
Oracle® Tuxedo
Using Security in ATMI Applications

12c Release 2 (12.2.2)

April 2016

Oracle Tuxedo Using Security in ATMI Applications, 12c Release 2 (12.2.2)

Copyright © 1996, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents
1. Introducing ATMI Security
What Security Means . 1-2

Security Plug-ins . 1-3

ATMI Security Capabilities . 1-4

Operating System (OS) Security . 1-6

Authentication . 1-7

Authentication Plug-in Architecture . 1-7

Understanding Delegated Trust Authentication. 1-7

Establishing a Session . 1-8

Getting Authorization and Auditing Tokens . 1-10

Replacing Client Tokens with Server Tokens . 1-10

Implementing Custom Authentication. 1-12

Authorization. 1-12

Authorization Plug-in Architecture . 1-12

How the Authorization Plug-in Works. 1-14

Default Authorization . 1-15

Custom Authorization. 1-16

Implementing Custom Authorization . 1-17

Auditing. 1-18

Auditing Plug-in Architecture . 1-18

How the Auditing Plug-in Works. 1-19

Default Auditing . 1-20
Using Security in ATMI Applications iii

Custom Auditing . 1-20

Implementing Custom Auditing . 1-21

Link-Level Encryption . 1-22

How LLE Works . 1-22

Encryption Key Size Negotiation . 1-23

Determining Min-Max Values . 1-23

Finding a Common Key Size. 1-23

Backward Compatibility of LLE. 1-24

Interoperating with Release 6.5 Oracle Tuxedo Software 1-24

Interoperating with Pre-Release 6.5 Oracle Tuxedo Software 1-25

WSL/WSH Connection Timeout During Initialization. 1-26

SSL Encryption . 1-26

How the SSL Protocol Works . 1-27

Requirements for Using the SSL Protocol . 1-28

Encryption Key Size Negotiation . 1-28

Determining Min-Max Values . 1-28

Finding a Common Key Size. 1-29

Backward Compatibility of SSL . 1-30

WSL/WSH Connection Timeout During Initialization. 1-30

Supported Cipher Suites . 1-31

SSL Installation. 1-31

Public Key Security . 1-32

PKCS-7 Compliant . 1-32

Supported Algorithms for Public Key Security . 1-33

Public Key Algorithms . 1-33

Digital Signature Algorithms. 1-33

Symmetric Key Algorithms . 1-34

Message Digest Algorithms. 1-34
iv Using Security in ATMI Applications

Message-based Digital Signature . 1-35

Digital Certificates. 1-37

Certification Authority . 1-37

Certificate Repositories . 1-38

Public-Key Infrastructure . 1-38

Message-based Encryption . 1-40

Public Key Implementation . 1-42

Public Key Initialization . 1-42

Key Management. 1-43

Certificate Lookup. 1-43

Certificate Parsing . 1-43

Certificate Validation. 1-43

Proof Material Mapping . 1-43

Implementing Custom Public Key Security . 1-43

Default Public Key Implementation . 1-44

Default Authentication and Authorization . 1-44

Client Naming . 1-47

User-Client Names . 1-47

Application Key . 1-48

User, Group, and ACL Files . 1-50

Optional and Mandatory ACLs . 1-52

Security Interoperability . 1-53

Interoperating with Pre-Release 7.1 Software. 1-55

Interoperability for Link-Level Encryption. 1-55

Interoperability for SSL Encryption . 1-56

Interoperability for Public Key Security . 1-56

Security Compatibility . 1-58

Mixing Default/Custom Authentication and Authorization 1-59
Using Security in ATMI Applications v

Mixing Default/Custom Authentication and Auditing . 1-59

Compatibility Issues for Public Key Security. 1-59

Compatibility/Interaction with Data-dependent Routing. 1-60

Compatibility/Interaction with Threads. 1-60

Compatibility/Interaction with the EventBroker . 1-61

Compatibility/Interaction with /Q . 1-62

Compatibility/Interaction with Transactions . 1-62

Compatibility/Interaction with Domain Gateways . 1-63

Compatibility/Interaction with Other Vendors’ Gateways 1-66

Denial-of-Service (DoS) Defense . 1-67

Limited/Restricted Connection Numbers . 1-67

Setting Up Connection Limitations/Restrictions . 1-67

UBBCONFIG File . 1-68

Messages . 1-70

Message Sanity Check . 1-70

Message Authentication Code (MAC) Usage. 1-70

Performance Impact . 1-71

Setting up Message Authentication Code (MAC) Usage 1-71

DMCONFIG File Configuration . 1-71

MIB Configuration. 1-73

Password Pair Protection . 1-76

2. Administering Security
What Administering Security Means . 2-2

Security Administration Tasks . 2-4

Setting the Oracle Tuxedo Registry . 2-4

Purpose of the Oracle Tuxedo Registry . 2-4

Registering Plug-ins . 2-5
vi Using Security in ATMI Applications

Configuring an ATMI Application for Security . 2-6

Editing the Configuration File. 2-6

Changing the TM_MIB . 2-6

Setting Up the Administration Environment . 2-7

Administering Operating System (OS) Security . 2-8

Recommended Practices for OS Security . 2-8

Administering Authentication. 2-9

Specifying Principal Names . 2-10

How System Processes Acquire Credentials . 2-12

Why System Processes Need Credentials . 2-14

Example UBBCONFIG Entries for Principal Names . 2-14

Mandating Interoperability Policy . 2-15

Establishing an Identity for an Older Client . 2-19

How the WSH Establishes an Identity for an Older Client 2-20

How the Domain Gateway Establishes an Identity for an Older Client. 2-20

How the Server Establishes an Identity for an Older Client 2-21

Summarizing How the CLOPT -t Option Works. 2-21

Example UBBCONFIG Entries for Interoperability . 2-21

Establishing a Link Between Domains. 2-24

Example DMCONFIG Entries for Establishing a Link. 2-27

Setting ACL Policy. 2-29

Impersonating the Remote Domain Gateway . 2-32

Example DMCONFIG Entries for ACL Policy . 2-33

Setting Credential Policy . 2-34

Administering Authorization . 2-34

Administering Link-Level Encryption . 2-35

Understanding LLE min and max Values . 2-35

How to Configure LLE on Workstation Client Links . 2-36
Using Security in ATMI Applications vii

How to Configure LLE on Bridge Links . 2-37

How to Configure LLE on tlisten Links . 2-38

How to Configure LLE on Domain Gateway Links . 2-38

Administering SSL Encryption . 2-40

Understanding SSL min and max Values . 2-40

How to Configure SSL on Workstation Client Links . 2-41

How to Configure SSL on Bridge Links. 2-42

How to Configure SSL on tlisten Links . 2-43

How to Configure SSL on Domain Gateway Links . 2-43

Development Process for the SSL Protocol . 2-44

Creating an Oracle Wallet . 2-46

Creating an Oracle Wallet with orapki. 2-47

Creating an Oracle Wallet with openssl . 2-47

Runtime Creation of an Oracle Wallet . 2-48

Use of the TUXCREATEWALLET Environment Variable 2-49

Debugging SSL Connection Problems . 2-50

Enabling NZ Tracing . 2-50

Connection Establishment Log Message . 2-50

Displaying the Contents of an Oracle Wallet. 2-51

Obtaining NZ Error Code Information . 2-51

Administering Public Key Security . 2-52

Recommended Practices for Public Key Security . 2-52

Assigning Public-Private Key Pairs . 2-52

Setting Digital Signature Policy . 2-53

Setting a Postdated Limit for Signature Timestamps. 2-54

Setting a Predated Limit for Signature Timestamps 2-54

Enforcing the Signature Policy for Incoming Messages 2-55

How the EventBroker Signature Policy Is Enforced 2-56
viii Using Security in ATMI Applications

How the /Q Signature Policy Is Enforced . 2-57

How the Remote Client Signature Policy Is Enforced 2-57

Setting Encryption Policy . 2-57

Enforcing the Encryption Policy for Incoming Messages 2-58

How the EventBroker Encryption Policy Is Enforced 2-60

How the /Q Encryption Policy Is Enforced . 2-60

How the Remote Client Encryption Policy Is Enforced. 2-60

Initializing Decryption Keys Through the Plug-ins . 2-60

Failure Reporting and Auditing. 2-64

Digital Signature Error Handling . 2-64

Encryption Error Handling. 2-65

Administering Default Authentication and Authorization . 2-65

Designating a Security Level. 2-65

Establishing Security by Editing the Configuration File 2-66

Establishing Security by Changing the TM_MIB . 2-66

Configuring the Authentication Server . 2-66

How to Enable Application Password Security . 2-68

How to Enable User-Level Authentication Security . 2-69

Setting Up the UBBCONFIG File. 2-69

Setting Up the User and Group Files. 2-70

Converting System Security Data Files to Oracle Tuxedo User and Group Files .
2-71

Adding, Modifying, or Deleting Users and Groups . 2-72

Enabling Access Control Security . 2-73

How to Enable Optional ACL Security. 2-74

Setting Up the UBBCONFIG File . 2-74

Setting Up the ACL File. 2-75

How to Enable Mandatory ACL Security . 2-76
Using Security in ATMI Applications ix

Setting Up the UBBCONFIG File . 2-77

Setting Up the ACL File . 2-78

How to Enable Generic LDAP Based Security. 2-78

Setting Up the UBBCONFIG File . 2-78

Setting Up the XAUTHSVR Server Configuration File 2-79

Setting Up the LDAP Repository . 2-81

Setting Up the Authorization Cache . 2-82

How to Enable Security Service for OES . 2-84

Using the Kerberos Authentication Plug-in . 2-84

Kerberos Plug-In . 2-85

Kerberos Supported Platforms . 2-85

Kerberos Plug-in Features. 2-85

Kerberos Plug-In Pre-configuration . 2-86

Kerberos Plug-In Configuration. 2-86

Configure the Kerberos Plug-in . 2-86

Restore Default Plug-in . 2-87

Configure KAUTHSVR . 2-88

Configure Tuxedo Native Client . 2-89

Limitations . 2-90

See Also . 2-90

Using the Cert-C PKI Encryption Plug-in . 2-91

Cert-C PKI Encryption Plug-In . 2-91

Cert-C PKI Encryption Plug-In Pre-configuration. 2-91

Cert-C PKI Encryption Plug-In Configuration . 2-91

Configure Certificate Lookup . 2-92

Configure Key Management . 2-94

decPassword. 2-94

privateKeyDir . 2-94
x Using Security in ATMI Applications

Configure Certificate Parsing . 2-95

Configure Certificate Validation . 2-95

caCertificateFile . 2-95

crlFile . 2-95

Sample Registry Command File . 2-96

Limitations. 2-97

See Also. 2-98

3. Programming Security
What Programming Security Means. 3-1

Programming an ATMI Application with Security . 3-3

Setting Up the Programming Environment . 3-3

Writing Security Code So Client Programs Can Join the ATMI Application 3-4

Getting Security Data . 3-5

Joining the ATMI Application . 3-7

Transferring the Client Security Data . 3-11

Calling a Service Request Before Joining the ATMI Application. 3-13

Writing Security Code to Protect Data Integrity and Privacy 3-14

ATMI Interface for Public Key Security . 3-15

Recommended Uses of Public Key Security. 3-21

Sending and Receiving Signed Messages. 3-22

Writing Code to Send Signed Messages . 3-22

Step 1: Opening a Key Handle for Digital Signature 3-24

Step 2 (Optional): Getting Key Handle Information 3-25

Step 3 (Optional): Changing Key Handle Information 3-26

Step 4: Allocating a Buffer and Putting a Message in the Buffer 3-27

Step 5: Marking the Buffer for Digital Signature. 3-27

Step 6: Sending the Message . 3-29
Using Security in ATMI Applications xi

Step 7: Closing the Signer’s Key Handle. 3-29

How the System Generates a Digital Signature. 3-29

How a Signed Message Is Received . 3-31

Verifying Digital Signatures . 3-32

Verifying and Transmitting an Input Buffer’s Signatures 3-32

Replacing an Output Buffer’s Signatures . 3-32

Sending and Receiving Encrypted Messages. 3-33

Writing Code to Send Encrypted Messages . 3-33

Step 1: Opening a Key Handle for Encryption . 3-35

Step 2 (Optional): Getting Key Handle Information 3-36

Step 3 (Optional): Changing Key Handle Information 3-37

Step 4: Allocating a Buffer and Putting a Message in the Buffer 3-38

Step 5: Marking the Buffer for Encryption . 3-38

Step 6: Sending the Message . 3-39

Step 7: Closing the Encryption Key Handle . 3-40

How the System Encrypts a Message Buffer. 3-40

Writing Code to Receive Encrypted Messages . 3-42

Step 1: Opening a Key Handle for Decryption . 3-43

Step 2 (Optional): Getting Key Handle Information 3-44

Step 3 (Optional): Changing Key Handle Information 3-45

Step 4: Closing the Decryption Key Handle . 3-46

How the System Decrypts a Message Buffer. 3-46

Examining Digital Signature and Encryption Information . 3-50

What Happens When an Originating Process Calls tpenvelope 3-51

What Happens When a Receiving Process Calls tpenvelope 3-51

Understanding the Composite Signature Status . 3-53

Example Code for tpenvelope. 3-55

Externalizing Typed Message Buffers . 3-56
xii Using Security in ATMI Applications

How to Create an Externalized Representation. 3-57

How to Convert an Externalized Representation . 3-57

Example Code for tpexport and tpimport . 3-57

4. Implementing Single Point Security Administration
What Single Point Security Administration Means . 4-1

Single Point Security Administration Tasks . 4-2

Setting up LAUTHSVR as the Authentication Server . 4-2

LAUTHSVR Command Line Interface. 4-3

Setting Up the LAUTHSVR Configuration File . 4-4

Syntax Requirements for LAUTHSVR Configuration File 4-4

LAUTHSVR Configuration File Keywords. 4-4

Example LAUTHSVR Configuration File. 4-7

Example UBBCONFIG Using LAUTHSVR . 4-8

Using Multiple Network Addresses for High Availability 4-9

Example LAUTHSVR Configuration of Multiple Network Addresses 4-10

Configuring the Database Search Order . 4-10

Using tpmigldap to Migrate User Information to WebLogic Server. 4-11

Assigning New Passwords for the tpusr File . 4-11

tpmigldap Command Line Options . 4-12

Adding New Tuxedo User Information. 4-13

Adding New User Information in tpusr or tpgrp . 4-13

Adding New User Information Using the WebLogic Administration Console4-13

Setting up GAUTHSVR as the Authentication Server. 4-16

GAUTHSVR Command Line Interface . 4-17

Setting Up the GAUTHSVR Configuration File. 4-17

Syntax Requirements for GAUTHSVR Configuration File. 4-18

GAUTHSVR Configuration File Keywords . 4-18
Using Security in ATMI Applications xiii

Example GAUTHSVR Configuration File . 4-24

Example UBBCONFIG Using GAUTHSVR . 4-26

Using tpmigldif to Migrate User Information. 4-26

Using tpmigldif Command Line Options . 4-26

tpusr and tpgrp File Format . 4-27

Creating a Migration Template . 4-28

Supported LDAP Server Template Example . 4-29

Setting up OAUTHSVR as the Authentication Server . 4-30

Setting Up the OAUTHSVR Configuration File . 4-31

Syntax Requirements for OAUTHSVR Configuration File 4-31

OAUTHSVR Configuration File Keywords . 4-31

OAM Access Client Configuration (OAM_CONFIG_DIR). 4-33

Examples . 4-34

/T DOMAIN Support . 4-37

Oracle SALT Support . 4-38

WTC Support . 4-39

Oracle JCA Support . 4-39

5. Integrating Audit with Oracle Platform Security Services
(OPSS)

Overview . 5-1

Components and Deployment . 5-2

Audit Flow . 5-2

Configurations . 5-4

Register OPSS Audit Plug-In to Oracle Tuxedo Registry 5-4

Register OPSS Audit Plug-In to Oracle Tuxedo Registry 5-4

Unregister OPSS Audit Plug-In from Oracle Tuxedo Registry. 5-5

Configure Oracle Tuxedo Auditing Framework . 5-5
xiv Using Security in ATMI Applications

Configure Oracle Tuxedo OPSS Audit Module . 5-6

Configure Oracle Tuxedo Java Server (TMJAVASVR). 5-6

Configure Oracle Tuxedo OPSS Audit Module. 5-7

Configure OPSS Configuration Files . 5-10

jps-config.xml. 5-10

java.policy . 5-12

component_events.xml (static) and audit-store.xml (dynamic) 5-16

system-jazn-data.xml . 5-22

Configure OPSS Audit Bus-Stop . 5-23

Administration . 5-23

Change Audit Policy . 5-23
Using Security in ATMI Applications xv

xvi Using Security in ATMI Applications

C H A P T E R 1
Introducing ATMI Security
The following sections describe the various security capabilities available with the Oracle
Tuxedo system for ATMI applications:

What Security Means

Security Plug-ins

ATMI Security Capabilities

Operating System (OS) Security

Authentication

Auditing

Link-Level Encryption

SSL Encryption

Public Key Security

Message-based Digital Signature

Message-based Encryption

Public Key Implementation

Default Authentication and Authorization

Security Interoperability
Using Security in ATMI Applications 1-1

Security Compatibility

Denial-of-Service (DoS) Defense

Password Pair Protection

Note: The Oracle Tuxedo product includes environments that allow you to build both
Application-to-Transaction Monitor Interfaces (ATMI) and CORBA applications. This
topic explains how to implement security in an ATMI application. For information about
implementing security in a CORBA application, see Using Security in CORBA
Applications.

