Oracle® Retail
Service-Oriented Architecture Enabler Tool Guide

Release 13.1

June 2009

ORACLE

Oracle Retail Service-Oriented Architecture Enabler Tool Guide, Release 13.1

Copyright © 2009, Oracle. All rights reserved.
Primary Author: Susan McKibbon
Contributing Author: David Burch

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Value-Added Reseller (VAR) Language
Oracle Retail VAR Applications

The following restrictions and provisions only apply to the programs referred to in this section and licensed
to you. You acknowledge that the programs may contain third party software (VAR applications) licensed to
Oracle. Depending upon your product and its version number, the VAR applications may include:

(i) the software component known as ACUMATE developed and licensed by Lucent Technologies Inc. of
Murray Hill, New Jersey, to Oracle and imbedded in the Oracle Retail Predictive Application Server -
Enterprise Engine, Oracle Retail Category Management, Oracle Retail Item Planning, Oracle Retail
Merchandise Financial Planning, Oracle Retail Advanced Inventory Planning, Oracle Retail Demand
Forecasting, Oracle Retail Regular Price Optimization, Oracle Retail Size Profile Optimization, Oracle Retail
Replenishment Optimization applications.

(i) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail Data
Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(iii) the SeeBeyond component developed and licensed by Sun MicroSystems, Inc. (Sun) of Santa Clara,
California, to Oracle and imbedded in the Oracle Retail Integration Bus application.

(iv) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of Kirkland,
Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory Management.

(v) the software component known as Crystal Enterprise Professional and/or Crystal Reports Professional
licensed by SAP and imbedded in Oracle Retail Store Inventory Management.

(vi) the software component known as Access Via™ licensed by Access Via of Seattle, Washington, and
imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(vii) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of San Jose,
California, and imbedded in Oracle Retail Promotion Planning & Optimization application.

(viii) the software component known as Style Report™ developed and licensed by InetSoft Technology
Corp. of Piscataway, New Jersey, to Oracle and imbedded in the Oracle Retail Value Chain Collaboration
application.

(ix) the software component known as DataBeacon™ developed and licensed by Cognos Incorporated of
Ottawa, Ontario, Canada, to Oracle and imbedded in the Oracle Retail Value Chain Collaboration
application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR Applications.
Oracle will not deliver source code to the VAR Applications to you. Notwithstanding any other term or
condition of the agreement and this ordering document, you shall not cause or permit alteration of any VAR
Applications. For purposes of this section, "alteration" refers to all alterations, translations, upgrades,
enhancements, customizations or modifications of all or any portion of the VAR Applications including all
reconfigurations, reassembly or reverse assembly, re-engineering or reverse engineering and recompilations
or reverse compilations of the VAR Applications or any derivatives of the VAR Applications. You
acknowledge that it shall be a breach of the agreement to utilize the relationship, and/or confidential
information of the VAR Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall not attempt,
cause, or permit the alteration, decompilation, reverse engineering, disassembly or other reduction of the
VAR Applications to a human perceivable form. Oracle reserves the right to replace, with functional
equivalent software, any of the VAR Applications in future releases of the applicable program.

Contents

PPEIACE ...ttt Xi
AUAIEIICE ...ttt ettt et e e te et e s te et e e seesbeeseesbeesaesseessesbeessesbeeseenseesseeseenseereentesreensenreas Xi
Related DOCUIMIENESc..oovieeiiiieiecieceete ettt ettt et et eereeaeeteebesbeesbeebeessesseessesssenseessensesasensessen Xi
CUSLOMET SUPPOTL..oviviiiiiiiiiiiicic s Xii
Review Patch DOCUMENTATIONcvevieeieiieieieceete ettt et e reeae e b e s beesbesse e s e ebeessesseenneneas Xii
Oracle Retail Documentation on the Oracle Technology Networkccccocoveinivicininiiiniieenes Xii
CONVEINTIONS ..e.vveveeeietieienieetesttetesteestessestesseessessesssesseessessaessessesssesseassesseessessesssessesssessesssensesssessesssensensenses Xii

1 Introduction

Major Features of the RSE TOOL ... 1-1
COMNEEPLES ...ttt a e 1-3
WAL 1S @ SEIVICE? ..ttt ittt ettt ettt ettt ettt b et bbb et be e bt ebe e ene 1-3
Oracle Fusion Reference Architecture (OFRA)......cccocueoieieinininiceiereeeeeeete et essesssssesasseenens 1-3
Where D0es RSE FIt? ..ottt ettt st st s 1-5
Technical SPeCifiCations.........c.cocouiuiuiiriiiiiiiiriiecree ettt 1-5
Supported Operating SYStEMScccceuiiiiiniiiiiii s 1-5

2 Installation and Basic Setup

Installation as a Web Application in Oracle WebLogic............ccccccoooiiniiiiniiinicccs 2-1
PrereqUiSItes.......coiiiiiiiiiiieicc s 2-1
Deploy the Retail Service-Oriented Architecture Enabler ..o, 2-2
Verity the Retail Service-Oriented Architecture Enabler ..o 2-2
Redeploy the APPLCAtiONcccviiiiiiiiiiiiiiiiii s 2-3

3 Tool Inputs and Outputs

TOOL INPULS ..ot 3-1
ServiceProviderDefLibrary.Xml...........cccccocoiiiiiiiiiiiiiiiiin e 3-1
XSDs and retail-public-payload-java-beans.jar ... 3-1
PL/SQL Oracle ObJectscccccvuiiiiiiniiiiiiiiiiiiiics s 3-1
TWSDIL ottt ettt ettt ettt st e st st e b et et et et et e st es e e Rt st e s e b et e s enbensentensententeneeseeneeneesets 3-2

TOOL OULPULS ... 3-2
PL/SQL Provider WED SEIVICEcoouiieuiiieieeee ettt ettt et etve et eeseeteeesaeeeveesaaeeasenaeeens 3-2
PL/SQL CONSUMET WED SEIVICEocveiiiitiiiectecteeteeeete ettt ettt v v et et ereeaseeaeen 3-3
Java EE Provider WED SEIVICE.......c.coueiiiiieieiieitetttee ettt sttt ettt s 3-4
Java EE ConsSumer WeD SEIviCe.......ccoceirieuiririieiiieieieeietetee ettt sttt ettt ese s s s 3-5

vii

4 User Interface Usage

SEIVICE PTOVIAET ...ttt a ettt et s b s be st et et e st et et et et ebeebeebenaeas 4-2
Service Definition Library XML Filec.ccccccciiiiiiiiiiiceecreerseree e 4-2
Custom Business Object Jar File..........cccccoviiiiiiiiiiiiii 4-3
Service Implementation Jar File ... 4-3

SEIVICE COMSUIMET....c..euiiiiiieieieiteteteteit ettt ettt ettt ettt ea et e bt e bt e bt s bt sbe e b e be st e be b et et ent et entebeebesbesaens 4-3

HEIP oo 4-4

5 Service Definition Library XML File

Schema DefiNitioncoccviiiiiiiieieeceeeeee ettt et e e e et e e e e ssessaessessaesbeessesseessensaessanseenes 5-1
serviceProviderDefLibrary ... 5-1

N 1 T o011 J SRR 5-1
ELEIMENES ...veeiiveeieieeteteeee ettt ettt e et et e et et e et e s b e esaesbeeseesbessaesseess e seessensaesseteenseeseenes 5-2
Managing the Service Definition Library XML Filec.cccoccoooiiic 5-4
Creating the File ... 5-4
Changing the Version of the File ..., 5-4
Changing the appName Attribute in the File ..o, 5-5
Renaming a Service or Operation Name in the File.........ccccccooiiiiiniinin, 5-5
Adding a New Service or New Operation to the File..........cccocoooiiiiiiinniin, 5-5
Deleting a Service or Deleting Operations from the File..........ccccocoooii 5-7
Defining New Exceptions to the Operations............ccocevviiiniiiiininiiinces 5-7
Using Different Versions of Objects as Input/Output to an Operationcccccevvvvviiinininnee. 5-8

6 Web Service Standards and Conventions

Web Service Naming..........ccccoooviiiiiiiiiiii 6-1
Web Service Versioning ... 6-3

7 Creating the Java EE Implementation Jar

Step 1: Generate Web Services with Default Implementation...............ccccccccooiiiiiiininnnn. 7-1
Step 2: Implement INtEIfacesc.ccoveviniiiniiiniiicce e 7-1
Step 3: Upload the JAr ... 7-1

8 Implementation Guidelines

Important Note About this Chapter ..., 8-1
PL/SQL Service Consumer Implementation Notesccccccceiiiiiiiiiiiiicce, 8-2
PL/SQL Provider Service Implementation NOteScccccooeiriinicinicneincceceeeeeeeeeeenene 8-3
Java EE Service Consumer Implementation Notes...............ccccoooviiiiiiiiii 8-4
Sample CHent Code ... 8-4
Java EE Service Provider Implementation NOtes.............cccocccuvuecireninieniinieincieeeeerecsreesreeenenes 8-5
Use Case 1: Complete the Generator Provided Stub Code Implementation............ccc.co....... 8-5
Use Case 2: Provide a Custom impl jar to the RSE TOOL..........cccccooiiiiiiiiiiiiiicccicccennes 8-6
Use Case 3: Package the Generated Service Classes in an Existing Application...................... 8-6

viii

Web Service Call as a Remote EJB Call...........c.cccoceoiiiiniiniiiniinienccnccneeneecneeenreeneeeeresesaeeenenens 8-7

