
Service Architecture Leveraging Tuxedo (SALT)
Programming Guide

12c Release 2 (12.2.2)

April 2016

Oracle Service Architecture Leveraging Tuxedo (SALT) Programming Guide, 12c Release 2 (12.2.2)

Copyright © 2006, 2016 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Introduction to SALT Programming
SALT Web Services Programming . 1-1

SALT Proxy Service . 1-2

SALT Message Conversion . 1-2

SALT Programming Tasks Quick Index . 1-2

REpresentational State Transfer (REST) Message Conversion 1-3

Data Type Mapping and Message Conversion
Overview of Data Type Mapping and Message Conversion . 2-1

Understanding SALT Message Conversion . 2-2

Inbound Message Conversion . 2-2

Outbound Message Conversion. 2-2

Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services 2-3

Oracle Tuxedo STRING Typed Buffers . 2-16

Oracle Tuxedo CARRAY Typed Buffers . 2-16

Oracle Tuxedo MBSTRING Typed Buffers . 2-19

Oracle Tuxedo XML Typed Buffers . 2-20

Oracle Tuxedo VIEW/VIEW32 Typed Buffers. 2-22

Oracle Tuxedo FML/FML32 Typed Buffers . 2-25

Oracle Tuxedo RECORD Typed Buffers . 2-29

Oracle Tuxedo X_C_TYPE Typed Buffers . 2-32

Oracle Tuxedo X_COMMON Typed Buffers . 2-32

Oracle Tuxedo X_OCTET Typed Buffers. 2-32

Custom Typed Buffers. 2-33

XML-to-Tuxedo Data Type Mapping for External Web Services 2-33

XML Schema Built-In Simple Data Type Mapping . 2-33

XML Schema User Defined Data Type Mapping . 2-37

WSDL Message Mapping . 2-44
SALT Programming Guide i

REST Data Mapping. 2-46

Inbound Message Conversion . 2-47

Outbound Message Conversion. 2-61

Web Service Client Programming
Overview. 3-1

REpresentational State Transfer (REST) Support . 3-2

SALT Web Service Client Programming Tips . 3-5

Web Service Client Programming References . 3-10

Online References . 3-10

Oracle Tuxedo ATMI Programming for Web Services
Overview. 4-1

Converting WSDL Model Into Oracle Tuxedo Model. 4-2

WSDL-to-Tuxedo Object Mapping. 4-2

Invoking SALT Proxy Services . 4-3

SALT Supported Communication Patterns . 4-3

Oracle Tuxedo Outbound Call Programming: Main Steps 4-4

Managing Error Code Returned from GWWS . 4-5

Handling Fault Messages in an Oracle Tuxedo Outbound Application 4-6

See Also . 4-8

Using SALT Plug-Ins
Understanding SALT Plug-Ins . 5-1

Plug-In Elements . 5-1

Programming Message Conversion Plug-ins . 5-7

How Message Conversion Plug-ins Work. 5-7

When Do We Need Message Conversion Plug-in. 5-10

Developing a Message Conversion Plug-in Instance . 5-12
SALT Programming Guide ii

SALT 1.1 Custom Buffer Type Conversion Plug-in Compatibility 5-16

Programming Outbound Authentication Plug-Ins . 5-17

How Outbound Authentication Plug-Ins Work . 5-17

Implementing a Credential Mapping Interface Plug-In. 5-18

Mapping the Oracle Tuxedo UID and HTTP Username . 5-19
SALT Programming Guide iii

iv SALT Programming Guide

SALT Programming Guide v

vi SALT Programming Guide

C H A P T E R 1
Introduction to SALT Programming
This chapter includes the following topics:

SALT Web Services Programming

SALT Web Services Programming
SALT provides bi-directional connectivity between Oracle Tuxedo applications and Web service
applications. Existing Oracle Tuxedo services can be easily exposed as Web Services without
requiring additional programming tasks. SALT generates a WSDL file that describes the Oracle
Tuxedo Web service contract so that any standard Web service client toolkit can be used to access
Oracle Tuxedo services.

Web service applications (described using a WSDL document), can be imported as if they are
standard Oracle Tuxedo services and invoked using Oracle Tuxedo ATMIs from various Oracle
Tuxedo applications (for example, Oracle Tuxedo ATMI clients, ATMI servers, Jolt clients,
COBOL clients, and .NET wrapper clients).

SALT Proxy Service

SALT Message Conversion

SALT Programming Tasks Quick Index

REpresentational State Transfer (REST) Message Conversion
SALT Programming Guide 1-1

SALT Proxy Service
SALT proxy services are Oracle Tuxedo service entries advertised by the GWWS SALT
Gateway. The proxy services are converted from the Web service application WSDL file. Each
WSDL file wsdl:operation object is mapped as one SALT proxy service.

The SALT proxy service is defined using the Service Metadata Repository service definition
syntax. These service definitions must be loaded into the Service Metadata Repository. To invoke
proxy services from an Oracle Tuxedo application, you must refer to the Oracle Tuxedo Service
Metadata Repository to get the service contract description.

For more information, see “Oracle Tuxedo ATMI Programming for Web Services”.

SALT Message Conversion
To support Oracle Tuxedo application and Web service application integration, the SALT
gateway converts SOAP messages into Oracle Tuxedo typed buffers, and Oracle Tuxedo typed
buffers into SOAP messages. The message conversion between SOAP messages and Oracle
Tuxedo typed buffers is subject to a set of SALT pre-defined basic data type mapping rules.

When exposing Oracle Tuxedo services as Web services, a set of Tuxedo-to-XML data type
mapping rules are defined. The message conversion process that conforms to Tuxedo-to-XML
data type mapping rules is called “Inbound Message Conversion”.

When importing external Web services as SALT proxy services, a set of XML-to-Tuxedo data
type mapping rules are defined. The message conversion process that conforms to
XML-to-Tuxedo data type mapping rules is called “Outbound Message Conversion”.

For more information, see “Understanding SALT Message Conversion”.

SALT Programming Tasks Quick Index
Table 1-1 lists a quick index of SALT programming tasks. You can locate programming tasks
first, and then click on the corresponding link for detailed description.
1-2 SALT Programming Guide

SALT Web Se rv ices P rogramming
REpresentational State Transfer (REST) Message
Conversion
The basic REST design principle establishes a one-to-one mapping between create, read, update,
and delete (CRUD) operations and HTTP methods.

The REST principles around are as follows:

Use HTTP methods explicitly.

Be stateless.

Expose directory structure-like URIs.

Transfer XML, JavaScript Object Notation (JSON), or both.

Table 1-1 SALT Programming Tasks Quick Index

Tasks Refer to ...

Invoking Oracle
Tuxedo services
(inbound) through
SALT

Develop Web service client programs for
Oracle Tuxedo services invocation.

SALT Web Service Client Programming
Tips.

Understand inbound message conversion
and data type mapping rules.

Understanding SALT Message Conversion.

Tuxedo-to-XML Data Type Mapping for
Oracle Tuxedo Services.

Develop inbound message conversion
plug-in.

Programming Message Conversion
Plug-ins.

Invoking external
Web services
(outbound) through
SALT

Understand the general outbound service
programming concepts.

Oracle Tuxedo ATMI Programming for
Web Services.

Understand outbound message conversion
and data type mapping rules.

Understanding SALT Message Conversion.

XML-to-Tuxedo Data Type Mapping for
External Web Services.

Develop outbound message conversion
plug-in.

Programming Message Conversion
Plug-ins.

Develop your own plug-in to map Oracle
Tuxedo user name with user name for
outbound HTTP basic authentication.

Programming Outbound Authentication
Plug-Ins.
SALT Programming Guide 1-3

For more information, see Data Type Mapping and Message conversion, and SALT
Configuration Tool in the SALT Configuration Guide.
1-4 SALT Programming Guide

../config/config.html

C H A P T E R 2
Data Type Mapping and Message
Conversion
This chapter contains the following sections:

Overview of Data Type Mapping and Message Conversion

Understanding SALT Message Conversion

Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services

XML-to-Tuxedo Data Type Mapping for External Web Services

REST Data Mapping

Overview of Data Type Mapping and Message Conversion
SALT supports bi-directional data type mapping between WSDL messages and Oracle Tuxedo
typed buffers. For each service invocation, the GWWS server converts each message between
Oracle Tuxedo typed buffers and SOAP message payloads. A SOAP message payload is the
XML effective data encapsulated within the <soap:body> element. For more information, see
“Understanding SALT Message Conversion”.

For native Oracle Tuxedo services, each Oracle Tuxedo buffer type is described using an XML
Schema in the SALT generated WSDL document. Oracle Tuxedo service request/response
buffers are represented in regular XML format. For more information, see “Tuxedo-to-XML Data
Type Mapping for Oracle Tuxedo Services”.

For external Web services, each WSDL message is mapped as an Oracle Tuxedo FML32 buffer
structure. An Oracle Tuxedo application invokes SALT proxy service using FML32 buffers as
SALT Programming Guide 2-1

input/output. For more information see, “XML-to-Tuxedo Data Type Mapping for External Web
Services”.

SALT also supports non-SOAP data type mapping (i.e., REST over HTTP in both XML and
JSON format. This is initiated when services are exposed as HTTP/REST services. For more
information, see REST Data Mapping.

Understanding SALT Message Conversion
SALT message conversion is the message transformation process between SOAP XML data and
Oracle Tuxedo typed buffers. SALT introduces two message conversion rules: Inbound Message
Conversion, and Outbound Message Conversion.

Inbound Message Conversion
Inbound message conversion is the SOAP XML Payload and Oracle Tuxedo typed buffer
conversion process that conforms to “Tuxedo-to-XML data type mapping rules”. Inbound
message conversion happens in two phases:

When GWWS accepts SOAP requests for legacy Oracle Tuxedo services;

When GWWS accepts response typed buffers from legacy Oracle Tuxedo services.

SALT encloses Oracle Tuxedo buffer content using elements <inbuf>, <outbuf> and/or
<errbuf> in the SOAP message, the content included within elements <inbuf>, <outbuf>
and/or <errbuf> is called “Inbound XML Payload”.

Outbound Message Conversion
Outbound message conversion process is the SOAP XML Payload and Oracle Tuxedo typed
buffer conversion process that conforms to the “Tuxedo-to-XML data type mapping rules”.
Outbound message conversion happens in two phases:

When GWWS accepts request typed buffers sent from an Oracle Tuxedo application;

When GWWS accepts SOAP response messages from external Web services.

Table 2-1 compares inbound message conversion and outbound message conversion .
2-2 SALT Programming Guide

Tuxedo- to-XML Data Type Mapp ing fo r Orac le Tuxedo Serv ices
Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo
Services

SALT provides a set of rules for describing Oracle Tuxedo typed buffers in an XML document
as shown in Table 2-2. These rules are exported as XML Schema definitions in SALT WSDL
documents. This simplifies buffer conversion and does not require previous Oracle Tuxedo buffer
type knowledge.

Oracle Tuxedo STRING Typed Buffers

Oracle Tuxedo CARRAY Typed Buffers

Oracle Tuxedo MBSTRING Typed Buffers

Oracle Tuxedo XML Typed Buffers

Oracle Tuxedo VIEW/VIEW32 Typed Buffers

Oracle Tuxedo FML/FML32 Typed Buffers

Oracle Tuxedo RECORD Typed Buffers

Oracle Tuxedo X_C_TYPE Typed Buffers

Oracle Tuxedo X_COMMON Typed Buffers

Oracle Tuxedo X_OCTET Typed Buffers

Custom Typed Buffers

Table 2-1 Inbound Message Conversion vs. Outbound Message Conversion

Inbound Message Conversion Outbound Message Conversion

SOAP message payload is encapsulated with
<inbuf>, <outbuf> or <errbuf>.

SOAP message payload is the entire
<soap:body>

Transformation according to
“Tuxedo-to-XML data type mapping rules”.

Transformation according to
“XML-to-Tuxedo data type mapping rules”.

All Oracle Tuxedo buffer types are involved. Only Oracle Tuxedo FML32 buffer type is
involved.
SALT Programming Guide 2-3

2-4 SALT Programming Guide

Tuxedo- to-XML Data Type Mapp ing fo r Orac le Tuxedo Serv ices
Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message

STRING Oracle Tuxedo STRING typed buffers
are used to store character strings that
terminate with a NULL character.
Oracle Tuxedo STRING typed buffers
are self-describing.

xsd:string

In the SOAP message, the XML element
that encapsulates the actual string data,
must be defined using xsd:string
directly.

Notes:
• The STRING data type can be

specified with a max data length in
the Oracle Tuxedo Service Metadata
Repository. If defined in Oracle
Tuxedo, the corresponding SOAP
message also enforces this
maximum. The GWWS server
validates the actual message byte
length against the definition in
Oracle Tuxedo Service Metadata
Repository. A SOAP fault message
is returned if the message byte
length exceeds supported
maximums.

• If GWWS server receives a SOAP
message other than “UTF-8”, the
corresponding string value is in the
same encoding.
SALT Programming Guide 2-5

CARRAY
(Mapping with
SOAP Message
plus
Attachments)

Oracle Tuxedo CARRAY typed buffers
store character arrays, any of which
can be NULL. CARRAY buffers are
used to handle data opaquely and are
not self-describing.

The CARRAY buffer raw data is carried
within a MIME multipart/related
message, which is defined in the “SOAP
Messages with Attachments’
specification.

The two data formats supported for
MIME Content-Type attachments are:
• application/octet-stream

– For Apache Axis
• text/xml

– For Oracle WebLogic
Server

The format depends on which Web
service client-side toolkit is used.

Note: The SOAP with Attachment
rule is only interoperable with
Oracle WebLogic Server and
Apache Axis.

Note: CARRAY data types can be
specified with a max byte
length. If defined in Oracle
Tuxedo, the corresponding
SOAP message is enforced with
this limitation. The GWWS
server validates the actual
message byte length against the
definition in the Oracle Tuxedo
Service Metadata Repository.

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message
2-6 SALT Programming Guide

Tuxedo- to-XML Data Type Mapp ing fo r Orac le Tuxedo Serv ices
CARRAY
(Mapping with
base64Binary)

Oracle Tuxedo CARRAY typed buffers
store character arrays, any of which
can be NULL. CARRAY buffers are
used to handle data opaquely and are
not self-describing.

xsd:base64Binary

The CARRAY data bytes must be
encoded with base64Binary before it
can be embedded in a SOAP message.
Using base64Binary encoding with
this opaque data stream saves the
original data and makes the embedded
data well-formed and readable.

In the SOAP message, the XML element
that encapsulates the actual CARRAY
data, must be defined with
xsd:base64Binary directly.

Note: CARRAY data types can be
specified with a max byte
length. If defined in Oracle
Tuxedo, the corresponding
SOAP message is enforced with
this limitation. The GWWS
server validates the actual
message byte length against the
definition in the Oracle Tuxedo
Service Metadata Repository.

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message
SALT Programming Guide 2-7

MBSTRING Oracle Tuxedo MBSTRING typed
buffers are used for multibyte
character arrays. Oracle Tuxedo
MBSTRING buffers consist of the
following three elements:
• Code-set character encoding
• Data length
• Character array of the encoding.

xsd:string

The XML Schema built-in type,
xsd:string, represents the
corresponding type for buffer data
stored in a SOAP message.

The GWWS server only accepts
“UTF-8” encoded XML documents. If
the Web service client wants to access
Oracle Tuxedo services with MBSTRING
buffer, the mbstring payload must be
represented as “UTF-8” encoding in the
SOAP request message.

Note: The GWWS server
transparently passes the
“UTF-8” character set string to
the Oracle Tuxedo service using
MBSTRING Typed buffer
format.The actual Oracle
Tuxedo services handles the
UTF-8 string.

For any Oracle Tuxedo response
MBSTRING typed buffer (with any
encoding character set), the GWWS
server automatically transforms the
string into “UTF-8” encoding and sends
it back to the Web service client.

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message
2-8 SALT Programming Guide

Tuxedo- to-XML Data Type Mapp ing fo r Orac le Tuxedo Serv ices
MBSTRING
(cont.)

Limitation:

Oracle Tuxedo MBSTRING data type can
be specified with a max byte length in
the Oracle Tuxedo Service Metadata
Repository. The GWWS server checks
the byte length of the converted
MBSTRING buffer value.

Note: Max byte length value is not
used to enforce the character
number contained in the SOAP
message.

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message
SALT Programming Guide 2-9

XML Oracle Tuxedo XML typed buffers
store XML documents.

xsd:anyType

The XML Schema built-in type,
xsd:anyType, is the corresponding
type for XML documents stored in a
SOAP message. It allows you to
encapsulate any well-formed XML data
within the SOAP message.

Limitation:

The GWWS server validates that the
actual XML data is well-formed. It will
not do any other enforcement validation,
such as Schema validation.

Only a single root XML buffer is
allowed to be stored in the SOAP body;
the GWWS server checks for this.

The actual XML data must be encoded
using the “UTF-8” character set. Any
original XML document prolog
information cannot be carried within the
SOAP message.

XML data type can specify a max byte
data length. If defined in Oracle Tuxedo,
the corresponding SOAP message must
also enforce this limitation.

Note: The SALT WSDL generator
will not have xsd:maxLength
restrictions in the generated
WSDL document, but the
GWWS server will validate the
byte length according to the
Oracle Tuxedo Service
Metadata Repository definition.

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message
2-10 SALT Programming Guide

Tuxedo- to-XML Data Type Mapp ing fo r Orac le Tuxedo Serv ices
VIEW/VIEW32 Oracle Tuxedo VIEW and VIEW32
typed buffers store C structures
defined by Oracle Tuxedo
applications.

VIEW structures are defined by using
VIEW definition files. A VIEW buffer
type can define multiple fields.

VIEW supports the following field
types:
• short

• int

• long

• float

• double

• char

• string

• carray

• bool

• unsigned char

• signed char

• wchar_t* or wchar_t

• unsigned int

• unsigned long

• long long

• unsigned long long

• long doubl

VIEW32 supports all the VIEW
field types, mbstring, and
embedded VIEW32 type.

Each VIEW or VIEW32 data type is
defined as an XML Schema complex
type. Each VIEW field should be one or
more sub-elements of the XML Schema
complex type. The name of the
sub-element is the VIEW field name. The
occurrence of the sub-element depends
on the count attribute of the VIEW field
definition. The value of the sub-element
should be in the VIEW field data type
corresponding XML Schema type.

The the field types and the
corresponding XML Schema type are
listed as follows:
• short maps to xsd:short
• int maps to xsd:int
• long maps to xsd:long
• float maps to xsd:float
• double maps to xsd:double
• char (defined as byte in Oracle

Tuxedo Service Metadata
Repository definition), maps to
xsd:byte

• char (defined as char in Oracle
Tuxedo Service Metadata
Repository definition) maps to
xsd:string (with restrictions
maxlength=1).

• string maps to xsd:string
• carray maps to

xsd:base64Binary

• mbstring maps to xsd:string

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message
SALT Programming Guide 2-11

VIEW/VIEW32
(cont.)

• bool maps to xsd:Boolean

• unsigned char maps to
xsd:unsignedByte

• signed char maps to
xsd:byte

• wchar_t* or wchar_t array
maps to xsd:string

• unsigned int maps to
xsd:unsignedInt

• unsigned long maps to
xsd:unsignedLong

• long long maps to xsd:long

• unsigned long long maps to
xsd:unsignedLong

• long double maps to
xsd:double. Do not set the
value of C importer option
size of long double to 128
bit. This option does not
import successfully; use
the default 64 bit

• VIEW32 maps to
tuxtype:view <viewname>

For more information, see
VIEW/VIEW32 Considerations.

