Information Description
Frequency Monthly
Scheduling Considerations N/A
Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A

Restart/Recovery

N/A

Key Tables Affected
Table Select Insert Update Delete
PERIOD Yes No No No
PURGE_CONFIG_OPTIONS Yes No No No
COST_SUSP_SUP_HEAD Yes No No Yes
COST_SUSP_SUP_DETAIL Yes No No Yes
COST_SUSP_SUP_DETAIL_LOC Yes No No Yes

Design Assumptions
N/A

Cost Changes 173

10

Overview

Open to Buy

Open to Buy (OTB) budgets can either be maintained through the RMS UI or imported
from a planning application.

The programs in this chapter receive OTB data from planning processes and send order
information to planning processes and maintain OTB data.

For more information about integration with RPAS and other planning systems, see the
section Integration with Oracle Retail Planning.

Extract OTB data (excluding budget figures) to
a file

Send value in cost and retail of items that are
on order

Send sums of outstanding orders from past
periods

RMS
Open to Buy

Retail Predictive
Application Server

Upload budget and budget adjustments data

Upload forward limit percentages by period
data

Batch Design Summary

The following batch designs are included in this functional area:

= otbdnld.pc (Download Current & Future OTB by Subclass)

= otbdlord.pc (Download Summary of Outstanding Orders on OTB by Subclass)
* otbupld.pc (Upload OTB Budget from Planning Systems)

* otbprg.pc (Purge Aged Open To Buy Data)

otbdnld (Download Current & Future OTB by Subclass)

Module Name otbdnld.pc

Description Download Current & Future OTB by
Subclass

Functional Area Open To Buy

Module Type Integration

Module Technology ProC

Catalog ID RMS130

Integration Contract

Design Overview

This batch program will extract current and future Open to Buy data from the OTB table
in RMS and export it to a flat file for use by an external planning system. All records
with an end of week date greater than or equal to today will be sent.

Scheduling Constraints

Schedule Information

Description

Frequency

Weekly

Scheduling Considerations

saldly and salweek should be run before this job

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A
Restart/Recovery

The logical unit of work for the OTBDNLD module is department, class, subclass, and
end-of-week date, with a recommended commit counter setting of 10,000. Each time the
record counter equals the maximum recommended commit number, an application
image array record will be written to the restart_start_array for restart/recovery if a fatal
€ITor OCCurs.

Key Tables Affected
Table Select Insert Update Delete
OTB Yes No No No
PERIOD Yes No No No
Integration Contract
Integration Type Download from RMS
File Name Determined by runtime parameter
Integration Contract IntCon000031
Output file
Record Field Name Field Type Default Description
Name Value
FHEAD File Type Record Char (5) FHEAD Identifies file record type
Descriptor

File Line Sequence
Number

File Type
Definition

Number (10)

Char (4)

OTBE

Keeps track of the record’s
position in the file by line
number

Identifies file as ‘OTB Export’

176 Oracle Retail Merchandising Foundation Cloud Service

Integration Contract

Record Field Name Field Type Default Description
Name Value
File Create Date Char(14) Date the file was created in
YYYYMMDD format.
Remaining 6 characters are
blank
FDETL File record Char(5) FDETL Identifies file record type
descriptor
File Line Sequence Number (10) Keeps track of the record’s
Number position in the file by line
number
Transaction Set Number(14) Used to force unique file
Control Number check
Department Number(4) The ID number of a
department
Class Number(4) The ID number of a class
within the department given
Subclass Number(4) The ID number of a subclass
within the class given
EOW Date Date The end of week date for the
budgeted period. Format is
“YYYYMMDDHHMMSS
Week number Number(2) The week number in the
month for the budgeted
period
Month number Number(2) The month number in the half
for the budgeted period
Half number Number(5) The half number for the
budgeted period
Cancel Amount Number(20) The total amount cancelled
from orders of all order type
for the budgeted period; value
includes 4 implied decimal
places
N Approved Number(20) The amount of approved non-
Amount basic (order type N/B) orders
for the budgeted period; value
includes 4 implied decimal
places
N Receipts Number(20) The amount of non-basic
Amount (order type N/B) orders due

in the budgeted period that
have been received; value
includes 4 implied decimal
places

Open to Buy 177

otbdlord (Download Summary of Outstanding Orders on OTB by Subclass)

Record
Name

Field Name

Default
Value

Field Type Description

FTAIL

B Approved
Amount

B Receipts
Amount

A Approved
Amount

A Receipts
Amount

File record
descriptor

File Line Sequence
Number

Number of lines

Number(20) The amount of approved
buyer-replenished basic
(order type BRB) orders for
the budgeted period; value
includes 4 implied decimal

places

Number(20) The amount of buyer-
replenished basic (order type
BRB) orders due in the
budgeted period that have
been received; value includes

4 implied decimal places

The amount of approved
auto-replenished basic (order
type ARB) orders for the
budgeted period; value
includes 4 implied decimal
places

Number(20)

The amount of auto-
replenished basic (order type
ARB) orders due in the
budgeted period that have
been received; value includes
4 implied decimal places

Number (20)

Char (5) FTAIL Identifies file record type

Number (10) Keeps track of the record’s
position in the file by line

number

Total number of all
transaction lines, not
including file header and
trailer

Number (10)

Design Assumptions
N/A

otbdlord (Download Summary of Outstanding Orders on OTB by Subclass)

Module Name

otbdlord.pc

Description

Download Summary of Outstanding
Orders on OTB by Subclass

Functional Area Open To Buy
Module Type Integration
Module Technology ProC
Catalog ID RMS13

178 Oracle Retail Merchandising Foundation Cloud Service

otbdlord (Download Summary of Outstanding Orders on OTB by Subclass)

Design Overview

This batch program will sum outstanding orders from past periods for each subclass and
export the data to a flat file. Outstanding order values are determined by subtracting the
receipts from the approved order quantity on the OTB table for past periods (where end
of week date is less than today). This figure is written to the output file for each order
type by subclass.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations Run saldly and salweek) before this job
Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A
Restart/Recovery

The logical unit of work for the otbdlord module is department/class/subclass. The
commit_max_ctr field should be set to prevent excessive rollback space usage, and to
reduce the overhead of the file I/O. The recommended commit counter setting is 10000
records. Each time the record counter equals the maximum recommended commit
number, an application image array record will be written to the restart_start_array for
restart/recovery if a fatal error occurs.

Key Tables Affected
Table Select Insert Update Delete
OTB Yes No No No
PERIOD Yes No No No

Integration Contract

Integration Type Download from RMS
File Name Determined by runtime parameter
Integration Contract IntCon000029
Output file
Record Field Name Field Type Default Description
Name Value
File File Type Char(5) FHEAD Identifies file record type
Header Record
Descriptor

Open to Buy 179

otbdlord (Download Summary of Outstanding Orders on OTB by Subclass)

Record Field Name Field Type Default Description
Name Value

File Line Number(10) Keeps track of the record’s

Sequence position in the file by line

Number number

File Type Char(4) OOEX Identifies file as ‘OTB

Definition Outstanding Order Export’

File Create Date Char(14) Date the file was created in
YYYYMMDD format.
Remaining six characters are
blank.

File Detail File Type Char(5) FDETL Identifies file record type

Record

Descriptor

File Line Number(10) Keeps track of the record’s

Sequence position in the file by line

Number number

Transaction Set Number(14) Sequence number used to

Control force unique detail record

Number check

Department Number(4) The number of the
department which contains
the outstanding order
quantity value

Class Number(4) The number of the class
which contains the
outstanding order quantity
value.

Subclass Number(4) The number of the subclass
which contains the
outstanding order quantity
value

N Outstanding Number(20) The amount of outstanding

Amt non-basic orders (order type
N/B) for past periods; value
includes 4 implied decimal
places

B Outstanding ~ Number(20) The amount of outstanding

Amt buyer-replenished basic
(order type BRB) orders for
past periods; value includes
4 implied decimal places

A Outstanding Number(20) The amount of outstanding

Amt auto-replenished basic
(order type ARB) orders for
past periods; value includes
4 implied decimal places

File Trailer File Type Char(5) FTAIL Identifies file record type

Record

Descriptor

180 Oracle Retail Merchandising Foundation Cloud Service

otbupld (Upload OTB Budget from Planning Systems)

Record Field Name Field Type Default Description

Name Value
File Line Number(10) Keeps track of the record’s
Sequence position in the file by line
Number number
Control Number(10) Total number of all
Number File transaction lines, not
Line Count including file header and

trailer

Design Assumptions
N/A

otbupld (Upload OTB Budget from Planning Systems)

Module Name otbupld.pc

Description Upload OTB Budget from Planning Systems
Functional Area Open To Buy

Module Type Integration

Module Technology ProC

Catalog ID RMS132

Runtime Parameters N/A

Design Overview

The purpose of this batch module is to accept new and updated open to buy (OTB)
budget data from an external planning system. RMS supports three types of OTB budgets
- those associated with Non-Basic (N/B), Buyer Replenished Basic (BRB) and Auto-
Replenished Basic (ARB) orders, as defined by the Order type on RMS purchase orders.
OTB budgets are created by subclass/end of week date in RMS.

Scheduling Constraints

Schedule Information

Description

Frequency

Scheduling Considerations

Daily

Optional - this interface only needs to be scheduled
if OTB is interfaced into RMS from RPAS or
another 3rd party planning system

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A
Restart/Recovery

Processing of each row is independent and thus if an erroneous record is found during
processing; only that record needs to be corrected and reprocessed.

Open to Buy 181

otbupld (Upload OTB Budget from Planning Systems)

If a record fails validation, it will be written to a rejected record file. This file will facilitate
easy reprocessing once the error is fixed by writing the record exactly as it was in the
source file.

Key Tables Affected
Table Select Insert Update Delete
OTB No Yes Yes No

Integration Contract

Integration Type Upload to RMS
File Name Determined by runtime parameter
Integration Contract IntCon000033
Input File
Record Field Name Field Type Default Description
Name Value
FHEAD File head descriptor ~ Char(5) FHEAD Describes file line type
Line id Number(10) 0000000001 Sequential file line number
File Type Definition = Char(4) ‘OTBI' Identifies file as ‘OTB Import’
File Create Date Char(14) The date on which the file
was written by external
system. The Date is in
YYYYMMDDHH24MISS
format
FDETL File record descriptor Char(5) FDETL Describes file line type
Line ID Number(10) Sequential file line number
Transaction Set Number(14) Sequence number used to
Control Number force unique transaction
check
Order Type Char(1) Order type budgeted for:
specified as A for ARB, B for
BRB, and N for N/B
Department Number(4) The ID number of a
department
Class Number(4) The ID number of a class
within the department given
Subclass Number(4) The ID number of a subclass
within the class given
Eow Date Char(14) The end of week date for the
budgeted week in
YYYYMMDDHH24MISS
format

182 Oracle Retail Merchandising Foundation Cloud Service

otbprg (Purge Aged Open To Buy Data)

Record Field Name Field Type Default Description
Name Value

Budget Amount Number(20) Budgeted amount for the
specified order type/week;
value includes 4 implied
decimal places

FTAIL File record descriptor Char(5) Marks end of file
Line ID Number(10) Line number Sequential file line number
in file
Number of lines Number(10) Total detail Number of lines in file not
lines counting FHEAD and FTAIL

Design Assumptions
* POs with an Order Type of DSD and Customer Order do not impact open to buy.

otbprg (Purge Aged Open To Buy Data)

Module Name otbprg.pc

Description Purge Aged Open To Buy Data
Functional Area Open To Buy

Module Type Admin

Module Technology ProC

Catalog ID RMS291

Runtime Parameters N/A

Design Overview

This batch program runs at the end of the half to delete rows from the OTB table that are
at least one half old. The current and previous half’s OTB data is retained. The number
of days that OTB records are retained by RMS is not configurable via a system parameter.

Scheduling Constraints

Schedule Information Description

Frequency Monthly

Scheduling Considerations N/A

Pre-processing N/A

Post-Processing N/A

Threading Scheme N/A
Restart/Recovery

There is no restart/recovery in this module. Up to 10,000 records are deleted and
committed at a time to avoid excessive rollback space in usage.

Open to Buy 183

otbprg (Purge Aged Open To Buy Data)

Key Tables Affected
Table Select Insert Update Delete
OTB No No No Yes

Design Assumptions
N/A

184 Oracle Retail Merchandising Foundation Cloud Service

11

Overview

Future Cost

The Future Cost Engine calculates the expected cost of an item/supplier/origin
country/location at a given point into the future. These values are used to help in many
scenarios (for example, when trying to determine what a margin will be at a point in the
future, or when doing investment buying).

The future cost engine can execute as either a synchronous, asynchronous or batch
process. The focus of this chapter is the batch processes. To support the discussion of the
batch processes, there is general discussion of the engine that is also applicable to the
synchronous and asynchronous execution of the engine.

Future Cost Events

There are three basic events that drive recalculation of FUTURE_COST. They are
supplier cost changes, deals, and estimated landed cost components. When these events
are added or removed from RMS, they impact the calculated values on future cost. These
transactions are known as primary events.

There are other events that determine if primary events still apply to a given
item/supplier/ origin country/location combination. They are reclassifications,
merchandise hierarchy changes, organization hierarchy changes, cost zone locations
moves, item/cost zones changes, and supplier hierarchy changes. These are secondary
events.

There are also two special events that cause new time lines to be created in
FUTURE_COST. They are new item loc (when item/locations are ranged) and new
item/supplier/country/location relationships (add and remove). These are initialization
events.

The ITEM_LOC.PRIMARY_COST_PACK column plays a special roll in costing. When a
primary costing pack is defined for an item, that item’s costing values are based on the
primary_costing_pack not the item its self. When a primary costing pack is added,
changed, or removed, this is a primary pack event.

Cost Event Cost Event Type
Supplier Cost Change Primary

Deal Primary

ELC Component Primary
Reclassification Secondary
Merchandise hierarchy Secondary
Organization hierarchy Secondary

Cost zone location moves Secondary

Item/ cost zone changes Secondary

Supplier hierarchy Secondary

Future Cost Engine Run Type Configuration

Cost Event Cost Event Type
New Item Location Initialization
Item/supplier/country/location relationships Initialization
Primary cost pack Primary Pack
WF Cost Template N/A

WF Cost Template Relationship N/A

Deal Pass through N/A

Future Cost Engine Run Type Configuration

The Future Cost Engine can be configured by cost event type in one of three ways:
* Synchronous

* Asynchronous

= Batch

The method to be used by each cost event type is controlled by the configuration defined
in the COST_EVENT_RUN_TYPE_CONFIG table.

Synchronous

When running in synchronous mode, the Future Cost Engine is run in the same
transaction as the client that calls it. For example if the cost change event is configured to
run in synchronous mode, the work done in the Future Cost Engine for the approval of a
cost change runs in the same transaction as the flipping of the status of the cost change to
‘A’ status. That means the user in the form will have a busy cursor until the Future Cost
Engine completes.

Cost event types with an EVENT_RUN_TYPE set to ‘SYNC’ on
COST_EVENT_RUN_TYPE_CONFIG will run in synchronous mode.

186 Oracle Retail Merchandising Foundation Cloud Service

Future Cost Engine Run Type Configuration

Future Cost Engine - SYNC mode

Cost Event -

For Example: Cost Change
(Approve/update/unapprove)

COST_EVENT_SQL

* Create COST_EVENT and
COST_EVENT_XYZ rows

Asynchronous

Y

EXPLODE Logic
* get item/supp/cntry/locs and divide into threads

FUTURE_COST_THREAD_SQL
on COST_EVENT_THREAD

Called for each thread in a loop

MEGRE and ROLL FORWARD Logic
* Update FUTURE_COST and
FUTURE_COST_DEAL with the effect of the cost

FUTURE_COST_SQL
event

Control
back to
user

When all threads are comple

When running in asynchronous mode, the Future Cost Engine is run in a separate
transaction than the client that calls it. For example if the cost change event is configured
to run in asynchronous mode, the work done in the Future Cost Engine for the approval
of a cost change runs in a different transaction as the flipping of the status of the cost
change to “A’ status. This means that control returns to the user in the form while the
Future Cost Engine runs in the background.

This is accomplished by using Oracle Advanced Queuing.

Cost event types with an EVENT_RUN_TYPE set to “ASYNC' on
COST_EVENT_RUN_TYPE_CONFIG runs in asynchronous mode.

Future Cost 187

Future Cost Engine Run Type Configuration

Future Cost Engine - ASYNC mode

Cost Event. COST_EVENT SQL

Control
. * Create COST_EVENT and
For Example: Cost Change COST_EVENT XYZ rows back to
(Approve/update/unapprove) user

*Create DBMS_SCHEDULER job

—————————— Transaction Boundry ————————~ DBMS_SCHEDULER |-~

A
FUTURE_COST_THREAD_SQL

EXPLODE Logic
* get item/supp/cntry/locs and divide into threads
on COST_EVENT_THREAD

*Create DBMS_SCHEDULER job

X Number of threads

—————————— Transaction Boundry -~ —~----~| DBMS_SCHEDULER e

FUTURE_COST_SQL

MEGRE and ROLL FORWARD Logic

* Update FUTURE_COST and
FUTURE_COST_DEAL with the effect of the cost
event

Batch

When running in batch mode, the Future Cost Engine is run during the nightly batch
run. For example if the cost change event is configured to run in batch mode, the work
done in the Future Cost Engine for the approval of a cost change runs during the next
batch run after the approval of the cost change.

Cost event types with an EVENT_RUN_TYPE set to ‘BATCH’ on
COST_EVENT_RUN_TYPE_CONFIG runs in batch mode.

188 Oracle Retail Merchandising Foundation Cloud Service

Future Cost Engine Error Handling

The fcexec.pc batch program and its associated prepost pre job contain logic to run the
Future Cost Engine in batch mode.

Future Cost Engine - BATCH mode

Cost Event -
COST EVENT SQL Control
(F/fr Erzigﬁleéa‘i:/s:ncaha?gfe) ™| * Create COST_EVENT and big';:o
PP P PP COST_EVENT_XYZ rows

FUTURE_COST_THREAD_SQL
Prepost.pc

pre for fcexec.pc EXPLODE Logic
Picks up batch type cost events * get item/supp/cntry/locs and divide into threads

on COST_EVENT_THREAD

FUTURE_COST_SQL

fcexec.pc
Picks up MERGE and ROLL FORWARD Logic
COST_EVENT_THREAD records * Update FUTURE_COST and
for batch type cost events FUTURE_COST_DEAL with the effect of the cost
event

Future Cost Engine Concurrency Control
Concurrency control is handled in the Future Cost Engine by locking the FUTURE_COST
table. The sole job of the Future Cost Engine is maintaining the FUTURE_COST table
and its helper DEAL_ITEM_LOC_EXPLODE. The first step in processing is to lock the
item/supplier/origin country/location combinations that the cost event covers (after the
identification of item/supplier/origin country/location combinations and chunking has
been done). If a lock cannot be obtained, another cost event is already processing some
of the data that is required. When this occurs the Future Cost Engine stops processing
and records the results accordingly and the cost event can be retried at a later time.

Future Cost Engine Error Handling

The COST_EVENT_RESULT table is used to track all runs of the Future Cost Engine
whether or not they succeeded. The table records a cost event ID and thread ID, the
result code, and any error message that may exist. A special screen is used to
search/access the results.

Future Cost Engine Threading/Chunking

The Future Cost Engine deals with large amounts of data. Its inputs can vary greatly in
size. Its inputs can be one large driver or a group of smaller drivers.

Future Cost 189

Future Cost Process

In order to deal with this volume and variation in input a configurable
threading/chunking mechanism is built into the Future Cost Engine. When the
transaction control is set to BATCH, the chunks are run in a threaded manner using the
Pro*C batch program to coordinate execution.

Future Cost Process

Note: This process focuses on batch runs of the future cost engine.

Many cost change

event detail tables
RMS Database exist. See data model
S for more detail.
1. Cost Event 7
] Configuration o
Configure Run (COST_EVENT_ fc_pricechg.pc
Type for All Cost RUN_TYPE_CO
Events NFIG) COST_EVENT_D
EAL
A\
HAN Future Cost
Cost Event Detail (FUTURE_COST) > 6.
2. Cost Events »| Tales by Event | RMS Processes
RMS Transactions (COST_EVENT) Type =
A\/

I B

8. 3. Future Cost Engin3—|
costeventprg.pc

4. 5.
fcthreadexec.pc fcexec.pc

Y

Administrators configure the system (COST_EVENT_RUN_TYPE) to define which
cost events types will be processed synchronously, asynchronously or in batch.
Configuration by cost event type also determines some threading and chunking
parameters.

RMS transactions that should drive future cost recalculation write Cost Events
(COST_EVENT and cost event type specific tables).

Future Cost Engine recalculates future cost

Note: This process flow focuses on batch recalculations, but synchronous
or asynchronous processes could easily be substituted in this step.

fcthreadexec.pc prepares threads for processing
fcexec.pc recalculates future cost and writes it the future cost table (FUTURE_COST)

RMS processes use future cost information to determine investment buy, margin,
and so on.

fc_pricechg.pc performs special calculation of pricing cost for franchise locations

costeventprg.pc purges aged cost events from the working cost event tables.

Batch Design Summary

The following batch programs are included in this chapter:

190 Oracle Retail Merchandising Foundation Cloud Service

fcthreadexec (Prepare Threads for Batch Calculation/Recalculation of Future Cost Values)

= fcthreadexec.pc (Prepare Threads for Batch Calculation/Recalculation of Future Cost
Values)

= fcexec.pc (Execute Batch Calculation/Recalculation of Future Cost Values)

= fc_pricechg.ksh (Use Pending Price Changes to Drive Recalculation of Pricing Cost
for some Franchise Item/Locations)

* costeventprg.pc (Purge Aged Cost Events)

fcthreadexec (Prepare Threads for Batch Calculation/Recalculation of
Future Cost Values)

Module Name fcthreadexec.pc

Description Prepare Threads for Batch
Calculation/Recalculation of Future
Cost Values

Functional Area Costing

Module Type Admin

Module Technology ProC

Catalog ID RMS230

Runtime Parameters N/A

Design Overview

The fcthreadexec.pc batch program is responsible for threading the cost events based on
the max_tran_size that is provided in the cost_event_run_type_config table.

This program must always be run before the fcexec batch.

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations run before fcexec.pc

Pre-Processing batch_itmcostcompupd.ksh

Post-Processing fecexec.pc

Threading Scheme Threaded by item, supplier, country and location
Restart/Recovery

The logical unit of work for this batch program is the cost_event_process_id on the
COST_EVENT table.

Key Tables Affected
Table Select Insert Update Delete
COST_EVENT Yes No No No
COST_EVENT_RUN_TYPE_CONFIG Yes No No No

Future Cost 191

fcexec (Execute Batch Calculation/Recalculation of Future Cost Values)

Table Select Insert Update Delete
COST_EVENT_NIL Yes No No No
COST_EVENT_COST_CHG Yes No No No
COST_EVENT_RECLASS Yes No No No
COST_EVENT_MERCH_HIER Yes No No No
COST_EVENT_ORG_HIER Yes No No No
COST_EVENT_SUPP_HIER Yes No No No
COST_EVENT_ELC Yes No No No
COST_EVENT_COST_ZONE Yes No No No
COST_EVENT_ITEM_COST_ZONE Yes No No No
COST_EVENT_DEAL Yes No No No
COST_EVENT_PRIM_PACK Yes No No No
COST_EVENT_COST_TMPL Yes No No No
COST_EVENT_COST_RELATIONSHIP Yes No No No
COST_EVENT_DEAL_PASSTHRU Yes No No No
COST_EVENT_SUPP_COUNTRY Yes No No No
COST_EVENT_THREAD Yes Yes No Yes

Design Assumptions
N/A

fcexec (Execute Batch Calculation/Recalculation of Future Cost Values)

Module Name fcexec.pc

Description Execute Batch
Calculation/Recalculation of Future
Cost Values

Functional Area Costing

Module Type Business Processing

Module Technology ProC

Catalog ID RMS223

Runtime Parameters N/A

Design Overview

The fcexec.pc batch program executes the future cost engine in batch mode. Cost events
set up to run in batch mode are threaded in the fcthreadexec.pc batch process and passed
to the future cost engine for processing by this program. This program should be always
run after the fcthreadexec.pc batch.

This batch program only serves as a wrapper to call the cost engine, the Key Tables
Affected section does not list the tables affected by the cost engine. The future cost engine
is threaded by item/supplier/country/location.

192 Oracle Retail Merchandising Foundation Cloud Service

fc_pricechg (Use Pending Price Changes to Drive Recalculation of Pricing Cost for some Franchise Item/Locations)

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations run after fcthreadexec.pc

Pre-Processing prepost fcexec pre

Post-Processing N/A

Threading Scheme Threaded by item, supplier, country and location
Restart/Recovery

The logical unit of work for this batch program is the cost_event_process_id on the
COST_EVENT table.

Key Tables Affected
Table Select Insert Update Delete
RESTART_CONTROL Yes No No No
COST_EVENT Yes No No No
COST_EVENT_RUN_TYPE_CONFIG Yes No No No
COST_EVENT_THREAD Yes Yes No Yes
COST_EVENT_RESULT Yes Yes No No

Design Assumptions
N/A

fc_pricechg (Use Pending Price Changes to Drive Recalculation of Pricing
Cost for some Franchise Item/Locations)

Module Name fc_pricechg.ksh

Description Use Pending Price Changes to Drive
Recalculation of Pricing Cost for some
Franchise Item/Locations

Functional Area Future Cost
Module Type Business Processing
Module Technology ksh

Catalog ID RMS497

Runtime Parameters N/A

Design Overview

This script checks for any item/locations that have scheduled price changes for the next
day (vdate+1). If there are corresponding item/location rows in the future cost table with

Future Cost 193

costeventprg (Purge Aged Cost Events)

the percent-off-retail type template associated then the pricing cost of those future cost
records will be recalculated by this program.

Scheduling Constraints

Schedule Information

Description

Scheduling Considerations
Pre-Processing
Post-Processing

Threading Scheme

After price change batch and before dtesys

N/A
N/A
N/A

Restart/Recovery

N/A

Key Tables Affected

Table

Select Insert

Update

Delete

price_hist

item_master
wf_cost_relationship
wi_cost_buildup_tmpl_head
cost_event_retail_change
Cost_event

Future_cost

N

<K R R R
< < =z Z Z

< Z z Z Z Z Z

Z z Z Z Z Z Z

Design Assumptions
N/A

costeventprg (Purge Aged Cost Events)

Module Name

costeventprg.pc

Description

Purge Aged Cost Events

Functional Area

Future Cost

Module Type Admin
Module Technology ProC
Catalog ID RMS203
Runtime Parameters N/A

194 Oracle Retail Merchandising Foundation Cloud Service

costeventprg (Purge Aged Cost Events)

Design Overview

This batch program purges tables used by the Future Cost calculation engine. Records
from the COST_EVENT and its related tables are purged from the system based on the
Cost Event History Days (cost_event_hist_days) system parameter.

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations N/A

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A
Restart/Recovery

The logical unit of work is the event type on the COST_EVENT_RUN_TYPE_CONFIG
table. Records are deleted serially per event type. Restart recovery is based on deleted
records. Restarting on a failed run will resume from records not yet deleted on the prior

failed run.
Key Tables Affected
Table Select Insert Update Delete
FOUNDATION_UNIT_OPTIONS Yes No No No
COST_EVENT No No No Yes
COST_EVENT_RESULT No No No Yes
COST_EVENT_THREAD No No No Yes
COST_EVENT_SUPP_COUNTRY No No No Yes
COST_EVENT_NIL No No No Yes
COST_EVENT_PRIM_PACK No No No Yes
COST_EVENT_COST_CHG No No No Yes
COST_EVENT_RECLASS No No No Yes
COST_EVENT_DEAL No No No Yes
COST_EVENT_MERCH_HIER No No No Yes
COST_EVENT_ORG_HIER No No No Yes
COST_EVENT_COST_ZONE No No No Yes
COST_EVENT_ELC No No No Yes
COST_EVENT_SUPP_HIER No No No Yes
COST_EVENT_ITEM_COST_ZONE No No No Yes
COST_EVENT_RUN_TYPE_CONFIG Yes No No No
COST_EVENT_DEAL_PASSTHRU No No No Yes

Future Cost 195

costeventprg (Purge Aged Cost Events)

Table Select Insert Update Delete
COST_EVENT_COST RELATIONSHIP No N o No Yes
COST_EVENT_COST_TMPL No No No Yes

Design Assumptions
N/A

196 Oracle Retail Merchandising Foundation Cloud Service

12
Invoice Matching

Overview

RMS stages invoice records to be integrated into the Oracle Retail Invoice Matching
(ReIM) product. It stages invoice records for Return To Vendor (RTV), Consignment,
Deals, Trade Management, Obligations, and Customs Entry.

Batch Design Summary
The following batch designs are included in this functional area:
= edidlinv (Download of Invoice For RelM)
= invclshp (Close Aged Shipments to Prevent them from Matching Open Invoices)
* invprg (Purge Aged Invoices)

Note: The batch program saexpim.pc has a functional
connection to this chapter.

edidlinv (Download of Invoice For RelM)

Module Name edidlinv.pc

Description Download of Invoice For ReIM
Functional Area Invoice Matching

Module Type Integration

Module Technology ProC

Catalog ID RMS127

Runtime Parameters N/A

Design Overview

The EDIDLINV program extracts invoice information from RMS invoice tables
(INVC_HEAD, INVC_DETAIL) to a flat file. This flat file is used by ReIM to upload
invoice data into tables such as IM_DOC_HEAD, IM_INVOICE_DETAIL and
IM_DOC_NON_MERCH. This batch program is run daily, extracting invoice records
whose invoice date falls on the current vdate.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations N/A
Pre-Processing N/A

Post-Processing N/A

edidlinv (Download of Invoice For RelM)

Schedule Information Description
Threading Scheme Multi-threaded by location
Restart/Recovery

Restart/recovery for this program is set up at the invoice ID and line sequence level. The
program resumes writing to file starting on the next line where the previous process

ended.
Key Tables Affected
Table Select Insert Update Delete
INVC_HEAD Yes No Yes No
INVC_DETAIL Yes No No No
INVC_XREF Yes No No No
INVC_MERCH_VAT Yes No No No
INVC_NON_MERCH Yes No No No
ITEM_MASTER Yes No No No
SUPS Yes No No No
PARTNER Yes No No No
VAT_CODE_RATES Yes No No No
PERIOD Yes No No No
WH Yes No No No
STORE Yes No No No
SYSTEM_OPTIONS Yes No No No

Integration Contract

Integration Type Download from RMS
File Name Determined by runtime parameter
Integration Contract IntCon000024

Output File Layout

Record Field Name Field Type Default Description
Name Value
FHEAD Record Char(5) FHEAD Describes file record type. Valid
descriptor value is FHEAD .k
Line id Number(10) 000000000 Sequential file line number.
1
Gentran ID Char(5) UPINV The type of transaction this file

represents. Valid value is UPINV.

198 Oracle Retail Merchandising Foundation Cloud Service

edidlinv (Download of Invoice For RelM)

Record Field Name Field Type Default Description
Name Value

Current date ~ Char(14) Vdate in YYYYMMDDHH24MISS
format.

THEAD Record Char(5) Describes file record type. Valid
descriptor value is THEAD.

Line id Number (10) Sequential file line number.

Transaction Number(10) Sequential transaction number. All

number records within this transaction will
also have this transaction number.

Document Char(6) Describes the type of document

Type being uploaded. The document
type will determine the types of
detail information that are valid for
the document upload. Invoice types
are held on the codes table under a
code type of 'IMIT".

Vendor Char (50) Vendor’s document number.

Document

Number

Group ID Char(10) NULL The Group ID is an informational
field, which can be used to identify
groups of invoices that were
transmitted to ReIM together. This is
not populated by RMS.

Vendor Type Char(6) Type of vendor (either supplier or
partner) for this document. Valid
values include Bank 'BK', Agent
'AG/, Freight Forwarder 'FF',
Importer 'IM', Broker 'BR', Factory
'FA', Applicant 'AP"', Consolidator
'CO', Consignee 'CN', Supplier
Hierarchy Level 1 'S1', Supplier
Hierarchy Level 2 'S2', and Supplier
Hierarchy Level 3 'S3'. These partner
types will be held on the codes table
under the code_type 'PTAL'".

Vendor ID Char(10) Vendor for this document.

Vendor Char(14) Date document was issued by the

Document vendor (in YYYYMMDDHH24MISS

Date format).

Order Number(12) Merchandising system order

Number / number for this document.

RTV order Required for merchandise invoices

number and optional for others. This field
can also contain the RTV order
number if the RTV flag is ‘Y’

Location Number(10) Merchandising system location for

this document.

Invoice Matching 199

edidlinv (Download of Invoice For RelM)

Record Field Name Field Type Default
Name Value

Description

Location Type Char(1)

Terms Char(15)
Due Date Char(14)
Payment Char(6)
method

Currency code Char(3)

Exchange rate Number(12,4)

Sign Indicator ~Char(1)

Total Cost Number(20,4)

Sign Indicator Char(1)

Total VAT Number(20,4)
Amount

Sign Indicator Char(1)

Total Quantity Number(12,4)

Sign Indicator ~Char(1)

Total Discount Number(12,4)

Merchandising system location type
(either “S’tore or “W’arehouse) for
this document. Required for
merchandise invoices and optional
for others.

Terms of this document. If terms
are not provided, the vendor’s
default terms will be associated with
this record.

Date the amount due is due to the
vendor (YYYYMMDDHH24MISS
format). If due date is not provided,
default due date is calculated based
on vendor and terms.

Method for paying this document.

Currency code for all monetary
amounts on this document.

Exchange rate *10000 (implied 4
decimal places) for conversion of
document currency to the primary
currency.

Indicates either a positive (+) or a
negative (-) total cost amount.

Total document cost *10000 (implied
4 decimal places), including all
items and costs on this document.
This value is in the document
currency.

Indicates either a positive (+) or a
negative (-) total vat amount.

Total VAT amount *10000 (implied 4
decimal places), including all items
and costs on this document. This
value is in the document currency.

Indicates either a positive (+) or a
negative (-) total quantity amount.

Total quantity of items *10000
(implied 4 decimal places) on this
document. This value is in EACHES
(no other units of measure are
supported in ReIM).

Indicates either a positive (+) or a
negative (-) total discount amount.

Total discount *10000 (implied 4
decimal places) applied to this
document. This value is in the
document currency.

200 Oracle Retail Merchandising Foundation Cloud Service

edidlinv (Download of Invoice For RelM)

Record Field Name Field Type Default Description
Name Value

Freight Type Char(6) NULL The freight method for this
document. Always blank.

Paid Ind Char(1) Indicates if this document has been
paid.

Multi- Char(1) N Indicates if this invoice goes to

Location multiple locations.

Merchandise ~ Char(1) Indicates if this invoice is a

Type consignment invoice.

Deal Id Number(10) NULL Deal Id from RMS if this invoice is a
deal bill back invoice. Always blank.

Deal Detail Id ~ Char(10) NULL Complex Deal Component Id.
Always blank from RMS.

Ref CNR Ext Char(50) NULL Reference to the External Id of

Doc Id Credit Note Request associated with
this document. Always blank from
RMS.

Ref INV Ext Char(50) NULL Reference to the External Id of

Doc Id Invoice associated with this
document. Always blank from RMS.

Deal Char(1) NULL Indicates if the document on

Approval IM_DOC_HEAD is to be created in

Indicator Approved or Submitted status.
Always blank from RMS.

RTV indicator Char(1) Indicates if this invoice is a RTV
invoice.

Custom Char(30) NULL This optional field is included in the

Document upload file for client customization.

Reference 1 No validation will be performed on
this field. Always blank from RMS.

Custom Char(30) NULL This optional field is included in the

Document upload file for client customization.

Reference 2 No validation will be performed on
this field. Always blank from RMS.

Custom Char(30) NULL This optional field is included in the

Document upload file for client customization.

Reference 3 No validation will be performed on
this field. Always blank from RMS.

Custom Char(30) NULL This optional field is included in the

Document upload file for client customization.

Reference 4 No validation will be performed on
this field. Always blank from RMS.

Cross- Number(10) Document that a credit note is for.

reference Blank for all document types other

document than merchandise invoices.

number

Invoice Matching 201

edidlinv (Download of Invoice For RelM)

Record Field Name Field Type Default Description

Name Value

TDETL Record Char(5) Describes file record type. Valid
descriptor value is TDETL.

Line id Number(10) Sequential file line number.

Transaction Number(10) Transaction number for this item

number detail record.

UPC Char(25) NULL UPC for this detail record. Valid
item number will be retrieved for
the UPC. Always blank from RMS.

upPC Number(5) NULL Supplement for the UPC. Always

Supplement blank from RMS.

Item Char(25) Item for this detail record.

VPN Char(30) NULL Vendor Product Number which can
(optionally) be used instead of the
Oracle Retail Item Number.

Sign Indicator Char(1) Indicates either a positive (+) or a
negative (-) Original Document
Quantity amount.

Original Number(12,4) Quantity *10000 (implied 4 decimal

Document places), in EACHES, of the item on

Quantity this detail record.

Sign Indicator ~Char(1) Indicates either a positive (+) or a
negative (-) Original Unit Cost
amount.

Original Unit Number(20,4) Unit cost ¥*10000 (implied 4 decimal

cost places), in document currency, of
the item on this detail record.

Original VAT Char (6) VAT code for item.

Code

Original VAT = Number (20,10) VAT Rate for the VAT code/item.

rate

Sign Indicator Char(1) Indicates either a positive (+) or a
negative (-) total allowance. Default
is “+” if no allowances exist for this
detail record.

Total Number(20,4) Sum of allowance details for this

Allowance item detail record *10000 (implied 4
decimal places). If no allowances
exist for this item detail record,
value will be 0.

TNMRC Record Char(5) Describes file record type.
descriptor

Line id Number (10) Sequential file line number.

Transaction Number(10) Transaction number for this non-

number merchandise record.

202 Oracle Retail Merchandising Foundation Cloud Service

edidlinv (Download of Invoice For RelM)

Record Field Name Field Type Default Description
Name Value
Non Char(6) Non-Merchandise code that
Merchandise describes this cost.
Code
Sign Indicator Char(1) Indicates either a positive (+) or a
negative (-) Non Merchandise Amt.
Non Number(20,4) Cost *10000 (implied 4 decimal
Merchandise places) in the document currency.
Amt
Non Merch Char (6) VAT Code for Non-Merchandise.
VAT Code
Non Merch Number (20, 10) VAT Rate corresponding to the VAT
Vat Rate at code.
this VAT code
Service Char(1) Indicates if a service has actually
Performed been performed.
Indicator
Store Number(10) Store at which the service was
performed.
TVATS File record Char(5) Marks costs at VAT rate line. Valid
descriptor value is TVATS.
Line id Char(10) Sequential file line number.
Transaction Number(10) Transaction number for this vat
number detail record.
VAT code Char(6) VAT code that applies to cost.
VAT rate Number (20,10) VAT Rate corresponding to the VAT
code.
Sign Indicator ~Char(1) Indicates either a positive (+) or a
negative (-) Original Document
Quantity amount.
Cost at this Number (20,4) Total amount *10000 (implied 4
VAT code decimal places) that must be taxed
at the above VAT code.
TTAIL Record Char(5) Describes file record type. Default
descriptor value is TTAIL.
Line id Number(10) Sequential file line number.
Transaction Number(10) Transaction number for the
number transaction that this record is
closing.
Transaction Number(6) Total number of detail lines within
lines this transaction.
FTAIL Record Char(5) Describes file record type.
descriptor
Line id Number(10) Sequential file line number.

Invoice Matching 203

invclshp (Close Aged Shipments to Prevent them from Matching Open Invoices)

Record Field Name Field Type Default Description

Name Value
Number of Number(10) Total number of lines within this file
lines excluding FHEAD and FTAIL.

Design Assumptions
N/A

invclshp (Close Aged Shipments to Prevent them from Matching Open

Invoices)

Module Name

invclshp.pc

Description

Close Aged Shipments to Prevent them
from Matching Open Invoices

Functional Area

Invoice Matching

Module Type Admin
Module Technology ProC
Catalog ID RMS252
Runtime Parameters N/A

Design Overview

This batch program will close all shipments that have remained open for a specified
number of days as defined by the “Close Open Ship Days’ system parameter and are not
associated with any open invoices. This will be accomplished by setting the
invc_match_status on the SHIPMENT table to ‘C’losed.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations N/A
Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A
Restart/Recovery
N/A
Key Tables Affected
Table Select Insert Update Delete
PERIOD Yes No No No

204 Oracle Retail Merchandising Foundation Cloud Service

invprg (Purge Aged Invoices)

Table Select Insert Update Delete

SYSTEM_OPTIONS Yes No No No

ORDHEAD Yes No No No

SHIPMENT Yes No Yes No

SHIPSKU Yes No No No

INVC_HEAD Yes No No No

INVC_XREF Yes No No No
invprg (Purge Aged Invoices)

Module Name Invprg.pc

Description Purge Aged Invoices

Functional Area

Invoice Matching

Module Type Admin
Module Technology ProC
Catalog ID RMS253
Runtime Parameters N/A

Design Overview

This program will purge old posted invoices that have not already been purged by
ordprg.pc (which purges invoices associated with an order). This includes all types of
invoices —non-merchandise, credit notes, credit note requests, debit memos, and
consignment invoices. Regular merchandise invoices will primarily be deleted through
ordprg.pc but will be deleted by invprg.pc if they still exist in the system.

The invoices considered are those older than the number of months defined in the
purge_config_options. ORDER_HISTORY_MONTHS column.
The age of the invoices will be determined from the match date; if there is no match date,

the invoice date will be used.

Note: This program deletes only from the RMS invoice
tables preceded with ‘INVC'.

Scheduling Constraints

Schedule Information Description

Frequency Monthly

Scheduling Considerations The program should run after ordprg.pc
Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Invoice Matching 205

invprg (Purge Aged Invoices)

Restart/Recovery
N/A
Key Tables Affected
Table Select Insert Update Delete
PERIOD Yes No No No
PURGE_CONFIG_OPTIONS Yes No No No
INVC_HEAD Yes No No Yes
SA_TRAN_HEAD Yes No No No
SHIPSKU Yes No No No
INVC_DETAIL No No No Yes
INVC_NON_MECH No No No Yes
INVC_MERCH_VAT No No No Yes
INVC_DETAIL_VAT No No No Yes
INVC_DISCOUNT No No No Yes
INVC_TOLERANCE No No No Yes
ORDLOC_INVC_COST No No Yes No
No No No Yes

INVC_MATCH_QUEUE

206 Oracle Retail Merchandising Foundation Cloud Service

13

Overview

Replenishment

Replenishment is a complex business process that monitors stock levels and creates
transactions to ensure that stores and WHs have optimal stock levels.

RMS supports a number of Replenishment Methods. A Replenishment Method is
associated with each item/location being replenished. Each Replenishment Method uses
an optimized calculation to determine the correct stock orders to create. Depending on
the locations, inventory in the supply chain and other factors, these stock orders can be
either Purchase Orders sent to a supplier, Transfers of inventory from WH to store or
Allocations.

The main purpose of this chapter is to describe the batch processes involved in
Replenishment. There is some discussion of user interfaces and database tables involved
in the larger Replenishment business process to provide context for the batch processes,
but please be aware that the discussion in this chapter of user interfaces and tables not
exhaustive.

For additional information about Replenishment, see the Merchandising Functional
Library (Doc ID: 1585843.1). Note that the White Papers in this library are intended only
for reference and educational purposes and may not reflect the latest version of Oracle
Retail software.

Replenishment Sub Processes

Replemshment can be divided into four ma]or sub-processes:

Estabhshment/ Calculatlon of Buxld of Transactions to Cleanup of
{ Management of | Recommended Order | Replemsh Inventory | | Replenishment Data
| Replenishment | 3 Quantity (ROQ) 1 | 1

Calculation Attributes —> —> .—>

1. Estabhshment /Management of Replemshment Calculatlon Attrlbutes

a. Replenishment Calculation Attributes drive how quantities will be calculated. A
number of Uls and batch processes maintain this data.

2. Calculation of Recommended Order Quantity (ROQ)

a. Complex processing determines the Recommended Order Quantity (ROQ) to
meet optimal stock level for item/locations based on current stock, forecasts,
history, Replenishment Calculation Attributes and other calculation inputs
(please note that the inputs and calculations vary depending on the
replenishment method selected for each item/location).

b. If a client uses Investment Buying, additional calculations are performed to
determine where additional profitable opportunistic purchases can be made.

3. Build Transactions to Replenish Inventory

a. Based on ROQ and Investment Buy, Purchase Orders, Allocations and Transfers
are created.

b. Additional processing optimizes these transactions.

Overview

4. Cleanup of Replenishment Data

a. Cleanup processes purge aged data to ensure good performance.

Establishment/Management of Replenishment Calculation Attributes
Many user and batch processes combine to manage replenishment calculation attributes.

1. replsizeprofile.pc reconciles the size profiles in RMS and Allocations and refreshes
the size profile materialized view used in replenishment processing.

2. Users create or update assorted replenishment calculation attributes. Data defined
by end users includes the schedule the item/location should be reviewed and
item/location level attributes. Item/location level attribute changes are written to a
series of Replenishment Attribute Staging Tables.

3. rplatupd.pc moves information from the item and location level Replenishment
Attribute Staging Tables (repl_attr_update_item and repl_attr_update_loc) to the
Replenishment Attributes Working Table (repl_item_loc)

4. rilmaint.pc moves information from the item/loc level Replenishment Attribute
Staging Table (repl_item_loc_updates) to the Replenishment Attributes Working
Table (repl_item_loc)

5. repladj.pc updates the Replenishment Attributes Working Table (repl_item_loc) for
item/locations using the Floating Point Replenishment Method based on history.

RMS Database

'/ﬁepl Attributes Staging Tahles\\

Replenishment Attribute
Replenishment Ve Updates by Item -

f— Alloc Size Profile
| MV Size Profile

1 Schedule (repl_attr_update_item)
replsizeprofile.pc — (repl_day) B
.| RMS Size Profile
(size_profile) Replenishment Attribute 2.
I Updates by Location |- Replenishment
(repl_attr_update_loc) User Interfaces
Replenishment Attribute
dat Item/
Replenishment Attributes Updatesty e’ Lt
Item/Location) Working Table (repl_item_loc_updates)
History (repl_item_loc) - -
(item_loc_hist) /
5. - J 3. <« & L’
repladj.pc rplatupd.pc rilmaint.pc

Calculation of Recommended Order Quantity (ROQ)

Many user and batch processes combine to calculate ROQ. Item/Locations follow very
different paths through the calculation of ROQ depending on whether they are
replenished from inventory (WH to Store via transfer) or from suppliers (via Purchase
Order).

1. replroq.ksh determines working net inventory
2. batch_reqgext.ksh multithreads regext.pc

a. reqext.pc uses calculated ROQ in rpl_net_inventory_tmp, franchise order
quantity on store_orders, and replenishment attributes to create transfer.
Adjusted ROQ is written to repl_results.

208 Oracle Retail Merchandising Foundation Cloud Service

Overview

Note: Transfers generated by Replenishment will follow the

same integration, processing and admin described in the
“Transfers, Allocations and Receiving’ described in this

volume. Transactions will also be published as described in
Volume 2 of the Operations Guide.

rplext.ksh uses replenishment attributes to determine ROQ for item/locs replenished

from suppliers. ROQ is written to repl_results. Working POs are written to

ord_temp.

chapter ‘Contracts’ in this guide for more information.

If the customer uses Investment buying

a. ibexpl.pc determines eligible investment buy opportunities

If the customer uses Contracts, contracts are evaluated by cntrprss.pc. See the

b. ibcalc.pc calculates recommended investment buys that will meet the target
return-on-investment

RMS Database

Replenishment

Schedule

(repl_day)

-

(

Y

1.
replrog.ksh

k

(rpl_net_inventory_tmp)

N

Working Net Inventory

5. Investment Buying

5a.

Buy Opportunities
(sim_expl)

Eligible Investment Investment Buy

Results
(ib_results)

C

ibexpl.pc

5b.

1

\d

ibcalc.pc

Replenishment Attributes

2.
batch_regext.ksh

2a.
regext.pc

Working Table
(repl_item_loc)

ROQ
(repl_results)

C

Working Purchase

Orders
(ord_temp)

/

=

4.
cntrprss.pc

L]

3.
rplext.ksh

A

Replenishment from Inventory

Build Transactions to Replenish Inventory

Transactions are built based on ROQ. Additional jobs optimize the resulting POs,
Allocations and Transfers.