PrereqUiSItes. ..ot s 8-7
PrOCEAULE ...ttt 8-7
Code DeSCIIPON. ..ottt 8-8
Web Service Call as a POJO Call.........ccooeoiniiiiininieniniiniceienteenteesecneee ettt sttt sttt see e saeens 8-9
PrOCEAULE ...ttt s 8-10
Sample Code for POJO INVOCAHIONouoviiiiiiiiici 8-10
Deploying the Web Serviceccccooviiiiiiiniiiiiiiiiiiiiiiii s 8-11
Redeploy the Service ApPLication ... 8-12
Verity the Service Application Installation Using the Administration Console.................... 8-12
Creating a JDBC Data SOUICE.............ccooooiiiiiiiiiicccc s 8-13

9 Web Services Security Setup Guidelines

SerVer-side SEUP........cocoiiiiiiiiii s 9-1
Attach Policy File to the Web Service..........cccccciueiiiiiiiiiiiiiiiiiccerreeereen e 9-1
Create Roles and USErS...........cccovviiiiiiiiiiiiiiiiii s 9-5

Client-side SEtUPccoiiiiiiiii e 9-12

A Appendix: Installer Screens

Installation as a Web Application in Oracle WebLogiccccccoeuiiiiiiiiiiiiiiiiccens A-1
Deploy the Artifact Generator Application..........cccoccuicuiuiiiiiiiiiieceeceeeeeee s A-1
Verify the Artifact Generator Web Applicationccccoeeviviiininiciiiiiiiiiics A-6
Redeploy the APPLCAtiONccccviiiiiiiiiiiiiii s A-9

B Appendix: Sample ServiceProviderDefLibrary.xml
ServiceProviderDefLibrary.xml............cccocooiiiiiiiii e B-1

Preface

The Oracle Retail Service-Oriented Architecture Enabler (RSE) Tool Guide provides
information about the tool as well as installation instructions.

Audience

The Oracle Retail Service-Oriented Architecture Enabler (RSE) Tool Guide is written
for the following audience:

» Database administrators (DBA)
= System analysts and designers

= Integrators and implementation staff

Related Documents

For more information, see the following documents in the Oracle Retail Integration
Bus 13.1 documentation set:

» Oracle Retail Integration Bus Data Model

» Oracle Retail Integration Bus Implementation Guide

» Oracle Retail Integration Bus Installation Guide

» Oracle Retail Integration Bus Integration Guide

» Oracle Retail Integration Bus Operations Guide

» Oracle Retail Integration Bus Release Notes

» Oracle Retail Integration Bus Hospital Administration Online Help

» Oracle Retail Integration Bus Hospital Administration User Guide

xi

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:
m https://metalink.oracle.com
When contacting Customer Support, please provide the following;:
= Product version and program/module name
= Functional and technical description of the problem (include business impact)
s Detailed step-by-step instructions to recreate
= Exact error message received

= Screen shots of each step you take

Review Patch Documentation

If you are installing the application for the first time, you install either a base release
(for example, 13.0) or a later patch release (for example, 13.0.2). If you are installing a
software version other than the base release, be sure to read the documentation for
each patch release (since the base release) before you begin installation. Patch
documentation can contain critical information related to the base release and code
changes that have been made since the base release.

Oracle Retail Documentation on the Oracle Technology Network

In addition to being packaged with each product release (on the base or patch level),
all Oracle Retail documentation is available on the following Web site (with the
exception of the Data Model which is only available with the release packaged code):

http://www.oracle.com/technology/documentation/oracle_
retail.html

Documentation should be available on this Web site within a month after a product
release. Note that documentation is always available with the packaged code on the
release date.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Xii

http://www.oracle.com/technology/documentation/oracle_retail.html
https://metalink.oracle.com

1

Introduction

The purpose of the Retail Service-Oriented Architecture Enabler (RSE) tool is to
provide a standard, consistent way to develop Web services for PL/SQL and Java EE
applications. Because it allows them to expose their business logic, the focus of
development can be on the business logic code, not on the Web service infrastructure.

The RSE tool creates Web service provider end-points, consumer clients for Web
service providers, and templates for interfacing with PL/SQL API's and Java EE APIs.

The tool also produces design time and run time artifacts. It works in conjunction with
another RTG tool, the Retail Functional Artifact Generator.

Note: For more information on the tool, see the Oracle Retail
Functional Artifact Generator Guide.

Major Features of the RSE Tool

The following is a list of the essential features of the RSE tool:

s The RSE tool is standards based.

All services are generated in a consistent and standard manner.

All services are SOAP /HTTP based Web services.

All services comply to the JAX-WS specification.

All services are WS-Addressing enabled.

WS-Security can be plugged into these Web services without any code change.
All Web services are Document Literal Wrapped.

Generated services are capable of using SOAP headers.

= The RSE tool generates technology-specific API templates for PL/SQL APIs and
Java EE.

It supports PL/SQL as a Web service provider.

PL/SQL code can directly call any third party SOAP/HTTP based Web
services.

It supports java code as a Web service provider.

It supports java code as a Web service consumer.

Introduction 1-1

Major Features of the RSE Tool

= Generation by the RSE tool is controlled by a single Service Definition Library
XML file.

— By creating Web services from the high level abstraction in the Service
Definition Library, top down Web services development is supported.

- All service operation inputs and outputs are validated against the XML
schema.

— There is a single source truth for all service and domain object documentation.

— The same documentation is propagated to static WSDL, Java/PLSQL API
code, UDDI published content, and live WSDL.

- The Service Definition Library XML file is a service-oriented architecture
governance asset.

= The generated services deploy in any Java EE 5 compliant application server, with
certification on Oracle WebLogic Server. (Services are deployable to a clustered
Java EE application server.)

s The generated services are callable as SOAP based Web services over
SOAP/HTTP, local EK]B calls, remote EJB calls, or POJO services.

= All services support Web service versioning strategy.
= All generated Web services are forward and backward compatible.

= For every Web service, a static WSDL is generated. (The generated static WSDL
pulls in all of the Business Object (BO) and Web service level documentation.

= All deployed services can be published to any standard UDDI registry.

- UDDI publishing has been tested with both WebLogicServer and Oracle
Service Repository (OSR).

- Every generated <appname>-service.ear contains an Infrastructure
Management Service that can "talk to" the UDDI registry and publish all the
services available within the .ear to the registry.

» Services can take advantage of Oracle Database Real Application Cluster (RAC).
s The RSE tool has built-in functionality.
- Every service generated has a ping operation to test for network connectivity.

- A Service Operation Context is passed to both Java EE and PL/SQL service
provider APl implementation code.

— The Web service consumer generated has client side asynchronous service
invocation capability.

- User-defined WebService Faults are automatically generated and handled by
the infrastructure at runtime. The definitions are made in the Service
Definition Library XML file.

= All Web service operations are transactional. A SOAP Fault response automatically
rolls back the service operations transaction. A success response automatically
commits the service operations transaction.

= Web service consumers do not participate in the Web service provider side
transaction. There is no transaction context propagation from client to server.

1-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Concepts

Concepts

Service-oriented architecture (SOA) is a strategy for constructing business-focused,
software systems from loosely coupled, interoperable building blocks (called Services)
that can be combined and reused quickly, within and between enterprises, to meet
business needs (as described in Oracle® Fusion Reference Architecture, SOA
Foundation Release 1.0).

Service Infrastructure products focus on enabling SOA projects, rather than
developing new business function, or providing for other business driven needs. The
goal of Service Infrastructure is to enable the delivery teams to deliver SOA projects
faster, and to make the overall SOA undertaking much more manageable.

The Retail Service-Oriented Architecture Enabler Tool (RSE) is designed and
developed to support the creation of Web Services by allowing a high level abstraction,
higher than the WSDL, and tailored to the business analyst/functional analyst. The
Business Analyst can easily understand, define, and design without knowing the
intracacies of WSDLs and the technical details of the implementation. This approach
also is called top-down Web services development.

What is a Service?

A Service can be described as a way of packaging reusable software building blocks to
provide functionality to users and to other services. A service is an independent,
self-sufficient, functional unit of work that is discoverable, manageable, and
measurable, has the ability to be versioned, and offers functionality that is required by
a set of users or consumers.

A logical definition of a Service has three components:
= Contract: A description of what the service provides (and its constraints).
= Interface: The means by which the service is invoked.

= Implementation: The deployed code and configuration of infrastructure.

Oracle Fusion Reference Architecture (OFRA)

It is important to understand the position and role of the RSE tool within the broader
context of service-oriented architecture and development. It is beyond the scope of this
document to cover the range of SOA approaches and methodologies, but it is
necessary to cover some aspects to place the tool in the appropriate context.

Oracle has developed and published the Oracle Fusion Reference Architecture (OFRA)
for building and integrating enterprise-class solutions, part of the IT Strategies from
Oracle collection.

The Oracle Fusion Architecture Framework is a collection of assets designed to
provide guidance on building solutions for the Oracle Fusion solution environment,
which includes the Oracle Fusion Reference Architecture (OFRA). The following
diagrams and definitions are from OFRA documentation.

Note: See Oracle® Practitioner Guide Software Engineering in an
SOA Environment Release 1.0 E14486-01.

