
Oracle® Tuxedo
CORBA Programming Reference

12c Release 2 (12.2.2)

April 2016

Oracle Tuxedo CORBA Programming Reference, 12c Release 2 (12.2.2)

Copyright © 1996, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents
1. OMG IDL Syntax and the C++ IDL Compiler
OMG IDL Compiler Extensions . 1-2

C++ IDL Compiler Constraints. 1-3

2. Implementation Configuration File (ICF)
ICF Syntax . 2-2

Sample ICF File . 2-3

Creating the ICF File. 2-4

See Also . 2-4

3. TP Framework
A Simple Programming Model . 3-3

Control Flow . 3-4

Object State Management . 3-4

Transaction Integration . 3-4

Object Housekeeping . 3-5

High-level Services . 3-5

State Management . 3-5

Activation Policy . 3-5

Application-controlled Activation and Deactivation . 3-7

Servant Lifetime. 3-10

Saving and Restoring Object State. 3-12

Transactions . 3-12
CORBA Programming Reference iii

Transaction Policies . 3-13

Transaction Initiation . 3-14

Transaction Termination . 3-14

Transaction Suspend and Resume. 3-14

Restrictions on Transactions . 3-16

SQL and Global Transactions . 3-16

Voting on Transaction Outcome . 3-17

Transaction Timeouts . 3-18

IIOP Client Failover . 3-18

Setting The Retry Policy . 3-18

Initiating IIOP Client Failover . 3-19

See Also . 3-19

WebLogic CORBA Clustering and Load Balancing Support 3-20

Parallel Objects. 3-20

TP Framework API . 3-22

Server Interface . 3-23

ServerBase Interface . 3-23

Server::create_servant() . 3-25

ServerBase::create_servant_with_id() . 3-27

Server::initialize() . 3-29

ServerBase::thread_initialize() . 3-31

Server::release() . 3-32

ServerBase::thread_release() . 3-34

Tobj_ServantBase Interface . 3-35

Tobj_ServantBase:: activate_object() . 3-36

Tobj_ServantBase::_add_ref() . 3-39

Tobj_ServantBase::deactivate_object() . 3-39

Tobj_ServantBase::_is_reentrant() . 3-44
iv CORBA Programming Reference

Tobj_ServantBase::_remove_ref() . 3-45

TP Interface . 3-46

TP::application_responsibility(). 3-47

TP::bootstrap() . 3-48

TP::close_xa_rm() . 3-49

TP::create_active_object_reference(). 3-50

TP::create_object_reference() . 3-53

TP::deactivateEnable() . 3-55

TP::get_object_id () . 3-58

TP::get_object_reference(). 3-58

TP::open_xa_rm() . 3-59

TP::orb() . 3-61

TP::register_factory() . 3-61

TP::unregister_factory() . 3-63

TP::userlog(). 3-64

CosTransactions::TransactionalObject Interface Not Enforced 3-65

Error Conditions, Exceptions, and Error Messages . 3-66

Exceptions Raised by the TP Framework . 3-66

Exceptions in the Server Application Code. 3-66

Exceptions and Transactions . 3-67

Restriction of Nested Calls on CORBA Objects . 3-67

4. CORBA Bootstrapping Programming Reference
Why Bootstrapping Is Needed . 4-2

Supported Bootstrapping Mechanisms . 4-2

Oracle Bootstrapping Mechanism . 4-2

How Bootstrap Objects Work . 4-2

Types of Oracle Remote Clients Supported . 4-7
CORBA Programming Reference v

Capabilities and Limitations . 4-8

Bootstrap Object API . 4-8

Tobj Module . 4-9

C++ Mapping . 4-10

Java Mapping . 4-10

Automation Mapping . 4-11

C++ Member Functions . 4-12

Tobj_Bootstrap. 4-12

Tobj_Bootstrap::register_callback_port. 4-17

Tobj_Bootstrap::resolve_initial_references . 4-18

Tobj_Bootstrap::destroy_current(). 4-19

Java Methods. 4-20

Automation Methods. 4-20

Initialize . 4-21

CreateObject . 4-22

DestroyCurrent. 4-24

Bootstrap Object Programming Examples . 4-24

Visual Basic Client Example: Using the Bootstrap Object. 4-24

Interoperable Naming Service Bootstrapping Mechanism . 4-25

Introduction . 4-26

INS Object References . 4-26

INS Command-line Options . 4-27

INS Initialization Operations . 4-27

INS Object URL Schemes . 4-27

Getting a FactoryFinder Object Reference Using INS . 4-33

Getting a PrincipalAuthenticator Object Reference Using INS 4-34

Getting a TransactionFactory Object Reference Using INS 4-35
vi CORBA Programming Reference

5. FactoryFinder Interface
Capabilities, Limitations, and Requirements . 5-2

Functional Description . 5-2

Locating a FactoryFinder. 5-3

Registering a Factory. 5-3

Locating a Factory . 5-5

Creating Application Factory Keys . 5-10

C++ Member Functions and Java Methods . 5-18

CosLifeCycle::FactoryFinder::find_factories . 5-18

Tobj::FactoryFinder::find_one_factory . 5-20

Tobj::FactoryFinder::find_one_factory_by_id . 5-22

Tobj::FactoryFinder::find_factories_by_id . 5-24

Tobj::Factoryfinder::list_factories . 5-26

Automation Methods . 5-27

DITobj_FactoryFinder.find_one_factory . 5-27

DITobj_FactoryFinder.find_one_factory_by_id . 5-28

DITobj_FactoryFinder.find_factories_by_id . 5-30

DITobj_FactoryFinder.find_factories. 5-31

DITobj_FactoryFinder.list_factories . 5-32

Programming Examples . 5-33

Using the FactoryFinder Object . 5-34

Using Extensions to the FactoryFinder Object . 5-36
CORBA Programming Reference vii

6. Security Service

7. Transactions Service

8. Notification Service

9. Request-Level Interceptors

10. CORBA Interface Repository Interfaces
Structure and Usage . 10-2

Programming Information. 10-3

Performance Implications . 10-4

Building Client Applications . 10-4

Getting Initial References to the InterfaceRepository Object 10-5

Interface Repository Interfaces . 10-5

Supporting Type Definitions . 10-5

IRObject Interface. 10-6

Contained Interface . 10-7

Container Interface . 10-8

IDLType Interface . 10-10

Repository Interface . 10-11

ModuleDef Interface . 10-11

ConstantDef Interface . 10-12

TypedefDef Interface . 10-13

StructDef . 10-13

UnionDef. 10-14

EnumDef . 10-15

AliasDef . 10-15

PrimitiveDef . 10-15
viii CORBA Programming Reference

StringDef . 10-16

WstringDef . 10-16

ExceptionDef . 10-17

AttributeDef. 10-18

OperationDef . 10-18

InterfaceDef . 10-20

11. Joint Client/Servers
Introduction. 11-2

Main Program and Server Initialization . 11-2

Servants . 11-3

Servant Inheritance from Skeletons. 11-3

Callback Object Models Supported. 11-4

Configuring Servers to Call Remote Joint Client/Server Objects 11-5

Preparing Callback Objects Using CORBA (C++ Joint Client/Servers Only) . . . 11-6

Preparing Callback Objects Using OracleWrapper Callbacks 11-8

C++ OracleWrapper Callbacks Interface API . 11-11

Callbacks . 11-11

start_transient . 11-12

start_persistent_systemid . 11-13

restart_persistent_systemid . 11-15

start_persistent_userid . 11-17

stop_object . 11-19

stop_all_objects . 11-19

get_string_oid. 11-20

~Callbacks . 11-21
CORBA Programming Reference ix

12. Development Commands

13. Mapping of OMG IDL Statements to C++
Mappings . 13-1

Data Types. 13-2

Strings . 13-4

wchars . 13-5

wstrings . 13-5

Constants . 13-6

Enums . 13-7

Structs . 13-7

Unions . 13-9

Sequences . 13-15

Arrays . 13-19

Exceptions . 13-21

Mapping of Pseudo-objects to C++ . 13-23

Usage. 13-24

Mapping Rules . 13-24

Relation to the C PIDL Mapping . 13-25

Typedefs . 13-26

Implementing Interfaces . 13-27

Implementing Operations . 13-29

PortableServer Functions . 13-31

Modules. 13-31

Interfaces . 13-32

Generated Static Member Functions . 13-33

Object Reference Types . 13-34

Attributes. 13-34
x CORBA Programming Reference

Any Type . 13-37

Value Type . 13-48

Fixed-length Versus Variable-length User-defined Types . 13-51

Using var Classes . 13-52

Sequence vars . 13-55

Array vars . 13-55

String vars . 13-56

Using out Classes . 13-57

Object Reference out Parameter . 13-59

Sequence outs . 13-60

Array outs . 13-60

String outs . 13-61

Argument Passing Considerations . 13-62

Operation Parameters and Signatures . 13-65

14. CORBA API
Global Classes. 14-1

Pseudo-objects . 14-2

Any Class Member Functions. 14-2

CORBA::Any::Any() . 14-3

CORBA::Any::Any(const CORBA::Any & InitAny) 14-4

CORBA::Any::Any(TypeCode_ptr TC, void * Value, Boolean Release) . . . 14-5

CORBA::Any::~Any() . 14-5

CORBA::Any & CORBA::Any::operator=(const CORBA::Any & InitAny) 14-6

void CORBA::any::operator<<=() . 14-7

CORBA::Boolean CORBA::Any::operator>>=(). 14-7

CORBA::Any::operator<<=(). 14-9

CORBA::Boolean CORBA::Any::operator>>=(). 14-9
CORBA Programming Reference xi

CORBA::TypeCode_ptr CORBA::Any::type() const 14-10

void CORBA::Any::replace() . 14-11

Context Member Functions . 14-11

Memory Management . 14-12

CORBA::Context::context_name . 14-12

CORBA::Context::create_child . 14-13

CORBA::Context::delete_values. 14-14

CORBA::Context::get_values . 14-15

CORBA::Context::parent. 14-16

CORBA::Context::set_one_value . 14-17

CORBA::Context::set_values . 14-18

ContextList Member Functions . 14-18

CORBA::ContextList:: count. 14-19

CORBA::ContextList::add. 14-20

CORBA::ContextList::add_consume . 14-21

CORBA::ContextList::item . 14-21

CORBA::ContextList::remove . 14-22

NamedValue Member Functions . 14-23

Memory Management . 14-23

CORBA::NamedValue::flags. 14-24

CORBA::NamedValue::name . 14-24

CORBA::NamedValue::value . 14-25

NVList Member Functions. 14-26

Memory Management . 14-26

CORBA::NVList::add . 14-27

CORBA::NVList::add_item . 14-28

CORBA::NVList::add_value. 14-29

CORBA::NVList::count . 14-30
xii CORBA Programming Reference

CORBA::NVList::item. 14-31

CORBA::NVList::remove . 14-32

Object Member Functions . 14-33

CORBA::Object::_create_request . 14-34

CORBA::Object::_duplicate . 14-35

CORBA::Object::_get_interface . 14-36

CORBA::Object::_is_a. 14-37

CORBA::Object::_is_equivalent . 14-38

CORBA::Object::_nil. 14-38

CORBA::Object::_non_existent. 14-39

CORBA::Object::_request . 14-40

CORBA Member Functions . 14-40

CORBA::release. 14-41

CORBA::is_nil . 14-42

CORBA::hash. 14-43

CORBA::resolve_initial_references. 14-44

ORB Member Functions. 14-44

CORBA::ORB::clear_ctx. 14-46

CORBA::ORB::create_context_list . 14-47

CORBA::ORB::create_environment . 14-47

CORBA::ORB::create_exception_list . 14-48

CORBA::ORB::create_list . 14-48

CORBA::ORB::create_named_value. 14-49

CORBA::ORB::create_operation_list . 14-50

CORBA::ORB::create_policy . 14-51

CORBA::ORB::destroy . 14-54

CORBA::ORB::get_ctx . 14-55

CORBA::ORB::get_default_context . 14-55
CORBA Programming Reference xiii

CORBA::ORB::get_next_response . 14-56

CORBA::ORB::inform_thread_exit . 14-57

CORBA::ORB::list_initial_services . 14-58

CORBA::ORB::object_to_string . 14-58

CORBA::ORB::perform_work . 14-59

CORBA::ORB::poll_next_response . 14-60

CORBA::ORB::resolve_initial_references . 14-61

CORBA::ORB::send_multiple_requests_deferred 14-62

CORBA::ORB::send_multiple_requests_oneway. 14-63

CORBA::ORB::set_ctx . 14-64

CORBA::ORB::string_to_object . 14-65

CORBA::ORB::work_pending . 14-66

ORB Initialization Member Function. 14-66

CORBA::ORB_init . 14-67

ORB . 14-69

Policy Member Functions . 14-74

CORBA:Policy::copy . 14-75

CORBA::Policy::destroy . 14-76

PortableServer Member Functions. 14-76

PortableServer::POA::activate_object . 14-77

PortableServer::POA::activate_object_with_id. 14-78

PortableServer::POA::create_id_assignment_policy. 14-79

PortableServer::POA::create_lifespan_policy . 14-80

PortableServer::POA::create_POA . 14-82

PortableServer::POA::create_reference. 14-84

PortableServer::POA::create_reference_with_id. 14-85

PortableServer::POA::deactivate_object . 14-86

PortableServer::POA::destroy . 14-86
xiv CORBA Programming Reference

PortableServer::POA::find_POA . 14-87

PortableServer::POA::reference_to_id. 14-88

PortableServer::POA::the_POAManager. 14-89

PortableServer::ServantBase::_default_POA. 14-90

POA Current Member Functions . 14-90

PortableServer::Current::get_object_id . 14-91

PortableServer::Current::get_POA. 14-91

POAManager Member Functions. 14-92

PortableServer::POAManager::activate . 14-92

PortableServer::POAManager::deactivate . 14-93

POA Policy Member Objects . 14-94

PortableServer::LifespanPolicy . 14-94

PortableServer::IdAssignmentPolicy . 14-95

Request Member Functions . 14-96

CORBA::Request::arguments . 14-97

CORBA::Request::ctx(Context_ptr) . 14-97

CORBA::Request::get_response . 14-98

CORBA::Request::invoke . 14-98

CORBA::Request::operation . 14-99

CORBA::Request::poll_response. 14-99

CORBA::Request::result . 14-100

CORBA::Request::env . 14-101

CORBA::Request::ctx . 14-101

CORBA::Request::contexts . 14-102

CORBA::Request::exceptions . 14-102

CORBA::Request::target . 14-103

CORBA::Request::send_deferred . 14-103

CORBA::Request::send_oneway . 14-104
CORBA Programming Reference xv

Strings. 14-105

CORBA::string_alloc. 14-105

CORBA::string_dup . 14-106

CORBA::string_free . 14-107

Wide Strings . 14-108

TypeCode Member Functions . 14-109

Memory Management . 14-110

CORBA::TypeCode::equal . 14-110

CORBA::TypeCode::id .14-111

CORBA::TypeCode::kind .14-111

CORBA::TypeCode::param_count . 14-113

CORBA::TypeCode::parameter . 14-114

Exception Member Functions . 14-114

Standard Exceptions . 14-116

Exception Definitions . 14-117

Object Nonexistence . 14-118

Transaction Exceptions . 14-119

ExceptionList Member Functions . 14-119

CORBA::ExceptionList::count . 14-120

CORBA::ExceptionList::add . 14-120

CORBA::ExceptionList::add_consume. 14-121

CORBA::ExceptionList::item . 14-122

15. Server-side Mapping
Implementing Interfaces. 15-1

Inheritance-based Interface Implementation . 15-2

Delegation-based Interface Implementation . 15-4

Implementing Operations . 15-8
xvi CORBA Programming Reference

C H A P T E R 1
OMG IDL Syntax and the C++ IDL
Compiler
The Object Management Group (OMG) Interface Definition Language (IDL) is used to describe
the interfaces that client objects call and that object implementations provide. An OMG IDL
interface definition fully specifies each operation’s parameters and provides the information
needed to develop client applications that use the interface’s operations.

Client applications are written in languages for which mappings from OMG IDL statements have
been defined. How an OMG IDL statement is mapped to a client language construct depends on
the facilities available in the client language. For example, an OMG IDL exception might be
mapped to a structure in a language that has no notion of exception, or to an exception in a
language that does.

OMG IDL statements obey the same lexical rules as C++ statements, although new keywords are
introduced to support distribution concepts. OMG IDL statements also provide full support for
standard C++ preprocessing features and OMG IDL-specific pragmas.

Note: When using a pragma version statement, be sure to locate it after the corresponding
interface definition. The following is an example of proper usage:

module A
{
 interface B
 {
#pragma version B "3.5"
 void op1();
 };
};
CORBA Programming Reference 1-1

The OMG IDL grammar is a subset of ANSI C++ with additional constructs to support the
operation invocation mechanism. OMG IDL is a declarative language; it supports C++ syntax for
constant, type, and operation declarations; it does not include any algorithmic structures or
variables.

For a description of OMG IDL grammar, see Chapter 3 of the Common Object Request Broker:
Architecture and Specification Revision 2.4 “OMG IDL Syntax and Semantics.”

All OMG IDL grammar is supported, with the exception of the following type declarations and
associated literals:

native

Note: Because CORBA 2.4 states that the native type declaration is intended for use in Object
Adapters, not user interfaces, this type is available in the PortableServer module only
for clients that support callbacks, that is, joint client/servers.

long double

fixed

Do not use these data types in IDL definitions.

Note: Support for the long long, unsigned long long, wchar, and wstring data types was
added to Oracle Tuxedo CORBA in release 8.0.

OMG IDL Compiler Extensions
The IDL compiler defines preprocessor macros specific to the platform. All macros predefined
by the preprocessor that you are using can be used in the OMG IDL file, in addition to the
user-defined macros. You can also define your own macros when you are compiling or loading
OMG IDL files.

Table 1-1 describes the predefined macros for each platform.

Table 1-1 Predefined Macros

Macro Identifier Platform on Which the Macro Is Defined

__unix__ Sun Solaris, HP-UX, and IBM AIX

__sun__ Sun Solaris

__hpux__ HP-UX
1-2 CORBA Programming Reference

C++ IDL Compi le r Cons t ra ints
C++ IDL Compiler Constraints
Table 1-2 describes constraints for the Oracle Tuxedo 9.1 C++ IDL compiler and provides
information about recommended workarounds.

__aix__ IBM AIX

__win_nt__ Microsoft Windows

Table 1-1 Predefined Macros

Macro Identifier Platform on Which the Macro Is Defined

Table 1-2 C++ IDL Compiler

Constraint Use of wildcarding in OMG IDL context strings produces warnings.

Description A warning is generated by the C++ IDL compiler when context strings that
contain wildcard characters are used in the operation definitions. When you
specify a context string in an OMG IDL operation definition, the following
warning may be generated:

 void op5() context("*");
 ^
 LIBORBCMD_CAT:131: INFO: ‘*’ is a non-standard
 context property.

Workaround The OMG CORBA specification is ambiguous about whether the first
character of a context string must be alphabetic.

This warning is generated to inform you that you are not in compliance with
some interpretations of the OMG CORBA specification. If you are intending
to specify all strings as context string values, as shown above, the OMG
CORBA specification requires a comma-separated list of strings, in which the
first character is alphabetic.

Note: The example shown above is not OMG CORBA compliant, but it is
processed by the Oracle Tuxedo software as intended by the user.

Constraint Use of wildcarding in OMG IDL context strings produces warnings.
CORBA Programming Reference 1-3

Description A warning is generated by the C++ IDL compiler when context strings that
contain wildcard characters are used in the operation definitions. When you
specify a context string in an OMG IDL operation definition, the following
warning may be generated:

 void op5() context("*");
 ^
 LIBORBCMD_CAT:131: INFO: ‘*’ is a non-standard
 context property.

Workaround The OMG CORBA specification is ambiguous about whether the first
character of a context string must be alphabetic.

This warning is generated to inform you that you are not in compliance with
some interpretations of the OMG CORBA specification. If you are intending
to specify all strings as context string values, as shown above, the OMG
CORBA specification requires a comma-separated list of strings, in which the
first character is alphabetic.

Note: The example shown above is not OMG CORBA compliant, but it is
processed by the Oracle Tuxedo software as intended by the user.

Constraint The C++ IDL compiler does not support some data types.

Description The C++ IDL compiler currently does not support the following data types,
which are defined in the CORBA specification version 2.4:
• native

• fixed

• long double

Workaround Avoid using these data types in IDL definitions.

Constraint Using certain substrings in identifiers may cause incorrect code generation by the C++
IDL compiler.

Description Using the following substrings in identifiers may cause code to be generated
incorrectly and result in errors when the generated code is compiled:

 get_
 set_
 Impl_
 _ptr
 _slice

Workaround Avoid the use of these substrings in identifiers.

Table 1-2 C++ IDL Compiler (Continued)
1-4 CORBA Programming Reference

C++ IDL Compi le r Cons t ra ints
Constraint Inconsistent behavior in IDL compiler regarding case sensitivity.

Description According to the CORBA standard, IDL identifiers that differ only in case
should be considered colliding and yield a compilation error. There is a current
limitation of the Oracle Tuxedo IDL compiler for C++ bindings in that it does
not always detect and report such name collisions except for value type. Value
type will follow CORBA standard regarding case sensitivity.

Workaround Avoid using IDL identifiers that differ only in case.

Constraint C++ IDL typedef problem.

Description The C++ IDL compiler generates code that does not compile when:
• Defining IDL variables of char or boolean type
• And the type is aliased multiple times

For example, the generated C++ code from the following IDL code will not
compile:
module X
 {
 typedef boolean a;
 typedef a b;
 interface Y
 {
 attribute b Z;
 };
 };

C++ compilers report an error that an "operator <<" is ambiguous and that
there is no "operator>>" for type char. These errors are produced because
of the multiple levels of typedefs; the C++ compiler may not associate the type
X::b with CORBA::Boolean because of the intermediate type definition of
X::a.

Workaround Use a single level of indirection when you define char or boolean types. In
the IDL example above, the attribute ‘X::Z’ would be defined using either the
standard type ‘boolean’ or the user type ‘X::a’, but not the user type
‘X::b’.

Table 1-2 C++ IDL Compiler (Continued)
CORBA Programming Reference 1-5

1-6 CORBA Programming Reference

C H A P T E R 2
Implementation Configuration File
(ICF)
The Oracle Tuxedo CORBA TP Framework application programming interface (API) provides
callback methods for object activation and deactivation. These methods provide the ability for
application code to implement flexible state management schemes for CORBA objects.

State management is the way you control the saving and restoring of object state during object
deactivation and activation. State management also affects the duration of object activation,
which influences the performance of servers and their resource usage. The external API of the TP
Framework includes the activate_object() and deactivate_object() methods, which
provide a possible location for state management code. Additionally, the TP Framework API
includes the deactivateEnable() method to enable the user to control the timing of object
deactivation. The default duration of object activation is controlled by policies assigned to
implementations at OMG IDL compile time.

While CORBA objects are active, their state is contained in a servant. This state must be
initialized when objects are first invoked (that is, the first time a method is invoked on a CORBA
object after its object reference is created) and on subsequent invocations after objects have been
deactivated.

While a CORBA object is deactivated, its state must be saved outside the process in which the
servant was active. When an object is activated, its state must be restored. The object’s state can
be saved in shared memory, in a file, in a database, and so forth. It is up to the programmer to
determine what constitutes an object’s state, and what must be saved before an object is
deactivated and restored when an object is activated.

You can use the Implementation Configuration File (ICF) to set activation policies to control the
duration of object activations in each implementation. The ICF file manages object state by
CORBA Programming Reference 2-1

specifying the activation policy. The activation policy determines the in-memory activation
duration for a CORBA object. A CORBA object is active in a Portable Object Adapter (POA) if
the POA’s active object map contains an entry that associates an object ID with an existing
servant. Object deactivation removes the association of an object ID with its active servant.

ICF Syntax
ICF syntax is as follows:

[#pragma activation_policy method|transaction|process]
[#pragma transaction_policy never|ignore|optional|always]
[#pragma concurrency_policy user_controlled|system_controlled]
[#pragma retry_policy never|always]
[Module module-name {]
 implementation [implementation-name]
 {
 implements (module-name::interface-name);
 [activation_policy (method|transaction|process);]
 [transaction_policy (never|ignore|optional|always);]
 [concurrency_policy (user_controlled|system_controlled);]

[retry_policy (never|always)];
};[};]

pragmas
The four optional pragmas allow you to set a specific policy as the default policy for the
entire ICF for all implementations that do not have an explicit activation_policy,
transaction_policy, concurrency_policy, or retry_policy statement. This
feature relieves the programmer from having to specify policies for each implementation
and/or allows overriding of the defaults.

Module module-name
The module-name variable is optional if it is optional in the OMG IDL file. This variable
is used for scoping and grouping. Its use must be consistent with the way it is used inside
the OMG IDL file.

implementation-name
This variable is optional and is used as the name of the servant or as the class name in the
server. It is constructed using interface-name with an _i appended if it is not specified
by the programmer.

implements (module-name::interface-name)
This variable identifies the module and the interface to which the activation policy and the
transaction policy apply.
2-2 CORBA Programming Reference

Sample ICF F i l e
activation_policy
For a description of the activation policies, see Activation Policy.

transaction_policy
For a description of the transaction policies, see Transaction Policies.

concurrency_policy
For description of the concurrency policies, see Parallel Objects.

retry_policy
For a description of the retry policy, see IIOP Client Failover.

Sample ICF File
Listing 2-1 shows a sample ICF file.

Listing 2-1 Sample ICF

module POA_University1
 {
 implementation CourseSynopsisEnumerator_i
 {
 activation_policy (process);
 transaction_policy (optional);
 implements (University1::CourseSynopsisEnumerator);
 };

 };

module POA_University1
 {
 implementation Registrar_i
 {
 activation_policy (method);
 transaction_policy (optional);
 implements (University1::Registrar);
 };

 };
CORBA Programming Reference 2-3

module POA_University1
 {
 implementation RegistrarFactory_i
 {
 activation_policy (process);
 transaction_policy (optional);
 implements (University1::RegistrarFactory);
 };

 };

Creating the ICF File
You have the option of either coding the ICF file manually or using the genicf command to
generate it from the OMG IDL file. For a description of the syntax and options for the genicf
command, see the Oracle Tuxedo Command Reference.

See Also
Steps for Creating a Oracle Tuxedo CORBA Server Application in Creating CORBA Server
Applications
2-4 CORBA Programming Reference

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/cservers/maksrv.html

C H A P T E R 3
TP Framework
This topic includes the following sections:

A Simple Programming Model. This section describes:

– Control Flow

– Object State Management

– Transaction Integration

– Object Housekeeping

– High-level Services

State Management. This section describes:

– Activation Policy

– Application-controlled Activation and Deactivation

– Servant Lifetime

– Saving and Restoring Object State

Transactions. This section describes:

– Transaction Policies

– Transaction Initiation

– Transaction Termination

– Transaction Suspend and Resume
CORBA Programming Reference 3-1

– Restrictions on Transactions

– SQL and Global Transactions

– Voting on Transaction Outcome

– Transaction Timeouts

IIOP Client Failover

WebLogic CORBA Clustering and Load Balancing Support

Parallel Objects

TP Framework API

Error Conditions, Exceptions, and Error Messages

The Oracle Tuxedo CORBA TP Framework provides a programming TP Framework that enables
users to create servers for high-performance TP applications. This chapter describes the TP
Framework programming model and the TP Framework application programming interface
(API) in detail. Additional information about how to use this API can be found in Creating
CORBA Server Applications.

The TP Framework is required when developing Oracle Tuxedo CORBA servers. Later releases
will relax this requirement, though it is expected that most customers will use the TP Framework
as an integral part of their applications.

Oracle Tuxedo provides the infrastructure for providing load balancing, transactional
capabilities, and administrative infrastructure. The base API used by the TP Framework is the
CORBA API with Oracle extensions. The TP Framework API is exposed to customers. The
Oracle Tuxedo ATMI is an optional API that can be mixed in with TP Framework APIs, allowing
a customer to deploy distributed applications using a mix of CORBA servers and ATMI servers.

Before Oracle Tuxedo CORBA, ORB products did not approach Oracle Tuxedo’s performance
in large-scale environments. Oracle Tuxedo systems support applications that can process
hundreds of transactions per second. These applications are built using the Oracle Tuxedo
stateless-service programming model that minimizes the amount of system resources used for
each request, and thus maximizes throughput and price performance.

Now, Oracle Tuxedo CORBA and its TP Framework give customers a way to develop CORBA
applications with performance similar to Oracle Tuxedo ATMI applications. Oracle Tuxedo
CORBA servers provide throughput, response time, and price performance approaching the
Oracle Tuxedo stateless-service programming model, while using the CORBA programming
model.
3-2 CORBA Programming Reference

A S imple P rog ramming Mode l
A Simple Programming Model
The TP Framework provides a simple, useful subset of the wide range of possible CORBA object
implementation choices. You use it for the development of server-side object implementations
only. When using any client-side CORBA ORB, clients interact with CORBA objects whose
server-side implementations are managed by the TP Framework. Clients are unaware of the
existence of the TP Framework—a client written to access a CORBA object executing in a
non-Oracle Tuxedo server environment will be able to access that same CORBA object executing
in an Oracle Tuxedo server environment without any changes or restrictions to the client
interface.

The TP Framework provides a server environment and an API that is easier to use and understand
than the CORBA Portable Object Adapter (POA) API, and is specifically geared towards
enterprise applications. It is a simple server programming model and an orthodox implementation
of the CORBA model, which will be familiar to programmers using ORBs such as ORBIX or
VisiBroker.

The TP Framework simplifies the programming of Oracle Tuxedo CORBA servers by reducing
the complexity of the server environment in the following ways:

The TP Framework does all interactions with the POA and the Naming Service. The
application programmer requires no knowledge of POA or Naming Service interfaces.

The TP Framework is single threaded—only one request on one CORBA object will be
processed at a time, obviating the need to write thread-safe implementations.

A CORBA object may be involved in only one transaction at a time (consistent with the
association of one object ID to one servant).

The TP Framework provides the following functionality:

Control Flow

Object State Management

Transaction Integration

Object Housekeeping

High-level Services
CORBA Programming Reference 3-3

Control Flow
The TP Framework, in conjunction with the ORB and the POA, controls the flow of the
application program by doing the following:

Controlling the server mainline and invoking callback methods on TP Framework-defined
classes at appropriate times for server startup and shutdown. This relieves the application
programmer from complex interactions related to ORB and POA initialization and
coordination of transactions, resource managers, and object state on shutdown.

Scheduling objects for activation and deactivation when client requests arrive and are
completed. This removes the complexity of management of object activation and
deactivation from the realm of the application programmer and enables the use of the TP
monitor infrastructure’s powerful load-balancing capabilities, crucial to performance of
mission-critical tasks.

Object State Management
The TP Framework API provides callback methods for application code to implement flexible
state management schemes for CORBA objects. State management involves the saving and
restoring of object state on object deactivation and activation. It also concerns the duration of
activation of objects, which influences the performance of servers and their resource usage. The
default duration of object activation is controlled by policies assigned to implementations at IDL
compile time.

Transaction Integration
TP Framework transaction integration provides the following features:

CORBA objects can participate in global transactions.

Objects participating in transactions can be implemented as stateful objects that remain in
memory for the duration of a transaction (by using the transaction activation policy), to
decrease client response time.

CORBA objects that participate in transactions can affect transaction outcome either during
their transactional work or just prior to the system’s execution of the two-phase commit
algorithm after all transactional work has been completed.

Transactions can be automatically initiated on the server transparent to the client.
3-4 CORBA Programming Reference

Sta te Management
Object Housekeeping
When a server is shut down, the TP Framework rolls back any transactions that the server is
involved in and deactivates any CORBA objects that are currently active.

High-level Services
The TP interface in the TP Framework API provides methods for performing object registrations
and utility functions. The following services are provided:

Object reference creation

Factory-based routing support

Accessors for system objects, such as the ORB

Registration and unregistration of factories with the FactoryFinder

Application-controlled activation and deactivation

User logging

The purpose of these high-level service methods is to eliminate the need for developers to
understand the CORBA POA, CORBA Naming Service, and Oracle Tuxedo APIs, which they
use for their underlying implementations. By encapsulating the underlying API calls with a
high-level set of methods, programmers can focus their efforts on providing business logic rather
than understanding and using the more complex underlying facilities.

State Management
State management involves the saving and restoring of object state on object deactivation and
activation. It also concerns the duration of activation of objects, which influences the
performance of servers and their resource usage. The external API of the TP Framework provides
activate_object and deactivate_object methods, which are a possible location for state
management code.

Activation Policy
State management is provided in the TP Framework by the activation policy. This policy controls
the activation and deactivation of servants for a particular IDL interface (as opposed to the
creation and destruction of the servants). This policy is applicable only to CORBA objects using
the TP Framework.
CORBA Programming Reference 3-5

The activation policy determines the default in-memory activation duration for a CORBA object.
A CORBA object is active in a POA if the POA's active object map contains an entry that
associates an object ID with an existing servant. Object deactivation removes the association of
an object ID with its active servant. You can choose from one of three activation policies:
method (the default), transaction, or process.

Note: The activation policies are set in an ICF file that is configured at OMG IDL compile time.
For a description of the ICF file, refer to the Implementation Configuration File (ICF)
section.

The activation policies are described below:

method (This is the default activation policy.)

The activation of the CORBA object (that is, the association between the object ID and the
servant) lasts until the end of the method. At the completion of a method, the object is
deactivated. When the next method is invoked on the object reference, the CORBA object
is activated (the object ID is associated with a new servant). This behavior is similar to that
of an Oracle Tuxedo stateless service.

transaction

The activation of the CORBA object (that is, the association between the object ID and the
servant) lasts until the end of the transaction. During the transaction, multiple object
methods can be invoked. The object is activated before the first method invocation on the
object and is deactivated in one of the following ways:

– If a user-initiated transaction is in effect when the object is activated, the object is
deactivated when the first of the following occurs: the transaction is committed or
rolled back, or the server is shut down in an orderly fashion. The latter is done using
either the tmshutdown or tmadmin command. These commands are described in the
Oracle Tuxedo Command Reference online document.

– If a user-initiated transaction is not in effect when the TP object is activated, the TP
object is deactivated when the method completes.

The transaction activation policy provides a means for an object to vote on the outcome
of the transaction prior to the execution of the two-phase commit algorithm. An object
votes to roll back the transaction by calling Current.rollback_only() in the
Tobj_ServantBase::deactivate_object method. It votes to commit the transaction by
not calling Current.rollback_only() in the method.

Note: This is a model of resource allocation that is similar to that of an Oracle Tuxedo
conversational service. However, this model is less expensive than the Oracle Tuxedo
conversational service in that it uses fewer system resources. This is because of the
3-6 CORBA Programming Reference

Sta te Management
Oracle Tuxedo ORB’s multicontexted dispatching model (that is, the presence of
many servants in memory at the same time for one server), which makes it possible
for a single server process to be shared by many concurrently active servants that
service many clients. In the Oracle Tuxedo system, the process would be dedicated
to a single client and to only one service for the duration of a conversation.

process

The activation of the CORBA object begins when it is invoked while in an inactive state
and, by default, lasts until the end of the process.

Note: The TP Framework API provides an interface method (TP::deactivateEnable)
that allows the application to control the timing of object deactivation for objects that
have the activation policy set to process. For a description of this method, see
the section TP::deactivateEnable().

Application-controlled Activation and Deactivation
Ordinarily, activation and deactivation decisions are made by the TP Framework, as discussed
earlier in this chapter. The techniques in this section show how to use alternate mechanisms. The
application can control the timing of activation and deactivation explicitly for objects with
particular policies.

Explicit Activation
Application code can bypass the on-demand activation feature of the TP Framework for objects
that use the process activation policy. The application can “preactivate” an object (that is,
activate it before any invocation) using the TP::create_active_object_reference call.

Preactivation works as follows. Before the application creates an object reference, the application
instantiates a servant and initializes that servant’s state. The application uses
TP::create_active_object_reference to put the object into the Active Object Map (that is,
associate the servant with an ObjectId). Then, when the first invocation is made, the TP
Framework immediately directs the request to the process that created the object reference and
then to the existing servant, bypassing the necessity to call Server::create_servant and then
the servant’s activate_object method (just as if this were the second or later invocation on the
object). Note that the object reference for such an object will not be directed to another server and
the object will never go through on-demand activation as long as the object remains activated.

Since the preactivated object has the process activation policy, it will remain active until one of
two events occurs: (1) the ending of the process or (2) a TP::deactivateEnable call.
CORBA Programming Reference 3-7

Usage Notes
Preactivation is especially useful if the application needs to establish the servant with an initial
state in the same process, perhaps using shared memory to initialize state. Waiting to initialize
state until a later time and in a potentially different process may be very difficult if that state
includes pointers, object references, or complex data structures.
TP::create_active_object_reference guarantees that the preactivated object is in the same
process as the code that is doing the preactivation. While this is convenient, preactivation should
be used sparingly, as should all process objects, because it preallocates precious resources.
However, when needed and used properly, preallocation is more efficient than alternatives.

Examples of such usage might be an object using the “iterator” pattern. For example, there might
a potentially long list of items that could be returned (in an unbound IDL sequence) from a
“database_query” method (for example, the contents of the telephone book). Returning all such
items in the sequence is impractical because the message size and the memory requirements
would be too large.

On an initial call to get the list, an object using the iterator pattern returns only a limited number
of items in the sequence and also returns a reference to an “iterator” object that can be invoked
to receive further elements. This iterator object is initialized by the initial object; that is, the initial
object creates a servant and sets its state to keep track of where in the long list of items the
iteration currently stands (the pointer to the database, the query parameters, the cursor, and so
forth).

The initial object preactivates this iterator object by using
TP::create_active_object_reference. It also creates an object reference to that object to
return to the client. The client then invokes repeatedly on the iterator object to receive, say, the
next 100 items in the list each time. The advantage of preactivation in this situation is that the
state might be complex. It is often easiest to set such state initially, from a method that has all the
information in its context (call frame), when the initial object still has control.

When the client is finished with the iterator object, it invokes a final method on the initial object
which deacativates the iterator object. The initial object deactivates the iterator object by
invoking a method on the iterator object that calls the TP::deactivateEnable method, that is,
the iterator object calls TP::deactivateEnable on itself.

Caution to Users
For objects to be preactivated in this fashion, the state usually cannot be recovered if a crash
occurs. (This is because the state was considered too complex or inconvenient to set upon initial,
delayed activation.) This is a valid object technique, essentially stating that the object is valid
only for a single activation period.
3-8 CORBA Programming Reference

Sta te Management
However, a problem may arise because of the “one-time” usage. Since a client still holds an
object reference that leads to the process containing that state, and since the state cannot be
recreated after the crash, care must be taken that the client’s next invocation does not
automatically provoke a new activation of the object, because that object would have inapplicable
state.

The solution is to refuse to allow the object to be activated automatically by the TP Framework.
If the user provides the TobjS::ActivateObjectFailed exception to the TP Framework as a
result of the activate_object call, the TP Framework will not complete the activation and will
return an exception to the client, CORBA::OBJECT_NOT_EXIST. The client has presumably been
warned about this possibility, since it knows about the iterator (or similar) pattern. The client
must be prepared to restart the iteration.

Note: This defensive measure may not be necessary in the future; the TP Framework itself may
detect that the object reference is no longer valid. In particular, you should not depend on
the possibility that the activate_object method might be called. If the TP Framework
does in fact change, activate_object will not be called and the framework itself will
generate the OBJECT_NOT_EXIST exception.

Self Deactivation
Just as it is possible to preactivate an object with the process activation policy, it is possible to
request the deactivation of an object with the process activation policy. The ability to
preactivate and the ability to request deactivation are independent; regardless of how an object
was activated, it can be deactivated explicitly.

A method in the application can request (via TP::deactivateEnable) that the object be
deactivated. When TP::deactivateEnable is called and the object is subsequently deactivated,
no guarantee is made that subsequent invocations on the CORBA object will result in reactivation
in the same process as a previous activation. The association between the ObjectId and the
servant exists from the activation of the CORBA object until one of the following events occurs:
(1) the shutdown of the server process or (2) the application calls TP::deactivateEnable.
After the association is broken, when the object is invoked again, it can be reactivated anywhere
that is allowed by the Oracle Tuxedo configuration parameters.

There are two forms of TP::deactivateEnable. In the first form (with no parameters), the
object currently executing will be deactivated after completion of the method in which the call is
made. The object itself makes the decision that it should be deactivated. This is often done during
a method call that acts as a "signoff" signal.

The second form of TP::deactivateEnable allows a server to request deactivation of any
active object, whether it is the object that is executing or not; that is, any part of the server can
CORBA Programming Reference 3-9

ask that the object be deactivated. This form takes parameters identifying the object to be
deactivated. Explicit deactivation is not allowed for objects with an activation policy of
transaction, because such objects cannot be safely deactivated until the end of a transaction.

In the TP::deactivateEnable call, the TP Framework calls the servant’s
deactivate_object method. Exactly when the TP Framework invokes deactivate_object
depends on the state of the object to be deactivated. If the object is not currently in execution, the
TP Framework deactivates it before returning to the caller. The object might be currently
executing a method; this is always the case for TP::deactivateEnable with no parameters
(since it refers to the currently executing object). In this case, TP::deactivateEnable is not
told whether the object was deactivated immediately or not.

Note: The TP::deactivateEnable(interface, object id, servant) method can be
used to deactivate an object. However, if that object is currently in a transaction, the
object will be deactivated when the transaction commits or rolls back. If an invoke occurs
on the object before the transaction is committed or rolled back, the object will not be
deactivated.

To ensure the desired behavior, make sure that the object is not in a transaction or ensure
that no invokes occur on the object after the TP::deactivateEnable() call until the
transaction is complete.

Servant Lifetime
A servant is a C++ class that contains methods to implement an IDL interface’s operations. The
user writes the servant code. The TP Framework invokes methods in the servant code to satisfy
requests. The servant is created by the C++ “new” statement and is destroyed by the C++ “delete”
statement. Exactly who does the creation and who does the deletion, and the timing of creation
and deletion, is the subject of this section.

The Normal Case
In the normal case, the TP Framework completely controls the lifetime of a servant. The basic
model is that, when a request for an inactive object arrives, the TP Framework obtains a servant
and then activates it (by calling its activate_object method). At deactivation time, the TP
Framework calls the servant’s deactivate_object method and then disposes of the servant.

The phase “the TP Framework obtains a servant” means that when the TP Framework needs a
servant to be created, it calls a user-written Server method, either Server::create_servant or
ServerBase::create_servant_with_id. At that time, the application code must return a
pointer to the requested servant. The application almost always does this by using the C++ “new”
3-10 CORBA Programming Reference

Sta te Management
statement to create a new instance of a servant. The phrase “disposes of the servant” means that
the TP Framework removes the reference to the servant, which actually deletes it.

The application must be aware that this current behavior of always creating and removing a
servant may change in future versions of this product. The application should not depend on the
current behavior, but should write servant code that allows reuse of a servant. Specifically, the
servant code must work even if the servant has not been freshly created (by the C++ “new”
statement). The TP Framework reserves the right not to remove a servant after it has been
deactivated and then to reactivate it. This means that the servant must completely initialize itself
at the time of the callback on the servant’s activate_object method, not at the time of servant
creation (not in the constructor).

Special Cases
There are two techniques an application can use to alter the normal TP Framework use of
servants. The first has to do with obtaining a servant and the second has to do with disposing of
the servant.

The application can alter the “obtaining” mechanism by using explicit preactivation. In this case,
the application creates and initializes a servant before asking the TP Framework to declare it
activated. Once such a servant has been turned over to the TP Framework (by the
TP::create_active_object_reference call), that servant is treated by the TP Framework
just like every other servant. The only difference is in its method of creation and initialization.

The application can alter the “disposing” mechanism by taking the responsibility for disposing of
a servant instead of leaving that responsibility with the TP Framework. Once a servant is known
to the TP Framework (through Server::create_servant,
ServerBase::create_servant_with_id, or TP::create_active_object_reference),
the TP Framework’s default behavior is to remove that servant itself. In this case, the application
code must no longer use references to the servant after deactivation.

However, the application may tell the TP Framework not to dispose of the servant after the TP
Framework deactivates it. Taking responsibility for a servant is done on an individual servant
basis, not for a whole class of servants, by calling Tobj_ServantBase::_add_ref with a
parameter identifying the servant.

Note: In applications written using Oracle Tuxedo release 8.0 or later, use the
Tobj_ServantBase::_add_ref method instead of the
TP::application_responsibility() method. Unlike the
TP::application_responsibility() method, the add_ref() method takes no
arguments.
CORBA Programming Reference 3-11

The advantage of the application taking responsibility for the servant is that the servant does not
have to be created anew. If obtaining the servant is an expensive proposition, the application may
choose to save the servant and reuse it later. This is especially likely to be true for servants for
preactivated objects, but is true in general. For example, the next time the TP Framework makes
a call on Server::create_servant or ServerBase::create_servant_with_id, the
application might return a previously saved servant.

Additionally, once an application has taken responsibility for a servant, the application must take
care to remove the servant (using Tobj_ServantBase::_remove_ref) when the servant is no
longer needed, that is, when the reference count drops to zero, the same as for any other C++
instance. For more information about how the _remove_ref() method works, see
Tobj_ServantBase::_remove_ref().

For more information on writing single-threaded and multithreaded server applications, see
Creating CORBA Server Applications.

Saving and Restoring Object State
While CORBA objects are active, their state is contained in a servant. Unless an application uses
TP::create_active_object_reference, state must be initialized when the object is first
invoked (that is, the first time a method is invoked on a CORBA object after its object reference
is created), and on subsequent invocations after they have been deactivated. While a CORBA
object is deactivated, its state must be saved outside the process in which the servant was active.
The object’s state can be saved in shared memory, in a file, or in a database. Before a CORBA
object is deactivated, its state must be saved, and when it is activated, its state must be restored.

The programmer determines what constitutes an object’s state and what must be saved before an
object is deactivated, and restored when an object is activated.

Note On Use of Constructors and Destructors for CORBA Objects
The state of CORBA objects must not be initialized, saved, or restored in the constructors or
destructors for the servant classes. This is because the TP Framework may reuse an instance of a
servant rather than deleting it at deactivation. No guarantee is made as to the timing of the
creation and deletion of servant instances.

Transactions
The following sections provide information about transaction policies and how to use
transactions.
3-12 CORBA Programming Reference

Transact ions
Transaction Policies
Eligibility of CORBA objects to participate in global transactions is controlled by the transaction
policies assigned to implementations at compile time. The following policies can be assigned.

Note: The transaction policies are set in an ICF file that is configured at OMG IDL compile
time. For a description of the ICF file, refer to the Implementation Configuration File
(ICF) section.

never

The implementation is not transactional. Objects created for this interface can never be
involved in a transaction. The system generates an exception (INVALID_TRANSACTION) if
an implementation with this policy is involved in a transaction. An AUTOTRAN policy
specified in the UBBCONFIG file for the interface is ignored.

ignore

The implementation is not transactional. This policy instructs the system to allow requests
within a transaction to be made of this implementation. An AUTOTRAN policy specified in
the UBBCONFIG file for the interface is ignored.

optional (This is the default transaction_policy.)

The implementation may be transactional. Objects can be involved in a transaction if the
request is transactional. Servers containing transactional objects must be configured within
a group associated with an XA-compliant resource manager. If the AUTOTRAN parameter is
specified in the UBBCONFIG file for the interface, AUTOTRAN is on.

always

The implementation is transactional. Objects are required to always be involved in a
transaction. If a request is made outside a transaction, the system automatically starts a
transaction before invoking the method. The transaction is committed when the method
ends. (This is the same behavior that results from specifying AUTOTRAN for an object with
the option transaction policy, except that no administrative configuration is necessary to
achieve this behavior, and it cannot be overridden by administrative configuration.) Servers
containing transactional objects must be configured within a group that is associated with
an XA-compliant resource manager.

Note: The optional policy is the only transaction policy that can be influenced by
administrative configuration. If the system administrator sets the AUTOTRAN attribute for
the interface by means of the UBBCONFIG file or by using administrative tools, the system
automatically starts a transaction upon invocation of the object, if it is not already
infected with a transaction (that is, the behavior is as if the always policy were
specified).
CORBA Programming Reference 3-13

Transaction Initiation
Transactions are initiated in one of two ways:

By the application code via use of the CosTransactions::Current::begin() operation.
This can be done in either the client or the server. For a description of this operation, see
Using CORBA Transactions.

By the system when an invocation is done on an object which has either:

– Transaction policy always

– Transaction policy optional and a setting of AUTOTRAN for the interface

For more information, see Using CORBA Transactions.

Transaction Termination
In general, the handling of the outcome of a transaction is the responsibility of the initiator.
Therefore, the following are true:

If the client or server application code initiates transactions, the TP Framework never
commits a transaction. The Oracle Tuxedo system may roll back the transaction if server
processing tries to return to the client while the transaction is in an illegal state.

If the system initiates a transaction, the commit or rollback will always be handled by the
Oracle Tuxedo system.

The following behavior is enforced by the Oracle Tuxedo system:

If no transaction is active when a method on a CORBA object is invoked and that method
begins a transaction, the transaction must be either committed, rolled back, or suspended
when the method invocation returns. If none of these actions is taken, the transaction is
rolled back by the TP Framework, and the CORBA::OBJ_ADAPTER exception is raised to
the client application. This exception is raised because the transaction was initiated in the
server application; therefore, the client application would not expect a transactional error
condition such as TRANSACTION_ROLLEDBACK.

Transaction Suspend and Resume
The CORBA object must follow strict rules with respect to suspending and resuming a
transaction within a method invocation. These rules and the error conditions that result from their
violation are described below.
3-14 CORBA Programming Reference

Transact ions
When a CORBA object method begins execution, it can be in one of the following three states
with respect to transactions:

The client application began the transaction.

– Legal server application behavior: Suspend and resume the transaction within the
method execution.

– Illegal server application behavior: Return from the method with the transaction in the
suspended state (that is, return from the method without invoking resume if suspend
was invoked).

– Error Processing: If illegal behavior occurs, the TP Framework raises the
CORBA::TRANSACTION_ROLLEDBACK exception to the client application and the
transaction is rolled back by the Oracle Tuxedo system.

The system began a transaction to provide AUTOTRAN or transaction policy always
behavior.

Note: For each CORBA interface, set AUTOTRAN to Yes if you want a transaction to start
automatically when an operation invocation is received. Setting AUTOTRAN to Yes has no
effect if the interface is already in transaction mode. For more information about
AUTOTRAN, see Using CORBA Transactions.

– Legal server behavior: Suspend and resume the transaction within the method
execution.

Note: Not recommended. The transaction may be timed out and aborted before the method
causes the transaction to be resumed.

– Illegal server behavior: Return from the method with the transaction in the suspended
state (that is, return from the method without invoking resume if suspend was invoked).

– Error Processing: If illegal behavior occurs, the TP Framework raises the
CORBA::OBJ_ADAPTER exception to the client, and the transaction is rolled back by the
system. The CORBA::OBJ_ADAPTER exception is raised because the client application
did not initiate the transaction, and, therefore, does not expect transaction error
conditions to be raised.

The CORBA object is not involved in a transaction when it starts executing.

– Legal server behavior:

Begin and commit a transaction within the method execution.

Begin and roll back a transaction within the method execution.

Begin and suspend a transaction within the method execution.
CORBA Programming Reference 3-15

– Illegal server behavior: Begin a transaction and return from the method with the
transaction active.

– Error Processing: If illegal behavior occurs, the TP Framework raises the
CORBA::OBJ_ADAPTER exception to the client application and the transaction is rolled
back by the Oracle Tuxedo system. The CORBA::OBJ_ADAPTER exception is raised
because the client application did not initiate the transaction, and, therefore, does not
expect transaction error conditions to be raised.

Restrictions on Transactions
The following restrictions apply to Oracle Tuxedo CORBA transactions:

A CORBA object in the Oracle Tuxedo system must have the same transaction context
when it returns from a method invocation that it had when the method was invoked.

A CORBA object can be infected by only one transaction at a time. If an invocation tries
to infect an already infected object, a CORBA::INVALID_TRANSACTION exception is
returned.

If a CORBA object is infected with a transaction and a nontransactional request is made on
it, a CORBA::OBJ_ADAPTER exception is raised.

If the application begins a transaction in Server::initialize(), it must either commit
or roll back the transaction before returning from the method. If the application does not,
the TP Framework shuts down the server. This is because the application has no
predictable way of regaining control after completing the Server::initialize method.

If a CORBA object is infected by a transaction and with an activation policy of
transaction, and if the reason code passed to the method is either
DR_TRANS_COMMITTING or DR_TRANS_ABORTED, no invocation on any CORBA object can
be done from within the Tobj_ServantBase::deactivate_object method. Such an
invocation results in a CORBA::BAD_INV_ORDER exception.

SQL and Global Transactions
Adhere to the following guidelines when using SQL and Global Transactions:

Care should be taken when executing SQL statements outside the scope of a global
transaction. The SQL standard specifies that a local transaction should be started implicitly
by the database resource manager whenever an SQL statement that needs the context of a
transaction is executed and no transaction is active. The standard also says that a
transaction that is implicitly started by the database resource manager must then be
3-16 CORBA Programming Reference

Transact ions
explicitly terminated by executing a COMMIT or ROLLBACK SQL statement; the TP
Framework is not responsible for terminating transactions that are started by the resource
manager.

Note: This is not an issue when an application uses the XA library to connect to the Oracle
server because those applications can operate only on global transactions. The Oracle
server does not allow local transactions when it is using XA.

The SQL COMMIT and ROLLBACK statements cannot be used to terminate a global
transaction that has been either started explicitly using Current.begin() or started
implicitly by the system. Check the database vendor documentation for each database
product for other possible restrictions when using global transactions.

SQL cursors may be closed when transactions are terminated. Consult your database
product documentation for exact information about cursor handling rules. Application
programmers should be careful to use cursors only with CORBA objects with appropriate
activation policies and within appropriate transaction boundaries.

Voting on Transaction Outcome
CORBA objects can affect transaction outcome during two stages of transaction processing:

During transactional work

The Current.rollback_only method can be used to ensure that the only possible
outcome is to roll back the current transaction. Current.rollback_only() can be
invoked from any CORBA object method.

After completion of transactional work

CORBA objects that have the transaction activation policy are given a chance to vote
whether the transaction should commit or roll back after transactional work is completed.
These objects are notified of the completion of transactional work prior to the start of the
two-phase commit algorithm when the TP Framework invokes their deactivate_object
method.

Note that this behavior does not apply to objects with process or method activation
policies. If the CORBA object wants to roll back the transaction, it can call
Current::rollback_only. If it wants to vote to commit the transaction, it does not make
that call. Note, however, that a vote to commit does not guarantee that the transaction is
committed, since other objects may subsequently vote to roll back the transaction.

Note: Users of SQL cursors must be careful when using an object with the method or process
activation policy. A process opens an SQL cursor within a client-initiated transaction.
For typical SQL database products, once the client commits the transaction, all cursors
CORBA Programming Reference 3-17

that were opened within that transaction are automatically closed; however, the object
will not receive any notification that its cursor has been closed.

Transaction Timeouts
When a transaction timeout occurs, the transaction is marked so that the only possible outcome
is to roll back the transaction, and the CORBA::TRANSACTION_ROLLEDBACK standard exception
is returned to the client. Any attempts to send new requests will also fail with the
CORBA::TRANSACTION_ROLLEDBACK exception until the transaction has been aborted.

IIOP Client Failover
It is not always possible to determine when a server instance failed with respect to the work it was
doing at the time of failure. For example, if a server instance fails after handling a client request
but before returning the response, there is no way to tell that the request was handled. A user that
does not get a response will most likely retry, resulting in an additional request.

Support for IIOP client failover has been added to Oracle Tuxedo CORBA as an availability
enhancement. IIOP client failover provides a transparent mechanism for a CORBA remote client
to automatically connect to an alternative ISL and then retry the request in case of failure.

IIOP client failover marks an interface implementation as idempotent. An idempotent
implementation is one that can be repeated without any negative side-effects. For example, SET
BALANCE.

Setting The Retry Policy
In order to mark an interface implementation as idempotent, you must set the retry policy in the
implementation configuration file (ICF) using the retry_policy option. For a description
of the ICF, refer to the Implementation Configuration File (ICF) section.

The retry_policy option has two settings:

never: The default setting. It indicates that the interface implementation is not
idempotent and that requests should never be automatically retried.

always: Indicates that the interface implementation is idempotent and that requests should
always be retried in case of failure.
3-18 CORBA Programming Reference

I IOP C l i ent Fa i l ove r
MIB Support
You can also check the retry policy using the TA_RTPOLICY attribute added to the MIB(5)
T_IFQUEUE and T_INTERFACE classes. The TA_RTPOLICY attribute value is either never or
always.

Initiating IIOP Client Failover
To initiate IIOP client failover support, ISL servers must be specified using the -C warn|none
option in the *SERVERS section of the UBBCONFIG file

This option allows ISL to accept unofficial connection directly from the client orb. ISL servers
that are not specified using the -C warn|none option will not be placed in candidate IIOP
gateway pools. Consequently, the client will not failover to those ISL servers.

In the following UBBCONFIG file example shown in Listing 3-1, the ISL servers specified in lines
1 and 2 will support client failover. The ISL server in line 3 will not.

Listing 3-1 Example UBBCONFIG File IIOP Client Failover Entry

*SERVERS

ISL SRVGRP=SYS_GRP1 SRVID=10 CLOPT="-A -- -C warn -n //myhost1:2468"

ISL SRVGRP=SYS_GRP2 SRVID=20 CLOPT="-A -- -C none -n //myhost2:2469"

ISL SRVGRP=SYS_GRP3 SRVID=30 CLOPT="-A -- -n //myhost3:2470"

IIOP Client Failover Limitations
IIOP Client Failover is not supported under the following three instances:

Tuxedo system-supplied object failover
Only application-supplied object failover is supported.

Transaction mode

SSL link or authentication is required

See Also
UBBCONFIG(5)
CORBA Programming Reference 3-19

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf5/rf5.html

MIB(5)

T_IFQUEUE Class

T_INTERFACE Class

WebLogic CORBA Clustering and Load Balancing Support
Tuxedo CORBA C++ client supports failover to WebLogic clustering servers and also supports
load balancing. For more information, see WebLogic documentation - Failover and Replication
in a Cluster and Load Balancing in a Cluster.

Parallel Objects
Support for parallel objects was added to Oracle Tuxedo CORBA in release 8.0 as a performance
enhancement. The parallel objects feature enables you to designate all business objects in a
particular application as stateless objects. The effect is that, unlike stateful business objects,
which can only run on one server in a single domain, stateless business objects can run on all
servers in a single domain. Thus, the benefits of parallel objects are as follows:

Parallel objects can run on multiple servers in the same domain at the same time. Thus,
utilization of all servers to service concurrent multiple requests improves performance.

When the Oracle Tuxedo system services requests to parallel business objects, it always
looks for an available server to the local machine first. If all servers on the local machine
are busy processing the requested business object, the Oracle Tuxedo system looks for an
available server on other machines in the local domain. Thus, if there are multiple servers
on the local machine, network traffic is reduced and performance is improved.

For more information on parallel objects, see Scaling, Distributing, and Tuning CORBA
Applications.

To implement parallel objects, the concurrency policy option has been added to the ICF file. To
select parallel objects for a particular application, you set the concurrency policy option to
user-controlled. When you select user-controlled concurrency, the business object are not
registered with the Active Object Map (AOM) and, therefore, are stateless and can be active on
more than one server at a time. Thus, these objects are referred to as parallel objects.

If user-controlled concurrency is selected, the servant implementation must comply with one of
the following statements:

The servant implementation must have no requirements for concurrent access to a shared
resource
3-20 CORBA Programming Reference

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf5/rf5.html
http://docs.oracle.com/cd/E11035_01/wls100/cluster/failover.html
http://docs.oracle.com/cd/E11035_01/wls100/cluster/failover.html
http://docs.oracle.com/cd/E13222_01/wls/docs81/cluster/load_balancing.html

Para l l e l Ob jec ts
Or the servant implementation must utilize some other tool (for example, a database and
locking) to ensure the correct behavior during concurrent access to resources.

In release 8.0 of the Oracle Tuxedo software, the Implementation Configuration File (ICF) was
modified to support user-controlled concurrency. In Listing 3-2, the changes to add this support
are highlighted in bold type. For a description of the ICF syntax, see ICF Syntax.

Listing 3-2 ICF Syntax

[#pragma activation_policy method|transaction|process]
[#pragma transaction_policy never|ignore|optional|always]
[#pragma concurrency_policy user_controlled|system_controlled]
[Module module-name {]
 implementation [implementation-name]
 {
 implements (module-name::interface-name);
 [activation_policy (method|transaction|process);]
 [transaction_policy (never|ignore|optional|always);]
 [concurrency_policy (user_controlled|system_controlled);]
 };
 [};]

User-controlled concurrency can be used with factory-based routing, all activation policies, and
all transaction policies. The interaction with these features is as follows:

Factory-based routing

If the user specifies factory-based routing when creating the object, then the object will
route to a server in that group. The object key contains the group selected during
factory-based routing, but the client routing code will recognize that the interface has
user-controlled concurrency and specify the desired group. This is accomplished using
normal Oracle Tuxedo routing.

Activation policy

The TP Framework handles active user-controlled concurrency objects in the same manner
as system-controlled concurrency objects. The TP Framework stores information about
objects in the local AOM, and calls the activate_object and deactivate_object
methods at the appropriate times. However, the object will not have an entry in the AOM
and the TP Framework will not call any AOM routines. For example, on shutdown, since
an active object will not have an AOM handle, calls to remove the entry from the AOM
will not be invoked.
CORBA Programming Reference 3-21

Transaction policy

The TP Framework handles active user-controlled concurrency objects in the same manner
as system-controlled concurrency objects. The TP Framework is called back for transaction
events and the TP Framework stores information about transactional user-controlled
objects in the local AOM. The main differences when using parallel objects in transactions
as opposed to stateful objects are that the AOM is not used for GTRID information and the
AOM routines are not called to update or retrieve transactional information.

Note: There is one restriction with user-controlled concurrency.
TP::create_active_object_reference throws a TobjS::IllegalOperation
exception if it is passed an interface with user-controlled concurrency set. Since the
AOM is not used when user-controlled concurrency is set, there is no way for the TP
Framework to connect an active object to this server.

TP Framework API
This section describes the TP Framework API. Additional information about how to use this API
can be found in Creating CORBA Server Applications.

The TP Framework comprises the following components:

The Server C++ class, which has virtual methods for application-specific server
initialization and termination logic

The ServerBase C++ class, which has virtual methods for multithreaded server
applications.

The Tobj_ServantBase C++ class, which has virtual methods for object state
management

The TP C++ class, which provides methods to:

– Create object references for CORBA objects

– Register (and unregister) factories with the FactoryFinder object

– Initiate user-controlled preactivation and deactivation of objects

– Initiate user-controlled deactivation of the CORBA object currently being invoked

– Obtain an object reference to the CORBA object currently being invoked

– Open and close XA resource managers

– Log messages to a user log (ULOG) file
3-22 CORBA Programming Reference

TP F ramework AP I
– Obtain object references to the ORB and to Bootstrap objects (if not using the CORBA
Interoperable Naming Service (INS))

Header files for these classes

Libraries that are used by server applications

The visible part of the TP Framework consists of two categories of operations:

Service methods that can be called by user code. These are in the TP interface.

Callback methods that are written by the user and that are invoked by the TP Framework.
This includes methods in the Tobj_ServantBase and Server classes. These operations
are intended to be called by TP Framework code only. The application code should never
call the methods of these classes. If it does, unpredictable results may occur.

Server Interface
The Server interface provides callback methods that can be used for application-specific server
initialization and termination logic. This interface also provides a callback method that is used to
create servants when servants are required for object activation.

The Server interface has the following characteristics:

The Server class inherits from the ServerBase class.

The Server class is a C++ native class.

The Server.h file contains the declarations and definitions for the Server class.

For a description of the Server interface methods, see ServerBase Interface.

C++ Declarations
For the C++ mappings, seeServerBase Interface.

ServerBase Interface
The serverBase interface allows you to take full advantage of multithreading capabilities. You
can create your own Server classes that inherit from the ServerBase class. This provides you
with the following:

The create_servant_with_id() method to support implementations requiring
knowledge of the target object during the creation of a servant
CORBA Programming Reference 3-23

Support for user-supplied thread initialization and release handlers

The ServerBase class provides the same operations that were available in the Server class in
earlier releases. The Server class inherits from the ServerBase class.

These methods can be used with single-threaded and multithreaded applications:

– Server::create_servant()

– Server::initialize()

– Server::release()

– ServerBase::create_servant_with_id()

These methods can be used with multithreaded server applications only:

– ServerBase:: thread_initialize()

– ServerBase::thread_release()

Note: Programmers must provide definitions of the Server class methods. The ServerBase class
methods have default implementations.

C++ Declarations (in Server.h)
The C++ mapping is as follows:

class OBBEXPDLLUSER ServerBase {
public:

 virtual CORBA::Boolean
 initialize(int argc, char** argv) = 0;

 virtual void
 release() = 0;

 virtual Tobj_Servant
 create_servant(const char* interfaceName) = 0;

 // Default Implementations Supplied
 virtual Tobj_Servant
 create_servant_with_id(const char* interfaceName,
 const char* stroid);

 virtual CORBA::Boolean
 thread_initialize(int argc, char** argv);

 virtual void
 thread_release();
3-24 CORBA Programming Reference

TP F ramework AP I
};

class Server : public ServerBase {
public:

 CORBA::Boolean initialize(int argc, char** argv);
 void release();
 Tobj_Servant create_servant(const char* interfaceName);
};

Server::create_servant()

Synopsis
Creates a servant to instantiate a C++ object.

C++ Binding
class Server {
public:
 Tobj_Servant create_servant(const char* interfaceName);
};

Argument
interfaceName

Specifies a character string that contains the fully qualified interface name for the object.
This will be the same interface name that was supplied when the object reference was
created (TP::create_object_reference() or
TP::create_active_object_reference()) for the object reference used for this
invocation. This name can be used to determine which servant needs to be constructed.

Exception
If an exception is thrown in Server::create_servant(), the TP Framework catches the
exception. Activation fails. A CORBA::OBJECT_NOT_EXIST() exception is raised back to the
client. In addition, an error message is written to the user log (ULOG) file, as follows, for each
exception type:

TobjS::CreateServantFailed
"TPFW_CAT:23: ERROR: Activating object - application raised
TobjS::CreateServantFailed. Reason = reason. Interface = interfaceName,
OID = oid"
CORBA Programming Reference 3-25

Where reason is a user-supplied reason, and interfaceName and oid are the interface
ID and object ID, respectively, of the invoked CORBA object.

TobjS::OutOfMemory
"TPFW_CAT:22: ERROR: Activating object - application raised
TobjS::OutOfMemory. Reason = reason. Interface = interfaceName, OID =
oid"

Where reason is a user-supplied reason, and interfaceName and oid are the interface
ID and object ID, respectively, of the invoked CORBA object.

CORBA::Exception
"TPFW_CAT:28: ERROR: Activating object - CORBA Exception not handled
by application. Exception ID = exceptionID. Interface = interfaceName,
OID = oid"

Where exceptionID is the interface ID of the exception, and interfaceName and oid
are the interface ID and object ID, respectively, of the invoked CORBA object.

Other Exception
"TPFW_CAT:29: ERROR: Activating object - Unknown Exception not handled
by application. Exception ID = exceptionID. Interface = interfaceName,
OID = oid"

Where exceptionID is the interface ID of the exception, and interfaceName and oid
are the interface ID and object ID, respectively, of the invoked CORBA object.