What Security Means
Security refers to techniques for ensuring that data stored in a computer or passed between
computers is not compromised. Most security measures involve passwords and data encryption,
where a password is a secret word or phrase that gives a user access to a particular program or
system, and data encryption is the translation of data into a form that is unintelligible without a
deciphering mechanism.

Distributed applications such as those used for electronic commerce (e-commerce) offer many
access points for malicious people to intercept data, disrupt operations, or generate fraudulent
input; the more distributed a business becomes, the more vulnerable it is to attack. Thus, the
distributed computing software, or middleware, upon which such applications are built must
provide security.

The Oracle Tuxedo product provides several security capabilities for ATMI applications, most of
which can be customized for your particular needs.

See Also
Security Plug-ins

ATMI Security Capabilities

Security Administration Tasks

What Programming Security Means
1-2 Using Security in ATMI Applications

Secur i t y P lug- ins
Security Plug-ins
As shown in Figure 1-1, all but one of the security capabilities available with the ATMI
environment of the Oracle Tuxedo product are implemented through a plug-in interface, which
allows Oracle Tuxedo customers to independently define and dynamically add their own security
plug-ins. A security plug-in is a code module that implements a particular security capability.

Figure 1-1 Oracle Tuxedo ATMI Plug-in Security Architecture

The specifications for the security plug-in interface are not generally available, but are available
to third-party security vendors. Third-party security vendors can enter into a special agreement
with Oracle Systems to develop security plug-ins for Oracle Tuxedo. Oracle Tuxedo customers
who want to customize a security capability must contact one of these vendors. For example, an
Oracle Tuxedo customer who wants a custom implementation of public key security must contact
a third-party security vendor who can provide the appropriate plug-ins. For more information
about security plug-ins, including installation and configuration procedures, see your Oracle
account executive.

See Also
ATMI Security Capabilities

Oracle Tuxedo Security

Plug-in Interface

Security Plug-ins

Link-Level
Encryption

Custom

Default
Public Key Security

Custom

Default
Authentication

Custom

Default
Authorization

Custom

Default
Auditing

Authentication Authorization Auditing
Public Key

Encryption Security

SSL
Encryption
Using Security in ATMI Applications 1-3

ATMI Security Capabilities
The Oracle Tuxedo system can enforce security in a number of ways, which includes using the
security features of the host operating system to control access to files, directories, and system
resources. Table 1-1 describes the security capabilities available with the ATMI environment of
the Oracle Tuxedo product.

Table 1-1 ATMI Security Capabilities

Security Capability Description Plug-in Interface Default Implementation

Operating system
security

Controls access to files,
directories, and system
resources.

N/A N/A

Authentication Proves the stated identity of
users or system processes;
safely remembers and
transports identity information;
and makes identity information
available when needed.

Implemented as a
single interface

The default authentication
plug-in provides security at
three levels: no
authentication, application
password, and user-level
authentication. This plug-in
works the same way the
Oracle Tuxedo
implementation of
authentication has worked
since it was first made
available with the Oracle
Tuxedo system.

Authorization Controls access to resources
based on identity or other
information.

Implemented as a
single interface

The default authorization
plug-in provides security at
two levels: optional access
control lists and mandatory
access control lists. This
plug-in works the same way
the Oracle Tuxedo
implementation of
authorization has worked
since it was first made
available with the Oracle
Tuxedo system.
1-4 Using Security in ATMI Applications

ATMI Secur i t y Capab i l i t i es
Auditing Safely collects, stores, and
distributes information about
operating requests and their
outcomes.

Implemented as a
single interface

Default auditing security is
implemented by the Oracle
Tuxedo EventBroker and
user log (ULOG) features.

Link-level encryption Uses symmetric key encryption
to establish data privacy for
messages moving over the
network links that connect the
machines in an ATMI
application.

N/A RC4 symmetric key
encryption.

SSL encryption Uses the industry-standard TLS
1.0 protocol to establish data
privacy for messages moving
over the network links that
connect the machines in an
ATMI application.

(TLS is the successor standard
to the SSL protocol.)

N/A Oracle NZ Security Layer

Public key security Uses public key (or asymmetric
key) encryption to establish
end-to-end digital signing and
data privacy between ATMI
application clients and servers.
Complies with the PKCS-7
standard.

Implemented as six
interfaces

Default public key security
supports the following
algorithms:
• RSA public key

algorithm
• RSA and DSA digital

signature algorithms
• DES-CBC, two-key

triple-DES, and RC2
symmetric key
algorithms

• MD5 and SHA-1
message digest
algorithms

Table 1-1 ATMI Security Capabilities (Continued)

Security Capability Description Plug-in Interface Default Implementation
Using Security in ATMI Applications 1-5

See Also
Operating System (OS) Security

Authentication

Authorization

Auditing

Link-Level Encryption

SSL Encryption

Public Key Security

Operating System (OS) Security
On host operating systems with underlying security features, such as file permissions, the
operating-system level of security is the first line of defense. An application administrator can use
file permissions to grant or deny access privileges to specific users or groups of users.

Most ATMI applications are managed by an application administrator who configures the
application, starts it, and monitors the running application dynamically, making changes as
necessary. Because the ATMI application is started and run by the administrator, server programs
are run with the administrator’s permissions and are therefore considered secure or “trusted.”
This working method is supported by the login mechanism and the read and write permissions on
the files, directories, and system resources provided by the underlying operating system.

Client programs are run directly by users with the users’ own permissions. In addition, users
running native clients (that is, clients running on the same machine on which the server program
is running) have access to the UBBCONFIG configuration file and interprocess communication
(IPC) mechanisms such as the bulletin board (a reserved piece of shared memory in which
parameters governing the ATMI application and statistics about the application are stored).

For ATMI applications running on platforms that support greater security, a more secure
approach is to limit access to the files and IPC mechanisms to the application administrator and
to have “trusted” client programs run with the permissions of the administrator (using the setuid
command on a UNIX host machine or the equivalent command on another platform). For the
most secure operating system security, allow only Workstation clients to access the application;
client programs should not be allowed to run on the same machines on which application server
and administrative programs run.
1-6 Using Security in ATMI Applications

Authent i cat ion
See Also
Security Administration Tasks

Administering Operating System (OS) Security

“About the Configuration File” and “Creating the Configuration File” in Setting Up an
Oracle Tuxedo Application

UBBCONFIG(5) in the Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference

Authentication
Authentication allows communicating processes to mutually prove identification. The
authentication plug-in interface in the ATMI environment of the Oracle Tuxedo product can
accommodate various security-provider authentication plug-ins using various authentication
technologies, including shared-secret password, one-time password, challenge-response, and
Kerberos. The interface closely follows the generic security service (GSS) application
programming interface (API) where applicable; the GSSAPI is a published standard of the
Internet Engineering Task Force. The authentication plug-in interface is designed to make
integration of third-party vendor security products with the Oracle Tuxedo system as easy as
possible, assuming the security products have been written to the GSSAPI.

Authentication Plug-in Architecture
The underlying plug-in interface for authentication security is implemented as a single plug-in.
The plug-in may be the default authentication plug-in or a custom authentication plug-in.

Understanding Delegated Trust Authentication
Direct end-to-end mutual authentication in a distributed enterprise middleware environment such
as the Oracle Tuxedo system can be prohibitively expensive, especially when accomplished with
security mechanisms optimized for long-duration connections. It is not efficient for clients to
establish direct network connections with each server process, nor is it practical to exchange and
verify multiple authentication messages as part of processing each service request. Instead, the
ATMI applications use a delegated trust authentication model, as shown in Figure 1-2.
Using Security in ATMI Applications 1-7

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rfcm/rfcmd.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/ads/adfig.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf5/rf5.html

Figure 1-2 ATMI Delegated Trust Authentication Model

A Workstation client authenticates to a trusted system gateway process, the workstation handler
(WSH), at initialization time. A native client authenticates within itself, as explained later in this
discussion. After a successful authentication, the authentication software assigns a security token
to the client. A token is an opaque data structure suitable for transfer between processes. The
WSH safely stores the token for the authenticated Workstation client, or the authenticated native
client safely stores the token for itself.

As a client request flows through a trusted gateway, the gateway attaches the client’s security
token to the request. The security token travels with the client’s request message, and is delivered
to the destination server process(es) for authorization checking and auditing purposes.

In this model, the gateway trusts that the authentication software will verify the identity of the
client and generate an appropriate token. Servers, in turn, trust that the gateway process will
attach the correct security token. Servers also trust that any other servers involved in the
processing of a client request will safely deliver the token.

Establishing a Session
Figure 1-3 shows the control flow inside the ATMI environment of the Oracle Tuxedo system
while a session is being established between a Workstation client and the WSH. The Workstation

WSH

Initiator

Server

Target

Server

Server

Server

Server

Server

Trusted Server Computing Base

(Client) (Trusted Gateway)

Workstation Client
1-8 Using Security in ATMI Applications

Authent i cat ion
client and WSH are attempting to establish a long-term mutually authenticated connection by
exchanging messages.

Figure 1-3 Client-WSH Authentication

The initiator process (may be thought of as a middleware client process) creates a session context
by repeatedly calling the Oracle Tuxedo “initiate security context” function until a return code
indicates success or failure. A session context associates identity information with an
authenticated user.

When a Workstation client calls tpinit(3c) for C or TPINITIALIZE(3cbl) for COBOL to join
an ATMI application, the Oracle Tuxedo system begins its response by first calling the internal
“acquire credentials” function to obtain a session credential handle, and then calling the internal
“initiate security context” function to obtain a session context. Each invocation of the “initiate
security context” function takes an input session token (when one is available) and returns an
output session token. A session token carries a protocol for verifying a user’s identity. The
initiator process passes the output session token to the session’s target process (WSH), where it
is exchanged for another input token. The exchange of tokens continues until both processes have
completed mutual authentication.

A security-provider authentication plug-in defines the content of the session context and session
token for its security implementation, so ATMI authentication must treat the session context and
session token as opaque objects. The number of tokens passed back and forth is not defined, and
may vary based on the architecture of the authentication system.

Oracle Tuxedo Library

Authentication
Plug-in (1)

Oracle Tuxedo
Security

Application
Client

Communication
Protocol

Authentication
Plug-in (1)

Oracle Tuxedo
Security

WSH Process

Initiate Connection

Obtain a Session
Credential Handle

Obtain a Session
Context Handle and

a Session Token

Accept Received Session
Token and Return
a Session Token

Obtain a Session
Credential Handle

(at Startup)

(Exchange of Session
Tokens)
Using Security in ATMI Applications 1-9

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf3cbl/rf3cbl.html

For a native client initiating a session, the initiator process and the target process are the same;
the process may be thought of as a middleware client process. The middleware client process calls
the security provider’s authentication plug-in to authenticate the native client.

Getting Authorization and Auditing Tokens
After a successful authentication, the trusted gateway calls two Oracle Tuxedo internal functions
that retrieve an authorization token and an auditing token for the client, which the gateway stores
for safekeeping. Together, these tokens represent the user identity of a security context. The term
security token refers collectively to the authorization and auditing tokens.

When default authentication is used, the authorization token carries two pieces of information:

Principal name—the name of an authenticated user.

Application key—a 32-bit value that uniquely identifies the client initiating the request
message. See Application Key for more detail.

In addition, when default authentication is used, the auditing token carries the same two pieces
of information: principal name and application key.

Like the session token, the authentication and auditing tokens are opaque; their contents are
determined by the security provider. The authorization token can be used for performing
authorization (permission) checks. The auditing token can be used for recording audit
information. In some ATMI applications, it is useful to keep separate user identities for
authorization and auditing.

Replacing Client Tokens with Server Tokens
As shown in Figure 1-4, there are situations where a client service request forwarded by a server
takes on the identity of the server. The server replaces the client tokens attached to the request
with its own tokens and then forwards the service request to the destination service.
1-10 Using Security in ATMI Applications

Authent i cat ion
Figure 1-4 Server Permission Upgrade Example

Note: See Specifying Principal Names for an understanding of how servers acquire their own
authorization and auditing tokens and why they need them.

The feature demonstrated in the preceding figure is known as server permission upgrade, which
operates in the following manner: whenever a server calls a dot service (a system-supplied service
having a beginning period in its name—such as .TMIB), the service request takes on the identity
of the server and thus acquires the access permissions of the server. A server’s access permissions
are those of the application (system) administrator. Thus, certain requests that would be denied if
the client called the dot service directly would be allowed if the client sent the requests to a server,
and the server forwarded the requests to the dot service. For more information about dot services,
see the .TMIB service description on the MIB(5) reference page in the Oracle Tuxedo File
Formats, Data Descriptions, MIBs, and System Processes Reference.

C

.TMIB

Client
tpcall (“TOLOWER”, ...)

tpcall (“.TMIB”, ...)

tpcall (“TRANSFER”, ...)

TRANSFER

Server

Service

TOLOWER

S

C

C

C Service Request Sent with Client’s Authorization and Auditing Tokens

S Service Request Sent with Server’s Authorization and Auditing Tokens
Using Security in ATMI Applications 1-11

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf5/rf5.html

Implementing Custom Authentication
You can provide authentication for your ATMI application by using the default plug-in or a
custom plug-in. You choose a plug-in by configuring the Oracle Tuxedo registry, a tool that
controls all security plug-ins.

If you want to use the default authentication plug-in, you do not need to configure the registry. If
you want to use a custom authentication plug-in, however, you must configure the registry for
your plug-in before you can install it. For more detail about the registry, see Setting the Oracle
Tuxedo Registry.

See Also
Default Authentication and Authorization

Security Administration Tasks

Administering Authentication

Programming an ATMI Application with Security

Writing Security Code So Client Programs Can Join the ATMI Application

Authorization
Authorization allows administrators to control access to ATMI applications. Specifically, an
administrator can use authorization to allow or disallow principals (authenticated users) to use
resources or facilities in an ATMI application.

