Oracle
Primavera Cloud
Expression Language Guide

April 2024

Oracle Primavera Cloud Expression Language Guide
Copyright © 2014, 2024, Oracle and/or its affiliates.

MasterFormat is a trademark of The Construction Specifications Institute, registered in the U.S.
and other countries.

Primary Author: Oracle Corporation

Contents

ADOUL thiS GUITE ...ueeeeecererrrissssssmmerreresssssssssmnerer e s ssssssssmmnreresssssssssmmnssneessanssssnnnnsenessanssssnnnnnnnssssnnsssnnnes 5
Primavera Cloud EXpression Language OVEIVIEW........ccueueceaerrrraarerirearersasameesssssmeesssssmsesssssnmeessssnns 5
TS ET T = o ¢ LU= T 5
Working with the FOrmMuUIa EQITOrco it e e s emne s 8
Writing a Primavera Cloud Expression Language SCript. .. ccieeescceeee s scere e sseneee s seneeeseanes 9
Date and Duration CalCUIationcciceieiie et s e s e e e e 10
Y Y= TSN =R o) LU = 11
IRCY =D E YT (=Y =T =Y oo = 17
Supported Data Types, Operators, and StatemeENtS ... 17
10T o] o) g (=T ML 1] 1 0o T L= R 27
LU 1T 1Y, =1 T o PR 27
[T 10T o] L= 1, 1= Vo Yo £ 35
LN =T 1V, =11 T o [S 38
D= L =01V =1 1 0T 42
Y= 1 A7 =11 Lo Yo 46
DUIAtiON METNOUSeeiieieiieetee et s e s s e e s e e e e e s ne e e s s e e s nee s saree s 51
Object Naming CONVENTIONSuiiiiciiiee e s cceeee et e e e e e s s e e e e se e e e s eene e e e senseeeseanseeesenseeesensseeessnns 54

About this Guide

This guide describes how to use Primavera Cloud Expression Language, a scripting language
within Primavera Cloud. Primavera Cloud Expression Language provides a variety methods you
can use to generate data for configured fields and measures based on the contents of objects
and fields in Primavera Cloud. Application administrators and other users responsible for
configuring measures and configured fields should read this guide.

Primavera Cloud Expression Language Overview

Primavera Cloud Expression Language is a scripting language used to define formulas in Oracle
Primavera Cloud. Formulas are scripts that can be run within the application to compute and
return values. You can write formulas using Primavera Cloud Expression Language to set values
for measures and configured fields based on other data within the application. For example, you
can define a formula type configured field that uses a Primavera Cloud Expression Language
script to calculate and return a portfolio's Net Present Value based on its current approved
budget.

The practical set of language features in Primavera Cloud Expression Language ensure custom
fields and measures remain flexible. For example, Primavera Cloud Expression Language
provides semantic and syntactic constructs that support the following:

» Mathematical Operations

» Variable Assignment

» Date and Duration Calculation
» Field Value Referencing

The following sections introduce Primavera Cloud Expression Language and describe how to
begin writing measure and configured field formulas to address your business needs. For
additional information on the Primavera Cloud Expression Language, including supported types,
methods, and operators, see the Language Reference (on page 17).

Defining Formulas

Use Primavera Cloud Expression Language to define Oracle Primavera Cloud configured field or
measure formulas. Formulas are a sequence of Primavera Cloud Expression Language
statements and expressions, called scripts, that programmatically determine the values of
configured fields and portfolio and strategy measures. Only formulas containing well-formed
Primavera Cloud Expression Language scripts are valid. A Primavera Cloud Expression
Language script is well-formed if it conforms to Primavera Cloud Expression Language syntax
rules. To learn more about Primavera Cloud Expression Language syntax, see the Language
Reference (on page 17).

The following objects support formula based measures or configured fields:
» Activity

Expression Language Guide

Budget

Budget Changes
Budget Details

Budget Transfers
Budget Details
Changes

Change Estimates
Change Order
Commitment

Contract

Custom Logs

Fund

Payment Application
Portfolio

Potential Change Order
Program Budget
Program Budget Changes
Program Budget Details
Program Budget Transfers
Project

Project Actuals

Project Cost Sheet
Resource Assignment
RFI

Risk

Scope Assignment
Scope Item

Strategy

Submittal

Tasks

WBS

Work Package
Workspace Cost Sheet

VWV ¥V VvV VvV V¥V VvV VvV VvV VvV ¥V VvV VvV ¥V VvV VvV ¥V VvV VvV VvV VvV VvV VvV VvV VvV VvV vV VvV VvV vV vV vV v v

Example Primavera Cloud Expression Language Script Formula

The following example contains a formula that returns a string indicating whether project delays
are likely based on a project's current Percent Complete value and the number of days until the
project's Planned Finish Date.

Primavera Cloud Expression Language Overview

def currentDate = new Date();

def weekFromFinish = minusDays(object.Project planEndDate, 7);

if(object.Project percentComplete < 95 && currentDate >= weekFromFinish){
return "Project delay likely";

} else {

return "No delays anticipated.";
¥

This example showcases the basic structure of a formula defined using Primavera Cloud
Expression Language. The first and second lines demonstrates variable assignment:

def currentDate = new Date();
def weekFromFinish = minusDays(object.Project_planEndDate, 7);

Variables are declared using the def keyword and are assigned values using the = operator.

Note: Primavera Cloud Expression Language variables must maintain
the same type as the value they are assigned in their initial declaration
and can only be reassigned values of the same type. If you attempt to
reassign a declared variable a value of a different type, the script will fail
to validate. For more information, see the Language Reference (on
page 17).

Lines three to seven of the script illustrate an conditional 1 F statement written in Primavera
Cloud Expression Language:

if(object_Project _percentComplete < 95 && currentDate >= weekFromFinish){
return "Project delay likely";

} else {
return "No delays anticipated.";

¥

The conditional statement is organized in blocks indicated by opening and closing brackets. As
in many other programming languages, if the expression contained in the 1 f statement
evaluates to true, the first block of the conditional is evaluated. If the expression evaluates to
false, the else block is evaluated.

In general, Primavera Cloud Expression Language closely follows many of the same syntactic
rules and conventions as the Java programming language. To learn more about the types,
operators, and methods included in Primavera Cloud Expression Language, see the Language
Reference (on page 17).

Expression Language Guide

Working with the Formula Editor

Primavera Cloud includes a formula editor designed to help you create valid Primavera Cloud
Expression Language scripts. The formula editor provides a field selector, script validation, and
operator buttons to help ensure your scripts follow Primavera Cloud Expression Language
syntax rules. You can use the formula editor when defining configured fields or measures that
support formulas.

Table of Screen Highlights

Iltem Description

1 |Aggregation Type: Provides a template for formulas that use Sum, Min, Max,
Count, and Average methods. To use a template, select the Aggregation Type,
and then select Insert.
For example, the Sum template inserts the following code snippet:
sum(< Field >,< Filter >)
Replace <Field> with the name of the field to be summed. Optionally, replace

<Filter> with a n expression that returns a Boolean value to filter results. Add
any additional filter requirements using the provided mathematical operators.

Primavera Cloud Expression Language Overview

Iltem Description

2 Field: Provides all the fields that can be used in formulas.
If Measure Based is selected, only existing measures display. Select
Referenced Measures in the Field list to view measures that are currently
assigned to Portfolios or Strategies.
Select a field name, and select Insert Field. The proper formatting for the field
displays.
If you are defining a configured field formula, after selecting a field, insert a "."

after the field name and press Ctrl + Spacebar to view a list of available field
values. Select a value from the Field Values list to enter it into your formula.

For example, enter object.Activity_activityStatus. and press Ctrl + Spacebar
to view a list of Activity Status field values.

3 |Mathematical Symbols: Provides access to Primavera Cloud Expression
Language supported operators. Use operators in your formulas to calculate
values and form complex expressions.

4 |Validate Formula: Verifies the formula works and is well formed. The formula
editor indicates syntax errors upon validation. Formulas are also validated
when you save configured field or measure settings.

For more information on the formula editor, refer to the Oracle Primavera Cloud Help.

Writing a Primavera Cloud Expression Language Script

Write Primavera Cloud Expression Language scripts to dynamically determine the values of
configured fields and measures that support formulas. A formula-based field defaults to a
read-only calculated value. It displays the value resulting from the evaluation of the Primavera
Cloud Expression Language script that defines the formula. The expected return type of the
formula field script must be compatible with the configured field or measure type (Number, Date,
or Text).