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message
2-12 SALT Programming Guide

Tuxedo- to-XML Data Type Mapp ing fo r Orac le Tuxedo Serv ices
FML/FML32 Oracle Tuxedo FML and FML32 type
buffers are proprietary Oracle Oracle
Tuxedo system self-describing
buffers. Each data field carries its own
identifier, an occurrence number, and
possibly a length indicator.

FML supports the following field
types:
• FLD_CHAR

• FLD_SHORT

• FLD_LONG

• FLD_FLOAT

• FLD_DOUBLE

• FLD_STRING

• FLD_CARRAY

FML32 supports all the FML field
types and FLD_PTR,
FLD_MBSTRING, FLD_FML32, and
FLD_VIEW32.

FML/FML32 buffers can only have basic
data-dictionary-like definitions for each
basic field data. A particular
FML/FML32 buffer definition should be
applied for each FML/FML32 buffer
with a different type name.

Each FML/FML32 field should be one or
more sub-elements within the
FML/FML32 buffer XML Schema type.
The name of the sub-element is the FML
field name. The occurrence of the
sub-element depends on the count and
required count attribute of the
FML/FML32 field definition.

The e field types and the corresponding
XML Schema type are listed below:
• short maps to xsd:short
• int maps to xsd:int
• long maps to xsd:long
• float maps to xsd:float
• double maps to xsd:double
• char (defined as byte in Oracle

Tuxedo Service Metadata
Repository definition) maps to
xsd:byte

• char (defined as char in Oracle
Tuxedo Service Metadata
Repository definition) maps to
xsd:string

• string maps to xsd:string
• carray maps to

xsd:base64Binary

• mbstring maps to xsd:string

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message
SALT Programming Guide 2-13

FML/FML32

(cont.)
• view32 maps to tuxtype:view

<viewname>

• fml32 maps to tuxtype:fml32
<svcname>_p<SeqNum>

To avoid multiple embedded FML32
buffers in an FML32 buffer, a unique
sequence number (<SeqNum>) is
used to distinguish the embedded
FML32 buffers.

Note: ptr is not supported.

For limitations and considerations
regarding mapping FML/FML32
buffers, refer to FML/FML32
Considerations.

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message
2-14 SALT Programming Guide

Tuxedo- to-XML Data Type Mapp ing fo r Orac le Tuxedo Serv ices
RECORD RECORD buffer type represents
copybook record. RECORD types must
have subtypes that designate
individual record structures.

Generated COBOL types:
• RECORD

• COMP-1

• COMP-2

• S9(18)

• 9(18)

• S9(9)

• 9(9)

• S9(4)

• S9(10)V9(10)

• X(1024)

• @binary=true

Each RECORD data type is defined as an
XML Schema complex type. Each
RECORD field should be one or more
sub-elements of the XML Schema
complex type.

The COBOL types and the
corresponding XML Schema type are
listed as follows:
• RECORD maps to

xsd:complexType

• COMP-1 maps to xsd:float
• COMP-2 maps to xsd:double
• S9(18) maps to xsd:long
• 9(18) maps to

xsd:unsignedLong

• S9(9) maps to xsd:int
• 9(9) maps to

xsd:unsignedInt

• S9(4) maps to xsd:short
• S9(10)V9(10) COMP-3 maps to

xsd:decimal

• X(1024) maps to xsd:string
• @binary=true maps to

xsd:base64Binary

X_C_TYPE X_C_TYPE buffer types are
equivalent to VIEW buffer types.

See VIEW/VIEW32

X_COMMON X_COMMON buffer types are
equivalent to VIEW buffer types, but
are used for compatibility between
COBOL and C programs. Field types
should be limited to short, long,
and string

See VIEW/VIEW32

X_OCTET X_OCTET buffer types are equivalent
to CARRAY buffer types

See CARRAY xsd:base64Binary

Table 2-2 Oracle Tuxedo Buffer Mapping to XML Schema

Oracle Tuxedo
Buffer Type

Description XML Schema Mapping for SOAP Message
SALT Programming Guide 2-15

Oracle Tuxedo STRING Typed Buffers
Oracle Tuxedo STRING typed buffers are used to store character strings that end with a NULL
character. Oracle Tuxedo STRING typed buffers are self-describing.

Listing 2-1 shows a SOAP message for the TOUPPER Oracle Tuxedo service example that accepts
a STRING typed buffer.

Listing 2-1 Soap Message for a String Typed Buffer in TOUPPER Service

<?xml … encoding=”UTF-8” ?>
 ……
 <SOAP:body>
 <m:TOUPPER xmlns:m=”urn:......”>
 <inbuf>abcdefg</inbuf>
 </m:TOUPPER>
 </SOAP:body>

The XML Schema for <inbuf> is:

<xsd:element name=”inbuf” type=”xsd:string” />

Oracle Tuxedo CARRAY Typed Buffers
Oracle Tuxedo CARRAY typed buffers are used to store character arrays, any of which can be NULL.
They are used to handle data opaquely and are not self-describing. Oracle Tuxedo CARRAY typed
buffers can map to xsd:base64Binary or MIME attachments. The default is
xsd:base64Binary.

Mapping Example Using base64Binary
Listing 2-2 shows the SOAP message for the TOUPPER Oracle Tuxedo service, which accepts a
CARRAY typed buffer using base64Binary mapping.
2-16 SALT Programming Guide

Tuxedo- to-XML Data Type Mapp ing fo r Orac le Tuxedo Serv ices
Listing 2-2 Soap Message for a CARRAY Typed Buffer Using base64Binary Mapping

<SOAP:body>
 <m:TOUPPER xmlns:m=”urn:......”>
 <inbuf>QWxhZGRpbjpvcGVuIHNlc2FtZQ==</inbuf>
 </m:TOUPPER>
</SOAP:body>

The XML Schema for <inbuf> is:

<xsd:element name=”inbuf” type=”xsd:base64Binary” />

Mapping Example Using MIME Attachment
Listing 2-3 shows the SOAP message for the TOUPPER Oracle Tuxedo service, which accepts a
CARRAY typed buffer as a MIME attachment.

Listing 2-3 Soap Message for a CARRAY Typed Buffer Using MIME Attachment

MIME-Version: 1.0
Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;
 start="<claim061400a.xml@example.com>"
Content-Description: This is the optional message description.

--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <claim061400a.xml@ example.com>

<?xml version='1.0' ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
..
<m:TOUPPER xmlns:m=”urn:…”>
<inbuf href="cid:claim061400a.carray@example.com"/>
</m:TOUPPER>
SALT Programming Guide 2-17

..
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

--MIME_boundary
Content-Type: text/xml
Content-Transfer-Encoding: binary
Content-ID: <claim061400a. carray @example.com>

...binary carray data…
--MIME_boundary--
The WSDL for carray typed buffer will look like the following:
<wsdl:definitions …>
<wsdl:types …>

<xsd:schema …>
<xsd:element name=”inbuf” type=”xsd:base64Binary” />

</xsd:schema>
</wsdl:types>

……

<wsdl:binding …>
 <wsdl:operation name=”TOUPPER”>
 <soap:operation …>
 <input>
 <mime:multipartRelated>
 <mime:part>
 <soap:body parts=”…” use=”…”/>
 </mime:part>
 <mime:part>
 <mime:content part=”…” type=”text/xml”/>
 </mime:part>
 </mime:multipartRelated>
 </input
 ……
 </wsdl:operation>
</wsdl:binding>
2-18 SALT Programming Guide

Tuxedo- to-XML Data Type Mapp ing fo r Orac le Tuxedo Serv ices

</wsdl:definitions>

Oracle Tuxedo MBSTRING Typed Buffers
Oracle Tuxedo MBSTRING typed buffers are used for multibyte character arrays. Oracle Tuxedo
MBSTRING typed buffers consist of the following three elements:

code-set character encoding

data length

character array encoding.

Note: You cannot embed multibyte characters with non “UTF-8” code sets in the SOAP
message directly.

Listing 2-4 shows the SOAP message for the MBSERVICE Oracle Tuxedo service, which accepts
an MBSTRING typed buffer.

Listing 2-4 SOAP Message for an MBSIRING Buffer

<?xml encoding=”UFT-8”?>

 <SOAP:body>

 <m:MBSERVICE xmlns:m=”http://......”>

 <inbuf>こんにちは </infuf>

 </m:MBSERVICE>

The XML Schema for <inbuf> is:

<xsd:element name=”inbuf” type=”xsd:string” />

WARNING: SALT converts the Japanese character "—" (EUC-JP 0xa1bd, Shift-JIS 0x815c)
into UTF-16 0x2015.

If you use another character set conversion engine, the EUC-JP or Shift-JIS
multibyte output for this character may be different. For example, the Java il8n
SALT Programming Guide 2-19

character conversion engine, converts this symbol to UTF-16 0x2014. The result
is the also same when converting to UTF-8, which is the SALT default.

If you use another character conversion engine and Japanese "—" is included in
MBSTRING, Oracle Tuxedo server-side MBSTRING auto-conversion cannot convert
it back into Shift-JIS or EUC-JP.

Oracle Tuxedo XML Typed Buffers
Oracle Tuxedo XML typed buffers store XML documents.

Listing 2-5 shows the Stock Quote XML document.

Listing 2-6 shows the SOAP message for the STOCKINQ Oracle Tuxedo service, which accepts an
XML typed buffer.

Listing 2-5 Stock Quote XML Document

<?xml version="1.0" encoding="UTF-8"?>
<!-- "Stock Quotes". -->
<stockquotes>
 <stock_quote>
 <symbol>BEAS</symbol>
 <when>
 <date>01/27/2001</date>
 <time>3:40PM</time>
 </when>
 <change>+2.1875</change>
 <volume>7050200</volume>
 </stock_quote>
</stockquotes>

Then part of the SOAP message will look like Listing 2-6:
2-20 SALT Programming Guide

Tuxedo- to-XML Data Type Mapp ing fo r Orac le Tuxedo Serv ices
Listing 2-6 SOAP Message for an XML Buffer

<SOAP:body>
 <m: STOCKINQ xmlns:m=”urn:......”>
 <inbuf>
 <stockquotes>
 <stock_quote>
 <symbol>BEAS</symbol>
 <when>
 <date>01/27/2001</date>
 <time>3:40PM</time>
 </when>
 <change>+2.1875</change>
 <volume>7050200</volume>
 </stock_quote>
 </stockquotes>
 </inbuf>
 </m: STOCKINQ >
</SOAP:body>

The XML Schema for <inbuf> is:

<xsd:element name=”inbuf” type=”xsd:anyType” />

Note: If a default namespace is contained in an Oracle Tuxedo XML typed buffer and returned
to the GWWS server, the GWWS server converts the default namespace to a regular
name. Each element is then prefixed with this name.

For example, if an Oracle Tuxedo service returns a buffer having a default namespace to
the GWWS server as shown in Listing 2-7, the GWWS server converts the default
namespace to a regular name as shown in Listing 2-8.

Listing 2-7 Default Namespace Before Sending to GWWS Server

<Configuration xmlns="http://www.bea.com/Tuxedo/Salt/200606">
 <Servicelist id="simpapp">
 <Service name="toupper"/>
 </Servicelist>
SALT Programming Guide 2-21

 <Policy/>
 <System/>
 <WSGateway>
 <GWInstance id="GWWS1">
 <HTTP address="//myhost:8080"/>
 </GWInstance>
 </WSGateway>
</Configuration>

Listing 2-8 GWWS Server Converts Default Namespace to Regular Name

 <dom0:Configuration
 xmlns:dom0="http://www.bea.com/Tuxedo/Salt/200606">
 <dom0:Servicelist dom0:id="simpapp">
 <dom0:Service dom0:name="toupper"/>
 </dom0:Servicelist>
 <dom0:Policy></<dom0:Policy>
 <dom0:System></<dom0:System>
 <dom0:WSGateway>
 <dom0:GWInstance dom0:id="GWWS1">
 <dom0:HTTP dom0:address="//myhost:8080"/>
 </dom0:GWInstance>
 </dom0:WSGateway>
 </dom0:Configuration>

Oracle Tuxedo VIEW/VIEW32 Typed Buffers
Oracle Tuxedo VIEW and VIEW32 typed buffers are used to store C structures defined by Oracle
Tuxedo applications. You must define the VIEW structure with the VIEW definition files. A VIEW
buffer type can define multiple fields.

Listing 2-9 shows the MYVIEW VIEW definition file.

Listing 2-10 shows the SOAP message for the MYVIEW Oracle Tuxedo service, which accepts a
VIEW typed buffer.
2-22 SALT Programming Guide

Tuxedo- to-XML Data Type Mapp ing fo r Orac le Tuxedo Serv ices
Listing 2-9 VIEW Definition File for MYVIEW Service

VIEW MYVIEW
#type cname fbname count flag size null
float float1 - 1 - - 0.0
double double1 - 1 - - 0.0
long long1 - 3 - - 0
string string1 - 2 - 20 '\0'
END

Listing 2-10 SOAP Message for a VIEW Typed Buffer

<SOAP:body>
 <m: STOCKINQ xmlns:m=”http://......”>
 <inbuf>
 <float1>12.5633</float1>
 <double1>1.3522E+5</double1>
 <long1>1000</long1>
 <long1>2000</long1>
 <long1>3000</long1>
 <string1>abcd</string1>
 <string1>ubook</string1>
 </inbuf>
 </m: STOCKINQ >
</SOAP:body>

The XML Schema for <inbuf> is shown in Listing 2-11.

Listing 2-11 XML Schema for a VIEW Typed Buffer

<xsd:complexType name=” view_MYVIEW”>
 <xsd:sequence>
 <xsd:element name=”float1” type=”xsd:float” />
 <xsd:xsd:element name=”double1” type=”xsd:double” />
SALT Programming Guide 2-23

 <xsd:element name=”long1” type=”xsd:long” minOccurs=”3” />
 <xsd:element name=”string1” type=”xsd:string minOccurs=”3” />
 </xsd:sequence>
</xsd: complexType >
<xsd:element name=”inbuf” type=”tuxtype:view_MYVIEW” />

VIEW/VIEW32 Considerations
The following considerations apply when converting Oracle Tuxedo VIEW/VIEW32 buffers to
and from XML.

You must create an environment for converting XML to and from VIEW/VIEW32. This
includes setting up a VIEW directory and system VIEW definition files. These definitions are
automatically loaded by the GWWS server.

The GWWS server provides strong consistency checking between the Oracle Tuxedo
Service Metadata Repository VIEW/VIEW32 parameter definition and the VIEW/VIEW32
definition file at start up.

If an inconsistency is found, the GWWS server cannot start. Inconsistency messages are
printed in the ULOG file.

tmwsdlgen also provides strong consistency checking between the Oracle Tuxedo Service
Metadata Repository VIEW/VIEW32 parameter definition and the VIEW/VIEW32 definition
file at start up. If an inconsistency is found, the GWWS server will not start. Inconsistency
messages are printed in the ULOG file.

If the VIEW definition file cannot be loaded, tmwsdlgen attempts to use the Oracle Tuxedo
Service Metadata Repository definitions to compose the WSDL document.

Because dec_t is not supported, if you define VIEW fields with type dec_t, the service
cannot be exported as a Web service and an error message is generated when the SALT
configuration file is loading.

Although the Oracle Tuxedo Service Metadata Repository may define a size attribute for
“string/ mbstring” typed parameters (which represents the maximum byte length that
is allowed in the Oracle Tuxedo typed buffer), SALT does not expose such restriction in
the generated WSDL document.

When a VIEW32 embedded MBString buffer is requested and returned to the GWWS
server, the GWWS miscalculates the required MBString length and reports that the input
string exceeds the VIEW32 maxlength. This is because the header is included in the transfer
2-24 SALT Programming Guide

Tuxedo- to-XML Data Type Mapp ing fo r Orac le Tuxedo Serv ices
encoding information. You must include the header size when defining the VIEW32 field
length.

The Oracle Tuxedo primary data type “long” is indefinite between 32-bit and 64-bit scope,
depending on the platform. However, the corresponding xsd:long schema type is used to
describe 64-bit numeric values.

If the GWWS server runs in 32-bit mode, and the Web service client sends xsd:long
typed data that exceeds the 32-bit value range, you may get a SOAP fault.

Oracle Tuxedo FML/FML32 Typed Buffers
Oracle Tuxedo FML and FML32 typed buffer are proprietary Oracle Tuxedo system self-describing
buffers. Each data field carries its own identifier, an occurrence number, and possibly a length
indicator.

FML Data Mapping Example
Listing 2-12 shows the SOAP message for the TRANSFER Tuxedo service, which accepts an FML
typed buffer.

The request fields for service LOGIN are:

ACCOUNT_ID 1 long /* 2 occurrences, The withdrawal

account is 1st, and the deposit account is 2nd */
AMOUNT 2 float /* The amount to transfer */

Part of the SOAP message is shown in Listing 2-12:

Listing 2-12 SOAP Message for an FML Typed Buffer

<SOAP:body>
 <m:TRANSFER xmlns:m=”urn:......”>
 <inbuf>
 <ACCOUNT_ID>40069901</ACCOUNT_ID>
 <ACCOUNT_ID>40069901</ACCOUNT_ID>
 <AMOUNT>200.15</AMOUNT>
 </inbuf>
 </m:TRANSFER >
</SOAP:body>
SALT Programming Guide 2-25

The XML Schema for <inbuf> is shown in Listing 2-13.

Listing 2-13 XML Schema for an FML Typed Buffer

<xsd:complexType name=” fml_TRANSFER_In”>
 <xsd:sequence>
 <xsd:element name=”ACCOUNT_ID” type=”xsd:long” minOccurs=”2”/>
 <xsd:element name=” AMOUNT” type=”xsd:float” />
 </xsd:sequence>
</xsd: complexType >
<xsd:element name=”inbuf” type=”tuxtype: fml_TRANSFER_In” />

FML32 Data Mapping Example
Listing 2-14 shows the SOAP message for the TRANSFER Oracle Tuxedo service, which accepts
an FML32 typed buffer.

The request fields for service LOGIN are:

CUST_INFO 1 fml32 /* 2 occurrences, The withdrawal

customer is 1st, and the deposit customer is 2nd */
ACCOUNT_INFO 2 fml32 /* 2 occurrences, The withdrawal

account is 1st, and the deposit account is 2nd */
AMOUNT 3 float /* The amount to transfer */

Each embedded CUST_INFO includes the following fields:

CUST_NAME 10 string
CUST_ADDRESS 11 carray
CUST_PHONE 12 long

Each embedded ACCOUNT_INFO includes the following fields:

ACCOUNT_ID 20 long
ACCOUNT_PW 21 carray

Part of the SOAP message is shown in Listing 2-14:
2-26 SALT Programming Guide

Tuxedo- to-XML Data Type Mapp ing fo r Orac le Tuxedo Serv ices
Listing 2-14 SOAP Message for Service with FML32 Buffer

<SOAP:body>
 <m:STOCKINQ xmlns:m=”urn:......”>
 <inbuf>
 <CUST_INFO>
 <CUST_NAME>John</CUST_NAME>
 <CUST_ADDRESS>Building 15</CUST_ADDRESS>
 <CUST_PHONE>1321</CUST_PHONE>
 </CUST_INFO>
 <CUST_INFO>
 <CUST_NAME>Tom</CUST_NAME>
 <CUST_ADDRESS>Building 11</CUST_ADDRESS>
 <CUST_PHONE>1521</CUST_PHONE>
 </CUST_INFO>
 <ACCOUNT_INFO>
 <ACCOUNT_ID>40069901</ACCOUNT_ID>
 <ACCOUNT_PW>abc</ACCOUNT_PW>
 </ACCOUNT_INFO>
 <ACCOUNT_INFO>
 <ACCOUNT_ID>40069901</ACCOUNT_ID>
 <ACCOUNT_PW>zyx</ACCOUNT_PW>
 </ACCOUNT_INFO>

 <AMOUNT>200.15</AMOUNT>
 </inbuf>
 </m: STOCKINQ >
</SOAP:body>

The XML Schema for <inbuf> is shown in Listing 2-15.

