Contents

Introduction .. 5
Architecture Overview ... 5
Performance and Scalability Considerations.. 6
Vertical Scaling ... 7
 JVM Heap Sizes .. 7
 Hardware Upgrade ... 7
 Operating System Upgrade .. 7
Horizontal Scaling ... 7
 Application Scaling and Clustering .. 7
 Database Scaling and Clustering .. 8
Deployment Considerations ... 8
Implementation Platforms ... 8
Implementation Sizes .. 8
Deployment Categories .. 8
Deployment Architectures .. 9
Very Small Implementation .. 9
Small Implementation .. 10
Medium Implementation ... 11
Large Implementation .. 12
Network Bandwidth Estimation .. 13
Other Factors .. 14
Other Actions that Affect Performance ... 14
Legal Notices .. 16
Introduction

This document provides an estimate of the hardware and software requirements for deploying Oracle Instantis EnterpriseTrack. Four deployment scenarios are considered—very small, small, medium, and large. Recommendations for each type are also provided. These recommendations should only be considered as guidance for planning product deployment.

The following assumptions are made in this document:

- A highly available environment is desired.
- Database-specific best practices for high availability, backup, and recovery are being followed.
- Load balancing specifics, software and hardware, are beyond the scope of this document.

Notes:

- The configurations described in this document provide high performance at a reasonable cost, and are thus not minimum configurations. Your experience may vary depending upon your data configuration and usage patterns.
- Contact Oracle Support if you have questions regarding specific hardware configuration.

Architecture Overview

Server Requirements

Oracle Instantis EnterpriseTrack uses the J2EE specification to build a flexible and scalable cross-platform solution. The J2EE platform consists of a set of industry-standard services, APIs, and protocols that provide functionality for developing multi-tiered, web-based, enterprise applications. The division of tiers enables the application to scale according to performance demands.

Oracle Instantis EnterpriseTrack requires the following elements:

- **Presentation tier**: A web server layer rendering JSPs, JavaScript, and so on, which presents a feature-rich user interface accessible through various supported browsers.
- **Middle tier**: A J2EE application server forms the middle tier where all business logic for Oracle Instantis EnterpriseTrack is implemented. This layer runs the business logic for Oracle Instantis EnterpriseTrack.
- **Data tier**: The data tier consists of a standalone or clustered RDBMS environment utilizing Java Database Connectivity (JDBC) to integrate with the middle tier.
- **Mail**: An SMTP capable mail server (e.g.: Send mail, Microsoft Exchange, etc.) is required to deliver outbound SMTP email messages to the mail server.
Performance and Sizing Guide

- **Operating Systems:** Windows or Linux.

The following figure depicts an overview of the Oracle Instantis EnterpriseTrack deployment:

![Diagram of Oracle Instantis EnterpriseTrack deployment]

Performance and Scalability Considerations

While there are multiple ways to achieve the desired performance and scalability levels in Oracle Instantis EnterpriseTrack, the performance considerations are grouped into two categories: vertical scaling and horizontal scaling. There are several advantages and disadvantages for each category. Organizations can decide which category to use, basing their decision on:

- Availability requirements
- Short-term versus long-term outlook of system usage
- Number of concurrent users
- Desired level of performance
- Seasonality and frequently used application areas

In This Section

- Vertical Scaling ... 7
- Horizontal Scaling ... 7
Vertical Scaling

Vertical scaling is usually a good approach if the application bottlenecks are processor and memory-related.

JVM Heap Sizes

The application objects (such as Ideas, Proposals, Timesheets, Projects, Activities, etc.) are stored in the Java Virtual Machine (JVM) heap allocation. Most of these objects are short-lived and are periodically cleaned up by the JVM's garbage collection mechanism. As the number of concurrent users increases, performance and scalability is affected by the available heap space in the JVM. Increasing the heap size is an easy way to achieve desired performance and scalability. Oracle recommends using a 6GB heap for better results.