The service analysis phase of the Oracle Service Engineering Framework consists of
three main sets of engineering practices: SOA Requirements Management, Service
Identification and Discovery, and Service Release Planning.

Introduction 1-3

Concepts

As with traditional software engineering, service engineering also begins with
requirements and analysis, as illustrated below:

Service Analysis

Service Service
Identification Release
& Discovery Planning

SOA
Requirements

After Service Analysis, the next phase is Service Delivery, which includes the core
delivery engineering activities. In this phase, a service candidate is molded into one or
more services. Service candidates entering this phase have been justified for realization
and scheduled for release.

Service Delivery

Service Service Service

Definition Implementation Testing

-

Service Delivery begins with Service Definition, which primarly determines service
boundaries as well as the construction of the service contract.

Service Design then acts upon the Service contracts to develop the Services' interfaces.
The process of defining a Service interface is much more involved than simply coming
up with the input and output for the Service. Service design analyzes the contract from
the consumer's perspective, and is influenced by factors such as scope (enterprise,
LOB, application, and so on), message exchange patterns (MEPs) as well as
non-functional requirements such as expected volume, and response time
requirements (specified in the contract).

Service Implementation ensures that all aspects of the Service contracts are
implemented and upheld through the delivery of business logic as well as the
deployment to Service Infrastructure. The implementation must faithfully realize the
Service Contract and interface which are defined through Service definition and
design.

Note: See: Oracle® Fusion Reference Architecture, Overview.
Release 1.0 E14482-01

1-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Technical Specifications

Where Does RSE Fit?

The Retail Service-Oriented Architecture Enabler (RSE) is a Service Infrastructure tool
developed by Oracle Retail to enable the adoption of service-oriented architecture
(SOA) and avoid some of the typical pitfalls of many SOA projects. It addresses many
common issues, such as versioning, contract design, security, consistency, reuse,
documentation, governance, compliance, and customization. It does this by enforcing
SOA Best Practices and patterns that are proven and time tested by various SOA
pioneers.

The tool provides the capability for business analysts and developers to define the
correct service contract. It provides ease-of-use and a level of abstraction such that the
domain experts or subject matter experts are not required to understand code to
design services. The SOA developers can be 100% focused on implementing the
business logic code behind the service and do not have to worry about SOA
infrastructure issues such as versioning and customization.

The Retail Service-Oriented Architecture Enabler Tool fits within the Service Delivery
phases. The appropriate use of the tool is after the service analysis phases and the
development team is ready for service definition and design. The RSE tool outputs can
then be used in the Service Implementation.

RSE is designed to support this type of approach, which also is called top-down Web
services development.

Technical Specifications

The Oracle Retail SOA Enabler tool has dependencies on Oracle Retail application
installations. This section covers these requirements.

Supported Operating Systems

Supported On Version Supported

Oracle WebLogic Server ~ OS certified with OracleWebLogic Server 10 g Release 3
oS (10.3). Options are AIX 6.1 and OEL 5 update 2.

Oracle WebLogic Server Oracle WebLogic Server 10g Release 3 (10.3) with the
following patches:

3QHE
MHLS
(5KXF, 9VAT, GFKC, GP7Q, KJQR)

Introduction 1-5

Technical Specifications

1-6 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

2

Installation and Basic Setup

This chapter explains how to deploy the Retail Service-Oriented Architecture Enabler
tool to an Oracle WebLogic application server as a Web application.

Installation as a Web Application in Oracle WebLogic

The steps below describe how to deploy the Retail Service-Oriented Architecture
Enabler tool to an Oracle WebLogic Application Server as a Web application.

Note: See "Technical Specifications" in Chapter 1.

Prerequisites

s The retail-soa-enabler-gui.war file is located within the directory structure of the
RetailSOAEnabler13.1.0ForAll13.1.0Apps_eng_ga.tar. Locate and extract the
contents to a location that is accessible by the browser for deployment.

» The installation and base configuration of the Oracle WebLogic Server is beyond
the scope of this document. Work with the Application Server Administration
team to determine the physical and logical placement of the retail-soa-enabler-gui
component within the WebLogic Server deployment.

Note: See the Oracle® WebLogic Server 10g Release 3 (10.3) Installation
Guide.

Installation and Basic Setup 2-1

Installation as a Web Application in Oracle WebLogic

Deploy the Retail Service-Oriented Architecture Enabler

Using the WebLogic Server Administration Console, complete the following steps:

Note: For instructions with illustrations (screen captures), see
"Appendix: Installer Screens".

1. Navigate to the Deployments page.
2. Click Install.

Note: If the application has already been installed, see "Redeploy the
Application".

The "Locate deployment to install and prepare for deployment" page is displayed.
Follow the instructions to locate the retail-soa-enabler-gui.war file.

3. Select Upload Files.

4. On the "Upload a Deployment to the admin server" page, use the Browse button to
locate the retail-soa-enabler-gui.war file in the "Deployment Archive."

5. Select the retail-soa-enabler-gui.war.

6. Click Next and move to "Choose targeting style."

7. Select "Install this deployment as an application.”

8. (Click Next and move to "Optional Settings."

9. Click Next and move to "Review your choices and click Finish."
10. Select No, I will review the configuration later.

11. Click Finish to deploy the application.

Verify the Retail Service-Oriented Architecture Enabler
1. Navigate to the Deployments page.

2. Locate the "retail-soa-enabler-gui" on the Summary of Deployments page.

3. Click the name, retail-soa-enabler-gui, to move to the "Settings for the
retail-soa-enabler-gui."

4. Select the Testing tab.
5. Click on the index.jsp URL in the Test Point.

6. The URL should open to the Retail Service-Oriented Architecture Enabler Home
page.

7. The installation is complete. See Chapter 4, "User Interface Usage".

2-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Installation as a Web Application in Oracle WebLogic

Redeploy the Application

If the retail-fsoa-enabler-gui application has already been deployed, follow these steps:

1. If the retail-soa-enabler-gui application is running, select Stop and When Work
Completes or Force Stop Now, depending on the environment. The
recommended option always is When Work Completes.

2. Select Delete.

3. The retail-soa-enabler-gui should now not show on the Summary of Deployment
page.

4. Return to the appropriate step in "Deploy the Retail Service-Oriented Architecture
Enabler".

Installation and Basic Setup 2-3

Installation as a Web Application in Oracle WebLogic

2-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

3

Tool Inputs and Outputs

This chapter describes the tool inputs and tool outputs associated with RSE.

Tool Inputs

Tool inputs include the following:

ServiceProviderDefLibrary.xml

XSDs and retail-public-payload-java-beans.jar
PL/SQL Oracle Objects

WSDL

ServiceProviderDefLibrary.xml

This is the definition file for Provider services for both PL/SQL and Java EE services,
and conforms to the ServiceProviderDefLibrary.xsd schema. This definition file
contains a high level definition of a set of services which use Retail Business Objects
(BOs) as inputs and outputs.

XSDs and retail-public-payload-java-beans.jar

The RSE tool references JAXB created java beans based on the BO source schema
XSDs. These beans are contained in the retail-public-payload-java-beans.jar.

The RSE tool will use Oracle Retail BOs from retail-public-payload-java-beans.jar
and custom BOs from custom-retail-public-payload-java-beans jar.

The jar file is located in the WebLogic deployment directory where the RSE tool is
deployed.

The jar file is created using the Retail Artifact Generator from the source BO XSDs.

The jar file also contains the source XSDs themselves, which will be used by the
deployed service to validate all requests and responses against.

PL/SQL Oracle Objects

These are artifacts that are created from the XSDs using the Retail Artifact Generator.
The Objects have to installed into the database and accessible to the target Web service
API's generated by RSE.

Tool Inputs and QOutputs 3-1

Tool Outputs

WSDL

For the Web service consumers, the input is the WSDL of the Web service provider that
the service will be consuming.

Tool Outputs
Tool outputs include the following:
s PL/SQL Provider Web Service
s PL/SQL Consumer Web Service
» Java EE Provider Web Service

» Java EE Consumer Web Service

PL/SQL Provider Web Service

-
Ratail 508 Enablhar
Reezail Arifact Generatar SPLIGOL Prowidert caervica zip file
: quJH|
Hass Esiof P WISDL
¥E0s XS0 \ a E L"_PQMW J
< Harvica —
- i [T — Lt emarvicns an /"_ Hurt Tera
-2 s
kSR LD
S - s)
3 LI PLE
Fatsd SOA Knablar
[ST-TLILSLor R o A B N g, SSSS—— N e e e T
i etz I] | -,
' e - [| [ata— i
ur'-m | n..___..-'"'_"“ n
T e | [T Doy iz
[rT———. —— |
S e P 1 resreaene
s = |
I L J
S
| S
| —
r
[
| LB ':
"_ .
RTG Crvs - R At | Phclae LEGERD
Gnanern: & RS0
ArtHact Ganarsmr snd S H f‘:‘::::‘ Ej Dadphase
— |Road BOA Tool Web |RBE Tood ard PLIBGL [Eoa]
Bereiod Provides W3 Provekdes APTE —
Peraposiise Basier Bymiom T
= I | e ks e
o [Ruine 121 Yo o Domuamn]
- " N 0 AR
Fd =, Hyinen o Y
E CHACLE | Rt Etciral D ol ER
3 _— Y e LT BT

& Dvade Compamtion

PL/SQL Applications (such as the Oracle Retail Merchandising System) use Oracle
Objects, which are similar to the Oracle Retail RIB style APIs. The tool generates a Web
service provider layer between the external clients and the PL/SQL APIs to provide
the Web service functionality.