The following example shows how to calculate the Net Present Value (NPV) of a portfolio using
a formula.

To define a formula that calculates Net Present Value:

1) In the object selector, select a workspace.

2) Inthe sidebar, select # Summary & Settings.
3) Onthe Summary & Settings menu, select Defaults & Options, and then select Portfolio.
4) Onthe Portfolio page, select the Configured Fields tab.

5) Inthe table, select + Add.
a. Inthe Column Label column, enter Net Present Value.
b. Inthe View Column Name column, enter NPV.
c. Inthe Data Type column, select Number.
d. Inthe Type column, select Formula.

Expression Language Guide

6) Inthe Formula detail window, in the Formula Editor, enter the following:

//Assume a rate of return of 10%

//Calculate NPV for a 2 year period.

def npv = 0;

def 1 = 0.10;

def year = 0;

iT (object.Portfolio_currentApprovedBudget <= 0) {
return O;

} else {

npv = npv + ((-1 * object.Portfolio_currentApprovedBudget) /
Math.pow((1 + i), year));

year = year + 1;

npv = npv + ((-1 * object.Portfolio_currentApprovedBudget) /
Math.pow((1 + i), year));

year = year + 1;

npv = npv + ((-1 * object.Portfolio_currentApprovedBudget) /
Math._pow((1 + 1), year));

}

return npv;

Note: Because Primavera Cloud Expression Language does not support
loops or function definition, you must write calculations that require
recursion or iteration in an imperative style as shown in the previous
example.

Note: When adding a null check to a formula, you must specify the null
check at the beginning of the if condition statement.

7) Inthe Formula detail window, select Validate Formula.
8) Inthe Formula Validation dialog box, select OK.
9) Select Save.

Date and Duration Calculation

Primavera Cloud Expression Language provides several methods for date calculations. Use
date and duration methods when specifying fields or measures that modify data from date fields
such as Project Planned Start or Project Planned Finish. For example, you may want to
define a configured field for the Project object that returns the date six months after the current
project's Planned Start Date. To do so, use the plusMonths date method as shown in the
following example:

return plusMonths(object._Project_planStartDate, 6);

You can also use Primavera Cloud Expression Language date methods to perform calculations
and set field values based on the contents of multiple date fields. Complete the following task to
practice using Primavera Cloud Expression Language date methods.

10

Primavera Cloud Expression Language Overview

To define a configured field that returns a message based on a project's Planned End Date and
Percent Complete:

1) Inthe object selector, select a workspace.

2) Inthe sidebar, select # Summary & Settings.
3) Onthe Summary & Settings menu, select Defaults & Options, and then select Project.
4) On the Projects page, select the Configured Fields tab.

5) In the table, select + Add:
a. Inthe Column Label column, enter Anticipated Delays.
b. Inthe View Column Name column, enter AD.
c. Inthe Data Type column, select Text.
d. Inthe Type column, select Formula.
6) Inthe Formula detail window, in the Formula Editor, enter the following:

def currentDate = new Date();
def weekFromFinish = minusDays(object.Project_planEndDate, 7);
if(object_Project _percentComplete < 95 && currentDate >= weekFromFinish){
return "Project delay likely";
} else {
return "No delays anticipated.";
}

7) Inthe Formula detail window, select Validate Formula.
8) Inthe Formula Validation dialog box, select OK.
9) Select Save.

To learn more about Primavera Cloud Expression Language date and duration methods, see
Date Methods (on page 42) and Duration Methods (on page 51).

Measures Formulas

You can use Primavera Cloud Expression Language to define custom portfolio and strategy
measures that enable you to track your organization's performance metrics. Primavera Cloud
Expression Language supports the creation of two measure types, Field Based or Measure
Based.

11

Expression Language Guide

Field Based Measures

Field based measures aggregate object field values to set measure actuals and targets.
Primavera Cloud Expression Language provides aggregation types that specify how a measure
is calculated. For example, the aggregation type Sum calculates the result of adding the values
of its arguments. Aggregation methods accept two types of arguments: fields and an optional
filter. Field arguments determine what field values will be aggregated. The filter argument limits
the set of aggregated fields to those matching the conditions specified by the filter. For example,
the expression count(object.Project projectCode, object.Project status ==
"ACTIVE") returns the number of projects in the application with a current status of active.

You can also use Primavera Cloud Expression Language operators to combine aggregation
types or pass complex field values as arguments.

The following examples illustrate a number of expressions you can use when defining measures.
Doubles are valid outside of parenthesis as long as one of the following humeric operators is
used: +, -, *, /.

12

Note: Text surrounded in <> indicates a variable. Variable values must
be replaced by valid aggregation methods, measures, or field.

<operator> indicates any valid Primavera Cloud Expression Language

numeric operator, such as +, -, *, /.

<double> indicates a value of the Primavera Cloud Expression

Language data type Double.

Expression Format

Example Expression

<aggregationType>(<fieldA>,
<filter>)

count(object.Project_projectCod
e, object_Project_status ==
"ACTIVE");

<aggregationType>(<UDFField>,
<filter>)

count(object.ProjectCPUDF_APPRO
VALRATING,
object.ProjectCPUDF_APPROVALRAT
ING == 100);

<aggregationType>(<field>
<operator> <Double>)

sum(object.Project_atCompletion
Cost + 10000);

<aggregationType>(<fieldA>
<operator> <fieldB>)

max(object.Project currentAppro
vedBudgetBase -
object.Project_currentApprovedB
udgetBaseDistributed);

<aggregationType>((<FieldA>
<operator> <fieldB>) * <Double>

average((object.Project_estToCo
mpleteCost +
object.Project_currentApprovedB
udgetBaseUndistributed) * 100)

Primavera Cloud Expression Language Overview

Expression Format

Example Expression

<aggregationType>(<fieldA>
<operator> <Double> <operator>
<fieldB> <operator> <Double>)

max(object.Project_costVariance
* 100 +
object.Project_scheduleVariance
* 100);

<aggregationType>(<fieldA>)
<operator> <Double>

max(object.Project_percentCompl
ete) * 100

<aggregationType>(<fieldA>
<operator> <fieldB>) <operator>
<Double>

average(object.Project_proposed
BudgetBase -
object.Project_plannedBudget) *
100

<aggregationType>((<FieldA>
<operator> <fieldB>) <operator>
<Double>) <operator> <Double>

min((object.Project_plannedBudg
et +
object.Project_proposedBudgetBa

se) * 100) / 2

Filters Using Numeric Fields and Numbers

Expression Format

Example Expression

<aggregationType>(<fieldA>,
<fieldB> > <Double>)

min(object._Project _projectCode,
object.Project_netPresentValue >
100000);

<aggregationType>(<fieldA>,
<fieldB> > <Double> || <fieldA> >
<Double>)

max(object.Project_plannedBudge
t1

object.Project currentApprovedB
udgetBaseUndistributed > 100000
M
object.ProjectCPUDF_APPROVALRAT
ING > 10000);

<aggregationType>(<fieldA>,
(<fieldB> + <fFieldC>) > <Double>)

average(object.Project currentA
pprovedBudgetBase,
(object._Project_plannedBudget +
object.Project_proposedBudget) >
100000);

<aggregationType>(<fieldA>,
(<fieldB> + <fieldC>) > <fieldD>)

count(object.Project_projectCod
e,
(object_Project_currentApproved
BudgetBaseDistributed +
object.Project estToCompleteCos
t) >

object.Project _currentApprovedB
udgetBase);

13

Expression Language Guide

Expression Format

Example Expression

<aggregationType>(<fieldA>,
(<fieldB> + <fieldC>) > <fieldD>
* <Double>)

average(object.Project netPrese
ntvalue,
(object.ProjectforecastCost +
object.Project_estToCompleteCos
t) >
object.Project_currentApprovedB
udgetBase * 100);

<aggregationType>(<fieldA>,
(<fieldB> + <fieldC>) > (<fieldD>
* <fieldE>))

sum(object.Project_currentAppro
vedBudgetBase,
(object.Project_plannedBudget +
object.Project _estToCompleteCos
t) >

(object.Project _atCompletionCos
t * object.Project_spendCost))

Filters Using Text Fields

Expression Format

Example Expression

<aggregationType>(<fieldA>,
<fieldB> "Stringl” && <FieldC>
I= "String2”)

count(object._Project_projectCod
e, object.Project_status
"ACTIVE" &&
object.Project projectName !=
"Barr Harbor Office
Refurbishment™);

Filters Using Date Fields

Expression Format

Example Expression

<aggregationType>(<fieldA>,
<dateFieldA> > <dateFieldB>)

count(object.Project projectCod
e1

object.Project actualStartDate >
object.Project planStartDate)

<aggregationType>(<fieldA>,
<dateField> > Date)

count(object.Project projectCod
ey

object.Project _actualStartDate >
Date.parse("dd/mm/yyyy",
"02/06/2017%))

14

Primavera Cloud Expression Language Overview

Expression Format Example Expression

<aggregationType>(<fieldA>, count(object._Project_projectCod
<dateFieldA> == Date || e, object._Project_planFinishDate
<dateFieldB> >= Date) == Date.parse("dd-MMM-yyyy~,
"02-JUN-2017%) ||
object.Project_actualFinishDate
>= Date.parse("dd/MMM/yyyy ",
"02/JUN/20177))

Measure Based Measures

A measure based measure leverages existing measures to define actual and target values for a
custom measure. Primavera Cloud Expression Language provides get methods that enable you
to use measure data from various objects within the application. Get methods have the following

general method signature:
<object>_get("'<workspaceName>"",

"<objectName>") . "<measure>_<measureName>"

Note: Get methods only accept string literals as arguments. If you pass
a variable as an argument to a get method, your Primavera Cloud
Expression Language script will fail to validate.