Description
The create_servant method is invoked by the TP Framework when a request arrives at the
server and there is no available servant to satisfy the request. The TP Framework calls the
create_servant method with the interface name for the servant to be created. The server
application instantiates an appropriate C++ object and returns a pointer to it. Typically, the
method contains a switch statement on the interface name and creates a new object, depending
on the interface name.

Caution: The server application must not depend on this method being invoked for every
activation of a CORBA object. The server application must not do any handling of
CORBA object state in the constructors or destructors of any servant classes for
CORBA objects. This is because the TP Framework may possibly reuse servants on
activation and may possibly not destroy servants on deactivation.
3-26 CORBA Programming Reference

TP F ramework AP I
Return Value
Tobj_Servant

The pointer to the newly created servant (instance) for the specified interface. A NULL
value should be returned if create_servant() is invoked with an interface name that it
does not recognize or if the servant cannot be created for some reason.
If the create_servant method returns a NULL pointer, activation fails. A
CORBA::OBJECT_NOT_EXIST() exception is raised back to the client. Also, the
following message is written to the user log (ULOG):

"TPFW_CAT:23: ERROR: Activating object - application raised
TobjS::CreateServantFailed. Reason = Application's
Server::create_servant returned NULL. Interface = interfaceName, OID
= oid"

Where interfaceName is the interface ID of the invoked interface and oid is the
corresponding object ID.

Note: The restriction on the length of the ObjectId has been removed in this release.

ServerBase::create_servant_with_id()

Synopsis
Creates a servant for this target object. This method supports the development of single-headed
and multithreaded server applications.

C++ Binding
Tobj_Servant create_servant_with_id (const char* interfaceName,

 const char* stroid);

Arguments
interfaceName

Specifies a character string containing the fully qualified interface name for the object.
This must be the same interface name that was supplied when the object reference was
created.

stroid
Specifies an object ID in string format. The object ID uniquely identifies the object
associated with the request to be processed. This is the same object ID that was specified
when the object reference was created.
CORBA Programming Reference 3-27

Description
The TP Framework invokes the create_servant_with_id method when a request arrives at
the server and there no servant is available to satisfy the request. The TP Framework passes in
the interface name for the servant to be created and the object ID associated with the object with
which the servant will be associated. The server application instantiates an appropriate C++
object and returns a pointer to it. Typically, the method contains a switch statement on the
interface name and creates a new object, depending on the interface name. Providing the object
ID allows a servant implementation to make decisions during the creation of the servant instance
that require knowledge of the target object. Reentrancy support is one example of how a servant
implementation might employ knowledge of the target object.

The ServerBase class provides a default implementation of create_servant_with_id which
calls the standard create_servant method passing the interface name. This default
implementation ignores the target object ID parameter.

Caution: The server application must not depend on the invocation of this method for every
activation of a CORBA object. The server application must not handle the CORBA
object state in the constructors or destructors of any servant classes for CORBA
objects. This is because the TP Framework might reuse servants on activation and
might not destroy servants on deactivation.

Return Value
Tobj_Servant

A pointer to the newly created servant (instance) for the specified interface. Returns NULL
if either of these conditions is true:

Interface name not recognized

Unable to create a servant

Example
Tobj_Servant simple_per_request_server::create_servant_with_id(
 const char* intf_repos_id, const char* stroid)
{
 TP::userlog("create_servant_with_id called in thread %ld",
 (unsigned long)SIMPTHR_GETCURRENTTHREADID);

 // Perform any necessary initialization based on
 // this object ID

3-28 CORBA Programming Reference

TP F ramework AP I
 return create_servant(intf_repos_id);
}

Server::initialize()

Synopsis
Allows the application to perform application-specific initialization procedures, such as logging
into a database, creating and registering well-known object factories, initializing global variables,
and so forth.

C++ Binding
class Server {
public:

 CORBA::Boolean initialize(int argc, char** argv);

};

Arguments
The argc and argv arguments are passed from the command line. The argc argument contains
the name of the server. The argv argument contains the first command-line option that is specific
to the application, if there are any.

Command-line options are specified in the UBBCONFIG file using the CLOPT parameter in the
entry for the server in the SERVERS section. System-recognized options come first in the CLOPT
parameter, followed by a double-hyphen (--), followed by the application-specific options. The
value of argc is one greater than the number of application-specific options. For details, see
ubbconfig(5) in the File Formats, Data Descriptions, MIBs, and System Processes Reference.

Exceptions
If an exception is raised in Server::initialize(), the TP Framework catches the exception.
The TP Framework behavior is the same as if initialize() returned FALSE (that is, an
exception is considered to be a failure). In addition, an error message is written to the user log
(ULOG) file, as follows, for each exception type:

TobjS::InitializeFailed
"TPFW_CAT:1: ERROR: Exception in
Server::initialize():IDL:beasys.com/TobjS/InitializeFailed:1.0.
Reason = reason"

Where reason is a string supplied by application code. For example:
CORBA Programming Reference 3-29

Throw TobjS::InitializeFailed(
 "Couldn't register factory");

 CORBA::Exception
"TPFW_CAT:1: ERROR: Exception in Server::initialize(): exception.
Reason = unknown"

Where exception is the interface ID of the CORBA exception that was raised.

Other Exceptions
TPFW_CAT:1: ERROR: Exception in Server::initialize(): unknown
exception. Reason = unknown"

Description
The initialize callback method, which is invoked as the last step in server initialization,
allows the application to perform application-specific initialization.

Typically, a server application does the following tasks in Server::initialize:

Creates references for CORBA object factories implemented in the server application and
registers them with the FactoryFinder using the TP::register_factory() operation.

Initializes global variables, if any are used.

Opens XA resource managers if any are used by the server application.

It is the responsibility of the server application to open any required XA resource managers. This
is done by invoking either of the following methods:

TP::open_xa_rm()
This is the preferred technique for server applications, since it can be done on a static
function, without the need to obtain an object reference.

Note: You must use the TP::open_xa_rm() method if you use the INS bootstrap mechanism
to obtain initial object references.

Tobj::TransactionCurrent::open_xa_rm()
A reference to the TransactionCurrent object can be obtained from the Bootstrap object.
For an explanation of how to obtain a reference to the Bootstrap object, see the section
TP::bootstrap(). For more information about the TransactionCurrent object, see the
CORBA Bootstrapping Programming Reference section and Using CORBA Transactions.

Transactions may be started in the initialize method after invoking the
Tobj::TransactionCurrent::open_xa_rm() or TP::open_xa_rm method. However,
any transactions that are started in initialize() must be terminated by the server
application before initialize() returns. If the transactions are still active when control
3-30 CORBA Programming Reference

TP F ramework AP I
is returned, the server application fails to boot, and it exits gracefully. This happens
because the server application has no logical way of either committing or rolling back the
transaction after Server::initialize() returns. This condition is an error.

Return Value
Boolean TRUE or FALSE. TRUE indicates success. FALSE indicates failure. If an error occurs in
initialize(), the application code should return FALSE. The application code should not call
the system call exit(). Calling exit() does not give the TP Framework a chance to release
resources allocated during startup and may cause unpredictable results.

If the return value is FALSE:

Server::release() is not invoked.

Any transactions that are started in the initialize() method and are not terminated will
eventually time out; they are not automatically rolled back.

ServerBase::thread_initialize()

Synopsis
Performs any necessary application-specific initialization for a thread created using the Oracle
Tuxedo software. This method supports the development of a multithreaded server application.

C++ Binding
CORBA::Boolean thread_initialize(int argc, char** argv)

Arguments
argc

The number of arguments provided to the application. Initially, this count is passed to the
main function.

argv
The arguments provided to the application. Initially, these arguments are passed to the
main function.

Description
In managing the thread pool, the Oracle Tuxedo software creates and releases threads using the
operating system thread library services. Depending on application requirements, these threads
might need to be initialized before they are used to process requests.
CORBA Programming Reference 3-31

The thread_initialize callback method is invoked each time a thread is created, to initialize
the thread. Note that the Oracle Tuxedo software manages a number of system-owned threads
that are used for dispatching requests; these system-owned threads are in addition to those threads
in the thread pool. Under some circumstances the servant methods you implement are also
executed in these system-owned threads; for this reason the Oracle Tuxedo software invokes the
thread_initialize method to initialize the system-owned threads.

The ServerBase class provides a default implementation of the thread_initialize method
that opens the XA resource manager in the initialized thread.

Return Value
CORBA::Boolean

True if the initialization of the thread was successful.

Example
CORBA::Boolean simple_per_request_server::thread_initialize(
 int argc, char** argv)
{
 TP::userlog("thread_initialize called in thread %ld",
 (unsigned long)SIMPTHR_GETCURRENTTHREADID);
 return CORBA_TRUE;
}

Server::release()

Synopsis
Allows the application to perform any application-specific cleanup, such as logging off a
database, unregistering well-known factories, or deallocating resources.

C++ Binding
typedef Tobj_ServantBase* Tobj_Servant;

class Server {
public:
 void release();
};

Arguments
None.
3-32 CORBA Programming Reference

TP F ramework AP I
Exceptions
If an exception is raised in release(), the TP Framework catches the exception. Each exception
causes an error message to be written to the user log (ULOG) file, as follows:

TobjS::ReleaseFailed
"TPFW_CAT:2: WARN: Exception in Server::release():
IDL:beasys.com/TobjS/ReleaseFailed:1.0. Reason = reason"

Where reason is a string supplied by application code. For example:
Throw TobjS::ReleaseFailed(
 "Couldn't unregister factory");

CORBA::Exception
"TPFW_CAT:2: WARN: Exception in Server::release(): exception. Reason
= unknown"

Where exception is the interface ID of the CORBA exception that was raised.

Other Exceptions
"TPFW_CAT:2: WARN: Exception in Server::release(): unknown exception.
Reason = unknown"

In all cases, the server continues to exit.

Description
The release callback method, which is invoked as the first step in server shutdown, allows the
server application to perform any application-specific cleanup. The user must override the virtual
function definition.

Typical tasks performed by the application in this method are as follows:

Close XA resource managers.

Unregister CORBA object factories that were registered with the FactoryFinder in
Server::initialize().

Deallocate any server resources not yet released.

This method is normally called in response to a tmshutdown command from the administrator or
operator.

The TP Framework provides a default implementation of Server::release(). The default
implementation closes XA resource managers for the server. The implementation does this by
issuing a tx_close() invocation, which uses the default CLOSEINFO configured for the server's
group in the UBBCONFIG file.
CORBA Programming Reference 3-33

It is the responsibility of the application to close any open XA resource managers. This is done
by issuing either of the following calls:

TP::close_xa_rm()

Note: You must use the TP::close_xa_rm() method if you use the INS bootstrap mechanism
to obtain initial object references.

Tobj::TransactionCurrent::close_xa_rm(). A reference to the TransactionCurrent
object can be obtained from the Bootstrap object. For an explanation of how to obtain a
reference to the Bootstrap object, see the section TP::bootstrap(). For more information
about the TransactionCurrent object, see CORBA Bootstrapping Programming Reference
and Using CORBA Transactions.

Note: Once a server receives a request from the tmshutdown(1) command to shut down, it can
no longer receive requests from other remote objects. This may require servers to be shut
down in a specific order. For example, if the Server::release() method in Server 1
needs to access a method of an object that resides in Server 2, Server 2 should be shut
down after Sever 1 is shut down. In particular, the TP::unregister_factory()
method accesses the FactoryFinder Registrar object that resides in a separate server. The
TP::unregister_factory() method is typically invoked from the release()
method; therefore, the FactoryFinder server should be shut down after all servers that call
TP::unregister_factory() in their Server::release() method.

Return Value
None.

ServerBase::thread_release()

Synopsis
Performs application-specific cleanup when a thread that was created by the Oracle Tuxedo
software is released. This method supports the development of a multithreaded server
application.

C++ Binding
void thread_release()

Arguments
None.
3-34 CORBA Programming Reference

TP F ramework AP I
Description
The thread_release callback method is invoked each time a thread is released. Implement the
thread_release method as necessary to perform application-specific resource cleanup.

The ServerBase class provides a default implementation of the thread_release method that
closes the XA resource manager in the released thread.

Return Value
None.

Example
void simple_per_request_server::thread_release()
{
 TP::userlog("thread_release called in thread %ld",
 (unsigned long)SIMPTHR_GETCURRENTTHREADID);
}

Tobj_ServantBase Interface
The Tobj_ServantBase interface inherits from the
PortableServer::RefCountServantBase class and defines operations that allow a CORBA
object to assist in the management of its state in a thread-safe manner. Every implementation
skeleton generated by the IDL compiler automatically inherits from the Tobj_ServantBase
class. The Tobj_ServantBase class contains two virtual methods, activate_object() and
deactivate_object(), that may be optionally implemented by the programmer.

Whenever a request comes in for an inactive CORBA object, the object is activated and the
activate_object() method is invoked on the servant. When the CORBA object is deactivated,
the deactivate_object() method is invoked on the servant. The timing of deactivation is
driven by the implementation’s activation policy. When the deactivate_object() method is
invoked, the TP Framework passes in a reason code to indicate why the call was made.

These methods support the development of a multithreaded server application:

TobjServantBase::_add_ref()

TobjServantBase::_is_reentrant()

TobjServantBase::_remove_ref()

Note: Tobj_ServantBase::activate_object() and
Tobj_ServantBase::deactivate_object() are the only methods that the TP
Framework guarantees will be invoked for CORBA object activation and deactivation.
CORBA Programming Reference 3-35

The servant class constructor and destructor may or may not be invoked at activation or
deactivation time (through the Server::create_servant call for C++). Therefore, the
server application code must not do any state handling for CORBA objects in either the
constructor or destructor of the servant class.

Note: The programmer does not need to use a cast or reference to Tobj_ServantBase directly.
The Tobj_ServantBase methods show up as part of the skeleton and, therefore, in the
implementation class for a servant. The programmer may provide definitions for the
activate_object and deactivate_object methods, but the programmer should
never make direct invocations on those methods; only the TP Framework should call
those methods.

C++ Declaration (in Tobj_ServantBase.h)
The C++ mapping for the Tobj_servantBase interface is as follows:

class Tobj_ServantBase : public PortableServer::RefCountServantBase {
public:

 Tobj_ServantBase& operator=(const Tobj_ServantBase&);
 Tobj_ServantBase() {}
 Tobj_ServantBase(const Tobj_ServantBase& s) :
 PortableServer::RefCountServantBase(s) {}

 virtual void activate_object(const char *) {}

 virtual void deactivate_object(const char*,
 TobjS::DeactivateReasonValue) {}

 virtual CORBA::Boolean _is_reentrant() { return CORBA_FALSE; }
};

typedef Tobj_ServantBase * Tobj_Servant;

Tobj_ServantBase:: activate_object()

Synopsis
Associates an object ID with a servant. This method gives the application an opportunity to
restore the object’s state when the object is activated. The state may be restored from shared
memory, from an ordinary flat file, or from a database file.

C++ Binding
class Tobj_ServantBase : public PortableServer::ServantBase {
public:
3-36 CORBA Programming Reference

TP F ramework AP I
 virtual void activate_object(const char * stroid) {}
};

Argument
stroid

Specifies the object ID in string format. The object ID uniquely identifies this instance of
the class. This is the same object ID that was specified when the object reference was
created (using TP:create_object_reference()) or in the
TP::create_active_object_reference() for the object reference used for this
invocation.

Note: The restriction on the length of the object ID has been removed in this release.

Description
Object activation is triggered by a client invoking a method on an inactive CORBA object. This
causes the Portable Object Adapter (POA) to assign a servant to the CORBA object. The
activate_object() method is invoked before the method invoked by the client is invoked. If
activate_object() returns successfully, that is, without raising an exception, the requested
method is executed on the servant.

The activate_object() and deactivate_object() methods and the method invoked by the
client can be used by the programmer to manage object state. The particular way these methods
are used to manage object state may vary according to the needs of the application. For a
discussion of how these methods might be used, see Creating CORBA Server Applications.

If the object is currently infected with a global transaction, activate_object() executes within
the scope of that same global transaction.

It is the responsibility of the programmer of the object to check that the stored state of the object
is consistent. In other words, it is up to the application code to save a persistent flag that indicates
whether or not deactivate_object() successfully saved the state of the object. That flag
should be checked in activate_object().

Return Value
None.

Exceptions
If an error occurs while executing activate_object(), the application code should raise either
a CORBA standard exception or a TobjS::ActivateObjectFailed exception. When an
exception is raised, the TP Framework catches the exception, and the following events occur:
CORBA Programming Reference 3-37

The activation fails.

The method invoked by the client is not executed.

If activate_object() is executing within a transaction and the client initiated the
transaction, the transaction is not rolled back.

A CORBA::OBJECT_NOT_EXIST exception is raised back to the client.

Note: For each CORBA interface, set AUTOTRAN to Yes if you want a transaction to start
automatically when an operation invocation is received. Setting AUTOTRAN to Yes has no
effect if the interface is already in transaction mode. For more information about
AUTOTRAN, see Using CORBA Transactions.

Based on the exception is raised, a message is written to the user log (ULOG) file, as
follows:

TobjS::ActivateObjectFailed
"TPFW_CAT:24: ERROR: Activating object - application raised
TobjS::ActivateObjectFailed. Reason = reason. Interface =
interfaceName, OID = oid"

Where reason is a user-supplied reason, and interfaceName and oid are the interface
ID and object ID, respectively, of the invoked CORBA object.

TobjS::OutOfMemory
"TPFW_CAT:22: ERROR: Activating object - application raised
TobjS::OutOfMemory. Reason = reason. Interface = interfaceName, OID =
oid"

Where reason is a user-supplied reason, and interfaceName and oid are the interface
ID and object ID, respectively, of the invoked CORBA object.

CORBA::Exception
"TPFW_CAT:25: ERROR: Activating object - CORBA Exception not handled
by application. Exception ID = exceptionID. Interface = interfaceName,
OID = oid"

Where exceptionID is the interface ID of the exception, and interfaceName and oid
are the interface ID and object ID, respectively, of the invoked CORBA object.

Other exception
"TPFW_CAT:26: ERROR: Activating object - Unknown Exception not handled
by application. Exception ID = exceptionID. Interface = interfaceName,
OID = oid"
3-38 CORBA Programming Reference

TP F ramework AP I
Where exceptionID is the interface ID of the exception, and interfaceName and oid
are the interface ID and object ID, respectively, of the invoked CORBA object.

Tobj_ServantBase::_add_ref()

Synopsis
Adds a reference to a servant. This method supports the development of a multithreaded server
application.

Note: In applications written using Oracle Tuxedo release 8.0 or later, use this method instead
of the TP::application_responsibility() method.

C++ Binding
void _add_ref()

Arguments
None.

Description
Invoke this method when a reference to a servant is needed. Invoking this method causes the
reference count for the servant to increment by one.

Return Value
None.

Example
myServant * servant = new intf_i();
if(servant != NULL)
 servant->_add_ref();

Tobj_ServantBase::deactivate_object()

Synopsis
Removes the association of an object ID with its servant. This method gives the application an
opportunity to save all or part of the object’s state before the object is deactivated. The state may
be saved in shared memory, in an ordinary flat file, or in a database file.
CORBA Programming Reference 3-39

C++ Binding
class Tobj_ServantBase : public PortableServer::ServantBase {
public:
 virtual void deactivate_object(const char* stroid,
 TobjS::DeactivateReasonValue reason) {}
};

Arguments

stroid
Specifies the object ID in string format. The object ID uniquely identifies this instance of
the class.

Note: The restriction on the length of the object ID has been removed in this release.

reason
Indicates the event that caused this method to be invoked. The reason code can be one of
the following:

DR_METHOD_END
Indicates that the object is being deactivated after the completion of a method. It is
used if the object’s deactivation policy is:
- method

- transaction (only if there is no transaction in effect)
- process (if TP::deactivateEnable() called)

DR_SERVER_SHUTDOWN
Indicates that the object is being deactivated because the server is being shut down
in an orderly fashion. It is used if the object’s deactivation policy is:
- transaction (only if transaction is active)
- process

Note that when a server is shut down in an orderly fashion, all transactions that the
server is involved in are marked for rollback.

DR_TRANS_ABORTED
This reason code is used only for objects that have the transaction activation
policy. It can occur when the transaction is started by either the client or
automatically by the system. When the deactivate_object() method is
invoked with this reason code, the transaction is marked for rollback only.

DR_TRANS_COMMITTING
3-40 CORBA Programming Reference

TP F ramework AP I
This reason code is used only for objects that have the transaction activation
policy. It can occur when the transaction is started by either the client or the TP
Framework. It indicates that a Current.commit() operation was invoked for the
transaction in which the object is involved. The deactivate_object() method
is invoked just before the transaction manager’s two-phase commit algorithm
begins; that is, before prepare is sent to the resource managers.
The CORBA object is allowed to vote on the outcome of the transaction when the
deactivate_object() method is invoked with the DR_TRANS_COMMITTING
reason code. By invoking Current.rollback_only(), the method can force
the transaction to be rolled back; otherwise, the two-phase commit algorithm
continues. The transaction is not necessarily committed just because the
Current.rollback_only() is not invoked in this method. Any other CORBA
object or resource manager involved in the transaction could also vote to roll back
the transaction.

DR_EXPLICIT_DEACTIVATE
Indicates that the object is being deactivated because the application executed a
TP::deactivateEnable(-,-,-) on this object. This can happen only for
objects that have the process activation policy.

 Description
Object deactivation is initiated either by the system or by the application, depending on the
activation policy of the implementation for the CORBA object. The deactivate_object()
method is invoked before the CORBA object is deactivated. For details of these policies and their
use, see the section ICF Syntax.

Deactivation may occur after an execution of a method invoked by a client if the activation policy
for the CORBA object implementation is method, or as a result of the end of transactional work
if the activation policy is transaction. It may also occur as the result of server shutdown if the
activation policy is transaction or process.

In addition, the Oracle Tuxedo software supports the use of user-controlled deactivation of
CORBA objects having an activation policy of process or method via the use of the
TP::deactivateEnable() and TP::deactivateEnable(-,-,-) methods.
TP::deactivateEnable can be called inside a method of an object to cause the object to be
deactivated at the end of the method. If TP::deactivateEnable is called in an object with the
transaction activation policy, an exception is raised (TobjS::IllegalOperation) and the
TP Framework takes no action. TP::deactivateEnable(-,-,-) can be called to deactivate
any object that has a process activation policy. For more information, see the section
TP::deactivateEnable().
CORBA Programming Reference 3-41

Note: The deactivate_object method will be called at server shutdown time for every
object remaining in the Active Object Map, whether it was entered there implicitly by the
TP Framework (the activation-on-demand technique: TP::create_servant and the
servant’s activate_object method) or explicitly by the user with
TP::create_active_object_reference.

The activate_object() and deactivate_object() methods and explicit methods invoked
by the client can be used by the programmer to manage object state. The manner in which these
methods are used to manage object state may vary according to the needs of the application. For
a discussion of how these methods might be used, see Creating CORBA Server Applications.

The CORBA object with transaction activation policy gets to vote on the outcome of the
transaction when the deactivate_object() method is invoked with the
DR_TRANS_COMMITTING reason code. By calling Current.rollback_only() the method can
force the transaction to be rolled back; otherwise, the two-phase commit algorithm continues. The
transaction will not necessarily be committed just because Current.rollback_only() is not
called in this method. Any other CORBA object or resource manager involved in the transaction
could also vote to roll back the transaction.

Restriction
Note that if the object is involved in a transaction when this method is invoked, there are
restrictions on what type of processing can be done based on the reason the object is invoked. If
the object was involved in a transaction, the activation policy is transaction and the reason
code for the call is:

DR_TRANS_ABORTED
No invocations on any CORBA objects are allowed in the method. No tpcall() is
allowed. Transactions cannot be suspended or begun.

DR_TRANS_COMMITTING
No invocations on any CORBA objects are allowed in the method. No tpcall() is
allowed. Transactions cannot be suspended or begun.

The reason for these restrictions is that the deactivation of objects with activation policy
transaction is controlled by a call to the TP Framework from the transaction manager for the
transaction. When the call with reason code DR_TRANS_COMMITTING is made, the transaction
manager is executing phase 1 (prepare) of the two-phase commit. At this stage, it is not possible
to issue a call to suspend a transaction nor to initiate a new transaction. Since a call to a CORBA
object that was in another process would require that process to join the transaction, and the
transaction manager is already executing the prepare phase, this would cause an error1. Since a
3-42 CORBA Programming Reference

TP F ramework AP I
call to a CORBA object that had no transactional properties would require that the current
transaction be suspended, this would also cause an error. The same is true of a tpcall().

Similarly, when the invocation with reason code DR_TRANS_ABORTED is made, the transaction
manager is already aborting. While the transaction manager is aborting, it is not possible to either
suspend a transaction or initiate a new transaction. The same restrictions apply as for
DR_TRANS_COMMITTING.

Return Value
None.

Exceptions
If the CORBA object method that is invoked by the client raises an exception, that exception is
caught by the TP Framework and is eventually returned to the client. This is true even if
deactivate_object() is invoked and raises an exception.

The client will never be notified about exceptions that are raised in deactivate_object(). It
is the responsibility of the application code to check that the stored state of the CORBA object is
consistent. For example, the application code could save a persistent flag that indicates whether
or not deactivate_object() successfully saved the state. That flag can then be checked in
activate_object().

If an error occurs while executing deactivate_object(), the application code should raise
either a CORBA standard exception or a DeactivateObjectFailed exception. If
deactivate_object() was invoked by the TP Framework, the TP Framework catches the
exception and the following events occur:

The object is deactivated.

If the client initiated a transaction, the transaction is not rolled back.

The client is not notified of the exception that is raised in deactivate_object().

Based on which exception is raised, a message is logged to the user log (ULOG) file, as
follows:

1. In theory, this would mean that an invocation on a transactional CORBA object in the same
process would be valid since it would not require a new process to be registered with the trans-
action manager. However, it is not possible for the programmer to guarantee that an invocation
on a CORBA object will occur in-proc, therefore, this practice is discouraged.
CORBA Programming Reference 3-43

TobjS::DeactivateObjectFailed
"TPFW_CAT:27: ERROR: De-activating object - application raised
TobjS::DeactivateObjectFailed. Reason = reason. Interface =
interfaceName, OID = oid"

Where reason is a user-supplied reason, and interfaceName and oid are the interface
ID and object ID, respectively, of the invoked CORBA object.

CORBA::Exception
"TPFW_CAT:28: ERROR: De-activating object - CORBA Exception not
handled by application. Exception ID = exceptionID. Interface =
interfaceName, OID = oid"

Where exceptionID is the interface ID of the exception, and interfaceName and oid
are the interface ID and object ID, respectively, of the invoked CORBA object.

Other exception
"TPFW_CAT:29: ERROR: De-activating object - Unknown Exception not
handled by application. Exception ID = exceptionID. Interface =
interfaceName, OID = oid"

Where exceptionID is the interface ID of the exception, and interfaceName and oid
are the interface ID and object ID, respectively, of the invoked CORBA object.

Tobj_ServantBase::_is_reentrant()

Synopsis
Indicates that the object supports concurrent, reentrant invocations. This method supports the
development of a multithreaded server application.

C++ Binding
CORBA::Boolean _is_reentrant()

Arguments
None.

Description
The Oracle Tuxedo server infrastructure calls this method to determine whether the servant
implementation supports a reentrant invocation. To support reentrancy, a servant must include
the necessary code to protect the integrity of its state while multiple threads interact with the
object.
3-44 CORBA Programming Reference

TP F ramework AP I
The Tobj_ServantBase class provides a default implementation of the _is_reentrant
method that returns FALSE.

Return Value
CORBA::Boolean

Returns TRUE if the servant can support reentrancy.

Example
CORBA::Boolean Simple_i::_is_reentrant()
{ TP::userlog("_is_reentrant called in thread %ld",
 (unsigned long)SIMPTHR_GETCURRENTTHREADID);
 return CORBA_TRUE;
}

Tobj_ServantBase::_remove_ref()

Synopsis
Releases a reference to a servant. This method supports the development of a multithreaded
server application.

Note: In applications written using Oracle Tuxedo release 8.0 or later, use this method instead
of the C++ “delete” statement that you used previously with the
TP::application_responsibility() method.

C++ Binding
void _remove_ref()

Parameters
None.

Description
Invoke this method when a reference to a servant is no longer needed. Invoking this method
causes the reference count for the servant to be decremented by one. If the _remove_ref()
method brings the reference count to zero, it also calls the C++ “delete” statement on its own
this pointer and deletes the servant.

Return Value
None.
CORBA Programming Reference 3-45

Example
if(servant != NULL)
 servant->_remove_ref();

TP Interface
The TP interface supplies a set of service methods that can be invoked by application code. This
is the only interface in the TP Framework that can safely be invoked by application code. All
other interfaces have callback methods that are intended to be invoked only by system code.

The purpose of this interface is to provide high-level calls that application code can call, instead
of calls to underlying APIs provided by the Portable Object Adapter (POA), the CORBA Naming
Service, and the Oracle Tuxedo system. By using these calls, programmers can learn a simpler
API and are spared the complexity of the underlying APIs. The TP interface implicitly uses two
features of the Oracle Tuxedo software that extend the CORBA APIs:

Factories and the FactoryFinder object

Factory-based routing

For information about the FactoryFinder object, see the section FactoryFinder Interface. For
more information about factory-based routing, see Setting Up a Oracle Tuxedo Application.

Usage Notes

During server application initialization, the application constructs the object reference for
an application factory. It then invokes the register_factory() method, passing in the
factory's object reference together with a factory id field. On server release (shutdown),
the application uses the unregister_factory() method to unregister the factory.

The TP class is a C++ native class.

The TP.h file contains the declarations and definitions for the TP class.

C++ Declarations (in TP.h)

The C++ mapping is as follows:

class TP {
public:
 static CORBA::Object_ptr create_object_reference(
 const char* interfaceName,
 const char* stroid,
3-46 CORBA Programming Reference

TP F ramework AP I
 CORBA::NVList_ptr criteria);
 static CORBA::Object_ptr create_active_object_reference(
 const char* interfaceName,
 const char* stroid,
 Tobj_Servant servant);
 static CORBA::Object_ptr get_object_reference();
 static void register_factory(
 CORBA::Object_ptr factory_or,
 const char* factory_id);
 static void unregister_factory(
 CORBA::Object_ptr factory_or,
 const char* factory_id);
 static void deactivateEnable()
 static void deactivateEnable(
 const char* interfaceName,
 const char* stroid,
 Tobj_Servant servant);
 static CORBA::ORB_ptr orb();
 static Tobj_Bootstrap* bootstrap();
 static void open_xa_rm();
 static void close_xa_rm();
 static int userlog(char*, ...);
 static char* get_object_id(CORBA::Object_ptr obj);
 static void application_responsibility(
 Tobj_Servant servant);
};

TP::application_responsibility()

Synopsis
Tells the TP Framework that the application is taking responsibility for the servant’s lifetime.

Note: Do not use this method in applications written using Oracle Tuxedo release 8.0 or later;
instead, use the Tobj_ServantBase::_add_ref() method.

C++ Binding
static void application_responsibility(Tobj_Servant servant);
CORBA Programming Reference 3-47

Arguments
servant

A pointer to a servant that is already known to the TP Framework.

Exceptions
TobjS::InvalidServant

Indicates that the specified servant is NULL.

Description
This method tells the TP Framework that the application is taking responsibility for the servant’s
lifetime. As a result of this call, when the TP Framework has completed deactivating the object
(that is, after invoking the servant’s deactivate_object method), the TP Framework does
nothing more with the object.

Once an application has taken responsibility for a servant, the application must take care to delete
servant when it is no longer needed, the same as for any other C++ instance.

If the servant is not known to the TP Framework (that is, it is not active), this call has no effect.

Return Values
None.

TP::bootstrap()

Synopsis
Returns a pointer to a Tobj::Tobj_Bootstrap object. The Bootstrap object is used to access
initial object references for the FactoryFinder object, the Interface Repository, the
TransactionCurrent, and the SecurityCurrent objects.

C++ Binding
static Tobj_Bootstrap* TP::bootstrap();

Arguments
None.

Return Value
Upon successful completion, bootstrap() returns a pointer to the Tobj::Tobj_Bootstrap
object that is created by the TP Framework when the server application is started.
3-48 CORBA Programming Reference

TP F ramework AP I
Exceptions
None.

Description
The TP Framework creates a Tobj::Tobj_Bootstrap object as part of initialization; it is not
necessary for the application code to create any other Tobj::Tobj_Bootstrap objects in the
server.

Caution: Because the TP Framework owns the Tobj::Tobj_Bootstrap object, server
application code must not dispose of the Bootstrap object.

Note: If you are using the CORBA INS bootstrap mechanism and you are not using the
SecurityCurrent for security or TransactionCurrent for transactions, you do not
need to use the Bootstrap object.

TP::close_xa_rm()

Synopsis
Closes the XA resource manager to which the invoking process is linked.

C++ Binding
static void TP::close_xa_rm ();

Arguments
None.

Description
The close_xa_rm() method closes the XA resource manager to which the invoking process is
linked. XA resource managers are provided by database vendors, such as Oracle and Informix.

Note: The functionality of this call is also provided by
Tobj::TransactionCurrent::close_xa_rm(). The TP::close_xa_rm() method
provides a more convenient way for a server application to close a resource manager
because there is no need to obtain an object reference to the TransactionCurrent object.
A reference to the TransactionCurrent object can be obtained from the Bootstrap object.
See TP::bootstrap() for an explanation of how to obtain a reference to the Bootstrap
object. For more information about the TransactionCurrent object, see the CORBA
Bootstrapping Programming Reference section and Using CORBA Transactions.
CORBA Programming Reference 3-49

This method should be invoked once from the Server::release() method for each server that
is involved in global transactions. This includes servers that are linked with an XA resource
manager, as well as servers that are involved in global transactions, but are not actually linked
with an XA-compliant resource manager.

The close_xa_rm() method should be invoked in place of a close invocation that is specific to
the resource manager. Because resource managers differ in their initialization semantics, the
specific information needed to close a particular resource manager is placed in the CLOSEINFO
parameter in the GROUPS section of the Oracle Tuxedo system UBBCONFIG file.

The format of the CLOSEINFO string is dependent on the requirements of the database vendor
providing the underlying resource manager. For more information about the CLOSEINFO
parameter, see Setting Up a Oracle Tuxedo Application and the ubbconfig(5) reference page
in the File Formats, Data Descriptions, MIBs, and System Processes Reference. Also, refer to
database vendor documentation for information about how to develop and install applications
that use the XA libraries.

Return Values
None.

Exceptions
CORBA::BAD_INV_ORDER

There is an active transaction. The resource manager cannot be closed while a transaction
is active.

Tobj::RMFailed
The tx_close() call returned an error return code.

Note: Unlike other exceptions returned by the TP Framework, the Tobj::RMFailed exception
is defined in tobj_c.h (which is derived from tobj.idl), not TobjS_c.h (which is
derived from TobjS.idl). This is because native clients can also open XA resource
managers. Therefore, the exception returned is consistent with the exception expected by
native client code and by Server::release() if it uses the alternate mechanism,
TransactionCurrent::close_xa_rm, which is shared with native clients.

TP::create_active_object_reference()

Synopsis
Creates an object reference and preactivates an object.
3-50 CORBA Programming Reference

TP F ramework AP I
C++ Binding
static CORBA::Object_ptr
 create_active_object_reference(
 const char* interfaceName,
 const char* stroid,
 Tobj_Servant servant);

Arguments
interfaceName

Specifies a character string that contains the fully qualified interface name for the object.

stroid
Specifies the ObjectId in string format. The ObjectId uniquely identifies this instance
of the class. The programmer decides what information to place in the ObjectId. One
possibility would be to use it to hold a database key. Choosing the value of an object
identifier, and the degree of uniqueness, is part of the application design. The Oracle
Tuxedo software cannot guarantee any uniqueness in object references, since these may
be legitimately copied and shared outside the Oracle Tuxedo environment, for example by
stringifying the object reference.

servant
A pointer to a servant that the application has already created and initialized.

Exceptions:
TobjS::InvalidInterface

Indicates that the specified interfaceName is NULL.

TobjS::InvalidObjectId
Indicates the specified stroid is NULL.

TobjS::ServantAlreadyActive
The object could not be activated explicitly because the servant is already being used with
another ObjectId. A servant can be used only with a single ObjectId. To preactivate
objects containing different ObjectIds, the application must create multiple servants and
preactivate them separately, one per ObjectId.

TobjS::ObjectAlreadyActive
The object could not be activated explicitly because the ObjectId is already being used
in the Active Object Map. A given ObjectId can have only one servant associated with
it. To change to a different servant, the application must first deactivate the object and
activate it again.
CORBA Programming Reference 3-51

TobjS::IllegalOperation
The object could not be activated explicitly because it does not have the process activation
policy.

Description
This method creates an object reference and preactivates an object. The resulting object reference
may be passed to clients who will use it to access the object.

Ordinarily, the application will call this method in two places:

In Server::initialize() to preactivate process objects so that they do not need
activation on the first invocation.

In any method that creates object references to be returned to clients.

This method allows an application to activate an object explicitly before its first invocation. (For
reasons you might want to do this, refer to the section Explicit Activation.) The user first creates
a servant and sets its state before calling create_active_object_reference. The TP
Framework then enters the servant and string ObjectId in the Active Object Map. The result is
exactly the same as if the TP Framework had previously invoked Server::create_servant,
received back the servant pointer, and then had invoked servant::activate_object.

The object so activated must be for an interface that was declared with the process activation
policy; otherwise, an exception is raised.

If the object is deactivated, an object reference held by a client might cause the object to be
activated again in some other process. For a discussion about situations in which this might be a
problem, refer to the section Explicit Activation.

Note: There is one restriction on this method when the user-controlled concurrency policy
option is set in the ICF file (See Parallel Objects.). The
TP::create_active_object_reference method throws a
TobjS::IllegalOperation exception if it is passed an interface with user-controlled
concurrency set. Since the AOM is not used when user-controlled concurrency is set,
there is no way for the TP Framework to connect an active object to this server.

Caution
When you preactivate objects in an interface, you must specify an activation policy of process
in the ICF file for that interface. However, when you specify the process activation policy for
an interface in the ICF file, this can lead to the following problem.
3-52 CORBA Programming Reference

TP F ramework AP I
Problem Statement

1. You write SERVER1 such that all objects on interface A are preactivated. To prevent the
object from being activated on demand by the TP Framework, you write the interface's
activate_object method to always throw the ActivateObjectFailed exception.

2. SERVER2 also implements objects of interface A. However, instead of preactivating the
objects, SERVER2 lets the TP Framework activate them on demand.

3. If the administrator configures SERVER1 and SERVER2 in the same group, then a client can
get an interface A object reference from SERVER2 and invoke on it. Then, due to load
balancing, SERVER1 could be asked to activate an object on interface A. However,
SERVER1 is not able to activate an object on interface A on demand because its
activate_object method throws the ActivateObjectFailed exception.

Workaround
You can avoid this problem by having the administrator configure SERVER1 and SERVER2 in
different groups. The administrator uses the SERVERS section of the UBBCONFIG file to define
groups.

Return Value
The newly created object reference.

TP::create_object_reference()

Synopsis
Creates an object reference. The resulting object reference may be passed to clients who use it to
access the object.

C++ Binding
static CORBA::Object_ptr TP::create_object_reference (
 const char* interfaceName,
 const char* stroid,
 CORBA::NVList_ptr criteria);

Arguments
interfaceName

Specifies a character string that contains the fully qualified interface name for the object.
CORBA Programming Reference 3-53

The interface name can be retrieved by making a call on the following interface typecode
ID function:

const char* _tc_<CORBA interface name>::id();

where <CORBA interface name> is any object class name. For example:

char* idlname = _tc_Simple->id();

stroid
Specifies the ObjectId in string format. The ObjectId uniquely identifies this instance
of the class. It is up to the programmer to decide what information to place in the
ObjectId. One possibility would be to use the ObjectId to hold a database key.
Choosing the value of an object identifier, and the degree of uniqueness, is part of the
application design. The Oracle Tuxedo software cannot guarantee any uniqueness in
object references, since object references may be legitimately copied and shared outside
the Oracle Tuxedo domain (for example, by passing the object reference as a string). It is
strongly recommended the you choose a unique ObjectId in order to allow parallel
execution of invokes on object references.

Note: The restriction on the length of the ObjectId has been removed in this release.

criteria
Specifies a list of named values that can be used to provide factory-based routing for the
object reference. The list is optional and is of type CORBA::NVList. The use of
factory-based routing is optional and is dependent on the use of this argument. If you do
not want to use factory-based routing, you can pass a value of 0 (zero) for this argument.
The Oracle Tuxedo system administrator configures factory-based routing by specifying
routing rules in the UBBCONFIG file. See Setting Up a Oracle Tuxedo Application online
document for details on this facility.

Exceptions
The following exceptions can be raised by the create_object_reference() method:

InvalidInterface
Indicates that the specified interfaceName is NULL.

InvalidObjectId
Indicates that the specified stroid is NULL.

Description
The server application is responsible for invoking the create_object_reference() method.
This method creates an object reference. The resulting object reference may be passed to clients
who will use it to access the object.
3-54 CORBA Programming Reference

TP F ramework AP I
Ordinarily, the server application calls this method in two places:

In Server::initialize() to create factories for the server.

In factory methods to create object references to be returned to clients.

For examples of how and when to call the create_object_reference() method, see Creating
CORBA Server Applications.

Return Value
Object

The newly created object reference.

Example
The following example shows how to use the criteria argument:

CORBA::NVList_ptr criteria;
CORBA::Long branch_id = 7;
CORBA::Long account_id = 10001;
CORBA::Any any_val;

// Create the list and assign to _var to cleanup on exit
CORBA::ORB::create_list (2, criteria);
CORBA::NVList_var criteria_var(criteria);

// Add the BRANCH_ID
any_val <<= branch_id;
criteria->add_value("BRANCH_ID", any_val, 0);

// Add the ACCOUNT_ID
any_val <<= account_id;
criteria->add_value("ACCOUNT_ID", any_val, 0);

// Create the object reference.
TP::create_object_reference ("IDL:BankApp/Teller:1.0",
"Teller_01", criteria);

TP::deactivateEnable()

Synopsis
Enables application-controlled deactivation of CORBA objects.
CORBA Programming Reference 3-55

C++ Binding
Current-object format:

static void TP::deactivateEnable();

Any-object format:

static void TP::deactivateEnable(
 const char* interfaceName,
 const char* stroid,
 Tobj_Servant servant);

Arguments
interfaceName

Specifies a character string that contains the fully qualified interface name for the object.

stroid
Specifies the ObjectId in string format for the object to be deactivated.

servant
A pointer to the servant associated with the stroid.

Exceptions
The following exceptions can be raised by the deactivateEnable() method:

IllegalOperation
Indicates that the TP::deactivateEnable method was invoked by an object with the
activation policy set to transaction.

TobjS::ObjectNotActive
In the Any-object format, the object specified could not be deactivated because it was not
active (the stroid and servant parameters did not identify an object that was in the
Active Object Map).

Description
This method can be used to cause deactivation of an object, either the object currently executing
(upon completion of the method in which it is called) or another object. It can only be used for
objects with the process activation policy. It provides additional flexibility for objects with the
process activation policy.

Note: For single-threaded servers, the TP::deactivateEnable(interface, object id,
servant) method can be used to deactivate an object. However, if that object is
currently in a transaction, the object will be deactivated when the transaction commits or
3-56 CORBA Programming Reference

TP F ramework AP I
rolls back. If an invoke occurs on the object before the transaction is committed or rolled
back, the object will not be deactivated.

To ensure the desired behavior, make sure that the object is not in a transaction or ensure
that no invokes occur on the object after the TP::deactivateEnable() call until the
transaction is complete.

Note: For multithreaded servers, use of the TP::deactivateEnable(interface, object
id, servant) method is not supported for deactivation of objects in per-object servers.
This method is supported for deactivation objects in per-request servers, however, the
deactivation may be delayed because others threads are acting on the object.

 Depending on which of the overloaded functions are called, the actions are as follows.

Current-object format
When called from within a method of an object with process activation policy, the object
currently executing will be deactivated after completing the method being executed.
When called from within a method of an object with method activation, the effect is the
same as the normal behavior of such objects (effectively, a NOOP).
When the object is deactivated, the TP Framework first removes the object from the
Active Object Map. It then calls the associated servant’s deactivate_object method
with a reason of DR_METHOD_END.

Any-object format
The application can request deactivation of an object by specifying its ObjectId and the
associated servant.
If the object is currently executing, the TP Framework marks it for deactivation and waits
until the object’s method completes before deactivating the object (as with the
“current-object format”). If the object is not currently executing, the TP Framework may
deactivate it immediately. No indication is given to the caller as to the status of the
deactivation. When the object is deactivated, the TP Framework first removes the object
from the Active Object Map. It then calls the associated servant’s deactivate_object
method with a reason of DR_EXPLICIT_DEACTIVATE.

If the object for which the deactivate is requested has a transaction activation policy, an
IllegalOperation exception is raised. This is because deactivation of such objects may
interfere with their correct notification of transaction completion by the Oracle Tuxedo
transaction manager.

Return Value
None.
CORBA Programming Reference 3-57

TP::get_object_id ()

Synopsis
Allows a server to retrieve the string ObjectId contained in an object reference that was created
in the TP Framework.

C++ Binding
char* TP::get_object_id(Corba::Object_ptr obj);

Arguments
obj

The object reference from which to get the ObjectId.

Exception
TobjS::InvalidObject

The object is nil or was not created by the TP Framework

Description
This method allows a server to retrieve the string ObjectId contained in an object reference that
was created in the TP Framework. If the object reference was not created in the TP Framework
(for example, it was created by a client ORB), an exception is raised.

The caller must call CORBA::string_free on the returned value when the object reference is no
longer needed.

Return Value
The string ObjectId passed to TP::create_object_reference or
TP::create_active_object_reference when the object reference was created.

TP::get_object_reference()

Synopsis
Returns a pointer to the current object.

C++ Binding
static CORBA::Object_ptr TP::get_object_reference ();
3-58 CORBA Programming Reference

TP F ramework AP I
Arguments
None.

Note that if get_object_reference() is invoked from within either Server::initialize()
or Server::release(), it is considered to be invoked outside the scope of an application’s TP
object execution; therefore, the TobjS::NilObject exception is raised.

Exceptions
The following exception can be raised by the get_object_reference() method:

NilObject
Indicates that the method was invoked outside the scope of an application’s CORBA
object execution. The reason string contains OutOfScope.

Description
This method returns a pointer to the current object. The CORBA::Object_ptr pointer that is
returned can be passed to a client.

Return Value
The get_object_reference() method returns a CORBA::Object_ptr for the current object
when invoked within the scope of a CORBA object execution. Otherwise, the
TobjS::NilObject exception is raised.

TP::open_xa_rm()

Synopsis
Opens the XA resource manager to which the invoking process is linked.

C++ Binding
static void TP::open_xa_rm();

Arguments
None.

Exceptions
Tobj::RMFailed

The tx_open() call returned an error return code.
CORBA Programming Reference 3-59

Note: Unlike other exceptions returned by the TP Framework, this exception is defined in
tobj_c.h (which is derived from tobj.idl), not in TobjS_c.h (which is derived
from TobjS.idl). This is because native clients can also open XA resource
managers. Therefore, the exception returned is consistent with the exception expected
by native client code and by Server::release() if it uses the alternate mechanism,
TransactionCurrent::close_xa_rm, which is shared with native clients.

Description
The open_xa_rm() method opens the XA resource manager to which the invoking process is
linked. XA resource managers are provided by database vendors, such as Oracle and Informix.

Note: The functionality of this method is also provided by
Tobj::TransactionCurrent::close_xa_rm(). However, TP::open_xa_rm()
provides a more convenient way for a server application to close a resource manager
because there is no need to obtain an object reference to the TransactionCurrent object.
A reference to the TransactionCurrent object can be obtained from the Bootstrap object.
See TP::bootstrap() for an explanation of how to obtain a reference to the Bootstrap
object. For more information about the TransactionCurrent object, see the CORBA
Bootstrapping Programming Reference section and Using CORBA Transactions.

This method should be invoked once from the Server::initialize() method for each server
that participates in a global transaction. This includes servers that are linked with an XA resource
manager, as well as servers that participate in a global transaction, but are not actually linked with
an XA-compliant resource manager.

The open_xa_rm() method should be invoked in place of an open invocation that is specific to
a resource manager. Because resource managers differ in their initialization semantics, the
specific information needed to open a particular resource manager is placed in the OPENINFO
parameter in the GROUPS section of the UBBCONFIG file.

The format of the OPENINFO string is dependent on the requirements of the database vendor
providing the underlying resource manager. For more information about the CLOSEINFO
parameter, see Setting Up a Oracle Tuxedo Application and the ubbconfig(5) reference page
in the File Formats, Data Descriptions, MIBs, and System Processes Reference. Also, refer to
database vendor documentation for information about how to develop and install applications
that use the XA libraries.

Note: Only one resource manager can be linked to the invoking process.

Return Values
None.
3-60 CORBA Programming Reference

TP F ramework AP I
TP::orb()

Synopsis
Returns a pointer to an ORB object.

C++ Binding
static CORBA::ORB_ptr TP::orb();

Arguments
None.

Exceptions
None.

Description
Access to the ORB object allows the application to invoke ORB operations, such as
string_to_object() and object_to_string().

Note: Because the TP Framework owns the ORB object, the application must not delete it.

Return Value
Upon successful completion, orb() returns a pointer to the ORB object that is created by the TP
Framework when the server program is started.

TP::register_factory()

Synopsis
Locates the Oracle Tuxedo FactoryFinder object and registers an Oracle Tuxedo factory.

C++ Binding
static void TP::register_factory(
 CORBA::Object_ptr factory_or, const char* factory_id);
CORBA Programming Reference 3-61

Arguments
factory_or

Specifies the object reference that was created for an application factory using the
TP::create_object_reference() method.

factory_id
Specifies a string identifier that is used to identify the application factory. For some
suggestions as to the composition of this string, see Creating CORBA Server Applications.

Exceptions
The following exceptions can be raised by the register_factory() method:

TobjS::CannotProceed
Indicates that the FactoryFinder encountered an internal error during the search, with the
error being written to the user log (ULOG). Notify the operations staff immediately if this
exception is raised. Depending on the severity of the internal error, the server running the
FactoryFinder or the NameManager may have terminated. If a FactoryFinder service has
terminated, start a new FactoryFinder service. If the NameManager has terminated, and
there is another NameManager running, start a new one. If no NameManagers are running,
restart the application.

TobjS::InvalidName
Indicates that the id string is empty. It is also raised if the field contains blank spaces or
control characters.

TobjS::InvalidObject
Indicates that the factory value is nil.

TobjS::RegistrarNotAvailable
Indicates that the FactoryFinder object cannot locate the NameManager. Notify the
operations staff immediately if this exception is raised. If no naming services servers are
running, restart the application.

Note: Another possible reason that this exception might occur is that the FactoryFinder
cannot participate in a transaction. Therefore, you may need to suspend the current
transaction before issuing the TP::register_factory() and
TP::unregister_factory() calls. For information on suspending and resuming
transactions, see Using CORBA Transactions in the online documentation.

TobjS::OverFlow
Indicates that the id string is longer than 128 bytes (currently the maximum allowable
length).
3-62 CORBA Programming Reference

TP F ramework AP I
Description
This method locates the Oracle Tuxedo FactoryFinder object and registers an Oracle Tuxedo
factory. Typically, TP::register_factory() is invoked from Server::initialize() when
the server creates its factories. The register_factory() method locates the Oracle Tuxedo
FactoryFinder object and registers the Oracle Tuxedo factory.

Caution: Callback objects (that is, those created by a joint client/server directly through the
POA) should not be registered with a FactoryFinder.

Return Value
None.

TP::unregister_factory()

Synopsis
Locates the Oracle Tuxedo FactoryFinder object and removes a factory.

C++ Binding
static void TP::unregister_factory (
 CORBA::Object_ptr factory_or, const char* factory_id);

Arguments
factory_or

Specifies the object reference that was created for an application factory using the
TP::create_object_reference() method.

factory_id
Specifies a string identifier that is used to identify the application factory. For some
suggestions as to the composition of this string, see Creating CORBA Server Applications.

Exceptions
The following exceptions can be raised by the unregister_factory() method:

CannotProceed
Indicates that the FactoryFinder encountered an internal error during the search, with the
error being written to the user log (ULOG). Notify the operations staff immediately if this
exception is raised. Depending on the severity of the internal error, the server running the
FactoryFinder or the NameManager may have terminated. If a FactoryFinder service has
terminated, start a new FactoryFinder service. If the NameManager has terminated, and
CORBA Programming Reference 3-63

there is another NameManager running, start a new one. If no NameManagers are running,
restart the application.

InvalidName
Indicates that the id string is empty. It is also raised if the field contains blank spaces or
control characters.

RegistrarNotAvailable
Indicates that the FactoryFinder object cannot locate the NameManager. Notify the
operations staff immediately if this exception is raised. If no naming services servers are
running, restart the application.

Note: Another possible reason that this exception might occur is that the FactoryFinder
cannot participate in a transaction. Therefore, you may need to suspend the current
transaction before issuing the TP::register_factory() and
TP::unregister_factory() calls. For information on suspending and resuming
transactions, see Using CORBA Transactions in the online documentation.

TobjS::OverFlow

Indicates that the id string is longer than 128 bytes (currently the maximum allowable
length).

Description
This method locates the Oracle Tuxedo FactoryFinder object and removes a factory. Typically
TP::unregister_factory() is invoked from Server::release() to unregister server
factories.

Return Value
None.

TP::userlog()

Synopsis
Writes a message to the user log (ULOG) file.

C++ Binding
static int TP::userlog(char*, ...);
3-64 CORBA Programming Reference

TP F ramework AP I
Arguments
The first argument is a printf(3S) style format specification. The printf(3S) argument is
described in a C or C++ reference manual.

Exceptions
None.

Description
The userlog() method writes a message to the user log (ULOG) file. Messages are appended to
the ULOG file with a tag made up of the time (hhmmss), system name, process name, and
process-id of the invoking process. The tag is terminated with a colon.

We recommend that server applications limit their use of userlog() messages to messages that
can be used to help debug application errors; flooding the ULOG file with incidental information
can make it difficult to spot actual errors.

Return Value
The userlog() method returns the number of characters that were output, or a negative value if
an output error was encountered. Output errors include the inability to open or write to the current
log file.

Example
The following example shows how to use the TP::userlog() method:

userlog (“System exception caught: %s”, e.get_id());

CosTransactions::TransactionalObject Interface Not
Enforced
Use of this interface is now deprecated. Therefore, the use of this interface is now optional and
no enforcement of descent from this interface is done for objects infected with transactions. The
programmer can specify that an object is not to be infected by transactions by specifying the
never or ignore transaction policies. There is no interface enforcement for eligibility for
transactions. The only indicator is the transaction policy.

Note: The CORBAservices Object Transaction Service does not require that all requests be
performed within the scope of a transaction. It is up to each object to determine its
behavior when invoked outside the scope of a transaction; an object that requires a
transaction context can raise a standard exception.
CORBA Programming Reference 3-65

Error Conditions, Exceptions, and Error Messages

Exceptions Raised by the TP Framework
The following exceptions are raised by the TP Framework and are returned to clients when error
conditions occur in, or are detected by, the TP Framework:

CORBA::INTERNAL
CORBA::OBJECT_NOT_EXIST
CORBA::OBJ_ADAPTER
CORBA::INVALID_TRANSACTION
CORBA::TRANSACTION_ROLLEDBACK

Since the reason for these exceptions may be ambiguous, each time one of these exceptions is
raised, the TP Framework also writes a descriptive error message that explains the reason to the
user log file.

Exceptions in the Server Application Code
Exceptions raised within a method invoked by a client are always raised back to the client exactly
as they were raised in the method invoked by the client.

The following TP Framework callback methods are initiated by events other than client requests
on the object:

Tobj_ServantBase::activate_object()
Tobj_ServantBase::deactivate_object()
Server::create_servant()

If exception conditions are raised in these methods, those exact exceptions are not reported back
to the client. However, each of these methods is defined to raise an exception that includes a
reason string. The TP Framework will catch the exception raised by the callback and log the
reason string to the user log file. The TP Framework may raise an exception back to the client.
Refer to the descriptions of the individual TP Framework callback methods for more information
about these exceptions.

Example
For Tobj_ServantBase::deactivate_object(), the following line of code throws a
DeactivateObjectFailed exception:
3-66 CORBA Programming Reference

Er ro r Cond i t i ons , Except i ons , and E r ro r Messages
throw TobjS::DeactivateObjectFailed(“deactivate failed to save
 state!”);

This message is appended to the user log file with a tag made up of the time (hhmmss), system
name, process name, and process-id of the calling process. The tag is terminated with a colon.
The preceding throw statement causes the following line to appear in the user log file:

151104.T1!simpapps.247: APPEXC: deactivate failed to save state!

Where 151104 is the time (3:11:04pm), T1 is the system name, simpapps is the process name,
247 is the process-id, and APPEXC identifies the message as an application exception message.

Exceptions and Transactions
Exceptions that are raised in either CORBA object methods or in TP Framework callback
methods will not automatically cause a transaction to be rolled back unless the TP Framework
started the transaction. It is up to the application code to call Current.rollback_only() if the
condition that caused the exception to be raised should also cause the transaction to be rolled
back.

Restriction of Nested Calls on CORBA Objects
The TP Framework restricts nested calls on CORBA objects. The restriction is as follows:

During a client invocation of a method of CORBA object A, CORBA object A cannot be
invoked by another CORBA object B that is acting as a client of CORBA object A.

The TP Framework will detect the fact that a second CORBA object is acting as a client to an
object that is already processing a method invocation, and will return a CORBA::OBJ_ADAPTER
exception to the caller.

Note: Application code should not depend on this behavior; that is, users should not make any
processing dependent on this behavior. This restriction may be lifted in a future release.
CORBA Programming Reference 3-67

3-68 CORBA Programming Reference

C H A P T E R 4
CORBA Bootstrapping Programming
Reference
This topic includes the following sections:

Why Bootstrapping Is Needed

Supported Bootstrapping Mechanisms

Oracle Bootstrapping Mechanism

Bootstrap Object API

Bootstrap Object Programming Examples

Interoperable Naming Service Bootstrapping Mechanism

Note: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.x. All Oracle
Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB text
references, associated code samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.
CORBA Programming Reference 4-1

Why Bootstrapping Is Needed
To communicate with Oracle Tuxedo objects, a client application must obtain object references.
Without an object reference, there can be no communication. To solve this problem, client
applications use a bootstrapping mechanism to obtain object references to objects in an Oracle
Tuxedo domain.

Supported Bootstrapping Mechanisms
In the Tuxedo 8.0 release and later, two bootstrapping mechanisms are supported:

Oracle Bootstrapping Mechanism

Use this mechanism if you using the Oracle client ORB.

Interoperable Naming Service Bootstrapping Mechanism

Use this mechanism if you using a client ORB from another vendor.

Note: The CORBA C++ client provided with Oracle Tuxedo software may use the
Interoperable Naming Service bootstrapping mechanism, however, for performance
reasons, this is not recommended.

Oracle Bootstrapping Mechanism
The Oracle bootstrapping mechanism uses the Bootstrap object. Bootstrap objects are local
programming objects, not remote CORBA objects, in both the client and the server. When
Bootstrap objects are created, their constructor requires the network address of an Oracle Tuxedo
IIOP Listener/Handler. Given this information, the bootstrapping object can generate object
references for the key remote objects in the Oracle Tuxedo domain. These object references can
then be used to access services available in the Oracle Tuxedo domain.

How Bootstrap Objects Work
Bootstrap objects are created by a client or a server application that must access object references
to the following Oracle Tuxedo CORBA interfaces:

FactoryFinder

Security

Interface Repository
4-2 CORBA Programming Reference

Orac le Boots t rapp ing Mechan ism
Naming Service

Notification Service

Tobj_SimpleEvents Service

Transaction

Bootstrap objects may represent the first connection to a specific Oracle Tuxedo domain
depending on the format of the IIOP Listener/Handler address. If the NULL scheme Universal
Resource Locator (URL) format is used (the only address format supported in releases of Oracle
WebLogic Enterprise prior to version 5.1 and Oracle Tuxedo release 8.0), the Bootstrap objects
represent the first connection. However, if the URL format is used, the connection will not occur
until after creation of the Bootstrap object. For more information on address formats and
connection times, refer to Tobj_Bootstrap.

For an Oracle Tuxedo CORBA remote client, Bootstrap objects are created with the host and the
port for the Oracle Tuxedo IIOP Listener/Handler. However, for Oracle Tuxedo native client and
server applications, there is no need to specify a host and port because they execute in a specific
Oracle Tuxedo domain. The IIOP Listener/Handler host and the port ID are included in the Oracle
Tuxedo domain configuration information.

After they are created, Bootstrap objects satisfy requests for object references for objects in a
particular Oracle Tuxedo domain. Different Bootstrap objects allow the application to use
multiple domains.

Using the Bootstrap object, you can obtain references to the following objects:

SecurityCurrent

The SecurityCurrent object is used to establish a security context within an Oracle Tuxedo
domain. The client can then obtain the PrincipalAuthenticator from the
principal_authenticator attribute of the SecurityCurrent object.

TransactionCurrent

The TransactionCurrent object is used to participate in an Oracle Tuxedo transaction. The
basic operations are as follows:

– Begin

Begin a transaction. Future operations take place within the scope of this transaction.

– Commit
CORBA Programming Reference 4-3

End the transaction. All operations on this client application have completed
successfully.

– Roll back

Abort the transaction. Tell all other participants to roll back.

– Suspend

Suspend participation in the current transaction. This operation returns an object that
identifies the transaction and allows the client application to resume the transaction
later.

– Resume

Resume participation in the specified transaction.

FactoryFinder

The FactoryFinder object is used to obtain a factory. In the Oracle Tuxedo system, factories
are used to create application objects. The FactoryFinder provides the following different
methods to find factories:

– Get a list of all available factories that match a factory object reference
(find_factories).

– Get the factory that matches a name component consisting of id and kind
(find_one_factory).

– Get the first available factory of a specific kind (find_one_factory_by_id).

– Get a list of all available factories of a specific kind (find_factories_by_id).

– Get a list of all registered factories (list_factories).

InterfaceRepository

The Interface Repository contains the interface descriptions of the CORBA objects that are
implemented within the Oracle Tuxedo domain. Clients using the Dynamic Invocation
Interface (DII) need a reference to the Interface Repository to be able to build CORBA
request structures.

NamingService

A NamingService object is used to obtain a reference to the root namespace. When you use
this object, the ORB locates the root of the namespace.

NotificationService
4-4 CORBA Programming Reference

Orac le Boots t rapp ing Mechan ism
The NotificationService object is used to obtain a reference to the event channel factory
(CosNotifyChannelAdmin::EventChannelFactory) in the CosNotification Service. In the
Oracle Tuxedo system, the EventChannelFactory is used to locate the Notification Service
channel.

Tobj_SimpleEventsService

The Tobj_SimpleEventsService object is used to obtain a reference to the event channel
factory (Tobj_SimpleEvents::ChannelFactory) in the Oracle Simple Events Service. In the
Oracle Tuxedo system, the ChannelFactory is used to locate the Oracle Simple Events
Service channel.

Using the bootstrapping mechanism, you can obtain six different references, as follows:

SecurityCurrent

The SecurityCurrent object is used to establish a security context within an Oracle Tuxedo
domain. The client can then obtain the PrincipalAuthenticator from the principal_authenticator
attribute of the SecurityCurrent object.

TransactionCurrent

The TransactionCurrent object is used to participate in an Oracle Tuxedo transaction. The
basic operations are as follows:

– Begin

Begin a transaction. Future operations take place within the scope of this transaction.

– Commit

End the transaction. All operations on this client application have completed
successfully.

– Roll back

Abort the transaction. Tell all other participants to roll back.

– Suspend

Suspend participation in the current transaction. This operation returns an object that
identifies the transaction and allows the client application to resume the transaction
later.

– Resume

Resume participation in the specified transaction.

FactoryFinder
CORBA Programming Reference 4-5

The FactoryFinder object is used to obtain a factory. In Oracle Tuxedo CORBA, factories
are used to create application objects. The FactoryFinder provides the following different
methods to find factories:

– Get a list of all available factories that match a factory object reference (find_factories).

– Get the factory that matches a name component consisting of id and kind
(find_one_factory).

– Get the first available factory of a specific kind (find_one_factory_by_id).

– Get a list of all available factories of a specific kind (find_factories_by_id).

– Get a list of all registered factories (list_factories).

InterfaceRepository

The Interface Repository contains the interface descriptions of the CORBA objects that are
implemented within the Oracle Tuxedo domain. Clients using the Dynamic Invocation
Interface (DII) need a reference to the Interface Repository to be able to build CORBA
request structures. The ActiveX Client is a special case of this. Internally, the
implementation of the COM/IIOP Bridge uses DII, so it must get the reference to the
Interface Repository, although this is transparent to the desktop client.

NotificationService

The NotificationService object is used to obtain a reference to the event channel factory
(CosNotifyChannelAdmin::EventChannelFactory) in the CosNotification Service. In
Oracle Tuxedo CORBA, the EventChannelFactory is used to locate the Notification
Service channel.

Tobj_SimpleEventsService

The Tobj_SimpleEventsService object is used to obtain a reference to the event channel
factory (Tobj_SimpleEvents::ChannelFactory) in the Oracle Simple Events Service. In
Oracle Tuxedo CORBA, the ChannelFactory is used to locate the Oracle Simple Events
Service channel.

The FactoryFinder and Interface Repository objects are not implemented in the environmental
objects library. However, they are specific to an Oracle Tuxedo domain and are thus conceptually
similar to the SecurityCurrent and TransactionCurrent objects in use.

The Bootstrap object implies an association or “session” between the client application and the
Oracle Tuxedo domain. Within the context of this association, the Bootstrap object imposes a
containment relationship with the other Current objects (or contained objects); that is, the
4-6 CORBA Programming Reference

Orac le Boots t rapp ing Mechan ism
SecurityCurrent and TransactionCurrent. Current objects are valid only for this domain and only
while the Bootstrap object exists.

Note: Resolving the SecurityCurrent when using the new URL address format
(corbaloc://hostname:port_number) is a local operation; that is, no connection is
made by the client to the IIOP Listener/Handler.

In addition, a client can have only one instance of each of the Current objects at any time. If a
Current object already exists, an attempt to create another Current object does not fail. Instead,
another reference to the already existing object is handed out; that is, a client application may
have more than one reference to the single instance of the Current object.

To create a new instance of a Current object, the application must first invoke the
destroy_current() method on the Bootstrap object. This invalidates all of the Current objects,
but does not destroy the session with the Oracle Tuxedo domain. After invoking
destroy_current(), new instances of the Current objects can be created within the Oracle
Tuxedo domain using the existing Bootstrap object.

To obtain Current objects for another domain, a different Bootstrap object must be constructed.
Although it is possible to have multiple Bootstrap objects at one time, only one Bootstrap object
may be “active;” that is, have Current objects associated with it. Thus, an application must first
invoke destroy_current() on the “active” Bootstrap object before obtaining new Current
objects on another Bootstrap object, which then becomes the active Bootstrap object.

Note: If you want to access objects in multiple domains, either import the object to the local
domain or administratively configure your application access multiple domains. For
more information on multi-domain configurations configurations, see “Configuring
Multiple CORBA Domains” in Using the Oracle Tuxedo Domains Component.

Servers and native clients are inside of the Oracle Tuxedo domain; therefore, no “session” is
established. However, the same containment relationships are enforced. Servers and native
clients access the domain they are currently in by specifying an empty string, rather than
//host:port.

Note: When using the Bootstrap object, client and server applications must use the
Tobj_Bootstrap::resolve_initial_references()method, not the
ORB::resolve_initial_references() method.