Listing 2-15 XML Schema for an FML32 Buffer

<xsd:complexType name=”fml32_TRANSFER_In”>
 <xsd:sequence>
SALT Programming Guide 2-27

 <xsd:element name=”CUST_INFO” type=”tuxtype:fml32_TRANSFER_p1”

minOccurs=”2”/>
 <xsd:element name=”ACCOUNT_INFO” type=”tuxtype:fml32_TRANSFER_p2”

minOccurs=”2”/>
 <xsd:element name=”AMOUNT” type=”xsd:float” />
 /xsd:sequence>
</xsd:complexType >

<xsd:complexType name=”fml32_TRANSFER_p1”>
 <xsd:element name=”CUST_NAME” type=”xsd:string” />
 <xsd:element name=”CUST_ADDRESS” type=”xsd:base64Binary” />
 <xsd:element name=”CUST_PHONE” type=”xsd:long” />
</xsd:complexType>

<xsd:complexType name=”fml32_TRANSFER_p2”>
 <xsd:element name=”ACCOUNT_ID” type=”xsd:long” />
 <xsd:element name=”ACCOUNT_PW” type=”xsd:base64Binary” />
</xsd:complexType>

<xsd:element name=”inbuf” type=”tuxtype: fml32_TRANSFER_In” />

FML/FML32 Considerations
The following considerations apply to converting Oracle Tuxedo FML/FML32 buffers to and from
XML.

You must create an environment for converting XML to and from FML/FML32. This
includes an FML field table file directory and system FML field definition files. These
definitions are automatically loaded by the GWWS. FML typed buffers can be handled
only if the environment is set up correctly.

FML32 field type FLD_PTR is not supported.

The GWWS server provides strong consistency checking between the Oracle Tuxedo
Service Metadata Repository FML/FML32 parameter definition and FML/FML32 definition
file during start up.

If an FML/32 field is found that is not in accordance with the environment setting, or the
field table field data type definition is different from the parameter data type definition in
2-28 SALT Programming Guide

Tuxedo- to-XML Data Type Mapp ing fo r Orac le Tuxedo Serv ices
the Oracle Tuxedo Service Metadata Repository, the GWWS cannot start. Inconsistency
messages are printed in the ULOG file.

The tmwsdlgen command checks for consistency between the Oracle Tuxedo Service
Metadata Repository FML/FML32 parameter definition and FML/FML32 definition file. If
inconsistencies are found, it issues a warning and allows inconsistencies.

If an FML/32 field is found that is not in accordance with the environment setting, or the
field table field data type definition is different from the parameter data type definition in
the Oracle Tuxedo Service Metadata Repository, tmwsdlgen attempts to use Oracle
Tuxedo Service Metadata Repository definitions to compose the WSDL document.

Although the Oracle Tuxedo Service Metadata Repository may define a size attribute for
“string/mbstring” typed parameters, which represents the maximum byte length that is
allowed in the Oracle Tuxedo typed buffer, SALT does not expose such restriction in the
generated WSDL document.

Oracle Tuxedo primary data type “long” is indefinite between 32-bit and 64-bit scope
according to different platforms. But the corresponding xsd:long schema type is used to
describe 64-bit numeric value. The following scenario generates a SOAP fault:

The GWWS runs in 32-bit mode, and a Web service client sends a xsd:long typed data
which exceeds the 32-bit value range.

Oracle Tuxedo RECORD Typed Buffers
Oracle Tuxedo RECORD typed buffers can describe COBOL copybook information.

Listing 2-16 shows the myRecord COBOL copybook file.

Listing 2-16 COBOL copybook myRecord

01 myRecord.

05 name occurs 1 times PIC X(10).

05 num occurs 1 times PIC S9(9) COMP-5.

05 subgroup occurs 1 times.

 10 long1 PIC S9(9) COMP-5.

 10 string1 PIC X(19).
SALT Programming Guide 2-29

Listing 2-17 SOAP Message for a RECORD Typed Buffer

<soapenv:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soapenv=http://schemas.xmlsoap.org/soap/envelope/

xmlns:urn="urn:pack.TuxAll_typedef.salt11">

 <soapenv:Header/>

 <soapenv:Body>

 <urn:QUERY

soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <inbuf xsi:type="urn:record_QUERY_In_myRecord">

 <name>John</name>

 <num xsi:type="xsd:int">999</num>

 <subgroup xsi:type="urn:record_QUERY_In__p3">

 <long1 xsi:type="xsd:int">1000</long1>

 <string1>abcd</string1>

 </subgroup>

 </inbuf>

 </urn:QUERY>

 </soapenv:Body>

</soapenv:Envelope>

The XML Schema for <inbuf> is shown in Listing 2-18.

Listing 2-18 Schema for a RECORD Typed Buffer

<xsd:complexType name="record_QUERY_In_myRecord">

 <xsd:sequence>

 <xsd:element maxOccurs="1" minOccurs="1" name="name">
2-30 SALT Programming Guide

Tuxedo- to-XML Data Type Mapp ing fo r Orac le Tuxedo Serv ices
 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="10"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element maxOccurs="1" minOccurs="1" name="num"

type="xsd:int"></xsd:element>

 <xsd:element maxOccurs="1" minOccurs="1" name="subgroup"

type="tuxtype:record_QUERY_In__p3"></xsd:element>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="record_QUERY_In__p3">

 <xsd:sequence>

 <xsd:element maxOccurs="1" minOccurs="1" name="long1"

type="xsd:int"></xsd:element>

 <xsd:element maxOccurs="1" minOccurs="1" name="string1">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="19"></xsd:maxLength>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 </xsd:sequence>

</xsd:complexType
SALT Programming Guide 2-31

REDEFINES Handling
Redefines are handled using the core RECORD implementation, which takes a cpy2record binary
output with boolean expressions to perform choice decisions. GWWS leverages these capabilities
when processing records and used them to determine the redefine member to select in the
outgoing message (inbound reply and outbound request).

For incoming messages (inbound request and outbound reply) the choice should have been
performed by the other side.

In order to make use of cpy2record binaries, GWWS loads the RECORD description files (for
example,VIEW/VIEW32 compiled definitions), and rely on the RECORDFILES/RECORDDIR
environment variables. By specifying keyword "union" in the MIF file, the items keep the
REDEFINE relationship.

Oracle Tuxedo X_C_TYPE Typed Buffers
Oracle Tuxedo X_C_TYPE typed buffers are equivalent (and have a similar WSDL format to),
Oracle Tuxedo VIEW typed buffers.They are transparent for SOAP clients. However, even though
usage is similar to the Oracle Tuxedo VIEW buffer type, SALT administrators must configure the
Oracle Tuxedo Service Metadata Repository for any particular Oracle Tuxedo service that uses
this buffer type.

Note: All View related considerations also take effect for X_C_TYPE typed buffer.

Oracle Tuxedo X_COMMON Typed Buffers
Oracle Tuxedo X_COMMON typed buffers are equivalent to Oracle Tuxedo VIEW typed buffers.
However, they are used for compatibility between COBOL and C programs. Field types should
be limited to short, long, and string.

Oracle Tuxedo X_OCTET Typed Buffers
Oracle Tuxedo X_OCTET typed buffers are equivalent to CARRAY.

Note: Oracle Tuxedo X_OCTET typed buffers can only map to xsd:base64Binary type. SALT
1.1 does not support MIME attachment binding for Oracle Tuxedo X_OCTET typed buffers.
2-32 SALT Programming Guide

XML-to-Tuxedo Data Type Mapp ing fo r Ex te rna l Web Serv ices
Custom Typed Buffers
SALT provides a plug-in mechanism that supports custom typed buffers. You can validate the
SOAP message against your own XML Schema definition, allocate custom typed buffers, and
parse data into the buffers and other operations.

XML Schema built-in type xsd:anyType is the corresponding type for XML documents stored
in a SOAP message. While using custom typed buffers, you should define and represent the
actual data into an XML format and transfer between the Web service client and Oracle Tuxedo
Web service stack. As with XML typed buffers, only a single root XML buffer can be stored in
the SOAP body. The GWWS checks this for consistency.

For more plug-in information, see Using SALT Plug-Ins.

XML-to-Tuxedo Data Type Mapping for External Web
Services

SALT maps each wsdl:message as an Oracle Tuxedo FML32 buffer structure. SALT defines a
set of rules for representing the XML Schema definition using FML32. To invoke external Web
Services, you need to understand the exact FML32 structure that converted from the external Web
Service XML Schema definition of the corresponding message.

The following sections describe detailed WSDL message to Oracle Tuxedo FML32 buffer
mapping rules:

XML Schema Built-In Simple Data Type Mapping

XML Schema User Defined Data Type Mapping

WSDL Message Mapping

XML Schema Built-In Simple Data Type Mapping
Table 2-3 shows the supported XML Schema Built-In Simple Data Type and the corresponding
Oracle Tuxedo FML32 Field Data Type.
SALT Programming Guide 2-33

Table 2-3 Supported XML Schema Built-In Simple Data Type

XML Schema Built-In
Simple Type

Oracle Tuxedo FML32
Field Data Type

C/C++ Primitive Type
In Oracle Tuxedo
Program

Note

xsd:byte FLD_CHAR char

xsd:unsignedByte FLD_UCHAR unsigned char

xsd:boolean FLD_BOOL char/bool Value Pattern
[‘T’ | ‘F’]

xsd:short FLD_SHORT short

xsd:unsignedShort FLD_USHORT unsigned short

xsd:int FLD_LONG long

xsd:unsignedInt FLD_UINT unsigned int

xsd:long FLD_LONG long In a 32-bit Oracle
Tuxedo program, the C
primitive type long
cannot represent all
xsd:long valid value.

xsd:long FLD_LLONG long long In a 32-bit Oracle
Tuxedo program, the C
primitive type long long
can represent all
xsd:long valid values.

xsd:unsignedLong FLD_LONG unsigned long In a 32-bit Oracle
Tuxedo program, the C
primitive type
unsigned long
cannot represent all
xsd:long valid value.
2-34 SALT Programming Guide

XML-to-Tuxedo Data Type Mapp ing fo r Ex te rna l Web Serv ices
The following samples demonstrate how to prepare data in a Oracle Tuxedo program for XML
Schema Built-In Simple Types.

XML Schema Built-In Type Sample - xsd:string

XML Schema Built-In Type Sample - xsd:hexBinary

XML Schema Built-In Type Sample - xsd:date

xsd:unsignedLong FLD_ULONG unsigned long
long

In a 32-bit Oracle
Tuxedo program, the C
primitive type unsigned
long long can represent
all
xsd:unsignedLong
valid values.

xsd:float FLD_FLOAT float

xsd:double FLD_DOUBLE double

xsd:string

(and all xsd:string
derived built-in type, such as
xsd:token, xsd:Name,
etc.)

FLD_STRING

FLD_MBSTRING

char []

wchar_t []

(Null-terminated string)

xsd:string can be
optionally mapped as
FLD_STRING or
FLD_MBSTRING using
wsdlcvt.

xsd:base64Binary FLD_CARRAY char []

xsd:hexBinary FLD_CARRAY char []

All other built-in data types

(Data / Time related,
decimal / Integer related,
any URL, QName,
NOTATION)

FLD_STRING char [] You should comply with
the value pattern of the
corresponding XML
built-in data type.
Otherwise, server-side
Web service will reject
the request.

Table 2-3 Supported XML Schema Built-In Simple Data Type

XML Schema Built-In
Simple Type

Oracle Tuxedo FML32
Field Data Type

C/C++ Primitive Type
In Oracle Tuxedo
Program

Note
SALT Programming Guide 2-35

../ref/comref.html#wp1112274

Table 2-4 XML Schema Built-In Type Sample - xsd:string

XML Schema Definition

<xsd:element name=”message” type=”xsd:string” />

Corresponding FML32 Field Definition (FLD_MBSTRING)

Field_name Field_type Field_flag Field_comments
message mbstring -

C Pseudo Code

FBFR32 * request;
FLDLEN32 len, mbsize = 1024;
char * msg, * mbmsg;
msg = calloc(...); mbmsg = malloc(mbsize);
...
strncpy(msg, “...”, len); /* The string is UTF-8 encoding */
Fmbpack32(“utf-8”, msg, len, mbmsg, &mbsize, 0); /* prepare mbstring*/
Fadd32(request, message, mbmsg, mbsize);

Table 2-5 XML Schema Built-In Type Sample - xsd:hexBinary

XML Schema Definition

<xsd:element name=”mem_snapshot” type=”xsd:hexBinary” />

Corresponding FML32 Field Definition (FLD_MBSTRING)

Field_name Field_type Field_flag Field_comments
mem_snapshot carray -

C Pseudo Code

FBFR32 * request;
FLDLEN32 len;
char * buf;
buf = calloc(...);
...
memcpy(buf, “...”, len); /* copy the original memory */
Fadd32(request, mem_snapshot, buf, len);
2-36 SALT Programming Guide

XML-to-Tuxedo Data Type Mapp ing fo r Ex te rna l Web Serv ices
XML Schema User Defined Data Type Mapping
Table 2-7 lists the supported XML Schema User Defined Simple Data Type and the
corresponding Oracle Tuxedo FML32 Field Data Type.

Table 2-6 XML Schema Built-In Type Sample - xsd:date

XML Schema Definition

<xsd:element name=”IssueDate” type=”xsd:date” />

Corresponding FML32 Field Definition (FLD_STRING)

Field_name Field_type Field_flag Field_comments
IssueDate string -

C Pseudo Code

FBFR32 * request;
char date[32];
...
strcpy(date, “2007-06-04+8:00”); /* Set the date value correctly */
Fadd32(request, IssueDate, date, 0);

Table 2-7 Supported XML Schema User Defined Data Type

XML Schema User Defined
Data Type

Oracle Tuxedo FML32
Field Data Type

C/C++ Primitive Type
In Oracle Tuxedo
Program

Note

<xsd:anyType> FLD_MBSTRING char [] You should prepare
entire XML document
enclosing with the
element tag.

<xsd:simpleType>
derived from built-in
primitive simple data types

Equivalent FML32
Field Type of the
primitive simple type
(see Table 2-3)

Equivalent C Primitive
Data Type of the
primitive simple type
(see Table 2-3)

Facets defined with
<xsd:restriction>
are not enforced in
Oracle Tuxedo.
SALT Programming Guide 2-37

<xsd:simpleType>
defined with <xsd:list>

FLD_MBSTRING char [] Same as
<xsd:anyType>. The
Schema compliancy is
not enforced in Oracle
Tuxedo..

<xsd:simpleType>
defined with
<xsd:union>

FLD_MBSTRING char [] Same as
<xsd:anyType>. The
Schema compliancy is
not enforced in Oracle
Tuxedo..

<xsd:complexType>
defined with
<xsd:simpleContent>

FLD_MBSTRING char [] Same as
<xsd:anyType>. The
Schema compliancy is
not enforcedin Oracle
Tuxedo..

<xsd:complexType>
defined with
<xsd:complexContent
>

FLD_MBSTRING char [] Same as
<xsd:anyType>. The
Schema compliancy is
not enforcedin Oracle
Tuxedo..

<xsd:complexType>
defined with shorthand
<xsd:complexContent
>, sub-elements composited
with sequence or all

FLD_FML32 FBFR32 * embedded
fml32 buffer

Each sub-element of the
complex type is defined
as an embedded FML32
field.

Table 2-7 Supported XML Schema User Defined Data Type

XML Schema User Defined
Data Type

Oracle Tuxedo FML32
Field Data Type

C/C++ Primitive Type
In Oracle Tuxedo
Program

Note
2-38 SALT Programming Guide

XML-to-Tuxedo Data Type Mapp ing fo r Ex te rna l Web Serv ices
The following samples demonstrate how to prepare data in an Oracle Tuxedo program for XML
Schema User Defined Data Types:

XML Schema User Defined Type Sample - xsd:simpleType Derived from Primitive Simple
Type

XML Schema User Defined Type Sample - xsd:simpleType Defined with xsd:list

External Service Schema Attribute Use Example

<xsd:complexType>
defined with shorthand
<xsd:complexContent
>, sub-elements composited
with choice

FML_FML32 FBFR32 * embedded
fml32 buffer

Each sub-element of the
complex type is defined
as an embedded FML32
field.

You should only add one
sub field into the fml32
buffer.

<xsd:complexType> with
sub-elements composited
with sequence. The
complexType can contain
attribute and elements.

FLD_FML32 FBFR32 * embedded
fml32 buffer

Each sub-element of the
complex type is defined
as an embedded FML32
field.

Table 2-7 Supported XML Schema User Defined Data Type

XML Schema User Defined
Data Type

Oracle Tuxedo FML32
Field Data Type

C/C++ Primitive Type
In Oracle Tuxedo
Program

Note

Table 2-8 XML Schema User Defined Type Sample - xsd:simpleType Derived from Primitive Simple Type

XML Schema Definition

<xsd:element name=”Grade” type=”Alphabet” />
<xsd:simpleType name=”Alphabet”>

<xsd:restriction base=”xsd:string”>
<xsd:maxLength value=”1” />
<xsd:pattern value=”[A-Z]” />

</xsd:restriction>
</xsd:simpleType>

Corresponding FML32 Field Definition (FLD_STRING)
SALT Programming Guide 2-39

Field_name Field_type Field_flag Field_comments
Grade string -

C Pseudo Code

char grade[2];
FBFR32 * request;
...
grade[0] = ‘A’; grade[1] = ‘\0’;
Fadd32(request, Grade, (char *)grade, 0);

Table 2-8 XML Schema User Defined Type Sample - xsd:simpleType Derived from Primitive Simple Type

Table 2-9 XML Schema User Defined Type Sample - xsd:simpleType Defined with xsd:list

XML Schema Definition (Target Namespace “urn:sample.org”)

<xsd:element name=”Users” type=”namelist” />
<xsd:simpleType name=”namelist”>

<xsd:list itemType=”xsd:NMTOKEN”>
</xsd:simpleType>

Corresponding FML32 Field Definition (FLD_MBSTRING)

Field_name Field_type Field_flag Field_comments
Users mbstring -
2-40 SALT Programming Guide

XML-to-Tuxedo Data Type Mapp ing fo r Ex te rna l Web Serv ices
Note: In Table 2-10, attributes are supported in External Web Services calls using the form
"<xs:attribute name="[name]" type="[type]"/>" only. Qualifiers such as
"fixed=" are currently not supported."

C Pseudo Code

char * user[5];
char users[...];
char * mbpacked;
FLDLEN32 mbsize = 1024;
FBFR32 * request;
...
sprintf(users, “<n1:Users xmlns:n1=\”urn:sample.org\”>”);
for (i = 0 ; i < 5 ; i++) {

strcat(users, user[i]);
strcat(users, “ “);

}
strcat(users, “</n1:Users>“);
...
mbpacked = malloc(mbsize);
/* prepare mbstring*/
Fmbpack32(“utf-8”, users, strlen(users), mbpacked, &mbsize, 0);
Fadd32(request, Users, mbpacked, mbsize);

Table 2-9 XML Schema User Defined Type Sample - xsd:simpleType Defined with xsd:list
SALT Programming Guide 2-41

Table 2-10 External Service Schema Attribute Use Example

XML Schema Definition

<xs:element name="add">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="param0" nillable="true" type="xs:int"/>

 <xs:element name="param1" nillable="true" type="xs:int"/>

 </xs:sequence>

 <xs:attribute name="aType" type="xs:string"/>

 </xs:complexType>

</xs:element>

Corresponding FML32 Field Definition

…

#name rel-number type flags comment

#---- ---------- ---- ------ -------

add 1 fml32 - fullname=add, schema=axis2:add

aType 3 string - fullname=aType, schema=xs:string

param0 4 long - fullname=param0, schema=xs:int

param1 5 long - fullname=param1, schema=xs:int

…

Corresponding SALT Metadata Repository Definition
2-42 SALT Programming Guide

XML-to-Tuxedo Data Type Mapp ing fo r Ex te rna l Web Serv ices
…

servicemode=webservice

inbuf=FML32

outbuf=FML32

errbuf=FML32

 param=add

 access=in

 paramschema=XSD_E:add@http://calc.sample

 type=fml32

 (

 param=param0

 access=in

 paramschema=XSD_E:param0@http://calc.sample

 type=long

 primetype=int

 param=param1

 access=in

 paramschema=XSD_E:param1@http://calc.sample

 type=long

 primetype=int

 param=aType

 access=in

 paramschema=XSD_E:attribute:aType@http://calc.sample

 type=string

 primetype=string

Table 2-10 External Service Schema Attribute Use Example
SALT Programming Guide 2-43
)

…

WSDL Message Mapping
Oracle Tuxedo FML32 buffer type is always used in mapping WSDL messages.