The RSE PL/SQL provider output is a zip file. The filename convention is <app>_
PLSQLServiceProvider.zip. For example, rms_PLSQLServiceProvider.zip. The zip file
contains the following:

» <ServiceName>ProviderImplSpec.sql

This is the specification for the <ServiceName>. It creates the package for the
<ServiceName> in the <app> database. It describes all the operations and their IN
and OUT parameters for the service.

3-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Tool Outputs

s <ServiceName>ProviderImplBody.sql

This is the package body for the <ServiceName>. This is where the application
teams have to write the business logic.

= <app>-service.ear

The .ear file has to be deployed on an Oracle WebLogic. The steps for deployment
are given RSE PLSQL WS Install Guide.

= ServiceProviderDefLibrary.xml

This is a copy of the ServiceProviderDefLibrary.xml file that was used to create the
output.

m <ServiceName>Service.wsdl

This is a WSDL file describing the generated Web service. This WSDL file will be
fully documented, pulling in documentation elements from both the service def
file as well as the BO XSD files. This is a single file with all types inlined. It can be
used as input to create a consumer for the generated provider.

PL/SQL Consumer Web Service

[Ratail SOA Enablar ——
(FLISCL WE Cienl) <sarvice=zip file -)
n lime
Suppod jass
—
Fan Tima WS
R il
nl ETHE]
I~ oreasealiie)
P ——l—
hSanicEMaTE LT Run Tima PL
- can sy /_EEI. ARTE
""——-"'r'r-_-‘-“
] Flastal| S04, Eratier]
S arviceMeT es Covmrar
2y
""——-"'r'r-_-‘-“
o Bt
— o =
| 3
FLBOL |
et X r—— |
i
somnn | S -
I —
I p— WSDL
I
LS —— \. J
. .
RTG Dav — A Adtitart |[rackes LEGEND
Ganeralor & RSE O Syem r:'mm:i
RSE Tool and PLASGL Racand
_ || etall B0 Tool Wt || wies Ghent APY's [5om] E:i LS
% ||Service Provider — Syzimm
E Perspeciive I -\] Enleral In Syslem ¥ Human
st of
= Relnmsa: 131 b — e O Fu;ﬁu GEE7
£ / A —— Crepage
Cikgeage
o ORACLE \[E0T]/ Recod Exteral conngcick
o i, i Dreiry O crrechy

& Orace Cofporton

Tool Inputs and Outputs 3-3

Tool Outputs

Java EE Provider Web Service

. (Retail S04 Erabler

=sprvice= 7ip file

3-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

& Omce Cossonalon

Redail Artitact Genrarator IFreaE B Pacamdiny
Bemie pEaped _gh‘SDL
P Fzr1 Lt
cusken-nidak -
amreoe |]
pebl e m.m:nbfﬁnﬂunr :
srvdsarplan 2 e oo |
"l-._.-"rﬁ-‘ i JJIRWHIT I
[Burazn
1 W _J
cusle-nidak L nooes y,
et rmEpinac 1\
v/ boare jar
* " 7 em—— | A Dosign Tah:
‘h.__...-"‘r.--“' e Pl
unkcrenduk
peblcmpinad-
LR O LAY e
Iyl
- Barica
Dot
L A
R L
- e
",
| |
h | [avaEE
Agp
| |
Y
FTG Do — FIE Arblazt [Hoies LEGEND
Gannmdor b ASD
Anitacs Generator and Spulen mE’ﬂ-:ul o [j Dbz iy
Rotail S04 Toexl Wk JREE Tos ind jeaEE -
Swrvicn Provider WIS Providar AM'a
Prenpaciia T T Syelem Bywiwm Human
[} oalsoa al Acwr
% Frakassa: 131 W Domae =zl
T, S o O D= puagit Cu= e
= gl
= = = :
8 e ' 57 soman e

Tool Outputs

Java EE Consumer Web Service

|
|
%

o . Ty
Ratail 504 Enabler
- - - -
avsEE WS Clisrd] <SErvice> zip file
Fun Trme W5
=GanicailaTes Consum [~ Cliant
ae
ljrem JAK-BEC Client jar)
Diasign Time
SarvicablameC onsm W5 Glient
-
‘--..__,_.--""’._‘H‘ h
———— " Rupqeet jars
Support L
jarns
|
=== G
] WEDL I'._ I
I.
k. & H ST |
L - l
N
|55 oev - RiE anttace [Hotes [LEGEND
Guneralor & RSE
RSE Tool and JavaEE Eypatam H E""“_’I'}m G Catacase
— | Reetail 30K Tool Wetr | WS Clemt API's e
&2 | Service Provider _ Sy Rk
E Parspactiva T N Bystem auiskde of Human
= | Exlzmal o ROAL Aoy
: Rabsasa: 1351 o Doman
= T, B o oAz On-page
¥ Falam g
= CHRACLE i Arcord Extamal oonnecion connecor
‘g L] E J i Doman

& Qnack: Corpormon

Tool Inputs and Outputs 3-5

Tool Outputs

3-6 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

4

User Interface Usage

The Retail Service-Oriented Architecture Enabler (RSE) tool produces design time and
run time artifacts, and it works in conjunction with another tool, the Retail Functional
Artifact Generator.

Note: See the Retail Functional Artifact Generator Guide.

The graphical user interface (GUI) for RSE is hosted on an Oracle WebLogic server as a
Web application. Once installed and configured, the GUI is accessed through a URL
(http:/ /host:port/contextroot). For example,

http:/ /linux1:7001/retail-soa-enabler-gui.

The RSE user interface has three tabs, or sections:
= Home

= Server Provider

= Service Consumer

The user interface is designed to be easy to use. Online help is available, including
examples for each function.

User Interface Usage 4-1

Service Provider

Service Provider

The service provider screen gives the option of selecting the Provider type (a Java EE
or a PL/SQL service provider).

A PL/SQL service provider can be used by PL/SQL applications such as RMS to
expose PL/SQL packages as Web services. The Java EE service provider option allows
Java EE applications to create Web services using Oracle Retail payload classes as
input and outputs.

The generated Web services do not have any business logic in them. They provide only
the framework for the development of Web services.

The inputs for creating Java EE or a PL/SQL Web services are:
= Service Definition Library XML File
s Custom Business Object Jar File

= Service Implementation Jar File

Service Definition Library XML File

The mandatory input for creating a Java EE or a PL/SQL service provider is a Service
Definition Library XML file. This file should contain all the details about the Web
services that need to be created.

Note: See Chapter 5, "Service Definition Library XML File".

4-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Service Consumer

Custom Business Object Jar File

While creating Web services, users may want to use their own payloads extend the
existing payloads. These payloads are known as custom payloads and can be provided
to the tool as an input for creating Web services. The service provider screen has a field
for custom Business Object Jar file. It allows the user to upload a jar file which contains
the custom payloads. This jar file is optional; if this is not provided the base payloads
are used to create the Web services.

Note: See the Oracle Retail Functional Artifact Generator Guide for how
to create a custom business object jar file.

Service Implementation Jar File

This jar file is used only while creating Java EE Web services. While creating Java EE
Web services the tool generates empty implementaion for the services. Users will have
to create their own implementation classes for the Web services and use those classes
in the generation of the .ear file in the zip file.

After putting entering the file names in all the text boxes, click Generate Stub. This
generates a .zip file with an .ear file, which is deployed to a WebLogic server.

Note: See Chapter 7, "Creating the Java EE Implementation Jar".

Service Consumer

The Service Consumer tab allows for the creation of a Java EE or PL/SWL service
consumer. After an input WSDL file is selected, the tool runs. When the tool is
finished, the consumer distribution zip file can be downloaded to a specific location.

User Interface Usage 4-3

Help

Help

e B s Peews tem sws

Q= O HEAG Fee i @ 2-5 2-08
...... Zif e i eyt
ORACLE

Butiad SO Frabides

D | Lervios Prowkie:

s -

[= = -
& 308
£ JAVADE

S g— .~ ereep—T

i

P ———— ——— e - |

==

Cr——— L

Click the Help link on the right upper corner of the Home page for a brief description
of the Service Provider and Service Consumer functionality.

4-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

O

Service Definition Library XML File

The Service Definition Library SML file (ServiceDef) is the mandatory input for
creating a Java EE or a PL/SQL service provider. This file should contain all the details
about the Web services that need to be created.

This chapter provides a detailed description of each section of the schema as well as
instructions for managing the Service Definition Library XML file.