Types of Oracle Remote Clients Supported
Table 4-1 shows the types of remote clients that can use the Bootstrap object to access the other
environmental objects, such as FactoryFinder, SecurityCurrent, TransactionCurrent, and
CORBA Programming Reference 4-7

InterfaceRepository. These clients are provided with the Oracle Tuxedo CORBA software.
Third-party client ORBs should use the CORBA Interoperable Naming Service.

Capabilities and Limitations
Bootstrap objects have the following capabilities and limitations:

Multiple Bootstrap objects can coexist in a client application, although only one Bootstrap
object can own the Current objects (Transaction and Security) at one time. Client
applications must invoke destroy_current() on the Bootstrap object associated with one
domain before obtaining the Current objects on another domain. Although it is possible to
have multiple Bootstrap objects that establish connections to different Oracle Tuxedo
domains, only one set of Current objects is valid. Attempts to obtain other Current objects
without destroying the existing Current objects fail.

Method invocations to any Oracle Tuxedo domain that has security enabled other than the
domain that provides the valid SecurityCurrent object will fail and return a
CORBA::NO_PERMISSION exception.

Method invocations to any Oracle Tuxedo domain other than the domain that provides the
valid TransactionCurrent object do not execute within the scope of a transaction.

The transaction and security objects returned by the Bootstrap objects are Oracle
implementations of the Current objects. If other (“native”) Current objects are present in
the environment, they are ignored.

Bootstrap Object API
The Bootstrap object application programming interface (API) is described first in terms of the
OMG Interface Definition Language (IDL) (for portability), and then in C++. The C++
descriptions add the necessary constructor to build a Bootstrap object for a particular Oracle
Tuxedo domain.

Table 4-1 Oracle Remote Clients Supported

Client Description

CORBA C++ CORBA C++ client applications use the Oracle Tuxedo C++ environmental
objects to access the CORBA objects in an Oracle Tuxedo domain, and the
Oracle Tuxedo Object Request Broker (ORB) to process from CORBA
objects. Use the Oracle Tuxedo system development commands to build
these client applications (see the Oracle Tuxedo Command Reference).
4-8 CORBA Programming Reference

Boots t rap Ob jec t AP I
Tobj Module
Table 4-2 shows the object reference that is returned for each type ID.

Table 4-3 describes the Tobj module exceptions.

Table 4-2 Returned Object References

ID Returned Object Reference for C++ Clients

FactoryFinder FactoryFinder object (Tobj::FactoryFinder)

InterfaceRepository InterfaceRepository object (CORBA::Repository)

NameService CORBA Naming Service (Tobj::NameService)

NotificationService EventChannelFactory object

(CosNotifyChannelAdmin::
EventChannelFactory)

SecurityCurrent SecurityCurrent object
(SecurityLevel2::Current)

TransactionCurrent OTS Current object (Tobj::TransactionCurrent)

Tobj_SimpleEventsService Oracle Simple Events
ChannelFactory object (Tobj_SimpleEvents::
ChannelFactory)

Table 4-3 Tobj Module Exceptions

C++ Exception Java Exception Description

Tobj::
InvalidName

com.beasys.Tobj.
InvalidName

Raised if id is not one of the names specified in Table 4-2. On
the server, resolve_initial_references also raises
InvalidName when SecurityCurrent is passed.

Tobj::
InvalidDomain

com.beasys.Tobj.
InvalidDomain

On the server application, raised if the Oracle Tuxedo server
environment is not booted.

CORBA::
NO_PERMISSION

org.omg.CORBA.
NO_PERMISSION

Raised if id is TransactionCurrent or
SecurityCurrent and another Bootstrap object in the client
owns the Current objects.
CORBA Programming Reference 4-9

C++ Mapping
Listing 4-1 shows the C++ declarations in the Tobj_bootstrap.h file.

Listing 4-1 Tobj_boostrap.h Declarations

#include <CORBA.h>

class Tobj_Bootstrap {
public:
 Tobj_Bootstrap(CORBA::ORB_ptr orb, const char* address);
 CORBA::Object_ptr resolve_initial_references(
 const char* id);
 void register_callback_port(CORBA::Object_ptr objref);
 void destroy_current();
};

Java Mapping
Listing 4-2shows the Tobj_Bootstrap.java mapping.

Listing 4-2 Tobj_Bootstrap.java Mapping

package com.beasys;

public class Tobj_Bootstrap {
 public Tobj_Bootstrap(org.omg.CORBA.ORB orb,
 String address)

BAD_PARAM org.omg.CORBA.
BAD_PARAM

Raised if the object is nil or if the hostname contained in the
object does not match the connection.

IMP_LIMIT org.omg.CORBA.
IMP_LIMIT

Raised if the register_callback_port method is
called more than once.

Table 4-3 Tobj Module Exceptions (Continued)

C++ Exception Java Exception Description
4-10 CORBA Programming Reference

Boots t rap Ob jec t AP I
 throws org.omg.CORBA.SystemException;
public class Tobj_Bootstrap {
 public Tobj_Bootstrap(org.omg.CORBA.ORB orb, String address,
 java.applet.Applet applet)
 throws org.omg.CORBA.SystemException;

public void register_callback_port(orb.omg.CORBA.Object objref)
 throws org.omg.CORBA.SystemException;

public org.omg.CORBA.Object
 resolve_initial_references(String id)
 throws Tobj.InvalidName,
 org.omg.CORBA.SystemException;
public void destroy_current()
 throws org.omg.CORBA.SystemException;
}

Automation Mapping
Listing 4-3 shows Automation Bootstrap interface mapping.

Listing 4-3 Automation (Dual) Bootstrap Interface Mapping

interface DITobj_Bootstrap : IDispatch
{
 HRESULT Initialize(
 [in] BSTR address);

 HRESULT CreateObject(
 [in] BSTR progid,
 [out, retval] IDispatch** rtrn);

 HRESULT destroy_current();
};
CORBA Programming Reference 4-11

C++ Member Functions
This section describes the C++ member functions supported by the Oracle bootstrapping
mechanism.

Tobj_Bootstrap

Synopsis
The Bootstrap object constructor.

C++ Mapping
Tobj_Bootstrap(CORBA::ORB_ptr orb, const char* address);
 throws Tobj::BAD_PARAM
 org.omg.CORBA.SystemException;

Parameters

orb
A pointer to the ORB object in the client. The Bootstrap object uses the
string_to_object method of orb internally.

address
The address of the Oracle Tuxedo domain IIOP Listener/Handler.

Note: Multiple Tobj_Bootstraps going to the same domain is not supported.

The address is specified differently depending on the type of client and the level of
security required. There can be three types of clients, as follows:

– Remote client

For a description of the remote clients supported by Oracle Tuxedo CORBA, see the
section Types of Oracle Remote Clients Supported.

For remote clients, address specifies the network address of an IIOP Listener/Handler
through which client applications gain access to an Oracle Tuxedo domain.

The address may be specified in either of the following formats:
“//hostname:port_number”
“//#.#.#.#:port_number”
“corbaloc://hostname:port_number”
“corbalocs://hostname:port_number”
4-12 CORBA Programming Reference

Boots t rap Ob jec t AP I
In the first format, the domain finds an address for hostname using the local name
resolution facilities (usually DNS). The hostname must be the remote machine, and the
local name resolution facilities must unambiguously resolve hostname to the address of
the remote machine.

Note: The hostname must begin with a letter character.

In the second format, the #.#.#.# is in dotted decimal format. In dotted decimal
format, each # should be a number from 0 to 255. This dotted decimal number
represents the IP address of the remote machine.

In both the first and second formats, port_number is the TCP port number at which the
domain process listens for incoming requests. The port_number should be a number
between 0 and 65535.

You can specify one or more TCP/IP addresses. You specify multiple addresses using a
comma-separated list. For example:
 //m1.acme:3050
 //m1.acme:3050,//m2.acme:3050,//m3.acme:3051

If you specify multiple addresses, the Oracle Tuxedo software tries the addresses in
order, left to right, until a connection is established. If a syntax error is detected in any
of the addresses as it is being tried, a BAD_PARAM exception is returned to the caller
immediately and the Oracle Tuxedo software aborts the attempt to make a connection.
For example, if the first address in the comma-separated list shown above were
//m1.3050, a syntax error would be detected and the attempt to make a connection
would be aborted. If the Oracle Tuxedo software encounters the end of the address list
before it tries an address that is valid, that is, a connection cannot be made to any of the
addresses listed, the INVALID_DOMAIN exception is returned to the caller. If an
exception other than INVALID_DOMAIN is raised, it is returned to the caller immediately.

Oracle Tuxedo also supports random address selection. To use random address
selection, you can specify any member of an address list as a grouping of
pipe-separated (|) network addresses enclosed in parentheses. For example:
 (//m1.acme:3050|//m2.acme:3050),//m1.acme:7000

When you use this format, the Oracle Tuxedo system randomly selects one of the
addresses enclosed in parentheses, either //m1.acme:3050 or //m2.acme:3050. If an
exception other than INVALID_DOMAIN is raised, it is returned to the caller immediately.
If a connection cannot be made to the address selected, the next element that follows
the addresses enclosed in parentheses is attempted. If the end of the string is
encountered before a connection can be made, the INVALID_DOMAIN exception is
thrown to the caller.
CORBA Programming Reference 4-13

Note: If you specify an address list in the following format:

(//m1.acme:3050||//m2.acme:3050),//r1.acme:7000

the NULL address in the pipe-separated list is considered invalid. If the Oracle Tuxedo
software randomly selects the invalid address, the BAD_PARAM exception is returned to
the caller and the Oracle Tuxedo software aborts the connection attempt.

The address string can be specified either in the TOBJADDR environment variable or in
the address parameter of the Tobj_Bootstrap constructor.

For information about the TOBJADDR environment variable, see the section Managing
Remote Client Applications in the Setting Up an Oracle Tuxedo Application. However,
the address specified in Tobj_Bootstrap always take precedence over the TOBJADDR
environment variable. To use the TOBJADDR environment variable to specify an address
string, you must specify an empty string in the Tobj_Bootstrap address parameter.

Note: For C++ applications, TOBJADDR is an environment variable; for Java applications, it
is a property; for Java applets, it is an HTML parameter.

The third and fourth formats are called Uniform Resource Locator (URL) address
formats and were introduced in the Oracle WebLogic Enterprise version 5.1 release. As
with the NULL scheme URL address format (//hostname:port_number), you use the
URL address formats to specify the location of the IIOP Listener/Handler. However,
when the corbaloc URL address format is used, the client application’s initial
connection to the IIOP Listener/Handler is deferred until authentication of the
principal’s, or client’s, identity or the first user initiated operation. Using the
corbalocs URL address format has the same effect on the deferred connection time as
corbaloc, but, additionally, the client application makes its initial connection to the
ISL/ISH using the Secure Sockets Layer (SSL) protocol. Table 4-4 highlights the
differences between the two URL address formats.
4-14 CORBA Programming Reference

Boots t rap Ob jec t AP I
These URL address formats are a subset of the definition of object URLs adopted by
the OMG as part of the Interoperable Naming Service submission. The Oracle Tuxedo
software also extends the URL format described in the OMG Interoperable Naming
Service submission to support a secure form that is modeled after the URL for secure
HTTP, as well as to support the randomize functionality that was added in the Oracle
WebLogic Enterprise version 4.2.

The corbaloc and corbalocs URL schemes provide locations that are easily
manipulated in both TCP/IP and DNS centric environments. These URL schemes
contain a DNS-style hostname or IP address and a port_number. The following are
some examples of the URL formats:

corbaloc://curly:1024,larry:1022,joe:1999
corbalocs://host1:1024,{host2:1022|host3:1999}

As an enhancement to the URL syntax described in the OMG Interoperable Naming
Service submission, the Oracle WebLogic Enterprise version 5.1 software extended the
syntax to support a list of multiple URLs, each with a different scheme. The following are
some examples of the extension:

corbalocs://curly:1024,corbaloc://larry:1111,
corbalocs://ctxobj:3434,mthd:3434,corbaloc://force:1111

In the above example, if the parser reaches the URL corbaloc://force:1111, it
resets its internal state as if it had never attempted secure connections and then begins
attempting unprotected connections.

Table 4-4 Differences Between corbaloc and corbalocs URL Address Formats

URL Address Formats Differences in Mode of Operation

corbaloc Invocations to the IIOP Listener/Handler are unprotected. Configuring the IIOP
Listener/Handler for the SSL protocol is optional.

Note: A principal can secure the bootstrapping process by using the
SecurityLevel2::Current::authenticate() operation to
specify that certificate-based authentication is to be used.

corbalocs Invocations to the IIOP Listener/Handler are protected and the IIOP
Listener/Handler or the server ORB must be configured to enable the use of the
SSL protocol.
CORBA Programming Reference 4-15

Caution: Do not mix the use of NULL scheme URL addresses (//hostname:port_number)
with corbaloc and corbalocs URL addresses.

Note: The Bootstrap object supplied for use with the Netscape embedded Java ORB and
JavaSoft JDK ORB does not support corbaloc and corbalocs URLs.

Note: For more information on using the corbaloc and corbalocs URL address formats,
see Using Security in CORBA Applications.

Note: The network address that is specified in the Bootstrap constructor or in TOBJADDR
must exactly match the network address in the server application's UBBCONFIG file,
both the address as well as the capitalization. If the addresses do not match, the
invocation to the Bootstrap constructor will fail with the following seemingly
unrelated error message:

 ERROR: Unofficial connection from client at
 <tcp/ip address>/<port-number>

For example, if the network address is specified (using the NULL URL address
format) as //TRIXIE:3500 in the ISL command-line option string in the server
application's UBBCONFIG file, specifying either //192.12.4.6:3500 or
//trixie:3500 in the Bootstrap constructor or in TOBJADDR will cause the
connection attempt to fail. On UNIX systems, use the uname -n command on the host
system to determine the capitalization used. On Windows systems, see the host
system's network settings in the Control Panel to determine the correct capitalization.

Note: The error in the previous note is deferred when the URL address format is used, that
is, the error does not occur at the time of Bootstrap object construction because the
connection to the ISL/ISH is deferred until later.

– Native client

For a native client, the address parameter in the Tobj_Bootstrap constructor must
always be an empty string (not a NULL pointer). The native client connects to the
application that is specified in the TUXCONFIG environment variable. The constructor
raises CORBA::BAD_PARAM if the address is not empty.

– Server acting as a client

When servers need access to the Bootstrap object, they should obtain a reference to it
using the TP framework by invoking TP.bootstrap(). Servers should not attempt to
create a new instance of the Bootstrap object.
4-16 CORBA Programming Reference

Boots t rap Ob jec t AP I
applet (Applies to Java method only)
This is a pointer to the client applet. If the client applet does not explicitly pass the ISH
host and port to the Bootstrap constructor, you can pass this argument, which causes the
Bootstrap object to search for the TOBJADDR definition in the HTML file for the applet.

Exception
BAD_PARAM

Raised if the object is nil or if the host contained in the object does not match the
connection or the host address (//hostname:port_number) is not in a valid format.

Description
A C++ member function (or Java method) that creates Bootstrap objects.

Return Values
A pointer to a newly created Bootstrap object.

Tobj_Bootstrap::register_callback_port

Synopsis
Registers the joint client/server’s listening port in IIOP Handler (ISH).

C++ Mapping
void register_callback_port(CORBA::Object_ptr objref);

Parameter
objref

The object reference created by the joint client/server.

Exceptions
BAD_PARAM

Raised if the object is nil or if the host contained in the object does not match the
connection.

IMP_LIMIT
Raised if the register_callback_port method is called more than once.

Description
This C++ member function (or Java method) is called to notify the ISH of a listening port in the
joint client/server. This method should only be used for joint client/server ORBs that do not
CORBA Programming Reference 4-17

support GIOP 1.2 bidirectional capabilities (that is GIOP 1.0 and 1.1 client ORBs). For GIOP 1.0
and 1.1, the ISH supports only one listening port per joint client/server; therefore, the
register_callback_port method should only be called once per connected joint client/server.

Usage Notes
The following information must be given consideration when using this method:

If the register_callback_port method is not invoked by the joint client/server, the
callback port is not registered with the ISH and the server defaults to Asymmetric
Outbound IIOP. In this case, you must start the server’s IIOP Listener (ISL) with the -O
option. The -O option enables Asymmetric outbound IIOP; otherwise, server-to-client
invocations will not be allowed by the ISL/ISH.

If you are using the OracleWrapper Callbacks API instead of the POA and you want to use
bidirectional behavior, you always need to invoke the register_callback_port method,
even when you are using a ISH that supports GIOP 1.2.

If you want to use bidirectional capability for a callback object, you must invoke the
register_callback_port method before you pass the callback object reference to the
server.

Return Values

None.

Tobj_Bootstrap::resolve_initial_references

Synopsis
Acquires CORBA object references.

C++ Mapping
CORBA::Object_ptr resolve_initial_references(
 const char* id);
 throws Tobj::InvalidName,
 org.omg.CORBA.SystemException;

Parameter
id

This parameter must be one of the following:
4-18 CORBA Programming Reference

Boots t rap Ob jec t AP I
“FactoryFinder”
“InterfaceRepository”
“NameService”
“NotificationService”
“SecurityCurrent”
“TransactionCurrent”
“Tobj_SimpleEventsService”

Exceptions
InvalidName

Raised if id is not one of the names specified above. On the server,
resolve_initial_references also raises Tobj::InvalidName when
SecurityCurrent is passed.

CORBA::NO_PERMISSION
Raised if id is TransactionCurrent or SecurityCurrent and another Bootstrap object in the
client owns the Current objects.

Description
This C++ member function (or Java method) acquires CORBA object references for the
FactoryFinder, SecurityCurrent, TransactionCurrent, NotificationService,
Tobj_SimpleEventsService, and InterfaceRepository objects. For the specific object reference,
invoke the _narrow function. For example, for FactoryFinder, invoke
Tobj::FactoryFinder::_narrow.

Return Values

Table 4-2 shows the object reference that is returned for each type id.

Tobj_Bootstrap::destroy_current()

Synopsis
Destroys the Current objects for the domain represented by the Bootstrap object.

C++ Mapping
void destroy_current();

Exception
Raises CORBA::NO_PERMISSION if the Bootstrap object is not the owner of the Current objects.
CORBA Programming Reference 4-19

Description
This C++ member function invalidates the Current objects for the domain represented by the
Bootstrap object. After invoking the destroy_current() method, the Current objects are
marked as invalid. Any subsequent attempt to use the old Current objects will throw the exception
CORBA::BAD_INV_ORDER. Good programming practice is to release all Current objects before
invoking destroy_current().

Note: The destroy_current() method must be invoked on the Bootstrap object for the
domain that currently owns the two Current objects (Transaction and Security). This also
results in an implicit invocation to logoff for security and implicitly rolls back any
transaction that was begun by the client.

The application must invoke destroy_current() before invoking
resolve_initial_references for TransactionCurrent or SecurityCurrent on another domain;
otherwise, resolve_initial_references raises CORBA::NO_PERMISSION.

Return Values
None.

Java Methods
The Java Oracle bootstrapping API supports the following methods:

Tobj_Bootstrap

Tobj_Bootstrap.register_callback_port

Tobj_Bootstrap.resolve_initial_references

Tobj_Bootstrap.destroy_current

Tobj_Bootstrap.GetTransactions

Tobj_Bootstrap.getUserTransaction

Tobj_Bootstrap.getNativeProperties

Tobj_Bootstrap.getRemoteProperties

Automation Methods
This section describes the Automation methods supported by the Oracle bootstrapping
mechanism.
4-20 CORBA Programming Reference

Boots t rap Ob jec t AP I
Initialize

Synopsis
Initializes the Bootstrap object into an Oracle Tuxedo domain.

MIDL Mapping
HRESULT Initialize(
 [in] BSTR host);

Automation Mapping
Sub Initialize(address As String)

Parameter
address

The host name and port of the Oracle Tuxedo domain IIOP Listener/Handler. One or more
TCP/IP addresses can be specified. Multiple addresses are specified using a
comma-separated list, as in the C++ mappings. If no address is specified, the value of the
TOBJADDR environmental variable is used.

Note: The network address that is specified in the Bootstrap constructor or in TOBJADDR
must exactly match the network address in the application's UBBCONFIG file, both the
format of the address as well as the capitalization. If the addresses do not match, the
invocation to the Bootstrap constructor will fail with the following seemingly
unrelated error message:

 ERROR: Unofficial connection from client at
 <tcp/ip address>/<port-number>

For example, if the network address is specified as //TRIXIE:3500 in the ISL
command-line option string, specifying either //192.12.4.6:3500 or
//trixie:3500 in the Bootstrap constructor or in TOBJADDR will cause the
connection attempt to fail. On UNIX systems, use the uname -n command on the host
system to determine the capitalization used. On Windows systems, see the host
system's network settings in the Control Panel to determine the correct capitalization.

Return Values
None.
CORBA Programming Reference 4-21

Exceptions
Table 4-5 describes the exceptions.

CreateObject

Synopsis
Creates an instance of a Current environmental object.

MIDL Mapping
HRESULT CreateObject(
 [in] BSTR progid,
 [out, retval] IDispatch** rtrn);

Automation Mapping
Function CreateObject(progid As String) As Object

Table 4-5 Initialize Exceptions

HRESULT Description Meaning

ITF_E_NO_PERMISSION_
YES

Bootstrap already
initialized

The Bootstrap object has already
been initialized. To connect to a new
Oracle Tuxedo domain, you must
create a new Bootstrap object.

E_INVALIDARG Invalid address
parameter

The address supplied is not valid.

E_OUTOFMEMOY Memory allocation
failed

The required memory could not be
allocated.

E_FAIL Invalid domain Unable to communicate with the
Oracle Tuxedo domain at the address
specified or TOBJADDR is not
defined.

<SYSTEM ERROR> Unable to obtain
initial object

Unable to initialize the Bootstrap
object. The system error causing the
failure is returned in the "Number"
member of the error object.
4-22 CORBA Programming Reference

Boots t rap Ob jec t AP I
Parameter

progid
The progid of the environmental object to create. Valid progids are:

Tobj.FactoryFinder
Tobj.SecurityCurrent
Tobj.TransactionCurrent

Return Value
A reference to the interface pointer of the created environmental object.

Exceptions
Table 4-6 describes the exceptions.

Table 4-6 CreateObject Exceptions

Exception Description Meaning

ITF_E_NO_PERMISSION
_YES

Bootstrap object
must be
initialized

The Bootstrap object has not been
initialized.

ITF_E_NO_PERMISSION
_NO

No permission If the progid specifies a transaction or
security current and another Bootstrap
object in the client owns the current
objects.

E_INVALIDARG Invalid progid
parameter

The progid specified is not valid.

E_INVALIDARG Invalid name The requested progid is not one of the
valid parameter values specified above.

E_INVALIDARG Unknown object The requested progid is not registered on
your system.

<SYSTEM ERROR> CoCreate
Instance()
failed

The Bootstrap object could not create an
instance of the requested object. The
system error is returned in the "Number"
member of the error object.
CORBA Programming Reference 4-23

DestroyCurrent

Synopsis
Logs out of the Oracle Tuxedo domain and invalidates the TransactionCurrent and
SecurityCurrent objects.

MIDL Mapping
HRESULT destroy_current();

Automation Mapping
Sub destroy_current()

Parameters
None.

Return Value
None.

Exceptions
None.

Bootstrap Object Programming Examples
This section provides the following programming examples that use Bootstrap objects.

– Visual Basic Client Example: Using the Bootstrap Object

Visual Basic Client Example: Using the Bootstrap Object
Listing 4-4 shows how to program a Visual Basic client to use the Bootstrap object.

Listing 4-4 Programming a Client in Visual Basic

‘Declare the Bootstrap object
Public oBootstrap As DITobj_Bootstrap

‘Declare the FactoryFinder object
Public oBsFactoryFinder As DITobj_FactoryFinder
4-24 CORBA Programming Reference

In te roperab le Naming Serv i ce Boots t rapp ing Mechanism
‘Declare factory for Registrar object
Public oRegistrarFactory As DIUniversityB_RegistrarFactory

‘Declare actual Registrar object
Public oRegistrarFactory As DIUniversityB_RegistrarFactory

....

‘Create the Bootstrap object

Set oBootstrap = CreateObject(“Tobj.Bootstrap”)

‘Connect to the Oracle Tuxedo Domain
oBootstrap.Initialize “//host:port”

‘Get the FactoryFinder for the Oracle Tuxedo Domain
Set oBSFactoryFinder = oBootstrap.CreateObject(“Tobj.FactoryFinder”)

‘Get a factory for the Registrar object
‘using the FactoryFinder method find_one_factory_by_id
Set oRegistrarFactory =

oBSFactoryFinder.find_one_factory_by_id(“RegistrarFactoryID”)

'Create a Registrar object
Set oRegistrar = oRegistrarFactory.find_registrar(exc)

Interoperable Naming Service Bootstrapping Mechanism
This topic includes the following topics:

Introduction

INS Object References

INS Command-line Options

INS Object URL Schemes

Getting a FactoryFinder Object Reference Using INS

Getting a PrincipalAuthenticator Object Reference Using INS

Getting a TransactionFactory Object Reference Using INS
CORBA Programming Reference 4-25

Introduction
As of release 8.0, the Oracle Tuxedo ORB supports the CORBA Naming Service bootstrapping
mechanism (referred to in this document as the Interoperable Naming Service), as specified in
Chapters 4 and 13 of the CORBA Specification revision 2.4.2.

This support enables ORBs that implement the Interoperable Naming Service (INS)
bootstrapping mechanism to query the Oracle Tuxedo server-side ORB to get object references
to initial objects such as FactoryFinder and to PrincipalAuthenticator to the Oracle Tuxedo
environment. This support along with client support for interoperable initial object references
enables clients to use the INS bootstrapping mechanism instead of the Oracle bootstrapping
mechanism.

Note: The CORBA C++ client provided with Oracle Tuxedo software may use the INS
bootstrapping mechanism, however, for performance reasons, this is not recommended.

INS Object References
Table 4-7 shows the object reference that is returned for each type ID.

Table 4-7 Returned Object References

ID Returned Object Reference

FactoryFinder FactoryFinder object (CORBA::FactoryFinder)

InterfaceRepository InterfaceRepository object (CORBA::Repository)

NameService CORBA Naming Service object (CORBA::NameService)

NotificationService EventChannelFactory object

(CosNotifyChannelAdmin::EventChannelFactory)

POACurrent POACurrent object (CORBA::POACurrent)

PrincipalAuthenticator PrincipalAuthenticator object (SecurityLevel2::PrincipalAuthenticator)

RootPOA RootPOA object (CORBA::RootPOA)

Tobj_SimpleEventsService Oracle Simple Events ChannelFactory object
(Tobj_SimpleEvents::ChannelFactory)
4-26 CORBA Programming Reference

In te roperab le Naming Serv i ce Boots t rapp ing Mechanism
INS Command-line Options
As of release 8.0, Oracle Tuxedo CORBA supports the -ORBInitRef and
-ORBDefaultInitRef command-line options. For a complete description of these options, see
“ORB Initialization Member Function” on page 14-85.

The following example assumes an Oracle Tuxedo CORBA IIOP client is talking to an Oracle
Tuxedo CORBA IIOP server environment:

client_app –ORBid BEA_IIOP –ORBInitRef
 FactoryFinder=corbaloc::myhost:2468/FactoryFinder

Given this example, a call to ORB::resolve_initial_references for the FactoryFinder
will result in an interoperable initial reference request being sent to the ISL/ISH on myhost at
port 2468. Note that the case of myhost must exactly match the case of the host specified for the
ISL/ISH in the tuxconfig file.

INS Initialization Operations
To use the INS bootstrapping mechanism, applications programmers must observe the following
requirements:

Oracle Tuxedo CORBA IIOP clients that want to use the INS initial reference mechanism
must now call ORB::resolve_initial_references function, instead of the
Tobj_Bootstrap::resolve_initial_references function. For a syntactical
description of ORB::resolve_initial_references, see
“CORBA::ORB::resolve_initial_references” on page 14-79.

Note: The Tobj_Bootstrap API is still supported and its behavior has not changed.

Oracle Tuxedo CORBA IIOP clients using the INS initial reference mechanism should use
the ORB::list_initial_services function instead of the
Tobj_Bootstrap::list_initial_services function. For a syntactical description of
ORB::list_initial_services, see “CORBA::ORB::list_initial_services” on page
14-75.

INS Object URL Schemes
As of release 8.0, Oracle Tuxedo CORBA supports an additional Uniform Resource Locator
(URL) format to be used for the specification of the location for access to an Oracle Tuxedo
CORBA server environment and from where to retrieve references to initial object. The new URL
format both follows and extends the definition of object URLs adopted by the OMG as part of the
CORBA Programming Reference 4-27

INS specification. The URL format described in the INS specification has also been extended to
support a secure form modeled after the URL for secure HTTP, as well as the ability to support
the randomize functionality initially provided in Oracle WebLogic Enterprise version 5.1.

The CORBA 2.4.2 specification requires that three object URL schemes must be supported by a
compliant ORB. These schemes are defined as IOR, corbaloc, and corbaname.

Note: The new URL string formats may also be passed to the ORB::string_to_object
function.

IOR URL Scheme
The IOR scheme takes the form of a string that is formatted as IOR:hex_octets. The scheme
name is IOR and the text after the ‘:’ is defined in the CORBA specification. The IOR URL
scheme is robust and insulates the client from the encapsulated transport information and object
key used to reference the object.

corbaloc URL Scheme
It is difficult for humans to exchange IORs through nonelectronic means because of their lengths
and the text encoding of binary information. The corbaloc and corbalocs URL schemes provide
stringified object references in a format that is familiar to people and similar to the popular URL
schemes of FTP and HTTP. The URL schemes defined for corbaloc and corbalocs are easily
manipulated in both TCP/IP and DNS centric environments. The corbaloc and corbalocs URL
contains:

DNS-style host name or IP address and port

The version of the IIOP protocol to be used (optional)

An object key (optional)

By default, corbaloc URLs denote objects that can be contacted over IIOP, while corbalocs URLs
denote objects that can be contacted using IIOP over SSL.

Table 4-8 lists the BNF syntax for each URLs element.
4-28 CORBA Programming Reference

In te roperab le Naming Serv i ce Boots t rapp ing Mechanism
Table 4-9 describes each URL element.

Table 4-8 BNF Format for URL Elements

URL Element BNF Format

<corbaloc> = “corbaloc::”<obj_addr_list>[“/”<key_string>]
 [,<corbaloc>|<corbalocs>]

<corbalocs> = “corbalocs::”<obj_addr_list>[“/”<key_string>]
 [,<corbaloc>|<corbalocs>]

<obj_addr_list> = [<obj_addr> “,”]* <obj_addr>

<obj_addr> = <iiop_prot_addr> | <future_prot_addr>

<iiop_prot_addr = <iiop_id><iiop_addr>

<iiop_id> = “//” | <iiop_prot_token>”:”

<iiop_prot_token> = “iiop”

<iiop_addr> = [<version> <host> [“:” <port>]]

<host> = DNS-style Host Name | ip_address

<version> = <major> “.” <minor> “@” | empty_string

<port> = number

<major> = number

<minor> = number

<key_string> = <string> | empty_string
CORBA Programming Reference 4-29

Table 4-9 Descriptions of URL Elements

URL Element Description

obj_addr_list A comma-separated list of protocol ID, version, and address information. This list is
used in an implementation-defined manner to address the object. An object may be
contacted by any of the addresses and protocols. If a failure occurs using the element, the
next element in the comma-separated list will be used.

obj_addr A protocol identifier, version tag, and a protocol specific address. The right-brace “{“,
left-brace “}”, vertical bar “|”, slash “/”, and comma “,” characters are specifically
prohibited in this component of the URL.

iiop_prot_addr An IIOP protocol identifier, version tag, and address containing a DNS-style host name
or IP address.

iiop_id Tokens recognized to indicate an IIOP protocol corbaloc.

iiop_prot_token An IIOP protocol token, “iiop”.

iiop_addr A single address element.

host A DNS-style host name or IP address. If not present, the local host is assumed.

version A major and minor version number, separated by “.” and followed by “@”. If the version
is absent, 1.0 is assumed.

ip_address A numeric IP address (dotted decimal notation).

port The port number an IIOP Listener/Handler or an initialization agent is listening on. The
default is 9999.
4-30 CORBA Programming Reference

In te roperab le Naming Serv i ce Boots t rapp ing Mechanism
The following are some examples of using the new URL format:

corbaloc::555xyz.com:1024,555backup.com:1022,555last.com:1999
corbalocs::555xyz.com:1024,{555backup.com:1022|555last.com:1999}
corbaloc::1.2@555xyz.com:1111
corbalocs::1.1@24.128.122.32:1011,1.0@24.128.122.34

As an enhancement to the URL syntax described in the INS submission, Oracle Tuxedo 8.0 or
later has extended the syntax to support a list of multiple URLs, each with a different scheme.
The following are some examples of the extension:

corbalocs::555xyz.com:1024,corbaloc::1.2@555xyz.com:1111
corbalocs::ctxobj:3434,mthd:3434,corbaloc::force:1111

In the above example, if the parser reaches the URL corbaloc::force.com:1111, it will reset
its internal state as if it had never attempted secure connections and then begins attempting
unprotected connections.

corbaname URL Scheme
The corbaname URL scheme extends the capabilities of the corbaloc scheme to allow URLs to
denote entries in a Naming Service. Resolving corbaname URLs does not require a Naming
Service implementation in the ORB core. An example of a corbaname URL is:

key_string A stringified object key that is not NULL-terminated. The key_string uses the escape
conventions described in RFC 2396 to map away from octet values that cannot directly
be part of a URL. US-ASCII alphanumeric characters are not escaped. Characters
outside this range are escaped, except for the following:

“;” | “/” | “:” | “?” | “@” | “&” | “=” | “+” | “$” |
”,” | “-“ | “_” | “.” | “!” | “~” | “*” | “” | “(“ | “)”

The key_string corresponds to the octet sequence in the object_key member of a
GIOP Request or LocateRequest header as defined in the CORBA specification.

string_name A stringified name with URL escapes as defined in the Internet Engineering Task Force
(IETF) RFC 2396. These escape rules insure that URLs can be transferred via a variety
of transports without undergoing changes. US-ASCII alphanumeric characters are not
escaped. Characters outside this range are escaped, except for the following:

“;” | “/” | “:” | “?” | “@” | “&” | “=” | “+” | “$” |
”,” | “-“ | “_” | “.” | “!” | “~” | “*” | “” | “(“ | “)”

Table 4-9 Descriptions of URL Elements

URL Element Description
CORBA Programming Reference 4-31

corbaname:555objs.com#a/string/path/to/obj

This URL specifies that at host 555objs.com, an object of type NamingContext (with an object
key of NamingService) can be found, or alternatively, that an agent running at that location will
return a reference to a NamingContext. The stringified name a/string/path/to/obj is then
used as the argument to the resolve operation on that NamingContext.

A corbaname URL is similar to a corbaloc URL except that a corbaname URL also contains a
stringified name that identifies a binding in a naming context. The # character denotes the start
of the stringified name.

The BNF syntax for the URL is listed in Table 4-10.

Resolution of a corbaname URL is implemented as a simple extension to corbaloc URL
processing. To illustrate the implementation, we will use the following corbaname URL:

corbaname:<corbaloc_obj>[“#”<string_name>]

The resolution process is as follows:

1. Construct a corbaloc URL of the form corbaloc::<corbaloc_obj> from the corbaname
URL.

Table 4-10 BNF Syntax for URL

URL Element Format Description

<corbaname> = “corbaname:”<corbaloc_obj>[
 “#”<string_name>]

corbaloc_obj is a portion of a
corbaname URL that identifies the
naming context. The syntax is
identical to its use in a corbaloc URL.

<corbaloc_obj> <obj_addr_list>[“/”<key_string>] For a description of
obj_addr_list, see Table 4-9.

<obj_addr_list> As defined in a corbaloc URL For a description of
obj_addr_list, see Table 4-9.

<key_string> As defined in a corbaloc URL For a description of key_string,
see Table 4-9.

<string_name> Stringified Name | empty string For a description of string_name,
see Table 4-9.
4-32 CORBA Programming Reference

In te roperab le Naming Serv i ce Boots t rapp ing Mechanism
2. Convert the corbaloc URL to a naming context object reference by calling
CORBA::ORB::string_to_object to obtain a CosNaming::NamingContext object.

3. Convert <string_name> to a CosNaming::Name.

4. Invoke the resolve operation on the CosNaming::NamingContext, passing the
CosNaming::Name constructed.

5. The object reference returned from CosNaming::NamingContext::resolve should be
returned to the caller.

By following this resolution process, you eliminate the possibility of returning an object reference
for a naming context that does not exist in the Naming Service. One side effect of this approach
is that it requires that stubs for the Naming Service be part of the ORB core or that there be an
internal mechanism for sending the request for the resolve operation. Because of the
complexity, it is recommended that stubs for the Naming Service be embedded within the ORB
core.

Getting a FactoryFinder Object Reference Using INS
Listing 4-6 shows an example of how a client application, using INS, gets an object reference to
the FactoryFinder object. For a complete code example, see the client application in the
University Sample.

Listing 4-5 Code Example for Getting the FactoryFinder Object

// utility to get the registrar
static UniversityW::Registrar_ptr get_registrar(
 CORBA::ORB_ptr orb
)
{

 // Get the factory finder from the ORB:
 CORBA::Object_var v_fact_finder_oref =
 orb->resolve_initial_references("FactoryFinder");

 // Narrow the factory finder :
 Tobj::FactoryFinder_var v_fact_finder_ref =
 Tobj::FactoryFinder::_narrow(v_fact_finder_oref.in());

 // Use the factory finder to find the
 // university's registrar factory :
CORBA Programming Reference 4-33

 CORBA::Object_var v_reg_fact_oref =
 v_fact_finder_ref->find_one_factory_by_id(
 UniversityW::_tc_RegistrarFactory->id()
);

 // Narrow the registrar factory :
 UniversityW::RegistrarFactory_var v_reg_fact_ref =
 UniversityW::RegistrarFactory::_narrow(
 v_reg_fact_oref.in()
);

 // Return the university's registrar :
 return v_reg_fact_ref->find_registrar();
}

Getting a PrincipalAuthenticator Object Reference Using
INS
Listing 4-6 shows an example of how a client application, using INS, gets an object reference to
the PrincipalAuthenticator object. For a complete code example, see the client application in the
University Sample.

Listing 4-6 Code Example for Getting the PrincipalAuthenticator Object

// utility to log on to the security system
static SecurityLevel2::PrincipalAuthenticator_ptr logon(
 CORBA::ORB_ptr orb,
 const char* program_name,
 UniversityW::StudentId stu_id
)
{

 // Get a Principal Authenticator directly from the ORB:
 CORBA::Object_var v_pa_obj =
 orb->resolve_initial_references("PrincipalAuthenticator");

 // Narrow the Principal Authenticator :
 SecurityLevel2::PrincipalAuthenticator_var v_pa =
4-34 CORBA Programming Reference

In te roperab le Naming Serv i ce Boots t rapp ing Mechanism
 SecurityLevel2::PrincipalAuthenticator::_narrow(
 v_pa_obj.in());

Getting a TransactionFactory Object Reference Using INS
As of release 8.0, Oracle Tuxedo CORBA supports the use of the CORBA Transaction Service
Interface for beginning transactions. Using the
ORB::resolve_initial_references(“FactoryFinder”) function, a client gets an object
reference to a FactoryFinder. The client then uses the FactoryFinder to get a reference to a
TransactionFactory, that it in turn uses to create (begin) a transaction.

Listing 4-7 shows an example of how a client application, using INS, gets an object reference to
the TransactionFactory object. For a complete code example, see the client application in the
University Sample.

Listing 4-7 Code Example for a Client Application That Uses INS

// Get the factory finder from the ORB:
CORBA::Object_var v_fact_finder_oref =
 orb->resolve_initial_references("FactoryFinder");

// Narrow the factory finder :
Tobj::FactoryFinder_var v_fact_finder_ref =
 Tobj::FactoryFinder::_narrow(v_fact_finder_oref.in());

// Get the TransactionFactory from the FactoryFinder
CORBA::Object_var v_txn_fac_oref =
 v_fact_finder_ref->find_one_factory_by_id(
 "IDL:omg.org/CosTransactions/TransactionFactory:1.0");

// Narrow the TransactionFactory object reference
CosTransactions::TransactionFactory_var v_txn_fac_ref =
 CosTransactions::TransactionFactory::_narrow(
 v_txn_fac_oref.in());

The sequence of events using the INS bootstrapping mechanism is as follows:
CORBA Programming Reference 4-35

1. Use ORB::resolve_initial_references to get a FactoryFinder.

2. Use the FactoryFinder to get a TransactionFactory.

3. Use the create operation on TransactionFactory to begin a transaction.

4. From the Control object returned from the create operation, use the get_terminator method
to get the transaction terminator interface.

5. Use the commit or rollback operation on the terminator to end or abort the transaction.

The TransactionFactory returns objects that adhere to the standard CORBA Transaction Service
interfaces instead of the Oracle delegated interfaces. This means that a third party ORB can use
their ORB’s resolve_initial_references function to get a reference to a
TransactionFactory from an Oracle Tuxedo CORBA server and use stubs generated from
standard OMG IDL to act on the instances returned.

Restrictions
For the Oracle Tuxedo 8.0 release or later, the actions of the TransactionFactory and the client’s
Current are not coordinated. This means that clients should use one mechanism or the other to
control and get status about transactions, not both. Also, only the interfaces and operations listed
in Table 4-11 are supported. The other operations, as described in the OMG IDL, return the
CORBA::NO_IMPLEMENT exception.

Table 4-11 Supported INS Interfaces and Operations

Interface Supported Operations

TransactionFactory create

Control get_terminator
get_coordinator

Terminator commit
rollback

Coordinator get_status
rollback_only
get_transaction_name
4-36 CORBA Programming Reference

C H A P T E R 5
FactoryFinder Interface
The FactoryFinder interface provides clients with one object reference that serves as the single
point of entry into the Oracle Tuxedo domain. The Oracle Tuxedo NameManager provides the
mapping of factory names to object references for the FactoryFinder. Multiple FactoryFinders
and NameManagers together provide increased availability and reliability. In this release the
level of functionality has been extended to support multiple domains.

Note: The NameManager is not a naming service, such as CORBAservices Naming Service,
but is merely a vehicle for storing registered factories.

In the Oracle Tuxedo environment, application factory objects are used to create objects that
clients interact with to perform their business operations (for example, TellerFactory and Teller).
Application factories are generally created during server initialization and are accessed by both
remote clients and clients located within the server application.

The FactoryFinder interface and the NameManager services are contained in separate
(nonapplication) servers. A set of application programming interfaces (APIs) is provided so that
both client and server applications can access and update the factory information.

The support for multiple domains in this release benefits customers that need to scale to a large
number of machines or who want to partition their application environment. To support multiple
domains, the mechanism used to find factories in an Oracle Tuxedo environment has been
enhanced to allow factories in one domain to be visible in another. The visibility of factories in
other domains is under the control of the system administrator.
CORBA Programming Reference 5-1

Capabilities, Limitations, and Requirements
During server application initialization, application factories need to be registered with the
NameManager. Clients can then be provided with the object reference of a FactoryFinder to allow
them to retrieve a factory object reference based on associated names that were created when the
factory was registered.

The following functional capabilities, limitations, and requirements apply to this release:

The FactoryFinder interface is in compliance with the CosLifeCycle::FactoryFinder
interface.

Server applications can register and unregister application factories with the
CORBAservices Naming Service.

Clients can access objects using a single point of entry—the FactoryFinder.

Clients can construct names for objects using a simplified Oracle scheme made possible by
Oracle Tuxedo extensions to the CORBAservices interface or the more general CORBA
scheme.

Multiple FactoryFinders and NameManagers can be used to increase availability and
reliability in the event that one FactoryFinder or NameManager should fail.

Support for multiple domains. Factories in one domain can be configured to be visible in
another domain under administrative control.

Two NameManager services, at a minimum, must be configured, preferably on different
machines, to maintain the factory-to-object reference mapping across process failures. If
both NameManagers fail, the master NameManager, which has been keeping a persistent
journal of the registered factories, recovers the previous state by processing the journal so
as to re-establish its internal state.

One NameManager must be designated as the Master and the Master NameManager must
be started before the Slave. If the master NameManager is started after one or more Slaves,
the Master assumes that it is in recovery mode instead of in initializing mode.

Functional Description
The Oracle Tuxedo CORBA environment promotes the use of the factory design pattern as the
primary means for a client to obtain a reference to an object. Through the use of this design
pattern, client applications require a mechanism to obtain a reference to an object that acts as a
factory for another object. Because the Oracle Tuxedo environment has chosen CORBA as its
5-2 CORBA Programming Reference

Func t iona l Descr ip t ion
visible programming model, the mechanism used to locate factories is modeled after the
FactoryFinder as described in the CORBAservices Specification, Chapter 6 “Life Cycle Service,”
December 1997, published by the Object Management Group.

In the CORBA FactoryFinder model, application servers register active factories with a
FactoryFinder. When an application server’s factory becomes inactive, the application server
removes the corresponding registration from the FactoryFinder. Client applications locate
factories by querying a FactoryFinder. The client application can control the references to the
factory object returned by specifying criteria that is used to select one or more references.

Locating a FactoryFinder
A client application must obtain a reference to a FactoryFinder before it can begin locating an
appropriate factory. To obtain a reference to a FactoryFinder in the domain to which a client
application is associated, the client application can use either of two bootstrapping mechanisms:

Invoke the Tobj_Bootstrap::resolve_initial_references operation with a value of
“FactoryFinder”. This operation returns a reference to a FactoryFinder that is in the
domain to which the client application is currently attached. You should use this
mechanism if you are using the Oracle Tuxedo client software. For more information, see
the section Tobj_Bootstrap::resolve_initial_references.

Invoke the CORBA::ORB::resolve_initial_references operation with a value of
“FactoryFinder”. This operation returns a reference to a FactoryFinder that is in the
domain to which the client application is currently attached. You should use this
mechanism if you are using a third-party client ORB. For more information, see the section
CORBA::ORB::resolve_initial_references.

Note: The references to the FactoryFinder that are returned to the client application can be
references to factory objects that are registered on the same machine as the
FactoryFinder, on a different machine than the FactoryFinder, or possibly in a different
domain than the FactoryFinder.

Registering a Factory
For a client application to be able to obtain a reference to a factory, an application server must
register a reference to any factory object for which it provides an implementation with the
FactoryFinder (see Figure 5-1). Using the Oracle Tuxedo CORBA TP Framework, the
registration of the reference for the factory object can be accomplished using the
TP::register_factory operation, once a reference to a factory object has been created. The
reference to the factory object, along with a value that identifies the factory, is passed to this
CORBA Programming Reference 5-3

operation. The registration of references to factory objects is typically done as part of
initialization of the application (normally as part of the implementation of the operation
Server::initialize).

Figure 5-1 Registering a Factory Object

When the server application is shutting down, it must unregister any references to factory objects
that it has previously registered in the application server. This is done by passing the same
reference to the factory object, along with the corresponding value used to identify the factory, to
the TP::unregister_factory operation. Once unregistered, the reference to the factory object
can then be destroyed. The process of unregistering a factory with the FactoryFinder is typically
done as part of the implementation of the Server::release operation. For more information
about these operations, see the section Server Interface.

C++ Mapping
Listing 5-1 shows the C++ class (static) methods. For more information about these methods, see
the sections TP::register_factory() and TP::unregister_factory().

Listing 5-1 C++ Mappings for the Factory Registration Pseudo OMG IDL

#include <TP.h>

Server Name
ManagerTPFW

System
Event
Broker

Register,
Unregister_factory

Register factory in
Namemanager

Post event to update other
Namemanagers
5-4 CORBA Programming Reference

Func t iona l Descr ip t ion
static void TP::register_factory(
 CORBA::Object_ptr factory_or, const char* factory_id);

static void TP::unregister_factory (
 CORBA::Object_ptr factory_or, const char* factory_id);

The TP.h header file contains the two method declarations. This file must to be included in any
server application that wants to use these methods.

A server application generally includes this header file within the application file that contains
the methods for application server initialization and release.

Locating a Factory
For a client application to request a factory to create a reference to an object, it must first obtain
a reference to the factory object. The reference to the factory object is obtained by querying a
FactoryFinder with specific selection criteria (see Figure 5-2). The criteria are determined by the
format of the particular FactoryFinder interface and method used.

Figure 5-2 Locating a Factory Object

Oracle Tuxedo CORBA extends the CosLifeCycle::FactoryFinder interface by introducing
four methods in addition to the find_factories() method declared for the FactoryFinder.

Client Factory
FinderBootstrap Name

Manager

resolve_initial_references

CORBA::Object

factory::_narrow()

find_*_factor*

CORBA::Object

Tobj_FF::_narrow()

find factory object in
NameManager

IOR string
CORBA Programming Reference 5-5

Therefore, using the Tobj extensions, a client can use either the find_factories() or
find_factories_by_id() methods to obtain a list of application factories. A client can also
use the find_one_factory() or find_one_factory_by_id() method to obtain a single
application factory, and list_factories () to obtain a list of all registered factories.

Note: You can used the Oracle Tuxedo CORBA extensions to the
CosLifeCycle::FactoryFinder interface if you use the Tobj_Bootstrap object,
however, use of the Tobj_Bootstrap object is not required to locate a factory. If you use
CORBA INS, you can use the find_factories() method provided by the
CosLifeCycle::FactoryFinder interface.

The CosLifeCycle::FactoryFinder interface defines a factory_key, which is a sequence of
id and kind strings conforming to the CosNaming Name shown below. The kind field of the
NameComponent for all application factories is set to the string FactoryInterface by the TP
Framework when an application factory is registered. Applications supply their own value for the
id field.

Assuming that the CORBAservices Life Cycle Service modules are contained in their own file
(ns.idl and lcs.idl, respectively), only the OMG IDL code for that subset of both files that
is relevant for using the Oracle Tuxedo FactoryFinder is shown in the following listings.

CORBAservices Naming Service Module OMG IDL
Listing 5-2 shows the portions of the ns.idl file that are relevant to the FactoryFinder.

Listing 5-2 CORBAservices Naming OMG IDL

// ------ ns.idl ------

module CosNaming {
 typedef string Istring;
 struct NameComponent {
 Istring id;
 Istring kind;
 };
 typedef sequence <NameComponent> Name;

};

// This information is taken from CORBAservices: Common Object
// Services Specification, page 3-6. Revised Edition:
// March 31, 1995. Updated: November 1997. Used with permission by OMG.
5-6 CORBA Programming Reference

Func t iona l Descr ip t ion
CORBAservices Life Cycle Service Module OMG IDL
Listing 5-3 shows the portions of the lcs.idl file that are relevant to the FactoryFinder.

Listing 5-3 Life Cycle Service OMG IDL

// ----- lcs.idl -----

#include “ns.idl”

module CosLifeCycle{
 typedef CosNaming::Name Key;
 typedef Object Factory;
 typedef sequence<Factory> Factories;

 exception NoFactory{ Key search_key; }

 interface FactoryFinder {
 Factories find_factories(in Key factory_key)
 raises(NoFactory);

 };

};

// This information is taken from CORBAservices: Common Object
// Services Specification, pages 6-10, 11. Revised Edition:
// March 31, 1995. Updated: November 1997. Used with permission by OMG.

Tobj Module OMG IDL
Listing 5-4 shows the Tobj Module OMG IDL.

Listing 5-4 Tobj Module OMG IDL

// ----- Tobj.idl -----

module Tobj {
CORBA Programming Reference 5-7

 // Constants

 const string FACTORY_KIND = "FactoryInterface";

 // Exceptions

 exception CannotProceed { };
 exception InvalidDomain {};
 exception InvalidName { };
 exception RegistrarNotAvailable { };

 // Extension to LifeCycle Service

 struct FactoryComponent {
 CosLifeCycle::Key factory_key;
 CosLifeCycle::Factory factory_ior;
 };

 typedef sequence<FactoryComponent> FactoryListing;

 interface FactoryFinder : CosLifeCycle::FactoryFinder {
 CosLifeCycle::Factory find_one_factory(in CosLifeCycle::Key
 factory_key)
 raises (CosLifeCycle::NoFactory,
 CannotProceed,
 RegistrarNotAvailable);
 CosLifeCycle::Factory find_one_factory_by_id(in string
 factory_id)
 raises (CosLifeCycle::NoFactory,
 CannotProceed,
 RegistrarNotAvailable);
 CosLifeCycle::Factories find_factories_by_id(in string
 factory_id)
 raises (CosLifeCycle::NoFactory,
 CannotProceed,
 RegistrarNotAvailable);
 FactoryListing list_factories()
 raises (CannotProceed,
 RegistrarNotAvailable);
 };
};
5-8 CORBA Programming Reference

Func t iona l Descr ip t ion
Locating Factories in Another Domain
Typically, a FactoryFinder returns references to factory objects that are in the same domain as the
FactoryFinder itself. However, it is possible to return references to factory objects in domains
other than the domain in which a FactoryFinder exists. This can occur if a FactoryFinder contains
information about factories that are resident in another domain (see Figure 5-3). A FactoryFinder
finds out about these interdomain factory objects through configuration information that
describes the location of these other factory objects.

When a FactoryFinder receives a request to locate a factory object, it must first determine if a
reference to a factory object that meets the specified criteria exists. If there is registration
information for a factory object that matches the criteria, the FactoryFinder must then determine
if the factory object is local to the current domain or needs to be imported from another domain.
If the factory object is from the local domain, the FactoryFinder returns the reference to the
factory object to the client.

Figure 5-3 Inter-Domain FactoryFinder Interaction

If, on the other hand, the information indicates that the actual factory object is from another
domain, the FactoryFinder delegates the request to an interdomain FactoryFinder in the
appropriate domain. As a result, only a FactoryFinder in the same domain as the factory object
will contain an actual reference to the factory object. The interdomain FactoryFinder is
responsible for returning the reference of the factory object to the local FactoryFinder, which
subsequently returns it to the client.

Client Factory
FinderBootstrap Name

Manager

resolve_initial_references

CORBA::Object

factory::_narrow()

find_*_factor*

CORBA::Object

Tobj_FF::_narrow()
find factory

object in
NameManager

IOR string

Factory
Finder

find_*_factor*

Intra-domain
FactoryFinder
delegates request
to inter-domain
FactoryFinder

CORBA::Object
CORBA Programming Reference 5-9

Why Use Oracle Tuxedo CORBA Extensions?
The Oracle Tuxedo software extends the interfaces defined in the CORBAservices specification,
Chapter 6 “Life Cycle Service,” December 1997, published by the Object Management Group,
for the following reasons:

Although the CORBA-defined approach is powerful and allows various selection criteria,
the interface used to query a FactoryFinder can be complicated to use.

Additionally, if the selection criterion specified by the client application is not specific
enough, it is possible that more than one reference to a factory object may be returned. If
this occurs, it is not immediately obvious what a client application should do next.

Finally, the CORBAservices specification did not specify a standardized mechanism
through which an application server is to register a factory object.

Therefore, Oracle Tuxedo extends the interfaces defined in the CORBAservices specification to
make using a FactoryFinder easier. The extensions are manifested as refined interfaces to the
FactoryFinder that are derived from the interfaces specified in the CORBAservices specification.

Creating Application Factory Keys
Two of the five methods provided by the FactoryFinder interface accept CosLifeCycle::Keys,
which corresponds to CosNaming::Name. A client must be able to construct these keys.

The CosNaming Specification describes two interfaces that constitute a Names Library interface
that can be used to create and manipulate CosLifeCycle::Keys. The pseudo OMG IDL
statements for these interfaces is described in the following section.

Names Library Interface Pseudo OMG IDL
Note: This information is taken from the CORBAservices: Common Object Services

Specification, pp. 3-14 to18. Revised Edition: March 31, 1995. Updated: November
1997. Used with permission by OMG.

To allow the representation of names to evolve without affecting existing client applications, it is
desirable to hide the representation of names from the client application. Ideally, names
themselves would be objects; however, names must be lightweight entities that are efficient to
create, manipulate, and transmit. As such, names are presented to programs through the names
library.

The names library implements names as pseudo-objects. A client application makes calls on a
pseudo-object in the same way it makes calls on an ordinary object. Library names are described
5-10 CORBA Programming Reference

Func t iona l Descr ip t ion
in pseudo-IDL (to suggest the appropriate language binding). C++ client applications use the
same client language bindings for pseudo-IDL (PIDL) as they use for IDL.

Pseudo-object references cannot be passed across OMG IDL interfaces. As described in Chapter
3 of the CORBAservices: Common Object Services Specification, in the section “The CosNaming
Module,” the CORBAservices Naming Service supports the NamingContext OMG IDL
interface. The names library supports an operation to convert a library name into a value that can
be passed to the name service through the NamingContext interface.

Note: It is not a requirement to use the names library in order to use the CORBAservices
Naming Service.

The names library consists of two pseudo-IDL interfaces, the LNameComponent interface and
the LName interface, as shown in Listing 5-5.

Listing 5-5 Names Library Interfaces in Pseudo-IDL

interface LNameComponent { // PIDL
 const short MAX_LNAME_STRLEN = 128;

 exception NotSet{ };
 exception OverFlow{ };

 string get_id
 raises (NotSet);
 void set_id(in string i)
 raises (OverFlow);
 string get_kind()
 raises(NotSet);
 void set_kind(in string k)
 raises (OverFlow);
 void destroy();
};

interface LName {// PIDL
 exception NoComponent{ };
 exception OverFlow{ };
 exception InvalidName{ };
 LName insert_component(in unsigned long i,
 in LNameComponent n)
 raises (NoComponent, OverFlow);
CORBA Programming Reference 5-11

 LNameComponent get_component(in unsigned long i)
 raises (NoComponent);
 LNameComponent delete_component(in unsigned long i)
 raises (NoComponent);
 unsigned long num_components();
 boolean equal(in LName ln);
 boolean less_than(in LName ln);
 Name to_idl_form()
 raises (InvalidName);
 void from_idl_form(in Name n);
 void destroy();
};

LName create_lname();// C/C++
LNameComponent create_lname_component();// C/C++

Creating a Library Name Component
To create a library name component pseudo-object, use the following C/C++ function:

LNameComponent create_lname_component(); // C/C++

The returned pseudo-object can then be operated on using the operations shown in Listing 5-5.

Creating a Library Name
To create a library name pseudo-object, use the following C/C++ function:

LName create_lname(); // C/C++

The returned pseudo-object reference can then be operated on using the operations shown in
Listing 5-5.

The LNameComponent Interface
A name component consists of two attributes: identifier and kind. The LNameComponent
interface defines the operations associated with these attributes, as follows:

string get_id()
raises(NotSet);
void set_id(in string k);
string get_kind()
5-12 CORBA Programming Reference

Func t iona l Descr ip t ion
raises(NotSet);
void set_kind(in string k);

get_id
The get_id operation returns the identifier attribute’s value. If the attribute has not
been set, the NotSet exception is raised.

set_id
The set_id operation sets the identifier attribute to the string argument.

get_kind
The get_kind operation returns the kind attribute’s value. If the attribute has not been
set, the NotSet exception is raised.

set_kind
The set_kind operation sets the kind attribute to the string argument.

The LName Interface
The following operations are described in this section:

Destroying a library name component pseudo-object

Inserting a name component

Getting the ith name component

Deleting a name component

Number of name components

Testing for equality

Testing for order

Producing an OMG IDL form

Translating an OMG IDL form

Destroying a library name pseudo-object

Destroying a Library Name Component Pseudo-Object
The destroy operation destroys library name component pseudo-objects.

void destroy();
CORBA Programming Reference 5-13

Inserting a Name Component
A name has one or more components. Each component except the last is used to identify names
of subcontexts. (The last component denotes the bound object.) The insert_component
operation inserts a component after position i.

LName insert_component(in unsigned long i, in LNameComponent lnc)
raises(NoComponent, OverFlow);

If component i-1 is undefined and component i is greater than 1 (one), the insert_component
operation raises the NoComponent exception.

If the library cannot allocate resources for the inserted component, the OverFlow exception is
raised.

Getting the ith Name Component

The get_component operation returns the ith component. The first component is numbered 1
(one).

LNameComponent get_component(in unsigned long i)
raises(NoComponent);

If the component does not exist, the NoComponent exception is raised.

Deleting a Name Component

The delete_component operation removes and returns the ith component.

LNameComponent delete_component(in unsigned long i)
 raises(NoComponent);

If the component does not exist, the NoComponent exception is raised.

After a delete_component operation has been performed, the compound name has one fewer
component and components previously identified as i+1...n are now identified as i...n-1.

Number of Name Components
The num_components operation returns the number of components in a library name.

unsigned long num_components();

Testing for Equality
The equal operation tests for equality with library name ln.
5-14 CORBA Programming Reference

Func t iona l Descr ip t ion
boolean equal(in LName ln);

Testing for Order
The less_than operation tests for the order of a library name in relation to library name ln.

boolean less_than(in LName ln);

This operation returns TRUE if the library name is less than the library name ln passed as an
argument. The library implementation defines the ordering on names.

Producing an OMG IDL Form
Pseudo-objects cannot be passed across OMG IDL interfaces. The library name is a
pseudo-object; therefore, it cannot be passed across the OMG IDL interface for the
CORBAservices Naming Service. Several operations in the NamingContext interface have
arguments of an OMG IDL-defined structure, Name. The following PIDL operation on library
names produces a structure that can be passed across the OMG IDL request.

Name to_idl_form()
 raises(InvalidName);

If the name is of length 0 (zero), the InvalidName exception is returned.

Translating an IDL Form
Pseudo-objects cannot be passed across OMG IDL interfaces. The library name is a
pseudo-object; therefore, it cannot be passed across the OMG IDL interface for the
CORBAservices Naming Service. The NamingContext interface defines operations that return an
IDL struct of type Name. The following PIDL operation on library names sets the components and
kind attribute for a library name from a returned OMG IDL defined structure, Name.

void from_idl_form(in Name n);

Destroying a Library Name Pseudo-Object
The destroy operation destroys library name pseudo-objects.

void destroy();

C++ Mapping
The Names Library pseudo OMG IDL interface maps to the C++ classes shown in Listing 5-6,
which can be found in the NamesLib.h header file.
CORBA Programming Reference 5-15

Two Oracle Tuxedo extensions to CORBA are included to support scalability. Specifically, the
LNameComponent::set_id() and LNameComponent::set_kind() methods raise an
OverFlow exception if the length of the input string exceeds MAX_LNAME_STRLEN. This length
coincides with the maximum length of the Oracle Tuxedo object ID (OID) and interface name.
For a detailed description of the Library Name class, see the section Names Library Interface
Pseudo OMG IDL.

Listing 5-6 Library Name Class

const short MAX_LNAME_STRLEN = 128;

class LNameComponent {
public:
 class NotSet{ };
 class OverFlow{ };
 static LNameComponent* create_lname_component();
 void destroy();
 const char* get_id() const throw (NotSet);
 void set_id(const char* i) throw (OverFlow);
 const char* get_kind() const throw (NotSet);
 void set_kind(const char* k) throw (OverFlow);
};

class LName {
public:
 class NoComponent{ };
 class OverFlow{ };
 class InvalidName{ };
 static LName* create_lname();
 void destroy();
 LName* insert_component(const unsigned long i,
 LNameComponent* n)
 throw (NoComponent, OverFlow);
 const LNameComponent* get_component(
 const unsigned long i) const
 throw (NoComponent);
 const LNameComponent* delete_component(
 const unsigned long i)
5-16 CORBA Programming Reference

Func t iona l Descr ip t ion
 throw (NoComponent);
 unsigned long num_components() const;
 CORBA::Boolean equal(const LName* ln) const;
 CORBA::Boolean less_than(
 const LName* ln) const; // not implemented
 CosNaming::Name* to_idl_form()
 throw (InvalidName);
 void from_idl_form(const CosNaming::Name& n);
};

Java Mapping
The Names Library pseudo OMG IDL interface maps to the Java classes contained in the
com.beasys.Tobj package, shown in Listing 5-7. All exceptions are contained in the same
package.

For a detailed description of the Library Name class, refer to Chapter 3 in the CORBAservices:
Common Object Services Specification.

Listing 5-7 Java Mapping for LNameComponent

public class LNameComponent {
 public static LNameComponent create_lname_component();
 public static final short MAX_LNAME_STRING = 128;
 public void destroy();
 public String get_id() throws NotSet;
 public void set_id(String i) throws OverFlow;
 public String get_kind() throws NotSet;
 public void set_kind(String k) throws OverFlow;
};

public class LName {

 public static LName create_lname();
 public void destroy();
 public LName insert_component(long i, LNameComponent n)
 throws NoComponent, OverFlow;
 public LNameComponent get_component(long i)
CORBA Programming Reference 5-17

 throws NoComponent;
 public LNameComponent delete_component(long i)
 throws NoComponent;
 public long num_components();
 public boolean equal(LName ln);
 public boolean less_than(LName ln);// not implemented
 public org.omg.CosNaming.NameComponent[] to_idl_form()
 throws InvalidName;
 public void from_idl_form(org.omg.CosNaming.NameComponent[] nr);
};

C++ Member Functions and Java Methods
This section describes the FactoryFinder C++ member functions and Java methods.

Note: All FactoryFinder member functions, except the less_than member function in
LName, are implemented in both C++ and Java.

The following methods are described in this section:

CosLifeCycle::FactoryFinder::find_factories

Tobj::Factoryfinder::find_one_factory

Tobj::Factoryfinder::find_one_factory_by_id

Tobj::Factoryfinder::find_factories_by_id

Tobj::Factoryfinder::list_factories

Note: The CosLifeCycle::FactoryFinder::find_factories method is the standard
CORBA CosLifeCycle method. The four Tobj methods are extensions to the
CosLifeCycle interface and, therefore, inherit the attributes of the CosLifeCycle
interface.

CosLifeCycle::FactoryFinder::find_factories

Synopsis
Obtains a sequence of factory object references.
5-18 CORBA Programming Reference

C++ Member Funct ions and Java Methods
C++ Mapping
CosLifeCycle::Factories *
CORBA::Object_ptr CosLifeCycle::FactoryFinder::find_factories(
 const CosNaming::Name& factory_key)
 throw (CosLifeCycle::NoFactory);

Java Mapping
import org.omg.CosLifeCycle.*;

public org.omg.CORBA.Object[] find_factories(
 org.omg.CosNaming.NameComponent[] factory_key)
 throws org.omg.CosLifeCycle.NoFactory;

Parameter
factory_key

This parameter is an unbounded sequence of NameComponents (tuple of <id, kind> pairs)
that uniquely identifies a factory object reference.
A NameComponent is defined as a having two members: an id and a kind, both of type
string. The id field is used to represent the identity of factory object. The kind field is
used to indicate how the value of the id field should be interpreted.
References to factory object registered using the operation TP::register_factory will
have a kind value of “FactoryInterface”.

Exception
CORBA::BAD_PARAM

Indicates that the value of an input parameter has an inappropriate value or is invalid. Of
particular importance, the exception is raised if no value or a NULL value for the
parameter factory_key is specified.

CosLifeCycle::NoFactory
Indicates that there are no factories registered that match the information in the
factory_key parameter.

Description
The find_factories method is called by an application to obtain a sequence of factory object
references. The operation is passed a key used to identify the desired factory. The key is a name,
as defined by the CORBAservices Naming service. More than one factory may match the key,
and, if that is the case, the FactoryFinder returns a sequence of factories.
CORBA Programming Reference 5-19

The scope of the key is the FactoryFinder. The FactoryFinder assigns no semantics to the key. It
simply matches keys. It makes no guarantees about the interface or implementation of the
returned factories or objects they create.

Key values are considered equal if they are of equal length (same number of elements in the
sequence), and if every NameComponent value in the key matches the corresponding
NameComponent value at the exact same location in the key that was specified when the
reference to the factory object was registered.

Return Values
An unbounded sequence of references to factory objects that match the information specified as
the value of the factory_key parameter. In C++, the method returns a sequence of object
references of type CosLifeCycle::Factory. In Java, the method returns an unbounded array of
object references of type org.omg.CORBA.Object.