Table 2-11 lists the WSDL message mapping rules defined by SALT.

Corresponding Sample Pseudo code

…

 FBFR32 *f, *fin;

 long len;

 FLDLEN32 len2;

 long inputnum1, inputnum2;

 char ret_val[25];

 char ret_attr[25];

 char *programName;

 int counter;

...

 char addType[25];

 strcpy(addType,argv[1]);

 Fadd32(fin, aType, addType, 0);

 inputnum1 = atoi(argv[2]);

 Fadd32(fin, param0, (char *)&inputnum1, 0);

 inputnum1 = atoi(argv[2]);

 Fadd32(fin, param0, (char *)&inputnum1, 0);

 Fadd32(f, add, (char *)fin, 0)

 tpcall("add", (char *)f, 0, (char **)&f, &len, TPSIGRSTRT)

…

Table 2-10 External Service Schema Attribute Use Example
2-44 SALT Programming Guide

XML-to-Tuxedo Data Type Mapp ing fo r Ex te rna l Web Serv ices
Table 2-11 WSDL Message Mapping Rules

WSDL Message Definition Oracle Tuxedo Buffer/Field Definition Note

<wsdl:input> message Oracle Tuxedo Request Buffer (Input buffer)

<wsdl:output> message Oracle Tuxedo Response Buffer with
TPSUCCESS (Output buffer)

<wsdl:fault> message Oracle Tuxedo Response Buffer with
TPFAIL (error buffer)

Each message part defined
in <wsdl:input> or
<wsdl:output>

Mapped as top level field in the Oracle
Tuxedo FML32 buffer. Field type is the
equivalent FML32 field type of the message
part XML data type. (See Table 2-3 and
Table 2-7)

<faultcode> in SOAP
1.1 fault message

Mapped as a fixed top level FLD_STRING
field (faultcode) in the Oracle Tuxedo
error buffer:

faultcode string - -

This mapping rule
applies for SOAP 1.1
only.

<faultstring> in SOAP
1.1 fault message

Mapped as a fixed top level FLD_STRING
field (faultstring) in the Oracle Tuxedo
error buffer:
faultstring string - -

This mapping rule
applies for SOAP 1.1
only.

<faultactor> in SOAP
1.1 fault message

Mapped as a fixed top level FLD_STRING
field (faultactor) in the Oracle Tuxedo
error buffer:
faultactor string - -

This mapping rule
applies for SOAP 1.1
only.

<Code> in SOAP 1.2 fault
message

Mapped as a fixed top level FLD_FML32
field (Code) in the Oracle Tuxedo error
buffer, which containing two fixed sub
FLD_STRING fields (Value and
Subcode):
Code fml32 - -
Value string - -
Subcode string - -

This mapping rule
applies for SOAP 1.2
only.
SALT Programming Guide 2-45

REST Data Mapping
This section contains the following topics:

Inbound Message Conversion

Outbound Message Conversion

Note: If a VIEW32 buffer is used as input of an Oracle Tuxedo service exposed as a RESTful
service using GET or DELETE, and that VIEW32 contains an MBSTRING type, some
content must be specified in the calling query string as MBSTRING type fields cannot
be defaulted.

<Reason> in SOAP 1.2
fault message

Mapped as a fixed top level FLD_FML32
field (Reason) in the Oracle Tuxedo error
buffer, which containing zero or more fixed
sub FLD_STRING field (Text):
Reason fml32 - -
Text string - -

This mapping rule
applies for SOAP 1.2
only.

<Node> in SOAP 1.2 fault
message

Mapped as a fixed top level FLD_STRING
field (Node) in the Oracle Tuxedo error
buffer:
Node string - -

This mapping rule
applies for SOAP 1.2
only.

<Role> in SOAP 1.2 fault
message

Mapped as a fixed top level FLD_STRING
field (Role) in the Oracle Tuxedo error
buffer:
Role string - -

This mapping rule
applies for SOAP 1.2
only.

<detail> in SOAP fault
message

Mapped as a fixed top level FLD_FML32
field in the Oracle Tuxedo error buffer:
detail fml32 - -

This mapping rule
applies for both SOAP
1.1 and SOAP 1.2.

Each message part defined
in <wsdl:fault>

Mapped as a sub field of “detail” field in
the Oracle Tuxedo FML32 buffer. Field type
is the equivalent FML32 field type of the
message part XML data type. (See Table 2-3
and Table 2-7)

This mapping rule
applies for both SOAP
1.1 and SOAP 1.2.

Table 2-11 WSDL Message Mapping Rules

WSDL Message Definition Oracle Tuxedo Buffer/Field Definition Note
2-46 SALT Programming Guide

REST Data Mapping
If not , the call results in an HTTP 500 error, with TPEINVAL being returned with the
following ULOG message:

...

181356.hostname!server.5535.451673280.0: GP_CAT:1582: ERROR:
Input codeset encoding argument not defined

...

Inbound Message Conversion
This section contains the following topics:

Query String Mapping

JSON Data Mapping

XML Data Mapping

Query String Mapping
For GET and DELETE methods, input data is passed as an HTTP query string.

Data passed as query string can be mapped within the limitations of query string representation:

keyword=value model, when applicable. For simple buffer types the actual data may be
passed directly, e.g.: http://host:1234/myTOUPPER?inputstring

No nesting possibly of keyword/value pairs.

Encoding must be performed for some characters (space for instance).

Limited amount of data. While GWWS does not impose any limit, the browser or client
toolkit may.

The mapping is described below for the different types of buffers supported by Oracle Tuxedo.

Table 2-12 Query String Mapping

Tuxedo Buffer Type Query String Mapping Notes

STRING http://host:port/service?data Data as is, possibly URL encoded,
GWWS performs the decoding.

CARRAY http://host:port/service?data Data represented as base64 encoded
string.
SALT Programming Guide 2-47

MBSTRING http://host:port/service?data Data represented as URL encoded of
UTF-8 representation of the Oracle
Tuxedo MBSTRING.

XML http://host:port/service?data XML fragment as is, URL encoded.

X_C_TYPE Same as VIEW/VIEW32

X_COMMON Same as VIEW/VIEW32

X_OCTET Same as CARRAY

Table 2-12 Query String Mapping

Tuxedo Buffer Type Query String Mapping Notes
2-48 SALT Programming Guide

REST Data Mapping
VIEW/VIEW32 http://host:port/service?value1&valu
e2 or
http://host:port/service?fieldname1=
value1&fieldname2=value2

Actual values are converted from
URL encoded string representations
to their native types.

GWWS attempts to convert values to
the corresponding VIEW/VIEW32
member depending on the target type:
number types from their string
representation to their Oracle Tuxedo
ones:
• float notation for float and

double VIEW/VIEW32 types
• integer notation for int, long and

other integer based types

FLD_CHAR fields are translated from
URL-encoded content(i.e.,
representable characters or their '%xx'
representation string for all other
types)

The fieldname=value notation is
used with:
• FBNAME field name when

configured in the view
description.

• CNAME value when no FBNAME is
present in the view description.

If neither FBNAME nor CNAME
matches for this subtype, a mapping
error is returned.

Table 2-12 Query String Mapping

Tuxedo Buffer Type Query String Mapping Notes
SALT Programming Guide 2-49

JSON Data Mapping
The different Oracle Tuxedo buffer types are converted into/from JSON as shown in Table 2-13.

FML/FML32 http://host:port/service?fieldname1=
value1&fieldname2=value2

or, for multiple occurrences:

http://host:port/service?fieldname1=
value1&fieldname1=value2

Actual values are converted from
URL encoded string representations
to their native types.

GWWS attempts to convert values to
the corresponding
VIEWFML/VIEWFML32 member
depending on the target type: number
types from their string representation
to their Oracle Tuxedo ones:
• float notation for float and

double VIEWFML/VIEWFML32
types

• integer notation for int, long
and other integer-based types

• FLD_CHAR fields are translated
from URL-encoded content (i.e.,
representable characters or their
'%xx' representation

• string for all other types

Table 2-12 Query String Mapping

Tuxedo Buffer Type Query String Mapping Notes

Table 2-13 JSON Data Mapping

Oracle Tuxedo Buffer
Type

JSON equivalent/example Notes

STRING <buffer content>

CARRAY <binary buffer content>

MBSTRING <Multi-byte string> In order to transmit encodings other than
UTF-8, the "enableMultiEncoding"
property must be set to "true" in the
SALTDEPLOY configuration.
2-50 SALT Programming Guide

REST Data Mapping
XML <XML fragment as-is> In order to transmit encodings other than
UTF-8, the "enableMultiEncoding" property
must be set to "true" in the SALTDEPLOY
configuration.

X_C_TYPE Same as VIEW/VIEW32

X_COMMON Same as VIEW/VIEW32

X_OCTET Same as CARRAY

VIEW/VIEW32 {'<fieldname>':'<fieldcont
ent>',
'<fieldname>':'<fieldcont
ent>'}

possibly nested

{'<fieldname>':{'<fieldnam
e>':'<fieldcontent>'}}

JSON has the following primitive
types:
• boolean (true/false)
• Number (int or double float)
• String

VIEW/VIEW32 field types are
mapped as follows (Oracle Tuxedo
type: JSON type):

See VIEW/VIEW32 considerations and
examples for fieldname mapping details.

Some types may be truncated if represented in
their primitive types (long long, long
double), in that case they are rendered as
JSON strings.

Table 2-13 JSON Data Mapping

Oracle Tuxedo Buffer
Type

JSON equivalent/example Notes
SALT Programming Guide 2-51

• short: Number
• int: Number
• long: Number
• float: Number
• double: Number
• char: String
• string: String
• carray: String (base64

encoded)
• bool: boolean
• unsigned char: String
• signed char: String
• wchar_t* or wchar_t: String
• unsigned int: Number
• unsigned long: Number
• long long: String (See notes

below table)
• unsigned long long: String

(See notes)
• long double: String (See notes

below table)
• mbstring: String
• view32: nested JSON record

Table 2-13 JSON Data Mapping

Oracle Tuxedo Buffer
Type

JSON equivalent/example Notes
2-52 SALT Programming Guide

REST Data Mapping
FML/FML32 {'<fieldname>':'<fieldcont
ent>',
'<fieldname>':'<fieldcont
ent>'}

possibly nested, FML32 only:

{'<fieldname>':{'<fieldnam
e>':'<fieldcontent>'}}

FML/FML32 field types are mapped
as follows (Oracle Tuxedo type:
JSON type):
• FLD_SHORT: Number
• FLD_LONG: Number
• FLD_FLOAT: Number
• FLD_DOUBLE: Number
• FLD_CHAR: String or character

'T' for JSON true or 'F' for JSON
false

• FLD_STRING: String
• FLD_CARRRAY: String (base64

encoded)
• FLD_MBSTRING: String
• FLD_VIEW32: JSON nested

record, see VIEW/VIEW32
mapping for individual types

• FLD_FML32: JSON object

Nested FLD_VIEW32: the name of the view
subtype must be the name of the embedded
VIEW32. For Example:

VIEW32 example.v definition file:
VIEW v32example

char flag1-1- - -

string str-1100 - -

…

JSON content (EVIEW32 is a FLD_VIEW32
fml32 type):
{"EVIEW32" :

 {"v32example":

 {"flag1":"x",

 "str":"somestring"}

 }

}

Table 2-13 JSON Data Mapping

Oracle Tuxedo Buffer
Type

JSON equivalent/example Notes
SALT Programming Guide 2-53

Notes: Non-structured buffer types (STRING, CARRAY, X_OCTET and MBSTRING) will not wrap
data as JSON objects, the data is transmitted as is.

JSON internally handles all floating point types differently than XML. XML conversion
floating point conversion may incur some precision loss over similar JSON conversions.
This is currently a limitation.

VIEW/VIEW32 Considerations
The following considerations apply when converting Oracle Tuxedo VIEW/VIEW32 buffers to
and from XML:

You must create an environment for converting XML to and from VIEW/VIEW32. This
includes setting up a VIEW directory and system VIEW definition files. These definitions are
automatically loaded by the GWWS server.

RECORD RECORD buffer type represents
copybook record. RECORD types
must have subtypes that designate
individual record structures.

Generated COBOL types:
• RECORD

• COMP-1

• COMP-2

• S9(18)

• 9(18)

• S9(9)

• 9(9)

• S9(4)

• S9(10)V9(10)

• X(1024)

• @binary=true

Each RECORD data type is defined as an XML
Schema complex type. Each RECORD field
should be one or more sub-elements of the
XML Schema complex type.

The COBOL types and the corresponding XML
Schema type are listed as follows:
• RECORD maps to xsd:complexType
• COMP-1 maps to xsd:float
• COMP-2 maps to xsd:double
• S9(18) maps to xsd:long
• 9(18) maps to xsd:unsignedLong
• S9(9) maps to xsd:int
• 9(9) maps to xsd:unsignedInt
• S9(4) maps to xsd:short
• S9(10)V9(10) COMP-3 maps to

xsd:decimal

• X(1024) maps to xsd:string
• @binary=true maps to

xsd:base64Binary

Table 2-13 JSON Data Mapping

Oracle Tuxedo Buffer
Type

JSON equivalent/example Notes
2-54 SALT Programming Guide

REST Data Mapping
FML/FML32 Considerations
The following considerations apply to converting Oracle Tuxedo FML/FML32 buffers to and from
XML:

You must create an environment for converting XML to and from FML/FML32. This
includes an FML field table file directory and system FML field definition files. These
definitions are automatically loaded by the GWWS. FML typed buffers can be handled
only if the environment is set up correctly.

Note: FML32 Field type FLD_PTR is not supported.

XML Data Mapping
XML data mapping is performed using similar rules as the mapping used in SOAP mode.

The following differences are to be noted:

Floating point numbers without decimal value get represented as integers, for example:
10.0 is printed as 10. This is currently a limitation.

No namespaces are generated or processed, since REST mode does not use interfaces.

Simple buffers (STRING, CARRAY, MBSTRING and XML) are sent and received as is, without
any XML processing. The behavior is identical to JSON processing (i.e.,no mapping is
necessary)_.

FML and FML32 requests are wrapped by a root element (which name is ignored, as long as
the XML is formed properly), and replies are wrapped in an element with the same name
as the subtype as specified in the REST/Service/Method/@inputbuffer attribute of the
SALTDEPLOY configuration file, or <root> element, since there is not necessarily one if
subtype is not configured. VIEW, VIEW32, X_COMMON and X_C_TYPE buffers are the subtype
name as root element name.

The different Oracle Tuxedo buffer types are converted into/from XML as shown in Table 2-14.
SALT Programming Guide 2-55

Table 2-14 XML Data Mapping

Tuxedo Buffer
Type

Description REST XML Mapping Example

STRING Oracle Tuxedo STRING typed buffers are used
to store character strings that terminate with a
NULL character. Oracle Tuxedo STRING typed
buffers are self-describing.

HELLO WORLD!

CARRAY Oracle Tuxedo CARRAY typed buffers store
character arrays, any of which can be NULL.
CARRAY buffers are used to handle data
opaquely and are not self-describing.

Binary content

MBSTRING Oracle Tuxedo MBSTRING typed buffers are
used for multibyte character arrays. Oracle
Tuxedo MBSTRING buffers consist of the
following three elements:
• Code-set character encoding
• Data length
• Character array of the encoding.

In order to transmit encodings other than
UTF-8, the "enableMultiEncoding"
property must be set to "true" in the
SALTDEPLOY configuration.

Multi-byte string encoded according
to Content-Type setting.
2-56 SALT Programming Guide

REST Data Mapping
XML Oracle Tuxedo XML typed buffers store XML
documents.

The GWWS server validates that the actual
XML data is well-formed. It will not do any
other enforcement validation, such as Schema
validation.

Only a single root XML buffer is allowed to be
stored in the payload; the GWWS server checks
for this.

Any original XML document prologue
information cannot be carried within the
payload.

In order to transmit encodings other than
UTF-8, the "enableMultiEncoding"
property must be set to "true" in the
SALTDEPLOY configuration.

XML fragment as is

X_C_TYPE Same as VIEW/VIEW32

X_COMMON Same as VIEW/VIEW32

X_OCTET Same as CARRAY

Table 2-14 XML Data Mapping

Tuxedo Buffer
Type

Description REST XML Mapping Example
SALT Programming Guide 2-57

VIEW/VIEW32 Oracle Tuxedo VIEW and VIEW32 typed
buffers store C structures defined by Oracle
Tuxedo applications.

VIEW structures are defined by using VIEW
definition files. A VIEW buffer type can define
multiple fields.

VIEW supports the following field types:
• short

• int

• long

• float

• double

• char

• string

• carray (represented as base64 encoded
content)

• bool

• unsigned char

• signed char

• wchar_t* or wchar_t

• unsigned int

• unsigned long

• long long

• unsigned long long

• long double

VIEW32 supports all the VIEW field types,
mbstring, and embedded VIEW32 type.

The name of the sub-element is the VIEW field
name. The occurrence of the sub-element
depends on the count attribute of the VIEW field
definition. The value of the sub-element should
be in the VIEW field data type corresponding
XML Schema type.

<VIEW>

 <viewfieldname>

 fieldcontent

 </viewfieldname>

</VIEW>

Table 2-14 XML Data Mapping

Tuxedo Buffer
Type

Description REST XML Mapping Example
2-58 SALT Programming Guide

REST Data Mapping
FML/FML32 Oracle Tuxedo FML and FML32 type buffers are
proprietary Oracle Oracle Tuxedo system
self-describing buffers. Each data field carries
its own identifier, an occurrence number, and
possibly a length indicator.

FML supports the following field types:
• FLD_CHAR

• FLD_SHORT

• FLD_LONG

• FLD_FLOAT

• FLD_DOUBLE

• FLD_STRING

• FLD_CARRAY (as base64 encoded content)

FML32 supports all the FML field types and
FLD_PTR, FLD_MBSTRING, FLD_FML32, and
FLD_VIEW32.

Nested FLD_VIEW32: the name of
the view subtype must be the name of
the embedded VIEW32. For
Example:
VIEW32 example.v
definition file:

VIEW v32example

char flag1-1- - -

string str-1100 - -

…

XML content (EVIEW32 is a
FLD_VIEW32 fml32 type):
<EVIEW32>

 <v32example>

 <flag1>x</flag1>

 <str>somestring</str>

 </v32example>

</EVIEW32>

Table 2-14 XML Data Mapping

Tuxedo Buffer
Type

Description REST XML Mapping Example
SALT Programming Guide 2-59

Note: Non-structured buffer types (STRING, CARRAY, X_OCTET and MBSTRING) do not wrap
data as XML objects, the data is transmitted as is.

VIEW/VIEW32 Considerations:
The following considerations apply when converting Oracle Tuxedo VIEW/VIEW32 buffers to
and from XML:

RECORD RECORD buffer type represents copybook
record. RECORD types must have subtypes that
designate individual record structures.