Regular Measure or a Measure-Based Measure from the Current Workspace

Expression Format

Example Expression

object. "PortfolioMeasure_<Measu
re Name>*

object. "PortfolioMeasure_<Measu
re Name> _Target”™ or

object. "PortfolioMeasure_<Measu
re Name> _Actual*

object."PortfolioMeasure_Projec
t Delays”

object. "PortfolioMeasure Projec
t Delays.Target”

object. "PortfolioMeasure_Projec
t Delays.Actual”

object. "PortfolioMeasure_<Measu
re Name>" <operator> <Double>

object. "PortfolioMeasure Projec
t Delays®™ * 100

object. "PortfolioMeasure_<Measu
re Name>" <operator>

object. "PortfolioMeasure_<Measu
re Name>"

object. "PortfolioMeasure Projec
t Delays” +

object. "PortfolioMeasure_ Additi
onal Expenses-®

15

Expression Language Guide

Workspace Could be the Current Workspace and Child Workspaces

Expression Format

Example Expression

<portfolioMeasure>

Portfolios.get(''JMO0O1","" Active
Projects™) . "PortfolioMeasure_Pr
oject Delays”

<strategyMeasure>

Strategies.get("'JMO01",""Maximiz
e NPV"™)."StrategyMeasure_NPV
Aggregate”

<portfolioMeasureA> <operator>
<portfolioMeasureB>

Portfolios.get("'JM001™,""Active
Projects™™) . "PortfolioMeasure_Un
der Budget® -
Portfolios.get("'’KM002",""Planned
Projects'™)."PortfolioMeasure_In
sufficient Funds*

<strategyMeasureA> <operator>
<strategyMeasureB>

Strategies.get(""'IJMO01" ,""Maximiz
e NPV"™)."StrategyMeasure_NPV
Aggregate” +
Strategies.get("'KM0O02" ,""Maximiz
e ROI')."StrategyMeasure_ROI
Aggregate”

Combination of Referenced Measures and a Simple Measure-Based Measure from the

Current Workspace

Expression Format

Example Expression

(<portfolioMeasureA> <operator>
<portfolioMeasureB>) <operator>
<measureA>

(Portfolios.get("'IJM001™,"Active
Projects™™) . "PortfolioMeasure_ Ac
tive Budgets® +
Portfolios.get("'’KM002",""Planned
Projects') . "PortfolioMeasure_Pr
oposed Budgets®) /

object. "PortfolioMeasure_Planne
d Budgets-

16

Using Weights in Calculations

Language Reference

Expression Format

Example Expression

<Double> <operator>
<strategyMeasureA> <operator>
<Double> <operator>
<strategyMeasureB> <operator>
<Double> <operator>
<strategyMeasureC>

0.50 *
Strategies.get("'IJMO01",""Maximiz
e NPV').*StrategyMeasure_ NPV
Aggregate™ + 0.25 *
Strategies.get("'KMOO2" ,""Maximiz
e ROI')."StrategyMeasure_ ROI
Aggregate® + 0.25 *
Strategies.get(""IMOO1", "Low
Budget'). "StrategyMeasure_Budge
t Aggregate”

<Double> <operator>
(<portfolioMeasureA> <operator>
<portfolioMeasureB>) <operator>
<Double> <operator>
<portfolioMeasureC>

(Portfolios.get("'IJM001™,"Active
Projects™) . "PortfolioMeasure_Ac
tive Budgets® +
Portfolios.get("'KMOO2",""Planned
Projects™) . "PortfolioMeasure_PlI
anned Budgets®) * 0.50 +
Portfolios.get("'IMOO1"," Inactiv
e
Projects™™) . "PortfolioMeasure Pr
oposed Budgets®™ * 0.50

Language Reference

The following sections provide detailed information on Primavera Cloud Expression Language
syntax and supported features. For more information on using Primavera Cloud Expression
Language, see Primavera Cloud Expression Language Overview (on page 5).

Supported Data Types, Operators, and Statements

Primavera Cloud Expression Language is a lightweight scripting language optimized for security
and performance within Oracle Primavera Cloud. Primavera Cloud Expression Language syntax
is similar to popular programming languages such as Java, and includes additional syntax for
working with data in Primavera Cloud.

Primavera Cloud Expression Language supports several data types, operators, and statements.
Refer to the sections below for more information on Primavera Cloud Expression Language
supported data types and programming constructs.

Data Types
The following table lists Primavera Cloud Expression language data types.

17

Expression Language Guide

Supported Data Types

Type Example

Boolean true

Date new Date()
Double 5.0

String "Hello World"
Operators

Primavera Cloud Expression Language provides operators for computation and comparison.
Operators can only be applied to data types they support. The following tables list Primavera

Cloud Expression Language supported operators.

Supported Numeric Operators

Use numeric operators to perform calculations on numeric data types, such as doubles.

Operator Name Description Applicable Return Data Example
Data Types Type
+ Addition Sums two Double Double 2 + 5;
Double //returns
values. 7
- Subtraction |Subtracts Double Double 5 - 3;
two Double //returns
values. 2
* Multiplication | Multiplies Double Double 2 *5;
two Double //returns
values. 10
/ Division Divides two |Double Double 10 /7 2;
Double //returns
values. 5
37 2;
//returns
1.5
% Modulo Returns the |Double Double 5% 2;
(remainder) |remainder //returns
resulting 1
from the
division of
two Doubles.

18

Language Reference

Operator Name Description Applicable Return Data Example
Data Types Type
*x Exponential |Returns the |Double Double 5 ** 2;
result of //returns
raising one 25
Double to the
power of
another.
Unary - Unary Minus |Indicatesa |Double Double -5;
negative //returns
value. -5.
-5 + 2;
//returns
-3.

Supported Logical Operators

Use logical operators to manipulate and combine Boolean values and to construct conditional

statements.

Operator

Name

Description

Applicable
Data Types

Return Data
Type

Example

OR

Returns the
result of
combining
Boolean
values using
a logical OR.
If one value
or
expression
contained in
the OR
statement
evaluates to
true, the OR
expression
returns true.

Boolean

Boolean

true ||
false;

//returns
true

19

Expression Language Guide

Operator

Name

Description

Applicable
Data Types

Return Data
Type

Example

&&

AND

Returns the
result of
combining
Boolean
values using
a logical
AND. If both
values or
expressions
in the AND
statement
evaluate to
true, the
AND
expression
returns true.

Boolean

Boolean

true &&
false;

//returns
false

NOT

Negates the
specified
Boolean
value.
Applying the
NOT
operator to
an
expression
that
evaluates to
true will
return false.

Boolean

Boolean

Itrue;

//returns
false

Supported Comparison Operators

Use comparison operators to measure values against each other. The data types of compared
values must match, otherwise the application will return an error. The result of a comparison

operation is a Boolean, true or false.

20

Language Reference

Operator

Name

Description

Applicable
Data Types

Return Data
Type

Example

Equal

Tests if two
values are
equal.

All

Boolean

1.0 ==
1.0;
//returns
true

1.0 == 2.3
//returns
false
"Hello™ ==
"Hello"
//returns
true

Does Not
Equal

Tests if two
values are
not equal.

All

Boolean

2+ 2 1=5;
//returns
true

2+ 2 1=4;
//returns
false
“"Hello" 1=
""Goodbye™
//returns
true

Greater Than

Tests if one
value is
greater than
another.