If the operation raises an exception, the return value is invalid and does not need to be released
by the caller.

Tobj::FactoryFinder::find_one_factory

Synopsis
Obtains a reference to a single factory object.

C++ Mapping
virtual CosLifeCycle::Factory_ptr
 find_one_factory(const CosNaming::Name& factory_key) = 0;

Java Mapping
public org.omg.CORBA.Object
 find_one_factory(org.omg.CosNaming.NameComponent[] factory_key)
 throws
 org.omg.CosLifeCycle.NoFactory,
 com.beasys.Tobj.CannotProceed,
 com.beasys.Tobj.RegistrarNotAvailable;
5-20 CORBA Programming Reference

C++ Member Funct ions and Java Methods
Parameter
factory_key

This parameter is an unbounded sequence of NameComponents (tuple of <id, kind> pairs)
that uniquely identifies a factory object reference.
A NameComponent is defined as a having two members: an id and a kind, both of type
string. The id field is used to represent the identity of factory object. The kind field is
used to indicate how the value of the id field should be interpreted.
References to factory object registered using the operation TP::register_factory will
have a kind value of “FactoryInterface”.

Exceptions
CORBA::BAD_PARAM

Indicates that the value of an input parameter has an inappropriate value or is invalid. Of
particular importance, the exception is raised if no value or a NULL value for the
parameter factory_key is specified.

CosLifeCycle::NoFactory
Indicates that there are no factories registered that match the information in the
factory_key parameter.

Tobj::CannotProceed
Indicates that the FactoryFinder or NameManager encountered an internal error while
attempting to locate a reference for a factory object.
Error information is written to the user log.

Tobj::RegistrarNotAvailable
Indicates that the FactoryFinder could not communicate with the NameManager.
Error information is written to the user log.

Description
The find_one_factory method is called by an application to obtain a reference to a single
factory object whose key matches the value of the key specified as input to the method. If more
than one factory object is registered with the specified key, the FactoryFinder selects one factory
object based on the FactoryFinder’s load balancing scheme. As a result, invoking the
find_one_factory method multiple times using the same key may return different object
references.

The scope of the key is the FactoryFinder. The FactoryFinder assigns no semantics to the key. It
simply matches keys. It makes no guarantees about the interface or implementation of the
returned factory or objects they create.
CORBA Programming Reference 5-21

Key values are considered equal if they are of equal length (same number of elements in the
sequence), and if every NameComponent value in the key matches the corresponding
NameComponent value at the exact same location in the key that was specified when the
reference to the factory object was registered.

Return Values
An object reference for a factory object. In C++, the method returns an object reference of type
CosLifeCycle::Factory. In Java, the method returns an object reference of type
org.omg.CORBA.Object.

If the operation raises an exception, the return value is invalid and does not need to be released
by the caller.

Tobj::FactoryFinder::find_one_factory_by_id

Synopsis
Obtains a reference to a single factory object.

C++ Mapping
virtual CosLifeCycle::Factory_ptr
 find_one_factory_by_id(const char * factory_id) = 0;

Java Mapping
public org.omg.CORBA.Object
 find_one_factory_by_id(java.lang.String factory_id)
 throws
 org.omg.CosLifeCycle.NoFactory,
 com.beasys.Tobj.CannotProceed,
 com.beasys.Tobj.RegistrarNotAvailable;

Parameter
factory_id

A NULL-terminated string that contains a value that is used to identify the registered
factory object to be found.
The value of the factory_id parameter is used as the value of the id field of a
NameComponent that has a kind field with the value “FactoryInterface” when
comparing against registered references for factory objects.
5-22 CORBA Programming Reference

C++ Member Funct ions and Java Methods
Exceptions
CORBA::BAD_PARAM

Indicates that the value of an input parameter has an inappropriate value or is invalid. Of
particular importance, the exception is raised if no value or a NULL value for the
parameter factory_key is specified.

CosLifeCycle::NoFactory
Indicates that there are no factories registered that match the information in the
factory_key parameter.

Tobj::CannotProceed
Indicates that the FactoryFinder or NameManager encountered an internal error while
attempting to locate a reference for a factory object.
Error information is written to the user log.

Tobj::RegistrarNotAvailable
Indicates that the FactoryFinder could not communicate with the NameManager.
Error information is written to the user log.

Description
The find_one_factory_by_id method is called by an application to obtain a reference to a
single factory object whose registration ID matches the value of the ID specified as input to the
method. If more than one factory object is registered with the specified ID, the FactoryFinder
selects one factory object based on the FactoryFinder’s load balancing scheme. As a result,
invoking the find_one_factory_by_id operation multiple times using the same ID may return
different object references.

The find_one_factory_by_id method behaves the same as the find_one_factory operation
that was passed a key that contains a single NameComponent with an id field that contains the
same value as the factory_id parameter and a kind field that contains the value
“FactoryInterface”.

The registered identifier for a factory is considered equal to the value of the factory_id
parameter if the result of constructing a CosLifeCycle::Key structure containing a single
NameComponent that has the factory_id parameter as the value of the id field and the value
“FactoryInterface” as the value of the kind field. The values must match exactly in all
respects (case, location, etc.).
CORBA Programming Reference 5-23

Return Values
An object reference for a factory object. In C++, the method returns an object reference of type
CosLifeCycle::Factory. In Java, the method returns an object reference of type
org.omg.CORBA.Object.

If the operation raises an exception, the return value is invalid and does not need to be released
by the caller.

Tobj::FactoryFinder::find_factories_by_id

Synopsis
Obtains a sequence of one or more factory object references.

C++ Mapping
virtual CosLifeCycle::Factories *
 find_factories_by_id(const char * factory_id) = 0;

Java Mapping
public org.omg.CORBA.Object[]
 find_factories_by_id(java.lang.String factory_id)
 throws
 org.omg.CosLifeCycle.NoFactory,
 com.beasys.Tobj.CannotProceed,
 com.beasys.Tobj.RegistrarNotAvailable;

Parameter
factory_id

A NULL-terminated string that contains a value that is used to identify the registered
factory object to be found.
The value of the factory_id parameter is used as the value of the id field of a
NameComponent that has a kind field with the value “FactoryInterface” when
comparing against registered references for factory objects.

Exceptions
CORBA::BAD_PARAM

Indicates that the value of an input parameter has an inappropriate value or is invalid. Of
particular importance, the exception is raised if no value or a NULL value for the
parameter factory_key is specified.
5-24 CORBA Programming Reference

C++ Member Funct ions and Java Methods
CosLifeCycle::NoFactory
Indicates that there are no factories registered that match the information in the
factory_key parameter.

Tobj::CannotProceed
Indicates that the FactoryFinder or NameManager encountered an internal error while
attempting to locate a reference for a factory object.
Error information is written to the user log.

Tobj::RegistrarNotAvailable
Indicates that the FactoryFinder could not communicate with the NameManager.
Error information is written to the user log.

Description
The find_factories_by_id method is called by an application to obtain a sequence of one or
more factory object references. The method is passed a NULL-terminated string that contains the
identifier of the factory to be located. If more than one factory object is registered with the
specified ID, the FactoryFinder will return a list of object references for the matching registered
factory objects.

The find_factories_by_id method behaves the same as the find_factory operation that
was passed a key that contains a single NameComponent with an id field that contains the same
value as the factory_id parameter and a kind field that contains the value
“FactoryInterface”.

The registered identifier for a factory is considered equal to the value of the factory_id
parameter if the result of constructing a CosLifeCycle::Key structure containing a single
NameComponent that has the factory_id parameter as the value of the id field and the value
“FactoryInterface” as the value of the kind field. The values must match exactly in all
respects (case, location, etc.).

Return Values
An unbounded sequence of references to factory objects that match the information specified as
the value of the factory_key parameter. In C++, the method returns a sequence of object
references of type CosLifeCycle::Factory. In Java, the method returns an unbounded array of
object references of type org.omg.CORBA.Object.

If the operation raises an exception, the return value is invalid and does not need to be released
by the caller.
CORBA Programming Reference 5-25

Tobj::Factoryfinder::list_factories

Synopsis
Obtains a list of factory objects currently registered with the FactoryFinder.

C++ Mapping
virtual FactoryListing * list_factories() = 0;

Java Mapping
public com.beasys.Tobj.FactoryComponent[] list_factories()
 throws
 com.beasys.Tobj.CannotProceed,
 com.beasys.Tobj.RegistrarNotAvailable;

Exception
Tobj::CannotProceed

Indicates that the FactoryFinder or NameManager encountered an internal error while
attempting to locate a reference for a factory object.
Error information is written to the user log.

Tobj::RegistrarNotAvailable
Indicates that the FactoryFinder could not communicate with the NameManager.
Error information is written to the user log.

Description
The list_factories method is called by an application to obtain a list of the factory objects
currently registered with the FactoryFinder. The method returns both the key used to register the
factory, as well as a reference to the factory object.

The number of factories returned by list_factories will be one more than the ones registered
by the user. For example, if the user registered four factories then the number of factories returned
by list_factories will be five.

Note: This change in behavior is because the OMG Transaction Service specification version
1.1 in section 2.1.2 specifies that the Transaction Factory is located using the
FactoryFinder interface of the Life Cycle Service. Hence the Transaction factory is
registered internally by the product with the FactoryFinder.
5-26 CORBA Programming Reference

Automat ion Methods
Return Values
An unbounded sequence of Tobj::FactoryComponent. Each occurrence of a
Tobj::FactoryComponent in the sequence contains a reference to the registered factory object,
as well as the CosLifeCycle::Key that was used to register that factory object.

If the operation raises an exception, the return value is invalid and does not need to be released
by the caller.

Automation Methods
This section describes the DITobj_FactoryFinder Automation methods.

DITobj_FactoryFinder.find_one_factory

Synopsis
Obtains a single application factory.

MIDL Mapping
HRESULT find_one_factory(
 [in] VARIANT factory_key,
 [in,out,optional] VARIANT* exceptionInfo,
 [out,retval] IDispatch** returnValue);

Automation Mapping
Function find_one_factory(factory_key, [exceptionInfo]) As Object

Parameters
factory_key

This parameter contains a safe array of DICosNaming_NameComponent (<id, kind>
value pairs) that uniquely identifies a factory object reference.

exceptionInfo
An optional input argument that enables the application to get additional exception data if
an error occurred.
CORBA Programming Reference 5-27

Exceptions
NoFactory

This exception is raised if the FactoryFinder cannot find an application factory object
reference that corresponds to the input factory_key.

CannotProceed
This exception is raised if the FactoryFinder or CORBAservices Naming Service
encounter an internal error during the search with the error being written to the user log
(ULOG). Notify the operations staff immediately if this exception is raised. Depending on
the severity of the internal error, the server running the FactoryFinder or CORBAservices
Naming Service may have terminated. If a FactoryFinder service has terminated, start a
new FactoryFinder service. If a CORBAservices Naming Service has terminated and there
is another CORBAservices Naming Service running, start a new CORBAservices Naming
Service. If no naming services servers are running, restart the application.

RegistrarNotAvailable
This exception is raised if the FactoryFinder object cannot locate the CORBAservices
Naming Service object. Notify the operations staff immediately if this exception is raised.
If no naming services servers are running, restart the application.

Description
This member function instructs the FactoryFinder to return one application factory object
reference whose key matches the input factory_key. To accomplish this, the member function
performs an equality match; that is, every NameComponent <id, kind> pair in the input
factory_key must exactly match each <id, kind> pair in the application factory’s key. If
multiple factory keys contain the input factory_key, the FactoryFinder selects one factory key,
based on an internally defined load balancing scheme. Invoking find_one_factory multiple
times using the same id may return different object references.

Return Values
Returns a reference to an interface pointer for the application factory.

DITobj_FactoryFinder.find_one_factory_by_id

Synopsis
Obtains a single application factory.
5-28 CORBA Programming Reference

Automat ion Methods
MIDL Mapping
HRESULT find_one_factory_by_id(
 [in] BSTR factory_id,
 [in,out,optional] VARIANT* exceptionInfo,
 [out,retval] IDispatch** returnValue);

Automation Mapping
Function find_one_factory_by_id(factory_id As String,
 [exceptionInfo]) As Object

Parameters
factory_id

This parameter represents a string identifier that is used to identify the kind or type of
application factory. For some suggestions as to the composition of this string, see
Creating CORBA Server Applications.

exceptionInfo
An optional input argument that enables the application to get additional exception data if
an error occurred.

Exceptions
NoFactory

This exception is raised if the FactoryFinder cannot find an application factory object
reference that corresponds to the input factory_id.

CannotProceed
This exception is raised if the FactoryFinder or CORBAservices Naming Service
encounter an internal error during the search, with the error being written to the user log
(ULOG). Notify the operations staff immediately if this exception is raised. Depending on
the severity of the internal error, the server running the FactoryFinder or the
CORBAservices Naming Service may have terminated. If a FactoryFinder service has
terminated, start a new FactoryFinder service. If a CORBAservices Naming Service has
terminated and there is another CORBAservices Naming Service running, start a new
CORBAservices Naming Service. If there are no naming services running, restart the
application.

RegistrarNotAvailable
This exception is raised if the FactoryFinder object cannot locate the CORBAservices
Naming Service object. Notify the operations staff immediately if this exception is raised.
If no naming service servers are running, restart the application.
CORBA Programming Reference 5-29

Description
This member function instructs the FactoryFinder to return one application factory object
reference whose id in the key matches the method’s input factory_id. To accomplish this, the
member function performs an equality match (that is, the input factory_id must exactly match
the id in the <id,kind> pair in the application factory’s key). If multiple factory keys contain the
input factory_id, the FactoryFinder selects one factory key, based on an internally defined load
balancing scheme. Invoking find_one_factory_by_id multiple times using the same id may
return different object references.

Return Values
Returns a reference to an interface pointer for the application factory.

DITobj_FactoryFinder.find_factories_by_id

Synopsis
Obtains a list of application factories.

MIDL Mapping
HRESULT find_factories_by_id(
 [in] BSTR factory_id,
 [in,out,optional] VARIANT* exceptionInfo,
 [out,retval] VARIANT* returnValue);

Automation Mapping
Function find_factories_by_id(factory_id As String,
 [exceptionInfo])

Parameters
factory_id

This parameter represents a string identifier that will be used to identify the kind or type
of application factory. The Creating CORBA Client Applications online document
provides some suggestions as to the composition of this string.

exceptionInfo
An optional input argument that enables the application to get additional exception data if
an error occurred.
5-30 CORBA Programming Reference

Automat ion Methods
Exceptions
NoFactory

This exception is raised if the FactoryFinder cannot find an application factory object
reference that corresponds to the input factory_key or factory_id.

CannotProceed
This exception is raised if the FactoryFinder or CORBAservices Naming Service
encounter an internal error during the search with the error being written to the user log
(ULOG). Notify the operations staff immediately if this exception is raised. Depending on
the severity of the internal error, the server running the FactoryFinder or CORBAservices
Naming Service may have terminated. If a FactoryFinder service has terminated, start a
new FactoryFinder service. If a CORBAservices Naming Service has terminated and there
is another CORBAservices Naming Service running, start a new CORBAservices Naming
Service. If no naming services servers are running, restart the application.

RegistrarNotAvailable
This exception is raised if the FactoryFinder object cannot locate the CORBAservices
Naming Service object. Notify the operations staff immediately if this exception is raised.
If no naming services servers are running, restart the application.

Description
This member function instructs the FactoryFinder to return a list of application factory object
references whose id in the keys match the method’s input factory_id. To accomplish this, the
member function performs an equality match (that is, the input factory_id must exactly match
each id in the <id,kind> pair in the application factory’s keys).

Return Values
Returns a variant containing an array of interface pointers to application factories.

DITobj_FactoryFinder.find_factories

Synopsis
Obtains a list of application factories.

MIDL Mapping
HRESULT find_factories(
 [in] VARIANT factory_key,
 [in,out,optional] VARIANT* exceptionInfo,
 [out,retval] VARIANT* returnValue);
CORBA Programming Reference 5-31

Automation Mapping
Function find_factories(factory_key, [exceptionInfo])

Parameters
factory_key

This parameter contains a safe array of DICosNaming_NameComponents (<id, kind>
value pairs) that uniquely identifies a factory object reference.

exceptionInfo
An optional input argument that enables the application to get additional exception data if
an error occurred.

Exception
NoFactory

This exception is raised if the FactoryFinder cannot find an application factory object
reference that corresponds to the input factory_key.

Description
The find_factories method instructs the FactoryFinder to return a list of server application
factory object references whose keys match the method's input key. The Oracle Tuxedo system
assumes that an equality match is to be performed. This means that for the two sequences of
<id,kind> pairs (those corresponding to the input key and those in the application factory's keys),
each are of equal length; for every pair in one sequence, there is an identical pair in the other.

Return Values
Returns a variant containing an array of interface pointers to application factories.

DITobj_FactoryFinder.list_factories

Synopsis
Lists all of the application factory names and object references.

MIDL Mapping
HRESULT list_factories(
 [in,out,optional] VARIANT* exceptionInfo,
 [out,retval] VARIANT* returnValue);
5-32 CORBA Programming Reference

Programming Examples
Automation Mapping
Function list_factories([exceptionInfo])

Parameter
exceptionInfo

An optional input argument that enables the application to get additional exception data if
an error occurred.

Exception
CannotProceed

This exception is raised if the FactoryFinder or the CORBAservices Naming Service
encounter an internal error during the search with the error being written to the user log
(ULOG). Notify the operations staff immediately if this exception is raised. Depending on
the severity of the internal error, the server running the FactoryFinder or the
CORBAservices Naming Service may have terminated. If a FactoryFinder service has
terminated, start a new FactoryFinder service. If a CORBAservices Naming Service has
terminated and there is another CORBAservices Naming Service running, start a new
CORBAservices Naming Service. If there are no naming service servers running, restart
the application.

RegistrarNotAvailable
This exception is raised if the FactoryFinder object cannot locate the CORBAservices
Naming Service object. Notify the operations staff immediately if this exception is raised.
It is possible that no naming service servers are running. Restart the application.

Description
This method instructs the FactoryFinder to return a list containing all of the factory keys and
associated object references for application factories registered with the CORBAservices
Naming Service.

Return Values
Returns a variant containing an array of DITobj_FactoryComponent objects. The
FactoryComponent object consists of a variant containing an array of
DICosNaming_NameComponent objects and an interface pointer to the application factory.

Programming Examples
This section describes how to program using the FactoryFinder interface.

Note: Remember to check for exceptions in your code.
CORBA Programming Reference 5-33

Using the FactoryFinder Object
A FactoryFinder object is used by programmers to locate a reference to a factory object. The
FactoryFinder object provides operations to obtain one or more references to factory objects
based on the criteria specified.

There can be more than one FactoryFinder object in a process address space. Multiple references
to a FactoryFinder object must be supported. A FactoryFinder object is semi-stateful in that it
maintains state about the association between FactoryFinder objects within a domain and a
particular IIOP Server Listener/Handler (ISL/ISH) through which to access the domain.

All FactoryFinder objects support the CosLifeCycle::FactoryFinder interface as defined in
CORBAservices Specification, Chapter 6 “Life Cycle Service,” December 1997, published by
the Object Management Group. The interface contains one operation that is used to obtain one or
more references to factory objects that meet the criteria specified.

Registering a Reference to a Factory Object
The following code fragment (Listing 5-8) shows how to use the TP Framework interface to
register a reference to a factory object with a FactoryFinder.

Listing 5-8 Server Application: Registering a Factory

// Server Application: Registering a factory.
// C++ Example.

TP::register_factory(factory_obj.in(), “TellerFactory”);

Obtaining a Reference to a FactoryFinder Object Using the
CosLifeCycle::FactoryFinder Interface
The following code fragment (Listing 5-9) shows how to use of the CORBA-compliant interface
to obtain one or more references to factory objects.

Listing 5-9 Client Application: Getting a FactoryFinder Object Reference

// Client Application: Obtaining the object reference
// to factory objects.
5-34 CORBA Programming Reference

Programming Examples
CosLifeCycle::Key_var factory_key = new CosLifeCycle::Key();
factory_key ->length(1);
factory_key[0].id = string_dupalloc(“strlen(“TellerFactory”) +1);
factory_key[0].kind = string_dupalloc(
 strlen(““FactoryInterface”) + 1);
strcpy(factory_key[0].id, “”TellerFactory”);
strcpy(facory_key[0].kind, “FactoryInterface”);
CosLifeCycle::Factories_var * flp = ff_np ->
 find_factories(factory_key.in());

Obtaining a Reference to a FactoryFinder Object Using the Extensions
Bootstrap object
The following code fragment (Listing 5-10) shows how to use of the Oracle Tuxedo extensions
Bootstrap object to obtain a reference to a FactoryFinder object.

Listing 5-10 Client Application: Finding One Factory Using the Tobj Approach

// Client Application: Finding one factory using the Tobj
// approach.

Tobj_Bootstrap * bsp = new Tobj_Bootstrap(
 orb_ptr.in(), host_port);
CORBA::Object_varptr ff_op = bsp ->
 resolve_initial_references(“FactoryFinder”);
Tobj::FactoryFinder_ptrvar ff_np =
 Tobj::FactoryFinder::_narrow(ff_op);

Note: You can used the Oracle Tuxedo CORBA extensions to the
CosLifeCycle::FactoryFinder interface if you use the Tobj_Bootstrap object,
however, use of the Tobj_Bootstrap object is not required to locate a factory. If you use
CORBA INS, you can use the find_factories() method provided by the
CosLifeCycle::FactoryFinder interface.
CORBA Programming Reference 5-35

Using Extensions to the FactoryFinder Object
Oracle Tuxedo extends the FactoryFinder object with functionality to support similar capabilities
to those provided by the operations defined by CORBA, but with a much simpler and more
restrictive signature. The enhanced functionality is provided by defining the
Tobj::FactoryFinder interface. The operations defined for the Tobj::FactoryFinder
interface are intended to provide a focused, simplified form of the equivalent capability defined
by CORBA. An application developer can choose to use the CORBA-defined or Oracle Tuxedo
extensions when developing an application. The interface Tobj::FactoryFinder is derived
from the CosLifeCycle::FactoryFinder interface.

Oracle Tuxedo extensions to the FactoryFinder object adhere to allthe same rules as the
FactoryFinder object defined in the CORBAservices Specification, Chapter 6 “Life Cycle
Service,” December 1997, published by the Object Management Group.

The implementation of the extended FactoryFinder object requires users to supply either a
CosLifeCycle::Key, as in the CORBA-defined CosLifeCycle::FactoryFinder interface,
or a NULL-terminated string containing the identifier of a factory object to be located.

Obtaining One Factory Using Tobj::FactoryFinder
The following code fragment (Listing 5-11) shows how to use the Oracle Tuxedo extensions
interface to obtain one reference to a factory object based on an identifier.

Listing 5-11 Client Application: Finding Factories Using the Oracle Tuxedo Extensions Approach

CosLifeCycle::Factory_ptrvar fp_obj = ff_np ->
 find_one_factory_by_id(“TellerFactory”);

Obtaining One or More Factories Using Tobj::FactoryFinder
The following code fragment (Listing 5-12) shows how to use the Oracle Tuxedo extensions to
obtain one or more references to factory objects based on an identifier.
5-36 CORBA Programming Reference

Programming Examples
Listing 5-12 Client Application: Finding One or More Factories Using the Oracle Tuxedo Extensions
Approach

CosLifeCycle::Factories * _var flp = ff_np ->
 find_factories_by_id(“TellerFactory”);
CORBA Programming Reference 5-37

5-38 CORBA Programming Reference

C H A P T E R 6
Security Service
For a detailed discussion of Security, see Using Security in CORBA Applications. This document
provides an introduction to crytography and other concepts associated with the Oracle Tuxedo
security features, a description of how to secure your Oracle Tuxedo applications using the
security features, and a guide to the use of the application programming interfaces (APIs) in the
Security Service.

A PDF file of Using Security in CORBA Applications is also provided in the online
documentation.
CORBA Programming Reference 6-1

6-2 CORBA Programming Reference

C H A P T E R 7
Transactions Service
For a detailed discussion of Transactions, see Using CORBA Transactions. This document
provides an introduction to transactions, a description of the application programming interfaces
(APIs), and a guide to the use of the application programming interfaces (APIs) to develop
applications.

A PDF file of Using CORBA Transactions is also provided in the online documentation.
CORBA Programming Reference 7-1

7-2 CORBA Programming Reference

C H A P T E R 8
Notification Service
For a detailed discussion of the Notification Service, see Using the CORBA Notification Service.
This document provides an introduction to the Notification Service, a description of the
application programming interfaces (APIs), and a guide to the use of the APIs to develop
applications.

A PDF file of Using the CORBA Notification Service is also provided in the online
documentation.
CORBA Programming Reference 8-1

8-2 CORBA Programming Reference

C H A P T E R 9
Request-Level Interceptors
For a detailed discussion of request-level interceptors, see Using CORBA Request-Level
Interceptors. This document provides an introduction to request-level interceptors, a description
of the application programming interfaces (APIs), and a guide to the use of the APIs to implement
request-level interceptors.

A PDF file of Using CORBA Request-Level Interceptors is also provided in the online
documentation.
CORBA Programming Reference 9-1

9-2 CORBA Programming Reference

C H A P T E R 10
CORBA Interface Repository Interfaces
This chapter describes the Oracle Tuxedo CORBA Interface Repository interfaces.

Notes: Most of the information in this chapter is taken from Chapter 10 of the Common Object
Request Broker: Architecture and Specification, Revision 2.4.2, February 2001. The
OMG information has been modified as required to describe the Oracle Tuxedo CORBA
implementation of the Interface Repository interfaces. Used with permission of the
OMG.

The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.x. All Oracle
Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB text
references, associated code samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

The Oracle Tuxedo CORBA Interface Repository contains the interface descriptions of the
CORBA objects that are implemented within the Oracle Tuxedo domain.

The Interface Repository is based on the CORBA definition of an Interface Repository. It offers
a proper subset of the interfaces defined by CORBA; that is, the APIs that are exposed to
programmers are implemented as defined by the Common Object Request Broker: Architecture
and Specification Revision 2.4. However, not all interfaces are supported. In general, the
CORBA Programming Reference 10-1

interfaces required to read from the Interface Repository are supported, but the interfaces required
to write to the Interface Repository are not. Additionally, not all TypeCode interfaces are
supported.

Administration of the Interface Repository is done using tools specific to the Oracle Tuxedo
software. These tools allow the system administrator to create an Interface Repository, populate
it with definitions specified in Object Management Group Interface Definition Language (OMG
IDL), and then delete interfaces. Additionally, an administrator may need to configure the system
to include an Interface Repository server. For a description of the Interface Repository
administration commands, see the Oracle Tuxedo Command Reference and Setting Up an Oracle
Tuxedo Application.

Several abstract interfaces are used as base interfaces for other objects in the Interface
Repository. A common set of operations is used to locate objects within the Interface Repository.
These operations are defined in the abstract interfaces IRObject, Container, and Contained
described in this chapter. All Interface Repository objects inherit from the IRObject interface,
which provides an operation for identifying the actual type of the object. Objects that are
containers inherit navigation operations from the Container interface. Objects that are contained
by other objects inherit navigation operations from the Contained interface. The IDLType
interface is inherited by all Interface Repository objects that represent OMG IDL types, including
interfaces, typedefs, and anonymous types. The TypedefDef interface is inherited by all named
noninterface types.

The IRObject, Contained, Container, IDLType, and TypedefDef interfaces are not instantiable.

All string data in the Interface Repository are encoded as defined by the ISO 8859-1 character set.

Note: The Write interface is not documented in this chapter because the Oracle Tuxedo
software supports only read access to the Interface Repository. Any attempt to use the
Write interface to the Interface Repository will raise the exception
CORBA::NO_IMPLEMENT.

Structure and Usage
The Interface Repository consists of two distinct components: the database and the server. The
server performs operations on the database.

The Interface Repository database is created and populated using the idl2ir administrative
command. For a description of this command, see the Oracle Tuxedo Command Reference and
Setting Up an Oracle Tuxedo Application. From the programmer’s point of view, there is no write
access to the Interface Repository. None of the write operations defined by CORBA are
supported, nor are set operations on nonread-only attributes.
10-2 CORBA Programming Reference

St ruc tu re and Usage
Read access to the Interface Repository database is always through the Interface Repository
server; that is, a client reads from the database by invoking methods that are performed by the
server. The read operations as defined by the CORBA Common Object Request Broker:
Architecture and Specification, Revision 2.4, are described in this chapter.

Programming Information
The interface to a server is defined in the OMG IDL file. How the OMG IDL file is accessed
depends on the type of client being built. Three types of clients are considered: stub based,
Dynamic Invocation Interface (DII).

Client applications that use stub-style invocations need the OMG IDL file at build time. The
programmer can use the OMG IDL file to generate stubs, and so forth. (For more information,
see Creating CORBA Client Applications.) No other access to the Interface Repository is
required.

Client applications that use the Dynamic Invocation Interface (DII) need to access the Interface
Repository programmatically. The interface to the Interface Repository is defined in this chapter
and is discussed in “Building Client Applications” on page 10-4. The exact steps taken to access
the Interface Repository depend on whether the client is seeking information about a specific
object, or browsing the Interface Repository to find an interface. To obtain information about a
specific object, clients use the CORBA::Object::_get_interface method to obtain an
InterfaceDef object. (Refer to CORBA::Object::_get_interface for a description of this
method.) Using the InterfaceDef object, the client can get complete information about the
interface.

Before a DII client can browse the Interface Repository, it needs to obtain the object reference of
the Interface Repository to start the search.

DII clients use the Bootstrap object to obtain the object reference. (For a description of this
method, see the section Tobj_Bootstrap::register_callback_port.) Once the client has the object
reference, it can navigate the Interface Repository, starting at the root.

To obtain a reference to a Interface Repository in the domain to which a client application is
associated, the client application can use either of two bootstrapping mechanisms:

Invoke the Tobj_Bootstrap::resolve_initial_references operation with a value of
“CORBA::Repository”. This operation returns a reference to a InterfaceRepository object
that is in the domain to which the client application is currently attached. You should use
this mechanism if you are using the Oracle Tuxedo client software. For more information,
see the section Tobj_Bootstrap::resolve_initial_references.
CORBA Programming Reference 10-3

Invoke the CORBA::ORB::resolve_initial_references operation with a value of
“CORBA::Repository”. This operation returns a reference to a InterfaceRepository object
that is in the domain to which the client application is currently attached. You should use
this mechanism if you are using a third-party client ORB. For more information, see the
section CORBA::ORB::resolve_initial_references.

Note: To use the DII, the OMG IDL file must be stored in the Interface Repository.

Performance Implications
All run-time access to the Interface Repository is via the Interface Repository server. Because
there is considerable overhead in making requests of a remote server application, designers need
to be aware of this. For example, consider the interaction required to use an object reference to
obtain the necessary information to make a DII invocation on the object reference. The steps are
as follows:

1. The client application invokes the _get_interface operation on the CORBA::Object to get
the InterfaceDef object associated with the object in question. This causes a message to be
sent to the ORB that created the object reference.

2. The ORB returns the InterfaceDef object to the client.

3. The client invokes one or more _is_a operations on the object to determine what type of
interface is supported by the object.

4. After the client has identified the interface, it invokes the describe_interface operation
on the Interface object to get a full description of the interface (for example, version number,
operations, attributes, and parameters). This causes a message to be sent to the Interface
Repository, and a reply is returned.

5. The client is now ready to construct a DII request.

Building Client Applications
Clients that use the Interface Repository need to link in Interface Repository stubs. How this
happens is specific to the vendor. If the client application is using the Oracle Tuxedo ORB, the
Oracle Tuxedo software provides the stubs in the form of a library. Therefore, programmers do
not need to use the Interface Repository OMG IDL file to build the stubs. The Interface
Repository definitions are contained within the CORBA.h file, but they are not included by
default.
10-4 CORBA Programming Reference

Get t ing In i t i a l Refe rences to the In te r faceRepos i to r y Ob jec t
Note: To use the Interface Repository definitions, you must define the
ORB_INCLUDE_REPOSITORY macro before including CORBA.h in your client application
code (for example: #Define ORB_INCLUDE_REPOSITORY).

If the client application is using a third-party ORB (for example, ORBIX) the programmer must
use the mechanisms that are provided by that vendor. This might include generating stubs from
the OMG IDL file using the IDL compiler supplied by the vendor, simply linking against the
stubs provided by the vendor, or some other mechanism.

Some third-party ORBs provide a local Interface Repository capability. In this case, the local
Interface Repository is provided by the vendor and is populated with the interface definitions that
are needed by that client.

Getting Initial References to the InterfaceRepository
Object

You use the Bootstrap object to get an initial reference to the InterfaceRepository object. For a
description of the Bootstrap object method, see the command
Tobj_Bootstrap::resolve_initial_references.

Interface Repository Interfaces
Client applications use the interfaces defined by CORBA to access the Interface Repository. This
section contains descriptions of each interface that is implemented in the Oracle Tuxedo software.

Note: The Oracle Tuxedo CORBA implementation of the Interface Repository only supports
the read operations on the interfaces. The write operations are not implemented.

Supporting Type Definitions
Several types are used throughout the Interface Repository interface definitions.

module CORBA {
 typedef string Identifier;
 typedef string ScopedName;
 typedef string RepositoryId;

 enum DefinitionKind {
 dk_none, dk_all,
 dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
CORBA Programming Reference 10-5

 dk_Module, dk_Operation, dk_Typedef,
 dk_Alias, dk_Struct, dk_Union, dk_Enum,
 dk_Primitive, dk_String, dk_Sequence, dk_Array,
 dk_Repository,
 dk_Wstring, dk_Fixed,
 dk_Value, dk_ValueBox, dk_ValueMember,
 dk_Native
 };
};

Identifiers are the simple names that identify modules, interfaces, value types, value
members, value boxes, constants, typedefs, exceptions, attributes, operations, and native types.
They correspond exactly to OMG IDL identifiers. An Identifier is not necessarily unique
within an entire Interface Repository; it is unique only within a particular Repository,
ModuleDef, InterfaceDef, ValueDef, or OperationDef.

A ScopedName is a name made up of one or more identifiers separated by double colons (::). They
correspond to OMG IDL scoped names. An absolute ScopedName is one that begins with double
colons (::) and unambiguously identifies a definition in a Repository. An absolute ScopedName
in a Repository corresponds to a global name in an OMG IDL file. A relative ScopedName does
not begin with double colons (::) and must be resolved relative to some context.

A RepositoryId is an identifier used to uniquely and globally identify a module, interface, value
type, value member, value box, native type, constant, typedef, exception, attribute, or operation.
Because RepositoryIds are defined as strings, they can be manipulated (for example, copied and
compared) using a language binding’s string manipulation routines.

A DefinitionKind identifies the type of an Interface Repository object.

IRObject Interface
The base interface IRObject (shown below) represents the most generic interface from which all
other Interface Repository interfaces are derived, even the Repository itself.

module CORBA {
 interface IRObject {
 readonly attribute DefinitionKind def_kind;
 };
};

The def_kind attribute identifies the type of the definition.
10-6 CORBA Programming Reference

I n te r face Repos i to r y In te r faces
Contained Interface
The Contained interface (shown below) is inherited by all Interface Repository interfaces that are
contained by other Interface Repository objects. All objects within the Interface Repository,
except the root object (Repository) and definitions of anonymous (ArrayDef, StringDef, and
SequenceDef), and primitive types are contained by other objects.

module CORBA {
 typedef string VersionSpec;

 interface Contained : IRObject {
 readonly attribute RepositoryId id;
 readonly attribute Identifier name;
 readonly attribute VersionSpec version;
 readonly attribute Container defined_in;
 readonly attribute ScopedName absolute_name;
 readonly attribute Repository containing_repository;
 struct Description {
 DefinitionKind kind;
 any value;
 };

 Description describe ();
 };
};

An object that is contained by another object has an id attribute that identifies it globally, and a
name attribute that identifies it uniquely within the enclosing Container object. It also has a
version attribute that distinguishes it from other versioned objects with the same name. The
Oracle Tuxedo CORBA Interface Repository does not support simultaneous containment or
multiple versions of the same named object.

Contained objects also have a defined_in attribute that identifies the Container within which
they are defined. Objects can be contained either because they are defined within the containing
object (for example, an interface is defined within a module) or because they are inherited by the
containing object (for example, an operation may be contained by an interface because the
interface inherits the operation from another interface). If an object is contained through
inheritance, the defined_in attribute identifies the InterfaceDef or ValueDef from which the
object is inherited.

The absolute_name attribute is an absolute ScopedName that identifies a Contained object
uniquely within its enclosing Repository. If this object’s defined_in attribute references a
CORBA Programming Reference 10-7

Repository, the absolute_name is formed by concatenating the string “::” and this object’s
name attribute. Otherwise, the absolute_name is formed by concatenating the absolute_name
attribute of the object referenced by this object’s defined_in attribute, the string “::”, and this
object’s name attribute.

The containing_repository attribute identifies the Repository that is eventually reached by
recursively following the object’s defined_in attribute.

The within operation returns the list of objects that contain the object. If the object is an interface
or module, it can be contained only by the object that defines it. Other objects can be contained
by the objects that define them and by the objects that inherit them.

The describe operation returns a structure containing information about the interface. The
description structure associated with each interface is provided below with the interface’s
definition. The kind of definition described by the structure returned is provided with the returned
structure. For example, if the describe operation is invoked on an attribute object, the kind field
contains dk_Attribute and the value field contains an any, which contains the
AttributeDescription structure.

Container Interface
The base interface Container is used to form a containment hierarchy in the Interface Repository.
A Container can contain any number of objects derived from the Contained interface. All
Containers, except for Repository, are also derived from Contained.

module CORBA {
 typedef sequence <Contained> ContainedSeq;

 interface Container : IRObject {
 Contained lookup (in ScopedName search_name);

 ContainedSeq contents (
 in DefinitionKind limit_type,
 in boolean exclude_inherited
);

 ContainedSeq lookup_name (
 in Identifier search_name,
 in long levels_to_search,
 in DefinitionKind limit_type,
10-8 CORBA Programming Reference

I n te r face Repos i to r y In te r faces
 in boolean exclude_inherited
);

 struct Description {
 Contained contained_object;
 DefinitionKind kind;
 any value;
 };

 typedef sequence<Description> DescriptionSeq;

 DescriptionSeq describe_contents (
 in DefinitionKind limit_type,
 in boolean exclude_inherited,
 in long max_returned_objs
);
 };
};

The lookup operation locates a definition relative to this container, given a scoped name using
the OMG IDL rules for name scoping. An absolute scoped name (beginning double colons (::))
locates the definition relative to the enclosing Repository. If no object is found, a nil object
reference is returned.

The contents operation returns the list of objects directly contained by or inherited into the
object. The operation is used to navigate through the hierarchy of objects. Starting with the
Repository object, a client uses this operation to list all of the objects contained by the Repository,
all of the objects contained by the modules within the Repository, all of the interfaces and value
types within a specific module, and so on.

limit_type
If limit_type is set to dk_all, objects of all types are returned. For example, if this is
an InterfaceDef, the attribute, operation, and exception objects are all returned. If
limit_type is set to a specific interface, only
objects of that type are returned. For example, only attribute objects are returned if
limit_type is set to dk_Attribute.

exclude_inherited
If set to TRUE, inherited objects (if there are any) are not returned. If set to FALSE, all
contained objects (whether contained due to inheritance or because they were defined
within the object) are returned.
CORBA Programming Reference 10-9

The lookup_name operation is used to locate an object by name within a particular object
or within the objects contained by that object. The describe_contents operation
combines the contents operation and the describe operation. For each object returned
by the contents operation, the description of the object is returned (that is, the object’s
describe operation is invoked and the results are returned).

The lookup_name operation is used to locate an object by name within a particular object or
within the objects contained by that object.

search_name
Specifies which name is to be searched for.

levels_to_search
Controls whether the lookup is constrained to the object the operation is invoked on, or
whether the lookup should search through objects contained by the object as well. Setting
levels_to_search to -1 searches the current object and all contained objects. Setting
levels_to_search to 1 searches only the current object. Use of values of
levels_to_search of 0 or of negative numbers other than -1 is undefined.

The describe_contents operation combines the contents operation and the describe
operation. For each object returned by the contents operation, the description of the object is
returned (i.e., the object’s describe operation is invoked and the results returned).

max_returned_objs
Limits the number of objects that can be returned in an invocation of the call to the number
provided. Setting the parameter to -1 indicates return all contained objects.

IDLType Interface
The base interface IDLType (shown below) is inherited by all Interface Repository objects that
represent OMG IDL types. It provides access to the TypeCode describing the type, and is used in
defining other interfaces wherever definitions of IDL types must be referenced.

module CORBA {
 interface IDLType : IRObject {
 readonly attribute TypeCode type;
 };
};

The type attribute describes the type defined by an object derived from IDLType.
10-10 CORBA Programming Reference

I n te r face Repos i to r y In te r faces
Repository Interface
Repository (shown below) is an interface that provides global access to the Interface Repository.
The Repository object can contain constants, typedefs, exceptions, interfaces, value types, value
boxes, native types, and modules. As it inherits from Container, it can be used to look up any
definition (whether globally defined or defined within a module or an interface) either by name
or by id.

Since the Repository derives only from Container and not from Contained, it does not have a
RepositoryId associated with it. By default, it is deemed to have the RepositoryId “”(the empty
string) for purposes of assigning a value to the defined_in field of the description structure of
ModuleDef, InterfaceDef, ValueDef, ValueBoxDef, TypedefDef, ExceptionDef, and
ConstantDef that are contained immediately in the Repository object.

module CORBA {
 interface Repository : Container {
 Contained lookup_id (in RepositoryId search_id);
 TypeCode get_canonical_typecode(in TypeCode tc);
 PrimitiveDef get_primitive (in PrimitiveKind kind);

 };
};

The lookup_id operation is used to look up an object in a Repository, given its RepositoryId.
If the Repository does not contain a definition for search_id, a nil object reference is returned.

The get_canonical_typecode operation looks up the TypeCode in the Interface Repository
and returns an equivalent TypeCode that includes all repository IDs, names, and member_names.
If the top level TypeCode does not contain a RepositoryId, such as array and sequence
TypeCodes, or TypeCodes from older ORBs, or if it contains a RepositoryId that is not found in
the target Repository, then a new TypeCode is constructed by recursively calling
get_canonical_typecode on each member TypeCode of the original TypeCode.

The get_primitive operation returns a reference to a PrimitiveDef with the specified kind
attribute. All PrimitiveDefs are immutable and are owned by the Repository.

ModuleDef Interface
A ModuleDef (shown below) can contain constants, typedefs, exceptions, interfaces, value types,
value boxes, native types, and other module objects.
CORBA Programming Reference 10-11

module CORBA {
 interface ModuleDef : Container, Contained {
 };

 struct ModuleDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 };

};

The inherited describe operation for a ModuleDef object returns a ModuleDescription.

ConstantDef Interface
A ConstantDef object (shown below) defines a named constant.

module CORBA {
 interface ConstantDef : Contained {
 readonly attribute TypeCode type;
 readonly attribute IDLType type_def;
 readonly attribute any value;
 };

 struct ConstantDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
 any value;
 };
};

type
Specifies the TypeCode describing the type of the constant. The type of a constant must
be one of the simple types (long, short, float, char, string, octet, and so on).

type_def
Identifies the definition of the type of the constant.
10-12 CORBA Programming Reference

I n te r face Repos i to r y In te r faces
value
Contains the value of the constant, not the computation of the value (for example, the fact
that it was defined as “1+2”).

The describe operation for a ConstantDef object returns a ConstantDescription.

TypedefDef Interface
A TypedefDef (shown below) is an abstract interface used as a base interface for all named
nonobject types (structures, unions, enumerations, and aliases). The TypedefDef interface is not
inherited by the definition objects for primitive or anonymous types.

module CORBA {
 interface TypedefDef : Contained, IDLType {
 };

 struct TypeDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
 };
};

The inherited describe operation for interfaces derived from TypedefDef returns a
TypeDescription.

StructDef
A StructDef (shown below) represents an OMG IDL structure definition. It contains the members
of the struct.

module CORBA {
 struct StructMember {
 Identifier name;
 TypeCode type;
 IDLType type_def;
 };
 typedef sequence <StructMember> StructMemberSeq;

CORBA Programming Reference 10-13

 interface StructDef : TypedefDef, Container{
 readonly attribute StructMemberSeq members;
 };
};

The members attribute contains a description of each structure member.

The inherited type attribute is a tk_struct TypeCode describing the structure.

UnionDef
A UnionDef (shown below) represents an OMG IDL union definition. It contains the members
of the union.

module CORBA {
 struct UnionMember {
 Identifier name;
 any label;
 TypeCode type;
 IDLType type_def;
 };
 typedef sequence <UnionMember> UnionMemberSeq;

 interface UnionDef : TypedefDef, Container {
 readonly attribute TypeCode discriminator_type;
 readonly attribute IDLType discriminator_type_def;
 readonly attribute UnionMemberSeq members;
 };
};

discriminator_type and discriminator_type_def
Describes and identifies the union’s discriminator type.

members
Contains a description of each union member. The label of each
UnionMemberDescription is a distinct value of the discriminator_type. Adjacent
members can have the same name. Members with the same name must also have the same
type. A label with type octet and value 0 (zero) indicates the default union member.

The inherited type attribute is a tk_union TypeCode describing the union.
10-14 CORBA Programming Reference

I n te r face Repos i to r y In te r faces
EnumDef
An EnumDef (shown below) represents an OMG IDL enumeration definition.

module CORBA {
 typedef sequence <Identifier> EnumMemberSeq;

 interface EnumDef : TypedefDef {
 readonly attribute EnumMemberSeq members;
 };
};

members
Contains a distinct name for each possible value of the enumeration.

The inherited type attribute is a tk_enum TypeCode describing the enumeration.

AliasDef
An AliasDef (shown below) represents an OMG IDL typedef that aliases another definition.

module CORBA {
 interface AliasDef : TypedefDef {
 readonly attribute IDLType original_type_def;
 };
};

original_type_def
Identifies the type being aliased.

The inherited type attribute is a tk_alias TypeCode describing the alias.

PrimitiveDef
A PrimitiveDef (shown below) represents one of the OMG IDL primitive types. Because
primitive types are unnamed, this interface is not derived from TypedefDef or Contained.

module CORBA {
 enum PrimitiveKind {
 pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
 pk_float, pk_double, pk_boolean, pk_char, pk_octet,
 pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref,
 pk_longlong, pk_ulonglong, pk_longdouble, pk_wchar, pk_wstring,
CORBA Programming Reference 10-15

 pk_value_base
 };

 interface PrimitiveDef: IDLType {
 readonly attribute PrimitiveKind kind;
 };
};

kind
Indicates which primitive type the PrimitiveDef represents. There are no PrimitiveDefs
with kind pk_null. A PrimitiveDef with kind pk_string
represents an unbounded string. A PrimitiveDef with kind pk_objref represents the
OMG IDL type Object. A PrimitiveDef with kind pk_value_base represents the IDL
type ValueBase.

The inherited type attribute describes the primitive type.

All PrimitiveDefs are owned by the Repository. References to them are obtained using
Repository::get_primitive.

StringDef
A StringDef represents an IDL bounded string type. The unbounded string type is represented as
a PrimitiveDef. As string types are anonymous, this interface is not derived from TypedefDef or
Contained.

module CORBA {
 interface StringDef : IDLType {
 attribute unsigned long bound;
 };
};

The bound attribute specifies the maximum number of characters in the string and must not be
zero.

The inherited type attribute is a tk_string TypeCode describing the string.

WstringDef
A WstringDef represents an IDL wide string. The unbounded wide string type is represented as
a PrimitiveDef. As wide string types are anonymous, this interface is not derived from
TypedefDef or Contained.
10-16 CORBA Programming Reference

I n te r face Repos i to r y In te r faces
module CORBA {
 interface WstringDef : IDLType {
 attribute unsigned long bound;
 };
};

The bound attribute specifies the maximum number of wide characters in a wide string, and must
not be zero.

The inherited type attribute is a tk_wstring TypeCode describing the wide string.

ExceptionDef
An ExceptionDef (shown below) represents an exception definition. It can contain structs,
unions, and enums.

module CORBA {
 interface ExceptionDef : Contained, Container {
 readonly attribute TypeCode type;
 readonly attribute StructMemberSeq members;
 };

 struct ExceptionDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
 };
};

type
tk_except TypeCode that describes the exception.

members
Describes any exception members.

The describe operation for a ExceptionDef object returns an ExceptionDescription.
CORBA Programming Reference 10-17

AttributeDef
An AttributeDef (shown below) represents the information that defines an attribute of an
interface.

module CORBA {
 enum AttributeMode {ATTR_NORMAL, ATTR_READONLY};

 interface AttributeDef : Contained {
 readonly attribute TypeCode type;
 attribute IDLType type_def;
 attribute AttributeMode mode;
 };

 struct AttributeDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
 AttributeMode mode;
 };
};

type
Provides the TypeCode describing the type of this attribute.

type_def
Identifies the object that defines the type of this attribute.

mode
Specifies read only or read/write access for this attribute.

The describe operation for an AttributeDef object returns an AttributeDescription.

OperationDef
An OperationDef (shown below) represents the information needed to define an operation of an
interface.

module CORBA {
 enum OperationMode {OP_NORMAL, OP_ONEWAY};

10-18 CORBA Programming Reference

I n te r face Repos i to r y In te r faces
 enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};
 struct ParameterDescription {
 Identifier name;
 TypeCode type;
 IDLType type_def;
 ParameterMode mode;
 };
 typedef sequence <ParameterDescription> ParDescriptionSeq;

 typedef Identifier ContextIdentifier;
 typedef sequence <ContextIdentifier> ContextIdSeq;

 typedef sequence <ExceptionDef> ExceptionDefSeq;
 typedef sequence <ExceptionDescription> ExcDescriptionSeq;

 interface OperationDef : Contained {
 readonly attribute TypeCode result;
 readonly attribute IDLType result_def;
 readonly attribute ParDescriptionSeq params;
 readonly attribute OperationMode mode;
 readonly attribute ContextIdSeq contexts;
 readonly attribute ExceptionDefSeq exceptions;
 };

 struct OperationDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode result;
 OperationMode mode;
 ContextIdSeq contexts;
 ParDescriptionSeq parameters;
 ExcDescriptionSeq exceptions;
 };
};
CORBA Programming Reference 10-19

result
A TypeCode that describes the type of the value returned by the operation.

result_def
Identifies the definition of the returned type.

params
Describes the parameters of the operation. It is a sequence of ParameterDescription
structures. The order of the ParameterDescriptions in the sequence is significant. The
name member of each structure provides the parameter name. The type member is a
TypeCode describing the type of the parameter. The type_def member identifies the
definition of the type of the parameter. The mode member indicates whether the parameter
is an in, out, or inout parameter.

mode
The operation’s mode is either oneway (that is, no output is returned) or normal.

contexts
Specifies the list of context identifiers that apply to the operation.

exceptions
Specifies the list of exception types that can be raised by the operation.

The inherited describe operation for an OperationDef object returns an OperationDescription.

The inherited describe_contents operation provides a complete description of this operation,
including a description of each parameter defined for this operation.

InterfaceDef
An InterfaceDef object (shown below) represents an interface definition. It can contain constants,
typedefs, exceptions, operations, and attributes.

module CORBA {
 interface InterfaceDef;
 typedef sequence <InterfaceDef> InterfaceDefSeq;
 typedef sequence <RepositoryId> RepositoryIdSeq;
 typedef sequence <OperationDescription> OpDescriptionSeq;
 typedef sequence <AttributeDescription> AttrDescriptionSeq;

 interface InterfaceDef : Container, Contained, IDLType {

10-20 CORBA Programming Reference

I n te r face Repos i to r y In te r faces
 readonly attribute InterfaceDefSeq base_interfaces;
 readonly attribute boolean is_abstract;

 boolean is_a (in RepositoryId interface_id);

 struct FullInterfaceDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 OpDescriptionSeq operations;
 AttrDescriptionSeq attributes;
 RepositoryIdSeq base_interfaces;
 TypeCode type;
 boolean is_abstract;
 };

 FullInterfaceDescription describe_interface();

 };

 struct InterfaceDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 RepositoryIdSeq base_interfaces;
 boolean is_abstract;
 };
};

The base_interfaces attribute lists all the interfaces from which this interface inherits.

The is_abstract attribute is TRUE if the interface is an abstract interface type.

The is_a operation returns TRUE if the interface on which it is invoked either is identical to or
inherits, directly or indirectly, from the interface identified by its interface_id parameter.
Otherwise, it returns FALSE.

The describe_interface operation returns a FullInterfaceDescription describing the interface,
including its operations and attributes. The operations and attributes fields of the
CORBA Programming Reference 10-21

FullInterfaceDescription structure include descriptions of all of the operations and attributes in
the transitive closure of the inheritance graph of the interface being described.

The inherited describe operation for an InterfaceDef returns an InterfaceDescription.

The inherited contents operation returns the list of constants, typedefs, and exceptions defined
in this InterfaceDef and the list of attributes and operations either defined or inherited in this
InterfaceDef. If the exclude_inherited parameter is set to TRUE, only attributes and operations
defined within this interface are returned. If the exclude_inherited parameter is set to FALSE,
all attributes and operations are returned.
10-22 CORBA Programming Reference

C H A P T E R 11
Joint Client/Servers
This chapter describes programming requirements for CORBA joint client/servers and the C++
OracleWrapper Callbacks API.

Note: The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.x. All Oracle
Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB text
references, associated code samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

This topic includes the following sections:

Introduction. This section describes:

– Main Program and Server Initialization

– Servants

– Servant Inheritance from Skeletons

– Callback Object Models Supported

– Configuring Servers to Call Remote Joint Client/Server Objects

– Preparing Callback Objects Using CORBA (C++ Joint Client/Servers Only)
CORBA Programming Reference 11-1

– Preparing Callback Objects Using OracleWrapper Callbacks

C++ OracleWrapper Callbacks Interface API

Introduction
For either an Oracle Tuxedo CORBA client or joint client/server (that is, a client that can receive
and process object invocations), the programmer writes the client main(). The main() uses
Oracle Tuxedo CORBA environmental objects to establish connections, set up security, and start
transactions.

Oracle Tuxedo clients invoke operations on objects. In the case of DII, client code creates the DII
Request object and then invokes one of two operations on the DII Request. In the case of static
invocation, client code performs the invocation by performing what looks like an ordinary
invocation (which ends up calling code in the generated client stub). Additionally, the client
programmer uses ORB interfaces defined by OMG, and Oracle Tuxedo CORBA environmental
objects that are supplied with the Oracle Tuxedo software, to perform functions unique to Oracle
Tuxedo.

For Oracle Tuxedo joint client/server applications, the client code must be structured so that it
can act as a server for callback Oracle Tuxedo objects. Such clients do not use the TP Framework
and are not subject to Oracle Tuxedo system administration. Besides the programming
implications, this means that CORBA joint client/servers do not have the same scalability and
reliability as Oracle Tuxedo CORBA servers, nor do they have the state management and
transaction behavior available in the TP Framework. If a user wants to have those characteristics,
the application must be structured in such a way that the object implementations are in an Oracle
Tuxedo CORBA server, rather than in a client.

The following sections describe the mechanisms you use to add callback support to an Oracle
Tuxedo client. In some cases, the mechanisms are contrasted with the Oracle Tuxedo server
mechanisms that use the TP Framework.

Main Program and Server Initialization
In an Oracle Tuxedo server, you use the buildobjserver command to create the main program
for the C++ server. (Java servers are not supported in release 8.0 and later of Oracle Tuxedo.)
Server main program takes care of all Oracle Tuxedo- and CORBA-related initialization of the
server functions. However, since you implement the Server object, you have an opportunity to
customize the way in which the server application is initialized and shut down. The server main
program automatically invokes methods on the Server object at the appropriate times.
11-2 CORBA Programming Reference

In t roduct ion
In contrast, for an Oracle Tuxedo CORBA joint client/server (as for an Oracle Tuxedo CORBA
client), you create the main program and are responsible for all initialization. You do not need to
provide a Server object because you have complete control over the main program and you can
provide initialization and shutdown code in any way that is convenient.

The specific initialization needed for a joint client/server is discussed in the section “Servants”
on page 11-3.

Servants
Servants (method code) for joint client/servers are very similar to servants for servers. All
business logic is written the same way. The differences result from not using the TP Framework.
Therefore, the main difference is that you use CORBA functions directly instead of indirectly
through the TP Framework.

The Server interface is used in Oracle Tuxedo CORBA servers to allow the TP Framework to
ask the user to create a servant for an object when the ORB receives a request for that object.
However, in joint client/servers, the user program is responsible for creating a servant before any
requests arrive; thus, the Server interface is not needed. Typically, the program creates a servant
and then activates the object (using the servant and an ObjectId; the ObjectId is possibly
system generated) before handing a reference to the object. Such an object might be used to
handle callbacks. Thus, the servant already exists and the object is activated before a request for
the object arrives.

For C++ joint client/servers, instead of invoking the TP interface to perform certain operations,
client servants directly invoke the ORB and POA (which is what the TP interface does internally).
Alternately, since much of the interaction with the ORB and POA is the same for all applications,
for ease of use, the client library provides a convenience wrapper object that does the same things,
using a single operation. For a discussion of how to use the convenience wrapper object, see
Callback Object Models Supported and Preparing Callback Objects Using OracleWrapper
Callbacks.

Servant Inheritance from Skeletons
In a client that supports callbacks, as well as in a server, you write a implementation class that
inherits from the same skeleton class name generated by the IDL compiler (the idl command).

C++ Example of Inheritance from Skeletons
The following is a C++ example, given the IDL:
CORBA Programming Reference 11-3

interface Hospital{ … };

The skeleton generated by the idl command contains a “skeleton” class, POA_Hospital, that the
user-written class inherits from, as in:

class Hospital_i : public POA_Hospital { ... };

In a server, the skeleton class inherits from the TP Framework class Tobj_ServantBase, which
in turn inherits from the predefined PortableServer::ServantBase.

The inheritance tree for a callback object implementation in a joint client/server is different than
that in a server. The skeleton class does not inherit from the TP Framework class
Tobj_ServantBase, but instead inherits directly from PortableServer::ServantBase. This
behavior is achieved by specifying the -P option in the idl command.

Not having the Tobj_ServantBase class in the inheritance tree for a servant means that the
servant does not have activate_object and deactivate_object methods. In a server, these
methods are called by the TP Framework to dynamically initialize and save a servant’s state
before invoking a method on the servant. For a client that supports callbacks, you must write code
that explicitly creates a servant and initializes a servant’s state.

Callback Object Models Supported
Oracle Tuxedo CORBA supports four kinds of callback objects and provides wrappers for the
three that are most common. These objects correspond to three combinations of POA policies.
The POA policies control both the types of objects and the types of object references that are
possible.

The POA policies that are applicable are:

The LifeSpanPolicy, which controls how long an object reference is valid.

The IdAssignmentPolicy, which controls who assigns the ObjectId—the user or the
system.

These objects are explained primarily in terms of their behavioral characteristics rather than in
details about how the ORB and the POA handle them. Those details are discussed in the next
sections, using either direct ORB and POA calls (which requires a little extra knowledge of
CORBA servers) or using the OracleWrapper Callbacks interface, which hides the ORB and POA
calls (for users who do not care about the details).

Transient/SystemId—object references are valid only for the life of the client process. The
ObjectId is not assigned by the client application, but is a unique value assigned by the
system. This type of object is useful for invocations that a client wants to receive only until
11-4 CORBA Programming Reference

In t roduct ion
the client terminates. (The corresponding POA LifeSpanPolicy value is TRANSIENT and the
IdAssignmentPolicy is SYSTEM_ID.)

Persistent/SystemId—object references are valid across multiple activations. The
ObjectId is not assigned by the client application, but is a unique value assigned by the
system. This type of object and object reference is useful when the client goes up and
down over a period of time. When the client is up, it can receive callback objects on that
particular object reference.

Typically, the client will create the object reference once, save it in its own permanent
storage area, and reactivate the servant for that object every time it comes up. If used with
an Oracle Tuxedo CORBA Notification Service application, for example, these are
callbacks that correspond to the concept of a persistent subscription; that is, the
Notification Service remembers the callback reference and delivers events any time the
client is up and declares that it is again ready to receive events. This allows notification
service subscriptions to survive client failures or offline-time. (The corresponding POA
policy values are PERSISTENT and SYSTEM_ID.)

Persistent/UserId—this is the same as Persistent/SystemId with the exception that the
ObjectId has to be assigned by the client application. Such an ObjectId might be, for
example, a database key meaningful only to the client. (The corresponding POA policy
values are PERSISTENT and USER_ID.)

Notes: The Transient/UserId policy combination is not considered particularly important. It is
possible for users to provide for themselves by using the POA in a manner analogous to
either of the persistent cases, but the Oracle Tuxedo wrappers do not provide special help
to do so.

For Oracle Tuxedo CORBA native joint client/servers, neither of the Persistent policies
is supported, only the Transient policy.

Configuring Servers to Call Remote Joint Client/Server
Objects
In order for an Oracle Tuxedo server to call remote joint client/server objects, that is, joint
client/server objects located outside the Oracle Tuxedo domain, the server must be configured to
enable outbound IIOP. This capability is enabled by specifying the -O (uppercase letter O) option
in the IIOP Server Listener (ISL) server command. Setting the -O option enables outbound
invokes (outbound IIOP) on joint client/server objects that are not connected to an IIOP Listener
Handler (ISH).
CORBA Programming Reference 11-5

You set ISL command options in the SERVERS section of the server’s UBBCONFIG file. Because
support for outbound IIOP requires a small amount of extra resources, the default is outbound
IIOP disabled. For more information, see “Using the ISL Command to Configure Outbound
IIOP” in Setting Up an Oracle Tuxedo Application and “ISL(1)” in the BEA Tuxedo Command
Reference.

Preparing Callback Objects Using CORBA (C++ Joint
Client/Servers Only)
To set up Oracle Tuxedo C++ callback objects using CORBA, the client must do the following:

1. Establish a connection with a POA with the appropriate policies for the callback object model.
(This can be the root POA, available by default, or it may require creating a new POA.)

2. Create a servant (that is, an instance of the C++ implementation class for the interface).

3. Inform the POA that the servant is ready to accept requests on the callback object.
Technically, this means the client activates the object in the POA (that is, puts the servant
and the ObjectId into the POA’s Active Object Map).

4. Tell the POA to start accepting requests from the network (that is, activate the POA itself).

5. Create an object reference for the callback object.

6. Give out the object reference. This usually happens by making an invocation on another
object with the callback object reference as a parameter (that is, the parameter is a callback
object). That other object will then invoke the callback object (perform a callback invocation)
at some later time.

Assuming that the client already has obtained a reference to the ORB, performing this task takes
four interactions with the ORB and the POA. It might look like the model show in Listing 11-1.
In this model, only the Root POA is needed.

Listing 11-1 Transient/SystemId Model

// Create a servant for the callback Object
Catcher_i* my_catcher_i = new Catcher_i();

// Get root POA reference and activate the POA
1 CORBA::Object_var oref =
 orb->resolve_initial_references("RootPOA");
11-6 CORBA Programming Reference

In t roduct ion
2 PortableServer::POA_var root_poa =
 PortableServer::POA::_narrow(oref);
3 root_poa -> the_POAManager() -> activate();
4 PortableServer::objectId_var temp_Oid =
 root_poa ->activate_object (my_catcher_i);
5 oref = root_poa->create_reference_with_id(
 temp_Oid, _tc_Catcher->id());
6 Catcher_var my_catcher_ref = Catcher::_narrow(oref);

To use the Persistent/UserId model, there are some additional steps required when creating a
POA. Further, the ObjectId is specified by the client, and this requires more steps. It might look
like the model shown in Listing 11-2.

Listing 11-2 Persistent/UserId Model

 Catcher_i* my_catcher_i = new Catcher_i();
 const char* oid_str = "783";
1 PortableServer::objectId_var oid =
 PortableServer::string_to_objectId(oid_str);
// Find root POA
2 CORBA::Object_var oref =
 orb->resolve_initial_references("RootPOA");
3 PortableServer::POA_var root_poa =
 PortableServer::POA::_narrow(oref);
// Create and activate a Persistent/UserId POA
4 CORBA::PolicyList policies(2);
5 policies.length(2);
6 policies[0] = root_poa->create_lifespan_policy(
 PortableServer::PERSISTENT);
7 policies[1] = root_poa->create_id_assignment_policy(
 PortableServer::USER_ID);
8 PortableServer::POA_var my_poa_ref =
 root_poa->create_POA(
 "my_poa_ref", root_poa->the_POAManager(), policies);
9 root_poa->the_POAmanager()->activate();
// Create object reference for callback Object
CORBA Programming Reference 11-7

10 oref = my_poa_ref -> create_reference_with_id(
 oid, _tc_Catcher->id());
11 Catcher_var my_catcher_ref = Catcher::_narrow(oref);
// activate object
12 my_poa_ref -> activate_object_with_id(oid, my_catcher_i);
// Make the call passing the callback ref
 foo -> register_callback (my_catcher_ref);

All the interfaces and operations described here are standard CORBA interfaces and operations.

Preparing Callback Objects Using OracleWrapper
Callbacks
You can use the OracleWrapper callbacks API with to write either C++ joint client/servers.

Using OracleWrapper Callbacks With C++
Because the code required for callback objects is nearly identical for every client that supports
callbacks, you may find it convenient to use the OracleWrappers provided in the library provided
for joint client/servers.

The OracleWrappers are described in IDL, as shown in Listing 11-3.

Listing 11-3 OracleWrapper IDL

// File: BEAWrapper
#ifndef _BEA_WRAPPER _IDL_
#define _BEA_WRAPPER _IDL_
#include <orb.idl>
#include <PortableServer.idll>

#pragma prefix “beasys.com”

module BEAWrapper {
 interface Callbacks
 {
 exception ServantAlreadyActive{ };
 exception ObjectAlreadyActive { };
11-8 CORBA Programming Reference

In t roduct ion
 exception NotInRequest{ };

 // set up transient callback Object
 // -- prepare POA, activate object, return objref
 Object start_transient(
 in PortableServer::Servant Servant,
 in CORBA::RepositoryId rep_id)
 raises (ServantAlreadyActive);

 // set up persistent/systemid callback Object
 Object start_persistent_systemid(
 in PortableServer::Servant servant,
 in CORBA::Repository rep_id,
 out string stroid)
 raises (ServantAlreadyActive);

 // reinstate set up for persistent/systemid
 // callback object
 Object restart_persistent_systemid(
 in PortableServer::Servant servant,
 in CORBA::RepositoryId rep_id,
 in string stroid)
 raises (ServantAlreadyActive, ObjectAlreadyActive);

 // set up persistent/userid callback Object
 Object start_persistent_userid(
 in PortableServer::Servant servant,
 in CORBA::RepositoryId rep_id,
 in string stroid)
 raises (ServantAlreadyActive, ObjectAlreadyActive);

 // stop servicing a particular callback Object
 // with the given servant
 void stop_object(in PortableServer::Servant servant);

 //Stop all callback Object processing
 void stop_all_objects();

 // get oid string for the current request
 string get_string_oid() raises (NotInRequest);
 };
CORBA Programming Reference 11-9

}
#endif /* _BEA_WRAPPER _IDL_ */

The OracleWrappers are described in C++ as shown in Listing 11-4.