=

P WD

supcnstr.pc scales POs based on supplier constraints

rplapprv.pc approves Purchase Orders and Allocations

Replenishment from Supplier via Purchase Order

rplbld.pc uses ROQ and Investment Buy Results to build Orders

rplsplit.pc splits POs and Allocations to optimize truck loads

Replenishment 209

Overview

Note: Once approved, Purchase Orders and Allocations
generated by Replenishment will follow the same
integration, processing and Admin described in the
‘Purchase Orders’ and “Transfers, Allocations and Receiving’
described in this volume. Transactions will also be
published as described in Volume 2 of the Operations Guide.

5. batch_rplapprvgtax.ksh updates tax information (only necessary for GTAX
implementations

a. repl_wf_order_sync.ksh creates appropriate franchise orders for approved
allocations created during replenishment

5

batch_rplapprvgtax.ksh \

)|

4

. 2
rplapprv.pc

supcnstr.pc

Order Items/Loc

y Order Items
ardsku)

RMS Database P i || Franchise Order
{ | Order Header I Header ~
(ordhead) Offier Purchase { | | (wi_order_head)
| Order Tables !
{ Purchase Order Tabfe Franchise Order
7Y /| Tables
Replenishment B ———
(rel \Rigu\ls) Order Results
pL! (ord_temp) '
Allocation Header ‘
/—b (alloc_header) a
lon Detail 1
y anoc_detail) || X
Allocation Table: Ge_detalh ; 3.
rplsplit.pc
Investment Buy ‘\\‘
Results H
(ib_results) Transfer Header |
(tsthead) ;
4 er Detail | |
tsfdetail) |
| Transfer Tables y
batch_regext.ksh
1. /] _req | 6. i,
rplbld.pc \ repl_wf_order_sync.ksh
regext.pc
- J

Cleanup Replenishment Data

Replenishment creates large volumes of data. Several programs exist to purge
aged replenishment information. Regular purging ensures good batch
performance.

Note that all tables discussed in this chapter are not purged by replenishment
cleanup jobs. Many replenishment processes clean up their own working tables.
The POs, transfers and allocations created by replenishment are purged in their
own batch processes.

1. rplprg.pc purges aged ROQ and investment buy results.
2. rplahistprg.pc purges aged replenishment attribute history.
3. rplprg_month.pc purges ROQ and investment buy results.

210 Oracle Retail Merchandising Foundation Cloud Service

Batch Design Summary

ST

RMS Database

1.
(repl_results) rplprg.pc

Replenishment Attributes ROQ

_2' History Table
rplathistprg.pc (repl_attr_upd_hist)

Investment Buy
Results
(ib_results)

3.
rplprg_month.pc

- J

Batch Design Summary

The following batch designs are included in this chapter:

= replsizeprofile.pc - Update Replenishment Size Profile

* rplatupd.pc - Update Replenishment Calculation Attributes

* rilmaint.pc - Update Replenishment Calculation Attributes by Item/Loc

* repladj.pc - Recalculate Maximum Levels for Floating Point Replenishment
* replroq.ksh - Calculate Net Inventory

* batch_regext.ksh - Multithreading Wrapper for reqext

= regext.pc - ROQ Calculation and Distribution for Item/Locs Replenished from WH
* rplext.ksh - ROQ Calculation for Item/Locs Replenished from Supplier

* ibexpl.pc - Determines Eligible Investment Buy Opportunities

* ibcalc.pc - Calculate ROQ for Profitable Investment Buys

= rplbld.pc - Build Replenishment Orders

= supsplit.pc - Split Replenishment Orders Among Suppliers

= rplsplit.pc - Truck Splitting Optimization for Replenishment

* rplapprv.pc - Approve Replenishment Orders

* batch_rplapprvgtax.ksh - Update Replenishment Order Taxes

* repl_wf_order_sync.ksh - Sync Replenishment Franchise Orders

* rplprg.pc - Purge Aged Replenishment Results

* rplathistprg.pc - Purge Replenishment Attribute History

* rplprg month.pc - Purge Replenishment Results History by Month

The following batch designs are not included in this chapter, but are related to
replenishment as they impact the purchase orders generated by replenishment

* vrplbld.pc - See Purchase Order chapter of this document
* supcnstr.pc - See Purchase Order chapter of this document

Replenishment 211

replsizeprofile (Update Replenishment Size Profile)

= cntrprss.pc - See the Contracts chapter of this document

replsizeprofile (Update Replenishment Size Profile)

Module Name replsizeprofile.pc

Description Update Replenishment Size Profile
Functional Area Replenishment

Module Type Business Processing

Module Technology ProC

Integration Catalog ID RMS309

Runtime Parameters N/A

Design Overview

The batch module will do a total synchronization update of the RMS_SIZE_PROFILE
table with data from the ALC_SIZE_PROFILE table if the Allocation product is installed.
It will also do a complete refresh of the MV_SIZE_PROFILE materialized view used by
the RPLATUPD batch and REPLATTR form when size curves are applied to the items

being replenished.

Scheduling Constraints

Schedule Information

Description

Frequency

Scheduling Considerations

Pre-Processing

Daily

This program should be run before the rplatupd
batch to update the size curve definitions before
being applied to the items replenished

Prepost replsizeprofile pre - truncate records in the
RMS_SIZE_PROFILE table

Post-Processing N/A
Threading Scheme N/A

Restart/Recovery

N/A

Key Tables Affected
Table Select Insert Update Delete
ALC_SIZE_PROFILE Yes No No No
RMS_SIZE_PROFILE No Yes No No
MV_SIZE_PROFILE No No Yes No

Design Assumptions
N/A

212 Oracle Retail Merchandising Foundation Cloud Service

rplatupd (Update Replenishment Calculation Attributes)

rplatupd (Update Replenishment Calculation Attributes)

Module Name rplatupd.pc

Description Update Replenishment Calculation
Attributes

Functional Area Replenishment

Module Type Business Processing
Module Technology ProC

Catalog ID RMS313

Runtime Parameters N/A

Design Overview

The batch module reads replenishment attributes from the REPL_ATTR_UPDATE_ITEM
and REPL_ATTR_UPDATE_LOC tables and processes the item location relationships to
determine what replenishment attributes for what locations have to be updated.
Replenishment attributes for each item/location are recorded in REPL_ITEM_LOC table.
Review cycle information is kept on the REPL_DAY table. The rejected records are
written to the MC_REJECTIONS table for later reporting.

Prepost rplatupd pre - truncate records in the MC_REJECTIONS table.

Prepost rplatupd post - lock and delete records from REPL_ ATTR_UPDATE_ITEM,
REPL_ATTR UPDATE_LOC, REPL_ATTR UPDATE_EXCLUDE, and
REPL_ATTR_UPDATE_HEAD tables.

Scheduling Constraints

Schedule Information

Description

Frequency

Scheduling Considerations

Pre-Processing

Daily

This program should be run before the
replenishment batch programs, rpladj.pc,
replroq.ksh, regext.pc, and rplext.ksh. Run after
replsizeprofile if size curves are used for
replenishment

prepost rplatupd pre, replsizeprofile (if size profiles
are used in replenishment)

Post-Processing prepost rplatupd post
repladj
rplext
reqgext
Threading Scheme This program is threaded by location (store and
warehouse)
Restart/Recovery

The logical unit of work is replenishment attribute id, item, and location. Records will be
committed to the database when commit_max_ctr defined in the RESTART_CONTROL

table is reached.

Replenishment 213

rplatupd (Update Replenishment Calculation Attributes)

Key Tables Affected

Table Select Insert Update Delete
REPL_ATTR_UPDATE_ITEM Yes No No No
REPL_ATTR_UPDATE_HEAD Yes No No No
REPL_ATTR_UPDATE_LOC Yes No No No
ITEM_LOC Yes No No No
REPL_ITEM_LOC Yes Yes Yes Yes
REPL_DAY No Yes No Yes
ITEM_SEASONS Yes Yes No No
SYSTEM_OPTIONS Yes No No No
ITEM_SUPP_COUNTRY Yes No No No
ITEM_MASTER Yes No No No
PACKITEM Yes No No No
DEPS Yes No No No
REPL_ITEM_LOC_UPDATES No Yes No Yes
SUB_ITEMS_DETAIL Yes No No No
MASTER_REPL_ATTR Yes Yes Yes Yes
REPL_ATTR_UPDATE_EXCLUDE Yes No No No
REPL_DAY_UPDATE Yes Yes Yes Yes
STORE_ORDERS No No No Yes
PARTNER_ORG_UNIT Yes No No No
STORE Yes No No No
WH Yes No No No
SUPS Yes No No No
MV_SIZE_PROFILE Yes No No No
REPL_ATTR_UPD_HIST No Yes No No

Design Assumptions

N/A

214 Oracle Retail Merchandising Foundation Cloud Service

riimaint (Update Replenishment Calculation Attributes by ltem/Loc)

rilmaint (Update Replenishment Calculation Attributes by ltem/Loc)

Module Name rilmaint.pc

Description Update Replenishment Calculation Attributes by
Item/Loc

Functional Area Replenishment

Module Type Business Processing

Module Technology ProC

Catalog ID RMS311

Runtime Parameters N/A

Design Overview

This module transfers the replenishment attributes from the
REPL_ITEM_LOC_UPDATES table to the REPL_ITEM_LOC table.
REPL_ITEM_LOC_UPDATES is populated when certain attributes impacting
replenishment are modified. These attributes are located across the entire system and are
monitored for changes by a series of triggers and modules. Once a change is logged in
the REPL_ITEM_LOC_UPDATES table, this program will note the type of change and
update REPL_ITEM_LOC appropriately.

Scheduling Constraints

Schedule Information Description

Scheduling Considerations Run after sccext.pc and rplatupd.pc but before
repladj.pc

Pre-Processing N/A

Post-Processing prepost rilmaint post- truncate records on
REPL_ITEM_LOC_UPDATES table

Threading Scheme Threaded by location (store and warehouse)

Restart/Recovery

The logical unit of work for RILMAINT is item, change type and location. Records are
committed to the database once commit_max_counter defined in the
RESTART_CONTROL table is reached.

Key Tables Affected
Table Select Insert Update Delete
REPL_ITEM_LOC_UPDATES Yes No No No
REPL_ITEM_LOC Yes No Yes Yes
REPL_DAY Yes No No Yes
STORE_ORDERS No No No Yes
ITEM_MASTER Yes No No No

Replenishment 215

repladj (Recalculate Maximum Levels for Floating Point Replenishment)

Table Select Insert Update Delete
PACKITEM Yes No No No
ITEM_LOC Yes No No No
ITEM_SUPP_COUNTRY Yes No No No
ITEM_SUPP_COUNTRY_LOC Yes No No No
MASTER_REPL_ATTR No No No Yes

Design Assumptions
N/A

repladj (Recalculate Maximum Levels for Floating Point Replenishment)

Module Name

repladj.pc

Description

Recalculate Maximum Levels for Floating Point
Replenishment

Functional Area Replenishment
Module Type Business Processing
Module Technology ProC

Catalog ID RMS307

Runtime Parameters N/A

Design Overview

This batch module recalculates the maximum stock levels for all item-location
combinations with replenishment method of 'F' (floating point). The floating model stock
method will dynamically calculate an order-up-to-level. The calculated order-up-to-level
is used to update the REPL_ITEM_LOC table.

The maximum model stock (used for calculating order-up-to-level) is derived using the
sales history of various periods of time in order to accommodate seasonality as well as
trend. The sales history is obtained from the ITEM_LOC_HIST table.

Scheduling Constraints

Schedule Information

Description

Frequency

Scheduling Considerations
Pre-Processing
Post-Processing

Threading Scheme

Daily

Run before rplext/reqext and after rplatupd
N/A

N/A

Multi-threaded by dept

216 Oracle Retail Merchandising Foundation Cloud Service

replrog.ksh (Calculate Net Inventory)

Restart/Recovery

Themodule has restart/recovery based on item/ location. Records will be committed to
the database when commit_max_ctr defined in the RESTART CONTROL table is

reached.
Key Tables Affected
Table Select Insert Update Delete
REPL_ITEM_LOC Yes No Yes No
SUB_ITEMS_HEAD Yes No No No
SUB_ITEMS_DETAIL Yes No No No
ITEM_LOC_HIST Yes No No No
ITEM_SUPP_COUNTRY Yes No No No
REPL_DAY Yes No No No
STORE Yes No No No
WH Yes No No No
SUPS Yes No No No

Design Assumptions
N/A

replroq.ksh (Calculate Net Inventory)

Module Name replroq.ksh
Description Calculate Net Inventory
Functional Area Replenishment

Module Type Business Processing
Module Technology ksh

Catalog ID RMS308

Runtime Parameters N/A

Design Overview

This module performs the bulk of the logic to process and persist the replenishment data
into RPL_NET_INVENTORY_TMP table. (The information on this table is extracted by
regext batch program.)

The wrapper script does the following things:
= Inserts records into the SVC_REPL_ROQ table and determines the thread id of each
record.

= Move the records from SVC_REPL_ROQ to SVC_REPL_ROQ_GTT table and will
calculate the net inventory position and determine the ROQ of items which are on
replenishment.

Prepost replroq pre - truncate records in RPL_NET_INVENTORY_TMP tables and build
RPL_DISTRO_TMP and RPL_ALLOC_IN_TMP tables.

Replenishment 217

batch_regext.ksh (Multithreading Wrapper for reqext)

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling rplatupd, rilmaint, and repladj need to run before replroq.ksh so that
Considerations all replenishment calculation attributes are up to date
Pre-Processing Prepost replroq pre

Post-Processing N/A

Threading Scheme ;filli E:;mber of threads running in parallel is based on value in the

RMS_PLSQL_BATCH_CONFIG.MAX_CONCURRENT_THREADS
with the program name “CORESVC_REPL_ROQ_SQL”.

Threading is based on chunks.

Each chunk would have a defined size. This is defined in
RMS_PLSQL_BATCH_CONFIG.MAX_CHUNK_SIZE

Restart/Recovery

The program processes all items on REPL_DAY for the current day. If the program fails,
the program can be restarted and it will process the remaining records on
SVC_REPL_ROQ table.

Key Tables Affected
Table Select Insert Update Delete
DOMAIN_CLASS Yes No No No
DOMAIN_DEPT Yes No No No
DOMAIN_SUBCLASS Yes No No No
REPL_DAY Yes No No No
REPL_ITEM_LOC Yes No No No
SVC_REPL_ROQ Yes Yes Yes Yes
SVC_REPL_ROQ_GTT Yes Yes Yes Yes
RPL_NET_INVENTORY_TMP No Yes No No
STORE Yes No No No
WH Yes No No No
STORE_ORDERS Yes No Yes No
SUPS Yes No No No
SYSTEM_OPTIONS Yes No No No

Design Assumptions
N/A

batch_reqext.ksh (Multithreading Wrapper for reqext)

Module Name batch_regext.ksh

218 Oracle Retail Merchandising Foundation Cloud Service

regext (ROQ Calculation and Distribution for ltem/Locs Replenished from WH)

Description Multithreading Wrapper for reqext
Functional Area Replenishment

Module Type Admin

Module Technology ksh

Catalog ID RMS192

Runtime Parameters N/A

Design Overview
The purpose of this module is to run the reqext.pc batch program multithreaded.
prepost reqext pre - create the TSFHEAD records for unique combination of Warehouse
and Store, stock category, and department.
prepost regext post - update transfer status to ‘A’pproved.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations Sales Posting, rplatupd, rilmaint, repladj, prepost replroq

and replroq need to run before regext

rplext.ksh should run after reqext

Pre-Processing prepost regext pre
Post-Processing prepost reqext post, rplext.ksh
Threading Scheme Threaded by different partitions of

RPL_NET_INVENTORY_TMP

Restart/Recovery
N/ A - this script only serves as a wrapper for the batch process regext.pc.
Key Tables Affected
Table Select Insert Update Delete
ALL_TAB_PARTITIONS Yes No No No
RESTART_CONTROL Yes No No No

Design Assumptions
N/A

regext (ROQ Calculation and Distribution for Item/Locs Replenished from
WH)

Module Name regext.pc
Description ROQ Calculation and Distribution for Item/Locs
Replenished from WH

Replenishment 219

regext (ROQ Calculation and Distribution for Item/Locs Replenished from WH)

Functional Area Replenishment
Module Type Business Processing
Module Technology ProC

Catalog ID RMS310

Runtime Parameters N/A

Design Overview

This module performs the automatic replenishment of items from warehouses to stores.
It runs through every item-store combination set to be reviewed on the current day, and
calculates the quantity of the item, known as the recommended order quantity (ROQ)
that needs to be transferred to the store (if any). In addition, it distributes this ROQ over
any applicable alternate items associated with the item.

Once the transfer quantity of an item has been calculated, transfers are created and
records are written to the replenishment results table (REPL_RESULTS) based on the
replenishment order control indicator.

For franchise stores, separate transfers are created based on the need date and will be
linked back to a Franchise Order through the wf_order_no field.

This batch will also insert records into the respective tables for supporting the
localization feature. This will be applicable only if localizations are enabled.

prepost regext pre - Create the TSFHEAD records for unique combination of Warehouse
and Store, stock category and department.

prepost regext post - update transfer status to approved.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations Sales Posting, rplatupd and repladj need to run

before reqext

rplext should run after reqext

Pre-Processing prepost regext pre rplatupd and repladj
Post-Processing prepost reqext post, rplext
Threading Scheme Multiple processes of this program can be run at

the same time, each running against a different
partition of rpl_net_inventory_tmp

Restart/Recovery

The logical unit of work is an item/source warehouse. Restart/recovery is achieved
implicitly because repl_item_loc records that have been processed are updated with a
last review date and only records that have not been reviewed today will be picked up by
the driving cursor again. Records will be committed to the database when
commit_max_ctr defined in the RESTART_CONTROL table is reached. During the night
run the batch processed only those store order records with delivery slot. The review
dates are not updated during day run. During night all the records are processed
irrespective of the delivery slots.

220 Oracle Retail Merchandising Foundation Cloud Service

regext (ROQ Calculation and Distribution for ltem/Locs Replenished from WH)

Key Tables Affected
Table Select Insert Update Delete
ITEM_LOC Yes No No No
ITEM_LOC_SOH No No Yes No
ITEM_MASTER Yes No No No
ITEM_SUPP_COUNTRY Yes No No No
PACKHEAD Yes No No No
PACKITEM Yes No No No
PACKSTORE_HIST Yes No No No
PERIOD Yes No No No
REPL_DAY Yes No No No
REPL_ITEM_LOC Yes No Yes No
REPL_RESULTS No Yes No No
RPL_NET_INVENTORY_TMP Yes No No No
STORE Yes No No No
SUB_ITEMS_DETAIL Yes No No No
SUB_ITEMS_HEAD Yes No No No
SUPS Yes No No No
SYSTEM_OPTIONS Yes No No No
TSFDETAIL Yes Yes Yes No
TSFHEAD Yes Yes No No
WH Yes No No No
STORE_ORDERS Yes No Yes No
WF_ORDER_HEAD No Yes No No
WEF_ORDER_DETAIL Yes Yes No No
DELIVERY_SLOT Yes No No No
ADDR Yes No No No
COMPHEAD Yes No No No
OUTLOC Yes No No No
L10N_DOC_DETAILS GTT Yes Yes No No
MV_L10N_ENTITY Yes No No No
COUNTRY_ATTRIB Yes No No No
L10N_PKG_CONFIG Yes No No No
ORDHEAD_L10N_EXT No Yes No No
TSFHEAD_L10N_EXT No Yes No No
MRT_L10N_EXT No Yes No No

Replenishment 221

rplext.ksh (ROQ Calculation and Distribution for ltem/Locs Replenished from Supplier)

Design Assumptions
N/A

rplext.ksh (ROQ Calculation and Distribution for ltem/Locs Replenished
from Supplier)

Module Name rplext.ksh

Description ROQ Calculation and Distribution for
Item/Locs Replenished from Supplier

Functional Area Replenishment

Module Type Business Processing

Module Technology KSH

Catalog ID RMS315

Runtime Parameters N/A

Design Overview
RPLEXT (Vendor Replenishment Extraction), which is in bulk processing logic, is the
driving program for the replenishment process. It cycles through every item-location
combination that is ready to be reviewed on the current day, and calculates the quantity
of the item that needs to be ordered to the location. The program then writes these
temporary order line items to ORD_TEMP and REPL_RESULTS. ORD_TEMP is later
reviewed by the module CNTPRSS.PC in its evaluation of orders against contract types
A, C, D, whereas REPL_RESULTS is processed by RPLBLD.
The wrapper script does the following things:

= Insert records into the SVC_REPL_ROQ table and determines the thread id of each
record.

= Move the records from SVC_REPL_ROQ to SVC_REPL_ROQ_GTT table and the
processed records will be inserted to ORD_TEMP and REPL_RESULTS tables.

prepost rpl pre - truncate records in ORD_TEMP and ORD_MISSED tables.

prepost rplext post - truncate records in RPL_DISTRO_TMP and RPL_ALLOC_IN_TMP
table.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations rplatupd.pc, rilmaint.pc, rpladj.pc, reqext.pc and

cntrordb.pc need to run before rplext

If contracting is being used, entrprss.pc should run
after rplext.pc; otherwise, run ibexpl.pc, ibcale.pc
rplbld.pc

222 Oracle Retail Merchandising Foundation Cloud Service

rplext.ksh (ROQ Calculation and Distribution for ltem/Locs Replenished from Supplier)

Schedule Information

Description

Pre-Processing

Post-Processing

Threading Scheme

rplatupd.pc, rilmaint.pc, rpladj.pc, reqext.pc and

cntrordb.pc
prepost rpl pre

prepost rplext post

ibexpl.pc, ibcalc.pc rplbld.pc

Multiple processes of this program can be run at
the same time against different departments

Restart/Recovery

If the program fails, the program can be restarted and it will process the remaining

records on SVC_REPL_ROQ table.

Locking Strategy

STORE_ORDER table records are locked while calculating ROQ.

Security Considerations

N/A
Key Tables Affected

Table Select Insert Update Delete
DOMAIN_CLASS Yes No No No
DOMAIN_DEPT Yes No No No
DOMAIN_SUBCLASS Yes No No No
ITEM_SUPP_COUNTRY Yes No No No
PERIOD Yes No No No
REPL_DAY Yes No No No
REPL_ITEM_LOC Yes No Yes No
STORE Yes No No No
SYSTEM_OPTIONS Yes No No No
WH Yes No No No
SUPS Yes No No No
SUP_INV_MGMT Yes No No No
ORD_TEMP No Yes No No
REPL_RESULTS No Yes No No

Design Assumptions
N/A

Replenishment 223

ibexpl (Determines Eligible Investment Buy Opportunities)

ibexpl (Determines Eligible Investment Buy Opportunities)

Module Name ibexpl.pc

Description Determines Eligible Investment Buy
Opportunities

Functional Area Investment Buy

Module Type Business Processing

Module Technology ProC

Catalog ID RMS250

Runtime Parameters N/A

Design Overview

The ibexpl batch program pre-qualifies investment buy (IB) eligible wh/dept and IB
eligible supp/dept/locs.

The WH_DEPT table holds IB parameters at the WH or at the wh/dept level. If there are
IB parameters defined at the wh/dept level, they are used. If there are no IB parameters
defined at the wh/dept level, the IB parameters at the WH level are used. If IB
parameters are not defined at either level, then system level IB parameters are used. The
first part of this program sends IB parameters to the wh/dept level no matter what level
they are held at in the database. The results are written to the WH_DEPT_EXPL table.

Next the WH_DEPT_EXPL table is combined with supplier inventory management data
to get the final list of all eligible sup/dept/locs. The supplier inventory management data
determines whether or not a given sup/dept/loc combo is IB eligible.

The main problem is that this table can store information at different levels depending
upon the supplier's inventory management level.

Valid options for this level are:

= Sup(S)

* Sup/dept (D)

= Sup/loc (L)

= Sup/dept/loc (A)

If the record is not found at the defined level, it needs to look up the hierarchy as shown

below, up to the highest level (sup). If no record exists as the sup level, it is not IB
eligible.

* Sup

= Sup/dept->sup

= Sup/loc ->sup

= Sup/dept/loc -> sup/dept -> sup

The second part of this program explodes the supplier inventory management data down
to the sup/dept/loc level by filling in the implied rows. The exploded sup_inv_mgmt

information is only done for IB eligible wh/dept combinations from the wh_dept_expl
table. The results are placed on the sim_expl table.

224 Oracle Retail Merchandising Foundation Cloud Service

ibexpl (Determines Eligible Investment Buy Opportunities)

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations After rplext.pc and before ibcalc.pc
Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A

Restart/Recovery

N/A

Key Tables Affected
Table Select Insert Update Delete
WH Yes No No No
DEPS Yes No No No
WH_DEPT Yes No No No
SUP_INV_MGMT Yes No No No
SUPS Yes No No No
WH_DEPT_EXPL Yes Yes No Yes
TERMS Yes No No No
SIM_EXPL No Yes No Yes
SYSTEM_OPTIONS Yes No No No

Design Assumptions
N/A

Replenishment 225

ibcalc (Calculate ROQ for Profitable Investment Buys)

ibcalc (Calculate ROQ for Profitable Investment Buys)

Module Name ibcale.pc

Description Calculate ROQ for Profitable
Investment Buys

Functional Area Replenishment

Module Type Business Processing

Module Technology ProC

Catalog ID RMS249

Runtime Parameters N/A

Design Overview

The ibcalc.pc batch program is the calculation engine for investment buy processing. It
identifies investment buy (IB) opportunities and calculates recommended order
quantities (ROQs) that will meet the target return-on-investment (ROI)

This module will calculate forward buy opportunities using:
* Carrying costs

* Ordering parameters

* Deals - future and expiring

= Cost changes - future

* Forecasts

* Inventory levels

» Target ROI (return on investment)

The deals and cost change components will be contained on a FUTURE_COST table. This
table will hold a record for each future date that has a costing event (for example, a cost
change, deal activation/deactivation). This process utilizes the default costing bracket
and default deal thresholds in the calculations.

Prepost ibcalc pre - set ib_results.status from “W” (worksheet) to ‘U’ (unprocessed).

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations After rplext. pc and ibexpl. pc
Before rplbld.pc

Pre-Processing rplext. pc and ibexpl. pc
Prepost ibcalc pre

Post-Processing rplbld.pc

Threading Scheme N/A

Restart/Recovery

The logical unit of work is item and location combination.

226 Oracle Retail Merchandising Foundation Cloud Service

rplbld (Build Replenishment Orders)

Key Tables Affected
Table Select Insert Update Delete
FUTURE_COST Yes No No No
SIM_EXPL Yes No No No
ITEM_LOC Yes No No No
ITEM_LOC_TRAITS Yes No No No
REPL_ITEM_LOC Yes No No No
ITEM_MASTER Yes No No No
PACKITEM Yes No No No
ITEM_SUPP_COUNTRY Yes No No No
ITEM_SUPP_COUNTRY_LOC Yes No No No
ITEM_SUPP_COUNTRY_DIM Yes No No No
SUPS Yes No No No
SUB_ITEMS_DETAIL Yes No No No
SUB_ITEMS_HEAD Yes No No No
UOM_CONVERSION Yes No No No
WH Yes No No No
IB_RESULTS No Yes No No

Design Assumptions
N/A

rpibld (Build Replenishment Orders)

Module Name rplbld.pc

Description Build Replenishment Orders
Functional Area Replenishment

Module Type Business Processing
Module Technology ProC

Catalog ID RMS314

Runtime Parameters N/A

Design Overview

RPLBLD builds RMS orders from recommended order quantities (ROQ) generated by the
RPLEXT.PC and IBCALC.PC processes. CNTRPRSS.PC associates contracts with the
ROQs created by RPLEXT.PC. These ROQs are placed on a temporary table (ORD_TEMP
or IB_RESULTS) by RPLEXT.PC and IBCALC.PC. All records on
ORD_TEMP/IB_RESULTS are processed by RPLBLD each night. These
ORD_TEMP/IB_RESULTS records are placed into logical groups, and a RMS order is
created for each logical group.

Replenishment 227

rplbld (Build Replenishment Orders)

In order to be placed in the same order group, the item/location ROQs from
ORD_TEMP/IB_RESULTS must share a common supplier, have the same order_status
(“W’orksheet or “A’pproved), and be on the same contract (or not be associated with a
contract). Depending on flags on the ORD_INV_MGMT table, two other criteria can be
used for splitting order groups. First, if the INV_MGMT_LVL is set to ‘D’ept, only items
in a single department are allowed in an ordering group. Secondly, the
SINGLE_LOC_IND can be set to “Y’es. If this is the case, only one location is allowed per
ordering group. Finally, a SKU may only exist in an ordering group with a single origin
country. When an item/loc ROQ ORD_TEMP/IB_RESULTS record is encountered with a
different origin country than the one it exists with in the current ordering group, it is
placed in a different ordering group.

To assist the recalculation and order scaling processes of replenishment ROQs, the
REPL_RESULTS record, associated with the ORD_TEMP being processed, is updated
with the ORDER_NO and ALLOC_NO that the ORD_TEMP record was placed with.
IB_RESULTS is also updated with the ORDER_NO.

If the location to be replenished is a Franchise location and the replenishment Order
Control is Semi-Automatic or Automatic, Franchise POs will be created per Costing
Location/Location. Associated Franchise Orders will also be created.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations Runs after rplext.pc, entrprss.pc (if contracting is

being used). Runs after vrplbld and ibcalc. Runs
before supcnstr

Pre-Processing None.
Post-Processing None.
Threading Scheme This program is threaded by supplier

Restart/Recovery

The logical unit of work is supplier, contract number, and order status. Records will be
committed to the database when commit_max_ctr defined in the RESTART_CONTROL
table is reached

Key Tables Affected
Table Select Insert Update Delete
ORD_TEMP Yes No No No
REPL_RESULTS Yes No Yes No
WH Yes No No No
ITEM_MASTER Yes No No No
IB_RESULTS Yes No Yes No
CONTRACT_HEADER Yes No Yes No
CONTRACT_DETAIL Yes No Yes No
ORDSKU Yes Yes No No

228 Oracle Retail Merchandising Foundation Cloud Service

supsplit (Split Replenishment Orders Among Suppliers)

Table Select Insert Update Delete
ORDLOC Yes Yes No No
ALLOC_HEADER No Yes No No
ALLOC_DETAIL No Yes No No
ITEM_LOC Yes No No No
ORDHEAD Yes Yes Yes No
ORD_INV_MGMT Yes Yes Yes No
ORDLC No Yes No No
ITEM_SUPP_COUNTRY_LOC No No No No
ITEM_SUPP_COUNTRY No No Yes No
BUYER_WKSHT_MANUAL No No Yes No
L10N_DOC_DETAILS_GTT Yes Yes No No
MV_L10N_ENTITY Yes No No No
COUNTRY_ATTRIB Yes No No No
L10N_PKG_CONFIG Yes No No No
TSFHEAD Yes No No No
ORDHEAD_L10N_EXT No Yes No No
TSFHEAD_L10N_EXT No Yes No No
MRT_L10N_EXT No Yes No No
FM_SYSTEM_OPTIONS Yes No No No
WF_ORDER_HEAD No Yes No No
WEF_ORDER_DETAIL No Yes No No

Design Assumptions
N/A

supsplit (Split Replenishment Orders Among Suppliers)

Module Name supsplit.pc

Description Split Replenishment Orders Among
Suppliers

Functional Area Replenishment

Module Type Business Processing

Module Technology ProC

Catalog ID RMS370

Runtime Parameters N/A

Replenishment 229

supsplit (Split Replenishment Orders Among Suppliers)

Design Overview

This program splits replenishment orders among different suppliers based on the
supplier distribution ratio setup for an item/location on replenishment. It only applies to
Direct to Store and Crossdock replenishments where a purchase order will be created

from a supplier.

Scheduling Constraints

Schedule Information

Description

Frequency

Scheduling Considerations

Pre-Processing

Post-Processing

Threading Scheme

Daily

This program will run nightly after the vendor
replenishment extraction program (rplext.pc) and
before the contract replenishment program
(cntrprss.pc)

rplext.pc

prepost supsplit pre

cntrprss.pc

Thread by department

Restart/Recovery

The logical unit of work for this program is set at item level. Records will be committed
to the database when commit_max_ctr defined in the RESTART_CONTROL table is

reached.
Key Tables Affected
Table Select Insert Update Delete
REPL_ITEM_LOC_SUPP_DIST Yes No No No
ORD_TEMP Yes Yes No Yes
REPL_RESULTS Yes Yes No Yes
ITEM_MASTER Yes No No No
ITEM_SUPP_COUNTRY Yes No No No
ITEM_SUPP_COUNTRY_LOC Yes No No No

Design Assumptions
N/A

230 Oracle Retail Merchandising Foundation Cloud Service

rplsplit (Truck Splitting Optimization for Replenishment)

rplsplit (Truck Splitting Optimization for Replenishment)

Module Name rplsplit.pc

Description Truck Splitting Optimization for
Replenishment

Functional Area Replenishment

Module Type Business Processing

Module Technology ProC

Catalog ID RMS318

Runtime Parameters N/A

Design Overview

The purpose of this program is to select all the orders eligible for truck splitting, which
are created by the replenishment programs. The orders that are eligible will be sent into
the truck splitting logic and the resulting orders will be created.

The orders, which will be eligible for splitting, are as follows:

* The order must have been created today by replenishment with
ord_inv_mgmt.ord_approve_ind ="Y".

* The order must not have been already split.
* The order must be a single location order and the location must be a warehouse.
* The order must not have any allocations associated.

Orders will only be split if they meet criteria for splitting as defined in the supplier
inventory management parameters.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations This program will run nightly after the

replenishment-scaling program (supcnstr.pc) and
before the replenishment approval program

(rplapprv.pc)
Pre-Processing supcnstr.pc
Post-Processing rplapprv.pc
Threading Scheme Thread by supplier

Restart/Recovery

The logical unit of work for this program is set at order level. Records will be committed
to the database when commit_max_ctr defined in the RESTART_CONTROL table is
reached.

Replenishment 231

rplsplit (Truck Splitting Optimization for Replenishment)

Key Tables Affected

Table Select Insert Update Delete
ORDHEAD Yes Yes Yes No
ORDSKU Yes Yes No Yes
ORDLOC Yes Yes No Yes
ORD_INV_MGMT Yes Yes Yes Yes
ITEM_MASTER Yes No No No
WH Yes No No No
V_RESTART_SUPPLIER Yes No No No
ALLOC_HEADER Yes Yes No Yes
ALLOC_DETAIL Yes Yes No Yes
ALLOC_CHRG No No No Yes
ORDHEAD_REV No No No Yes
ORDSKU_REV No No No Yes
ORDLOC_REV No No No Yes
ORDLOC_WKSHT No No No Yes
ORDLOC_DISCOUNT No No No Yes
ORDCUST No No No Yes
ORDLC No No No Yes
DEAL_COMP_PROM No No No Yes
DEAL_ITEMLOC No No No Yes
DEAL_THRESHOLD No No No Yes
DEAL_DETAIL No No No Yes
DEAL_QUEUE No No No Yes
DEAL_CALC_QUEUE No No No Yes
DEAL_HEAD No No No Yes
REPL_RESULTS No No No Yes
REV_ORDERS No No No Yes
ITEM_LOC Yes No No No
ITEM_SUPP_COUNTRY_LOC Yes No No No
CONTRACT_DETAIL No No Yes No
CONTRACT_HEAD No No Yes No
BUYER_WKSHT_MANUAL No No Yes No
IB_RESULTS No No Yes No
L10N_DOC_DETAILS GTT Yes No No Yes
MV_L10N_ENTITY Yes No No No
COUNTRY_ATTRIB Yes No No No

232 Oracle Retail Merchandising Foundation Cloud Service

rplapprv (Approve Replenishment Orders)

Table Select Insert Update Delete
L10N_PKG_CONFIG Yes No No No
TSFHEAD Yes No No No
ORDHEAD_L10N_EXT No Yes No No
TSFHEAD_L10N_EXT No Yes No No
MRT_L10N_EXT No Yes No No
FM_SYSTEM_OPTIONS Yes No No No

Design Assumptions
N/A

rplapprv (Approve Replenishment Orders)

Module Name rplapprv.pc

Description Approve Replenishment Orders
Functional Area Replenishment

Module Type Business Processing

Module Technology ProC

Catalog ID RMS300

Runtime Parameters N/A

Design Overview

This program looks at all replenishment, vendor and contract orders created during the
nightly batch run to determine if they can be approved. These orders are compared with
any vendor minimums that may exist. Orders that do not meet the vendor minimums are
either deleted or placed in worksheet status. A flag, held at the supplier inventory
management level (ORD_INV_MGMT.ORD_PURGE_IND), determines what action is
taken on orders that fail minimums. Vendor generated orders are not subject to these
minimum checks.

Vendor minimums can be held at the order, item, or location level. Order and location
level minimums are held on the SUP_INV_MGMT table. There is a flag that determines
if they are applied at the order level or at the location level. Vendor minimums at the
SKU level are held on the ITEM_SUPP_COUNTRY table.

When the ORD_INV_MGMT.ORD_PURGE_IND is ‘N’, a failure at any level causes the
order to be placed in worksheet status. When the ORD_INV_MGMT.ORD_PURGE_IND
is “Y’, a failure at the location level causes the offending location to be deleted; a failure at
the SKU level causes the problematic SKU to be deleted; and a failure at the order level
caused the entire order to be deleted.

For any orders that fail vendor minimums when the
ORD_INV_MGMT.ORD_PURGE_IND is “Y’, a record is written to the SUPS_MIN_FAIL
table for reporting purposes. This table is purged during the pre-processing of this batch
program.

After order records are updated, any applicable deals, brackets and allowances are
applied to the orders by subsequent processes. Open to buy is then updated for any

Replenishment 233

rplapprv (Approve Replenishment Orders)

orders built in approved status. If any orders are contract orders, the contract amounts
are updated as well to reflect any order record deletions.

If any orders are Franchise POs, the associated Franchise Orders are also approved if
they pass the credit check. If they fail the credit check, both Franchise POs and orders
will remain in Worksheet.

An order may not pass vendor minimum checks assuming that the vendor minimum
checks are performed for a physical WH. If the vendor minimum is not met for a physical
location, all the virtual WHs on the order within the physical WH will need to be
removed along with associated allocations.

Prepost rplapprv pre - truncates sups_min_fail table

Scheduling Constraints

Schedule Information Description

Frequency Daily

This program should run directly after the
replenishment supcnstr.pc program. It is important
that this program runs before any other process
affects the generated orders

Scheduling Considerations

The script batch_rplapprvgtax.ksh should also run
immediately after this program to ensure that taxes
are computed for the approved replenishment
orders in a global tax configuration

Pre-Processing Prepost rplapprv pre
Post-Processing batch_rplapprvgtax.ksh (when GTAX)
Threading Scheme N/A

Restart/Recovery

The logical unit of work is order number. Records will be committed to the database
when commit_max_ctr defined in the RESTART_CONTROL table is reached.

Key Tables
Table Select Insert Update Delete
ORDHEAD_LOCK No No No Yes
ORDHEAD Yes No Yes Yes
ORDLOC Yes No No Yes
ORDSKU Yes No No Yes
ORD_INV_MGMT Yes No Yes Yes
DEAL_CALC_QUEUE No Yes Yes No
ITEM_SUPP_COUNTRY Yes No No No
SUPS_MIN_FAIL No Yes No Yes
ALLOC_HEADER Yes No Yes Yes
ALLOC_DETAIL No No No Yes

234 Oracle Retail Merchandising Foundation Cloud Service

batch_rplapprvgtax.ksh (Update Replenishment Order Taxes)

Table Select Insert Update Delete
CONTRACT_HEADER Yes No Yes No
OTB No No Yes No
PERIOD Yes No No No
SYSTEM_OPTIONS Yes No No No
WH Yes No No No
ITEM_MASTER Yes No No No
SUPS Yes No No No
REPL_APPRV_GTAX_QUEUE No Yes No No
ORDHEAD_CFA_EXT No No No Yes
WF_ORDER_HEAD Yes No Yes No

Design Assumptions

N/A

batch_rplapprvgtax.ksh (Update Replenishment Order Taxes)

Module Name

batch_rplapprvgtax.ksh

Description

Update Replenishment Order Taxes

Functional Area

Replenishment

Module Type Business Processing
Module Technology ksh

Catalog ID RMS194

Runtime Parameters N/A

Design Overview

This script calls the TAX_THREAD_SQL.LOAD_REPL_ORDER_TAX_BREAKUP to
enable parallel execution via multiple thread calls to the
L1I0N_BR_INT_SQL.LOAD_ORDER_TAX_OBJECT function to compute taxes for
approved replenishment orders. Computed taxes are inserted/updated into the

ORD_TAX_BREAKUP table.

This batch should be run only for Global Tax (GTAX) configuration.

Scheduling Constraints

Schedule Information

Description

Frequency

Scheduling Considerations

Daily
This batch should be run only for Global Tax (GTAX)
configuration

This program should run directly after the replenishment
rplapprv program. It is important that this program runs
before any other process affects the generated orders

Replenishment 235

batch_rplapprvgtax.ksh (Update Replenishment Order Taxes)

Schedule Information Description

Pre-Processing rplapprv

Post-Processing N/A

Threading Scheme Threaded by purchase order number
Restart/Recovery

The logical unit of work is a set of purchase orders. Purchase order numbers in the
REPL_APPRV_GTAX_QUEUE table are assigned a thread number given the number of
slots.

The same table drives the restart and recovery as well. Purchase orders in a thread that
successfully complete execution are deleted from REPL_APPRV_GTAX_QUEUE. Any
restart after a fatal error will include the failed purchase order numbers when assigning
new threads.

Key Tables Affected
Table Select Insert Update Delete
ORD_TAX_BREAKUP Yes Yes Yes No
REPL_APPRV_GTAX_QUEUE Yes No No Yes
ORDLOC Yes No No No
ORDHEAD Yes No No No
ITEM_MASTER Yes No No No
MV_CURRENCY_CONVERSION_RATES Yes No No No
ITEM_SUPP_COUNTRY Yes No No No
V_PACKSKU_QTY Yes No No No
ADDR Yes No No No
STATE Yes No No No
COUNTRY Yes No No No
COUNTRY_TAX_JURISDICTION Yes No No No
V_BR_COUNTRY_ATTRIB Yes No No No
V_BR_SUPS Yes No No No
V_BR_STORE_FISCAL_CLASS Yes No No No
V_BR_STORE_REG_NUM Yes No No No
V_BR_WH_REG_NUM Yes No No No
V_BR_ITEM_FISCAL_ATTRIB Yes No No No
ORDLOC_EXP Yes No No No
ELC_COMP Yes No No No
ORDLOC_DISCOUNT Yes No No No
VAT_CODES Yes No No No
FM_FISCAL_UTILIZATION Yes No No No

236 Oracle Retail Merchandising Foundation Cloud Service

repl_wf_order_sync.ksh (Sync Replenishment Franchise Orders)

Table

Select Insert Update Delete

V_BR_ORD_UTIL_CODE

Yes No No No

Design Assumptions

This program should only be run in Global Tax (GTAX) installations.

repl_wf_order_sync.ksh (Sync Replenishment Franchise Orders)

Module Name

repl_wh_order_sync.ksh

Description

Sync Replenishment Franchise Orders

Functional Area

Replenishment

Module Type Business Processing
Module Technology ksh

Catalog ID RMS306

Runtime Parameters N/A

Design Overview

This module will serve as the wrapper for the package function
WF_ALLOC_SQL.REPL_SYNC_F_ORDER which will check the crossdock orders created
during replenishment and create franchise order records for any allocations where the
destination location is a franchise store.

Scheduling Constraints

Schedule Information

Description

Frequency

Scheduling Considerations

Daily
End of replenishment batch schdule

Pre-Processing rplapprv
Post-Processing N/A
Threading Scheme N/A

Restart/Recovery

N/A

Key Tables Affected
Table Select Insert Update Delete
ALLOC_HEADER Yes No Yes No
ALLOC_DETAIL Yes No Yes No
STORE Yes No No No
WF_CUSTOMER Yes No No No

Replenishment 237

rplprg (Purge Aged Replenishment Results)

Table Select Insert Update Delete
WF_ORDER_HEAD Yes Yes Yes No
WF_ORDER_DETAIL Yes Yes Yes Yes
ITEM_MASTER Yes No No No
STORE Yes No No No
WF_ORDER_AUDIT Yes No No Yes
WF_COST_RELATIONSHIP Yes No No No
FUTURE_COST Yes No No No
ITEM_SUPP_COUNTRY Yes No No No
ITEM_SUPP_COUNTRY_DIM Yes No No No
WF_ORDER_EXP Yes Yes No Yes
WF_COST_BUILDUP_TMPL_HEAD Yes No No No
WEF_COST_BUILDUP_TMPL_DETAIL Yes No No No
ITEM_LOC Yes No No No
ITEM_SUPP_UOM Yes No No No
V_ITEM_MASTER Yes No No No
V_STORE Yes No No No

Design Assumptions
N/A

rplprg (Purge Aged Replenishment Results)

Module Name rplprg.pc

Description Purge Aged Replenishment Results
Functional Area Replenishment

Module Type Admin

Module Technology ProC

Catalog ID RMS316

Runtime Parameters N/A

Design Overview

The replenishment extraction programs (RPLEXT, REQEXT) write a number of records to
REPL_RESULTS. Store orders populate the STORE_ORDERS table. The investment buy
process writes records to IB_RESULTS and the Buyer Worksheet Form populates
BUYER_WKSHT MANUAL. These tables hold information that is relevant to
replenishment processes. Over time, records on these tables become unneeded and must
be cleared out. The replenishment purge program goes through these tables and clears
out those records that are older than a predetermined number of days. The purging
cycles (number of days) are maintained as a system parameter.

238 Oracle Retail Merchandising Foundation Cloud Service

rplprg (Purge Aged Replenishment Results)

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations N/A

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A
Restart/Recovery

Because this program performs only deletes, there is no need for restart/recovery or
multithreading, and there is no driving cursor. However, this program still needs an
entry on RESTART_CONTROL to determine the number of records to be deleted

between commits.

Key Tables Affected
Table Select Insert Update Delete
SYSTEM_OPTIONS Yes No No No
ALL_TAB_PARTITIONS Yes No No No
REPL_RESULTS No No No Yes
BUYER_WKSHT_MANUAL No No No Yes
STORE_ORDERS No No No Yes
IB_RESULTS No No No Yes

Design Assumptions
N/A

Replenishment 239

rplathistprg (Purge Replenishment Attribute History)

rplathistprg (Purge Replenishment Attribute History)

Module Name rplathistprg.pc

Description Purge Replenishment Attribute History
Functional Area Replenishment

Module Type Admin

Module Technology ProC

Catalog ID RMS312

Runtime Parameters N/A

Design Overview

The batch will purge data from the REPL_ATTR_UPD_HIST table if it's older than the

defined number of retention weeks as specified in the system parameters.

Scheduling Constraints

Schedule Information Description

Frequency Weekly

Scheduling Considerations

This program should run at the end of the week

Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A
Restart/Recovery
N/A
Key Tables Affected
Table Select Insert Update Delete
REPL_ATTR_UPD_HIST No No No Yes
SYSTEM_OPTIONS Yes No No No
PERIOD Yes No No No
ALL_TAB_PARTITIONS Yes No No No
Integration Contract
Integration Type N/A
File Name N/A
Integration Contract N/A

240 Oracle Retail Merchandising Foundation Cloud Service

rplprg_month (Purge Replenishment Results History by Month)

Design Assumptions
N/A

rplprg_month (Purge Replenishment Results History by Month)

Module Name rplprg_month.pc

Description Purge Replenishment Results History
by Month

Functional Area Replenishment

Module Type Admin

Module Technology ProC

Catalog ID RMS317

Runtime Parameters N/A

Design Overview

The replenishment extraction programs (RPLEXT, REQEXT) write a number of records to
REPL_RESULTS. The investment buy process writes records to IB_RESULTS and the
Buyer Worksheet Form populates BUYER_WKSHT_MANUAL. These tables hold
information that is relevant to replenishment processes. Over time, records on these
tables become unneeded and should be cleared out. The monthly replenishment purge
program goes through these tables and clears out those records that are older than a
predetermined number of days (maintained in SYSTEM_OPTIONS). The eways
ewInvAdjustToRMS, ewReceiptToRMS need to be shutdown when
RPLPRG_MONTH.PC is run.

Scheduling Constraints

Schedule Information Description

Frequency Monthly

Scheduling Considerations N/A

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A
Restart/Recovery

Because this program performs only deletes, there is no need for restart/recovery or
multithreading, and there is no driving cursor. However, this program still needs an
entry on RESTART_CONTROL to determine the number of records to be deleted
between commits.