Hardware Upgrade

You can achieve the desired performance and scalability by upgrading the CPU, adding extra cores, adding physical memory, and upgrading to faster I/O devices. Oracle Instantis EnterpriseTrack requires 64-bit hardware.

Operating System Upgrade

The desired performance level can also be achieved by upgrading to latest versions of the operating system, installing the latest patch updates. Oracle Instantis EnterpriseTrack recommends the 64-bit version.

While vertical scaling is easier to achieve, it does not address availability completely. If the desired level of availability is high, then vertical scaling alone will not be sufficient.

Horizontal Scaling

Horizontal scaling involves adding additional nodes on an existing system.

Application Scaling and Clustering

As the demand for applications grows, you can add additional nodes to an existing application server cluster to handle the increased system load. For high availability requirements, horizontal scaling is the better option.
Database Scaling and Clustering

Database server scaling options are available and have been widely adopted and implemented. Database clustering enables multiple nodes in a clustered system to mount and open a single database that resides on shared disk storage. This configuration provides high availability in the database environment. One example of database clustering is Oracle Real Application Clusters (RAC).

Deployment Considerations

Performance-affecting factors are identified and discussed in the following sections. You should consider these factors during the deployment planning stage.

In This Section

Implementation Platforms .. 8
Implementation Sizes .. 8

Implementation Platforms

The implementation platform is determined by the server operating system and by the type of application and database server. Oracle Linux was used as the implementation platform in our performance tests to arrive at these recommendations.

Implementation Sizes

For the purposes of these guidelines, implementation size is measured by the peak number of concurrent users of EnterpriseTrack. While peak number of concurrent users is a good indicator of how you should configure your hardware, there are many factors that may yield unpredictable results. These factors include: the size of user data, the type of operations users are performing, as well as other factors determined by the characteristics of the solution implemented in EnterpriseTrack.

Oracle recommends that you assess the hardware needs for Oracle Instantis EnterpriseTrack components after the design of the implementation is complete.

Deployment Categories

Oracle Instantis EnterpriseTrack deployments are classified into four categories: very small, small, medium, and large. The following sections provide estimates of server configurations by varying the number of named users/licensed and concurrent users. A named user is a user who has an account with the system, but is not currently logged in. A concurrent user is a user currently logged in the system.
Deployment Architectures

In This Section

- Very Small Implementation .. 9
- Small Implementation .. 10
- Medium Implementation ... 11
- Large Implementation ... 12

Very Small Implementation

<table>
<thead>
<tr>
<th>Server Host</th>
<th>Hardware Configuration (Total)</th>
<th>Platform Software Installed</th>
<th>EnterpriseTrack Components Installed</th>
</tr>
</thead>
<tbody>
<tr>
<td>EnterpriseTrack Web Server</td>
<td>4 vCPUs of Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90GHz 4 GB RAM 50 GB disk space</td>
<td>Oracle Linux</td>
<td>EnterpriseTrack Web Server components Oracle HTTP Server</td>
</tr>
<tr>
<td>EnterpriseTrack Application Server</td>
<td>4 vCPUs of Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90GHz 16 GB RAM Heap 6 GB 100 GB disk space</td>
<td>Oracle Linux</td>
<td>EnterpriseTrack Application Server components (war/ear file) Oracle WebLogic</td>
</tr>
</tbody>
</table>

Note: The hardware sizing is based on concurrency figures and concurrency is assumed to be 20% of the named users. For example, if 250 users are the named user, we assume no more than 50 users will be actively using the system at any given time.