Listing 11-4 C++ Declarations (in beawrapper.h)

#ifndef _BEAWRAPPER_H_
#define _BEAWRAPPER_H_

#include <PortableServer.h>
class BEAWrapper{
class Callbacks{
 public:
 Callbacks (CORBA::ORB_ptr init_orb);

 CORBA::Object_ptr start_transient (
 PortableServer::Servant servant,
 const char * rep_id);

 CORBA::Object_ptr start_persistent_systemid (
 PortableServer::Servant servant,
 const char * rep_id,
 char * & stroid);

 CORBA::Object_ptr restart_persistent_systemid (
 PortableServer::Servant servant,
 const char * rep_id,
 const char * stroid);

 CORBA::Object_ptr start_persistent_userid (
 PortableServer::Servant servant,
 const char * rep_id,
 const char * stroid);

 void stop_object(PortableServer::Servant servant);

 char* get_string_oid ();

 void stop_all_objects();
11-10 CORBA Programming Reference

C++ Orac leWrapper Ca l lbacks In te r face AP I
 ~Callbacks();
 private:

 static CORBA::ORB_var orb_ptr;

 static PortableServer::POA_var root_poa;
 static PortableServer::POA_var trasys_poa;
 static PortableServer::POA_var persys_poa;
 static PortableServer::POA_var peruser_poa;
 };
};
#endif // _BEAWRAPPER_H_

C++ OracleWrapper Callbacks Interface API
This C++ OracleWrapper Callbacks interface API is described in the following sections.

Callbacks

Synopsis
Returns a reference to the Callbacks interface.

C++ Binding
BEAWrapper::Callbacks(CORBA::ORB_ptr init_orb);

Argument
init_orb

The ORB to be used for all further operations.

Exception
CORBA::IMP_LIMIT

The BEAWrapper::Callbacks class has already be instantiated with an ORB pointer.
Only one instance of this class can be used in a process. Users who need additional
flexibility should use the POA directly.
CORBA Programming Reference 11-11

Description
The constructor returns a reference to the Callbacks interface. Only one such object should be
created for the process, even if multiple threads are used. Using more than one such object will
result in undefined behavior.

Return Value
A reference to the Callbacks object.

start_transient

Synopsis
Activates an object, sets the ORB and the POA to the proper state, and returns an object reference
to the activated object.

IDL
Object start_transient(in PortableServer::Servant servant,
 in CORBA::RepositoryId rep_id)
 raises (ServantAlreadyActive);

C++ Binding
CORBA::Object_ptr start_transient(
 PortableServer::Servant servant,
 const char* rep_id);

Arguments
servant

An instance of the C++ implementation class for the interface.

rep_id
The repository id of the interface.

Exceptions
ServantAlreadyActive

The servant is already being used for a callback. A servant can be used only for a callback
with a single ObjectId. To receive callbacks on objects containing different ObjectIds,
you must create different servants and activate them separately. The same servant can be
11-12 CORBA Programming Reference

C++ Orac leWrapper Ca l lbacks In te r face AP I
reused only if a stop_object operation tells the system to stop using the servant for its
original ObjectId.

CORBA::BAD_PARAM
The repository ID was a NULL string or the servant was a NULL pointer.

Description
This operation performs the following actions:

Activates an object using the Servant supplied to service objects of the type rep_id,
using an ObjectId generated by the system.

Sets the ORB and the POA into the state in which they will accept requests on that object.

Returns an object reference to the activated object. The returned object reference will be
valid only until the termination of the client or until the callback servant is halted by the
user via the stop_object operation; after that, invocations on that object reference are no
longer valid and can never be made valid.

Return Value
CORBA::Object_ptr

A reference to the object that was created with the ObjectId generated by the system and
the rep_id provided by the user. The object reference will need to be converted to a
specific object type by invoking the _narrow() operation defined for the specific object.
The caller is responsible for releasing the object when the conversion is done.

start_persistent_systemid

Synopsis
Activates an object, sets the ORB and the POA to the proper state, sets the output parameter
stroid, and returns an object reference to the activated object.

IDL
Object start_persistent_systemid(
 in PortableServer::Servant servant,
 in CORBA::RepositoryId rep_id,
 out string stroid)
 raises (ServantAlreadyActive);
CORBA Programming Reference 11-13

C++ Binding
CORBA::Object_ptr start_persistent_systemid(
 PortableServer::Servant servant,
 const char* rep_id,
 char*& stroid);

JArguments
servant

An instance of the C++ implementation class for the interface.

rep_id
The repository ID of the interface.

stroid
This argument is set by the system and is opaque to the user. The client will use it when
it reactivates the object at a later time (using restart_persistent_systemid), most
likely after the client process has terminated and restarted.

Exceptions
ServantAlreadyActive

The servant is already being used for a callback. A servant can be used only for a callback
with a single ObjectId. To receive callbacks on objects containing different ObjectIds,
you must create different servants and activate them separately. The same servant can be
reused only if a stop operation tells the system to stop using the servant for its original
ObjectId.

CORBA::BAD_PARAMETER
The repository ID was a NULL string or the servant was a NULL pointer.

CORBA::IMP_LIMIT
In addition to other system reasons for this exception, a reason unique to this situation is
that the joint client/server was not initialized with a port number; therefore, a persistent
object reference cannot be created.

Description
This operation performs the following actions:

Activates an object using the Servant supplied to service objects of the type rep_id,
using an ObjectId generated by the system.

Sets the ORB and the POA into the state in which they will accept requests on that object.
11-14 CORBA Programming Reference

C++ Orac leWrapper Ca l lbacks In te r face AP I
Sets the output parameter stroid to the stringified version of an ObjectId assigned by
the system.

Returns an object reference to the activated object. The returned object reference will be
valid even after termination of the client. That is, if the client terminates, restarts again, and
then activates a servant with the same rep_id and for the same ObjectId, the servant will
accept requests made on that same object reference. Since the ObjectId was generated by
the system, the application has to save that ObjectId.

Return Value
CORBA::Object_ptr

An object reference created with the ObjectId generated by the system and the rep_id
provided by the user. The object reference will need to be converted to a specific object
type by invoking the _narrow() operation defined for the specific object. The caller is
responsible for releasing the object when the conversion is done.

restart_persistent_systemid

Synopsis
Activates an object, sets the ORB and the POA to the proper state, and returns an object reference
to the activated object.

IDL
Object restart_persistent_systemid(
 in PortableServer::Servant servant,
 in CORBA::RepositoryId rep_id,
 in string stroid)
 raises (ServantAlreadyActive, ObjectAlreadyActive);

C++ Binding
CORBA::Object_ptr restart_persistent_systemid(
 PortableServer::Servant servant,
 const char* rep_id
 const char* stroid);

CORBA Programming Reference 11-15

Arguments
servant

An instance of the C++ implementation class for the interface.

rep_id
The repository ID of the interface.

stroid
The stringified version of the ObjectId provided by the user to be set in the object
reference being created. It must have been returned from a previous call on
start_persistent_systemid.

Exceptions
ServantAlreadyActive

The servant is already being used for a callback. A servant can be used only for a callback
with a single ObjectId. To receive callbacks on objects containing different ObjectIds,
you must create different servants and activate them separately. The same servant can be
reused only if a stop_object operation tells the system to stop using the servant for its
original ObjectId.

ObjectAlreadyActive
The stringified ObjectId is already being used for a callback. A given ObjectId can
have only one servant associated with it. If you wish to change to a different servant, you
must first invoke stop_object with the servant currently in use.

CORBA::BAD_PARAM
The repository ID was a NULL string or the servant was a NULL pointer or the ObjectId
supplied was not previously assigned by the system.

CORBA::IMP_LIMIT
In addition to other system reasons for this exception, a reason unique to this situation is
that the joint client/server was not initialized with a port number; therefore, a persistent
object reference cannot be created.

Description
This operation performs the following actions:

Activates an object using the Servant supplied to service objects of the type rep_id,
using the supplied stroid (a stringified ObjectId), which must have been obtained by a
previous call on start_persistent_systemid.

Sets the ORB and the POA into the state in which they will accept requests on that object.

Returns an object reference to the object activated.
11-16 CORBA Programming Reference

C++ Orac leWrapper Ca l lbacks In te r face AP I
The reactivation would be done using the restart_persistent_systemid method.

Return Value
CORBA::Object_ptr

An object reference created with the stringified ObjectId stroid and the rep_id
provided by the user. The object reference will need to be converted to a specific object
type by invoking the _narrow() operation defined for the specific object. The caller is
responsible for releasing the object when done.

start_persistent_userid

Synopsis
Activates an object, sets the ORB and the POA to the proper state, and returns an object reference
to the activated object.

IDL
Object start_persistent_userid(
 portableServer::Servant a_servant,
 in CORBA::RepositoryId rep_id,
 in string stroid)
 raises (ServantAlreadyActive, ObjectAlreadyActive);

C++ Binding
CORBA::Object_ptr start_persistent_userid (
 PortableServer::Servant servant,
 const char* rep_id,
 const char* stroid);

Arguments
servant

An instance of the C++ implementation class for the interface.

rep_id
The repository ID of the interface.
CORBA Programming Reference 11-17

stroid
The stringified version of an ObjectId provided by the user to be set in the object
reference being created. The stroid holds application-specific data and is opaque to the
ORB.

Exceptions
ServantAlreadyActive

The servant is already being used for a callback. A servant can be used only for a callback
with a single ObjectId. To receive callbacks on objects containing different ObjectIds,
you must create different servants and activate them separately. The same servant can be
reused only if a stop_object operation tells the system to stop using the servant for its
original ObjectId.

ObjectAlreadyActive
The stringified ObjectId is already being used for a callback. A given ObjectId can
have only one servant associated with it. If you wish to change to a different servant, you
must first invoke stop_object with the servant currently in use.

CORBA::BAD_PARAM
The repository ID was a NULL string or the servant was a NULL pointer.

CORBA::IMP_LIMIT
In addition to other system reasons for this exception, a reason unique to this situation is
that the joint client/server was not initialized with a port number; therefore, a persistent
object reference cannot be created.

Description
This operation performs the following actions:

Activates an object using the Servant supplied to service objects of the type rep_id,
using the object Id stroid.

Sets the ORB and the POA into the state in which they will accept requests on that object.

Returns an object reference to the activated object. The returned object reference will be
valid even after termination of the client. That is, if the client terminates, and restarts again,
and then activates a servant with the same rep_id and for the same ObjectId, the servant
will accept requests made on that same object reference.

Return Value
CORBA::Object_ptr

An object reference created with the stringified ObjectId stroid and the rep_id
provided by the user. The object reference will need to be converted to a specific object
11-18 CORBA Programming Reference

C++ Orac leWrapper Ca l lbacks In te r face AP I
type by invoking the _narrow() operation defined for the specific object. The caller is
responsible for releasing the object when the conversion is done.

stop_object

Synopsis
Tells the ORB to stop accepting requests on the object that is using the given servant.

IDL
void stop_object(in PortableServer::Servant servant);

C++ Binding
void stop_object(PortableServer::Servant servant);

Argument
servant

An instance of the C++ implementation class for the interface. The association between
this servant and its ObjectId will be removed from the Active Object Map.

Exceptions
None.

Description
This operation tells the ORB to stop accepting requests on the given servant. It does not matter
what state the servant is in, activated or deactivated; no error is reported.

Note: If you do an invocation on a callback object after you call the stop_object operation,
the OBJECT_NOT_EXIST exception is returned to the caller. This is because the
stop_object operation, in effect, deletes the object.

Return Value
None.

stop_all_objects

Synopsis
Tells the ORB to stop accepting requests on all servants.
CORBA Programming Reference 11-19

IDL
void stop_all_objects ();

C++ Binding
void stop_all_objects ();

Exceptions
None.

Description
This operation tells the ORB to stop accepting requests on all servants that have been set up in
this process.

Usage Note
If a client calls the ORB::shutdown method, then it must not subsequently call
stop_all_objects.

Return Value
None.

get_string_oid

Synopsis
Requests the string version of the ObjectId of the current request.

IDL
string get_string_oid() raises (NotInRequest);

C++ Binding
char* get_string_oid();

JExceptions
NotInRequest

The function was called when the ORB was not in the context of a request (that is, not
while the ORB was servicing a request in method code). Do not call this function from
client code. It is legal only during the execution of a method of the callback object (that
is, the servant).
11-20 CORBA Programming Reference

C++ Orac leWrapper Ca l lbacks In te r face AP I
Description
This operation returns the string version of the ObjectId of the current request.

Return Value
char*

The string version of the ObjectId of the current request. This is the string that was
supplied when the object reference was created. The string is meaningful to users only in
the case when the object reference was created by the start_persistent_userid
function. (That is, the ObjectId created by start_transient and
start_persistent_systemid were created by the ORB and has no relationship to the
user application.)

~Callbacks

Synopsis
Destroys the callback object.

C++ Binding
BEAWrapper::~Callbacks();

JArguments
None.

Exceptions
None.

Description
This destructor destroys the callback object.

Usage Note
If a client wants to get rid of the wrapper, but not shut down the ORB, then the client must call
the stop_all_objects method.

Return Value
None.
CORBA Programming Reference 11-21

11-22 CORBA Programming Reference

C H A P T E R 12
Development Commands
For a detailed discussion of Oracle Tuxedo development commands, see the Oracle Tuxedo
Command Reference. This document describes all Oracle Tuxedo commands and processes.

A PDF file of the Oracle Tuxedo Command Reference is also provided in the online
documentation.
CORBA Programming Reference 12-1

12-2 CORBA Programming Reference

C H A P T E R 13
Mapping of OMG IDL Statements to
C++
This chapter discusses the mappings from OMG IDL statements to C++.

Note: Some of the information in this chapter is taken from the Common Object Request
Broker: C++ Language Mapping Specification, June 1999, published by the Object
Management Group (OMG). Used with permission of the OMG.

Mappings
OMG IDL-to-C++ mappings are described for the following:

Data Types

Strings

wchars

wstrings

Constants

Enums

Structs

Unions

Sequences

Arrays
CORBA Programming Reference 13-1

Exceptions

Mapping of Pseudo-objects to C++

Usage

Mapping Rules

Relation to the C PIDL Mapping

Typedefs

Implementing Interfaces

Implementing Operations

PortableServer Functions

Modules

Interfaces

Generated Static Member Functions

Object Reference Types

Attributes

Any Type

Value Type

In addition, the following topics are discussed:

Fixed-length Versus Variable-length User-defined Types

Using var Classes

Using out Classes

Argument Passing Considerations

Data Types
Each OMG IDL data type is mapped to a C++ data type or class.
13-2 CORBA Programming Reference

Mappings
Basic Data Types
The basic data types in OMG IDL statements are mapped to C++ typedefs in the CORBA
module, as shown in Table 13-1.

Note: On a 64-bit machine where a long integer is 64 bits, the definition of CORBA::Long
would still refer to a 32-bit integer.

Complex Data Types
Object, pseudo-object, and user-defined types are mapped as shown in Table 13-2.

Table 13-1 Basic OMG IDL and C++ Data Types

OMG IDL C++ C++ Out Type

short CORBA::Short CORBA::Short_out

long CORBA::Long CORBA::Long_out

unsigned
short

CORBA::UShort CORBA::UShort_out

unsigned
long

CORBA::ULong CORBA::ULong_out

float CORBA::Float CORBA::Float_out

double CORBA::Double CORBA::Double_out

char CORBA::Char CORBA::Char_out

boolean CORBA::Boolean CORBA::Boolean_out

octet CORBA::Octet CORBA::Octet_out

wchar CORBA::WChar CORBA::WChart_out
CORBA Programming Reference 13-3

The mapping for strings and UDTs is described in more detail in the following sections.

Strings
A string in OMG IDL is mapped to char * in C++. Both bounded and unbounded strings are
mapped to char *. CORBA strings in C++ are NULL-terminated and can be used wherever a
char * type is used.

If a string is contained within another user-defined type, such as a struct, it is mapped to a
CORBA::String_var type. This ensures that each member in the struct manages its own
memory.

Strings must be allocated and deallocated using the following member functions in the CORBA
class:

string_alloc

string_dup

string_free

Note: The string_alloc function allocates len+1 characters so that the resulting string has
enough space to hold a trailing NULL character.

Table 13-2 Object, Pseudo-object, and User-defined OMG IDL and C++ Types

OMG IDL C++

Object CORBA::Object_ptr

struct C++ struct

union C++ class

enum C++ enum

string char *

wstring CORBA::WChar *

sequence C++ class

array C++ array
13-4 CORBA Programming Reference

Mappings
wchars
OMG IDL defines a wchar data type that encodes wide characters from any character set. As with
character data, an implementation is free to use any code set internally for encoding wide
characters, though, again, conversion to another form may be required for transmission. The size
of wchar is implementation-dependent.

The syntax for defining a wchar is:

<wide_char_type> ::= “wchar”

A code example for wchar is:

wchar_t wmixed[256];

Note: The wchar and wstring data types enable users to interact with computers in their native
written language. Some languages, such as Japanese and Chinese, have thousands of
unique characters. These character sets do not fit within a byte. A number of schemes
have been used to support multi-byte character sets, but they have proved to be unwieldy
to use. Wide characters and wide strings make it easier to interact with this kind of
complexity.

wstrings
The wstring data type represents a sequence of wchar, except the wide character NULL. The
type wstring is similar to that of type string, except that its element type is wchar instead of
char. The actual length of a wstring is set at run time and, if the bounded form is used, must be
less than or equal to the bound.

The syntax for defining a wstring is:

<wide_string_type> ::= “wstring” “<” <positive_int_const> “>”
 | “wstring

A code example for wstring is:

CORBA::WString_var v_upper = CORBA::wstring_dup(wmixed);

wstring types are built in types just like unsigned long, char, string, double, etc. They can be
used directly as parameters, typedef'd, used to construct structs, sequences, unions, arrays, and so
forth.

Note: The wchar and wstring data types enable users to interact with computers in their native
written language. Some languages, such as Japanese and Chinese, have thousands of
unique characters. These character sets do not fit within a byte. A number of schemes
have been used to support multi-byte character sets, but they have proved to be unwieldy
CORBA Programming Reference 13-5

to use. Wide characters and wide strings make it easier to interact with this kind of
complexity.

Constants
A constant in OMG IDL is mapped to a C++ const definition. For example, consider the
following OMG IDL definition:

 // OMG IDL

 const string CompanyName = “BEA Systems Incorporated”;

 module INVENT
 {
 const string Name = “Inventory Modules”;

 interface Order
 {
 const long MAX_ORDER_NUM = 10000;
 };
 };

This definition maps to C++ as follows:

 // C++

 const char *const
 CompanyName = “BEA Systems Incorporated”;
 . . .
 class INVENT
 {
 static const char *const Name;
 . . .

 class Order : public virtual CORBA::Object
 {
 static const CORBA::Long MAX_ORDER_NUM;
 . . .
 };
 };

Top-level constants are initialized in the generated .h include file, but module and interface
constants are initialized in the generated client stub modules.
13-6 CORBA Programming Reference

Mappings
The following is an example of a valid reference to the MAX_ORDER_NUM constant, as defined in
the previous example:

CORBA::Long accnt_id = INVENT::Order::MAX_ORDER_NUM;

Enums
An enum in OMG IDL is mapped to an enum in C++. For example, consider the following OMG
IDL definition:

 // OMG IDL

 module INVENT
 {
 enum Reply {ACCEPT, REFUSE};
 }

This definition maps to C++ as follows:

 // C++

 class INVENT
 {
 . . .

 enum Reply {ACCEPT, REFUSE};
 };

The following is an example of a valid reference to the enum defined in the previous example.
You refer to enum as follows:

 INVENT::Reply accept_reply;
 accept_reply = INVENT::ACCEPT;

Structs
A struct in OMG IDL is mapped to a C++ struct.

The generated code for a struct depends upon whether it is fixed-length or variable-length. For
more information about fixed-length versus variable-length types, see the section Fixed-length
Versus Variable-length User-defined Types.
CORBA Programming Reference 13-7

Fixed-length Versus Variable-length Structs
A variable-length struct contains an additional assignment operator member function to handle
assignments between two variable-length structs.

For example, consider the following OMG IDL definition:

 // OMG IDL

 module INVENT
 {
 // Fixed-length
 struct Date
 {
 long year;
 long month;
 long day;
 };

 // Variable-length
 struct Address
 {
 string aptNum;
 string streetName;
 string city;
 string state;
 string zipCode;
 };
 };

This definition maps to C++ as follows:

 // C++

 class INVENT
 {
 struct Date
 {
 CORBA::Long year;
 CORBA::Long month;
 CORBA::Long day;
 };
13-8 CORBA Programming Reference

Mappings
 struct Address
 {
 CORBA::String_var aptNum;
 CORBA::String_var streetName;
 CORBA::String_var city;
 CORBA::String_var state;
 CORBA::String_var zipCode;
 Address &operator=(const Address &_obj);
 };

 };

Member Mapping
Members of a struct are mapped to the appropriate C++ data type. For basic data types (long,
short, and so on), see Table 13-1. For object references, pseudo-object references, and strings, the
member is mapped to the appropriate var class:

CORBA::String_var

CORBA::Object_var

All other data types are mapped as shown in Table 13-2.

No constructor for a generated struct exists, so none of the members are initialized. Fixed-length
structs can be initialized using aggregate initialization. For example:

INVENT::Date a_date = { 1995, 10, 12 };

Variable-length members map to self-managing types; these types have constructors that
initialize the member.

Var
A var class is generated for structs. For more information, see the section Using var Classes.

Out
An out class is generated for structs. For more information, see the section Using out Classes.

Unions
A union in OMG IDL is mapped to a C++ class. The C++ class contains the following:
CORBA Programming Reference 13-9

Constructors

Destructors

Assignment operators

Modifiers for the union value

Accessors for the union value

Modifiers and accessors for the union discriminator

For example, consider the following OMG IDL definition:

 // OMG IDL

 union OrderItem switch (long)
 {
 case 1: itemStruct itemInfo;
 case 2: orderStruct orderInfo;
 default: ID idInfo;
 };

This definition maps to C++ as follows:

 // C++

 class OrderItem
 {
 public:
 OrderItem();
 OrderItem(const OrderItem &);
 ~OrderItem();

 OrderItem &operator=(const OrderItem&);

 void _d (CORBA::Long);
 CORBA::Long _d () const;

 void itemInfo (const itemStruct &);
 const itemStruct & itemInfo () const;
 itemStruct & itemInfo ();

 void orderInfo (const orderStruct &);
13-10 CORBA Programming Reference

Mappings
 const orderStruct & orderInfo () const;
 orderStruct & orderInfo ();

 void idInfo (ID);
 ID idInfo () const;

 . . .
 };

The default union constructor does not set a default discriminator value for the union; therefore,
you cannot call any union accessor member function until you have set the value of the union.
The discriminator is an attribute that is mapped through the _d member function.

Union Member Accessor and Modifier Member Function Mapping
For each member in the union, accessor and modifier member functions are generated.

In the following code, taken from the previous example, two member functions are generated for
the ID member function:

 void idInfo (ID);
 ID idInfo () const;

In this example, the first function (the modifier) sets the discriminator to the default value and
sets the value of the union to the specified ID value. The second function, the accessor, returns
the value of the union.

Depending upon the data type of the union member, additional modifier functions are generated.
The member functions generated for each data type are as follows:

Basic data types—short, long, unsigned short, unsigned long, float, double, char, boolean,
and octet

The following example generates two member functions for a basic data type with
member name basictype:

void basictype (TYPE); // modifier
TYPE basictype () const; // accessor

For the mapping from an OMG IDL data type to the C++ data type TYPE, see Table 13-1.

Object and pseudo-object

CORBA Programming Reference 13-11

For object and Typecode types with member name objtype, member functions are
generated as follows:

void objtype (TYPE); // modifier
TYPE objtype () const; // accessor

For the mapping from an OMG IDL data type to the C++ data type TYPE, see Table 13-1.

The modifier member function does not assume ownership of the specified object reference
argument. Instead, the modifier duplicates the object reference or pseudo-object reference.
You are responsible for releasing the reference when it is no longer required.

Enum

For an enum TYPE with member name enumtype, member functions are generated as
follows:

void enumtype (TYPE); // modifier
TYPE enumtype () const; // accessor

String

For strings, one accessor and three modifier functions are generated, as follows:

void stringInfo (char *); // modifier 1
void stringInfo (const char *); // modifier 2
void stringInfo (const CORBA::String_var &); // modifier 3
const char * stringInfo () const; // accessor

The first modifier assumes ownership of the char * parameter passed to it and the union
is responsible for calling the CORBA::string_free member function on this string when
the union value changes or when the union is destroyed.

The second and third modifiers make a copy of the specified string passed in the parameter
or contained in the string var.

The accessor function returns a pointer to internal memory of the union; do not attempt to
free this memory, and do not access this memory after the union value has been changed or
the union has been destroyed.

Struct, union, sequence, and any

For these data types, modifier and accessor functions are generated with references to the
13-12 CORBA Programming Reference

Mappings
type, as follows:

void reftype (TYPE &); // modifier
const TYPE & reftype () const; // accessor
TYPE & reftype (); // accessor

The modifier function does not assume ownership of the input type parameter; instead,
the function makes a copy of the data type.

Array

For an array, the modifier member function accepts an array pointer while the accessor
returns a pointer to an array slice, as follows:

void arraytype (TYPE); // modifier
TYPE_slice * arraytype () const; // accessor

The modifier function does not assume ownership of the input type parameter; instead,
the function makes a copy of the array.

Var
A var class is generated for a union. For more information, see the section Using var Classes .

Out
An out class is generated for a union. For more information, see the section Using out Classes.

Member Functions
In addition to the accessor and modifiers, the following member functions are generated for an
OMG IDL union of type TYPE with switch (long) discriminator:

TYPE();
This is the default constructor for a union. No default discriminator is set by this function,
so you cannot access the union until you set the value of the union.

TYPE(const TYPE & From);
This copy constructor deep copies the specified union. Any data in the union parameter is
copied. The From argument specifies the union to be copied.

~TYPE();
This destructor frees the data associated with the union.
CORBA Programming Reference 13-13

TYPE &operator=(const TYPE & From);
This assignment operator copies the specified union. Any existing value in the current
union is freed. The From argument specifies the union to be copied.

void _d (CORBA::Long Discrim);
This modifier function sets the value of the union discriminant. The Discrim argument
specifies the new discriminant. The data type of the argument is determined by the OMG
IDL data type specified in the switch statement of the union. For each OMG IDL data
type, see Table 13-1 for the C++ data type.

Only use this function to set the discriminant to a value within the same union member.
You cannot use this function to implicitly switch between different union members.

These restrictions are illustrated by the following code:

union U switch(long) {
case 1:
case 2:
short s;
case 3:
int it;
};

short st;
U u;
u.s(1296); // member "s" selected
st = u.s(); // st == 1296
u._d(2); // OK: member "s" still selected
st = u.s(); // st == 1296
u._d(3); // BAD_PARAM: selecting a different member

When the _d() modifier is invoked on a new instance of a union, Tuxedo C++ relaxes the
"implicit switching" restriction. In this case, no exception is thrown, and the union is not
affected.

U u2;
u2._d(1); // no exception, union is unchanged
st = u2.s(); // error! accessing an uninitialized union
u2.it(1296); // OK: member "it" now selected

CORBA::Long _d () const;
This function returns the current discriminant value. The data type of the return value is
determined by the OMG IDL data type specified in the switch statement of the union. For
each OMG IDL data type, see Table 13-1 for the C++ data type.
13-14 CORBA Programming Reference

Mappings
Sequences
A sequence in OMG IDL is mapped to a C++ class. The C++ class contains the following:

Constructors

Each sequence has the following:

– A default constructor

– A constructor that initializes each element

– A copy constructor

Destructors

Modifiers for current length (and for maximum, if the sequence is unbounded)

Accessors for current length

Operator[] functions to access or modify sequence elements

Allocation and deallocation member functions

You must set the length before accessing any elements.

For example, consider the following OMG IDL definition:

// OMG IDL

module INVENT
 {
 . . .
 typedef sequence<LogItem> LogList;
 }

This definition maps to C++ as follows:

// C++

class LogList
 {
 public:
 // Default constructor
 LogList();

 // Maximum constructor
 LogList(CORBA::ULong _max);
CORBA Programming Reference 13-15

 // TYPE * data constructor
 LogList
 (
 CORBA::ULong _max,
 CORBA::ULong _length,
 LogItem *_value,
 CORBA::Boolean _relse = CORBA_FALSE
);

 // Copy constructor
 LogList(const LogList&);

 // Destructor
 ~LogList();

 LogList &operator=(const LogList&);

 CORBA::ULong maximum() const;

 void length(CORBA::ULong);
 CORBA::ULong length() const;

 LogItem &operator[](CORBA::ULong _index);
 const LogItem &operator[](CORBA::ULong _index) const;

 static LogItem *allocbuf(CORBA::ULong _nelems);
 static void freebuf(LogItem *);
 };

 };

Sequence Element Mapping
The operator[] functions are used to access or modify the sequence element. These operators
return a reference to the sequence element. The OMG IDL sequence base type is mapped to the
appropriate C++ data type.

For basic data types, see Table 13-1. For object references, TypeCode references, and strings, the
base type is mapped to a generated _ForSeq_var class. The _ForSeq_var class provides the
capability to update a string or an object that is stored within the sequence. This generated class
has the same member functions and signatures as the corresponding var class. However, this
_ForSeq_var class honors the setting of the release parameter in the sequence constructor. The
distinction is that the _ForSeq_var class lets users specify the Release flag, thereby allowing
users to control the freeing of memory.
13-16 CORBA Programming Reference

Mappings
All other data types are mapped as shown in Table 13-2.

Vars
A var class is generated for a sequence. For more information, see the section Using var Classes.

Out
An out class is generated for a sequence. For more information, see the section Using out Classes.

Member Functions
For a given OMG IDL sequence SEQ with base type TYPE, the member functions for the
generated sequence class are described as follows:

SEQ ();
This is the default constructor for a sequence. The length is set to 0 (zero). If the sequence
is unbounded, the maximum is also set to 0 (zero). If the sequence is bounded, the
maximum is specified by the OMG IDL type and cannot be changed.

SEQ (CORBA::ULong Max);
This constructor is present only if the sequence is unbounded. This function sets the length
of the sequence to 0 (zero) and sets the maximum of the buffer to the specified value. The
Max argument specifies the maximum length of the sequence.

SEQ (CORBA::ULong Max, CORBA::ULong Length, TYPE * Value,
 CORBA::Boolean Release);

This constructor sets the maximum, length, and elements of the sequence. The Release
flag determines whether elements are released when the sequence is destroyed.
Explanations of the arguments are as follows:

Max
The maximum value of the sequence. This argument is not present in bounded
sequences.

Length
The current length of the sequence. For bounded sequences, this value must be less
than the maximum specified in the OMG IDL type.

Value
A pointer to the buffer containing the elements of the sequence.

Release
Determines whether elements are released. If this flag has a value of CORBA_TRUE,
the sequence assumes ownership of the buffer pointed to by the Value argument.
CORBA Programming Reference 13-17

If the Release flag is CORBA_ TRUE, this buffer must be allocated using the
allocbuf member function, because it will be freed using the freebuf member
function when the sequence is destroyed.

SEQ(const S& From);
This copy constructor deep copies the sequence from the specified argument. The From
argument specifies the sequence to be copied.

~SEQ();
This destructor frees the sequence and, depending upon the Release flag, may free the
sequence elements.

SEQ& operator=(const SEQ& From);
This assignment operator deep copies the sequence from the specified sequence argument.
Any existing elements in the current sequence are released if the Release flag in the
current sequence is set to CORBA_TRUE. The From argument specifies the sequence to be
copied.

CORBA::ULong maximum() const;
This function returns the maximum of the sequence. For a bounded sequence, this is the
value set in the OMG IDL type. For an unbounded sequence, this is the current maximum
of the sequence.

void length(CORBA::ULong Length);
This function sets the current length of the sequence. The Length argument specifies the
new length of the sequence. If the sequence is unbounded and the new length is greater
than the current maximum, the buffer is reallocated and the elements are copied to the new
buffer. If the new length is greater than the maximum, the maximum is set to the new
length.

For a bounded sequence, the length cannot be set to a value greater than the maximum.

CORBA::ULong length() const;
This function returns the current length of the sequence.

TYPE & operator[](CORBA::ULong Index);
const TYPE & operator[](CORBA::ULong Index) const;

These accessor functions return a reference to the sequence element at the specified index.
The Index argument specifies the index of the element to return. This index cannot be
greater than the current sequence length. The length must have been set either using the
TYPE * constructor or the length(CORBA::ULong) modifier. If TYPE is an object
reference, TypeCode reference, or string, the return type will be a ForSeq_var class.
13-18 CORBA Programming Reference

Mappings
static TYPE * allocbuf(CORBA::ULong NumElems);
This static function allocates a buffer to be used with the TYPE * constructor. The
NumElems argument specifies the number of elements in the buffer to allocate. If the
buffer cannot be allocated, NULL is returned.

If this buffer is not passed to the TYPE * constructor with release set to CORBA_TRUE, it
should be freed using the freebuf member function.

static void freebuf(TYPE * Value);
This static function frees a TYPE * sequence buffer allocated by the allocbuf function.
The Value argument specifies the TYPE * buffer allocated by the allocbuf function.
A 0 (zero) pointer is ignored.

Arrays
An array in OMG IDL is mapped to a C++ array definition. For example, consider the following
OMG IDL definition:

 // OMG IDL

 module INVENT
 {
 . . .
 typedef LogItem LogArray[10];
 };

This definition maps to C++ as follows:

 // C++

 module INVENT
 {
 . . .
 typedef LogItem LogArray[10];
 typedef LogItem LogArray_slice;
 static LogArray_slice * LogArray_alloc(void);
 static void LogArray_free(LogArray_slice *data);

 };
CORBA Programming Reference 13-19

Array Slice
A slice of an array is an array with all the dimensions of the original array except the first
dimension. The member functions for the array-generated classes use a pointer to a slice to return
pointers to an array. A typedef for each slice is generated.

For example, consider the following OMG IDL definition:

 // OMG IDL
 typedef LogItem LogMultiArray[5][10];

This definition maps to C++ as follows:

 // C++
 typedef LogItem LogMultiArray[5][10];
 typedef LogItem LogMultiArray_slice[10];

If you have a one-dimensional array, an array slice is just a type. For example, if you had a
one-dimensional array of long, an array slice would result in a CORBA::Long data type.

Array Element Mapping
The type of the OMG IDL array is mapped to the C++ array element type in the same manner as
structs. For more information, see the section Member Mapping.

Vars
A var class is generated for an array. For more information, see the section Using var Classes.

Out
An out class is generated for an array. For more information, see the section Using out Classes.

Allocation Member Functions
For each array, there are two static functions for array allocation and deallocation. For a given
OMG IDL type TYPE, the allocation and deallocation routines are as follows:

static TYPE_slice * TYPE_alloc(void);
This function allocates a TYPE array, returning a pointer to the allocated TYPE array. If the
array cannot be dynamically allocated, 0 (zero) is returned.

static void TYPE_free(TYPE_slice * Value);
This function frees a dynamically allocated TYPE array. The Value argument is a pointer
to the dynamically allocated TYPE array to be freed.
13-20 CORBA Programming Reference

Mappings
Exceptions
An exception in OMG IDL is mapped to a C++ class. The C++ class contains the following:

Constructors

Destructors

A static _narrow function, to determine the type of exception

The generated class is similar to a variable-length structure, but with an additional constructor to
simplify initialization, and with the static _narrow member function to determine the type of
UserException.

For example, consider the following OMG IDL definition:

 // OMG IDL

 module INVENT
 {
 exception NonExist
 {
 ID BadId;
 };
 };

This definition maps to C++ as follows:

 // C++

 class INVENT
 {
 . . .

 class NonExist : public CORBA::UserException
 {
 public:
 static NonExist * _narrow(CORBA::Exception_ptr);
 NonExist (ID _BadId);
 NonExist ();
 NonExist (const NonExist &);
 ~NonExist ();
 NonExist & operator=(const NonExist &);
 void _raise ();
CORBA Programming Reference 13-21

 ID BadId;
 };
 };

Attributes (data members) of the Exception class are public, so you may access them directly.

Member Mapping
Members of an exception are mapped in the same manner as structs. For more information, see
Member Mapping.

All exception members are public data in the C++ class, and are accessed directly.

Var
A var class is generated for an exception. For more information, see the section Using var Classes.

Out
An out class is generated for an exception. For more information, see the sectionUsing out
Classes.

Member Functions
For a given OMG IDL exception TYPE, the generated member functions are as follows:

static TYPE * _narrow(CORBA::Exception_ptr Except);
This function returns a pointer to a TYPE exception class if the exception can be narrowed
to a TYPE exception. If the exception cannot be narrowed, 0 (zero) is returned. The TYPE
pointer is not a pointer to a new class. Instead, it is a typed pointer to the original exception
pointer and is valid only as long as the Except parameter is valid.

TYPE ();
This is the default constructor for the exception. No initialization of members is performed
for fixed-length members. Variable-length members map to self-managing types; these
types have constructors that initialize the member.

TYPE(member-parameters);
This constructor has an argument for each of the members in the exception. The
constructor copies each argument and does not assume ownership of the memory for any
argument. Building on the previous example, the signature of the constructor is:

NonExist (ID _BadId);
13-22 CORBA Programming Reference

Mappings
There is one argument for each member of the exception. The type and parameter-passing
mechanism are identical to the Any insertion operator. For information about the Any
insertion operator, see the section Insertion into Any.

TYPE (const TYPE & From);
This copy constructor copies the data from the specified TYPE exception argument. The
From argument specifies the exception to be copied.

~TYPE ();
This destructor frees the data associated with the exception.

TYPE & operator=(const TYPE & From);
This assignment operator copies the data from the specified TYPE exception argument.
The From argument specifies the exception to be copied.

void _raise ();
This function causes the exception instance to throw itself. A catch clause
can catch it by a more derived type.

Mapping of Pseudo-objects to C++
CORBA pseudo-objects may be implemented either as normal CORBA objects or as serverless
objects. In the CORBA specification, the fundamental differences between these strategies are:

Serverless object types do not inherit from CORBA::Object.

Individual serverless objects are not registered with any ORB.

Serverless objects do not necessarily follow the same memory management rules as for
regular IDL types.

References to serverless objects are not necessarily valid across computational contexts; for
example, address spaces. Instead, references to serverless objects that are passed as parameters
may result in the construction of independent, functionally identical copies of objects used by
receivers of these references. To support this, the otherwise hidden representational properties
(such as data layout) of serverless objects are made known to the ORB. Specifications for
achieving this are not contained in this chapter; making serverless objects known to the ORB is
an implementation detail.

This chapter provides a standard mapping algorithm for all pseudo-object types. This avoids the
need for piecemeal mappings for each of the nine CORBA pseudo-object types, and
accommodates any pseudo-object types that may be proposed in future revisions of CORBA. It
also avoids representation dependence in the C mapping, while still allowing implementations
that rely on C-compatible representations.
CORBA Programming Reference 13-23

Usage
Rather than C-PIDL, this mapping uses an augmented form of full OMG IDL to describe
serverless object types. Interfaces for pseudo-object types follow the same rules as normal OMG
IDL interfaces, with the following exceptions:

They are prefaced by the keyword pseudo.

Their declarations may refer to other1 serverless object types that are not otherwise
necessarily allowed in OMG IDL.

The pseudo prefix means that the interface may be implemented in either a normal or serverless
fashion. That is, apply either the rules described in the following sections, or the normal mapping
rules described in this chapter.

Mapping Rules
Serverless objects are mapped in the same way as normal interfaces, except for the differences
outlined in this section.

Classes representing serverless object types are not subclasses of CORBA::Object, and are not
necessarily subclasses of any other C++ class. Thus, they do not necessarily support, for example,
the Object::create_request operation.

For each class representing a serverless object type T, overloaded versions of the following
functions are provided in the CORBA namespace:

// C++
void release(T_ptr);
Boolean is_nil(T_ptr p);

The mapped C++ classes are not guaranteed to be usefully subclassable by users, although
subclasses can be provided by implementations. Implementations are allowed to make
assumptions about internal representations and transport formats that may not apply to
subclasses.

The member functions of classes representing serverless object types do not necessarily obey the
normal memory management rules. This is because some serverless objects, such as
CORBA::NVList, are essentially just containers for several levels of other serverless objects.
Requiring callers to explicitly free the values returned from accessor functions for the contained
serverless objects would be counter to their intended usage.

1. In particular, exception used as a data type and a function name.
13-24 CORBA Programming Reference

Mappings
All other elements of the mapping are the same. In particular:

The types of references to serverless objects, T_ptr, may or may not simply be a typedef
of T*.

Each mapped class supports the following static member functions:

// C++
static T_ptr _duplicate(T_ptr p);
static T_ptr _nil();

Legal implementations of _duplicate include simply returning the argument or
constructing references to a new instance. Individual implementations may provide
stronger guarantees about behavior.

The corresponding C++ classes may or may not be directly instantiable or have other
instantiation constraints. For portability, users should invoke the appropriate constructive
operations.

As with normal interfaces, assignment operators are not supported.

Although they can transparently employ “copy-style” rather than “reference-style”
mechanics, parameter passing signatures and rules as well as memory management rules
are identical to those for normal objects, unless otherwise noted.

Relation to the C PIDL Mapping
All serverless object interfaces and declarations that rely on them have direct analogs in the C
mapping. The mapped C++ classes can, but need not, be implemented using representations
compatible to those chosen for the C mapping. Differences between the pseudo-object
specifications for C-PIDL and C++ PIDL are as follows:

C++ PIDL calls for removal of representation dependencies through the use of interfaces
rather than structs and typedefs.

C++ PIDL calls for placement of operations on pseudo-objects in their interfaces, including
a few cases of redesignated functionality as noted.

In C++ PIDL, release performs the role of the associated free and delete operations in
the C mapping, unless otherwise noted.

Brief descriptions and listings of each pseudo-interface and its C++ mapping are provided in the
following sections. Further details, including definitions of types referenced but not defined
below, may be found in the relevant sections of this document.
CORBA Programming Reference 13-25

Typedefs
A typedef in OMG IDL is mapped to a typedef in C++. Depending upon the OMG IDL data type,
additional typedefs and member functions may be defined. The generated code for each data type
is as follows:

Basic data types (short, long, unsigned short, unsigned long, float, double, char, boolean,
and octet)

Basic data types map to a simple typedef. For example:

// OMG IDL
typedef long ID;

// C++
typedef CORBA::Long ID;

string

A string typedef is mapped to a simple typedef. For example:

// OMG IDL
typedef string IDStr;

// C++
typedef char * IDStr;

object, interfaces, TypeCode

Object, interfaces, and TypeCode types are mapped to four typedefs. For example:

// OMG IDL
typedef Item Intf;

// C++
typedef Item Intf;
typedef Item_ptr Intf_ptr;
typedef Item_var Intf_var;
typedef Item_ptr & Intf _out;

enum, struct, union, sequence

UDTs are mapped to three typedefs. For example:

// OMG IDL
typedef LogList ListRetType;

// C++
typedef LogList ListRetType;
typedef LogList_var ListRetType_var;
typedef LogList_out & ListRetType_out;
13-26 CORBA Programming Reference

Mappings
array

Arrays are mapped to four typedefs and the static member functions to allocate and free
memory. For example:

// OMG IDL
typedef LogArray ArrayRetType;

// C++
typedef LogArray ArrayRetType;
typedef LogArray_var ArrayRetType_var;
typedef LogArray_forany ArrayRetType_forany;
typedef LogArray_slice ArrayRetType_slice;
ArrayRetType_slice * ArrayRetType_alloc();
void ArrayRetType_free(ArrayRetType_slice *);

Implementing Interfaces
An operation in OMG IDL is mapped to a C++ member function.

The name of the member function is the name of the operation. The operation is defined as a
member function in both the interface class and the stub class. The interface class is virtual; the
stub class inherits from the virtual class and contains the member function code from the client
application stub. When an operation is invoked on the object reference, the code contained in the
corresponding stub member function executes.

For example, consider the following OMG IDL definition:

// OMG IDL

module INVENT
 {
 interface Order
 {
 . . .
 ItemList modifyOrder (in ItemList ModifyList);
 };
 };

This definition maps to C++ as follows:

// C++

class INVENT
 {
 . . .
CORBA Programming Reference 13-27

 class Order : public virtual CORBA::Object
 {
 . . .
 virtual ItemList * modifyOrder (
 const ItemList & ModifyList) = 0;
 };
 };

class Stub_Order : public Order
 {
 . . .
 ItemList * modifyOrder (
 const ItemList & ModifyList);
 };

The generated client application stub then contains the following generated code for the stub
class:

// ROUTINE NAME: INVENT::Stub_Order::modifyOrder
//
// FUNCTIONAL DESCRIPTION:
//
// Client application stub routine for operation
// modifyOrder.
// (Interface : Order)

INVENT::ItemList * INVENT::Stub_Order::modifyOrder (
 const INVENT::ItemList & ModifyList)
{
. . .
}

Argument Mapping
Each of the arguments in an operation is mapped to the corresponding C++ type as described in
Table 13-1 and Table 13-2.

The parameter passing modes for arguments in an operation are described in Table 13-7 and
Table 13-8.
13-28 CORBA Programming Reference

Mappings
Implementing Operations
The signature of an implementation member function is the mapped signature of the OMG IDL
operation. Unlike the client side, the server-side mapping requires that the function header
include the appropriate exception (throw) specification. This requirement allows the compiler to
detect when an invalid exception is raised, which is necessary in the case of a local C++-to-C++
library call (otherwise, the call would have to go through a wrapper that checks for a valid
exception). For example:

// IDL
interface A
{
exception B {};
void f() raises(B);
};

// C++
class MyA : public virtual POA_A
{
 public:
void f() throw(A::B, CORBA::SystemException);
...
};

Since all operations and attributes may throw CORBA system exceptions,
CORBA::SystemException must appear in all exception specifications, even when an operation
has no raises clause.

Within a member function, the “this” pointer refers to the implementation object’s data as defined
by the class. In addition to accessing the data, a member function may implicitly call another
member function defined by the same class. For example:

// IDL

interface A
{
void f();
void g();
};
CORBA Programming Reference 13-29

// C++
class MyA : public virtual POA_A
{
 public:

void f() throw(SystemException);
void g() throw(SystemException);
 private:
long x_;
};

void
MyA::f() throw(SystemException)
{
this->x_ = 3;
this->g();
}

However, when a servant member function is invoked in this manner, it is being called simply as
a C++ member function, not as the implementation of an operation on a CORBA object. In such
a context, any information available via the POA_Current object refers to the CORBA request
invocation that performed the C++ member function invocation, not to the member function
invocation itself.

Skeleton Derivation from Object
In several existing ORB implementations, each skeleton class derives from the corresponding
interface class. For example, for interface Mod::A, the skeleton class POA_Mod::A is derived
from class Mod::A. These systems, therefore, allow an object reference for a servant to be
implicitly obtained via normal C++ derived-to-base conversion rules:

// C++
MyImplOfA my_a; // declare impl of A
A_ptr a = &my_a; // obtain its object reference
 // by C++ derived-to-base conversion

Such code can be supported by a conforming ORB implementation, but it is not required, and is
thus not portable. The equivalent portable code invokes _this() on the implementation object
to implicitly register it if it has not yet been registered, and to get its object reference:
13-30 CORBA Programming Reference

Mappings
// C++
MyImplOfA my_a; // declare impl of A
A_ptr a = my_a._this(); // obtain its object reference

PortableServer Functions
Objects registered with POAs use sequences of octet, specifically the
PortableServer::POA::ObjectId type, as object identifiers. However, because C++
programmers often want to use strings as object identifiers, the C++ mapping provides several
conversion functions that convert strings to ObjectId and vice versa:

// C++
namespace PortableServer
{
char* ObjectId_to_string(const ObjectId&);

ObjectId* string_to_ObjectId(const char*);
}

These functions follow the normal C++ mapping rules for parameter passing and memory
management.

If conversion of an ObjectId to a string would result in illegal characters in the string (such as a
NULL), the first two functions throw the CORBA::BAD_PARAM exception.

Modules
A module in OMG IDL is mapped to a C++ class. Objects contained in the module are defined
within this C++ class. Because interfaces and types are also mapped to classes, nested C++
classes result.

For example, consider the following OMG IDL definition:

 // OMG IDL

 module INVENT
 {
 interface Order
 {
 . . .
 };
 };
CORBA Programming Reference 13-31

This definition maps to C++ as follows:

 // C++

 class INVENT
 {
 . . .
 class Order : public virtual CORBA::Object
 {
 . . .
 }; // class Order
 }; // class INVENT

Multiple nested modules yield multiple nested classes. Anything inside the module will be in the
module class. Anything inside the interface will be in the interface class.

OMG IDL allows modules, interfaces, and types to have the same name. However, when
generating files for the C++ language, having the same name is not allowed. This restriction is
necessary because the OMG IDL names are generated into nested C++ classes with the same
name; this is not supported by C++ compilers.

Note: The Oracle Tuxedo OMG IDL compiler outputs an informational message if you
generate C++ code from OMG IDL with an interface or type with the same name as the
current module name. If you ignore this informational message and do not use unique
names to differentiate the interface or type from the module name, the compiler will
signal errors when compiling the generated files.

Interfaces
An interface in OMG IDL is mapped to a C++ class. This class contains the definitions of the
operations, attributes, constants, and user-defined types (UDTs) contained in the OMG IDL
interface.

For an interface INTF, the generated interface code contains the following items:

Object reference type (INTF_ptr)

Object reference variable type (INTF_var)

_duplicate static member function

_narrow static member function

_nil static member function
13-32 CORBA Programming Reference

Mappings
UDTs

Member functions for attributes and operations

For example, consider the following OMG IDL definition:

 // OMG IDL

 module INVENT
 {
 interface Order
 {
 void cancelOrder ();
 };
 };

This definition maps to C++ as follows:

 // C++
 class INVENT
 {
 . . .
 class Order;
 typedef Order * Order_ptr;

 class Order : public virtual CORBA::Object
 {
 . . .
 static Order_ptr _duplicate(Order_ptr obj);
 static Order_ptr _narrow(CORBA::Object_ptr obj);
 static Order_ptr _nil();
 virtual void cancelOrder () = 0;
 . . .
 };
 };

The object reference types and static member functions are described in the following sections,
as are UDTs, operations, and attributes.

Generated Static Member Functions
This section describes in detail the generated static member functions: _duplicate, _narrow,
and _nil for an interface INTF.
CORBA Programming Reference 13-33

static INTF_ptr _duplicate (INTF_ptr Obj)
This static member function duplicates an existing INTF object reference and returns a
new INTF object reference. The new INTF object reference must be released by calling
the CORBA::release member function. If an error occurs, a reference to the nil INTF
object is returned. The argument Obj specifies the object reference to be duplicated.

static INTF_ptr _narrow (CORBA::Object_ptr Obj)
This static member function returns a new INTF object reference given an existing
CORBA::Object_ptr object reference. The Object_ptr object reference may have been
created by a call to the CORBA::ORB::string_to_object member function or may have
been returned as a parameter from an operation.

The INTF_ptr object reference must correspond to an INTF object or to an object that
inherits from the INTF object. The new INTF object reference must be released by calling
the CORBA::release member function. The argument Obj specifies the object reference
to be narrowed to an INTF object reference. The Obj parameter is not modified by this
member function and should be released by the user when it is no longer required. If Obj
cannot be narrowed to an INTF object reference, the INTF nil object reference is returned.

static INTF_ptr _nil ()
This static member function returns the new nil object reference for the INTF interface.
The new reference does not have to be released by calling the CORBA::release member
function.

Object Reference Types
An interface class (INTF) is a virtual class; the CORBA standard does not allow you to:

Create or hold an instance of the interface class

Use a pointer or a reference to the interface class

Instead, you use one of the object reference types, INTF_ ptr or INTF_var class.
You can obtain an object reference by using the _narrow static member function. Operations
are invoked on these classes using the arrow operator (->).

The INTF_var class simplifies memory management by automatically releasing the object
reference when the INTF_var class goes out of scope or is reassigned. Variable types are
generated for many of the UDTs and are described in Using var Classes.

Attributes
A read-only attribute in OMG IDL is mapped to a C++ function that returns the attribute value.
A read-write attribute maps to two overloaded C++ functions, one to return the attribute value
13-34 CORBA Programming Reference

Mappings
and one to set the attribute value. The name of the overloaded member function is the name of
the attribute.

Attributes are generated in the same way that operations are generated. They are defined in both
the virtual and the stub classes. For example, consider the following OMG IDL definition:

// OMG IDL

module INVENT
 {
 interface Order
 {
 . . .
 attribute itemStruct itemInfo;
 };
 };

This definition maps to C++ as follows:

// C++

class INVENT
 {
 . . .

 class Item : public virtual CORBA::Object
 {
 . . .
 virtual itemStruct * itemInfo () = 0;

 virtual void itemInfo (
 const itemStruct & itemInfo) = 0;
 };
 };

class Stub_Item : public Item
 {
. . .
 itemStruct * itemInfo ();

 void itemInfo (
 const itemStruct & itemInfo);
 };
CORBA Programming Reference 13-35

The generated client application stub then contains the following generated code for the stub
class:

// ROUTINE NAME: INVENT::Stub_Item::itemInfo
//
// FUNCTIONAL DESCRIPTION:
//
// Client application stub routine for attribute
// INVENT::Stub_Item::itemInfo. (Interface : Item)

INVENT::itemStruct * INVENT::Stub_Item::itemInfo ()
{
. . .
}

//
// ROUTINE NAME: INVENT::Stub_Item::itemInfo
//
// FUNCTIONAL DESCRIPTION:
//
// Client application stub routine for attribute
// INVENT::Stub_Item::itemInfo. (Interface : Item)

void INVENT::Stub_Item::itemInfo (
 const INVENT::itemStruct & itemInfo)
{
}

Argument Mapping
An attribute is equivalent to two operations, one to return the attribute and one to set the attribute.
For example, the itemInfo attribute listed above is equivalent to:

void itemInfo (in itemStruct itemInfo);
itemStruct itemInfo ();

The argument mapping for the attribute is the same as the mapping for an operation argument.
The attribute is mapped to the corresponding C++ type as described in Table 13-1 and
Table 13-2. The parameter passing modes for arguments in an operation are described in
Table 13-7 and Table 13-8.
13-36 CORBA Programming Reference

Mappings
Any Type
An any in OMG IDL is mapped to the CORBA::Any class. The CORBA::Any class handles C++
types in a type-safe manner.

Handling Typed Values
To decrease the chances of creating an any with a mismatched TypeCode and value, the C++
function overloading facility is utilized. Specifically, for each distinct type in an OMG IDL
specification, overloaded functions to insert and extract values of that type are provided.
Overloaded operators are used for these functions to completely avoid any name space pollution.
The nature of these functions, which are described in detail below, is that the appropriate
TypeCode is implied by the C++ type of the value being inserted into or extracted from the any.

Since the type-safe any interface described below is based upon C++ function overloading, it
requires C++ types generated from OMG IDL specifications to be distinct. However, there are
special cases in which this requirement is not met:

The Boolean, octet, and char OMG IDL types are not required to map to distinct C++
types, which means that a separate means of distinguishing them from each other for the
purpose of function overloading is necessary. The means of distinguishing these types from
each other is described in Distinguishing Boolean, Octet, Char, and Bounded Strings.

Since all strings are mapped to char* regardless of whether they are bounded or
unbounded, another means of creating or setting an any with a bounded string value is
necessary. This is described in Distinguishing Boolean, Octet, Char, and Bounded Strings.

In C++, arrays within a function argument list decay into pointers to their first elements.
This means that function overloading cannot be used to distinguish between arrays of
different sizes. The means for creating or setting an any when dealing with arrays is
described below and in Arrays.

Insertion into Any
To allow a value to be set in an any in a type-safe fashion, the following overloaded operator
function is provided for each separate OMG IDL type T:

// C++
void operator<<=(Any&, T);

This function signature suffices for the following types, which are usually passed by value:

Short, UShort, Long, ULong, Float, Double
CORBA Programming Reference 13-37

Enumerations

Unbounded strings (char* passed by value)

Object references (T_ptr)

For values of type T that are too large to be passed by value efficiently, two forms of the insertion
function are provided:

// C++
void operator<<=(Any&, const T&); // copying form
void operator<<=(Any&, T*); // non-copying form

Note that the copying form is largely equivalent to the first form shown, as far as the caller is
concerned.

These “left-shift-assign” operators are used to insert a typed value into an any, as follows:

// C++
Long value = 42;
Any a;
a <<= value;

In this case, the version of operator<<= overloaded for type Long sets both the value and the
TypeCode properly for the Any variable.

Setting a value in an any using operator<<= means the following:

For the copying version of operator<<=, the lifetime of the value in the Any is
independent of the lifetime of the value passed to operator<<=. The implementation of
the Any does not store its value as a reference or a pointer to the value passed to
operator<<=.

For the noncopying version of operator<<=, the inserted T* is consumed by the Any. The
caller may not use the T* to access the pointed-to data after insertion because the Any
assumes ownership of T*, and the Any may immediately copy the pointed-to data and
destroy the original.

With both the copying and noncopying versions of operator<<=, any previous value held
by the Any is properly deallocated. For example, if the Any(TypeCode_ptr,void*,TRUE)
constructor (described in Handling Untyped Values) were called to create the Any, the Any
is responsible for deallocating the memory pointed to by the void* before copying the new
value.

Copying insertion of a string type causes the following function to be invoked:
13-38 CORBA Programming Reference

Mappings
// C++
void operator<<=(Any&, const char*);

Since all string types are mapped to char*, this insertion function assumes that the value being
inserted is an unbounded string. Distinguishing Boolean, Octet, Char, and Bounded Strings
describes how bounded strings may be correctly inserted into an Any. Noncopying insertion of
both bounded and unbounded strings can be achieved using the Any::from_string helper type
described in Distinguishing Boolean, Octet, Char, and Bounded Strings.

Type-safe insertion of arrays uses the Array_forany types described in Arrays. The ORB
provides a version of operator<<= overloaded for each Array_forany type. For example:

// IDL
typedef long LongArray[4][5];

// C++
typedef Long LongArray[4][5];
typedef Long LongArray_slice[5];
class LongArray_forany { ... };

void operator<<=(Any &, const LongArray_forany &);

The Array_forany types are always passed to operator<<= by reference to const. The
nocopy flag in the Array_forany constructor is used to control whether the inserted value is
copied (nocopy == FALSE) or consumed (nocopy == TRUE). Because the nocopy flag defaults
to FALSE, copying insertion is the default.

Because of the type ambiguity between an array of T and a T*, it is highly recommended that
portable code explicitly use the appropriate Array_forany type when inserting an array into an
Any. For example:

// IDL
struct S {... };
typedef S SA[5];

// C++
struct S { ... };
typedef S SA[5];
typedef S SA_slice;
class SA_forany { ... };

SA s;
CORBA Programming Reference 13-39

// ...initialize s...
Any a;
a <<= s; // line 1
a <<= SA_forany(s); // line 2

Line 1 results in the invocation of the noncopying operator<<=(Any&, S*) due to the decay of
the SA array type into a pointer to its first element, rather than the invocation of the copying
SA_forany insertion operator. Line 2 explicitly constructs the SA_forany type and thus results
in the desired insertion operator being invoked.

The noncopying version of operator<<= for object references takes the address of the T_ptr
type, as follows:

// IDL
interface T { ... };

// C++
void operator<<=(Any&, T_ptr); // copying
void operator<<=(Any&, T_ptr*); // non-copying

The noncopying object reference insertion consumes the object reference pointed to by T_ptr*;
therefore, after insertion the caller may not access the object referred to by T_ptr because the
Any may have duplicated and then immediately released the original object reference. The caller
maintains ownership of the storage for the T_ptr itself.

The copying version of operator<<= is also supported on the Any_var type.

Extraction from Any
To allow type-safe retrieval of a value from an any, the ORB provides the following operators
for each OMG IDL type T:

// C++
Boolean operator>>=(const Any&, T&);

This function signature suffices for primitive types that are usually passed by value. For values
of type T that are too large to be passed by value efficiently, the ORB provides a different
signature, as follows:

// C++
Boolean operator>>=(const Any&, T*&);

The first form of this function is used only for the following types:

Boolean, Char, Octet, Short, UShort, Long, ULong, Float, Double
13-40 CORBA Programming Reference

Mappings
Enumerations

Unbounded strings (char* passed by reference, i.e., char*&)

Object references (T_ptr)

For all other types, the second form of the function is used.

This “right-shift-assign” operator is used to extract a typed value from an any, as follows:

// C++
Long value;
Any a;
a <<= Long(42);
if (a >>= value) {
 // ... use the value ...
}

In this case, the version of operator>>= for type Long determines whether the Any truly does
contain a value of type Long and, if so, copies its value into the reference variable provided by
the caller and returns TRUE. If the Any does not contain a value of type Long, the value of the
caller’s reference variable is not changed, and operator>>= returns FALSE.

For nonprimitive types, extraction is done by pointer. For example, consider the following OMG
IDL struct:

// IDL
struct MyStruct {
 long lmem;
 short smem;
};

Such a struct could be extracted from an Any as follows:

// C++
Any a;
// ... a is somehow given a value of type MyStruct ...
MyStruct *struct_ptr;
if (a >>= struct_ptr) {
 // ... use the value ...
}

If the extraction is successful, the caller’s pointer points to storage managed by the Any, and
operator>>= returns TRUE. The caller must not try to delete or otherwise release this storage.
CORBA Programming Reference 13-41

The caller also should not use the storage after the contents of the Any variable are replaced via
assignment, insertion, or the replace function, or after the Any variable is destroyed. Care must
be taken to avoid using T_var types with these extraction operators, since they will try to assume
responsibility for deleting the storage owned by the Any.

If the extraction is not successful, the value of the caller’s pointer is set equal to the NULL
pointer, and operator>>= returns FALSE.

Correct extraction of array types relies on the Array_forany types described in Arrays.

An example of the OMG IDL is as follows:

// IDL
typedef long A[20];
typedef A B[30][40][50];

// C++
typedef Long A[20];
typedef Long A_slice;
class A_forany { ... };
typedef A B[30][40][50];
typedef A B_slice[40][50];
class B_forany { ... };

Boolean operator>>=(const Any&, A_forany&); // for

type A
Boolean operator>>=(const Any&, B_forany&); // for type

B

The Array_forany types are always passed to operator>>= by reference.

For strings and arrays, applications are responsible for checking the TypeCode of the Any to be
sure that they do not overstep the bounds of the array or string object when using the extracted
value.

The operator>>= is also supported on the Any_var type.

Distinguishing Boolean, Octet, Char, and Bounded Strings
Since the Boolean, octet, and char OMG IDL types are not required to map to distinct C++ types,
another means of distinguishing them from each other is necessary so that they can be used with
the type-safe Any interface. Similarly, since both bounded and unbounded strings map to char*,
13-42 CORBA Programming Reference

Mappings
another means of distinguishing them must be provided. This is done by introducing several new
helper types nested in the Any class interface. For example, this is accomplished as shown below:

// C++
class Any
{
 public:
 // special helper types needed for boolean, octet,
 // char, and bounded string insertion
 struct from_boolean {
 from_boolean(Boolean b) : val(b) {}
 Boolean val;
 };
 struct from_octet {
 from_octet(Octet o) : val(o) {}
 Octet val;
 };
 struct from_char {
 from_char(Char c) : val(c) {}
 Char val;
 };
 struct from_string {
 from_string(char* s, ULong b,
 Boolean nocopy = FALSE) :
 val(s), bound(b) {}
 char *val;
 ULong bound;
 };

 void operator<<=(from_boolean);
 void operator<<=(from_char);
 void operator<<=(from_octet);
 void operator<<=(from_string);
 // special helper types needed for boolean, octet,
 // char, and bounded string extraction
 struct to_boolean {
 to_boolean(Boolean &b) : ref(b) {}
 Boolean &ref;
 };
CORBA Programming Reference 13-43

 struct to_char {
 to_char(Char &c) : ref(c) {}
 Char &ref;
 };
 struct to_octet {
 to_octet(Octet &o) : ref(o) {}
 Octet &ref;
 };
 struct to_string {
 to_string(char *&s, ULong b) : val(s), bound(b) {}
 char *&val;
 ULong bound;
 };

 Boolean operator>>=(to_boolean) const;
 Boolean operator>>=(to_char) const;
 Boolean operator>>=(to_octet) const;
 Boolean operator>>=(to_string) const;

 // other public Any details omitted

private:
 // these functions are private and not implemented
 // hiding these causes compile-time errors for
 // unsigned char
 void operator<<=(unsigned char);
 Boolean operator>>=(unsigned char &) const;
};

The ORB provides the overloaded operator<<= and operator>>= functions for these special
helper types. These helper types are used as shown here:

// C++
Boolean b = TRUE;
Any any;
any <<= Any::from_boolean(b);
// ...
if (any >>= Any::to_boolean(b)) {
 // ...any contained a Boolean...
}

13-44 CORBA Programming Reference

Mappings
char* p = "bounded";
any <<= Any::from_string(p, 8);
// ...
if (any >>= Any::to_string(p, 8)) {
 // ...any contained a string<8>...
}

A bound value of 0 (zero) indicates an unbounded string.

For noncopying insertion of a bounded or unbounded string into an Any, the nocopy flag on the
from_string constructor should be set to TRUE:

// C++
char* p = string_alloc(8);
// ...initialize string p...
any <<= Any::from_string(p, 8, 1); // any consumes p

Assuming that boolean, char, and octet all map the C++ type unsigned char, the private and
unimplemented operator<<= and operator>>= functions for unsigned char cause a
compile-time error if straight insertion or extraction of any of the boolean, char, or octet types is
attempted:

// C++
Octet oct = 040;
Any any;
any <<= oct; // this line will not compile
any <<= Any::from_octet(oct); // but this one will

Widening to Object
Sometimes it is desirable to extract an object reference from an Any as the base Object type. This
can be accomplished using a helper type similar to those required for extracting boolean, char,
and octet:

// C++
class Any
{
 public:
 ...
 struct to_object {
 to_object(Object_ptr &obj) : ref(obj) {}
 Object_ptr &ref;
CORBA Programming Reference 13-45

 ;
 Boolean operator>>=(to_object) const;
 ...
};

The to_object helper type is used to extract an object reference from an Any as the base Object
type. If the Any contains a value of an object reference type as indicated by its TypeCode, the
extraction function operator>>=(to_object) explicitly widens its contained object reference
to Object and returns TRUE; otherwise, it returns FALSE. This is the only object reference
extraction function that performs widening on the extracted object reference. As with regular
object reference extraction, no duplication of the object reference is performed by the
to_object extraction operator.

Handling Untyped Values
Under some circumstances the type-safe interface to Any is not sufficient. An example is a
situation in which data types are read from a file in binary form and are used to create values of
type Any. For these cases, the Any class provides a constructor with an explicit TypeCode and
generic pointer:

// C++
Any(TypeCode_ptr tc, void *value, Boolean release = FALSE);

The constructor duplicates the given TypeCode pseudo-object reference. If the release
parameter is TRUE, the Any object assumes ownership of the storage pointed to by the value
parameter. A caller should make no assumptions about the continued lifetime of the value
parameter once it has been handed to an Any with release=TRUE, since the Any may copy the
value parameter and immediately free the original pointer. If the release parameter is FALSE
(the default case), the Any object assumes that the caller manages the memory pointed to by
value. The value parameter can be a NULL pointer.

The Any class also defines three unsafe operations:

// C++
void replace(
 TypeCode_ptr,
 void *value,
 Boolean release = FALSE
);
TypeCode_ptr type() const;
const void *value() const;
13-46 CORBA Programming Reference

Mappings
The replace function is intended to be used with types that cannot be used with the type-safe
insertion interface, and so is similar to the constructor described above. The existing TypeCode
is released and value storage is deallocated, if necessary. The TypeCode function parameter is
duplicated. If the release parameter is TRUE, the Any object assumes ownership for the storage
pointed to by the value parameter. The Any should make no assumptions about the continued
lifetime of the value parameter once it has been handed to the Any::replace function with
release=TRUE, since the Any may copy the value parameter and immediately free the original
pointer. If the release parameter is FALSE (the default case), the Any object assumes that the
caller manages the memory occupied by the value. The value parameter of the replace function
can be a NULL pointer.