Key Tables Affected
Table Select Insert Update Delete
SYSTEM_OPTIONS Yes No No No

Replenishment 241

rplprg_month (Purge Replenishment Results History by Month)

Table Select Insert Update Delete
ALL_TAB_PARTITIONS Yes No No No
REPL_RESULTS No No No Yes
BUYER_WKSHT_MANUAL No No No Yes
STORE_ORDERS No No No Yes
IB_RESULTS No No No Yes

Design Assumptions
N/A

242 Oracle Retail Merchandising Foundation Cloud Service

14

Overview

Inventory

Most inventory process is in RMS are performed via the Ul and near real time RIB
integrations. However, some inventory related batch processes exist to manage inventory
data.

Batch Design Summary

The following batch designs are included in this chapter:

edidlprd.pc (Download Sales and Stock On Hand From RMS to Suppliers)
ordinvupld.pc (Upload and Process Inventory Reservations from ReSA)
wasteadj.pc (Adjust Inventory for Wastage Items)

refeodinventory.ksh (Refresh End of Day Inventory Snapshot)

invaprg.pc (Purge Aged Inventory Adjustments)
customer_order_purge.ksh (Purge Aged Customer Orders)

edidlprd (Download Sales and Stock On Hand From RMS to Suppliers)

Module Name edidlprd.pc

Description Download Sales and Stock On Hand From RMS to
Suppliers

Functional Area Inventory

Module Type Integration

Module Technology ProC

Catalog ID RMS47

Runtime Parameters N/A

Design Overview

This program is used to transmit item level sales and stock on hand information to
vendors. The report is a summary that will be sent to specified suppliers via EDI giving
sales details, as well as current stock on hand and in transit for all locations for each of
the items supplied by that supplier. Only those suppliers which have an EDI sales
reporting frequency of either daily or weekly will have files generated by this program.
The system parameter EDI Daily Report Lag is used for suppliers receiving daily updates
to determine the day lag for sales data sent, to account for late posting sales.

Scheduling Constraints

Schedule Information Description

Frequency Daily

edidlprd (Download Sales and Stock On Hand From RMS to Suppliers)

Schedule Information Description

Scheduling Considerations refeodinventory.ksh must run successfully prior to
execution to ensure that ITEM_LOC_SOH_EOD is up-to-
date

Pre-Processing refeodinventory.ksh, prepost pre

Post-Processing prepost post

Threading Scheme Multi-threaded by supplier through the locking of

EDI_SUPS_TEMP table for each supplier fetched

Restart/Recovery

Restart/recovery in this program is achieved through utilizing the global temporary
table EDI_SUPS_TEMP. Once a supplier is processed, it is deleted from the
EDI_SUPS_TEMP table to prevent the same supplier from being processed again during

recovery.

Key Tables Affected
Table Select Insert Update Delete
SUPS Yes No No No
EDI_SUPS_TEMP Yes No No Yes
EDI_DAILY_SALES Yes Yes Yes No
PERIOD Yes No No No
COMPHEAD Yes No No No
SYSTEM_OPTIONS Yes No No No
STORE Yes No No No
WH Yes No No No
ITEM_SUPP_COUNTRY Yes No No No
ITEM_MASTER Yes No No No
ITEM_SUPPLIER Yes No No No
ITEM_LOC_HIST Yes No No No
ITEM_LOC_SOH_EOD Yes No No No
ITEM_SUPP_COUNTRY_LOC Yes No No No

244 Oracle Retail Merchandising Foundation Cloud Service

edidlprd (Download Sales and Stock On Hand From RMS to Suppliers)

I/0 Specification
Integration Type Download from RMS
File Name Determined by runtime parameter
Integration Contract IntCon000013
Output File Layout
Record Field Name Field Type Default Description
Name Value
FHEAD File record descriptor Char(5) FHEAD Describes record type
Line number Number(10) 0000000001 Sequential file line number
File source Char(5) DLPRD File Type
File create date Char(8) Date that the file was
created in YYYYMMDD
format
THEAD File record descriptor Char(5) THEAD Identifies record type
Line number Number(10) Sequential file line number
Transaction number Number(10) Sequential transaction
number
Report date Char(8) For weekly reporting, this
will contain the current
date. For daily reporting, it
will be the date represented
by the sales, current date -
lag days. Both will be in the
YYYYMMDD format
Supplier Number(10) RMS Supplier Number
TITEM File record descriptor Char(5) TITEM Identifies file record type
Line number Number(10) Sequential file line number
Transaction number Number(10) Sequential transaction
number
Item Char(25) Transaction level item to
which with the data is
related
Item_Num_Type Char(6) Contains the item number
type for the item on
ITEM_MASTER
Ref_Item Char(25) Contains the primary
reference item for the item
in the file, if defined
Ref_Item_Num_Type Char(6) Contains the item number

type for the reference item
from ITEM_MASTER

Inventory 245

edidlprd (Download Sales and Stock On Hand From RMS to Suppliers)

Record
Name

Field Name

Field Type

Default
Value

Description

TQUTY

TTAIL

FTAIL

Vendor catalog number

Item description

File record descriptor

Line number

Transaction number

Quantity descriptor

Location type

Location

Unit cost

Quantity

File record descriptor

Line number

Transaction lines

File record descriptor

Line number

Number of transaction

lines

Char(30)

Char(250)

Char(5)
Number(10)
Number(10)

Char(15)

Char(2)

Number(10)

Number(20)

Number(12)

Char(5)
Number(10)
Number(6)

Char(5)
Number(10)
Number(10)

TQUTY

TTAIL

Contains the VPN (Vendor
Product Number), if
defined for the
item/supplier

Contains the transaction
level item description from
ITEM_MASTER

Identifies record type
Sequential file line number

Sequential transaction
number

Indicates what the quantity
represents, either ‘On-hand’
(stock), ‘Sold’(sales), or 'In
transit’

Indicates the type of
location represented in the
file: ‘ST’ for store or “WH’
warehouse

Contains the store or
warehouse number for
which the information
applies

Contains the current unit
cost for the item/location
with 4 implied decimal
places. This value will be in
the supplier’s currency

Indicates the quantity of the
item sold, on hand or in
transit to the location; the
quantity is represented with
4 implied decimal places

Identifies record type
Sequential file line number

Number of lines for this
transaction

Identifies record type
Total number of lines in file

Number of transaction lines
in file

Design Assumptions

A data translator will be used to convert the flat file produced by RMS to the required
EDI data format.

246 Oracle Retail Merchandising Foundation Cloud Service

ordinvupld (Upload and Process Inventory Reservations from ReSA)

Only data for items where the supplier is indicated as the primary supplier/origin
country for the item will be included in the report.

ordinvupld (Upload and Process Inventory Reservations from ReSA)

Module Name ordinvupld.pc

Description Upload and Process Inventory Reservations from
ReSA

Functional Area RMS

Module Type Integration

Module Technology ProC

Catalog ID RMS113

Runtime Parameters

Design Overview

This batch program processes the input file generated by Sales Audit Inventory Export
(saordinvexp), which is generated to reserve and un-reserve inventory based on in-store
customer orders and layaway. An in-store customer order is one where the customer is
purchasing inventory present in the store, but will not take it home immediately. For
example, with a large item like a sofa, the customer may pickup at a later time with a
larger vehicle. Layaway is when a customer pays for an item over time and only takes
the item home once it has been fully paid for. In processing this file, RMS updates the
quantity of the item/location sent to either add or subtract from the quantity in the
Customer Order inventory status type.

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations Run after saordinvexp.pc

Pre-Processing N/A

Post-Processing N/A

Threading Scheme Multithreading based on the thread number

padded with input file name

Restart/Recovery

The logical unit of work for ordinvupld.pc is a valid item status transaction at a given
store/location. The logical unit of work is defined as a group of these transaction records.
The Oracle Retail standard file-based restart/recovery logic is used. Records are
committed to the database when the maximum commit counter is reached.

Key Tables Affected
Table Select Insert Update Delete
ITEM_LOC_SOH No No Yes No

Inventory 247

ordinvupld (Upload and Process Inventory Reservations from ReSA)

Table Select Insert Update Delete
TRAN_DATA No Yes No No
ITEM_STATUS_QTY Yes Yes Yes No
ITEM_MASTER Yes No No No
STORE Yes No No No
I/0 Specification
Integration Type Upload to RMS
File Name Determined by runtime parameter
Integration Contract IntCon000049
Input File Layout
Record Field Name Field Type Default Value Description
Name
FHEAD Record Char(5) FHEAD Identifies the file record type
descriptor
File Line Id Char(10) 0000000001 Sequential file line number
File type Char(4) ORIN Identifies the file type
Definition
File Create Date =~ Char(14) File Create Date in
YYYYMMDDHHMMSS format
Location Number(10) Store location number
THEAD Record Char(5) THEAD Identifies the file record type
descriptor
File Line Id Char(10) Sequential file line number
Transaction Date Char(14) Transaction Date Date and time of the order
& Time processed
Transaction Type Char(6) ‘SALE’ Transaction type code specifies
whether the transaction is sale
or Return
TDETL Record Char(5) TDETL Identifies the file record type
descriptor
File Line Id Char(10) Sequential file line number
Item Type Char(3) REF or Can be REF or ITM
IT™
Item Char(25) Id number of the ITM or REF

248 Oracle Retail Merchandising Foundation Cloud Service

ordinvupld (Upload and Process Inventory Reservations from ReSA)

Record Field Name Field Type Default Value Description
Name
Item Status Char(6) LIN -Layaway Type of transaction
Initiate
LCA - Layaway
Cancel
LCO - Layaway
Complete
PVLCO - Post
void of Layaway
complete
ORI -
Pickup/ delivery
Initiate
ORC -
Pickup/delivery
Cancel
ORD -
Pickup/delivery
Complete
PVORD - Post
void of Pick-
up/delivery
complete
Dept Number(4) Department of item sold or
returned
Class Number(4) Class of item sold or returned.
Sub class Number(4) Subclass of item sold or
returned
Pack Ind Char(1) Pack indicator of item sold or
returned
Quantity Sign Chanr(1) P or ‘N’ Sign of the quantity.
Quantity Number(12) Quantity * 10000 (4 implied
decimal places), number of
units for the given order (item)
status
Selling UOM Char(4) UOM at which this item was
sold
Catchweight Ind Char(1) Indicates if the item is a
catchweight item. Valid values
are Y or NULL
Customer Order Char(48) Customer Order number
number
TTAIL File Type Record Char(5) TTAIL Identifies file record type
Descriptor
File Line Number(10) Specified by ID of current line being
Identifier ReSA processed by input file.
Transaction Number(6) Specified by Number of
count ReSA TDETL records in this
transaction set
FTAIL File Type Record Char(5) FTAIL Identifies file record type
Descriptor
File Line Number(10) Specified by ID of current line being
Identifier external processed by input file
system

Inventory 249

wasteadj (Adjust Inventory for Wastage Items)

Record Field Name Field Type Default Value Description
Name
File Record Number(10) Number of
Counter records/ transactions

processed in current file
(only records between

FHEAD & FTAIL)
Design Assumptions
N/A

wasteadj (Adjust Inventory for Wastage Items)

Module Name wasteadj.pc

Description Adjust Inventory for Wastage Items

Functional Area Inventory

Module Type Business Processing

Module Technology ProC

Catalog ID RMS388

Runtime Parameters N/A

Design Overview

This program reduces inventory of spoilage type wastage items to account for natural
wastage that occurs over the shelf life of the product. This program affects only items
with spoilage type wastage identified on ITEM_MASTER with a waste_type of ‘SP’
(spoilage). Sales type wastage is accounted for at the time of sale.

This program should be scheduled to run prior to the stock count and stock ledger batch
to ensure that the stock adjustment taken during the current day is credited to the
appropriate day.

Scheduling Constraints

Schedule Information Description

Frequency Daily

This program should be scheduled to run prior to
the stock count and stock ledger batch to ensure
that the stock adjustment taken during the current
day is credited to the appropriate day

Scheduling Considerations

Pre-Processing N/A
Post-Processing refeodinventory.ksh
Threading Scheme Threaded by store

250 Oracle Retail Merchandising Foundation Cloud Service

refeodinventory (Refresh End of Day Inventory Snapshot)

Restart/Recovery

The logical unit of work is an item/location. This batch program commits when the
number of records processed has reached commit_max_ctr. If the program aborts, it
restarts from the last successfully processed item /location.

Key Tables Affected
Table Select Insert Update Delete
ITEM_MASTER Yes No No No
ITEM_LOC Yes No No No
ITEM_LOC_SOH Yes No Yes No
CLASS Yes No No No
INV_ADJ_REASON Yes No No No
INV_AD]J No Yes No No
TRAN_DATA No Yes No No
PERIOD Yes No No No
SYSTEM_OPTIONS Yes No No No
STORE Yes No No No
WH Yes No No No
PARTNER Yes No No No
VAT_ITEM Yes No No No

Design Assumptions
N/A

refeodinventory (Refresh End of Day Inventory Snapshot)

Module Name refeodinventory.ksh

Description Refresh End of Day Inventory Snapshot
Functional Area Inventory Tracking

Module Type Business Processing

Module Technology Ksh

Catalog ID RMS303

Runtime Parameters N/A

Design Overview

This script refreshes the ITEM_LOC_SOH_EOD. This end of day snapshot is used for
assorted history build programs. The script does the following:

= Truncates the ITEM_LOC_SOH_EOD table
= Inserts all records from ITEM_LOC_SOH into ITEM_LOC_SOH_EOD

Inventory 251

invaprg (Purge Aged Inventory Adjustments)

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations Must run prior to any batch programs that use data

from ITEM_LOC_SOH_EOD to ensure that the
table is up-to-date

Pre-Processing wasteadj.pc
Post-Processing Prepost edidlprd pre
Threading Scheme N/A
Restart/Recovery
N/A
Key Tables Affected
Table Select Insert Update Delete
ITEM_LOC_SOH Yes No No No
ITEM_LOC_SOH_EOD No Yes No Yes
SYSTEM_OPTIONS Yes No No No

Design Assumptions

= All of the daily updates pertaining to stock on hand have been performed during
prior batches.

invaprg (Purge Aged Inventory Adjustments)

Module Name invaprg.pc

Description Purge Aged Inventory Adjustments
Functional Area Inventory

Module Type Admin

Module Technology ProC

Catalog ID RMS251

Runtime Parameters N/A

252 Oracle Retail Merchandising Foundation Cloud Service

Design Overview

Design Overview

This batch program all inventory adjustment records whose adjustment date has elapsed
a pre-determined number of months. The number of months that inventory adjustment
records are kept before they are purged by this batch is defined by the system parameter
Inventory Adjustment Months.

Scheduling Constraints

Schedule Information Description
Frequency Monthly
Scheduling Considerations N/A
Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A
Restart/Recovery
N/A
Key Tables Affected
Table Select Insert Update Delete
PURGE_CONFIG_OPTIONS Yes No No No
PERIOD Yes No No No
INV_ADJ No No No Yes

Design Assumptions
N/A

customer_order_purge.ksh (Purge Aged Customer Orders)

Module Name customer_order_purge.ksh
Description Purge Aged Customer Orders
Functional Area Purchase Orders

Module Type Admin

Module Technology ksh

Catalog ID RMS205

Design Overview

This module purges the store fulfillment customer order records from ORDCUST and
ORDCUST_DETAIL tables based on the CUST_ORDER_HISTORY_MONTHS from
PURGE_CONFIG_OPTIONS table. This will also purge the obsolete records having
status X’ where the customer order could not be created.

Inventory 253

customer_order_purge.ksh (Purge Aged Customer Orders)

Scheduling Constraints

Schedule Information

Description

Frequency
Scheduling Considerations

Pre-Processing

Monthly
Run after tsfprg.pc and ordprg.pc

tsfprg.pc, ordprg.pc

Post-Processing N/A
Threading Scheme N/A

Restart/Recovery

N/A

Key Tables Affected
Table Select Insert Update Delete
ORDCUST Yes No No Yes
ORDCUST_DETAIL Yes No No Yes
PURGE_CONFIG_OPTIONS Yes No No No
PERIOD Yes No No No

Security Considerations
N/A

254 Oracle Retail Merchandising Foundation Cloud Service

15

Overview

Transfers, Allocation, and RTV

Transfers, Allocations and Return to Vendor (RTV) transactions move inventory among
locations. The majority of processing associated with these transactions occurs through
the user interface and near real time RIB integration with Oracle Retail Store Inventory
Management (SIM) and Oracle Retail Warehouse Management System (RWMS).
However, RMS does use a variety of batch programs to maintain the data related to these
transactions.

Batch Design Summary

The following batch designs are included in this chapter:

docclose.pc - Close Transactions with no Expected Appointments, Shipments or
Receipts

dummyctn.pc - Reconcile Received Dummy Carton IDs with Expected Cartons
tamperctn.pc - Detail Receive Damaged or Tampered with Cartons

distropcpub.pc - Stage Regular Price Changes on Open Allocations/ Transfers so
Publishing Sends New Retail to Subscribing Applications

mrt.pc - Create Transfers for Mass Return Transfer

mrtrtv.pc - Create Return To Vendor for Mass Return Transfer
mrtupd.pc - Close Mass Return Transfers

mrtprg.pc - Purge Aged Mass Return Transfers and RTVs
rtvprg.pc - Purge Aged Returns to Vendors

tsfclose.pc - Close Overdue Transfers

tsfprg.pc - Purge Aged Transfers

allocbt.ksh - Create Book Transfers for Allocations Between Warehouses in the Same
Physical Warehouse.

docclose (Close Transactions with no Expected Appointments, Shipments

or Receipts)

Module Name docclose.pc

Description Close Transactions with no Expected

Appointments, Shipments or Receipts

Functional Area Transfers, Allocation, and RTVs
Module Type Business Processing

Module Technology ProC

Catalog ID RMS219

Runtime Parameters N/A

docclose (Close Transactions with no Expected Appointments, Shipments or Receipts)

Design Overview
This program will be used to attempt to close POs, transfers, and allocations that do not
have any outstanding appointments, shipments or receipts expected. Receipts without
appointments are recorded on the DOC_CLOSE_QUEUE table. Allocations souced from
an inbound receipt of another document (such as,. POs, Transfers, Allocations, ASNs and
BOL) can only be closed if the sourcing document is closed. This batch program will
retrieve unique documents from the table and use existing functions to attempt closure
for each.

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations Run after tsfclose, before wfordcls, wfretcls, tsfprg
and ordprg

Pre-Processing tsfclose, prepost docclose pre

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery

The logical unit of work is a unique doc and doc_type combination. The program is
restartable on the doc number.

Key Tables Affected
Table Select Insert Update Delete
DOC_CLOSE_QUEUE Yes No No Yes
ORDHEAD No No Yes No
DEAL_CALC_QUEUE No No No Yes
ITEM_LOC_SOH No No Yes No
TSFHEAD No No Yes No
ALLOC_HEADER No No Yes No

Design Assumptions
N/A

256 Oracle Retail Merchandising Foundation Cloud Service

dummyctn (Reconcile Received Dummy Carton IDs with Expected Cartons)

dummyctn (Reconcile Received Dummy Carton IDs with Expected
Cartons)

Module Name dummyctn.pc

Description Reconcile Received Dummy Carton IDs
with Expected Cartons

Functional Area Transfers, Allocations and RTVs
Module Type Business Processing

Module Technology ProC

Catalog ID RMS233

Runtime Parameters N/A

Design Overview

When stock orders are received, if a carton number or barcode cannot be read due to
damage to the box or other factors, a dummy ID is assigned to it and it is detail received
at the store or warehouse. The dummy ID and the details of the carton received are then
written to a staging table during the receiving process. This batch process scans stock
orders to find transfers or allocations that contain cartons that were not received to see if
any shipments contain un-received cartons that match the dummy carton receipt (both
item and quantity). If a match is found, then the dummy carton is received against the
matching carton. If a match is not found, an error is written to an error file and the record
remains on the staging table.

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations N/A

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A
Restart/Recovery

This program deletes from the DUMMY_CARTON_STAGE table. The program will
restart by processing the records that remain on the DUMMY_CARTON_STAGE table.

Key Tables Affected
Table Select Insert Update Delete
SHIPSKU_TEMP Yes Yes No Yes
SHIPMENT Yes No Yes No
SHIPSKU Yes No Yes No

Transfers, Allocation, and RTV 257

dummyctn (Reconcile Received Dummy Carton IDs with Expected Cartons)

Table Select Insert Update Delete
PACKITEM Yes No No No
DUMMY_CARTON_STAGE Yes Yes Yes Yes
TSFHEAD Yes No No No
ALLOC_HEADER Yes No No No
IF_ERRORS No Yes No No
ALLOC_DETAIL No No Yes No
SHIPITEM_INV_FLOW Yes No Yes No
APPT_DETAIL No No Yes No
DOC_CLOSE_QUEUE No Yes No No
TRAN_DATA No Yes No No
ITEM_LOC_SOH No Yes Yes No
EDI_DAILY_SALES No No Yes No
STAKE_SKU_LOC No Yes Yes No
STAKE_PROD_LOC No No Yes No
MRT_ITEM_LOC No No Yes No
TSFDETAIL No Yes Yes No
NWP No Yes Yes No
INV_ADJ No Yes No No
TSFDETAIL_CHRG No Yes No No
ITEM_LOC No Yes No No
PRICE_HIST No Yes No No
ITEM_SUPP_COUNTRY_LOC No Yes Yes No
ITEM_SUPP_COUNTRY_BRACKET_COST No Yes Yes No
INV_STATUS_QTY No Yes Yes Yes

Design Assumptions
N/A

258 Oracle Retail Merchandising Foundation Cloud Service

tamperctn (Detail Receive Damaged or Tampered with Cartons)

tamperctn (Detail Receive Damaged or Tampered with Cartons)

Module Name

tamperctn.pc

Description

Detail Receive Damaged or Tampered
with Cartons

Functional Area

Transfers, Allocations and RTVs

Module Type Business Processing
Module Technology ProC

Catalog ID RMS371

Runtime Parameters N/A

Design Overview

This program looks for items that were intended to be received as a pack and attempts to
match based on component quantity. It reads records from the staging table for the
carton ID for pack items not received and attempts to match on the components of the
pack and quantity. If a match is found, then the dummy carton is received against the
matching carton. If a match is not found, an error is written to an error file and the record

remains on the staging table.

This program is only run if the Receive Pack Component (STORE_PACK_COMP_RCV)

system parameter is “Y’.

Scheduling Constraints

Schedule Information

Description

Frequency

Scheduling Considerations

Pre-Processing

Daily

This batch program should only run when the
store_pack_comp_rcv_ind system parameter is "Y’

N/A

Post-Processing N/A
Threading Scheme N/A

Restart/Recovery

N/A

Key Tables Affected
Table Select Insert Update Delete
SYSTEM_OPTIONS Yes No No No
DUMMY_CARTON_STAGE Yes No No Yes
PERIOD Yes No No No
ALLOC_HEADER Yes No No No
SHIPMENT Yes No No No

Transfers, Allocation, and RTV 259

distropcpub (Stage Regular Price Changes on Open Allocations/Transfers so Publishing Sends New Retail to Subscribing Applications)

Table Select Insert Update Delete
SHIPSKU Yes No No No
SHIPSKU_TEMP Yes Yes No Yes
PACKITEM Yes No No No

Design Assumptions
N/A

distropcpub (Stage Regular Price Changes on Open Allocations/Transfers
so Publishing Sends New Retail to Subscribing Applications)

Module Name distropcpub.pc

Description Stage Regular Price Changes on Open
Allocations/ Transfers so Publishing
Sends New Retail to Subscribing
Applications

Functional Area Transfers, Allocations, and RTV

Module Type Integration

Module Technology ProC

Integration Catalog ID RMS216

Runtime Parameters N/A

Design Overview

This program will look for any regular price change (tran type 4 or 11 from PRICE_HIST)
that is due to go into effect tomorrow. Then, for any open allocations or transfers where
the “to” location and items that have price changes going into effect, it places a record on
the allocation or transfer publishing queue tables, such that they can be picked up by the
RIB and sent to the subscribing systems.

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations This program should run after RPM price event

execution batch process.

Pre-Processing RPM - PriceEventExecutionBatch

Post-Processing N/A

Threading Scheme Multithreaded based on store
Restart/Recovery

The logical unit of work is store. The driving cursor retrieves all item/locations that have
price changes in effect from the next day. It also gets all of the component items of the
non-sellable packs that have price changes.

260 Oracle Retail Merchandising Foundation Cloud Service

distropcpub (Stage Regular Price Changes on Open Allocations/Transfers so Publishing Sends New Retail to Subscribing Applications)

Key Tables Affected

Integration Contract

Table Select Insert Update Delete
PERIOD Yes No No No
PRICE_HIST Yes No No No
V_RESTART_STORE Yes No No No
V_PACKSKU_QTY Yes No No No
ITEM_MASTER Yes No No No
ALLOC_HEADER Yes No No No
ALLOC_DETAIL Yes No No No
TSFHEAD Yes No No No
TSFDETAIL Yes No No No
ORDHEAD_REV Yes No No No
ORDHEAD Yes No No No
ALLOC_MFQUEUE No Yes No No
TSF_MFQUEUE No Yes No No
Integration Type Download from RMS
File Name N/A
Integration Contract IntCon000196

ALLOC_MFQUEUE table

Integration Contract

Integration Type Download from RMS
File Name N/A
Integration Contract IntCon000197

TSF_MFQUEUE table

Design Assumptions

N/A

Transfers, Allocation, and RTV 261

mrt (Create Transfers for Mass Return Transfer)

mrt (Create Transfers for Mass Return Transfer)

Module Name mrt.pc

Description Create Transfers for Mass Return
Transfer

Functional Area Transfers, Allocations and RTVs

Module Type Business Processing

Module Technology ProC

Catalog ID RMS273

Runtime Parameters N/A

Design Overview

This batch program creates individual transfers for each ‘from” location on an approved
Mass Return Transfer. Transfers will be created in approved status, however for MRTs
with a Quantity Type of ‘Manual’, meaning the MRT was created for a specific quantity
rather than “All Inventory’, if the SOH at the sending location is lower than the requested
quantity the status will be created in Input status. In addition, if the Transfer Not After
Date specified on the MRT is earlier than or equal to the current date, the status of the
associated transfers will also be set to Input.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations This batch should be scheduled to run before

mrtupd.pc and mrtrtv.pc, and before any other
transfer-related batches

Pre-Processing N/A

Post-Processing mrtrtv

Threading Scheme Threaded by warehouse
Restart/Recovery

The logical unit of work is a from/to location combination. This may represent a transfer
of multiple items from a location (store or warehouse) to a warehouse, depending on
how the MRT was created. Restart/recovery is based on from/to location as well. The
batch program uses the v_restart_all_locations view to thread processing by warehouse
(to location).

Key Tables Affected
Table Select Insert Update Delete
MRT Yes No Yes No
MRT_ITEM Yes No No No

262 Oracle Retail Merchandising Foundation Cloud Service

mrirtv (Create Return to Vendor for Mass Return Transfer)

Table Select Insert Update Delete
MRT_ITEM_LOC Yes No Yes No
ITEM_SUPP_COUNTRY Yes No No No
ITEM_LOC Yes No No No
ITEM_MASTER Yes No No No
ITEM_LOC_SOH Yes No Yes No
TSFDETAIL Yes Yes Yes No
TSFHEAD No Yes Yes No
TSF_ITEM_COST No Yes No No
TRAN_DATA No Yes No No
INV_STATUS_QTY Yes Yes Yes Yes
PERIOD Yes No No No

Design Assumptions
N/A

mrtrtv (Create Return to Vendor for Mass Return Transfer)

Module Name mrtrtv.pc

Description Create Return To Vendor for Mass
Return Transfer

Functional Area Transfers, Allocations and RTVs
Module Type Business Processing

Module Technology ProC

Catalog ID RMS275

Runtime Parameters N/A

Design Overview

This batch program creates RTVs for approved mass return transfers that require an RTV
to be created automatically and have an RTV create date earlier than or equal to the
current date. RTVs are created in either Input or Approved status, depending on how the
MRT was created. The program will then set the status of all processed MRTs to ‘R’ in
the MRT table, which indicates that the RTVs have been created.

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations Before mrtupd and after mrt
Pre-Processing mrt.pc

Transfers, Allocation, and RTV 263

mrtupd (Close Mass Return Transfers)

Schedule Information Description

Post-Processing mrtupd.pc

Threading Scheme Threaded by warehouse
Restart/Recovery

The logical unit of work for this program is set at the warehouse level. Threading is done
by store using the v_restart_all_locations view.

Key Tables Affected
Table Select Insert Update Delete
PERIOD Yes No No No
MRT Yes No Yes No
MRT_ITEM Yes No No No
MRT_ITEM_LOC Yes No No No
SUPS Yes No No No
RTV_HEAD No Yes Yes No
RTV_DETAIL No Yes No No
ADDR Yes No No No

Design Assumptions
N/A

mrtupd (Close Mass Return Transfers)

Module Name mrtupd.pc

Description Close Mass Return Transfers
Functional Area Transfers, Allocations and RTVs
Module Type Admin

Module Technology ProC

Catalog ID RMS276

Runtime Parameters N/A

Design Overview

This program updates the status of MRTs and their associated transfers to closed status,
for MRTs or transfers associated with an MRT that remain open after the transfer and/or
RTV not after dates have passed. MRTs that have transfers in progress (shipped but not
received) will not be closed by this program.

264 Oracle Retail Merchandising Foundation Cloud Service

mrtprg (Purge Aged Mass Return Transfers and RTV)

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations Run after mrtrtv.pc

Pre-Processing N/A

Post-Processing N/A

Threading Scheme Threaded by warehouse
Restart/Recovery

The logical unit of work for this program is warehouse. This program is multi-threaded
using the v_restart_all_locations view.

Key Tables Affected
Table Select Insert Update Delete
PERIOD Yes No No No
MRT Yes No Yes No
TSFHEAD Yes No Yes No
SHIPSKU Yes No No No
TSFDETAIL Yes No No No
ITEM_MASTER Yes No No No
ITEM_LOC Yes No No No
ITEM_LOC_SOH Yes No Yes No
V_PACKSKU_QTY Yes No No No

Design Assumptions
N/A

mrtprg (Purge Aged Mass Return Transfers and RTV)

Module Name mrtprg.pc
Description Purge Aged Mass Return Transfers and
RTVs

Functional Area

Transfers, Allocations and RTVs

Module Type Admin
Module Technology ProC
Catalog ID RMS274
Runtime Parameters N/A

Transfers, Allocation, and RTV 265

mrtprg (Purge Aged Mass Return Transfers and RTV)

Design Overview

The purpose of this module is to purge mass return transfer (MRT) records, and their
associated transfers and RTVs. Only MRTs with a status of closed in which all transfers
associated with the MRT are also closed and where the time elapsed between the current
date and the close date is at least equal to the system parameter value for MRT Transfer
Retention days.

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations This program should run daily

Pre-Processing N/A

Post-Processing N/A

Threading Scheme Threaded by warehouse
Restart/Recovery

The logical unit of work for this batch program is a warehouse location. The program is
multithreaded using v_restart_all_locations view.

Key Tables Affected
Table Select Insert Update Delete
PERIOD Yes No No No
SYSTEM_OPTIONS Yes No No No
TSFHEAD Yes No No Yes
TSFDETAIL No No No Yes
SHIPMENT No No No Yes
SHIPSKU Yes No No Yes
SHIPITEM_INV_FLOW No No No Yes
CARTON No No No Yes
APPT_HEAD Yes No No Yes
APPT_DETAIL Yes No No Yes
DOC_CLOSE_QUEUE No No No Yes
INVC_HEAD Yes No No Yes
INVC_DETAIL Yes No No Yes
MRT Yes No No Yes
MRT_ITEM Yes No No Yes
MRT_ITEM_LOC Yes No No Yes
RTV_HEAD Yes No No Yes
RTV_DETAIL No No No Yes

266 Oracle Retail Merchandising Foundation Cloud Service

rtvprg (Purge Aged Returns to Vendors)

Table Select Insert Update Delete

TSFDETAIL_CHRG No No No Yes

Design Assumptions
N/A

rtvprg (Purge Aged Returns to Vendors)

Module Name rtvprg.pc

Description Purge Aged Returns to Vendors
Functional Area Transfers, Allocations and RTVs
Module Type Admin

Module Technology ProC

Catalog ID RMS320

Runtime Parameters N/A

Design Overview

This batch program purges outdated RTV transactions from RMS. RTVs are considered
outdated if they number of months between their completion date and the current date
exceeds the system parameter RTV Order History Months and where all debit memos
associated with the RTV have been posted.

Scheduling Constraints

Schedule Information Description
Frequency Monthly
Scheduling Considerations N/A
Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A
Restart/Recovery
N/A
Key Tables Affected
Table Select Insert Update Delete
RTV_HEAD No No No Yes
RTV_DETAIL No No No Yes
INVC_HEAD Yes No No Yes
INVC_DETAIL No No No Yes

Transfers, Allocation, and RTV 267

tsfclose (Close Overdue Transfers)

Table Select Insert Update Delete
INVC_NON_MERCH Yes No No Yes
INVC_MERCH_VAT Yes No No Yes
INVC_DETAIL_VAT Yes No No Yes
INVC_MATCH_QUEUE Yes No No Yes
INVC_DISCOUNT Yes No No Yes
INVC_TOLERANCE Yes No No Yes
ORDLOC_INVC_COST Yes No Yes No
INVC_MATCH_WKSHT Yes No No Yes
INVC_XREF Yes No No Yes
RTVITEM_INV_FLOW No No No Yes
RTV_HEAD_CFA_EXT No No No Yes

Design Assumptions
N/A

tsfclose (Close Overdue Transfers)

Module Name tsfclose.pc

Description Close Overdue Transfers
Functional Area Transfers, Allocations and RTVs
Module Type Admin

Module Technology ProC

Catalog ID RMS379

Runtime Parameters N/A

Design Overview

This batch program processes unshipped and partially shipped transfers that are
considered ‘overdue’, based on system parameter settings. If this functionality is enabled
(by setting the system parameter TSF_CLOSE_OVERDUE = "Y’), then this program will
evaluate transfers to determine if they are overdue. The way that a transfer is considered
overdue depends on the source and destination locations. There are separate system
parameters for each of store to store, store to warehouse, warehouse to store, and
warehouse to warehouse types of transfers.

For unshipped transfers, the transfer status is updated to delete and transfer reserved
and expected inventory is backed out on ITEM_LOC_SOH for the sending and receiving
locations respectively. For transfers that are shipped but not fully received, an entry is
made into doc_close_queue table. These transfers are picked up by docclose batch and
closed after reconciliation.

268 Oracle Retail Merchandising Foundation Cloud Service

tsfprg (Purge Aged Transfers)

Scheduling Constraints

Schedule Information

Description

Frequency

Scheduling Considerations
Pre-Processing
Post-Processing

Threading Scheme

Daily

After tsfclose, run docclose and tsfprg

N/A
Docclose, tsfprg

Multi-threaded based on Transfer number

Restart/Recovery

The logical unit of work for this module is defined as a unique tsf_no. The

v_restart_transfer view is used for threading. This batch program uses table-based
restart/recovery. The commit happens in the database when the commit_max_ctr is

reached.
Key Tables Affected
Table Select Insert Update Delete
SYSTEM_OPTIONS Yes No No No
INV_MOVE_UNIT_OPTIONS Yes No No No
TSFHEAD Yes No Yes No
ALLOC_HEADER Yes No Yes No
ITEM_MASTER Yes No No No
V_PACKSKU_QTY Yes No No No
ITEM_LOC_SOH Yes No Yes No
DOC_CLOSE_QUEUE No Yes No No
Design Assumptions
N/A
tsfprg (Purge Aged Transfers)
Module Name tsfprg.pc
Description Purge Aged Transfers

Functional Area

Transfers, Allocations and RTVs

Module Type Admin
Module Technology ProC
Catalog ID RMS380
Runtime Parameters N/A

Transfers, Allocation, and RTV 269

tsfprg (Purge Aged Transfers)

Design Overview

This module purges closed or deleted transfers and their associated records after a set
number of days, based on the Transfer History Months system parameter.

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations Run after docclose, before wfrtnprg

Pre-Processing Prepost tsfprg pre

Post-Processing Prepost tsfprg post

Threading Scheme Threaded by transfer number
Restart/Recovery

This batch program is multithreaded using the v_restart_transfer view. The logical unit
of work is a transfer number. This batch program commits to the database for every
commit_max_ctr number of transfers processed.

Key Tables Affected
Table Select Insert Update Delete
PERIOD Yes No No No
SYSTEM_OPTIONS Yes No No No
TSFHEAD Yes No No Yes
TSFDETAIL No No No Yes
ALLOC_HEADER Yes No No Yes
ALLOC_DETAIL No No No Yes
ALLOC_CHRG Yes No No Yes
ALLOC_PURGE_QUEUE Yes No No No
DOC_PURGE_QUEUE Yes No No No
SHIPSKU Yes No No Yes
CARTON No No No Yes

Design Assumptions

This batch program does not process Mass Return Transfers (MRT) and Franchise
transfers (FO and FR). Purging of MRT and Franchise Order and Return records are done
by mrtprg, wfordprg, wirtnprg respectively.

270 Oracle Retail Merchandising Foundation Cloud Service

allocbt (Create Book Transfers for Allocations Between Warehouses in the Same Physical Warehouse)

allocht (Create Book Transfers for Allocations Between Warehouses in the
Same Physical Warehouse)

Module Name allocbt.ksh

Description Create Book Transfers for Allocations Between

Warehouses in the Same Physical Warehouse

Functional Area Inventory Movement
Module Type Business Processing
Module Technology ksh

Catalog ID RMS175

Runtime Parameters N/A

Design Overview

In RMS, when an allocation is received that involves a movement of stock between two
warehouses, it should be determined if the source and any of the destination warehouses
belong to the same physical warehouse. If so, that portion of the allocation should be
treated as a book transfer and not sent down to RWMS for processing. This batch job
identifies such allocations and creates book transfers once the allocation source is
received and/ or the release date for the allocation is reached.

Allocations can be sourced either from a warehouse’s available inventory or from an
inbound receipt. These allocations are integrated into RMS’s ALLOC_HEADER and
ALLOC_DETALIL tables and can be identified as the following;:

1.

Warehouse Sourced Allocations:

— Alloc_header.order_no is NULL and alloc_header.doc is NULL.

Purchase Ordered Sourced Allocations (Cross Doc POs):

a.
b.

Alloc_header.order_no holds the PO number and alloc_header.doc_type = ‘PO’.

Linked shipments are identified through shipment.order_no =
alloc_header.order_no.

Transfer Sourced Allocations:

a.

d.

Alloc_header.order_no holds the transfer number and alloc_header.doc_type =
“TSF'.

Linked shipments are identified through shipsku.distro_no =
alloc_header.order_no.

Alloc_header.doc holds the allocation number and alloc_header.doc_type =
‘ALLOC'.

Linked shipments are identified through shipsku.distro_no = alloc_header.doc.

ASN Sourced Allocations:

a.
b.

Alloc_header.doc holds the asn number and alloc_header.doc_type = “ASN’".
Linked shipments are identified through shipment.asn = alloc_header.doc.

BOL Sourced Allocations:

a.
b.

Alloc_header.doc holds the bol_no and alloc_header.doc_type = “BOL’.
Linked shipments are identified through shipment.bol_no = alloc_header.doc.

Transfers, Allocation, and RTV 271

allocbt (Create Book Transfers for Allocations Between Warehouses in the Same Physical Warehouse)

This batch job supports all above allocation scenarios and calls the core package function
ALLOC_BOOK_TSF_SQL to create book transfers.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations None
Pre-Processing None
Post-Processing None
Threading Scheme Threaded by alloc_header.wh
Restart/Recovery
N/A
Key Tables Affected
Table Select Insert Update Delete
ALLOC_HEADER Yes No Yes No
ALLOC_DETAIL Yes No Yes No
ITEM_LOC_SOH Yes No Yes No
WH Yes No No No
ITEM_MASTER Yes No No No
TSFHEAD Yes No No No
TSFDETAIL Yes No Yes No
SHIPMENT Yes No No No
SHIPSKU Yes No No No

Design Assumptions
N/A

272 Oracle Retail Merchandising Foundation Cloud Service

16

Overview

Sales Posting

Oracle Retail Merchandising System (RMS) includes a convenient interface with your
point-of-sale system (POS) that allows you to efficiently upload sales transaction data.
Once the data enters RMS, other modules take over the posting of that data to sales
transaction, sales history, and stock-on-hand tables. This overview describes the upload
and validation of sales transaction data from your POS to RMS and the relevant
processes.

Creating a POSU File

The RMS Sales Posting module, uploadsales.ksh requires a POSU file that is rolled up to
the item/store/price point level. There are a variety of ways to create this file:

If you use Oracle Retail Point of Sale (ORPOS), the integration via Oracle Retail Sales
Audit (ReSA) will create appropriate POSU files.

If you integrate your POS and Oracle Retail Sales Audit (ReSA), out of the box
integration between ReSA and RMS will produce POSU files.

If you integrate your OMS (Order Management System) and Oracle Retail Sales
Audit (ReSA), out of the box integration between ReSA and RMS will produce POSU
files.

If you use a 3" party POS or Order Management System (OMS) and do not use ReSA,
you must use a custom process to roll up data to an item/store/ price point level

- Additional information about the structure of the POSU file is available in the detailed
discussion of the uploadsales.ksh process.

Sales Posting Business Process

The Sales Posting Process consists of a number of related programs.

1.

uploadsales.ksh reads the POSU file and writes it’s contents to a series of staging
tables.

a. uploadsales_all. ksh wraps uploadsales.ksh to simplify the process of running
uploadsales.ksh for groups of POSU files.

salesprocess.ksh reads the staged data and performs major validation, financial and
inventory processing. Details of this processing are below in the detailed discussion
of salesprocess.ksh.

salesgenrej.ksh creates a reject file for transactions that fail salesprocess.ksh
validation.

salesuploadarch.ksh archives successfully processed transactions and clears them out
of the staging tables.

salesuploadpurge.ksh purges transactions from the archive tables after the
transactions age out of the system.

Batch Design Summary

A4

POSU File [«

A4

la.
Uploadsales_all.k
sh

A4

uploadsales.ksh

Batch Design Summary

3 Party POS System
T#gﬁsﬁfit”np/ | —If Not Using ReSA: 3 Party POS
Process
R *li
v If Using ReS,
System
saexprms - 34 Party POS

POSU File <

el

AT T

RMS Database

14

salesgenrej.ksh

System of
Record
Transaction,
Inventory and
Financial Tables

Sales Upload
Staging Tables

Sales Upload
Archive Tables

4.
salesuploadarch.k
sh

A

A A 4

\

T E—

5.
salesuploadpurge.

2.
salesprocess.ksh

The following batch designs are included in this chapter
* uploadsales.ksh (Upload POSU File for Processing)
= uploadsales_all.ksh (Process Multiple POSU Files)

* salesprocess.ksh (Main Processing of Staged Sale/Return Transactions)
* salesgenrej.ksh (Reject POSU Transactions)

ksh

* salesuploadarch ksh (Archive Successfully Posted Transactions)
= salesuploadpurge.ksh (Purge Aged Archived POSU Transactions)

uploadsales.ksh (Upload POSU File for Processing)

Module Name uploadsales.ksh

Description Upload POSU File for Processing
Functional Area Sales Posting

Module Type Integration

Module Technology Ksh

Catalog ID RMS112

Runtime Parameters N/A

274 Oracle Retail Merchandising Foundation Cloud Service

Reject File

uploadsales.ksh (Upload POSU File for Processing)

Design Overview

The purpose of this module is to upload the contents of the POSU file from ReSA or 3

rd

Party POS to the staging table for further processing.

Scheduling Constraints

Schedule Information

Description

Frequency

Scheduling Considerations

Pre-Processing

Post-Processing

Daily

This program runs in the background. When a POSU file
comes in and is detected, this module initiates the sales
posting process

saexprms.pc (if the client uses ReSA to produce POSU
files)

salesprocess.ksh

Threading Scheme N/A
Restart/Recovery
N/A
Locking Strategy
N/A
Security Considerations
N/A
Key Tables Affected
Table Select Insert Update Delete
SVC_POSUPLD_LOAD No Yes No No
SVC_POSUPLD_STATUS No Yes No No
SVC_POSUPLD_STAGING Yes Yes Yes No
V_SVC_POSUPLD_LOAD Yes No No No
Security Considerations
N/A
Integration Contract
Integration Type Upload to RMS
File Name POSU_<store>_<tran_date>_<sysdate>.<thread_val>
Integration Contract IntCon000044

Sales Posting 275

uploadsales.ksh (Upload POSU File for Processing)

Input File Layout

Record Field Name Field Type Default Description
Name Value
File Header File Type Record Char(5) FHEAD Identifies file record type
Descriptor
File Line Identifier = Number(10) Specified by ID of current line being
external processed by input file
system
File Type Definition Char(4) POSU Identifies file as "POS
Upload’
File Create Date Char(14) Date file was written by
external system
Location Number Number(10) Store identifier
Vat include Char(1) Determines whether or not
indicator the store stores values
including vat. Not
required but populated by
Oracle Retail sales audit
Vat region Number(4) Vat region the given
location is in. Not required
but populated by Oracle
Retail Sales Audit
Currency code Char(3) Currency of the given
location. Not required but
populated by Oracle Retail
sales audit
Currency retail Number(1) Number of decimals
decimals supported by given
currency for retails. Not
required but populated by
Oracle Retail sales audit
Transaction File Type Record Char(5) THEAD Identifies transaction
Header Descriptor record type
File Line Identifier = Number(10) Specified by ID of current line being
external processed by input file
system
Transaction Date Char(14) Transaction Date sale/return
date transaction was processed
at the POS
Item Type Char(3) REF or Item type will be
IT™™ represented as a REF or
IT™
Item Value Char(25) The ID number of an ITM
or REF
Dept Number(4) Dept of item sold or

returned. Not required but
populated by Oracle Retail
Sales Audit

276 Oracle Retail Merchandising Foundation Cloud Service

uploadsales.ksh (Upload POSU File for Processing)

Record
Name

Field Name

Field Type

Default
Value

Description

Class

Subclass

Pack Indicator

Item level

Tran level

Wastage Type

Wastage Percent

Transaction Type

Drop Shipment
Indicator

Total Sales Quantity

Selling UOM

Number(4)

Number(4)

Char(1)

Number(1)

Number(1)

Char(6)

Number(12)

Char(1)

Char(1)

Number(12)

Char(4)

‘S’ - sales
‘R’ - return

I'YV
INI

Class of item sold or
returned. Not required but
populated by Oracle Retail
Sales Audit

Subclass of item sold or
returned. Not required but
populated by Oracle Retail
Sales Audit

Pack indicator of item sold
or returned. Not required
but populated by Oracle
Retail Sales Audit

Item level of item sold or
returned. Not required but
populated by Oracle Retail
Sales Audit

Tran level of item sold or
returned. Not required but
populated by Oracle Retail
Sales Audit

Wastage type of item sold
or returned. Not required
but populated by Oracle
Retail Sales Audit

Wastage Percent*10000 (4
implied decimal places.),
wastage percent of item
sold or returned. Not
required but populated by
Oracle Retail Sales Audit

Transaction type code to
specify whether transaction
is a sale or a return

Indicates whether the
transaction is a drop
shipment or not. If it is a
drop shipment, indicator
will be 'Y'. This field is not
required, but will be
defaulted to 'N' if blank

Total sales quantity * 10000
(4 implied decimal places),
number of units sold at a
particular location

UOM at which this item
was sold

Sales Posting 277

uploadsales.ksh (Upload POSU File for Processing)

Record
Name

Field Name

Field Type

Default
Value

Description

Transaction
Tax

Sales Sign

Total Sales Value

Last Modified Date
Catchweight

Indicator

Actual Weight
Quantity

Sub Trantype
Indicator

Total Igtax Value

Sales Type

No Inventory
Return Indicator

Return Disposition

Return Warehouse

File Type Record
Descriptor

Char(1)

Number(20)

Char(14)
Char(1)

Number(12)

Char(1)

Number(20)

Char(1)

Char(1)

Char(10)

Number(10)

Char(5)

‘P’ - positive
‘N’ - negative

NULL

NULL

NULL

TTAX

Determines if the Total
Sales Quantity and Total
Sales Value are positive or
negative

Total Sales Value * 10000 (4
implied decimal places),
sales value, net sales value
of goods sold

For VBO future use

Indicates if the item is a
catch weight item. Valid
values are “Y’ or NULL

Actual Weight
Quantity*10000 (4 implied
decimal places), the actual
weight of the item, only
populated if
catchweight_ind =Y’

Tran type for ReSA Valid
values are ‘A’, ‘D', NULL

Total Igtax Value * 10000 (4
implied decimal places),
goods sold or returned

Indicates whether the line
item is a Regular Sale, a
customer order serviced by
OMS (External CO) or a
customer order serviced by
a store (In Store CO). Valid
values are ‘R’,’E’, or 'T

Contains an indicator that
identifies a return without
inventory. This is generally
a non-required column, but
in case of Returns, this is
required. Valid values are
Y or "N’

Contains the disposition
code published by RWMS

as part of the returns
upload to OMS

Contains the physical
warehouse ID for the
warehouse identifier where
the item was returned

Identifies the file record

type

278 Oracle Retail Merchandising Foundation Cloud Service

uploadsales.ksh (Upload POSU File for Processing)

Record Field Name Field Type Default Description
Name Value
File Line Identifier = Number(10) Specified by Sequential file line number
external
system
Tax Code Char(6) Holds the tax code
associated to the item
Tax Rate Number(20) Tax rate*10000000000(10
implied decimal places),
holds the tax rate for the
tax code associated to the
item
Total Tax Value Number(20) Total Tax value*10000(4
implied decimal places),
total tax amount for the line
item
Transaction File Type Record Char(5) TDETL Identifies transaction
Detail Descriptor record type
File Line Identifier = Number(10) Specified by ID of current line being
external processed by input file
system
Promotional Tran Char(6) Code for promotional type
Type from code_detail,
code_type = 'PRMT”
Promotion Number Number(10) Promotion number from
the RMS
Sales Quantity Number(12) Sales quantity*10000 (4
implied decimal places.),
number of units sold in this
prom type
Sales Value Number(20) Sales value*10000 (4
implied decimal places.),
value of units sold in this
prom type
Discount Value Number(20) Discount quantity*10000 (4
implied decimal places.),
value of discount given in
this prom type
Promotion Number(10) Links the promotion to
Component additional pricing
attributes
Transaction File Type Record Char(5) TTAIL Identifies file record type
Trailer Descriptor
File Line Identifier = Number(10) Specified by ID of current line being
external processed by input file
system
Transaction Count ~ Number(6) Specified by =~ Number of TDETL records
external in this transaction set
system

Sales Posting 279

uploadsales.ksh (Upload POSU File for Processing)

Record Field Name Field Type Default Description
Name Value
File Trailer File Type Record Char(5) FTAIL Identifies file record type
Descriptor
File Line Identifier = Number(10) Specified by ID of current line being
external processed by input file
system
File Record Counter Number(10) Number of
records/ transactions

processed in current file
(only records between
fhead & ftail)

Design Assumptions

Multiple taxes for an item if sent from POS to ReSA, will be summed to a single tax in
RMS and assigned one of the applicable tax codes.