Authorization Plug-in Architecture
A fanout is an umbrella plug-in to which individual plug-in implementations are connected. As
shown in Figure 1-5, the authorization plug-in interface is implemented as a fanout.
1-12 Using Security in ATMI Applications

Author i zat ion
Figure 1-5 Authorization Plug-in Architecture

The default authorization implementation consists of a fanout plug-in and a default authorization
plug-in. A custom implementation consists of the fanout plug-in, the default authorization
plug-in, and one or more custom authorization plug-ins.

In a fanout plug-in model, a caller sends a request to the fanout plug-in. The fanout plug-in passes
the request to each of the subordinate plug-ins, and receives a response from each. Finally, the
fanout plug-in forms a composite response from the individual responses, and sends the
composite response to the caller.

The purpose of an authorization request is to determine whether a client operation should be
allowed or whether the results of an operation should be kept unchanged. Each authorization
plug-in returns one of three responses: permit, deny, or abstain. The abstain response gives
writers of authorization plug-ins a graceful way to handle situations that are not accommodated
by the original plug-in, such as names of operations that are added to the system after the plug-in
is installed.

The authorization fanout plug-in forms a composite response as described in Table 1-2. For
default authorization, the composite response is determined solely by the default authorization
plug-in.

Table 1-2 Authorization Composite Responses

If Plug-ins Return . . . The Composite Response Is . . .

All permit or a combination of
permit and abstain

permit

Fanout Plug-in

Plug-in Interface

Default
Authorization

Plug-in

Custom
Authorization

Plug-in

Custom
Authorization

Plug-in
Using Security in ATMI Applications 1-13

As an example of custom authorization, consider a banking application in which a user is
identified as a member of the Customer group, and the following conditions are in effect:

The default authorization plug-in allows any user in the Customer group to withdraw
money from a particular account.

A custom authorization plug-in allows any user in the Customer group to withdraw money
from a particular account but only on Monday through Friday between 9:00 A.M. and 5:00
P.M.

A second custom authorization plug-in allows any user in the Customer group to withdraw
money from a particular account but only if the amount being withdrawn is less than
$10,000.

So, if a user in the Customer group attempts to withdraw $500.00 on Monday at 10 A.M., the
operation is allowed. If the same user attempts the same withdrawal on Saturday morning, the
operation is not allowed.

Many other custom authorization scenarios are possible. Feel free to improvise; define the
conditions that best serve the needs of your business.

How the Authorization Plug-in Works
Authorization decisions are based partly on user identity, which is stored in an authorization
token. Because authorization tokens are generated by the authentication security plug-in,
providers of authentication and authorization plug-ins need to ensure that these plug-ins work
together.

At least one deny deny

All abstain deny
 If the SECURITY parameter in the ATMI
application’s UBBCONFIG file is set to
MANDATORY_ACL

permit
 If the SECURITY parameter is not set in the ATMI
application’s UBBCONFIG file or is set to any value
other than MANDATORY_ACL

Table 1-2 Authorization Composite Responses (Continued)

If Plug-ins Return . . . The Composite Response Is . . .
1-14 Using Security in ATMI Applications

Author i zat ion
An Oracle Tuxedo system process or server (such as /Q server TMQUEUE(5) or EventBroker
server TMUSREVT(5)) calls the authorization plug-in when it receives a client request. In
response, the authorization plug-in performs a pre-operation check and returns whether the
operation should be allowed.

If allowed, the system carries out the client request.

If not allowed, the system does not carry out the client request.

If the client operation is allowed, the Oracle Tuxedo system process or server may call the
authorization plug-in after the client operation completes. In response, the authorization plug-in
performs a post-operation check and returns whether the results of the operation are acceptable.

If acceptable, the system accepts the operation results.

If not unacceptable, the system either modifies the operation results or rolls back (reverses)
the operation.

These calls are system-level calls, not application-level calls. An ATMI application cannot call
the authorization plug-in.

The authorization process is somewhat different for (1) users of the default authorization plug-in
provided by the Oracle Tuxedo system and (2) users of one or more custom authorization
plug-ins. The default plug-in does not support post-operation checks. If the default authorization
plug-in receives a post-operation check request, it returns immediately and does nothing.

The custom plug-ins support both pre-operation and post-operation checks.

Default Authorization
When default authorization is called by an ATMI process to perform a pre-operation check in
response to a client request, the authorization plug-in performs the following tasks.

1. Gets information from the client’s authorization token by calling the authentication plug-in.

Because the authorization token is created by the authentication plug-in, the authorization
plug-in has no record of the token’s content. This information is necessary for the
authorization process.

2. Performs a pre-operation check.

The authorization plug-in determines whether that operation should be allowed by
examining the client’s authorization token, the access control list (ACL), and the
configured security level (optional or mandatory ACL) of the ATMI application.
Using Security in ATMI Applications 1-15

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf5/rf5.html

3. Issues a decision about whether the operation will be performed.

The authorization fanout plug-in receives a decision (permit or deny) from the default
authorization plug-in and operates on its behalf.

– If the decision is to permit the client operation, the fanout plug-in returns permit to the
calling process. The system carries out the client request.

– If the decision is to deny the operation, the fanout plug-in returns deny to the calling
process. The system does not carry out the client request.

Custom Authorization
Users of one or more custom authorization plug-ins may take advantage of additional
functionality offered by the ATMI environment of the Oracle Tuxedo product. Specifically, the
custom plug-ins may perform an additional check after an operation occurs.

When custom authorization is called by an ATMI process to perform a pre-operation check in
response to a client request, the authorization plug-in performs the following tasks.

1. Gets information from the client’s authorization token by calling the authentication plug-in.

2. Performs a pre-operation check.

The authorization plug-in determines whether the operation should be allowed by
examining the operation, the client’s authorization token, and associated data. “Associated
data” may include user data and the security level of the ATMI application.

If necessary, in order to satisfy authorization requirements, the authorization plug-in may
modify the user data before the operation is performed.

3. Issues a decision about whether the operation will be performed.

The authorization fanout plug-in makes the ultimate decision by checking the individual
responses (permit, deny, abstain) of its subordinate plug-ins.

– If the fanout plug-in allows the client operation, it returns permit to the calling process.
The system carries out the client request.

– If the fanout plug-in does not allow the operation, it returns deny to the calling process.
The system does not carry out the client request.

If the client operation is allowed, custom authorization may be called by the ATMI process to
perform a post-operation check after the client operation completes. If so, the authorization
plug-in performs the following tasks.

1. Gets information from the client’s authorization token by calling the authentication plug-in.
1-16 Using Security in ATMI Applications

Author i zat ion
2. Performs a post-operation check.

The authorization plug-in determines whether the operation results are acceptable by
examining the operation, the client’s authorization token, and associated data. “Associated
data” may include user data and the security level of the ATMI application.

3. Issues a decision about whether the operation results are acceptable.

The authorization fanout plug-in makes the ultimate decision by checking the individual
responses (permit, deny, abstain) of its subordinate plug-ins.

– If the fanout plug-in decides that the operation results are acceptable, it returns permit
to the calling process. The system accepts the operation results.

– If the fanout plug-in does not allow the operation, it returns deny to the calling process.
The system either modifies the operation results or rolls back (reverses) the operation.

A post-operation check is useful for label-based security models. For example, suppose that a
user is authorized to access CONFIDENTIAL documents but performs an operation that retrieves
a TOP SECRET document. (Often, a document’s classification label is not easily determined
until after the document has been retrieved.) In this case, the post-operation check is an efficient
means to either deny the operation or modify the output data by expunging any restricted
information.

Implementing Custom Authorization
You can provide authorization for your ATMI application by using the default plug-in or adding
one or more custom plug-ins. You choose a plug-in by configuring the Oracle Tuxedo registry, a
tool that controls all security plug-ins.

If you want to use the default authorization plug-in, you do not need to configure the registry. If
you want to add one or more custom authorization plug-ins, however, you must configure the
registry for your additional plug-ins before you can install them. For more detail about the
registry, see Setting the Oracle Tuxedo Registry.

See Also
Default Authentication and Authorization

Security Administration Tasks

Administering Authorization

Programming an ATMI Application with Security
Using Security in ATMI Applications 1-17

Auditing
Auditing provides a means to collect, store, and distribute information about operating requests
and their outcomes. Audit-trail records may be used to determine which principals performed, or
attempted to perform, actions that violated the security levels of an ATMI application. They may
also be used to determine which operations were attempted, which ones failed, and which ones
successfully completed.

How auditing is done (that is, how information is collected, processed, protected, and distributed)
depends on the auditing plug-in.

Auditing Plug-in Architecture
A fanout is an umbrella plug-in to which individual plug-in implementations are connected. As
shown in Figure 1-6, the auditing plug-in interface is implemented as a fanout.

Figure 1-6 Auditing Plug-in Architecture

The default auditing implementation consists of a fanout plug-in and a default auditing plug-in.
A custom implementation consists of the fanout plug-in, the default auditing plug-in, and one or
more custom auditing plug-ins.

In a fanout plug-in model, a caller sends a request to the fanout plug-in. The fanout plug-in passes
the request to each of the subordinate plug-ins, and receives a response from each. Finally, the
fanout plug-in forms a composite response from the individual responses, and sends the
composite response to the caller.

The purpose of an auditing request is to record an event. Each auditing plug-in returns one of two
responses: success (the audit succeeded—logged the event) or failure (the audit failed—did not

Fanout Plug-in

Plug-in Interface

Default
Auditing
Plug-in

Custom
Auditing
Plug-in

Custom
Auditing
Plug-in
1-18 Using Security in ATMI Applications

Aud i t ing
log the event). The auditing fanout plug-in forms a composite response in the following manner:
if all responses are success, the composite response is success; otherwise, the composite response
is failure.

For default auditing, the composite response is determined solely by the default auditing plug-in.
For custom auditing, the composite response is determined by the fanout plug-in after collecting
the responses of the subordinate plug-ins. For more insight into how fanouts work, see
Authorization Plug-in Architecture.

How the Auditing Plug-in Works
Auditing decisions are based partly on user identity, which is stored in an auditing token. Because
auditing tokens are generated by the authentication security plug-in, providers of authentication
and auditing plug-ins need to ensure that these plug-ins work together.

An ATMI system process or server (such as /Q server TMQUEUE(5) or EventBroker server
TMUSREVT(5)) calls the auditing plug-in when it receives a client request. Because it is called
before an operation begins, the auditing plug-in can audit operation attempts and store data if that
data will be needed later for a post-operation audit. In response, the auditing plug-in performs a
pre-operation audit and returns whether the audit succeeded.

The ATMI system process or server may call the auditing plug-in after the client operation is
performed. In response, the auditing plug-in performs a post-operation audit and returns whether
the audit succeeded.

In addition, an ATMI system process or server may call the auditing plug-in when a potential
security violation occurs. (Suspicion of a security violation arises when a pre-operation or
post-operation authorization check fails, or when an attack on security is detected.) In response,
the auditing performs a post-operation audit and returns whether the audit succeeded.

These calls are system-level calls, not application-level calls. An ATMI application cannot call
the auditing plug-in.

The auditing process is somewhat different for (1) users of the default auditing plug-in provided
by the Oracle Tuxedo system and (2) users of one or more custom auditing plug-ins. The default
plug-in does not support pre-operation audits. If the default auditing plug-in receives a
pre-operation audit request, it returns immediately and does nothing.

The custom plug-ins support both pre-operation and post-operation audits.
Using Security in ATMI Applications 1-19

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf5/rf5.html

Default Auditing
The default auditing implementation consists of the Oracle Tuxedo EventBroker component and
userlog (ULOG). These utilities report only security violations; they do not report which operations
were attempted, which ones failed, and which ones successfully completed.

When default auditing is called by an ATMI process to perform a post-operation audit when a
security violation is suspected, the auditing plug-in performs the following tasks.

1. Gets information from the client’s auditing token by calling the authentication plug-in.

Because the auditing token is created by the authentication plug-in, the auditing plug-in has
no record of the token’s content. This information is necessary for the auditing process.

2. Performs a post-operation audit.

The auditing plug-in examines the client’s auditing token and the security violation
delivered in the post-operation audit request.

3. Issues a decision about whether the post-operation audit succeeded.

The auditing fanout plug-in receives a decision (success or failure) from the default
auditing plug-in and operates on its behalf.

– If the decision is success, the post-operation audit succeeded. The auditing fanout
plug-in returns success to the calling process and logs the security violation.

– If the decision is failure, the post-operation audit failed. The auditing fanout returns
failure to the calling process.

Custom Auditing
Users of one or more custom auditing plug-ins may take advantage of additional functionality
offered by the ATMI environment of the Oracle Tuxedo product. Specifically, the custom
plug-ins may perform an additional audit before an operation occurs.

When custom auditing is called by an ATMI process to perform a pre-operation audit in response
to a client request, the auditing plug-in performs the following tasks.

1. Gets information from the client’s auditing token by calling the authentication plug-in.

2. Performs a pre-operation audit.

The auditing plug-in examines the client’s auditing token and may store user data if that
data will be needed later for a post-operation audit.

3. Issues a decision about whether the pre-operation audit succeeded.
1-20 Using Security in ATMI Applications

Aud i t ing
The auditing fanout plug-in makes the ultimate decision by checking the individual
responses (success or failure) from its subordinate plug-ins.

– If the composite decision is success, the pre-operation audit succeeded. The auditing
fanout plug-in returns success to the calling process and logs the client’s attempt to
perform the operation.

– If the composite decision is failure, the pre-operation audit failed. The auditing fanout
returns failure to the calling process.

Custom auditing may be called by the ATMI process to perform a post-operation audit after the
client operation is performed. If so, the auditing plug-in performs the following tasks.

1. Gets information from the client’s auditing token by calling the authentication plug-in.

2. Performs a post-operation audit.

The auditing plug-in examines the client’s auditing token, the completion status delivered
in the post-operation audit request, and any data stored during the pre-operation audit.

3. Issues a decision about whether the post-operation audit succeeded.

The auditing fanout plug-in decides if the post-operation audit succeeded or failed by
checking the individual responses (success or failure) from its subordinate plug-ins.

– If the composite decision is success, the post-operation audit succeeded. The auditing
fanout plug-in returns success to the calling process and logs the completion status of
the operation.

– If the composite decision is failure, the post-operation audit failed. The auditing fanout
returns failure to the calling process.

An operation is considered successful if it passes both pre- and post-operation audits, and the
operation itself is successful. Some companies collect and store both pre- and post-operation
auditing data, even though such data can occupy a lot of disk space.

Implementing Custom Auditing
You can provide auditing for your ATMI application by using the default plug-in or adding one
or more custom plug-ins. You choose a plug-in by configuring the Oracle Tuxedo registry, a tool
that controls all security plug-ins.

If you want to use the default auditing plug-in, you do not need to configure the registry. If you
want to add one or more custom auditing plug-ins, however, you must configure the registry for
your additional plug-ins before you can install them. For more detail about the registry, see , “”.
Using Security in ATMI Applications 1-21

Now Oracle Tuxedo supports Oracle Platform Security Services (OPSS) plug-in. See Integrating
Audit with Oracle Platform Security Services (OPSS) for more information.

Link-Level Encryption
Link-level encryption (LLE) establishes data privacy for messages moving over the network
links that connect the machines in an ATMI application. It employs the symmetric key encryption
technique (specifically, RC4), which uses the same key for encryption and decryption.

When LLE is being used, the Oracle Tuxedo system encrypts data before sending it over a
network link and decrypts it as it comes off the link. The system repeats this
encryption/decryption process at every link through which the data passes. For this reason, LLE
is referred to as a point-to-point facility.

LLE can be used on the following types of ATMI application links:

Workstation client to workstation handler (WSH)

Bridge-to-Bridge

Administrative utility (such as tmboot or tmshutdown) to tlisten

Domain gateway to domain gateway

There are three levels of LLE security: 0-bit (no encryption), 56-bit (International), and 128-bit
(United States and Canada). The International LLE version allows 0-bit and 56-bit encryption.
The United States and Canada LLE version allows 0, 56, and 128-bit encryption.