Generated COBOL types:
• RECORD

• COMP-1

• COMP-2

• S9(18)

• 9(18)

• S9(9)

• 9(9)

• S9(4)

• S9(10)V9(10)

• X(1024)

• @binary=true

Each RECORD data type is defined as
an XML Schema complex type. Each
RECORD field should be one or more
sub-elements of the XML Schema
complex type.

The COBOL types and the
corresponding XML Schema type are
listed as follows:
• RECORD maps to

xsd:complexType

• COMP-1 maps to xsd:float
• COMP-2 maps to xsd:double
• S9(18) maps to xsd:long
• 9(18) maps to

xsd:unsignedLong

• S9(9) maps to xsd:int
• 9(9) maps to

xsd:unsignedInt

• S9(4) maps to xsd:short
• S9(10)V9(10) COMP-3 maps

to xsd:decimal
• X(1024) maps to xsd:string
• @binary=true maps to

xsd:base64Binary

Table 2-14 XML Data Mapping

Tuxedo Buffer
Type

Description REST XML Mapping Example
2-60 SALT Programming Guide

REST Data Mapping
You must create an environment for converting XML to and from VIEW/VIEW32. This
includes setting up a VIEW directory and system VIEW definition files. These definitions are
automatically loaded by the GWWS server.

FML/FML32 Considerations
The following considerations apply to converting Oracle Tuxedo FML/FML32 buffers to and from
XML:

You must create an environment for converting XML to and from FML/FML32. This
includes an FML field table file directory and system FML field definition files. These
definitions are automatically loaded by the GWWS. FML typed buffers can be handled only
if the environment is set up correctly.

Note: FML32 Field type FLD_PTR is not supported.

Outbound Message Conversion
This section contains the following topics:

Query String Mapping

JSON Data Mapping

XML Data Mapping

Query String Mapping
Note: Attempting to use embedded FML32 and VIEW32 fields will result in a TPEPROTO error in

this mode.

For GET and DELETE methods, requested data is passed as an HTTP query string. For
example:http://host:1234/banking?account=1234

Data passed as query string can be mapped within the limitations of query string representation:

keyword=value model, when applicable. For simple buffer types the actual data may be
passed directly(e.g., http://host:1234/svc?inputstring).

No nesting of keyword/value pairs.

Encoding must be performed for some characters (“space” for instance).

Limited amount of data. While GWWS does not impose any limit, the browser or client
toolkit may.
SALT Programming Guide 2-61

The mapping is as described inTable 2-15 for different types of buffers supported by
OracleTuxedo.

Table 2-15 Query String Mapping

Tuxedo Buffer Type Query String Mapping Notes

STRING http://host:port/path?data Data as is possibly URL encoded,
GWWS will perform the encoding.

CARRAY http://host:port/path?data Data represented as base64 encoded
string.

MBSTRING http://host:port/path?data Data represented as URL encoded of
UTF-8 representation of the Tuxedo
MBSTRING.

XML http://host:port/path?data XML fragment as is, URL encoded.

X_C_TYPE Same as VIEW/VIEW32

X_COMMON Same as VIEW/VIEW32

X_OCTET Same as CARRAY
2-62 SALT Programming Guide

REST Data Mapping
VIEW/VIEW32 http://host:port/path?value1&value2
or
http://host:port/service?fieldname1=
value1&fieldname2=value2

GWWS attempts to convert values to
the corresponding VIEW/VIEW32
member depending on the target type:
number types from their string
representation to their Oracle Tuxedo
ones:
• float notation for float and

double VIEW/VIEW32 types
• integer notation for int, long

and other integer based types
• FLD_CHAR fields are translated

from URL-encoded content, i.e.
representable characters or their
'%xx' representation

• string for all other types

The fieldname=value notation is
used with:
• FBNAME field name when one is

configured in the view
description.

• CNAME value when no FBNAME is
present in the view description.

• If neither FBNAME nor CNAME
matches for this subtype a
mapping error is returned.

Table 2-15 Query String Mapping

Tuxedo Buffer Type Query String Mapping Notes
SALT Programming Guide 2-63

FML/FML32 http://host:port/path?fieldname1=val
ue1&fieldname2=value2

or, for multiple occurrences:

http://host:port/service?fieldname1=
value1&fieldname1=value2

Actual values are converted from
URL encoded string representations
to their native types.

GWWS attempts to convert values to
the corresponding FML/FML32
member depending on the target type:
number types from their string
representation to their Tuxedo ones:
• float notation for float and

double FML/FML32 types
• integer notation for int, long

and other integer-based types
• FLD_CHAR fields are translated

from URL-encoded content (i.e.,
representable characters or their
'%xx' representation

• string for all other types

Table 2-15 Query String Mapping

Tuxedo Buffer Type Query String Mapping Notes
2-64 SALT Programming Guide

REST Data Mapping
JSON Data Mapping
The different Tuxedo buffer types are converted into/from JSON as shown in Table 2-16.

RECORD RECORD buffer type represents
copybook record. RECORD types
must have subtypes that designate
individual record structures.

Generated COBOL types:
• RECORD

• COMP-1

• COMP-2

• S9(18)

• 9(18)

• S9(9)

• 9(9)

• S9(4)

• S9(10)V9(10)

• X(1024)

• @binary=true

Each RECORD data type is defined as
an XML Schema complex type. Each
RECORD field should be one or more
sub-elements of the XML Schema
complex type.

The COBOL types and the
corresponding XML Schema type are
listed as follows:
• RECORD maps to

xsd:complexType

• COMP-1 maps to xsd:float
• COMP-2 maps to xsd:double
• S9(18) maps to xsd:long
• 9(18) maps to

xsd:unsignedLong

• S9(9) maps to xsd:int
• 9(9) maps to

xsd:unsignedInt

• S9(4) maps to xsd:short
• S9(10)V9(10) COMP-3 maps

to xsd:decimal
• X(1024) maps to xsd:string
• @binary=true maps to

xsd:base64Binary

Table 2-15 Query String Mapping

Tuxedo Buffer Type Query String Mapping Notes

Table 2-16 JSON Data Mapping

Oracle Tuxedo Buffer Type JSON equivalent/example Notes

STRING <buffer content>

CARRAY <binary buffer content>
SALT Programming Guide 2-65

MBSTRING <Multi-byte string> In order to transmit encodings other
than UTF-8, the
"enableMultiEncoding"
property must be set to "true" in the
SALTDEPLOY configuration.

XML <XML fragment as-is> In order to transmit encodings other
than UTF-8, the
"enableMultiEncoding"
property must be set to "true" in the
SALTDEPLOY configuration.

X_C_TYPE Same as VIEW/VIEW32

X_COMMON Same as VIEW/VIEW32

X_OCTET Same as CARRAY

Table 2-16 JSON Data Mapping

Oracle Tuxedo Buffer Type JSON equivalent/example Notes
2-66 SALT Programming Guide

REST Data Mapping
VIEW/VIEW32 {'<fieldname>':'<fieldcont
ent>',
'<fieldname>':'<fieldcont
ent>'}

possibly nested:

{'<fieldname>':{'<fieldnam
e>':'<fieldcontent>'}}

JSON has the following primitive
types:

boolean (true/false)

Number (int or double float)

String

VIEW/VIEW32 field types will be
mapped as follows (Tuxedo type:
JSON type):
• short: Number
• int: Number
• long: Number
• float: Number
• double: Number
• char: String
• string: String
• carray: String (base64

encoded)
• bool: boolean
• unsigned char: String
• signed char: String
• wchar_t* or wchar_t: String
• unsigned int: Number
• unsigned long: Number

Table 2-16 JSON Data Mapping

Oracle Tuxedo Buffer Type JSON equivalent/example Notes
SALT Programming Guide 2-67

• long double: String (See
notes)

• mbstring: String
• view32: nested JSON record

See VIEW/VIEW32 considerations
and examples for fieldname mapping
details.

Some types may be truncated if
represented in their primitive types
(long long, long double), in
that case they will be rendered as
JSON strings.

Table 2-16 JSON Data Mapping

Oracle Tuxedo Buffer Type JSON equivalent/example Notes
2-68 SALT Programming Guide

REST Data Mapping
FML/FML32 {'<fieldname>':'<fieldcont
ent>',
'<fieldname>':'<fieldcont
ent>'}

possibly nested, FML32 only:

{'<fieldname>':{'<fieldnam
e>':'<fieldcontent>'}}

FML/FML32 field types are mapped
as follows (Tuxedo type: JSON type):
• FLD_SHORT: Number
• FLD_LONG: Number
• FLD_FLOAT: Number
• FLD_DOUBLE: Number
• FLD_CHAR: String or character

'T' for JSON true or 'F' for JSON
false

• FLD_CARRRAY: String (base64
encoded)

• FLD_MBSTRING: String
• FLD_VIEW32: JSON nested

record, see VIEW/VIEW32
mapping for individual types

• FLD_FML32: JSON bject

Nested FLD_VIEW32: the name of
the view subtype must be the name of
the embedded VIEW32. For
Example:

VIEW32 example .v definition file:
VIEW v32 example

charflag1 - 1 ---

string str - 1 100

- -

JSON content (EVIEW32 is a
FLD_VIEW32 fml32 type):

{"EVIEW32" :

 {"v32example":

{"flag1":"x",

"str":"somestring"}

}

}

Table 2-16 JSON Data Mapping

Oracle Tuxedo Buffer Type JSON equivalent/example Notes
SALT Programming Guide 2-69

Notes: Non-structured buffer types (STRING, CARRAY, X_OCTET and MBSTRING) will not wrap
data as JSON objects, the data is transmitted as is. The content-type setting is ignored for
those buffer types with respect to data mapping.

JSON internally handles all floating point types differently than XML. XML conversion
floating point conversion may incur some precision loss over similar JSON conversions.
This is currently a limitation.

RECORD RECORD buffer type represents
copybook record. RECORD types
must have subtypes that designate
individual record structures.

Generated COBOL types:
• RECORD

• COMP-1

• COMP-2

• S9(18)

• 9(18)

• S9(9)

• 9(9)

• S9(4)

• S9(10)V9(10)

• X(1024)

• @binary=true

Each RECORD data type is defined as
an XML Schema complex type. Each
RECORD field should be one or more
sub-elements of the XML Schema
complex type.

The COBOL types and the
corresponding XML Schema type are
listed as follows:
• RECORD maps to

xsd:complexType

• COMP-1 maps to xsd:float
• COMP-2 maps to xsd:double
• S9(18) maps to xsd:long
• 9(18) maps to

xsd:unsignedLong

• S9(9) maps to xsd:int
• 9(9) maps to

xsd:unsignedInt

• S9(4) maps to xsd:short
• S9(10)V9(10) COMP-3 maps

to xsd:decimal
• X(1024) maps to xsd:string
• @binary=true maps to

xsd:base64Binary

Table 2-16 JSON Data Mapping

Oracle Tuxedo Buffer Type JSON equivalent/example Notes
2-70 SALT Programming Guide

REST Data Mapping
VIEW/VIEW32 Considerations:
The following considerations apply when converting Oracle Tuxedo VIEW/VIEW32 buffers to
and from XML:

You must create an environment for converting XML to and from VIEW/VIEW32. This
includes setting up a VIEW directory and system VIEW definition files. These definitions are
automatically loaded by the GWWS server.

FML/FML32 Considerations
The following considerations apply to converting Oracle Tuxedo FML/FML32 buffers to and from
XML:

You must create an environment for converting XML to and from FML/FML32. This
includes an FML field table file directory and system FML field definition files. These
definitions are automatically loaded by the GWWS. FML typed buffers can be handled only
if the environment is set up correctly.

Note: FML32 Field type FLD_PTR is not supported.

Conversion Examples:

Listing 2-19 VIEW Description File

VIEW empname

#TYPE CNAME FBNAME COUNT FLAG SIZE NULL

char fname EMP_FNAME 1 - 25 -

char minit EMP_MINIT 1 - 1 -

char lname EMP LNAME 1 - 25 -

END

VIEW emp

struct empname ename 1 - - -

unsignedlong id EMP_ID 1 - - -
SALT Programming Guide 2-71

long ssn EMP_SSN 1 - - -

double salaryhist EMP_SAL 10 - - -

END

Corresponding header file after compilation

Listing 2-20 Compilation

struct empname {

 char fname[25];

 char minit;

 char lname[25];

};

struct emp {

 struct empname ename;

 unsigned long id;

 long ssn;

 double salaryhist[10];

}

JSON Content Example

Listing 2-21 JSON Content Example

{

 "ename":

 {
2-72 SALT Programming Guide

REST Data Mapping
 "EMP_FNAME":"John",

 "EMP_MINIT":"R",

 "EMP_LNAME":"Smith"

 },

 "EMP_ID":1234,

 "EMP_SSN":123456789,

 "EMP_SAL":

 [10000.0,

 11000.0,

 12000.0,

 13000.0,

 14000.0,

 15000.0,

 16000.0,

 17000.0,

 18000.0,

 19000.0]

 }

}

Without FBNAME(names specified in the view file), the content is represented using the CNAME
values. Since nesting cannot be expressed without field names because the field name is also the
subtype name for the nested view, only structures with 1 level are represented.

For example:

Listing 2-22 VIEW Description

VIEW empname
SALT Programming Guide 2-73

#TYPE CNAME FBNAME COUNT FLAG SIZE NULL

char fname - 1 - 25 -

char minit - 1 - 1 -

char lname - 1 - 25 -

END

Corresponding header file after compilation

Listing 2-23 Compilation

struct empname {

 char fname[25];

 char minit;

 char lname[25];

};

Listing 2-24 JSON Content Example

{

 "fname":"John",

 "minit":"R",

 "lname":"Smith"

 }
2-74 SALT Programming Guide

REST Data Mapping
FML32

Listing 2-25 Field Table

#name rel-numbertypeflags comment

BIKES 1 fml32 -

COLOR 2 string -

CURSERIALNO3 string -

INSTOCK4 string -

NAME 5 string -

ORDERDATE6 string -

PRICE 7 float -

SERIALNO8 string -

SIZE 9 long -

SKU 10 string -

TYPE 11 string -

Listing 2-26 JSON Content Example

 "BIKES":

 [

 {"COLOR":"BLUE",

 "CURSERIALNO":"AZ123",

 "INSTOCK":"Y",

 "NAME":"CUTTER",

 "ORDERDATE":"11/03/2012",
SALT Programming Guide 2-75

 "PRICE":1234.55,

 "SERIALNO":"123456",

 "SIZE":52,

 "SKU":"CU521234",

 "TYPE":"ROAD"},

 {"COLOR":"RED",

 "CURSERIALNO":"BZ123",

 "INSTOCK":"Y",

 "NAME":"ROCKGLIDER",

 "ORDERDATE":"11/06/2012",

 "PRICE":1455.55,

 "SERIALNO":"123457",

 "SIZE":16,

 "SKU":"RG161234",

 "TYPE":"MTB"},

]

 }

}

XML Data Mapping
XML data mapping is performed using similar rules as the mapping used in SOAP mode.

Note the following:

Floating point numbers without decimal value get represented as integers, for example:
10.0 is printed as 10. This is currently a limitation.

No namespaces is generated or processed, since HTTP mode does not use interfaces.
2-76 SALT Programming Guide

REST Data Mapping
Simple buffers (STRING, CARRAY, MBSTRING, and XML) are sent and received as is, without
any XML processing. The behavior is identical to JSON processing (i.e.,no mapping is
necessary.

FML and FML32 requests must be wrapped by a root element (which name is ignored, as
long as the XML is formed properly), and replies are wrapped in an element with the same
name as the subtype as specified in the HTTP/Service/@outputbuffer attribute of the
SALTDEPLOY configuration file, or <root> element if subtype is not configured. VIEW,
VIEW32, X_COMMON, and X_C_TYPE buffers use the subtype name as the root element
name.

The different Oracle Tuxedo buffer types are converted into/from XML in the following manner
as shown in Table 2-17

Table 2-17 XML Data Mapping

Oracle Tuxedo Buffer Type Description HTTP XML Mapping Example

STRING Oracle Tuxedo STRING typed
buffers are used to store character
strings that terminate with a NULL
character. Oracle Tuxedo STRING
typed buffers are self-describing.

HELLO WORLD!

CARRAY Oracle Tuxedo CARRAY typed
buffers store character arrays, any of
which can be NULL. CARRAY buffers
are used to handle data opaquely and
are not self-describing.

Binary content
SALT Programming Guide 2-77

MBSTRING Oracle Tuxedo MBSTRING typed
buffers are used for multibyte
character arrays. Oracle Tuxedo
MBSTRING buffers consist of the
following three elements:

- Code-set character encoding

- Data length

- Character array of the encoding.

In order to transmit encodings other
than UTF-8, the
"enableMultiEncoding"
property must be set to "true" in the
SALTDEPLOY configuration.

Multi-byte string encoded according
to Content-Type setting.

XML Oracle Tuxedo XML typed buffers
store XML documents.

The GWWS server validates that the
actual XML data is well-formed. It
will not do any other enforcement
validation, such as Schema
validation.

Only a single root XML buffer is
allowed to be stored in the payload;
the GWWS server checks for this.

Any original XML document
prologue information cannot be
carried within the payload.

In order to transmit encodings other
than UTF-8, the
"enableMultiEncoding"
property must be set to "true" in the
SALTDEPLOY configuration.

XML fragment as-is

X_C_TYPE Same as VIEW/VIEW32

Table 2-17 XML Data Mapping

Oracle Tuxedo Buffer Type Description HTTP XML Mapping Example
2-78 SALT Programming Guide

REST Data Mapping
X_COMMON Same as VIEW/VIEW32

X_OCTET Same as CARRAY

VIEW/VIEW32 Oracle Tuxedo VIEW and VIEW32
typed buffers store C structures
defined by Oracle Tuxedo
applications.

VIEW structures are defined by using
VIEW definition files. A VIEW buffer
type can define multiple fields.

VIEW supports the following field
types:
• short

• int
• long

• float

• double

• char

• string

• carray (represented as base64
encoded content)

• bool

• unsigned char

• signed char

• wchar_t* or wchar_t
• unsigned int

• unsigned long

• long long

• unsigned long long

• long double

<VIEW>

<viewfieldname>

fieldcontent

</viewfieldname>

</VIEW>

Table 2-17 XML Data Mapping

Oracle Tuxedo Buffer Type Description HTTP XML Mapping Example
SALT Programming Guide 2-79

VIEW32 supports all the VIEW field
types, mbstring, and embedded
VIEW32 type.

The name of the sub-element is the
VIEW field name. The occurrence of
the sub-element depends on the count
attribute of the VIEW field definition.
The value of the sub-element should
be in the VIEW field data type
corresponding XML Schema type.

Table 2-17 XML Data Mapping

Oracle Tuxedo Buffer Type Description HTTP XML Mapping Example
2-80 SALT Programming Guide

REST Data Mapping
FML/FML32 Oracle Tuxedo FML and FML32 type
buffers are proprietary Oracle Oracle
Tuxedo system self-describing
buffers. Each data field carries its
own identifier, an occurrence
number, and possibly a length
indicator.

FML supports the following field
types:
• FLD_CHAR

• FLD_SHORT

• FLD_LONG

• FLD_FLOAT

• FLD_DOUBLE

• FLD_STRING

• FLD_CARRAY (as base64
encoded content)

FML32 supports all the FML field
types and FLD_PTR,
FLD_MBSTRING, FLD_FML32, and
FLD_VIEW32.