Rolling up transactions to the item/store/price point
The program uploadsales.ksh requires that transactions be rolled up the
item/store/price point level. The tables below give a hypothetical (though not
particularly realistic) example of the type of rollup required by upload_sales.ksh.

Sales for Item Number 1234 (at one store during one period of the day)

Transaction

Number of ltems Amount

Price point

Number Sold (in specified (price reason)
currency unit)

167 1 9.99 Regular

395 2 18.00 Promotional

843 1 7.99 Clearance

987 3 27.00 Promotional

1041 1 9.99 Regular

1265 4 31.96 Clearance
Note: The variation of the price per item in different
transactions. This is the result of the price applied at the time
of sale —the price point. Now look at the next table that
shows the same transactions rolled up by item and price
point.

Number of Items Price Reason Total Amount for Item-Price point

Sold (price point) (in currency)

2 Regular price 19.98

5 Promotional price 45.00

280 Oracle Retail Merchandising Foundation Cloud Service

uploadsales_all.ksh (Process Multiple POSU Files)

Number of Items Price Reason Total Amount for Item-Price point
Sold (price point) (in currency)
5 Clearance price 39.95

uploadsales.ksh takes the totals and looks for any discounts for transactions in the POSU
file. It applies the discounts to an expected total dollar amount using the price listed for
that item from the pricing table (PRICE_HIST). It next compares this expected total
against the reported total. If the program finds a discrepancy between the two amounts,
it is reported. If the two totals match, the rollup is considered valid. If value-added tax
(VAT) is included in any sales transaction amounts, it is removed from those transactions
prior to the validation process.

uploadsales_all.ksh (Process Multiple POSU Files)

Module Name uploadsales_all. ksh
Description Process Multiple POSU Files
Functional Area Sales Posting

Module Type Integration

Module Technology Ksh

Catalog ID RMS157

Runtime Parameters N/A

Design Overview

The purpose of this script is to execute the uploadsales.ksh module for all POSU files that
are for upload. This wrapper will simplify the sales upload process for multiple POSU
files, removing the need to call the uploadsales.ksh individually for each file.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations This program runs in the background. When a POSU file

comes in and is detected, this module initiates the sales
posting process.

Pre-Processing saexprms.pc (if the client uses ReSA to produce POSU
files)
Post-Processing salesprocess.ksh
Threading Scheme N/A
Restart/Recovery
N/A

Sales Posting 281

salesprocess.ksh (Main Processing of Staged Sale/Return Transactions)

Locking Strategy
N/A

Security Considerations

N/A
Key Tables Affected
Table Select Insert Update Delete
SVC_POSUPLD_LOAD No Yes No No
SVC_POSUPLD_STATUS No Yes No No
SVC_POSUPLD_STAGING No Yes No No
V_SVC_POSUPLD_LOAD Yes No No No
Security Considerations
N/A
Integration Contract
Integration Type Upload to RMS
File Name POSU_<store>_<tran_date>_<sysdate>.<thread_val>
Integration Contract IntCon000044

Input File Layout

Refer to the Input File Layout section in uploadsales.doc.

salesprocess.ksh (Main Processing of Staged Sale/Return Transactions)

Module Name salesprocess.ksh

Description Main Processing of Staged Sale/Return
Transactions

Functional Area Sales Posting

Module Type Business Processing

Module Technology ksh

Catalog ID RMS151

Design Overview

The purpose of the SALESPROCESS.KSH module is to process sales and return details
from an external point of sale system (either POS or OMS). The sales/return transactions
will be validated against Oracle Retail item/store relations to ensure the sale is valid, but
this validation process can be eliminated if the sales that are being passed in, have been
screened by sales auditing (ReSA). The following common functions will be performed
on each sales/return record read from the input file:

= Read sales/return transaction record

282 Oracle Retail Merchandising Foundation Cloud Service

salesprocess.ksh (Main Processing of Staged Sale/Return Transactions)

= Lock associated record in RMS

= Validate item sale

* Check whether TAX maintenance is required, and if so determine the TAX amount

for the sale.

= Write all financial transactions for the sale and any relevant markdowns to the stock

ledger.

* Postitem/location/week sales to the relevant sales history tables

* Perform last sales processing to maintain accurate sales information in the system

Scheduling Constraints

Schedule Information

Description

Frequency

Scheduling Considerations

Pre-Processing

Post-Processing

Threading Scheme

Daily

This program is a trickle polled as point-of-sales data, in the form
of the POSU file, becomes available. It can be run multiple times a
day in a trickle-polling environment

Can be run ad hoc to trickle poll sales
uploadsales.ksh

salesgenrej.ksh
salesuploadarch.ksh

The number of threads running in parallel is based on value in the
column
RMS_PLSQL_BATCH_CONFIG.MAX_CONCURRENT_THREADS
with the program name “CORESVC_SALES_UPLOAD_SQL”.
Threading is based on chunks

Each chunk would have a defined size. This is defined in
RMS_PLSQL_BATCH_CONFIG.MAX_CHUNK_SIZE. Chunks
could be made up of a single or multiple THEAD/Items.

Because multithreading logic based on chunks is applied, it is
possible that a record is locked by another thread. Without a
mechanism to perform waiting/retrying, record locking errors
would happen more frequently

In the table RMS_PLSQL_BATCH_CONFIG,
RETRY_LOCK_ATTEMPTS contains the number of times the
thread will try to acquire the lock for a table and
RETRY_WAIT_TIME is the number of seconds the thread will wait
before it retries

POSU Chunking

MAX_CONCURRENT_THREADS MAX_CHUNK_SIZE

2

3

Number of THREADS: 11

Thread 1 Chunk 1 THEAD 1 Item 1
Thread 1 Chunk 1 THEAD 2 Item 1
Thread 1 Chunk 1 THEAD 3 Item 2

Sales Posting 283

salesprocess.ksh (Main Processing of Staged Sale/Return Transactions)

Number of THREADS: 11

Thread 1 Chunk 1 THEAD 4 Item 2
Thread 1 Chunk 1 THEAD 5 Item 3
Thread 2 Chunk 2 THEAD 6 Item 5
Thread 2 Chunk 2 THEAD 7 Item 6
Thread 2 Chunk 2 THEAD 8 Item 7
Thread 3 Chunk 3 THEAD 9 Item 8
Thread 3 Chunk 3 THEAD 10 Item 9
Thread 3 Chunk 3 THEAD 11 Item 10

In this run, threads would be allocated first to chunks 1 and 2. The other threads would
only be picked up once either thread 1 or 2 has finished its processing..

Restart/Recovery

The logical unit of work for salesprocess.ksh is a set of a single or multiple valid item
sales transactions at a given store location. This set is defined as a chunk. Based on the
example above, if for some reason, chunk 2 raised an error, THEAD 4, 5, and 6 wouldn't
be posted in RMS. Other chunks, if there are no errors, would be processed. User has to
correct the transaction details and upload the updated POSU file that includes the
affected THEAD lines for reprocessing.

Locking Strategy

Since the sales upload processes are run multiple times a day in a trickle-polling system,
a locking mechanism is put in place to allow on-line transactions and the
salesprocess.ksh module to run at the same time. The following tables would be locked
for update:

= ITEM_LOC_SOH

= ITEM_LOC_HIST

= [ITEM_LOC_HIST MTH

= VAT HISTORY

= EDI DAILY_SALES

= DEAL_ACTUALS_ITEM_LOC
= DAILY_SALES_DISCOUNT

= INVC_MERCH_VAT

= RTV_HEAD

Because multithreading logic based on chunks is applied, it is possible that a record is
locked by another thread. Without a mechanism to perform waiting/retrying, record
locking errors would happen more frequently.

In the table RMS_PLSQL_BATCH_CONFIG, RETRY_LOCK_ATTEMPTS is the number
of times the thread will try to acquire the lock for a table and RETRY_WAIT_TIME is the
number of seconds the thread will wait before it retries. Once the number of retries is
equal to the limit defined, the whole chunk wouldn’t be processed. This would create a
reject file with which the user can use to upload again to the staging table.

284 Oracle Retail Merchandising Foundation Cloud Service

salesprocess.ksh (Main Processing of Staged Sale/Return Transactions)

Security Considerations

N/A
Key Tables Affected
Table Select Insert Update Delete
VAT_HISTORY No Yes Yes No
DAILY_SALES_DISCOUNT No Yes Yes No
LOAD_ERR No Yes No No
STORE Yes No No No
CURRENCIES Yes No No No
CLASS Yes No No No
ITEM_MASTER Yes No No No
DEPS Yes No No No
RPM_PROMO Yes No No No
RPM_PROMO_COMP Yes No No No
DEAL_HEAD Yes No No No
DEAL_COMP_PROM Yes No No No
DEAL_ACTUALS_FORECAST Yes No No No
ITEM_LOC Yes No No No
ITEM_LOC_SOH Yes No Yes No
VAT_ITEM Yes No No No
ITEM_SUPP_COUNTRY Yes No No No
ITEM_SUPPLIER Yes No No No
SUPS Yes No No No
TERMS Yes No No No
PRICE_HIST Yes No No No
TEMP_TRAN_DATA No Yes No No
ITEM_LOC_HIST Yes Yes Yes No
ITEM_LOC_HIST_MTH Yes Yes Yes No
EDI_DAILY_SALES Yes Yes Yes No
ORDHEAD Yes Yes No No
INVC_HEAD Yes Yes No No
INVC_MERCH_VAT Yes Yes Yes No
INVC_XREF No Yes No No
INVC_DETAIL_TEMP2 No Yes No No
INVC_DETAIL Yes No No No
CODE_DETAIL Yes No No No
UOM_CLASS Yes Yes No No

Sales Posting 285

salesprocess.ksh (Main Processing of Staged Sale/Return Transactions)

Table Select Insert Update Delete
ITEM_XFORM_HEAD Yes No No No
ITEM_XFORM_DETAIL Yes No No No
ITEM_SUPP_COUNTRY_LOC Yes No No No
TRAN_DATA No Yes No No
INVC_DETAIL_TEMP No Yes No No
INVC_HEAD_TEMP No Yes No No
CONCESSION_DATA No Yes No No
DEAL_ACTUALS_ITEM_LOC Yes Yes Yes No
V_PACKSKU_QTY Yes No No No
IF_ERRORS No Yes No No
RTV_HEAD Yes No No No
SVC_POSUPLD_LOAD Yes Yes Yes No
SVC_POSUPLD_STATUS Yes Yes Yesq Yes
SVC_POSUPLD_STAGING Yes No Yes Yes
RMS_PLSQL_BATCH_CONFIG Yes No No No
V_SVC_POSUPLD_LOAD Yes No No No
SVC_POSUPLD_STAGING_REJ No Yes No No

Integration Contract

Integration Type Upload to RMS

File Name N/ A; at this point, the POSU data has
already been uploaded to the staging
tables

Integration Contract IntCon000103

The module will have the ability to re-process a POSU reject file directly. The file format
will therefore be identical to the input file layout for the uploadsales.ksh process. A reject
line counter will be kept in the program and is required to ensure that the file line count
in the trailer record matches the number of rejected records. If no errors occur, no reject
tiles would be generated.

Design Assumptions
Tax Handling:

POS can send either transactional level tax details in TTAX lines or item-level tax details
in IGTAX lines through the RTLOG file to ReSA. These tax details will be passed on to
RMS in the TTAX lines of the POSU file. Even though POS can pass multiple
IGTAX/TTAX lines to ReSA and from ReSA to RMS, RMS only supports one tax code
per item. If multiple taxes for an item are sent from POS to ReSA, they will be summed
to a single tax in RMS sales upload process and assigned one of the applicable tax codes
when writing tran_data 88.

286 Oracle Retail Merchandising Foundation Cloud Service

salesprocess.ksh (Main Processing of Staged Sale/Return Transactions)

Financial Transactions

The salesprocess.ksh writes transaction records to the TRAN_DATA table primarily
through its write_tran_data function. From the entire list of valid transaction codes (For
the full list of transaction codes, see the chapter “General ledger batch” in this volume of
the RMS Operations Guide), for the column TRAN_CODE, salesupload.ksh writes the

following:
Transaction Code Description
01 Net Sales (retail & cost)
02 Net sales (retail & cost) where - retail is always VAT exclusive, written
only if system_options.stkldgr_vat_incl_retl_ind =Y
03 Non-inventory Items Sales/Returns
04 Customer Returns (retail & cost)
05 Non-inventory VAT Exclusive Sales
06 Deal Income (sales)
11 Markup (retail only)
12 Markup cancel (retail only)
13 Permanent Markdown (retail only)
14 Markdown cancel (retail only)
15 Promotional Markdown (retail only), including ‘in-store’ markdown
20 Purchases (retail & cost)
24 Return to Vendor (RTV) from inventory (retail & cost)
60 Employee discount (retail only)

Note: Where value-added-tax is enabled (system_options
table, stkldgr_vat_incl_retl_ind column shows “Y’) and the
retail accounting method is also enabled, salesupload.ksh
writes an additional transaction record for code 02.

Any items sold on consignment — where the department’s
items are stocked as consignment, rather than normal (see
the DEPS table, profit_calc_type column) —are written as a
code 20 (Purchases) as well as a 01 (Net Sales) along with all
other applicable transactions, like returns. The 20 reflects the
fact that the item is purchased at the time it is sold, in other
words, a consignment sale.

Sales Posting 287

salesgenrej.ksh (Reject POSU Transactions)

salesgenrej.ksh (Reject POSU Transactions)

Module Name

salesgenrej.ksh

Description

Reject POSU Transactions

Functional Area

Sales Posting

Module Type Business Processing
Module Technology KSH
Catalog ID RMS338

Design Overview

The purpose of this module is to archive the rejected transactions and create a reject file
based on the recently processed POSU file which is still in the staging table.

Scheduling Constraints

Schedule Information

Description

Frequency

Scheduling Considerations

Pre-Processing

Daily
This program is executed after salesprocess.ksh

Can be run ad hoc to trickle poll sales

salesprocess.ksh

Post-Processing N/A
Threading Scheme N/A

Restart/Recovery

N/A

Key Tables Affected
Table Select Insert Update Delete
SVC_POSUPLD_LOAD Yes No No No
SVC_POSUPLD_STAGING Yes Yes No Yes
SVC_POSUPLD_RE]_RECS No Yes No No
V_SVC_POSUPLD_LOAD Yes No No No

Reject File:

The module will have the ability to re-process the reject file directly. The file format will
therefore be identical to the input file layout. A reject line counter will be kept in the
program and is required to ensure that the file line count in the trailer record matches the
number of rejected records. If no errors occur, no reject files would be generated.

288 Oracle Retail Merchandising Foundation Cloud Service

salesuploadarch.ksh (Archive Successfully Posted Transactions)

salesuploadarch.ksh (Archive Successfully Posted Transactions)

Module Name

salesuploadarch.ksh

Description

Archive Successfully Posted Transactions

Functional Area

Sales Processing

Module Type Admin
Module Technology Ksh
Catalog ID RMS340

Design Overview

The purpose of this module is to archive the successfully posted transactions, and clear

the staging table.

Scheduling Constraints

Schedule Information

Description

Frequency
Scheduling Considerations

Pre-Processing

Daily
Can be run ad hoc to trickle poll sales

salesprocess.ksh

Post-Processing N/A
Threading Scheme N/A
Key Tables Affected

Table Select Insert Update Delete
SVC_POSUPLD_LOAD Yes No No Yes
SVC_POSUPLD_STAGING Yes Yes No Yes
V_SVC_POSUPLD_LOAD Yes No No No
SVC_POSUPLD_LOAD_ARCH No Yes No No

salesuploadpurge.ksh (Purge Aged Archived POSU Transactions)

Module Name

salesuploadpurge ksh

Description

Purge Aged Archived POSU Transactions

Functional Area

Sales Processing

Module Type Admin
Module Technology Ksh
Catalog ID RMS341

Design Overview

The purpose of this module is delete the archive tables for the rejects and the posted
transaction based on the given retention period.

Sales Posting 289

salesuploadpurge.ksh (Purge Aged Archived POSU Transactions)

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations This data administration program does not have any

interdependencies with other sales upload processing
programs and can be run ad hoc with other purge

programs
Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A

Performance Considerations

The retention period for the archived data should be carefully considered. Disregarding
this would result in the tablespace size reaching its limit and would not be able to
accommodate additional archive records.

Key Tables Affected
Table Select Insert Update Delete
SVC_POSUPLD_RE]J_RECS No No No Yes
SVC_POSUPLD_LOAD_ARCH No No No Yes

290 Oracle Retail Merchandising Foundation Cloud Service

17

Overview

Sales History

RMS maintains sales history at a variety of levels. Item level sales history drives RMS
replenishment, ratio build and is exported to planning applications (see chapter
Integration - Planning in this document). RMS also maintains a smoothed average
history for RPM. Sales history rolled up to levels of the merchandise hierarchy is used by
Oracle Retail Allocation. Many clients also find sales history data useful for custom
reporting.

Batch Design Summary

The following batch designs are included in this chapter:

* rpmmovavg.pc (Maintain Smoothed, Moving Average Sales History for RPM)

* hstbld.pc (Weekly Sales History Rollup by Department, Class, and Subclass)

= hstbld_diff.pc (Weekly Sales History Rollup by Diff)

= hstbldmth.pc (Monthly Sales History Rollup by Department, Class, and Subclass)

= hstbldmth_diff.pc (Monthly Sales History Rollup by Diffs)

* hstmthupd.pc (Monthly Stock on Hand, Retail and Average Cost Values Update)

* hstwkupd.pc (Weekly Stock on Hand and Retail Value Update for Item/Location)
* hstprg.pc (Purge Aged Sales History)

* hstprg_diff.pc (Purge Aged Sales History by Diff)

rpmmovavg (Maintain Smoothed, Moving Average Sales History for RPM)

Module Name rpmmovavg.pc

Description Maintain Smoothed, Moving Average
Sales History for RPM

Functional Area Sales History

Module Type Business Processing

Module Technology ProC

Catalog ID RMS319

Runtime Parameters N/A

Design Overview

This batch module will take the number of units sold from IF. TRAN_DATA table for all
items designated for a particular store within a specified store/day, and maintain a
smoothed average in the [F_ RPM_SMOOTHED_AVG table.

Only the sales, which have a sales type of regular, are included. If the item is on
promotion or clearance, then no updating is required. The units under normal sales will
be considered as unadjusted units and will be taken for smoothed average. The threshold
percent will be maintained at the department level.

rpommovavg (Maintain Smoothed, Moving Average Sales History for RPM)

This percent will be compared to the existing smoothed average value and used to limit
the upper and lower boundaries for regular sales received. If the unadjusted units
amount is outside of the boundaries, then the appropriate boundary amount will be
substituted and become the adjusted units amount. If no threshold percent is defined for
the department, it will be defaulted to 50%.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations The program picks the daily sales data from
IF_TRAN_DATA table. It should run after salstage.pc
Pre-Processing Salstage.pc
Post-Processing N/A
Threading Scheme Threaded By STORE number
Restart/Recovery

The logical unit of work for this program is set at store/item level.

Restartability is implied based on item and store combination. Records will be committed
to the database when commit_max_ctr defined in the RESTART_CONTROL table is

reached.
Key Tables Affected
Table Select Insert Update Delete
ITEM_MASTER Yes No No No
LOCATION_CLOSED Yes No No No
IF_TRAN_DATA Yes No No No
DEPS Yes No No No
IF_RPM_SMOOTHED_AVG Yes Yes Yes No
Input/Out Specification
N/A

292 Oracle Retail Merchandising Foundation Cloud Service

hstbld (Weekly Sales History Rollup by Department, Class, and Subclass)

hstbld (Weekly Sales History Rollup by Department, Class, and Subclass)

Module Name hstbld.pc

Description Weekly Sales History Rollup by
Department, Class, and Subclass

Functional Area Sales History

Module Type Business Processing

Module Technology ProC

Catalog ID RMS239

Runtime Parameters N/A

Design Overview

The sales history rollup routine will extract sales history information for each item from
the ITEM_MASTER, and ITEM_LOC_HIST (item location history) tables. The history
information will be rolled up to the subclass, class, and dept level to be written to:
dept_sales_hist (department/location/week/sales type), class_sales_hist
(class/location/week/sales type), and subclass_sales_hist
(subclass/location/week/sales type).

The rebuild program can be run in one of two ways:

First, if the program is run with a run-time parameter of ‘rebuild’, the program will read
data (dept, class, and subclass) off the manually input HIST_REBUILD_MASK table,
which will determine what to rebuild.

Secondly, if the program is run with a run-time parameter of “weekly’, the program will
build sales information for all dept/class/subclass combinations only for the current end
of week date.

Scheduling Constraints — Rebuild

Schedule Information Description
Frequency As Needed
Scheduling Considerations Must run after complete weekly sales have been updated

by the Sales Upload Program. Also should be re-run on
demand when a sales rollup request has been given for a
given dept, class or subclass

Pre-processing Prepost hstbld pre, if rebuild all
Post-Processing Prepost hstbld post, to truncate the HIST_REBUILD_MASK
table

Scheduling Constraints - Normal Weekly Processing

Schedule Information Description
Frequency Weekly
Scheduling Considerations Must run after complete weekly sales have been updated

by the Sales Upload Program

Sales History 293

hstbld_diff (Weekly Sales History Rollup by Diff)

Schedule Information Description

Pre-processing N/A

Post-Processing N/A

Threading Scheme Threaded by location
Restart/Recovery

The logical unit of work for this program is set at the store/dept/class level. Threading is
done by store using the v_restart_store view.

The commit_max_ctr field on the RESTART _CONTROL table will determine the number
of transactions that equal a logical unit of work.

Key Tables Affected
Table Select Insert Update Delete
DEPT_SALES_HIST No Yes Yes No
CLASS_SALES_HIST No Yes Yes No
SUBCLASS_SALES_HIST Yes Yes Yes No
ITEM_MASTER Yes No No No
ITEM_LOC_HIST Yes No No No
PERIOD Yes No No No
SYSTEM_VARIABLES Yes No No No
HIST_REBUILD_MASK Yes No No No

hstbld_diff (Weekly Sales History Rollup by Diff)

Module Name hstbld_diff.pc

Description Weekly Sales History Rollup by Diff
Functional Area Sales History

Module Type Business Processing

Module Technology ProC

Catalog ID RMS240

Design Overview
The sales history rollup routine will extract sales history information for each
item_parent from the ITEM_LOC_HIST table. The history information will be rolled up
to the item differentiator level to be written to: item_diff loc_hist and
item_parent_loc_hist.
For each item, data to be retrieved includes sales qty and stock. This data must be
collected from several tables including ITEM_LOC_HIST, ITEM_LOC, and
ITEM_MASTER.

294 Oracle Retail Merchandising Foundation Cloud Service

hstbld_diff (Weekly Sales History Rollup by Diff)

Scheduling Constraints - Normal Weekly Processing

Schedule Information

Description

Frequency

Scheduling Considerations

Weekly

Must run after complete weekly sales have been updated
by salesprocess.ksh

Pre-processing N/A
Post-Processing N/A
Threading Scheme N/A

Scheduling Constraints — Upon Request
Schedule Information Description
Frequency As Needed
Scheduling Diagram Should be re-run on demand when a sales rollup request

has been given for a given style/color

Pre-processing N/A
Post-Processing N/A
Threading Scheme N/A

Restart/Recovery

N/A

Key Tables Affected
Table Select Insert Update Delete
ITEM_PARENT_LOC_HIST No Yes Yes No
ITEM_DIFF_LOC_HIST No Yes Yes No
ITEM_LOC Yes No No No
ITEM_LOC_HIST Yes No No No
ITEM_MASTER Yes No No No
SYSTEM_VARIABLES Yes No No No
PERIOD Yes No No No

Sales History 295

hstbldmth (Monthly Sales History Rollup By Department, Class And Subclass)

hstbldmth (Monthly Sales History Rollup By Department, Class And
Subclass)

Module Name hstbldmth.pc

Description Monthly Sales History Rollup by
Department, Class, and Subclass

Functional Area Sales History

Module Type Business Processing

Module Technology ProC

Catalog ID RMS241

Design Overview

The monthly sales history roll up routine will extract sales history information for each
item from the ITEM_MASTER and ITEM_LOC_HIST MTH (item location history by
month) tables. The history information will be rolled up to the subclass, class and dept
level to be written to: subclass_sales_hist_mth (subclass/location/month/sales type),
class_sales_hist_mth (class/location/month/sales type) and dept_sales_hist_mth
(department/location/ month/sales type).

This program may be run in parallel with hstbld since they both read from
HIST REBUILD_MASK. The table HIST _REBUILD_MASK table must not be truncated
before both programs finish running.

Scheduling Constraints

Schedule Information Description

Frequency Monthly

Scheduling Considerations Must run after complete monthly sales have been updated by
Sales Upload program

Also, should be re-run on demand when a sales rollup
request has been given for a given dept, class and subclass
This program may be run in parallel with hstbld since they
both read from HIST_REBUILD_MASK. The table
HIST_REBUILD_MASK table must not be truncated by
associated prepost post jobs before both programs finish

running
Pre-Processing N/A
Post-Processing prepost hstbldmth post
Threading Scheme Threaded by department

Restart/Recovery

The logical unit of work for the hstbldmth module is department, location, sales type and
end of month date with a recommended commit counter setting of 1,000. Processed
records are committed each time the record counter equals the maximum recommended
commit number.

296 Oracle Retail Merchandising Foundation Cloud Service

hstbldmth_diff (Monthly Sales History Rollup By Diffs)

Key Tables Affected
Table Select Insert Update Delete
ITEM_MASTER Yes No No No
ITEM_LOC_HIST MTH Yes No No No
SUBCLASS_SALES_HIST MTH Yes Yes No Yes
CLASS_SALES_HIST MTH Yes Yes No Yes
DEPT_SALES_HIST MTH No Yes No Yes
HIST_REBUILD_MASK Yes No No No
SYSTEM_VARIABLES Yes No No No
PERIOD Yes No No No

hstbldmth_diff (Monthly Sales History Rollup By Diffs)

Module Name hstbldmth_diff.pc

Description Monthly Sales History Rollup by Diffs
Functional Area Sales History

Module Type Business Processing

Module Technology ProC

Catalog ID RMS242

Design Overview

The sales history rollup routine will extract sales history information for each
ITEM_PARENT from the ITEM_LOC_HIST MTH table and rolls the data to month level.
The history information will be rolled up to the item differentiator level to be written to:
item_diff loc_hist_mth and item_parentloc_hist_mth. For each item, data to be retrieved
includes sales quantity and stock. This data must be collected from several tables
including ITEM_LOC_HIST_MTH, ITEM_LOC, and ITEM_MASTER.

Scheduling Constraints

Schedule Information Description
Frequency Monthly
Scheduling Considerations Must be run only at EOM date
Pre-Processing N/A
Post-Processing hstmthupd.pc
Threading Scheme N/A
Restart/Recovery
N/A

Sales History 297

hstmthupd (Monthly Stock on Hand, Retail and Average Cost Values Update)

Locking Strategy
The package HSTBLD_DIFF_PROCESS locks the following tables for update:
ITEM_DIFF_LOC_HIST_MTH
ITEM_PARENTLOC_HIST_MTH

Key Tables Affected
Table Select Insert Update Delete
ITEM_MASTER Yes No No No
ITEM_LOC Yes No No No
ITEM_LOC_HIST_MTH Yes No No No
ITEM_DIFF_LOC_HIST_MTH No Yes Yes No
ITEM_PARENTLOC_HIST_MTH No Yes Yes No
SYSTEM_VARIABLES Yes No No No
PERIOD Yes No No No

Integration Contract
N/A

hstmthupd (Monthly Stock on Hand, Retail and Average Cost Values
Update)

Module Name hstmthupd.pc

Description Monthly Stock on Hand, Retail and
Average Cost Values Update

Functional Area Sales History

Module Type Business Processing

Module Technology ProC

Catalog ID RMS158

Runtime Parameters N/A

Design Overview

This batch program runs monthly to update the stock on hand, retail values and average
cost for each item/location on the ITEM_LOC_HIST_MTH (item location history by
month) table. If the item/location does not exist on the ITEM_LOC_HIST_MTH table,
then the new record is written to a comma delimited file which is later uploaded to
ITEM_LOC_HIST_MTH table using SQL*Loader (hstmthupd.ctl).

Scheduling Constraints

Schedule Information Description

Frequency Monthly

298 Oracle Retail Merchandising Foundation Cloud Service

hstmthupd (Monthly Stock on Hand, Retail and Average Cost Values Update)

Schedule Information

Description

Scheduling Considerations

Pre-Processing

Post-Processing

Threading Scheme

The program should be run on the last day of the
month

refeodinventory.ksh must run successfully prior to
execution to ensure that ITEM_LOC_SOH_EOD is
up-to-date

refeodinventory.ksh

Run SQL*Loader using the control file
hstmthupd.ctl to load data from the output file
written by hstmthupd.pc for non-existent records
on ITEM_LOC_HIST_MTH

Threaded by location (store)

Restart/Recovery

The logical unit of work for this program is the item/location record. Threading is done
by store using the v_restart_store_wh view. The commit_max_ctr field on the
RESTART_CONTROL table will determine the number of transactions that equal a
logical unit of work. Table-based restart/recovery is used.

Key Tables Affected

Integration Contract

Table Select Insert Update Delete
SYSTEM_VARIABLES Yes No No No
PERIOD Yes No No No
SYSTEM_OPTIONS Yes No No No
ITEM_LOC Yes No No No
ITEM_LOC_SOH_EOD Yes No No No
ITEM_LOC_HIST_MTH Yes No Yes No
Integration Type Download from RMS
File Name Determined by runtime parameter
Integration Contract IntCon000175

hstmthupd.ctl

Sales History 299

hstwkupd (Weekly Stock on Hand and Retail Value Update for Item/Location)

hstwkupd (Weekly Stock on Hand and Retail Value Update for

Item/Location)
Module Name hstwkupd.pc
Description Weekly Stock on Hand and Retail Value

Update for Item/Location

Functional Area Sales History
Module Type Business Processing
Module Technology ProC

Catalog ID RMS159

Runtime Parameters N/A

Design Overview

This program runs weekly to update the current stock on hand, retail values and average
cost for each item/location on ITEM_LOC_HIST is using SQL*Loader (hstwkupd.ctl).
The program must be run on the last day of the week as scheduled.

Scheduling Constraints

Schedule Information

Description

Frequency

Scheduling Considerations

Pre-Processing

Post-Processing

Threading Scheme

Weekly

refeodinventory.ksh must run successfully prior to
execution to ensure that ITEM_LOC_SOH_EOD is
up-to-date

N/A

Run SQL*Loader using the control file
hstwkupd.ctl to load data from the output file
written by hstwkupd.pc for non-existent records on
ITEM_LOC_HIST

Thread by location

Restart/Recovery

The logical unit of work for HSTWKUPD is item/location. The program is threaded by
location using the v_restart_store_wh view.

Key Tables Affected
Table Select Insert Update Delete
ITEM_LOC Yes No No No
ITEM_LOC_SOH_EOD Yes No No No
ITEM_LOC_HIST Yes No Yes No
SYSTEM_VARIABLES Yes No No No

300 Oracle Retail Merchandising Foundation Cloud Service

hstprg (Purge Aged Sales History)

Table Select Insert Update Delete
PERIOD Yes No No No
SYSTEM_OPTIONS Yes No No No

Integration Contract

Integration Type Download from RMS
File Name Determined by runtime parameter
Integration Contract IntCon000176

hstwkupd.ctl

hstprg (Purge Aged Sales History)

Module Name hstprg.pc

Description Purge Aged Sales History
Functional Area Sales Posting

Module Type Admin

Module Technology ProC

Catalog ID RMS244

Runtime Parameters N/A

Design Overview

Deletes records from ITEM_LOC_HIST, SUBCLASS_SALES_HIST, CLASS_SALES_HIST,
DEPT _SALES HIST and DAILY_SALES_DISCOUNT tables, where data is older than the
specified number of months. Number of months for retention of fashion style history is
specified by system_options.ITEM_HISTORY_MONTHS.

Scheduling Constraints

Schedule Information Description
Frequency Monthly
Scheduling Considerations N/A
Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A
Restart/Recovery
N/A

Sales History 301

hstprg_diff (Purge Aged Sales History by Diff)

Key Tables Affected
Table Select Insert Update Delete
PERIOD Yes No No No
PURGE_CONFIG_OPTIONS Yes No No No
SYSTEM_OPTIONS Yes No No No
ITEM_LOC_HIST No No No Yes
SUBCLASS_SALES_HIST No No No Yes
CLASS_SALES_HIST No No No Yes
DEPT_SALES_HIST No No No Yes
DAILY_SALES_DISCOUNT No No No Yes
Integration Contract
Integration Type N/A
File Name N/A
Integration Contract N/A

hstprg_diff (Purge Aged Sales History by Diff)

Module Name hstprg_diff.pc

Description Purge Aged Sales History by Diff
Functional Area Sales History

Module Type Admin

Module Technology ProC

Catalog ID RMS245

Runtime Parameters N/A

Design Overview

The tables, ITEM_DIFF_LOC_HIST and ITEM_PARENT_LOC_HIST are purged of sales
history differentiator data, which is older than a specified system set date. This date is
stored in the purge_config_options.ITEM_HISTORY_MONTHS column.

Scheduling Constraints

Schedule Information Description

Frequency Monthly

Scheduling Considerations Should be run after hstbld_diff.pc
Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

302 Oracle Retail Merchandising Foundation Cloud Service

hstprg_diff (Purge Aged Sales History by Diff)

Restart/Recovery
N/A

Key Tables Affected
Table Select Insert Update Delete
PURGE_CONFIG_OPTIONS Yes No No No
PERIOD Yes No No No
ITEM_DIFF_LOC_HIST No No No Yes
ITEM_PARENT_LOC_HIST No No No Yes

Sales History 303

18

Overview

Stock Count

A stock count is a comparison of an inventory snapshot at a point in time to an actual
inventory count received from a location. Stock count batch processes can be divided
into two rough categories, processes that prepare future stock counts and processes that
process results for today’s stock counts. The programs stkschedxpld.pc and stkxpld.pc
prepare future stock counts. All other programs process results from today’s stock
counts.

For more information about Stock Counts, including the interaction of Ul and batch
processes and data flow, see the Oracle Retail Merchandising Functional Library (Doc ID:
1585843.1).

Note: The White Papers in this library are intended only for
reference and educational purposes and may not reflect the
latest version of Oracle Retail software.

Batch Design Summary

The following batch designs are included in this functional area:
» stkschedxpld.pc (Create Stock Count Requests Based on Schedules)
» stkxpld.pc (Explode Stock Count Requests to Item Level)

= lifstkup.pc (Conversion of RWMS Stock Count Results File to RMS Integration
Contract)

= stockcountupload.ksh (Upload Stock Count Results from Stores/Warehouses)
= stockcountprocess.ksh (Process Stock Count Results)

* stkupd.pc (Stock Count Snapshot Update)

= stkvar.pc (Update Stock On Hand Based on Stock Count Results)

* stkdly.pc (Calculate Actual Current Shrinkage and Budgeted Shrink to Apply to
Stock Ledger)

» stkprg.pc (Purge Aged Stock Count)

lifstkup (Conversion of RWMS Stock Count Results File to RMS Integration

Contract)

Module Name lifstkup.pc

Description Conversion of RWMS Stock Count Results File to
RMS Integration Contract

Functional Area Stock Counts

Module Type Integration

Module Technology ProC

Catalog ID RMS150

lifstkup (Conversion of RWMS Stock Count Results File to RMS Integration Contract)

Design Overview

The Stock Upload Conversion batch is used when RWMS sends count information to
RMS. This batch converts the inventory balance upload file into the format supported by
the Stock Count Upload process.

Scheduling Constraints

Schedule Information Description

Scheduling Considerations This program should run before stockcountupload.ksh and
after the warehouse management’s inv_bal_upload.sh
program.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/ A - File-based processing

Restart/Recovery

Oracle Retail standard file-based restart/recovery is used. The commit_max_ctr field
should be set to prevent excessive rollback space usage, and to reduce the overhead of
file I/O. The recommended commit counter setting is 1000 records (subject to change
based on implementation).

Key Tables Affected
Table Select Insert Update Delete
WH Yes No No No
ITEM_MASTER Yes No No No
STAKE_HEAD Yes No No No
STAKE_LOCATION Yes No No No
I/0 Specification
Integration Type Upload to RMS
File Name Determined by runtime parameter
Integration Contract IntCon000172 (input from RWMS)
IntCon000102 (output for RMS stockcountupload)

Input File Layout

DC_DEST_ID 11 - Number (10) + 1 for | Unique identifier for the warehouse
trailing space

TRANSACTION_DATE 15 - Date (14) + 1 for Date on which the transaction occurred
trailing space

ITEM_ID 26 - Varchar2 (25) + 1 for | Uniquely identifies the item on the count
trailing space

306 Oracle Retail Merchandising Foundation Cloud Service

Output File Layout

DC_DEST_ID

11 - Number (10) + 1 for
trailing space

Unique identifier for the warehouse

AVAILABLE_QTY

15 - Number (12) + 1 for
leading sign and + 1 for
decimal and + 1 for
trailing space

Units available for distribution

DISTRIBUTED_QTY

14 - Number (12) + 1 for
decimal and + 1 for
trailing space

Units distributed include: Units
distributed but not yet picked, units
picked but not yet manifested, units
manifested but not yet shipped

RECEIVED_QTY

15 - Number (12) + 1 for
leading sign and + 1 for
decimal and + 1 for
trailing space

Units received but not put away

TOTAL_QTY

14 - Number (12,4) + 1
for decimal and + 1 for
trailing space

Sum of all units that physically exist:
container status of: I, D, M, R, T, X

AVAILABLE_WEIGHT

15 - Number (12,4) + 1
for leading sign + 1 for
decimal + 1 for trailing
space

Weight available for distribution of catch
weight items

RECEIVED_WEIGHT

14 - Number (124) + 1
for decimal + 1 for
trailing space

Weight received but not put away for
catch weight items

DISTRIBUTED_WEIGHT

14 - Number (12,4) + 1
for decimal + 1 for
trailing space

Weight distributed includes: weight
distributed but not yet picked, weight
picked but not yet manifested, weight
manifested but not yet shipped (value
only catch weight items)

TOTAL_WEIGHT

13 - Number (12,4) + 1
for decimal

Sum of all weight that physically exist:
container status of: I, D, M, R, T, X. For
catch weight items

Output File Layout

Record Field Name Field Type Default Value Description

Name

FHEAD file typerecord Char (5) FHEAD Describes the file line type
descriptor
file line Number (10) 0000000001 ID of current line being processed
identifier
file type Char (4) ‘STKU’ Identifies the file type
stocktake_date Date (14) The date on which the count

occurred, formatted as
YYYYMMDDHH24MISS

Stock Count 307

Output File Layout

Design Assumptions

Record Field Name Field Type Default Value Description
Name
file create date Date (14) Date on which the file was
created, formatted as
YYYYMMDDHH24MISS
cycle count Number (8) stake_head.cycle_count
Location type Char (1) ‘W’ Will always be “W’, as this process
is only executed for warehouse
locations
location Number(10) Indicates the number of the
physical warehouse where the
count occurred
FDETL file typerecord Char(5) FDETL Identifies the file line type
descriptor
file line Number(10) ID of current line being processed,
identifier internally incremented
Item type Char(3) TT™ Indicates the type of item that was
counted. This will always be
‘ITM’, indicating a transaction
level item
item value Char(25) The ID of the item that was
counted
inventory Number(12) The total quantity or weight of
quantity product counted; includes four
implied decimal places
location Char(150) Used by RMS to determine the
description location where the item was
counted. This program will
always leave as NULL
FTAIL file type record ~ Char(5) FTAIL Identifies the file line type
descriptor
file line Number(10) ID of current line being processed,
identifier internally incremented
file record count Number(10) Indicates the number of detail

records

N/A

308 Oracle Retail Merchandising Foundation Cloud Service

stockcountupload.ksh (Upload Stock Count Results from Stores/Warehouses)

stockcountupload.ksh (Upload Stock Count Results from
Stores/Warehouses)

Module Name stockcountupload.ksh

Description Upload Stock Count Results from
Stores/Warehouses

Functional Area Stock Count

Module Type Integration

Module Technology ksh

Integration Catalog ID RMS153

Runtime Parameters N/A

Design Overview

The purpose of this module is to upload the contents of the stock count file, which
contains the results of a count that occurred in a store or warehouse, to staging tables for
further processing.

Scheduling Constraints

Schedule Information Description
Scheduling Considerations Run after lifstkup.pc
Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A
Key Tables Affected
Table Select Insert Update Delete
SVC_STKUPLD_FHEAD Yes Yes Yes Yes
SVC_STKUPLD_FDETL Yes Yes Yes Yes
SVC_STKUPLD_STATUS Yes Yes Yes Yes
I/0 Specification
Integration Type Upload to RMS
File Name Determined by runtime parameter
Integration Contract IntCon000102

Stock Count 309

stockcountupload.ksh (Upload Stock Count Results from Stores/Warehouses)

Input File Layout

Record Field Name Field Type Default Value Description
Name
File Header File head Char(5) FHEAD Describes file line type
descriptor
file line Number(10) 0000000001 ID of current line being
identifier processed
File Type Char(4) STKU Identifies the file type
File create date Char(14) Indicates the date the file was
created in
YYYYMMDDHH24MISS
format
Stock take date Char(14) Date on which stock count
will take place in
YYYYMMDDHHMISS
format
Cycle count Number (8) Unique number to identify
the stock count
Location Type ~ har(l) Indicates the type of location
where the count occurred.
Valid values are ‘S’,/W’,'E’.
Location Number(10) The location where the stock
count occurred
Transaction File record Char(5) FDETL Describes file line type
Record descriptor
Line Number =~ Number(10) Sequential file line number
Item type Char(3) Indicates the type of item
counted - either transaction
level (ITM) or reference item
(REF)
Item value Char(25) Unique identifier for item
that was counted
Inventory Number(12) Total quantity counted for the
quantity item at the location formatted
with 4 implied decimal places
Location Char(150) Description of inventory
description location (such as,. sales floor,
backroom)
FTAIL File record Char(5) FTAIL Marks end of file
descriptor
File line Number(10) ID of current line being
identifier processed, internally
incremented
File record Number(10) Number of detail records

count

310 Oracle Retail Merchandising Foundation Cloud Service

stkdly (Calculate Actual Current Shrinkage and Budgeted Shrink to Apply to Stock Ledger)

Design Assumptions

This program uses grep to search log files for errors. The GREP function should point to
the /usr/xpg4/bin/ directory instead of /usr/bin directory to utilize the “-E” option.
Otherwise, it will fail with an “illegal option” error message.

stkdly (Calculate Actual Current Shrinkage and Budgeted Shrink to Apply
to Stock Ledger)

Module Name stkdly.pc

Description Calculate Actual Current Shrinkage and Budgeted
Shrink to Apply to Stock Ledger

Functional Area Stock Counts

Module Type Business Processing

Module Technology ProC

Catalog ID RMS359

Runtime Parameters N/A

Design Overview

The Stock Count Shrinkage Update batch calculates the ‘value” variances for Unit &
Value stock counts. The main functions are to calculate actual shrinkage amount that is
used to correct the book stock value on the stock ledger and to calculate a budgeted
shrinkage rate that will be applicable until the next count. The month end stock ledger
batch process (saldly) then uses these values when calculating ending inventory for the
month.

Scheduling Constraints

Schedule Information

Description

Scheduling Considerations

Run before salweek.pc and salmth.pc

Pre-Processing N/A

Post-Processing N/A

Threading Scheme Threaded by department
Restart/Recovery

This batch program is multithreaded using the v_restart_dept view. The logical unit of
work for this program is dept/class/location.

Key Tables Affected
Table Select Insert Update Delete
PERIOD Yes No No No
SYSTEM_OPTIONS Yes No No No
SYSTEM_VARIABLES Yes No No No

Stock Count 311

stkprg (Purge Aged Stock Count)

Table Select Insert Update Delete
STAKE_PROD_LOC Yes No Yes No
STAKE_HEAD Yes No No No
DEPS Yes No No No
HALF_DATA_BUDGET Yes No No No
DAILY_DATA Yes No No No
WEEK_DATA No No Yes No
MONTH_DATA Yes No Yes No
HALF_DATA No No Yes No
DAILY_DATA_TEMP No Yes No No

Design Assumptions
N/A

stkprg (Purge Aged Stock Count)

Module Name stkprg.pc
Description Purge Stock Count
Functional Area Stock Counts
Module Type Admin

Module Technology ProC

Catalog ID RMS360

Runtime Parameters N/A

Design Overview

Purge Stock Counts is a data cleanup process to remove old counts from RMS. This
batch process deletes records from the stock count tables with a stock take date earlier
than the last EOM start date (SYSTEM_VARIABLES.LAST_EOM_START_MONTH) or
those that have been otherwise flagged for delete. This process deletes records from
STAKE_HEAD and all corresponding child tables, including STAKE_SKU_LOC and
STAKE_PROD_LOC.

Scheduling Constraints

Schedule Information Description
Scheduling Considerations N/A

Pre-Processing N/A

Post-Processing prepost stkptg post
Threading Scheme Threaded by location

312 Oracle Retail Merchandising Foundation Cloud Service

stkschedxpld (Create Stock Count Requests Based on Schedules)

Restart/Recovery

This program is multi-threaded based on location and the logic of restart and recovery is
based on cycle count and location. The deletion of STAKE_HEAD and
STAKE_PRODUCT is performed in prepost as a post action. This is done because stkprg
is multi-threaded and each thread may have only deleted part of cycle count detail
records; hence the records from STAKE_HEAD and STAKE_PRODUCT can only be
deleted in the post program when all the details have been deleted.

Key Tables Affected
Table Select Insert Update Delete
SYSTEM_VARIABLES Yes No No No
STAKE_LOCATION Yes No No Yes
STAKE_QTY No No No Yes
STAKE_CONT No No No Yes
STAKE_SKU_LOC No No No Yes
STAKE_PROD_LOC No No No Yes
STAKE_PRODUCT No No No Yes
STAKE_HEAD Yes No No Yes

Design Assumptions
N/A

stkschedxpld (Create Stock Count Requests Based on Schedules)

Module Name stkschedxpld.pc

Description Create Stock Count Requests Based on Schedules
Functional Area Stock Counts

Module Type Business Processing

Module Technology ProC

Integration Catalog ID N/A

Runtime Parameters N/A

Design Overview

This batch process is used to create stock count requests based on pre-defined schedules
for a location. It evaluates all scheduled counts, that are planned for x days from the
current day. The number of days prior to the planned count date by which the count
requests are created is determined by the system parameter Stock Count Review Days
(STAKE_REVIEW_DAYS).