Schema Definition

This section discusses the elements of the schema, beginning with the root element
and including child elements.

serviceProviderDefLibrary

This is the root element of the schema. The following is an example of the
serviceProviderDefLibrary element:

<xs:element name="serviceProviderDefLibrary">
<xs:complexType>
<XS:sequence>
<xs:element ref="service" maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="appName" type="xs:string" use="required"/>
<xs:attribute name="version" type="xs:string" use="optional" default="vl"/>
<xs:attribute name="serviceNamespacePattern" type="xs:string" use="optional"
default="http://www.oracle.com/retail /APPNAME/integration/services/SERVICENAMEServ
ice/VERSION"/>
</xs:complexType>
</xs:element>

Attributes
The serviceProviderDefLibrary has the following attributes:

= appName

This is the name of the application for which the. ear file is being built. When the
.ear file is generated, the name of the .ear file starts with the application name. The
format of the generated .ear file is <appName>-service.ear. For example, if the
appName is "rms", the .ear file name is rms-service.ear

= serviceNamespacePatter

This attribute specifies the pattern for the namespaces that are generated for the
Web services. The default value for this attribute is

Service Definition Library XML File 5-1

Schema Definition

http:/ /www.oracle.com/retail/ APPNAME/integration/services/SERVICENAM
EService/VERSION.

s Version

This is the version of the service definition.

Elements
The serviceProviderDefLibrary contains the following elements:

service Each service element in serviceProviderDefLibrary represents one Web service.
The service provider definition should have at least one service defined in it.
The following is an example of the service element:

<xs:element name="service">
<xs:complexType>
<XS:sequence>
<xs:element ref="documentation" minOccurs="0" />
<xs:element ref="operation" maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="serviceNamespace" type="xs:string"
use="optional"/>
<xs:attribute name="serviceVersion" type="xs:string" use="optional"
default="v1"/>
<xs:attribute name="custom" type="xs:boolean" use="optional"
default="false"/>
</xs:complexType>
</xs:element>

The service element has the following attributes:
= name
This is the name of the Web service to be created.
= serviceNamespace
This is the namespace in which the Web service will be created.
= serviceVersion
This is the version of the Web service. The default value is v1.
= custom

This attribute specifies whether the service is a custom service. A custom service
uses custom payload as input or output for any of its methods.

The service element contains the following elements:
= Documentation

This field describes the purpose of the service.
= Operation

The operation represents the method in the generated Web service. Each service
should contain at least one operation.

5-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Schema Definition

The following is an example of the operation element:

<xs:element name="operation">
<xs:complexType>
<Xs:sequence>
<xs:element ref="documentation" minOccurs="0" />
<xs:element ref="input" />
<xs:element ref="output" minOccurs="0" />
<xs:element ref="fault" minOccurs="0"
maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="suffix" default="inputType">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="inputType" />
<xs:enumeration value="outputType" />
<xs:enumeration value="NONE" />
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="custom" type="xs:boolean" use="optional" default="false"/>
</xs:complexType>
</xs:element>

The operation element has the following attributes:

name
This is the name of the operation.
suffix

This is the string to be added to the end of the operation name. One of the
following values are supported for this attribute:

- inputlype

If the suffix value is inputType, the input type name of the operation is added
to the generated method name. For example, if the operation name is "create"
and input type for that operation name is SupplierDesc, the generated
operation name will be createSupplierDesc

- outputType

If the suffix value is outputType, the output type name of the operation is
added to the generated method name. For example, if the operation name is
"create” and output type for that operation name is SupplierRef, the generated
operation name will be createSupplierRef.

- NONE

If the suffix value is NONE, a suffix is not added to the operation name.

Note: If no value is provided for the suffix attribute, inputType is
used as the default value.

custom

If the operation is custom, this attribute should be set to true. The operation is
considered custom if it uses a custom payload for input or output.

Service Definition Library XML File 5-3

Managing the Service Definition Library XML File

The operation element contains the following child elements.

s Documentation

s Input
s Output
= Fault

Fault contains the following elements:
— Documentation

The description of the fault.
- Faulttype

The name of the fault.

Managing the Service Definition Library XML File

The Service Definition Library XML file is the single source of truth for the RSE tool.
This section discusses the creation and management of the file.

Creating the File

The Service Definition Library XML example in Appendix B of this guide can be used
as the initial template. Use the instructions in the Service Definition Library XML File
section to construct the ServiceDef according to the goals of the Service requirements.

As discussed in the Concepts section, the creation of this file is the result of the
analysis phase and part of the Service Design phase. The template provides the
placeholders for the standard Service components: Service name, operation name, and
the contracts for each of the operations, as well as the standard faults.

The ServiceDef should be created and managed (or governed) as a service-oriented
architecture asset in a source code control system. It is as important as the Service
Contracts (XSDS) and implementation source code.

Changing the Version of the File
To change the version of the service definition libraryfile, a "version" attribute must be
added to the root element, serviceProviderDefLibrary.

For example:

<serviceProviderDefLibrary appName="rms"
xmlns=http://www.oracle.com/retail/integration/services/serviceProviderDefLibrary/
vl

version="v2"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

</serviceProviderDefLibrary>

5-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Managing the Service Definition Library XML File

Changing the appName Attribute in the File

To change the application name in the services, edit the appName attribute in the root
element, serviceProviderDefLibrary.

For example:

<serviceProviderDefLibrary appName="editThisAppName"
xmlns=http://www.oracle.com/retail/integration/services/serviceProviderDefLibrary/
vl version="v2"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

</serviceProviderDefLibrary>

Renaming a Service or Operation Name in the File

To rename a service, edit the "name" attribute in the "service" element.
For example:

<serviceProviderDefLibrary appName="rms"
xmlns=http://www.oracle.com/retail/integration/services/serviceProviderDefLibrary/
vl

version="v2"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<service name="EditThisName">

</serviceProviderDefLibrary>
To rename an operation in the service, edit the "name" attribute of "othe operation "
element.

Adding a New Service or New Operation to the File

To add a new service to library, add a new "service" element with its child elements.
For example:

<serviceProviderDefLibrary appName="rmscostchange"
xmlns=http://www.oracle.com/retail/integration/services/serviceProviderDefLibrary/
vl

version="v2"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<service name="ExistingService">
<operation name="existingOperation">
<documentation></documentation>
<input type="XXX">
<documentation></documentation>
</input>
<output type="YYY">
<documentation></documentation>
</output>
<fault faultType="IllegalArgumentWSFaultException">
<documentation>Throw this exception when a
"soap:Client" side message problem occurs.</documentation>
</fault>
<fault faultType="EntityAlreadyExistsWSFaultException">
<documentation>Throw this exception when the attempt
made to create a object that already exists.</documentation>
</fault>

Service Definition Library XML File 5-5

Managing the Service Definition Library XML File

<fault faultType="IllegalStateWSFaultException">
<documentation>Throw this exception when an unknown
"soap:Server" side problem ccurs.</documentation>
</fault>
</operation>
</service>
<service name="AddedNewServiceName">
<operation name="Operation">
<documentation></documentation>
<input type="XXX">
<documentation></documentation>
</input>
<output type="YYY">
<documentation></documentation>
</output>
<fault faultType="IllegalArgumentWSFaultException">
<documentation>Throw this exception when a
soap:Client" side message problem occurs.</documentation>
</fault>
<fault faultType="EntityAlreadyExistsWSFaultException">
<documentation>Throw this exception when the attempt
made to create a object that already exists.</documentation>
</fault>
<fault faultType="IllegalStateWSFaultException">
<documentation>Throw this exception when an unknown
"soap:Server" side problem
occurs.</documentation>
</fault>
</operation>
</service>

</serviceProviderDefLibrary>

To add a new operation to a service, add the "operation" element with its child
elements.

For example:

<service name="service">
<gservice name="ServiceName">
<operation name="NewAddedOperation">
<documentation></documentation>
<input type="XXX">
<documentation></documentation>
</input>
<output type="YYY">
<documentation></documentation>
</output>
<fault faultType="IllegalArgumentWSFaultException">
<documentation>Throw this exception when a
"soap:Client" side message problem occurs.</documentation>
</fault>
<fault faultType="EntityAlreadyExistsWSFaultException">
<documentation>Throw this exception when the attempt
made to create a object that already exists.</documentation>
</fault>
<fault faultType="IllegalStateWSFaultException">
<documentation>Throw this exception when an unknown

5-6 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Managing the Service Definition Library XML File

"soap:Server" side problem ccurs.</documentation>
</fault>
</operation>
<operation name="ExistingOperation">
<documentation></documentation>
<input type="XXX">
<documentation></documentation>
</input>
<output type="YYY">
<documentation></documentation>
</output>
<fault faultType="IllegalArgumentWSFaultException">
<documentation>Throw this exception when a
soap:Client" side message problem occurs.</documentation>
</fault>
<fault faultType="EntityAlreadyExistsWSFaultException">
<documentation>Throw this exception when the attempt
made to create a object that already exists.</documentation>
</fault>
<fault faultType="IllegalStateWSFaultException">
<documentation>Throw this exception when an unknown
"soap:Server" side problem
occurs.</documentation>
</fault>
</operation>
</service>

Deleting a Service or Deleting Operations from the File

To delete a service from the library, remove the "service" element and all its child
elements from the library.

To delete an operation from the service, delete the "operation” element and all its child
elements.

Defining New Exceptions to the Operations

Users can define a new exception in the service defnition library. The RSE tool creates
the artifacts with this new exception.