Note that neither the constructor shown above nor the replace function is type-safe. In
particular, no guarantees are made by the compiler at run time as to the consistency between the
TypeCode and the actual type of the void* argument. The behavior of an ORB implementation
when presented with an Any that is constructed with a mismatched TypeCode and value is not
defined.

The type function returns a TypeCode_ptr pseudo-object reference to the TypeCode associated
with the Any. Like all object reference return values, the caller must release the reference when
it is no longer needed, or assign it to a TypeCode_var variable for automatic management.

The value function returns a pointer to the data stored in the Any. If the Any has no associated
value, the value function returns a NULL pointer.

Any Constructors, Destructor, Assignment Operator
The default constructor creates an Any with a TypeCode of type tk_null, and no value. The copy
constructor calls _duplicate on the TypeCode_ptr of its Any parameter and deep-copies the
parameter’s value. The assignment operator releases its own TypeCode_ptr and deallocates
storage for the current value if necessary, then duplicates the TypeCode_ptr of its Any parameter
and deep-copies the parameter’s value. The destructor calls release on the TypeCode_ptr and
deallocates storage for the value, if necessary.

Other constructors are described in the section Handling Untyped Values.

 The Any Class
The full definition of the Any class can be found in the section Any Class Member Functions.
CORBA Programming Reference 13-47

Value Type
This section is based on information contained in Chapters 3, 5, and 6 of the Common Object
Request Broker: Architecture and Specification, Revision 2.4.2, February 2001, and the CORBA
C++ Language Mapping Specification, June 1999, published by the Object Management Group
(OMG). Used with permission of the OMG.

Overview
Objects, more specifically, interface types that objects support, are defined in an IDL interface,
allowing arbitrary implementations. There is great value in having a distributed object system that
places almost no constraints on implementation. However, there are many occasions in which it
is desirable to be able to pass an object by value, rather than by reference. This may be
particularly useful when an object’s primary “purpose” is to encapsulate data, or an application
explicitly wishes to make a “copy” of an object.

The semantics of passing an object by value are similar to that of standard programming
languages. The receiving side of a parameter passed by value receives a description of the “state”
of the object. It then instantiates a new instance with that state but having a separate identity from
that of the sending side. Once the parameter passing operation is complete, no relationship is
assumed to exist between the two instances.

Because it is necessary for the receiving side to instantiate an instance, it must necessarily know
something about the object’s state and implementation. Thus, valuetype(s) provide semantics that
bridge between CORBA structs and CORBA interfaces, as follows:

They support description of complex state (that is, arbitrary graphs, with recursion and
cycles).

Their instances are always local to the context in which they are used (because they are
always copied when passed as a parameter to a remote call).

They support both public and private (to the implementation) data members.

They can be used to specify the state of an object implementation (that is, they can support
an interface).

They support single inheritance (of valuetype) and can support an interface.

They may be also be abstract.
13-48 CORBA Programming Reference

Mappings
Architecture
The basic notion of valuetypes is relatively simple. A valuetype is, in some sense, half way
between a “regular” IDL interface type and a struct. The use of valuetype is a signal from the
application programmer that some additional properties (state) and implementation details be
specified beyond that of an interface type. Specification of this information puts some additional
constraints on the implementation choices beyond that of interface types. This is reflected in both
the semantics specified herein, and in the language mappings.

Benefits
Prior to supporting valuetypes (objects passable by value), all CORBA objects had object
references. When multiple clients invoked on a particular object, they use the same object
reference. The instance(s) of the object remained on the server ORB and its state was maintained
by the server ORB, not the client ORB.

Valuetypes represent a significant addition to the CORBA architecture. As with objects passed
by reference, valuetypes have state and methods, but do not have object references and are always
invoked locally as programming language objects. Upon request from the receiving side,
valuetypes package their state in the sending context, send their state “over the wire” to the
receiving side, where an instance is created and populated with the transmitted state. The sending
side has no further control of the client-side instance. Thus, the receiving side can make
subsequent invocations of the instance locally. This model eliminates the delays involved when
communicating over the network. These delays can be significant in large networks. The addition
of valuetypes enables CORBA implementations to more easily scale to meet large data-handling
requirements.

Therefore, an essential property of valuetypes is that their implementations are always local. That
is, the explicit use of valuetypes in a concrete programming language is always guaranteed to use
a local implementation, and will not require a remote call. They have no identity (their value is
their identity) and they are not “registered” with the ORB.

Valuetype Example
For example, consider the following IDL valuetype taken from the CORBA C++ Language
Mapping Specification, June 1999, published by the Object Management Group (OMG):

// IDL
valuetype Example {
 short op1();
 long op2(in Example x);
CORBA Programming Reference 13-49

 private short val1;
 public long val2;

 private string val3;
 private float val4;
 private Example val5;
};

The C++ mapping for this valuetype is:

// C++
class Example : public virtual ValueBase {
 public:
 virtual Short op1() = 0;
 virtual Long op2(Example*) = 0;

 virtual Long val2() const = 0;
 virtual void val2(Long) = 0;

 static Example* _downcast(ValueBase*);

 protected:
 Example();
 virtual ~Example();

 virtual Short val1() const = 0;
 virtual void val1(Short) = 0;

 virtual const char* val3() const = 0;
 virtual void val3(char*) = 0;
 virtual void val3(const char*) = 0;
 virtual void val3(const String_var&) = 0;

 virtual Float val4() const = 0;
 virtual void val4(Float) = 0;

 virtual Example* val5() const = 0;
 virtual void val5(Example*) = 0;

 private:
 // private and unimplemented
 void operator=(const Example&);
};
13-50 CORBA Programming Reference

F i xed- length Versus Var iab le- length User-def ined Types
class OBV_Example : public virtual Example {
 public:
 virtual Long val2() const;
 virtual void val2(Long);

 protected:
 OBV_Example();
 OBV_Example(Short init_val1, Long init_val2,
 const char* init_val3, Float init_val4,
 Example* init_val5);
 virtual ~OBV_Example();

 virtual Short val1() const;
 virtual void val1(Short);

 virtual const char* val3() const;
 virtual void val3(char*);
 virtual void val3(const char*);
 virtual void val3(const String_var&);

 virtual Float val4() const;
 virtual void val4(Float);

 virtual Example* val5() const;
 virtual void val5(Example*);

 // ...
};

Fixed-length Versus Variable-length User-defined Types
The memory management rules and member function signatures for a user-defined type depend
upon whether the type is fixed-length or variable-length. A user-defined type is variable-length
if it is one of the following:

A bounded or unbounded string

A bounded or unbounded sequence

A struct or union that contains a variable-length member

An array with a variable-length element type

A typedef to a variable-length type
CORBA Programming Reference 13-51

If a type is not on this list, the type is fixed-length.

Using var Classes
Automatic variables (vars) are provided to simplify memory management. Vars are provided
through a var class that assumes ownership for the memory required for the type and frees the
memory when the instance of the var object is destroyed or when a new value is assigned to the
var object.

The Oracle Tuxedo provides var classes for the following types:

String (CORBA::String_var)

Object references (CORBA::Object_var)

User-defined OMG IDL types (struct, union, sequence, array, and interface)

The var classes have common member functions, but may support additional operators depending
upon the OMG IDL type. For an OMG IDL type TYPE, the TYPE_var class contains constructors,
destructors, assignment operators, and operators to access the underlying TYPE type. An example
var class is as follows:

class TYPE_var
 {
 public:
 // constructors
 TYPE_var();
 TYPE_var(TYPE *);
 TYPE_var(const TYPE_var &);
 // destructor
 ~TYPE_var();

 // assignment operators
 TYPE_var &operator=(TYPE *);
 TYPE_var &operator=(const TYPE_var &);

 // accessor operators
 TYPE *operator->();
 TYPE *operator->() const;
13-52 CORBA Programming Reference

Using var C lasses
 TYPE_var_ptr in() const;
 TYPE_var_ptr& inout();
 TYPE_var_ptr& out();

 TYPE_var_ptr _retn();
 operator const TYPE_ptr&() const;
 operator TYPE_ptr&();
 operator TYPE_ptr;
 };

The details of the member functions are as follows:

TYPE_var()
This is the default constructor for the TYPE_var class. The constructor initializes to 0
(zero) the TYPE * owned by the var class. You may not invoke the operator-> on a
TYPE_var class unless a valid TYPE * has been assigned to it.

TYPE_var(TYPE * Value);
This constructor assumes ownership of the specified TYPE * parameter. When the
TYPE_var is destroyed, the TYPE is released. The Value argument is a pointer to the TYPE
to be owned by this var class. This pointer must not be 0 (zero).

TYPE_var(const TYPE_var & From);
This copy constructor allocates a new TYPE and makes a deep copy of the data contained
in the TYPE owned by the From parameter. When the TYPE_var is destroyed, the copy of
the TYPE is released or deleted. The From parameter specifies the var class that points to
the TYPE to be copied.

~TYPE_var();
This destructor uses the appropriate mechanism to release the TYPE owned by the var
class. For strings, this is the CORBA::string_free routine. For object references, this is
the CORBA::release routine. For other types, this may be delete or a generated static
routine used to free allocated memory.

TYPE_var &operator=(TYPE * NewValue);
This assignment operator assumes ownership of the TYPE pointed to by the NewValue
parameter. If the TYPE_var currently owns a TYPE, it is released before assuming
ownership of the NewValue parameter. The NewValue argument is a pointer to the TYPE
to be owned by this var class. This pointer must not be 0 (zero).

TYPE_var &operator=(const TYPE_var &From);
This assignment operator allocates a new TYPE and makes a deep copy of the data
contained in the TYPE owned by the From TYPE_var parameter. If TYPE_var currently
CORBA Programming Reference 13-53

owns a TYPE, it is released. When the TYPE_var is destroyed, the copy of the TYPE is
released. The From parameter specifies the var class that points to the data to be copied.

TYPE *operator->();
TYPE *operator->() const;

These operators return a pointer to the TYPE owned by the var class. The var class
continues to own the TYPE and it is the responsibility of the var class to release TYPE. You
cannot use the operator-> until the var owns a valid TYPE. Do not try to release this
return value or access this return value after the TYPE_var has been destroyed.

TYPE_var_ptr in() const;
TYPE_var_ptr& inout();
TYPE_var_ptr& out();
TYPE_var_ptr _retn();

Because implicit conversions can sometimes cause a problem with some C++ compilers
and with code readability, the TYPE_var types also support member functions that allow
them to be explicitly converted for purposes of parameter passing. To pass a TYPE_var
and an in parameter, call the in() member function; for inout parameters, the inout()
member function; for out parameters, the out() member function. To obtain a return
value from the TYPE_var, call the _return() function. For each TYPE_var type, the
return types of each of these functions will match the type shown in Table 13-7 for the in,
inout, out, and return modes for the underlying type TYPE, respectively.

Some differences occur in the operators supported for the user-defined data types. Table 13-3
describes the various operators supported by each OMG IDL data type, in the generated C++
code. Because the assignment operators are supported for all of the data types described in
Table 13-3, they are not included in the comparison.

The signatures are as shown in Table 13-4.

Table 13-3 Comparison of Operators Supported for User-defined Data Type var Classes

OMG IDL Data Type operator -> operator[]

struct Yes No

union Yes No

sequence Yes Yes, non-const only

array No Yes
13-54 CORBA Programming Reference

Using var C lasses
Sequence vars
Sequence vars support the following additional operator[] member function:

TYPE &operator[](CORBA::ULong Index);
This operator invokes the operator[] of sequence owned by the var class. The
operator[] returns a reference to the appropriate element of the sequence at the
specified index. The Index argument specifies the index of the element to return. This
index cannot be greater than the current sequence length.

Array vars
Array vars do not support operator->, but do support the following additional operator[]
member functions to access the array elements:

TYPE_slice& operator[](CORBA::ULong Index);
const TYPE_slice & operator[](CORBA::ULong Index) const;

These operators return a reference to the array slice at the specified index. An array slice
is an array with all the dimensions of the original array except the first dimension. The
member functions for the array-generated classes use a pointer to a slice to return pointers
to an array. The Index argument specifies the index of the slice to return. This index
cannot be greater than the array dimension.

Table 13-4 Operator Signatures for _var Classes

OMG IDL Data Type Operator Member Functions

struct TYPE * operator-> ()
TYPE * operator-> () const

union TYPE * operator-> ()
TYPE * operator-> () const

sequence TYPE * operator-> ()
TYPE * operator-> () const
TYPE & operator[](CORBA::Long index)

array TYPE_slice & operator[](CORBA::Long index)
TYPE_slice & operator[](CORBA::Long index) const
CORBA Programming Reference 13-55

String vars
The String vars in the member functions described in this section and in the section Sequence vars
have a TYPE of char *. String vars support additional member functions, as follows:

String_var(char * str)
This constructor makes a String_var from a string. The str argument specifies the
string that will be assumed. The user must not use the str pointer to access data.

String_var(const char * str)
String_var(const String_var & var)

This constructor makes a String_var from a const string. The str argument specifies
the const string that will be copied. The var argument specifies a reference to the string
to be copied.

String_var & operator=(char * str)
This assignment operator first releases the contained string using CORBA::string_free,
and then assumes ownership of the input string. The str argument specifies the string
whose ownership will be assumed by this String_var object.

String_var & operator=(const char * str)
String_var & operator=(const String_var & var)

This assignment operator first releases the contained string using CORBA::string_free,
and then copies the input string. The Data argument specifies the string whose ownership
will be assumed by this String_var object.

char operator[] (Ulong Index)
char operator[] (Ulong Index) const

These array operators are superscripting operators that provide access to characters within
the string. The Index argument specifies the index of the array to use in accessing a
particular character within the array. Zero-based indexing is used. The returned value of
the Char operator[] (Ulong Index) function can be used as an lvalue. The returned
value of the
Char operator[] (Ulong Index) const function cannot be used as an lvalue.

out Classes
Structured types (struct, union, sequence), arrays, and interfaces have a corresponding generated
_out class. The out class is provided for simplifying the memory management of pointers to
variable-length and fixed-length types. For more information about out classes and the common
member functions, see the section Using out Classes.

Some differences occur in the operators supported for the user-defined data types. Table 13-5
describes the various operators supported by each OMG IDL data type, in the generated C++
13-56 CORBA Programming Reference

Using out C lasses
code. Because the assignment operators are supported for all of the data types described in
Table 13-5, they are not included in the comparison.

The signatures are as shown in Table 13-6.

Using out Classes
When a TYPE_var is passed as an out parameter, any previous value it referred to must be
implicitly deleted. To give the ORB enough hooks to meet this requirement, each T_var type has
a corresponding TYPE_out type that is used solely as the out parameter type.

Note: The _out classes are not intended to be instantiated directly by the programmer. Specify
an _out class only in function signatures.

Table 13-5 Comparison of Operators Supported for User-defined Data Type Out Classes

OMG IDL Data Type operator -> operator[]

struct Yes No

union Yes No

sequence Yes Yes, non-const only

array No Yes

Table 13-6 Operator Signatures for _out Classes

OMG IDL Data Type Operator Member Functions

struct TYPE * operator-> ()
TYPE * operator-> () const

union TYPE * operator-> ()
TYPE * operator-> () const

sequence TYPE * operator-> ()
TYPE * operator-> () const
TYPE & operator[](CORBA::Long index)

array TYPE_slice & operator[](CORBA::Long index)
TYPE_slice & operator[](CORBA::Long index) const
CORBA Programming Reference 13-57

The general form for TYPE_out types for variable-length types is as follows:

// C++
class TYPE_out
{
 public:
 TYPE_out(TYPE*& p) : ptr_(p) { ptr_ = 0; }
 TYPE_out(TYPE_var& p) : ptr_(p.ptr_) { delete ptr_; ptr_ = 0;}
 TYPE_out(TYPE_out& p) : ptr_(p.ptr_) {}
 TYPE_out& operator=(TYPE_out& p) { ptr_ = p.ptr_;
 return *this;
 }
 Type_out& operator=(Type* p) { ptr_ = p; return *this; }

 operator Type*&() { return ptr_; }
 Type*& ptr() { return ptr_; }

 Type* operator->() { return ptr_; }

 private:
 Type*& ptr_;

 // assignment from TYPE_var not allowed
 void operator=(const TYPE_var&):
};

The first constructor binds the reference data member with the T*& argument and sets the pointer
to the zero (0) pointer value. The second constructor binds the reference data member with the
pointer held by the TYPE_var argument, and then calls delete on the pointer (or
string_free() in the case of the String_out type or TYPE_free() in the case of a TYPE_var
for an array type TYPE). The third constructor, the copy constructor, binds the reference data
member to the same pointer referenced by the data member of the constructor argument.

Assignment from another TYPE_out copies the TYPE* referenced by the TYPE_out argument to
the data member. The overloaded assignment operator for TYPE* simply assigns the pointer
argument to the data member. Note that assignment does not cause any previously held pointer
to be deleted; in this regard, the TYPE_out type behaves exactly as a TYPE*. The TYPE*&
conversion operator returns the data member. The ptr() member function, which can be used to
avoid having to rely on implicit conversion, also returns the data member. The overloaded arrow
operator (operator->()) allows access to members of the data structure pointed to by the TYPE*
13-58 CORBA Programming Reference

Using out C lasses
data member. Compliant applications may not call the overloaded operator->() unless the
TYPE_out has been initialized with a valid nonNULL TYPE*.

Assignment to a TYPE_out from instances of the corresponding TYPE_var type is disallowed
because there is no way to determine whether the application developer wants a copy to be
performed, or whether the TYPE_var should yield ownership of its managed pointer so it can be
assigned to the TYPE_out. To perform a copy of a TYPE_var to a TYPE_out, the application
should use new, as follows:

// C++
TYPE_var t = ...;
my_out = new TYPE(t.in()); // heap-allocate a copy

The in() function called on t typically returns a const TYPE&, suitable for invoking the copy
constructor of the newly allocated T instance.

Alternatively, to make the TYPE_var yield ownership of its managed pointer so it can be returned
in a T_out parameter, the application should use the TYPE_var::_retn() function, as follows:

// C++
TYPE_var t = ...;
my_out = t._retn(); // t yields ownership, no copy

Note that the TYPE_out types are not intended to serve as general-purpose data types to be
created and destroyed by applications; they are used only as types within operation signatures to
allow necessary memory management side-effects to occur properly.

Object Reference out Parameter
When a _var is passed as an out parameter, any previous value it refers to must be implicitly
released. To give C++ mapping implementations enough hooks to meet this requirement, each
object reference type results in the generation of an _out type that is used solely as the out
parameter type. For example, interface TYPE results in the object reference type TYPE_ptr, the
helper type TYPE_var, and the out parameter type TYPE_out. The general form for object
reference _out types is as follows:

// C++
class TYPE_out
{
 public:
 TYPE_out(TYPE_ptr& p) : ptr_(p) { ptr_ = TYPE::_nil(); }
 TYPE_out(TYPE_var& p) : ptr_(p.ptr_) {
CORBA Programming Reference 13-59

 release(ptr_); ptr_ = TYPE::_nil();
 }
 TYPE_out(TYPE_out& a) : ptr_(a.ptr_) {}
 TYPE_out& operator=(TYPE_out& a) {
 ptr_ = a.ptr_; return *this;
 }
 TYPE_out& operator=(const TYPE_var& a) {
 ptr_ = TYPE::_duplicate(TYPE_ptr(a)); return *this;
 }
 TYPE_out& operator=(TYPE_ptr p) { ptr_ = p; return *this; }
 operator TYPE_ptr&() { return ptr_; }
 TYPE_ptr& ptr() { return ptr_; }
 TYPE_ptr operator->() { return ptr_; }

 private:
 TYPE_ptr& ptr_;
};

Sequence outs
Sequence outs support the following additional operator[] member function:

TYPE &operator[](CORBA::ULong Index);
This operator invokes the operator[] of the sequence owned by the out class. The
operator[] returns a reference to the appropriate element of the sequence at the
specified index. The Index argument specifies the index of the element to return. This
index cannot be greater than the current sequence length.

Array outs
Array outs do not support operator->, but do support the following additional operator[]
member functions to access the array elements:

TYPE_slice& operator[](CORBA::ULong Index);
const TYPE_slice & operator[](CORBA::ULong Index) const;

These operators return a reference to the array slice at the specified index. An array slice
is an array with all the dimensions of the original array except the first dimension. The
member functions for the array-generated classes use a pointer to a slice to return pointers
to an array. The Index argument specifies the index of the slice to return. This index
cannot be greater than the array dimension.
13-60 CORBA Programming Reference

Using out C lasses
String outs
When a String_var is passed as an out parameter, any previous value it refers to must be
implicitly freed. To give C++ mapping implementations enough hooks to meet this requirement,
the string type also results in the generation of a String_out type in the CORBA namespace that
is used solely as the string out parameter type. The general form for the String_out type is as
follows:

// C++
class String_out
{
 public:
 String_out(char*& p) : ptr_(p) { ptr_ = 0; }
 String_out(String_var& p) : ptr_(p.ptr_) {
 string_free(ptr_); ptr_ = 0;
 }
 String_out(String_out& s) : ptr_(s.ptr_) {}

 String_out& operator=(String_out& s) {
 ptr_ = s.ptr_; return *this;
 }
 String_out& operator=(char* p) {
 ptr_ = p; return *this;
 }
 String_out& operator=(const char* p) {
 ptr_ = string_dup(p); return *this;
 }
 operator char*&() { return ptr_; }
 char*& ptr() { return ptr_; }

 private:
 char*& ptr_;

 // assignment from String_var disallowed
 void operator=(const String_var&);
};

The first constructor binds the reference data member with the char*& argument. The second
constructor binds the reference data member with the char* held by the String_var argument,
and then calls string_free() on the string. The third constructor, the copy constructor, binds
the reference data member to the same char* bound to the data member of its argument.
CORBA Programming Reference 13-61

Assignment from another String_out copies the char* referenced by the argument
String_out to the char* referenced by the data member. The overloaded assignment operator
for char* simply assigns the char* argument to the data member. The overloaded assignment
operator for const char* duplicates the argument and assigns the result to the data member.
Note that the assignment does not cause any previously held string to be freed; in this regard, the
String_out type behaves exactly as a char*. The char*& conversion operator returns the data
member. The ptr() member function, which can be used to avoid having to rely on implicit
conversion, also returns the data member.

Assignment from String_var to a String_out is disallowed because of the memory
management ambiguities involved. Specifically, it is not possible to determine whether the string
owned by the String_var should be taken over by the String_out without copying, or if it
should be copied. Disallowing assignment from String_var forces the application developer to
make the choice explicitly, as follows:

// C++
void
A::op(String_out arg)
{
 String_var s = string_dup("some string");
 ...
 out = s; // disallowed; either
 out = string_dup(s); // 1: copy, or
 out = s._retn(); // 2: adopt
}

On the line marked with the comment “1,” the caller is explicitly copying the string held by the
String_var and assigning the result to the out argument. Alternatively, the caller could use the
technique shown on the line marked with the comment “2” to force the String_var to give up
its ownership of the string it holds so that it may be returned in the out argument without
incurring memory management errors.

Argument Passing Considerations
The mapping of parameter passing modes attempts to balance the need for both efficiency and
simplicity. For primitive types, enumerations, and object references,
the modes are straightforward, passing the type P for primitives and enumerations and the type
A_ptr for an interface type A.
13-62 CORBA Programming Reference

Argument Pass ing Cons ide rat i ons
Aggregate types are complicated by the question of when and how parameter memory is allocated
and deallocated. Mapping in parameters is straightforward because the parameter storage is
caller-allocated and read-only. The mapping for out and inout parameters is more problematic.
For variable-length types, the callee must allocate some if not all of the storage. For fixed-length
types, such as a Point type
represented as a struct containing three floating point members, caller allocation is preferable (to
allow stack allocation).

To accommodate both kinds of allocation, avoid the potential confusion of split allocation, and
eliminate confusion with respect to when copying occurs, the mapping is T& for a fixed-length
aggregate T and T*& for a variable-length T. This approach has the unfortunate consequence that
usage for structs depends on whether the struct is fixed- or variable-length; however, the mapping
is consistently T_var& if the caller uses the managed type T_var.

The mapping for out and inout parameters additionally requires support for deallocating any
previous variable-length data in the parameter when a T_var is passed. Even though their initial
values are not sent to the operation, the Oracle Tuxedo includes out parameters because the
parameter could contain the result from a previous call. The provision of the T_out types is
intended to give implementations the hooks necessary to free the inaccessible storage while
converting from the T_var types. The following examples demonstrate the compliant behavior:

// IDL
struct S { string name; float age; };
void f(out S p);

// C++
S_var s;
f(s);
// use s
f(s); // first result will be freed

S *sp; // need not initialize before passing to out
f(sp);
// use sp
delete sp; // cannot assume next call will free old value
f(sp);

Note that implicit deallocation of previous values for out and inout parameters works only with
T_var types, not with other types:
CORBA Programming Reference 13-63

// IDL
void q(out string s);

// C++
char *s;
for (int i = 0; i < 10; i++)
q(s); // memory leak!

Each call to the q function in the loop results in a memory leak because the caller is not invoking
string_free on the out result. There are two ways to fix this, as shown below:

// C++
char *s;
String_var svar;
for (int i = 0 ; i < 10; i++) {
 q(s);
 string_free(s); // explicit deallocation
 // OR:
 q(svar); // implicit deallocation
}

Using a plain char* for the out parameter means that the caller must explicitly deallocate its
memory before each reuse of the variable as an out parameter, while using a String_var means
that any deallocation is performed implicitly upon each use of the variable as an out parameter.

Variable-length data must be explicitly released before being overwritten. For example, before
assigning to an inout string parameter, the implementor of an operation may first delete the old
character data. Similarly, an inout interface parameter should be released before being
reassigned. One way to ensure that the parameter storage is released is to assign it to a local T_var
variable with an automatic release, as in the following example:

// IDL
interface A;
void f(inout string s, inout A obj);

// C++
void Aimpl::f(char *&s, A_ptr &obj) {
 String_var s_tmp = s;
 s = /* new data */;
 A_var obj_tmp = obj;
 obj = /* new reference */
}

13-64 CORBA Programming Reference

Argument Pass ing Cons ide rat i ons
For parameters that are passed or returned as a pointer (T*) or as a reference to a pointer (T*&),
an application is not allowed to pass or return a NULL pointer; the result of doing so is undefined.
In particular, a caller may not pass a NULL pointer under any of the following circumstances:

in and inout string

in and inout array (pointer to first element)

However, a caller may pass a reference to a pointer with a NULL value for out parameters,
because the callee does not examine the value, but overwrites it. A callee may not return a NULL
pointer under any of the following circumstances:

out and return variable-length struct

out and return variable-length union

out and return string

out and return sequence

out and return variable-length array, return fixed-length array

out and return any

Operation Parameters and Signatures
Table 13-7 displays the mapping for the basic OMG IDL parameter passing modes and return
type according to the type being passed or returned. Table 13-8 displays the same information for
T_var types. Table 13-8 is merely for informational purposes; it is expected that operation
signatures for both clients and servers will be written in terms of the parameter-passing modes
shown in Table 13-7, with the exception that the T_out types will be used as the actual parameter
types for all out parameters.

It is also expected that T_var types will support the necessary conversion operators to allow them
to be passed directly. Callers should always pass instances of either T_var types or the base types
shown in Table 13-7, and callees should treat their T_out parameters as if they were actually the
corresponding underlying types shown in Table 13-7.

In Table 13-7, fixed-length arrays are the only case where the type of an out
parameter differs from a return value, which is necessary because C++ does not allow a function
to return an array. The mapping returns a pointer to a slice of the
array, where a slice is an array with all the dimensions of the original array
specified except the first dimension.
CORBA Programming Reference 13-65

Table 13-7 Basic Argument and Result Passing

Data Type In Inout Out Return

short Short Short& Short& Short

long Long Long& Long& Long

unsigned short UShort UShort& UShort& UShort

unsigned long ULong ULong& ULong& ULong

float Float Float& Float& Float

double Double Double& Double& Double

boolean Boolean Boolean& Boolean& Boolean

char Char Char& Char& Char

wchar WChar WChar& WChar Octet

octet Octet Octet& Octet& Octet

enum enum enum& enum& enum

object reference ptr (See
Note below.)

objref_ptr objref_ptr& objref_ptr& objref_ptr

struct, fixed const struct& struct& struct& struct

struct, variable const struct& struct& struct*& struct*

union, fixed const union& union& union& union

union, variable const union& union& union*& union*

string const char* char*& char*& char*

wstring const WChar WChar*& Wchar*& WChar*

sequence const sequence& sequence& sequence*& sequence*

array, fixed const array array array array slice* (See Note
below.)
13-66 CORBA Programming Reference

Argument Pass ing Cons ide rat i ons
Note: The Object reference ptr data type includes pseudo-object references. The array slice
return is an array with all the dimensions of the original array except the first dimension.

A caller is responsible for providing storage for all arguments passed as in arguments.

Note: The object reference var data type includes pseudo-object references.

Table 13-9 and Table 13-10 describe the caller’s responsibility for storage associated with inout
and out parameters and for return results.

array, variable const array array array slice*& array slice*

any const any& any& any*& any*

Table 13-7 Basic Argument and Result Passing (Continued)

Data Type In Inout Out Return

Table 13-8 T_var Argument and Result Passing

Data Type In Inout Out Return

object reference var
(See Note below.)

const objref_var& objref_var& objref_var& objref_var

struct_var const struct_var& struct_var& struct_var& struct_var

union_var const union_var& union_var& union_var& union_var

string_var const string_var& string_var& string_var& string_var

sequence_var const sequence_var& sequence_var& sequence_var& sequence_var

array_var const array_var& array_var& array_var& array_var

any_var const any_var& any_var& any_var& any_var

Table 13-9 Caller Argument Storage Responsibilities

Type Inout Param Out Param Return Result

short 1 1 1

long 1 1 1
CORBA Programming Reference 13-67

unsigned short 1 1 1

unsigned long 1 1 1

float 1 1 1

double 1 1 1

boolean 1 1 1

char 1 1 1

wchar 1 1 1

octet 1 1 1

enum 1 1 1

object reference ptr 2 2 2

struct, fixed 1 1 1

struct, variable 1 3 3

union, fixed 1 1 1

union, variable 1 3 3

string 4 3 3

wstring 4 3 3

sequence 5 3 3

array, fixed 1 1 6

array, variable 1 6 6

any 5 3 3

Table 13-9 Caller Argument Storage Responsibilities (Continued)

Type Inout Param Out Param Return Result
13-68 CORBA Programming Reference

Argument Pass ing Cons ide rat i ons
Table 13-10 Argument Passing Cases

Case

1 Caller allocates all necessary storage, except that which may be encapsulated and
managed within the parameter itself. For inout parameters, the caller provides
the initial value, and the callee may change that value. For out parameters, the
caller allocates the storage but need not initialize it, and the callee sets the value.
Function returns are by value.

2 Caller allocates storage for the object reference. For inout parameters, the caller
provides an initial value; if the callee wants to reassign the inout parameter, it
will first call CORBA::release on the original input value. To continue to use
an object reference passed in as an inout, the caller must first duplicate the
reference. The caller is responsible for the release of all out and return object
references. Release of all object references embedded in other structures is
performed automatically by the structures themselves.

3 For out parameters, the caller allocates a pointer and passes it by reference to the
callee. The callee sets the pointer to point to a valid instance of the parameter’s
type. For returns, the callee returns a similar pointer. The callee is not allowed to
return a NULL pointer in either case.

In both cases, the caller is responsible for releasing the returned storage. To
maintain local/remote transparency, the caller must always release the returned
storage, regardless of whether the callee is located in the same address space as
the caller or is located in a different address space. Following the completion of a
request, the caller is not allowed to modify any values in the returned storage—to
do so, the caller must first copy the returned instance into a new instance, and
modify the new instance.

4 For inout strings, the caller provides storage for both the input string and the
char* pointing to it. Since the callee may deallocate the input string and reassign
the char* to point to new storage to hold the output value, the caller should
allocate the input string using string_alloc(). The size of the out string is,
therefore, not limited by the size of the in string. The caller is responsible for
deleting the storage for the out using string_free(). The callee is not
allowed to return a NULL pointer for an inout, out, or return value.
CORBA Programming Reference 13-69

5 For inout sequences and anys, assignment or modification of the sequence or
any may cause deallocation of owned storage before any reallocation occurs,
depending upon the state of the Boolean release parameter with which the
sequence or any was constructed.

6 For out parameters, the caller allocates a pointer to an array slice, which has all
the same dimensions of the original array except the first, and passes the pointer
by reference to the callee. The callee sets the pointer to point to a valid instance
of the array.

For returns, the callee returns a similar pointer. The callee is not allowed to return
a NULL pointer in either case. In both cases, the caller is responsible for releasing
the returned storage.

To maintain local/remote transparency, the caller must always release the
returned storage, regardless of whether the callee is located in the same address
space as the callee or is located in a different address space. Following completion
of a request, the caller is not allowed to modify any values in the returned
storage—to do so, the caller must first copy the returned array instance into a new
array instance, and modify the new instance.

Table 13-10 Argument Passing Cases (Continued)

Case
13-70 CORBA Programming Reference

C H A P T E R 14
CORBA API
This chapter describes the Oracle Tuxedo implementation of the CORBA core member functions
in C++ and their extensions. It also describes pseudo-objects and their relationship to C++
classes. Pseudo-objects are object references that cannot be transmitted across the network.
Pseudo-objects are similar to other objects; however, because the ORB owns them, they cannot
be extended.

Notes: Some of the information in this chapter is taken from the Common Object Request
Broker: Architecture and Specification. Revision 2.4.2, February 2001, published by the
Object Management Group (OMG). Used with permission of the OMG.

The Oracle Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB
were deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.x. All Oracle
Tuxedo CORBA Java client and Oracle Tuxedo CORBA Java client ORB text
references, associated code samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. Oracle Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Global Classes
The following Oracle Tuxedo classes are global in scope:

CORBA
CORBA Programming Reference 14-1

Tobj

These classes contain the predefined types, classes, and functions used in Oracle Tuxedo
development.

The CORBA class contains the classes, data types, and member functions essential to using an
Object Request Broker (ORB) as defined by CORBA. The Oracle Tuxedo extensions to CORBA
are contained in the Tobj C++ class. The Tobj class contains data types, nested classes, and
member functions that Oracle Tuxedo provides as an extension to CORBA.

Using CORBA data types and member functions in the Oracle Tuxedo product requires the
CORBA:: prefix. For example, a Long is a CORBA::Long. Likewise, to use Tobj nested classes
and member functions in the Oracle Tuxedo product, you need the Tobj:: prefix. For example,
FactoryFinder is Tobj::FactoryFinder.

Pseudo-objects
Pseudo-objects are represented as local classes, which reside in the CORBA class. A
pseudo-object and its corresponding member functions are named using a nested class structure.
For example, an ORB object is a CORBA::ORB and a Current object is a CORBA::Current.

Any Class Member Functions
This section describes the member functions of the Any class.

The mapping of these member functions to C++ is as follows:

class CORBA
{
 class Any
 {
 public:

 Any ();
 Any (const Any&);
 Any (TypeCode_ptr tc, void *value, Boolean release =
 CORBA_ FALSE);
 ~Any ();
 Any & operator=(const Any&);

 void operator<<=(Short);
 void operator<<=(UShort);
14-2 CORBA Programming Reference

Any C lass Member Funct ions
 void operator<<=(Long);
 void operator<<=(ULong);
 void operator<<=(Float);
 void operator<<=(Double);
 void operator<<=(const Any&);
 void operator<<=(const char*);
 void operator<<=(Object_ptr);
 void operator<<=(from_boolean);
 void operator<<=(from_char);
 void operator<<=(from_octet);
 void operator<<=(from_string);
 Boolean operator>>=(Short&) const;
 Boolean operator>>=(UShort&) const;
 Boolean operator>>=(Long&) const;
 Boolean operator>>=(ULong&) const;
 Boolean operator>>=(Float&) const;
 Boolean operator>>=(Double&) const;
 Boolean operator>>=(Any&) const;
 Boolean operator>>=(char*&) const;
 Boolean operator>>=(Object_ptr&) const;
 Boolean operator>>=(to_boolean) const;
 Boolean operator>>=(to_char) const;
 Boolean operator>>=(to_octet) const;
 Boolean operator>>=(to_object) const;
 Boolean operator>>=(to_string) const;

 TypeCode_ptr type()const;
 void replace(TypeCode_ptr, void *, Boolean);
 void replace(TypeCode_ptr, void *);
 const void * value() const;

 };
}; //CORBA

CORBA::Any::Any()

Synopsis
Constructs the Any object.
CORBA Programming Reference 14-3

C++ Binding
CORBA::Any::Any()

Arguments
None.

Description
This is the default constructor for the CORBA::Any class. It creates an Any object with a
TypeCode of type tc_null and a value of 0 (zero).

Return Values

None.

CORBA::Any::Any(const CORBA::Any & InitAny)

Synopsis
Constructs the Any object that is a copy of another Any object.

C++ Binding
CORBA::Any::Any(const CORBA::Any & InitAny)

Argument

InitAny
Refers to the CORBA::Any to copy.

Description
This is the copy constructor for the CORBA::Any class. This constructor duplicates the
TypeCode reference of the Any that is passed in.

The type of copying to be performed is determined by the release flag of the Any object to be
copied. If release evaluates as CORBA_TRUE, the constructor deep-copies the parameter’s value;
if release evaluates as CORBA_FALSE, the constructor shallow-copies the parameter’s value.
Using a shallow copy gives you more control to optimize memory allocation, but the caller must
ensure the Any does not use memory that has been freed.
14-4 CORBA Programming Reference

Any C lass Member Funct ions
Return Values

None.

CORBA::Any::Any(TypeCode_ptr TC, void * Value, Boolean Release)

Synopsis
Creates the Any object using a TypeCode and a value.

C++ Binding
CORBA::Any::Any(TypeCode_ptr TC, void * Value, Boolean Release)

Arguments

TC
A pointer to a TypeCode pseudo-object reference, specifying the type to be created.

Value
A pointer to the data to be used to create the Any object. The data type of this argument
must match the TypeCode specified.

Release
Determines whether the Any assumes ownership of the memory specified by the Value
argument. If Release is CORBA_TRUE, the Any assumes ownership. If Release is
CORBA_FALSE, the Any does not assume ownership; the data pointed to by the Value
argument is not released upon assignment or destruction.

Description
This constructor is used with the nontype-safe Any interface. It duplicates the specified TypeCode
object reference and then inserts the data pointed to by value inside the
Any object.

Return Values

None.

CORBA::Any::~Any()

Synopsis
Destructor for the Any.
CORBA Programming Reference 14-5

C++ Binding
CORBA::Any::~Any()

Arguments
None.

Description
This destructor frees the memory that the CORBA::Any holds (if the Release flag is specified as
CORBA_TRUE), and releases the TypeCode pseudo-object reference contained in the Any.

Return Values

None.

CORBA::Any & CORBA::Any::operator=(const CORBA::Any & InitAny)

Synopsis
Any assignment operator.

C++ Binding
CORBA::Any & CORBA::Any::operator=(const CORBA::Any & InitAny)

Arguments

InitAny
A reference to an Any to use in the assignment. The Any to use in the assignment
determines whether the Any assumes ownership of the memory in Value. If Release is
CORBA_TRUE, the Any assumes ownership and deep-copies the InitAny argument’s
value; if Release is CORBA_FALSE, the Any shallow-copies the InitAny argument’s value.

Description
This is the assignment operator for the Any class. Memory management of this member function
is determined by the current value of the Release flag. The current value of the Release flag
determines whether the current memory is released before the assignment. If the current Release
flag is CORBA_TRUE, the Any releases any value previously held; if the current Release flag is
CORBA_FALSE, the Any does not release any value previously held.
14-6 CORBA Programming Reference

Any C lass Member Funct ions
Return Values

Returns the Any, which holds the copy of the InitAny.

void CORBA::any::operator<<=()

Synopsis
Type safe Any insertion operators.

C++ Binding
void CORBA::Any::operator<<=(CORBA::Short Value)
void CORBA::Any::operator<<=(CORBA::UShort Value)
void CORBA::Any::operator<<=(CORBA::Long Value)
void CORBA::Any::operator<<=(CORBA::Ulong Value)
void CORBA::Any::operator<<=(CORBA::Float Value)
void CORBA::Any::operator<<=(CORBA::Double Value)
void CORBA::Any::operator<<=(const CORBA::Any & Value)
void CORBA::Any::operator<<=(const char * Value)
void CORBA::Any::operator<<=(Object_ptr Value)

Argument
Value

Type specific value to be inserted into the Any.

Description
This insertion member function performs type-safe insertions. If the Any had a previous value,
and the Release flag is CORBA_TRUE, the memory is deallocated and the previous TypeCode
object reference is freed. The new value is inserted into the Any by copying the value passed in
using the Value parameter. The appropriate TypeCode reference is duplicated.

Return Values
None.

CORBA::Boolean CORBA::Any::operator>>=()

Synopsis
Type safe Any extraction operators.
CORBA Programming Reference 14-7

C++ Binding
CORBA::Boolean CORBA::Any::operator>>=(
 CORBA::Short & Value) const
CORBA::Boolean CORBA::Any::operator>>=(
 CORBA::UShort & Value) const
CORBA::Boolean CORBA::Any::operator>>=(
 CORBA::Long & Value) const
CORBA::Boolean CORBA::Any::operator>>=(
 CORBA::Ulong & Value) const
CORBA::Boolean CORBA::Any::operator>>=(
 CORBA::Float & Value) const
CORBA::Boolean CORBA::Any::operator>>=(
 CORBA::Double & Value) const
CORBA::Boolean CORBA::Any::operator>>=(CORBA::Any & Value) const
CORBA::Boolean CORBA::Any::operator>>=(char * & Value) const
CORBA::Boolean CORBA::Any::operator>>=(Object_ptr & Value) const

Argument
The Value argument is a reference to the relevant object that receives the output of the value
contained in the Any object.

Description
This extraction member function performs type-safe extractions. If the Any object contains the
specified type, this member function assigns the pointer of the Any to the output reference value,
Value, and CORBA_TRUE is returned. If the Any does not contain the appropriate type,
CORBA_FALSE is returned. The caller must not attempt to release or delete the storage because it
is owned and managed by the Any object. The Value argument is a reference to the relevant
object that receives the output of the value contained in the Any object. If the Any object does not
contain the appropriate type, the value remains unchanged.

Return Values
CORBA_TRUE if the Any contained a value of the specific type. CORBA_FALSE if the Any did not
contain a value of the specific type.
14-8 CORBA Programming Reference

Any C lass Member Funct ions
CORBA::Any::operator<<=()

Synopsis
Type safe insertion operators for Any.

C++ Binding
void CORBA::Any::operator<<=(from_boolean Value)
void CORBA::Any::operator<<=(from_char Value)
void CORBA::Any::operator<<=(from_octet Value)
void CORBA::Any::operator<<=(from_string Value)

Argument
Value

A relevant object that contains the value to insert into the Any.

Description
These insertion member functions perform a type-safe insertion of a CORBA::Boolean, a
CORBA::Char, or a CORBA::Octet reference into an Any. If the Any had a previous value, and
its Release flag is CORBA_TRUE, the memory is deallocated and the previous TypeCode object
reference is freed. The new value is inserted into the Any object by copying the value passed in
using the Value parameter. The appropriate TypeCode reference is duplicated.

Return Values
None.

CORBA::Boolean CORBA::Any::operator>>=()

Synopsis
Type-safe extraction operators for Any.

C++ Binding
CORBA::Boolean CORBA::Any::operator>>=(to_boolean Value) const
CORBA::Boolean CORBA::Any::operator>>=(to_char Value) const
CORBA::Boolean CORBA::Any::operator>>=(to_octet Value) const
CORBA::Boolean CORBA::Any::operator>>=(to_object Value) const
CORBA::Boolean CORBA::Any::operator>>=(to_string Value) const
CORBA Programming Reference 14-9

Argument

Value
A reference to the relevant object that receives the output of the value contained in the Any
object. If the Any object does not contain the appropriate type, the value remains
unchanged.

Description
These extraction member functions perform a type-safe extraction of a CORBA::Boolean, a
CORBA::Char, a CORBA::Octet, a CORBA::Object, or a String reference from an Any. These
member functions are helpers nested in the Any class. Their purpose is to distinguish extractions
of the OMG IDL types: Boolean, char, and octet (C++ does not require these to be distinct types).

Return Values
If the Any contains the specified type, this member function assigns the value in the Any object
reference to the output variable, Value, and returns CORBA_TRUE. If the Any object does not
contain the appropriate type, CORBA_FALSE is returned.

CORBA::TypeCode_ptr CORBA::Any::type() const

Synopsis
TypeCode accessor for Any.

C++ Binding
CORBA::TypeCode_ptr CORBA::Any::type();

Arguments
None.

Description
This function returns the TypeCode_ptr pseudo-object reference of the TypeCode object
associated with the Any. The TypeCode_ptr pseudo-object reference must be released by the
CORBA::release member function or must be assigned to a TypeCode_var to be automatically
released.

Return Values
TypeCode_ptr contained in the Any.
14-10 CORBA Programming Reference

Contex t Member Funct ions
void CORBA::Any::replace()

Synopsis
Nontype safe Any “insertion.”

C++ Binding
void CORBA::Any::replace(TypeCode_ptr TC, void * Value,
 Boolean Release = CORBA_FALSE);

Arguments
TC

A TypeCode pseudo-object reference specifying the TypeCode value for the replaced Any
object. This argument is duplicated.

Value
A void pointer specifying the storage pointed to by the Any object.

Release
Determines whether the Any manages the specified Value argument. If Release is
CORBA_TRUE, the Any assumes ownership. If Release is CORBA_FALSE, the Any does not
assume ownership and the data pointed to by the Value parameter is not released upon
assignment or destruction.

Description
These member functions replace the data and TypeCode value currently contained in the Any with
the value of the TC and Value arguments passed in. The functions perform a nontype-safe
replacement, which means that the caller is responsible for consistency between the TypeCode
value and the data type of the storage pointed to by the Value argument.

If the value of Release is CORBA_TRUE, this function releases the existing TypeCode
pseudo-object in the Any object and frees the storage pointed to be the Any object reference.

Return Values
None.

Context Member Functions
A Context supplies optional context information associated with a method invocation.

The mapping of these member functions to C++ is as follows:
CORBA Programming Reference 14-11

class CORBA
{
 class Context
 {
 public:
 const char *context_name() const;
 Context_ptr parent() const;

 void create_child(const char *, Context_out);

 void set_one_value(const char *, const Any &);
 void set_values(NVList_ptr);
 void delete_values(const char *);
 void get_values(
 const char *,
 Flags,
 const char *,
 NVList_out
);
 }; // Context
}// CORBA

Memory Management
Context has the following special memory management rule:

Ownership of the return values of the context_name and parent functions is maintained
by the Context; these return values must not be freed by the caller.

This section describes Context member functions.

CORBA::Context::context_name

Synopsis
Returns the name of a given Context object.

C++ Binding
Const char * CORBA::Context::context_name () const;
14-12 CORBA Programming Reference

Contex t Member Funct ions
Arguments

None.

Description
This member function returns the name of a given Context object. The Context object reference
owns the memory for the returned char *. Users should not modify this memory.

Return Values
If the member function succeeds, it returns the name of the Context object. The value may be
empty if the Context object is not a child Context created by a call to
CORBA::Context::create_child.

If the Context object has no name, this is an empty string.

CORBA::Context::create_child

Synopsis
Creates a child of the Context object.

C++ Binding
void CORBA::Context::create_child (
 const char * CtxName,
 CORBA::Context_out CtxObject);

Arguments

CtxName
The name to be associated with the child of the Context reference.

CtxObject
The newly created Context object reference.

Exception
CORBA::NO_MEMORY

Description
This member function creates a child of the Context object. That is, searches on the child Context
object will look for matching property names in the parent context (and so on, up the context tree),
if necessary.
CORBA Programming Reference 14-13

Return Values
None.

See Also
CORBA::ORB::get_default_context
CORBA::release

CORBA::Context::delete_values

Synopsis
Deletes the values for a specified attribute in the Context object.

C++ Binding
void CORBA::Context::delete_values (
 const char * AttrName);

Argument

AttrName
The name of the attribute whose values are to be deleted. If this argument has a trailing
wildcard character (*), all names that match the string preceding the wildcard character
are deleted.

Exceptions
CORBA::BAD_PARAM if attribute is an empty string.
CORBA::BAD_CONTEXT if no matching attributes to be deleted were found.

Description
This member function deletes named values for an attribute in the Context object. Note that it
does not recursively do the same to its parents, if any.

Return Values
None.

See Also
CORBA::Context::create_child
CORBA::ORB::get_default_context
14-14 CORBA Programming Reference

Contex t Member Funct ions
CORBA::Context::get_values

Synopsis
Retrieves the values for a given attribute in the Context object within the specified scope.

C++ Binding
void CORBA::Context::get_values (
 const char * StartScope,
 CORBA::Flags OpFlags,
 const char * AttrName,
 CORBA::NVList_out AttrValues);

Arguments

StartScope
The Context object level at which to initiate the search for specified properties. The level
is the name of the context, or parent, at which the search is started. If the value is 0 (zero),
the search begins with the current Context object.

OpFlags
The only valid operation flag is CORBA::CTX_RESTRICT_SCOPE. If you specify this flag,
the object implementation restricts the property search to the current scope only (that is,
the property search is not executed recursively up the chain of the parent context);
otherwise, the search continues to a wider scope until a match has been found or until all
wider levels have been searched.

AttrName
The name of the attribute whose values are to be returned. If this argument has a trailing
wildcard character (*), all names that match the string preceding the wildcard character
are returned.

AttrValues
Receives the values for the specified attributes (returns an NVList object) where each
item in the list is a NamedValue.

Exceptions
CORBA::BAD_PARAM if attribute is an empty string.
CORBA::BAD_CONTEXT if no matching attributes were found.
CORBA::NO_MEMORY if dynamic memory allocation failed.
CORBA Programming Reference 14-15

Description
This member function retrieves the values for a specified attribute in the Context object. These
values are returned as an NVList object, which must be freed when no longer needed using the
CORBA::release member function.

Return Values
None.

See Also
CORBA::Context::create_child
CORBA::ORB::get_default_context

CORBA::Context::parent

Synopsis
Returns the parent context of the Context object.

C++ Binding
CORBA::Context_ptr CORBA::Context::parent () const;

Arguments
None.

Description
This member function returns the parent context of the Context object. The parent of the Context
object is an attribute owned by the Context and should not be modified or freed by the caller. This
parent is nil unless the Context object was created using the CORBA::Context::create_child
member function.

Return Values
If the member function succeeds, the parent context of the Context object is returned. The parent
context may be nil. Use the CORBA::is_nil member function to test for a nil object reference.

If the member function does not succeed, an exception is thrown. Use the CORBA::is_nil
member function to test for a nil object reference.
14-16 CORBA Programming Reference

Contex t Member Funct ions
CORBA::Context::set_one_value

Synopsis
Sets the value for a given attribute in the Context object.

C++ Binding
void CORBA::Context::set_one_value (
 const char * AttrName,
 const CORBA::Any & AttrValue);

Arguments

AttrName
The name of the attribute to set.

AttrValue
The value of the attribute. Currently, the Oracle Tuxedo system supports only the string
type; therefore, this parameter must contain a CORBA::Any object with a string inside.

Exceptions
CORBA::BAD_PARAM if AttrName is an empty string or AttrValue does not contain a string type.
CORBA::NO_MEMORY if dynamic memory allocation failed.

Description
This member function sets the value for a given attribute in the Context object. Currently, only
string values are supported by the Context object. If the Context object already has an attribute
with the given name, it is deleted first.

Return Values
None.

See Also
CORBA::Context::get_values
CORBA::Context::set_values
CORBA Programming Reference 14-17

CORBA::Context::set_values

Synopsis
Sets the values for given attributes in the Context object.

C++ Binding
void CORBA::Context::set_values (
 CORBA::NVList_ptr AttrValue);

Argument

AttrValues
The name and value of the attribute. Currently the Oracle Tuxedo system supports only
the string type; therefore, all NamedValue objects in the list must have CORBA::Any
objects with a string inside.

Exceptions
CORBA::BAD_PARAM if any of the attribute values has a value that is not a string type.
CORBA::NO_MEMORY if dynamic memory allocation failed.

Description
This member function sets the values for given attributes in the Context object. The
CORBA::NVList member function contains the property name and value pairs to be set.

Return Values
 None.

See Also
CORBA::Context::get_values
CORBA::Context::set_one_value

ContextList Member Functions
The ContextList allows a client or server application to provide a list of context strings that must
be supplied with Request invocation. For a description of the Request member functions, see the
section “Request Member Functions” on page 14-96.

The ContextList differs from the Context in that the former supplies only the context strings
whose values are to be looked up and sent with the request invocation (if applicable), while the
14-18 CORBA Programming Reference

Contex tL is t Member Funct ions
latter is where those values are obtained. For a description of the Context member functions, see
the section Context Member Functions.

The mapping of these member functions to C++ is as follows:

class CORBA
{
 class ContextList
 {
 public:
 Ulong count ();
 void add(const char* ctxt);
 void add_consume(char* ctxt);
 const char* item(Ulong index);
 Status remove(Ulong index);
 }; // ContextList
}// CORBA

CORBA::ContextList:: count

Synopsis
Retrieves the current number of items in the list.

C++ Binding
Ulong count ();

Arguments
None.

Exception
If the function does not succeed, an exception is thrown.

Description
This member function retrieves the current number of items in the list.
CORBA Programming Reference 14-19

Return Values
If the function succeeds, the returned value is the number of items in the list. If the list has just
been created, and no ContextList objects have been added, this function returns 0 (zero).

See Also
CORBA::ContextList::add
CORBA::ContextList::add_consume
CORBA::ContextList::item
CORBA::ContextList::remove

CORBA::ContextList::add

Synopsis
Constructs a ContextList object with an unnamed item, setting only the flags attribute.

C++ Binding
void add(const char* ctxt);

Argument
ctxt

Defines the memory location referred to by char*.

Exception
If the member function does not succeed, a CORBA::NO_MEMORY exception is thrown.

Description
This member function constructs a ContextList object with an unnamed item, setting only the
flags attribute.

The ContextList object grows dynamically; your application does not need to track its size.

Return Values
If the function succeeds, the return value is a pointer to the newly created ContextList object.

See Also
CORBA::ContextList::add_consume
CORBA::ContextList::count
14-20 CORBA Programming Reference

Contex tL is t Member Funct ions
CORBA::ContextList::item
CORBA::ContextList::remove

CORBA::ContextList::add_consume

Synopsis
Constructs a ContextList object.

C++ Binding
void add_consume(const char* ctxt);

Argument

ctxt
Defines the memory location referred to by char*.

Exception
If the member function does not succeed, an exception is raised.

Description
This member function constructs a ContextList object.

The ContextList object grows dynamically; your application does not need to track its size.

Return Values
If the function succeeds, the return value is a pointer to the newly created ContextList object.

See Also
CORBA::ContextList::add
CORBA::ContextList::count
CORBA::ContextList::item
CORBA::ContextList::remove

CORBA::ContextList::item

Synopsis
Retrieves a pointer to the ContextList object, based on the index passed in.
CORBA Programming Reference 14-21

C++ Binding
const char* item(ULong index);

Argument

index
The index into the ContextList object. The indexing is zero-based.

Exceptions
If this function does not succeed, the BAD_PARAM exception is thrown.

Description
This member function retrieves a pointer to a ContextList object, based on the index passed in.
The function uses zero-based indexing.

Return Values
If the function succeeds, the return value is a pointer to the ContextList object.

See Also
CORBA::ContextList::add
CORBA::ContextList::add_consume
CORBA::ContextList::count
CORBA::ContextList::remove

CORBA::ContextList::remove

Synopsis
Removes the item at the specified index, frees any associated memory, and reorders the
remaining items on the list.

C++ Binding
Status remove(ULong index);

Argument
Index

The index into the ContextList object. The indexing is zero-based.
14-22 CORBA Programming Reference

NamedValue Member Funct ions
Exceptions
If this function does not succeed, the BAD_PARAM exception is thrown.

Description
This member function removes the item at the specified index, frees any associated memory, and
reorders the remaining items on the list.

Return Values
None.

See Also
CORBA::ContextList::add
CORBA::ContextList::add_consume
CORBA::ContextList::count
CORBA::ContextList::item

NamedValue Member Functions
NamedValue is used only as an element of NVList, especially in the DII. NamedValue maintains
an (optional) name, an any value, and labelling flags. Legal flag values are CORBA::ARG_IN,
CORBA::ARG_OUT, and CORBA::ARG_INOUT.

The value in a NamedValue may be manipulated via standard operations on any.

The mapping of these member functions to C++ is as follows:

// C++
class NamedValue
{
 public:
 Flags flags() const;
 const char * name() const;
 Any * value() const;
};

Memory Management
NamedValue has the following special memory management rule:
CORBA Programming Reference 14-23

Ownership of the return values of the name() and value() functions is maintained by the
NamedValue; these return values must not be freed by the caller.

The following sections describe NamedValue member functions.

CORBA::NamedValue::flags

Synopsis
Retrieves the flags attribute of the NamedValue object.

C++ Binding
CORBA::Flags CORBA::NamedValue::flags () const;

Arguments

None.

Description
This member function retrieves the flags attribute of the NamedValue object.

Return Values
If the function succeeds, the return value is the flags attribute of the NamedValue object.

If the function does not succeed, an exception is thrown.

CORBA::NamedValue::name

Synopsis
Retrieves the name attribute of the NamedValue object.

C++ Binding
const char * CORBA::NamedValue::name () const;
14-24 CORBA Programming Reference

NamedValue Member Funct ions
Arguments

None.

Description
This member function retrieves the name attribute of the NamedValue object. The name returned
by this member function is owned by the NamedValue object and should not be modified or
released.

Return Values
If the function succeeds, the value returned is a constant Identifier object representing the name
attribute of the NamedValue object.

If the function does not succeed, an exception is thrown.

CORBA::NamedValue::value

Synopsis
Retrieves a pointer to the value attribute of the NamedValue object.

C++ Binding
CORBA::Any * CORBA::NamedValue::value () const;

Arguments

None.

Description
This member function retrieves a pointer to the Any object that represents the value attribute of
the NamedValue object. This attribute is owned by the NamedValue object, and should not be
modified or released.

Return Values
If the function succeeds, the return value is a pointer to the Any object contained in the
NamedValue object.

If the function does not succeed, an exception is thrown.
CORBA Programming Reference 14-25

NVList Member Functions
NVList is a list of NamedValues. A new NVList is constructed using the ORB::create_list
operation (see CORBA::ORB::create_exception_list). New NamedValues may be constructed as
part of an NVList, in any of following ways:

add—creates an unnamed value, initializing only the flags

add_item—initializes name and flags

add_value—initializes name, value, and flags

Each of these operations returns the new item.

Elements may be accessed and deleted via zero-based indexing. The add, add_item,
add_value, add_item_consume, and add_value_consume functions lengthen the NVList to
hold the new element each time they are called. The item function can be used to access existing
elements.

// C++
class NVList
{
 public:
 ULong count() const;
 NamedValue_ptr add(Flags);
 NamedValue_ptr add_item(const char*, Flags);
 NamedValue_ptr add_value(const char*, const Any&, Flags);
 NamedValue_ptr item(ULong);
 void remove(ULong);
};

Memory Management
NVList has the following special memory management rules:

Ownership of the return values of the add, add_item, add_value, add_item_consume,
add_value_consume, and item functions is maintained by the NVList; these return values
must not be freed by the caller.

The char* parameters to the add_item_consume and add_value_consume functions
and the Any* parameter to the add_value_consume function are consumed by the
NVList. The caller may not access these data after they have been passed to these
14-26 CORBA Programming Reference

NVL is t Member Funct ions
functions because the NVList may copy them and destroy the originals immediately. The
caller should use the NamedValue::value() operation to modify the value attribute of
the underlying NamedValue, if desired.

The remove function also calls CORBA::release on the removed NamedValue.

The following sections describe NVList member functions.

CORBA::NVList::add

Synopsis
Constructs a NamedValue object with an unnamed item, setting only the flags attribute.

C++ Binding
CORBA::NamedValue_ptr CORBA::NVList::add (
 CORBA::Flags Flags);

Argument

Flags
Flags to determine argument passing. Valid values are:

 CORBA::ARG_IN
 CORBA::ARG_INOUT
 CORBA::ARG_OUT

Description
This member function constructs a NamedValue object with an unnamed item, setting only the
flags attribute. The NamedValue object is added to the NVList object that the call was invoked
upon.

The NVList object grows dynamically; your application does not need to track its size.

Return Values
If the function succeeds, the return value is a pointer to the newly created NamedValue object.
The returned NamedValue object reference is owned by the NVList and should not be released.

If the member function does not succeed, a CORBA::NO_MEMORY exception is thrown.
CORBA Programming Reference 14-27

See Also
CORBA::NVList::add
CORBA::NVList::add_item
CORBA::NVList::add_value
CORBA::NVList::count
CORBA::NVList::remove

CORBA::NVList::add_item

Synopsis
Constructs a NamedValue object, creating an empty value attribute and initializing the name and
flags attributes.

C++ Binding
CORBA::NamedValue_ptr CORBA::NVList::add_item (
 const char * Name,
 CORBA::Flags Flags);

Arguments

Name
The name of the list item.

Flags
Flags to determine argument passing. Valid values are:

 CORBA::ARG_IN
 CORBA::ARG_INOUT
 CORBA::ARG_OUT

Description
This member function constructs a NamedValue object, creating an empty value attribute and
initializing the name and flags attributes that pass in as parameters. The NamedValue object is
added to the NVList object that the call was invoked upon.

The NVList object grows dynamically; your application does not need to track its size.
14-28 CORBA Programming Reference

NVL is t Member Funct ions
Return Values
If the function succeeds, the return value is a pointer to the newly created NamedValue object.
The returned NamedValue object reference is owned by the NVList and should not be released.

If the member function does not succeed, an exception is thrown.

See Also
CORBA::NVList::add
CORBA::NVList::add_value
CORBA::NVList::count
CORBA::NVList::item
CORBA::NVList::remove

CORBA::NVList::add_value

Synopsis
Constructs a NamedValue object, initializing the name, value, and flags attribute.

C++ Binding
CORBA::NamedValue_ptr CORBA::NVList::add_value (
 const char * Name,
 const CORBA::Any & Value,
 CORBA::Flags Flags);

Arguments

Name
The name of the list item.

Value
The value of the list item.

Flags
Flags to determine argument passing. Valid values are:

 CORBA::ARG_IN
 CORBA::ARG_INOUT
 CORBA::ARG_OUT
CORBA Programming Reference 14-29

Description
This member function constructs a NamedValue object, initializing the name, value, and flags
attributes. The NamedValue object is added to the NVList object that the call was invoked upon.

The NVList object grows dynamically; your application does not need to track its size.

Return Values
If the function succeeds, the return value is a pointer to the newly created NamedValue object.
The returned NamedValue object reference is owned by the NVList and should not be released.

If the member function does not succeed, an exception is raised.

See Also
CORBA::NVList::add
CORBA::NVList::add_item
CORBA::NVList::count
CORBA::NVList::item
CORBA::NVList::remove

CORBA::NVList::count

Synopsis
Retrieves the current number of items in the list.

C++ Binding
CORBA::ULong CORBA::NVList::count () const;

Arguments
None.

Description
This member function retrieves the current number of items in the list.

Return Values
If the function succeeds, the returned value is the number of items in the list. If the list has just
been created, and no NamedValue objects have been added, this function returns 0 (zero).

If the function does not succeed, an exception is thrown.
14-30 CORBA Programming Reference

NVL is t Member Funct ions
See Also
CORBA::NVList::add
CORBA::NVList::add_item
CORBA::NVList::add_value
CORBA::NVList::item
CORBA::NVList::remove

CORBA::NVList::item

Synopsis
Retrieves a pointer to the NamedValue object, based on the index passed in.

C++ Binding
CORBA::NamedValue_ptr CORBA::NVList::item (
 CORBA::ULong Index);

Argument

Index
The index into the NVList object. The indexing is zero-based.

Exception
If this function does not succeed, the BAD_PARAM exception is thrown.

Description
This member function retrieves a pointer to a NamedValue object, based on the index passed in.
The function uses zero-based indexing.

Return Values
If the function succeeds, the return value is a pointer to the NamedValue object. The returned
NamedValue object reference is owned by the NVList and should not be released.

See Also
CORBA::NVList::add
CORBA::NVList::add_item
CORBA::NVList::add_value
CORBA::NVList::count
CORBA::NVList::remove
CORBA Programming Reference 14-31

CORBA::NVList::remove

Synopsis
Removes the item at the specified index, frees any associated memory, and reorders the
remaining items on the list.

C++ Binding
void CORBA::NVList::remove (
 CORBA::ULong Index);

Argument
Index

The index into the NVList object. The indexing is zero-based.

Exception
If this function does not succeed, the BAD_PARAM exception is thrown.

Description
This member function removes the item at the specified index, frees any associated memory, and
reorders the remaining items on the list.

Return Values
None.

See Also
CORBA::NVList::add
CORBA::NVList::add_item
CORBA::NVList::add_value
CORBA::NVList::count
CORBA::NVList::item
14-32 CORBA Programming Reference

Objec t Member Funct ions
Object Member Functions
The rules in this section apply to the OMG IDL interface Object, which is the base of the OMG
IDL interface hierarchy. Interface Object defines a normal CORBA object, not a pseudo-object.
However, it is included here because it references other pseudo-objects.

In addition to other rules, all operation names in interface Object have leading underscores in the
mapped C++ class. Also, the mapping for create_request is divided into three forms,
corresponding to the usage styles described in the section Request Member Functions. The
is_nil and release functions are provided in the CORBA namespace, as described in Object
Member Functions.

The Oracle Tuxedo software uses object reference operations that are defined by CORBA
Revision 2.2. These operations depend only on type Object, so they can be expressed as regular
functions within the CORBA namespace.

Note: Because the Oracle Tuxedo software uses the POA and not the BOA, the deprecated
get_implementation() member function is not visible; you will get a compile error if
you attempt to reference it.

The mapping of these member functions to C++ is as follows:

class CORBA
{
 class Object
 {
 public:
 CORBA::Boolean _is_a(const char *)
 CORBA::Boolean _is_equivalent();
 CORBA::Boolean _nonexistent(Object_ptr);

 static Object_ptr _duplicate(Object_ptr obj);
 static Object_ptr _nil();
 InterfaceDef_ptr _get_interface();
 CORBA::ULong _hass(CORBA::ULong);
 void _create_request(
 Context_ptr ctx,
 const char *operation,
 NVList_ptr arg_list,
 NamedValue_ptr result,
 Request_out request,
CORBA Programming Reference 14-33

 Flags req_flags
);
 Status _create_request(
 Context_ptr ctx,
 const char * operation,
 NVList_ptr arg_list,
 NamedValue_ptr result,
 ExceptionList_ptr Except_list,
 ContextList_ptr Context_list,
 Request_out request,
 Flags req_flags
);
 Request_ptr _request(const char* operation);
 }; //Object
}; // CORBA

The following sections describe the Object member functions.

CORBA::Object::_create_request

Synopsis
Creates a request with user-specified information.

C++ Binding
Void CORBA::Object::_create_request (
 CORBA::Context_ptr Ctx,
 const char * Operation,
 CORBA::NVList_ptr Arg_list,
 CORBA::NamedValue_ptr Result,
 CORBA::ExceptionList_ptr Except_list,
 CORBA::ContextList_ptr Context_list,
 CORBA::Request_out Request,
 CORBA::Flags Req_flags,);

Arguments

Ctx
The Context to be used for this request.
14-34 CORBA Programming Reference

Objec t Member Funct ions
Operation
The operation name for this request.

Arg_list
The argument list for this request.

Result
The NamedValue reference where the return value of this request is to be stored after a
successful invocation.

Except_list
The exception list for this request.

Context_list
The context list for this request.

Request
The newly created request reference.

Req_flags
Reserved for future use; the user must pass a value of zero.

