Oracle® Retail Integration Bus
Implementation Guide
Release 13.0.3

September 2009

ORACLE

Oracle Retail Integration Bus Implementation Guide, Release 13.0.3

Copyright © 2009 Oracle. All rights reserved.
Primary Author: Susan McKibbon

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Value-Added Reseller (VAR) Language
Oracle Retail VAR Applications

The following restrictions and provisions only apply to the programs referred to in this section and licensed
to you. You acknowledge that the programs may contain third party software (VAR applications) licensed to
Oracle. Depending upon your product and its version number, the VAR applications may include:

(i) the software component known as ACUMATE developed and licensed by Lucent Technologies Inc. of
Murray Hill, New Jersey, to Oracle and imbedded in the Oracle Retail Predictive Application Server -
Enterprise Engine, Oracle Retail Category Management, Oracle Retail Item Planning, Oracle Retail
Merchandise Financial Planning, Oracle Retail Advanced Inventory Planning, Oracle Retail Demand
Forecasting, Oracle Retail Regular Price Optimization, Oracle Retail Size Profile Optimization, Oracle Retail
Replenishment Optimization applications.

(i) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail Data
Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(iii) the SeeBeyond component developed and licensed by Sun MicroSystems, Inc. (Sun) of Santa Clara,
California, to Oracle and imbedded in the Oracle Retail Integration Bus application.

(iv) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of Kirkland,
Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory Management.

(v) the software component known as Crystal Enterprise Professional and/or Crystal Reports Professional
licensed by SAP and imbedded in Oracle Retail Store Inventory Management.

(vi) the software component known as Access Via™ licensed by Access Via of Seattle, Washington, and
imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(vii) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of San Jose,
California, and imbedded in Oracle Retail Promotion Planning & Optimization application.

(viii) the software component known as Style Report™ developed and licensed by InetSoft Technology
Corp. of Piscataway, New Jersey, to Oracle and imbedded in the Oracle Retail Value Chain Collaboration
application.

(ix) the software component known as DataBeacon™ developed and licensed by Cognos Incorporated of
Ottawa, Ontario, Canada, to Oracle and imbedded in the Oracle Retail Value Chain Collaboration
application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR Applications.
Oracle will not deliver source code to the VAR Applications to you. Notwithstanding any other term or
condition of the agreement and this ordering document, you shall not cause or permit alteration of any VAR
Applications. For purposes of this section, "alteration" refers to all alterations, translations, upgrades,
enhancements, customizations or modifications of all or any portion of the VAR Applications including all
reconfigurations, reassembly or reverse assembly, re-engineering or reverse engineering and recompilations
or reverse compilations of the VAR Applications or any derivatives of the VAR Applications. You
acknowledge that it shall be a breach of the agreement to utilize the relationship, and/or confidential
information of the VAR Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall not attempt,
cause, or permit the alteration, decompilation, reverse engineering, disassembly or other reduction of the
VAR Applications to a human perceivable form. Oracle reserves the right to replace, with functional
equivalent software, any of the VAR Applications in future releases of the applicable program.

Contents

PPEIACE ...ttt ix
AUAIEIICE ...ttt ettt ettt e e e te e ae et e e st e beesseebeesbesbeessesbaesbenseess et e esbeeseenteereenteereenseareas ix
Related DOCUIMIENESc..oovieiiiiieiecteceeeteete ettt ettt ettt et ettt eveebesaeesbeetsebeessenbeessenbesssenseessensesrsenseesean ix
CUSLOMET SUPPOTL ..cviiiiiiiiiiiiii e iX
Review Patch DoCUMENTATIONccvicvieiieiieiiciieiece ettt ettt e veeae s teeaesbe s e beessesteessassesrnesseesnas X
Oracle Retail Documentation on the Oracle Technology Networkcccoccoveiiiiiiiniiinne X
CONVEINTIONS ..evvevieiieiieiestieteetteiestetesstetesseesesstessesseesseaseessesssessesssessesssessesssensesnsensesssensesseensesseensesseensessees X

1 Introduction

2 Standards and Specifications

Java Platform Enterprise Edition (Java EE)c.ccccoiiiniiiniiiiniiiccceeeeeeeeecreeeeenenes 2-1
JAVA EE SEIVET ..ttt ettt ettt b et sttt st s at et s bt e besbe e e e s bt et esbeenee 2-1
Java Message Service (JIMIS)ccoooiiiiiiiiccreeee ettt 2-1
JIMIS PrOVIAETvivietiiesiesieieieieteeteit et ste st et st e st e st esbessesaessesaesessaesassassessessessassessessessassessassaseasensensenes 2-2
Java Management Extensions (JIMX)cccccciiiiiiiiiiiiic s 2-2

3 Core Concepts

Key Functional Requirementsccocooooiiiiiiii e 3-1
Guaranteed Once-and-Only-Once Successful Delivery ..o, 3-1
Preservation of Publication SEqUENCe.............cccviiiiiiiiiiiiiic 3-2

Message Family and Message TYPescccccouviiiiiniiiiiniiiiiii s 3-2
Foundation MESSAZEScccvuruiiiiriiiriiiiiiiiiiicic e 3-3
Transactional MESSAZES.........cccvuiviiiiiiiiiiiiiiic s 3-3

RIB Message Envelope and Payloads..............cccccooiiiiiiiiiiiiiiins 3-3

Message Life CYCle........ooooiiiiiiiiiii s 3-4

Messaging COMPONENLS............cccouviiiiiiiiiiiiiiii s 3-5
RIB Subsystem COMPONENLSccoviiiiiiiiiiiiiiiiiiiiiii s 3-5

AAPLETS .. s 3-5
JMS Domains, Destinations, SUbscriptions..........cccccccvviiiiiniiiiinniiiiccccccee, 3-6
JMS MeSsage SELECLOTcccuvvviiiiiiiiiiii e 3-7
Additional RIB JMS Message Properties ... 3-7

Simple Message FIOW ... 3-9

The RIB HOSPItalccciiiiiiiiiiiiiiiic s 3-10
RIB Hospital Dependency Checkccccciiiiiiiiiiiiiiiiiiieceeesees 3-11

RIB HOSPital INSETt.....c.cuiviviiiiiiiiiiiiiicicicicccc s 3-11

RIB Hospital Tables.........coooiiiiiiiriciii s 3-11
RIB HOSPital REIY ...ocvoiiiiiiiiiiiiiiiiiiiii s 3-12
Hospital Attempt (Retry) COUNt......ocoiviiiiiiiiiiiciiic s 3-13

4 Oracle Retail Application APIs

PL/SQL Stored Procedure APIScc.ooiiiiiiiiieieceetesectee ettt ettt sae e e ssesaesaesssessaessessaessansaessenns 4-1
OFACLE CLOB APIS....cuoiiiieeeceeeteete ettt ettt ettt ettt et et te et e et et et e s e st esseasetsetaebeeveeseesessesessessesserea 4-1
RIB_XML and RIB_SXW Database Packages..........ccccccccceueueieuiiiiieiniiciieiiecceeceeeeeennas 4-2

Oracle Object API'S ... 4-2
RIB Related Database Tables..........ccocieiiriieiiiiciiiieiecieeteee ettt 4-2

Detail Architecture - PL/SQL APPS ..ottt 4-3
Oracle Retail Java EE APISccoocooiiiriiiniinicncctctncenetn ettt ettt e 4-3
Detail Architecture JavaEE APPS.......cooiiiiiiiii e 4-4
API Return Statts COAESoocvvvieieiieieiieieseeteet et et et te st e e s te e est et e essesseensesseessesnsensesseesesseens 4-4
PL/SQL GETNEXT RetUrn COAeS......ccouiieuiieiieiiecieeeiie ettt et esteeeve et sveeeveesaneevsesaneenveessseenseens 4-4
PUB_RETRY RetUIN COAES......ccuiiuiiiieeiiiiceieeeeeeetieteeteeteeteeteeteetesesesess e s esseteeteesessessessessesessessessesens 4-4
CONSUME RetUIT COE ..oviiiieiinieieieiieeteeetstisteste et esbesaessessessestessasessessessassessessessessessessesessensens 4-4

5 Pre-Implementation Considerations

RIB Software Lifecycle Management..............ccccocoiiiiiiiiiniiiinccccces 5-1
Centralized Configuration and Management...............ccccocoviiiiiiiiiinnes 5-3
Physical Location Considerations................ccoooouiiiiiiiiiiiiic e 5-3
JMS Server CONSIAETALIONSccceevuieieiieieiieieeteieete e et e saeste e s tessesseeseeseessesssensesssessesnsessesseessesnees 5-4
Using Multiple JIMS SEIVETS.........ccooviiiiiiiieiiiiiiiiiiccnee s 5-4
Oracle Streams AQ JIMS ...ttt ettt sttt et et e st e be e sbesbesbenee s ebeenenaeas 5-5
High Availability Considerations ... 5-5
Oracle Database Cluster (RAC) CONCEPLSccvviiiimiiiiiiiiiiiiiiiicci e 5-5
rib-<app> application and Oracle Database Cluster (RAC)ccccevvvviininniiiiiiiiiins 5-6
Oracle Application Server ClUster CONCEPLSccueueuimemeueieiiuimeieieieieieieieereeeieaeieereeeeeeeenenenennes 5-6
rib-<app> application and Oracle Application Server Clustercccccovviiiiiiiiiciiiiiennns 5-7

6 Deployment Architecture and Options

Recommended Deployment OPtions............ccccccoiiiiiiiiiiiiiiiiiiiiicc e 6-2
Distributed Deployment Alternative...............cccocoouvviiiiniiinniii e 6-2
AQVANTAZES ..ottt 6-2
DiSadVaANtages.........ccceueiiuiiiiiiiiici e 6-3
Who Should Use This Configuration? ... 6-3
Centralized Deployment Alternative.............cccocooviiiiiniiis 6-4
AAVANTAZES ..ovviieit e 6-4
DiSAAVANTAZES.......cvviiiiiiiciii s 6-4
Who should use this Configuration?.............ccoovrrrinnnnrinn e 6-5
CONCIUSIONS ...ttt s 6-5

7 Implementation Process

Implementation Verification and Validation...........cccccoconiiniininninninnccncnecnecneceeeeee 7-2

vi

Implementation Environment Verification ..o, 7-2
Integration Environment Testabilitycoooouoiiiiiiiiii e, 7-3

8 Performance

Performance FActOrs. ... 8-1
Performance and Parallel Logical Channelsccccooiiiiiniiiics 8-2

9 Security

RIB Application Administrators Security Domainccooviiiniiin 9-1
RIB System Administrators Security Domain.............cccooooviiiiiiii 9-1

10 Integration with Fusion Middleware

General RIB to Fusion Middleware Architecture...............cccccoooiiiiiniiiniccce, 10-2
General Process of INtegrationcoceuoiiiiiiiiiiiiciece e 10-2
Example - Configure FWM JMS Adapter to RIB AQJMScccccciiiiiiiiiciieiceecncenees 10-3

Create the Resource Provider ... 10-4
Configure a JMS Connection FactOry........ccceiiiiriiiiiiiccicee i 10-4
Configure the FMW JMS Adapter........c.cccccieiiiiiiiiiiiiiceeeeeecieie e 10-4

11 RIB Customization/Extension

PrereqUESIESccoouiiiiiiiiieice ettt st 11-1
General Customization RuUles............cccoooiiiiiiiiii e 11-2
Message Family and Message Type Customization...............cccccoovviiniinnnnnninnii, 11-2
Adding a New Message TYPEc.ccccuiiiuiiiiiiiiecieeeteeeeieeee ettt aeaaes 11-2
Message Flows with PL/SQL Applications..........ccccevevviiiiiiiiiiiniiiniiiiiiicccs 11-3
Procedure for Adding a New Message Type for PL/SQL Applications............cccc........ 11-3
Message Flows with Java EE Applications.........c.ccccccueueuciiiiiiiiicceecccceeececeeeeeeeeees 11-6
Procedure for Adding a New Message Type for Java EE Applicationsccccc.co.ce... 11-6
Creating a New Message Family ... 11-7
Procedure for Adding a New Message Family..........cccccccoeiiiiiiiiiiiiiccccceceeees 11-8
Adding New Adaplers..........ccccoiiiiiiiiiiiiiic s 11-12
Adding the Custom Adapter to the rib-integration-flows.xml File...........cccccooiiiiinnnne. 11-12
Procedure for Adding the Flow to the rib-integration-flows.xml File............cc.c....... 11-12
Adding a Publishing Adapter for PL/SQL Applications.............ccccoeviiniinnniiiniicne, 11-13
Procedure for Adding a Publishing Adapter for PL/SQL Applications..........cccccoevevuenneee. 11-14
Adding a Publishing Adapter for Java EE Applicationsccooviiiiiinniinine, 11-15
Procedure for Adding a Publishing Adapter for Java EE Applicationsccccoevrrurnnnies 11-15
Adding a Subscribing Adapter for PL/SQL Applications.............cccocoiiiiiiiiiiiiniiccnne. 11-16
Procedure for Adding a New Subscribing Adapter for a PL/SQL Application 11-17
Adding a Subscribing Adapter for Java EE Applicationsccccocciiniiiniiinnccnne, 11-18
Procedure for Adding a New Subscribing Adapter for a Java EE Application................... 11-18
Custom TAFR AdQPLEISccoceiriiiiiiieireireereeeee ettt ettt 11-19
TAFR Considerations ... 11-19
TTaNSOrMAIONoviiiiiiiicicctc ettt 11-20
Filtering Configurationc.ccccccceuiieiiiiiiiniiiieceerrr e 11-20

vii

viii

ROUBNE 1ttt 11-20

Adding a New TAFR Adaptercooooimiiiriiice 11-21
Procedure for Adding a New TAFR Adapter.........ccocoevvivivnnnirinnrnnrrreeeeeeeecees 11-21
Custom TAFR Implementation ... 11-21
Procedure for Completing Custom TAFR Implementationccccoeoevoiiiiniinenne. 11-22
Changing an Existing TAFR Adaptercccocoviiiiiiiricncrrcee s 11-23
Procedure for Changing an Existing TAFR Adapter..........cccoooiiiiniiiiciciiicce, 11-23
Verification of RIB Customizations.............c.cccooviiniiiiiiiiiiiiccnes 11-24
Verifying the New Message TYPe......courriiiiniiiiiiiecetece e nene 11-24
Veritying the New Message Familyc.cccooiriiiiiiiiiiiic 11-25
Verifying the New Publishing Adapter.............ccooiiiiiiiiic e 11-26
Verifying the New Subscribing Adapter ..o 11-27
Veritying the New TAFR Adapter..........coooiiiiiii e 11-28
Payload Customization ... 11-29
PIrereqUiSItes.......ccoviiuiiiiiiiiiiiiiicc e 11-29
Recommendations..........cccceeiiiiiiiiiiiiiii e 11-29
Adding Optional Elements to Payloads ..., 11-30
Adding a New Payload ... 11-32

Preface

The Oracle Retail Integration Bus Implementation Guide provides detailed
information that is important when implementing RIB.

Audience

The Implementation Guide is intended for the Oracle Retail Integration Bus
application integrators and implementation staff, as well as the retailer’s IT personnel.

Related Documents

For more information, see the following documents in the Oracle Retail Integration
Bus Release 13.0.3 documentation set:

» Oracle Retail Integration Bus Installation Guide
» Oracle Retail Integration Bus Release Notes
» Oracle Retail Integration Bus Operations Guide

» Oracle Retail Integration Bus Integration Guide

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:
= https://metalink.oracle.com
When contacting Customer Support, please provide the following:
= Product version and program/module name
= Functional and technical description of the problem (include business impact)
» Detailed step-by-step instructions to recreate
= Exact error message received

» Screen shots of each step you take

https://metalink.oracle.com

Review Patch Documentation

If you are installing the application for the first time, you install either a base release
(for example, 13.0) or a later patch release (for example, 13.0.2). If you are installing a
software version other than the base release, be sure to read the documentation for
each patch release (since the base release) before you begin installation. Patch
documentation can contain critical information related to the base release and code
changes that have been made since the base release.

Oracle Retail Documentation on the Oracle Technology Network

In addition to being packaged with each product release (on the base or patch level),
all Oracle Retail documentation is available on the following Web site (with the
exception of the Data Model which is only available with the release packaged code):

http:/ /www.oracle.com/technology/documentation/oracle_retail. html

Documentation should be available on this Web site within a month after a product
release. Note that documentation is always available with the packaged code on the
release date.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

http://www.oracle.com/technology/documentation/oracle_retail.html

1

Introduction

The Oracle Retail Integration Bus (RIB) is a fully distributed integration infrastructure
that uses Message Oriented Middleware (MOM) to integrate applications. RIB enables
various Oracle Retail applications to integrate in an asynchronous and near real time
fashion. RIB provides additional value added business and infrastructure services to
the Oracle Retail applications in addition to providing integration connectivity.

Each of the Oracle Retail Applications has their own implementation and deployment
strategies and approaches, as well as individual integration touch points defined. The
implementation of the RIB has to take into account the overall Oracle Retail
application enterprise deployment architecture and try to fit into the model seamlessly.

Warehouse Store
Management Inventory
System Management

|

The RIB acts as a shared communication layer for connecting various Oracle Retail
applications and external applications throughout an enterprise computing
infrastructure. It supplements the core asynchronous messaging backbone with
additional application functionality such as intelligent transformation, routing and
error handling.

Communication across the RIB is via xml messages (payloads). These payloads
describe the retail business objects (such as items, purchase orders, suppliers, and so
on) in a standard way and are governed by RIB on behalf of the Oracle Retail
applications.

The RIB architecture is based on standard Java EE components and the Java Message
Service (JMS). JMS is an integral part of the Java EE (Java Enterprise Edition)
Technology stack. This is very different from the previous RIB releases that were based
on a centralized model implemented using eGate proprietary components.

The integration solution provided by RIB system is made up of multiple Java EE RIB
applications (rib-<app>.ear) that are autonomous in their execution behavior, and are
deployed in a fully distributed topology. Even though they (rib-<app>.ear) are
distributed and autonomous they communicate and coordinate messages with each
other and works to provide the final asynchronous integration solution that the
enterprise expects. The issues and considerations needed to properly deploy and
configure it within an enterprise are the subject of this guide.

Introduction 1-1

1-2 Oracle Retail Integration Bus Implementation Guide

2

Standards and Specifications

This release of the RIB is designed and built on industry standard non-proprietary
Java EE concepts and standards.

Java Platform Enterprise Edition (Java EE)

Java Platform Enterprise Edition (Java EE) is an umbrella standard for Java's enterprise
computing facilities. It bundles together technologies for a complete enterprise-class
server-side development and deployment platform in java.

Java EE specification includes several other API specifications, such as JDBC, RMI,
Transaction, JMS, Web Services, XML, Persistence, mail, and others and defines how to
coordinate among them. Java EE specification also features some specifications unique
to enterprise computing. These include Enterprise JavaBeans (E]JB), servlets, portlets,
JavaServer Pages (JSP), Java Server Faces (JSF) and several web service technologies.

A Java EE "application server" manages transactions, security, scalability, concurrency,
pooling, and management of the EJB/Web components that are deployed to it. This
frees the developers to concentrate more on the business logic/problem of the
components rather than spending time building scalable, robust infrastructure to run
on.

Java EE Server

Oracle Application Server implements the Java EE specification and is the Java EE
server vendor for RIB in this release. Oracle Application Server provides many
additional services beyond the standard services required by the Java EE specification.

See Oracle® Application Server documentation for more information.

Java Message Service (JMS)

The Java Message Service (JMS) defines the standard for reliable Enterprise Messaging.
Enterprise messaging, also referred to as Messaging Oriented Middleware (MOM), is
universally recognized as an essential tool for building enterprise applications. By
combining Java technology with enterprise messaging, the JMS API provides a
powerful tool for solving enterprise computing problems.

See http://java.sun.com/products/jms.

Enterprise messaging provides a reliable, flexible service for the asynchronous
exchange of critical business data and events throughout an enterprise. The JMS API
adds to this a common API and provider framework that enables the development of
portable, message based applications in the Java programming language.

Standards and Specifications 2-1

http://java.sun.com/products/jms

Java Management Extensions (JMX)

JMS Provider

The JMS API improves programmer productivity by defining a common set of
messaging concepts and programming strategies that will be supported by all J]MS
technology-compliant messaging systems.