All

Boolean

50 > 100;
//returns
false

50 > 5;
//returns
true

2t o> 10"
//returns
true

"Hello" >
“"World"
//returns
false

5 > "4"
//error.
The types
of
compared
values
must
match.

21

Expression Language Guide

Operator

Name

Description

Applicable
Data Types

Return Data
Type

Example

>=

Greater Than
or Equal To

Tests if one
value is
greater than
or equal to
another.

All

Boolean

60 >= 50;
//returns
true
60 >= 70
//returns
false
60 >= 60
//returns
true

"Hello" >=
"World"
//returns
false

Less Than

Tests if one
value is less
than another.

All

Boolean

50 < 100;
//returns
true

50 < 40
//returns
false

2t o< 10"
//returns
false

"Hello" <
"World"

//returns
true

“"3/1/717" <
new Date()
//error
the types
of
compared
values
must match

22

Language Reference

Operator

Name

Description

Applicable
Data Types

Type

Return Data

Example

<=

Less Than or | Tests if one | All

Equal To

value is less
than or equal
to another.

Boolean

60 <= 50;
//returns
false

60 <=90//
returns
true

60 <= 60
//returns
true

10" <=
ll2ll
//returns
true

Supported Special Operators

Use special operators to create structure in your Primavera Cloud Expression Language code
and specify how Primavera Cloud should interpret and run your Primavera Cloud Expression
Language expressions.

Operator Name Description Applicable Data |Example
Types
+ Concatenation |Combines a String "Hello™ + ™
String with World"
another data //returns

type, yielding a
new String.
String
concatenation
is applied when
the leftmost
operand of the
+ operator is of
the data type
String. The right
operand can be
a value of any
type. When
concatenated,
Date values
may not
serialize in the
format
anticipated.

"Hello World"

"Lucky Number
"+ 7
//returns
"Lucky Number
7

"at + 1+ 2
//returns
"al2"

5 + "Hello';
//returns an
error. To
perform
concatenatio
n, the
leftmost
operand must
be a String.

23

Expression Language Guide

Operator Name Description Applicable Data |Example
Types

= Assignment Assigns a value |All def myvar =
of a supported 50;
data type to a
variable.

) Parentheses Specifies logical | All G+ 2) * 2;
grouping and //returns 14
evaluation
order.

Statements in
parentheses
have increased
precedence.

new Constructor Instantiates a Date def currDate
new instance of = new Date();
a class,
resulting in an
object of that
class.

i Comment Indicates a All //def a = 5;
single-line //because
comment. this code is
Commented commented, it
lines are not will not be
evaluated. Use evaluated.
comments to
describe and
annotate your
formula script.
Comments
extend to the
end of a line.

[**/ Multi-line Indicates an All /* Multi-line

Comment extended comments span

comment. multiple
Multi-line lines.
comments are */

not evaluated.
Multi-line
comments may
span multiple
lines.

24

Statements

Language Reference

Primavera Cloud Expression Language supports a variety of statements you can use to
determine the control flow of Primavera Cloud Expression Language code. The following tables
list Primavera Cloud Expression Language statements.

Supported Statements

Statement Description Example

def Specifies a variable. def x = "My Variable";
Variables in Primavera Cloud |def y = 2;
Expression Language are def z = new Date();
strongly typed and restricted i
to the data type of their initial |X = Y> //error, after the
assignment. Variables are |n|1_:|al declaration and
not accessible outside the ast|gnment, égan_only hqvg
scope of the code block they i:lo ?Sasfyﬁeao da::: '29 'eT';'fe
are declared in. Variables Double 9 yp
declared outside of code .
blocks or other control
structures are global and
may be accessed from
anywhere within the script.

return Specifies a value that should | return "Hello World"™ //

be returned as the result of a
script and serve as the
default value of the
configured field associated
with the formula script. The
return statement ends script
processing. If no return
statement is specified,
Primavera Cloud Expression
Language scripts
automatically return the last
statement evaluated.

script exits, the text
Hello World is returned as
the configured field value.

5 + 2; //unreachable
code--will not be
evaluated. Script
processing ends when a
return statement is
evaluated.

25

Expression Language Guide

Statement Description Example
{} (block) Specifies a sequence of def a = 8;
expressions to evaluate. {
Used to structure Primavera def b = 10:
Cloud Expression Language
scripts, establish variable ¥
scope, and improve return a + b; // error. B is
readability. not defined within scope.

Variables defined and
assigned values within a
code block are accessible
only within the code block
and other structures the
code block contains.

iflelse Code contained in an if block [1F (1 + 1 == 2) {

will only be evaluated if the //block processed if
condition specified by the if |condition is true
statement evaluates to true. " "

Code in the else block will be return “True®;
evaluated if the specified }else {

condition evaluates to false. //block processed if
condition is false

return ""Not truel';

}

Unsupported Programming Constructs

For improved efficiency and security, Primavera Cloud Expression Language does not support
the following programming constructs:

» Loops (for example: for, for each, while).

» Function or method definition.

» Arrays, hashes, or collections.

» Mixed assignment operators (for example: ++, --, +=, -=).
» String interpolation.

» Regular expressions.

Note: The application generates a validation error if your Primavera

Cloud Expression Language scripts contain unsupported data types or
other unsupported control structures.

26

Language Reference

Supported Methods

Primavera Cloud Expression Language supports a variety of methods for each of its data types,
as well as some additional Java methods. The following sections list Primavera Cloud
Expression Language supported methods for each data type. Refer to the official Java
documentation (https://docs.oracle.com/javase/8/docs/api/overview-summary.html) for
more information on each method.

String Methods
Use Primavera Cloud Expression Language supported string methods to manipulate textual
data.

Refer to the official Java documentation
(https://docs.oracle.com/javase/8/docs/api/overview-summary.html) for more information on
each method.

Notes:

= Primavera Cloud Expression Language automatically converts
Doubles to Int types when calling methods that require Int
arguments.

= Types are indicated in bold in each method signature.

String Methods

Method Signature Description Parameters Example
String.codePoin |Returns the Unicode |Int index - Index "Hello".codePoi
tAt(Int index) code point value for |value of a string ntAt(1);
the character within | character. //returns 101,
the string at the the Unicode code
index matching the point value of
Int passed as an ‘e
argument.
String.codePoin |Returns the Unicode |Int index - Index "Hello".codePoi
tBefore(int code point value for |value of a string ntBefore(1);
index) the character within |character. //returns 72,
the string at the the Unicode code
index value point value of
immediately before "H"
the Int passed as an
argument.

27

https://docs.oracle.com/javase/8/docs/api/overview-summary.html
https://docs.oracle.com/javase/8/docs/api/overview-summary.html

Expression Language Guide

Method Signature

Description

Parameters

Example

String.codePoin
tCount(int
indexStart,
indexEnd)

Int

Returns the number
of Unicode code
points within an
index range
specified by the Int
values passed as
arguments.

Int indexStart -
Value to specify the
start of an index
range. The number
of Unicode points
within the specified
range is returned by
this method.

Int indexEnd -
Value to specify the
end of an index
range.

"Hello" .codePoi
ntCount(l, 4);
//returns 3, the
number of
character in the
index range 1 to
4, namely "ell™;

28

Language Reference

Method Signature Description Parameters Example
String.compareT |Compares the String string - "Hello" .compare
o(String string) |lexicographic value |String to To("'Goodbye');

of a String to the
String value passed
as an argument.
Returns O if the
Strings are
lexicographically
equivalent. Returns
a value greater than
0 if the argument
String is
lexicographically
greater, returns a
value less than O if
the argument String
is lexicographically
lesser. Lexicographic
equivalence is based
on the order of
strings in a lexicon or
dictionary. For
example, "ant" is
lexicographically
lesser than "bat"
because ant occurs
firstin an
alphabetically
ordered lexicon.

lexicographically
compare with the
String calling the
compareTo
method.

//returns a
value greater
than 0 because
"Hello" occurs
after Goodbye"
in an ordered
dictionary.

"Hello" .compare
To(""Hello™);
//returns 0O
because ""Hello"
and "Hello" are
lexicographical
ly equivalent;
they occupy the
same position in
an ordered
lexicon or
dictionary.

"Hello" _compare
To("'hello™);
//returns a
value less than O
because ""Hello"
occurs before
"hello™ in an
ordered lexicon
or dictionary;
all capital
letter forms
precede their
lowercase
counterparts.