<table>
<thead>
<tr>
<th>Implementation Size</th>
<th>Concurrent Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Small</td>
<td>Up to 50</td>
</tr>
<tr>
<td>Small</td>
<td>Up to 100</td>
</tr>
<tr>
<td>Medium</td>
<td>Up to 200</td>
</tr>
<tr>
<td>Large</td>
<td>200 to 500</td>
</tr>
</tbody>
</table>
EnterpriseTrack Database Server

** 4 vCPUs of Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90GHz
16 GB RAM
SGA 9GB
100 GB disk space

Oracle Linux

EnterpriseTrack DB Server components(schema)
Oracle Database

Notes:

- 1 vCPU is the same as 1 processor core.
- ** Disk space consumption depends on the number of projects, ideas, documents, and other business data that are uploaded.
- Refer to the Tested Configurations document for a list of supported versions.

Small Implementation

<table>
<thead>
<tr>
<th>Server Host</th>
<th>Hardware Configuration (Total)</th>
<th>Platform Software Installed</th>
<th>EnterpriseTrack Components Installed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>EnterpriseTrack Web Server</td>
<td>4 vCPUs of Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90GHz 4 GB RAM 50 GB disk space</td>
<td>Oracle Linux</td>
<td>EnterpriseTrack Web Server components Oracle HTTP Server</td>
<td></td>
</tr>
<tr>
<td>EnterpriseTrack Application Server</td>
<td>8 vCPUs of Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90GHz 32 GB RAM Heap-6GB 100 GB disk space</td>
<td>Oracle Linux</td>
<td>EnterpriseTrack Application Server components (war/ear file) Oracle WebLogic</td>
<td>*Two application server nodes are recommended along with a load balancer to distribute the load.</td>
</tr>
</tbody>
</table>
Notes:

- 1 vCPU is the same as 1 processor core.
- * Each EnterpriseTrack application server node supports 50 concurrent users. Add as many application servers as necessary to support the total number of concurrent users.
- ** Disk space consumption depends on the number of projects, ideas, documents, and other business data that uploaded.
- Refer to the *Tested Configurations* document for a list of supported versions.

Medium Implementation

<table>
<thead>
<tr>
<th>Server Host</th>
<th>Hardware Configuration (Total)</th>
<th>Platform Software Installed</th>
<th>EnterpriseTrack Components Installed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>EnterpriseTrack Web Server</td>
<td>4 vCPUs of Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90GHz 4 GB RAM 100 GB disk space</td>
<td>Oracle Linux</td>
<td>EnterpriseTrack Web Server components Oracle HTTP Server</td>
<td></td>
</tr>
<tr>
<td>EnterpriseTrack Application Server</td>
<td>12 vCPUs of Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90GHz 48 GB RAM Heap-6GB 200 GB disk space</td>
<td>Oracle Linux</td>
<td>EnterpriseTrack Application Server components (war/ear file) Oracle WebLogic</td>
<td>*Four application server nodes are recommended along with a load balancer to distribute the load.</td>
</tr>
</tbody>
</table>
Performance and Sizing Guide

<table>
<thead>
<tr>
<th>EnterpriseTrack Database Server **</th>
<th>4 vCPUs of Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90GHz</th>
<th>16 GB RAM</th>
<th>SGA 9GB</th>
<th>400 GB disk space</th>
<th>Oracle Linux</th>
<th>EnterpriseTrack DB Server components(schema) Oracle Database</th>
</tr>
</thead>
</table>

Notes:
- 1 vCPU is the same as 1 processor core.
- * Each EnterpriseTrack application server node supports 50 concurrent users. Add as many application servers as necessary to support the total number of concurrent users.
- ** Disk space consumption depends on the number of projects, ideas, documents, and other business data that are uploaded.
- Refer to the *Tested Configurations* document for a list of supported versions.