The JMS APl is an integral part of the Java Enterprise Edition platform, and
application developers can use messaging with components using Java EE APIs ("Java
EE components").

A JMS Provider is a vendor supplied implementation of the JMS interface, such as
Oracle AQ JMS or OC4J JMS. Oracle Streams AQ implements the JMS specification
and is the certified JMS provider for RIB in this release. AQ is built on top of the Oracle
Database 10g Enterprise Edition.

See Oracle Database Enterprise Edition documentation for AQ information.

Java Management Extensions (JMX)

The RIB is a backend, headless application that does not need active business user
participation for its daily operations. When the environment is stable there is no user
intervention required for the system to keep running. For such a backend system it is
critical that there are proper alerting and notification mechanisms built into the
application for situations when the system runs into trouble or to communicate
interesting business situations to administrators.

Java Management Extensions (JMX) is a specification to provide management and
monitoring capabilities to applications that are built using java programming
language.

The JMX is based on a three-level architecture:

»s The Probe/Instrumentation level: This layer contains the probes (called MBeans)
that instrument the application resources and make the resource available through
an agent layer.

s The Agent level: The MBeanServer is at the core of JMX infrastructure. It is a
registry/catalog of all MBeans available for management.

s The Remote Management level: This layer enables remote applications to access
the MBeanServer through Connectors and Adaptors. A connector provides full
remote access to the MBeanServer API using various RPC communication protocol
like RMI, IIOP, WS-*, and others. A JMX adapter on the other hand adapts the JMX
API and events to other standard protocol like SNMP or provide a web based GUI
(HTML/HTTP) interface to the JMX API/Events.

2-2 Oracle Retail Integration Bus Implementation Guide

Java Management Extensions (JMX)

?
\

g

Server Services

Server Senvices
{@z MBeans)

nlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII EENNEE SN ER NN NN

=
g
3

Sefver Java Vinval Machihe

JMX Client

In addition to the three layers presented in the architecture, JMX provides a
notification model that follows the observer observable design pattern. By using
notifications, JMX agents and MBeans can send alerts or report information to third
party management applications. Users can receive notifications as a way of being
informed of critical events or requests for attention.

Since efficient management and monitoring of RIB components are essential to the RIB
product, and also seamless integration to standard third party enterprise management
tools was a requirement, the RIB application has been fully instrumented to be
manageable by any J]MX compatible management tools.

The RIB adapters can be controllable using standard JMX tools like OAS Enterprise
Manager and JConsole. When interesting business activity happens inside RIB, the RIB
components emit alerting events to the RIB alerting framework. By default the alerting
framework is configured to send JMX and Email alert notifications. Anyone interested
in RIB's JMX alerts can subscribe to RIB notification types using their choice of JMX
compatible management tools. JMX management tools provide a way to configure
your listener /handler in the tool to react to the incoming alert event.

Note: See JMX management tool vendor documentation for how to
add listeners to JMX alerts.

Standards and Specifications 2-3

Java Management Extensions (JMX)

2-4 Oracle Retail Integration Bus Implementation Guide

3

Core Concepts

The RIB is designed as an asynchronous publication and subscription messaging
integration architecture. This allows the decoupling of applications and their systems.
For example, a publishing application need not know about the subscribing
applications, other than the requirement that at least one durable subscriber must
exist. It decouples the systems operationally. Once a subscriber is registered, the RIB
persists all published messages until all subscribers have seen them.

The publishing adapter does not know, or care, how many subscribers are waiting for
the message, what types of adapters the subscribers are, what the subscribers' current
states are (running or stopped), or where the subscribers are located. Delivering the
message to all subscribing adapters is the responsibility of the RIB with the help of the
underlying JMS server.

Physically, the message must reside somewhere so that it is available until all
subscribers have processed it. The RIB uses the JMS specification for its messaging
infrastructure. The JMS accepts the message from the publisher and saves it to stable
storage, a JMS topic, until it is ready to be picked up by a subscriber. In all cases,
message information must be kept on the JMS until all subscribers have read and
processed it.

The RIB interfaces are organized by message family. Each message family contains
information specific to a related set of operations on a business entity or related
business entities. The publisher is responsible for publishing messages in response to
actions performed on these business entities in the same sequence as they occur.

Each message family has specific message payloads based on agreed upon business
elements between the Oracle Retail applications.

Key Functional Requirements

The design and architecture of the RIB infrastructure is based on two key requirements
driven by the Oracle Retail application business model.

Guaranteed Once-and-Only-Once Successful Delivery

The RIB must preserve and persist all business events (messages) until all applications
(subscribers) have looked at the message and have successfully consumed it or
decided they do not care about that event (message). In other words RIB must deliver
to every subscriber all messages except those filtered per a subscribing application's
requirements.

Core Concepts 3-1

Message Family and Message Types

A business event (message) must be redelivered to the consumer application if the
business event (message) was not consumed successfully. The redelivery process is
bound by the same rules of sequencing as normal (non-redelivered) business event
(message).

Preservation of Publication Sequence

The business event (message) must be delivered to all the subscribing applications in
the order (FIFO) the business event (messages) was published by the publishing
application.

To enable this, the publishing application defines a business object ID whose existence
informs RIB that this and all subsequent messages with the same business object ID
have to be processed in order. Business event (message) ordering (FIFO) is assured
only for messages with the same business object ID within the same message family.

Message Family and Message Types

The RIB messaging adapters and payloads are designed around the concept of a
message family.

Each RIB message belongs to a specific message family. Each message family contains
information specific to a related set of operations on a business entity or related
business entities. The publisher is responsible for publishing messages in response to
actions performed on these entities in the same sequence as they occur.

One example of a message family is the orders message family used to contain
information about purchase order events.

A message family may contain multiple message types. Each message type
encapsulates the information specific to a business entity within one or more business
events. For example, the order message family is published for events such as "Create
PO Header", "Create PO Detail", "Update PO Header", or "Delete PO Detail"

A single business event, such as updating a purchase order, may involve multiple
business entities, such as a line item within the purchase order.

Because a single business event may involve multiple business entities, the application
may publish messages for this event from multiple message families for a single
business transaction. More than one message type within a message family may also
be created.

There are two broadly defined types of functional interfaces in the RIB (message
families); foundation data and transactional data.

3-2 Oracle Retail Integration Bus Implementation Guide

RIB Message Envelope and Payloads

Foundation Messages

After populating application tables with initial company seed data, item foundation
information is needed. Foundation messages are defined as those with payload that
carry basic product data.

This table is an example from the RIB Integration Guide.

Functional Area Publishing Applications Subscribing Applications
Items RMS RWMS, SIM
Item Locations RMS SIM
Locations RIB RWMS
Stores RMS RWMS, SIM
Vendor RMS RWMS, SIM
Warehouses RMS RWMS,
SIM

Transactional Messages

After populating application tables with initial seed data and after all required item
foundation data messages have been subscribed to, all applications are prepared to
publish and subscribe transaction data messages. Transactional messages
communicate business events involving two or more organizations within a retail
supply chain, for instance, between Oracle Retail Merchandising System (RMS), Oracle
Retail Store Inventory Management (SIM), and Oracle Retail Warehouse Management
System (RWMS), external suppliers and financial systems.

This table is an example from the RIB Integration Guide.

Functional Area Publishing Applications Subscribing Applications
Allocations RMS RWMS
Appointments RWMS RMS

ASN Outbound RWMS, SIM RMS, SIM, RWMS
ASN Inbound RWMS, External RMS, SIM, RWMS
Inventory Adjustments RWMS, SIM RMS

Inventory Request SIM RMS

Receipts RWMS, SIM RMS

Purchase Order RMS, SIM RWMS, SIM
Stock Order Status RWMS, SIM RMS

Transfers RMS RWMS, SIM

RIB Message Envelope and Payloads

Whenever a publishing application adapter publishes a message, it wraps the message
in an envelope known as the RIB message envelope. The envelope is a standard
message delivery format where the message information, the data payload, is
contained within the overall delivery information. The envelope itself provides
information that the RIB uses, such as RIB hospital information and routing
information.

Core Concepts 3-3

Message Life Cycle

Message Life Cycle

The publishing application is responsible for creating the initial message contents. The
RIB publishing adapter publishes it to the JMS Server and makes it available to any
JMS subscribers. The RIB knows what subscribers are to receive the message due to
the RIB configuration—this configuration associates a set of subscribers to each
publisher and message family combination.

For PL/SQL Applications, database tables associated with the publishing application
typically stage message information. One or more RIB publishing adapters poll the
application via a stored procedure call. For Java EE Applications, the application calls
a RIB Enterprise Java Bean (E]B) with the payload information to be published.

The message resides on a Java Message Service (JMS) immediately after publication.
The JMS topic provides stable storage for the message in case a system crash occurs
before all message subscribers receive and process it.

A fundamental RIB system requirement is that a message must be delivered to and
processed successfully exactly once by each subscriber. Furthermore, all work
performed by the subscriber and the RIB must be atomically committed or rolled back,
even if the JMS server is on a remote host. The standard way to perform this is by
using an XA compliant interface and two-phase commit protocol.

After initial publication, a message may undergo a series of transformation, filtering,
or routing operations. A RIB component that implements these operations is known as
a Transformation and Address Filter /Router (TAFR) component. TAFR is the acronym
for Transform, Address, Filter, and Route. A TAFR is completely internal to the RIB
and does not reside in either the publishing or subscribing application. The RIB
performs these intermediate transformation and routing operations on some messages
before making them available to the subscribing application.

A single TAFR may only transform a given message, only filter the message, only
route it, or combine any of the three operations.

» Transform - A message may be transformed from one message type into another,
for example, 'WH' (warehouse) from RMS to 'Location’ for RWMS.

» Filter - A message may be filtered. Filtering can occur based on message type or
based on content.

= Route - A TAFR may route a message. For example, whenever a stock order
message is published for a warehouse with an instance of RWMS, the TAER routes
it to the particular RWMS instance from where the stock will be fulfilled and not to
warehouses that do not stock the order's items.

TAFR operations are specific to the set of subscribers to a specific message family.
Multiple TAFRs may process a single message for a specific subscriber and different
specific TAFRs may be present for different subscribers. Different sets of TAFRs are
necessary for different message families. If all subscribers to a message can process all
messages within a message family without any TAFR operations, then no TAFR
components are needed.

Message processing continues until a subscribing adapter successfully processes the
message or determines that no subscriber needs this message.

When a subscriber gets a message to be processed, the adapter checks to see if the RIB
Hospital contains any messages associated with the same entity as the current
message. If so, then the adapter places the current message in the hospital as well. This
is to ensure messages are always processed in the proper sequence. If proper
sequencing is not maintained, then the subscribing application's data can get corrupt.

3-4 Oracle Retail Integration Bus Implementation Guide

Messaging Components

If an error occurs during message processing, the subscribing adapter notes this
internally and rolls back all database work associated with the message. When the
message is re-processed (since it has yet to be processed successfully), the adapter now
recognizes this message is problematic and checks it into the hospital.

After a message is checked into the RIB Hospital, a retry adapter extracts the message
from the hospital and re-publishes it to the JMS topic for reprocessing. The message
remains in the hospital during all re-tries until the subscribing adapter successfully
processes it.

Messaging Components

The RIB is a messaging system made-up of components that are packaged and
shipped as an integration solution between the Oracle Retail applications. The
application boundary between RIB and Oracle Retail applications can be confusing at
times, so this section defines the RIB components and their responsibility and
ownership. A diagram illustrating the RIB integration message flow follows:

RIB Integration message flow
RIB Integration Runtime
RIB OC4J Instance
[RIB Public AP
Henpial
e
JMS Provider |
Retail PLISQL App RIB OG4J Instance o Retail JavaEE App

A fp>oar R Compormnts
[PLSOL APLGETNT) ft—1 7—#{JavakE ngcior]
[PLSOL AP CONSUME) R < = <1 - Pubiicher |

RIB Subsystem Components

This section describes the components of the RIB subsystem.

Adapters

A RIB adapter is a component that coordinates business event (message) generation
and processing with the respective Oracle Retail application interface. Each adapter in
the RIB is created to handle a specific functional interface. RIB adapters are developed
using Enterprise Java Beans (EJB) components architecture, subscribing adapters use
Message Driven Beans (MDBs) and publishing adapters use Stateless Session Beans
(SLSBs).

Core Concepts 3-5

Messaging Components

The RIB provides four types of adapters that Oracle Retail applications can exploit to
integrate with one another. These adapter types are: publisher, subscriber, TAFR, and
hospital retry. They have been built using different technologies based on their
particular needs.

Subscriber and TAFR adapters use Message Driven Bean (MDB) technology to register
with JMS topics and receive messages for further processing.

Publisher and hospital retry adapters make use of the Java SE (Standard Edition) timer
facility to schedule repetitive events that trigger calls to Stateless Session Beans
(SLSBs) to query application tables for messages to publish to the JMS server.

As stated in the introduction, a fifth type of adapter exists for publishing messages in a
pushing fashion. The Oracle Retail applications invoke this adapter at will for
publishing messages.

These adapters have not been considered part of the scope of this technical document
in regard to providing a mechanism for starting and stopping them.

Due to the variety of technologies used by the adapters, the goal of this technical
design has been to isolate users from these differences and provide them with a
common management interface that can be used to control the state of the adapters.
During the last few years, the Java Management Extensions (JMX) specification has
become a well known standard that defines the management layer for enterprise Java
applications. JMX defines standard methodologies for declaring enterprise application
components as manageable resources that can be exposed in a consistent way such
that any JMX compliant management application can access and provide means for
control.

JMS Domains, Destinations, Subscriptions

JMS defines two types of messaging domains: point-to-point and publish/subscribe.
RIB uses publish/subscribe types of messaging domains for all its communication.
Publish/subscribe is a one-to-many type of message distribution model where one
source application en-queues the message and many destination applications can
de-queue the same message and process independently of the other peer applications.
In publish/subscribe the destinations are known as topics, the en-queuer application is
known as publisher, and the de-queuer is known as subscriber. Unlike point-to-point,
in publish/subscribe the publisher and subscriber are totally ignorant of each other
and do not and should not know about each others existence. The JMS Topics retain
the messages only as long as it takes to distribute them to current active (running)
subscribers. There is also a timing dependency between publishers and subscribers. A
client that subscribes to a topic can consume only messages published after the client
has created a subscription, and the subscriber must continue to be active in order for it
to consume messages. The JMS specification relaxes this timing dependency to some
extent by allowing clients to create durable subscriptions. By creating durable
subscriptions the JMS server will continue to hold the messages for all registered
subscribers for that topic until the subscriber consumes the message or deletes the
subscription. There are two types of subscribers, non-durable and durable subscribers.
The RIB uses only durable subscribers which allows the Oracle Retail edge
applications to be in up or down state independently but still not loose any messages
and catch up when the application comes back up. Every subscribing RIB adapter
registers its durable subscriber with a subscription name that contains its rib-<app>
application name and the adapter name in it.

3-6 Oracle Retail Integration Bus Implementation Guide

Messaging Components

RIB defines logical grouping of retail specific business objects (BO) and business

functions in a concept called message family. For every message family there is a
corresponding JMS topic. These JMS topics are used as communication pipelines
between the source and destination Oracle Retail applications for exchanging the
business objects.

The list of JMS topics used by RIB components is detailed in the RIB Integration Guide
- Reports.

JMS Message Selector

A key aspect of the JMS usage that the RIB relies on is the attachment of message
properties to published messages and the use of selectors by message subscribers.
Message properties are used to convey information about the message outside of the
actual message data to establish a logical channel for messages.

JMS message selectors are used by the RIB to filter the messages that each subscriber
picks up. In other words, using the message properties, selectors act as a filter to weed
out messages a subscriber should not process.

The message property set and used by the RIB messages is called threadValue. The
thread value is associated with a logical channel of a message stream. All messages for
a specific family with a specific business object ID always contain the same
threadValue property. This, combined with the standard first in, first out (FIFO)
message ordering on the topic, is integral to message sequencing. Messages with
different thread Value properties are not guaranteed to be processed in the same
relative order as publishing.

Messages published without J]MS Message Property present will not be picked up by
the standard subscribing RIB adapters.

Additional RIB JMS Message Properties

Every message published by the rib-<app> applications includes a number of J]MS
user defined header properties. In the current release, these properties are only set, not
used by any RIB components. In the future, these properties will be used for intelligent
performance enhancement and optimization and for traceability and auditability of
RIB messages.

The message properties are as follows:
s Property Name: appName

Type: java.lang.String

Required Property: false

Example: appName=rib-rms

Description: The appName property contains the rib-<app> application name that
published this particular message.

= Property Name: adapterInstance
Type: java.lang.String
Required Property: false
Example: adapterInstance=Item_pub_1

Description: The adapterInstance property contains the rib-<app> adapter
instance name that published this particular message.

Core Concepts 3-7

Messaging Components

= Property Name: family
Type: java.lang.String
Required Property: false
Example: family="Ttem'

Description: The family property contains the RIB family name that this particular
message belongs to.

= Property Name: needMessageOrderPreservation
Type: boolean
Required Property: false
Example: needMessageOrderPreservation=true

Description: This property will have a value of true if any ribMessage node within
the RibMessages xml has a message that have businessObjectld set. This property
will allow us to take advantage of the fact that now we know which messages
need message order preserving at JMS header level(without opening the message).
In the future, we will be able to take advantage of that information and further
parallelize our processing and get better throughput without losing message
sequencing.

» Property Name: topic
Type: java.lang.String
Required Property: false
Example: topic="etltem'

Description: This topic property contains the RIB topic name that this particular
message is published to or subscribed from.

s Property Name: ribKernelVersion
Type: java.lang.String
Required Property: false
Example: ribKernelVersion=13.0.3

Description: The system determines the rib kernel jar version number at runtime
and includes its value in this JMS property.

s Property Name: ribFuncArtifactVersion
Type: java.lang.String
Required Property: false
Example: ribFuncArtifactVersion=13.0.3

Description: This is a place holder for future enhancement. The idea is the system
will somehow determine the runtime payload version and include that
information in the message for better compatibility management. This property
will be enhanced in a future release.

3-8 Oracle Retail Integration Bus Implementation Guide

Simple Message Flow

Property Name: ribMessageCount
Type: int

Required Property: false

Example: ribMessageCount=12

Description: This property contains the number of ribMessage nodes there are in a
RibMessages xml message. This value gives us some indication of message
aggregation in play. It might be used in the future to better optimize message flow
paths based on the size/number of the messages.

Property Name: uuid

Type: java.lang.String

Required Property: false

Example: uuid="116cfabd-8949-4f93-bb61-aaa88e168£30'

Description: This property contains a universally unique identifier for every
message. This unique identifier will provide better traceability of a message within
the JMS system. This property complements the ribMessagelD xml element that is
there to trace messages within the RIB logs.

Simple Message Flow
The typical lifecycle of a message through the RIB is as follows:

1.

First, the publishing adapter creates the message. The event that triggers the
message creation may be a polling operation in case of PL/SQL applications or a
synchronous invoke in case of Java EE applications. The message is published to a
predetermined JMS topic.

The message is now available for all registered subscribers to the JMS topic for
pick up. Subscription is based on the message family.

Once a subscriber gets the message, it is free to process it according to its own
rules. In the case of a transformer adapter, the adapter can open the message,
modify its contents, and then publish the modified message to a new topic. The
source topic and destination topic that a TAFR uses must always be
distinct/different topic. There may be new subscribers to the modified message,
and the scenario repeated for each of these subscribers.

When each subscriber has finished (commit) processing a message, the JMS server
updates the state of the message to reflect that it has been processed by this
subscriber.

The JMS Server deletes the messages on the topic after delivering it to all the
registered subscribers.

The figure below is a generalized view of a simple RIB message flow that involves all
of the basic components. Two applications require this data and subscribe to it. One
subscribing application requires a certain transformation be applied to the data, but
the other subscriber can process the message without any transformations.

Core Concepts 3-9

The RIB Hospital

Publishing
Adapter

RIB message— ?d?:tr::r

I
1
1

L_—RIB message—m TAFR Adapter —b]' RIB
1
1
1
1

RIB
Topic

RS SRR

!
I
|
|
[RIB messsag e—h‘
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\

Transformed RIB message

A 4

Subscriber
Adapter 2

The RIB Hospital

The RIB Hospital is a collective term for a set of Java Classes and database tables
whose purpose is to provide a mechanism to handle system and business related
errors while meeting the fundamental RIB requirements:

= Guaranteed once-and-only-once successful delivery.
= Preservation of publication sequence (even in case of failures).