29

Expression Language Guide

Method Signature Description Parameters Example
String.compareT |Compares the String string - "Hello" .compare
olgnoreCase(Stri |lexicographic value |String to TolgnoreCase(*'h
ng string) of a String to the lexicographically ~ |ello™);

String value passed
as an argument and
ignores differences
in case. Returns O if
the Strings are
lexicographically
equivalent. Returns
a value greater than
0 if the argument
String is
lexicographically
greater, returns a
value less than O if
the argument String
is lexicographically
lesser.

Note: Lexicographic
equivalence is based
on the order of
strings in a lexicon or
dictionary. For
example, "ant" is
lexicographically
lesser than "bat"
because ant occurs
firstin an
alphabetically
ordered lexicon.

compare with the
String calling the
compareTolgnoreC
ase method.

//returns O.

String.contains
(String string)

Returns a Boolean
value indicating
whether the String
passed as an
argument appears
within the String
calling the contains
method.

String string -
String to find within
the String calling
the contains
method.

"Hello".contain
s("lo™);
//returns true
"Hello".contain
s("World™);
//returns fTalse

30

Language Reference

Method Signature Description Parameters Example
String.endsWith |Returns a Boolean |String string - "Hello".endsWit
(String string) |value indicating String to find at the |[h(*"'10™);

whether the String
calling the endsWith
method ends with
the String passed as
an argument.

end of the String
calling the
endsWith method.

//returns true
"Hello".endsWit
h('He'™);
//returns false

String.equalslig
noreCase(String
string)

Returns a Boolean
indicating whether
the String passed as
an argument is equal
to the String calling
the equals method
ignoring case.
Strings are
equivalent if they are
a representation of
the same sequence
of characters.

String string -
String to check
against the String
calling the
equalsignoreCase
method.

"Hello" .equalsl
gnhoreCase("'hell
0"); //returns
true

String.hashCode
O

Returns a numeric
hash code value
representing the
String calling the
hashCode method.

No method
parameters.

"Hello" .hashCod
e(); //returns
69609650

String. lastinde
XOF(String
string)

Returns the last
index value at which
the String passed as
an argument occurs
in the String calling
the lastindexOf
method.

String string -
String to find the
index of the last
occurrence of in the
String calling the
lastindexOf
method.

"Hello".lastInd
exOf('1™);
//returns 3

31

Expression Language Guide

Method Signature Description Parameters Example
String.length() |Returns the length of | No method "Hello". length(
the String calling the |parameters.); //returns 5

length method.

String.replace(
String
stringToFind,
String
stringToReplace

)

Replaces
occurrences of the
first String passed as
an argument in the
String calling the
method with the
second String
passed as an
argument.

String stringToFind
- String to find
within the String
calling the replace
method.

String
stringToReplace -
String to use to
replace the String
passed as the first
argument to the
method.

"Hello

World" .replace(
"World",
"Universe!™);
//returns "Hello
Universe!"

String.startsWi
th(String string)

Returns a Boolean
value indicating
whether the String
calling the startsWith
method starts with
the String passed as
an argument.

String string -
String to find at the
end of the String
calling the
startsWith method.

"Hello".startsw
ith('He™);
//returns true

32

Language Reference

Method Signature

Description

Parameters

Example

String.substrin
g(int index)

Returns a substring
of the String calling
the substring
method. The
resulting substring
begins with the
character stored at
the String index
location matching
the passed Int
argument and ends
with the last
character of the
String.

Int index - Index
value specifying
where to begin
extracting the
substring from the
String calling the
substring method.

"Hello" .substri
ng(2); //returns
“11o0"

String.toLowerC |Returns the result of |No method "Hello".toLower

ase() converting all of the |parameters. case();
characters of the //returns
String calling the "hello"”
toLowerCase
method to their
lowercase form.

String.toUpperC |Returns the result of |No method "Hello".toUpper

ase(Q) converting all of the | parameters. Case();
characters of the //returns
String calling the "HELLO"
toUpperCase
method to their
uppercase form.

String.trimQ) Returns the result of |No method " Hello World
removing space parameters. totrimQ);
characters that //returns "Hello
appear at the World"

beginning or the end
of the String calling
the trim method.

33

Expression Language Guide

Additional String Methods

Method Signature Description Parameters Examples

String.concat(s |Returns the String string - A "Hello™".concat

tring string) concatenation of the |value of type String | (*" World™);
String passed as an |to append to the end |//returns

argument and the
String calling this
method.

of the String calling
the method.

"Hello World"

String.equals(O
bject obj)

Returns the result of
comparing the String
calling this method
to the object passed
as an argument.
Returns true if the
Object value passed
as an argument
represents a String
equivalent to the
String calling the
method, otherwise
returns false.

Object object - An
Object against which
the String calling the

method is compared.

"Hello" _.equals
(""Hello™);
//returns true.
"Hello" _.equals
('World™); //
returns false.

String. indexOf(
Int character)

Returns the
indexical position of
the specified
character value in
the String calling this

Int character - A
value of type Intin
Unicode code point
format representing
an alphanumeric

"Hello". index0O
FCH;
//returns O
"Hello". index0O
£(72);

method. Arguments |character. //returns O
may be passed as a ""Hello™. index0
literal quote fC'i™);
enclosed character //returns -1
or as a Unicode “Hello" . indexO
code point Integer £(105);)
representing that //returns -1
String. isEmpty(|Returns true if the | No method "Hello".isEmpt
b} length of the string | parameters. vy(; //returns

calling the method is
equal to 0, otherwise
returns false.

false

" isEmpty();
//returns true

34

Language Reference

String.offsetBy
CodePoints(Int

index, Int
codePointOffset

)

Returns the index
within the String
calling this method
that is offset from
the index argument
by the number of
code points
specified by the
codePointOffset
argument.

Int index - Initial
index value within the
Strign calling this
method.

Int codePointOffset -
Number of points to
offset from the index
argument.

"Hello".offset
ByCodePoints(1

, 2); //returns
3

String.toString
O

Returns the String
calling this method.

No method
parameters.

"Hello"._toStri
ng(); //returns
"Hello"

String.valueOf(
Object obj)

Returns the string
representation of the
Object passed as an
argument.

Object obj - An
object to convert to a
String value.

String.valueOf
(3); //returns
II3II

Double Methods

Use Primavera Cloud Expression Language supported methods to manipulate decimal numbers

of the type double.

Refer to the official Java documentation
(https://docs.oracle.com/javase/8/docs/api/overview-summary.html) for more information on

each method.

Notes:

= Primavera Cloud Expression Language automatically converts
Doubles to Int types when calling methods that require Int
arguments.

= Types are indicated in bold in each method signature.

Double Methods

Method Signature |Description Parameters Example
Double.byteValu |Returns the value of | No method def x = 65.3;
e the Double calling parameters. def y = 77.8;

the byteValue
method represented
as a byte.

x.bytevValue();
//returns 65

y-byteValue();
//returns 77

35

https://docs.oracle.com/javase/8/docs/api/overview-summary.html

Expression Language Guide

Method Signature

Description

Parameters

Example

Double.compare(
Double valueOne,
Double valueTwo)

Compares the value
of two Double
arguments. Returns
0 if the arguments
are equal, less than
0 if the first
argument is less
than the second,
and greater than O if
the first argument is
greater than the
second.

Double valueOne -
First value to
compare.

Double valueTwo -
Second value to
compare.

Double.compare(
35.4, 22.1);
//returns 1

Double.compare(

35.4, 35.4);
//returns O

Double.compare(
35.4, 42.1);
//returns -1

Double.compareT
o(Double value)

Compares the value
of the Double calling
the compareTo
method with a
Double passed as
an argument.
Returns 0 if the
argument is equal to
the Double calling
the method, less
than O if the Double
calling the method is
less than the
argument, and
greater than 0 if the
Double calling the
method is greater
than the argument.

Double value -
Value to compare
against the Double
calling the method.

def x = 35.4;

X.compareTo(100
.0); // returns
-1

Xx.compareTo(35.
4); // returns O

X.compareTo(22.
1); // returns 1

Double.parseDou
ble(String
string)

Returns a Double
value matching the
numeric value
contained in the
String passed as an
argument.

String string - String
to convertto a
Double value.

Double.parseDou
ble("'35.4");
//returns 35.4

Double.toString
(Double value);

Returns a String
representing the
Double value
passed as an
argument.

Double value -
Double value to
convert to a String.