Large Implementation

<table>
<thead>
<tr>
<th>Server Host</th>
<th>Hardware Configuration of Single Node</th>
<th>Platform Software Installed</th>
<th>EnterpriseTrack Components Installed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>EnterpriseTrack Web Server</td>
<td>4 vCPUs of Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90GHz</td>
<td>Oracle Linux</td>
<td>EnterpriseTrack Web Server components Oracle HTTP Server</td>
<td></td>
</tr>
<tr>
<td>EnterpriseTrack Application Server *</td>
<td>4 vCPUs of Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90GHz</td>
<td>16 GB RAM</td>
<td>Heap 6 GB</td>
<td>200 GB disk space</td>
</tr>
</tbody>
</table>
EnterpriseTrack Database Server**
- 8 vCPUs of Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90GHz
- 32 GB RAM
- SGA 12GB
- 500 GB disk space

Oracle Linux

EnterpriseTrack DB Server components(schema) Oracle Database

Notes:
- *Each EnterpriseTrack application server node supports 50 concurrent users. Add as many application servers as necessary to support the total number of concurrent users.
- ** Disk space consumption depends on the number of projects, ideas, documents, and other business data that are uploaded.
- 1 vCPU is the same as 1 processor core.
- Refer to the Tested Configurations document for a list of supported versions.

Network Bandwidth Estimation

Oracle Instantis EnterpriseTrack is a web-based application where users make requests to the server using browsers. The browsers stores the static content in the cache and only dynamic requests are sent to the server. The following table gives an estimate of the client network bandwidth required to run the application.

<table>
<thead>
<tr>
<th>Product</th>
<th>Bandwidth/User (Mbps)</th>
<th>Average Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>EnterpriseTrack</td>
<td>1.62</td>
<td>0.58 MB</td>
</tr>
</tbody>
</table>

Bandwidth is calculated on the basis of amount of data transferred over the network (request and received bytes) for a request. An HTTP request may consist of different components and all dynamic components (components not cached by the browser) are taken into consideration. Assuming a page takes 3 seconds to load, the amount of data traveled over the network is calculated and bandwidth for that request is calculated in Mbps (Mega bits per second).

Caching of static application components helps reduce bandwidth used by Oracle Instantis EnterpriseTrack. Caching reduces network roundtrips, which boosts the performance of the application. The proposed bandwidth estimates take caching into consideration. First page hits to the server are not taken into consideration for bandwidth estimation. The first hit to the server is costly as all static web components are fetched from the server. Subsequent requests contact server only for dynamic content.
Other Factors

This document covers performance for the overall Oracle Instantis EnterpriseTrack configuration architecture. However, factors involved in the database setup play a very important role in performance. The following factors could impact database performance:

- Hardware architecture and operating system
- NIC (number of NICs, speed, duplex settings)
- Number of database instances on a server (dedicated versus shared)
- Disk storage system performance (I/O speed, buffer, mirroring)
- Table space layout and extent sizing
- Table data, index, and lob distributions on table spaces
- Table and index fill factor definition
- Database block sizing
- Connection management (dedicated versus MTS)
- RAM allocations (automatic, SGA, PGA, shared pool, buffer pool, and so on)
- CBO optimizer parameter configuration setting
- Database table and index statistics gathering mechanism and frequency
- Anti-virus software
- Additional database jobs

Other Actions that Affect Performance

The following list breaks down the major factors that may affect hardware resources. Most of these cannot be known until later in the implementation process. Use this list as a guide to help you assess your needs and to avoid implementation designs that can create performance issues.

Number of Projects

A large number of projects or a large number of activities per project.

Impact: The response time may increase if the number of activities per project is greater than 500, or if there are more than a million activities across all projects

Documents

The number and size of the uploaded documents.

Impact: Additional disk space is required to hold all uploaded documents.

Suggestion: Due to database overhead, we recommend a disk space of at least 30% more than aggregate uploaded document size.
Firewall & Network latency

The network connection between the application servers and the database should be low-latency, with both application and database servers on the same LAN.

Impact: Increasing the database network latency increases response times significantly.

Suggestion: If possible, install the application tier and database on the same local area network.
Legal Notices

Oracle Instantis EnterpriseTrack Performance and Sizing Guide

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer software” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products and services from third-parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.