When a message is processed, the adapter checks to see if the RIB Hospital contains
any messages associated with the same businessObjectld as the current message. If so,
then the adapter places the current message in the hospital as well. This is to ensure
messages are always processed in the proper sequence. If proper sequencing is not
maintained, then the subscribing application's data can get corrupted.

If an error occurs during message processing, the subscribing adapter notes this
internally and rolls back all work associated with the message. When the message is
re-processed (since it has yet to be processed successfully), the adapter now recognizes
this message is problematic and checks it into the hospital.

For Publication, there are some RMS publishers that return an 'H' status to denote a
problem creating a new message for a specific business object. This status may be due
to database locks being held by on-line users of an Oracle Forms application or it
could also be due to some data incompatibility found in the GETNXT() procedure.
Whenever a publisher recognizes that a message for a business object cannot be
published due to one of these conditions, the message must go into the RIB Hospital.

After a message is checked into the RIB Hospital, a retry adapter extracts the message
from the hospital and tries to re-publishes it to the integration bus.

3-10 Oracle Retail Integration Bus Implementation Guide

The RIB Hospital

RIB Hospital Dependency Check

The RIB Hospital dependency check logic assumes that each message family has a
single unique businessObjectld for all business object entities its messages are
associated with. This businessObjectld must be the same for the same business entity
across all message types within the message family. If any message for a specific
business entity is placed into the RIB Hospital, then the RIB Hospital dependency
check logic automatically inserts any subsequent messages for the same business
object. This is to preserve the message sequencing and guaranteed exactly once
successful message processing. Otherwise, multiple update messages for a business
object may be processed in an incorrect order and create incompatibilities between
applications.

If the businessObjectid is not set, then there is no dependency check. Not all message
families set the businessObjectld or it is not set on all message types. See Oracle Retail
application documentation (for example, "Message Publication and Subscription
Designs" in the Oracle Retail Merchandising System Operations Guide, Volume 2).

RIB Hospital Insert

If a message is to be inserted into the RIB Hospital because of an error during
processing, it is sent to the subscribing adapter twice. This is because subscribing
adapters are executed within the context of a distributed transaction, using the XA
two-phase commit protocol. This transaction is controlled by the Java EE Application
Server. If the RIB adapter returns success, the application server removes the message
and all database work is committed. If the adapter returns failure, the message never
leaves the integration bus topic and the database work is rolled back.

When the initial failure occurs while processing the message, the error is flagged
within the RIB Hospital software, the adapter returns failure so that the database
transaction is rolled back, and the message is kept on the integration bus topic.

Note: The XA interface is a standard protocol between a transaction
manager and a database or resource manager. Note that both the JMS
topic connection and the database connection must support the XA
protocol. For more information regarding the XA standard, see the
URL, http://www.opengroup.orgd.

RIB Hospital Tables
The RIB Hospital tables are:

» RIB_MESSAGE - contains the message payload, all single-field envelope
information, and a concatenated string made from <id> tags. It also contains a
unique hospital ID identifying this record within the hospital.

s RIB MESSAGE_FAILURE - contains all failure information for each time the
message was processed.

s RIB_MESSAGE_ROUTING_INFO - contains all of the routing element information
found in the message envelope.

» RIB_MESSAGE_HOSPITAL_REEF - contains all of the hospital reference
information found in the message envelope.

A database sequence, RIB_MESSAGE_SEQ, is used to maintain a unique message
number associated with each message placed into the RIB Hospital.

Core Concepts 3-11

http://www.opengroup.org
http://www.opengroup.org
http://www.opengroup.org

The RIB Hospital

RIE_MESSAGE
FK |MESSAGE NUM

H | ADAPTER_CLASS_LOCATION
1 | ADAPTER_INSTANCE_NUMBER
H |[FAMILY

TYPE

1 |Ip

RIB_MESSAGE_ID
PUBLISH_TIME

IN_QUEUE

MESSAGE_DATA
ATTEMPT_COUNT
MAX_ATTEMPTS
NEXT_ATTEMPT_TIME
DELETE_PENDING
TOFIC_NAME
THREAD_VALUE

1 |JMS_QUEUE_ID
CUSTOM_FLAG
CUSTOM_DATA
REASON_CODE

A

h 4
A

RIB_MESSAGE_FAILURE RIB_MESSAGE_HOSPITAL_REF RIB_MESSAGE_ROUTING_INFO

PK,FK1 | MESSAGE NUM PK,FK1 | MESSAGE NUM PK,FK1 | MESSAGE NUM
PK SEQ NUMEER PK SEQ NUMEER PK SEQ NUMEER

TIME HOSPITAL_REF NAME
ADAPTER_CLASS_LOCATION ADAPTER_CLASS_LOCATION VALUE
ADAPTER_INSTANCE_NUMBER ADAPTER_INSTANCE_NUMBER DETAILT_NAME
DESCRIPTION MESSAGE_FAMILY DETAIL1_VALUE
ERROR_TYPE NEW_REASON_CODE DETAILZ_MAME
ERROR_CODE OLD_REASON_CODE DETAIL2_VALUE

These tables will have been created during the database portion of the Oracle Retail
application install (for example, RWMS, SIM, RPM, AIP, or RMS).

The RIB Hospital tables are internal system tables that maintain the RIB runtime state
of the system. The entries in these tables must not be manipulated by non RIB tools
when the RIB is running.

RIB Hospital Retry

After a message is inserted into the RIB Hospital, the hospital retry adapter is used to
re-post the message to the JMS in order to retry its processing. The assumption is that
the error is a transitory one - records locked or there is an external dependency that
has not been met. The number of times a message is retried is configurable.

The hospital retry is responsible for maintaining state information for hospital records
- what has happened to the record or message information. Each time the message is
re-processed, a record is kept of the event along with the results. The design is to
provide a means to halt processing for messages that cause errors while allowing
continued processing for the good messages.

One element of this information is whether the message has been queued to the JMS
topic for re-try processing. Thus, manually deleting messages from the hospital
database using SQL directly may produce severe processing problems. Similarly,
deleting messages directly from the JMS provider may result in a message that is never
retried again, as the logic in the retry assumes the message is queued within the JMS.

There are three kinds of hospital retry adapters:
= Sub Retry Adapter
= JMS Retry Adapter
s Pub Retry Adapter

3-12 Oracle Retail Integration Bus Implementation Guide

The RIB Hospital

All subscriber side retrying of messages are handled by the Sub Retry Adapter. The
Sub Retry Adapter looks at all messages with reason code "SUB", then filters and
identifies the messages that are ready to be reprocessed, keeping message ordering in
mind.

Oracle Retail applications are not aware of the fact that the integrations of the business
data is happening through a JMS server. RIB abstracts that fact that it is using a JMS
server from the retail applications. When the JMS server is down or RIB has some
problem publishing to the JMS server, RIB will not rollback the transaction as long as it
is a recoverable problem. In such situation all messages are inserted to the RIB
Hospital with a reason code of "JMS" and publications continues on. The JMS Retry
Adapter retries all messages with reason code of "JMS" at a later time.

All messages with reason code of "PUB" are retried by the Pub Retry Adapter. RMS is
the only retail application that needs the Pub Retry Adapter.

Hospital Attempt (Retry) Count

When the message first comes through the subscriber, if there is no businessObjectid,
then there is no dependency check performed. If the message cannot be processed, it is
then inserted into the hospital with an attempt_count = 1.

A message that comes through the subscriber that has a businessObjectid has a
dependency check performed. If there is no dependency and the message cannot be
processed, it Is then inserted into the hospital with an attempt_count = 1.

A message that comes through the subscriber that does match the ID and family of
another message in the hospital is known to be dependent, so it goes to the hospital
immediately, with an attempt_count = 0.

Core Concepts 3-13

The RIB Hospital

3-14 Oracle Retail Integration Bus Implementation Guide

4

Oracle Retail Application APIs

PL/SQL Stored Procedure APIs

Each PL/SQL based application uses a Message Family Manager (MFM) specific API
for publishing all messages within a specific message family. This API is the interface
to a stored procedure package and wrappers the staging table and additional business
logic surrounding the message publication.

The RIB Publishing Adapter polls the API by calling a routine in the MFM called
"GETNXT()". The MFM "GETNXT()" PL/SQL stored procedure may contain simple or
complex logic that is specific to the message types published. For example, a simple
Create Vendor message may involve merely selecting and then deleting a single record
from the vendor staging table. On the other hand, a Create Purchase Order message
requires fairly complex logic to create because of the business process dependencies.
Many changes may be made to a PO before it is approved.

The RIB Subscribing Adapter invokes the API by calling a routine in the MFM called
CONSUMEY).

The RIB Pub Hospital Retry Adapter invokes the API by calling a routine in the MFM
called PUB_RETRYY().

Oracle CLOB APIs

The main facet of this API involves the use of Oracle CLOBs (Character Large Object
Binaries) as the means to pass information to and from an Oracle stored procedure.
The stored procedure is responsible for parsing or building the message payload.

There are only a few of this type remaining in RMS.
List of Interfaces.

API's using CLOBs have internal triggers that are fired when a specific database table
is modified. The trigger retrieves all of pertinent information to create a specific type of
message (XML payload) and inserts it into a staging table using an application specific
Message Family Manager (MFM) API. The payload is contained in an Oracle
Character Large Object Binary (CLOB). The staging table that holds the payload data
must also maintain the following;:

s The order that messages are created

s The CLOB containing the "payload” XML

Oracle Retail Application APIs 4-1

PL/SQL Stored Procedure APls

= Any routing or filtering key values

= The message type associated with the business event that created the message. The
message type is specific to the message family and a single business event may
produce multiple messages of differing types within different families.

RIB_XML and RIB_SXW Database Packages

These PL/SQL packages contain utilities to make the generation and parsing of XML
documents easier. It is based on Oracle's XDK, and is designed to support CLOB
application-specific APIs that read and write XML messages.

Oracle Object API's

These application interfaces use Oracle Objects to pass information to and from the
stored procedure. Each RIB Object corresponds to the XSD that defines the RIB
Message payloads for that message family. This is the predominant type of PL/SQL
API used in Oracle Retail integration via the RIB.

When a message is ready for publication, the Message Family Manager GETNXT()
Stored Procedure examines its staging tables and creates the appropriate RIB Object
for publication. In many cases, these staging tables contain columns that are
themselves declared a specific type of RIB Object. Once the complete RIB Object is
ready, the GETNXT() Stored Procedure returns this(RIB Object) to the calling RIB
Adapter, which then converts the RIB Object into an equivalent XML string.

When a subscribing adapter gets a message from the JMS topic it constructs the Oracle
Object by parsing the incoming payload xml. The newly created Oracle Object is
passed in to the CONSUME() stored procedure to process the message.

RIB Related Database Tables

PL/SQL stored procedures use three tables to refine their behavior: RIB_SETTINGS
and RIB_TYPE_SETTINGS and RIB_OPTIONS. Not all applications use these.

The RIB_SETTINGS table defines, on a per message family basis:

s The number of channels to use when publishing. See "Multi-channel" in the Oracle
Retail Integration Bus Operations Guide.

s The maximum number of details to publish within a create, update, or delete
message. Oracle Retail applications typically do not have a limit to the number of
details a specific business object can have. Hence, a purchase order may be created
containing tens of thousands of detail lines - each line a specific item /location
combination. A single PO Create message containing 30,000 or so lines require a
vast amount of resident memory to parse. This column limits the PO Create and
subsequent PO Detail Add messages to a set number of details.

The RIB_TYPE_SETTINGS table is used internally by the application.
The RIB_OPTIONS table is used by the CLOB APIs for the creation of XML.

4-2 Oracle Retail Integration Bus Implementation Guide

Oracle Retail Java EE APIs

Detail Architecture - PL/SQL Apps

RIB Detail Architecture — PL/SQL Apps
Java EE Server
JSP/Serviet MBean Server EJB Container JCA Cantainer
Container
rib-<app>.ear

-
Retall PUSQL App [t ||| [R Adepter = R
i | | ' _

[ol Publishes Tamer 1 | Publishersisn |+ Pub Topic A I'J =

Poll Publisher Timer 2 Ribs
l Mls.:m‘ l—{sunmwunm |-Q-?—|5mTq)ic1 Il- ! —--Jlls-iewer
I

PL/SOL APLCONSUME)

-{.vl g I&M.- | {1 topiea]
Subscriber ‘apic 2 | Tes |

Hosp Retry Timer | I
T L_ [s)
,' losp Retry SLSB ,' —
F
[Retry Ermor Hosp Mgr_|
— @
I [|
Hoapaa o) sub) - | Ciient
Tables

Oracle Retail Java EE APIs

These interfaces to the RIB are via Message Driven Bean (MDB) for subscribers and by
Stateless Session Bean (SLSB) to publish messages to the JMS. This architecture uses
Payload Java Beans to communicate event information from the RIB code to the
application messaging processing logic.

The internal architecture of RIB is very similar between Oracle Retail PL/SQL
applications and Oracle Retail Java EE applications. The only significant difference is
in the publishing adapter types. For PL/SQL Retail applications RIB keeps on polling
the stored procedure every few seconds to find out if there is any work. When the
stored procedure returns some data (that is, when there is some work), RIB goes and
does the work. In Oracle Retail Java EE applications RIB does not do any polling. The
roles are reversed where the Oracle Retail application requests RIB to publish a
message. Thus, there are two types of publishing adapters in RIB depending on the
connecting Oracle Retail application type. The Java EE application uses request-driven
publishers and the PL/SQL application uses timer-driven publishers.

Oracle Retail Application APIs 4-3

API Return Status Codes

Detail Architecture JavaEE Apps

API Return Status Codes

PL/SQL GETNEXT Return Codes

S - Success
N - No message
H - Hospital

E - Error

PUB_RETRY Return Codes

S - Success

N - No message
H - Hospital

E - Error

I - Keep calling

CONSUME Return Code

S - Success

E - Unhandled Error

4-4 Oracle Retail Integration Bus Implementation Guide

O

Pre-iImplementation Considerations

Before the RIB is installed into an enterprise, there are many factors that need to be
considered. Planning and addressing each of the factors will avoid having to re-install
or re-architect because of performance or operational problems.

The process of RIB implementation requires the creation or modification of a retailer's
Enterprise Integration Architecture. Typically, retailers will already have an integration
strategy, plan or architecture and products in place to integrate their current systems.

The deployment of the RIB is always a portion of the deployment of the Oracle Retail
applications, almost always with RMS. Because the implementation of RMS is a long
cycle project, and always involves data conversions and integration into a retailer’s
existing infrastructure, the RIB implementation planning is strategic to that effort.

RIB Software Lifecycle Management

Software applications, after being made generally available (GA), have a well defined
lifecycle process. The implementer must manage and perform tasks in these phases.

= Acquire the software components.

» Prepare the environment

= Assemble the application

= Deploy and start the application

s Perform day-to-day monitoring to makes sure the application is running properly

= Apply code fixes to the application

Pre-Implementation Considerations 5-1

RIB Software Lifecycle Management

RIE Software Lif [Preparation Phase
7

Step 1
Derwniaas RIB Kimal and untsr 1o eraat yeur RIB
workspace{ri-home).

=

=

| Dirmriesast FOB func artact bar b downloads staging l
arna within rib-bome. Do rok unkar
'-_ _;

Swp 3
Downikoad Al RIB Pak tar 1o downikads Hagng ares
whin fib-home. DO net untar.

\ J
/ ~
Stop 4

Run Ehack-varsion-and-unpack utity. it wil chack
wesicn compatbibly ard axtracl e downkonded e
0 comect location in application assembly ara
8 v

L _/

(Application Assembly Phase i
i Stop 5

Dafirm our RIB cepkayment archdnctirn try ecitrg

Fib-GapRyant -0 s Under depkryTant o
L diruciony ree.

descripion and buld the rib-pe> ars Lsing e
comect casspath and jars from rib-appkication.
..... proe———
L ")

Stop §
Fluy the rib-app-compiter 1o generats all depkoymant

(Deployment Phase
e

Step 7
Corfigure your JMS Server ty running the rib-ape- 1
it

Stap B
[Ru' e rb-ap-daplomie 1 daploy e RIB funcional ‘
arblact war

(Slop 0 i
Raun the ib-app-depkoyer for wach db-<app s i
scope)

| Operations Phase
Step 10
Mitiages yosur runtirss intigration sdaghers g B
Tib-acdapher-conioRer LAty Under oporaBon-home
drectory e

L

Stap 11
Manage your Esrce Hosgital wsing RIHA lood

Stap 12
Manage and Monce your runtiss Systim usng
ROMT ol

Phase

(Step 13
Apply n dofiet fix 85 yoUr 8w by sXEuSng chack-
brsion.and.apphy. detect A Ltkty

Stop 14
it yems wpwtien changa histiry and imartory regerl
by @H0CLING veniory-Management Ltsty

The RIB supports and follows the RIB Software Lifecycle Management. The RIB
Software Lifecycle Management is a well-defined process life cycle and has
implemented specific tools and functionality for each of these phases.

= Preparation Phase - In this phase all relevant components are downloaded,
extracted configured, and version compatibility checks done.

= Application Assembly Phase - In this phase, site specific configuration changes are
made and all the relevant rib-<app>.ears are generated.

= Deployment Phase - In this phase, using the rib-<app>.ears created in the previous
step and the site specific information present in a global configuration file, the
rib-<app> .ears are deployed to the application server instances.

» Operations Phase - In this phase day-to-day operations of the rib-<app>
applications are performed.

= Maintenance Phase - In this phase, code fixes, patching and configuration changes
and maintenance of the RIB is performed.

5-2 Oracle Retail Integration Bus Implementation Guide

Physical Location Considerations

Centralized Configuration and Management

Another key concept in the design of RIB is that all configuration and management is
from a single centralized location using specific RIB provided tools. The RIB is built on
a completely de-centralized model. However, to ensure consistency and compatibility
within an enterprise deployment, a centralized management and configuration model
has been designed.

The RIB provides a RIB installer, consistent with all of the Oracle Retail applications, in
addition to a command line set of tools that are used at installation, assembly and
deployment time to create the Oracle Retail application specific integration.
Collectively these command line tools are called the rib-app-builder and provide
functionality to support the RIB Software Life Cycle.

Physical Location Considerations

The Oracle Retail Merchandising System (RMS) is the most important core business
application from the suite of Oracle Retail Product offerings. RMS provides most of the
retail business functionality that Oracle Retail offers its customers. In other words RMS
is the central hub of oracle retail applications. Since RMS is the central hub of retail
information/data and most information/data flows outward from RMS to other edge
retail applications through RIB the decision on where to physically/logically locate
RIB is very important and will have direct impact on functioning of your enterprise.

It is recommend to keep the RIB's JMS server logically (not physically) close to the
RMS database server as 80% of the data flowing through RIB will interact with RMS
database server. Normally RMS up or down status defines your overall enterprise
retail business status and so keeping your integration infrastructure status in sync with
RMS is beneficial.

RIB Hospital functionality has been added to the TAFR adapters in this release. In
order to avoid situations where entire integration can be down just because the TAFR
RIB Hospital database is down, it is strategic and beneficial to put the TAFR RIB
Hospital tables in the same database instance as the RMS database instance. Obviously
it is required to separate the RMS RIB Hospital tables and the TAFR RIB Hospital
tables by installing then in their own respective database schemas.

The argument above can be extended to the rib-tafr.ear application and rib-rms.ear
application, and so it is recommended to collocate rib-rms.ear and rib-tafr.ear as much
as possible.

RWMS and SIM are edge retail applications which might be running closer to your
physical warehouse location or your physical store management location. It is
recommended collocate rib-sim.ear near SIM application and rib-rwms.ear near
RWMS application.

The integration message flow is centrally managed in this release. The
rib-func-artifact.war web application determines which messages go where between
the rib adapters across all rib-<app> applications. At runtime the rib-<app>.ear needs
access to the central message flow repository available in rib-func-artifact.war.
Therefore, rib-func-artifact.war must be deployed in a central location where all
rib-<app>.ears have access to it at runtime.

The RIB is a central office enterprise integration solution; it is not designed to work
optimally on a low (non LAN) bandwidth network. Distribute the rib-<app>.ear
applications in such a way where you can avoid lots of network hops, any network
protocol bridges, and any communication over a WAN.