For Unit counts, the item list specified is exploded out to the transaction-level and
written to the count/item/location (STAKE_SKU_LOC) table. For Unit & Value counts,
the transaction-level items contained in the specified department/class/subclass will be
written to the count/item/location (STAKE_SKU_LOC) and count/product/location

Stock Count 313

stkschedxpld (Create Stock Count Requests Based on Schedules)

(STAKE_PROD_LOC) tables. If the schedule was created using a location list, then this
process also explodes that down to the store or virtual warehouse level.

Scheduling Constraints

Schedule Information Description

Scheduling Considerations Run before stkxpld.pc

Pre-Processing N/A

Post-Processing N/A

Threading Scheme Multi-threaded by location (store and warehouse)
Restart/Recovery

The logical unit of work for this module is schedule, location. The changes will be posted
when the commit_max_ctr value is reached.

Key Tables Affected
Table Select Insert Update Delete
STAKE_SCHEDULE Yes No Yes No
V_RESTART_STORE_WH Yes No No No
PERIOD Yes No No No
CODE_DETAIL Yes No No No
STAKE_HEAD No Yes No No
STAKE_LOCATION No Yes No No
STAKE_PRODUCT No Yes No No
STAKE_PROD_LOC No Yes No No
STAKE_SKU_LOC Yes Yes No No
ITEM_MASTER Yes No No No
DEPS Yes No No No
SUBCLASS Yes No No No
PACKITEM Yes No No No
ITEM_LOC Yes No No No
SKULIST_DETAIL Yes No No No
LOC_LIST_DETAIL Yes No No No
LOCATION_CLOSED Yes No No No
COMPANY_CLOSED Yes No No No
INV_TRACK_UNIT_OPTIONS Yes No No No

Design Assumptions
N/A

314 Oracle Retail Merchandising Foundation Cloud Service

stkupd (Stock Count Snapshot Update)

stkupd (Stock Count Snapshot Update)

Module Name

stkupd.pc

Description

Stock Count Snapshot Update

Functional Area

Stock Counts

Module Type Business Processing
Module Technology ProC

Integration Catalog ID RMS362

Runtime Parameters N/A

Design Overview

The Stock Count Snapshot Update is a nightly batch program used to take a “snapshot’ of
inventory, cost and retail values prior to the count commencing. This will be used to
calculate the book value of the count. The stock count snapshot includes stock on hand,
in-transit-qty, cost (either WAC or standard cost, based on system settings) and retail for
each item-location record. The snapshot is taken on the day that the count is scheduled.

Scheduling Constraints

Schedule Information

Description

Scheduling Considerations

stkxpld should run prior to this program

Pre-Processing prepost stkupd pre

Post-Processing N/A

Threading Scheme Threaded by location
Restart/Recovery

This program is multithread using the v_restart_all_locations view. The logical unit of

work is an item/location.

Key Tables Affected
Table Select Insert Update Delete
SYSTEM_OPTIONS Yes No No No
PERIOD Yes No No No
STAKE_SKU_LOC Yes No Yes No
STAKE_HEAD Yes No No No
ITEM_LOC_SOH Yes No No No

Design Assumptions
N/A

Stock Count 315

stkvar (Update Stock On Hand Based on Stock Count Results)

stkvar (Update Stock On Hand Based on Stock Count Results)

Module Name

stkvar.pc

Description

Update Stock On Hand Based on Stock Count
Results

Functional Area

Stock Counts

Module Type Business Processing
Module Technology ProC

Catalog ID RMS363

Runtime Parameters N/A

Design Overview

The Stock Count Stock on Hand Updates batch process updates stock on hand based on
the unit count results. For Unit counts, it also writes TRAN_DATA records for any
variances to tran code 22. For Unit & Value counts, it also computes the total cost and
total retail value of the count and updates STAKE_PROD_LOC with this information.

Scheduling Constraints

Schedule Information Description

Scheduling Considerations N/A

Pre-Processing N/A

Post-Processing N/A

Threading Scheme Threaded by location
Restart/Recovery

The logical unit of work for this program is item, loc_type and location. This program is
multithread using the v_restart_all_locations view. After the commit_max_ctr number of
rows is processed, intermittent commits are done to the database and the item/location
information is written to restart tables for restart/recovery.

Key Tables Affected
Table Select Insert Update Delete
SYSTEM_OPTIONS Yes No No No
PERIOD Yes No No No
ITEM_XFORM_HEAD Yes No No No
ITEM_XFORM_DETAIL Yes No No No
STAKE_SKU_LOC Yes No Yes No
STAKE_CONT Yes No No Yes
STAKE_HEAD Yes No No No
STAKE_CONT_TEMP Yes Yes No Yes

316 Oracle Retail Merchandising Foundation Cloud Service

stkxpld (Explode Stock Count Requests to Item Level)

Table Select Insert Update Delete
STAKE_PROD_LOC Yes No Yes No
WH Yes No No No
CLASS Yes No No No
ITEM_MASTER Yes No No No
ITEM_LOC_SOH Yes No Yes No
ITEM_SUPP_COUNTRY Yes No No No
EDI_DAILY_SALES No No Yes No
TRAN_DATA No Yes No No
NWP No Yes Yes No
NWP_FREEZE_DATE Yes No No No
STAKE_QTY Yes No No No
STAKE_LOCATION Yes No No No
STAKE_PRODUCT Yes No No No
STORE Yes No No No
VAT_ITEM Yes No No No

Design Assumptions
N/A

stkxpld (Explode Stock Count Requests to ltem Level)

Module Name stkxpld.pc

Description Explode Stock Count Requests to Item Level
Functional Area Stock Counts

Module Type Business Processing

Module Technology ProC

Catalog ID RMS364

Runtime Parameters N/A

Design Overview

The Stock Count Explode batch is a nightly batch is used to explode stock count requests
created at the department, class or subclass level to the item level. This process must run
before the stock count snapshot is taken and is run for counts x days prior to the count
based on the system parameter setting, Stock Count Lockout Days
(STAKE_LOCKOUT_DAYS).

The batch process picks up product groups (departments, classes or subclasses) from
STAKE_PRODUCT and inserts records into STAKE_SKU_LOC and STAKE_PROD_LOC
(for Unit & Value counts) for all items in the product group that exist for the locations on
the count. Only approved inventoried items are added to stock counts.

Stock Count 317

stkxpld (Explode Stock Count Requests to ltem Level)

For transformable items, both the non-inventoried sellable items and inventoried
orderable items that are contained in a product group will also be added to the count.
For deposit items, only the content, crate and packs can be counted.

Scheduling Constraints

Schedule Information Description
Scheduling Considerations This batch should run prior to prepost stkupd pre
Pre-Processing N/A
Post-Processing N/A
Threading Scheme Threaded by location
Restart/Recovery

This batch program is multithreaded using the v_restart_all_locations view. The logical
unit of work for this program is a cycle count/location.

Key Tables Affected
Table Select Insert Update Delete
PERIOD Yes No No No
SYSTEM_OPTIONS Yes No No No
STAKE_LOCATION Yes No No No
STAKE_HEAD Yes No No No
STAKE_SKU_LOC Yes Yes No No
STAKE_PROD_LOC Yes Yes No No
STAKE_PRODUCT Yes No No No
ITEM_MASTER Yes No No No
ITEM_LOC Yes No No No
ITEM_LOC_SOH Yes No No No
ITEM_XFORM_HEAD Yes No No No
ITEM_XFORM_DETAIL Yes No No No
SUBCLASS Yes No No No

Design Assumptions
N/A

318 Oracle Retail Merchandising Foundation Cloud Service

stockcountprocess.ksh (Process Stock Count Results)

stockcountprocess.ksh (Process Stock Count Results)

Module Name

stockcountprocess.ksh

Description

Process Stock Count Results

Functional Area

Stock Counts

Module Type Business Processing
Module Technology ksh

Catalog ID RMS366

Runtime Parameters N/A

Design Overview

The Stock Count Process batch processes actual count data from the selected store or
physical warehouse to STAKE_SKU_LOC from the data staged by
STOCKCOUNTUPLOAD.KSH. For a physical warehouse, this process also calls the RMS
distribution library to apportion quantities to the virtual warehouses in RMS.

Scheduling Constraints

Schedule Information

Description

Scheduling Considerations
Pre-Processing
Post-Processing

Threading Scheme

Run after stockcountupload.ksh
N/A

N/A

The number of threads running in parallel is based on value in the
column
RMS_PLSQL_BATCH_CONFIG.MAX_CONCURRENT_THREADS
with the program name “CORESVC_SALES_UPLOAD_SQL”.
Threading is based on chunks. Each chunk would have a defined
size. This is defined in
RMS_PLSQL_BATCH_CONFIG.MAX_CHUNK_SIZE. Chunks
could be made up of a single or multiple THEAD/Items.

Because multithreading logic based on chunks is applied, it is
possible that a record is locked by another thread. Without a
mechanism to perform waiting/retrying, record locking errors
would happen more frequently

In the table RMS_PLSQL_BATCH_CONFIG,
RETRY_LOCK_ATTEMPTS contains the number of times the
thread will try to acquire the lock for a table and
RETRY_WAIT_TIME is the number of seconds the thread will wait
before it retries

Restart/Recovery

The logical unit of work for stockcountprocess.ksh is a set of a single or multiple valid
items at a given location. This set is defined as a chunk. Based on the example above, if
for some reason, chunk 2 raised an error, INPUT FILE 6, 7, and 8 wouldn’t be processed
by this program. Other chunks, if there are no errors, would be processed. User has to

Stock Count 319

stockcountprocess.ksh (Process Stock Count Results)

correct the transaction details and upload the input file again that includes the affected

CHUNIKS for reprocessing.
Key Tables Affected
Table Select Insert Update Delete
STK_FILE_STG Yes Yes No No
STAKE_SKU_LOC Yes Yes Yes No
STK_SSL_TEMP Yes Yes No No
STAKE_QTY Yes Yes Yes Yes
WH Yes No No No
ITEM_LOC_SOH Yes No No No
ITEM_LOC Yes No No No
STK_SSL_TEMP Yes Yes No No
STK_XFORM_TEMP Yes Yes No No
STAKE_PROD_LOC Yes No No No
STAKE_PRODUCT Yes No No No
ITEM_MASTER Yes No No No
STAKE_PROD_LOC Yes No No No
ITEM_XFORM_DETAIL Yes No No No
ITEM_XFORM_HEAD Yes No No No
STK_XFORM_ORD_TEMP Yes Yes No No
STAKE_LOCATION Yes Yes No No
PARTNER Yes No No No
STAKE_HEAD Yes No No No
STK_DUP_SQT_TEMP Yes Yes No No
WORK_STKUPLD_STAKE_QTY_GTT Yes Yes Yes Yes
WORK_STKUPLD_ITEM_LOC_GTT Yes Yes Yes Yes

Design Assumptions
N/A

320 Oracle Retail Merchandising Foundation Cloud Service

19

Overview

Oracle Retail Trade Management

Oracle Retail Trade Management (RTM) automates international import transaction data.
There are six components of RTM:

* Customs entry

» Harmonized tariff schedule
= Letter of credit

* Transportation

» Actual landed costs

= Obligations

Four of these components — customs entry, Harmonized Tariff Schedule, letter of credit,
and transportation —have batch-processing modules that facilitate the flow of data
between RTM and external applications and files. This chapter describes these batch
modules, along with Perl scripts, and the kinds of data that they process.

For additional information about RTM, including detailed flow diagrams, see the Oracle
Retail Merchandising Functional Library (Doc ID: 1585843.1).

Note: The White Papers in this library are intended only for
reference and educational purposes and may not reflect the
latest version of Oracle Retail software.

Simplified RTM Configuration

Simplified RTM is a simplified version of the Oracle Retail product suite targeted at mid-
tier retailers. The Simplified Oracle Retail Merchandising Operations Management
applications support basic retail processes needed by a mid-tier retailer. Advanced
features are turned-off through system parameters, with the goal to reduce
implementation complexity and enabling faster implementation and lower total cost of
ownership.

The Simplified RTM Indicator is set in the system_options table during the installation of
RMS. If the system_option parameter is enabled, then the following RTM functionality is
not available in the application:

» Setting up RTM specific Freight Type, Freight Size and Standard Carrier Alpha
Codes (SCACQ)

= Letter of Credit functionality
» Transportation functionality
= Customs Entry functionality
* Obligation Maintenance

* Actual Landed Costs

If both the Simplified RTM indicator and the Import indicator are enabled, then some
import related functionality is available in RMS. With this setup, the retailer has the
option to setup HTS data for classification of merchandise and for the calculation of
duties, fee and taxes.

Operations Guide - Volume 1 Batch Overviews and Designs 321

Batch Design Summary

The retailer can also choose Letter of Credit as a payment option at the Purchase Order
header level, but all other related LC functionality is not available. It is assumed that the
retailer is using some other external system for LC processing.

If the import indicator is not enabled then no RTM functionality is available in the
application. See the RMS Installation Guide for additional information on setting the
value of the system_options table.

Simplified RTM Batch Program Notes

When Simplified RTM is enabled (RTM Simplified Indicator is enabled) then the
following batch programs need to be turned off from the integrated batch schedule.

* lcadnld
= lcupld

= lcup798
* lemdnld
* cednld

* tranupld
The following Perl scripts should also be turned off from the integrated batch schedule.
* lemt700
* lemt707
* lemt730
* lemt798

When both the RTM simplified indicator and import indicator is enabled then the
following batch program needs to be turned on in the integrated batch schedule.

* htsupld

Batch Design Summary
The following batch designs are included in this functional area:
* cednld.pc (Download of Customs Entry Transactions to Brokers)
* htsupld.pc (Harmonized Tariff Schedule Upload)
* tranupld.pc (ITransportation Upload)
= Icadnld.pc (Letter of Credit Application Download)
= lemt700 Perl (SWIFT File Conversion - Letter of Credit Application)
= lcupld.pc (Letter of Credit Confirmation Upload)
= Jemt730 (SWIFT File Conversion - Letter of Credit Confirmation)
* lemdnld.pc (Letter of Credit Amendment Download)
= Jemt707 Perl (SWIFT File Conversion - Letter of Credit Amendment)
* lcup798.pc (Letter of Credit Drawdowns and Charges)
* lemt798 (SWIFT File Conversion - Letter of Credit Charges and Drawdowns)

322 Oracle Retail Merchandising Foundation Cloud Service

cednld (Download of Customs Entry Transactions to Brokers)

cednld (Download of Customs Entry Transactions to Brokers)

Module Name cednld.pc

Description Download of Customs Entry Transactions to
Brokers

Functional Area Oracle Retail Trade Management

Module Type Integration

Module Technology ProC

Catalog ID RMS53

Runtime Parameters N/A

Design Overview

This program is used to download custom entry information from the RMS database to
brokers. Each night, this program reads all custom entry (CE) transactions that are in “S”
Sent status for a broker ID. These transactions are written to a flat file and the status is
changed to “D”ownloaded. One flat file is written per broker.

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations This batch is not scheduled to run when the
rtm_simplified_ind in SYSTEM_OPTIONS table is
settoY

Pre-Processing N/A

Post-Processing N/A

Threading Scheme Single Threaded, however multiple processes can

be run at the same time, each downloading
customer entry information for a different broker

Restart/Recovery
The Logical Unit of Work for the program is a single row from the CE_HEAD table.
Restart/Recovery will be used for init and commit.

Table based restart/recovery must be used. The commit_max_ctr field should be set to
prevent excessive rollback space usage, and to reduce the overhead of file 1/O. The
recommended commit counter setting is 1000 records (subject to change based on

implementation).
Key Tables Affected
Table Select Insert Update Delete
CE_HEAD Yes No Yes No
CE_SHIPMENT Yes No No No

Oracle Retail Trade Management 323

cednld (Download of Customs Entry Transactions to Brokers)

Table Select Insert Update Delete
CE_ORD_ITEM Yes No No No
ORDHEAD Yes No No No
SUP_IMPORT_ATTR Yes No No No
TRANSPORTATION Yes No No No
CE_LIC_VISA Yes No No No
CE_CHARGES Yes No No No
MISSING_DOC Yes No No No
Integration Contract
Integration Type Download from RMS
File Name Determined by runtime parameter
Integration Contract IntCon000050
Record Field Field Type Default Value Description
Name Name
File Header File Type Char(5) FHEAD Identifies file record type
Descriptor
File Line Number(10) Nine leading ID of current line being processed
Identifier Zeroes: by input file
0000000001
File Type = Char(4) CEDN Identifies file as ‘Customs Entry
Definition download’
File Create Date Create date Vdate in YYYYMMDDHH24MISS
Date format
THEAD File Type Char(5) THEAD Identifies file record type
Descriptor
File Line Number(10) Incremented ID of current line being processed
Identifier internally by input file
CEID Number(10) ce_head.ce_id
Entry No Char (15) ce_head.entry_n
o
Entry Date Char(14) ce_head.entry_d YYYYMMDDHH24MISS format
ate
Entry Char(6) ce_head.entry_st
Status atus
Entry Type Char(6) ce_head.entry_t
ype
Entry Port Char(5) ce_head.entry_p

ort

324 Oracle Retail Merchandising Foundation Cloud Service

cednld (Download of Customs Entry Transactions to Brokers)

Record Field Field Type Default Value Description
Name Name

Summary Char(14) ce_head.summa YYYYMMDDHH24MISS format

Date ry date

Broker ID Char(10) ce_head.broker_
id

Broker Ref. Char(18) ce_head.broker_

ID ref_id

File Char(18) ce_head file_no

Number

Importer Char(10) ce_head.importe

ID r_id

Import Char(3) ce_head.import_

Country country_id

Currency Char(3) ce_head.currenc

Code y_code

Exchange Number(20,1 ce_head.exchan

Rate 0) ge_rate*1000000
0000 (with 10
implied decimal
places)

Bond Char(18) ce_head.bond_n

Number o

Bond Type Char(6) ce_head.bond_t
ype

Surety Char(6) ce_head.surety_

Code code

Consignee Char(10) ce_head.consign

ID ee_id

Live Char(1) ce_head.live_in

Indicator d

Batch Char(20) ce_head.batch_n

Number o

Entry Team Char(3) ce_head.entry_t
eam

Liquidation Number(20,4) ce_head.liquidat

Amount ion_amt*10000
(4 implied
decimal places)

Liquidation Date ce_head liquidat YYYYMMDDHH24MISS format

Date ion_date

Reliquidati Number(20,4) ce_head.reliquid

on Amount

Reliquidati
on Date

ation_amt*10000
(4 implied
decimal places)

Date ce_head.reliquid YYYYMMDDHH24MISS format
ation_date

Oracle Retail Trade Management 325

cednld (Download of Customs Entry Transactions to Brokers)

Record Field Field Type Default Value Description
Name Name
Merchandi Char(40) ce_head.mercha
se Loc ndise_loc
Location Char(4) ce_head location
Code _code
TSHIP File Type Char(5) TSHIP Identifies file record type
Descriptor
File Line Number(10) Incremented ID of current line being processed
Identifier internally by input file
Vessel ID Char(20) ce_shipment.ves
sel_id
Voyage Flt Char(10) ce_shipment.vo
ID yage_flt_id
Estimated Date ce_shipment.esti YYYYMMDDHH24MISS format
Departure mated_depart_d
Date ate
Vessel Char(6) ce_shipment.ves
SCAC sel_scac_code
Code
Lading Char(5) ce_shipment.lad
Port ing_port
Discharge Char(5) ce_shipment.dis
Port charge_port
Tran Mode Char(6) ce_shipment.tra
ID n_mode_id
Export Date ce_shipment.ex YYYYMMDDHH24MISS
Date port_date
Import Date ce_shipmentim YYYYMMDDHH24MISS
Date port_date
Arrival Date ce_shipment.arri YYYYMMDDHH24MISS
Date val_date
Export Char(3) ce_shipment.ex
Country port_country_id
Shipment Number(10) ce_shipment.shi
Number pment_no
TORDI File Type Char(5) TORDI Identifies file record type
Descriptor
File Line Number(10) Incremented ID of current line being processed
Identifier internally by input file
Order Number(8) ce_ord_item.ord
Number er_no
Item Char (25) ce_ord_item.ite

m

326 Oracle Retail Merchandising Foundation Cloud Service

cednld (Download of Customs Entry Transactions to Brokers)

Record Field Field Type Default Value Description
Name Name
BL AWB Char(30) ce_ord_item.bl_ ‘MULTI - means multiple airway
ID awb_id bills (otherwise a single airway
bill will be retrieved)
Invoice ID Char(30) ce_ord_item.inv
oice_id
Invoice Date ce_ord_item.inv YYYYMMDDHH24MISS format
Date oice_date
Invoice Number(20,4) ce_ord_item.inv
Amount oice_amt*10000
(4 implied
decimal places)
Currency Char(3) ce_ord_item.cur
Code rency_code

Exchange = Number(20,1 ce_ord_item.exc

Rate 0) hange_rate*1000
0000000 (10
implied decimal
places)

Manifest Number(12,4) ce_ord_item.ma

Item nifest_item_qty*

Quantity 10000 (4 implied
decimal places)

Manifest Char(4) ce_ord_item.ma

Item nifest_item_qty_

Quantity uom

UuoOM

Carton Number ce_ord_item.cart

Quantity (12,4) on_qty*10000 (4
implied decimal
places)

Carton Char(4) ce_ord_item.cart

Quantity on_qgty_uom

UOM

Gross Number(12,4) ce_ord_item.gro

Weight ss_wt*10000 (4
implied decimal
places)

Gross Char(4) ce_ord_item.gro

Weight ss_wt_uom

UuoOM

Net Weight Number(12,4) ce_ord_item.net
_wt*10000 (4
implied decimal
places)

Net Weight Char(4) ce_ord_item.net

UuoOM _wt_uom

Oracle Retail Trade Management 327

cednld (Download of Customs Entry Transactions to Brokers)

Record Field Field Type Default Value Description
Name Name
Cubic Number(12,4) ce_ord_item.cub
ic*10000 (4
implied decimal
places)
Cubic Char(4) ce_ord_item.cub
UOM ic_uom
Cleared Number(12,4) ce_ord_item.clea
Quantity red_qty*10000 (4
implied decimal
places)
Cleared Char(4) ce_ord_item.clea
Quantity red_qty_uom
UOM
In Transit ~ Char(15) ce_ord_item.in_t
Number ransit_no
In Transit Date ce_ord_item.in_t YYYYMMDDHH24MISS format
Date ransit_date
Rush Char(1) ce_ord_item.rus
Indicator h_ind
Related Char(1) ce_ord_item.rela
Indicator ted_ind
Tariff Char(10) ce_ord_item.tari
Treatment ff_treatment
Ruling Char(10) ce_ord_item.ruli
Number ng_no
Do Char(10) ce_ord_item.do_
Number no
Do Date Date ce_ord_item.do_ YYYYMMDDHH24MISS format
date
Manufactu Char(18) sup_import_attr
re ID .mfg_id
TBLAW File Type Char(5) TBLAW Identifies file record type
Descriptor
File Line Number(10) Incremented ID of current line being processed
Identifier internally by input file
BL AWB Char(30) Transportation.b
ID I_awb_id
TCONT File Type Char(5) TCONT Identifies file record type
Descriptor
File Line Number(10) Incremented ID of current line being processed
Identifier internally by input file
Container Char(20) Transportation.c
ID ontainer_id

328 Oracle Retail Merchandising Foundation Cloud Service

cednld (Download of Customs Entry Transactions to Brokers)

Record Field Field Type Default Value Description
Name Name
Container Char(6) Transportation.c
SCAC ontainer_scac_c
Code ode
TLICV File Type Char(5) TLICV Identifies file record type
Descriptor
File Line Number(10) Incremented ID of current line being processed
Identifier internally by input file
License/Vi Char(6) ce_lic_visa.licen
sa Type se_visa_type
License/Vi Char(30) ce_lic_visa.licen
salD se_visa_id
License/Vi Number(12,4) ce_lic_visa.licen
sa Quantity se_visa_qty*100
00 (4 implied
decimal places)
License/Vi Char(4) ce_lic_visa.licen
sa Quantity se_visa_qty_uo
UOM m
Quota Char (6) ce_lic_visa.quot
Category a_category
Net Weight Number(12,4) ce_lic_visa.net_
weight*10000 (4
implied decimal
places)
Net Weight Char(4) ce_lic_visa.net_
UOM weight_uom
Holder ID Char(18) ce_lic_visa.hold
er_id
TCHRG File Type Char(5) TCHRG Identifies file record type
Descriptor
File Line Number(10) Incremented ID of current line being processed
Identifier internally by input file
Sequence Number(6) ce_charges.seq_
Number no
Pack Item char(25) ce_charges.pack
_item
HTS Char(10) ce_charges.hts
Effect From Date ce_charges.effec YYYYMMDDHH24MISS format
Date t_from
Effect To Char(14) ce_charges.effec YYYYMMDDHH24MISS format
Date t_to
Componen Date ce_charges.com
tID p_id

Oracle Retail Trade Management 329

htsupld (Harmonized Tariff Schedule Upload)

Record Field Field Type Default Value Description
Name Name

Componen Number(20,4) ce_charges.com

t Rate _rate*10000 (4
implied decimal
places)

Per Count Char(3) ce_charges.per_

uoOM count_uom

Componen Number(20,4) ce_charges.com

t Value p_value * 10000
(4 implied
decimal places)
TMDOC File Type = Char(5) TMDOC Identifies file record type
Descriptor
File Line Number(10) Incremented ID of current line being processed
Identifier internally by input file
Doc_id Number(6) Missing_doc.do
c_id
Received_d Date Missing_doc.rec YYYYMMDDHH24MISS format
ate eived_date
FTAIL File Type = Char(5) FTAIL Identifies file record type
Descriptor
File Line Number(10) Incremented ID of current line being processed
Identifier internally by input file.
File Record Number(10) Determined Number of records/ transactions
Counter Internally processed in current file (only

records between head & tail)

htsupld (Harmonized Tariff Schedule Upload)

Module Name htsupld.pc

Description Harmonized Tariff Schedule Upload
Functional Area Oracle Retail Trade Management
Module Type Integration

Module Technology ProC

Catalog ID RMS41

Runtime Parameters N/A

Design Overview

The harmonized tariff schedule module processes a file containing the most recent
United States Customs tariff schedule to RMS tables. The module uploads both the initial
entry of the schedule and all the updates, as they become available.

330 Oracle Retail Merchandising Foundation Cloud Service

htsupld (Harmonized Tariff Schedule Upload)

Scheduling Constraints

Schedule Information

Description

Frequency

Scheduling Considerations

Pre-Processing

Post-Processing

Threading Scheme

Daily

When import_ind from SYSTEM_OPTIONS table is
"Y’, then this batch program need to be turned on in
integrated batch schedule.

Hts240_to_2400 (perl script to convert the original
US government HTS file of 240-char lines to 2400-
char lines)

Ushts2rms (perl script to convert the HTS file of
2400- char lines to standard Oracle Retail file
format)

prepost.pc with HTSUPLD_PRE() function
N/A

The number of threads will be based on the number
of input files

Restart/Recovery

Recommended commit counter is 2000. Input file names must end in a “.1” for the restart
mechanism to properly parse the file name. Because there is only 1 input file to be
uploaded, only 1 thread is used.

A reject file is used to hold records that have failed processing. The user can fix the
rejected records and process the reject file again.

Key Tables Affected

Table Select Insert Update Delete
HTS Yes Yes Yes Yes
HTS_TL No No No Yes
HTS_TARIFF_TREATMENT Yes Yes Yes Yes
ITEM_HTS Yes Yes Yes Yes
MOD_ORDER_ITEM_HTS No Yes No No
HTS_OGA No Yes Yes Yes
ORDSKU_HTS Yes Yes Yes Yes
HTS_TT_EXCLUSIONS No Yes Yes Yes
HTS TAX No Yes Yes Yes
HTS_FEE No Yes Yes Yes
CE_CHARGES Yes Yes Yes Yes
HTS_CHAPTER Yes Yes No No
QUOTA_CATEGORY Yes Yes No No
ITEM_HTS_ASSESS No Yes Yes Yes
HTS_AD No No Yes No

Oracle Retail Trade Management 331

htsupld (Harmonized Tariff Schedule Upload)

Table Select Insert Update Delete
HTS_CVD No No Yes No
HTS_REFERENCE No No Yes No
ORDHEAD Yes No Yes No
ITEM_EXP_DETAIL No No Yes No
ORDLOC_EXP No No Yes No
ORDSKU_HTS_ASSESS No No Yes Yes
ORDSKU_TEMP Yes No No Yes
ORDLOC_TEMP No No No Yes
ALLOC_CHRG_TEMP No No No Yes
ALLOC_DETAIL_TEMP No No No Yes
ALLOC_HEADER_TEMP No No No Yes
ORDLOC_EXP_TEMP No No No Yes
ORDSKU_HTS_ASSESS_TEMP No No No Yes
ORDSKU_HTS_TEMP No No No Yes
ORDLOC_DISCOUNT_TEMP No No No Yes
TIMELINE_TEMP No No No Yes
REQ_DOC_TEMP No No No Yes
WO_DETAIL_TEMP No No No Yes
WO_HEAD_TEMP No No No Yes
REPL_RESULTS_TEMP No No No Yes
Integration Contract
Integration Type Upload to RMS
File Name Determined by runtime parameter
Integration Contract IntCon000051
Input File Layout

Record Field Name Field Type Default Description
Name Value
FHEAD Record Char(5) FHEAD Describes file line type

Descriptor

Line number Number(10) 000000000 Sequential file line number

1

Retek fileID Char(5) HTSUP Describes file type
THEAD Record Char(5) THEAD Describes file line type

Descriptor

Line number = Number(10) Sequential file line number

332 Oracle Retail Merchandising Foundation Cloud Service

htsupld (Harmonized Tariff Schedule Upload)

Record Field Name Field Type Default Description
Name Value
Transactionid Number(14) Unique transaction id
HTS Line Char(358) V1 through V4 records
from the customs HTS file
concatenated together
TDETL Record Char(5) TDETL Describes file line type
Descriptor
Line number Number(10) Sequential file line number
Transactionid Number(10) Unique transaction id
Tax/feeline Char(80) V5 through VC records
from the customs HTS file,
each on a separate TDETL
line
TTAIL Record Char(5) TTAIL Describes file line type
Descriptor
Line number Number(10) Sequential file line number
Detail lines Number(6) Number of lines between
THEAD and TTAIL
FTAIL Record Char(5) FTAIL Describes file line type
Descriptor
Line number Number(10) Sequential file line number
Transaction Number(10) Number of lines between FHEAD
Lines and FTAIL

Original input file:

Note: The input file contains lines of 2400 characters (that is,
the newline character occurs only after every 2400
characters). Each 2400-character line consists of thirty 80-
character records. Each 80-character record starts with “V1’
or V2’ ... or "VD’ or blank if the record is completely empty.
For each tariff, records V1 and V2 are mandatory; records V3
through VD are optional, which means they can be all blank.
Record V4 is not currently used in RMS/RTM. Records V5
through VC contain the tax/fee information for the tariff,
and all have the same structure. The lower-case letters in the
record name block are as a convenience to cross-reference
with the US Custom:s file description.

Oracle Retail Trade Management 333

htsupld (Harmonized Tariff Schedule Upload)

Input File Layout

Record Field Name Field Type Default Description
Name Value
Vi Control Char(1) \% Identifies start of record
a identifier
b Record type Char(1) 1 Identifies record type
Tariff number Number(10) A code located in the Harmonized Tariff
c Schedule of the United States Annotated
(HTS) representing the tariff number. If
this number is less than 10 positions, it is
left justified
d Transaction Char(1) A,D,R A code representing the type of
code transaction. Valid Transaction Codes are:
A=Add
D = Delete
R = Replace
e Begin char(6) A numeric date in MMDDYY (month,
effective date day, year) format representing the record
begin effective date. This date indicates
when the record becomes effective
f End effective char(6) A numeric date in MMDDYY (month,
date day, year) format representing the record
end effective date. This date indicates the
last date the record is effective
g number of number(1) 0,1,or2or3 The number of reporting units required
reporting by the Bureau of the Census. In a few
units instances, units not required by Census
may be required to compute duty. In
these cases, the Census reporting units
are always first, followed by any
additional units required to compute the
duty
h 1" reporting char(4) A code representing the first unit of
unit of measure. If the reporting unit is X, no
measure unit of measure is required except for
certain tariff numbers in Chapter 99.
Valid unit of measure codes are listed in
Appendix C
I 2" reporting char(4) A code representing the second unit of
unit of measure. Valid unit of measure codes are
measure listed in Appendix C
j 3“reporting char(4) A code representing the third unit of
unit of measure. Valid unit of measure codes are
measure listed in Appendix C
k duty char(1) A code indicating the formula to be used
computation to compute the duty. Valid Duty
code Computation Codes are listed in

Appendix F

334 Oracle Retail Merchandising Foundation Cloud Service

htsupld (Harmonized Tariff Schedule Upload)

Record Field Name Field Type Default Description
Name Value
1 commodity char(30) A condensed version of the commodity
description description that appears in the HTS
m column 1 Number(12) The rate of duty that appears in the
specific rate of General column of the HTS. Eight
duty decimal places are implied
n base rate char(1) ‘B" or blank A code indicating if the rate contains a
indicator base rate. If the base rate indicator is B,
the duty rate is a base rate; otherwise,
space fill. Not Used in RMS
o space fill char(1) blank Space fill. Not used in RMS
V2 a Control char(1) \% Identifies start of record
identifier
b Record type char(1) 2 Identifies record type
c tariff number Number (10) A code located in the Harmonized Tariff
Schedule of the United States Annotated
(HTS) representing the tariff number. If
this number is less than 10 positions, it is
left justified. This number is the same as
that in Record Identifier V1
d general Number (12) The ad valorem rate of duty that appears
column 1 ad in the General column of the HTS. Eight
valorem decimal places are implied
percentage
e column 1 Number (12) The rate of duty that appears in the
other General column of the HTS that is not an
ad valorem rate. Eight decimal places are
implied
f Column 2 Num(12) The specific rate of duty that appears in
specific rate Column 2 of the HTS. Eight decimal
places are implied
g Column2ad Num(12) The ad valorem rate of duty that appears
valorem in Column 2 of the HTS. Eight decimal
percentage places are implied
h Column 2 Num(12) The rate of duty that appears in Column
other rate 2 of the HTS that is not an ad valorem
rate or a specific rate. Eight decimal
places are implied
i countervailing char(1) blankor1 A code of 1 indicating the tariff number is
duty flag subject to countervailing duty; otherwise,

space fill

Oracle Retail Trade Management 335

htsupld (Harmonized Tariff Schedule Upload)

Record Field Name Field Type Default
Name Value

Description

j additional char(1) blank or ‘R’
tariff indicator

k Miscellaneous char(2)
Permit/
License
Indicator

1 space fill char(4) blanks

V3 a Control char(1) \%
identifier

b Record type char(1) 3

c tariff number Number(10)

d GSP excluded char(20)
countries

e OGA codes char(15)

f anti-dumping char(1) 1 or blank
flag

g quota char(1) 1 or blank
indicator

h category char(6)
number

A code indicating if an additional tariff
number may be required with this tariff
number. Refer to the Harmonized Tariff
Schedule of the United States Annotated
(HTS) for more specific information on
which HTS numbers require additional
HTS numbers to be reported. This
indicator is R when an additional tariff
number may be required; otherwise,
space fill

A code indicating if a tariff number may
be subject to a miscellaneous
permit/license number

Not used in RMS

identifies start of record

identifies record type

A code located in the Harmonized Tariff
Schedule of the United States Annotated
(HTS) representing the tariff number. If

this number is less than 10 positions, it is
left justified. This number is the same as
the number in Record Identifier V1

The International Organization for
Standardization (ISO) country code that
indicates countries not eligible for
preferential treatment under GSP. Upto
ten 2-position country codes can be
reported. If countries are excluded from
GSP, the Special Programs Indicator (SPI)
Code contained in this record (positions
53-64) is A*. Valid ISO country codes are
listed in Appendix B

Codes that indicate special requirements
by other Federal Government agencies
must or may apply. Upto five 3-position
OGA codes can be provided

A code of 1 indicating the tariff number is
subject to an antidumping duty;
otherwise, space fill

A code of 1 indicating the tariff number
may be subject to quota. If the tariff
number is not subject to quota, space fill

A code located in the HTS indicating the
textile category assigned to the tariff
number. If there is no textile category
number, space fill

336 Oracle Retail Merchandising Foundation Cloud Service

htsupld (Harmonized Tariff Schedule Upload)

Record Field Name Field Type Default Description
Name Value
I special char(28) A code indicating if a tariff number is
program subject to a special program. Up to
indicators fourteen 2-position codes can be
reported. Left justify. The SPI codes are
not reported in any particular sequence.
If more than fourteen 2-position codes
are required, they are reported on the VD
record
NEWLINE \n
V4 Control char(1) \% identifies start of record. Entire V4 record
a identifier not used in RMS
b Record type char(1) 4 identifies record type
c tariff number Number (10) A code located in the Harmonized Tariff
Schedule of the United States Annotated
(HTS) representing the tariff number. If
this number is less than 10 positions, it is
left justified. This number is the same as
the number reported in Record Identifier
A%
d value edit char(3) A code representing the value edit
code
e value low Number (10) A value representing the minimum value
bounds edit. Five decimal places are implied. If
this record contains date edits (positions
36-53), space fill
f value high Number (10) A value representing the maximum value
bounds edit. Five decimal places are implied. If
this record contains date edits (positions
36-53), space fill
g entry date Number (1) 0,1, or2 A code representing the first entry date
restriction restriction code
h beginning char(4) A numeric date in MMDD (month and
restriction day) format representing the first begin
date restriction date used in the edit. If this
record contains a value edit (positions
13-35), space fill
1 end restriction char(4) A numeric date in MMDD (month and
date day) format representing the first end
restriction date used in the edit. If this
record contains a value edit (positions
13-35), space fill
j entry date number(1) 0,1,o0r2 A code representing the second entry
restriction 2 date restriction code
k beginning char(4) A numeric date in MMDD (month and
restriction day) format representing the second
date 2 begin restriction date used in the edit. If

this record contains a value edit
(positions 13-35), space fill

Oracle Retail Trade Management 337

htsupld (Harmonized Tariff Schedule Upload)

Record Field Name Field Type Default Description
Name Value

1 end restriction char(4) A code located in the Harmonized Tariff
date 2 Schedule of the United States Annotated
(HTS) representing the tariff number. If
this number is less than 10 positions, it is
left justified. This number is the same as
the number reported in Record Identifier
V1

m country of char(2) A code representing the value edit
origin
n space filler char(2) blanks A value representing the minimum value
edit. Five decimal places are implied. If

this record contains date edits (positions
36-53), space fill

o quantity edit char(3) A value representing the maximum value
code edit. Five decimal places are implied. If
this record contains date edits (positions
36-53), space fill

P low quantity =~ Number (10) A code representing the first entry date
restriction code

q high quantity ~Number (10) A numeric date in MMDD (month and
day) format representing the first begin
restriction date used in the edit. If this

record contains a value edit (positions
13-35), space fill

V5 a Control char(1) \% Identifies start of record
identifier

b Record type char(1) 5,6,7,89,A, Identifies record type
B,C

c tariff number Number (10) A code located in the Harmonized Tariff
Schedule of the United States Annotated
(HTS) representing the tariff number. If
this number contains less than 10
positions, it is left justified. This number
is the same as the number reported in
Record Identifier V1

d Country code char(2) A code representing the country. Valid
ISO country codes are listed in
Appendix B. E followed by a space
(Caribbean Basin Initiative), and |
followed by a space (Andian Trade
Preference Act), and R followed by a
space (Caribbean Trade Partnership Act),
are also valid codes for special rates.
Countries eligible for E and] are
indicated in the ACS country code file
and the Harmonized Tariff Schedule of
the United States - Annotated (HTS)

e specific rate Number (12) The specific rate of duty listed in the
Special column of the HTS. Eight decimal
places are implied

338 Oracle Retail Merchandising Foundation Cloud Service

tranupld (Transportation Upload)

Record Field Name Field Type Default Description
Name Value
f ad valorem Number (12) The ad valorem rate of duty listed in the
rate Special column of the HTS. Eight decimal
places are implied
g Other rate Number (12) The rate of duty listed in the Special
column of the HTS that is not a specific or
ad valorem rate. Eight decimal places are
implied
h tax/fee class char(3) A code representing the tax/fee class.
code Valid tax/fee class codes are listed in
Appendix B
I tax/fee comp char(1) A code indicating the first tax/fee
code computation formula. Computation
formulas are presented in Appendix F
j tax/fee flag number(1) A code indicating a tax/fee is required.
Valid Tax/Fee Flag Codes are:
1 = Tax/fee required
2 = Tax/fee may be required. Not used in
RMS
k tax/fee Number (12) blankifno The specific rate of duty required to
specific rate value compute taxes and/or fees. Eight decimal
places are implied
1 tax/fee ad Number (12) blankif no The ad valorem rate of duty required to
valorem value compute taxes and/or fees. Eight decimal
places are implied
m space fill char(1) blank Space fill
Note: V6 through VC records have the same fields as the V5 record.
VD Control char(1) \Y% identifies start of record
identifier
b Record type char(1) D identifies record type
c tariff number Number (10) unique tariff number
d Special char(32) A code indicating if a tariff number is
Program subject to a special program. Up to
Indicator (SPI) sixteen additional 2-position codes can be
Code reported. Left justify. The SPI codes are
not reported in any particular sequence
e Filler char(36) Space fill
tranupld (Transportation Upload)
Module Name tranupld.pc
Description Transportation Upload
Functional Area Oracle Retail Trade Management

Oracle Retail Trade Management 339

tranupld (Transportation Upload)

Module Name tranupld.pc
Module Type Integration
Module Technology ProC
Catalog ID RMS140
Runtime Parameters N/A

Design Overview

This program uploads data from trading partners about the transportation of
merchandise from the manufacturing site through customs clearance.

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations This batch does not need to be scheduled when the
rtm_simplified_ind in SYSTEM_OPTIONS table is set to
Y

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery

The logical unit of work is a valid DTRAN record. The program reads each DTRAN
record from the upload file, validates it and processes it. The recommended commit max
counter value for this program is 1000 (this value depends on the implementation).

Key Tables Affected
Table Select Insert Update Delete
TRANSPORTATION Yes Yes Yes Yes
IF_ERRORS No Yes No No
PARTNER Yes No No No
FREIGHT_TYPE Yes No No No
FREIGHT_SIZE Yes No No No
CURRENCIES Yes No No No
ORDHEAD Yes No No No
ORDSKU Yes No No No
ITEM_MASTER Yes No No No
OUTLOC Yes No No No
SCAC Yes No No No
COUNTRY Yes No No No

340 Oracle Retail Merchandising Foundation Cloud Service

tranupld (Transportation Upload)

Table Select Insert Update Delete
UOM_CLASS Yes No No No
CODE_DETAIL Yes No No No
Integration Contract
Integration Type Upload to RMS
File Name Determined by runtime parameter
Integration Contract IntCon000177
Input File Layout
Record Field Name Field Type Default Value Description
Name
FTRAN Record Char(5) FTRAN File head marker
descriptor
Line id Number(10) 0000000001 Unique line id
File type Char(4) TRUP Identifies program as tranupld
definition
File create date Char(14) Current date YYYYMMDDHHMISS format
DTRAN Record Char(5) DTRAN Vessel, Voyage, ETD, Container,
descriptor BL, Invoice File head
Line id Number(10) Unique line id
Partner Type Char(6) Identifies the partner type
Partner ID Char(10) Identifies the partner id
Vessel ID Char(20) Identifies the Vessel
Voyage ID Char(10) Identifies the Voyage or Flight ID
Estimated Char(8) YYYYMMDD format
Depart Date
Shipment Char (20) Identifies an outside Shipment
Number number
Actual Arrival ~ Char(8) YYYYMMDD format
Date
Trans Mode Char(6) Identifies the type of transportation
being used. Valid values are found
in the TRMO Code Type on the
CODE_DETAIL table
Vessel SCAC Char(6) Customs defined ID for the Vessel.
Code Validated against SCAC table
Estimated Char(8) YYYYMMDD format
Arrival Date
Lading Port Char(5) Identifies the Lading Port.

Validated against OUTLOC with
type = ‘LP’

Oracle Retail Trade Management 341

tranupld (Transportation Upload)

Record Field Name Field Type Default Value Description
Name
Discharge Port Char(5) Identifies the Discharge Port.
Validated against OUTLOC with
type = ‘DP’
Service Char(15) Identifies the outside Service
Contract Contract Number
Number
Container id Char(20) Identifies the Container
Container Char(6) Customs defined id for the
SCAC code container. Validated against SCAC
table
Delivery Date ~ Char(8) YYYYMMDD format
Seal id Char(15) Customs defined id for the
container’s seal
Freight Type Char(6) Code that identifies the container
type. Validated against the
FREIGHT_TYPE table
Freight Size Char(6) Code that identifies the container
size. Validated against the
FREIGHT_SIZE table
In Transit No. Char(15) External transit number
In Transit Date Char(8) YYYYMMDD format
BL/AWB id Char(30) Identifies the Bill of Lading or Air
Way Bill
Candidate Ind Char(1) Defaulted to Identifies a complete
‘N’ Transportation record. Valid values
are Y and ‘N’
DPOIT Record Char(5) DPOIT Order/Item detail info
descriptor
Line id Number(10) Unique file line id
ACD_Code Char(1) Determines which process to
perform “A’dd, ‘C’hange, ‘D’elete.
Rush Ind Char(1) Defaulted to Identifies whether or not the item
‘N’ should be on a ‘Rush’ delivery.
Valid values are “Y” and ‘N’
Order number Number(8) RMS order no
Item Char(25) RMS Item
Invoice id Char(30) Identifies the Commercial Invoice
Invoice date Char(8) YYYYMMDD format
Currency Code Char(3) Currency that the Currency

Amount is reported in. Validated
against CURRENCIES table.

342 Oracle Retail Merchandising Foundation Cloud Service

tranupld (Transportation Upload)

Record Field Name Field Type Default Value Description
Name

Exchange Rate Char (20) The exchange rate back to the
primary currency (10 implied
decimals)

Invoice amt Char 20) Invoice amt*10000 (with 4 implied
decimal places), amount charged
by supplier for the PO/Item

Origin Country Char(3) Identifies where the PO/Item was

id made

Consolidation ~ Char(3) Identifies where the PO/Items

Country id were consolidated

Export Char(3) Identifies where the PO/ Items

Country id where shipped from

Status Char(6) Identifies the PO/Item status.
Valid values are found in the
TRCO Code Type on
CODE_DETAIL

Receipt ID Char(30) Identifies the external receipt
number

FCRid Char(15) Identifies the Freight Cargo Receipt
id

FCR date Char(8) YYYYMMDD format

Packing Char(6) Identifies the Packing Type

Method (Hanging or Flat). Valid values are
"HANG' or ‘FLAT’

Lot Number Char(15) Identifies the Lot Number of the
PO/Item

Item Qty Number(12) Item Qty*10000(with 4 implied
decimals), qty of Items

Item QTY Char(4) Identifies the UOM associated with

UOM the item quantity

Carton QTY Number(12) Carton QTY*10000 (with 4 implied
decimals), qty of Cartons

Carton QTY Char(4) Identifies the UOM associated with

UuoOM the carton quantity

Gross WT Number(12) Gross WT*10000 (with 4 implied
decimals), Gross weight

Gross WT Char(4) Identifies the UOM associated with

UOM the gross weight

Net WT Number(12) Net WT*10000 (with 4 implied
decimals), Net Weight

Net WTUOM Char(4) Identifies the UOM associated with
the net weight

Cubic Number(12) Cubic*10000 (with 4 implied

decimals), cubic size

Oracle Retail Trade Management 343

Icadnld (Letter of Credit Application Download)

Record Field Name Field Type Default Value Description
Name
Cubic UOM Char(4) Identifies the UOM associated with
the cubic size
Comments Char(256) User Comments
FTAIL Record type Char(5) FTAIL
Line id Number(10) Unique file line id
No. of lines Number(10) Total number of transaction lines in
file (not including FHEAD and
FTAIL)

Icadnld (Letter of Credit Application Download)

Module Name Lcadnld.pc

Description Letter of Credit Application Download
Functional Area Retail Trade Management

Module Type Integration

Module Technology ProC

Catalog ID RMS57

Runtime Parameters N/A

Design Overview

Lcadnld sends letter of credit (LC) applications to partner banks. Online user actions flag
LCs for download by writing to the LC_DOWNLOAD table.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations Run lcadnld before the lemt700 Perl script.