Description
This member function creates a request that provides information on context, operation name,
and other values (long form). To create a request with just the operation name supplied at the time
of the call (short form), use the CORBA::Object::_request member function. The remainder
of the information provided in the long form eventually needs to be supplied.

Return Values
None.

See Also
CORBA::Object::_request

CORBA::Object::_duplicate

Synopsis
Duplicates the Object object reference.
CORBA Programming Reference 14-35

C++ Binding
CORBA::Object_ptr CORBA::Object::_duplicate(
 Object_ptr Obj);

Argument
obj

The object reference to be duplicated.

Description
This member function duplicates the specified Object object reference (Obj). If the given object
reference is nil, the _duplicate function returns a nil object reference. The object returned by
this call should be freed using CORBA::release, or should be assigned to CORBA::Object_var
for automatic destruction.

This function can throw CORBA system exceptions.

Return Values
Returns the duplicate object reference. If the specified object reference is nil, a nil object
reference is returned.

Example
CORBA::Object_ptr op = TP::create_object_reference(
 "IDL:Teller:1.0","MyTeller");
CORBA::Object_ptr dop = CORBA::Object::_duplicate(op);

CORBA::Object::_get_interface

Synopsis
Returns an interface definition for the Repository object.

C++ Binding
CORBA::InterfaceDef_ptr CORBA::Object::_get_interface ();

Arguments
None.
14-36 CORBA Programming Reference

Objec t Member Funct ions
Description
Returns an interface definition for the Repository object.

Note: To use the Repository Interface API, define a macro before CORBA.h is included. For
information about how to define a macro, see Creating CORBA Server Applications.

Return Values
InterfaceDef_ptr

CORBA::Object::_is_a

Synopsis
Determines whether an object is of a certain interface.

C++ Binding
CORBA::Boolean CORBA::Object::_is_a(const char * interface_id);

Argument
interface_id

A string that denotes the interface repository ID.

Description
This member function is used to determine if an object is an instance of the interface that you
specify in the interface_id parameter. It facilitates maintaining type-safety for object
references over the scope of an ORB.

Return Values
Returns TRUE if the object is an instance of the specified type, or if the object is an ancestor of the
“most derived” type of that object.

Example
CORBA::Object_ptr op = TP::create_object_reference(
 "IDL:Teller:1.0", "MyTeller");
CORBA::Boolean b = op->_is_a("IDL:Teller:1.0");
CORBA Programming Reference 14-37

CORBA::Object::_is_equivalent

Synopsis
Determines if two object references are equivalent.

C++ Binding
CORBA::Boolean CORBA::Object::_is_equivalent (
 CORBA::Object_ptr other_obj);

Argument
other_obj

The object reference for the other object, which is used for comparison with the target
object.

Exceptions
Can throw a standard CORBA exception.

Description
This member function is used to determine if two object references are equivalent, so far as the
ORB can easily determine. It returns TRUE if your object reference is equivalent to the object
reference you pass as a parameter. If two object references are identical, they are equivalent. Two
different object references that refer to the same object are also equivalent.

Return Values
Returns TRUE if the target object reference is known to be equivalent to the other object reference
passed as a parameter; otherwise, it returns FALSE.

Example
CORBA::Object_ptr op = TP::create_object_reference(
 "IDL:Teller:1.0", "MyTeller");
CORBA::Object_ptr dop = CORBA::Object::_duplicate(op);
CORBA::Boolean b = op->_is_equivalent(dop);

CORBA::Object::_nil

Synopsis
Returns a reference to a nil object.
14-38 CORBA Programming Reference

Objec t Member Funct ions
C++ Binding
CORBA::Object_ptr CORBA::Object::_nil();

Arguments
None.

Description
This member function returns a nil object reference. To test whether a given object is nil, use the
appropriate CORBA::is_nil member function (see the section CORBA::release). Calling the
CORBA:is_nil routine on any _nil member function always yields CORBA_TRUE.

Return Values
Returns a nil object reference.

Example
CORBA::Object_ptr op = CORBA::Object::_nil();

CORBA::Object::_non_existent

Synopsis
May be used to determine if an object has been destroyed.

C++ Binding
CORBA::Boolean CORBA::Object::_non_existent();

Arguments
None.

Description
This member function may be used to determine if an object has been destroyed. It does this
without invoking any application-level operation on the object, and so will never affect the object
itself.

Return Values
Returns CORBA_TRUE (rather than raising CORBA::OBJECT_NOT_EXIST) if the ORB knows
authoritatively that the object does not exist; otherwise, it returns CORBA_FALSE.
CORBA Programming Reference 14-39

CORBA::Object::_request

Synopsis
Creates a request specifying the operation name.

C++ Binding
CORBA::Request_ptr CORBA::Object::_request (
 const char * Operation);

Argument

Operation
The name of the operation for this request.

Description
This member function creates a request specifying the operation name. All other information,
such as arguments and results, must be populated using CORBA::Request member functions.

Return Values
If the member function succeeds, the return value is a pointer to the newly created request.

If the member function does not succeed, an exception is thrown.

See Also
CORBA::Object::_create_request

CORBA Member Functions
This section describes the Object and Pseudo-Object Reference member functions.

The mapping of these member functions to C++ is as follows:

class CORBA {
 void release(Object_ptr);
 void release(Environment_ptr);
 void release(NamedValue_ptr);

void release(NVList_ptr);
 void release(Request_ptr);
 void release(Context_ptr);
 void release(TypeCode_ptr);
14-40 CORBA Programming Reference

CORBA Member Funct ions
 void release(POA_ptr);
 void release(ORB_ptr);
 void release(ExceptionList_ptr);
 void release(ContextList_ptr);

 Boolean is_nil(Object_ptr);

Boolean is_nil(Environment_ptr);
 Boolean is_nil(NamedValue_ptr);
 Boolean is_nil(NVList_ptr);
 Boolean is_nil(Request_ptr);
 Boolean is_nil(Context_ptr);
 Boolean is_nil(TypeCode_ptr);
 Boolean is_nil(POA_ptr);
 Boolean is_nil(ORB_ptr);
 Boolean is_nil(ExceptionList_ptr);
 Boolean is_nil(ContextList_ptr);

 hash(maximum);

resolve_initial_references(identifier);
 ...
};

CORBA::release

Synopsis
Allows allocated resources to be released for the specified object type.

C++ Binding
void CORBA::release(spec_object_type obj);

Argument
obj

The object reference that the caller will no longer access. The specified object type must
be one of the types listed in the section CORBA Member Functions.
CORBA Programming Reference 14-41

Description
This member function indicates that the caller will no longer access the reference so that
associated resources may be deallocated. If the specified object reference is nil, the release
operation does nothing. If the ORB instance release is the last reference to the ORB, then the ORB
will be shut down prior to its destruction. This is the same as calling ORB_shutdown prior to
calling CORBA::release. This only applies to the release member function called on the ORB.

This member function may not throw CORBA exceptions.

Return Values
None.

Example
CORBA::Object_ptr op = TP::create_object_reference(
 "IDL:Teller:1.0", "MyTeller");
CORBA::release(op);

CORBA::is_nil

Synopsis
Determines if an object exists for the specified object type.

C++ Binding
CORBA::Boolean CORBA::is_nil(spec_object_type obj);

Argument
obj

The object reference. The specified object type must be one of the types listed in the
section CORBA Member Functions.

Description
This member function is used to determine if a specified object reference is nil. It returns TRUE
if the object reference contains the special value for a nil object reference as defined by the ORB.

This operation may not throw CORBA exceptions.

Return Values
Returns TRUE if the specified object is nil; otherwise, returns FALSE.
14-42 CORBA Programming Reference

CORBA Member Funct ions
Example
CORBA::Object_ptr op = TP::create_object_reference(
 "IDL:Teller:1.0", "MyTeller");
CORBA::Boolean b = CORBA::is_nil(op);

CORBA::hash

Synopsis
Provides indirect access to object references using identifiers internal to the ORB.

C++ Binding
CORBA::hash(CORBA::ULong maximum);

Argument
maximum

Specifies an upper bound on the hash value returned by the ORB.

Description
Object references are associated with ORB-internal identifiers that may indirectly be accessed by
applications using the hash() operation. The value of this identifier does not change during the
lifetime of the object reference, and so neither will any hash function of that identifier.

The value of this operation is not guaranteed to be unique; that is, another object reference may
return the same hash value. However, if two object references hash differently, applications can
determine that the two object references are not identical.

The maximum parameter to the hash operation specifies an upper bound on the hash value
returned by the ORB. The lower bound of that value is zero. Since a typical use of this feature is
to construct and access a collision-chained hash table of object references, the more randomly
distributed the values are within that range, and the less expensive those values are to compute,
the better.

Return Values
None.
CORBA Programming Reference 14-43

CORBA::resolve_initial_references

Synopsis
Returns an initial object reference corresponding to an identifier string.

C++ Binding
CORBA::Object_ptr CORBA::resolve_initial_references(
 const CORBA::char *identifier);

Argument
identifier

String identifying the object whose reference is required.

Exception
InvalidName

Description
Returns an initial object reference corresponding to an identifier string. Valid identifiers are
“RootPOA” and “POACurrent”.

Note: This function is supported only for a joint client/server.

Return Values
Returns a CORBA::Object_ptr.

Example
CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
CORBA::Object_ptr pfobj =
 orb->resolve_initial_references("RootPOA");
PortableServer::POA_ptr rootPOA;
rootPOA = PortableServer::POA::narrow(pfobj);

ORB Member Functions
The ORB member functions constitute the programming interface to the Object Request Broker.

The mapping of the ORB member functions to C++ is as follows:
14-44 CORBA Programming Reference

ORB Member Funct ions
class CORBA
{
 class ORB
 {
 public:
 char *object_to_string(Object_ptr);
 Object_ptr string_to_object(const char *);
 void create_list(Long, NVList_out);
 void create_operation_list(operationDef_ptr, NVList_out);
 void create_named_value(NamedValue_out);
 void create_exception_list(ExceptionList_out);
 void create_context_list(ContextList_out);
 void get_default_context(Context_out);
 void create_environment(Environment_out);
 void send_multiple_requests_oneway(const requestSeq&);
 void send_multiple_requests_deferred(const requestSeq&);
 Boolean poll_next_response();
 void get_next_response(Request_out);
 Boolean work_pending();
 void perform_work();
 void create_policy (in PolicyType type, in any val);
 // Extension
 void destroy();
 // Extensions to support sharing context between threads
 void Ctx get_ctx() = 0;
 void set_ctx(Ctx) = 0;
 void clear_ctx() = 0;
 // Thread extensions
 void inform_thread_exit(TID) = 0;
 }; //ORB
}; // CORBA

Thread-related Operations:

To support single-threaded ORBs, as well as multithreaded ORBs that run multithread-unaware
code, two operations (perform_work and work_pending) are included in the ORB interface.
These operations can be used by single-threaded and multithreaded applications. An application
that is a pure ORB client would not need to use these operations.
CORBA Programming Reference 14-45

To support multithreaded server applications, four operations (get_ctx, set_ctx, clear_ctx,
and inform_thread_exit) are included as extensions to the ORB interface.

The following sections describe the ORB member functions.

CORBA::ORB::clear_ctx

Synopsis
Indicates that a context is no longer required by this thread. This method supports the
development of a multithreaded server application.

C++ Binding
void clear_ctx()

Parameters
None.

Return Value
None.

Description
This method is called by an application-managed thread after the thread has finished using the
context. The method removes the association between that thread and a context.

Note: Do not call the clear_ctx method from within a thread that is managed by the Oracle
Tuxedo system. The Oracle Tuxedo system performs the appropriate context propagation
and cleanup automatically for the threads it manages. If this method is called on a thread
managed by the Oracle Tuxedo system, the BAD_PARAM exception is thrown.

Example
TP::orb()->clear_ctx();

See Also
CORBA::ORB::get_ctx
CORBA::ORB::set_ctx
14-46 CORBA Programming Reference

ORB Member Funct ions
CORBA::ORB::create_context_list

Synopsis
Creates and returns a list of contexts.

C++ Binding
void CORBA::ORB::create_context_list(
 CORBA::ContextList_out List);

Argument
List

Receives a reference to the newly created context list.

Description
This member function creates and returns a list of context strings that must be supplied with the
Request operation in a form that may be used in the Dynamic Invocation Interface (DII). When
no longer needed, this list must be freed using the CORBA::release member function.

Return Values
None.

CORBA::ORB::create_environment

Synopsis
Creates an environment.

C++ Binding
void CORBA::ORB::create_environment (
 CORBA::Environment_out New_env);

Argument
New_env

Receives a reference to the newly created environment.

Description
This member function creates an environment.
CORBA Programming Reference 14-47

Return Values
None.

See Also
CORBA::NVList::add
CORBA::NVList::add_item
CORBA::NVList::add_value
CORBA::release

CORBA::ORB::create_exception_list

Synopsis
Returns a list of exceptions.

C++ Binding
void CORBA::ORB::create_exception_list(
 CORBA::ExceptionList_out List);

Argument
List

Receives a reference to the newly created exception list.

Description
This member function creates and returns a list of exceptions in a form that may be used in the
Dynamic Invocation Interface (DII). When no longer needed, this list must be freed using the
CORBA::release member function.

Return Values
None.

CORBA::ORB::create_list

Synopsis
Creates and returns an NVList object reference.
14-48 CORBA Programming Reference

ORB Member Funct ions
C++ Binding
void CORBA::ORB::create_list (
 CORBA::Long NumItem,
 CORBA::NVList_out List);

Arguments

NumItem
The number of elements to preallocate in the newly created list.

List
Receives the newly created list.

Description
This member function creates a list, preallocating a specified number of items. List items may be
sequentially added to the list using the CORBA::NVList_add_item member function. When no
longer needed, this list must be freed using the CORBA::release member function.

Return Values
None.

See Also
CORBA::NVList::add
CORBA::NVList::add_item
CORBA::NVList::add_value
CORBA::release

CORBA::ORB::create_named_value

Synopsis
Creates a NamedValue object reference.

C++ Binding
void CORBA::ORB::create_named_value (
 NameValue_out NewNamedVal);
CORBA Programming Reference 14-49

Argument

NewNamedVal
A reference to the newly created NamedValue object.

Description
This member function creates a NamedValue object. Its intended use is for the result argument
of a request that needs a NamedValue object. The extra steps of creating an NVList object are
avoided by calling this member function.

When no longer needed, the NamedValue object must be freed using the CORBA::release
member function.

Return Values
None.

See Also
CORBA::NVList::add
CORBA::NVList::add_item
CORBA::NVList::add_value
CORBA::release

CORBA::ORB::create_operation_list

Synopsis
Creates and returns a list of the arguments of a specified operation.

C++ Binding
void CORBA::ORB::create_operation_list (
 CORBA::OperationDef_ptr Oper,
 CORBA::NVList_out List);

Arguments

Oper
The operation definition for which the list is being created.

List
Receives a reference to the newly created arguments list.
14-50 CORBA Programming Reference

ORB Member Funct ions
Description
This member function creates and returns a list of the arguments of a specified operation, in a
form that may be used with the Dynamic Invocation Interface (DII). When no longer needed, this
list must be freed using the CORBA::release member function.

Return Values
None.

See Also
CORBA::OBB::create_list
CORBA::NVList::add
CORBA::NVList::add_item
CORBA::NVList::add_value
CORBA::release

CORBA::ORB::create_policy

Synopsis
Creates new instances of policy objects of a specific type with specified initial state.

C++ Binding
void CORBA::ORB::create_policy (
 in PolicyType type,
 in any val);

Arguments
type

BiDirPolicy::BIDIRECTIONAL_POLICY_TYPE is the only PolicyType value
supported for Oracle WebLogic Enterprise version 4.2.

val
The only val value supported for Oracle WebLogic Enterprise V4.2 is
BiDirPolicy::BidirectionalPolicyValue.
CORBA Programming Reference 14-51

Exceptions
PolicyError

This exception is raised to indicate problems with the parameter values passed to the
ORB::create_policy operation. The specific exception and reasons are as follows
shown in Table 14-1:

Description
This operation can be invoked to create new instances of policy objects of a specific type with
specified initial state. If create_policy fails to instantiate a new Policy object due to its
inability to interpret the requested type and content of the policy, it raises the Policy Error
exception with the appropriate reason. (See Exceptions below.)

The BidirectionalPolicy argument is provided for remote clients using callbacks because
remote clients use IIOP. It is not used for native clients using callbacks or for Oracle Tuxedo
servers because machines inside an Oracle Tuxedo domain communicate differently.

Before GIOP 1.2, bidirectional policy was not available as a choice in IIOP (which uses TCP/IP).
Connections in GIOP 1.0 and 1.1 were one way (that is, a request flowed from a client to a
server); only responses flowed from the server back to the client. If the server wanted to make a
request back to the client machine (say for a callback), the server machine had to establish another
one-way connection. (Be advised that “connections” in this sense mean operating system

Table 14-1 Exception and Reasons

Exception Reason

BAD_POLICY The requested Policy is not understood by the ORB.

UNSUPPORTED_POLICY The requested Policy is understood to be valid by the ORB,
but is not currently supported.

BAD_POLICY_TYPE The type of the value requested for the Policy is not valid for
that PolicyType.

BAD_POLICY_VALUE The value requested for the Policy is of a valid type, but is
not within the valid range for that type.

UNSUPPORTED_POLICY_
VALUE

The value requested for the Policy is of a valid type and
within the valid range for that type, but this valid value is not
currently supported.
14-52 CORBA Programming Reference

ORB Member Funct ions
resources, not physically different wires or communication paths. A connection uses resources,
so minimizing connections is desirable.)

Since this release of the Oracle Tuxedo C++ software supports GIOP 1.2, it supports reuse of the
TCP/IP connection for both incoming and outgoing requests. Reusing connections saves
resources when a remote client sends callback references to an Oracle Tuxedo domain. The joint
client/server uses a connection to send a request to an Oracle Tuxedo domain; that connection can
be reused for the callback request. If the connection is not reused, the callback request must
establish another connection.

Allowing reuse of a connection is a choice of the ORB/POA that creates callback object
references. The server for those object references (usually the creator of the references, especially
in the callback case) might choose not to allow reuse for security considerations (that is, the
outgoing connection [a client request from this machine to a remote server] may not need security
because the remote server does not require it, but the callback server on this machine might
require security). Since security is established partly on a connection basis, the incoming security
can be established only if a separate connection is used. If the remote server requires security, and
if that security involves a mutual authentication, the local server usually feels safe in allowing
reuse of the connection.

Since the choice of connection reuse is at the server end, whenever a process acts as a server—in
this case a joint client/server—and creates object references, it must inform the ORB that it is
willing to reuse connections. The process does this by setting a policy on the POA that creates
the object references. The default policy is to not allow reuse (that is, if you do not supply a policy
object for reuse, the POA does not allow reuse).

This default allows for backward compatibility with code written before CORBA version 2.3.
Such code did not know that reuse was possible so it did not have to take into consideration the
security implications of reuse. Thus, that unchanged code should continue to disallow reuse until
the user considers security and explicitly makes a decision to the contrary.

To allow reuse, you use the create_policy operation to create a policy object that allows reuse,
and use that policy object as part of the list of policies for POA creation.

Return Values
None.

Example
#include <BiDirPolicy_c.h>
BiDirPolicy::BidirectionalPolicy_var bd_policy;
CORBA::Any allow_reuse;
CORBA Programming Reference 14-53

allow_reuse <<= BiDirPolicy::BOTH;

CORBA::Policy_var generic_policy =
 orb->create_policy(BiDirPolicy::BIDIRECTIONAL_POLICY_TYPE,
 allow_reuse);
bd_policy = BiDirPolicy::BidirectionalPolicy::_narrow(
 generic_policy);

In the above example, the bd_policy would then be placed in the PolicyList passed to the
create_poa operation.

CORBA::ORB::destroy

Synopsis
Destroys the specified ORB.

C++ Binding
void destroy();

Parameter

None.

Return Value
None.

Description
Use this method to destroy an ORB so that the resources associated with that ORB can be
reclaimed. Once an ORB has been destroyed, another invocation on the ORB_init method with
the same ORB ID returns a reference to a newly constructed ORB. If an application invokes the
ORB::destroy method from a thread that is currently servicing an invocation, the Oracle Tuxedo
system raises the BAD_INV_ORDER system exception with the OMG minor code 3, because
blocking would result in a deadlock.

Example
pOrb->destroy();
14-54 CORBA Programming Reference

ORB Member Funct ions
CORBA::ORB::get_ctx

Synopsis
Retrieves the context associated with the current thread. This method supports the development
of a multithreaded server application.

C++ Binding
CORBA::ORB::Ctx get_ctx()

Arguments
None.

Return Value
CORBA::ORB::Ctx

The context associated with this thread.

Description
Use this method to retrieve the context associated with the current thread. This context can then
be used to initialize other threads that the application creates and manages.

When an object creates a thread, the object invokes this operation on the ORB to obtain system
context information that the object can pass on to the thread. This operation must be called from
a thread that already has a context. For example, the thread in which a method was dispatched
will already have a content.

Example
thread.context = TP::orb()->get_ctx();

See Also
CORBA::ORB::set_ctx
CORBA::ORB::clear_ctx

CORBA::ORB::get_default_context

Synopsis
Returns a reference to the default context.
CORBA Programming Reference 14-55

C++ Binding
void CORBA::ORB::get_default_context (
 CORBA::Context_out ContextObj);

Argument

ContextObj
The reference to the default context.

Description
This member function returns a reference to the default context. When no longer needed, this
context reference must be freed using the CORBA::release member function.

Return Values
None.

See Also
CORBA::Context::get_one_value
CORBA::Context::get_values

CORBA::ORB::get_next_response

Synopsis
Determines and reports the next deferred synchronous request that completes.

C++ Binding
void CORBA::ORB::get_next_response (
 CORBA::Request_out RequestObj);

Argument

RequestObj
The reference to the next completed request.

Description
This member function returns a reference to the next request that completes. If no requests have
completed, the function waits for a request to complete. This member function returns the next
request on the queue, in contrast to the CORBA::Request::get_response member function,
14-56 CORBA Programming Reference

ORB Member Funct ions
which waits for a particular request to complete. When no longer needed, this request must be
freed using the CORBA::release member function.

Return Values
None.

See Also
CORBA::ORB::poll_next_response
CORBA::Request::get_reponse

CORBA::ORB::inform_thread_exit

Synopsis
Informs the Oracle Tuxedo system that resources associated with an application-managed thread
can be released. This method supports the development of a multithreaded server application.

C++ Binding
void CORBA::ORB::inform_thread_exit(CORBA::TID threadId)

Parameter
threadId

The logical thread ID of the application-managed thread being deleted.

Return Value
None.

Description
This method informs the Oracle Tuxedo system about the following conditions:

The specified application-managed thread is no longer used by a servant implementation.

Any resources associated with the thread should be released.

Note: You should only call this operation on threads that the application creates and manages.
Do not invoke this method when specifying a dispatch thread that is managed by the
Oracle Tuxedo system.

Example
pOrb->inform_thread_exit(thread.threadId);
CORBA Programming Reference 14-57

CORBA::ORB::list_initial_services

Synopsis
Determines which objects have references available via the initial references mechanism.

C++ Binding
typedef string ObjectId;
typedef sequence ObjectId ObjectIdList;
ObjectIdList list_initial_services ();

Argument
ObjectId

The object ID.

list_initial_services ()
Defines the object type.

Description
This operation is used by applications to determine which objects have references available via
the initial references mechanism. This operation returns an ObjectIdList, which is a sequence
of ObjectIds. ObjectIds are typed as strings.

Each object, which may need to be made available at initialization time, is allocated a string value
to represent it. In addition to defining the ID, the type of object being returned must be defined,
that is, InterfaceRepository returns an object of type Repository, and NameService
returns a CosNamingContext object.

Return Values
Sequence of ObjectIds.

See Also
CORBA::ORB::resolve_initial_references

CORBA::ORB::object_to_string

Synopsis
Produces a string representation of an object reference.
14-58 CORBA Programming Reference

ORB Member Funct ions
C++ Binding
char * CORBA::ORB::object_to_string (
 CORBA::Object_ptr ObjRef);

Argument

ObjRef
The object reference to represent as a string.

Description
This member function produces a string representation of an object reference. The calling
program must use the CORBA::string_free member function to free the string memory after
it is no longer needed.

Return Values
The string representing the specified object reference.

Example
CORBA::Object_ptr op = TP::create_object_reference(
 "IDL:Teller:1.0", "MyTeller");
char* objstr = TP::orb()->object_to_string(op);

See Also
CORBA::ORB::string_to_object
CORBA::string_free

CORBA::ORB::perform_work

Synopsis
Allows the ORB to perform server-related work.

C++ Binding
void CORBA::ORB::perform_work ();

Arguments
None.
CORBA Programming Reference 14-59

Exceptions
Once the ORB has shut down, a call to work_pending and perform_work() raises the
BAD_INV_ORDER exception. An application can detect this exception to determine when to
terminate a polling loop.

Description
If called by the main thread, this operation allows the ORB to perform server-related work.
Otherwise, it does nothing.

The work_pending() and perform_work() operations can be used to write a simple polling
loop that multiplexes the main thread among the ORB and other activities. Such a loop would
most likely be needed in a single-threaded server. A multithreaded server would need a polling
loop only if there were both ORB and other code that required use of the main thread. See the
example below for such a polling loop.

Return Values
None.

See Also
CORBA::ORB::work_pending

Example
The following is an example of a polling loop:

// C++
for (;;) {
 if (orb->work_pending()) {
 orb->perform_work();
 }
 // do other things
 // sleep?
}

CORBA::ORB::poll_next_response

Synopsis
Determines whether a completed request is outstanding.
14-60 CORBA Programming Reference

ORB Member Funct ions
C++ Binding
CORBA::Boolean CORBA::ORB::poll_next_response ();

Arguments
None.

Description
This member function reports on whether there is an outstanding (pending) completed request; it
does not remove the request. If a completed request is outstanding, the next call to the
CORBA::ORB::get_next_response member function is guaranteed to return a request without
waiting. If there are no completed requests outstanding, the
CORBA::ORB::poll_next_response member function returns without waiting (blocking).

Return Values
If a completed request is outstanding, the function returns CORBA_TRUE.

If no completed request is outstanding, the function returns CORBA_FALSE.

See Also
CORBA::ORB::get_next_response

CORBA::ORB::resolve_initial_references

Synopsis
Obtains object references for initial services.

C++ Binding
Object resolve_initial_references (in ObjectId identifier)
 raises (InvalidName);

exception InvalidName {};

Augument
identifier

String that identifies the object whose reference is required.
CORBA Programming Reference 14-61

Description
This operation is used by applications to obtain object references for initial services. The interface
differs from the Naming Service’s resolve in that ObjectId (a string) replaces the more complex
Naming Service construct (a sequence of structures containing string pairs for the components of
the name). This simplification reduces the namespace to one context.

ObjectIds are strings that identify the object whose reference is required. To maintain the
simplicity of the interface for obtaining initial references, only a limited set of objects are
expected to have their references found via this means. Unlike the ORB identifiers, the ObjectId
name space requires careful management. To achieve this, the OMG may, in the future, define
which services are required by applications through this interface and specify names for those
services.

Currently, reserved ObjectIds are RootPOA, POACurrent, InterfaceRepository,
NameService, TradingService, SecurityCurrent, TransactionCurrent, and
DynAnyFactory.

The application is responsible for narrowing the object reference returned from
resolve_initial_references to the type that was requested in the ObjectId. For example,
for InterfaceRepository the object returned would be narrowed to Repository type.

Return Values
Object references for initial services.

See Also
CORBA::ORB::list_initial_services

CORBA::ORB::send_multiple_requests_deferred

Synopsis
Sends a sequence of deferred synchronous requests.

C++ Binding
void CORBA::ORB::send_multiple_requests_deferred (
 const CORBA::ORB::RequestSeq & Reqs);
14-62 CORBA Programming Reference

ORB Member Funct ions
Argument

Reqs
The sequence of requests to be sent. For more information about how to populate the
sequence with request references, see CORBA::ORB::RequestSeq in the section Usage.

Description
This member function sends out a sequence of requests and returns control to the caller without
waiting for the operation to complete. The caller uses CORBA::ORB::poll_ next_response,
CORBA::ORB::get_next_response, or CORBA::Rquest::get_response or all three to
determine if the operation has completed and if the output arguments have been updated.

Return Values
None.

See Also
CORBA::Request::get_response
CORBA::ORB::get_next_response
CORBA::ORB::send_multiple_requests_oneway

CORBA::ORB::send_multiple_requests_oneway

Synopsis
Sends a sequence of one-way, deferred synchronous requests.

C++ Binding
void CORBA::ORB::send_multiple_requests_oneway (
 const CORBA::RequestSeq & Reqs);

Argument

Reqs
The sequence of requests to be sent. For more information about how to populate the
sequence with request references, see CORBA::ORB::RequestSeq in the section Usage.

Description
This member function sends out a sequence of requests and returns control to the caller without
waiting for the operation to complete. The caller neither intends to wait for a response nor expects
any output arguments to be updated.
CORBA Programming Reference 14-63

Return Values
None.

See Also
CORBA::ORB::send_multiple_requests_deferred

CORBA::ORB::set_ctx

Synopsis
Sets the context for the current thread. This method supports the development of a multithreaded
server application.

C++ Binding
void set_ctx(CORBA::ORB::Ctx aContext)

Parameter
aContext

The context to be associated with this thread.

Return Value
None.

Description
This method sets the context for the current application-managed thread. The context parameter
provided must have been obtained in a previously-executed thread that is managed by the Oracle
Tuxedo system or in an application-managed thread that has already been initialized.

Note: Do not call the set_ctx method in a thread that is managed by the Oracle Tuxedo
system. The Oracle Tuxedo system performs the appropriate context propagation
automatically for the threads it manages. If your application calls this method on a thread
managed by the Oracle Tuxedo system, the BAD_PARAM exception is thrown.

Example
TP::orb()->set_ctx(thread->context);

See Also
CORBA::ORB::get_ctx()
CORBA::ORB::clear_ctx()
14-64 CORBA Programming Reference

ORB Member Funct ions
CORBA::ORB::string_to_object

Synopsis
Converts a string produced by CORBA::ORB::object_to_string operation and returns the
corresponding object reference.

C++ Binding

Object string_to_object (in string str);

Argument
str

String produced by the CORBA::ORB::object_to_string operation.

Description
This operation is used by applications to convert a string produced by
CORBA::ORB::object_to_string operation and returns the corresponding object reference.

To guarantee that an ORB will understand the string form of an object reference, that ORB’s
object_to_string operation must be used to produce the string. The string_to_object
operation allows URLs in the IOR, corbaloc, corbalocs, and corbanames formats to be converted
into object references. If a conversion fails, the string_to_object operation raises the
BAD_PARAM standard exception with one of the following minor codes:

BadSchemeName

BadAddress

BadSchemeSpecificPart

For all conforming ORBs, if obj is a valid reference to an object, then
string_to_object(object_to_string(obj)) will return a valid reference to the same
object, if the two operations are performed on the same ORB. For all conforming ORB's
supporting IOP, this remains true even if the two operations are performed on different ORBs.

Return Value
Returns an object reference.

See Also
CORBA::ORB::object_to_string
CORBA Programming Reference 14-65

CORBA::ORB::work_pending

Synopsis
Returns an indication of whether the ORB needs the main thread to perform server-related work.

C++ Binding
CORBA::boolean CORBA::ORB::work_pending ();

Arguments
None.

Description
This operation returns an indication of whether the ORB needs the main thread to perform
server-related work.

Return Values
A result of TRUE indicates that the ORB needs the main thread to perform server-related work,
and a result of FALSE indicates that the ORB does not need the main thread.

See Also
CORBA::ORB::perform_work

ORB Initialization Member Function
The mapping of this member function to C++ is as follows:

class CORBA {
 static CORBA::ORB_ptr ORB_init(int& argc, char** argv,
 const char* orb_identifier = 0,
 const char* -ORBport nnn);
 <appl-name> [-ORBid {BEA_IIOP | BEA_TOBJ} \
 [-ORBInitRef <ObjectID>=<ObjectURL> [*]]
 [-ORBDefaultInitRef <ObjectURL>]
 [-ORBport port-number] \
 [-ORBsecurePort port-number] \
 [-ORBminCrypto {0 | 40 | 56 | 128}] \
 [-ORBmaxCrypto {0 | 40 | 56 | 128}] \
 [-ORBmutualAuth] \
14-66 CORBA Programming Reference

ORB In i t ia l i za t i on Member Funct ion
 [-ORBpeerValidate {detect | warn | none}] \
 [appl-options]

};

CORBA::ORB_init

Synopsis
Initializes operations for an ORB.

C++ Binding
static CORBA::ORB_ptr ORB_init(int& argc, char** argv,
 const char* orb_identifier = 0);

Arguments

argc
The number of strings in argv.

argv
This argument is defined as an unbound array of strings (char **) and the number of
strings in the array is passed in the argc parameter.

orb_identifier
If the orb_identifier parameter is supplied, “BEA_IIOP” explicitly specifies a remote
client and “BEA_TOBJ” explicitly specifies a native client, as defined in the section
Tobj_Bootstrap.

Description
This member function initializes operations for an ORB and returns a pointer to the ORB. When
your program is done with the ORB, use the CORBA::release member function to free the
resources allocated for the ORB pointer returned from CORBA::ORB_ptr ORB_init.

The ORB returned has been initialized with two pieces of information to determine how it will
operate: client type (remote or native) and server port number. The client type can be specified in
the orb_identifier argument, in the argv argument, or in the system registry. The server port
number can be specified in the argv argument.

The arguments argc and argv are typically the same parameters that were passed to the main
program. As specified by C++, these parameters contain string tokens from the command line
CORBA Programming Reference 14-67

that started the client. The two ORB options can be specified on the command line, each using a
pair of tokens, as shown in examples below.

Client Type

The ORB_init function determines the client type of the ORB by the following steps.

1. If the orb_identifier argument is present, ORB_init determines the client type, either
native or remote, if the string is "BEA_IIOP" or "BEA_TOBJ", respectively. If an
orb_identifier string is present, all -ORBid parameters in the argv are ignored (removed).

2. If orb_identifier is not present or is explicitly zero, ORB_init looks at the entries in
argc/argv. If argv contains an entry with "-ORBid", the next entry should be either
"BEA_IIOP" or "BEA_TOBJ", again specifying remote or native. This pair of entries occurs if
the command line contains either "-ORBid BEA_IIOP” or "-ORBid BEA_TOBJ”.

3. If no client type is specified in argc/argv, ORB_init uses the default client type from the
system registry (BEA_IIOP or BEA_TOBJ). The system registry was initialized at the time
Oracle Tuxedo was installed.

Server Port

In the case of an Oracle Tuxedo remote joint client/server, in order to support IIOP, by definition,
the object references created for the server part must contain a host and port. For transient object
references, any port is sufficient and can be obtained by the ORB dynamically, but this is not
sufficient for persistent object references. Persistent references must be served on the same port
after the ORB restarts, that is, the ORB must be prepared to accept requests on the same port with
which it created the object reference. Thus, there must be some way to configure the ORB to use
a particular port.

Typically, a system administrator assigns the port number for the client from the “user” range of
port numbers rather from the dynamic range. This keeps the joint client/servers from using
conflicting ports.

To determine port number, ORB_init searches the argv parameter for the token "-ORBport"
and a following numeric token. For example, if the client executable is named sherry, the
command line might specify that the server port should be 937 as follows:

 sherry -ORBport 937

ARGV Parameter Considerations

For C++, the order of consumption of argv parameters may be significant to an application. To
ensure that applications are not required to handle argv parameters they do not recognize, the
ORB initialization function must be called before the remainder of the parameters are consumed.
14-68 CORBA Programming Reference

ORB In i t ia l i za t i on Member Funct ion
Therefore, after the ORB_init call, the argv and argc parameters have been modified to remove
the ORB understood arguments. It is important to note that the ORB_init function can only
reorder or remove references to parameters from the argv list. This restriction is made to avoid
potential memory management problems caused by trying to free parts of the argv list or
extending the argv list of parameters. This is why argv is passed as a char** and not as a
char**&.

Note: Use the CORBA::release member function to free the resources allocated for the pointer
returned from CORBA::ORB_init.

Return Value
A pointer to a CORBA::ORB.

Exceptions

None.

ORB

Synopsis
Configures applications based on the Oracle Tuxedo CORBA C++ ORB to access or provide
Oracle Tuxedo CORBA objects.

Syntax
<appl-name> [-ORBid {BEA_IIOP | BEA_TOBJ} \
 [-ORBInitRef <ObjectID>=<ObjectURL> [*]]
 [-ORBDefaultInitRef <ObjectURL>]
 [-ORBport port-number] \
 [-ORBsecurePort port-number] \
 [-ORBminCrypto {0 | 40 | 56 | 128}] \
 [-ORBmaxCrypto {0 | 40 | 56 | 128}] \
 [-ORBmutualAuth] \
 [-ORBpeerValidate {detect | warn | none}] \
 [appl-options]
CORBA Programming Reference 14-69

Description
The Oracle Tuxedo CORBA C++ ORB is an Oracle Tuxedo-supplied library that enables the
development of CORBA-based applications used to access or provide Oracle Tuxedo objects
using IIOP or IIOP-SSL. The ORB command-line options allow for customization.

Parameters
[–ORBid {BEA_IIOP | BEA_TOBJ}]

The value BEA_IIOP explicitly specifies that the ORB be configured to support either a
client or a server environment that communicates over the IIOP or IIOP-SSL protocol.
The value BEA_TOBJ explicitly specifies that the ORB be configured to support the native
client environment that can only communicate over the TGIOP protocol within an Oracle
Tuxedo domain.
If not specified, the ORB will detect the environment in which it is deployed and configure
itself for use in that environment.

[–ORBInitRef ObjectId=ObjectURL]
The ORB initial reference argument, -ORBInitRef, allows specification of an arbitrary
object reference for an initial service.
ObjectID represents the well-known object ID for a service that is defined in the CORBA
specification. This mechanism allows an ORB to be configured with new initial service
Object IDs that were not defined when the ORB was installed.
ObjectURL can be any of the URL schemes supported by the
CORBA::ORB::string_to_object operation as defined in CORBA specification. If a
URL is syntactically malformed or can be determined to be invalid in an
implementation-defined manner, CORBA::ORB_init will raise the CORBA::BAD_PARAM
standard exception listed in Table 14-2.

Table 14-2 Minor Codes for CORBA::BAD_PARAM Standard Exception

Minor Code Description

BadSchemeName The specified scheme is recognized by the ORB implementation. Only the
schemes IOR, corbaloc, corbalocs, and corbaname are supported.

BadAddress The format of the address is not recognized by the ORB implementation.
Host names must be specified according to DNS or as class C IP addresses
in dot-separated form.
14-70 CORBA Programming Reference

ORB In i t ia l i za t i on Member Funct ion
[–ORBDefaultInitRef <ObjectURL>]
The ORB default initial reference argument, -ORBDefaultInitRef, assists in the
resolution of initial references not explicitly specified with -ORBInitRef. This argument
provides functionality similar to that of the list of IIOP Listeners address that is provided
to the current Tobj_Bootstrap object.
Unlike the –ORBInitRef argument, -ORBDefaultInitRef requires a URL that, after
appending a slash ‘/’ character and a stringified object key, forms a new URL to identify
an initial object reference. For example, if the following was specified as the default initial
reference argument:

-ORBDefaultInitRef corbaloc:555objs.com

A call to ORB::resolve_initial_references(“NotificationService”) to obtain
the initial reference for the service would result in the new URL:

corbaloc:555objs.com/NotificationService

The implementation of the ORB::resolve_initial_references operation would take
the newly constructed URL and call CORBA::ORB::string_to_object to obtain the
initial reference for the service.
The URL specified as the value of the -ORBDefaultInitRef argument can contain more
than a single location. This is the similar to the functionality provided for the list of
locations to be used by the Tobj_Bootstrap object. In this situation, the ORB will
process the locations in the URL based on the syntax rules for the URL. For example, if
the following was specified as the default initial reference argument:

-ORBDefaultInitRef corbaloc:555objs.com,555Backup.com

A call to ORB::resolve_initial_references(“NameService”) to obtain the initial
reference for the service would result in one of the following new URLs:

BadSchemeSpecificPart The format of the address is not recognized by the ORB implementation.
Host names must be specified according to DNS or as class C IP addresses
in dot-separated form.

BadSchemeSpecificPart The scheme specific part of the URL is improperly formatted for the
specified scheme.

Table 14-2 Minor Codes for CORBA::BAD_PARAM Standard Exception

Minor Code Description
CORBA Programming Reference 14-71

corbaloc:555objs.com/NameService

or:

corbaloc:555Backup.com/NameService

The resulting URL would then be passed to CORBA::ORB::string_to_object in order
to obtain the initial reference for the service.

[–ORBminCrypto [0 | 40 | 56 | 128]]
When establishing a network link, this is the minimum level of encryption required. Zero
(0) means no encryption, while 40, 56, and 128 specify the length (in bits) of the
encryption key. If this minimum level of encryption cannot be met, link establishment will
fail.
The default is 0.

[–ORBmaxCrypto [0 | 40 | 56 | 128]]
When establishing a network link, this is the maximum level of encryption allowed. Zero
(0) means no encryption, while 40, 56, and 128 specify the length (in bits) of the
encryption key. The default is whatever capability is specified by the license. The –
ORBmaxCrypto or –ORBmaxCrypto options are available only if either the International
or U.S_Canada Oracle Tuxedo Security Add-on Package is installed.

[–ORBmutualAuth]
Specifies that certificate-based authentication should be enabled when accepting an SSL
connection from a remote application.
The –ORBmutualAuth option is available only if either the International or U.S_Canada
Oracle Tuxedo Security Add-on Package is installed.

[–ORBpeerValidate {detect | warn | none}]
Determines how the Oracle Tuxedo CORBA ORB will behave when a digital certificate
for a peer of an outbound connection initiated by the Oracle Tuxedo ORB is received as
part of the Secure Socket Layer (SSL) protocol handshake. The validation is only
performed by the initiator of a secure connection and confirms that the peer server is
actually located at the same network address specified by the domain name in the server’s
digital certificate. This validation is not technically part of the SSL protocol, but is similar
to the same check done in web browsers.
A value of detect causes an Oracle Tuxedo CORBA ORB to verify that the host
specified in the object reference used to make the connection matches the domain name
specified in the peer’s digital certificate. If the comparison fails, the ORB refuses to
authenticate the peer and drops the connection. This check protects against
man-in-the-middle attacks.
14-72 CORBA Programming Reference

ORB In i t ia l i za t i on Member Funct ion
A value of warn causes an Oracle Tuxedo CORBA ORB to verify that the host specified
in the object reference used to make the connection matches the domain name specified
in the peer’s digital certificate. If the comparison fails, the ORB logs a message to the user
log, but continues processing the connection.
A value of none causes an Oracle Tuxedo CORBA ORB not to perform the peer validation
and will continue the processing of the connection.
The –ORBpeerValidate option is available only if either the International or
U.S_Canada Oracle Tuxedo Security Add-on Package is installed.
If not specified, the default is detect.

[–ORBport port-number]
Specifies the network address to be used by the ORB to accept connections from remote
CORBA clients. Typically, a system administrator assigns the port number for the client
from the "user" range of port numbers rather from the dynamic range. This keeps the joint
client/servers from using conflicting ports.
This parameter is required in order for the Oracle Tuxedo CORBA ORB to create
persistent object references. Persistent objects references must be served on the same port
after that is contained in the object reference, even if the ORB has been restarted. For
transient object references, any port is sufficient and can be obtained by the ORB
dynamically.
The port-number is the TCP port number at which the Oracle Tuxedo CORBA ORB
process listens for incoming requests. The port-number can be a number between 0 and
65535.

[–ORBsecurePort port-number]
Specifies the port number that the IIOP Listener/Handler should use to listen for secure
connections using the Secure Socket Layer protocol. If the command-line option is
specified without a port number, then the OMG assigned port number 684 will be used for
SSL connections.
The port-number is the TCP port number at which the Oracle Tuxedo CORBA ORB
process listens for incoming requests. The port-number can be a number between 0 and
65535.

An administrator can configure to only allow secure connections into the Oracle Tuxedo
CORBA ORB by setting port numbers specified by the
–ORBport and –ORBsecurePort to the same value.
The –ORBsecurePort option is available only if either the International or U.S_Canada
Oracle Tuxedo Security Add-on Package is installed.
CORBA Programming Reference 14-73

Portability
The Oracle Tuxedo CORBA ORB is supported as an Oracle Tuxedo-supplied client or server on
UNIX and Microsoft Windows operating systems. It is also supported as an Oracle
Tuxedo-supplied client on the Windows XP operating systems.

Interoperability
The Oracle Tuxedo CORBA ORB will interoperate with any IIOP compliant ORB that supports
the 1.0, 1.1, or 1.2 version of the GIOP protocol over a TCP/IP connection. In addition, the Oracle
Tuxedo CORBA ORB will interoperate with any IIOP-SSL compliant ORB that supports the use
of the TAG_SSL_SEC_TRANS tagged component in object references and version 3 of the Secure
Socket Layer protocol.

Examples
C++ code example

ChatClient –ORBid BEA_IIOP –ORBport 2100
 -ORBDefaultInitRef corbaloc:piglet:1900
 -ORBInitRef TraderService=corbaloc:owl:2530
 –ORBsecurePort 2100
 -ORBminCrypto 40
 –ORBmaxCrypto 128
 TechTopics

Java code example

java –DORBDefaultInitRef=corbalocs:piglet:1900
.....-DORBInitRef=TraderService=corbaloc:owl:2530
 -Dorg.omg.CORBA.ORBPort=1948
 -classpath=%CLASSPATH% client

See Also
ISL

Policy Member Functions
A policy is an object used to communicate certain choices to an ORB regarding its operation. This
information is accessed in a structured manner using interfaces derived from the Policy interface
defined in the CORBA module.
14-74 CORBA Programming Reference

Po l icy Member Funct ions
Note: These CORBA::Policy operations and structures are not usually needed by
programmers. The derived interfaces usually contain the information relevant to
specifications. A policy object can be constructed by a specific factory or by using the
CORBA::create_policy operation.

The mapping of this object to C++ is as follows:

class CORBA
{
 class Policy
 {
 public:
 copy();
 void destroy();
 }; //Policy
 typedef sequence<Policy>PolicyList;
}; // CORBA

PolicyList is used the same as any other C++ sequence mapping. For a discussion of sequence
usage, see Sequences.

See Also:
POA Policy and CORBA::ORB::create_policy.

CORBA:Policy::copy

Synopsis
Copies the policy object.

C++ Binding
CORBA::Policy::copy();

Argument
None.

Description
This operation copies the policy object. The copy does not retain any relationships that the policy
had with any domain or object.

Note: This function is supported only for a joint client/server.
CORBA Programming Reference 14-75

Return Values
None.

CORBA::Policy::destroy

Synopsis
Destroys the policy object.

C++ Binding
void CORBA::Policy::destroy();

Argument
None.

Exceptions
If the policy object determines that it cannot be destroyed, the CORBA::NO_PERMISSION
exception is raised.

Description
This operation destroys the policy object. It is the responsibility of the policy object to determine
whether it can be destroyed.

Note: This function is supported only for a joint client/server.

Return Values
None.

PortableServer Member Functions
The mapping of the PortableServer member functions to C++ is as follows:

// C++
class PortableServer
{
 public:
 class LifespanPolicy;
 class IdAssignmentPolicy;
 class POA::find_POA
14-76 CORBA Programming Reference

Por tab leServe r Member Funct ions
 class reference_to_id
 class POAManager;
 class POA;
 class Current;
 class virtual ObjectId
 class ServantBase
};

ObjectId
A value that is used by the POA and by the user-supplied implementation to identify a
particular abstract CORBA object. ObjectId values may be assigned and managed by the
POA, or they may be assigned and managed by the implementation. ObjectId values are
hidden from clients, encapsulated by references. ObjectIds have no standard form; they
are managed by the POA as uninterpreted octet sequences.

The following sections describe the remaining classes.

PortableServer::POA::activate_object

Synopsis
Explicitly activates an individual object.

C++ Binding
ObjectId * activate_object (

Servant p_servant);

Argument
p_servant

An instance of the C++ implementation class for the interface.

Exceptions
If the specified servant is already in the Active Object Map, the ServantAlreadyActive
exception is raised.

Note: Other exceptions can occur if the POA uses unsupported policies.

Description
This operation explicitly activates an individual object by generating an ObjectId and entering
the ObjectId and the specified servant in the Active Object Map.
CORBA Programming Reference 14-77

Note: This function is supported only for a joint client/server.

Return Values
If the function succeeds, the ObjectId is returned.

Example
In the following example, the first struct creates a servant by a user-defined constructor. The
second struct tells the POA that the servant can be used to handle requests on an object. The POA
returns the ObjectId it has created for the object. The third statement assumes that the POA has
the IMPLICIT_ACTIVATION policy (the only supported policy in version 4.2 of the Oracle
Tuxedo software) and returns a reference to the object. That reference can then be handed to a
client for invocations. When the client invokes on the reference, the request is returned to the
servant just created.

MyFooServant* afoo = new MyFooServant(poa,27);
PortableServer::ObjectId_var oid =

 poa->activate_object(afoo);
Foo_var foo = afoo->_this();

PortableServer::POA::activate_object_with_id

Synopsis
Activates an individual object with a specified ObjectId.

C++ Binding
void activate_object_with_id (
 const ObjectId & id,
 Servant p_servant);

Argument
id

ObjectId that identifies the object on which that operation was invoked.

p_servant
An instance of the C++ implementation class for the interface.
14-78 CORBA Programming Reference

Por tab leServe r Member Funct ions
Exceptions
The ObjectAlreadyActive exception is raised if the CORBA object denoted by the ObjectId
value is already active in this POA.

The ServantAlreadyActive exception is raised if the servant is already in the Active Object
Map.

Note: Other exceptions can occur if the POA uses unsupported policies.

The BAD_PARAM system exception may be raised if the POA has the SYSTEM_ID policy and it
detects that the ObjectId value was not generated by the system or for this POA. An ORB is not
required to detect all such invalid ObjectId values. However, a portable application must not
invoke activate_object_with_id on a POA if the POA has the SYSTEM_ID policy with an
ObjectId value that was not previously generated by the system for that POA, or, if the POA
also has the PERSISTENT policy, for a previous instantiation of the same POA.

Description
This operation enters an association between the specified ObjectId and the specified servant in
the Active Object Map.

Note: This function is supported only for a joint client/server.

Return Values
None.

Example
MyFooServant* afoo = new MyFooServant(poa, 27);
PortableServer::ObjectId_var oid =
 PortableServer::string_to_ObjectId("myLittleFoo");
poa->activate_object_with_id(oid.in(), afoo);
Foo_var foo = afoo->_this();

PortableServer::POA::create_id_assignment_policy

Synopsis
Obtains an object with the IdAssignmentPolicy interface so the user can pass the object to the
POA::create_POA operation.
CORBA Programming Reference 14-79

C++ Binding
IdAssignmentPolicy_ptr
 PortableServer::POA::create_id_assignment_policy (
 PortableServer::IdAssignmentPolicyValue value)

Argument
value

A value of either PortableServer::USER_ID, indicating ObjectIds are assigned only
by the application, or PortableServer::SYSTEM_ID, indicating ObjectIds are
assigned only by the system.

Description
The POA::create_id_assignment_policy operation obtains objects with the
IdAssignmentPolicy interface. When passed to the POA::create_POA operation, this policy
specifies whether ObjectIds in the created POA are generated by the application or by the ORB.
The following values can be supplied:

PortableServer::USER_ID—objects created with that POA are assigned ObjectIds
only by the application.

PortableServer::SYSTEM_ID—objects created with that POA are assigned ObjectIds
only by the POA. If the POA also has the PERSISTENT LifespanPolicy, assigned
ObjectIds must be unique across all instantiations of the same POA.

If no IdAssignmentPolicy is specified at POA creation, the default is SYSTEM_ID.

Note: This function is supported only for a joint client/server.

Return Values
Returns an Id Assignment policy.

PortableServer::POA::create_lifespan_policy

Synopsis
Obtains an object with the LifespanPolicy interface so the user can pass the object to the
POA::create_POA operation.
14-80 CORBA Programming Reference

Por tab leServe r Member Funct ions
C++ Binding
LifespanPolicy_ptr
 PortableServer::POA::create_lifespan_policy (
 PortableServer::LifespanPolicyPolicyValue value)

Argument
value

A value of either PortableServer::USER_ID, indicating ObjectIds are assigned only
by the application, or PortableServer::SYSTEM_ID, indicating ObjectIds are
assigned only by the system.

Description
Objects with the LifespanPolicy interface are obtained using the
POA::create_lifespan_policy operation and passed to the POA::create_POA operation to
specify the lifespan of the objects implemented in the created POA. The following values can be
supplied.

TRANSIENT—the objects implemented in the POA cannot outlive the process in which they
are first created. Once the POA is deactivated, use of any object references generated from
it will result in an OBJECT_NOT_EXIST exception.

PERSISTENT—the objects implemented in the POA can outlive the process in which they
are first created.

– Persistent objects have a POA associated with them (the POA which created them).
When the ORB receives a request on a persistent object, it first searches for the
matching POA, based on the names of the POA and all of its ancestors.

– Administrative action beyond the scope of this specification may be necessary to
inform the ORB's location service of the creation and eventual termination of existence
of this POA, and optionally to arrange for on-demand activation of a process
implementing this POA.

– POA names must be unique within their enclosing scope (the parent POA). A portable
program can assume that POA names used in other processes will not conflict with its
own POA names. A conforming CORBA implementation will provide a method for
ensuring this property.

If no LifespanPolicy object is passed to POA::create_POA, the lifespan policy defaults to
TRANSIENT.

Note: This function is supported only for a joint client/server.
CORBA Programming Reference 14-81

Return Values
Returns a LifespanPolicy.

PortableServer::POA::create_POA

Synopsis
Creates a new POA as a child of the target POA.

C++ Binding
POA_ptr PortableServer::create_POA (
 const char * adapter_name,
 POAManager_ptr a_POAManager,
 const CORBA::PolicyList & policies)

Arguments
adapter_name

The name of the POA to be created.

a_POAManager
Either a NULL value, indicating that a new POAManager is to be created and associated
with the new POA, or a pointer to an existing POAManager.

policies
Policy objects to be associated with the new POA.

Exceptions
AdapterAlreadyExists

Raised if the target POA already has a child POA with the specified name.

InvalidPolicy
Raised if any of the policy objects specified are not valid for the ORB implementation, if
conflicting policy objects are specified, or if any of the specified policy objects require
prior administrative action that has not been performed. This exception contains the index
in the policy parameter value of the first offending policy object.

IMP_LIMIT
Raised if the program tries to create a POA with a LifespanPolicy of PERSISTENT without
having set a port, as described in the operation CORBA::ORB_init.
14-82 CORBA Programming Reference

Por tab leServe r Member Funct ions
Description
This operation creates a new POA as a child of the target POA. The specified name, which must
be unique, identifies the new POA with respect to other POAs with the same parent POA.

If the a_POAManager parameter is NULL, a new PortableServer::POAManager object is
created and associated with the new POA. Otherwise, the specified POAManager object is
associated with the new POA. The POAManager object can be obtained using the attribute name
the_POAManager.

The specified policy objects are associated with the POA and are used to control its behavior. The
policy objects are effectively copied before this operation returns, so the application is free to
destroy them while the POA is in use. Policies are not inherited from the parent POA.

Note: This function is supported only for joint client/servers.

Return Values
Returns a pointer to the POA that was created.

Examples
Example 1

In this example, the child POA would use the same manager as the parent POA; the child POA
would then have the same state as the parent (that is, it would be active if the parent is active).

CORBA::PolicyList policies(2);
policies.length (1);
policies[0] = rootPOA->create_lifespan_policy(
 PortableServer::LifespanPolicy::TRANSIENT);
PortableServer::POA_ptr poa =
 rootPOA->create_POA("my_little_poa",
 rootPOA->the_POAManager, policies);

Example 2

In this example, a new POA is created as a child of the root POA.

CORBA::PolicyList policies(2);
policies.length (1);
policies[0] = rootPOA->create_lifespan_policy(
 PortableServer::LifespanPolicy::TRANSIENT);
PortableServer::POA_ptr poa =
CORBA Programming Reference 14-83

 rootPOA->create_POA("my_little_poa",
 PortableServer::POAManager::_nil(), policies);

PortableServer::POA::create_reference

Synopsis
Creates an object reference that encapsulates a POA-generated ObjectId value and the specified
interface repository ID.

C++ Binding
CORBA::Object_ptr create_reference (
 const char * intf)

Argument
intf

The interface repository ID.

Exceptions
This operation requires the LifespanPolicy to have the value SYSTEM_ID; if not present, the
PortableServer::WrongPolicy exception is raised.

Description
This create_reference operation creates an object reference that encapsulates a
POA-generated ObjectId value and the specified interface repository ID. This operation collects
the necessary information to constitute the reference from information associated with the POA
and from parameters to the operation. This operation only creates a reference; it does not
associate the reference with an active servant. The resulting reference may be passed to clients,
so that subsequent requests on those references return to the POA using the ObjectId generated.
The generated ObjectId value may be obtained by invoking POA::reference_to_id with the
created reference.

Note: This function is supported only for a joint client/server.

Return Values
Returns a pointer to the object.
14-84 CORBA Programming Reference

Por tab leServe r Member Funct ions
PortableServer::POA::create_reference_with_id

Synopsis
Creates an object reference that encapsulates the specified ObjectId and interface repository ID
values.

C++ Binding
CORBA::Object_ptr create_reference_with_id (
 const ObjectId & oid,
 const char * intf)

Arguments
oid

ObjectId that identifies the object on which that operation was invoked.

intf
The interface repository ID.

Exceptions
If the POA has a LifespanPolicy with value SYSTEM_ID and it detects that the ObjectId value
was not generated by the system or for this POA, the operation will raise the BAD_PARAM system
exception.

Description
The create_reference operation creates an object reference that encapsulates the specified
ObjectId and interface repository ID values. This operation collects the necessary information
to constitute the reference from information associated with the POA and from parameters to the
operation. This operation only creates a reference; it does not associate the reference with an
active servant. The resulting reference may be passed to clients, so that subsequent requests on
those references cause the invocation to be returned to the same POA with ObjectId specified.

Note: This function is supported only for a joint client/server.

Return Values
Returns Object_ptr.

Example
PortableServer::ObjectId_var oid =

PortableServer::string_to_ObjectId("myLittleFoo");
CORBA Programming Reference 14-85

CORBA::Object_var obj = poa->create_reference_with_id(
oid.in(), "IDL:Foo:1.0");

Foo_var foo = Foo::_narrow(obj);

PortableServer::POA::deactivate_object

Synopsis
Removes the ObjectId from the Active Object Map.

C++ Binding
void deactivate_object (
 const ObjectId & oid)

Argument
oid

ObjectId that identifies the object.

Exceptions
If there is no active object associated with the specified ObjectId, the operation raises an
ObjectNotActive exception.

Description
This operation causes the association of the ObjectId specified by the oid parameter and its
servant to be removed from the Active Object Map.

Note: This function is supported only for a joint client/server.

Return Values
None.

PortableServer::POA::destroy

Synopsis
Destroys the POA and all descendant POAs.
14-86 CORBA Programming Reference

Por tab leServe r Member Funct ions
C++ Binding
void destroy (
 CORBA::Boolean etherealize_objects,
 CORBA::Boolean wait_for_completion)

Arguments
etherealize_objects

This argument should be FALSE for this release of Oracle Tuxedo.

wait_for_completion
This argument indicates whether or not the operation should return immediately.

Description
This operation destroys the POA and all descendant POAs. The POA with its name may be
recreated later in the same process. (This differs from the POAManager::deactivate operation,
which does not allow a recreation of its associated POA in the same process.)

When a POA is destroyed, any requests that have started execution continue to completion. Any
requests that have not started execution are processed as if they were newly arrived and there is
no POA; that is, they are rejected and the OBJECT_NON_EXIST exception is raised.

If the wait_for_completion parameter is TRUE, the destroy operation returns only after all
requests in process have completed and all invocations of etherealize have completed.
Otherwise, the destroy operation returns after destroying the POAs.

Note: This release of Oracle Tuxedo does not support multithreading. Hence,
wait_for_completion should not be TRUE if the call is made in the context of an object
invocation. That is, the POA cannot start destroying itself if it is currently executing.

Note: This function is supported only for a joint client/server.

Return Values
None.

PortableServer::POA::find_POA

Synopsis
Returns a reference to a child POA with a given name.
CORBA Programming Reference 14-87

C++ Binding
void find_POA(in string adapter_name, in boolean activate_it);

Argument
adapter_name

A reference to the target POA.

active_it
In this version of Oracle Tuxedo, this parameter must be FALSE.

Exception
AdapterNonExistent

This exception is raised if the POA does not exist.

Description
If the POA has a child POA with the specified name, that child POA is returned. If a child POA
with the specified name does not exist and the value of the activate_it parameter is FALSE, the
AdapterNonExistent exception is raised.

Return Values
None.

PortableServer::POA::reference_to_id

Synopsis
Returns the ObjectId value encapsulated by the specified reference.

C++ Binding
ObjectId reference_to_id(in Object reference);

Argument

reference
Specifies the reference to the object.

Exceptions
WrongAdapter

This exception is raised if the reference was not created by that POA.
14-88 CORBA Programming Reference

Por tab leServe r Member Funct ions
Description
This operation returns the ObjectId value encapsulated by the specified reference. This
operation is valid only if the reference was created by the POA on which the operation is being
performed. The object denoted by the reference does not have to be active for this operation to
succeed.

Note: This function is supported only for a joint client/server.

Return Values
Returns the ObjectId value encapsulated by the specified reference.

PortableServer::POA::the_POAManager

Synopsis
Identifies the POA manager associated with the POA.

C++ Binding
POAManager_ptr the_POAManager ();

Argument

None.

Description
This read-only attribute identifies the POA manager associated with the POA.

Note: This function is supported only for a joint client/server.

Return Values
None.

Example
poa->the_POAManager()->activate();

This statement will set the state of the POAManager for the given POA to active, which is
required if the POA is to accept requests. Note that if the POA has a parent, that is, it is not the
root POA, all of its parent’s POAManagers must also be in the active state for this statement to
have any effect.
CORBA Programming Reference 14-89

PortableServer::ServantBase::_default_POA

Synopsis
Returns an object reference to the POA associated with the servant.

C++ Binding
class PortableServer
{
class ServantBase
 {
 public:
 virtual POA_ptr _default_POA();
 }
}

Argument

None.

Description
All C++ Servants inherit from PortableServer::ServantBase, so they all inherit the
_default_POA function. In this version of Oracle Tuxedo there is usually no reason to use
_default_POA.

The default implementation of this function returns an object reference to the root POA of the
default ORB in this process—the same as the return value of an invocation of
ORB::resolve_initial_references("RootPOA"). A C++ servant can override this
definition to return the POA of its choice, if desired.

Note: This function is supported only for joint client/servers.

Return Values
The default POA associated with the servant.

POA Current Member Functions
The PortableServer::Current interface, derived from CORBA::Current, provides method
implementations with access to the identity of the object on which the method was invoked.
14-90 CORBA Programming Reference

POA Cur rent Member Funct i ons
PortableServer::Current::get_object_id

Synopsis
Returns the ObjectId identifying the object in whose context it is called.

C++ Binding
ObjectId * get_object_id ();

Arguments
None.

Exception
If called outside the context of a POA-dispatched operation, a PortableServer::NoContext
exception is raised.

Description
This operation returns the PortableServer::ObjectId identifying the object in whose context
it is called.

Note: This function is supported only for a joint client/server.

Return Values
This operation returns the ObjectId identifying the object in whose context it is called.

PortableServer::Current::get_POA

Synopsis
Returns a reference to the POA implementing the object in whose context it is called.

C++ Binding
POA_ptr get_POA ();

Argument
None.

Exceptions
If this operation is called outside the context of a POA-dispatched operation, a
PortableServer::NoContext exception is raised.
CORBA Programming Reference 14-91

Description
This operation returns a reference to the POA implementing the object in whose context it is
called.

Note: This function is supported only for a joint client/server.

Return Values
This operation returns a reference to the POA implementing the object in whose context it is
called.

POAManager Member Functions
Each POA object has an associated POAManager object. A POAManager may be associated with
one or more POA objects. A POAManager encapsulates the processing state of the POAs with
which it is associated. Using operations on the POA manager, an application can cause requests
for those POAs to be queued or discarded, and can cause the POAs to be deactivated.

POA managers are created and destroyed implicitly. Unless an explicit POAManager object is
provided at POA creation time, a POAManager is created when a POA is created and is
automatically associated with that POA. A POAManager object is implicitly destroyed when all
of its associated POAs have been destroyed.

A POAmanager has four possible processing states: active, inactive, holding, and discarding. The
processing state determines the capabilities of the associated POAs and the disposition of
requests received by those POAs.

A POAmanager is created in the holding state. In that state, any invocations on its POA are
queued until the POA manager enters the active state. This version of Oracle Tuxedo supports
only the ability to enter active and inactive states. That is, this version does not support the ability
to return to holding state or to enter discarding state.

PortableServer::POAManager::activate

Synopsis
Changes the state of the POAManager to active.

C++ Binding
void activate();
14-92 CORBA Programming Reference

POAManager Member Funct ions
Argument

None.

Exceptions
If this operation is issued while the POAmanager is in the inactive state, the
PortableServer::POAManager::AdapterInactive exception is raised.

Description
This operation changes the state of the POAManager to active. Entering the active state enables
the associated POAs to process requests.

Note: All parent POAs must also have POAManagers in the active state for this POA to process
requests.

Note: This function is supported only for a joint client/server.

Return Values
None.

PortableServer::POAManager::deactivate

Synopsis
Changes the state of the POA manager to inactive.

C++ Binding
void deactivate (
 CORBA::Boolean etherealize_objects,
 CORBA::Boolean wait_for_completion);

Argument
etherealize_objects

For BEA WebLogic Enterprise 4.2 software and later software and Oracle Tuxedo 8.0 and
later software, this argument should always be set to FALSE.

wait_for_completion
If this argument is TRUE, the deactivate operation returns only after all requests in
process have completed. If this argument is FALSE, the deactivate operation returns
after changing the state of the associated POAs.
CORBA Programming Reference 14-93

Exceptions
If issued while the POA manager is in the inactive state, the
PortableServer::POAManager::AdapterInactive exception is raised.

Description
This operation changes the state of the POAManager to inactive. Entering the inactive state
causes the associated POAs to reject requests that have not begun to be executed, as well as any
new requests.

Note: This release of Oracle Tuxedo does not support multithreading. Hence,
wait_for_completion should not be TRUE if the call is made in the context of an object
invocation. That is, the POAManager cannot be set to inactive state if it is currently
executing.

Note: This function is supported only for a joint client/server.

Return Values
None.

POA Policy Member Objects
Interfaces derived from CORBA::Policy are used with the POA::create_POA operation to
specify policies that apply to a POA. Policy objects are created using factory operations on any
preexisting POA, such as the root POA. Policy objects are specified when a POA is created.
Policies may not be changed on an existing POA. Policies are not inherited from the parent POA.

PortableServer::LifespanPolicy

Synopsis
Specifies the life span of objects to the create_POA operation.

Description
Objects with the LifespanPolicy interface are obtained using the
POA::create_lifespan_policy operation and are passed to the POA::create_POA operation
to specify the life span of the objects implemented in the created POA. The following values can
be supplied:

TRANSIENT—the objects implemented in the POA cannot outlive the process in which they
are first created.
14-94 CORBA Programming Reference

POA Po l i cy Member Ob jec ts
PERSISTENT—the objects implemented in the POA can outlive the process in which they
are first created.

Persistent objects have a POA associated with them (the POA that created them). When the
ORB receives a request on a persistent object, it searches for the matching POA, based on
the names of the POA and all of its ancestors.