Pre-Implementation Considerations 5-3

JMS Server Considerations

JMS Server Considerations

Retail business generates huge volume of transactions that are time sensitive in nature.
For the business to be agile and react quickly RIB has to transmit the business events
over the JMS server very quickly. The RIB depends upon the underlying JMS server for
its performance, robustness, and reliability. Therefore, your retail business
performance and reliability is directly dependent on how robust the JMS server is and
how much CPU, memory, network and other system resources are available to it. It is
critical to provide adequate hardware resource to the JMS server in order for it to be
able to meet your performance requirements.

It is not recommended to locate the JMS server and the RIB application server on the
same machine. RIB tools automatically configure the JMS server to meets RIB's
required configuration. Do not modify the RIB JMS server configuration unless it is
advised by RIB documentations. RIB provides tools to monitor the RIB JMS server and
only those recommended tools must be used for your daily operations.

It is important to consider the sizing, either file system space or database table space,
when planning the deployment of the JMS Provider to a host. It is a very common
operational use case for one of the Oracle Retail subscribing applications to go off-line
for an extended period, either due to business requirements or problems. Basic sizing
at a customer for any JMS system is for the disk (mount points or database) to be able
to handle 24 hours of maximum messages per topic.

Using Multiple JMS Servers
Having multiple JMS servers can improve overall system performance and
accommodate the following:
= the separation of high volume families from low volume ones.
= the customization of integration flows.
= Operational Quality of Service (QoS).
» distribution of the overall load on the integration system.

To meet the JMS agnostic requirement for the RIB, a unique JMS server ID
(jms-server-id) is assigned to each RIB adapter. Accordingly, each RIB adapter can
identify the JMS server to which it is associated. As the default, "out-of-the-box"
adapters are configured to be on jms-server, jms].

For each new jms-server-ID, a new resource adapter must be configured to point the
application server to the JMS provider's resource. The adapter communicates with the
JMS server and is deployed as part of the application. Where customization is
required, the adapter can be configured to point to a different JMS.

Note: For more information on using multiple JMS, "JMS Provider
Management" in the Oracle Retail Integration Bus Operations Guide.

5-4 Oracle Retail Integration Bus Implementation Guide

High Availability Considerations

Oracle Streams AQ JMS

Streams AQ provides PL/SQL APIs to interact with the native AQ server inside the
Oracle database. Native AQ stream is not the same as AQ behaving as a JMS server.
RIB configures the native AQ server to behave as a JMS specification compliant J]MS
server implementation. Therefore, it is strictly prohibited to manipulate RIB's JMS
topics and RIB's AQ configurations directly with the AQ PL/SQL or java APL

AQ JMS server can be configured to be highly available by taking advantage of Real
Application Cluster (RAC) functionality of the Oracle Database.

The RIB installation process defines the minimum RDBMS permissions and role that
are required for the RIB code to properly create the AQ JMS topics per the
specifications required for the RIB behavior. There should be no attempt to use
alternate settings or configurations.

Beyond the installation, there are critical considerations that must be addressed for
performance and operations that depend on the volumes and topology of the
deployment.

Note: See "The RIB on AQ JMS" in the Oracle Retail Integration Bus
Operations Guide.

For information, see Oracle's documentation around High Availability.

High Availability Considerations

As businesses are maturing and having to do everything quicker, better, faster, and
with less resource and money they are pushing similar expectation onto their IT
infrastructure. Business users are expecting more out of their IT investments, with zero
down time, consistent predictable responding systems which are highly available has
become basic requirements of today's business applications.

Modern business application requirements are classified by the abilities that the
system must provide. This list of abilities such as availability, scalability, reliability,
scalability, audit ability, recoverability, portability, manageability, and maintainability
determine the success or failure of a business.

With a clustered system many of these business requirement abilities gets addressed
without having to do lots of development work within the business application.
Clustering directly address availability, scalability, recoverability requirements which
is very attractive to a business. In reality though it is a tradeoff, clustered system
increases complexity, is normally more difficult to manage and secure so one should
evaluate the pros and cons before deciding to use clustering.

Oracle provides many clustering solutions and options, the ones that are directly
relevant to RIB are Oracle database cluster (RAC) and Oracle Application Server
clusters.

Oracle Database Cluster (RAC) Concepts

A cluster comprises multiple interconnected computers or servers that appear as if
they are one server to end users and applications. Oracle Database Real Application
Clusters (Oracle RAC) enables the clustering of the Oracle database. Oracle RAC uses
Oracle Clusterware for the infrastructure to bind multiple servers so that they operate
as a single system.

Pre-Implementation Considerations 5-5

High Availability Considerations

Single-instance Oracle databases have a one-to-one relationship between the Oracle
database and the instance. Oracle RAC environments, however, have a one-to-many
relationship between the database and instances. In Oracle RAC environments, the
cluster database instances access one database. The combined processing power of the
multiple servers can provide greater throughput and scalability than is available from
a single server. Oracle RAC is the Oracle database option that provides a single system
image for multiple servers to access one Oracle database. In Oracle RAC, each Oracle
instance usually runs on a separate server.

Oracle RAC technology provides high availability and scalability for all database
applications. Having multiple instances access a single database prevents the server
from being a single point of failure. Oracle RAC enables capability to combine smaller
commodity servers into a cluster to create scalable environments that support mission
critical business applications.

Note: For information, see Oracle Real Application Clusters
documentation.

rib-<app> application and Oracle Database Cluster (RAC)

In this release rib-<app> uses Oracle Streams AQ as the JMS provider. Oracle Streams
AQ is built on top of an Oracle database system. Since AQ is hosted by Oracle
database system, RIB can take advantage of database RAC capability for its JMS
provider. By using RAC configured AQ as the RIB's JMS provider you can scale the
RIB's JMS server vertically and horizontally to meet any retailer's scalability and high
availability need.

At runtime rib-<app> uses the database for keeping track of its RIB Hospital records.
These RIB Hospital tables can be hosted by an Oracle RAC database providing high
availability and scalability for these RIB Hospital records.

Oracle Application Server Cluster Concepts

Oracle Application Server cluster is defined as two or more Oracle Application Server
instances loosely connected to each other providing high availability and scalability
for hosted business applications.

Any highly available system has to have redundant components to mask failures in
individual components. All Oracle Application Server components can be deployed in
a redundant fashion to make their services more available. Oracle Application Server
allows choosing between active-active or active-passive redundant models in all its
sub-tiers.

In an active-passive configuration the passive components are only used when the
active component fails. Active-passive solutions deploy an active instance that handles
requests and a passive instance that is on standby. In addition, a heartbeat mechanism
is usually set up between these two instances together with a hardware cluster (such
as Sun Cluster, Veritas, RedHat Cluster Manager, and Oracle CRS) agent so that when
the active instance fails, the agent shuts down the active instance completely, brings up
the passive instance, and resumes application services.

In an active-active model all equivalent members are active and none are on standby.
All instances handle requests concurrently.

5-6 Oracle Retail Integration Bus Implementation Guide

High Availability Considerations

Obviously, an active-active system generally provides higher transparency to
consumers and has a greater scalability than an active-passive system. On the other
hand, the operational and licensing costs of an active-passive model are lower than
that of an active-active deployment.

For those systems requiring an active-active model, Oracle Application Server
provides Oracle Application Server Clusters, a set of application server instances
configured in an active-active model to serve the same set of applications and/or
services. When an active-passive model is needed, Oracle Application Server provides
Oracle Application Server Cold Failover Cluster, which is a set of application server
instances (two in most cases, since only one remains active and no greater benefits are
achieved by including more nodes) configured in an active-passive model to serve the
same set of applications and/or services.

Oracle Application Server allows the grouping of Java EE containers that serve the
same application through Oracle Application Server Cluster (Oracle Containers for
Java EE). The connectivity provided within a cluster is a function of Oracle
Notification Server (ONS), which manages communications between Oracle
Application Server components, including OC4J and Oracle HTTP Server. The ONS
server is a component of Oracle Process Manager and Notification Server (OPMN),
which is installed by default on every Oracle Application Server host. When
configuring a cluster topology, you are actually connecting the ONS servers running
on each Oracle Application Server node which manages the system handshake and
coordination.

Note: For information, see the Oracle High Availability
documentation.

rib-<app> application and Oracle Application Server Cluster

RIB uses a JMS server for message transportation between the integrating retail
applications. Since RIB must preserver the message publication and subscription
ordering, rib-<app>s deployed in Oracle Application Server cannot be configured in
an active-active cluster mode. In active-active cluster mode, multiple subscribers and
publishers process messages simultaneously and there is no way to preserve message
ordering.

rib-<app> can be deployed to a "single" oc4j instance of an Oracle Application Server
that is clustered(active-active). In this configuration even though rib-<app> is
deployed in an OAS cluster, multiple instance of same rib-<app> is not running at the
same time as there is only one oc4j instance where the rib-<app> is deployed and so
RIB can still preserve message ordering. The maximum number of JVM (Java Virtual
Machine) hosting a rib-<app> oc4j instance must always be configured to be 1 for the
same reason of preserving message ordering.

To truly configure rib-<app>s for high availability the only option is to configure it in
active-passive mode.

Pre-Implementation Considerations 5-7

High Availability Considerations

5-8 Oracle Retail Integration Bus Implementation Guide

6

Deployment Architecture and Options

As the logical architecture diagram shows, there are many rib-<app> applications that
coordinate message flows between the various Oracle Retail applications. There are no
physical location constraints on where these rib-<app> applications can be deployed
as long as they are visible from the same network. But the decision on where to
physically and logically locate your rib-<app> applications has a huge impact on the
high availability, performance and maintainability of your integration solution, so this
decision must be given careful consideration.

Deployment Architecture and Options 6-1

Recommended Deployment Options

Recommended Deployment Options

The RIB applications can be deployed in a variety of physical and logical
configurations depending on the retailer's needs. Oracle Retail has two recommended
configuration alternatives.

s Distributed In this deployment each of the rib application (rib-<app>.ear) is
deployed in the same Oracle Application Server as integrating application
(<app>.ear) but in its own oc4j instance.

» Centralized In this deployment all rib applications (rib-<app>.ear) are deployed
in a single Oracle Application Server (not oc4j instance) independent of where the
Oracle Retails apps (<app>.ear) Oracle Application Server is.

In all cases, the rib application (rib-<app>.ear) should be deployed in its own OC4J
Instance. It is not recommended to deploy multiple rib applications into the same
OC4] instance, or to have the rib application (rib-<app>.ear) deployed into the same
OC4] instance as the integrating application (<app>.ear).

Distributed Deployment Alternative

In this deployment setting the rib application (rib-<app>.ear) is deployed in the same
Oracle Application Server as the integrating application (<app>.ear). Logically
rib-<app>.ear and <app>.ear are closely tied to each other, so it makes sense to also
deploy them physically close to each other within the same Oracle Application Server.
There will be only one JMS server and all participating rib-<app> are configured to use
the same JMS server.

H

RIB Campenent

il

Following are some advantages and disadvantages of this configuration.

Advantages

s Required single Oracle Application Server for both rib (rib-<app>.ear) and
integrating application (<app>.ear).

= <app>.ear and rib-<app>.ear are close to each other but are still loosely coupled.

s [tis easy to find which rib-<app>.ear is associated with which integrating
application (<app>.ear).

6-2 Oracle Retail Integration Bus Implementation Guide

Distributed Deployment Alternative

= A single OAS instance is never the single point of failure for the whole integration
system.

s The Oracle Process and Notification manger can optimize network communication
much better when both the oc4j instances are managed by the same OAS instance.

Disadvantages

s When OAS server of rib-<app>.ear has to be bounced, the integrating application
(<app>.ear) becomes unavailable as both reside in the same application server.
Similarly rib-<app>.ear has to bounce when <app>.ear needs bouncing. This
dependency between the two applications is not ideal.

= Even though both the applications reside within the same application server, it is
the configuration with the applications that are tying them together not the
physical characteristics of both being deployed in the same application server.
Physical location might be misleading if the system is not configured correctly.

= One application server has to work harder for management of resources and
services for both applications.

= System load distribution between rib-<app>.ear and <app>.ear is not possible as
both applications reside within the machine.

Who Should Use This Configuration?

Medium to large size deployments can use this configuration. This configuration is
appropriate when the machine hosting OAS is adequately sized for its job. A high
message volume in rib-<app>.ear can adversely affect the performance of the
integrating application (<app>.ear) in areas that are not related to integration. Ideally
this kind of behavior is not desirable for an online system.

Deployment Architecture and Options 6-3

Centralized Deployment Alternative

Centralized Deployment Alternative

In this deployment all rib application (rib-<app>.ear) are deployed in a single Oracle
Application Server but in separate Java EE containers (OC4] Instances). The
integrating applications (<app>.ear) are deployed in their own separate Oracle
Application Server. There is only one JMS server and all participating rib-<app> are
configured to use the same JMS server.

Following are some advantages and disadvantages of this configuration.

Advantages
= Allintegration relegated components are deployed in one application server.

= Simple to find, view, and manage.

Disadvantages

= Since all rib-<app>.ear resides in the same Oracle Application Server, system
resources get shared between the applications which means that they can
adversely affect each others performance. For example rib-aip.ear can become
slow when rib-rpm.ear is processing lots of messages even though these
applications are not at all related to each other.

= Overall performance can be slower as one application server machine has to do
lots of work.

= The RIB application server and host become the single point of failure for the
whole integration system (environment). That is, when the Oracle Application
Server goes down the whole integration is down for all retail applications
(<app>.ear).

6-4 Oracle Retail Integration Bus Implementation Guide

Conclusions

Who should use this Configuration?

Small to Medium size deployments can use this configuration. When the message size
is small and high volume is not expected this configuration can be used. This
configuration can also be used when there are only two integrating application. As
each rib-<app>.ear publishes and subscribes to each other, they are indirectly (through
JMS) interdependent and so performance should not be affected too much when the
message volume is less.

Conclusions

RIB deployment recommendation does not take into account your hardware size,
network topology, existing legacy system, and so on. One size fits all does not work.
You need to do proper due diligence based on our recommendations and your specific
environment settings in order to come up with the best deployment architecture that
meets your needs.

Deployment Architecture and Options 6-5

Conclusions

6-6 Oracle Retail Integration Bus Implementation Guide

7

Implementation Process

This release of RIB defines the full lifecycle of the RIB software product. The RIB
lifecycle and phases are described in detail in the software lifecycle management
section of this document. For every lifecycle phases and task that RIB defines it
provides corresponding tools and utilities to manage and operate on those phases. The
tools and utilities are described in detail in the RIB Operations Guide.

There are several prerequisite steps that should be followed to have a successful RIB
installation and deployment.

Understand the RIB Core Concepts.
Understand the integration message flow paths.
Understand the deployment options.
Understand the RIB Life Cycle.

Understand the physical and logical requirements and limitations of the RIB
Components.

Understand the RIB Operational considerations.

The process of implementation should follow these general steps:

Work with the teams at your organization dedicated to Oracle Retail to coordinate
plans for the number and type of environments needed (for example, Dev,
Integration, Production).

Each type of environment needs to be sized, deployed, and managed in
conjunction with the implementation of the Oracle Retail applications.

- Itis important to understand the volume requirements of the production
system so that the appropriate decisions can be made about the deployment
option and the physical location and sizing.

All deployments have integration to existing retailer systems. It is critical to
understand the position of the RIB as it fits into the overall integration architecture
and that the current operations and architecture team understand the RIB and its
capabilities.

Select a deployment option (centralized or distributed),

— This may be mixed depending on the phases of deployment. Development
and test may be centralized and production distributed.

- Understand the operational complexities of each and plan for the staffing.

Work with the application server administration team(s) to determine the physical
and logical placement of the RIB components.

Implementation Process 7-1

Implementation Verification and Validation

= Work with the system administrator and database administrator to appropriately
place, size, and configure the AQ JMS.

= Work with the system administrators to select the central RIB management
location(s); rib-home.

s The installation of the RIB has many pre-requisites and dependencies that require
the understanding, support and effort of database administrators, system
administrators, application server administrators, and your organization's Oracle
Retail application teams. It is a critical role of the RIB system administrator to
work with each team, regardless of the site organization structure. See the Oracle
Retail Integration Bus Installation Guide.

— The operation requirements and considerations are covered in the Oracle Retail
Integration Bus Operations Guide. The guide should be understood before the
implementation so that the factors can be considered in the planning.

» Create operational plans for the RIB Life Cycle. See the Oracle Retail Integration Bus
Operations Guide.

s Create plans for environment monitoring and maintenance. See the Oracle Retail
Integration Bus Operations Guide.

= Plan to performance test. The RIB supplies tools to aid in the testing, but it is a
difficult task that involves the database administrators, system administrators,
application server administrators, and the Oracle Retail application teams.

Note: For more discussion on Performance see "Performance
Considerations" in the Oracle Retail Integration Bus Operations Guide.

Implementation Verification and Validation

Verification is the process of reviewing, inspecting, testing, and documenting that the
product behaves in a manner as defined by the product requirement specification.
Validation on the other hand is the process of making sure that the product's runtime
behavior meets the retailer's needs and requirements. RIB provides tools and utilities
to verify that a RIB installation is configured correctly and works properly when
business events (messages) occur in your enterprise. RIB also provides tools to test
your integration infrastructure standalone independent of any Oracle Retail
applications.

Implementation Environment Verification

The RIB Diagnostic and Monitoring Tool (RDMT) can be used to verify your
installation and configurations. The RDMT configuration report utility generates an
extensive configuration report of your runtime environment. It is recommended to
regularly perform full RIB health check using the RDMT tool sets to proactively find
problems and recover before any problem becomes a serious issue.

See the Oracle Retail Integration Bus Operations Guide for RDMT information.

7-2 Oracle Retail Integration Bus Implementation Guide

Implementation Verification and Validation

Integration Environment Testability

Identifying the ownership of an integration problem is one of the hardest problems in
any integration project. Data mismatch problems always show up in the integration
layer but in reality it is the source and the destination applications that has mismatch
data model. To be able to isolate integration infrastructure problem versus retail
application API problem it is very important to be able to test the integration
infrastructure independent of the retail applications.

In this release, RIB provides two test harnesses that allow you to build a standalone
working integration environment without the need to install any Oracle Retail
applications. The test harnesses simulate Oracle Retail PL/SQL applications (RMS and
RWMS) and Oracle Retail Java EE applications (SIM, RPM and AIP). The test
harnesses are known as plsql-api-stubs and javaee-api-stubs respectively.

See the Oracle Retail Integration Bus Operations Guide for further detail on the RIB test
harness.

Implementation Process 7-3

Implementation Verification and Validation

7-4 Oracle Retail Integration Bus Implementation Guide

8

Performance

Performance Factors

The performance of each of these components is influential in the overall performance
of the system:

The application server(s) topology and configuration.
The RIB deployment approach.
The hardware sizing and configuration of the RIB hosts.

The hardware sizing and configuration of the applications that are connected to
the RIB.

The hardware sizing and configuration of the JMS provider host.

The hardware sizing and configuration of the RIB Hospitals hosts.

There are other factors that determine the performance of the overall system. Some of
these factors in a RIB environment are:

Number of channels configured

Number of messages present in the topic

Size of the message

Database clustering

Application Server topology

Number of TAFRs in the processing of the message

Message aggregation

See the "Performance Testing the RIB" in the Oracle Retail Integration Bus Operations
Guide.

Performance 8-1

Performance and Parallel Logical Channels

Performance and Parallel Logical Channels

The RIB has to provide guaranteed once and only once processing of business events
(message) across the enterprise. Maintaining the ordering of business events across the
enterprise is very important from the data integrity point of view.

To provide guaranteed sequencing of message processing RIB requires a guaranteed
first in, first out (FIFO) messaging system with guaranteed FIFO rollback. That is,
when you rollback the message from the consumer you get the same message back the
next time so that it is processed in sequence. JMS Provider provides this FIFO topic
and FIFO rollback capability that enables RIB to guarantee message sequencing.

Processing messages in sequence has some overhead as every message has to be
checked against the database to find the status of previous messages that it is
dependent (same businessObjectid") on. Sequencing requirement creates an inherent
bottleneck of ability to process only one message at a time. For example, messages can
come at the rate of 100 messages per second but RIB subscribing adapter can process
only 1 message at a time in order to preserver ordering. To get around this bottleneck
and improve performance RIB provides a few optimizations and functions.