How LLE Works
LLE control parameters and underlying communication protocols are different for various link
types, but the setup is basically the same in all cases:

An initiator process begins the communication session.

A target process receives the initial connection.

Both processes are aware of the link-level encryption feature, and have two configuration
parameters.

The first configuration parameter is the minimum encryption level that a process will
accept. It is expressed as a key length: 0, 56, or 128 bits.
1-22 Using Security in ATMI Applications

L ink-Leve l Encrypt ion
The second configuration parameter is the maximum encryption level a process can
support. It also is expressed as a key length: 0, 56, or 128 bits.

For convenience, the two parameters are denoted as (min, max) in the discussion that follows. For
example, the values “(56, 128)” for a process mean that the process accepts at least 56-bit
encryption but can support up to 128-bit encryption.

Encryption Key Size Negotiation
When two processes at the opposite ends of a network link need to communicate, they must first
agree on the size of the key to be used for encryption. This agreement is resolved through a
two-step process of negotiation.

1. Each process identifies its own min-max values.

2. Together, the two processes find the largest key size supported by both.

Determining Min-Max Values
A Tuxedo process will process the MINENCRYTPBITS and MAXENCRYPTBITS using the following
steps.

If the configured min-max values accommodate the default min-max values, then the local
software assigns those values as the min-max values for the process.

If one of the min-max values is not configured, then the default value will be used for the
missing value. For instance (0, max-value-configured) or (min-value-configured, 128) will
be used.

If there are no min-max values specified in the configurations for a particular link type,
then the local software assigns 0 as the minimum value and assigns the highest
bit-encryption rate possible for the default min-max values as the maximum value, that is,
(0, 128) for the LLE.

Finding a Common Key Size
After the min-max values are determined for the two processes, the negotiation of key size begins.
The negotiation process need not be encrypted or hidden. Once a key size is agreed upon, it
remains in effect for the lifetime of the network connection.

Table 1-3 shows which key size, if any, is agreed upon by two processes when all possible
combinations of min-max values are negotiated. The header row holds the min-max values for one
process; the far left column holds the min-max values for the other.
Using Security in ATMI Applications 1-23

Backward Compatibility of LLE
The ATMI environment of the Oracle Tuxedo product offers some backward compatibility for
LLE.

Interoperating with Release 6.5 Oracle Tuxedo Software
Table 1-4 shows which key size, if any, is agreed upon by two ATMI applications when one of
them is running under release 6.5 and the other under release 7.1 or later. The header row holds
the min-max values for the process running under release 7.1 or later; the far left column holds
the min-max values for the process running under release 6.5.

Table 1-3 Interprocess Negotiation Results

(0, 0) (0, 56) (0, 128) (56, 56) (56, 128) (128, 128)

(0, 0) 0 0 0 ERROR ERROR ERROR

(0, 56) 0 56 56 56 56 ERROR

(0, 128) 0 56 128 56 128 128

(56, 56) ERROR 56 56 56 56 ERROR

(56, 128) ERROR 56 128 56 128 128

(128, 128) ERROR ERROR 128 ERROR 128 128

Table 1-4 Negotiation Results When Interoperating with Release 6.5 Oracle Tuxedo Software

(0, 0) (0, 56) (0, 128) (56, 56) (56, 128) (128, 128)

(0, 0) 0 0 0 ERROR ERROR ERROR

(0, 40) 0 56 56 56 56 ERROR

(0, 128) 0 56 128 56 128 128

(40, 40) ERROR 56 56 56 56 ERROR
1-24 Using Security in ATMI Applications

L ink-Leve l Encrypt ion
If your current Oracle Tuxedo installation is configured for (0, 56), (0, 128), (56, 56), or (56, 128),
and you want to interoperate with a release 6.5 ATMI application that is configured for a
maximum LLE level of 40 bits, then any negotiation results in an automatic upgrade to 56.

The negotiation result in this case is the same as the negotiation result for two sites running
release 6.5 and configured for a maximum LLE level of 40 bits. In both scenarios, the negotiation
results in an automatic upgrade to 56.

Interoperating with Pre-Release 6.5 Oracle Tuxedo Software
Table 1-5 shows which key size, if any, is agreed upon by two ATMI applications when one of
them is running under pre-release 6.5 and the other under release 7.1 or later. The header row
holds the min-max values for the process running under release 7.1 or later; the far left column
holds the min-max values for the process running under pre-release 6.5.

If your current Oracle Tuxedo installation is configured for (0, 56) or (0, 128), and you want to
interoperate with a pre-release 6.5 ATMI applications that is configured for a maximum LLE
level of 40 bits, then the result of any negotiation is 40.

(40, 128) ERROR 56 128 56 128 128

(128, 128) ERROR ERROR 128 ERROR 128 128

Table 1-4 Negotiation Results When Interoperating with Release 6.5 Oracle Tuxedo Software (Continued)

(0, 0) (0, 56) (0, 128) (56, 56) (56, 128) (128, 128)

Table 1-5 Negotiation Results When Interoperating with Pre-Release 6.5 Oracle Tuxedo Software

(0, 0) (0, 56) (0, 128) (56, 56) (56, 128) (128, 128)

(0, 0) 0 0 0 ERROR ERROR ERROR

(0, 40) 0 40 40 ERROR ERROR ERROR

(0, 128) 0 40 128 ERROR 128 128

(40, 40) ERROR 40 40 ERROR ERROR ERROR

(40, 128) ERROR 40 128 ERROR 128 128

(128, 128) ERROR ERROR 128 ERROR 128 128
Using Security in ATMI Applications 1-25

If your current Oracle Tuxedo installation is configured for (56, 56), (56, 128), or (128, 128), then
your system cannot interoperate with a pre-release 6.5 ATMI application that is configured for a
maximum LLE level of 40 bits. Attempts to negotiate a common key size fail.

WSL/WSH Connection Timeout During Initialization
The length of time a Workstation client can take for initialization is limited. By default, this
interval is 30 seconds in an ATMI application not using LLE, and 60 seconds in an ATMI
application using LLE. The 60-second interval includes the time needed to negotiate an encrypted
link. This time limit can be changed when LLE is configured by changing the value of the
MAXINITTIME parameter for the workstation listener (WSL) server in the UBBCONFIG file, or the
value of the TA_MAXINITTIME attribute in the T_WSL class of the WS_MIB(5).

See Also
Security Administration Tasks

Administering Link-Level Encryption

“Distributing ATMI Applications Across a Network” and “Creating the Configuration File
for a Distributed ATMI Application” in Setting Up an Oracle Tuxedo Application

SSL Encryption
The Oracle Tuxedo product provides the industry-standard SSL protocol to establish secure
communications between client and server applications. When using the SSL protocol, principals
use digital certificates to prove their identity to a peer.

Note: The actual network protocol used is TLS 1.0, which is the successor to the SSL protocol,
but this document will follow common usage and refer to this protocol as SSL
Encryption.

Like LLE, the SSL protocol can be used with password authentication to provide confidentiality
and integrity to communication between the client application and the Oracle Tuxedo domain.
When using the SSL protocol with password authentication, you are prompted for the password
of the Listener/Handler (IIOP, Workstation, or JOLT) defined by the SEC_PRINCIPAL_NAME
parameter when you enter the tmloadcf command.

SSL can be used on the following types of ATMI application links:

Client to server handler (IIOP, Workstation, or JOLT)
1-26 Using Security in ATMI Applications

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/ads/addist.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/ads/adsdis.html

SSL Encrypt ion
Bridge-to-Bridge

Administrative utility (such as tmboot or tmshutdown) to tlisten

Domain gateway to domain gateway

Available SSL ciphers include 256-bit, 128-bit, and 56-bit ciphers, as described later in this
chapter.

How the SSL Protocol Works
The SSL protocol works in the following manner:

1. The Target Process presents its digital certificate to the initiating application.

2. The initiating application compares the digital certificate of the Target Process against its list
of trusted certificate authorities.

3. If the initiating application validates the digital certificate of the Target Process, the
application and the Target Process establish an SSL connection.

The initiating application can then use either password or certificate authentication to
authenticate itself to the Oracle Tuxedo domain.

Figure 1-7 illustrates how the SSL protocol works.

Figure 1-7 How the SSL Protocol Works in a Tuxedo Application
Using Security in ATMI Applications 1-27

Requirements for Using the SSL Protocol
The implementation of the SSL protocol is flexible enough to fit into most public key
infrastructures. Tuxedo offers two different methods to store SSL security credentials:

The Oracle Wallet is a new feature of Tuxedo 12c. An Oracle Wallet stores the private key,
certificate chain, and trusted certificates for a process within a single PKCS12 file, which
can be created using either Oracle tools or tools from other security vendors.

The plugin framework used in previous release of Tuxedo can also be used to store
security credentials. The default implementation of the plug-in frame work in the Oracle
Tuxedo product requires that digital certificates are stored in an LDAP-enabled directory.
You can choose any LDAP-enabled directory service. You also need to choose the
certificate authority from which to obtain digital certificates and private keys used in a
Tuxedo application. You must have an LDAP-enabled directory service and a certificate
authority in place before using the SSL protocol in a Tuxedo application.

Encryption Key Size Negotiation
When two processes at the opposite ends of a network link need to communicate, they must first
agree on the size of the key to be used for encryption. This agreement is resolved through a
two-step process of negotiation.

1. Each process identifies its own min-max values.

2. Together, the two processes find the largest key size supported by both.

Determining Min-Max Values
A Tuxedo process will process the MINENCRYTPBITS and MAXENCRYPTBITS using the following
steps.

If the configured min-max values accommodate the default min-max values, then the local
software assigns those values as the min-max values for the process.

If one of the min-max values is not configured, then the default value will be used for the
missing value. For instance (0, max-value-configured) or (min-value-configured, 128) will
be used.

If there are no min-max values specified in the configurations for a particular link type,
then the local software assigns 0 as the minimum value and assigns 128 as the maximum
value.
1-28 Using Security in ATMI Applications

SSL Encrypt ion
The minimum encryption key size is 112. If min-max value is configured with 40 or 56,
then 112 will be used by default.

Notes:

The configuration information about encryption strength is processed independent
of type of link level security.

For /WS client, the default MAXENCRYPTBITS is 256; it will be adjusted according
to the actual link level security configured.

Finding a Common Key Size
After the min-max values are determined for the two processes, the negotiation of key size begins.
The negotiation process need not be encrypted or hidden. Once a key size is agreed upon, it
remains in effect for the lifetime of the network connection.

Table 1-6 shows which key size, if any, is agreed upon by two processes when all possible
combinations of min-max values are negotiated. The header row holds the min-max values for one
process; the far left column holds the min-max values for the other.

Table 1-6 Interprocess Negotiation Results (112,112) to (112,256)

(112,112) (112,128) (112,256)

(112,112) 112 112 112

(112,128) 112 128 128

(112,256) 112 128 256

(128,128) ERROR 128 128

(128,256) ERROR 128 256

(256,256) ERROR ERROR 256
Using Security in ATMI Applications 1-29

Backward Compatibility of SSL
In order to use SSL between two Tuxedo processes, both processes must be running Tuxedo 10.0
or later (except when using the CORBA SSL capabilities described in "Using Security in
CORBA Applications." It is possible to specify both non-SSL and SSL ports for WSL and JSL
processes and to specify SSL or LLE connectivity for individual entries in the *DM_TDOMAIN
section of a DMCONFIG file. In this way, it is possible to gradually migrate a workstation or
domain application to use SSL as individual workstation clients and Tuxedo domains are
upgraded to Tuxedo 10.

Notes:

It is not possible to use SSL between BRIDGE and tlisten processes in an MP
mode application until all machines in the Tuxedo domain are upgraded to Tuxedo
10.0 or later.

Zero bit SSL ciphers (which do not actually encrypt application data) were allowed
prior to Tuxedo 12.1.1, but are disallowed by the Oracle NZ Security Layer used in
Tuxedo 12.1.1 and later.

WSL/WSH Connection Timeout During Initialization
The length of time a Workstation client can take for initialization is limited. By default, this
interval is 60. The 60-second interval includes the time needed to negotiate an encrypted link.
This time limit can be changed when WSL is configured by changing the value of the

Table 1-7 Interprocess Negotiation Results (128,128) to (256,256)

(128,128) (128,256) (256,256)

(112,112) ERROR ERROR ERROR

(112,128) 128 128 ERROR

(112,256) 128 256 256

(128,128) 128 128 ERROR

(128,256) 128 256 256

(256,256) ERROR 256 256
1-30 Using Security in ATMI Applications

SSL Encrypt ion
MAXINITTIME parameter for the workstation listener (WSL) server in the UBBCONFIG file, or the
value of the TA_MAXINITTIME attribute in the T_WSL class of the WS_MIB(5).

Supported Cipher Suites
A cipher suite is a SSL encryption method that includes the key exchange algorithm, the
symmetric encryption algorithm, and the secure hash algorithm used to protect the integrity of
the communication. For example, the cipher suite RSA_WITH_RC4_128_MD5 uses RSA for key
exchange, RC4 with a 128-bit key for bulk encryption, and MD5 for message digest.

The ATMI security environment supports the cipher suites described in Table 1-8.

SSL Installation
SSL is delivered as a standard feature of the Tuxedo system. If an application will not be using
the Oracle Wallet to store security credentials and will be using LDAP to obtain certificates, then
the administrator should have the name of their LDAP server, the LDAP port number, and the

Table 1-8 SSL Cipher Suites Supported by the ATMI Security Environment

Cipher Suite Key
Exchange
Type

Symmetric
Key
Strength

TLS_RSA_WITH_AES_256_CBC_SHA RSA 256

TLS_RSA_WITH_AES_128_CBC_SHA RSA 128

SSL_RSA_WITH_RC4_128_SHA RSA 128

SSL_RSA_WITH_RC4_128_MD5 RSA 128

SSL_RSA_WITH_3DES_EDE_CBC_SHA

SSL_DH_anon_WITH_3DES_EDE_CBC_SHA RSA 112

SSL_RSA_WITH_DES_CBC_SHA

SSL_DH_anon_WITH_DES_CBS_SHA RSA 56

SSL_RSA_EXPORT_WITH_RC4_40_MD5

SSL_RSA_EXPORT_WITH_DES40_DBC_SHA

SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA

SSL_DH_anon_EXPORT_WITH_RC4_40_MD5 RSA 40
Using Security in ATMI Applications 1-31

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf5/rf5.html

LDAP filter file location available at installation time (The default LDAP filter file location of
$TUXDIR/udataobj/security/bea_ldap_filter.dat should be fine for most applications.)

The epifregedt command can be used if this information needs to be changed after installation
time.

See Also
Security Administration Tasks

Administering SSL Encryption

“Distributing ATMI Applications Across a Network” and “Creating the Configuration File
for a Distributed ATMI Application” on page 10-1 in Setting Up an Oracle Tuxedo
Application

Using Security in CORBA Applications

Public Key Security
Public key security provides two capabilities that make end-to-end digital signing and data
encryption possible:

Message-based digital signature

Message-based encryption

Message-based digital signature allows the recipient (or recipients) of a message to identify and
authenticate both the sender and the sent message. Digital signature provides solid proof of the
originator and content of a message; a sender cannot falsely repudiate responsibility for a
message to which that sender’s digital signature is attached. Thus, for example, Bob cannot issue
a request for a withdrawal from his bank account and later claim that someone else issued that
request.

In addition, message-based encryption protects the confidentiality of messages by ensuring that
only designated recipients can decrypt and read them.