For example:

<operation name="ExistingOperation">
<documentation></documentation>
<input type="XXX">
<documentation></documentation>
</input>
<output type="YYY">
<documentation></documentation>
</output>
<fault faultType="IllegalArgumentWSFaultException">
<documentation>Throw this exception when a
"soap:Client" side message problem occurs.</documentation>
</fault>
<fault faultType="EntityAlreadyExistsWSFaultException">
<documentation>Throw this exception when the attempt
made to create a object that already exists.</documentation>
</fault>
<fault faultType="IllegalStateWSFaultException">
<documentation>Throw this exception when an unknown
"soap:Server" side problem occurs.</documentation>

Service Definition Library XML File 5-7

Managing the Service Definition Library XML File

</fault>
<fault faultType="UserDefinedException">
<documentation>This is user defined exception for a
particular scenerio.</documentation>
</fault>
</operation>

Using Different Versions of Objects as Input/Output to an Operation

The version difference between objects does not impact the RSE tool, as long as the
objects adhere to standards.

5-8 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

6

Web Service Standards and Conventions

This chapter includes standards and conventions for Web service naming and
versioning.

Web Service Naming

The following standards and conventions apply to the naming of Web Services.

The Web service name should be a business noun, concept or process.

Item Description

Recommendation The Web service name should be a business noun, a business
concept, or a business process.

Rationale To be in alignment with other Web service standards.

Example Supplier Service

Avoid verbs when naming Web services.

Item Description

Recommendation The Web service name should be a business noun, a business
concept, or a business process.

Rationale Verbs generally are at the operation level, not at the service level.

Example Avoid names such as CreateSupplierService.

The first 30 characters of the Web service name must be unique.

Item Description

Recommendation The first 30 characters of the Web service name must be unique.
Rationale Some systems truncate names at 30 characters.

Example N/A

Web Service Standards and Conventions 6-1

Web Service Naming

The integration/services qualifier should be in the namespace.

ltem Description

Recommendation The integration/services qualifier should be in the namespace.

Rationale

Example http:/ /www.oracle.com/retail /rms/integration/services /PayTerm
Service.

The Web service namespace should contain the application short name.

Item Description

Recommendation The Web service namespace should contain the application short
name.

Rationale Multiple applications may publish services with similar names. To

categorize and identify which application is hosting what service,
the service namespace should contain the application short name.

Example http:/ /www.oracle.com/retail /rms/integration /services /PayTerm
Service.

The Web service type should be document/literal wrapped.

ltem Description

Recommendation The Web service type should be "document/literal wrapped.”
Rationale This is defined in the WSDL.

Example <soap:binding

transport="http://schemas.xmlsoap.org/soap/http"
style="document" />

<operation name="createPayTermBO">
<ns21:PolicyReference
xmlns:ns21l="http://www.w3.org/ns/ws-policy"
URI="#PayTermServicePortBinding_createPayTermBO_WSAT_

Policy"/>

<soap:operation soapAction=""/>
<input>

<soap:body use="literal"/>
</input>

The Web service must comply with Web Service Basic Profile 1.1.

ltem Description
Recommendation The Web service must comply with Web Service Basic Profile 1.1.
Rationale The specification is called the WS-I Basic Profile 1.1. It consists of a

set of non-proprietary Web services specifications, clarifications,
refinements, interpretations, and amplifications of those
specifications which promote interoperability.

Example N/A

6-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Web Service Versioning

The Web service operation naming pattern should be
verb<TopLevelComplexType>(TopLevelComplexType variable).

Item Description

Recommendation The operation name pattern should be either of the following;:

= verb<TopLevelComplexType>(TopLevelComplexType
variable)

= verb<NonTopLevelComplexType>Using<TopLevel ComplexType>(
TopLevelComplexType variable).

Rationale The operation name should reflect the Top Level Complex Type of
the service’s primary entity object to ensure the name is
unambiguous.

Example createltemListBO

Web Service Versioning

Service versioning is in the namespace, including the application and the version
identifier.

The service namespace is versioned.

Item Description
Recommendation The WSDL for the RBS will have the namespace versioned.
Rationale For breaking changes only, the WSDL for the RBS will have the

namespace versioned.

http:/ /www.oracle.com/retail / <retail
app>/integration/services/<service name>/V<incremental change
number>

Example http:/ /www.oracle.com/retail /rms/integration/services /PayTerm
Service/V2

Web Service Standards and Conventions 6-3

Web Service Versioning

6-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

7

Creating the Java EE Implementation Jar

Creating Web services with different implementations is a three-step process, as
described below.

Note: For creating an implementation class, interface classes are
required.

Step 1: Generate Web Services with Default Implementation
Generate the Web services with the default implementation as follows:

1. Provide the Service Definition Library XML file and click Generate Stub to create
a zip file.

2. The zip file contains a jar file with the interface classes for the Web services. The
name pattern of the jar file is <appName>-service-ejb jar.

For example, if the application name in ServiceDef is rms, the jar file name is
rms-service-ejb jar.

The jar file also contains a properties file named
ServiceProviderImplLookupFactory.properties. This file contains the name of the
Web service interface and the class implementing the Web service.

Step 2: Implement Interfaces

Implement the interfaces and create the implementation classes. The classes can be
packaged in a jar file. Upload the jar file while creating the final ear file.

Step 3: Upload the jar

When using the Service Implementation Jar File option to upload the jar containing the
implementations, the default service implementation jar is not included in the .ear file.
Rather, the jar file provided by the user is included. When the Web service is invoked,
the service implementation provided by the user is invoked.

Creating the Java EE Implementation Jar 7-1

Step 3: Upload the jar

7-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

8

Implementation Guidelines

This chapter provides a set of implementation notes that may be helpful when
implementing the Oracle Retail Service-Oriented Architecture Enabler (RSE) tool. The
information included here is intended to provide guidance on the following topics:

s PL/SQL Service Consumer

s PL/SQL Provider Service

= Java EE Web Service Consumer

= Java EE Service Provider

s Web Service Call as a Remote EJB Call
s Web Service Call as a POJO Call

= Deploying the Web Service

s Creating a JDBC Data Source

Important Note About this Chapter

The implementation notes in this chapter are intended to provide some guidance in
the development and deployment of the Web service layer. This information does not
take into account the implementation of the business logic required to complete the
application API layer.

The RSE tool and approaches described in this section are complex. A high level of
skill and knowledge of the product is required to complete these implementation
tasks. Also required is technology specific development of application API's and the
business logic that is needed to complete it.

Any issues that may arise with development tools, development environments,
custom APlIs, or custom message flows are the responsibility of the customer and not
Oracle Retail.

Implementation Guidelines 8-1

PL/SQL Service Consumer Implementation Notes

PL/SQL Service Consumer Implementation Notes

To set up the Web service consumer side proxies, complete the following steps:

Note: See the section, "Important Note About this Chapter".

1. loadjava -u <username>/<password>@<host>:<port>:<SID> -r -v -f -genmissing
dbwsclientws.jar dbwsclientdb102. jar

Note: "loadjava"is a utility available in Oracle Database.

2. Edit and run *_grant.sql script as sysdba to give the user proper permission.

3. loadjava -u <username>/<password>@<host>:<port>:<SID> -r -v -f -genmissing
*Consumer.jar.

Note: If the jar already is loaded, drop the jar. If you get ORA-29533
while dropping the jar, drop the individual files.

For example: dropjava -u
<username>/<password>@<host>:<port>:<SID>
packageName/SourceName

4. Run the *Consumer_create.sql in the schema that will use this APIL. The schema
owner is user granted permission in Step 2.

5. Write a PL/SQL procedure to work as the client to call the Web service. A sample
is provided below:

Note: The following sample code is written for the PayTerm Web
service. Replace the service endpoint URL and the consumer class
name according to the Web service for which the client is generated.

create or replace PROCEDURE wstestClient IS

BEGIN

PayTermServiceConsumer.setEndpoint ('http://10.141.26.93:7001/PayTermBean/PayTer
mService');

dbms_output.PUT_LINE (PayTermServiceConsumer.getEndPoint ()) ;
dbms_output.PUT_LINE (PayTermServiceConsumer.ping ('TestMessage'));
dbms_output.PUT_LINE('Done."');

END;

8-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

PL/SQL Provider Service Implementation Notes

PL/SQL Provider Service Implementation Notes

The distribution (.zip) file includes an .ear file that contains all the generated code for
the service; it is ready to deploy to the application server. The business logic can be
implemented in PL/SQL packages in Oracle. The distribution contains the "spec" and
body scripts for the packages called by the deployed service.

To complete implementation, follow these steps:

Note: See the section, "Important Note About this Chapter".

1. Create the PL/SQL service provider distribution file using the RSE tool. The
output of this process is the .zip file.

Note: See Chapter 4,"User Interface Usage".

2. Extract the <service_name>.ProviderImplSpec.sql and <service_
name>ProviderImplBody.sql files from the distribution zip file.

3. These files will be modified to provide a PL/SQL implementation for the service.

4. Extract the <service_name>-service.ear file from the distribution zip file. This file
is the generated Web service that will be deployed.

5. Create the JDBC data source.

Note: See "Creating a JDBC Data Source".

6. If not already deployed, deploy the Oracle Objects to the appropriate database
user.

Note: See the Oracle Retail Functional Artifact Generator Guide.

7. Modify the PL/SQL body file for the business logic implementation. The <service_
name>ProviderImplBody.sql file contains comments about where to implement
logic for each method on the service.

8. Install the modified PL/SQL packages to the database. They will be called by the
Web service methods.

9. Deploy the <service_name>.ear file to the Oracle WebLogic Server.

Implementation Guidelines 8-3

Java EE Service Consumer Implementation Notes

Java EE Service Consumer Implementation Notes

The Java Web service consumer artifacts generated by this tool are based on the
JAX-WS 2.1 specification. Services can be invoked in synchronous and asynchronous
mode by using these artifacts.