First, RIB processes messages in sequence only when the publishing application wants
it to be processed in sequence. The message producer application defines a
businessObjectid whose existence informs RIB that this and all subsequent messages
with the same businessObjectid have to be processed in order.

Second, parallel logical channels can be created for each message flow paths in the
integration system to improve performance. Parallel logical channels are virtual logical
message flow paths within the same physical JMS topics. To add additional channels
each adapter participating in a message flow must be configured with additional
adapter instances. See the Oracle Retail Integration Bus Operations Guide for how to
configure parallel logical channels.

Parallel logical channel is not the solution for all of your performance problems in the
integration system. Parallel logical channels can help only when the corresponding
applications integration API is written with non-locking logic and concurrency
invocation in mind.

Generally the retail application's integration APIs are the biggest factor and
bottlenecks in the overall messaging system through put. It is not appropriate to start
creating parallel logical channels at the first sign of performance problem. It is critical
to analyze your retail applications integration APIs first and tuning them before
considering the creating of parallel channels.

Parallel logical channel comes with an increase in complexity, more CPU demands and
memory requirements, and more operational overhead. They should only be
considered when all other components are fully tuned and you are still not able to
meet your target numbers.

8-2 Oracle Retail Integration Bus Implementation Guide

9

Security

Security in the integration layer is a big concern for every retail enterprise. The
security system should be open enough to allow trusted remote applications to
integrate easily and, at the same time, lock down unauthorized remote access. To
address security concerns RIB utilizes the security modules available in the Oracle
middle ware and database systems.

There are two categories of administrators in RIB: RIB System Administrators and RIB
Application Administrators. The RIB System Administrators are involved in installing,
configuring, deploying defect fixes, and making sure that the integration infrastructure
is up and running properly. The RIB Application Administrators are the people who
are mostly concerned with the business side of the integration system. These users
(RIB application administrators) mostly bring up or down RIB adapters and fix data
issues with message payloads using RIHA. There are different realms, roles and users
defined for each category of RIB administrators.

RIB Application Administrators Security Domain

For each rib-<app>.ear deployed, RIB creates a security realm called ribadminrealm.
This realm defines a role called ribadminrole. By default, RIB creates a user called
ribadmin that belongs to the ribadminrole. The default password for ribadmin user is
ribadmin. The RIB System Administrators can manage rib-<app> application's users
and access control through the Oracle Application Server Control (em). The default
realm, role and user that RIB creates must not be deleted or modified.

RIB System Administrators Security Domain

The RIB System Administrators mainly focus on managing access the RIB's JMS server,
application server instances, RIB Hospital database, and the rib-home workspace. RIB
can be deployed with a user other than the OAS default oc4jadmin user, to configure a
riboc4jadmin user see the Oracle Retail Integration Bus Installation Guide.

Security 9-1

RIB System Administrators Security Domain

9-2 Oracle Retail Integration Bus Implementation Guide

10

Integration with Fusion Middleware

The RIB is certified on the Oracle Fusion Middleware Application Server. All of the
RIB publishers, subscribers, and TAFRs are JavaEE standard components (EJBs and
MDBs) that are deployed and managed by the Oracle Application Server in OC4]J
instances. This means that the RIB can be deployed into an existing Fusion
Middleware architecture without any changes.

All RIB message payloads are fully standard compliant XSD based. All of the XML
payloads are namespace aware and follow the general standards as well as the
conventions that make them compatible with other Oracle Fusion products such ESB
and BPEL. The payload schema definitions (xsds) are packaged with each release
along with sample messages.

The RIB is a standard's based JMS messaging system, with Oracle Streams AQ and the
Oracle Application Server OC4] JMS being the initial JMS providers certified.

The recommended approach for integration between the RIB and Oracle Fusion
Middleware products is at the JMS topic level. Any standards compliant tool or
product that can interface to the JMS and subscribe and publish messages can be
integrated with the RIB.

There are some key functional requirements that an integrating application must
follow:

= Ability to connect to a standard JMS and publish to a topic.
= Ability to create a durable subscriber to a RIB JMS topic
= Ability to set user-defined message properties.

= Ability to encode and decode RIB payloads embedded within the RIB message
envelope.

Integration with Fusion Middleware 10-1

General RIB to Fusion Middleware Architecture

General RIB to Fusion Middleware Architecture

RIB Certified
JMS Provider

Oracle Retail Oracle Retail
Warehouse Store
Management Inventory
System Management

The Oracle Fusion Middleware products, such as ESB and BPEL, use a common
standard JMS Adapter. This adapter can be used to connect to the RIB certified JMS
Provider and topics.

The JMS topics that the RIB creates for Publication and Subscription are detailed in the
Oracle Retail Integration Guide, along with all of the message payloads for each
message family.

The RIB html encodes each message payload and inserts it into the RIB messages
envelope. Each message has a JMS user-defined property called threadValue that is
required to be set on all in-bound messages. In a multi-channel message flow, the
subscriber will need to set the message selector to an appropriate threadValue to
maintain message publication sequencing.

The xml schema definitions for the payloads and the RIB Messages envelopes are
packaged and shipped with the RIB.

See the Oracle Retail Integration Bus Integration Guide for information.

The RIB JMS topic names and message flows between the RIB adapters for each of the
Oracle Retail applications are defined in the rib-integration-flows.xml file. This file is
the single source of truth that the RIB release uses at configuration and run-time. It is
required to be accessible within each RIB deployment:

http:/ / <server>:<port>/rib-func-artifact/rib-integration-flows.xml. During
installation and configuration, this file is deployed as part of the functional artifact war
file.

General Process of Integration

The general process for custom integration with the RIB:
» Determine the Message Family of interest (e.g., Items)

= Use the RIB Integration Guide to determine the message payloads and topics
involved.

= Configure the JMS Adapter within the tool (ESB/BPEL) to the RIB JMS provider.

s Understand the RIB envelope (RibMessage.xsd) and the message type
relationship.

10-2 Oracle Retail Integration Bus Implementation Guide

General RIB to Fusion Middleware Architecture

= Understand the payload for each message. These are html-encode inside the
RibMessage envelope.

— The RIB XSDs are included in the RIB Integration Guide as well as the
Function Artifacts war file.

s Understand the Oracle Retail Application API mappings. These are included in
the RIB Integration Guide. This is important because the XSDs do not reflect the
actual optional/mandatory state of an element. For historical reasons (to support
previous releases) all elements in the XSD that have been added since RIB version
10.3 have been optional at the message level.

- The Mapping reports are included with the Integration Guide.

— Each of the Oracle Retail Applications has documentation on the behavior of
the APL

= All RIB messages must have the message property threadValue set by publishing
applications, and in a multi-channel message flow, the subscriber will need to set
the message selector to an appropriate threadValue to maintain message
publication sequencing.

— Understand the relationship between the thread Value and multiple-channels
within the RIB. See "Multiple Channels" in the Oracle Retail Integration Bus
Operations Guide.

= Many of the Message Families have a RIB Component called a TAFR involved.
Understand what a TAFR is and how it works within a message flow. This can be
very involved in some families, and can actually create additional mandatory
elements with a message that may not be obvious. See "Transform, Filtering and
Routing" in the Oracle Retail Integration Bus Operations Guide.

s The RIB Integration Guide for each family has the general functional specifications
for the TAFRs involved with that family.

s Understand the volume characteristics of a message family. The RIB is designed to
handle retail volumes, so a poorly designed subscriber can have a huge impact on
the JMS. Conversely, a publisher that tries to use the RIB as a bulk transfer
mechanism is also inappropriate.

Example - Configure FWM JMS Adapter to RIB AQJMS

This example demonstrates configuring a simple JMS Adapter connection to a RIB AQ
JMS. This example assumes the GA installation of the Oracle SOA Suite and the
default directories ($SOA_HOME).

To do the configurations, it is necessary to have the RIB AQ JMS information:

AQ JMS Database URL jdbc:oracle:thin:ribaq/ribag@linux1:1521:0ral0g
AQ Username ribaq
AQ Password ribaq

Integration with Fusion Middleware 10-3

General RIB to Fusion Middleware Architecture

Create the Resource Provider

First edit the $SOA_HOME/oc4j_soa/config/ application.xml file to add a resource
provider that points to the RIB AQ JMS. Provide a name to the resource provider.

<resource-provider class="oracle.jms.OjmsContext" name="ribaqg">
<description>RIB AQ</description>
<property name="url"
value="jdbc:oracle:thin:ribaq/ribag@linuxl:1521:0ral0g" />
<property name="username" value="ribaq" />
<property name="password" value="ribaqg" />
</resource-provider>

Configure a JMS Connection Factory

Edit the $SOA_HOME/ oc4j_soa/application-deployments/default/JmsAdapter/
oc4j-ra.xml file to match the Resource Provider name created above. Either create a
new entry or edit an existing one. Note the factory location (JNDI Name).

<connector-factory location="eis/aqgjms/Topic" connector-name="Jms Adapter">
<config-property name="connectionFactoryLocation"
value="java:comp/resource/ribaq/TopicConnectionFactories/myTCF" />
<config-property name="factoryProperties" value=""/>
<config-property name="acknowledgeMode" value="AUTO_ACKNOWLEDGE"/>
<config-property name="isTopic" value="true"/>
<config-property name="isTransacted" value="true"/>
<config-property name="username" value="ribagqg"/>
<config-property name="password" value="ribagqg"/>
<connection-pooling use="none">
</connection-pooling>
<security-config use="none">
</security-config>
</connector-factory>

Configure the FMW JMS Adapter

There is nothing special about configuration of the JMS Adapter in either ESB or BPEL
to now connect to the Resource Provider configured to the RIB AQ JMS. (See the
Oracle SOA Suite tutorials and documentation).

The following prompts appear during configuration:

Prompt Example

Resource Provider ribaq

JNDI Name eis/aqjms/Topic

Connection (database) ribaq/ribaq@linux1:1521:0ral0g

Destination Topic (Browse to | java:comp/resource/ribaq/Topics/RIBAQ.ETORDERFROMR
see RIB Topics) MS

Message Selector thread Value=1

Durable Subscriber ID: Order_sub_ESB

Schema Location RibMessages.xsd

Schema Element RibMessages

Note: RibMessages.xsd should be imported into the project from the
RIB functional artifacts distribution.

10-4 Oracle Retail Integration Bus Implementation Guide

11

RIB Customization/Extension

The "customization” of an Oracle Retail application often drives requirements to
customize or extend the messages that flow among the Oracle Retail applications, or to
create new message flows to support new business logic.

This document discusses the customization/extension approaches and best practices
from an Oracle Retail Integration Bus (RIB) perspective for extending base messages,
and for creating new messages and adapters. These are complex topics and should be
performed with great care to avoid making future generally available (GA) releases
difficult or impossible to accept.

Retailers often modify retail software either in-house or through third party system
integrators. The customization and extension of Oracle Retail base products and
messages are not supported by Oracle Retail, including My Oracle Support. This
document aims to mitigate the risks of unsupported customization by providing
guidance and references on how to attempt to customize safely and effectively. The
tools and approaches described in this document are complex and require a high level
of skill and knowledge of the product. Any issues that may arise with custom flows,
custom APIs, or customized message families are the responsibility of the customer
and not Oracle Retail.

Prerequisites

Customization requires a number of considerations and planning steps. Planning
helps prevent reinstallation and rearchitecture of the RIB due to operational or
performance problems.

s A functional RIB environment without customizations.

s Familiarity with core RIB concepts, components, and architecture, including an
understanding of all the following:

— Oracle database triggers, RIB adapters, RIB Message envelope, RIB message
payloads, and the functionality of GETNXT () and CONSUME () stored
procedures.

— The integration message flow paths.

— The RIB life cycle.

— The physical and logical requirements and limitations of the RIB components.
— RIB operational considerations.

The tools used in the customization and extension of the RIB are documented
separately. The primary tools are the Oracle Retail Functional Artifact Generator and
the rib-app-builder tools.

RIB Customization/Extension 11-1

General Customization Rules

General Customization Rules

= Always keep an environment with a base version release to reproduce any base
version issues. Only GA base code and messages are supported.

= Always take a backup of the files being modified during the customization to
allow for reversal of the changes.

= Asoften as possible, use RIB tools such as RDMT, RIHA, and "Stubby" to test the
customized changes.

= Never modify the existing base flows in rib-integration-flows.xml. Modification
can cause errors in functionality that are difficult to detect. Also, modifications
made to base flows do not carry over to new releases, nor are they retained when
defect fixes are applied to base code and objects.

= When customizing or extending RIB messages or flows, all publishing and
subscribing applications that participate in the flow must be considered.

= Inscenarios where payload customization or the addition of new message type for
a particular message family is planned, and the flow contains a TAFR, the
following additional rules apply:

— TAFRs that do not examine RIB message types or payloads do not require
modification.

— For TAFRs that examine message types or payloads for filtering or
transformation purposes, the TAFR implemention code must be changed. If
this code is not changed, the messages will fail and land in RIB Error Hospital
tables.

Message Family and Message Type Customization

In the RIB, all messages are categorized by "message family" and "message type." A
message family is specific to one or more Business Objects. It defines all publishable
events occuring on the Business Objects.

The message type classifies a specific event. For example, the Orders message family
is for messages about purchase orders, and the Vendor message family is for supplier
or vendor information.

Typically, a message family includes at least one Create, Mod, and Delete operation.

Note: See "Message Family and Message Types" in Chapter 3 .

Adding a New Message Type

To add a new message to an existing message family, the simplest approach is to add a
new message type. The first step is to determine and create the payload for the new
message type. The message payload must be created following the guideline and
packaging rule for RIB messages.

Note: To create a new message family XSD, see "Adding a New
Payload."

Once the desired payload is ready, follow the instructions in the following sections,
depending on the type of applications in the message family and in the message flow.

11-2 Oracle Retail Integration Bus Implementation Guide

Message Family and Message Type Customization

Message Flows with PL/SQL Applications

The new message type created for an already existing or new message family must be
added in the rib-<app>-plsql-api.xml of the subscribing PL/SQL retail application.

Note: No configuration changes are needed in rib-<plsql app>
whenever PL/SQL applications publish a new message type to which
no PL/SQL applications subscribe.

The following illustration indicates the files that must be changed inside the RIB
infrastructure during the addition of new message type when a PL/SQL application is
involved in the message flow.

RIB Functional Artifacts

Payload xsds

Changes Needed

rib-integration-flows.xml

rib-private-tafr-
business-impl.jar

rib-public-payload-java-

beans jar Retall JavaEE
Application
Retail PL/SQL rib-public-payload- (SIM,RPM,AIP)
Application database-object- i i
java-beans jar

rib-<app>.ear for PL/SQL

RIB Oracle Objects Application

rib-public-payload-
database-object-
types.zip

rib-public-payload-xml- — :
samples.zip injectors.xm
(subscribers only)

RIB Kernel

rib-<app=-adapters.xml

rib-public-api jar

Error Hospital Tables
rib-private-kemel-
database-library.zip

rib-<app=.properties

rib-inventory-info_xmi

T —— - rib-<app>.ear for JavaEE
CLOB API library rlb-deP\oyment-env- Application fib-private-
rib-public-payload- rib-<app>-adapters- wnfo.xmil common.jar
database-xml- resources properties
library.zip rib-application- rib-<app>-adapters.xml rib-public-api-
(RMS Only) assembly-info.xml conf jar(sample)

rib-<app>=-adaplers-
resources properties

rib-=app=-plsgl-api.xml |

rib-system properties

I

rib-<app> properties

Error Hospital Tables
rib-private-kernel-
database-library.zip

Procedure for Adding a New Message Type for PL/SQL Applications

To add a message type for message flows involving PL/SQL applications, complete
the following steps.

1.

Add the new message type in rib-<app>-plsql-api.xml, where app = rms or rwms
in the <RIB_HOME>/application-assembly-home/rib-<app> directory.

For example, to add the new message type, "DiffGrpFooCre," for the DiffGrp
message family that is subscribed by RWMS, add the message type under the
<adaptorClassDef name="DiffGrp_sub"> of rib-rwms-plsql-api.xml in the <RIB_
HOME?>/application-assembly-home /rib-rwms as shown below.

cd <RIB_HOME>/application-assembly-home/rib-rwms
vi rib-rwms-plsqgl-api.xml

<adaptorClassDef name="DiffGrp_sub">
<class>com.retek.rib.collab.general.OracleObjectSubscriberComponentImpl</class>
<messageFamily name="DiffGrp">
<storedProc>
<signature>{call RDMSUB_
DIFFGRP.CONSUME (?,?,?,?,?) }</signature>

RIB Customization/Extension 11-3

Message Family and Message Type Customization

<useFacilityType>true</useFacilityType>
</storedProc>
<messageType name="DIFFGRPDEL">
<oracleObject>RIB_DiffGrpRef_ REC</oracleObject>
</messageType>
<messageType name="DIFFGRPDTLCRE">
<oracleObject>RIB_DiffGrpDtlDesc_REC</oracleObject>
</messageType>
<messageType name="DIFFGRPDTLDEL">
<oracleObject>RIB_DiffGrpDtlRef REC</oracleObject>
</messageType>
<messageType name="DIFFGRPHDRCRE">
<oracleObject>RIB_DiffGrpHdrDesc_REC</oracleObject>
</messageType>
<messageType name="DIFFGRPDTLMOD">
<oracleObject>RIB_DiffGrpDtlDesc_REC</oracleObject>
</messageType>
<messageType name="DIFFGRPHDRMOD" >
<oracleObject>RIB_DiffGrpHdrDesc_REC</oracleObject>
</messageType>
<messageType name="DIFFGRPFOOCRE">
<oracleObject>RIB_DiffGrpHdrDesc_REC</oracleObject>
</messageType>
</messageFamily>
</adaptorClassDef>

Note: Creating a temporary working directory,
"customization-workarea," under <RIB_HOME> /tools-home is
recommended. This directory can be used when performing
customization related tasks.

Edit the payload.properties file in the ./conf directory of the Artifact Generator
tool installation. The payload.properties contains the new payload message
definitions. The format of the definition is as follows:

RIBFAMILY . TYPE=IMPLEMENTATION CLASS NAME

cd conf

vi payload.properties (make changes)

For example, to add the new message type, "DiffGrpFooCre," for th DiffGrp
message family, the modification to payload.properties is as follows:

DIFFGRP.DIFFGRPFOOCRE= com.retek.rib.binding.payload.DiffGrpHdrDesc
In this case, DiffGrpFooCre calls the implementation class, DiffGrpHdrDesc.

Note: For the maximum supported length of the message type, see
the RibMessages.xsd in the rib-func-artifact.war.

Note: If a TAFR is involved in the flow, the appropriate changes
must be made to the TAFR to handle the new message types.

11-4 Oracle Retail Integration Bus Implementation Guide

Message Family and Message Type Customization

Run the Artifact Generator to generate various functional artifacts.

$SGROOVY_HOME/bin/groovy GenArtifacts.groovy

Each generated artifact is in the appropriate ./output*/dist folder, including:
= rib-public-payload-database-object-types.zip

= rib-public-payload-java-beans.jar

= retail-public-bo-java-beans.jar

= rib-public-payload-xml-samples.zip

Copy the newly generated artifact rib-public-payload-java-beans.jar from the
appropriate ./output*/dist folder to <RIB_
HOME>/application-assembly-home /rib-func-artifacts/ directory.

Run the rib-app-compiler.sh script from <RIB_
HOME> /application-assembly-home /bin directory to generate/assemble a
rib-<app> and prepare it for deployment.

Note: See the Oracle Retail Integration Bus Operations Guide for
information about rib-app-builder tools.

cd <RIB_HOME>/application-assembly-home/bin

sh rib-app-compiler.sh

Run the rib-app-deployer.sh script from <RIB_HOME>/deployment-home/bin
directory as follows.

cd <RIB_HOME>/deployment-home/bin

sh rib-app-deployer.sh -deploy-rib-func-artifact-war
This step deploys the rib-func-artifact.war.

sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>

The rib-<app> is deployed to the Java EE container. Repeat this step for each
rib-<app> in the integration environment.

Note: The <app> value must be rms or rwms.

RIB Customization/Extension 11-5

Message Family and Message Type Customization

Message Flows with Java EE Applications

The following illustration indicates the files that must be changed inside the RIB
infrastructure during the addition of new message type when a Java EE application is
involved in the message flow.