PKCS-7 Compliant
Informal but recognized industry standards for public key software have been issued by a group
of leading communications companies, led by RSA Laboratories. These standards are called
1-32 Using Security in ATMI Applications

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/ads/addist.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/ads/adsdis.html
../security/publickey.html

Publ i c Key Secur i t y
Public-Key Cryptography Standards, or PKCS. The public key software in the ATMI
environment of the Oracle Tuxedo software complies with the PKCS-7 standard.

PKCS-7 is a hybrid cryptosystem architecture. A symmetric key algorithm with a random session
key is used to encrypt a message, and a public key algorithm is used to encrypt the random session
key. A random number generator creates a new session key for each communication, which
makes it difficult for a would-be attacker to reuse previous communications.

Supported Algorithms for Public Key Security
All the algorithms on which public key security is based are well known and commercially
available. To select the algorithms that will best serve your ATMI application, consider the
following factors: speed, degree of security, and licensing restrictions (for example, the United
States government restricts the algorithms that it allows to be exported to other countries).

Public Key Algorithms
The public key security in the ATMI environment of the Oracle Tuxedo product supports any
public key algorithms supported by the underlying plug-ins, including RSA, ElGamal, and Rabin.
(RSA stands for Rivest, Shamir, and Adelman, the inventors of the RSA algorithm.) All these
algorithms can be used for digital signatures and encryption.

Public key (or asymmetric key) algorithms such as RSA are implemented through a pair of
different but mathematically related keys:

A public key (which is distributed widely) for verifying a digital signature or transforming
data into a seemingly unintelligible form.

A private key (which is always kept secret) for creating a digital signature or returning the
data to its original form.

Digital Signature Algorithms
The public key security in the ATMI environment of the Oracle Tuxedo product supports any
digital signature algorithms supported by the underlying plug-ins, including RSA, ElGamal,
Rabin, and Digital Signature Algorithm (DSA). With the exception of DSA, all these algorithms
can be used for digital signatures and encryption. DSA can be used for digital signatures but not
for encryption.

Digital signature algorithms are simply public key algorithms used to provide digital signatures.
DSA is also a public key algorithm (implemented through public-private key pairs), but it can
only be used to provide digital signatures, not encryption.
Using Security in ATMI Applications 1-33

Symmetric Key Algorithms
Public key security supports the following three symmetric key algorithms:

DES-CBC (Data Encryption Standard for Cipher Block Chaining)

DES-CBC is a 64-bit block cipher run in Cipher Block Chaining (CBC) mode. It provides
56-bit keys (8 parity bits are stripped from the full 64-bit key) and is exportable outside the
United States.

Two-key triple-DES (Data Encryption Standard)

Two-key triple-DES is a 128-bit block cipher run in Encrypt-Decrypt-Encrypt (EDE)
mode. Two-key triple-DES provides two 56-bit keys (in effect, a 112-bit key) and is not
exportable outside the United States.

For some time it has been common practice to protect and transport a key for DES
encryption with triple-DES, which means that the input data (in this case the single-DES
key) is encrypted, decrypted, and then encrypted again (an encrypt-decrypt-encrypt
process). The same key is used for the two encryption operations.

RC2 (Rivest’s Cipher 2)

RC2 is a variable key-size block cipher with a key size range of 40 to 128 bits. It is faster
than DES and is exportable with a key size of 40 bits. A 56-bit key size is allowed for
foreign subsidiaries and overseas offices of United States companies. In the United States,
RC2 can be used with keys of virtually unlimited length, although the ATMI public key
security restricts the key length to 128 bits.

Oracle Tuxedo customers cannot expand or modify this list of algorithms.

In symmetric key algorithms, the same key is used to encrypt and decrypt a message. The public
key encryption system uses symmetric key encryption to encrypt a message sent between two
communicating entities. Symmetric key encryption operates at least 1000 times faster than public
key cryptography.

A block cipher is a type of symmetric key algorithm that transforms a fixed-length block of
plaintext (unencrypted text) data into a block of ciphertext (encrypted text) data of the same
length. This transformation takes place in accordance with the value of a randomly generated
session key. The fixed length is called the block size.

Message Digest Algorithms
Public key security supports any message digest algorithms supported by the underlying plug-ins,
including MD5, SHA-1 (Secure Hash Algorithm 1), and many others. Both MD5 and SHA-1 are
1-34 Using Security in ATMI Applications

Message-based D ig i ta l S ignature
well known, one-way hash algorithms. A one-way hash algorithm takes a message and converts
it into a fixed string of digits, which is referred to as a message digest or hash value.

MD5 is a high-speed, 128-bit hash; it is intended for use with 32-bit machines. SHA-1 offers
more security by using a 160-bit hash, but is slower than MD5.

See Also
Message-based Digital Signature

Message-based Encryption

Public Key Implementation

Security Administration Tasks

Administering Public Key Security

Programming an ATMI Application with Security

Writing Security Code to Protect Data Integrity and Privacy

Message-based Digital Signature
Message-based digital signatures enhance ATMI security by allowing a message originator to
prove its identity, and by binding that proof to a specific message buffer. Mutually authenticated
and tamper-proof communication is considered essential for ATMI applications that transport
data over the Internet, either between companies or between a company and the general public.
It also is critical for ATMI applications deployed over insecure internal networks.

The scope of protection for a message-based digital signature is end-to-end: a message buffer is
protected from the time it leaves the originating process until the time it is received at the
destination process. It is protected at all intermediate transit points, including temporary message
queues, disk-based queues, and system processes, and during transmission over inter-server
network links.

Figure 1-8 shows how end-to-end message-based digital signature works.
Using Security in ATMI Applications 1-35

Figure 1-8 ATMI PKCS-7 End-to-End Digital Signing

Message-based digital signature involves generating a digital signature by computing a message
digest on the message, and then encrypting the message digest with the sender’s private key. The
recipient verifies the signature by decrypting the encrypted message digest with the signer’s
public key, and then comparing the recovered message digest to an independently computed
message digest. The signer’s public key either is contained in a digital certificate included in the
signer information, or is referenced by an issuer-distinguished name and issuer-specific serial
number that uniquely identify the certificate for the public key.

Digest Encrypt

Signer’s
Private Key

Decrypt

Signer’s
Public Key

Digital Signature Algorithm

Message Digest Algorithm

Signer’s Assigned Public Key Pair

Clear Data Buffer Clear DataBuffer

To RecipientFrom Signer

Public Key Security

tpsign()

Yes

Compare

OK
?

Digest

Decrypt

Store

No
Discard
1-36 Using Security in ATMI Applications

Message-based D ig i ta l S ignature
Digital Certificates
Digital certificates are electronic files used to uniquely identify individuals and resources over
networks such as the Internet. A digital certificate securely binds the identity of an individual or
resource, as verified by a trusted third party known as a Certification Authority, to a particular
public key. Because no two public keys are ever identical, a public key can be used to identify its
owner.

Digital certificates allow verification of the claim that a specific public key does in fact belong to
a specific subscriber. A recipient of a certificate can use the public key listed in the certificate to
verify that the digital signature was created with the corresponding private key. If such
verification is successful, this chain of reasoning provides assurance that the corresponding
private key is held by the subscriber named in the certificate, and that the digital signature was
created by that particular subscriber.

A certificate typically includes a variety of information, such as:

The name of the subscriber (holder, owner) and other identification information required to
uniquely identify the subscriber, such as the URL of the Web server using the certificate, or
an individual’s e-mail address.

The subscriber’s public key.

The name of the Certification Authority that issued the certificate.

A serial number.

The validity period (or lifetime) of the certificate (defined by a start date and an end date).

The most widely accepted format for certificates is defined by the ITU-T X.509 international
standard. Thus, certificates can be read or written by any ATMI application complying with
X.509. The public key security in the ATMI environment of the Oracle Tuxedo product
recognizes certificates that comply with X.509 version 3, or X.509v3.

Certification Authority
Certificates are issued by a Certification Authority, or CA. Any trusted third-party organization
or company that is willing to vouch for the identities of those to whom it issues certificates and
public keys can be a CA. When it creates a certificate, the CA signs the certificate with its private
key, to obtain a digital signature. The CA then returns the certificate with the signature to the
subscriber; these two parts—the certificate and the CA’s signature—together form a valid
certificate.
Using Security in ATMI Applications 1-37

The subscriber and others can verify the issuing CA’s digital signature by using the CA’s public
key. The CA makes its public key readily available by publicizing that key or by providing a
certificate from a higher-level CA attesting to the validity of the lower-level CA’s public key. The
second solution gives rise to hierarchies of CAs.

The recipient of an encrypted message can develop trust in the CA’s private key recursively, if
the recipient has a certificate containing the CA’s public key signed by a superior CA whom the
recipient already trusts. In this sense, a certificate is a stepping stone in digital trust. Ultimately,
it is necessary to trust only the public keys of a small number of top-level CAs. Through a chain
of certificates, trust in a large number of users’ signatures can be established.

Thus, digital signatures establish the identities of communicating entities, but a signature can be
trusted only to the extent that the public key for verifying the signature can be trusted.

Note that Oracle has no plans to become a CA. By offering a public key plug-in interface, Oracle
extends the opportunity to all Oracle Tuxedo customers to select a CA of their choice.

Certificate Repositories
To make a public key and its identification with a specific subscriber readily available for use in
verification, the digital certificate may be published in a repository or made available by other
means. Repositories are databases of certificates and other information available for retrieval and
use in verifying digital signatures. Retrieval can be accomplished automatically by having the
verification program directly request certificates from the repository as needed.

Public-Key Infrastructure
The Public-Key Infrastructure (PKI) consists of protocols, services, and standards supporting
applications of public key cryptography. Because the technology is still relatively new, the term
PKI is somewhat loosely defined: sometimes “PKI” simply refers to a trust hierarchy based on
public key certificates; in other contexts, it embraces digital signature and encryption services
provided to end-user applications as well.

There is no single standard public key infrastructure today, though efforts are underway to define
one. It is not yet clear whether a standard will be established or multiple independent PKIs will
evolve with varying degrees of interoperability. In this sense, the state of PKI technology today
can be viewed as similar to local and wide-area network technology in the 1980s, before there
was widespread connectivity via the Internet.

The following services are likely to be found in a PKI:

Key registration: for issuing a new certificate for a public key
1-38 Using Security in ATMI Applications

Message-based D ig i ta l S ignature
Certificate revocation: for canceling a previously issued certificate

Key selection: for obtaining a party’s public key

Trust evaluation: for determining whether a certificate is valid and which operations it
authorizes

Figure 1-9 shows the PKI process flow.

Figure 1-9 PKI Process Flow

1. Subscriber applies to Certification Authority (CA) for digital certificate.

2. CA verifies identity of subscriber and issues digital certificate.

3. CA publishes certificate to repository.

4. Subscriber digitally signs electronic message with private key to ensure sender authenticity,
message integrity, and non-repudiation, and then sends message to recipient.

5. Recipient receives message, verifies digital signature with subscriber’s public key, and goes
to repository to check status and validity of subscriber’s certificate.

6. Repository returns results of status check on subscriber’s certificate to recipient.

Note that Oracle has no plans to become a PKI vendor. By offering a public key plug-in interface,
Oracle extends the opportunity to all Oracle Tuxedo customers to use a PKI security solution with
the PKI software from their vendor of choice.

See Also
Public Key Implementation

Security Administration Tasks

Administering Public Key Security

Subscriber

Certification
Authority

Recipient

Repository

1

3

4

2 5 6
Using Security in ATMI Applications 1-39

Programming an ATMI Application with Security

Writing Security Code to Protect Data Integrity and Privacy

Message-based Encryption
Message-based encryption keeps data private, which is essential for ATMI applications that
transport data over the Internet, whether between companies or between a company and its
customers. Data privacy is also critical for ATMI applications deployed over insecure internal
networks.

Message-based encryption also helps ensure message integrity, because it is more difficult for an
attacker to modify a message when the content is obscured.

The scope of protection provided by message-based encryption is end-to-end; a message buffer
is protected from the time it leaves the originating process until the time it is received at the
destination process. It is protected at all intermediate transit points, including temporary message
queues, disk-based queues, and system processes, and during transmission over interserver
network links.

Figure 1-10 shows how end-to-end message-based encryption works.
1-40 Using Security in ATMI Applications

Message-based Encrypt ion
Figure 1-10 ATMI PKCS-7 End-to-End Encryption

The message is encrypted by a symmetric key algorithm and a session key. Then, the session key
is encrypted by the recipient’s public key. Next, the recipient decrypts the encrypted session key
with the recipient’s private key. Finally, the recipient decrypts the encrypted message with the
session key to obtain the message content.

Note: The figure does not show two other steps in this process: (1) the data is compressed
immediately before the message is encrypted; and (2) the data is uncompressed
immediately after the message is decrypted.

Because the unit of encryption is an ATMI message buffer, message-based encryption is
compatible with all existing ATMI programming interfaces and communication paradigms. The
encryption process is always the same, whether it is being performed on messages shipped

Session
Key

Recipient’s Assigned Public Key Pair

Encrypt

Encrypt

Recipient’s
Public Key

Decrypt

Decrypt

Recipient’s
Private Key

Symmetric Key Algorithm

Public Key Algorithm

Clear Data Buffer Clear DataBuffer

To RecipientFrom Sender

Public Key Security

tpseal()
Using Security in ATMI Applications 1-41

between two processes in a single machine, or on messages sent between two machines through
a network.

See Also
Public Key Implementation

Security Administration Tasks

Administering Public Key Security

Programming an ATMI Application with Security

Writing Security Code to Protect Data Integrity and Privacy

Public Key Implementation
The underlying plug-in interface for public key security consists of six component interfaces,
each of which requires one or more plug-ins. By instantiating these interfaces with your preferred
plug-ins, you can bring custom message-based digital signature and message-based encryption to
your ATMI application.

The six component interfaces are:

Public key initialization

Key management

Certificate lookup

Certificate parsing

Certificate validation

Proof material mapping

Public Key Initialization
The public key initialization interface allows public key software to open public and private keys.
For example, gateway processes may need to have access to a specific private key in order to
decrypt messages before routing them. This interface is implemented as a fanout.
1-42 Using Security in ATMI Applications

Publ ic Key Implementat ion
Key Management
The key management interface allows public key software to manage and use public and private
keys. Note that message digests and session keys are encrypted and decrypted using this interface,
but no bulk data encryption is performed using public key cryptography. Bulk data encryption is
performed using symmetric key cryptography.

Certificate Lookup
The certificate lookup interface allows public key software to retrieve X.509v3 certificates for a
given principal. Principals are authenticated users. The certificate database may be stored using
any appropriate tool, such as Lightweight Directory Access Protocol (LDAP), Microsoft Active
Directory, Netware Directory Service (NDS), or local files.

Certificate Parsing
The certificate parsing interface allows public key software to associate a simple principal name
with an X.509v3 certificate. The parser analyzes a certificate to generate a principal name to be
associated with the certificate.

Certificate Validation
The certificate validation interface allows public key software to validate an X.509v3 certificate
in accordance with specific business logic. This interface is implemented as a fanout, which
allows Oracle Tuxedo customers to use their own business rules to determine the validity of a
certificate.

Proof Material Mapping
The proof material mapping interface allows public key software to access the proof materials
needed to open keys, provide authorization tokens, and provide auditing tokens.

Implementing Custom Public Key Security
You can provide public key security for your ATMI application by using custom plug-ins. You
choose a plug-in by configuring the Oracle Tuxedo registry, a tool that controls all security
plug-ins.
Using Security in ATMI Applications 1-43

If you want to use custom public key plug-ins, you must configure the registry for your public
key plug-ins before you can install them. For more detail about the registry, see Setting the Oracle
Tuxedo Registry.