This batch is not scheduled to run when the
rtm_simplified_ind in SYSTEM_OPTIONS table is

settoY
Pre-processing N/A
Post-Processing LCMT?700 Perl script
Threading Scheme No threading due to low volume

Restart/Recovery

Restart/recovery for this program is set up at the lc_ref_id level. The recommended
commit counter setting is 10000 records (subject to change based on experimentation).

344 Oracle Retail Merchandising Foundation Cloud Service

Icadnld (Letter of Credit Application Download)

Key Tables Affected
Table Select Insert Update Delete
LC_HEAD Yes No Yes No
LC_DETAIL Yes No No No
LC_DOWNLOAD Yes No No Yes
OUTLOC Yes No No No
ADDR Yes No No No
SUP_IMPORT_ATTR Yes No No No
SUPS Yes No No No
PARTNER Yes No No No
ITEM_MASTER Yes No No No
DOC Yes No No No
REQ_DOC Yes No No No
CODE_DETAIL Yes No No No

Integration Contract

Integration Type Download from RMS
File Name Determined by runtime parameter
Integration Contract IntCon000052
Record Field Name Field Type Default Value Description
name
File Header File Type Char(5) FHEAD Identifies file record type
Record
Descriptor
File Line Number(10) line number ID of current line being
Identifier in file created for output file
File Type Char(4) LCAP Identifies file as ‘Letter of
Definition Credit Application’
File Create Char(14) create date Current date, formatted to
Date “YYYYMMDDHH24MISS'
File Detail File Type Char(5) THEAD Identifies file record type
Record
Descriptor
File Line Number(10) line number in file ID of current line being
Sequence created for output file.
Number
Transaction Number(10) sequence number Used to force unique file
Set Control check
Number

Oracle Retail Trade Management 345

Icadnld (Letter of Credit Application Download)

Record Field Name Field Type Default Value Description
name

Issuing Bank Char(10) lc_head.issuing_bank Used to sort the LCs into
individualized bank SWIFT
formatted files (using
another program) - bank
where LC application is
headed

Issuing Bank Char(240) partner.partner_desc The description from the

Name partner table where
partner_id = issuing_bank
and partner_type = ‘BK’

Issuing Bank Char(240) addr.add_1 Mandatory line of address

Address 1

Issuing Bank Char(240) addr.add_2 Non-mandatory line of

Address 2 address (can be null)

Issuing Bank Char(240) addr.add_3 Non-mandatory line of

Address 3 address (can be null)

Issuing Bank Char(120) addr.city City bank located in

City

Issuing Bank Char(3) addr.state State, if applicable, where

State bank located in

Issuing Bank Char(30) addr.post Post code, if applicable,

Post Code where bank located in

Issuing Bank Char(3) addr.country_id Country bank located in

Country

Advising Bank Char(10) lc_head.advising_bank Used to sort the LCs into
individualized bank SWIFT
formatted files (using
another program) - bank
where LC application is
headed

Advising Bank Char(240) Partner.partner_desc The description from the

Name partner table where
partner_id = advising_bank
and partner_type = ‘BK’

Advising Bank Char(240) Addr.add_1 Mandatory line of address

Address 1

Advising Bank Char(240) Addr.add_2 Non-mandatory line of

Address 2 address (can be null)

Advising Bank Char(240) Addr.add_3 Non-mandatory line of

Address 3 address (can be null)

Advising Bank Char(120) Addr.city City bank located in

City

Advising Bank Char(3) Addr.state State, if applicable, where

State bank located in

Advising Bank Char(30) Addr.post Post code, if applicable,

Post Code where bank located in

346 Oracle Retail Merchandising Foundation Cloud Service

Icadnld (Letter of Credit Application Download)

Record Field Name Field Type Default Value Description
name

Advising Bank Char(3) Addr.country_id Country bank located in

Country

Letter of Number(8) Ic_head.lc_ref_id The LC_REF_ID off the

Credit LC_HEAD table

Form Type Char(6) Ic_head.form_type The level of detail that the LC
will send to the issuing bank

Form Type Char(40) code_detail.code_desc Describes the form type:

Description Long or Short

Letter of Char(6) lc_head.lc_type The type of LC that is being

Credit Type applied for

Letter of Char(40) code_detail.code_desc Describes the LC type:

Credit Type Master, Normal, Revolving

Description

Form of Letter Char(1) sup_import_attr.revocable_ind The REVOCABLE_IND from

of Credit - 1 the SUP_IMPORT_ATTR
table

Form of Letter Char(1) lc_head.transferable_ind Indicates if LC transferable

of Credit - II

Application Char(14) Ic_head.application_date Date the LC is created within

Date RTM/RMS, formatted to
YYYYMMDD HH24MISS’

Expiration Char(14) Ic_head.expiration_date The date the LC expires,

Date formatted to “YYYYMMDD
HH24MISS’

Place of Expiry Char(6) lc_head.place_of_expiry Code for the place the LC
will expire

Place of Expiry Char(40) desc is retrieved through a The description of the place

Description decode the LC will expire

Applicant Char(10) lIc_head.applicant Party on whose behalf the LC
is being issued

Applicant Char(240) partner.partner_desc The description from the

Name partner table where
partner_id = applicant and
partner_type = ‘AP’

Applicant Char(240) addr.add_1 Mandatory line of address

Address 1

Applicant Char(240) addr.add_2 Non-mandatory line of

Address 2 address (can be null)

Applicant Char(240) addr.add_3 Non-mandatory line of

Address 3 address (can be null)

Applicant City Char(120) addr.city City applicant located in

Applicant Char(3) addr.state State, if applicable, where

State applicant located in

Oracle Retail Trade Management 347

Icadnld (Letter of Credit Application Download)

Record Field Name Field Type Default Value Description

name
Applicant Post Char(10) addr.post Post code, if applicable,
Code where applicant located in
Applicant Char(3) addr.country_id Country applicant located in
Country
Beneficiary Number(10) Ic.head.beneficiary Party in favor of which the

LC is being issued
Beneficiary Char(240) sups.sup_name Beneficiary (supplier) name
Name from the SUPS table
Beneficiary Char(240) addr.add_1 Mandatory line of address
Address 1
Beneficiary Char(240) addr.add_2 Non-mandatory line of
Address 2 address (can be null)
Beneficiary Char(240) addr.add_3 Non-mandatory line of
Address 3 address (can be null)
Beneficiary Char(120) addr.city City beneficiary located in
City
Beneficiary Char(3) addr.state State, if applicable, where
State beneficiary located in
Beneficiary Char(30) addr.post Post code, if applicable,
Post Code where beneficiary located in
Beneficiary Char(3) addr.country_id Country beneficiary located
Country in
Currency Char(3) Ic_head.currency_code The country of origin for the
Code orders on the LC
Exchange Rate Number (20,10) Ic_head.exchange_rate Exchange_rate to convert LC
currency to RMS currency

Origin Char(3) lc_head.origin_country_id Origin country of the orders
Country ID associated with the LC
Presentation Char(6) Ic_head.presentation_terms Code for the terms of
Terms presentation
Presentation ~ Char(40) desc is retrieved through a Description of the terms of
Terms decode presentation
Description
Purchase Type Char(6) lIc_head.purchase_type Code for the purchase type
Purchase Type Char(40) desc is retrieved through a Description of the purchase
Description decode type
Advice Char(6) lc_head.advice_method Code for the advice method
Method
Advice Char(40) desc is retrieved through a Description of the advice
Method decode method (eg. Full Wire, Mail,
Description etc)
Issuance Char(6) Ic_head.issuance Code for the issuance

348 Oracle Retail Merchandising Foundation Cloud Service

Icadnld (Letter of Credit Application Download)

Record Field Name Field Type Default Value Description
name

Issuance Char(40) desc is retrieved through a Description of the issuance

Description decode (eg. Cable, Telex, etc)

Amount Type Char(6) Ic_head.amount_type If “E’xact, then amount must
be exat, if “A’pproximate
then amount can be within
variance percent

Amount Type Char(40) desc is retrieved through a Description of amount_type

Description decode

Amount Number (20,4) Ic_head.amount The total amt of the Letter of
Credit

Variance Number (12,4) lc_head.variance_pct Allowed currency variance

Percent percent for the LC

Specification ~ Char(6) Ic_head.specification Code for any condition for
the credit, such as,.
“maximum”, etc

Specification ~ Char(40) desc is retrieved through a Description of condition for

Description decode the credit, such as,.
“maximum”, etc

Credit Char(10) Ic_head.credit_avail with Code for bank with which

Available credit is available

With

Credit With Char(40) partner.partner_desc The description from the

Bank Name partner table where
partner_id =
credit_avail_with and
partner_type = ‘BK’

Credit With Char(240) addr.add_1 Mandatory line of address

Address 1

Credit With Char(240) addr.add_2 Non-mandatory line of

Address 2 address (can be null)

Credit With Char(240) addr.add_3 Non-mandatory line of

Address 3 address (can be null)

Credit With Char(120) addr.city City creditor located in

City

Credit With Char(3) addr.state State, if applicable, where

State creditor located in

Credit With Char(30) addr.post Post code, if applicable,

Post Code where creditor located in

Credit With Char(3) addr.country_id Country creditor located in

Country

Drafts At Char(6) lc_head.drafts_at Specifies the terms of the
drafts to be drawn under the
LC

Drafts At Char(40) desc is retrieved through a Description of the terms of

Description decode the drafts to be drawn under

the LC

Oracle Retail Trade Management 349

Icadnld (Letter of Credit Application Download)

Record Field Name Field Type Default Value Description
name

Drawee Char(10) lc_head.paying_bank Identifies drawee of drafts to
be drawn under LC (paying
bank)

Drawee Name Char(240) partner.partner_desc The description from the
partner table where
partner_id = paying_bank
and partner_type = ‘BK’

Drawee Char(240) addr.add_1 Mandatory line of address

Address 1

Drawee Char(240) addr.add_2 Non-mandatory line of

Address 2 address (can be null)

Drawee Char(240) addr.add_3 Non-mandatory line of

Address 3 address (can be null)

Drawee City ~ Char(120) addr.city City bank located in

Drawee State ~ Char(3) addr.state State, if applicable, where
bank located in

Drawee Post ~ Char(30) addr.post Post code, if applicable,

Code where bank located in

Drawee Char(3) addr.country_id Country bank located in

Country

Negotiating Char(10) Ic_head.negotiating bank Identifies the negotiating

Bank bank

Negotiating Char(240) partner.partner_desc The description from the

Bank Name partner table where
partner_id =
negotiating_bank and
partner_type = ‘BK’

Negotiating Char(240) addr.add_1 Mandatory line of address

Bank Address

1

Negotiating Char(240) addr.add_2 Non-mandatory line of

Bank Address address (can be null)

2

Negotiating Char(240) addr.add_3 Non-mandatory line of

Bank Address address (can be null)

3

Negotiating Char(120) addr.city City bank located in

Bank City

Negotiating Char(3) addr.state State, if applicable, where

Bank State bank located in

Negotiating Char(30) addr.post Post code, if applicable,

Bank Post where bank located in

Code

Negotiating Char(3) addr.country_id Country bank located in

Bank Country

350 Oracle Retail Merchandising Foundation Cloud Service

Icadnld (Letter of Credit Application Download)

Record Field Name Field Type Default Value Description
name

Confirming Char(10) Ic_head.confirming_bank Identifies the confirming

Bank bank

Confirming Char(240) partner.partner_desc The description from the

Bank Name partner table where
partner_id =
confirming_bank and
partner_type = ‘BK’

Confirming Char(240) addr.add_1 Mandatory line of address

Bank Address

1

Confirming Char(240) addr.add_2 Non-mandatory line of

Bank Address address (can be null)

2

Confirming Char(240) addr.add_3 Non-mandatory line of

Bank Address address (can be null)

3

Confirming Char(120) addr.city City bank located in

Bank City

Confirming Char(3) addr.state State, if applicable, where

Bank State bank located in

Confirming Char(30) addr.post Post code, if applicable,

Bank Post where bank located in

Code

Confirming Char(3) addr.country_id Country bank located in

Bank Country

Transferring ~ Char(10) Ic_head.transferring_bank Identifies the transferring

Bank bank

Transferring ~ Char(240) partner.partner_desc The description from the

Bank Name partner table where
partner_id =
transferring_bank and
partner_type = ‘BK’

Transferring ~ Char(240) addr.add_1 Mandatory line of address

Bank Address

1

Transferring ~ Char(240) addr.add_2 Non-mandatory line of

Bank Address address (can be null)

2

Transferring ~ Char(240) addr.add_3 Non-mandatory line of

Bank Address address (can be null)

3

Transferring ~ Char(120) addr.city City bank located in

Bank City

Transferring ~ Char(3) addr.state State, if applicable, where

Bank State bank located in

Oracle Retail Trade Management 351

Icadnld (Letter of Credit Application Download)

Record Field Name Field Type Default Value Description
name

Transferring Char(30) addr.post Post code, if applicable,

Bank Post where bank located in

Code

Transferring Char(3) addr.country_id Country bank located in

Bank Country

Partial Char(1) Ic_head.partial_ship_ind Indicates whether goods

Shipment covered by LC can be

Indicator partially shipped or not

Transshipment Char(1) lc_head.transshipment_ind Indicates whether goods can

Indicator be transferred to another
vessel midway through the
voyage

Fob Title Pass ~ Char(6) Ic_head.fob_title_pass Indicates where the title for
goods is passed from the
vendor to the purchaser

Fob Title Pass Char(40) desc is retrieved through a Decode of where the title for

Decode decode goods is passed from the
vendor to the purchaser

Fob Title Pass ~ Char(250) lc_head.ob_title_pass_desc Describes the

Description FOB_TITLE_PASS - could be
city name etc

Transportation Char(5) Ic_head.transportation_to Transportation to location

to

transportation Char(150) outloc.outloc_desc Description of transportation

to description to location

With Recourse Char(1) Ic_head.with_recourse_ind Indicates conditional

Indicator payment on the part of the
bank as instructed by the
buyer

Latest Char(14) lc_head.latest_ship_date Latest ship date for all Pos

Shipment Date included in the LC, formatted
to "YYYYMMDD HH24MISS’

Earliest Char(14) lc_head.earliest_ship_date Earliest ship date for all Pos

Shipment Date included in the LC, formatted

to "YYYYMMDD HH24MISS

352 Oracle Retail Merchandising Foundation Cloud Service

Icadnld (Letter of Credit Application Download)

Record Field Name Field Type Default Value Description
name
Letter of Number(3) Ic.head.lc_neg_days The number of days to
Credit replaces x negotiate documents
Negotiation in the string
Days “DOCUMENTS
TO BE
PRESENTED
WITHIN x
DAYS AFTER
ISSUANCE OF
THE
SHIPPING
DOCUMENTS
BUT WITHIN
THE
VALIDITY OF
THIS CREDIT”
Bank’s LC Number(8) lc_head.bank_lc_id Bank’s LC ref id
reference id
File Type Char(5) THDCM Identifies file record type
Record
Descriptor
File Line Number(10) line number in file ID of current line being
Sequence created for output file
Number
Transaction Number(10) sequence number Used to force unique file
Set Control check
Number
Header Level ~ Char(2000) lc_head.comments Holds any comments that the
Comments user has added to the Letter
of Credit.
File Type Char(5) TDOCS Identifies file record type
Record
Descriptor
File Line Number(10) line number in file ID of current line being
Sequence created for output file
Number
Transaction Number(10) sequence number Used to force unique file
Set Control check
Number
Swift Tag Char(6) doc.swift_tag Identifies individual
document types that can be
associated with an LC
DocumentID Number(6) req_doc.doc_id Uniquely identifies the

individual documents
associated with an LC

Oracle Retail Trade Management 353

Icadnld (Letter of Credit Application Download)

Record Field Name Field Type Default Value Description
name
Body Text Char(2000) req_doc.doc_text Documents associated with a
given LC
Description of Goods and
Services OR Documents
Required OR Additional
Conditions OR Narrative
File Type Char(5) TDETL Identifies file record type
Record
Descriptor
File Line Number(10) line number in file ID of current line being
Sequence created for output file
Number
Transaction Number(10) sequence number Used to force unique file
Set Control check
Number
Order Number Number(8) lc_detail.order_no PO associated with the LC
Item lc_detail.item Item on the PO - item is
Char(25) rolled up to the item_level of
1, if possible
Cost Number (20,4) lc_detail.cost If form_type = ‘S’hort then
cost is the total cost of the
order; if the form_type =
‘L’ong then the cost is the
unit cost of the item
Quantity Number (12,4) Ic_detail.qty Total qty of the item for the
order on the LC
Standard Char(4) Item_master.standard_uom Standard unit of measure of
UOM the quantity of the item for
the order on the LC
Earliest Ship ~ Char(14) lc_detail.earliest_ship_date The earliest date an order on
Date the LC can be shipped,
formatted to
“YYYYMMDDHH24MISS'
Latest Ship Char(14) lc_detail latest_ship_date The latest date an order on
Date the LC can be shipped,
formatted to “YYYYMMDD
HH24MISS’
item Char(250) Item_master.desc_up Item’s description
description
File Type Char(5) TMERC Identifies file record type
Record
Descriptor
File Line Number(10) line number in file ID of current line being
Sequence created for output file
Number

354 Oracle Retail Merchandising Foundation Cloud Service

lcmt700 (SWIFT File Conversion — Letter of Credit Application)

Record Field Name Field Type Default Value Description
name
Transaction Number(10) sequence number Used to force unique file
Set Control check
Number
Merchandise ~ Char(2000) lc_detail.merch_desc Contains the merchandise
Description description of the field.
File Type Char(5) TDTCM Identifies file record type
Record
Descriptor
File Line Number(10) line number in file ID of current line being
Sequence created for output file
Number
Transaction Number(10) sequence number Used to force unique file
Set Control check
Number
Detail Level Char(2000) lc_detail.comments Holds any comments that the
Comments user has added to the Letter
of Credit detail record.
File Trailer ~ File Type Char(5) TTAIL Identifies file record type
Record
Descriptor
File Line Number(10) line number in file ID of current line being
Sequence created for output file
Number
Transaction Number(10) sequence number Used to force unique file
Set Control check
Number
Transaction Number(10) ID of current line being Sum of the detail lines within
detail line created for output file a transaction
count
File Trailer ~ File Type Char(5) FTAIL Identifies file record type
Record
Descriptor
File Line Number(10) Sequential number ID of current line being
Identifier Created by program. created for output file.
File Record Number(10) Number of
Counter records/ transactions

processed in current file
(only records between head
& tail)

lcmt700 (SWIFT File Conversion — Letter of Credit Application)

Module Name

lemt700

Description

SWIFT File Conversion - Letter of
Credit Application

Oracle Retail Trade Management 355

lcmt700 (SWIFT File Conversion — Letter of Credit Application)

Module Name lemt700

Functional Area Oracle Retail Trade Management
Module Type Integration

Module Technology Perl

Catalog ID RMS136

Runtime Parameters N/A

Design Overview

This Perl script will convert the standard RMS flat file into the bank specific S.W.L.F.T.
MT 700 output files. The input file for this Perl script is the output of the lcadnld.pc RMS
batch. One output file will be created for each issuing bank in the lcadnld.pc output file.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations lemt700 should run after Letter of Credit application

download program (LCADNLD.PC)

This script does not need to be scheduled to run when the
rtm_simplified_ind in SYSTEM_OPTIONS table is set to Y

Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A

356 Oracle Retail Merchandising Foundation Cloud Service

lcmt700 (SWIFT File Conversion — Letter of Credit Application)

Integration Contract

Output

Integration Type Download from RMS

File Name Determined by runtime parameter

Integration Contract IntCon000052 (input)
IntCon000137 (output)

All files layouts input and output the SWIFT MT 700. The output file should be in the
following format:

* Most output fields are contained in their own line (or 3-4 line for addresses).

= Each application consists of four parts, one MT 700 and three MT 701s, which are
ordered through the Sequence of Total field: for example, “:27:1/4 MT 700’ is the first
(MT 700) part of the application.

= MT 700 and MT 701s will be mingled in the same file.

* Each record starts with a colon and a SWIFT field identifier, followed by another
colon: for example, “:40A: -

* Each application is separated by a line with only the ASCII 3 symbol (a heart) on it.

Examples of how individual lines of the MT 700 or MT 701 should look:

:27:1/4

:40A: IRREVOCABLE

:20:29893098

:23:NOREF

:31C:910906

:31D: 911022DALLAS

:51D:NORTHERN TRUST INT’L BANKING CORP.
ONE WORLD TRADE CENTER

SUITE 3941

NY, NY 10048 USA

The layout of the SW.LE.T MT 700 (Issue of a Documentary Credit) file is as follows:

SWIFT I.D. DATA TYPE CODES (refer to SWIFT User Handbook - Standards general
Information - October 1998 release for formatting information):

Note:

There is always a new line (nl) after every individual SWIFT
ID (and there may be more than one line within an
individual field [for example, 59 - Beneficiary, four lines to
hold address information]).

In some situations, certain fields will be blank. These fields
should be skipped over. In other words, no blank line or tag
should be printed indicating the field is blank. Simply ignore
it.

Oracle Retail Trade Management 357

Icupld (Letter of Credit Confirmation Upload)

Icupld (Letter of Credit Confirmation Upload)

Module Name Icupld.pc

Description Letter of Credit Confirmation Upload
Functional Area Oracle Retail Trade Management
Module Type Integration

Module Technology ProC

Catalog ID RMS55

Runtime Parameters N/A

Design Overview

The LCUPLD program is used to upload LC (Letter of Credit) confirmations from bank
partners.

After this program has processed a confirmation, the appropriate tables will be updated;
a confirmation will update the LC to confirm status and it will write the appropriate
records to the LC_ACTIVITY table.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations This batch does not need to be scheduled when
rtm_simplified_ind in SYSTEM_OPTIONS table is set to Y
Pre-Processing LCMT 730 Perl script
Post-Processing N/A
Threading Scheme N/A
Restart/Recovery

Restart/recovery for this program is set up at the individual FDETL record. Although
there may be more than one FDETL record for a given LC, they will each be processed as
a separate entity.

File based restart/recovery must be used. The commit_max_ctr field should be set to
prevent excessive rollback space usage, and to reduce the overhead of file I/O. The
recommended commit counter setting is 10000 records.

Key Tables Affected
Table Select Insert Update Delete
LC_HEAD Yes No Yes No
LC_ACTIVITY No Yes No No

358 Oracle Retail Merchandising Foundation Cloud Service

Icupld (Letter of Credit Confirmation Upload)

Integration Contract

Integration Type Upload to RMS
File Name Determined by runtime parameter
Integration Contract IntCon000054
Input File Layout
Record Field Name Field Type Default Value Description
Name
File Header File Type Char(5) FHEAD Identifies file record type
Record
Descriptor
File Line Number(10) 0000000001 Line number of the current file
Sequence
Number
File Type Char(4) Lcur Identifies file as ‘Letter of Credit
Definition Upload’
File Create Char (14) vdate Date file was written by external
Date system “YYYYMMDDHH24MISS
format
File Detail ~ File Type Char(5) FDETL Identifies file record type
Record
Descriptor
File Line Number(10) Line number of the current file
Sequence
Number
Sender’s Char(16) lc_head.bank_ The LC number that the bank
Reference Ic_id assigns to a Letter of Credit
Receiver’s Number(8) Ic_activity.lc_r The LC number that Retek
Reference ef_id assigned to the Letter of Credit
Date of Char(14) lc_activity.acti YYYYMMDDHH24MISS format
Message Being vity_date
Acknowledged
Comments Char(2000) lc_activity.co This field is a concatenation of
mments the following SWIFT fields: 71B -
Charges, 72 - Sender information
File Trailer File Type Char(5) FTAIL Identifies
Record file record type
Descriptor
File Line Number(10) Line number of the current file
Sequence
Total number ~ Number(10) Total number of lines in file not

lines

including FHEAD and FTAIL

Oracle Retail Trade Management 359

lemt730 (SWIFT File Conversion - Letter of Credit Confirmation)

lcmt730 (SWIFT File Conversion - Letter of Credit Confirmation)

Module Name lemt730

Description SWIFT File Conversion - Letter of
Credit Confirmation

Functional Area Oracle Retail Trade Management

Module Type Integration

Module Technology Perl

Catalog ID RMS138

Runtime Parameters N/A

Design Overview

The lemt730 Perl script converts letter of credit confirmations from a S.W.LF.T. format
(MT730) to a RMS flat file format. The output file from this script will be the input file for
the Icupld.pc.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations LCMT730 should run prior to Letter of Credit

upload program (lcupld.pc)
This script does not need to be scheduled when the
rtm_simplified_ind in SYSTEM_OPTIONS table is

settoY
Pre-Processing N/A
Post-Processing lcupld.pc
Threading Scheme N/A
Integration Contract
Integration Type Upload to RMS
File Name Determined by runtime parameter
Integration Contract IntCon000054 (output)
IntCon000139 (input)

360 Oracle Retail Merchandising Foundation Cloud Service

lemt730 (SWIFT File Conversion - Letter of Credit Confirmation)

Input File Layout

SWIFT I.D. and | Data type Description How MT 730 fields | Comments
Description are put into the
RMS standard file
format and what
should be the size
of RMS to be dealt
with
20 - Sender’s 16x LC number. The one FDETL This field maps to RTM's
Reference assigned by the Sender | _gender's reference, | Bank LC Ref ID.
(issuing bank) Char(16)
21 - 16x LC number assigned by | FDETL This field maps to RTM's
Receiver’s the Receiver (retailer) _ Receiver’s LC Ref ID. If this field has
Reference reference, 'NOREF/, the record must
Number(8) (NOREF be rejected since this field
used if unknown) is used to indicate the LC
within RTM to which this
record applies.
25 - Account 35x Identifies the number of RTM currently does not
Identification the account, which has have fields that map
been used for the directly to this. Current
settlement of charges, on position - will be included
the books of the Sender. in the input file. However,
it will be ignored during
the upload process.
30 - Date of 6n When a message is FDETL This field maps to the LC
Message Being acknowledging a MT700, | _ pate of message activity date. As well, if
Acknowledged this field specifies the this in confirming an LC

date of issue. In all other
cases, this field specifies
the date on which the
message being
acknowledged was sent.

Being
Acknowledged, Date

application, it will be
mapped to the LC's
confirmation date. Year
interpretation:

If YY>79 then YYMMDD =
19YYMMDD

Else YYMMDD =
20YYMMDD.

Oracle Retail Trade Management 361

lemt730 (SWIFT File Conversion - Letter of Credit Confirmation)

Output File Layout

32a - Option B Contains the currency FDETL Current position -
Amount of - 3lal5d Cﬁde andltqtal anouﬁt of -Upload_type = Because the 730 will only
charges claimed by the |, , . : be used for confirmations
Charges C’onfirmation 4
8 . sender of the message. this field will not contain
Option D Whv.an Charges have been any values. The upload
- debited, D is used (:32D) type should be set equal to
6'n3lal5d and when ‘C’onfirmation.
o reimbursement for
charges is needed, B is
used (:32B).
57a - Option A - | This field specifies the FDETL Current position - will be
Account [/1ta][/34x] bank to which the - Account With added to the input file
. . amount of chargesisto [gy Char(10) however will be ignored in
With Bank 4la2ladlc] be remitted in favor of the upload process.
3lc] the Sender. Because RTM has no
facilities to maintain BICs
. or party identifiers, option
Option D - D will always be used for
[/1!a][/34x] this field (that is, 57D)
4*35x without [/1!a][/34x] party
identifier.
71B - Charges 6*35x Specification of the FDETL This field maps to RTM's
charges claimed. - Comments, activity comments field.
Char(2000) Sender to Receiver
information (72) will be
concatenated to this.
72 - Sender to 6*35x Text explanation if FDETL This field maps to RTM's
Receiver wanted. - Comments, activity comments field.
Information Char(2000) Charges (71B) will be
concatenated to this.
Record Field Name Field Type Default Value Description
Name
File File Type Record Char(5) FHEAD Identifies file record type
Header Descriptor
File Line Number(10) specified by Line number of the current
Sequence external system file
Number

362 Oracle Retail Merchandising Foundation Cloud Service

lemt730 (SWIFT File Conversion - Letter of Credit Confirmation)

Record Field Name Field Type Default Value Description
Name
File Type Char(4) Lcur Identifies file as ‘Letter of
Definition Credit Upload’
File Create Date =~ Char (14) vdate date file was written by
external system
YYYYMMDD HH24MISS
format
File Detail ~File Type Record Char(5) FDETL Identifies file record type
Descriptor
File Line Number(10) specified by Line number of the current
Sequence external system file
Number
Sender’s Char(16) lc_head.bank_1 The LC number that the bank
Reference d_id assigns to a Letter of Credit
Receiver’s Number(8) lc_activity.lc_re The LC number that RMS
Reference fid assigned to the Letter of
Credit
Date of Message Date (char 8) lc_activity.activi If the upload type is ‘L’ then
Being ty_date this date will match the date
Acknowledged MT 700 date of issue (which
we have not resolved
between being the vdate or
the Ic_head.application_date)
“YYYYMMDD' format
Comments Char(2000) lc_activity.com Need to truncate? This field
ments will probably be a
concatenation of the
following SWIFT fields: 71B -
Charges, 72 - Sender
information
File Trailer File Type Record Char(5) FTAIL Identifies file record type
Descriptor
File Line Number(10) Specified by Line number of the current
Sequence external system file
Total number of ~ Number(10) Specified by Total number lines in file

lines

external system

Oracle Retail Trade Management 363

Icmdnld (Letter of Credit Amendment Download)

Icmdnld (Letter of Credit Amendment Download)

Module Name lemdnld.pc

Description Letter of Credit Amendment Download
Functional Area Oracle Retail Trade Management
Module Type Integration

Module Technology ProC

Catalog ID RMS56

Runtime Parameters N/A

Design Overview

lemdnld.pc downloads amended letter of credit information to a bank, in the SW.L.E.T.
format.

Online user actions flag LCs for download by writing to the LC_DOWNLOAD table.

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations This batch does not need to be scheduled when the
rtm_simplified_ind in SYSTEM_OPTIONS table is
settoY

Pre-Processing N/A

Post-Processing lemt707 perl script

Threading Scheme No threading due to low volume

Restart/Recovery

Restart/recovery for this program is set up at the lc_ref_id level. The recommended
commit counter setting is 1000 records (subject to change based on experimentation).

Key Tables Affected
Table Select Insert Update Delete
LC_AMENDMENTS Yes No Yes No
LC_HEAD Yes No No No
LC_DOWNLOAD Yes No No Yes
ADDR Yes No No No
PARTNER Yes No No No
SUPS Yes No No No
CODE_DETAIL Yes No No No
ITEM_MASTER Yes No No No

364 Oracle Retail Merchandising Foundation Cloud Service

lcmdnld (Letter of Credit Amendment Download)

Integration Contract

Input File

Table Select Insert Update Delete
DOC Yes No No No
REQ_DOC Yes No No No
Integration Type Download from RMS
File Name Determined by runtime parameter
Integration Contract IntCon000053
Record Field Name Field Type Default Description
Name Value
File Header File Type Char(5) FHEAD Identifies file record type
Record
Descriptor
File Line Number(10) Line number Keeps track of the record’s position
Sequence in file in the file by line number
Number
File Type Char(4) LCAM Identifies file as ‘Letter of Credit
Definition Amendment’
File Create Date ~Char(14) Create date ~ Current date, formatted to
“YYYYMMDDHH24MISS'
Transaction Filetype Record Char(5) THEAD Identifies file record type
Header descriptor
File Line Number (10) Line number Keeps track of the record’s position
Sequence in file in the file by line number
Number

Transaction Set
Control Number

Issuing Bank

Issuing Bank
Name

Issuing Bank
Address 1

Issuing Bank
Address 2

Issuing Bank
Address 3

Number (10)

Char(10)

Char(240)

Char(240)

Char(240)

Char(240)

Sequence
number

Ic_head.issui
ng_bank

partner.part
ner_desc

addr.add_1

addr.add_2

addr.add_3

Used to force unique file check

Used to sort the LCs into
individualized bank SWIFT
formatted files (using another
program) - bank where LC
application is headed

The description from the partner
table where partner_id =
issuing_bank and partner_type =
‘BK’

Mandatory line of address

Non-mandatory line of address
(can be null)

Non-mandatory line of address
(can be null)

Oracle Retail Trade Management 365

Icmdnld (Letter of Credit Amendment Download)

Record Field Name Field Type Default Description
Name Value
Issuing Bank Char(120) addr.city City bank located in
City
Issuing Bank Char(3) addr.state State, if applicable, where bank
State located in
Issuing Bank Char(30) addr.post Post code, if applicable, where bank
Post Code located in
Issuing Bank Char(3) addr.country Country bank located in
Country _id
Letter of Credit Number (8) lc_detaillc_r The LC_REF_ID off the
ef_id LC_DETAIL table
Bank Letter of Char(16) lc_head.bank The BANK_LC_ID off the
Credit ID _lc_id LC_HEAD table
Currency Code Char(3) lc_head.curr The CURRENCY_CODE off the
ency_code LC_HEAD table
Date of Issue/ Char(14) lc_head.conf Date the Issuing Bank thinks is the
Transfer of the irmed_date date of issue-when it was officially
Credit confirmed, formatted to
“YYYYMMDDHH24MISS
Current Number (20,4) This amount will be calculated in
Amount of LC the get_current_amount() function
and will be the net amount of the
LC calculated only using
amendments that have been
downloaded. Normally, the net
amount is calculated using
amendments in the ‘D’ownloaded
status
Beneficiary Number (10) lc.head.benef Party in favor of which the LC is
iciary being issued
Beneficiary Char(240) sups.sup_na Beneficiary (supplier) name from
Name me the SUPS table
Beneficiary Char(240) addr.add_1 Mandatory line of address
Address 1
Beneficiary Char(240) addr.add_2 Non-mandatory line of address
Address 2 (can be null)
Beneficiary Char(240) addr.add_3 Non-mandatory line of address
Address 3 (can be null)
Beneficiary City Char(120) addr.city City beneficiary located in
Beneficiary State Char(3) addr.state State, if applicable, where
beneficiary located in
Beneficiary Post Char(30) addr.post Post code, if applicable, where
Code beneficiary located in
Beneficiary Char(3) addr.country Country beneficiary located in
Country _id

366 Oracle Retail Merchandising Foundation Cloud Service

lcmdnld (Letter of Credit Amendment Download)

Record Field Name Field Type Default Description
Name Value
Transaction File Type Char(5) TDETL Identifies file record type
Detail Record
Descriptor
File Line Number (10) line number Keeps track of the record’s position
Sequence in file in the file by line number
Number
Transaction Set Number (10) sequence Used to force unique file check
Control Number number
Amendment Number (8) lc_amendme Holds the amendment number for
Number nts.amend_n the amendment
0
Order_no Number (8) lc_amendme Order_no, if applicable, that is
nts.order_no attached to the LC that is being
amended
Item Char(25) lc_amendme Item being amended, either a Style
nts.item or Staple sku
Value Being Char(6) lc_amendme LC Field being amended. Can be
Amended nts.amended any of the following code_types:
—value CODE CODE_DESC
Al Add Item
AO AddPO
ARQD Add Reqd Doc.
C Cost
ED Expiration Date
ESD Earliest Ship Date
LSD Latest Ship Date
NA Net Amount
ND Negotiation Days
OC Origin Country
OQ Order Quantity
PE Place of Expiry
PRT Presentation Terms
PSF Partial Ship Flag
RI Remove Item
RO Remove PO
RRQD Remove Reqd Doc
TFF Transferable Flag
TSF Transshipment Flag
Value Being Char(40) code_detail.c The Value Being Amended
Amended ode_desc decoded (see the above list). Will
Description possibly be used when printing to

the SWIFT file MT 707 for clarity

Oracle Retail Trade Management 367

Icmdnld (Letter of Credit Amendment Download)

Record Field Name Field Type Default Description
Name Value
Original Value Char(45) lc_amendme Current value of field that is being
of Amended nts.original . amended
Field value
New Value of Char (2000) lc_amendme New value of the field that is being
Amended Field nts.new_val amended
ue
Description of Char(40) code_detail.c The new value decoded (or fetched
New Value ode_desc from a table, as in the
origin_country case)- only
applicable to the following
amended values: place of expiry,
title_pass_location, origin_country,
presentation terms, purchase type
Sign Char(1) If the effect is negative it will be “-”
if the effect is positive it will be “ “
Effect Number (20,4) Ic.amendme Effect that amendment will have on
nts.effect LC if amendment to change qty or
cost of a PO or amount of LC itself
Date of Char(14) Lc_amendm Date on which Issuing Bank (or
Amendment ents.accept_ issuing party, in this case the
date retailer) considers the credit as
being amended, formatted to
“YYYYMMDD HH24MISS’
Transaction File Type Char(5) TTEXT Identifies file record type
Text Record
Descriptor
File Line Number (10) line number Keeps track of the record’s position
Sequence in file in the file by line number
Number
Transaction Set Number (10) sequence Used to force unique file check
Control Number number
Amendment Char (2000) text A text description of the individual
Text description ~ amendment (for each TDETL line of
the output file) built by the package
LC_AMEND_SQL. AMEND_TEXT.
Transaction File Type Char (5) TTAIL Identifies File Record Type
Trailer Record
Descriptor
File Line Number (10) Line ID of current line being created for
Sequence Numberin output file
Number file
Transactionset Number (10) Sequence Used to force unique file check
control number number

Transaction

detail line count

Number (10)

ID of current
line being
created for
output file

Sume of the detail lines within a
transaction

368 Oracle Retail Merchandising Foundation Cloud Service

lcmt707 (SWIFT File Conversion — Letter of Credit Amendment)

Record Field Name Field Type Default Description
Name Value
File Trailer ~ File Type Char(5) FTAIL Identifies file record type
Record
Descriptor
File Line Number (10) line number Keeps track of the record’s position
Sequence in file in the file by line number
Number

Control Number Number (10) total detail =~ Sum of all transaction lines, not
File Line Count lines including the file header and trailer

lcmt707 (SWIFT File Conversion - Letter of Credit Amendment)

Module Name lemt707

Description SWIFT File Conversion - Letter of
Credit Amendment

Functional Area Oracle Retail Trade Management

Module Type Integration

Module Technology Perl

Catalog ID RMS137

Runtime Parameters N/A

Design Overview

This Perl script converts the Oracle retail standard interface file format for Amendments
to Letters of Credit download to the corresponding S.W.LE.T file format (MT 707). The
input file for this Perl script is the output of the lemdnld.pc RMS batch.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations LCMT?707 should run after Letter of Credit amendment

download program (Icmdnld.pc)

This script is not scheduled to run when the
rtm_simplified_ind in SYSTEM_OPTIONS table is set to Y

Pre-Processing lemdnld.pc
Post-Processing N/A
Threading Scheme N/A

JIntegration Contract

Integration Type Download from RMS

File Name

Determined by runtime parameter

Oracle Retail Trade Management 369

lemt707 (SWIFT File Conversion — Letter of Credit Amendment)

Integration Type Download from RMS

Integration Contract IntCon000053 (input)
IntCon000138 (output)

Output
The SWIFT MT 707 output file should be in the following format:
= Most output fields are contained in their own line (or 3-4 line for addresses).
= Each amendment consists of only one part, the MT 707. There may be several MT
707s at any given time associated to an LC because they are grouped by amendment
number at the time of creation. All TDETL records with the same amend_no will be
grouped together in one MT 707.

= Each record starts with a colon and a SWIFT field identifier, followed by another
colon: for example, “:40A:"-

* Each amendment is separated by a line with only the ASCII 3 symbol (a heart) on it.
Logic Setup:

The input file will be in standard RMS file format. It will potentially have numerous
TDETL lines per each THEAD line. There may be numerous TDETL records for one

amendment. MT 707 will write one record for each amendment, so if there are multiple
TDETL records they need to be combined. There is one TTEXT for each TDETL.

There are three values that need to be calculated. 32B, 33B, 34B. 32B is the total increment
or the sum of the positive effect values for each amendment. 33B is the total decrement or
the sum of all the negative effect values for each amendment. 32B and 33B are separate
totals for each amendment. 34B is the total difference, so it is the sum of the total
increment and total decrement. 34B is not just for one amendment though; it is for all
amendments of a THEAD record, so this total will run through each TDETL in a THEAD.

For example: if the input file contains:

. THEAD....

] TDETL amendment 1, effect +1000
. TTEXT

] TDETL amendment 1, effect +500
. TTEXT

= TDETL amendment 2, effect -2500
. TTEXT

] TDETL amendment 3, effect +4000
. TTEXT

] TDETL amendment 3, effect -1000
. TTEXT

] TDETL amendment 3, effect +500
. TTEXT

] TDETL amendment 4, effect -1000
. TTEXT

] TDETL amendment 4 , effect -2500
. TTEXT

. TTAIL

370 Oracle Retail Merchandising Foundation Cloud Service

lcmt707 (SWIFT File Conversion — Letter of Credit Amendment)

32B for
33B for
34B for

32B for
33B for
34B for

32B for
33B for
34B for

32B for
33B for
34B for

amendment
amendment
amendemnt

amendment
amendment
amendemnt

amendment
amendment
amendemnt

amendment
amendment
amendemnt

is

1500

1500

2500

-1000

4500

= 1000

4500

0
3500
1000

Examples of how individual lines of the MT 707 should look:

APPLICANT:
OPERATOR:
OPERATION DATE:
OPERATION TIME:
TEST KEY:
BATCH TOTAL:

SEGMENT

MT/PRIORITY:707 02

:27:1/1

TOTAL:

:20:10001981

:21:1981

:52D:Bank One
100 Bank One Way

Columbus

,OH 41984 us

:31C:990204
:30:990204

:26E:1

:59:David Fashion Creations P/L Pack

Wholesale Division

109 Ackland St.

St. Kilda

:32B:USD500, 0
:33B:USDO, 0

:34B:USD500, 0
:79:Letter of Credit:
for Style 10049369, resulting in an effect of 500

(USD) .

,VA 30280-1234 US

has been changed from 25 to 30

The layout of the S.W.LLE.T MT 707 (Amendment to a Documentary Credit) file is as

follows:

SWIFT 1.D. DATA TYPE CODES (refer to SWIFT User Handbook - Standards General
Information - October 1998 release for formatting information):

Oracle Retail Trade Management 371

Icup798 (Letter of Credit Drawdowns and Charges)

Note: The field lengths and types in the Oracle Retail
Standard Download Format of the MT 707 are important
because sometimes they are different from the information
that is being placed in them and the fields may have to be
truncated, rounded, and so on.There is always a new line
(nl) after every individual SWIFT ID (and there may be more
than one line within an individual field (example 59 -
Beneficiary, four lines to hold address information).In some
situations, certain fields will be blank. These fields should be
skipped over. In other words, no blank line or tag should be
printed indicating the field is blank. Simply ignore it.

lcup798 (Letter of Credit Drawdowns and Charges)

Module Name leup798.pc

Description Letter of Credit Drawdowns and Charges
Functional Area Oracle Retail Trade Management
Module Type Integration

Module Technology ProC

Catalog ID RMS54

Runtime Parameters

Design Overview

This program reads data from an input file containing letter of credit charges and
drawings (in standard Oracle Retail format, modified from the SWIFT 798 format by the
lemt798 Perl script), validates it, and inserts it into the LC_ACTIVITY table. If a record
fails validation, it will be written to a reject file. These rejected records can be

reprocessed by lcup798 after errors have been corrected.

Scheduling Constraints

Schedule Information Description

Frequency

Scheduling Considerations

Daily

settoY
Pre-Processing lemt798
Post-Processing N/A
Threading Scheme N/A

Restart/Recovery

This program will be restartable but not threadable.

Restart/recovery logic for file-based processing is used. Records will be committed to the
database when commit_max_ctr defined in the RESTART_CONTROL table is reached.

372 Oracle Retail Merchandising Foundation Cloud Service

Should be run after the lemt798 Perl script

This batch does not need to be scheduled when the
rtm_simplified_ind in SYSTEM_OPTIONS table is

Icup798 (Letter of Credit Drawdowns and Charges)

Key Tables Affected
Table Select Insert Update Delete
LC_HEAD Yes No No No
LC_DETAIL Yes No No No
LC_ACTIVITY No Yes No No
LC_AMENDMENTS Yes No No No
CURRENCIES Yes No No No
CURRENCY_RATES Yes No No No
SYSTEM_OPTIONS Yes No No No
Integration Contract
Integration Type Upload to RMS
File Name Determined by runtime parameter
Integration Contract IntCon000055

The input file for this batch program is the output from the lemt798 Perl script.

Input File Layout

Record Field Name Field Type Default Value Description
Name
FHEAD File head Char(5) FHEAD Describes file line type
descriptor
Line id Number (10) 0000000001 Sequential file line number
File Type Char(4) ‘LCCH’ Identifies as an LC 798 file-Letter
Definition of Credit Charges
Current date Date File date in
YYYYMMDDHH24MISS format
FDETL File record Char(5) FDETL Describes file line type
descriptor
Line id Number (10) Sequential file line number
Bank letter of Char (16) SWIFT tag 20 Bank’s LC ref ID
credit reference
ID
Order number Number (8) SWIFT tag 21 Order number attached to
LC.May be blank
Invoice number ~ Number (15) SWIFT tag23 NOT a RMS invoice number, just
a reference invoice number from
the issuing bank. May be blank
Transaction Number (10) Amendment number or
number transaction number assigned by

bank.May be null

Oracle Retail Trade Management 373

lemt798 (SWIFT File Conversion — Letter of Credit Charges and Drawdowns)

Record Field Name
Name

Field Type Default Value Description

Transaction code

Amount

Currency code

Activity date

Comments

FTAIL File record
descriptor

Line id

Number of lines

Char(6) BorD ‘B’ank charge or'D’rawdown
Number(21) SWIFT tag (This is a 20-digit number with a
33A,71A leading - sign or blank and 4

implied decimal places.)

Amount of charge or drawdown

Char(3) SWIFT Currency that the amount is in
33A,71A
Date SWIFT Activity date(formatted as

33A,32C32D ‘YYYYMMDD')
Char(2000) SWIFT tag 72 Any comments associated with

activity.May be null
Char(5) FTAIL Marks end of file
Char(10) Sequential file line number
Number(10) Number of lines in file not

counting FHEAD and FTAIL

lcmt798 (SWIFT File Conversion - Letter of Credit Charges and

Drawdowns)
Module Name lemt798
Description SWIFT File Conversion - Letter of

Credit Drawdowns and Charges

Functional Area

Retail Trade Management - Letter of
Credit Interfaces

Module Type Integration
Module Technology Perl
Catalog ID RMS139
Runtime Parameters N/A

Design Overview

This Perl script converts letter of credit (L/C) activity data for charges and drawdowns
from a S.W.LE.T. format input file to a RMS format file.

Scheduling Constraints

Schedule Information

Description

Frequency

Daily

374 Oracle Retail Merchandising Foundation Cloud Service

lemt798 (SWIFT File Conversion — Letter of Credit Charges and Drawdowns)

Schedule Information

Description

Scheduling Considerations

LCMT798 should be run prior to the Letter of
Credit charges and drawings upload program
(LCUP798.PC)

This script does not need to be scheduled when the
rtm_simplified_ind in SYSTEM_OPTIONS table is
settoY

Pre-Processing N/A
Post-Processing lcup798.pc
Threading Scheme N/A
Integration Contract
Integration Type Upload to RMS
File Name Determined by runtime parameter
Integration Contract IntCon000139 (input)
Input File Layout
Swift Tag Description Reqd? Datatype RMS Field
20 - The sender’s Yes 16x - Bank L/CID
Transaction unambiguous Transaction Lc head.bank Ic id
Reference identification of Reference v 3 hara(16 T
Number the transaction. Number archar2(16)
Its detailed form
and content are at
the discretion of
the sender.
12 - Type of This field Yes Option A- This field will contain a
Financial classifies the :4lc/[8¢]/30x constant identifier - ‘798’
Instrument financial

instrument by a
description or
proprietary code.

4lc - Qualifier
/ - Delimiter

[8¢] - Issuer
Code

/ - Delimiter
30x - Type

Oracle Retail Trade Management 375

lemt798 (SWIFT File Conversion — Letter of Credit Charges and Drawdowns)

Swift Tag Description Reqd? Datatype RMS Field
77E - This field Yes Option E- This field will contain the
Proprietary contains the 73x information below (fields 21,
Message proprietary [n*78x] 23,32C, 32D, 71A, 33A, 72)
message in a Carriage return, Line feed,
format agreed to Colon ‘CrLf.” will be used to
by the Sender and separate fields included in this
the Receiver. 77E
For example:
:77E/CrLf’
:21:10004321:CrLf’
:32C:990121USD1045 etc...
There may be multiple 77Es in
one file
21 - Related This field No 16x P/O Number
Reference specifies, in an
unambiguous .
way, a message Lc_activity.order_no
or transaction Number(8)
identifier which is
normally
included as part
of the information
supplied with the
message or
transaction itself,
and can
subsequently be
used to
distinguish the
message or
transaction
identified from
other messages or
transactions.
23 - Further This field No 16x Invoice Number
identification specifies the type Lc_activity.invoice_no

of transaction
being confirmed,
as well as the
settlement
method used.