RIB Functional Artifacts

Payload xsds

rib-integration-flows xml Changes Needed

rib-private-tafr-
business-impl jar

rib-public-payload-java-
beans jar
Retail JavaEE
Application
Retall PLSQL rib-public-payload- (SIM,RPM,AIP)
stai’ FL database-object-
Application types zip
(RMS,RWMS) : rib_-public-payl_cad-
rib-<app=.ear for PL/SQL rib-public-payload-xmi- lava-beans.jar
RIB Cracle Objects Application gamples2ip injectors.xml
rib-public-payload- (su bjscnber.s only)
database-object- rib-<app=>-
Zi RIB K I
types.zip adapters.xml erne rib-public-api jar

rib-<app>.ear for JavaEE

rib-deployment-env-

CLOB APl library

Application i i -
rib-public-payload- rib-<app>-adapters- info.xml PP :Obr'nf’r::ﬁaf:]
database-xml- resources.properties h
library.zip rib-application-assembly-

(RMS Only}

info.xml rib-public-api-

. conf.jar(sample)
rib-<app>.properties rib-<app>-adapters-

Error Hospital Tables rib-inventory-info.xml resources.properties —
i e . Error Hospital Tables

rib-private-kernel-
4 rib-private-kernel-

database-library.zi rib-<app>-plsql- (“‘T“““““““T““]
vzp api.xml rib-system.properties rib-<app= properties database-library.zip

il

Procedure for Adding a New Message Type for Java EE Applications

To add a message type for message flows involving Java EE applications, complete the
following steps.

Note: Creating a temporary working directory,
"customization-workarea," under <RIB_HOME> /tools-home is
recommended. This directory can be used when performing
customization related tasks.

1. Edit the payload.properties file in the ./conf directory of the Oracle Retail Artifact
Generator tool installation. The payload.properties contains the new payload
message definitions. The format of the definition is as follows:

RIBFAMILY.TYPE=IMPLEMENTATION CLASS NAME
cd conf

vi payload.properties (make changes)

For example, to add the new message type, "FooDeptCre," under the Merchhier
message family to call the implementation class, MrchHrDeptDesc, the file is
modified as follows:

MERCHHIER.FOODEPTCRE= com.retek.rib.binding.payload.MrchHrDeptDesc

11-6 Oracle Retail Integration Bus Implementation Guide

Creating a New Message Family

Note: For the maximum supported length of the message type, see
the RibMessages.xsd in the rib-func-artifact.war.

Note: If a TAFRis involved in the flow, the appropriate changes
must be made to the TAFR to handle the new message types.

2. Run the Artifact Generator to generate various functional artifacts.

$SGROOVY_HOME/bin/groovy GenArtifacts.groovy

Each generated artifact is in the appropriate . /output*/dist folder, including
s rib-public-payload-database-object-types.zip

s rib-public-payload-java-beans.jar

» retail-public-bo-java-beans.jar

s rib-public-payload-xml-samples.zip

3. Copy the newly generated artifacts (listed above) from the appropriate
./output*/dist folders to the <RIB_
HOME>/application-assembly-home/rib-func-artifacts/ directory.

4. Run the rib-app-compiler.sh script from <RIB_
HOME>/application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

cd <RIB_HOME>/application-assembly-home/bin
sh rib-app-compiler.sh
5. Run the rib-app-deployer.sh script from <RIB_HOME>/deployment-home /bin
directory as follows.
cd <RIB_HOME>/deployment-home/bin
sh rib-app-deployer.sh -deploy-rib-func-artifact-war
This step deploys the rib-func-artifact.war.
sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>

The rib-<app> is deployed. Repeat this step for each rib-<app> applicable to the
integration environment.

Note: The <app> value must be rms or rwms.

Note: To verify the addition of a new message type for a message
family, see "Verifying the New Message Type."

Creating a New Message Family

In the RIB, all messages are categorized by message family and message type. One
option for customizing the RIB is to create a new message family with a new
publishing adapter and a new subscribing adapter.

When creating a new message family, consider the following:

RIB Customization/Extension 11-7

Creating a New Message Family

= If the RIB a family also corresponds to a topic, it is recommended that the
customization also include the creation of a new topic for that family.

= A publishing adapter cannot publish to more than one JMS topic.
= A subscribing adapter cannot subscribe to more than one JMS topic.

s The first custom message flow must start with 901, with each subsequent custom
messgae flow ID increasing by one from 901. For example, 901, 902, 903, and so on.

s Each customized message flow ID should be unique and must follow the
sequence.

= A new message family requires new (or custom) Orace Retail application side
APIs. Each API should be written, installed and tested independently, and then
connected to the custom message family flows.

The following illustration indicates the files that require changes during the addition
of new message family inside the RIB infrastructure.

RIB Functional Artifacts

Payload xsds

rib-integration-flows.xml

Changes Needed

rib-private-tafr-business-
impl jar

rib-public-payload-java-

EERTES Y Retail JavaEE
Application
Retail PLISQL rib-public-payload- (SIM,RPM.AIP)
Application database-object-types.zip - - -
(RMS,RWMS) rib-public-payload-java-

beans jar

injectors.xml
(subscribers only)

rib-<app>.ear for PL/SQL
Application

rib-public-payload-xml-
samples.zip

RIB Kernel

RIB Cracle Objects
rib-public-payload-
database-object-
types.zip

rib-<app>-adapters xm|

CLOB AP library
rib-public-payload-
database-xml-
library.zip (RMS Only)

[

rib-<app>-adapters-
resources.properties

rib-deployment-env-
info xml

rib-application-
ssembly-info_xml

rib-<app>.ear for JavaEE
Application

rib-<app>-adapters xml

rib-public-api.jar
rib-private-common jar

rib-public-api-

conf jar(sample)

rib-<app=-adapters-
resources.properties
rib-<app>.properties

Error Hospital Tables rib-inventory-info.xm|
rib-private-kernel-

database-library.zip

Error Hospital Tables
rib-private-kernel-
database-library.zip

rib-<app>.properties
rib-<app>-plsql-api.xml|

|l

rib-system. properties

Procedure for Adding a New Message Family

To add a new message family, complete the following steps.

1. Create a temporary working directory, "customization-workarea," under <RIB_
HOME?>/tools-home to perform any customization related tasks.

2. Copy the rib-func-artifact.war in <RIB_
HOME?>/application-assembly-home /rib-func-artifacts/ directory into <RIB_
HOME->/tools-home/ customization-workarea/ directory.

cd <RIB_HOME>/application-assembly-home/rib-func-artifacts
cp rib-func-artifact.war <RIB_HOME>/tools-home/customization-workarea

3. Extract the rib-integration-flows.xml from the copied rib-func-artifact.war which
needs to be modified.

cd <RIB_HOME>/tools-home/customization-workarea
jar -xvf rib-func-artifact.war integration/rib-integration-flows.xml

11-8 Oracle Retail Integration Bus Implementation Guide

Creating a New Message Family

4. Define the entire flow for the particular message family in
rib-integration-flows.xml in /integration/ directory of <RIB_
HOME-> /tools-home/ customization-workarea.

A new custom message flow should always begin with <message-flow id="901">.
Each customized message flow ID should be unique and must follow the
sequence. Adding a new customized message flow with a message flow ID
between 1 and 900 is not recommended, as this range is reserved for adding base
flows in higher versions of RIB.

For example, when adding a new message family, "Foo," that flows from RMS to
RWMS, the flow is defined in rib-integration-flows.xml as follows:

<message-flow id="901">
<node id="rib-rms.Foo_pub" app-name="rib-rms"
adapter-class-def="Foo_pub" type="DbToJms">
<in-db>default</in-db>
<out-topic>etFooFromRMS</out-topic>
</node>
<node id=" rib-rwms.Foo_sub" app-name=" rib-rwms"
adapter-class-def="Foo_sub" type="JmsToDb">
<in-topic>etFooFromRMS</in-topic>
<out-db>default</out-db>
</node>
</message-flow>

The convention is as follows:

= node id = rib-<app>.<family>_pub or = rib-<app>.<family>_sub or could be
external-system.<family>_pub or external-system.<family>_sub

= app-name = rib-<app>. This is the application name. The <app> value is one
of the following: rms, rwms, sim, aip, rpm, tafr, or external-system

» adapter-class-def = <family>_pub or <family>_sub

= type = DbToJms or JmsToDb

= <in-db> is the source of the message is a database.

= <out-db> is the destination of the message is a database

= <out-topic> is the topic name to which the message would be published

= <in-topic> is the topic name from which the message would be consumed.

5. Replace the previous existing rib-integration-flows.xml with the above changed
rib-integration-flows.xml to the /integration/ directory of rib-func-artifact.war in
the <RIB_HOME-> /tools-home/customization-workarea/ directory and generate
the rib-func-artifact.war as follows.

cd <RIB_HOME>/tools-home/customization-workarea
jar -uvf rib-func-artifact.war integration/rib-integration-flows.xml

6. Create a new publishing adapter, subscribing adapter and TAFR adapter (if
necessary), depending on the requirement for the new message family.

Note: See "Adding New Adapters."

7. Create the message famly XSD.

RIB Customization/Extension 11-9

Creating a New Message Family

10.

11.

12.

13.

14.

Note: See "Adding a New Payload."

The newly created XSD should conform to the Meta schema,
IntegrationXmlMetaSchema.xsd. The artifact generator tools check the validity of
the schema before generating any artifacts. If the schema is not compliant with the
IntegrationXmIMetaSchema, the artifact generator fails. The file is in the conf
directory of the Artifact Generator tool installation program.

Create a new message type.

Note: See "Adding a New Message Type."

Edit the payload.properties file in /conf directory of the Artifact Generator tool
installation program. The payload.properties contains the new payload message
definitions. The format of the definition is

RIBFAMILY.TYPE=IMPLEMENTATION CLASS NAME

cd conf

vi payload.properties (make changes)

For example, when adding a new message type, "FooCre," for the Foo message
family that calls the implementation class, FooDesc, the payload.properties file is
modified as follows:

FOO.FOOCRE= com.retek.rib.binding.payload.FooDesc

Run the Artifact Generator to generate various functional artifacts

$SGROOVY_HOME/bin/groovy GenArtifacts.groovy

Each generated artifact is in the appropriate ./output*/dist folder, including:
= rib-public-payload-database-object-types.zip

= rib-public-payload-java-beans.jar

» retail-public-bo-java-beans.jar

= rib-public-payload-xml-samples.zip

Copy the newly generated artifacts (listed above) from the appropriate

./output*/dist folders to the <RIB_
HOME?>/application-assembly-home /rib-func-artifacts/ directory.

New entries may be needed in the RIB_SETTINGS of the RMS application
database to reference the new Message Family, only if the RMS application is in
scope.

Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME?>/deployment-home/bin directory as follows to create the new topic
(etFooFromRMS) in our flow. (The step to prepare JMS is not destructive, so even
if it is run again it would remove all the topics and recreate them.)

cd <RIB_HOME>/deployment-home/bin
sh rib-app-deployer.sh -prepare-jms

Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME?>/application-assembly-home /bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

11-10 Oracle Retail Integration Bus Implementation Guide

Adding New Adapters

cd <RIB_HOME>/application-assembly-home/bin
sh rib-app-compiler.sh

15. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME>/deployment-home/bin directory as follows.

cd <RIB_HOME>/deployment-home/bin
sh rib-app-deployer.sh -deploy-rib-func-artifact-war

This deploys the rib-func-artifact.war.

sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>

The rib-<app> is deployed. Repeat this step for each rib-<app> that is in scope for this
integration environment.

Note: The <app> value must be rms, rwms, tafr, sim, aip, or rpm.

Note: To verify the addition of a new message family, see "Verifying
the New Message Family."

Adding New Adapters

A RIB Adapter is a component that coordinates business event (message) generation
and processing with the respective Oracle Retail application interface. Each adapter in
the RIB is created to handle a specific functional interface.

Note: See "Adapters" in Chapter 3 of the Oracle Retail Integration Bus
Operations Guide.

Adding the Custom Adapter to the rib-integration-flows.xml File

When adding a custom publishing, subscribing or TAFR adapter, it is necessary to add
or modify the message flows to which you are adding a custom adapter in the
rib-integration-flows.xml. You also must update the rib-func-artifact.war and deploy
the updated rib-func-artifact.war.

For example, when adding a new publisher, "Foo_pub," which publishes a message for
the message family, Foo, that flows from RMS to RWMS, the flow in
rib-integration-flows.xml is defined as follows:

<message-flow id="901">
<node id="rib-rms.Foo_pub" app-name="rib-rms"
adapter-class-def="Foo_pub" type="DbToJms">
<in-db>default</in-db>
<out-topic>etFooFromRMS</out-topic>
</node>
<node id=" rib-rwms.Foo_sub" app-name=" rib-rwms"
adapter-class-def="Foo_sub" type="JmsToDb">
<in-topic>etFooFromRMS</in-topic>
<out-db>default</out-db>
</node>
</message-flow>

RIB Customization/Extension 11-11

Adding a Publishing Adapter for PL/SQL Applications

Procedure for Adding the Flow to the rib-integration-flows.xml File

Note: Before adding the flow above to the rib-integration-flows.xml
flow, it is recommended that a temporary working directory
("customization-workarea" under <RIB_HOME> /tools-home) be
created. This directory can be used for performing any customization
related tasks.

To add the flow to the rib-integration-flows.xml file, complete the following steps:

1. Copy the rib-func-artifact.war from the <RIB_HOME>/
application-assembly-home /rib-func-artifacts to <RIB_
HOME> /tools-home/customization-workarea/ directory.

cd <RIB_HOME>/application-assembly-home/rib-func-artifacts
cp rib-func-artifact.war <RIB_HOME>/tools-home/customization-workarea
2. Extract the rib-integration-flows.xml requiring modification from the copied

rib-func-artifact.war as follows:

jar -xvf rib-func-artifact.war integration/rib-integration-flows.xml

3. Add the flow above to the rib-integration-flows.xml.

4. Update the rib-func-artifact.war with the modified rib-integration-flows.xml.
jar -uvf rib-func-artifact.war integration/rib-integration-flows.xml

5. Copy the rib-func-artifact.war from the <RIB_

HOME> /tools-home/customization-workarea to <RIB_
HOME>/application-assembly-home /rib-func-artifacts/ directory.

cd <RIB_HOME>/tools-home/customization-workarea
cp rib-func-artifact.war <RIB_
HOME>/application-assembly-home/rib-func-artifacts

6. Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME>/application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

cd <RIB_HOME>/application-assembly-home/bin
sh rib-app-compiler.sh
7. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME?>/deployment-home/bin directory as follows.
cd <RIB_HOME>/deployment-home/bin
sh rib-app-deployer.sh -deploy-rib-func-artifact-war

The rib-func-artifact.war is deployed.

Adding a Publishing Adapter for PL/SQL Applications

The illustraton below indicates the files that require changes inside the RIB
infrastructure for the addition of a new publishing adapter for a PL/SQL application.

11-12 Oracle Retail Integration Bus Implementation Guide

Adding a Publishing Adapter for PL/SQL Applications

RIB Functional Artifacts

Payload xsds
Changes Needed

rib-integration-flows xml

rib-private-tafr-business-
impl jar

rib-public-payload-java-
beans.jar Retail JavaEE
Application
— (SIM,RPM,AIP)
R;‘::“z;:zﬁ" rib-public-payload-
(RMS,RWMS) database-object-types.zip rib-public-payload-

java-beans. jar

N rib-<app>.ear for PL/ - -
RIB Oracle Objects sQL Application nb-puhllc-paylogd-xm\- _
rib-public-payload- samples.zip injectors.xml
database-object- - (subscribers only)
types.zip rib-<app>-

RIB Kernel
adapters.xml rib-public-api.jar

rib-<app> .ear for JavaEE

CLOB AP library rib-deployment-env- Application rib-private-
rib-public-payload- rib-<app=-adapters- Info.xmi comman.jar
database-xml- resource.properties
library.zip rib-application-assembly- rib-<app=-adapters.xml|
{RMS Only} info.xml rib-public-api-
E—
<app>.properties ‘ rib-<app=-adapters-

Error Hospital fib-inventory-info. xml resources.praperties ‘
prop Emor Hospital Tables

Tables =
rib-private-kernel- rib-<app>-plsql- rib-private-kernel-
database-library zip gl rib-system.properties | rib-<app=>.properties | database-library zip

|

Procedure for Adding a Publishing Adapter for PL/SQL Applications
1. Identify the flow to which the new adapter in being added.

2. Define the name of the publishing adapter. It should always follow the naming
convention, RIBFAMILY_ pub_ADAPTER INSTANCE NO.

3. Define the particular publishing adapter in rib-<app>-adapters.xml in <RIB_
HOME?>/application-assembly-home /rib-<app>, where <app> refers to either
RMS or RWMS. The customer also must mention a custom attribute equal to "true"
whenever a new customized publishing adapter is added.

For example, a new publishing adapter, "Foo_pub_1," for the Foo message family
is defined in rib-<app>-adapters.xml as follows:

<timer-driven id="Foo_pub_1" initialState="running" timeDelay="10"
custom="true">
<timer-task>
<class name="com.retek.rib.app.getnext.impl.GetNextTimerTaskImpl"/>
<property name="maxChannelNumber" value="1" />
</timer-task>
</timer-driven>

4. Define the particular publishing adapter in
rib-<app>-adapters-resources.properties in <RIB_
HOME?>/application-assembly-home/rib-<app>, where <app> refers to either
RMS or RWMS.

Foo_pub_1.name=Foo Publisher, channel 1
Foo_pub_1.desc=Publisher for the Foo family through channel 1.

5. Define the particular publishing adapter in rib-<app>-plsql-api.xml in <RIB_

HOME>/application-assembly-home /rib-<app> where <app> refers to either
RMS or RWMS as in below example.

RIB Customization/Extension 11-13

Adding a Publishing Adapter for PL/SQL Applications

Note: The signature of the stored procedure should come from the
corresponding PL/SQL applications.

<adaptorClassDef name="Foo_pub">
<class>com.retek.rib.collab.general.OracleObjectPublisherComponentImpl</class>
<messageFamily name="Foo">
<storedProc>
<signature>{call RMSMFM_FOO.GETNXT(?,?,?,?,?,?,?,?)}</signature>
</storedProc>
</messageFamily>
</adaptorClassDef>

6. Make the required changes to the rib-integration-flows.xml. See Adding the
Custom Adapter to the rib-integration-flows.xml File.

7. Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME>/application-assembly-home /bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

cd <RIB_HOME>/application-assembly-home/bin
sh rib-app-compiler.sh
8. Run the rib-app-builder deployer - Run the rib-app-deployer.sh script from <RIB_
HOME?>/deployment-home/bin directory as follows.
cd <RIB_HOME>/deployment-home/bin
sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>

The <app> is deployed.

Note: To verify the addition of the new adapter, see "Verifying the
New Publishing Adapter."

11-14 Oracle Retail Integration Bus Implementation Guide

Adding a Publishing Adapter for Java EE Applications

Adding a Publishing Adapter for Java EE Applications

The following illustration indicates the files that require changes inside the RIB
infrastructure during the addition of a new publishing adapter for a Java EE
application.

RIB Functional Artifacts

Payload xsds

rib-integration-flows. xm| Changes Needed
rib-private-tafr-business-
impl jar
rib-public-payload-java- Retail JavaEE
beans jar Application

(SIM,RPM,AIP)

rib-<app>.ear for PL/SQL

R:t::"z;‘iﬁ" rib-public-payload- T 5
database-object-types.zi Ab-public-payload-
(s) e
i Application ib-public- xml-
e | e
da:)a baseF-’Dlgjsct- (subscribers anly)

types.zip ’—‘ RIB K |
rib-<app=-adapters.xml erne .
rib-<app>.ear for JavaEE rib-public-api.jar
Annli

CLOB AP library rib-deployment-env- ion
rib-public-payload- info.xmil
library.zip resources.properties rib-application-assembly- s

{RMS Only) Info.xmi rib-public-api-

rib-private-
common. jar

i

- conf jar(sample)
rib-<app=.properties o . e
rib-inventory-info.xml resources.properties
Error Hospital Tables
rib-private-kemel-
database-library.zip rib-<app>-plsql-api.xml

Ermor Hospital Tables
rib-private-kernel-
‘ rib-<app>.properties | database-library.zip

rib-system. properties

Procedure for Adding a Publishing Adapter for Java EE Applications

1.
2.