Default Public Key Implementation
The default public key implementation supports the following algorithms:

Public key algorithms: RSA

Digital signature algorithms: RSA and DSA

Symmetric key algorithms:

– DES-CBC

– Two-key triple-DES

– RC2

Message digest algorithms:

– MD5

– SHA-1

See Also
Public Key Security

Security Administration Tasks

Administering Public Key Security

Programming an ATMI Application with Security

Writing Security Code to Protect Data Integrity and Privacy

Default Authentication and Authorization
The default authentication and authorization plug-ins provided by the ATMI environment of the
Oracle Tuxedo product work in the same manner that implementations of authentication and
authorization have worked since they were first made available with the Oracle Tuxedo system.

An application administrator can use the default authentication and authorization plug-ins to
configure an ATMI application with one of five levels of security. The five levels are:
1-44 Using Security in ATMI Applications

Defau l t Authent ica t ion and Author i zat ion
No authentication

Application password security

User-level authentication

Optional access control list (ACL) security

Mandatory ACL security

At the lowest level, no authentication is provided. At the highest level, an access control checking
feature determines which users can execute a service, post an event, or enqueue (or dequeue) a
message on an application queue. The security levels are briefly described in Table 1-9.

Table 1-9 Security Levels for Default Authentication and Authorization

Security Level Description

No authentication Clients do not have to be verified before joining the ATMI
application.

When joining an ATMI application at this security level, a user
has access to all application resources.

Application password The application administrator defines a single password for the
entire ATMI application, and clients must provide the password
to join the application.

When successfully joining an ATMI application at this security
level, a user has access to all application resources.

User-level authentication In addition to the application password, each client must
provide a valid username and user-specific data, such as a
password, to join the ATMI application.

When successfully joining an ATMI application at this security
level, a user has access to all application resources.
Using Security in ATMI Applications 1-45

Note: The term client is synonymous with client process, meaning a specific instance of a client
program in execution. An ATMI client program can exist in active memory in any
number of individual instances.

An application administrator can designate a security level by setting the SECURITY parameter in
the UBBCONFIG configuration file to the appropriate value.

Optional ACL security Clients must provide the application password, a username, and
user-specific data such as a password.

For a user who successfully joins an ATMI application at this
security level, access to application resources is restricted in the
following way. The ACL database contains a list of application
resources and, for each resource, a list of users with permission
to use it. A user who is not included in the list for a particular
resource is not allowed to access that resource, regardless of
whether optional ACL or mandatory ACL security is being
used.

If there is no entry in the ACL database for a resource and the
security level for the ATMI application is set to optional ACL
security, all users are permitted to access the resource.

Mandatory ACL security Clients must provide the application password, a username, and
user-specific data such as a password.

For a user who successfully joins an ATMI application at this
security level, access to application resources is restricted in the
following way. The ACL database contains a list of application
resources and, for each resource, a list of users with permission
to use it. A user who is not included in the list for a particular
resource is not allowed to access that resource, regardless of
whether optional ACL or mandatory ACL security is being
used.

If there is no entry in the ACL database for a resource and the
security level for the ATMI application is set to mandatory
ACL security, users are not permitted to access the resource.

Table 1-9 Security Levels for Default Authentication and Authorization (Continued)

Security Level Description
1-46 Using Security in ATMI Applications

Defau l t Authent ica t ion and Author i zat ion
The default is NONE. If SECURITY is set to USER_AUTH, ACL, or MANDATORY_ACL, then the
application administrator must configure a system-supplied authentication server named
AUTHSVR. AUTHSVR performs per-user authentication.

An application developer can replace AUTHSVR with an authentication server that has logic
specific to the ATMI application. For example, a company may want to develop a custom
authentication server so that it can use the popular Kerberos mechanism for authentication.

Client Naming
Upon joining an ATMI application, a client process has two names: a combined user-client name
and a unique client identifier known as an application key.

The user-client name consists of a username and a client name and is used for security,
administration, and communications.

The application key is a 32-bit value that is called on behalf of the client and used by the
access control checking feature.

Two client names are reserved for special semantics: tpsysadm and tpsysop. tpsysadm is
treated as the application administrator, and tpsysop is treated as the application operator.

User-Client Names
When an authenticated client joins an ATMI application, it passes a username and client name to
tpinit(3c) in a TPINIT buffer if the application is written in C, or to TPINITIALIZE(3cbl) in
a TPINFDEF-REC record if the application is written in COBOL. The username and client name,
as well as other security-related fields in the TPINIT buffer/ TPINFDEF-REC record, are described
in Table 1-10.

For This Security Level Set SECURITY Parameter to . . .

No authentication NONE

Application password security APP_PW

User-level authentication USER_AUTH

Optional ACL security ACL

Mandatory ACL security MANDATORY_ACL
Using Security in ATMI Applications 1-47

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf3cbl/rf3cbl.html

For an authenticated security level (USER_AUTH, ACL, or MANDATORY_ACL), the username, client
name, and user-specific data are transferred to AUTHSVR without interpretation by the Oracle
Tuxedo system. The only manipulation of this information is its encryption when transmitted
over the network from a Workstation client.

Application Key
Every time a client joins an ATMI application, it is assigned a 32-bit application key by the
Oracle Tuxedo system. The client cannot reset the key other than by terminating its association
and joining the ATMI application as a different user.

Table 1-10 Security-Related Fields in TPINIT Buffer/ TPINFDEF-REC Record

TPINIT TPINFDEF-REC Description

usrname USRNAME A user name consisting of a string of up to 30
characters. Required for security level USER_AUTH,
ACL, or MANDATORY_ACL. The username represents
the caller.

cltname CLTNAME A client name consisting of a string of up to 30
characters. Required for security level USER_AUTH,
ACL, or MANDATORY_ACL. The client name
represents the client program.

passwd PASSWD Application password. Required for security level
APP_PW, USER_AUTH, ACL, or MANDATORY_ACL.
tpinit() or TPINITIALIZE() validates this
password by comparing it to the configured
application password stored in the TUXCONFIG file.*

datalen DATALEN Length of the user-specific data** that follows.

data N/A User-specific data.** Required for security level
USER_AUTH, ACL, or MANDATORY_ACL.
tpinit() or TPINITIALIZE() forwards the
user-specific data to the authentication server for
validation. The authentication server is AUTHSVR.

 * The binary equivalent of the UBBCONFIG file.

** Usually a user password.
1-48 Using Security in ATMI Applications

Defau l t Authent ica t ion and Author i zat ion
The assigned application key is the client’s security credential. The client provides its application
key with every service invocation as part of the TPSVCINFO structure in the appkey field. (See
tpservice(3c) in the Oracle Tuxedo ATMI C Function Reference for more information about
TPSVCINFO.)

Table 1-11 shows how the application key is set for various security levels and clients. All
application key assignments are hardcoded except the last item in the table.

Table 1-11 Application Key Assignments

At This Security Level Messages of This Type Are Assigned the Following Application
Key

Any security level Messages from native ATMI clients that
must be run by the administrator (like
tmadmin(1))

0x80000000
(Application key of the administrator)

NONE or APP_PW Messages from native ATMI clients that
call tpinit()/ TPINITIALIZE()
with a client name of tpsysadm and are
run by the administrator

0x80000000
(Application key of the administrator)

Messages from native ATMI clients that
call tpinit()/ TPINITIALIZE()
with a client name of tpsysop and are
run by the administrator

0xC0000000
(Application key of the operator)

Messages from any ATMI client other
than tpsysadm or tpsysop

-1
Using Security in ATMI Applications 1-49

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rfcm/rfcmd.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf3c/rf3c.html

In addition, any message that originates from tpsvrinit(3c) or tpsvrdone(3c) in a C
program (TPSVRINIT(3cbl) or TPSVRDONE(3cbl) in COBOL) is assigned the application key
of the administrator: 0x80000000. The application key of the client is assigned to messages that
pass through a server but originate at a client; an exception to this rule is described in Replacing
Client Tokens with Server Tokens.

A user identifier (UID) is an integer, between 0 and 128K, that is used by the application to refer
to a particular user. A group identifier (GID) is an integer, between 0 and 16K, that is used by the
application to refer to an application group.

User, Group, and ACL Files
To use access control, an application administrator must maintain lists of (1) users, (2) groups,
and (3) and mappings of groups to application entities (such as services, events, and application

USER_AUTH, ACL, or
MANDATORY_ACL

Messages from native ATMI clients that
call tpinit()/ TPINITIALIZE()
with a client name of tpsysadm and are
run by the administrator and bypass
authentication

0x80000000
(Application key of the administrator)

Messages from authenticated ATMI
clients that call tpinit()/
TPINITIALIZE() with a client name of
tpsysadm

0x80000000
(Application key of the administrator)

Messages from authenticated ATMI
clients that call tpinit()/
TPINITIALIZE() with a client name of
tpsysop

0xC0000000
(Application key of the operator)

Messages from authenticated ATMI
clients that call tpinit()/
TPINITIALIZE() with a client name
other than tpsysadm or tpsysop

Application key = user
identifier (UID) in the lower 17
bits and group identifier (GID)
in the next higher 14 bits; remaining
upper bit is 0. AUTHSVR returns this
application key value

Table 1-11 Application Key Assignments (Continued)

At This Security Level Messages of This Type Are Assigned the Following Application
Key
1-50 Using Security in ATMI Applications

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf3cbl/rf3cbl.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf3cbl/rf3cbl.html

Defau l t Authent ica t ion and Author i zat ion
queues). The third type of list, a mapping of groups to application entities, is known as the access
control list (ACL).

When a client tries to access an application resource, such as a service, the system checks the
client’s application key and thus identifies the group to which the user belongs. Next, the system
checks the ACL for the target resource and determines whether the client’s group has access
permission. The application administrator, application operator, and processes or service requests
running with the privileges of the application administrator or operator are not subject to ACL
permission checking.

The user, group, and ACL files are located in the application_root directory, where
application _root is the first pathname defined for the APPDIR variable. Figure 1-11
identifies these files and specifies the administrative commands available for controlling each
list.

Figure 1-11 Default User, Group, and ACL Files

Note: For an ATMI application running on the Compaq VMS operating system, the names of
the user, group, and ACL files have .dat extensions: tpusr.dat, tpgrp.dat, and
tpacl.dat.

The files are colon-delimited, flat text files that can be read and written only by the application
administrator—the owner of the TUXCONFIG file referenced by the TUXCONFIG variable. The
format of the files is irrelevant, since the files are fully administered with a set of dedicated
commands. Only the application administrator is allowed to use these commands.

application_root

tpgrp tpacltpusr

Administrative Commands
for User File

Administrative Commands
for ACL File

Administrative Commands
for Group File

tpusradd(1)n

tpusrdel(1)n

tpusrmod(1)n

tpgrpadd(1)n

tpgrpdel(1)n

tpgrpmod(1)n

tpacladd(1)n

tpacldel(1)n

tpaclmod(1)n
Using Security in ATMI Applications 1-51

An application administrator can use the tpaclcvt(1) command to convert security data files
to the format needed by the ACL checking feature. For example, on a UNIX host machine, an
administrator can use tpaclcvt to convert the /etc/password file and store the converted
version in the tpusr file. The same administrator can use tpaclcvt to convert the /etc/group
file and store the converted version in the tpgrp file.

The AUTHSVR server uses the user information stored in the tpusr file to authenticate users who
want to join the ATMI application.

When extensible security administration is enabled with the default XAUTHSVR implemented,
user, group, and ACL definition are placed in the LDAP repository rather than in a plain text.
These informations should follow the LDAP schemas. For information about LDAP schemas,
refer to How to Enable The Extended Security in Administering Security.

The XAUTHSVR server uses the user, group, and permission information in the LDAP repository
to authenticate users who want to join the ATMI application or access Tuxedo resources.

Optional and Mandatory ACLs
The ACL and MANDATORY_ACL security levels constitute the default authorization implementation
for the ATMI environment in the Oracle Tuxedo product.

When the security level is ACL, if there is no entry in the tpacl file or LDAP
Orcljaznpermission class associated with the target application entity, the client is permitted
to access the entity. This security level enables an administrator to configure access for only those
resources that need more security. That is, there is no need to add entries to the tpacl file for
services, events, or application queues that are open to everyone.

When the security level is MANDATORY_ACL, if there is no entry in the tpacl file or LDAP
Orcljaznpermission class associated with the target application entity, the client is not
permitted to access the entity. For this reason, this level is called mandatory. There must be an
entry in the tpacl file or LDAP Orcljaznpermission class for each and every application
entity that the client needs to access.

For both the ACL and MANDATORY_ACL security levels, if an entry for an application entity exists
in the tpacl file or LDAP Orcljaznpermission class and the client attempts to access that
entity, the user associated with that client must be a member of a group that is allowed to access
that entity; otherwise, permission is denied.

For some ATMI applications, it may be necessary to use both system-level and application-level
authorization. An entry in the tpacl file can be used to control which users can access a service,
1-52 Using Security in ATMI Applications

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rfcm/rfcmd.html
../sec/index.html

Secur i t y In te rope rab i l i t y
and application logic can control data-dependent access, for example, which users can handle
transactions for more than a million dollars.

Note that there is no ACL permission checking for administrative services, events, and
application queues with names that begin with a dot (.). For example, any client can subscribe to
administrative events such as .SysMachineBroadcast, .SysNetworkConfig, and
.SysServerCleaning. In addition, there is no ACL permission checking for the application
administrator, application operator, or processes or service requests running with the privileges
of the application administrator or operator.

See Also
What Administering Security Means

Security Administration Tasks

Administering Authentication

Administering Authorization

What Programming Security Means

Programming an ATMI Application with Security

Writing Security Code So Client Programs Can Join the ATMI Application

“About the Configuration File” and “Creating the Configuration File” in Setting Up an
Oracle Tuxedo Application

UBBCONFIG(5) in the Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference

AUTHSVR(5) in the Oracle Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference

Security Interoperability
Application developers and administrators must be aware of certain security issues when
configuring ATMI applications to interoperate with Oracle Tuxedo pre-release 7.1 (6.5 or earlier)
software.

Interoperability, as defined in this discussion, is the ability of the current release of Oracle
Tuxedo software to communicate over a network with a previous release of Oracle Tuxedo
Using Security in ATMI Applications 1-53

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/ads/adconf.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/ads/adfig.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf5/rf5.html

software. Specifically, inter-domain interoperability and intra-domain interoperability have the
following meanings:

Inter-domain interoperability

Involves one ATMI application running Oracle Tuxedo release 7.1 or later software, and
another ATMI application running Oracle Tuxedo pre-release 7.1 software. See the
diagram Inter-Domain Interoperability for clarification.

Intra-domain interoperability

Involves one machine in a multiple-machine ATMI application running Oracle Tuxedo
release 7.1 or later software, and another machine in the same application running Oracle
Tuxedo pre-release 7.1 software. See the figure Intra-Domain Interoperability for
clarification.

Figure 1-12 Inter-Domain Interoperability

Server Server

GWTDOMAIN

Workstation
Client

Workstation
Client

WSHWSH

Server
Native
Client

Native
Client Server

Application 1 Running

GWTDOMAIN

Oracle Tuxedo Release 7.1 or Later Software
Application 2 Running

Oracle Tuxedo Pre-Release 7.1 Software

Network
Connection (Link)

Server Server
1-54 Using Security in ATMI Applications

Secur i t y In te rope rab i l i t y
Figure 1-13 Intra-Domain Interoperability

Interoperating with Pre-Release 7.1 Software
Interoperating with Oracle Tuxedo pre-release 7.1 software is allowed or disallowed at the
authentication security level. Authentication, as implemented by Oracle Tuxedo release 7.1 or
later software, allows communicating processes to mutually prove their identities.

By default, interoperability with a machine running Oracle Tuxedo pre-release 7.1 software is not
allowed. To change the default, an application administrator can use the CLOPT -t option to
allow workstation handlers (WSHs), domain gateways (GWTDOMAINs), and servers in the release
7.1 or later ATMI application to interoperate with Oracle Tuxedo pre-release 7.1 software.
Mandating Interoperability Policy provides instructions for using the CLOPT -t option as well as
the security ramifications for authentication and authorization when using CLOPT -t.