POA names must be unique within their enclosing scope (the parent POA). A portable
program can assume that POA names used in other processes will not conflict with its own
POA names.

If no LifespanPolicy object is passed to create_POA, the lifespan policy defaults to
TRANSIENT.

Note: This function is supported only for a joint client/server.

Exceptions
None.

PortableServer::IdAssignmentPolicy

Synopsis
Specifies whether ObjectIds in the created POA are generated by the application or by the ORB.

Description
Objects with the IdAssignmentPolicy interface are obtained using the
POA::create_id_assignment_policy operation and are passed to the POA::create_POA
operation to specify whether ObjectIds in the created POA are generated by the application or
by the ORB. The following values can be supplied:

USER_ID—objects created with that POA are assigned ObjectIds only by the application.

SYSTEM_ID—objects created with that POA are assigned ObjectIds only by the POA. If
the POA also has the PERSISTENT policy, assigned ObjectIds must be unique across all
instantiations of the same POA.

If no IdAssignmentPolicy is specified at POA creation, the default is SYSTEM_ID.

Note: This function is supported only for a joint client/server.
CORBA Programming Reference 14-95

Request Member Functions
The mapping of these member functions to C++ is as follows:

// C++
class Request
{
 public:
 Object_ptr target() const;
 const char *operation() const;
 NamedValue_ptr result();
 NVList_ptr arguments();
 Environment_ptr env();
 ExceptionList_ptr exceptions();
 ContextList_ptr contexts();
 void ctx(Context_ptr);
 Context_ptr ctx() const

 // argument manipulation helper functions
 Any &add_in_arg();
 Any &add_in_arg(const char* name);
 Any &add_inout_arg():
 Any &add_inout_arg(const char* name);
 Any &add_out_arg():
 Any &add_out_arg(const char* name);
 void set_return_type(TypeCode_ptr tc);
 Any &return_value();

 void invoke();
 void send_oneway();
 void send_deferred();
 void get_response();
 Boolean poll_response();
};

Note: The add_*_arg, set_return_type, and return_value member functions are added
as shortcuts for using the attribute-based accessors.

The following sections describe these member functions.
14-96 CORBA Programming Reference

Request Member Funct ions
CORBA::Request::arguments

Synopsis
Retrieves the argument list for the request.

C++ Binding
CORBA::NVList_ptr CORBA::Request::arguments () const;

Arguments

None.

Description
This member function retrieves the argument list for the request. The arguments can be input,
output, or both.

Return Values
If the function succeeds, the value returned is a pointer to the list of arguments to the operation
for the request. The returned argument list is owned by the Request object reference and should
not be released.

If the function does not succeed, an exception is thrown.

CORBA::Request::ctx(Context_ptr)

Synopsis
Sets the Context object for the operation.

C++ Binding
void CORBA::Request::ctx (
 CORBA::Context_ptr CtxObject);

Argument

CtxObject
The new value to which to set the Context object.

Description
This member function sets the Context object for the operation.
CORBA Programming Reference 14-97

Return Values
None.

See Also
CORBA::Request::ctx()

CORBA::Request::get_response

Synopsis
Retrieves the response of a specific deferred synchronous request.

C++ Binding
void CORBA::Request::get_response ();

Arguments
None.

Description
This member function retrieves the response of a specific request; it is used after a call to the
CORBA::Request::send_deferred function or the
CORBA::Request::send_multiple_requests function. If the request has not completed, the
CORBA::Request::get_response function blocks until it does complete.

Return Values
None.

See Also
CORBA::Request::send_deferred

CORBA::Request::invoke

Synopsis
Performs an invoke on the operation specified in the request.

C++ Binding
void CORBA::Request::invoke ();
14-98 CORBA Programming Reference

Request Member Funct ions
Arguments
None.

Description
This member function calls the Object Request Broker (ORB) to send the request to the
appropriate server application.

Return Values
None.

CORBA::Request::operation

Synopsis
Retrieves the operation intended for the request.

C++ Binding
const char * CORBA::Request::operation () const;

Arguments
None.

Description
This member function retrieves the operation intended for the request.

Return Values
If the function succeeds, the value returned is a pointer to the operation intended for the object;
the value can be 0 (zero). The memory returned is owned by the Request object and should not
be freed.

If the function does not succeed, an exception is thrown.

CORBA::Request::poll_response

Synopsis
Determines whether a deferred synchronous request has completed.
CORBA Programming Reference 14-99

C++ Binding
CORBA::Boolean CORBA::Request::poll_response ();

Arguments
None.

Description
This member function determines whether the request has completed and returns immediately.
You can use this call to check the state of the request. This member function can also be used to
determine whether a call to CORBA::Request::get_response will block.

Return Values
If the function succeeds, the value returned is CORBA_TRUE if the response has already
completed, and CORBA_FALSE if the response has not yet completed.

If the function does not succeed, an exception is thrown.

See Also
CORBA::ORB::get_next_response
CORBA::ORB::poll_next_response
CORBA::ORB::send_multiple_requests
CORBA::Request::get_response
CORBA::Request::send_deferred

CORBA::Request::result

Synopsis
Retrieves the result of the request.

C++ Binding
CORBA::NamedValue_ptr CORBA::Request::result ();

Arguments
None.

Description
This member function retrieves the result of the request.
14-100 CORBA Programming Reference

Request Member Funct ions
Return Values
If the function succeeds, the value returned is a pointer to the result of the operation. The returned
result is owned by the Request object and should not be released.

If the function does not succeed, an exception is thrown.

CORBA::Request::env

Synopsis
Retrieves the environment of the request.

C++ Binding
CORBA::Environment_ptr CORBA::Request::env ();

Arguments
None.

Description
This member function retrieves the environment of the request.

Return Values
If the function succeeds, the value returned is a pointer to the environment of the operation. The
returned environment is owned by the Request object and should not be released.

If the function does not succeed, an exception is thrown.

CORBA::Request::ctx

Synopsis
Retrieves the context of the request.

C++ Binding
CORBA::context_ptr CORBA::Request::ctx ();

Arguments
None.
CORBA Programming Reference 14-101

Description
This member function retrieves the context of the request.

Return Values
If the function succeeds, the value returned is a pointer to the context of the operation. The
returned context is owned by the Request object and should not be released.

If the function does not succeed, an exception is thrown.

CORBA::Request::contexts

Synopsis
Retrieves the context lists for the request.

C++ Binding
CORBA::ContextList_ptr CORBA::Request::contexts ();

Arguments
None.

Description
This member function retrieves the context lists for the request.

Return Values
If the function succeeds, the value returned is a pointer to the context lists for the operation. The
returned context list is owned by the Request object and should not be released.

If the function does not succeed, an exception is thrown.

CORBA::Request::exceptions

Synopsis
Retrieves the exception lists for the request.

C++ Binding
CORBA::ExceptionList_ptr CORBA::Request::exceptions ();
14-102 CORBA Programming Reference

Request Member Funct ions
Arguments
None.

Description
This member function retrieves the exception lists for the request.

Return Values
If the function succeeds, the value returned is a pointer to the exception list for the request. The
returned exception list is owned by the Request object and should not be released.

If the function does not succeed, an exception is thrown.

CORBA::Request::target

Synopsis
Retrieves the target object reference for the request.

C++ Binding
CORBA::Object_ptr CORBA::Request::target () const;

Arguments
None.

Description
This member function retrieves the target object reference for the request.

Return Values
If the function succeeds, the value returned is a pointer to the target object of the operation. The
returned value is owned by the Request object and should not be released.

If the function does not succeed, an exception is thrown.

CORBA::Request::send_deferred

Synopsis
Initiates a deferred synchronous request.
CORBA Programming Reference 14-103

C++ Binding
void CORBA::Request::send_deferred ();

Arguments
None.

Description
This member function initiates a deferred synchronous request. You use this function when a
response is expected and in conjunction with the CORBA::Request::get_response function.

Return Values
None.

See Also
CORBA::ORB::get_next_response
CORBA::ORB::poll_next_response
CORBA::ORB::send_multiple_requests
CORBA::Request::get_response
CORBA::Request::poll_response
CORBA::Request::send_oneway

CORBA::Request::send_oneway

Synopsis
Initiates a one-way request.

C++ Binding
void CORBA::Request::send_oneway ();

Arguments
None.

Description
This member function initiates a one-way request; it does not expect a response.

Return Values
None.
14-104 CORBA Programming Reference

St r ings
See Also
CORBA::ORB::send_multiple_requests
CORBA::Request::send_deferred

Strings
The mapping of these functions to C++ is as follows:

// C++

namespace CORBA {
 static char * string_alloc(ULong len);
 static char * string_dup (const char *);
 static void string_free(char *);
 ...
}

Note: A static array of char in C++ decays to a char*. Therefore, care must be taken when
assigning a static array to a String_var, because the String_var assumes that the
pointer points to data allocated via string_alloc, and thus eventually attempts to free
it using string_free.

This behavior has changed in ANSI/ISO C++, where string literals are const char*, not
char*. However, since most C++ compilers do not yet implement this change, portable
programs must heed the advice given here.

The following sections describe the functions that manage memory allocated to strings.

CORBA::string_alloc

Synopsis
Allocates memory for a string.

C++ Binding
char * CORBA::string_alloc(ULong len);

Argument
len

The length of the string for which to allocate memory.
CORBA Programming Reference 14-105

Description
This member function dynamically allocates memory for a string, or returns a nil pointer if it
cannot perform the allocation. It allocates len+1 characters so that the resulting string has
enough space to hold a trailing NULL character. Free the memory allocated by this member
function by calling the CORBA::string_free member function.

This function does not throw CORBA exceptions.

Return Values
If the function succeeds, the return value is a pointer to the newly allocated memory for the string
object; if the function fails, the return value is a nil pointer.

Example
char* s = CORBA::string_alloc(10);

See Also
CORBA::string_free
CORBA::string_dup

CORBA::string_dup

Synopsis
Makes a copy of a string.

C++ Binding
char * CORBA::string_dup (const char * Str);

Argument
Str

The address of the string to be copied.

Description
This function dynamically allocates enough memory to hold a copy of its string argument,
including the NULL character, copies the string argument into that memory, and returns a pointer
to the new string.

This function does not throw CORBA exceptions.
14-106 CORBA Programming Reference

St r ings
Return Values
If the function succeeds, the return value is a pointer to the new string; if the function fails, the
return value is a nil pointer.

Example
char* s = CORBA::string_dup("hello world");

See Also
CORBA::string_free
CORBA::string_alloc

CORBA::string_free

Synopsis
Frees memory allocated to a string.

C++ Binding
void CORBA::string_free(char * Str);

Argument
Str

The address of the memory to be deallocated.

Description
This member function deallocates memory that was previously allocated to a string using the
CORBA::string_alloc() or CORBA::string_dup() member functions. Passing a nil
pointer to this function is acceptable and results in no action being performed.

This function may not throw CORBA exceptions.

Return Values
None.

Example
char* s = CORBA::string_dup("hello world");
CORBA::string_free(s);
CORBA Programming Reference 14-107

See Also
CORBA::string_alloc
CORBA::string_dup

Wide Strings
Both bounded and unbounded wide string types are mapped to CORBA::WChar* in C++. In
addition, the CORBA module defines WString_var and WString_out classes. Each of these
classes provides the same member functions with the same semantics as their string counterparts,
except of course they deal with wide strings and wide characters.

Dynamic allocation and deallocation of wide strings must be performed via the following
functions:

// C++
namespace CORBA {
 // ...
 WChar *wstring_alloc(ULong len);
 WChar *wstring_dup(const WChar* ws);
 void wstring_free(WChar*);
};

These member functions have the same semantics as the same functions for the string type, except
they operate on wide strings.

A compliant mapping implementation provides overloaded operator<< (insertion) and
operator>> (extraction) operators for using WString_var and WString_out directly with C++
iostreams.

For descriptions of these member functions, see the corresponding function for Strings.

Listing 14-1 shows a code example that uses wide strings and wide characters.

Listing 14-1 Wide Strings Example

// Get a string from the user:
cout << "String?";
char mixed[256]; // this should be big enough!
char lower[256];
char upper[256];
wchar_t wmixed[256];
14-108 CORBA Programming Reference

TypeCode Member Funct ions
cin >> mixed;
// Convert the string to a wide char string,
// because this is what the server will expect.
mbstowcs(wmixed, mixed, 256);

// Convert the string to upper case:
CORBA::WString_var v_upper = CORBA::wstring_dup(wmixed);
v_simple->to_upper(v_upper.inout());
wcstombs(upper, v_upper.in(), 256);
cout << upper << endl;

// Convert the string to lower case:
CORBA::WString_var v_lower = v_simple->to_lower(wmixed);
wcstombs(lower, v_lower.in(), 256);
cout << lower << endl;

// Everything succeeded:
return 0;

TypeCode Member Functions
A TypeCode represents OMG IDL type information.

No constructors for TypeCodes are defined. However, in addition to the mapped interface, for
each basic and defined OMG IDL type, an implementation provides access to a TypeCode
pseudo-object reference (TypeCode_ptr) of the form _tc_<type> that may be used to set types
in Any, as arguments for equal, and so on. In the names of these TypeCode reference constants,
<type> refers to the local name of the type within its defining scope. Each C++ _tc_<type>
constant is defined at the same scoping level as its matching type.

Like all other serverless objects, the C++ mapping for TypeCode provides a _nil() operation
that returns a nil object reference for a TypeCode. This operation can be used to initialize
TypeCode references embedded within constructed types. However, a nil TypeCode reference
may never be passed as an argument to an operation, since TypeCodes are effectively passed as
values, not as object references.

The mapping of these member functions to C++ is as follows:

class CORBA
{
 class TypeCode
CORBA Programming Reference 14-109

 {
 public:
 class Bounds { ... };
 class BadKind { ... };

 Boolean equal(TypeCode_ptr) const;
 TCKind kind() const;
 Long param_count() const;
 Any *parameter(Long) const;
 RepositoryId id () const;
 }; // TypeCode
}; // CORBA

Memory Management
TypeCode has the following special memory management rule:

– Ownership of the return values of the id function is maintained by the TypeCode; these
return values must not be freed by the caller.

The following sections describe these member functions.

CORBA::TypeCode::equal

Synopsis
Determines whether two TypeCode objects are equal.

C++ Binding
CORBA::Boolean CORBA::TypeCode::equal (
 CORBA::TypeCode_ptr TypeCodeObj) const;

Argument

TypeCodeObj
A pointer to a TypeCode object with which to make the comparison.

Description
This member function determines whether a TypeCode object is equal to the input parameter,
TypeCodeObj.
14-110 CORBA Programming Reference

TypeCode Member Funct ions
Return Values
If the TypeCode object is equal to the TypeCodeObj parameter, CORBA_TRUE is returned.

If the TypeCode object is not equal to the TypeCodeObj parameter, CORBA_FALSE is returned.

If the function does not succeed, an exception is thrown.

CORBA::TypeCode::id

Synopsis
Returns the ID for the TypeCode.

C++ Binding
CORBA::RepositoryId CORBA::TypeCode::id () const;

Arguments
None.

Description
This member function returns the ID for the TypeCode.

Return Values
Repository ID for the TypeCode.

CORBA::TypeCode::kind

Synopsis
Retrieves the kind of data contained in the TypeCode object reference.

C++ Binding
CORBA::TCKind CORBA::TypeCode::kind () const;

Arguments

None.

Description
This member function retrieves the kind attribute of the CORBA::TypeCode class, which
specifies the kind of data contained in the TypeCode object reference.
CORBA Programming Reference 14-111

Return Values
If the member function succeeds, it returns the kind of data contained in the TypeCode object
reference. For a list of the TypeCode kinds and their parameters, see Table 14-3.

If the member function does not succeed, an exception is thrown.

Table 14-3 Legal Typecode Kinds and Parameters

TypeCode Kind Parameters List

CORBA::tk_null *NONE*

CORBA::tk_void *NONE*

CORBA::tk_short *NONE*

CORBA::tk_long *NONE*

CORBA::tk_long *NONE*

CORBA::tk_ushort *NONE*

CORBA::tk_ulong *NONE*

CORBA::tk_float *NONE*

CORBA::tk_double *NONE*

CORBA::tk_boolean *NONE*

CORBA::tk_char *NONE*

CORBA::tk_wchar *NONE*

CORBA::tk_octet *NONE*

CORBA::tk_Typecode *NONE*

CORBA::tk_Principal *NONE*

CORBA::tk_objref {interface_id}

CORBA::tk_struct {struct-name, member-name, TypeCode, ... (repeat pairs)}

CORBA::tk_union {union-name, switch-TypeCode, label-value,
member-name, enum-id, ...}
14-112 CORBA Programming Reference

TypeCode Member Funct ions
CORBA::TypeCode::param_count

Synopsis
Retrieves the number of parameters for the TypeCode object reference.

C++ Binding
CORBA::Long CORBA::TypeCode::param_count () const;

Arguments
None.

Description
This member function retrieves the parameter attribute of the CORBA::TypeCode class, which
specifies the number of parameters for the TypeCode object reference. For a list of parameters of
each kind, see Table 14-3.

Return Values
If the function succeeds, it returns the number of parameters contained in the TypeCode object
reference.

If the function does not succeed, an exception is thrown.

CORBA::tk_enum {enum-name, enum-id, ...}

CORBA::tk_string {maxlen-integer}

CORBA::tk_wstring {maxlen-integer}

CORBA::tk_sequence {TypeCode, maxlen-integer}

CORBA::tk_array {TypeCode, length-integer}

Table 14-3 Legal Typecode Kinds and Parameters (Continued)

TypeCode Kind Parameters List
CORBA Programming Reference 14-113

CORBA::TypeCode::parameter

Synopsis
Retrieves a parameter specified by the index input argument.

C++ Binding
CORBA::Any * CORBA::TypeCode::parameter (
 CORBA::Long Index) const;

Argument

Index
An index to the parameter list, used to determine which parameter to retrieve.

Description
This member function retrieves a parameter specified by the index input argument. For a list of
parameters of each kind, see Table 14-3.

Return Values
If the member function succeeds, the return value is a pointer to the parameter specified by the
index input argument.

If the member function does not succeed, an exception is thrown.

Exception Member Functions
The Oracle Tuxedo software supports the throwing and catching of exceptions.

Caution: Use of the wrong exception constructor causes noninitialization of a data member.
Exceptions that are defined to have a reason field need to be created using the
constructor that initializes that data member. If the default constructor is used instead,
that data member is not initialized and, during destruction of the exception, the
system may attempt to destroy nonexistent data.

When creating exceptions, be sure to use the constructor function that most fully
initializes the data fields. These exceptions can be most easily identified by looking
at the OMG IDL definition; they have additional data member definitions.

Descriptions of exception member functions follow:
14-114 CORBA Programming Reference

Except ion Member Funct ions
CORBA::SystemException::SystemException ()
This is the default constructor for the CORBA::SystemException class. Minor code is
initialized to 0 (zero) and the completion status is set to COMPLETED_NO.

CORBA::SystemException::SystemException (
 const CORBA::SystemException & Se)

This is the copy constructor for the CORBA::SystemException class.

CORBA::SystemException::SystemException(
 CORBA::ULong Minor, CORBA::CompletionStatus Status)

This constructor for the CORBA::SystemException class sets the minor code and
completion status.

Explanations of the arguments are as follows:

Minor
The minor code for the Exception object. The minor field is an
implementation-specific value used by the ORB to identify the exception. The
Oracle Tuxedo minor field definitions can be found in the file orbminor.h.

Status
The completion status for the Exception object. The values are as follows:
CORBA::COMPLETED_YES
CORBA::COMPLETED_NO
CORBA::COMPLETED_MAYBE

CORBA::SystemException::~SystemException ()
This is the destructor for the CORBA::SystemException class. It frees any memory used
for the Exception object.

CORBA::SystemException CORBA::SystemException::operator =
 const CORBA::SystemException Se)

This assignment operator copies exception information from the source exception. The Se
argument specifies the SystemException object that is to be copied by this operator.

CORBA::CompletionStatus CORBA::SystemException::completed()
This member function returns the completion status for this exception.

CORBA::SystemException::completed(
 CORBA::CompletionStatus Completed)

This member function sets the completion status for this exception. The Completed
argument specifies the completion status for this exception.

CORBA::ULong CORBA::SystemException::minor()
This member function returns the minor code for this exception.
CORBA Programming Reference 14-115

CORBA::SystemException::minor (CORBA::ULong Minor)
This member function sets the minor code for this exception. The minor argument
specifies the new minor code for this exception. The minor field is an
implementation-specific value used by the application to identify the exception.

CORBA::SystemException * CORBA::SystemException::_narrow (
 CORBA::Exception_ptr Exc)

This member function determines whether a specified exception can be narrowed to a
system exception. The Exc argument specifies the exception to be narrowed.

If the specified exception is a system exception, this member function returns a pointer to
the system exception. If the specified exception is not a system exception, the function
returns 0 (zero).

CORBA::UserException * CORBA::UserException::_narrow(
 CORBA::Exception_ptr Exc)

This member function determines whether a specified exception can be narrowed to a user
exception. The Exc argument specifies the exception to be narrowed.

If the specified exception is a user exception, this member function returns a pointer to the
user exception. If the specified exception is not a user exception, the function returns 0
(zero).

Standard Exceptions
This section presents the standard exceptions defined for the ORB. These exception identifiers
may be returned as a result of any operation invocation, regardless of the interface specification.
Standard exceptions are not listed in raises expressions.

To bound the complexity in handling the standard exceptions, the set of standard exceptions is
kept to a tractable size. This constraint forces the definition of equivalence classes of exceptions,
rather than enumerating many similar exceptions.

For example, an operation invocation can fail at many different points due to the inability to
allocate dynamic memory. Rather than enumerate several different exceptions that correspond to
the different ways that memory allocation failure causes the exception (during marshaling,
unmarshaling, in the client, in the object implementation, allocating network packets, and so
forth), a single exception corresponding to dynamic memory allocation failure is defined. Each
standard exception includes a minor code to designate the subcategory of the exception; the
assignment of values to the minor codes is left to each ORB implementation.

Each standard exception also includes a completion_status code, which takes one of the
following values:
14-116 CORBA Programming Reference

Standard Except i ons
CORBA::COMPLETED_YES
The object implementation completed processing prior to the exception being raised.

CORBA::COMPLETED_NO
The object implementation was not initiated prior to the exception being raised.

CORBA::COMPLETED_MAYBE
The status of implementation completion is unknown.

Exception Definitions
The standard exceptions are defined below. Clients must be prepared to handle system exceptions
that are not on this list, both because future versions of this specification may define additional
standard exceptions, and because ORB implementations may raise nonstandard system
exceptions. For more information about exceptions, see System Messages.

Table 14-4 defines the exceptions.

Table 14-4 Exception Definitions

Exception Description

CORBA::UNKNOWN The unknown exception.

CORBA::BAD_PARAM An invalid parameter was passed.

CORBA::NO_MEMORY Dynamic memory allocation failure.

CORBA::IMP_LIMIT Violated implementation limit.

CORBA::COMM_FAILURE Communication failure.

CORBA::INV_OBJREF Invalid object reference.

CORBA::NO_PERMISSION No permission for attempted operation.

CORBA::INTERNAL ORB internal error.

CORBA::MARSHAL Error marshalling parameter/result.

CORBA::INITIALIZE ORB initialization failure.

CORBA::NO_IMPLEMENT Operation implementation unavailable.

CORBA::BAD_TYPECODE Bad typecode.
CORBA Programming Reference 14-117

Object Nonexistence
The CORBA::OBJECT_NOT_EXIST exception is raised whenever an invocation on a deleted object
is performed. It is an authoritative “hard” fault report. Anyone receiving it is allowed (even
expected) to delete all copies of this object reference and to perform other appropriate “final
recovery” style procedures.

CORBA::BAD_OPERATION Invalid operation.

CORBA::NO_RESOURCES Insufficient resources for request.

CORBA::NO_RESPONSE Response to request not yet available.

CORBA::PERSIST_STORE Persistent storage failure.

CORBA::BAD_INV_ORDER Routine invocations out of order.

CORBA::TRANSIENT Transient failure; reissue request.

CORBA::FREE_MEM Cannot free memory.

CORBA::INV_IDENT Invalid identifier syntax.

CORBA::INV_FLAG Invalid flag was specified.

CORBA::INTF_REPOS Error accessing interface repository.

CORBA::BAD_CONTEXT Error processing context object.

CORBA::OBJ_ADAPTER Failure detected by object adapter.

CORBA::DATA_CONVERSION Data conversion error.

CORBA::OBJECT_NOT_EXIST Nonexistent object; delete reference.

CORBA::TRANSACTION_REQUIRED Transaction required.

CORBA::TRANSACTION_ROLLEDBACK Transaction rolled back.

CORBA::INVALID_TRANSACTION Invalid transaction.

Table 14-4 Exception Definitions (Continued)

Exception Description
14-118 CORBA Programming Reference

Except i onL is t Member Funct ions
Transaction Exceptions
The CORBA::TRANSACTION_REQUIRED exception indicates that the request carried a NULL
transaction context, but an active transaction is required.

The CORBA::TRANSACTION_ROLLEDBACK exception indicates that the transaction associated
with the request has already been rolled back or marked to roll back. Thus, the requested
operation either could not be performed or was not performed because further computation on
behalf of the transaction would be fruitless.

The CORBA::INVALID_TRANSACTION indicates that the request carried an invalid transaction
context. For example, this exception could be raised if an error occurred when trying to register
a resource.

ExceptionList Member Functions
The ExceptionList member functions allow a client or server application to provide a list of
TypeCodes for all user-defined exceptions that may result when the Request is invoked. For a
description of the Request member functions, see the section Request Member Functions.

The mapping of these member functions to C++ is as follows:

class CORBA
{
 class ExceptionList
 {
 public:
 Ulong count ();
 void add(TypeCode_ptr tc);
 void add_consume(TypeCode_ptr tc);
 TypeCode_ptr item(Ulong index);
 Status remove(Ulong index);
 }; // ExceptionList
}// CORBA
CORBA Programming Reference 14-119

CORBA::ExceptionList::count

Synopsis
Retrieves the current number of items in the list.

C++ Binding
Ulong count ();

Arguments

None.

Exception
If the function does not succeed, an exception is thrown.

Description
This member function retrieves the current number of items in the list.

Return Values
If the function succeeds, the returned value is the number of items in the list. If the list has just
been created, and no ExceptionList objects have been added, this function returns 0 (zero).

CORBA::ExceptionList::add

Synopsis
Constructs a ExceptionList object with an unnamed item, setting only the flags attribute.

C++ Binding
void add(TypeCode_ptr tc);

Arguments
tc

Defines the memory location referred to by TypeCode_ptr.

Exception
If the member function does not succeed, a CORBA::NO_MEMORY exception is thrown.
14-120 CORBA Programming Reference

Except i onL is t Member Funct ions
Description
This member function constructs an ExceptionList object with an unnamed item, setting only the
flags attribute.

The ExceptionList object grows dynamically; your application does not need to track its size.

Return Values
If the function succeeds, the return value is a pointer to the newly created ExceptionList object.

See Also
CORBA::ExceptionList::add_consume
CORBA::ExceptionList::count
CORBA::ExceptionList::item
CORBA::ExceptionList::remove

CORBA::ExceptionList::add_consume

Synopsis
Constructs an ExceptionList object.

C++ Binding
void add_consume(TypeCode_ptr tc);

Arguments
tc

The memory location to be assumed.

Exceptions
If the member function does not succeed, an exception is raised.

Description
This member function constructs an ExceptionList object.

The ExceptionList object grows dynamically; your application does not need to track its size.

Return Values
If the function succeeds, the return value is a pointer to the newly created ExceptionList object.
CORBA Programming Reference 14-121

See Also
CORBA::ExceptionList::add
CORBA::ExceptionList::count
CORBA::ExceptionList::item
CORBA::ExceptionList::remove

CORBA::ExceptionList::item

Synopsis
Retrieves a pointer to the ExceptionList object, based on the index passed in.

C++ Binding
TypeCode_ptr item(ULong index);

Argument

index
The index into the ExceptionList object. The indexing is zero-based.

Exceptions
If the function does not succeed, the BAD_PARAM exception is thrown.

Description
This member function retrieves a pointer to an ExceptionList object, based on the index passed
in. The function uses zero-based indexing.

Return Values
If the function succeeds, the return value is a pointer to the ExceptionList object.

See Also
CORBA::ExceptionList::add
CORBA::ExceptionList::add_consume
CORBA::ExceptionList::count
CORBA::ExceptionList::remove
CORBA::ExceptionList::remove

Synopsis
Removes the item at the specified index, frees any associated memory, and reorders the
remaining items on the list.
14-122 CORBA Programming Reference

Except i onL is t Member Funct ions
C++ Binding
Status remove(ULong index);

Argument
Index

The index into the ContextList object. The indexing is zero-based.

Exceptions

If the function does not succeed, the BAD_PARAM exception is thrown.

Description
This member function removes the item at the specified index, frees any associated memory, and
reorders the remaining items on the list.

Return Values
None.

See Also
CORBA::ExceptionList::add
CORBA::ExceptionList::add_consume
CORBA::ExceptionList::count
CORBA::ExceptionList::item
CORBA Programming Reference 14-123

14-124 CORBA Programming Reference

C H A P T E R 15
Server-side Mapping
Server-side mapping refers to the portability constraints for an object implementation written in
C++. The term server is not meant to restrict implementations to situations in which method
invocations cross-address space or machine boundaries. This mapping addresses any
implementation of an Object Management Group (OMG) Interface Definition Language (IDL)
interface.

Note: The information in this chapter is based on the Common Object Request Broker:
Architecture and Specification, Revision 2.4.2, February 2001, published by the Object
Management Group (OMG). Used with permission of the OMG.

Implementing Interfaces
To define an implementation in C++, you define a C++ class with any valid C++ name. For each
operation in the interface, the class defines a nonstatic member function with the mapped name
of the operation (the mapped name is the same as the OMG IDL identifier).

The server application mapping specifies two alternative relationships between the
implementation class supplied by the application and the generated class or classes for the
interface. Specifically, the mapping requires support for both inheritance-based relationships and
delegation-based relationships. Conforming applications may use either or both of these
alternatives. Oracle Tuxedo CORBA supports both inheritance-based and delegation-based
relationships.
CORBA Programming Reference 15-1

Inheritance-based Interface Implementation
In the inheritance-based interface implementation approach, the implementation classes are
derived from a generated base class based on the OMG IDL interface definition. The generated
base classes are known as skeleton classes, and the derived classes are known as implementation
classes. Each operation of the interface has a corresponding virtual member function declared in
the skeleton class. The generated skeleton class is partially opaque to the programmer, though it
will contain a member function corresponding to each operation in the interface. The signature
of the member function is identical to that of the generated client stub class.

To implement this interface using inheritance, a programmer must derive from this skeleton class
and implement each of the operations in the OMG IDL interface. To allow portable
implementations to multiple inheritances from both skeleton classes and implementation classes
for other base interfaces without error or ambiguity, the Tobj_ServantBase class must be a
virtual base class of the skeleton, and the PortableServer::ServantBase class must be a
virtual base class of the Tobj_ServantBase class. The inheritance among the implementation
class, the skeleton class, the Tobj_ServantBase class, and the
PortableServer::ServantBase class must all be public virtual.

The implementation class or servant must only derive directly from a single generated skeleton
class. Direct derivation from multiple skeleton classes could result in ambiguous errors due to
multiple definitions of the _this() operation. This should not be a limitation, however, since
CORBA objects have only a single most-derived interface. C++ servants that are intended to
support multiple interface types can utilize the delegation-based interface implementation
approach. See Listing 15-1 for an example of OMG IDL that uses interface inheritance.

Listing 15-1 OMG IDL That Uses Interface Inheritance

// IDL
interface A
{
 short op1() ;
 void op2(in long val) ;
};
15-2 CORBA Programming Reference

Inher i tance-based In te r face Implementat ion
Listing 15-2 Interface Class A

// C++
class A : public virtual CORBA::Object
 {
 public:
 virtual CORBA::Short op1 ();
 virtual void op2 (CORBA::Long val);
};

On the server side, a skeleton class is generated. This class is partially opaque to the programmer,
though it does contain a member function corresponding to each operation in the interface.

For the Portable Object Adapter (POA), the name of the skeleton class is formed by prepending
the string “POA_” to the fully scoped name of the corresponding interface, and the class is directly
derived from the servant base class Tobj_ServantBase. The C++ mapping for
Tobj_ServantBase is as follows:

// C++
class Tobj_ServantBase
{
 public:
 virtual void activate_object(const char* stroid);
 virtual void deactivate_object (
 const char* stroid,
 TobjS::DeactivateReasonValue reason
);
}

The activate_object() and deactivate_object() member functions are described in detail
in the sections Tobj_ServantBase:: activate_object() and Tobj_ServantBase::_add_ref().

The skeleton class for interface A shown above would appear as shown in Listing 15-3.

Listing 15-3 Skeleton Class for Interface A

// C++
class POA_A : public Tobj_ServantBase
CORBA Programming Reference 15-3

{
 public:
 // ... server-side ORB-implementation-specific
 // goes here...

 virtual CORBA::Short op1 () = 0;
 virtual void op2 (CORBA::Long val) = 0;
 //...
};

If interface A were defined within a module rather than at global scope (for example, Mod::A),
the name of its skeleton class would be POA_Mod::A. This helps to separate server application
skeleton declarations and definitions from C++ code generated for the client.

To implement this interface using inheritance, you must derive from this skeleton class and
implement each of the operations in the corresponding OMG IDL interface. An implementation
class declaration for interface A would take the form shown in Listing 15-4.

Listing 15-4 Interface A Implementation Class Declaration

// C++
class A_impl : public POA_A
{
 public:
 CORBA::Short op1();
 void op2(CORBA::Long val);
 ...
};

Delegation-based Interface Implementation
The delegation-based interface implementation approach is an alternative to using inheritance
when implementing CORBA objects. This approach is used when the overhead of inheritance is
too high or cannot be used. For example, due to the invasive nature of inheritance, implementing
objects using existing legacy code might be impossible if inheritance for some global class were
15-4 CORBA Programming Reference

De legat ion-based In te r face Implementat ion
required. Instead, delegation can be used to solve these types of problems. Delegation is a more
natural fit doing object implementations when the Process-Entity design pattern is used. In this
pattern, the Process object would delegate operations onto one or more entity objects.

In the delegation-based approach, the implementation does not inherit from a skeleton class.
Instead, the implementation can be coded as required for the application, and a wrapper object
will delegate upcalls to that implementation. This “wrapper object,” called a tie, is generated by
the IDL compiler, along with the same skeleton class used for the inheritance approach. The
generated tie class is partially opaque to the programmer, though, like the skeleton, it provides a
method corresponding to each OMG IDL operation for the associated interface. The name of the
generated tie class is the same as the generated skeleton class with the addition that the string
_tie is appended to the end of the class name.

An instance of the tie class is the servant, not the C++ object being delegated to by the tie object,
that is passed as the argument to the operations that require a Servant argument. It should also
be noted that the tied object has no access to the _this() operation, nor should it access data
members directly.

A type-safe tie class is implemented using C++ templates. The code shown in Listing 15-5
illustrates a tie class generated from the Derived interface in the previous OMG IDL example.

Listing 15-5 Tie Class Generated from the Derived Interface

// C++
template <class T>
class POA_A_tie : public POA_A {
public:
 POA_A_tie(T& t)
 : _ptr(&t), _poa(PortableServer::POA::_nil()), _rel(0) {}
 POA_A_tie(T& t, PortableServer::POA_ptr poa)
 : _ptr(&t), _poa(PortableServer::POA::_duplicate(poa)), _rel(0) {}
 POA_A_tie(T* tp, CORBA::Boolean release = 1)
 : _ptr(tp), _poa(PortableServer::POA::_nil()), _rel(release) {}
 POA_A_tie(T* tp, PortableServer::POA_ptr poa, CORBA::Boolean release = 1)
 : _ptr(tp), _poa(PortableServer::POA::_duplicate(poa)), _rel(release) {}
 ~POA_A_tie()
 { CORBA::release(_poa);
 if (_rel) delete _ptr;
 }

 // tie-specific functions
 T* _tied_object () {return _ptr;}
 void _tied_object(T& obj)
CORBA Programming Reference 15-5

 { if (_rel) delete _ptr;
 _ptr = &obj;
 _rel = 0;
 }
 void _tied_object(T* obj, CORBA::Boolean release = 1)
 { if (_rel) delete _ptr;
 _ptr = obj;
 _rel = release;
 }

 CORBA::Boolean _is_owner() { return _rel; }
 void _is_owner (CORBA::Boolean b) { _rel = b; }

 // IDL operations*************************************
 CORBA::Short op1 ()
 {
 return _ptr->op1 ();
 }

 void op2 (CORBA::Long val)
 {
 _ptr->op2 (val);
 }
 // ***

 // override ServantBase operations
 PortableServer::POA_ptr _default_POA()
 {
 if (!CORBA::is_nil(_poa))
 {
 return _poa;
 }
 else {
#ifdef WIN32
 return ServantBase::_default_POA();
#else
 return PortableServer::ServantBase::_default_POA();
#endif
 }
 }

private:
 T* _ptr;
 PortableServer::POA_ptr _poa;
 CORBA::Boolean _rel;

 // copy and assignment not allowed
15-6 CORBA Programming Reference

De legat ion-based In te r face Implementat ion
 POA_A_tie (const POA_A_tie<T> &);
 void operator=(const POA_A_tie<T> &);
};

This class definition is a template generated by the IDL compiler. You typically use it by first
getting a pointer to the legacy class and then instantiating the tie class with that pointer. For
example:

Old::Legacy * legacy = new Old::Legacy(oid);
POA_A_tie<Old::Legacy> * A_servant_ptr =
 new POA_A_tie<Old::Legacy>(legacy);

As you can see, the tie class contains definitions for the op1 and op2 operations of the interface
that assume that the legacy class has operations with the same signatures as those given in the
IDL. If this is the case, you can use the tie class file as is, letting it delegate exactly. It is more
likely, however, that the legacy class will not have identical signatures or you may have to do
more than a single function call. In that case, it is your job to replace the code for op1 and op2 in
this generated code. The code for each operation typically makes invocations on the legacy class
using the tie class variable _ptr, which contains the pointer to the legacy class. For example, you
might change the following lines:

 CORBA::Short op1 () {return _ptr->op1 (); }
 void op2 (CORBA::Long val) {_ptr->op2 (val); }

to the following:

CORBA::Short op1 ()
{
 return _ptr->op37 ();
}

void op2 (CORBA::Long val)
{
 CORBA::Long temp;
 temp = val + 15;
 _ptr->lookup(val, temp, 43);
}

An instance of this template class performs the task of delegation. When the template is
instantiated with a class type that provides the operation of the Derived interface, then the
CORBA Programming Reference 15-7

POA_Derived_tie class will delegate all operations to an instance of that implementation class.
A reference or pointer to the actual implementation object is passed to the appropriate tie
constructor when an instance of the POA_Derived_tie class is created. When a request is
invoked on it, the tie servant will just delegate the request by calling the corresponding method
on the implementation class.

The use of templates for tie classes allows the application developer to provide specializations for
some or all of the template’s operations for a given instantiation of the template. This allows the
application to use legacy classes for tied object types, where the operation signatures of the tied
object will differ from that of the tie class.

Implementing Operations
The signature of an implementation member function is the mapped signature of the OMG IDL
operation. Unlike the client-side mapping, the OMG specifies that the function header for the
server-side mapping include the appropriate exception specification. An example of this is shown
in Listing 15-6.

Listing 15-6 Exception Specification

// IDL
interface A
{
 exception B {};
 void f() raises(B);
};

// C++
class MyA : public virtual POA_A
{
 public:
 void f();
 ...
};
15-8 CORBA Programming Reference

Imp lement ing Operat i ons
Since all operations and attributes may raise CORBA system exceptions,
CORBA::SystemException must appear in all exception specifications, even when an operation
has no raises clause.

Note: Because of the differences in C++ compilers, it is best to leave out the "throw
declaration" in the method signature. Some systems cause the application server to crash
if an undeclared exception is thrown in a method that has declared the exceptions it will
throw.

Within a member function, the “this” pointer refers to the implementation object’s data as defined
by the class. In addition to accessing the data, a member function may implicitly call another
member function defined by the same class. An example of this is shown in Listing 15-7.

Listing 15-7 Calling Another Member Function

// IDL
interface A
{
 void f();
 void g();
};

// C++
class MyA : public virtual POA_A
{
 public:
 void f();
 void g();
 private:
 long x_;
};

void
MyA::f();
{
 x_ = 3;
 g();
}

CORBA Programming Reference 15-9

When a servant member function is invoked in this manner, it is being called simply as a C++
member function, not as the implementation of an operation on a CORBA object.
15-10 CORBA Programming Reference

	Oracle® Tuxedo
	12c Release 2 (12.2.2)

	Oracle Tuxedo CORBA Programming Reference, 12c Release 2 (12.2.2)
	Contents

	OMG IDL Syntax and the C++ IDL Compiler
	OMG IDL Compiler Extensions
	Table 1-1 Predefined Macros

	C++ IDL Compiler Constraints
	Table 1-2 C++ IDL Compiler

	Implementation Configuration File (ICF)
	ICF Syntax
	[#pragma activation_policy method|transaction|process] [#pragma transaction_policy never|ignore|optional|always] [#pragma concur...

	Sample ICF File
	Listing 2-1 Sample ICF

	Creating the ICF File
	See Also

	TP Framework
	A Simple Programming Model
	Control Flow
	Object State Management
	Transaction Integration
	Object Housekeeping
	High-level Services

	State Management
	Activation Policy
	Application-controlled Activation and Deactivation
	Explicit Activation
	Usage Notes
	Caution to Users

	Self Deactivation

	Servant Lifetime
	The Normal Case
	Special Cases

	Saving and Restoring Object State
	Note On Use of Constructors and Destructors for CORBA Objects

	Transactions
	Transaction Policies
	Transaction Initiation
	Transaction Termination
	Transaction Suspend and Resume
	Restrictions on Transactions
	SQL and Global Transactions
	Voting on Transaction Outcome
	Transaction Timeouts

	IIOP Client Failover
	Setting The Retry Policy
	MIB Support

	Initiating IIOP Client Failover
	Listing 3-1 Example UBBCONFIG File IIOP Client Failover Entry
	IIOP Client Failover Limitations

	See Also

	WebLogic CORBA Clustering and Load Balancing Support
	Parallel Objects
	Listing 3-2 ICF Syntax
	[#pragma activation_policy method|transaction|process] [#pragma transaction_policy never|ignore|optional|always] [#pragma concur...

	TP Framework API
	Server Interface
	C++ Declarations

	ServerBase Interface
	C++ Declarations (in Server.h)

	Server::create_servant()
	Synopsis
	C++ Binding
	Argument
	Exception
	Description
	Return Value

	ServerBase::create_servant_with_id()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Value
	Example

	Server::initialize()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value

	ServerBase::thread_initialize()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Value
	Example

	Server::release()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value

	ServerBase::thread_release()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Value
	Example
	Tobj_ServantBase Interface
	C++ Declaration (in Tobj_ServantBase.h)
	class Tobj_ServantBase : public PortableServer::RefCountServantBase { public:
	Tobj_ServantBase& operator=(const Tobj_ServantBase&); Tobj_ServantBase() {} Tobj_ServantBase(const Tobj_ServantBase& s) : PortableServer::RefCountServantBase(s) {}
	virtual void activate_object(const char *) {}
	virtual void deactivate_object(const char*, TobjS::DeactivateReasonValue) {}
	virtual CORBA::Boolean _is_reentrant() { return CORBA_FALSE; } };
	typedef Tobj_ServantBase * Tobj_Servant;

	Tobj_ServantBase:: activate_object()
	Synopsis
	C++ Binding
	Argument
	Description
	Return Value
	Exceptions

	Tobj_ServantBase::_add_ref()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Value
	Example

	Tobj_ServantBase::deactivate_object()
	Synopsis
	C++ Binding
	Arguments
	Description
	Restriction
	Return Value
	Exceptions

	Tobj_ServantBase::_is_reentrant()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Value
	Example

	Tobj_ServantBase::_remove_ref()
	Synopsis
	C++ Binding
	Parameters
	Description
	Return Value
	Example
	TP Interface
	Usage Notes

	TP::application_responsibility()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Values

	TP::bootstrap()
	Synopsis
	C++ Binding
	Arguments
	Return Value
	Exceptions
	Description

	TP::close_xa_rm()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	Exceptions

	TP::create_active_object_reference()
	Synopsis
	C++ Binding
	Arguments
	Exceptions:
	Description
	Caution
	Problem Statement
	1. You write SERVER1 such that all objects on interface A are preactivated. To prevent the object from being activated on demand by the TP Framework, you write the interface's activate_object method to always throw the ActivateObjectFailed exception.
	2. SERVER2 also implements objects of interface A. However, instead of preactivating the objects, SERVER2 lets the TP Framework activate them on demand.
	3. If the administrator configures SERVER1 and SERVER2 in the same group, then a client can get an interface A object reference ...

	Workaround

	Return Value

	TP::create_object_reference()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value
	Example

	TP::deactivateEnable()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value

	TP::get_object_id ()
	Synopsis
	C++ Binding
	Arguments
	Exception
	Description
	Return Value

	TP::get_object_reference()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value

	TP::open_xa_rm()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Values

	TP::orb()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value

	TP::register_factory()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value

	TP::unregister_factory()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value

	TP::userlog()
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value
	Example
	CosTransactions::TransactionalObject Interface Not Enforced
	Error Conditions, Exceptions, and Error Messages
	Exceptions Raised by the TP Framework
	Exceptions in the Server Application Code
	Example

	Exceptions and Transactions
	Restriction of Nested Calls on CORBA Objects

	CORBA Bootstrapping Programming Reference
	Why Bootstrapping Is Needed
	Supported Bootstrapping Mechanisms
	Oracle Bootstrapping Mechanism
	How Bootstrap Objects Work
	Types of Oracle Remote Clients Supported
	Table 4-1 Oracle Remote Clients Supported

	Capabilities and Limitations

	Bootstrap Object API
	Tobj Module
	Table 4-2 Returned Object References
	Table 4-3 Tobj Module Exceptions

	C++ Mapping
	Listing 4-1 Tobj_boostrap.h Declarations

	Java Mapping
	Listing 4-2 Tobj_Bootstrap.java Mapping

	Automation Mapping
	Listing 4-3 Automation (Dual) Bootstrap Interface Mapping

	C++ Member Functions

	Tobj_Bootstrap
	Synopsis
	C++ Mapping
	Parameters
	Table 4-4 Differences Between corbaloc and corbalocs URL Address Formats

	Exception
	Description
	Return Values

	Tobj_Bootstrap::register_callback_port
	Synopsis
	C++ Mapping
	Parameter
	Exceptions
	Description
	Usage Notes
	Return Values

	Tobj_Bootstrap::resolve_initial_references
	Synopsis
	C++ Mapping
	Parameter
	Exceptions
	Description
	Return Values

	Tobj_Bootstrap::destroy_current()
	Synopsis
	C++ Mapping
	Exception
	Description
	Return Values
	Java Methods
	Automation Methods

	Initialize
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameter
	Return Values
	Exceptions
	Table 4-5 Initialize Exceptions

	CreateObject
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameter
	Return Value
	Exceptions
	Table 4-6 CreateObject Exceptions

	DestroyCurrent
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameters
	Return Value
	Exceptions
	Bootstrap Object Programming Examples
	Visual Basic Client Example: Using the Bootstrap Object
	Listing 4-4 Programming a Client in Visual Basic

	Interoperable Naming Service Bootstrapping Mechanism
	Introduction
	INS Object References
	Table 4-7 Returned Object References

	INS Command-line Options
	INS Initialization Operations
	INS Object URL Schemes
	IOR URL Scheme
	corbaloc URL Scheme
	Table 4-8 BNF Format for URL Elements
	Table 4-9 Descriptions of URL Elements
	corbaloc::555xyz.com:1024,555backup.com:1022,555last.com:1999 corbalocs::555xyz.com:1024,{555backup.com:1022|555last.com:1999} corbaloc::1.2@555xyz.com:1111 corbalocs::1.1@24.128.122.32:1011,1.0@24.128.122.34

	corbaname URL Scheme
	Table 4-10 BNF Syntax for URL
	1. Construct a corbaloc URL of the form corbaloc::<corbaloc_obj> from the corbaname URL.
	2. Convert the corbaloc URL to a naming context object reference by calling CORBA::ORB::string_to_object to obtain a CosNaming::NamingContext object.
	3. Convert <string_name> to a CosNaming::Name.
	4. Invoke the resolve operation on the CosNaming::NamingContext, passing the CosNaming::Name constructed.
	5. The object reference returned from CosNaming::NamingContext::resolve should be returned to the caller.

	Getting a FactoryFinder Object Reference Using INS
	Listing 4-5 Code Example for Getting the FactoryFinder Object

	Getting a PrincipalAuthenticator Object Reference Using INS
	Listing 4-6 Code Example for Getting the PrincipalAuthenticator Object

	Getting a TransactionFactory Object Reference Using INS
	Listing 4-7 Code Example for a Client Application That Uses INS
	1. Use ORB::resolve_initial_references to get a FactoryFinder.
	2. Use the FactoryFinder to get a TransactionFactory.
	3. Use the create operation on TransactionFactory to begin a transaction.
	4. From the Control object returned from the create operation, use the get_terminator method to get the transaction terminator interface.
	5. Use the commit or rollback operation on the terminator to end or abort the transaction.

	Restrictions
	Table 4-11 Supported INS Interfaces and Operations

	FactoryFinder Interface
	Capabilities, Limitations, and Requirements
	Functional Description
	Locating a FactoryFinder
	Registering a Factory
	Figure 5-1 Registering a Factory Object
	C++ Mapping
	Listing 5-1 C++ Mappings for the Factory Registration Pseudo OMG IDL

	Locating a Factory
	Figure 5-2 Locating a Factory Object
	CORBAservices Naming Service Module OMG IDL
	Listing 5-2 CORBAservices Naming OMG IDL

	CORBAservices Life Cycle Service Module OMG IDL
	Listing 5-3 Life Cycle Service OMG IDL

	Tobj Module OMG IDL
	Listing 5-4 Tobj Module OMG IDL

	Locating Factories in Another Domain
	Figure 5-3 Inter-Domain FactoryFinder Interaction

	Why Use Oracle Tuxedo CORBA Extensions?

	Creating Application Factory Keys
	Names Library Interface Pseudo OMG IDL
	Listing 5-5 Names Library Interfaces in Pseudo-IDL
	Creating a Library Name Component
	Creating a Library Name
	The LNameComponent Interface
	The LName Interface
	Destroying a Library Name Component Pseudo-Object
	Inserting a Name Component
	Getting the ith Name Component
	Deleting a Name Component
	Number of Name Components
	Testing for Equality
	Testing for Order
	Producing an OMG IDL Form
	Translating an IDL Form
	Destroying a Library Name Pseudo-Object

	C++ Mapping
	Listing 5-6 Library Name Class

	Java Mapping
	Listing 5-7 Java Mapping for LNameComponent

	C++ Member Functions and Java Methods
	CosLifeCycle::FactoryFinder::find_factories
	Synopsis
	C++ Mapping
	Java Mapping
	Parameter
	Exception
	Description
	Return Values

	Tobj::FactoryFinder::find_one_factory
	Synopsis
	C++ Mapping
	Java Mapping
	Parameter
	Exceptions
	Description
	Return Values

	Tobj::FactoryFinder::find_one_factory_by_id
	Synopsis
	C++ Mapping
	Java Mapping
	Parameter
	Exceptions
	Description
	Return Values

	Tobj::FactoryFinder::find_factories_by_id
	Synopsis
	C++ Mapping
	Java Mapping
	Parameter
	Exceptions
	Description
	Return Values

	Tobj::Factoryfinder::list_factories
	Synopsis
	C++ Mapping
	Java Mapping
	Exception
	Description
	Return Values
	Automation Methods

	DITobj_FactoryFinder.find_one_factory
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameters
	Exceptions
	Description
	Return Values

	DITobj_FactoryFinder.find_one_factory_by_id
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameters
	Exceptions
	Description
	Return Values

	DITobj_FactoryFinder.find_factories_by_id
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameters
	Exceptions
	Description
	Return Values

	DITobj_FactoryFinder.find_factories
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameters
	Exception
	Description
	Return Values

	DITobj_FactoryFinder.list_factories
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameter
	Exception
	Description
	Return Values
	Programming Examples
	Using the FactoryFinder Object
	Registering a Reference to a Factory Object
	Listing 5-8 Server Application: Registering a Factory

	Obtaining a Reference to a FactoryFinder Object Using the CosLifeCycle::FactoryFinder Interface
	Listing 5-9 Client Application: Getting a FactoryFinder Object Reference

	Obtaining a Reference to a FactoryFinder Object Using the Extensions Bootstrap object
	Listing 5-10 Client Application: Finding One Factory Using the Tobj Approach

	Using Extensions to the FactoryFinder Object
	Obtaining One Factory Using Tobj::FactoryFinder
	Listing 5-11 Client Application: Finding Factories Using the Oracle Tuxedo Extensions Approach

	Obtaining One or More Factories Using Tobj::FactoryFinder
	Listing 5-12 Client Application: Finding One or More Factories Using the Oracle Tuxedo Extensions Approach

	Security Service
	Transactions Service
	Notification Service
	Request-Level Interceptors
	CORBA Interface Repository Interfaces
	Notes: Most of the information in this chapter is taken from Chapter 10 of the Common Object Request Broker: Architecture and Sp...
	Structure and Usage
	Programming Information
	Performance Implications
	1. The client application invokes the _get_interface operation on the CORBA::Object to get the InterfaceDef object associated with the object in question. This causes a message to be sent to the ORB that created the object reference.
	2. The ORB returns the InterfaceDef object to the client.
	3. The client invokes one or more _is_a operations on the object to determine what type of interface is supported by the object.
	4. After the client has identified the interface, it invokes the describe_interface operation on the Interface object to get a f...
	5. The client is now ready to construct a DII request.

	Building Client Applications
	Getting Initial References to the InterfaceRepository Object
	Interface Repository Interfaces
	Supporting Type Definitions
	IRObject Interface
	Contained Interface
	Container Interface
	IDLType Interface
	Repository Interface
	ModuleDef Interface
	ConstantDef Interface
	TypedefDef Interface
	StructDef
	UnionDef
	EnumDef
	AliasDef
	PrimitiveDef
	StringDef
	WstringDef
	ExceptionDef
	AttributeDef
	OperationDef
	InterfaceDef

	Joint Client/Servers
	Introduction
	Main Program and Server Initialization
	Servants
	Servant Inheritance from Skeletons
	C++ Example of Inheritance from Skeletons

	Callback Object Models Supported
	Notes: The Transient/UserId policy combination is not considered particularly important. It is possible for users to provide for...

	Configuring Servers to Call Remote Joint Client/Server Objects
	Preparing Callback Objects Using CORBA (C++ Joint Client/Servers Only)
	1. Establish a connection with a POA with the appropriate policies for the callback object model. (This can be the root POA, available by default, or it may require creating a new POA.)
	2. Create a servant (that is, an instance of the C++ implementation class for the interface).
	3. Inform the POA that the servant is ready to accept requests on the callback object. Technically, this means the client activates the object in the POA (that is, puts the servant and the ObjectId into the POA’s Active Object Map).
	4. Tell the POA to start accepting requests from the network (that is, activate the POA itself).
	5. Create an object reference for the callback object.
	6. Give out the object reference. This usually happens by making an invocation on another object with the callback object refere...
	Listing 11-1 Transient/SystemId Model
	Listing 11-2 Persistent/UserId Model

	Preparing Callback Objects Using OracleWrapper Callbacks
	Using OracleWrapper Callbacks With C++
	Listing 11-3 OracleWrapper IDL
	Listing 11-4 C++ Declarations (in beawrapper.h)

	C++ OracleWrapper Callbacks Interface API
	Callbacks
	Synopsis
	C++ Binding
	Argument
	Exception
	Description
	Return Value

	start_transient
	Synopsis
	IDL
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value

	start_persistent_systemid
	Synopsis
	IDL
	C++ Binding
	JArguments
	Exceptions
	Description
	Return Value

	restart_persistent_systemid
	Synopsis
	IDL
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value

	start_persistent_userid
	Synopsis
	IDL
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Value

	stop_object
	Synopsis
	IDL
	C++ Binding
	Argument
	Exceptions
	Description
	Return Value

	stop_all_objects
	Synopsis
	IDL
	C++ Binding
	Exceptions
	Description
	Usage Note
	Return Value

	get_string_oid
	Synopsis
	IDL
	C++ Binding
	JExceptions
	Description
	Return Value

	~Callbacks
	Synopsis
	C++ Binding
	JArguments
	Exceptions
	Description
	Usage Note
	Return Value

	Development Commands
	Mapping of OMG IDL Statements to C++
	Mappings
	Data Types
	Basic Data Types
	Table 13-1 Basic OMG IDL and C++ Data Types

	Complex Data Types
	Table 13-2 Object, Pseudo-object, and User-defined OMG IDL and C++ Types

	Strings
	wchars
	wstrings
	Constants
	Enums
	Structs
	Fixed-length Versus Variable-length Structs
	Member Mapping
	Var
	Out

	Unions
	Union Member Accessor and Modifier Member Function Mapping
	Var
	Out
	Member Functions

	Sequences
	Sequence Element Mapping
	Vars
	Out
	Member Functions

	Arrays
	Array Slice
	Array Element Mapping
	Vars
	Out
	Allocation Member Functions

	Exceptions
	Member Mapping
	Var
	Out
	Member Functions

	Mapping of Pseudo-objects to C++
	Usage
	Mapping Rules
	Relation to the C PIDL Mapping
	Typedefs
	Implementing Interfaces
	Argument Mapping

	Implementing Operations
	Skeleton Derivation from Object

	PortableServer Functions
	Modules
	Interfaces
	Generated Static Member Functions
	Object Reference Types
	Attributes
	Argument Mapping

	Any Type
	Handling Typed Values
	Insertion into Any
	Extraction from Any
	Distinguishing Boolean, Octet, Char, and Bounded Strings
	Widening to Object
	Handling Untyped Values
	Any Constructors, Destructor, Assignment Operator
	The Any Class

	Value Type
	Overview
	Architecture
	Benefits
	Valuetype Example

	Fixed-length Versus Variable-length User-defined Types
	Using var Classes
	Table 13-3 Comparison of Operators Supported for User-defined Data Type var Classes
	Table 13-4 Operator Signatures for _var Classes
	Sequence vars
	Array vars
	String vars
	out Classes
	Table 13-5 Comparison of Operators Supported for User-defined Data Type Out Classes
	Table 13-6 Operator Signatures for _out Classes

	Using out Classes
	Object Reference out Parameter
	Sequence outs
	Array outs
	String outs

	Argument Passing Considerations
	Operation Parameters and Signatures
	Table 13-7 Basic Argument and Result Passing
	Table 13-8 T_var Argument and Result Passing
	Table 13-9 Caller Argument Storage Responsibilities
	Table 13-10 Argument Passing Cases

	CORBA API
	Notes: Some of the information in this chapter is taken from the Common Object Request Broker: Architecture and Specification. Revision 2.4.2, February 2001, published by the Object Management Group (OMG). Used with permission of the OMG.
	Global Classes
	Pseudo-objects
	Any Class Member Functions
	CORBA::Any::Any()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Any::Any(const CORBA::Any & InitAny)
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::Any::Any(TypeCode_ptr TC, void * Value, Boolean Release)
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Any::~Any()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Any & CORBA::Any::operator=(const CORBA::Any & InitAny)
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	void CORBA::any::operator<<=()
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::Boolean CORBA::Any::operator>>=()
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::Any::operator<<=()
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::Boolean CORBA::Any::operator>>=()
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::TypeCode_ptr CORBA::Any::type() const
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	void CORBA::Any::replace()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	Context Member Functions
	Memory Management

	CORBA::Context::context_name
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Context::create_child
	Synopsis
	C++ Binding
	Arguments
	Exception
	Description
	Return Values
	See Also

	CORBA::Context::delete_values
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	See Also

	CORBA::Context::get_values
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Values
	See Also

	CORBA::Context::parent
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Context::set_one_value
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Values
	See Also

	CORBA::Context::set_values
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	See Also
	ContextList Member Functions

	CORBA::ContextList:: count
	Synopsis
	C++ Binding
	Arguments
	Exception
	Description
	Return Values
	See Also

	CORBA::ContextList::add
	Synopsis
	C++ Binding
	Argument
	Exception
	Description
	Return Values
	See Also

	CORBA::ContextList::add_consume
	Synopsis
	C++ Binding
	Argument
	Exception
	Description
	Return Values
	See Also

	CORBA::ContextList::item
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	See Also

	CORBA::ContextList::remove
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	See Also
	NamedValue Member Functions
	Memory Management

	CORBA::NamedValue::flags
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::NamedValue::name
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::NamedValue::value
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	NVList Member Functions
	Memory Management

	CORBA::NVList::add
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::NVList::add_item
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::NVList::add_value
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::NVList::count
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::NVList::item
	Synopsis
	C++ Binding
	Argument
	Exception
	Description
	Return Values
	See Also

	CORBA::NVList::remove
	Synopsis
	C++ Binding
	Argument
	Exception
	Description
	Return Values
	See Also
	Object Member Functions

	CORBA::Object::_create_request
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::Object::_duplicate
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Example

	CORBA::Object::_get_interface
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Object::_is_a
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Example

	CORBA::Object::_is_equivalent
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	Example

	CORBA::Object::_nil
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	Example

	CORBA::Object::_non_existent
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Object::_request
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also
	CORBA Member Functions

	CORBA::release
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Example

	CORBA::is_nil
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Example

	CORBA::hash
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::resolve_initial_references
	Synopsis
	C++ Binding
	Argument
	Exception
	Description
	Return Values
	Example
	ORB Member Functions

	CORBA::ORB::clear_ctx
	Synopsis
	C++ Binding
	Parameters
	Return Value
	Description
	Example
	See Also

	CORBA::ORB::create_context_list
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::ORB::create_environment
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::ORB::create_exception_list
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::ORB::create_list
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::ORB::create_named_value
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::ORB::create_operation_list
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::ORB::create_policy
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Table 14-1 Exception and Reasons

	Description
	Return Values
	Example

	CORBA::ORB::destroy
	Synopsis
	C++ Binding
	Parameter
	Return Value
	Description
	Example

	CORBA::ORB::get_ctx
	Synopsis
	C++ Binding
	Arguments
	Return Value
	Description
	Example
	See Also

	CORBA::ORB::get_default_context
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::ORB::get_next_response
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::ORB::inform_thread_exit
	Synopsis
	C++ Binding
	Parameter
	Return Value
	Description
	Example

	CORBA::ORB::list_initial_services
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::ORB::object_to_string
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Example
	See Also

	CORBA::ORB::perform_work
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Values
	See Also
	Example

	CORBA::ORB::poll_next_response
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::ORB::resolve_initial_references
	Synopsis
	C++ Binding
	Augument
	Description
	Return Values
	See Also

	CORBA::ORB::send_multiple_requests_deferred
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::ORB::send_multiple_requests_oneway
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::ORB::set_ctx
	Synopsis
	C++ Binding
	Parameter
	Return Value
	Description
	Example
	See Also

	CORBA::ORB::string_to_object
	Synopsis
	C++ Binding
	Argument
	Description
	Return Value
	See Also

	CORBA::ORB::work_pending
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also
	ORB Initialization Member Function

	CORBA::ORB_init
	Synopsis
	C++ Binding
	Arguments
	Description
	1. If the orb_identifier argument is present, ORB_init determines the client type, either native or remote, if the string is "BE...
	2. If orb_identifier is not present or is explicitly zero, ORB_init looks at the entries in argc/argv. If argv contains an entry...
	3. If no client type is specified in argc/argv, ORB_init uses the default client type from the system registry (BEA_IIOP or BEA_TOBJ). The system registry was initialized at the time Oracle Tuxedo was installed.

	Return Value
	Exceptions

	ORB
	Synopsis
	Syntax
	Description
	Parameters
	Table 14-2 Minor Codes for CORBA::BAD_PARAM Standard Exception

	Portability
	Interoperability
	Examples
	See Also
	Policy Member Functions
	See Also:

	CORBA:Policy::copy
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::Policy::destroy
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	PortableServer Member Functions

	PortableServer::POA::activate_object
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	Example

	PortableServer::POA::activate_object_with_id
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	Example

	PortableServer::POA::create_id_assignment_policy
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	PortableServer::POA::create_lifespan_policy
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	PortableServer::POA::create_POA
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Values
	Examples

	PortableServer::POA::create_reference
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values

	PortableServer::POA::create_reference_with_id
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Values
	Example

	PortableServer::POA::deactivate_object
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values

	PortableServer::POA::destroy
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	PortableServer::POA::find_POA
	Synopsis
	C++ Binding
	Argument
	Exception
	Description
	Return Values

	PortableServer::POA::reference_to_id
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values

	PortableServer::POA::the_POAManager
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Example

	PortableServer::ServantBase::_default_POA
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	POA Current Member Functions

	PortableServer::Current::get_object_id
	Synopsis
	C++ Binding
	Arguments
	Exception
	Description
	Return Values

	PortableServer::Current::get_POA
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	POAManager Member Functions

	PortableServer::POAManager::activate
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values

	PortableServer::POAManager::deactivate
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	POA Policy Member Objects

	PortableServer::LifespanPolicy
	Synopsis
	Description
	Exceptions

	PortableServer::IdAssignmentPolicy
	Synopsis
	Description
	Request Member Functions

	CORBA::Request::arguments
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::ctx(Context_ptr)
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::Request::get_response
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::Request::invoke
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::operation
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::poll_response
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::Request::result
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::env
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::ctx
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::contexts
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::exceptions
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::target
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::send_deferred
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::Request::send_oneway
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also
	Strings

	CORBA::string_alloc
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Example
	See Also

	CORBA::string_dup
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Example
	See Also

	CORBA::string_free
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Example
	See Also
	Wide Strings
	Listing 14-1 Wide Strings Example

	TypeCode Member Functions
	Memory Management

	CORBA::TypeCode::equal
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::TypeCode::id
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::TypeCode::kind
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	Table 14-3 Legal Typecode Kinds and Parameters

	CORBA::TypeCode::param_count
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::TypeCode::parameter
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Exception Member Functions
	Standard Exceptions
	Exception Definitions
	Table 14-4 Exception Definitions

	Object Nonexistence
	Transaction Exceptions

	ExceptionList Member Functions

	CORBA::ExceptionList::count
	Synopsis
	C++ Binding
	Arguments
	Exception
	Description
	Return Values

	CORBA::ExceptionList::add
	Synopsis
	C++ Binding
	Arguments
	Exception
	Description
	Return Values
	See Also

	CORBA::ExceptionList::add_consume
	Synopsis
	C++ Binding
	Arguments
	Exceptions
	Description
	Return Values
	See Also

	CORBA::ExceptionList::item
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	See Also
	Synopsis
	C++ Binding
	Argument
	Exceptions
	Description
	Return Values
	See Also

	Server-side Mapping
	Implementing Interfaces
	Inheritance-based Interface Implementation
	Listing 15-1 OMG IDL That Uses Interface Inheritance
	Listing 15-2 Interface Class A
	Listing 15-3 Skeleton Class for Interface A
	Listing 15-4 Interface A Implementation Class Declaration

	Delegation-based Interface Implementation
	Listing 15-5 Tie Class Generated from the Derived Interface
	// C++ template <class T> class POA_A_tie : public POA_A { public: POA_A_tie(T& t) : _ptr(&t), _poa(PortableServer::POA::_nil())...
	void op2 (CORBA::Long val) { _ptr->op2 (val); } // *** // override ServantBase o...

	Implementing Operations
	Listing 15-6 Exception Specification
	Listing 15-7 Calling Another Member Function