Identify the flow to which the new adapter in being added.

Define the name of the publishing adapter. It should always follow the naming
convention, RIBFAMILY_pub_ADAPTER INSTANCE NO.

Define the particular publishing adapter in rib-<app>-adapters.xml in <RIB_
HOME->/application-assembly-home/rib-<app>, where <app> refers to RPM,
SIM, or AIP. The customer also must mention a custom attribute equal to "true"
whenever a new customized publishing adapter is added.

For example, a new publishing adapter, "Foo_pub_1," for the Foo message family
is defined in rib-<app>-adapters.xml as follows.

<request-driven id=" Foo_pub_1" initialState="notConfigurable" custom="true" />
Define the particular publishing adapter in
rib-<app>-adapters-resources.properties in <RIB_

HOME?>/application-assembly-home /rib-<app>, where <app> refers to RPM,
SIM, or AIP.

Foo_pub_1.name=Foo Publisher, channel 1
Foo_pub_1.desc=Publisher for the Foo family through channel 1.

Make the required changes to the rib-integration-flows.xml. See Adding the
Custom Adapter to the rib-integration-flows.xml File.

RIB Customization/Extension 11-15

Adding a Subscribing Adapter for PL/SQL Applications

6. Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME>/application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

cd <RIB_HOME>/application-assembly-home/bin
sh rib-app-compiler.sh
7. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME?>/deployment-home/bin directory as follows.
cd <RIB_HOME>/deployment-home/bin
sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>

The <app> is deployed.

Note: To verify the addition of the new adapter, see "Verifying the
New Publishing Adapter."

Adding a Subscribing Adapter for PL/SQL Applications

The following illustration indicates the files that require changes inside the RIB
infrastructure during the addition of a new subscribing adapter for PL/SQL

applications.
RIB Functional Artifacts
Payload xsds
Changes Needed
rib-private-tafr-business-
impl.jar
rib-public-payload-java-
P be:nsy,jar ! RetaiI‘Jav‘aEE
] Application
Retail _PU_SQL (SIM,RPM,AIP)
Application rib-public-payload-
(RMS,RWMS) database-object-types zip rib-public-payload-java-
beans.jar
rib-<app>.ear for PL/

i ib-public-payload-xmi-
iEp?:l??};?’Oﬁs SQL Application ! F’Usa';ppgii?p o injectors.xml

database-object-

types.zip rib-<app>-
adapters.xm| RIB Kernel

CLOB API library rib-deployment-env- rib-<app>.e.ar fc.;r
rib-public-payload- rib-<app>-adapters- info.xml JavaEE Appl
database-xml- resources.properties rib-private-commaon jar
library.zip - - fib-<app>-
(RMS Only) nb_appll(;:}:i::lssemmy- adaplerps'?xml rib-public-api-

Error Hospital Tables rib-inventory-info.xml
rib-private-kernel- ’

|

FesaurDos propertios Error Hospital Tables

rib-private-kernel-
| rib-<app>. properties | database-library.zip

database-library.zip

rib-<app=-plsql-
api.xml

rib-system properties

Procedure for Adding a New Subscribing Adapter for a PL/SQL Application

To add a new subscribing adapter for a PL/SQL application, complete the following
steps:

1. Identify the flow to which the new adapter in being added.

2. Define the name of the subscribing adapter. It should always follow the naming
convention, RIBFAMILY_sub_ADAPTER INSTANCE NO.

11-16 Oracle Retail Integration Bus Implementation Guide

Adding a Subscribing Adapter for PL/SQL Applications

Define the particular subscribing adapter in rib-<app>-adapters.xml in <RIB_
HOME>/application-assembly-home/rib-<app>, where <app> refers to either
RMS or RWMS. The customer also must mention a custom attribute equal to "true"
whenever a new customized subscribing adapter is added.

For example, a new subscribing adapter, "Foo_sub_1," for the Foo message family,
is defined in rib-<app>-adapters.xml as follows:

<message-driven id="Foo_sub_1" initialState="running" custom="true"/>

Define the particular subscribing adapter in
rib-<app>-adapters-resources.properties in <RIB_
HOME?>/application-assembly-home /rib-<app>, where <app> refers to either
RMS or RWMS.

Foo_sub_1.name= Foo Subscriber, channel 1
Foo_sub_1.desc=Subscriber for the Foo family through channel 1.

Define the particular subscribing adapter in rib-<app>-plsql-api.xml in <RIB_
HOME->/application-assembly-home/rib-<app> where <app> refers to either
RMS or RWMS as shown below.

Note: The signature of the stored procedure should come from the
corresponding PL/SQL applications.

<adaptorClassDef name="Foo_sub">
<class>com.retek.rib.collab.general.OracleObjectSubscriberComponentImpl</class>
<messageFamily name="Foo">
<storedProc>
<signature>{callRMSSUB_FO00.CONSUME(?,?,?,?) }</signature>
</storedProc>
<messageType name=" FOOCRE">
<oracleObject>RIB_FooDesc_REC</oracleObject>
</messageType>
<messageType name=" FooMOD">
<oracleObject>RIB_FooDesc_REC</oracleObject>
</messageType>
<messageType name=" FooDEL">
<oracleObject>RIB_FooRef_REC</oracleObject>
</messageType>
</messageFamily>
</adaptorClassDef>

Make the necessary changes to the rib-integration-flows.xml. See Adding the
Custom Adapter to the rib-integration-flows.xml File.

Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from the
<RIB_HOME>/application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin

> sh rib-app-compiler.sh

Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from the
<RIB_HOME>/deployment-home/bin directory as follows.

> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>

RIB Customization/Extension 11-17

Adding a Subscribing Adapter for Java EE Applications

The <app> is deployed.

Note:

New Subscribing Adapter."

To verify the addition of the new adapter, see "Verifying the

Adding a Subscribing Adapter for Java EE Applications

The following illustration indicates the files that require changes inside the RIB
infrastructure during the addition of a new subscribing adapter for a Java EE

application.

Application
(RMS,RWMS)

Retail PL/SQL

RIB Oracle Objects
rib-public-payload-
database-object-
types.zip

CLOB API library
rib-public-payload-
database-xml-
library.zip
(RMS Only)

Error Hospital Tables
rib-private-kernel-

rib-<app>.ear for PL/

SQL Application

RIB Functional Artifacts

Payload xsds

I

rib-<integration-flows. xml

‘ Changes Needed

rib-private-tafr-business-
impl.jar
rib-public-payload-java-
beans.jar

rib-public-payload-
database-object-types.zip

rib-public-payload-xmil-
samples.zip

rib-<app=-
adapters.xml

rib-<app>-adapters-
resources. properties

rib-<app>.properties

database-library.zip

rib-<app=-plsgl-
api.xml

RIB Kernel

rib-deployment-env-
info.xml

rib-application-assembly-
info.xml

Retail JavaEE Application

(SIM,RPM,AIP)

fib-public-payload-java-

beans.jar

injectors.xml
(subscribers only)

rib-<app>.ear for
JavaEE Application

rib-<app=>-
adapters.xml

rib-inventory-info.xml

rib-=app=-adapters-
resources.properties

I

rib-system. properties

| rib-=app=> properties

rib-public-api jar

rib-public-api-
confjar(sample)

Error Hospital Tables
rib-private-kernel-
database-library zip

Procedure for Adding a New Subscribing Adapter for a Java EE Application

To add a new subscribing adapter for a Java EE application, complete the following

steps:

1. Identify the flow to which the new adapter in being added.

2. Define the name of the subscribing adapter. It should always follow the naming
convention, RIBFAMILY_sub_ADAPTER INSTANCE NO.

3. Define the particular subscribing adapter in rib-<app>-adapters.xml in <RIB_
HOME?>/application-assembly-home/rib-<app>, where <app> refers to SIM or
AIP. The customer also must mention a custom attribute equal to "true” whenever
a new customized subscribing adapter is added.

For example, a new subscribing adapter, "Foo_pub_1" for the Foo message family

is defined in rib-<app>-adapters.xml as follows:

<message-driven id="Foo_sub_1" initialState="running" custom="true" />

11-18 Oracle Retail Integration Bus Implementation Guide

Custom TAFR Adapters

4. Define the particular subscribing adapter in
rib-<app>-adapters-resources.properties in the <RIB_
HOME>/application-assembly-home/rib-<app>, where <app> refers to SIM or
AIP.

Foo_sub_1.name= Foo Subscriber, channel 1
Foo_sub_1.desc=Subscriber for the Foo family through channel 1.

5. Make the required changes to the rib-integration-flows.xml. See Adding the
Custom Adapter to the rib-integration-flows.xml File.

6. Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from the
<RIB_HOME>/application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin
> sh rib-app-compiler.sh
7. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME>/deployment-home/bin directory as follows.
> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>

The <app> is deployed.

Note: To verify the addition of the new adapter, see "Verifying the
New Subscribing Adapter."

Custom TAFR Adapters

Transformation Address Filters/Router (TAFR) adapters transform message data and
route messages. Multiple, message family specific TAFRs have already been
implemented. Different TAFR adapters may be active on different message families or
on the same message family, depending on the needs of an application. Not all
message families require TAFRs.

TAFR Considerations

The following topics should be considerd before writing a customized TAFR
implementation for transformation, filtering or routing.

Transformation

Transformation is handled in the TAFR implementation class. The following is an
example of a TAFR that handles transformation.

public RibMessage transformRibMessage (RibMessage inMsg) throws TafrException {
// Transforms the incoming RibMessage into an outgoing RibMessage

RibMessage newMsg = transform(inMsg);

return newMsg; }

RIB Customization/Extension 11-19

Custom TAFR Adapters

Filtering Configuration

Filtering configuration involves updating the rib-tafr.properties file with the
appropriate information. The property follows the usual properties naming
convention (name=value). The property used for filtering is:

"for.<tafr name>_tafr.drop-messages-of-types"
Example:

for.ItemsToItemsISO
tafr.drop-messages-of-types=ISCDimCre, ISCDimMod, ISCDimDel, ItemImageCre, ItemImageMo
d, ItemImageDel, ItemUdaDateCre, ItemUdaDateMod, ItemUdaDateDel, ItemUdaFfCre, ItemUdaFf
Mod, ItemUdaFfDel, ItemUdaLovCre, ItemUdaLovMod, ItemUdaLovDel

This property should be read as, "for ItemsToltemsISO tafr, drop these message types."
A comma delimits the message types. If customization is required, rib-tafr.properties
files must be updated for filtering to take place.

Routing

Routing is enabled by default for TAFRs; the RIB infrastructure handles this routing. If
a TAFR requires routing based on message content, implementation classes override
the following method.

public void routeRibMessage (RibMessage newMsg,MessageRouterIface router) throws
TafrException {
router.addMessageForTopic (eventType, newMsg) ;

Adding a New TAFR Adapter

This section explains how to create a new TAFR adapter for a particular message
family.

The following illustration indicates the files that require changes inside the RIB
infrastructure during the addition of new TAFR adapter to a message family.

RIB Functional Artifacts

Payload xsds

rib-integration-flows.xml Changes Needed

rib-private-tafr-business-
impl jar

rib-custom-tafr-business-
impl jar

rib-tafr.ear
rib-public-payload-java-

beans.jar rib-tafr-adapters.xml
rib-public-payload- e eee—
database-object-types.zip
rib-public-payload-xml- : :
samples zip rib-tafr. properties
{only if filkering is

required)

Ll

RIB Kernel

rib-deployment-env-
info.xml

rib-application-assembly-
info.xml

rib-inventary-info.xmil

rib-system.properties

11-20 Oracle Retail Integration Bus Implementation Guide

Custom TAFR Adapters

Procedure for Adding a New TAFR Adapter
To add a new TAFR adapter, complete the following steps.

1. Identify the flow to which the new adapter in being added.

2. Define the name of the TAFR adapter. It should always follow the naming
convention, RIBFAMILY_tafr ADAPTER INSTANCE NO.

3. Define the corresponding implementation class name the TAFR needs to call.

4. Write the implementation class for the TAFR.

Custom TAFR Implementation

The default implementation of a TAFR implements the following interface in the RIB
infrastructure.

package com.retek.rib.collab.tafr;
import com.retek.rib.domain.ribmessage.bo.RibMessage;

public interface TafrIface {
@return ribMessage that has been modified from the original one
public RibMessage transformRibMessage (RibMessage ribMsgIn) throws TafrException;

* Filters message or messages contents accordingly. It is possible that
* this method could filter away the entire message thus returning null
* from this method.

* @param ribMsg
* @return ribMessage that may have been modified from the original one
* passed in or null.
*/
public RibMessage filterRibMessage (RibMessage ribMsgIn) throws TafrException;

/**

* Routes the message to the appropriate topic for publication.
*

* @param ribMsg RibMessage to be routed to the appropriate topic.
*/
public void routeRibMessage (RibMessage ribMsgIn, MessageRouterIface
router) throws TafrException;

public void processRibMessage (RibMessage ribMsgIn, MessageRouterIface
router) throws TafrException;

}

Procedure for Completing Custom TAFR Implementation
To implement a custom TAFR, complete the following steps:

1. Verify that the default implementation that comes with the RIB infrastructure is
appropriate.

2. Create a rib-custom-tafr-business-impl.jar containing the customized
implementation class for the specific message family and replace the same under
<RIB_HOME> /application-assembly-home/rib-func-artifacts.

RIB Customization/Extension 11-21

Custom TAFR Adapters

Note: See Metalink Note 837997.1, "How to Create a Custom TAFR
Implementation.”

3. Define the particular TAFR adapter in rib-tafr-adapters.xml in <RIB_
HOME->/application-assembly-home/rib-tafr. The customer must mention a
custom attribute equal to "true" whenever a new customized TAFR adapter is
added.

For example, when adding a new TAFR adapter, "Foo_tafr_1," for the Foo message
family, the implementation class written is "SampleToSampleWH." The class is in
com.retek.rib.collab.tafr.bo.impl, inside rib-custom-tafr-business-impl.jar. It should
be defined in rib-tafr-adapters.xml as follows:

<message-driven id="Foo_tafr_ 1" initialState="running" tafr-business-
impl="com.retek.rib.collab.tafr.bo.impl.SampleToSampleWH"
custom="true" />

4. Define the particular TAFR adapter in rib-tafr-adapters-resources.properties in the
<RIB_HOME?>/application-assembly-home /rib-tafr.

Foo_tafr_1.name=Foo TAFR, channel 1
Foo_tafr_1.desc=TAFR for the Foo family through channel 1.

5. Make the required changes to the rib-integration-flows.xml. See "Adding the
Custom Adapter to the rib-integration-flows.xml File."

6. Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from the
<RIB_HOME>/application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

cd <RIB_HOME>/application-assembly-home/bin
sh rib-app-compiler.sh

7. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME?>/deployment-home/bin directory as follows.

cd <RIB_HOME>/deployment-home/bin
sh rib-app-deployer.sh -deploy-rib-app-ear rib-tafr

Note: To verify the addition of the new TAFR adapter, see "Verifying
the New TAFR Adapter."

Changing an Existing TAFR Adapter

If there is a need to add more functionality to an existing TAFR than what is already
provided, a class can be added to extend from the original TAFR class.

Procedure for Changing an Existing TAFR Adapter
To change an existing TAFR adapter, complete the following steps:

1. Identify the TAFR to which more functionality should be added.

2. Define the corresponding implementation class name the TAFR needs to call. This
class should extend from the original TAFR implementation class.

11-22 Oracle Retail Integration Bus Implementation Guide

Verification of RIB Customizations

For example:

= Additional functionality has to be added to the ASNOutToASNIn_tafr_1 TAFR
with an implementation class of ASNOutToASNInLocFromRibBOImpl.

= A new class should be written for the additional functionality that extends
from ASNOutToASNInLocFromRibBOImpl.

= If additional functionality is needed for the transformation of the message, call
the transform method of the ASNOutToASNInLocFromRibBOImpl class and
write your own code/logic.

Note: For information on how to write the implementation class., see
the Metalink Note 837997.1, "How to Create a Custom TAFR
Implementation."

3. Write the implementation class for the TAFR.

4. Create a rib-custom-tafr-business-impl jar containing the implementation class and
replace the same under <RIB_
HOME?>/application-assembly-home /rib-func-artifacts.

Note: For more information on how to create the
rib-custom-tafr-business-impl jar, see the Metalink Note 837997.1,
"How to Create a Custom TAFR Implementation."

5. Replace the name of the implementation class with the new class name in the
rib-tafr-adapters.xml as shown below. For example, if the name of the new class
name is CustomASNOutToASNInLocFromRibBOImpl], the entry in
tafr-adapters.xml should be:

<message-driven 1d="ASNOutToASNIn_ tafr_ 1" initialState="running"
tafr-business-impl=" com.retek.rib.collab.tafr.bo.impl.
CustomASNOutToASNInLocFromRibBOImpl " custom ="true"/>

6. Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from the
<RIB_HOME>/application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

cd <RIB_HOME>/application-assembly-home/bin
sh rib-app-compiler.sh

7. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME>/deployment-home/bin directory as follows.

cd <RIB_HOME>/deployment-home/bin
sh rib-app-deployer.sh -deploy-rib-app-ear rib-tafr

Verification of RIB Customizations

This section explains how to verify the various customizations using the RIB
diagnostic and test tools, RDMT, the PL/SQL API simulator, and the Java EE API
simulator.

These verification tests are described only from a RIB perspective and not as
end-to-end testing. They should be considered only the first step in a process to move
the customizations through the RIB life cycle.

RIB Customization/Extension 11-23

Verification of RIB Customizations

The verification steps assume that these RIB tools have already been installed and are
in working condition.

Note: See "Testing the RIB" in the Oracle Retail Integration Bus
Operations Guide.

Verifying the New Message Type

To verify the addition of a new message type under a message family from a RIB
perspective, complete the following steps:

1.

2
3
4,
5

Log in to the RDMT main menu.

Select menu option 3, PUB/SUB/TAFR Utilities Submenu.

Publish a message using option 8, EJB Publish Utility.

Provide the new message type when prompted for the <type> parameter.

Use the sample message that was generated using the Artifact Generator tool after
adding the new message type for the corresponding message family.

Check the corresponding adapter's RIBLOGS to be sure the message was
published successfully. The logs are written to the path, <rib-application_instance_
home>/ <rib-app>/logs/ <rib-app>.

For example, for /home/rib/product/10.1.3.3/OracleAS_
1/j2ee/rib-rms-oc4j-instance/log/rib-rms, the RIBLOG file names are in the
format, <adapter-instance-name>.rib.log.

Example:

Alloc_pub_1l.rib.log
ASNIn_sub_1l.rib.log

Enable the RIB Audit Logs for all the corresponding adapters involved in the
message flow. The auditing feature logs the message as it passes through the RIB
infrastructure. This helps the tracing of message content from publication to
subscription, and all steps, such as a TAFR, in between.

Note: To enable RIB Audit logs, see "RIB Logging" in the Oracle Retail
Integration Bus Operations Guide.

Check the RIB audit logs for that particular message family adapter (publisher,
subscriber, and TAFR, if involved) and verify whether the new message type
added is part of the message header. Also ensure that the message passes
successfully through all the adapters involved in the particular message flow.

Check whether the new message type was successfully consumed by the
subscribing adapter.

Verifying the New Message Family

To verify the addition of a new message family in the RIB, complete the following
steps.

1.

Once the RIB has been compiled and deployed (after adding new message family),
check whether the new family adapters (publisher, subscriber, and TAFR, if
involved) are visible through RIB Admin GUL

11-24 Oracle Retail Integration Bus Implementation Guide

Verification of RIB Customizations

o a & 0 N

The RIB admin GUI can be accessed via the URL as below.

http://<server>.us.oracle.com:<http-port>/rib-<app>-admin-gui/

= Replace <server> with the name or IP address of the server in the environment
where the rib-<app> deployed.

= Replace <http-port> with the port number that the Oracle Application Server
is listening on (for example, 7777).

= Replace <app> with rms, tafr, rwms, sim, rpm, or aip.

Note: See "Admin GUI" in the Oracle Retail Integration Bus Operations
Guide.

Log in to the RDMT main menu.

Select menu option 3, PUB/SUB/TAEFR Utilities Submenu.

Publish a message using option 8, EJB Publish Utility.

Provide the new message family when prompted for the <family> parameter.

Use the sample message created by the Artifact Generator tool for the
corresponding new message family.