Interoperability for Link-Level Encryption
Whenever a network link is established between machines running Oracle Tuxedo software,
link-level encryption may be used to encrypt data before sending it over the network link, and
decrypt it as it comes off the link. Of course, link-level encryption is possible only if LLE is
installed on both the sending and receiving machines.

Server Server

Native
Client Server

Server

Native
ClientServer

Bridge Bridge

Server

WSH

Workstation
Client

WSH

Workstation
Client

Machine 2 Running Oracle TuxedoMachine 1 Running Oracle Tuxedo
Release 7.1 or Later Software Pre-Release 7.1 Software

Network
Connection (Link)

Same Oracle Tuxedo Application
Using Security in ATMI Applications 1-55

LLE interoperability with Oracle Tuxedo pre-release 7.1 software is described in Backward
Compatibility of LLE.

Interoperability for SSL Encryption
SSL encryption can be used over network links between machines running Oracle Tuxedo
software only if both machines are running Tuxedo 10.0 or later. LLE encryption can be used
over network links to machines running earlier releases of Tuxedo.

Note: The only exception to the SSL encryption interoperabiliy rules is that the CORBA
related SSL capabilities described in “Using Security in CORBA Applications” can
be used when interoperating with Tuxedo 8.0 and above, and when interoperating
with the former WLE product.

Interoperability for Public Key Security
The following interoperability rules for public key security shown in Table 1-12 apply to a
machine running release 7.1 or later Oracle Tuxedo software that is configured to interoperate
with a machine running Oracle Tuxedo pre-release 7.1 software. To clarify the rules, each rule
has an accompanying example scenario involving a Workstation client running Oracle Tuxedo
pre-release 7.1 software.

Table 1-12 Interoperability Rules for Public Key Security

Interoperability Rule Example Comments

Encrypted outgoing message buffers
destined for a machine running Oracle
Tuxedo pre-release 7.1 software are not
transmitted to the machine.

Encrypted outgoing message buffers
destined for a pre-release 7.1
Workstation client are not transmitted
to the Workstation client.

“Encrypted” refers to public
key message-based
encryption, not link-level
encryption.

Incoming message buffers from a
machine running an Oracle Tuxedo
pre-release 7.1 software are not accepted
if routed to a process requiring
encryption.

Incoming message buffers from a
pre-release 7.1 Workstation client do
not have encryption envelopes
attached, and are not accepted if routed
to a process requiring encryption.

See Setting Encryption
Policy for a description of
the
ENCRYPTION_REQUIRED
configuration parameter.
1-56 Using Security in ATMI Applications

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/security/index.html

Secur i t y In te rope rab i l i t y
For inter-domain interoperability, release 7.1 or later domain gateway (GWTDOMAIN) processes
enforce the interoperability rules for public key security.

For intra-domain interoperability, release 7.1 or later native clients, workstation handlers
(WSHs), or server processes communicating with the local bridge process enforce the
interoperability rules for public key security, as shown in Figure 1-14. A bridge process operates
only as a conduit; it does not decrypt message buffer content or verify digital signatures.

For outgoing message buffers destined
for the machine running Oracle Tuxedo
pre-release 7.1 software, any digital
signatures are verified and then removed
before the message buffers are
transmitted to the older machine.

Digital signatures are verified and then
removed from outgoing message
buffers destined for a pre-release 7.1
Workstation client.

It is assumed that the
outgoing message buffer is
digitally signed but not
encrypted. If the outgoing
message buffer is digitally
signed and encrypted, the
message is not decrypted,
the digital signatures are not
verified, and the message is
not transmitted to the older
machine.

Incoming message buffers from a
machine running Oracle Tuxedo
pre-release 7.1 software are not accepted
if routed to a process requiring digital
signatures.

Incoming message buffers from a
pre-release 7.1 Workstation client do
not have digital signatures attached,
and are not accepted if routed to a
process requiring digital signatures.

See Setting Digital
Signature Policy for a
description of the
SIGNATURE_REQUIRED
configuration parameter.

Table 1-12 Interoperability Rules for Public Key Security (Continued)

Interoperability Rule Example Comments
Using Security in ATMI Applications 1-57

Figure 1-14 Enforcing Intra-Domain Interoperability Rules for Public Key Security

Note: Typically, a release 7.1 or later WSH does not verify digital signatures. But when routing
a digitally signed message buffer to a process running Oracle Tuxedo pre-release 7.1
software, the WSH verifies any digital signatures before removing them.

See Also
Security Compatibility

Mandating Interoperability Policy

Setting Digital Signature Policy

Setting Encryption Policy

Security Compatibility
For an ATMI application running Oracle Tuxedo release 7.1 or later software, it is possible to
have any combination of default or custom authentication, authorization, auditing, and public key
security. In addition, any combination of these four security capabilities is compatible with
link-level encryption.

Server Server

Native
Client Server

Bridge

Workstation
Client

WSH

Workstation
Client

Machine 2 Running Oracle TuxedoMachine 1 Running Oracle Tuxedo
Release 7.1 or Later Software Pre-Release 7.1 Software

Network
Connection (Link)

Same Oracle Tuxedo Application

Local Bridge

Enforcers

Bridge

Native
Client

WSH

Server
1-58 Using Security in ATMI Applications

Secur i t y Compat ib i l i t y
Mixing Default/Custom Authentication and Authorization
It is possible to have default authentication and custom authorization, or custom authentication
and default authorization, as long as the application developer is aware of the following
restriction: the authorization security token must carry at a minimum (1) an authenticated
username, or principal name, and (2) an application key value as defined in Application Key.

Authorization decisions are based partly on user identity, which is stored in an authorization
token. Because authorization tokens are generated by the authentication security plug-in,
providers of authentication and authorization plug-ins need to ensure that these plug-ins work
together. (See Authentication and Authorization for more detail.)

Mixing Default/Custom Authentication and Auditing
It is possible to have default authentication and custom auditing, or custom authentication and
default auditing, as long as the application developer is aware of the following restriction: the
auditing security token must carry at a minimum (1) an authenticated username, or principal
name, and (2) an application key value as defined in Application Key.

Auditing decisions are based partly on user identity, which is stored in an auditing token. Because
auditing tokens are generated by the authentication security plug-in, providers of authentication
and auditing plug-ins need to ensure that these plug-ins work together. (See Authentication and
Auditing for more detail.)

Compatibility Issues for Public Key Security
Public key security is compatible with all features and processes supported by Oracle Tuxedo
release 7.1 or later software except the compression feature. Encrypted message buffers cannot
be compressed using the compression feature. But, because the public key software compresses
the message content just before it encrypts the message buffer, any size savings are still achieved.

This topic describes the compatibility/interaction of public key security with the following ATMI
features and processes:

Data-dependent routing

Threads

EventBroker

/Q

Transactions
Using Security in ATMI Applications 1-59

Domain gateways (GWTDOMAINs)

Other vendors’ gateways

Compatibility/Interaction with Data-dependent Routing
Central to the data-dependent routing feature is the ability of a process to examine the content of
incoming message buffers. If an incoming message buffer is encrypted, a process configured for
data-dependent routing must have opened a recipient’s private key so that the public key software
can use that key to decrypt the message buffer. For data-dependent routing, the public key
software does not verify digital signatures.

If a decryption key is not available, the routing operation fails. The system generates an ERROR
userlog(3c) message to report the failure.

If a decryption key is available, the process makes a routing decision based on a decrypted copy
of the encrypted message buffer. The chain of events is as follows:

1. The public key software makes a copy of the encrypted message buffer and uses the
decryption key to decrypt the buffer.

2. The process reads the resulting plaintext (unencrypted text) message content to make the
routing decision.

3. The public key software overwrites the plaintext message content with zero values to preserve
privacy.

The system then transmits the original encrypted message buffer in accordance with the routing
decision.

Compatibility/Interaction with Threads
Public-private keys are represented and manipulated via handles. A handle has data associated
with it that is used by the public key application programming interface (API) to locate or access
the item named by the handle. A process opens a key handle for digital signature generation,
message encryption, or message decryption.

A key handle is a process resource; it is not bound to any specific thread or context. Any
communication necessary to open a key is performed within the thread’s currently active context.
Thereafter, the key is available to any context in the process, whether or not the context is
associated with the same ATMI application.

A key’s internal data structures are thread safe. As such, a key may be accessed concurrently by
multiple threads.
1-60 Using Security in ATMI Applications

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf3c/rf3c.html

Secur i t y Compat ib i l i t y
Compatibility/Interaction with the EventBroker
In general, a TMUSREVT(5) system server handles encrypted message buffers without decrypting
them, that is, both digital signatures and encryption envelopes remain intact as messages flow
through the Oracle Tuxedo EventBroker component. However, the following cases require that
the EventBroker component decrypt posted message buffers:

To evaluate subscription filter expressions based on message content.

If the EventBroker does not have access to a suitable decryption key, the subscription’s
filter expression is assumed to be false, and the subscription is not considered a match.

To perform subscription notification actions that require access to message content:
userlog(3c) processing or system command execution.

If the EventBroker does not have access to a suitable decryption key, the subscription’s
notification action fails, and the system generates an ERROR userlog(3c) message to
report the failure.

To perform subscription notification actions that, based on system configurations, need to
access message content for data-dependent routing.

If the EventBroker does not have access to a suitable decryption key, the subscription’s
notification action fails, and the system generates an ERROR userlog() message to
report the failure.

For a transactional subscription, the system also marks the transaction as rollback-only.

To comply with an administrative system policy requiring encryption (as explained in
Setting Encryption Policy).

If the EventBroker does not have access to a suitable decryption key, the tppost(3c)
operation fails, and the system generates an ERROR userlog() message to report the
failure.

To verify that a posted encrypted message has a valid digital signature attached, if required
to do so by an administrative system policy requiring digital signatures (as explained in
Setting Digital Signature Policy).

If the EventBroker does not have access to a suitable decryption key, the tppost(3c)
operation fails, and the system generates an ERROR userlog() message to report the
failure.
Using Security in ATMI Applications 1-61

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf3c/rf3c.html

Compatibility/Interaction with /Q
In general, a TMQUEUE(5) or TMQFORWARD(5) system server handles encrypted message buffers
without decrypting them, that is, both signatures and encryption envelopes remain intact as
messages flow through the Oracle Tuxedo /Q component. However, the following cases require
that the /Q component decrypt enqueued message buffers:

To perform TMQFORWARD operations that, based on system configurations, need to access
message content for data-dependent routing.

If TMQFORWARD does not have access to a suitable decryption key, the forward operation
fails. The system returns the message to the queue and generates an ERROR userlog(3c)
message to report the failure.

After a number of periodic retry attempts, TMQFORWARD might place the unreadable
message on an error queue.

To comply with an administrative system policy requiring encryption (as explained in
Setting Encryption Policy).

If the /Q component does not have access to a suitable decryption key, the tpenqueue(3c)
operation fails, and the system generates an ERROR userlog() message to report the
failure.

To verify that an enqueued encrypted message has a valid signature attached, if required to
do so by an administrative system policy requiring digital signatures (as explained in
Setting Digital Signature Policy).

If the /Q component does not have access to a suitable decryption key, the tpenqueue(3c)
operation fails, and the system generates an ERROR userlog() message to report the
failure.

A non-transactional tpdequeue(3c) operation has the side effect of destroying an encrypted
queued message if the invoking process does not hold a valid decryption key.

If a message with an invalid signature is placed in a queue (or if the message is corrupted or
tampered with while on the queue), any attempt to dequeue it fails. A non-transactional
tpdequeue() operation has the side effect of destroying such a message. A transactional
tpdequeue() operation causes transaction rollback, and all future transactional attempts to
dequeue the message will continue to fail.

Compatibility/Interaction with Transactions
Public key security operations—opening and closing keys, requesting a digital signature, or
requesting encryption—are not transactional, and are not undone by transaction rollback.
1-62 Using Security in ATMI Applications

http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf5/rf5.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf3c/rf3c.html
http://download.oracle.com/docs/cd/E35855_01/tuxedo/docs1222/rf3c/rf3c.html

Secur i t y Compat ib i l i t y
However, transactions might rollback due to failure conditions associated with the following
public key operations:

If a transactional request or reply message cannot be decrypted, its associated transaction is
rolled back.

If a transactional request or reply message is discarded because of an invalid or missing
digital signature, its associated transaction is rolled back.

If a transactional request or reply message is rejected because it violates an administrative
system policy requiring encryption or digital signatures, its associated transaction is rolled
back.

Compatibility/Interaction with Domain Gateways
Domain gateway (GWTDOMAIN) processes connecting two ATMI applications running Oracle
Tuxedo release 7.1 or later software preserve digital signatures and encryption envelopes. In
addition, the domain gateway processes verify digital signatures and enforce administrative
system policies regarding digital signatures and encryption.

Figure 1-15 is an aid to understanding how domain gateway processes interact with local and
remote ATMI applications. The table following the figure describes how release 7.1 or later
domain gateway processes handle digitally signed and encrypted message buffers.
Using Security in ATMI Applications 1-63

Figure 1-15 Communication Between ATMI Applications

ATMI Application 1 ATMI Application 2

Server Server

Workstation
Client

Workstation
Client

WSHWSH

Server
Native
Client Server

Server Server

Native
Client

Network
Connection (Link)

GWTDOMAIN GWTDOMAIN

outbound

inboundoutbound

inbound

Table 1-13 Operation of Release 7.1 or Later Domain Gateway (GWTDOMAIN) Processes

Message Type Condition Resulting Operation

Inbound message—
originating from a
remote process and
received over a
network connection

Has encryption envelope and
may or may not have digital
signature

The domain gateway process accepts the message and
forwards it in encrypted form.

If the data-dependent routing feature applies and the
domain gateway process does not have a suitable
decryption key, the gateway process rejects the
message. (See Compatibility/Interaction with
Data-dependent Routing for clarification.)

Inbound message Does not have encryption
envelope or digital signature

If the domain gateway process is running within a
domain, machine, or group requiring encryption, the
gateway process rejects the message. If a service
advertised by the domain gateway requires encryption,
the gateway process rejects the message. (See Setting
Encryption Policy for clarification.)

If the domain gateway does not require encryption, the
gateway process accepts and forwards the message.
1-64 Using Security in ATMI Applications

Secur i t y Compat ib i l i t y
Inbound message Has digital signature but is
not encrypted

The domain gateway process verifies the digital
signature and forwards the message with digital
signature attached.

Inbound message Does not have digital
signature and is not
encrypted

If the domain gateway process is running within a
domain, machine, or group requiring digital signatures,
the gateway process rejects the message. If a service
advertised by the domain gateway requires digital
signatures, the gateway process rejects the message.
(See Setting Digital Signature Policy for clarification.)

If the domain gateway does not require digital
signatures, the gateway process accepts and forwards
the message.

Outbound message—
originating from a local
process and
transmitted over a
network connection

Has encryption envelope and
may or may not have digital
signature

The domain gateway process accepts the message and
forwards it in encrypted form over the network.

If the data-dependent routing feature applies and the
domain gateway process does not have a suitable
decryption key, the gateway process rejects the
message. (See Compatibility/Interaction with
Data-dependent Routing for clarification.)

If the encrypted message is destined for a process
running Oracle Tuxedo pre-release 7.1 (6.5 or earlier)
software, the domain gateway process rejects the
message. (See Interoperating with Pre-Release 7.1
Software and Interoperability for Public Key Security
for clarification.)

Outbound message Does not have encryption
envelope or digital signature

If the domain gateway process is running within a
domain, machine, or group requiring encryption, the
gateway process rejects the message. If a service
advertised by the domain gateway requires encryption,
the gateway process rejects the message. (See Setting
Encryption Policy for clarification.)