Double.toString
(35.4);
//returns
"35.4"

36

Language Reference

Method Signature

Description

Parameters

Example

Double.valueOf(
String string)
Double_.valueOf(
Double value)

Returns a Double
value representing
the value of a String
or Double passed as
an argument.

String string - String
from which to extract
a Double value.

Double value -

Double object form
which to extract a

Double.valueOf(
"35.4");
//returns 35.4

Double.valueOf(
35.4);
//returns 35.4

Double value.
Additional Double Methods
Method Signature Description Parameters Examples
Double.doubleValue | Returns the value of | No method def x =12.5;
0 the Double calling parameters. x.doubleValue();

this method.

/Ireturns 12.5

Double.equals(Obje
ct obj)

Compares the
double calling this
method to the
Object passed as an

Object obj - An
Object against which
the Double calling
the method is

def x =12.5;

x.equals(12.5);
[Ireturns true

x.equals(34.8);

argument. Returns compared. Jreturns false
true if the argument) .
is a Double value x.equals("Hello");
same value as the
Double calling the
argument, otherwise
returns false.
Double.floatValue() |Returns the float No method def x = 12.5;
value of the Double |parameters. x.floatvalue();
calling this method. /Ireturns 12.5
Double.hashCode() |Returns a hash code |No method def x = 12.5;
for the Double parameters. x.hashCode();
calling this method. /Ireturns
1076428800
Double.intValue() Returns the value of |No method def x = 12.5;
the Double calling | parameters. x.intValue();
this method as an /Ireturns 12
Int type.
Double.isInfinite() Returns true if the No method def x = 12.5;
Double calling this | parameters. x.isInfinite();

method is infinitely
large, otherwise
returns false.

/lreturns false.

37

Expression Language Guide

Double.isNaN() Returns true if the No method def x=12.5
Double calling this | parameters. x.isNaN(); //returns
method is not a false
number, otherwise
returns false.

Double.longValue() |Returns the value of |No method def x = 12.5;
the Double calling parameters. x.longValue();
this method as a /Ireturns 12
Long type.

Double.shortValue() |Returns the value of | No method def x = 12.5;
the Double calling | parameters. x.shortValue();

this method as a
Short type.

/Ireturns 12

Double.toHexString(
)

Returns the Double
passed as an
argument as a
hexadecimal string.

Double value -
Double to convert to
a hexidecimal string.

Double.toHexString(
12.5); /lreturns
0x1.9p3

Integer Methods

Use Primavera Cloud Expression Language supported integer methods to manipulate numeric

data of the integer type.

Refer to the official Java documentation

(https://docs.oracle.com/javase/8/docs/api/overview-summary.html) for more information on

each method.

Notes:

= Primavera Cloud Expression Language automatically converts
Doubles to Int types when calling methods that require Int
arguments.

= Types are indicated in bold in each method signature.

Integer Methods

Method Signature

Description

Parameters

Example

Integer.parseln
t(String string)

Returns an Integer
value representing
the contents of the
String passed as an
argument.

String string - String
from which to extract
an integer value.

Integer.parseln
t('45™);
//returns 45

38

https://docs.oracle.com/javase/8/docs/api/overview-summary.html

Language Reference

Method Signature

Description

Parameters

Example

Integer.valueOf
(String string)
Integer.valueOf
(String string,
Int radix)

Returns an Integer
value representing
the value of a String
passed as an
argument.

String string - String
from which to extract
an Integer value.

Int radix - Specifies
the radix to use
when converting the
String argument into
an Integer, for
example, 2, 8, 16.

Integer._valueOf
("45");
//returns 45
Integer.valueOf
('101101", 2);
//returns 45

Additional Integer Methods

Method Signature Description Parameters Examples
Integer.bitCoun |Returns the number |Int value -Intvalue |Integer.bitCoun
t(Int value) of one bits in the containing one bits | t(104);

binary
representation of the
Int value passed as
an argument.

to be counted.

//returns 3

Integer.Compare
(nt x, Int y)

Compares the value
of the first Int
passed as an
argument to the
value of the second
Int passed as an
argument. Returns 0
if the values are
equal, returns less
than O if the first
argument is less
than the second,
and returns a value
greater than 0 if the
first argument is
greater than the
second.

Int x - The first Int
value to compare.

Inty - The second
Int value to
compare.

Integer.compare(3,3
); llreturns O
Integer.compare(3,
4); llreturns -1
Integer.compare(4,3
); llreturns 1

39

Expression Language Guide

Integer .decode(
String number)

Returns the result of
converting the String
passed as an
argument into an Int
value. The argument
String must be in
decimal,
hexadecimal, or
octal format.

String number -
String to convert into
an Int value.

Integer.decode("24")
; [lreturns 24

Integer .hashCod
eQ

Returns a hash code
representing the
Integer calling this
method.

No method
parameters.

def x =12;

x.hashCode();
Ilreturns 12

Integer._highest

OneBit(Int
value)

Returns an Int value
with at most a single
one bit in the
position of the
leftmost one bit
contained in the
binary
representation of the
Int value passed as
an argument.

Int value - Integer
value containing one
bits in its binary
representation.

Integer.highestOneB
it(12); //returns 8

Integer. lowestO
neBit(int value)

Returns an Int value
with at most a single
one bit in the
position of the
rightmost one bit
contained in the
binary
representation of the
Int value passed as
an argument.

Int value - Integer
value containing one
bits in its binary
representation.

Integer.lowestOneBi
t(12); /lreturns 4

Integer .numberO
fLeadingZeros(l
nt value)

Returns the number
of zeros preceding
the leftmost one bit
in the binary
representation of the
Int value passed as
an argument.

Int value - Integer
value containing one
bits in its binary
representation.

Integer.numberOfLe
adingZeros(12);
lIreturns 28

40

Language Reference

Integer .numberO
fTrailingZeros(
Int value)

Returns the number
of zeros following
the rightmost one bit
in the binary
representation of the
Int value passed as
an argument.

Int value - Integer
value containing one
bits in its binary
representation.

Integer.numberOfTr
ailingZeros(12);
/Ireturns 2

Integer.reverse(Int
value)

Returns the result of
reversing the order
of bits contained in
the binary
representation of the
Int value passed as
an argument.

Int value - Integer
value containing one
bits in its binary
representation.

Integer.reverse(12);
/Ireturns 805306368

Integer.rotatelL
eft(Iint value, Int
distance)

Returns the result of
rotating the binary
representation of the
Int value passed as
an argument left by
the value specified
by the second Int
value passed as an
argument.

Int value - Integer
value containing one
bits in its binary
representation.

Int distance -
Number of places to
rotate the binary
representation of the
first argument left.

Integer.rotateLeft(12
, 4); llreturns 192

Integer.rotateRr
ight(int value,
Int distance)

Returns the result of
rotating the binary
representation of the
Int value passed as
an argument right by
the value specified
by the second Int
value passed as an
argument.

Int value - Integer
value containing one
bits in its binary
representation.

Int distance -
Number of places to
rotate the binary
representation of the
first argument right.

Integer.rotateRight(1
2, 4); llreturns
-1073741824

Integer.signum(
Int value)

Returns the signum
function of the Int
value passed as an
argument. The
signum value
indicates whether an
integer is positive,
negative, or zero.

Int value - Int value
against which to
calculate signum.

Integer.signum(12);
/lreturns 1

41

Expression Language Guide

Integer.toBinar
yString(int

Returns a string
representation of the

Int value - Integer
value to convert to a

Integer.toBinaryStrin
g(12); //returns

value) binary binary "1100"
representation of the | representation.
Int value passed as
an argument.

Integer.toHexSt | Retyrns a string Int value - Integer | Integer.toHexString(

ring(int value)

representation of the
hexadecimal
representation of the
Int value passed as
an argument.

value to convert to a
hexadecimal
representation.

12); /lreturns "c"

Integer.toOctal

Returns a string

Int value - Integer

Integer.toOctalString

String(int representation of the | value to convertto |(); //returns 14
value) octal representation |an octal

of the Int value representation.

passed as an

argument.
Date Methods

Use Primavera Cloud supported date methods to manipulate date data.

Refer to the official Java documentation

(https://docs.oracle.com/javase/8/docs/api/overview-summary.html) for more information on

each method.

Notes:

= Primavera Cloud Expression Language automatically converts
Doubles to Int types when calling methods that require Int
arguments.

= Types are indicated in bold in each method signature.

Date Methods

Method Signature

Description

Parameters

Example

42

https://docs.oracle.com/javase/8/docs/api/overview-summary.html

Language Reference

Method Signature |Description Parameters Example
Date.after(Date |Returns a Boolean |Date when - Date to |[def now = new
when) value indicating compare against. Date();

whether the Date def later = new

calling the after
method occurs after
the Date passed as
an argument.