Check the corresponding adapter's RIBLOGS to be sure the message was
published successfully. The logs are written to the path, <rib-application_instance_
home>/<rib-app>/logs/<rib-app>.

For example, for /home/rib/product/10.1.3.3/OracleAS_
1/j2ee/rib-rms-oc4j-instance/log /rib-rms, the RIBLOG file names are in the
format, <adapter-instance-name>.rib.log.

Example:

Foo_pub_1l.rib.log
Foo_sub_1.rib.log

Enable the RIB Audit Logs for all the corresponding adapters involved in the
message flow. The auditing feature logs the message as it passes though the RIB
infrastructure. This helps the tracing of message content from publication to
subscription, and all steps, such as a TAFR, in between.

Note: To enable RIB Audit logs, see "RIB Logging" in the Oracle Retail
Integration Bus Operations Guide.

Check the RIB audit logs for the particular message family adapters (publisher,
subscriber and TAFR, if involved) and verify whether the new message family
added is part of the message header. Also ensure that the message passes
successfully through all the adapters involved in the particular message flow.

RIB Customization/Extension 11-25

Verification of RIB Customizations

Verifying the New Publishing Adapter

To verify the addition of a new publishing adapter for PL/SQL for Java EE
applications, complete the following steps.

1.

o » w0 Db

Once the RIB has been compiled and deployed (after adding new publshing
adapter), check whether the new publishing adapter is visible through RIB Admin
GUL

The RIB admin GUI can be accessed through the URL below.

http://<server>.us.oracle.com:<http-port>/rib-<app>-admin-gui/

= Replace <server> with the name or IP address of the server in the environment
where the rib-<app> is deployed.

= Replace <http-port> with the port number that the Oracle Application Server
is listening on (for example, 7777).

= Replace <app> with rms, rwms, sim, rpm, or aip.

Note: See "Admin GUI" in the Oracle Retail Integration Bus Operations
Guide.

Log in to the RDMT main menu.
Select menu option 3, PUB/SUB/TAER Utilities Submenu.
Publish a message using option 8, EJB Publish Utility.

Use the sample message created by the Artifact Generator tool for the
corresponding message family.

Check the corresponding publishing adapter's RIBLOGS to be sure the message
was published successfully. The logs are written to the path, <rib-application_
instance_home>/<rib-app>/logs/<rib-app>.

For example, for /home/rib/product/10.1.3.3/OracleAS_
1/j2ee/rib-rms-oc4j-instance/log/rib-rms, the RIBLOG file names are in the
format, <adapter-instance-name>.rib.log.

Example:

Foo_pub_1.rib.log

Enable the RIB Audit Logs for the corresponding publishing adapter involved in
the message flow. The auditing feature logs the message as it passes though the

RIB infrastructure. This helps the tracing of message content from publication to
subscription.

Note: To enable RIB Audit logs, see the section "RIB Logging" in the
Oracle Retail Integration Bus Operations Guide.

Check the RIB audit logs for that particular message family's publishing adapter
and verify whether the message content is displayed correctly as published. Also
ensure that the message passes successfully through all the adapters involved in
the particular message flow.

11-26 Oracle Retail Integration Bus Implementation Guide

Verification of RIB Customizations

Verifying the New Subscribing Adapter

To verify the addition of a new subscribing TAFR adapter for PL/SQL and Java EE
applications, complete the following steps:

1.

Once the RIB has been compiled and deployed after adding new subscribing
adapter, check whether the new subscribing adapter is visible through RIB Admin
GUL

The RIB admin GUI can be accessed through the URL below.

http://<server>.us.oracle.com:<http-port>/rib-<app>-admin-gui/

= Replace <server> with the name or IP address of the server in the environment
where the rib-<app> is deployed.

= Replace <http-port> with the port number that the Oracle Application Server
is listening on (for example, 7777).

= Replace <app> with rms, rwms, sim, rpm, or aip.

Note: See "Admin GUI" in the Oracle Retail Integration Bus Operations
Guide.

Log in to the RDMT main menu.
Select menu option 3, PUB/SUB/TAEFR Utilities Submenu.

Publish a message using option 1, Publish Msg Utility, to the topic from which the
newly added subscriber has to subscribe.

Use the sample message created by the Artifact Generator tool for the
corresponding message family.

Check the corresponding subscribing adapter's RIBLOGS to check if the message
was subscribed from the topic successfully. The logs are written to the path,
<rib-application_instance_home>/<rib-app>/logs/<rib-app>.

For example, for /home/rib/product/10.1.3.3/OracleAS_
1/j2ee/rib-rms-oc4j-instance/log /rib-rms, the RIBLOG file names are in the
format, <adapter-instance-name>.rib.log.

Example:
Foo_sub_1.rib.log
Enable the RIB Audit Logs for the corresponding subscribing adapter. The

auditing feature logs the message as it passes though the RIB infrastructure. This
helps the tracing of message content from publication to subscription.

Note: To enable RIB Audit logs, see "RIB Logging" in the Oracle Retail
Integration Bus Operations Guide.

Check the RIB audit logs for the particular message family's subscribing adapter
and verify whether the message content is displayed correctly. Also ensure that the
message is subscribed successfully by the subscribing adapter

Verifying the New TAFR Adapter

To verify the addition of a new TAFR adapter, complete the following steps:

RIB Customization/Extension 11-27

Verification of RIB Customizations

1. Once the RIB has been compiled and deployed after adding new TAFR adapter,
check whether the new TAFR adapter is visible through RIB Admin GUI

The RIB admin GUI can be accessed via the URL as below.

http://<server>.us.oracle.com:<http-port>/rib-tafr-admin-gui/

= Replace <server> with the name or IP address of the server in the environment
that has the rib-<app> deployed.

= Replace <http-port> with the port number that the Oracle Application Server
is listening on (for example, 7777).

Note: See "Admin GUI" in the Oracle Retail Integration Bus Operations
Guide.

2. Log in to the RDMT main menu.
3. Select menu option 3, PUB/SUB/TAEFR Utilities Submenu.

4. Publish a message using option 1, Publish Msg Utility, to the topic from which the
newly added subscriber has to subscribe.

5. Use the sample message created by the Artifact Generator tool for the
corresponding message family.

6. Check the corresponding TAFR adapter's RIBLOGS to be sure the message was
subscribed by the TAFR from the particular topic and published to the next
destination topic successfully. The logs are written to the path, <rib-application_
instance_home> /rib-tafr/logs/rib-tafr.

For example, for/home/rib/product/10.1.3.3/OracleAS_
1/j2ee/rib-tafr-oc4j-instance/log/rib-tafr, the RIBLOG file names are in the
format, <adapter-instance-name>.rib.log.

Example:
Foo_tafr_1.rib.log
7. Enable the RIB Audit Logs for the corresponding TAFR adapter. The auditing

feature logs the message as it passes though the RIB infrastructure. This helps the
tracing of message content from publication to subscription.

Note: To enable RIB Audit logs, see "RIB Logging" in the Oracle Retail
Integration Bus Operations Guide.

8. Check the RIB audit logs for the particular message family's TAFR adapter and
verify whether the message content is displayed correctly.

11-28 Oracle Retail Integration Bus Implementation Guide

Payload Customization

Payload Customization

The customization of payloads gives a customer the ability to add /modify data which
flows from one application to the other.

Prerequisites

Note: The Artifact Generator tool must be installed before
performing any payload customizations. See the Oracle Retail
Integration Bus Operations Guide for information on the installation and
usage of the Artifact Generator tool.

Individuals performing the tasks for payload customization should be familiar with
the Artifacts Generator tool and have an understanding of the following:

The importance of payloads and how they fit into the suite of Oracle Retail
applications.

The impact that customizing a payload has on other applications.

Recommendations

The following is a list of recommendations for ensuring successful payload
customization.

Always back up the files that will be modified during customization in case they
need to be restored.

When payloads are customized, the changes applied must also be made on the
application side.

During customization, only optional elements should be added. The addition of
mandatory elements to payloads can result in increased maintenance efforts.

Names of elements in XSDs must not be Java key words.

Adding Optional Elements to Payloads

To add of an optional element (simple type or complex type) to an existing message
payload, complete the following steps:

1.

Edit the desired payload XSDs in the ./input-xsd directory of the Artifact
Generator tool installation. Add the optional simple or complex element to the
particular message family XSD and, if necessary, define the type.

cd input-xsd
vi ItemRef.xsd (make changes)

For example, to add an optional simple element, "attrl,” and a complex element,
"TtemDtlRef," to ItemRef.xsd, the modification to ItemRef.xsd is as follows.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema elementFormDefault="qualified"
targetNamespace="http://www.oracle.com/retail/integration/payload/ItemRef"
xmlns="http://www.oracle.com/retail/integration/payload/ItemRef"
xmlns:retailDoc="http://www.w3.0rg/2001/XMLSchema"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="ItemDtlRef">
<xs:complexType>
<Xs:sequence>

RIB Customization/Extension 11-29

Payload Customization

<xs:element maxOccurs="unbounded" name="clearance_id"
type="number10">
</xs:element>
<xs:element maxOccurs="unbounded" name="item"
type="varchar225">
</xs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ItemRef">
<xs:complexType>
<Xs:sequence>
<xs:element name="item" type="varchar225"/>
<xs:element name="attrl" type="numberl0" minOccurs="0"/>
<xs:element maxOccurs="unbounded" minOccurs="0" ref="ItemDtlRef"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:simpleType name="varchar225">
<xs:restriction base="xs:string">
<xs:maxLength value="25"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="numberl0">
<xs:restriction base="xs:long">
<xs:totalDigits value="10"/>
</xs:restriction>
</xs:simpleType>
</xs:schema>

2. Run the Artifact Generator to generate various functional artifacts.

$SGROOVY_HOME/bin/groovy GenArtifacts.groovy

Each generated artifact is in the appropriate . /output*/dist folder, including:
= rib-public-payload-database-object-types.zip

= rib-public-payload-java-beans.jar

= retail-public-bo-java-beans.jar

= rib-public-payload-xml-samples.zip

Note: See the Oracle Retail Integration Bus Operations Guide for
information on how to use the Artifact Generator tool to generate
artifacts.

3. Copy the newly generated artifacts (listed above) from the appropriate
./output*/dist folders to the <RIB_
HOME>/application-assembly-home /rib-func-artifacts/ directory.

4. The artifact generator tool cannot be used to generate the rib-func-artifact.war. The
file must be created manually as follows:

a. Copy the rib-func-artifact.war from <RIB_HOME>/
application-assembly-home /rib-func-artifacts to <RIB_
HOME->/tools-home/customization-workarea/ directory.

cd <RIB_HOME>/application-assembly-home/rib-func-artifacts
cp rib-func-artifact.war <RIB_HOME>/tools-home/customization-workarea

11-30 Oracle Retail Integration Bus Implementation Guide

Payload Customization

b. Extract only the XSD that must be modified from the copied
rib-func-artifact.war, as shown below.

jar -xvf rib-func-artifact.war payload/xsd/ItemRef.xsd

c. Copy and replace the same modified payload XSD from ./input-xsd directory
of the Artifact Generator tool installation program to the <RIB_
HOME?>/tools-home/customization-workarea/ payload/xsd directory .

cd ArtifactGeneratorInstallation_directory/input-xsd
cp ItemRef.xsd <RIB_HOME>/tools-home/customization-workarea/payload/xsd

After replacing the existing ItemRef.xsd with the changed ItemRef.xsd to the
/payload/xsd directory of rib-func-artifact.war in the <RIB_
HOME>/tools-home/customization-workarea/ directory, generate the new
rib-func-artifact.war as shown below.

cd <RIB_HOME>/tools-home/customization-workarea
jar -uvf rib-func-artifact.war payload/xsd/ItemRef.xsd

d. Copy the generated rib-func-artifact.war from <RIB_
HOME>/tools-home/customization-workarea to the <RIB_
HOME?>/application-assembly-home /rib-func-artifacts/ directory.

cd <RIB_HOME>/tools-home/customization-workarea
cp rib-func-artifact.war <RIB_
HOME>/application-assembly-home/rib-func-artifacts

e. Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from the
<RIB_HOME>/application-assembly-home /bin directory to
generate/assemble a rib-<app> and make it ready for deployment.

cd <RIB_HOME>/application-assembly-home/bin
sh rib-app-compiler.sh

Note: See the section, "rib-app-builder Tools," in the Oracle Retail
Integration Bus Operations Guide.

5. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME>/deployment-home/bin directory as follows.

cd <RIB_HOME>/deployment-home/bin

sh rib-app-deployer.sh -deploy-rib-func-artifact-war

This step deploys the rib-func-artifact.war to the Java EE container.
sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>

The rib-<app> is deployed to the Java EE container. Repeat this step for each
rib-<app> in scope for this integration environment.

Note: The <app> value must be rms, rwmes, tafr, sim, aip, or rpm.

RIB Customization/Extension 11-31

Payload Customization

Adding a New Payload

The following steps must be completed to add a new XSD to a current set of payloads:

1. Create a new XSD which conforms to the MetaSchema ie
IntegrationMetaSchema.xsd. The artifact generater tool checks the validity of the
schema before generating any artifacts. The artifact generater will fail if the XSD is
not compliant with the MetaSchema.

2. Drop the new XSD in here: ./input-xsd/ directory of the Artifact Generator tool
installation.

For example, if you create a XSD called "Foo.xsd", place it under ./input-xsd/.
3. Run the Artifact Generator to generate various functional artifacts.

$SGROOVY_HOME/bin/groovy GenArtifacts.groovy

Each generated artifact is in the appropriate . /output*/dist folder, including:
= rib-public-payload-database-object-types.zip

= rib-public-payload-java-beans.jar

» retail-public-bo-java-beans.jar

s rib-public-payload-xml-samples.zip

4. Copy the newly generated artifacts (listed above) from the appropriate
./output*/dist folders to the <RIB_
HOME> /application-assembly-home /rib-func-artifacts/ directory.

Note: See the Oracle Retail Integration Bus Operations Guide for
information on how to use the Artifact Generator tool to generate
artifacts.

5. The artifact generator tool cannot be used to generate the rib-func-artifact.war. The
file must be created manually as follows:

a. Copy the rib-func-artifact.war from <RIB_HOME>/
application-assembly-home /rib-func-artifacts to the <RIB_
HOME->/tools-home/customization-workarea/ directory.

cd <RIB_HOME>/application-assembly-home/rib-func-artifacts
cp rib-func-artifact.war <RIB_HOME>/tools-home/customization-workarea

b. Copy the newly created XSD (Foo.xsd) to the /payload/xsd/ directory under
<RIB_HOME> /tools-home/customization-workarea/ directory and update
the rib-func-artifact.war.

cd <RIB_HOME>/tools-home/customization-workarea
jar -uvf rib-func-artifact.war payload/xsd/Foo.xsd

c. Copy the generated rib-func-artifact.war from <RIB_
HOME> /tools-home/customization-workarea to the <RIB_
HOME>/application-assembly-home/rib-func-artifacts/ directory.

cd <RIB_HOME>/tools-home/customization-workarea
cp rib-func-artifact.war <RIB_
HOME>/application-assembly-home/rib-func-artifacts

11-32 Oracle Retail Integration Bus Implementation Guide

Payload Customization

6. Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME>/application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

cd <RIB_HOME>/application-assembly-home/bin
sh rib-app-compiler.sh
7. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME?>/deployment-home/bin directory as follows.
cd <RIB_HOME>/deployment-home/bin
sh rib-app-deployer.sh -deploy-rib-func-artifact-war
This deploys the rib-func-artifact.war to the Java EE container.
sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>

The rib-<app> is deployed to the Java EE container. Repeat this step for all rib-<app>
that is in scope for this integration environment.

Note: The <app> value must be rms, rwms, tafr, sim, aip, or rpm.

RIB Customization/Extension 11-33

Payload Customization

11-34 Oracle Retail Integration Bus Implementation Guide

	Contents
	Preface
	Audience
	Related Documents
	Customer Support
	Review Patch Documentation
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	1 Introduction
	2 Standards and Specifications
	Java Platform Enterprise Edition (Java EE)
	Java EE Server

	Java Message Service (JMS)
	JMS Provider

	Java Management Extensions (JMX)

	3 Core Concepts
	Key Functional Requirements
	Guaranteed Once-and-Only-Once Successful Delivery
	Preservation of Publication Sequence

	Message Family and Message Types
	Foundation Messages
	Transactional Messages

	RIB Message Envelope and Payloads
	Message Life Cycle
	Messaging Components
	RIB Subsystem Components
	Adapters
	JMS Domains, Destinations, Subscriptions
	JMS Message Selector
	Additional RIB JMS Message Properties

	Simple Message Flow
	The RIB Hospital
	RIB Hospital Dependency Check
	RIB Hospital Insert
	RIB Hospital Tables
	RIB Hospital Retry
	Hospital Attempt (Retry) Count

	4 Oracle Retail Application APIs
	PL/SQL Stored Procedure APIs
	Oracle CLOB APIs
	RIB_XML and RIB_SXW Database Packages

	Oracle Object API's
	RIB Related Database Tables

	Detail Architecture - PL/SQL Apps

	Oracle Retail Java EE APIs
	Detail Architecture JavaEE Apps

	API Return Status Codes
	PL/SQL GETNEXT Return Codes
	PUB_RETRY Return Codes
	CONSUME Return Code

	5 Pre-Implementation Considerations
	RIB Software Lifecycle Management
	Centralized Configuration and Management
	Physical Location Considerations
	JMS Server Considerations
	Using Multiple JMS Servers
	Oracle Streams AQ JMS

	High Availability Considerations
	Oracle Database Cluster (RAC) Concepts
	rib-<app> application and Oracle Database Cluster (RAC)
	Oracle Application Server Cluster Concepts
	rib-<app> application and Oracle Application Server Cluster

	6 Deployment Architecture and Options
	Recommended Deployment Options
	Distributed Deployment Alternative
	Advantages
	Disadvantages
	Who Should Use This Configuration?

	Centralized Deployment Alternative
	Advantages
	Disadvantages
	Who should use this Configuration?

	Conclusions

	7 Implementation Process
	Implementation Verification and Validation
	Implementation Environment Verification
	Integration Environment Testability

	8 Performance
	Performance Factors
	Performance and Parallel Logical Channels

	9 Security
	RIB Application Administrators Security Domain
	RIB System Administrators Security Domain

	10 Integration with Fusion Middleware
	General RIB to Fusion Middleware Architecture
	General Process of Integration
	Example - Configure FWM JMS Adapter to RIB AQJMS
	Create the Resource Provider
	Configure a JMS Connection Factory
	Configure the FMW JMS Adapter

	11 RIB Customization/Extension
	Prerequisites
	General Customization Rules
	Message Family and Message Type Customization
	Adding a New Message Type
	Message Flows with PL/SQL Applications
	Procedure for Adding a New Message Type for PL/SQL Applications

	Message Flows with Java EE Applications
	Procedure for Adding a New Message Type for Java EE Applications

	Creating a New Message Family
	Procedure for Adding a New Message Family

	Adding New Adapters
	Adding the Custom Adapter to the rib-integration-flows.xml File
	Procedure for Adding the Flow to the rib-integration-flows.xml File

	Adding a Publishing Adapter for PL/SQL Applications
	Procedure for Adding a Publishing Adapter for PL/SQL Applications

	Adding a Publishing Adapter for Java EE Applications
	Procedure for Adding a Publishing Adapter for Java EE Applications

	Adding a Subscribing Adapter for PL/SQL Applications
	Procedure for Adding a New Subscribing Adapter for a PL/SQL Application

	Adding a Subscribing Adapter for Java EE Applications
	Procedure for Adding a New Subscribing Adapter for a Java EE Application

	Custom TAFR Adapters
	TAFR Considerations
	Transformation
	Filtering Configuration
	Routing

	Adding a New TAFR Adapter
	Procedure for Adding a New TAFR Adapter

	Custom TAFR Implementation
	Procedure for Completing Custom TAFR Implementation

	Changing an Existing TAFR Adapter
	Procedure for Changing an Existing TAFR Adapter

	Verification of RIB Customizations
	Verifying the New Message Type
	Verifying the New Message Family
	Verifying the New Publishing Adapter
	Verifying the New Subscribing Adapter
	Verifying the New TAFR Adapter

	Payload Customization
	Prerequisites
	Recommendations
	Adding Optional Elements to Payloads
	Adding a New Payload