If the domain gateway does not require encryption, the
gateway process accepts the message and forwards it
over the network.

Table 1-13 Operation of Release 7.1 or Later Domain Gateway (GWTDOMAIN) Processes (Continued)

Message Type Condition Resulting Operation
Using Security in ATMI Applications 1-65

Compatibility/Interaction with Other Vendors’ Gateways
A domain gateway (GWTDOMAIN) process connecting a release 7.1 or later ATMI application to
another vendor’s gateway process operates on outbound message buffers as follows:

1. Decrypts encrypted messages.

2. Verifies digital signatures (if any) and then removes digital signatures.

3. Transmits messages in plaintext format over the network to the vendor’s gateway process.

In addition, the domain gateway process enforces the administrative system policies regarding
encryption and digital signatures for the ATMI application. As an example, if encryption and/or
digital signatures are required at the domain level for the ATMI application, the local domain
gateway process rejects any message coming from the other vendor’s gateway process.

Outbound message Has digital signature but is
not encrypted

The domain gateway process verifies the digital
signature and forwards the message with digital
signature attached over the network.

If the message is destined for a process running Oracle
Tuxedo pre-release 7.1 software and assuming
interoperability with Oracle Tuxedo pre-release 7.1
software is allowed, the domain gateway process
verifies and then removes the digital signature before
forwarding the message over the network. (See
Interoperating with Pre-Release 7.1 Software and
Interoperability for Public Key Security for
clarification.)

Outbound message Does not have digital
signature and is not
encrypted

If the domain gateway process is running within a
domain, machine, or group requiring digital signatures,
the gateway process rejects the message. If a service
advertised by the domain gateway requires digital
signatures, the gateway process rejects the message.
(See Setting Digital Signature Policy for clarification.)

If the domain gateway does not require digital
signatures, the gateway process accepts the message
and forwards it over the network.

Table 1-13 Operation of Release 7.1 or Later Domain Gateway (GWTDOMAIN) Processes (Continued)

Message Type Condition Resulting Operation
1-66 Using Security in ATMI Applications

Denia l -o f -Se rv ice (DoS) Defense
See Also
Security Interoperability

Mandating Interoperability Policy

Setting Digital Signature Policy

Setting Encryption Policy

Denial-of-Service (DoS) Defense
With more distributed multi-domain Tuxedo applications extending their reach to public
networks and less secure environments, the Tuxedo domain gateway is required to better defend
against potential threats. These environments may contain insecure networks and untrusted
participants, who can initiate or propagate malicious attacks such as Denial-of-Service (DoS)
attacks.

The Tuxedo TDomain gateway (GWTDOMAIN) uses the following features to defend against
DoS attacks.

Limited/Restricted Connection Numbers

Message Sanity Check

Message Authentication Code (MAC) Usage

Limited/Restricted Connection Numbers
GWTDOMAIN is a daemon server that waits on a well-known TCP port to accept incoming
connection requests. This opens the vulnerability to connection flood attack, a type of DoS attack
where the attacker continuously tries to establish many connections with GWTDOMAIN at the
same timeusing particular tools (for example, a port scanning program). This causes the domain
gateway to waste computing power (time, memory, and so on) to accept the connection requests
and allocate resources for each connection.

By limiting the number of connections, GWTDOMAIN can avoid this problem. For more
GWTDOMAIN information, see GWTDOMAIN(5).

Setting Up Connection Limitations/Restrictions
The Limited/Restricted Connection Numbers feature requires modification of the *SERVERS
section in the UBBCONFIG file.
Using Security in ATMI Applications 1-67

../rf5/rf5.html

UBBCONFIG File
The CLOPT used to specify the parameter for GWTDOMAIN is "-x" using the following syntax:
-x limit[:{[duration][:period]}]. A colon (:) is used to separate each option.

Notes: The colon (:) can only be used between two options. For example, configurations like
":duration" or "limit::" are invalid.

The default value(s) for the duration and period options are used if they are not
specified.

Please be aware that the timing is not exact for performance reason. There may be a
one-second difference.

If the number of current active connections plus the number of closed connections in a specified
previous period is greater than the limit, GWTDOMAIN is suspended for a duration specified in
seconds.

Note: The number of current active connections includes both active incoming connections and
active outgoing connections. The number of closed connections in a previous period
includes both closed incoming connections and closed outgoing connections. However,
when GWTDOMAIN is suspended, none of the closed connections are counted.

limit, duration, and period are defined as follows:

limit

The maximum number of connections. The minimum limit value is 0, and the maximum
value is 2,147,483,647.

When the limit is reached (or exceeded) and there is an incoming request, GWTDOMAIN
is suspended for the given duration. At the same time, the current incoming request which
triggers the suspending is not accepted. Polling is resumed after duration has elapsed.

Setting the limit to 0 prohibits the domain gateway from accepting any incoming
connection requests. In other words, this is an "OUTGOING_ONLY" connection policy.

duration

The duration in seconds to suspend polling for incoming connection when limit is
reached. The default value is (SCANUNIT * SANITYSCAN) seconds. The minimum
duration value is 5, and the maximum value is 65,535.

period
1-68 Using Security in ATMI Applications

Denia l -o f -Se rv ice (DoS) Defense
The time interval (in seconds) proceeding GWTDOMAIN check point to count the closed
connections in the past. When not specified, the default value is the same as duration.
The minimum period value is 0, and the maximum value is 65,535.

If period is specified as 0, the number of closed connections in a prior period will always
be 0, limit only counts active connections.

Examples
Listing 1-1 shows an example where the GWTDOMAIN limit is set to 512 concurrent socket
connections. When the 512 limit is reached and there is an incoming request, GWTDOMAIN
will stop polling and accepting new incoming connection requests for a duration of 300 seconds
(or, 5 minutes). Since period is specified as 0, only the active connections are counted.

Listing 1-1 UBBCONFIG File Example 1

UBBCONFIG
...
*SERVERS
GWTDOMAIN SRVGRP=GWGRP1 SRVID=2 CLOPT= “-A -- -x 512:300:0”

Listing 1-2 shows an example where the GWTDOMAIN limit is set to 200 concurrent socket
connections. When the 200 limit is reached, (for example:

there are100 outgoing connections

50 incoming connections,

in the passed 60 seconds 50 connections were closed (including outgoing connections and
incoming connections))

a current incoming connection is requested

and since the duration value is not specified, GWTDOMAIN will stop polling and accepting
new incoming connection requests for the duration default value SCANUNIT *
SANITYSCAN seconds.

Note: The current incoming connection that triggered the suspension is also not accepted, and
is closed at the end of the suspended duration.
Using Security in ATMI Applications 1-69

Listing 1-2 UBBCONFIG File Example 2

UBBCONFIG
...
*SERVERS
GWTDOMAIN SRVGRP=GWGRP1 SRVID=2 CLOPT= “-A -- -x 200::60”

Messages
The following conditions will post messages to USERLOG:

A new connection request arrives that reaches the preset number of connections limit:

<LIBGW_CAT 5359> "WARN: The number of connections for <ldom-name>
exceeds limit <%d>, start to suspend for <%d> seconds"

GWTDOMAIN resumes checking for new incoming connection request:
<LIBGW_CAT 5360> "INFO: Resume accepting connection request"

Note: These two messages can be controlled using the "throttle message" mechanism to
avoid the potential of flooding the USERLOG.

If limit is specified as 0, when GWTDOMAIN starts up:

<LIBGW_CAT 5361> "INFO: The connection limit for <ldom-name> is set to
0. No incoming connection request will be accepted."

Message Sanity Check
The sanity check of message is strengthened with this feature, to protect GWTDOMAIN from
crash when under attack. This feature is deployed automatically after installed, no configuration
work needed.

Message Authentication Code (MAC) Usage
By associating the message authentication code (MAC) with messages, a Tuxedo domain
gateway can validate and authenticate them. With MAC, the domain gateway can defend against
various types of DoS attacks (for example, message tampering, message forging, and message
replay attack).
1-70 Using Security in ATMI Applications

Denia l -o f -Se rv ice (DoS) Defense
This feature can only take effect when LLE and/or domain SECURITY is configured. MAC
works after connection is established. When a MAC message from a remote domain gateway fails
validation and authentication, the corresponding connection is dropped. All pending messages
are also dropped, and all on-going service requests fail.

GWTDOMAIN determines whether MAC is turned on for the session during the session
negotiation phase. MAC can only be enabled when either LLE and/or SECURITY is supported
and activated for the session.

Note: SSL does not support MAC usage.

It is not necessary to turn on the SECURITY feature to enable MAC; however, it is recommended
since SECURITY can be used to defend against the “man-in-the-middle” attack.

Performance Impact
When MAC is turned on, it may cause degradation on the throughput and response time for
requests across domains.

Setting up Message Authentication Code (MAC) Usage
There are two options that you configure the MAC feature. You can use DMCONFIG file
configuration, or MIB configuration.

DMCONFIG File Configuration
This feature can be configured in DM_TDOMAIN section of DMCONFIG file with two new
keywords, MAC and MACLEVEL. MAC is used to toggle the MAC feature for a session;
MACLEVEL is used to specify the MAC level.

Note: A large number MACLEVEL means the stronger algorithm from cryptographic point of
view, but will introduce more performance degradation.

Table 1-14 DMCONFIG File Keywords

Keyword Option Definition

MAC OFF Turn off feature. This is the default
value.
Using Security in ATMI Applications 1-71

Listing 1-3 shows an example DMCONFIG configuration.

Listing 1-3 DMCONFIG File Configuration

DMCONFIG
...
*DM_TDOMAIN
“RDOM” NWADDR=”//RHOST:RPORT”
 MAC=”ON”
 MACLEVEL=1

ON Turn on feature. The established
session MAC support depends on the
negotiation result between the two
domain gateways.

MANDATORY Turn on feature. The session cannot
be setup if:
• the remote domain does not

support or disable the MAC
feature, or

• neither LLE nor domain
SECURITY is available.

MACLEVEL 0 Only protects the message header
with MAC. This is the default value

1 Protects the entire message with
MAC using MD5-based algorithm

2 Protects the entire message with
MAC using SHA1-based algorithm.

3 Protects the entire message with
MAC, using SHA256-based
algorithm.

Table 1-14 DMCONFIG File Keywords
1-72 Using Security in ATMI Applications

Denia l -o f -Se rv ice (DoS) Defense
MIB Configuration
Dynamic setting of MAC via MIB does not have any impact on existing domain sessions. It only
takes effect for new connections.

Two new attributes are added to support MIB interface in the T_DM_TDOMAIN class definition
attribute table: TA_DMMAC and TA_DMMACLEVEL.

TA_DMMAC="{OFF|ON|MANDATORY}"
Relevant to remote domain access points only. Specifies whether to activate MAC feature
when connecting to the remote domain. Supported values are "OFF", "ON",
"MANDATORY".

"OFF"
Specifies the connection to a domain gateway does not use the MAC feature.

"ON"
Specifies the connection to a domain gateway that uses the MAC feature.

"MANDATORY"
Specifies the connection to a domain gateway must use the MAC feature,
otherwise a successful connection cannot be established.

TA_DMMACLEVEL="{0|1|2|3}"
Relevant to remote domain access points only. Specifies the manner when protecting the
whole message with MAC. "0" specifies that only the message header is protected by
MAC. "1", "2", and "3" specify that the entire message is protected by MAC via an
algorithm based on MD5, SHA1 and SHA256.

Listing 1-4 and Listing 16 show examples of how to retrieve and update MAC attributes using
ud32 respectively.

Table 1-15 DM_MIB(5): T_DM_TDOMAIN Class Definition Attribute Table

Attribute Type Permissions Values Default

TA_DMMAC string rw------- string
“{OFF|ON|MANDATORY}
”

“OFF”

TA_DMMACLEVEL string rw------- string

"{0|1|2|3}"

“0”
Using Security in ATMI Applications 1-73

Listing 1-4 Sample Retrieve MAC Attribute Script

SRVCNM .TMIB
TA_OPERATION GET
TA_CLASS T_DM_TDOMAIN
TA_DMACCESSPOINT RDOM
TA_DMNWADDR //host:port

Listing 16 Sample Update MAC Attribute Script

SRVCNM .TMIB
TA_OPERATION SET
TA_CLASS T_DM_TDOMAIN
TA_DMACCESSPOINT RDOM
TA_DMNWADDR //host:port
TA_DMLACCESSPOINT LDOM
TA_DMMAC MANDATORY
TA_DMMACLEVEL 2

MAC Negotiation
Suppose there are two domains: DOM1 and DOM2. When DOM1 (initiator) establishes a session
with DOM2 (acceptor), the MAC negotiation result is (1) MAC = ON; and (2) MACLEVEL = 2.

The first column from each table contains the configuration parameter for DOM2 in the
DM_TDOMAIN section of the DOM1 DMCONFIG file. The header row holds the configuration
parameter for DOM1 in the DM_TDOMAIN section of the DOM2 DMCONFIG file.

An "ERROR" result in Table 4 means that the connection cannot be established. When MAC
negotiation result is ON, the MACLEVEL for the entire message is determined as shown in Table
5.

When MAC is turned on, the MACLEVEL in use is set to the higher number, or max (m1,m2)
for safety purpose. It must be supported by both endpoints (that is, not greater than min
(Max1,Max2)). In short, the negotiated MACLEVEL must satisfy following relationship:
max(m1, m2)<=negotiated MACLEVEL<=min(Max1, Max2), otherwise the connection is closed
with one ERROR message logged in USERLOG.
1-74 Using Security in ATMI Applications

Denia l -o f -Se rv ice (DoS) Defense
Messages
The following messages are posted to the USERLOG:

INFO Messages

The following INFO messages are printed after agreement about MAC is made to denote MAC
feature for one session:

MAC is not supported for the session:
<LIBGWT 1686> "INFO: MAC is not supported for session (<ldom-name>,
<rdom-name>"

Note: This message will only be printed in the domain with MAC set to "ON".

MAC is turned on for the session:

<LIBGWT 1687> "INFO: MAC is turned on for session (<ldom-name>,
<rdom-name>) and effective MACLEVEL is <%d>"

ERROR Messages

The following error messages appear during session negotiation and MAC validation phase. The
connection is dropped when these messages are printed:

MAC is mandatory, but MAC is not supported for the session when negotiation:

<LIBGWT 1681> "ERROR: MAC is MANDATORY but remote domain <rdom-name>
does not support this feature"

MAC is mandatory but neither LLE nor SECURITY is supported when negotiation:

<LIBGWT 1682> "ERROR: MAC is MANDATORY but neither LLE nor SECURITY is
supported for connection of (<ldom-name>, <rdom-name>)"

MAC is mandatory in the remote domain but MAC is not supported in local domain:

<LIBGWT 1683> "ERROR: MAC is MANDATORY in remote domain <rdom-name>
but not supported in local domain <ldom-name>"

MAC negotiation fails to make an agreement on MACLEVEL:

<LIBGWT 1684> "ERROR: MAC failed to make an agreement on MACLEVEL
(<ldom_name> is <%d>..<%d>, <rdom-name> is <%d>..<%d>)"

Note: The four corresponding parameters for "%d" placeholder in this message are m1,
Max1, m2, and Max2.

MAC fails validation and authentication:
Using Security in ATMI Applications 1-75

<LIBGWT 1685> "ERROR: Message from <rdom-name> has invalid MAC"

Password Pair Protection
Password pair protection is deployed automatically after installation; configuration is not
required. It improves the GWTDOMAIN security mechanism and removes the previous security
restriction that did not allow dual password pairs with the same remote password.

Password pair protection is funtional only when supported by both local and remote domains. If
it is not supported by both local and remote domains, it does not affect existing behavior.
1-76 Using Security in ATMI Applications