To complete implementation, follow these steps:

Note: See the section, "Important Note About this Chapter".

1. Create a Web service client.

2. Create the application that uses the {WebsSrviceName}ServiceConsumer.jar and
code the your Web service client. The {WebsSrviceName}ServiceConsumer.jar
contains all necessary code to invoke the {WebsSrviceName}Service WebService.

3. Additional JAX-WS library jars might be required.
4. Deploy the service in the server.

5. Invoke the Web service client to see the results.

Sample Client Code

The code below is an example of how to invoke Oracle Retail's PayTerm Web service.
For each Web service, a specific WebServiceConsumer code/jar must be generated that
can "talk to" the service.

Note: The following sample code is for invoking the PayTerm Web
service. When you generate Java consumer for a Web service, the
generated jar file will contain classes specific to that Web service. Use
the appropriate classes in the client code. Service namespace and
WSDL location also should be changed accordingly.

import java.math.BigDecimal;

import java.net.URL;

import javax.xml.namespace.QName;

import com.oracle.retail.integration.base.bo.paytermdesc.vl.PayTermDesc;
import com.oracle.retail.integration.base.bo.paytermref.vl.PayTermRef;

import
com.oracle.retail.rms.integration.services.paytermservice.vl.PayTermPortType;
import
com.oracle.retail.rms.integration.services.paytermservice.vl.PayTermService;
import junit.framework.TestCase;

public class PayTermTest extends TestCase({
public void testCreatePayTerm() {
try{
//gname is the namespace of the web service
QName gName = new
QName ("http://www.oracle.com/retail/rms/integration/services/PayTermService/v1l",
"PayTermService") ;

//wsdlLocation is the URL of the WSDL of the web service

URL wsdlLocation = new
URL ("http://10.141.26.93:7001/PayTermBean/PayTermService?WSDL") ;

8-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Java EE Service Provider Implementation Notes

//get the web service instance
PayTermService service = new PayTermService(wsdlLocation,gName) ;
PayTermPortType port = service.getPayTermPort();

//populate input object for the web service method
PayTermDesc desc = new PayTermDesc();
desc.setTerms ("terms") ;
desc.setDiscdays("1");
desc.setDueDays("1");
desc.setEnabledFlag("t");
desc.setPercent (new BigDecimal ("1"));
desc.setRank("1");

desc.setTermsCode ("code") ;
desc.setTermsDesc ("desc") ;
desc.setTermsXrefKey ("key") ;

//call the web service method. here ref is the response object
of the web service.
PayTermRef ref = port.createPayTermDesc (desc);

}catch (Exception e) {
e.printStackTrace() ;

}

Java EE Service Provider Implementation Notes

The RSE tool creates the appropriate provider Web service end-points as well as a
skeleton implementation layer where the developer implements business logic. All of
this is packaged inside the provider distribution archive file.

The Java EE Provider distribution file provides a sample deployable application and
all the libraries that can be used to create Web services using retail payloads. The
distribution file follows the naming convention of <appname>_
JavaEEServiceProvider.zip. For example, the distribution file for the RMS application
is named rms_JavaEEServiceProvider.zip. The <rms> prefix must be replaced with the
name of any other application being developed.

The Web services generated by the RSE tool can be implemented and deployed in a
number of ways. This section includes three implementation use cases for reference.

Note: See the section, "Important Note About this Chapter".

Use Case 1: Complete the Generator Provided Stub Code Implementation
1. Generate the distribution file using the RSE tool.

Extract the <service_name>-ejb-impl-src jar file from the zip file.

Extract the <service_name>-service.ear file from the zip file.

Add business logic code where indicated in the Impl java files.

Use the java jar command to re-build the <service_name>-service-ejb-impl jar file.

Use the jar command to update .ear file with the new implementation jar.

N o g 0 Db

Deploy the .ear file to the server.

Implementation Guidelines 8-5

Java EE Service Provider Implementation Notes

Use Case 2: Provide a Custom impl jar to the RSE Tool

1.

Create custom java classes that implement the <service_name>ServiceProvider
interfaces contained in the <service_name>-service-ejb jar file.

Extract the ServiceProviderImplLookupFactory.properties file from the .ear file.
Modify the properties file to point to your implementation classes for the services.

Use the jar command to create a jar containing your implementation classes, as
well as the modified properties file.

Run the RSE tool again and provide the new custom implementation jar file.

Extract and deploy the generated .ear file to the server.

Use Case 3: Package the Generated Service Classes in an Existing Application

1.
2.

Generate the distribution file using the RSE tool.

The service interfaces are provided in the the <appname>-service-ejb jar file in the
distribution file. This jar file should be included in the application classpath.

Source code of sample implementations for the service interfaces are provided in
the <appname>-service-ejb-src jar file in the distribution file. (If application
developers want to use the same classes in their application, they can extract the
java files from the jar file and include those in application source code. They also
can add their own business logic in the method implementations. If they decide to
write their own implementations, they should make sure that the appropriate
service interfaces are implemented.)

After writing the Web service implementations, the java files should be compiled.
The class files can be included in a new jar file or in the same jar file used for the
rest of the classes of the application.

Modify the ServiceProviderImplLookupFactory.properties file to include
appropriate class names of service implementations and include it in application
classpath. A recommended approach is to include the properties file in the jar file
that contains the service implementation classes.

Make sure that the following jar files are included in the application ear file:
= <appname>-service-ejb.jar

= Jar file containing the service implementation classes

= jaxb-apijar

= retail-public-payload-java-beans-base.jar

s retail-public-payload-java-beans.jar

= retail-soa-enabler.jar

Include an ejb-module in the application.xml of the application. The module name
should be same as the name of <appname>-service-ejb jar file.

The .ear file is ready for deployment on the server.

8-6 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Web Service Call as a Remote EJB Call

Web Service Call as a Remote EJB Call

Prerequisites

Procedure

This section applies to PL/SQL Web service implementations and Java EE Web service
implementations.

A client can call a Web service as a remote EJB call to improve performance by
avoiding marshalling and unmarshalling.

Note: See the section, "Important Note About this Chapter".

1. Get the updated wlfullclient jar (integration-lib \third-party \oracle\wI\10.3\)&
retail-soa-enabler.jar (integration-lib\internal-build\rse\) from the Repository.

2. Run build.xml for retail-soa-enabler.
3. Generate the .ear and deploy it to server.

4. Configure the data source in the server.

1. Create a Java file containing the code below inside any package. (See code sample
at the end of this section.)

2. Include the following jar files in the classpath:
= retail-public-payload-java-beans-base jar
s retail-public-payload-java-beans.jar
= oo-jaxb-bo-converter.jar
= retail-soa-enabler.jar
= <appname>-service-ejb.jar

3. Run code as a Java application.

Note: The sample code below obtains a context for accessing the
WebLogic naming service and calls a lookup method to get the Object
inside the container by providing a binding name. It then calls a
corresponding Web service method. As an example, the code sample
calls the PayTerm service.

import java.util.Properties;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import com.oracle.retail.integration.base.bo.paytermdesc.vl.PayTermDesc;

import com.oracle.retail.integration.base.bo.paytermref.vl.PayTermRef;

import
com.oracle.retail.integration.services.exception.vl.EntityNotFoundWSFaultException
import
com.oracle.retail.integration.services.exception.vl.IllegalArgumentWSFaultExceptio
n;

import
com.oracle.retail.integration.services.exception.vl.IllegalStateWSFaultException;

Implementation Guidelines 8-7

Web Service Call as a Remote EJB Call

import com.oracle.retail.rms.integration.services.paytermservice.vl.PayTermRemote;

public class WebLogicEjbClient {

public static void main(String[] args) throws NamingException,
IllegalArgumentWSFaultException, EntityNotFoundWSFaultException,
IllegalStateWSFaultException {

Context ctx = getInitialContext("t3://localhost:7001",
"weblogic", "weblogic") ;
Object ref = ctx .lookup("PayTermi#fcom.oracle.retail.rms.integration.services.
paytermservice.vl.PayTermRemote") ;

PayTermRemote remote = (PayTermRemote) (ref);

PayTermRef ref = new PayTermRef ();
PayTermDesc desc = remote.findPayTermDesc (ref);

System.out.println("findPayTermDesc=" + desc);

static Context getInitialContext (String url, String user, String password)
throws NamingException {

Properties h = new Properties();

h.put (Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory");
h.put (Context.PROVIDER_URL, url);

h.put (Context.SECURITY_PRINCIPAL, user);

h.put (Context.SECURITY_CREDENTIALS, password);
return new InitialContext (h);

Code Description
Code sample 1:
Context ctx = getInitialContext("t3://localhost:7001", "weblogic", "weblogic");
Description: Gets Initial Context object by passing the URL (local WebLogic URL, if
not configured to other), user name, and password of the server.
Code sample 2:
Object ref = ctx .lookup("PayTerm#com.oracle.retail.rms.integration.services.

paytermservice.vl.PayTermRemote") ;

Description: Lookup method retrieves the name of Object. Throws naming exception
if the binding name is missing from the server. Binding name can be found after
deploying the .ear file to the server, at JNDI Tree Page. (Summary of Servers
>examplesServer>view JNDI Tree)

8-8 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Web Service Call as a POJO Call

Code sample 3:

PayTermRemote remote = (PayTermRemote) (ref);

Description: Create PayTermRemote object by casting ref object.
Code sample 4:

PayTermRef ref = new PayTermRef();
PayTermDesc desc = remote.findPayTermDesc (ref);

Description: Invoked Web service method findPayTermDesc as a remote call.
Depending on the requirement, the user can vary the binding name and create a
different object to invoke the Web service deployed to the server as a remote E]B call
using the above code.