Nested FLD_VIEW32: the name of
the view subtype must be the name of
the embedded VIEW32. For
Example:
VIEW32 example.v
definition file:

VIEW v32example

char flag1 - 1 ---

string str - 1 - 100

XML content (EVIEW32 is a
FLD_VIEW32 fml32 type):

<EVIEW32>

<v32example>

<flag1>x</flag1>

<str>somestring</str>

</v32example>

</EVIEW32>

Table 2-17 XML Data Mapping

Oracle Tuxedo Buffer Type Description HTTP XML Mapping Example
SALT Programming Guide 2-81

Note: Non-structured buffer types (STRING, CARRAY, X_OCTET and MBSTRING) will not wrap
data as XML objects, the data is transmitted as is.

VIEW/VIEW32 Considerations:
The following considerations apply when converting Oracle Tuxedo VIEW/VIEW32 buffers to
and from XML:

You must create an environment for converting XML to and from VIEW/VIEW32. This
includes setting up a VIEW directory and system VIEW definition files. These definitions are
automatically loaded by the GWWS server.

RECORD RECORD buffer type represents
copybook record. RECORD types
must have subtypes that designate
individual record structures.

Generated COBOL types:
• RECORD

• COMP-1

• COMP-2

• S9(18)

• 9(18)

• S9(9)

• 9(9)

• S9(4)

• S9(10)V9(10)

• X(1024)

• @binary=true

Each RECORD data type is defined as
an XML Schema complex type. Each
RECORD field should be one or more
sub-elements of the XML Schema
complex type.

The COBOL types and the
corresponding XML Schema type are
listed as follows:
• RECORD maps to

xsd:complexType

• COMP-1 maps to xsd:float
• COMP-2 maps to xsd:double
• S9(18) maps to xsd:long
• 9(18) maps to

xsd:unsignedLong

• S9(9) maps to xsd:int
• 9(9) maps to

xsd:unsignedInt

• S9(4) maps to xsd:short
• S9(10)V9(10) COMP-3 maps

to xsd:decimal
• X(1024) maps to xsd:string
• @binary=true maps to

xsd:base64Binary

Table 2-17 XML Data Mapping

Oracle Tuxedo Buffer Type Description HTTP XML Mapping Example
2-82 SALT Programming Guide

REST Data Mapping
FML/FML32 Considerations
The following considerations apply to converting Oracle Tuxedo FML/FML32 buffers to and from
XML:

You must create an environment for converting XML to and from FML/FML32. This
includes an FML field table file directory and system FML field definition files. These
definitions are automatically loaded by the GWWS. FML typed buffers can be handled only
if the environment is set up correctly.

Note: FML32 Field type FLD_PTR is not supported
SALT Programming Guide 2-83

2-84 SALT Programming Guide

C H A P T E R 3
Web Service Client Programming
This chapter contains the following topics:

Overview

SALT Web Service Client Programming Tips

Web Service Client Programming References

Overview
SALT is a configuration-driven product that publishes existing Oracle Tuxedo application
services as industry-standard Web services. From a Web services client-side programming
perspective, SALT (used in conjunction with the Oracle Tuxedo framework), is a standard Web
service provider. You only need to use the SALT WSDL file to develop a Web service client
program.

To develop a Web service client program, do the following steps:

1. Generate or download the SALT WSDL file. For more information, see Configuring SALT.

2. Use a Web service client-side toolkit to parse the SALT WSDL document, and generate client
stub code. For more information, see SALT Web Service Client Programming Tips.

3. Write client-side application code to invoke a SALT Web service using the functions defined
in the client-generated stub code.

4. Compile and run your client application.
SALT Programming Guide 3-1

../config/config.html

REpresentational State Transfer (REST) Support
With REST enabled, requests received on a REST port are processed as follows by GWWS.

URIs must comply with the following pattern:
<REST service name>

Where the Oracle Tuxedo service name is the name of the REST service invoked (for example,
TOUPPER).

Data format and input Oracle Tuxedo buffer types are specified using the following HTTP
header:

content-type:

Set to application/json:indicates that JSON is used to transfer data to/from HTTP
client.

Set to application/xml:indicates that XML is used to transfer data to/from HTTP client.

Note: application/json and application/xml will only apply to structured buffer
types (VIEW, VIEW32, FML, FML32, X_C_TYPE and X_COMMON. To use simple buffers
and POST or PUT, you must set Content-type to appropriate values ("text/plain" for
STRING, "application/octet-stream" for CARRAY, etc.).

Oneway (in and out)
If no data is input, the Oracle Tuxedo service is invoked with a NULL Oracle Tuxedo buffer.
Similarly, if the Oracle Tuxedo service does not return any data, the response also contains no
data (which is a valid use-case).

ATMI and SCA Support
There is no restriction in the type of Oracle Tuxedo service being exposed as REST (whether
ATMI or SCA). To use SCA components, you must conform to SCA data mapping conventions
as found in SCA Data Type Mapping. Name mapping may apply, as outlined in SCA and Oracle
Tuxedo Interoperability.
3-2 SALT Programming Guide

http://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/sca/sca.html#wp1085820
http://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/sca/sca.html#wp1112199
http://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/sca/sca.html#wp1112199

Runn ing H/F 2
Examples

Example 1: .h interface

Listing 3-1 .h interface

#include <string>

/**

 * Tuxedo service business interface

 */

 class TuxService

 {

 public:

 virtual std::string TOUPPER(const std::string inputString) = 0;

 };

Example 2: SCDL Descriptor

Listing 3-2 SCDL Descriptor

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" name="myComponent">

 <service name="TuxService">

 <interface.cpp header="TuxService.h"/>

 <binding.atmi/>

 <inputBufferType>STRING</inputBufferType>

 <outputBufferType>STRING</outputBufferType>

 <reference>MYComponent</reference>

 </service>
SALT Programming Guide 3-3

 <component name="MYComponent">

 <implementation.cpp library="TuxService" header="TuxServiceImpl.h"/>

 </component>

</composite>

Example 3: SALTDEPLOY REST Service Definition

Listing 3-3 SALTDEPLOY REST Service Definition

<REST>

 <Network http="myhost:1234"/>

 <Service name="testSCA">

 <Method name="GET"

 reposservice=""

 service="TuxService/TOUPPER"

 inputbuffer="STRING"/>

 </Service>

...

 </REST>

Example 4: URL used to invoke service
http://myhost:1234/testSCA?teststring

Example 5: Response
HTTP/1.1 200 OK

Content-Type: text/xmlTESTSTRING
3-4 SALT Programming Guide

Runn ing H/F 2
SALT Web Service Client Programming Tips
This section provides some useful client-side programming tips for developing Web service
client programs using the following SALT-tested programming toolkits:

Oracle WebLogic Web Service Client Programming Toolkit

Apache Axis for Java Web Service Client Programming Toolkit

Microsoft .NET Web Service Client Programming Toolkit

For more information, see Interoperability Considerations in the SALT Administration Guide.

Notes: You can use any SOAP toolkit to develop client software.

The sample directories for the listed toolkits can be found after SALT is installed.

Oracle WebLogic Web Service Client Programming Toolkit
WebLogic Server provides the clientgen utility which is a built-in application server
component used to develop Web service client-side java programs. The invocation can be issued
from standalone java programs and server instances. For more information, see Developing
JAX-WS Web Services for Oracle WebLogic Server.

Besides traditional synchronous message exchange mode, SALT also supports asynchronous and
reliable Web service invocation using WebLogic Server. Asynchronous communication is
defined by the WS-Addressing specification. Reliable message exchange conforms to the
WS-ReliableMessaging specification.

Tip: Use the WebLogic specific WSDL document for HTTP MIME attachment support.

SALT can map Oracle Tuxedo CARRAY data to SOAP request MIME attachments. This is
beneficial when the binary data stream is large since MIME binding does not need
additional encoding wrapping. This can help save CPU cycles and network bandwidth.

Another consideration, in an enterprise service oriented environment is that binary data
might be used to guide high-level data routing and transformation work. Encoded data
can be problematic. To enable the MIME data binding for Oracle Tuxedo CARRAY data, a
special flag must be specified in the WSDL document generation options (both for online
downloading and using the tmwsdlgen command utility).

Online Download:
http://salt.host:portnumber//wsdl?mappolicy=raw&toolkit=wls
SALT Programming Guide 3-5

../interop/interop.html
http://docs.oracle.com/middleware/1212/wls/WSGET/index.html
http://docs.oracle.com/middleware/1212/wls/WSGET/index.html

tmwsdlgen Utility
tmwsdlgen -c WSDF_FILE -m raw -t wls

Apache Axis for Java Web Service Client Programming Toolkit
SALT supports the AXIS wsdl2java utility which generates java stub code from the WSDL
document. The AXIS Web service programming model is similar to WebLogic.

Tip: 1. Use the AXIS specific WSDL document for HTTP MIME attachment support.

SALT supports HTTP MIME transportation for Oracle Tuxedo CARRAY data. A special
option must be specified for WSDL online downloading and the tmwsdlgen utility.

Online Download:
http://salt.host:portnumber//wsdl?mappolicy=raw&toolkit=axis

tmwsdlgen Utility
tmwsdlgen -c WSDF_FILE -m raw -t axis

Tip: 2. Disable multiple-reference format in AXIS when RPC/encoded style is used.

AXIS may send a multi-reference format SOAP message when RPC/encoded style is
specified for the WSDL document. SALT does not support multiple-reference format.
You can disable AXIS multiple-reference format as shown in Listing 3-4:

Listing 3-4 Disabling AXIS Multiple-Reference Format

TuxedoWebServiceLocator service = new TuxedoWebServiceLocator();
service.getEngine().setOption("sendMultiRefs", false);¦

Tip: 3. Use Apache Sandensha project with SALT for WS-ReliableMessaging
communication.

Interoperability has been tested for WS-ReliableMessaging between SALT and the
Apache Sandensha project. The Sandensha asynchronous mode and send offer must
be set in the code.
3-6 SALT Programming Guide

Runn ing H/F 2

A sample Apache Sandensha asynchronous mode and send offer code example is
shown in Listing 3-5:

Listing 3-5 Sample Apache Sandensha Asynchronous Mode and “send offer” Code Example

/* Call the service */
 TuxedoWebService service = new TuxedoWebServiceLocator();

 Call call = (Call) service.createCall();
 SandeshaContext ctx = new SandeshaContext();

 ctx.setAcksToURL("http://127.0.0.1:" + defaultClientPort +

"/axis/services/RMService");
 ctx.setReplyToURL("http://127.0.0.1:" + defaultClientPort +

"/axis/services/RMService");
 ctx.setSendOffer(true);
 ctx.initCall(call, targetURL, "urn:wsrm:simpapp",

Constants.ClientProperties.IN_OUT);

 call.setUseSOAPAction(true);
 call.setSOAPActionURI("ToUpperWS");
 call.setOperationName(new

javax.xml.namespace.QName("urn:pack.simpappsimpapp_typedef.salt11",

"ToUpperWS"));
 call.addParameter("inbuf", XMLType.XSD_STRING, ParameterMode.IN);
 call.setReturnType(org.apache.axis.encoding.XMLType.XSD_STRING);

 String input = new String();
 String output = new String();
 int i;
 for (i = 0; i < 3; i++) {
 input = "request" + "_" + String.valueOf(i);

 System.out.println("Request:"+input);
SALT Programming Guide 3-7

 output = (String) call.invoke(new Object[]{input});
 System.out.println("Reply:" + output);

 }

ctx.setLastMessage(call);
 input = "request" + "_" + String.valueOf(i);
 System.out.println("Request:"+input);
 output = (String) call.invoke(new Object[]{input});

Microsoft .NET Web Service Client Programming Toolkit
Microsoft .Net 1.1/2.0 provides wsdl.exe in the .Net SDK package. It is a free development
Microsoft toolkit. In the SALT simpapp sample, a .Net program is provided in the
simpapp/dnetclient directory.

.Net Web service programming is easy and straightforward. Use the wsdl.exe utility and the
SALT WSDL document to generate the stub code, and then reference the .Net object contained
in the stub code/binary in business logic implementations.

Tip: 1. Do not use .Net program MIME attachment binding for CARRAY.

Microsoft does not support SOAP communication MIME binding. Avoid using the
WSDL document with MIME binding for CARRAY in .Net development.

SALT supports base64Binary encoding for CARRAY data (the default WSDL document
generation.)

Tip: 2. Some RPC/encoded style SOAP messages are not understood by the GWWS
server.

When the SALT WSDL document is generated using RPC/encoded style, .Net sends out
SOAP messages containing soapenc:arrayType. SALT does not support
soapenc:arrayType using RPC/encoded style. A sample RPC/encoded style-generated
WSDL document is shown in Listing 3-6.
3-8 SALT Programming Guide

Runn ing H/F 2
Listing 3-6 Sample RPC/encoded Style-Generated WSDL Document

<wsdl:types>

 <xsd:schema attributeFormDefault="unqualified"

elementFormDefault="qualified"

targetNamespace="urn:pack.TuxAll_typedef.salt11">
 <xsd:complexType name="fml_TFML_In">
 <xsd:sequence>
 <xsd:element maxOccurs="60"

minOccurs="60" name="tflong" type="xsd:long"></xsd:element>
 <xsd:element maxOccurs="80"

minOccurs="80" name="tffloat" type="xsd:float"></xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="fml_TFML_Out">
 …

</xsd:complexType>

 </xsd:schema>

 </wsdl:types>

Workaround: Use Document/literal encoded style for .Net client as recommended by Microsoft.

Tip: 3. Error message regarding xsd:base64Binary in RPC/encoded style.

If xsd:base64Binary is used in the SALT WSDL document using RPC/encoded style,
wsdl.exe can generate stub code;however, the client program might report a runtime
error as follows:

System.InvalidOperationException:'base64Binary' is an invalid value for the
SoapElementAttribute.DataType property. The property may only be specified for
primitive types.

Workaround: This is a .Net framework issue.
Use Document/literal encoded style for .Net client as recommended by Microsoft.
SALT Programming Guide 3-9

Web Service Client Programming References

Online References
Oracle WebLogic 10.0 Web Service Client Programming References

Oracle WebLogic 10.0 Documentation

Apache Axis 1.3 Web Service Client Programming References

Consuming Web Services with Axis

Using WSDL with Axis

Microsoft .NET Web Service Programming References

Building Web Services
3-10 SALT Programming Guide

http://docs.oracle.com/cd/E13222_01/wls/docs100/intro/chap1.html
http://ws.apache.org/axis/java/user-guide.html#ConsumingWebServicesWithAxis
http://ws.apache.org/axis/java/user-guide.html#UsingWSDLWithAxis
http://msdn.microsoft.com/webservices/webservices/building/default.aspx

C H A P T E R 4
Oracle Tuxedo ATMI Programming for
Web Services
This chapter contains the following topics:

Overview

Converting WSDL Model Into Oracle Tuxedo Model

Invoking SALT Proxy Services

Overview
SALT allows you to import external Web Services into Oracle Tuxedo Domains. To import
external Web services into Oracle Tuxedo applications, a WSDL file must first be loaded and
converted. The SALT WSDL conversion utility, wsdlcvt, translates each wsdl:operation into
a SALT proxy service. The translated SALT proxy service can be invoked directly through
standard Oracle Tuxedo ATMI functions.

SALT proxy service calls are sent to the GWWS server. The request is translated from Oracle
Tuxedo typed buffers into the SOAP message, and then sent to the corresponding external Web
Service. The response from an external Web Service is translated into Oracle Tuxedo typed
buffers, and returned to the Oracle Tuxedo application. The GWWS acts as the proxy
intermediary.

If an error occurs during the service call, the GWWS server sets the error status using tperrno
(which can be retrieved by Oracle Tuxedo applications). This enables you to detect and handle
the SALT proxy service call error status.
4-1 SALT Programming Guide

Converting WSDL Model Into Oracle Tuxedo Model
SALT provides a WSDL conversion utility, wsdlcvt, that converts external WSDL files into
Oracle Tuxedo specific definition files so that you can develop Oracle Tuxedo ATMI programs
to access services defined in the WSDL file.

WSDL-to-Tuxedo Object Mapping
SALT converts WSDL object models into Oracle Tuxedo models using the following rules:

Only SOAP over HTTP binding are supported. Each binding is defined and saved as a
WSBinding object in the WSDF file.

Each operation in the SOAP binding is mapped as one Oracle Tuxedo-style service (which
is also called a SALT proxy service). The operation name is used as the Oracle Tuxedo
service name and indexed in the Oracle Tuxedo Service Metadata Repository.

Note: If the operation name exceeds the Oracle Tuxedo service name length limitation (255
characters), you must manually set a unique short Oracle Tuxedo service name in the
metadata respository and set the <Service> tuxedoRef attribute in the WSDF file.

For more information, see SALT Web Service Definition File Reference in the SALT
Reference Guide.

Other Web service external application protocol information is saved in the generated WSDF
file (including SOAP protocol version, SOAP message encoding style, accessing
endpoints, etc.).

XML Schema definitions embedded in the WSDL file are copied and saved in separate .xsd
files.

Each wsdl:operation object and its input/output message details are converted as
theOracle Tuxedo service definition conforms to the Oracle Tuxedo Service Metadata
Repository input syntax.

Table 4-1 lists detailed mapping relationships between the WSDL file and Oracle Tuxedo
definition files.
4-2 Oracle SALT Programming Guide

../ref/comref.html#wp1112274
../ref/wsdf.html

Runn ing H/F 1
Invoking SALT Proxy Services
The following sections include information on how to invoke the converted SALT proxy service
from an Oracle Tuxedo application:

SALT Supported Communication Patterns

Oracle Tuxedo Outbound Call Programming: Main Steps

Managing Error Code Returned from GWWS

Handling Fault Messages in an Oracle Tuxedo Outbound Application

SALT Supported Communication Patterns
SALT only supports the Oracle Tuxedo Request/Response communication patterns for outbound
service calls. An Oracle Tuxedo application can request the SALT proxy service using the
following communication Oracle Tuxedo ATMIs:

tpcall(3c) / tpacall(3c) / tpgetreply(3c)

These basic ATMI functions can be called with an Oracle Tuxedo typed buffer as the input
parameter. The return of the call also carries an Oracle Tuxedo typed buffer. All these
buffers conform to the converted outside Web service interface. tpacall/tpgetreply are
not related to SOAP async communication.

Table 4-1 WSDL Model / Oracle Tuxedo Model Mapping Rules

WSDL Object Oracle Tuxedo/SALT Definition File Oracle Tuxedo/SALT Definition
Object

/wsdl:binding SALT Web Service Definition File
(WSDF)

/WSBinding

/wsdl:portType /WSBinding/Servicegroup

/wsdl:binding/soap:
binding

/WSBinding/SOAP

/wsdl:portType/oper
ation

Metadata Input File (MIF) /WSBinding/service

/wsdl:types/xsd:sch
ema

FML32 Field Defintion Table Field name type
4-3 Oracle SALT Programming Guide

tpgetcallinfo(3c)/tpsecallinfo(3c)

tpgetcallinfo() retrieves HTTP headers associated with an application buffer using the
GWWS gateway in FML32 format; tpsetcallinfo() performs the reverse (i.e., attach
FML32 formatted HTTP headers to an application buffer to be sent to a remote HTTP
(possibly SOAP) server).

tpforward(3c)

Oracle Tuxedo server applications can use this function to forward an Oracle Tuxedo
request to a specified SALT proxy service. The response buffer is sent directly to the client
application response queue as if it is a traditional native Oracle Tuxedo service.

TMQFORWARD enabled queue-based communication.

Oracle Tuxedo system server TMQFORWARD can accept queued requests, and sends them to
SALT proxy services that have the same name as the queue.

For more information, see Oracle Tuxedo ATMI C Functions and File Formats, Data
Descriptions, MIBs, and System Processes Reference.