Date(''2999 Nov
27");
now.after(later
); //returns
false

later.after(now
); //returns
true

Date.before(Dat
e when)

Returns a Boolean
value indicating
whether the Date
calling the before
method occurs
before the Date
passed as an
argument.

Date when - Date to
compare against.

def now = new
Date();
def later = new

Date(''2999 Nov
27");
now.before(late
r); //returns
true

later.before(no
w); //returns
false

Date.compareTo(
Date
anotherDate)

Compares the value
of the Date passed
as an argument to
the Date calling the
compareTo method.
Returns a O if the
dates are equal, less
than 0O if the Date
calling the
compareTo method
occurs before the
argument, and
greater than 0 if the
Date calling the
compareTo method
occurs after the
argument.

Date anotherDate -
Date to compare
against.

def now = new
Date();

def then = now;
def later = new

Date("'2999 Nov
27");
now.compareTo(t

hen); //returns
0

now.compareTo(l
ater);
//returns -1

43

Expression Language Guide

Method Signature |Description Parameters Example
Date.equals(Dat |Checks if the Date |Date anotherDate - |def now = new
e anotherDate) |calling the equals Date value to Date();
method is equivalent | compare against. def then = now;
to the Date passed def later = new

as an argument.
Dates are equivalent
if they represent the
same point in time to
the millisecond.
Returns true if the
Dates are equal and
returns false

Date(''2999 Nov
27");
now.equals(then
); //returns
true

now.equals(late

r); //returns
false

otherwise.

Date.getDate() |Returns avalue No method def now = new
between 1 and 31 | parameters. Date();
representing the day now.getDate();
of the Date calling //returns 20
the getDate method.

Date.getTime() |Returns the value of |No method def now = new
the Date calling the |parameters. Date();
getTime method now.getTime();
represented as the //returns
number of 1490039162479
milliseconds since
January 1, 1970,

00:00:00 GMT.

Date.hashCode() |Returns a hash code | No method def now = new

representing the parameters. Date();
Date calling the now.hashCode() ;
hashCode method. //returns a hash
code value
representing
this date, for
example
-313684330
Additional Date Methods
Method Signature |Description Parameters Example

44

Language Reference

Date.getHours() |Returns a value No method X = new Date(0;
between 0 and 23 parameters. x.getHours(Q);
representing the //returns a
hours of the Date value similar to
calling this method. 15
Date.getMinutes |Returns a value No method X = new Date();
O between 0 and 59 parameters. x.getMinutes();
representing the //returns a
minutes of the Date value similar to
calling this method. 41
Date.getSeconds |Returns a value No method X = new Date();
O between 0 and 61 parameters. X.getSeconds();
representing the //returns a
minutes of the Date value similar to
calling this method. 32
Date.getTimezon |Returns the offset | No method X = new Date();
eOffset() between the Date | parameters. x.getTimezoneOf
calling this method fset();
and UTC //returns a
represented in value similar to
minutes. 0
Date.getYear() |Returns the result of |No method X = new Date();
subtracting 1900 parameters. x.getYear();

from the year
contained in the
Date calling this
method.

//returns a
value similar to
117

Date.parse(Strin

Returns the result of

String string - String

Date.parse(''3/74

g string) converting the String | representation ofa | /17"");
passed as an date. //returns
argument to a Date 1488585600000
value.
Date.toGMTStrin |Returns a String No method X = new Date();
s[@) representing the parameters. X .toGMTString()
Date calling this ; //returns 17
method in GMT May 2017
format. 15:41:04 GMT™
Date.tolLocaleSt |Returns a String No method X = new Date();
ringQ) representing the parameters. X.toLocaleStrin

Date calling this
method in an
implementation
independent form.

g(Q; //returns a
value similar to
"May 17, 2017
3:41:04 PM"

45

Expression Language Guide

Date.toString() |Returns a String No method x = new Date();
representing the parameters. x.toString();
Date calling this //returns a
method in the form value similar to
dow mon dd "Wed May 17
hh:mm:ss zzz yyyy. 15:41:04 UTC
2017

Math Methods

Use Primavera Cloud supported math methods to evaluate common mathematical functions,
such as sine and cosine.

Refer to the official Java documentation
(https://docs.oracle.com/javase/8/docs/api/overview-summary.html) for more information on
each method.

Notes:

= Primavera Cloud Expression Language automatically converts
Doubles to Int types when calling methods that require Int
arguments.

= Types are indicated in bold in each method signature.

Math Methods

Method Signature Description Parameters Example
Math.abs(Double |Returns a value Double value - Value |[Math.abs(-34.5
value) representing the against which the): //returns
absolute value of the | absolute value will be |34.5
Double passed as | computed. Math.abs(34.5)
an argument. ; //returns
34.5
Math.acos(Doubl |Returns a value Double value - Value [Math.acos(35.4
e value) representing the against which arc); //returns
result of computing | cosine will be NaN
the arc cosine of the | computed. Math.acos(.005
Double passed as); //returns
an argument. 1.565796305961
329

46

https://docs.oracle.com/javase/8/docs/api/overview-summary.html

Language Reference

Method Signature Description Parameters Example
Math.asin(Doubl |Returns a value Double value - Value [Math.asin(34.5
e value) representing the against which arc); //returns
result of computing | sine will be NaN
the arc sine of the | computed. Math.asin(.005
Double passed as); //returns
an argument. 0.005000020833
567712
Math.atan(Doubl |Returns a value Double value - Value |[Math.atan(34.5
e value) representing the against which the arc |); //returns
result of computing |tangent will be 1.541818932943
the arc tangent of | computed. 3354
the Double passed Math.atan(.005
as an argument.); //returns
0.004999958333
9583225
Math.ceil(Doubl |Returns a value Double value - Value (Math.ceil(35.4
e value) representing the against which the); //returns
smallest mathematical ceiling [36.0
mathematical will be computed. Math.ceil (-35.
integer that is 4); //returns
greater than or -35.0

equal to the Double
passed as an

argument.
Math.cos(Double |Returns a value Double value - Value [Math.cos(35.4)
value) representing the against which cosine |; //returns
result of computing |will be computed. -0.66561345533
the cosine of the 37595
Double passed as Math.cos(.005)

an argument. ; //returns

0.999987500026

0416
Math.cosh(Doubl |Returns a value Double value - Value |Math.cosh(35.4
e value) representing the against which the); //returns
result of computing | hyperbolic cosine will |1.183027019476
the hyperbolic be computed. 2338E15
cosine of the Double Math.cosh(.005
passed as an); //returns
argument. 1.000012500026
0416

47

Expression Language Guide

Method Signature Description Parameters Example
Math.exp(Double |Returns a value Double value - Value (Math.exp(2);
value) representing the representing the //returns

result of raising
Euler's number to
the power of the
value of the Double
passed as an
argument.

power to which
Euler's number will
be raised.

7.389056098930
65

Math.floor(Doub
le value)

Returns a value
representing the
largest mathematical
integer that is less
than or equal to the
Double passed as
an argument.

Double value - Value
against which the
mathematical floor
will be computed.

Math.floor(35.
4); //returns
35.0

Math.floor(-35
.4); //returns
-36.0

Math. log(Double
value)

Returns a value
representing the
result of computing
the natural logarithm
of the Double
passed as an
argument.

Double value - Value
against which
logarithm will be
computed.

Math.log(35.4)
; //returns
3.540959324037
3143

Math.log10(Doub
le value)

Returns a value
representing the
result of computing
the base 10
logarithm of the
Double passed as
an argument.

Double value - Value
against which base
10 logarithm will be
computed.

Math.1og10(35.
4); //returns
1.549003262025
7879

Math._max(Double
valueOne, Double
valueTwo)

Returns the greater
of the two Doubles
passed as
arguments.

Double valueOne -
First value to
compare.

Double valueTwo -
Second value to
compare.

Math._max(35.4,
22.1);
//returns 35.4

Math.min(Double
valueOne, Double
valueTwo)

Returns the lesser of
the two Doubles
passed as
arguments.

Double valueOne -
First value to
compare.

Double valueTwo -

Second value to
compare.

Math_.min(35.4,
22.1);
//returns 22.1

48

Language Reference

Method Signature

Description

Parameters

Example

Math.pow(Double
valueOne, Double
valueTwo)

Returns a value
representing the
result of raising the
first Double passed
as an argument to
the power of the
second argument.