Varchar2(15)

376 Oracle Retail Merchandising Foundation Cloud Service

lemt798 (SWIFT File Conversion — Letter of Credit Charges and Drawdowns)

Swift Tag Description Reqd? Datatype RMS Field
32C - Date and This field No Option C- Charges Credited (this is
Amount specifies the 6n3'a15d interpreted as a positive
currency code amount)
and amount in a
transaction and a 6!n - Date . .
corresponding 31a - Currency Date will be in format
T YYMMDD
date. 15d - Amount
The integer part of the Amount
must contain at least one digit.
A decimal comma ‘, is
mandatory and is included in
the maximum length
Lc_activity.amount
Number(20,4)
Lc_activity.currency_code
Varchar2(3)
Lc_activity.activity_date
Date
32D - Date and This field No Option D- Charges Debited (this is
Amount specifies the 6In3la15d interpreted as a negative
currency code amount)
and amount in a
transaction and a 6!n - Date))
. Date will be in format
corresponding 3la - Currency YYMMDD
date. 15d - Amount

The integer part of the Amount
must contain at least one digit.
A decimal comma ’, is
mandatory and is included in
the maximum length
Lc_activity.amount
Number(20,4)
Lc_activity.currency_code
Varchar2(3)

Lc_activity.activity_date
Date

Oracle Retail Trade Management 377

lemt798 (SWIFT File Conversion — Letter of Credit Charges and Drawdowns)

Swift Tag Description Reqd? Datatype RMS Field
33A - Date and This field No Option A- Date, currency, amount of
Amount specifies the 6n3'a15d drawing (this is interpreted as a
currency code positive amount)
and amount in a
transaction and a 6!n - Date . .
corresponding 31a - Currency Date will be in format
T YYMMDD
date. 15d - Amount
The integer part of the Amount
must contain at least one digit.
A decimal comma ’,” is
mandatory and is included in
the maximum length
Lc_activity.amount
Number(20,4)
Lc_activity.currency_code
Varchar2(3)
Lc_activity.activity_date
Date
33C - Date and This field No Option A- Date, currency, amount of
Amount specifies the 6n3lal5d drawing (this is interpreted as a
currency code negative amount)
and amount in a
transaction and a 6!n - Date . .
. Date will be in format
correspondmg 3la - Currency YYMMDD
date. 15d - Amount
The integer part of the Amount
must contain at least one digit.
A decimal comma ’,” is
mandatory and is included in
the maximum length.
Lc_activity.amount
Number(20,4)
Lc_activity.currency_code
Varchar2(3)
Lc_activity.activity_date
Date
72 -Sender to This field No 6*35x Comments
Refceiver specifies Lc_activity.comment
Information instructions or
additional Varchar2(2000)
information for
the Receiver,
Intermediary,

Account with
Institution or
Beneficiary
Institution.

378 Oracle Retail Merchandising Foundation Cloud Service

lemt798 (SWIFT File Conversion — Letter of Credit Charges and Drawdowns)

Swift Tag Description Reqd? Datatype RMS Field
18A - Number This field No Option A- Number of 77E’s contained
of Repetitive specifies the 5n — Number of Within the file.
Parts number of times Repetitive
the repetitive Parts.
part(s)/sequence(
s)directly before
or after this field
appears in the
message.
Integration Contract
Integration Type Upload to RMS
File Name Determined by runtime parameter
Integration Contract IntCon000055 (input)
Output File Layout
Record Field Name Field Default Description
Name Type Value
File Header File Type Char(5) FHEAD Identifies file record type
Record
Descriptor
File Line Number Line number ID of current line being created for
Identifier (10) in file output file
File Type Char(4) LCCH Identifies file as ‘Letter of Credit
Definition Changes’
File Create Char(14) Create date Current date, formatted to
Date “YYYYMMDDHH24MISS
File Detail ~ File Type Char(5) FDETL Identifies file record type
Record
Descriptor
File Line Number Line number ID of current line being created for
Sequence (10) in file output file
Number
Bank Letter of Char(16) SWIFT tag Bank L/CID
Credit 20
Reference ID
Order Number SWIFT tag Contains the order number that is
Number)] 21 attached to the letter of credit
Invoice Char (15) SWIFT tag Identifies the Issuing Bank’s invoice
Number 23 number to which the drawdown refers.

This field does not correspond to a RMS
invoice number

Transaction Char (10) Null Identifies the amendment number or
Number actual transaction number assigned by
the bank

Oracle Retail Trade Management 379

lemt798 (SWIFT File Conversion — Letter of Credit Charges and Drawdowns)

Record Field Name Field Default Description
Name Type Value
Transaction Char (6) If the Identifies the type of transaction that
Code transaction occurred
is a Bank
Charge - ‘B’

The type is determined by what detail

If the] fields are received for the record. If the
transaction record contains a 33A this field will get
15a a‘D’. If the record contains either a 32C
P]Dlr'awdown ~ or 32D this field will get a ‘B’
Amount Sign Char (1) SWIFT 33A, If the record contains a 33A field leave a
33C blank space in this field
SWIFT 32C, If the record contains a 33C filed this
32D field should contain a *-
If the record contains a 32C field leave a
blank space in this field
If the record contains a 32D field this
field should contain a *~
Amount Number SWIFT 33A, Holds the amount of the activity. This
(20) 33C field will have 4 implied decimal places
SWIFT 32C,
32D If SWIFT 32C or 32D (Bank Charge)
contains a value, use the amount from
this field
If SWIFT 33A or 33C (Drawdown)
contains a value, use the amount from
this field
Currency Char (3) SWIFT 33A, Contains the activity’s currency code
Code SWIFT 32C, If SWIFT 32C or 32D (Bank Charge)
32D contains a value, use the currency from
this field

If SWIFT 33A (Drawdown) contains a
value, use the currency from this field

Activity Date Char (8) SWIFT 33A, Holds the date that the activity took
SWIFT 32C, Place. Formatted to “YYYYMMDD

32D If SWIFT 32C or 32D (Bank Charge)
contains a value, use the date from this
field

If SWIFT 33A (Drawdown) contains a
value, use the date from this field

Comments Char SWIFT tag Holds any comments for the activity
(2000) 72
File Trailer File Type Char(5) FTAIL Identifies file record type
Record
Descriptor
File Line Number Sequential ID of current line being created for
Identifier (10) number output file
Created by
program.

380 Oracle Retail Merchandising Foundation Cloud Service

lemt798 (SWIFT File Conversion — Letter of Credit Charges and Drawdowns)

Record Field Name Field Default Description

Name Type Value
File Record Number This will contain the number of FDETL
Counter (10) lines processed

Oracle Retail Trade Management 381

20

Overview

Stock Ledger

The stock ledger holds financial data that allows you to monitor your company’s
performance. It incorporates financial transactions related to merchandising activities,
including sales, purchases, transfers, and markdowns; and is calculated weekly or
monthly. The stock ledger accounts for inventory in buckets (how much inventory was
returned, how much damaged, and so on). This overview describes how the stock ledger
is set up, the accounting methods that impact stock ledger calculations, the primary stock
ledger tables, and the batch programs and PL/SQL packages that process data held on
the tables.

Note: For additional information about stock ledger
transaction posting, see Sales Posting,.

For additional information about integration of data
(including month level stock ledger data) to the General
Ledger, see Integration with General Ledger.

Stock Ledger Set Up and Accounting Methods

The operation of the stock ledger is dependent upon a number of options that you choose
for your implementation of RMS. To understand how your company uses the stock
ledger, you can examine the settings that are described here.

The stock ledger is implemented at the subclass level and supports both the retail and
cost methods of accounting. The method of accounting may vary by department and is
set on the department (DEPS) table in the profit_calc_type column. The ‘1" setting
indicates that profit is calculated by direct cost. The ‘2" setting indicates that profit is
calculated by retail inventory.

If you select the cost method of accounting, two options are available: average cost or
standard cost. The chosen option is represented on the SYSTEM_OPTIONS table in the
std_av_ind column, where the standard cost option is indicated by the ‘S setting, and the
average cost option is indicated by the “A’ setting. The selected option then applies to all
departments that use the cost method stock ledger option.

If you select the retail method of accounting, you can choose to implement the retail
components of all transactions either to include value-added tax (VAT) or to exclude
VAT. You accomplish through a system-level option vat_ind on the SYSTEM_OPTIONS
table.

Note: If the value-added tax (VAT) system option is enabled
in RMS, rolled-up stock ledger data values for the retail
accounting method include value-added tax.

For sales history purposes, history is maintained based on the calendar that you choose.
If your company uses the 4-5-4 calendar, sales history is tracked weekly. If you use the
Gregorian (or ‘normal’) calendar, sales history is tracked monthly. The calendar setting is
held on the SYSTEM_OPTIONS table in the calendar_454_ind column.

Operations Guide - Volume 1 Batch Overviews and Designs 383

Batch Design Summary

Process Flow

3.
saldly.pc

2.
salstage.pc

i Stock Ledger

5
RMS Databage Rollups

salweek.pc

A

RMS Inventory

| Daily Rollup
‘ (DAILY_DATA)
1 ‘ Working
Transaction Data

Snapshot
Transaction Data

Ly

Weekly Rollup
(WEEK_DATA) "| 6

| ' salmth.pc

and Sales ‘ (TRAN_DATA) (IF_TRAN_DATA)

i

v Monthy Rollup T
History (MONTH_DATA)
4 T (TRAN_DATA_HISTORY)
salapnd.pc ¢

Half Rolly
A ,

(HALF_DATA)
_%‘ 7

saleoh.pc

8.
salprg.pc

Assorted RMS Inventory and Sales Transactions write to the working transaction
data table (TRAN_DATA).

Salstage.pc moves transaction data from the working table to the snapshot
transaction data table (IF_TRAN_DATA) for additional processing.

Saldly.pc rolls up the snapshot transaction data (IF_TRAN_DATA) and persists it to
the daily rollup table (DAILY_DATA).

Salapnd.pc moves data from the snapshot transaction data table (IF_TRAN_DATA)
to the history table (TRAN_DATA_HISTORY).

Salweek.pc rolls up daily stock ledger data (DAILY_DATA) to weekly stock ledger
data (WEEK_DATA).

Salmth.pc rolls up weekly stock ledger data (WEEK_DATA) to monthly stock ledger
data (MONTH_DATA).

Saleoh.pc rolls up monthly stock ledger data (MONTH_DATA) to half level stock
ledger data (HALF_DATA).

Salprg.pc deletes aged transaction history (TRAN_DATA_HISTORY).

Batch Design Summary

The following batch designs are included in this functional area:

salstage.pc (Stage Stock Ledger Transactions for Additional Processing)
salapnd.pc (Append Stock Ledger Information to History Tables)
saldly.pc (Daily Rollup of Transaction Data for Stock Ledger)
salweek.pc (Weekly Rollup of Data/Calculations for Stock Ledger)
salmth.pc (Monthly Rollup of Data/Calculations for Stock Ledger)
salmaint.pc (Stock Ledger Table Maintenance)

saleoh.pc (End Of Half Rollup of Data/Calculations for Stock Ledger)
salprg.pc (Purge Stock Ledger History)

384 Oracle Retail Merchandising Foundation Cloud Service

salstage (Stage Stock Ledger Transactions for Additional Processing)

= nwppurge.pc (Optional End of Year Inventory Position Purge)

* nwpyearend.pc (Optional End of Year Inventory Position Snapshot)
* stlgdnld (Daily or Weekly Download of Stock Ledger Data)

* Otbdlsal (Open To Buy Download Stock Ledger)

* trandataload.ksh (External Transaction Data Upload)

= trandataprocess.ksh (External Transaction Data Process)

salstage (Stage Stock Ledger Transactions for Additional Processing)

Module Name salstage.pc

Description Stage Stock Ledger Transactions for
Additional Processing

Functional Area Stock Ledger
Module Type Business Processing
Module Technology ProC

Catalog ID RMS345

Runtime Parameters N/A

Design Overview

In order to make the rollup and extraction of the stock ledger transaction data flexible,
this program moves the data on the TRAN_DATA to the IF_TRAN_DATA staging table.
This will enable the processes that are writing records to TRAN_DATA to continue in a
seamless manner, whereas the processes that rolls the data up to a different level or
extract the data to external systems can work without affecting batch timetables.

This process will be achieved by locking the TRAN_DATA table and moving all of the
data to the staging table. The original TRAN_DATA table will be emptied and the lock
on the table will be released. Before this processing occurs, the staging table will first be
emptied to ensure that data is not processed twice. Because the data on the
TRAN_DATA and IF_TRAN_DATA tables is very transitional, these tables will fill up
and be truncated at least once a day if not several times per day.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations This module should run after Sales Process

(uploadsales.ksh and salesprocess.ksh) but before
saldly.pc, salweek.pc and salapnd.pc,
rpmmovavg.pc. Within the deal cycle, it should run
before dealact.pc

Pre-Processing salesprocess.ksh

Stock Ledger 385

salstage (Stage Stock Ledger Transactions for Additional Processing)

Schedule Information Description
Post-Processing saldly
salapnd
salweek
dealact
rpmmovavg
fifgldnl
fifgldn2
Threading Scheme Threading is implicit via the use of the Oracle
Parallel Query Option. The insert/select query
should be tuned for each specific environment to
achieve the best throughput
Restart/Recovery
N/A
Key Tables Affected
Table Select Insert Update Delete
IF_TRAN_DATA No Yes No Yes
TRAN_DATA_A Yes Yes No Yes
TRAN_DATA_B Yes Yes No Yes
DEAL_PERF_TRAN_DATA No Yes No Yes
PERIOD Yes No No No
DEAL_PERF_DATA_TEMP Yes No No No
STORE Yes No No No
WH Yes No No No
PARTNER Yes No No No
ALL_CONSTRAINTS Yes No No No

Design Assumptions
N/A

386 Oracle Retail Merchandising Foundation Cloud Service

salapnd (Append Stock Ledger Information to History Tables)

salapnd (Append Stock Ledger Information to History Tables)

Module Name salapnd.pc

Description Append Stock Ledger Information to
History Tables

Functional Area Stock Ledger

Module Type Admin

Module Technology ProC

Catalog ID RMS335

Runtime Parameters N/A

Design Overview

The purpose of this program is to move data from the staging table for transaction data
(IF_TRAN_DATA) into the historical transaction data table (TRAN_DATA_HISTORY).
This requires placing a lock on the staging table to ensure that no new data will be added
to it while the movement is occurring (to handle trickling or real-time processing),
moving the data to the historical table, and finally truncating the data from the staging

table.

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations After fifgldnld1.pc
After fifgldnld2.pc
After fifgldnld3.pc

Pre-Processing

Post-Processing

salstage.pc, all extraction, and all processing

N/A

Threading Scheme Threading will be implicit through the use of the Oracle
Parallel Query Option. The insert/select query should
be tuned for each specific environment to achieve the
best throughput
Restart/Recovery
N/A
Key Tables Affected
Table Select Insert Update Delete
PERIOD Yes No No No
SYSTEM_VARIABLES Yes No No No
IF_TRAN_DATA Yes No No No
TRAN_DATA_HISTORY No Yes No No

Stock Ledger 387

saldly (Daily Rollup of Transaction Data for Stock Ledger)

Design Assumptions
N/A

saldly (Daily Rollup of Transaction Data for Stock Ledger)

Module Name saldly.pc

Description Daily Rollup of Transaction Data for
Stock Ledger

Functional Area Stock Ledger

Module Type Business Processing

Module Technology ProC

Catalog ID RMS336

Runtime Parameters N/A

Design Overview

This program is responsible for performing the daily summarization processing in the
stock ledger in which transaction-level records are fetched from the transaction-level
staging table and summed to the subclass/location/day/currency level. Once the
records are summarized, they are written to the DAILY_DATA table.

To call this program the end of day process for the stock ledger would not be completely
correct, however, because a day does not really ‘close” in the stock ledger until the month
closes. Each time that the Daily Stock Ledger Processing program runs, all transaction-
level data is processed, whether it is for the current date, a date since the last month
closing or even a date prior to the last month closing. For transactions occurring on the
current date or since the last month close, they are processed by simply summarizing the
date and updating the current information on DAILY_DATA for the date of the
transaction. However, if a transaction occurred prior to the last month that was closed
(for example:. the transaction was dated 3/15 and the last end of month date was 3/20),
then that transaction will be dated with the current date and summarized with the
current date’s records. Also, in this last case, a warning message will be written to the
batch log that alerts the user to the problem. The message the users will receive is

“* ALERT* Transactions have been found for previous months.”

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations N/A

Pre-Processing Run salstage to move records from TRAN_DATA
to IF_TRAN_DATA

Post-Processing Salweek (on end of week day)

Threading Scheme Threaded by department

388 Oracle Retail Merchandising Foundation Cloud Service

salweek (Weekly Rollup of Data/Calculations for Stock Ledger)

Restart/Recovery

The logical unit of work is department/class/subclass. This batch program is
multithreaded using the v_restart_dept view.

Key Tables Affected
Table Select Insert Update Delete
SA_STORE_DAY Yes No No No
SA_VOUCHER Yes No Yes No
STORE Yes No No No
PERIOD Yes No No No
SYSTEM_VARIABLES Yes No No No
IF_TRAN_DATA Yes No No No
DAILY_DATA Yes Yes Yes No
DAILY_DATA_TEMP No Yes No No
DAILY_DATA_BACKPOST No Yes No No
STORE Yes No No No
WH Yes No No No
PARTNER Yes No No No
SYSTEM_OPTIONS Yes No No No
MV_LOC_SOB Yes No No No

Design Assumptions
N/A

salweek (Weekly Rollup of Data/Calculations for Stock Ledger)

Module Name

salweek.pc

Description

Weekly Rollup of Data/Calculations for
Stock Ledger

Functional Area Stock Ledger
Module Type Business Processing
Module Technology ProC

Catalog ID RMS346

Runtime Parameters N/A

Design Overview

This program is responsible for performing the weekly summarization processing in the
stock ledger. This program processes all weeks that are in the month for which month-

end process has not been run, up to the current week. It rolls up data on DAILY_DATA,
DAILY_DATA_TEMP and WEEK_DATA_TEMP to the corresponding

Stock Ledger 389

salweek (Weekly Rollup of Data/Calculations for Stock Ledger)

dept/class/subclass/location/half-month/week/currency level and updates the
WEEK_DATA table.

This program processes all weeks that are in the month for which month-end process has
not been run, up to the current week. This program can be run at any time during the
week - not necessarily just at week-end, as it must be run before the Monthly Stock
Ledger Processing, which can be run at any time after the closing of a month.

In addition to the summarization processes done by this program, there are several week
ending calculations done as well. The closing stock value, half to date goods available for
sale (HTD GAFS), shrinkage and gross margin are calculated by calling a package
function, based on the accounting method designated for the department - cost or retail.
Additionally, the closing stock value for a processed week becomes opening stock value
for the next week. Also, if this program is run at the end of the week, it will write a
‘shell’ record for the next week, populating the key fields on the table (subclass, location,
and so on..), the opening stock values at cost and retail and the HTD GAFS at cost and
retail.

Scheduling Constraints

Schedule Information Description
Frequency Weekly
Scheduling Considerations This program should run after saldly.pc, stkdly.pc,

salapnd.pc and immediately before salmth.pc (in
weeks that are at end of month)

Pre-Processing prepost salweek pre

Post-Processing prepost salweek post

Threading Scheme Multithreaded on department
Restart/Recovery

The logical unit of work is dept/class/subclass combination. A commit will take place
when number of dept/class/subclass combination records processed is equal to commit
max counter in restart control table.

Key Tables Affected
Table Select Insert Update Delete
SALWEEK_RESTART_DEPT Yes No No No
SALWEEK_C_WEEK Yes No No No
SALWEEK_C_DAILY Yes No No No
DAILY_DATA Yes No No No
WEEK_DATA Yes Yes Yes No
PARTNER Yes No No No
STORE Yes No No No
WH Yes No No No
DEPS Yes No No No
HALF_DATA_BUDGET Yes No No No

390 Oracle Retail Merchandising Foundation Cloud Service

salmth (Monthly Rollup of Data/Calculations for Stock Ledger)

Table Select Insert Update Delete
PERIOD Yes No No No
SYSTEM_OPTIONS Yes No No No
SYSTEM_VARIABLES Yes No No No

Design Assumptions
N/A

salmth (Monthly Rollup of Data/Calculations for Stock Ledger)

Module Name salmth.pc

Description Monthly Rollup of Data/Calculations
for Stock Ledger

Functional Area Stock Ledger

Module Type Business Processing

Module Technology ProC

Catalog ID RMS343

Runtime Parameters N/A

Design Overview

The Monthly Stock Ledger Processing program is responsible for performing the
monthly summarization processing in the stock ledger in which day-level records are
fetched from the transaction-level staging table and summed to the
subclass/location/month level. Once the records are summarized, they are written to
the MONTH_DATA table. This program processes one month for each program run -
starting the latest month to be closed. For example, if it is currently June and both April
and May are open, when the program runs, then only April will be closed.

In addition to the summarization processes done by this program, there are several
month ending calculations done as well. The closing stock value, half to date goods
available for sale (HTD GAFS), shrinkage and gross margin are calculated by calling a
package function, based on the accounting method designated for the department - cost
or retail. Additionally, the closing stock value for a processed month becomes opening
stock value for the next month. Also, when this program is run, it will write a “shell’
record for the next month, populating the key fields on the table (subclass, location, and
so on.), the opening stock values at cost and retail, the inter-stock take sales and
shrinkage amounts and the HTD GAFS at cost and retail.

This program can be run at any time during the month - not necessarily just at month-
end. Open stock counts from the month may exist based on the system parameter
(CLOSE_MTH_WITH_OPN_CNT_IND). If this indicator is “Y’, then retailers are able to
keep a count open across a single month closing in the stock ledger and still close the
month financially. A Unit & Value stock count is considered as open until all variances
(both unit and value) have been reviewed and applied. Special processing exists if it is
allowed and there are open stock counts from the current month. Open stock counts
from previous months however cannot exist regardless of the setting.

Stock Ledger 391

salmaint (Stock Ledger Table Maintenance)

Scheduling Constraints

Schedule Information Description

Frequency Monthly (end of month)

Scheduling Considerations Can run any time after end-of-month date

Salweek.pc must run prior to salmth.pc

Pre-Processing N/A

Post-Processing Prepost salmth_post

Threading Scheme Threaded by department
Restart/Recovery

The logical unit of work (LUW) for this batch program is a
dept/class/subclass/loc_type/location/currency_ind record. This batch program is
threaded by department using the v_restart_dept view. Processed records are committed
to the database after the LUW count has reached the commit_max_ctr.

Key Tables Affected
Table Select Insert Update Delete
PERIOD Yes No No No
SYSTEM_OPTIONS Yes No No No
SYSTEM_VARIABLES Yes No No No
STAKE_HEAD Yes No No No
STAKE_PROD_LOC Yes No No No
PARTNER Yes No No No
STORE Yes No No No
WH Yes No No No
MONTH_DATA Yes Yes Yes No
DAILY_DATA Yes No No No
DEPS Yes No No No
WEEK_DATA Yes No No No
HALF_DATA_BUDGET Yes No No No

Design Assumptions
N/A

salmaint (Stock Ledger Table Maintenance)

Module Name salmaint.pc
Description Stock Ledger Table Maintenance
Functional Area Stock Ledger

392 Oracle Retail Merchandising Foundation Cloud Service

salmaint (Stock Ledger Table Maintenance)

Module Name salmaint.pc
Module Type Admin
Module Technology ProC
Catalog ID RMS342
Runtime Parameters N/A

Design Overview

This module is run as either salmaint pre or salmaint post. The salmaint pre functionality
adds partitions to the HALF_DATA, DAILY_DATA, WEEK_DATA and MONTH_DATA
tables. The salmaint post functionality drops partitions or purges the above tables (if the
table is not partitioned) for an old half.

Scheduling Constraints

Schedule Information Description
Frequency Half yearly
Scheduling Considerations N/A
Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A
Restart/Recovery
N/A
Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations

N/A
Key Tables Affected
Table Select Insert Update Delete
SYSTEM_OPTIONS Yes No No No
SYSTEM_VARIABLES Yes No No No
HALF_DATA No No No Yes
DAILY_DATA No No No Yes
WEEK_DATA No No No Yes
MONTH_DATA No No No Yes

Stock Ledger 393

saleoh (End Of Half Rollup of Data/Calculations for Stock Ledger)

I/0 Specification
N/A

saleoh (End Of Half Rollup of Data/Calculations for Stock Ledger)

Module Name saloeh.pc
Description End Of Half Rollup of
Data/ Calculations for Stock Ledger
Functional Area Stock Ledger
Module Type Business Processing
Module Technology ProC
Catalog ID RMS337
Runtime Parameters N/A

Design Overview

The End of Half Stock Ledger Processing is different from many of the other “End of’
processes in that it is also the program that controls how many months of stock ledger
data remain on the tables, in addition to the updates to the Half Data table. This program
should be run after the end-of-month processing for month 6 has run and before the end-
of-month processing for month 1 has run.

The first step for this program is to delete records from stock ledger tables that are 18
months or older. Specifically, the tables that are deleted from are DAILY_DATA,
WEEK_DATA, MONTH_DATA, HALF_DATA, MONTH_DATA_BUDGET and
HALF_DATA_BUDGET. The 18-month limit is not a system parameter - it is hard-
coded into the program.

The next step in this program is for new records to be written for HALF_DATA,
MONTH_DATA_BUDGET and HALF _DATA_BUDGET for the next half. It inserts one
row into HALF_DATA for each subclass/location combination for the next half, six rows
(one for every month of the half) into MONTH_DATA_BUDGET for each
department/location for next year’s half and one row into HALF_DATA_BUDGET for
each department/location for next year’s half.

This program also rolls up the inter-stock take shrink amount and inter-stock take sales
amount from the HALF_DATA table at the department/location level for this half and
calculates the shrinkage percent to insert into HALF_DATA_BUDGET for the next year’s
half.

Scheduling Constraints

Schedule Information Description
Frequency Half yearly
Scheduling Considerations Run at the end of the half, after the monthly process has

been completed for month six (6) of the current half, and
before the salmth process for the first month of the next
half

Pre-Processing Salmth, prepost saleoh pre

394 Oracle Retail Merchandising Foundation Cloud Service

saleoh (End Of Half Rollup of Data/Calculations for Stock Ledger)

Schedule Information Description

Post-Processing N/A

Threading Scheme Threaded by department
Restart/Recovery

There is no main driving cursor for this program. The different functions of this batch
program have their own driving cursors. All the driving cursors are threaded by
department using the v_restart_dept view. The logical unit of work (LUW) for the delete
functions is a half number while the different insert functions have the following LUWs

= half data() - dept/class/subclass/location

* month_data_budget() - dept/location

* half data_budget() - dept/location

Data is committed every time the number of rows processed exceeds commit_max_ctr.

Key Tables Affected
Table Select Insert Update Delete
SYSTEM_OPTIONS Yes No No No
SYSTEM_VARIABLES Yes No No No
MONTH_DATA_BUDGET Yes Yes No Yes
HALF_DATA Yes Yes No No
HALF_DATA_BUDGET Yes Yes No Yes

Design Assumptions
N/A

Stock Ledger 395

salprg (Purge Stock Ledger History)

salprg (Purge Stock Ledger History)

Module Name salprg.pc

Description Purge Stock Ledger History
Functional Area Stock Ledger

Module Type Admin

Module Technology ProC

Catalog ID RMS344

Runtime Parameters N/A

Design Overview

This program is used to purge old transaction-level stock ledger records from the
Transaction Data History table (TRAN_DATA_HISTORY). The Retain Transaction Data
(TRAN_DATA_RETAINED_DAYS_NO) system parameter is used to define how many
days the Transaction Data History records should be kept in the system. This program
will be run nightly to remove any records older than the current date - the “Retain

Transaction Data” days.

Scheduling Constraints

Schedule Information

Description

Frequency

Scheduling Considerations
Pre-Processing
Post-Processing

Threading Scheme

Daily
N/A
N/A
N/A
N/A

Restart/Recovery
N/A

Key Tables Affected

Table Select

PERIOD Yes
SYSTEM_OPTIONS Yes
TRAN_DATA_HISTORY No
KEY_MAP_GL No

Design Assumptions
N/A

396 Oracle Retail Merchandising Foundation Cloud Service

nwppurge (Purge of Aged End of Year Inventory Positions)

nwppurge (Purge of Aged End of Year Inventory Positions)

Module Name nwppurge.pc

Description Purge of Aged End of Year Inventory Positions
Functional Area Stock Ledger

Module Type Admin

Module Technology ProC

Catalog ID RMS277

Runtime Parameters N/A

Design Overview

This program purges the records from the table NWP after a certain amount of years
have passed. The number of years is held in the configurable system level parameter
NWP_RETENTION_PERIOD.

Scheduling Constraints

Schedule Information Description

Frequency Yearly

Scheduling Considerations This program only needs to be scheduled for clients who
use NWP processing. See Design Assumptions for more
details

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery

Restart/recovery is not applicable, but the records will be committed based on the
commit max counter setup in the restart control table.

Key Tables Affected
Table Select Insert Update Delete
PERIOD Yes No No No
SYSTEM_OPTIONS Yes No No No
NWP Yes No No Yes

Design Assumptions

NWP refers to ‘Niederstwertprinzip” and is a legal German accounting financial
inventory reporting requirement for calculating year-end inventory position based on the
last receipt cost.

Stock Ledger 397

nwpyearend (End of Year Inventory Position Snapshot)

The NWP Indicator system parameter supports this German specific inventory reporting
requirement. For German customers, this needs to be 'Y' to allow for the annual NWP
calculations & processes.

This is not relevant for customers outside Germany.

nwpyearend (End of Year Inventory Position Snapshot)

Module Name nwpyearend.pc

Description End of Year Inventory Position Snapshot
Functional Area Stock Count

Module Type Business Processing

Module Technology ProC

Catalog ID RMS278

Runtime Parameters N/A

Design Overview

This program takes a snapshot of the item’s stock position and cost at the end of the year.
When the end of year NWP snapshot process runs, it takes a snapshot of stock and
weighted average cost (WAC) for every item/location combination currently holding
stock. If there is not a record already on the NWP table for an item/location/year
combination in the snapshot, a new record is added for that item/location/year
combination.

Scheduling Constraints

Schedule Information Description
Frequency Annually (last day of year)
Scheduling Considerations Only needed in specific markets. See design

considerations for more information

Pre-Processing refeodinventory.ksh must run successfully prior to
execution to ensure that ITEM_LOC_SOH_EOD is
up-to-date

Post-Processing N/A

Threading Scheme Multithreaded by store_wh

Restart/Recovery

The logical unit of work for this program is set at the location/item level. Threading is
done by supplier using the v_restart_store_wh view to thread properly. The
commit_max_ctr field should be set to prevent excessive rollback space usage, and to
reduce the overhead of file I/O. The changes will be posted when the commit_max_ctr
value is reached and the value of the counter is subject to change based on
implementation.

398 Oracle Retail Merchandising Foundation Cloud Service

stlgdnld (Daily or Weekly Download of Stock Ledger Data)

Key Tables Affected
Table Select Insert Update Delete
NWP_FREEZE_DATE Yes No No No
ITEM_MASTER Yes No No No
NWP Yes Yes Yes No
ITEM_LOC_SOH_EOD Yes No No No

Design Assumptions

NWP refers to ‘Niederstwertprinzip” and is a legal German accounting financial
inventory reporting requirement for calculating year-end inventory position based on the
last receipt cost.

The NWP Indicator system parameter supports this German specific inventory reporting
requirement. For German customers, this needs to be "Y' to allow for the annual NWP
calculations & processes.

This is not relevant for customers outside Germany.

stlgdnld (Daily or Weekly Download of Stock Ledger Data)

Module Name stlgdnld.pc

Description Weekly or Historical Download of Stock
Ledger Data

Functional Area Stock Ledger

Module Type Integration

Module Technology ProC

Catalog ID RMS17

Runtime Parameters N/A

Design Overview

This program extracts stock ledger data at the item level. The program can extract data
for a historic period or for the most current complete week. The program accepts an
input file that determines whether the extract is a historic extract or a weekly extract.

This program is often used in integration with RPAS applications.

Scheduling Constraints

Scheduling constraints vary depending on whether the program is run for normal
weekly data or historical data.

Normal Weekly Data

Schedule Information Description

Frequency Weekly

Scheduling Considerations

Stock Ledger 399

stlgdnld (Daily or Weekly Download of Stock Ledger Data)

Schedule Information Description

Pre-Processing
Post-Processing N/A
Threading Scheme Multi-threaded by dept

Historical Data

Schedule Information Description

Frequency As Needed

Scheduling Considerations N/A

Pre-Processing N/A

Post-Processing N/A

Threading Scheme Multi-threaded by dept
Restart/Recovery

The logical unit of work for this program is set at item, location type, location and date.
Threading is done by dept using the v_restart_dept view to thread properly.
The changes will be posted when the commit_max_ctr value is reached. The

commit_max_ctr field should be set to prevent excessive rollback space usage, and to
reduce the overhead of file I/O. The value of the counter is subject to change based on

implementation.
Key Tables Affected
Table Select Insert Update Delete
TRAN_DATA_HISTORY Yes No No No
SYSTEM_OPTIONS Yes No No No
SYSTEM_VARIABLES Yes No No No
PERIOD Yes No No No

Integration Contract

Integration Type Download from RMS
File Name The input filename is a runtime
parameter.

The output filename is hardcoded to
stkldgr%d.dat where %d is substituted
with the domain id. Each run of the
program can produce multiple output
files, one for each department.
Additional input parameters are defined
in the input file

Integration Contract IntCon000034 (output file)

400 Oracle Retail Merchandising Foundation Cloud Service

stlgdnld (Daily or Weekly Download of Stock Ledger Data)

Input File Layout

Record Field Name Field Type Default Description
Name Value
Task Indicator Char(1) Task Indicator. Valid
values are ‘H’ - historical,
‘W’ - weekly
From Date Char(8) From Date in
“YYYYMMDD' format
To Date Char(8) To Date in “YYYYMMDD’
format
Output File Layout
Record Field Name Field Type Default Description
Name Value
Item Char(25) Item number
Location Type Char(1) Location Type
Valid values are ‘S’,/W’
Location Number(20) Location Number
Eow date Char(8) End of Week date in
- “YYYYMMDD' format
Update_Ind Char(1) Update Indicator
Valid values are ‘I “ and
IU!
Regular_sales_retail Number(25,4) Regular sales value (retail)

Regular_sales_cost
Regular_sales_units
Promo_sales_retail
Promo_sales_cost
Promo_sales_units

Clear_sales_retail

Clear_sales_cost

Clear_sales_units
Sales_retail_excluding_vat

Custom_returns_retail

Custom_returns_cost

Custom_returns_units

Number(25,4)
Number(17,4)
Number(25,4)

(25,4)
Number(17,4)
Number(25,4)

Number

Number(25,4)

Number(17,4)
Number(25,4)

Number(25,4)

Number(25,4)

Number(17,4)

Regular sales value (cost)
Regular sales value (units)
Promo sales value (retail)
Promo sales value (cost)
Promo sales value (units)

Clearance sales value
(retail)

Clearance sales value
(cost)

Clearance sales value
(units)

Sales value excluding vat
(retail)

Custom returns value
(retail)

Custom returns value
(cost)

Custom returns value
(units)

Stock Ledger 401

stlgdnld (Daily or Weekly Download of Stock Ledger Data)

Record Field Name Field Type Default ~ Description
Name Value
Rtv_retail Number(25,4) Return to Vendor value
(retail)
Rtv cost Number(25,4) Return to Vendor value
h (cost)
Rtv_units Number(17,4) Return to Vendor value
(units)
Reclass_in_retail Number(25,4) Reclass In value (retail)
Reclass_in_cost Number(25,4) Reclass In value (cost)
Reclass_in_units Number(17,4) Reclass In value (units)
Reclass_out_retail Number(25,4) Reclass Out value (retail)
Reclass_out_cost Number(25,4) Reclass Out value (cost)
Reclass_out_units Number(17,4) Reclass Out value (units)
Perm_markdown_value Number(25,4) Permanent markdown
value (retail)
Prom_markdown_value Number(25,4) Promotion markdown
value (retail)
Clear_markdown_value Number(25,4) Clearance markdown
value (retail)
Markdown_cancel_value Number(25,4) Markdown cancel value
Markup_value Number(25,4) Markup value
Markup_cancel_value Number(25,4) Markup cancel value
Stock_adj_retail Number(25,4) Stock adjustment value
(retail)
Stock_adj_cost Number(25,4) Stock adjustment value
(cost)
Stock_adj_units Number(17,4) Stock adjustment value
(units)
Received_retail Number(25,4) Received value (retail)
Received_cost Number(25,4) Received value (cost)
Received_units Number(17,4) Received value (units)
Tsf_in_retail Number(25,4) Transfer In value (retail)
Tsf_in_cost Number(25,4) Transfer In value (cost)
Tsf_in_units Number(17,4) Transfer In value (units)
Tsf_out_retail Number(25,4) Transfer Out value (retail)
Tsf_out_cost Number(25,4) Transfer Out value (cost)
Tsf_out_units Number(17,4) Transfer Out value (units)
Freight_cost Number(25,4) Freight cost
Employee_disc_retail Number(25,4) Employee disc (retail)
Cost_variance Number(25,4) Cost variance
Wkroom_other_cost_sales Number(25,4) Wkroom other sales (cost)
Cash_disc_retail Number(25,4) Cash disc (retail)

402 Oracle Retail Merchandising Foundation Cloud Service

stlgdnld (Daily or Weekly Download of Stock Ledger Data)

Record Field Name Field Type Default Description
Name Value
Freight_claim_retail Number(25,4) Freight Claim (retail)
Freight_claim_cost Number(25,4) Freight Claim (cost)
Freight_claim_units Number(25,4) Freight Claim (Units)
Stock_adj_cogs_retail Number(25,4) Stock Adjust COGS
(retail)
Stock_adj_cogs_cost Number(25,4) Stock Adjust COGS (cost)
Stock_adj_cogs_units Number(25,4) Stock Adjust COGS
(Units)
Intercompany_in_retail Number(25,4) Intercompany In value
(retail)
Intercompany_in_cost Number(25,4) Intercompany In value
(cost)
Intercompany_in_units Number(25,4) Intercompany In value
(units)
Intercompany_out_retail Number(25,4) Intercompany Out value
(retail)
Intercompany_out_cost Number(25,4) Intercompany Out value
(cost)
Intercompany_out_units Number(25,4) Intercompany Out value
(units)
Intercompany_markup Number(25,4) Intercompany Markup
Intercompany_markup_units Number(25,4) Intercompany Markup
(units)
Intercompany_markdown Number(25,4) Intercompany Markdown
Intercompany_markdown_un Number(25,4) Intercompany Markdown
its (units)
Wo_activity_upd_inv Number(25,4) Work Order Activity -
Update Inventory (cost)
Wo_activity_upd_inv_units Number(25,4) Work Order Activity -
Update Inventory (units)
Wo_activity_post_fin Number(25,4) Work Order Activity -
Post to Financials (retail)
Wo_activity_post_fin_units Number(25,4) Work Order Activity -

Post to Financials (units)

Design Assumptions
N/A

Stock Ledger 403

otbdlsal (Open To Buy Download Stock Ledger)

otbdisal (Open To Buy Download Stock Ledger)

Module Name otbdlsal.pc

Description Open To Buy Download Stock Ledger

Functional Area OTB - Stock Ledger to Planning System
Interface

Module Type Integration

Module Technology ProC

Catalog ID RMS16

Design Overview

This module will sum stock ledger data from the DAILY_DATA table and opening stock
information from the WEEK_DATA table across the current week, grouping by
department, class, subclass, location and date, and export the data to a flat file for use by
an outside planning system.

Scheduling Constraints

Schedule Information Description

Frequency Weekly

This program must be run after ORDUPD (order upload.) It
also must be run after SALWEEK for the week just ended.
This program and OTBDNLD can run anytime after
SALWEEK, but SALDLY cannot run between OTBDNLD,

Scheduling Considerations

OTBDLSAL and OTBDLORD

Pre-Processing Ordupd.pc, salweek.pc

Post-Processing N/A

Threading Scheme N/ A. Table-based array processing is used to speed up
performance

Restart/Recovery

The logical unit of work for the OTBDLSAL module is department, class, subclass and
location. The commit_max_ctr field should be set to prevent excessive rollback space
usage, and to reduce the overhead of the file I/O. The recommended commit counter
setting is 10000 records. Each time the record counter equals the maximum
recommended commit number, an application image array record will be written to the
restart_start_array for restart/recovery if a fatal error occurs.

Locking Strategy
N/A

Security Considerations
N/A

404 Oracle Retail Merchandising Foundation Cloud Service

otbdlsal (Open To Buy Download Stock Ledger)

Performance Considerations

Key Tables Affected

Integration Contract

N/A
Table Select Insert Update Delete
DAILY_DATA Yes No No No
WEEK_DATA Yes No No No
PERIOD Yes No No No
Integration Type Download from RMS
File Name Determined by runtime parameter
Integration Contract IntCon000030
Record Name Field Name Field Type Default Value Description
FHEAD File Type Record Char(5) FHEAD Identifies file
Descriptor record type
File Line Number(10) 0000000001 Keeps track of the
Sequence Number record’s position
in the file by line
number
File Type Char(4) STKE Identifies file as
Definition Stock Ledger
Export
File Create Date =~ Char(14) vdate Date file was
written by batch
program in
YYYYMMDD
format.
Remaining six
characters are
blank.
FDETL File Type Record Char(5) FDETL Identifies file
Descriptor record type
File Line Number(10) line number in file Keeps track of the
Sequence Number record’s position
in the file by line
number

Transaction Set
Control Number

Department

Class

Number(14)

Number(4)

Number(4)

sequence number

Used to force
unique file check

The ID number of
a department

The ID number of
a class within the
department given

Stock Ledger 405

otbdlsal (Open To Buy Download Stock Ledger)

Record Name

Field Name

Field Type

Default Value

Description

Subclass

Loc_type

Location

Half No.

Month No.

Week No.

Open Stock Retail

Open Stock Cost

Stock
Adjustments
Retail

Number(4)

Char(1)

Number(10)

Number(5)

Number(2)

Number(2)

Number(20,4)

Number(20,4)

Number(20,4)

The ID number of
a subclass within
the class given

The type of the
location from
which stock
ledger data was
collected

The location from
which stock
ledger data was
collected

The half number
for this stock
ledger data

The month
number in the half
for this stock
ledger data

The week number
in the month for
this stock ledger
data

The retail opening
stock from the
week_data table
*10000 (implied 4
decimal places)
for this stock
ledger period

The cost opening
stock from the
week_data table
*10000 (implied 4
decimal places)
for this stock
ledger period

The retail stock
adjustments
summed from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

406 Oracle Retail Merchandising Foundation Cloud Service

otbdlsal (Open To Buy Download Stock Ledger)

Record Name Field Name Field Type

Default Value

Description

Stock
Adjustments Cost

Number(20,4)

Purchases Retail

Number(20,4)

Purchases Cost

Number(20,4)

RTV Retail

Number(20,4)

RTV Cost

Number(20,4)

Freight Cost Number(20,4)

The cost stock
adjustments
summed from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

The retail
purchases
summed from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

The cost
purchases
summed from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

The retail return
to vendor amount
summed from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

The cost return to
vendor amount
summed from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

The freight cost
summed from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

Stock Ledger 407

otbdlsal (Open To Buy Download Stock Ledger)

Record Name Field Name

Field Type

Default Value

Description

Net Sales Retail

Net Sales Cost

Returns Retail

Returns Cost

Promotional
Markdowns
Retail

Markdown
Cancellations
Retail

Number(20,4)

Number(20,4)

Number(20,4)

Number(20,4)

Number(20,4)

Number(20,4)

The retail net sales
summed from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

The cost net sales
summed from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

The retail returns
amount summed
from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

The cost returns
amount summed
from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

The retail
promotional
markdowns
summed from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

The retail
markdown
cancellations
summed from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

408 Oracle Retail Merchandising Foundation Cloud Service

otbdlsal (Open To Buy Download Stock Ledger)

Record Name

Field Name

Field Type

Default Value

Description

Employee
Discount Retail

Workroom
Amount

Cash Discount
Amount

Sales Units

Markups Retail

Markup
Cancellations
Retail

Number(20,4)

Number(20,4)

Number(20,4)

Number(12,4)

Number(20,4)

Number(20,4)

The retail
employee
discounts amount
summed from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

The workroom
amount summed
from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

The cash
discounts amount
summed from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

The sales units
summed from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

The retail
markups summed
from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

The retail markup
cancellations
summed from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

Stock Ledger 409

otbdlsal (Open To Buy Download Stock Ledger)

Record Name

Field Name Field Type

Default Value

Description

Clearance
Markdowns
Retail

Number(20,4)

Permanent
Markdowns
Retail

Number(20,4)

Freight Claim
Retail

Number(20,4)

Freight Claim
Cost

Number(20,4)

Stock Adjust Cost Number(20,4)
of Goods Sold
(COGS) Retail

The retail
clearance
markdowns
summed from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

The retail
permanent
markdowns
summed from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

The retail freight
claim summed
from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

The cost freight
claim summed
from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

The retail stock
adjust COGS
summed from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

410 Oracle Retail Merchandising Foundation Cloud Service

otbdlsal (Open To Buy Download Stock Ledger)

Record Name

Field Name

Field Type

Default Value

Description

Stock Adjust Cost

of Goods Sold
(COGS) Cost

Inter-company In

Retail

Inter-company In

Cost

Inter-company
Out Retail

Inter-company
Out Cost

Number(20,4)

Number(20,4)

Number(20,4)

Number(20,4)

Number(20,4)

The cost stock
adjust COGS
summed from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

The Inter-
company In retail
summed from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

The Inter-
company In cost
summed from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

The Inter-
company Out
Retail summed
from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

The Inter-
company Out
Cost summed
from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

Stock Ledger 411

otbdlsal (Open To Buy Download Stock Ledger)

Record Name Field Name Field Type Default Value

Description

Inter-company Number(20,4)
Markup

Inter-company Number(20,4)
Markdown

Work Order Number(20,4)
Activity Update
Inventory

Work Order Number(20,4)
Activity Post
Finishing

FTAIL File Type Record Char(5) FTAIL
Descriptor

File Line Number(10)
Sequence Number

Control Number ~ Number(10)
File Line Count

The Inter-
company Markup
summed from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

The Inter-
company
Markdown
summed from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

The Work Order
Activity Update
Inventory
summed from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

The Work Order
Activity Post
Finishing
summed from the
DAILY_DATA
table *10000
(implied 4
decimal places)
for this stock
ledger period

Identifies file
record type

Keeps track of the
record’s position
in the file by line
number

Total number of
all transaction
lines, not
including file
header and trailer

412 Oracle Retail Merchandising Foundation Cloud Service

trandataload.ksh (External Transaction Data Upload)

trandataload.ksh (External Transaction Data Upload)

Module Name trandataload.ksh

Description External Transaction Data Upload
Functional Area Finance

Module Type Integration

Module Technology KSH

Catalog ID RMS 376

Runtime Parameters N/A

Design Overview

This process, along with trandataprocess.ksh, provides a mechanism to write records
directly into the TRAN_DATA tables based on a file from an external system. The
primary purpose of this functionality is to allow additional costs to be included in stock
ledger valuation that cannot be included based on existing Merchandise functionality.
Records written to the TRAN_DATA tables do not necessarily have a connection to any
RMS transaction, and are based on a determination made outside of RMS. The records
written through this mechanism function exactly the same as records written by normal
RMS processes. For cost based transactions, the information must be passed at an
item/location level. For retail-based transactions, it can be at either an item/location or
subclass/location level. Note: there is no support for recalculating or impacting unit
inventory in RMS based on the transactions passed in, and only cost or retail value in the
stock ledger is impacted - although the weighted average cost (WAC) may also be
impacted if that method of accounting is used in RMS.

The trandataload script loads the staging table STAGE_EXT_TRAN_DATA table from a
flat file using SQL Loader and divides the data into chunks to be processed in parallel
threads based on the commit_max_counter and num_threads value on
RESTART_CONTROL table.