SALT does not support the following Oracle Tuxedo communication patterns:

Conversational communication

Event-based communication

Oracle Tuxedo Outbound Call Programming: Main Steps
When the GWWS is booted and SALT proxy services are advertised, you can create an Oracle
Tuxedo application to call them. To develop a program to access SALT proxy services, do the
following:

1. Check the Oracle Tuxedo Service Metadata Repository definition to see what the SALT proxy
service interface is.

2. Locate the generated FML32 field table files. Modify the FML32 field table to eliminate
conflicting field names and assign a valid base number for the index.

Note: The wsdlcvt generated FML32 field table files are always used by GWWS. You
must make sure the field name is unique at the system level. If two or more fields are
associated with the same field name, change the field name. Do not forget to change
Oracle Tuxedo Service Metadata Repository definition accordingly.

The base number field index in the generated FML32 field table must be changed
4-4 Oracle SALT Programming Guide

http://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/rf3c/rf3c.html
http://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/rf5/rf5.html
http://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/rf5/rf5.html

Runn ing H/F 1
from the invalid default value to a correct number to ensure all field indexes in the
table are unique at the entire system level.

3. Generate FML32 header files with mkfldhdr32(1).

4. Boot the GWWS with correct FML32 environment variable settings.

5. Write a skeleton C source file for the client to call the outbound service (refer to Oracle
Tuxedo documentation and the Oracle Tuxedo Service Metadata Repository generated
pseudo-code if necessary). You can use tpcall(1) or tpacall(1) for synchronous or
asynchronous communication, depending on the requirement.

6. For FML32 buffers, you must add each FML32 field (conforming to the corresponding SALT
proxy service input buffer details), defined in the Oracle Tuxedo Service Metadata Repository
(including FML32 field sequence and occurrence). The client source may include the
generated header file to facilitate referencing the field name.

7. Get input buffer ready. You can handle the returned buffer, which should be of the type
defined in Metadata.

Compile the source to generate executable.

Test the executable.

Managing Error Code Returned from GWWS
If the GWWS server encounters an error accessing external Web services, tperrno is set
accordingly so the Oracle Tuxedo application can diagnose the failure. Table 4-2 lists possible
SALT proxy service tperrno values.

Table 4-2 Error Code Returned From GWWS/Tuxedo Framework

TPERRNO Possible Failure Reason

TPENOENT Requested SALT proxy service is not advertised by GWWS.

TPESVCERR The HTTP response message returned from external Web service
application is not valid.

The SOAP response message returned from external Web service
application is not well-formed.

TPEPERM Authentication failure.
4-5 Oracle SALT Programming Guide

../../../tuxedo/docs12cr2/rfcm/rfcmd.html

Handling Fault Messages in an Oracle Tuxedo Outbound
Application
All rules listed inthe WSDL file are used to map WSDL input/output message into Oracle Tuxedo
Metadata inbuf/outbuf definition. WSDL file default message can also be mapped into Oracle
Tuxedo Metadata errbuf with some amendments to the rules:

Rules for fault mapping:

There are two modes for mapping Metadata errbuf into SOAP Fault messages: Tux Mode and
XSD Mode.

Tux Mode is used to convert Oracle Tuxedo original error buffers returned with TPFAIL.
The error buffers are converted intothe XML payload in the SOAP fault <detail>
element.

XSD Mode is used to represent SOAP fault and WSDL file fault messages defined with
Oracle Tuxedo buffers. The mapping rule includes:

– Each service in XSD mode (servicemode=webservice), always has an errbuf in
Metadata with type=FML32.

– errbuf is a FML32 buffer. It is a complete description of the SOAP:Fault message
that may appear in correspondence (which is different for SOAP 1.1 and 1.2). The

TPEITYPE Message conversion failure when converting Oracle Tuxedo request typed
buffer into XML payload of the SOAP request message.

TPEOTYPE Message conversion failure when converting XML payload of the SOAP
response message into Oracle Tuxedo response typed buffer.

TPEOS Request is rejected because of system resource limitation.

TPETIME Timeout occurred. This timeout can either be a BBL blocktime, or a SALT
outbound call timeout.

TPSVCFAIL External Web service returns SOAP fault message

TPESYSTEM GWWS internal errors. Check ULOG for more information.

Table 4-2 Error Code Returned From GWWS/Tuxedo Framework

TPERRNO Possible Failure Reason
4-6 Oracle SALT Programming Guide

Runn ing H/F 1
errbuf definition content is determined by both the SOAP version and WSDL fault
message.

– Parameter detail/Detail (1.1/1.2) is an FML32 field that represents the wsdl:part
defined in a wsdl:fault message (when wsdl:fault is present). Each part is defined
as a param(field) in the FML32 field. The mapping rules are the same as for
input/output buffer. The difference is that each param requiredcount is 0 (which
means it may not appear in the SOAP fault message).

– Other elements that appear in soap:fault message are always defined as a file in
errbuf, with requiredcount equal to 1 or 0 (depending on whether the element is
required or optional).

– Each part definition in the metadata controls converting a <detail> element in the
soap fault message into a field in the error buffer.

Table 4-3 lists the outbound SOAP fault errbuf definitions.

Table 4-3 Outbound SOAP Fault Errbuf Definition

Meta Parameter SOAP Version Type Required Memo

faultcode 1.1 string Yes

faultstring 1.1 string Yes

faultactor 1.1 string No

detail 1.1 fml32 No If no
wsdl:fault is
defined, this field
contains an XML
field.

Code 1.2 fml32 Yes Contains value
and optional
Subcode

Reason 1.2 fml32 Yes Contains
multiple text

Node 1.2 string No
4-7 Oracle SALT Programming Guide

See Also
Oracle Tuxedo ATMI C Functions

File Formats, Data Descriptions, MIBs, and System Processes Reference

Role 1.2 string No

Detail 1.2 fml32 No same as detail
field

Table 4-3 Outbound SOAP Fault Errbuf Definition

Meta Parameter SOAP Version Type Required Memo
4-8 Oracle SALT Programming Guide

http://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/rf3c/rf3c.html
http://docs.oracle.com/cd/E53645_01/tuxedo/docs12cr2/rf5/rf5.html

C H A P T E R 5
Using SALT Plug-Ins
This chapter contains the following topics:

Understanding SALT Plug-Ins

Programming Message Conversion Plug-ins

Programming Outbound Authentication Plug-Ins

Understanding SALT Plug-Ins
The SALT GWWS server is a configuration-driven process which, for most basic Web service
applications, does not require any programming tasks. However, SALT functionality can be
enhanced by developing plug-in interfaces which utilize custom typed buffer data and customized
shared libraries to extend the GWWS server.

A plug-in interface is a set of functions exported by a shared library that can be loaded and
invoked by GWWS processes to achieve special functionality. SALT provides a plug-in
framework as a common interface for defining and implementing a plug-in interface. Plug-in
implementation is carried out by a shared library which contains the actual functions. The plug-in
implementation library is configured in the SALT Deployment file and is loaded dynamically
during GWWS server startup.

Plug-In Elements
Four plug-in elements are required to define a plug-in interface:

Plug-In ID
SALT Programming Guide 5-1

../ref/comref.html#wp1111835
../ref/deploy.html

Plug-In Name

Plug-In Implementation Functions

Plug-In Register Functions

Plug-In ID
The plug-in ID element is a string used to identify a particular plug-in interface function. Multiple
plug-in interfaces can be grouped with the same Plug-in ID for a similar function. Plug-in ID
values are predefined by SALT. Arbitrary string values are not permitted.

SALT supports the P_CUSTOM_TYPE and P_CREDENMAP plug-in ID, which is used to define
plug-in interfaces for custom typed buffer data handling, and map Oracle Tuxedo user ID and
group ID into username/password that HTTP Basic Authentication needs.

Plug-In Name
The plug-in Name differentiates one plug-in implementation from another within the same
Plug-in ID category.

For the P_CUSTOM_TYPE Plug-in ID, the plug-in name is used to indicate the actual custom buffer
type name. When the GWWS server attempts to convert data between Oracle Tuxedo custom
typed buffers and an XML document, the plug-in name is the key element that searches for the
proper plug-in interface.

Plug-In Implementation Functions
Actual business logic should reflect the necessary functions defined in a plug-in vtable structure.
Necessary functions may be different for different plug-in ID categories.

For the P_CREDENMAP ID category, one function needs to be implemented:

int (* gwws_pi_map_http_basic) (char * domain, char * realm, char *
t_userid, char * t_grpid, Cred_UserPass * credential);

For more information, see “Programming Outbound Authentication Plug-Ins”.

Plug-In Register Functions
Plug-in Register functions are a set of common functions (or rules), that a plug-in interface must
implement so that the GWWS server can invoke the plug-in implementation. Each plug-in
interface must implement three register functions. These functions are:
5-2 SALT Programming Guide

Unders tanding SALT P lug- Ins
Information Providing Function

Initiating Function

Exiting Function

vtable Setting Function

Information Providing Function
This function is optional. If it is used, it is first invoked after the plug-in shared library is loaded
during GWWS server startup. If you want to implement more than one interface in one plug-in
library, you must implement this function and return the counts, IDs, and names of the interfaces
in the library.

Returning a 0 value indicates the function has executed successfully. Returning a value other than
0 indicates failure. If this functions fails, the plug-in is not loaded, and the GWWS server will not
start.

The function uses the following syntax:

int _ws_pi_get_Id_and_Names(int * count, char **ids, char **names);

You must return the total count of implementation in the library in arguments count. The
arguments ids and names should contain all implemented interface ids and names, separated
by a semicolon “;”.

Initiating Function
The initiating function is invoked after all the implemented interfaces in the plug-in shared library
are determined. You can initialize data structures and set up global environments that can be used
by the plug-ins.

Returning a 0 value indicates the initiating function has executed successfully. Returning a value
other than 0 indicates initiation has failed. If plug-in interface initiation fails, the GWWS server
will not start.

The initiating function uses the following syntax:

int _ws_pi_init_@ID@_@Name@(char * params, void **priv_ptr);

@ID@ indicates the actual plug-in ID value. @Name@ indicates the actual plug-in name value. For
example, the initiating function of a plug-in with P_CUSTOM_TYPE as a plug-in ID and MyType as
a plug-in name is: _ws_pi_init_P_CUSTOM_TYPE_MyType (char * params, void
**priv_ptr).
SALT Programming Guide 5-3

Exiting Function
The exiting function is called before closing the plug-in shared library when the GWWS server
shuts down. You should release all reserved plug-in resources.

The exiting function uses the following syntax:

int _ws_pi_exit_@ID@_@Name@(void * priv);

@ID@ indicates the actual plug-in ID value. @Name@ indicates the actual plug-in name value. For
example, the initiating exiting function name of a plug-in with P_CUSTOM_TYPE as a plug-in ID
and MyType as a plug-in name is: _ws_pi_exit_P_CUSTOM_TYPE_MyType(void * priv).

vtable Setting Function
vtable is a particular C structure that stores the necessary function pointers for the actual
businesss logic of a plug-in interface. In other words, a valid plug-in interface must implement
all the functions defined by the corresponding vtable.

The vtable setting function uses the following syntax:
int _ws_pi_set_vtbl_@ID@_@Name@(void * priv);

@ID@ indicates the actual plug-in ID value. @Name@ indicates the actual plug-in name value. For
example, the vtable setting function of a plug-in with P_CUSTOM_TYPE as a plug-in ID and
MyType as a plug-in name is: _ws_pi_set_vtbl_P_CUSTOM_TYPE_MyType(void * priv).

The vtable structures may be different for different plug-in ID categories. For this SALT
release, P_CUSTOM_TYPE and P_CREDENMAP are the only valid plug-in IDs.

The vtable structures for available plug-in interfaces are shown in Listing 5-1.

Listing 5-1 VTable Structure

struct credmap_vtable {
 int (* gwws_pi_map_http_basic) (char * domain, char * realm, char *

t_userid, char * t_grpid, Cred_UserPass * credential); /* used for HTTP

Basic Authentication */
 /* for future use */
 void * unused_1;
 void * unused_2;
 void * unused_3;
};
5-4 SALT Programming Guide

Unders tanding SALT P lug- Ins
struct credmap_vtable indicates that one function must be implemented for a P_CREDENMAP
plug-in interface. For more information, see “Programming Outbound Authentication Plug-Ins”.

The function input parameter void * priv points to a concrete vtable instance. You should set
the vtable structure with the actual functions in the vtable setting function.

An example of setting the vtable structure with actual functions in the vtable setting function
is shown in Listing 5-2.

Listing 5-2 Setting the vtable Structure with Actual Functions in the vtable Setting Function

int _DLLEXPORT_ _ws_pi_set_vtbl_P_CREDENMAP_TEST (void * vtbl)

{
 struct credmap_vtable * vtable;
 if (! vtbl)
 return -1;

 vtable = (struct credmap_vtable *) vtbl;

 vtable->gwws_pi_map_http_basic = Credmap_HTTP_Basic;
 return 0;
}

Developing a Plug-In Interface
To develop a comprehensive plug-in interface, do the following steps:

1. Develop a shared library to implement the plug-in interface.

2. Define the plug-in interface in the SALT configuration file.

Developing a Plug-In Shared Library
To develop a plug-in shared library, do the following steps:
SALT Programming Guide 5-5

1. Write C language plug-in implementation functions for the actual business logic. These
functions are not required to be exposed from the shared library. For more information, see
“Plug-In Implementation Functions”.

2. Write C language plug-in register functions that include: the initiating function, the exiting
function, the vtable setting function, and the information providing function if necessary.
These register functions need to be exported so that they can be invoked from the GWWS
server. For more information, see “Plug-In Register Functions”.

3. Compile all the above functions into one shared library.

Defining a Plug-In Interface in the SALT Configuration File
To define a plug-in shared library that is loaded by the GWWS server, the corresponding plug-in
library path must be configured in the SALT deployment file. For more information, see Creating
the SALT Deployment File in the SALT Configuration Guide.

An example of how to define plug-in information in the SALT deployment file is shown in
Listing 5-3.

Listing 5-3 Defined Plug-In in the SALT Deployment File

<?xml version="1.0" encoding="UTF-8"?>
<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">

 <System>
 <Plugin>
 <Interface
 id=”P_CREDENMAP”
 name=”TEST”
 library=”credmap_plugin.dll” />
 </Plugin>
 </System>
</Deployment>
5-6 SALT Programming Guide

../config/config.html
../config/config.html

Programming Message Convers ion P lug- ins
Notes: To define multiple plug-in interfaces, multiple <Interface> elements must be
specified. Each <Interface> element indicates one plug-in interface.

Multiple plug-in interfaces can be built into one shared library file.

Programming Message Conversion Plug-ins
SALT defines a complete set of default data type conversion rules to convert between Oracle
Tuxedo buffers and SOAP message payloads. However, the default data type conversion rules
may not meet all your needs in transforming SOAP messages into Oracle Tuxedo typed buffers
or vice versa. To accommodate special application requirements, SALT supports customized
message-level conversion plug-in development to extend the default message conversion.

Note: The SALT 12cR2 Message Conversion Plug-in is an enhanced successor to the SALT
1.1 Custom Buffer Type Conversion Plug-in.

The following topics are included in this section:

How Message Conversion Plug-ins Work

When Do We Need Message Conversion Plug-in

Developing a Message Conversion Plug-in Instance

SALT 1.1 Custom Buffer Type Conversion Plug-in Compatibility

How Message Conversion Plug-ins Work
Message Conversion Plug-in is a SALT supported Plug-in defined within the SALT plug-in
framework. All Message Conversion Plug-in instances have the same Plug-In ID
(“P_CUSTOM_TYPE“). Each particular Message Conversion Plug-in instance may implement two
functions, one is used to convert SOAP message payloads to Oracle Tuxedo buffers, and the other
is used to convert Oracle Tuxedo buffers to SOAP message payloads. These two function
prototypes are defined in Listing 5-4.

Listing 5-4 vtable Structure for SALT Plug-in “P_CUSTOM_TYPE” (C Language)

/* custtype_pi_ex.h */
struct custtype_vtable {
 CustomerBuffer * (* soap_in_tuxedo__CUSTBUF) (void * xercesDOMTree,

CustomerBuffer * tuxbuf, CustType_Ext * extinfo)
SALT Programming Guide 5-7

 int (* soap_out_tuxedo__CUSTBUF) (void ** xercesDOMTree,

CustomerBuffer * tuxbuf, CustType_Ext * extinfo)

}

The function pointer (* soap_in_tuxedo__CUSTBUF), points to the customized function that
converts the SOAP message payload to Oracle Tuxedo typed buffer.

The function pointer (* soap_out_tuxedo__CUSTBUF), points to the customized function that
converts the Oracle Tuxedo typed buffer to SOAP message payload.

You may implement both functions defined in the message conversion plug-in vtable structure
if needed. You may also implement one function and set the other function with a NULL pointer.

How Message Conversion Plug-in Works in an Inbound Call Scenario
An inbound call scenario is an external Web service program that invokes an Oracle Tuxedo
service through the SALT gateway. Figure 5-1 depicts message streaming between a Web service
client and an Oracle Tuxedo domain.

Figure 5-1 Message Conversion Plug-in Works in an Inbound Call Scenario

When a SOAP request message is delivered to the GWWS server, GWWS tries to find if there is
a message conversion plug-in instance associated with the input message conversion of the target
5-8 SALT Programming Guide

Programming Message Convers ion P lug- ins
service. If there is an associated instance, the GWWS invokes the customized
(*soap_in_tuxedo__CUSTBUF) function implemented in the plug-in instance.

When an Oracle Tuxedo response buffer is returned from the Oracle Tuxedo service, GWWS
tries to find if there is a message conversion plug-in instance associated with the output message
conversion of the target service. If there is an associated instance, GWWS invokes the customized
function(*soap_out_tuxedo__CUSTBUF), implemented in the plug-in instance.

How Message Conversion Plug-in Works in an Outbound Call Scenario
An outbound call scenario is an Oracle Tuxedo program that invokes an external Web service
through the SALT gateway. Figure 5-2 depicts message streaming between an Oracle Tuxedo
domain and a Web service application.

Figure 5-2 Message Conversion Plug-in Works in an Outbound Call Scenario

When an Oracle Tuxedo request buffer is delivered to the GWWS server, GWWS tries to find if
there is a message conversion plug-in instance associated with the input message conversion of
the target service. If there is an associated instance, GWWS invokes the customized
function(*soap_out_tuxedo__CUSTBUF), implemented in the plug-in instance.

When a SOAP response message is returned from the external Web service application, GWWS
tries to find if there is a message conversion plug-in instance associated with the output message
conversion of the target service. If there is an associated instance, GWWS invokes the customized
function(*soap_in_tuxedo__CUSTBUF), implemented in the plug-in instance.
SALT Programming Guide 5-9

When Do We Need Message Conversion Plug-in
Table 5-1 lists several message conversion plug-in use cases.

Table 5-1 Message Conversion Plug-in Use Cases

Scenario Description soap_in_tuxedo_CUSTBUF soap_out_tuxedo_CUSTBUF

Oracle
Tuxedo
Originated
Service

A SOAP message payload is
transformed into a custom typed
buffer

Required N/A

A custom typed buffer is
transformed into a SOAP message
payload.

N/A Required

An Oracle Tuxedo service input
and/or output buffer is associated
with a customized XML schema
definition when a SOAP message
payload is being transformed into
this buffer.

Non XML typed buffer:
Required

XML typed buffer:
Optional

N/A

An Oracle Tuxedo service input
and/or output buffer is associated
with a customized XML schema
definition when this buffer is
being transformed into a SOAP
message payload.

N/A Non XML typed buffer:
Required

XML typed buffer:Optional

All other general cases when a
SOAP message payload is being
transformed to an Oracle Tuxedo
buffer.

Optional N/A

All other general cases when an
Oracle Tuxedo buffer is being
transformed into a SOAP message
payload.

N/A Optional
5-10 SALT Programming Guide

Programming Message Convers ion P lug- ins
From Table 5-1, the following message conversion plug-ins general rules are applied.