Double valueOne -
Value to raise to the
power specified by
the second
argument.

Double valueTwo -
Value specifying the
power to which the
first argument will be
raised.

Math.pow(5.0,
2.0); //returns
25.0

Math . random()

Returns a random
positive Double
value greater than
0.0 and less than
1.0.

No method
parameters.

Math.random();
//returns, for
example,
0.908671359127
7327

Math.round(Doub
le value)

Returns an Integer
representing the
result of rounding
the Double passed
as an argument to
the nearest
mathematical
integer.

Double value - Value
to round to the
nearest integer.

Math.round(35.
4); //returns
35

Math.signum(Dou
ble value)

Returns an Integer
value representing
the signum function
of the Double
passed as an
argument. Returns 0
if the argument is
zero, returns -1 if the
argument is
negative, and
returns 1 if the
argument is positive.

Double value - Value
against which signum
will be computed.

Math.signum(35
.4); //returns
1.0

Math.signum(0)
; //returns 0.0

Math.signum(-3
5.4); //returns
-1.0

Math.sin(Double
value)

Returns a value
representing the
result of computing
the sine of the
Double passed as
an argument.

Double value - Value
against which sine
will be computed.

Math.sin(35.4)
; //returns
-0.74629667564
49163
Math.sin(.005)
; //returns
0.004999979166
692708

49

Expression Language Guide

Method Signature

Description

Parameters

Example

Math.sqrt(Doubl
e value)

Returns a value
representing the
result of computing
the square root of
the Double passed
as an argument.

Double value - Value
against which square
root will be
computed.

Math.sqrt(25.0
); //returns
5.0

Math.tan(Double
value)

Returns a value
representing the
result of computing
the tangent of the
first Double passed
as an argument.

Double value - Value
against which
tangent will be
computed.

Math.tan(35.4)
; //returns
1.121216330085
6046

Math.tan(.005)
; //returns
0.005000041667
0833376

Math.toDegrees(
Double value)

Returns the result of
converting the
Double passed as
an argument
measured in radians
to a value measured
in degrees.

Double value - Value
to convert to
degrees.

Math.toDegrees
(35.4);
//returns
2028.270594763
1143

Math.toRadians(
Double value)

Returns the result of
converting the
Double passed as
an argument
measured in
degrees to a value
measured in
radians.

Double value -
Value to convert to
radians.

Math.toRadians
(35.4);
//returns
0.617846555205
9926

Additional Math Met

hods

Method Signature

Description

Parameters

Example

Math.cbrt(Doubl
e value)

Returns the cube
root of the Double
passed as an

argument.

Double value - Value
against which the
cube root will be
calculated.

Math.cbrt(8.0)
: //returns 2.0

50

Language Reference

Math. IEEEremain
der(Double
dividend Double
divisor)

Computes the
remainder, as
prescribed by the
IEEE 754 standard,
of the Doubles
passed as
arguments. The first
argument represents
the dividend, and the
second argument
represents the
divisor.

Double dividend - A
double value that
represents the
dividend of a division
operation.

Double divisor - A
double that
represents the divisor
of a division
operation.

Math. IEEEremai
nder(10.0, 1.4)
//returns
0.200000000000
00062

Math.rint(Doubl
e value)

Returns a Double
that is closest to the
Double value
passed as an
argument and is also
an Integer.

Double value - Value
against which rint will
be computed.

Math.rint(34.7
8); //returns
35.0

Math._.ulp(Double
value)

Returns the positive
distance between
the floating-point
value of the Double
passed as an
argument and the
Double value that is
next largest in
magnitude.

Double value -Value
against which
positive distance to a
value of the next
magnitude will be
computed.

Math.ulp(12.2)
//returns
1.776356839400
2505E-15

Duration Methods

Primavera Cloud Expression Language provides additional methods for modifying objects of the

Date data type.

The following table lists methods you can use to modify Date values in your Primavera Cloud
Expression Language scripts:

51

Expression Language Guide

Method Description Example

Signature

plusHours(D |Add hours to the date field. def now = new Date();

ate date, Int def nextDay =

value) plusHours(now, 24);
return nextDay; //returns
the value of now increased
by a duration of 24 hours
since the initial value of
now

plusDays(Dat | Add days to the date field. def now = new Date();

e date, Int def nextDay =

value) plusDays(now, 1);
return nextDay //returns
the value of now iIncreased
by a duration of one day
since the initial value of
now

plusWeeks(D |Add weeks to the date field. def now = new Date();

ate date, Int def nextWeek =

value) plusWeeks(now, 1);
return nextWeek; //returns
the value of now increased
by a duration of one week
since the initial value of
now

plusMonths(|Add months to the date field. def now = new Date();

Date date, Int def nextMonth =

value) plusMonths(now, 1);
return nextMonth;
//returns the value of now
increased by a duration of
one month since the initial
value of now

plusYears(D |Add years to the date field. def now = new Date();

ate date, Int def nextYear =

value) plusYears(now, 1);

return nextYear; //returns
the value of now increased
by a duration of one year
since the initial value of
now

52

Language Reference

Method Description Example

Signature

minusHours(|Subtract hours from the date field. |def now = new Date();

Date date, Int def yesterday =

value) minusHours(now, 24);
return yesterday; //
returns the value of now
decreased by a duration of
24 hours since the initial
value of now

minusDays(D |Subtract days from the date field. |def now = new Date();

ate date, Int def yesterday =

value) minusDays(now, 1);
return yesterday;
//returns the value of now
decreased by a duration of
one day since the initial
value of now

minusWeeks(|Subtract weeks from the date def now = new Date();

Date date, Int
value)

field.

def lastWeek =
minusWeeks(now, 1);

return lastWeek; //returns
the value of now decreased
by a duration of one week
since the initial value of
now

minusMonths |Subtract months from the date def now = new Date();

(Date date, |field. def lastMonth =

Int value) minusMonths(now, 1);
return lastMonth;
//returns the value of now
decreased by a duration of
one month since the initial
value of now

minusYears(|Subtract years from the date field. |def now = new Date();

Date date, Int def lastYear =

value) minusYears(now, 1);

return lastYear; //returns
the value of now decreased
by a duration of one year
since the initial value of
now

53

Expression Language Guide

Method Description Example

Signature

minusDate(Dat |Subtract one date from another. |def now = new Date();
e dateOne, Returns the difference in days def tomorrow =

Date dateTwo) |between the dates passed as plusHours(now, 24);

arguments. If the second date

passed as an argument occurs tomorrow); //returns the
after the first date argument, the difference in number of
returned value is negative. days between the value of
now decreased by the value
of tomorrow. In this case
-1.0.

return minusDate(now,

Object Naming Conventions

The following are naming conventions for properties on the Primavera Cloud Expression
Language default object.

Standard Fields

object.<Prefix>_<logicalPropertyName>

For example:

object.Project_plannedStart
object.Portfolio_currentApprovedBudget

Configured Fields

object.<Prefix>_<VIEW_COLUMN_NAME_OF CONFIGURED_FIELD>

For example:

object.Project CONFIGURED_FIELD
object_Portfolio CONFIGURED_FIELD

You can determine the column name of a configured field needed for the expression by viewing
the configured fields for a particular object in the Summary & Settings panel.

To view the configured fields for an object:

1) In the object selector, select a workspace.

2) In the sidebar, select ¥ Summary & Settings.
3) Onthe Summary & Settings menu, select Defaults & Options.

54

Language Reference
4) Select an object, and then select the Configured Fields tab. The name in the View Column
Name field is the name to use in the expression.

Code Types and Measures

Codes and measures may have names that include characters that are not valid in identifiers,
such as spaces, quotation marks, and reserved words. Use quotation marks around identifiers
containing invalid characters to ensure your Primavera Cloud Expression Language scripts are
interpreted correctly.

object."<Prefix>_<Unique Name>"

Note: Single or double quotation marks must surround the property
name if it contains characters that are not valid in identifiers.

For example:

object."ProjectCode Project Type-
object."PortfolioMeasure_ # Active Projects”

55

	Contents
	About this Guide
	Primavera Cloud Expression Language Overview
	Defining Formulas
	Working with the Formula Editor
	Writing a Primavera Cloud Expression Language Script
	Date and Duration Calculation
	Measures Formulas

	Language Reference
	Supported Data Types, Operators, and Statements
	Supported Methods
	String Methods
	Double Methods
	Integer Methods
	Date Methods
	Math Methods
	Duration Methods

	Object Naming Conventions