This script accepts the following input parameters -
* Database Connect string

= File load indicator - This indicator is passed as Y if a flat file has to be loaded into the
table STAGE_EXT TRAN_DATA elseits N

* Input file - This is the path of the input file. This is mandatory when File load
indicatoris Y.

The SQL loading from a flat file is optional in the script. If File load indicator is Y the
program validates if the input file exists and logs an error in case the input file does not
exist. The SQL Load (sqlldr) process loads the input file using control file -
trandataload.ctl into the STAGE_EXT_TRAN_DATA table.

» A fatal error from sqlldr will halt the process.

* Rejected records are a non-fatal error and loader will continue processing and create
bad file and discard files in case the input file does not match the expected format.

If the user has chosen not to load data into the staging table (File load indicator ‘N”) then
the batch assumes that data has been loaded on the staging table from a different source.
After the loading process is complete, the batch divides the data into chunks.

Stock Ledger 413

trandataload.ksh (External Transaction Data Upload)

If the staging table is empty or all the records are in ‘P’rocessed status then the batch logs
an appropriate error.

Chunking Logic

Dense rank the staged records over Subclass, item and location.
Divide the rank value by the commit max counter.

Rounding the divided value gives the Chunk ID to which the particular value
belongs to.

Item can be NULL on the staging table, when NULL consider item to be -999".

This will make sure the records with same subclass value and having item as NULL
and NOT NULL are not grouped together in a chunk.

Since records with item have to be processed differently, (WAC recalculation and
Variance postings) the batch makes sure that they fall in a different chunk to those
records which do not have item value.

The Chunk data is inserted into STAGE_EXT TRAN_DATA_CHUNK table.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations This program only needs to be scheduled if data from

external systems should be included in the stock ledger.
If this functionality is used, this should be the first stock
ledger process.

Pre-Processing N/A

Post-Processing trandataprocess.ksh

Threading Scheme N/A

Restart/Recovery
N/A

Key Tables Affected

Table Select Insert Update Delete

STAGE_EXT_TRAN_DATA Yes Yes No Yes
STAGE_EXT_TRAN_DATA_CHUNK No Yes No Yes

I/0 Specification

Input File Specification

This batch uses SQL Loader to populate the staging table. The input file should be in pipe
delimited format. Sample record structure would look like -

414 Oracle Retail Merchandising Foundation Cloud Service

trandataload.ksh (External Transaction Data Upload)

<item>|<dept>l<class>|<subclass>|<location>|<loc type>|<tran date>|<tran code>|<ad
j_code>|<units>|<total cost>|<total retail>|<ref no 1>|<ref no 2>|<GL ref no>|<0ld
_unit retail>|<New unit retail>|<Sales type>|<VAT rate>|<av_cost>|<ref pack no>|<t
otal cost excl elc>|<WAC reclculate ind>|<status>|<create timestamp>|

Below table specifies the details of each field in the record.

Field Name Field Type Default Description / Constraints
Value

Item VARCHAR?2(25) Item is an optional field.
Transactions can be uploaded at
the Subclass level also.

Dept NUMBER(4) Mandatory Field

Class NUMBER(4) Mandatory Field

Subclass NUMBER(4) Mandatory Field

Location NUMBER(10) Mandatory Field

Loc_type VARCHAR?2(1) Valid values - ‘S, W', ‘E’

Tran_data DATE Mandatory Field

Tran_code NUMBER(2) Mandatory Field

Adj_code VARCHAR?2(1) Valid values - ‘C’, ‘U’, ‘A’

Units NUMBER(12, 4) Mandatory Field

Total_cost NUMBER(20, 4)

Total_retail NUMBER(20, 4)

Ref no_1 NUMBER(10)

Ref_no_2 NUMBER(10)

Gl_ref_no NUMBER(10)

Old_unit_retail NUMBER(20, 4)

New_unit_retail NUMBER(20, 4)

Pgm_name VARCHAR(100)

Sales_type VARCHAR2(1) Valid values - ‘C’, 'R’, 'P’

Vat_rate NUMBER(12, 4)

Av_cost NUMBER(20, 4)

Ref_pack_no VARCHAR2(25)

Total_cost_excl_elc NUMBER(20, 4)

Wac_recalculate_ind VARCHAR2(1) If Weighted Average Cost of the
Item-Location should be
recalculated after uploading this
transaction then this value
should be passed as “Y’.

Status VARCHAR2(1) ‘N’ This value will be defaulted to

‘N’ by this program. It will be

updated to ‘P’ once it has been
processed else to ‘E” in case of

Error.

Stock Ledger 415

trandataprocess.ksh (External Transaction Data Process)

Field Name Field Type Default Description / Constraints
Value
Create_timestamp DATE Sysdate

Design Assumptions
N/A

trandataprocess.ksh (External Transaction Data Process)

Module Name trandataprocess.ksh

Description External Transaction Data Process
Functional Area Finance

Module Type Business Processing

Module Technology KSH

Catalog ID RMS377

Runtime Parameters N/A

Design Overview

This process, along with trandataload.ksh, provides a mechanism to write records
directly into the TRAN_DATA tables based on a file from an external system. The
primary purpose of this functionality is to allow additional costs to be included in stock
ledger valuation that cannot be included based on existing Merchandise functionality.
Records written to the TRAN_DATA tables do not necessarily have a connection to any
RMS transaction, and are based on a determination made outside of RMS. The records
written through this mechanism function exactly the same as records written by normal
RMS processes. For cost based transactions, the information must be passed at an
item/location level. For retail-based transactions, it can be at either an item/location or
subclass/location level. Note: there is no support for recalculating or impacting unit
inventory in RMS based on the transactions passed in, and only cost or retail value in the
stock ledger is impacted - although the weighted average cost (WAC) may also be
impacted if that method of accounting is used in RMS.

Trandataprocess batch processes the data on STAGE_EXT_TRAN_DATA and inserts into
the TRAN_DATA table. This batch should be run after trandataload.ksh.

This batch validates the records on the staging table. The status records that fail
validation are updated to “E’rror on the staging table with error message.

The records which pass the validations are inserted into TRAN_DATA table and
Weighted Average Cost is recalculated in case the WAC _recalc_ind is ‘Y’ for the record.

This script accepts the following input parameters -
= Database Connect string.

= Number of parallel threads - optional parameter. This is to override the value set on
RESTART_CONTROL table.

This script calls the TRAN_DATA_IMPORT_SQL to import the transaction records on
STAGE_EXT_TRAN_DATA table that haven’t been processed yet. Each thread of the

416 Oracle Retail Merchandising Foundation Cloud Service

trandataprocess.ksh (External Transaction Data Process)

program processes a single chunk of data. After processing the Chunk, the status of the
chunk is updated to ‘P'rocessed.

The batch program performs the below validations on the staged records before inserting
to TRAN_DATA. Status of the records which fail validations will be updated to ‘E’rror
on STAGE_EXT_TRAN_DATA along with the reasons for validation failure.

Validates Dept, Class, and Subclass against SUBCLASS table.

Validates location and loc_type against STORE and WH tables.

Validates tran_code against TRAN_DATA_CODES table.

If Item is not NULL validate if the item exists and is a transaction level item.
If Ttem is not NULL validate if the item belongs to the dept/class/subclass.
If Item not NULL validate if it is ranged to the location.

Validate that item is not a pack.

Item can be NULL only if it belongs to a Retail accounting department.
When RECAL_WAC_IND = “Y’, ITEM and TOTAL_COST should not be NULL.
Both total_cost and total_retail cannot be null.

The loc_type should be “W’ or ’S” or ‘E’.

For TRAN_CODES - 37, 38, 63 and 64, GL_REF_NO should not be NULL
For TRAN_CODES - 22 and 23 total cost should not be NULL

For TRAN_CODES - 11, 12, 13, 14, 15, 16, 60, 80, and 81, total retail should not be
NULL or total cost should be NULL.

For TRAN_CODES -1, 4, 20, 24, 27, 30, 31, 37 and 38, total cost should not be NULL
OR (total_retail should not be NULL and sellable_ind is “Y”)

Once records are validated, the batch program calculates the Weighted Average Cost
(WAC) for the records with WAC_RECALC_IND ="Y’. In case the calculated WAC <=0
and if there is inventory present the location then a cost variance record (TRAN_CODE -
70) is inserted into TRAN_DATA. Cost variance transaction is also posted for those item
locations which have no or negative inventory.

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations This program only needs to be scheduled if data from
external systems should be included in the stock ledger.

Pre-Processing trandataload.ksh

Post-Processing salstage

Threading Scheme Trandataload.ksh divides the data into Chunks based on
commit max counter. Each Data chunk will be processed
by a single thread.

Restart/Recovery
N/A

Stock Ledger 417

trandataprocess.ksh (External Transaction Data Process)

Key Tables Affected

Table Select Insert Update Delete
STAGE_EXT_TRAN_DATA Yes No Yes No
STAGE_EXT_TRAN_DATA_CHUNK Yes No Yes Yes
GTG_STG_EXT_TRAN_DATA Yes Yes Yes Yes
SUBCLASS Yes No No No
WH Yes No No No
STORE Yes No No No
TRAN_DATA_CODES Yes No No No
TRAN_DATA Yes Yes No No
ITEM_LOC_SOH Yes No Yes No
SYSTEM_OPTIONS Yes No No No
PERIOD Yes No No No
GTT_STAGE_EXT_TRAN_DATA_CALC Yes Yes No Yes
ITEM_MASTER Yes No No No
ITEM_LOC Yes Yes No Yes
DEPS Yes No No No

Design Assumptions

N/A

418 Oracle Retail Merchandising Foundation Cloud Service

21

Overview

Customers

Costing

Franchise Management

To scale up business operations and market presence, particularly in new markets,
retailers may choose to utilize business partners to manage branded or co-branded stores
while retaining the retailer’s business processes and value proposition. Businesses who
partner with a retailer to expand the retailer’s presence are known as franchisees.
Franchisees may operate one or more stores under the retailer’s banner. RMS supports
two types of franchise management:

1. Franchise inventory is managed by the retailer

For this scenario, the retailer owns/manages the retail experience through planning,
ordering, selling and tracking of inventory at franchise stores. In RMS, it is assumed
that franchise customer locations will be set up as stockholding stores, with a store
type of “Franchise”.

2. Franchise inventory is not managed by the retailer

For this case, the retailer does not own or manage inventory, but mandatorily
requires a franchise customer to adhere to business processes across franchise stores.
This may also include retailers with smaller scale wholesale operations constitute a
small fraction of the retailers business. For both these scenarios, it is assumed that
non-stockholding stores will be setup in RMS to represent these franchise (or
wholesale) customer locations.

The batch processes that are used for Franchise Management in RMS fall primarily into
the following areas:

RMS maintains customer groups and customers pertaining to franchise operations as a
hierarchy above customer locations. Customer groups and customers can be entered in
RMS or uploaded from an external system. Customer locations are set up as franchise
stores in RMS and can be designated as either stockholding or non-stockholding.

For all items that are “sold” to franchise customer locations from a retailer, a selling price
must be determined. The default selling price for franchise stores is calculated and held
on FUTURE_COST as the pricing cost. To calculate the cost, RMS uses the concept of
templates and it is a template’s association with a franchise store and merchandise
hierarchy that determines the value on FUTURE_COST. Cost templates and their
relationships with franchise locations/merchandise hierarchies can be entered into RMS
or uploaded via a batch process.

Franchise Orders

Franchise orders need to be raised in order to fulfill demand from a franchise customer.
A franchise order is considered a sales order between the retailer and the franchise
customer. A franchise order contains the item requisition to be sourced from a certain
location (vendor, company warehouse or store) and fulfilled at one or more franchise
stores by one or more required need dates. A franchise order also contains the price at

Operations Guide - Volume 1 Batch Overviews and Designs 419

Batch Design Summary

which the items on the order will be sold to the franchise customer. Franchise Orders can
be entered into RMS via one of the following methods:

1. Manually via the Franchise Sales Order screen.
2. From an external application using the WF Order Upload (wfordupld) batch.

3. Automatically through replenishment, store orders, item requests, AIP generated
POs/Transfers and Allocations for stockholding franchise stores.

Once a franchise order is created and approved, a transfer (for warehouse or store
sourced orders) or purchase order (for supplier sourced orders) will be created to
manage the inventory movement. All franchise orders must be for a single customer.

Franchise Returns

Franchise returns are used whenever inventory moves from a franchise store back to a
company owned location. Franchise returns cannot be created directly back to a supplier,
it is assumed they will always first come back to a company owned location. Unlike
franchise orders, which can be created for multiple franchise stores, franchise returns are
always from a single franchise store. A franchise return contains the items being returned
and the return price. If known, the original franchise order is referenced with the return
and the price from the original order is used as a default. Like franchise orders, franchise
returns can be created in three different ways:

1. Manually via the Franchise Returns screen.
2. From an external application using the WF Return Upload (wfretupld) batch.

3. Automatically through store-initiated transfers or transfers sent from an external
system for stockholding franchise stores.

Batch Design Summary
The following batch designs are included in this functional area:
= feosttmplupld.ksh (Upload Cost Buildup Template)
= fcosttmplprocess.ksh (Process Cost Buildup Template Upload)
» fcosttmplpurge.ksh (Purge Staged Cost Template Data)
* fcustomerupload.ksh (Franchise Customer Upload)

= fcustomerprocess.ksh (Process Uploaded Franchise Customers and Customer
Groups)

» fcustupldpurge.ksh (Franchise Customer Staging Purge)

* wfordupld.ksh (Franchise Order Upload)

* wf_apply_supp_cc.ksh (Apply Supplier Cost Change to Franchise Orders)
* wfordcls.pc (Franchise Order Close)

= wfordprg.pc (Franchise Order Purge)

= wiretupld.ksh (Franchise Return Upload)

= wifretcls.pc (Franchise Return Close)

* wirtnprg.pc (Franchise Return Purge)

» wislsupld.ksh (Upload of Franchise Sales to RMS)

» wibillex.ksh (Franchise Billing Extract)

420 Oracle Retail Merchandising Foundation Cloud Service

fcosttmplupld (Upload Cost Buildup Template)

fcosttmplupld (Upload Cost Buildup Template)

Module Name fcosttmplupld.ksh

Description Upload Cost Buildup Template
Functional Area Franchise Management

Module Type Integration

Module Technology ksh

Catalog ID RMS125

Runtime Parameters DB Connection and Input File name

Design Overview

This module uploads cost buildup templates and franchise cost relationships used for
franchise pricing from an external system into RMS staging tables. It also performs both
technical and business validation of the data sent in the file; for example, it validates that
start and end dates are included for new and updated templates.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations Should be run before fcosttmplprocess.ksh
Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A
Restart/Recovery

The restart recovery is different from the conventional RMS batch. There are three points
on the batch upload process where users can evaluate the successful load of the data.

1.

SQL load - SQL load dumps invalid records that do not meet certain technical
requirements (for example:. file layout issues, data type inconsistencies, and so on.).
The rejected record is written either to a bad file or to a discard file. The discard file
contains records that do not satisfy conditions such as missing or invalid record
types. Records with other technical issues are written to the bad file. Note that a non-
fatal code is returned by the program and a message will be written to the log file if
reject files are created.

User Action: When such conditions exist, the user may update either the bad or
discard file and attempt to reload using the same files.

Business Validation Level - the data from the files are loaded into the staging tables
for validation. PL/SQL functions determine if this loaded data is valid enough to be
inserted into the actual RMS tables. Records that do not meet certain technical or
business validations are rejected and the information is updated back into the staging
table with an appropriate error message and the batch issues a NON-FATAL return
code.

Franchise Management 421

fcosttmplupld (Upload Cost Buildup Template)

User Action: When this condition exists, the user can fix the data upload file and try
to reload.

3. Chunking validated data - At this point the data from staging tables that have
passed business validation are chunked based on the number of valid transactions
(cost templates) and max_chunk_size from RMS_PLSQL_BATCH_CONFIG table. If
there are no valid transactions to be chunked, batch issues a FATAL return code.

User Action: When this condition exists, the user can fix the data upload file and try to

reload.
Key Tables Affected
Table Select Insert Update Delete
SVC_WF_COST_TMPL_UPLD_FHEAD Yes Yes Yes No
SVC_WEF_COST_TMPL_UPLD_THEAD Yes Yes Yes No
SVC_WF_COST_TMPL_UPLD_TDETL Yes Yes Yes No
SVC_WEF_COST_TMPL_UPLD_TTAIL Yes Yes Yes No
SVC_WF_COST_TMPL_UPLD_FTAIL Yes Yes Yes No
SVC_WF_COST_TMPL_UPLD_STATUS Yes Yes Yes Yes
ELC_COMP Yes No No No
STORE Yes No No No
CLASS Yes No No No
SUBCLASS Yes No No No
ITEM_MASTER Yes No No No
RMS_PLSQL_BATCH_CONFIG Yes No No No
I/0 Specification
Integration Type Upload to RMS
File Name Determined by runtime parameter
Integration Contract IntCon000021

SQL Loader Input File Layout

Record Field Name Field Type Default Description
Name Value
File Header File Type Record Char(5) Identifies file record
Descriptor type. Valid value is
FHEAD.
File Line Identifier Number(10) Sequential file line
number
File Type Definition Char(5) CTMPL Identifies file as ‘Cost
Template Upload’

422 Oracle Retail Merchandising Foundation Cloud Service

fcosttmplupld (Upload Cost Buildup Template)

Record
Name

Field Name

Field Type

Default
Value

Description

Transaction
Header

Transaction
Detail

File Create Date

File Record Descriptor

File Line Identifier

Message Type

Template ID
Template Description

Template Type

Percentage

Cost

Final Cost

File Record Descriptor

Date

Char(5)

Number(10)

Char(30)

Number(10)
Char(120)
Char(1)

Number(12,4)

Number(20,4)

Char(1)

Char(5)

SYSDATE

Date on which the file
was created by external
system

Identifies transaction
header record type.
Valid value is THEAD

Sequential file line
number

Identifies the action that
will be performed on the
franchise cost template
header information that
is provided as part of
this record

It can be either create or
update or delete a
franchise cost template.
Valid message types are:
costtmpadd (for
additions), costtmpmod
(for updates), costtmpdel
(for deletions)

Template ID
Template Description

Indicates the type of the
template. Valid values
are M = Margin then Up-
Charge, U = Up-charges,
then Margin, R = % of
Retail and C = Cost

Margin percent or % off
Retail value; required if
template type is M, U
and R types of templates

Indicates the franchise
cost for an item when
template type is 'C'
This is mandatory and
should only be
populated if template
typeis 'C’

Signifies if the cost is

final or acquisition. Valid
values are “Y’ or ‘N’

Identifies transaction
detail record type. Valid
value is TDETL

Franchise Management 423

fcosttmplupld (Upload Cost Buildup Template)

Record Field Name

Name

Default
Value

Field Type

Description

File Line Identifier

Message Type

Dept

Class

Subclass

Item

Location

Start Date

End Date

New Start Date

Number(10)

Char(30)

Number(4)

Number(4)

Number(4)

Char(25)

Number(10)

Date

Date

Date

Sequential file line
number

Identifies the action that
will be performed on the
franchise cost template
relationship information
that is provided as part
of this record.

It can be either create or
update or delete a cost
relationship. Valid
values are:
costtmpreladd (for
additions),
costtmprelmod (for
updates), costtmpreldel
(for deletions)

Department associated
with the cost template

Class associated with the
cost template

Subclass associated with
the cost template

Unique number that
identifies a valid item
associated with the
template. Used for
template types of ‘C’
only

Franchise Store Number
associated with the
template

Date on which a cost
template will be effective
for the subclass/item
and franchise store
(required for update and
delete of a cost
relationship)

Date on which a cost
template will expire for a
subclass/item and
franchise store (required
for update and delete of
a cost relationship)

New Date on which a
franchise cost
relationship will be
effective

424 Oracle Retail Merchandising Foundation Cloud Service

fcosttmplprocess (Process Cost Buildup Template Upload)

Record
Name

Field Name

Default
Value

Field Type

Description

Transaction
Trailer

File Trailer

New End Date

Cost Component ID

File Record Descriptor

File Line Identifier

Transaction Record
Counter

File Record Descriptor

File Line Identifier

File Record Counter

Date

Char(10)

Char(5)

Number(10)

Number(10)

Char(5)

Number(10)

Number(10)

New Date on which a
franchise cost
relationship will expire

Unique code which
signifies the up-charge
cost component when
First_Applied is 'U'

This should only be
populated if First
Applied is ‘U’

Identifies transaction
trailer record type. Valid
value is TTAIL

Sequential file line
number

Number of TDETL
records in this
transaction set

Identifies file trailer
record type. Valid value
is TTAIL

Sequential file line
number

Number of

records/ transactions
processed in current file
(only records between
FHEAD & FTAIL)

Design Assumptions

No date format is specified in the input file, as any valid PL/SQL date format can be

used.

fcosttmplprocess (Process Cost Buildup Template Upload)

Module Name

fcosttmplprocess.ksh

Description

Process Cost Buildup Template Upload

Functional Area

Franchise Management

Module Type Business Processing
Module Technology ksh
Catalog ID RMS224

Franchise Management 425

fcosttmplprocess (Process Cost Buildup Template Upload)

Design Overview

This module processes franchise cost buildup templates and franchise cost relationships
that were uploaded from an external source into staging tables and loads them from the
staging tables into RMS base tables. The module is designed to process inserts, updates
and deletes for these data elements.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations This program only needs to be scheduled if the

client uploads franchise cost information from an
external system

Should be run after fcosttmplupld.ksh

Pre-Processing fcosttmplupld.ksh

Post-Processing N/A

Threading Scheme N/A
Restart/Recovery

The restart recovery is different from the conventional RMS batch. During the batch
process users can evaluate the successful processing of data in the following way:

PL/SQL function will load the data from staging tables into RMS tables. For records that
result (insert/update/delete) in constraint error or are not found in the RMS tables (for
update/delete) are rejected and the information is updated back in the corresponding
staging table with appropriate error message. Also, records that do not meet certain
business validations (which can only be validated during data processing) are rejected
and the information is updated back in the corresponding staging table with appropriate
error message.

User Action: When this condition exists, the user can fix the data upload file and try to
reload and process the data.

Key Tables Affected
Table Select Insert Update Delete
SVC_WEF_COST_TMPL_UPLD_FHEAD Yes No Yes No
SVC_WEF_COST_TMPL_UPLD_THEAD Yes No Yes No
SVC_WEF_COST_TMPL_UPLD_TDETL Yes No Yes No
SVC_WEF_COST_TMPL_UPLD_TTAIL Yes No Yes No
SVC_WF_COST_TMPL_UPLD_FTAIL Yes No Yes No
SVC_WEF_COST_TMPL_UPLD_STATUS Yes No Yes No
WEF_COST_BUILDUP_TMPL_HEAD Yes Yes Yes Yes
WE_COST_BUILDUP_TMPL_DETAIL Yes Yes Yes Yes
WEF_COST_RELATIONSHIP Yes Yes Yes Yes
GTT_WEF_COST_RELATIONSHIP No Yes No No

426 Oracle Retail Merchandising Foundation Cloud Service

fcosttmplpurge (Purge Staged Cost Template Data)

Table Select Insert Update Delete
COST_EVENT_COST_RELATIONSHIP No Yes No No
COST_EVENT No Yes No No
COST_EVENT_RESULT No Yes No No
COST_EVENT_THREAD No Yes No Yes
FUTURE_COST_GTT No Yes No No
FUTURE_COST No No No Yes

Design Assumptions
N/A

fcosttmplpurge (Purge Staged Cost Template Data)

Module Name fcosttmplpurge.ksh

Description Purge Staged Cost Template Data
Functional Area Franchise Management

Module Type Admin

Module Technology ksh

Catalog ID RMS225

Runtime Parameters N/A

Design Overview

This module purges data from the staging tables used by the Cost Buildup Template
Upload process. The module is designed to purge all the data from the staging tables that
have passed the system parameter Foundation Staging Retention days
(fdn_stg_retention_days).

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations

Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A

Restart/Recovery
N/A

Franchise Management 427

fcustomerupload (Franchise Customer Upload)

Key Tables Affected

Table Select Insert Update Delete
SVC_WF_COST_TMPL_UPLD_FHEAD No No No Yes
SVC_WF_COST_TMPL_UPLD_THEAD No No No Yes
SVC_WF_COST_TMPL_UPLD_TDETL No No No Yes
SVC_WF_COST_TMPL_UPLD_TTAIL No No No Yes
SVC_WF_COST_TMPL_UPLD_FTAIL No No No Yes
SVC_WF_COST_TMPL_UPLD_STATUS No No No Yes
SYSTEM_OPTIONS Yes No No No

Design Assumptions
N/A

fcustomerupload (Franchise Customer Upload)

Module Name

fcustomerupload.ksh

Description

Franchise Customers Upload

Functional Area

Franchise Management

Module Type Integration
Module Technology ksh
Integration Catalog ID RMS126

Runtime Parameters

DB Connection and Input File name

Design Overview

This module uploads franchise customers and customer group details from an external
system into RMS staging tables. It also performs both technical and business validation
of the data sent in the file; for example, it validates that a customer cannot be deleted if a
franchise store is associated with it.

Scheduling Constraints

Schedule Information

Description

Scheduling Considerations

This program can run on need basis

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A
Restart/Recovery

The restart recovery is different from the conventional RMS batch. There are three points
on the batch upload process where users can evaluate the successful load of the data.

428 Oracle Retail Merchandising Foundation Cloud Service

fcustomerupload (Franchise Customer Upload)

* SQL load - SQL load dumps invalid records that do not meet certain technical
requirements (for example:. data type inconsistencies, and so on.). The rejected
record is written either to a bad file or to a discard file. The discard file contains
records that do not satisfy conditions such as missing or invalid record types.
Records with other technical issues are written to the bad file. Note that a non-fatal
code is returned by the program and a message will be written to the log file if reject
files are created.

User Action: When such conditions exist, the user may update either the bad or
discard file and attempt to reload using the same files.

* File-Based Validations - the data from the files are loaded into the staging tables for
validation. PL/SQL functions will validate the tables SVC_FCUSTUPLD_FHEAD
and SVC_FCUSTUPLS_FTAIL to determine if there are any issues with FHEAD and
FTAIL in the file. These kinds of errors are FATAL errors and the batch ends the file
processing immediately with return code 255.

User Action: When this condition exists, the user can fix the data upload file and try to
reload.

» Business Validation Level - PL/SQL functions determine if the transactions loaded
are valid enough to modify the actual RMS tables. Records that do not meet certain
technical or business validations are rejected and the information is updated back
into the staging table with an appropriate error message and the batch issues a NON-

FATAL return code 1.
User Action: When this condition exists, the user can fix the data upload file and try to
reload.
Key Tables Affected
Table Select Insert Update Delete
SVC_FCUSTUPLD_FHEAD Yes Yes Yes No
SVC_FCUSTUPLD_THEAD Yes Yes Yes No
SVC_FCUSTUPLD_TDETL Yes Yes Yes No
SVC_FCUSTUPLD_TTAIL Yes Yes Yes No
SVC_FCUSTUPLD_FTAIL Yes Yes Yes No
SVC_FCUSTUPLD_STATUS Yes Yes Yes No
WE_CUSTOMER_GROUP Yes No No No
WEF_CUSTOMER Yes No No No
STORE Yes No No No
I/0 Specification
Integration Type Upload to RMS
File Name Determined by runtime parameter
Integration Contract IntCon000022

Franchise Management 429

fcustomerupload (Franchise Customer Upload)

SQL Loader Input File Layout

Record
Name

Field Name

Field Type

Default
Value

Description

File Header

Transaction
Header

Transaction
Detail

File Record Descriptor

File Line ID

File Type

File Create Date

File Record Descriptor

File Line ID

Message Type

Franchise Customer
group ID

Franchise Customer
group Name

File Record Descriptor

File Line ID

Message Type

Franchise Customer ID

Char(5)

Number(10)

Char(5)

Date

Char(5)

Number(10)

Char(30)

Number(10)

Char(120)

Char(5)

Number(10)

Char(30)

Number(10)

Franchise Customer Name Char(120)

FCUST

SYSDATE

Identifies file record
type. It should be
FHEAD

ID of current line being
processed by input file

Identifies file as
‘Franchise customer
upload’

Date file was written by
external system

Identifies transaction
record type. It should be
THEAD

ID of current line being
processed by input file

Identifies the action that
will be performed on the
franchise customer
transaction header
record. It can be either
create or update or
delete a franchise
customer group

Customer group ID

Customer group name.
This field is optional for
delete

Identifies transaction
record type. It should be
TDETL

ID of current line being
processed by input file

Identifies the action that
will be performed on the
franchise customer
transaction detail record.
It can be either create or
update or delete a
franchise customer

Customer ID to be
processed

Customer Name

430 Oracle Retail Merchandising Foundation Cloud Service

fcustomerprocess (Process Uploaded Franchise Customers and Customer Groups)

Record Field Name Field Type Default Description
Name Value
Credit Ind Char(1) N This field will determine

if the franchise customer
has good credit. Valid
values are Y and N

Auto approve Ind Char(1) N To auto approve the

externally uploaded
orders and returns.
Valid values are Y and N

Transaction File Record Descriptor Char(5) Identifies file record

Trailer

type. It should be TTAIL

File Line ID Number(10) ID of current line being

processed by input file

Transaction Record Count Number(10) Number of TDETL

records in this
transaction set.(total
records between
THEAD & TTAIL)

File Trailer File Record Descriptor Char(5) Identifies file record

type. It should be FTAIL

File Line ID Number(10) ID of current line being

processed by input file.

File Record Counter Number(10) Number of

records/ transactions
processed in current file
(total records between
FHEAD & FTAIL)

Design Assumptions

N/A

fcustomerprocess (Process Uploaded Franchise Customers and Customer

Groups)

Module Name

fcustomerprocess.ksh

Description

Process Uploaded Franchise Customers and Customer Groups

Functional Area

Franchise Management

Module Type Business Processing
Module Technology ksh
Integration Catalog ID RMS492

Design Overview

This module processes the franchise customer groups and franchise customers
information from the staging tables SVC_FCUSTUPLD_* and loads it into RMS base

Franchise Management 431

Restart/Recovery

tables WF_CUSTOMER_GROUP and WF_CUSTOMER. The module is designed to
process (insert/update or delete) the validated data that maps to franchise customer
groups and franchise customer information.

Scheduling Constraints

Schedule Information Description

Scheduling Considerations This program can run on need basis
Pre-Processing This should be run after fcustomerupload.ksh
Post-Processing N/A

Threading Scheme N/A

Restart/Recovery

The restart recovery is different from the conventional RMS batch. During the batch
process, users can evaluate the successful processing of data in the following way:

PL/SQL function will load the data from staging tables into RMS tables. For records that
result (insert/ update/ delete) in constraint error or are not found in the RMS tables(for
update/delete) are rejected and the information is updated back in the corresponding
staging table with appropriate error message. Also, records that do not meet certain
business validations (which can only be validated during data processing) are rejected
and the information is updated back in the corresponding staging table with appropriate
error message.

User Action: When this condition exists, the user can fix the data upload file and try to
reload and process the data.

Commit Points

Commit points are performed per transaction.

Key Tables Affected
Table Select Insert Update Delete
SVC_FCUSTUPLD_FHEAD Yes No Yes No
SVC_FCUSTUPLD_THEAD Yes No Yes No
SVC_FCUSTUPLD_TDETL Yes No Yes No
SVC_FCUSTUPLD_TTAIL Yes No Yes No
SVC_FCUSTUPLD_FTAIL Yes No Yes No
SVC_FCUSTUPLD_STATUS Yes No Yes No
WE_CUSTOMER_GROUP Yes Yes Yes Yes
WF_CUSTOMER Yes Yes Yes Yes
STORE Yes No No No

432 Oracle Retail Merchandising Foundation Cloud Service

fcustupldpurge (Franchise Customer Staging Purge)

Program Flow

KSH

RMS Tables

process_transaction
______ {PL/SQLY
write_sucess
{PL/SOL}

Primary Staging
Tables

ProcessFlow
————— DEInteraction

fcustupldpurge (Franchise Customer Staging Purge)

Module Name fcustomerupldpurge.ksh
Description Franchise Customer Staging Purge
Functional Area Franchise Management

Module Type Admin

Module Technology ksh

Integration Catalog ID RMS493

Runtime Parameters N/A

Design Overview

This module purges data from the staging tables used by the Franchise Customer Upload
and Franchise Customer Process scripts. The module is designed to purge all the data
from the staging tables that have passed the system parameter for Foundation Staging
Retention days (fdn_stg_retention_days).

Franchise Management 433

wfordupld.ksh (Franchise Order Upload)

Scheduling Constraints

Schedule Information Description
Scheduling Considerations Adhoc
Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A
Restart/Recovery
N/A
Key Tables Affected
Table Select Insert Update Delete
SVC_FCUSTUPLD_FHEAD No No No Yes
SVC_FCUSTUPLD_THEAD No No No Yes
SVC_ FCUSTUPLD_TDETL No No No Yes
SVC_ FCUSTUPLD_TTAIL No No No Yes
SVC_ FCUSTUPLD_FTAIL No No No Yes
SVC_FCUSTUPLD_STATUS No No No Yes
SYSTEM_OPTIONS Yes No No No
Design Assumptions
N/A
wfordupld.ksh (Franchise Order Upload)
Module Name wfordupld.ksh
Description Franchise Order Upload

Functional Area

Franchise Management

Module Type Integration
Module Technology ksh
Catalog ID RMS60

Runtime Parameters

Database connection, Input File Directory, Output

File Directory, Number of threads

Design Overview

This batch program is used to upload franchisee orders from an external source. These
orders will be created with an order type of “EDI” and will be created for the source type
specified in the upload file. If source type is not specified, then the costing location for
the item/franchise store will be used. Orders will be created in approved status if the
customer is setup for auto approval, assuming that the customer has valid credit.

434 Oracle Retail Merchandising Foundation Cloud Service

wfordupld.ksh (Franchise Order Upload)

If the customer fails credit check or if available inventory at the source location is
insufficient to fulfill the order, the order will be generated in input status.

Franchise orders from customers that are not identified for ‘Auto Approval” are
uploaded into RMS in input status. These orders will need to be manually approved in
RMS in order to be considered active.

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations N/A

Pre-Processing prepost wfordupld pre

Post-Processing N/A

Threading Scheme File-based
Restart/Recovery

The restart recovery is different from the conventional RMS batch. There are two points
on the batch upload process where users can evaluate the successful load of the data.

= SQL load - At this point, SQL load dumps invalid records that do not meet certain
technical requirements (for example:. file layout issues, data type inconsistencies, and
so on.). The rejected record is written to a bad file or to a discard file. The discard file
contains records that do not satisfy conditions, such as missing or invalid record
types. Records with other technical issues are written to the bad file. Note that a non-
fatal code is returned by the program and a message will be written to the log file if
reject files are created.

User Action: When such conditions exist, the user may update either the bad or
discard file and attempt to reload using the same files.

* Business Validation - At this point data from the file(s) are loaded into the staging
table(s). PL/SQL functions determine if this loaded data is valid enough to be
inserted into the actual RMS tables. For records that do not meet certain technical or
business validations, the error message will be updated in staging table.

User Action: When this condition exists, the user can fix the data upload file and try to
reload the file with valid data.

Key Tables Affected
Table Select Insert Update Delete
FUTURE_COST Yes No No No
ITEM_MASTER Yes No No No
ITEM_LOC Yes No No No
ITEM_LOC_SOH Yes No No No
ITEM_SUPP_COUNTRY Yes No No No
ITEM_SUPPLIER Yes No No No
REPL_ITEM_LOC Yes No No No
STORE_ORDERS Yes No No No
SVC_WF_ORD_HEAD Yes Yes Yes No
SVC_WF_ORD_DETAIL Yes Yes Yes No
SVC_WF_ORD_TAIL Yes Yes Yes No
SYSTEM_OPTIONS Yes No No No

Franchise Management 435

wfordupld.ksh (Franchise Order Upload)

Table Select Insert Update Delete

WE_COST_RELATIONSHIP Yes No No No

WE_COST_BUILDUP_TMPL_HEAD Yes No No No

WEF_CUSTOMER Yes No No No

WE_ORDER_HEAD Yes Yes No No

WEF_ORDER_DETAIL Yes Yes No No

WEF_ORDER_EXP No Yes No No
I/0 Specification

Integration Type Download from RMS

File Name wford*.dat

Integration Contract IntCon000108

SQL Loader Input File Layout

The following is the file pattern for the upload file. Note that the values are pipe “ |
delimited and can optionally be enclosed by

”

“u o

Record Field Name Field Type Null Default Description
Name allowed? Value
FHEAD File head Char(5) No FHEAD Describes file line type.
descriptor
Line Number Number(10) No Id of the current line
being processed.
Customer Id Number(10) No Customer ID of the
customer requesting the
order.
Customer Char(20) No A reference field used by

Order

Reference

number

Currency Char(3)
Code

Default Number(10)
Billing
location

Comments Char(2000)

FDETL File record Char(5)
descriptor

Line Number Nymber(10)

Item Char(25)
Customer Number(10)
Location

the customer for their
tracking purposes.

No This is the currency on
which the order was
transacted.

Yes A customer’s location

where the billing for the
entire order is sent. If
blank, each location is

billed.

Yes Any other miscellaneous
information relating to
the order.

No FDETL Describes file line type.

No Id of the current line
being processed.

No The item on the franchise
order.

No The franchise store

requesting the order.

436 Oracle Retail Merchandising Foundation Cloud Service

wfordupld.ksh (Franchise Order Upload)

Record Field Name Field Type Null Default Description
Name allowed? Value

Source Loc Char(2) Yes Source location type for

Type which the franchise
order has been created.
Valid values are ST -
Store, WH - warehouse,
or SU - Supplier

Source Number(10) Yes Source location for

Location which the franchise
order has been created.

Requested Number No Number of item units

Quantity (12,4) being ordered, includes
4 implied decimal places

Unit of Char(3) No Unit of purchase can be

Purchase the item’s standard unit
of measure, case, inners
or pallets.

Fixed Cost Number Yes This is cost which will be

(20,4) charged to the customer
for the item on the
franchise order; value
includes 4 implied
decimal places.

Need Date Char(11) No Date on which the item
is needed in the
franchise store, with the
following format “DD-
MON-YYYY'.

Not After Char(11) No Date after which the

Date item may no longer be
accepted for a franchise
store, with the following
format “DD-MON-
YYYY'.

FTAIL File record Char(5) FTAIL Marks end of file.
descriptor

Line Number Number(10) Id of current line being
processed.

File record Number(10) Number of detail

count records.

Design Assumptions
N/A

Franchise Management 437

wf_apply_supp_cc.ksh (Apply Supplier Cost Change to Franchise Orders)

wf_apply_supp_cc.ksh (Apply Supplier Cost Change to Franchise Orders)

Module Name wf_apply_supp_cc.ksh

Description Apply Supplier Cost Change to Franchise Orders
Functional Area Franchise Management

Module Type Business Processing

Module Technology ksh

Catalog ID RMS389

Runtime Parameters N/A

Design Overview

This function updates approved franchise orders for supplier sourced records whose
items/franchise stores are impacted by supplier cost changes. Only those item/franchise
store combinations that use cost templates based on supplier cost or have not had a fixed
cost defined on the order are eligible to be updated. Only those supplier cost changes
that were flagged as recalculating orders result in this update.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations To be run after fcexec.pc and sccext.pc
Pre-Processing fcexec.pc and sccext.pc
Post-Processing N/A
Threading Scheme N/A

Restart/Recovery

N/A

Key Tables Affected
Table Select Insert Update Delete
WF_ORDER_HEAD Yes No No No
WE_ORDER_DETAIL No No Yes No
WF_ORDER_EXP No Yes No Yes
FUTURE_COST Yes No No No
COST_SUSP_SUP_HEAD Yes No No No
COST_SUSP_SUP_DETAIL Yes No No No
COST_SUSP_SUP_DETAIL_LOC Yes No No No
WE_COST_RELATIONSHIP Yes No No No
WE_COST_BUILDUP_TMPL_HEAD Yes No No No

438 Oracle Retail Merchandising Foundation Cloud Service

wf_apply_supp_cc (Apply Supplier Cost Change to Franchise Orders)

Table Select Insert Update Delete
MV_CURRENCY_CONVERSION_RATES Yes No No No
SYSTEM_OPTIONS Yes No No No

Design Assumptions

The pricing cost for franchise orders in input or pending credit approval status is not
updated because the order cost will be updated based on any changes on franchise order

approval.

wf_apply_supp_cc (Apply Supplier Cost Change to Franchise Orders)

Module Name

wf_apply_supp_cc.ksh

Description

Apply Supplier Cost Change to Franchise Orders

Functional Area

Franchise Management

Module Type Business Processing
Module Technology ksh

Catalog ID RMS389

Runtime Parameters N/A

Design Overview

This function updates approved franchise orders for supplier sourced records whose
items/franchise stores are impacted by supplier cost changes. Only those item/franchise
store combinations that use cost templates based on supplier cost or have not had a fixed
cost defined on the order are eligible to be updated. Only those supplier cost changes
that were flagged as recalculating orders result in this update.

Scheduling Constraints

Schedule Information

Description

Frequency

Scheduling Considerations
Pre-Processing
Post-Processing

Threading Scheme

Daily

To be run after fcexec.pc and sccext.pc
fcexec.pc and sccext.pc

N/A

N/A

Restart/Recovery
N/A

Key Tables Affected

Table

Select Insert Update Delete

WF_ORDER_HEAD

Yes No No No

Franchise Management 439

wfordcls (Franchise Order Close)

Table Select Insert Update Delete
WF_ORDER_DETAIL No No Yes No
WE_ORDER_EXP No Yes No Yes
FUTURE_COST Yes No No No
COST_SUSP_SUP_HEAD Yes No No No
COST_SUSP_SUP_DETAIL Yes No No No
COST_SUSP_SUP_DETAIL_LOC Yes No No No
WF_COST_RELATIONSHIP Yes No No No
WEF_COST_BUILDUP_TMPL_HEAD Yes No No No
MV_CURRENCY_CONVERSION_RATES Yes No No No
SYSTEM_OPTIONS Yes No No No

Design Assumptions

The pricing cost for franchise orders in input or pending credit approval status is not
updated because the order cost will be updated based on any changes on franchise order
approval.

wfordcls (Franchise Order Close)

Module Name wfordcls.pc
Description Franchise Order Close
Functional Area Franchise Management
Module Type Admin

Module Technology ProC

Catalog ID RMS391

Runtime Parameters N/A

Design Overview
This batch program is used to close the WF orders if the conditions below are met:
* Franchise Order is not in Input (I) or Requires Credit Approval (R) status.
= All the transfers associated with the franchise order are in closed/deleted status.
= All the allocations associated with franchise order are in closed status.
= All the purchase orders associated with franchise order are in closed status.

= Store orders associated with franchise order do not have a null processed date or a
need gty > 0.

Scheduling Constraints

Schedule Information Description
Frequency Daily
Scheduling Considerations Run after docclose and before wfordprg

440 Oracle Retail Merchandising Foundation Cloud Service

wfordprg (Franchise Order Purge)

Schedule Information Description
Pre-Processing N/A
Post-Processing N/A

Threading Scheme

Multithreading based on franchise order number

Restart/Recovery

The logical unit of work for this module is defined as a unique franchise order number.
The v_restart_wforder view is used for threading. This batch program uses table-based
restart/recovery. The commit happens in the database when the commit_max_ctr is

reached.
Key Tables Affected
Table Select Insert Update Delete
PERIOD Yes No No No
WF_ORDER_HEAD Yes No Yes No
TSFHEAD Yes No No No
STORE_ORDERS Yes No No No
ORDHEAD Yes No No No
ALLOC_DETAIL Yes No No No
ALLOC_HEADER Yes No No No
Design Assumptions
N/A
wfordprg (Franchise Order Purge)
Module Name wfordprg.pc
Description Franchise Order Purge

Functional Area

Franchise Management

Module Type Admin
Module Technology ProC
Catalog ID RMS392
Runtime Parameters N/A

Design Overview

This batch program is used to purge franchise orders from RMS after a set number of
days have elapsed, as defined by the system parameter Franchise History Months.
Additionally, in order to be purged via this process, the franchise orders must have no
associated franchise returns and must not have any billing records that have not been
extracted or where not enough time has elapsed since they were extracted, as defined by
the Franchise History Months system parameter.

Franchise Management 441

wiretupld.ksh (Franchise Return Upload)

Scheduling Constraints

Schedule Information Description

Frequency Monthly

Scheduling Considerations Run after wfrtnprg, wfordcls

Pre-Processing N/A

Post-Processing N/A

Threading Scheme Multithreading based on WF Order number
Restart/Recovery

The logical unit of work for this module is defined as a unique wf_order_no. The
v_restart_wforder view is used for threading. This batch program uses table-based
restart/recovery. The commit happens in the database when the commit_max_ctr is

reached.
Key Tables Affected
Table Select Insert Update Delete
PERIOD Yes No No No
SYSTEM_OPTIONS Yes No No No
WF_ORDER_HEAD Yes No No Yes
WF_ORDER_DETAIL Yes No No Yes
WEF_BILLING_SALES Yes No No Yes
WF_ORDER_AUDIT No No No Yes
WF_ORDER_EXP No No No Yes
TSFHEAD Yes No No No
ORDHEAD Yes No No No
ALLOC_DETAIL Yes No No No
STORE_ORDERS Yes No No No

Design Assumptions

Transfers, Allocations, POs and Store Orders associated with franchise orders are
deleted through purge processes for those functional areas (such as,. tsfprg for
Transfers). Franchise orders will not be allowed to be deleted until these associated
records have been removed via the other processes.

wfretupld.ksh (Franchise Return Upload)

Module Name wifretupld.ksh
Description Franchise Return Upload
Functional Area Franchise Management
Module Type Integration

442 Oracle Retail Merchandising Foundation Cloud Service

wfretupld.ksh (Franchise Return Upload)

Module Name wiretupld.ksh

Module Technology Ksh

Catalog ID RMS154

Runtime Parameters Database connection, Input File Directory, Output
File Directory, Number of threads

Design Overview

This batch program is used for uploading franchise returns sent from an external source,
such as an external order management application. When returns are uploaded in this
manner, the data will be validated and the return will be created in RMS. Additionally,
an associated franchise return transfer will also be created.

Scheduling Constraints

Schedule Information Description

Frequency Daily

Scheduling Considerations N/A

Pre-Processing prepost wiretupld pre

Post-Processing N/A

Threading Scheme File-based processing
Restart/Recovery

The restart recovery is different from the conventional RMS batch. There are two points
on the batch upload process where users can evaluate the successful load of the data.

= SQL load - At this point, SQL load dumps invalid records that do not meet certain
technical requirements (for example:. file layout issues, data type inconsistencies, and
so on.). The rejected record is written either to a bad file or to a discard file. The
discard file contains records that do not satisfy conditions, such as missing or invalid
record types. Records with other technical issues are written to the bad file. Note that
a non-fatal code is returned by the program and a message will be written to the log
file if reject files are created. When such conditions exist, the user may either update
the bad or discard file and attempt to reload using the same files.

® Business Validation - At this point data from the file(s) are loaded into the staging
table(s). PL/SQL functions determine if this loaded data is valid enough to be
inserted into the actual RMS tables. For all records that do not meet certain technical
or business validations, the error message will be updated in staging table. When this
condition exists, the user can fix the data upload file and try to reload the file with

valid data.
Key Tables Affected
Table Select Insert Update Delete
SVC_WF_RET_HEAD Yes Yes Yes No
SVC_WF_RET_DETAIL Yes Yes Yes No
SVC_WF_RET_TAIL Yes Yes Yes No
WF_RETURN_HEAD Yes Yes No No

Franchise Management 443

wiretupld.ksh (Franchise Return Upload)

Table Select Insert Update Delete

WF_RETURN_DETAIL Yes Yes No No

TSFHEAD Yes Yes Yes No

TSFDETAIL Yes Yes No No

ITEM_LOC Yes Yes No No

ITEM_LOC_SOH Yes Yes Yes No

TRAN_DATA Yes Yes No No
I/0 Specification

Integration Type Upload to RMS

File Name wireturn*.dat

Integration Contract IntCon000109

SQL Loader Input File Layout

The following is the file pattern for the upload file. Note that the values are pipe “ |
delimited and can optionally be enclosed by " ".

”

Record Field Name Field Type Null Default Description

Name Allowed? Value

FHEAD File head Char(5) No FHEAD Describes file line type.
descriptor

Line Number Number(10) No Id of the current line
being processed.

Customer ID Number(10) No Franchise customer ID of
the customer making the
return.

Customer Char(20) No A reference field used by

Return the franchise customer for

Reference their tracking purposes.

number

Currency Char(3) No This is the return

Code currency.

Comments Char(2000) Yes Any other miscellaneous
information related to the
return.

FDETL File re