If an Oracle Tuxedo originated service consumes custom typed buffers, the message
conversion plug-in is required. The Oracle Tuxedo framework does not understand custom
typed buffer detailed data structure. Therefore SALT default data type conversion rules
cannot be applied.

If the input and/or output (no matter if returned with TPSUCCESS or TPFAIL) buffer of an
Oracle Tuxedo originated service is associated with an external XML Schema, you should
develop message conversion plug-ins to handle the transformation manually (unless you
are sure that the SALT default buffer type-based conversion rules can handle it correctly).

– For example, if you associate your own XML Schema with an Oracle Tuxedo service
FML32 typed buffer, you must provide a message conversion plug-in since SALT
default data mapping routines may not understand the SOAP message payload structure
when trying to convert into the FML typed buffer. Contrarily, the SOAP message
payload structure converted from the FML typed buffer may be tremendously different
from the XML shape defined via your own XML Schema.

– If you associate your own XML Schema with an Oracle Tuxedo service XML typed
buffer, most of time you do not have to provide a message conversion plug-in. This is
because SALT passes the XML data as is in both message conversion directions.

For more information, see Configuring a SALT Application.

You can develop message conversion plug-ins for any message-level conversion to replace
SALT default message conversion routines as needed.

Web Service
Originated
Service

All cases when an Oracle Tuxedo
buffer is transformed into a SOAP
message payload.

N/A Optional

All cases when a SOAP message
payload is being transformed into
an Oracle Tuxedo buffer.

Optional N/A

Table 5-1 Message Conversion Plug-in Use Cases

Scenario Description soap_in_tuxedo_CUSTBUF soap_out_tuxedo_CUSTBUF
SALT Programming Guide 5-11

../config/config.html

Developing a Message Conversion Plug-in Instance

Converting a SOAP Message Payload to an Oracle Tuxedo Buffer
The following function should be implemented in order to convert a SOAP XML payload to an
Oracle Tuxedo buffer:
CustomerBuffer * (* soap_in_tuxedo__CUSTBUF) (void * xercesDOM,
CustomerBuffer *a, CustType_Ext * extinfo);

Synopsis
#include <custtype_pi_ex.h>

CustomerBuffer * myxml2buffer (void * xercesDOM, CustomerBuffer *a,
CustType_Ext * extinfo);

myxml2buffer is an arbitrary customized function name.

Description
The implemented function should have the capability to parse the given XML buffer and convert
concrete data items to an Oracle Tuxedo custom typed buffer instance.

The input parameter, char * xmlbuf, indicates a NULL terminated string with the XML format
data stream.

Note: The XML data is the actual XML payload for the custom typed buffer, not the whole
SOAP envelop document or the whole SOAP body document.

The input parameter, char * type, indicates the custom type buffer type name, this parameter
is used to verify that the GWWS server expected custom typed buffer handler matches the current
plug-in function.

The output parameter, CustomerBuffer *a, is used to store the allocated custom typed buffer
instance. An Oracle Tuxedo custom typed buffer must be allocated by this plug-in function via
the tpalloc(). Plug-in code is not responsible to free the allocated custom typed buffer, it is
automatically destroyed by the GWWS server if it is not used.

Diagnostics
If successful, this function must return the pointer value of input parameter CustomerBuffer *
a.

If it fails, this function returns NULL as shown in Listing 5-5.
5-12 SALT Programming Guide

Programming Message Convers ion P lug- ins
Listing 5-5 Converting XML Effective Payload to Oracle Tuxedo Custom Typed Buffer Pseudo Code

CustomerBuffer * myxml2buffer (void * xercesDOM, CustomerBuffer *a,

CustType_Ext * extinfo)
{
 // casting the input void * xercesDOM to class DOMDocument object
 DOMDocument * DOMTree =

 // allocate custom typed buffer via tpalloc
 a->buf = tpalloc("MYTYPE", "MYSUBTYPE", 1024);
 a->len = 1024;

 // fetch data from DOMTree and set it into custom typed buffer
 DOMTree ==> a->buf;
 if (error) {
 release (DOMTree);
 tpfree(a->buf);
 a->buf = NULL;
 a->len = 0;
 return NULL;
 }

 release (DOMTree);

 return a;
}

Tip: Oracle Tuxedo bundled Xerces library can be used for XML parsing. Tuxedo 12cR2
bundles Xerces 1.7 and Tuxedo 9.1 bundles Xerces 2.5

Converting an Oracle Tuxedo Buffer to a SOAP Message Payload
The following function should be implemented in order to convert a custom typed buffer to
SOAP XML payload:
SALT Programming Guide 5-13

int (*soap_out_tuxedo__CUSTBUF)(char ** xmlbuf, CustomerBuffer * a, char *
type);

Synopsis
#include <custtype_pi_ex.h>

int * mybuffer2xml (char ** xmlbuf, CustomerBuffer *a, char * type);

"mybuffer2xml" is the function name can be specified with any valid string upon your need.

Description
The implemented function has the capability to convert the given custom typed buffer instance
to the single root XML document used by the SOAP message.

The input parameter (CustomerBuffer *a), is used to store the custom typed buffer response
instance. Plug-in code is not responsible to free the allocated custom typed buffer, it is
automatically destroyed by the GWWS server if it is not used.

The input parameter (char * type), indicates the custom typed buffer type name. This
parameter can be used to verify if the SALT GWWS server expected custom typed buffer handler
matches the current plug-in function.

The output parameter (char ** xmlbuf), is a pointer that indicates the newly converted XML
payload. The XML payload buffer must be allocated by this function and uses malloc ().
Plug-in code is not responsible to free the allocated XML payload buffer, it is automatically
destroyed by the GWWS server if it is not used.

Diagnostics
If successful, this function must return 0.

If it fails, this function must return -1 as shown in Listing 5-6.

Listing 5-6 Converting Oracle Tuxedo Custom Typed Buffer to SOAP XML Pseudo Code

int mybuffer2xml (void ** xercesDom, CustomerBuffer *a, CustType_Ext *

extinfo)
{
 // Use DOM implementation to create the xml payload
 DOMTree = CreateDOMTree();

 if (error)
 return -1;
5-14 SALT Programming Guide

Programming Message Convers ion P lug- ins

 // fetch data from custom typed buffer instance,
 // and add data to DOMTree according to the client side needed
 // XML format

 a->buf ==> DOMTree;

 // allocate xmlbuf buffer via malloc

* xmlbuf = malloc(expected_len(DOMTree));
 if (error) {
 release (DOMTree);
 return -1;
 }

 // casting the DOMDocument to void * pointer and returned
 DOMTree >> (* xmlbuf);
 if (error) {
 release (DOMTree);
 free ((* xmlbuf));
 return -1;
 }

 return 0;
}

WARNING: The GWWS framework is responsible for releasing the DOMDocument created
inside the plug-in function. To avoid double release, you must pay attention to the
following Xerces API usage:

If the DOMDocument is constructed from an XML string through
XercesDOMParser::parse() API. You must use
XercesDOMParser::adoptDocument() to get the pointer of the DOMDocument
object. You must not use XercesDOMParser::getDocument() to get the pointer
of the DOMDocument object because the DOMDocument object is maintained by the
XercesDOMParser object and is released when deleting the XercesDOMParser
object if you do not de-couple the DOMDocument from the XercesDOMParser via
the XercesDOMParser::getDocument() function.
SALT Programming Guide 5-15

SALT 1.1 Custom Buffer Type Conversion Plug-in
Compatibility
SALT 1.1 Custom Buffer Type Conversion Plug-in provides a customized message conversion
mechanism only for Oracle Tuxedo custom buffer types.

Table 5-2 compares the SALT Message Conversion Plug-in and the SALT 1.1 Custom Buffer
Type Conversion Plug-in.

Please note that the SALT 1.1 Custom Buffer Type Plug-in shared library cannot be used directly
in SALT 12cR2. You must perform the following tasks to upgrade it to a SALT 12cR2 message
conversion plug-in:

1. Re-implement function (*soap_in_tuxedo__CUSTBUF) and
(*soap_out_tuxedo__CUSTBUF) according to the SALT message conversion plug-in

Table 5-2 SALT 12cR2 Message Conversion Plug-in / SALT 1.1 Custom Buffer Type Conversion Plug-in
Comparison

SALT 1.1 Custom Buffer Type Plug-in SALT 12cR2 Message Conversion Plug-in

Plug-in ID is “P_CUSTOM_TYPE” Plug-in ID is “P_CUSTOM_TYPE”

Plug-in Name must be the same as the supported
custom buffer type name.

Plug-in Name can be any meaningful value,
which is only used to distinguish from other
plug-in instances.

Only supports message conversion between
SOAP message payloads and Oracle Tuxedo
custom buffer types.

Supports message conversion between SOAP
message payloads and any kind of Oracle
Tuxedo buffer type.

Buffer type-level association.

Each plug-in instance must be named the same
as the supported custom buffer type name. Each
custom buffer type can only have one plug-in
implementation.

One custom buffer type can associate with a
plug-in instance, and used by all the services.

Message-level association.

Each Oracle Tuxedo service can associate
plug-in instances with its input and/or output
buffers respectively through the plug-in instance
name.

SOAP message payload is saved as a NULL
terminated string for plug-in programming.

SOAP message payload is saved as a Xerces
DOM Document for plug-in programming.
5-16 SALT Programming Guide

Programming Outbound Authent i cat ion P lug- Ins
vtable function prototype API. The major change is that the SOAP message payload is saved
as an Xerces class DOMDocument object instead of the old string value.

2. Re-compile your functions as a shared library and configure this shared library in the SALT
Deployment file so that it can be loaded by GWWS servers.

Tip: You do not have to manually associate the upgraded message conversion plug-ins with
service buffers. If a custom typed buffer is involved in the message conversion at
runtime, GWWS can automatically search a message conversion plug-in that has the
same name as the buffer type name if no explicit message conversion plug-in interface is
configured.

Programming Outbound Authentication Plug-Ins
When an Oracle Tuxedo client accesses Web services via SOAP/HTTP, the client may be
required to send a username and password to the server to perform HTTP Basic Authentication.
The Oracle Tuxedo clients uses tpinit() to send a username and password when registering to
the Oracle Tuxedo domain. However, this username is used by Oracle Tuxedo and is not the same
as the one used by the Web service (the password may be different as well).

To map the usernames, SALT provides a plug-in interface (Credential-Mapping Interface), that
allows you to choose which username and password is sent to the Web service.

How Outbound Authentication Plug-Ins Work
When an Oracle Tuxedo client calls a Web service, it actually calls the GWWS server that
declares the Web service as an Oracle Tuxedo service. The user id and group id (defined in tpusr
and tpgrp files) are sent to the GWWS. The GWWS then checks whether the Web service has a
configuration item <Realm>. If it does, the GWWS:

tries to invoke the vtable gwws_pi_map_http_basic function to map the Oracle Tuxedo
userid into the username and password for the HTTP Realm of the server.

for successful calls, encodes the returned username and password with Base64 and sends
it to the HTTP header field “Authorization: Basic”.

for failed calls, returns a failure to the Oracle Tuxedo Client without invoking the Web
service.
SALT Programming Guide 5-17

Implementing a Credential Mapping Interface Plug-In
Using the following scenario:

An existing Web service, myservice, sited on http://www.abc.com/webservice, requires
HTTP Basic Authentication. The username is “test”, the password is “1234,” and the
realm is “myrealm”.

After converting the Web service WSDL into the SALT configuration file (using
wsdlcvt), add the <Realm>myrealm</Ream> element to the endpoint definition in the
WSDF file.

Perform the following steps to implement a SALT plug-in interface:

1. Write the functions to map the “myrealm” Oracle Tuxedo UID/GID to username/password
on www.abc.com.

Use Credmap_HTTP_Basic();

This function is used to return the HTTP username/password. The function prototype
defined in credmap_pi_ex.h

2. Write the following three plug-in register functions. For more information, see “Plug-In
Register Functions”.

_ws_pi_init_P_CREDENMAP_TEST(char * params, void ** priv_ptr);

This function is invoked when the GWWS server attempts to load the plug-in shared
library during startup.

_ws_pi_exit_P_CREDENMAP_TEST(void * priv);

This function is invoked when the GWWS server unloads the plug-in shared library during
the shutdown phase.

_ws_pi_set_vtbl_P_CREDENMAP_TEST(void * vtbl);

Set the gwws_pi_map_http_basic entry in vtable structure credmap_vtable with the
Credmap_HTTP_Basic() function implemented in step 1.

3. You can also write the optional function:

_ws_pi_get_Id_and_Names(int * params, char ** ids, char ** names);

This function is invoked when the GWWS server attempts to load the plug-in shared
library during startup to determine what library interfaces are implemented. For more
information, see “Plug-In Register Functions”.
5-18 SALT Programming Guide

Programming Outbound Authent i cat ion P lug- Ins
4. Compile the previous four or five functions into one shared library, credmap_plugin.so.

5. Configure the plug-in interface in the SALT deployment file.

Configure the plug-in interface as shown in Listing 5-7.

Listing 5-7 Custom Typed Buffer Plug-In Interface

<?xml version="1.0" encoding="UTF-8"?>

<Deployment xmlns="http://www.bea.com/Tuxedo/SALTDEPLOY/2007">

 <System>
 <Plugin>
 <Interface
 id=”P_CREDENMAP”
 name=”TEST”
 library=”credmap_plugin.dll” />
 </Plugin>
 </System>
</Deployment>

Mapping the Oracle Tuxedo UID and HTTP Username
The following function should be implemented in order to return username/password for HTTP
Basic Authentication:
typedef int (* GWWS_PI_CREDMAP_PASSTEXT) (char * domain, char * realm, char
* t_userid, char * t_grpid, Cred_UserPass * credential);

Synopsis
#include <credmap_pi_ex.h>
typedef struct Cred_UserPass_s {

 char username[UP_USERNAME_LEN];

 char password[UP_PASSWORD_LEN];

} Cred_UserPass;

int gwws_pi_map_http_basic (char * domain, char * realm, char * t_uid, char
* t_gid, Cred_UserPass * credential);
SALT Programming Guide 5-19

The "gwws_pi_map_http_basic" function name can be specified with any valid string as
needed.

Description
The implemented function has the capability to determine authorization credentials (usernames
and passwords) used for authorizing users with a given Oracle Tuxedo uid and gid for a given
domain and realm.

The input parameters, char * domain and char * realm, represent the domain name and
HTTP Realm that the Web service belongs to. The plug-in code must use them to determine the
scope to find appropriate credentials.

The input parameters, char * t_uid and char * t_gid, are strings that contain Oracle Tuxedo
user ID and group ID number values respectively. These two parameters may be used to find the
username.

The output parameter, Cred_UserPass * credential, is a pointer that indicates a pre-allocated
buffer storing the returned username/password. The plug-in code is not responsible for allocating
the buffer.

Notes: Oracle Tuxedo user ID is available only when *SECURITY is set as USER_AUTH or higher
in the UBBCONFIG file. Group ID is available when *SECURITY is set as ACL or higher.
The default is “0”.

Diagnostics
If successful, this function returns 0. If it fails, it returns -1 as shown in Listing 5-8.

Listing 5-8 Credential Mapping for HTTP Basic Authentication Pseudo Code

int Credmap_HTTP_Basic(char * domain, char * realm, char * t_uid, char *

t_gid, Cred_UserPass * credential)
{
 // Use domain and realm to determine scope
 credentialList = FindAllCredentialForDomainAndRealm(domain, realm);

 if (error happens)
 return -1;

 // find appropriate credential in the scope
5-20 SALT Programming Guide

Programming Outbound Authent i cat ion P lug- Ins

 foreach cred in credentialList {
 if (t_uid and t_gid match) {
 *credential = cred;
 return 0;
 }
 }
 if (not found and no default credential) {
 return -1;
 }

 *credential = default_credential;
 return 0;
}

Tip: The credentials can be stored in the database with domain and realm as the key or index.
SALT Programming Guide 5-21

5-22 SALT Programming Guide

	Service Architecture Leveraging Tuxedo (SALT)
	12c Release 2 (12.2.2)

	Oracle Service Architecture Leveraging Tuxedo (SALT) Programming Guide, 12c Release 2 (12.2.2)
	Introduction to SALT Programming
	SALT Web Services Programming
	SALT Proxy Service
	SALT Message Conversion
	SALT Programming Tasks Quick Index
	REpresentational State Transfer (REST) Message Conversion

	Data Type Mapping and Message Conversion
	Overview of Data Type Mapping and Message Conversion
	Understanding SALT Message Conversion
	Inbound Message Conversion
	Outbound Message Conversion

	Tuxedo-to-XML Data Type Mapping for Oracle Tuxedo Services
	Oracle Tuxedo STRING Typed Buffers
	Oracle Tuxedo CARRAY Typed Buffers
	Mapping Example Using base64Binary
	Mapping Example Using MIME Attachment

	Oracle Tuxedo MBSTRING Typed Buffers
	Oracle Tuxedo XML Typed Buffers
	Oracle Tuxedo VIEW/VIEW32 Typed Buffers
	VIEW/VIEW32 Considerations

	Oracle Tuxedo FML/FML32 Typed Buffers
	FML Data Mapping Example
	FML32 Data Mapping Example
	FML/FML32 Considerations

	Oracle Tuxedo RECORD Typed Buffers
	REDEFINES Handling

	Oracle Tuxedo X_C_TYPE Typed Buffers
	Oracle Tuxedo X_COMMON Typed Buffers
	Oracle Tuxedo X_OCTET Typed Buffers
	Custom Typed Buffers

	XML-to-Tuxedo Data Type Mapping for External Web Services
	XML Schema Built-In Simple Data Type Mapping
	XML Schema User Defined Data Type Mapping
	WSDL Message Mapping

	REST Data Mapping
	Inbound Message Conversion
	Query String Mapping
	JSON Data Mapping
	XML Data Mapping

	Outbound Message Conversion
	Query String Mapping
	JSON Data Mapping
	XML Data Mapping

	Web Service Client Programming
	Overview
	REpresentational State Transfer (REST) Support
	Oneway (in and out)
	ATMI and SCA Support
	Examples

	SALT Web Service Client Programming Tips
	Oracle WebLogic Web Service Client Programming Toolkit
	Apache Axis for Java Web Service Client Programming Toolkit
	Microsoft .NET Web Service Client Programming Toolkit

	Web Service Client Programming References
	Online References

	Oracle Tuxedo ATMI Programming for Web Services
	Overview
	Converting WSDL Model Into Oracle Tuxedo Model
	WSDL-to-Tuxedo Object Mapping

	Invoking SALT Proxy Services
	SALT Supported Communication Patterns
	Oracle Tuxedo Outbound Call Programming: Main Steps
	Managing Error Code Returned from GWWS
	Handling Fault Messages in an Oracle Tuxedo Outbound Application

	See Also

	Using SALT Plug-Ins
	Understanding SALT Plug-Ins
	Plug-In Elements
	Plug-In ID
	Plug-In Name
	Plug-In Implementation Functions
	Plug-In Register Functions
	Developing a Plug-In Interface

	Programming Message Conversion Plug-ins
	How Message Conversion Plug-ins Work
	How Message Conversion Plug-in Works in an Inbound Call Scenario
	How Message Conversion Plug-in Works in an Outbound Call Scenario

	When Do We Need Message Conversion Plug-in
	Developing a Message Conversion Plug-in Instance
	Converting a SOAP Message Payload to an Oracle Tuxedo Buffer
	Converting an Oracle Tuxedo Buffer to a SOAP Message Payload

	SALT 1.1 Custom Buffer Type Conversion Plug-in Compatibility

	Programming Outbound Authentication Plug-Ins
	How Outbound Authentication Plug-Ins Work
	Implementing a Credential Mapping Interface Plug-In
	Mapping the Oracle Tuxedo UID and HTTP Username