Web Service Call as a POJO Call

This section applies to PL/SQL Web service implementations and Java EE Web service
implementations.

If an application is a core Java application, it can still call the Web services classes, but
as POJO classes. In this case, the Web service classes act as simple Java classes, and
there is no marshalling of XML involved, nor a remote call as an E]B.

The PL/SQL provider services need a database connection to call PL/SQL packages.
In the case of a Web service call or an EJB call, the service gets the connection from the
data source supplied by the Java EE container through resource injection. But in the
case of a Java application, the data source is not available through this mechanism. The
connection must be passed to the Web service class before invoking any business
methods on it. To achieve this, the caller application must create an instance of the Web
service class using the non-default constructor available in the service bean class. An
example of the signature of the constructor is below:

public PayTermBean (Connection conn,Map<String, String> serviceContext)

Note: The bean class is available in the <appname>-service-ejb.jar for
each Web service generated. For example, if the service name is
PayTerm in the service definition XML, the name of the generated
bean class will be PayTermBean. This is the class that should be used
to call a Web service as a POJO.

In the constructor shown above, the first parameter is for database connection. The
second parameter is for the calling application to provide any additional parameters to
the bean passed on to the PL/SQL package. When the bean is called as a Web service,
an instance of ServiceOpContext class is created by using properties available from an
instance of javax.xml.ws.WebServiceContext, available through resource injection.
When the bean is called as EJB, then an instance of ServiceOpContext is created from
the values in an instance of javax.ejb.EJBContext, available through resource injection.
But when the bean is called as a POJO, none of these objects is available. Therefore, a
map has been added in the constructor so that the calling application can set the
required values. If a null object is passed to the constructor for the map, an empty
instance of ServiceOpContext is created. If the map contains a key named "user," a
Principal object is created with the value of that key, and it is set in the
ServiceOpContext object.

Implementation Guidelines 8-9

Web Service Call as a POJO Call

Procedure

Note: See the section, "Important Note About this Chapter".

1. Generate .ethe ar file for Web services and extract the following jar files from it:
= retail-public-payload-java-beans-base.jar
s retail-public-payload-java-beans.jar
= oo-jaxb-bo-converter.jar
= retail-soa-enabler.jar
= <appname>-service-ejb.jar

2. Include these jar files in the classpath of the Java application that is going to
invoke the beans as POJO classes.

3. Write the code to call the bean classes. (Sample code is provided below in this
section.)

4. Run the calling class.

Note: The connection must be committed or rolled back by the
calling application. Because there is no Java EE container available in
this case, the bean cannot start and end a transaction. Therefore, it is
the responsibility of the calling application to manage the transaction
and the connection. In the following sample code, the calling class is
committing the connection in case of a successful response from the
bean, and it is rolling back the connection in case of any exception
thrown by the Web service. The calling application determines how it
wants to handle exceptions.

Sample Code for POJO Invocation

public class PayTermService extends TestCase({

public void testPayTerm() {
Connection conn = null;
try{
//get the database connection
Class.forName ("oracle.jdbc.OracleDriver") ;
conn
=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:0rcl", "stubby", "ret
ek");

//create map for ServiceOpContext
Map<String, String> ctxMap = new HashMap<String, String>();
ctxMap.put ("user", "userl");

//instantiate the web service bean class
PayTermBean bean = new PayTermBean (conn, ctxMap) ;

//populate the input object for web service method
PayTermRef ref = new PayTermRef ();

ref.setTerms ("terms") ;

ref.setTermsXrefKey ("key") ;

8-10 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Deploying the Web Service

//call the web service.here desc is the response object
PayTermDesc desc = bean.findPayTermDesc (ref);

//print the response object value
System.out.println("desc value="+desc.getTerms());

//commit the database connection
conn.commit () ;
}catch (Exception e) {
e.printStackTrace();
try{
conn.rollback();
}catch (SQLException se) {
se.printStackTrace() ;
}
}finally{
if (conn !=null) {
try{
conn.close() ;
}catch (SQLException se) {
se.printStackTrace() ;

}

Deploying the Web Service

This section applies to PL/SQL Web service implementations and Java EE Web service
implementations.

Note: See the section, "Important Note About this Chapter".

Complete the following steps using the WebLogic Server Administration Console:

1.
2.

N o a &

Navigate to the Deployments page.
Click Install.

Note: If the service application has already been installed, see
"Redeploy the Service Application".

The "Locate deployment to install and prepare for deployment" screen is
displayed. Follow the instructions to locate the <service-name>.ear file on the
WebLogic Server host

If rib-home is located on a host other than the Oracle WebLogic Server, select
Upload Files. On the "Upload a Deployment to the admin server" screen, use the
browse button to locate the <service-name>.ear file in the "Deployment Archive".

Select the igs-service.ear.
Click Next to move to "Choose targeting style".
Select Install this deployment as an application.

Click Next to move to "Optional Settings".

Implementation Guidelines 8-11

Deploying the Web Service

8. (Click Next to move to "Review your choices and click Finish".
9. Select No, I will review the configuration later.

10. Click Finish to deploy the application.

Redeploy the Service Application

If the <service-name> application has already been deployed, follow these steps:

1. If the <service-name> application is running, select Stop and When Work
Completes or Force Stop Now, depending on the environemnt. The
recommended option always is When Work Completes.

2. Select Delete.
3. The Summary of Deployments should now include the igs-service.

4. Return to "Deploying the Web Service".

Verify the Service Application Installation Using the Administration Console

To verify the Service installations using the Oracle WebLogic Administration Console,
follow these steps.

Note: See Oracle® WebLogic Server 10g Release 3 (10.3)
Documentation - Administration Console.

-

Navigate to the Deployments screen.

Locate the <service-name> on the Summary of Deployments screen.

Click the + next to the ig-service to expand the tree.

Locate the Web services section.

Click any Web service to move to a Settings for <service name> Service screen.
Click the Testing tab.

Click the + next to the service name to expand the tree.

Click the Test Client link to move to the "WebLogic Test Client" screen.

© ® N o o & 0 DN

Select Ping Operation.

10. The test page will show the request message and the response message.

8-12 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Creating a JDBC Data Source

Creating a JDBC Data Source

This section applies to PL/SQL Web service implementations and to Java EE Web
service implementations.

To create a JDBC Data Source, follow these steps:

10.

11.

12.

Note: See the section, "Important Note About this Chapter".

Log in to the WebLogic administration console. Use the URL,
http:/ / <host>:<listen port>/console/login/LoginForm.jsp.

Navigate the domain structure tree to Services/JDBC/Data Sources.
Click New to start creating the new Data Source. Enter the required information:
Name : Enter any name for the data source.

JNDI name: This field must be set to "jdbc/RetailWebServiceDs". The generated
code for the service will use this JNDI name to look up the data source.

Select the transaction options for your data source and click Next.
Enter the database name and user information for the data source. Click Next.

The screen includes the connection information for your data source. Click Test
Configuration to ensure the connection information is correct. If it is correct, the
following message is displayed: "Connect test succeeded."

Click Next and select a server to deploy the data source to. This is not necessary at
this point if you want to deploy the data source to a server at a later time.

Click Finish to complete the data source setup. The new data source is displayed
on the data sources screen.

Click on the new data source to view the properties. A default connection pool is
created for the data source. Click the Connection Pool tab to view the connection
pool properties.

The generated JDBC connection URL for the data source is displayed. The Oracle
URL is formatted as follows: jdbc:oracle:thin:@<hostname>:<port>:<sid>.

For example: jdbc:oracle:thin:@localhost:1521:0rc
If the database is a RAC database, the URL should be in the following format

jdbc:oracle:thin:@ (DESCRIPTION = (ADDRESS_LIST =(ADDRESS = (PROTOCOL = TCP) (HOST
= <host>) (PORT = <port>)) (ADDRESS = (PROTOCOL = TCP) (HOST = <host>) (PORT =
<port>)) (LOAD_BALANCE = yes)) (CONNECT_DATA =(SERVICE_NAME = <sid>)))

For example:

jdbc:oracle:thin:@(DESCRIPTION = (ADDRESS_LIST =(ADDRESS = (PROTOCOL = TCP) (HOST
= mspvip72) (PORT = 1521)) (ADDRESS = (PROTOCOL = TCP) (HOST = mspvip73) (PORT =
1521)) (LOAD_BALANCE = yes)) (CONNECT_DATA =(SERVICE_NAME = dvolr02)))

Restart the WebLogic instance to apply the data source changes.

Implementation Guidelines 8-13

Creating a JDBC Data Source

8-14 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

9

Web Services Security Setup Guidelines

Web services can be secured using user name/password authentication. This section
provides step-by-step instructions for how to secure Web services after they are
deployed on the WebLogic server, as well as details for invoking a secured Web service
from the client side.

Server-side Setup

This section describes the two-step process required for securing Web services on the
server side. These steps are performed using the Oracle WebLogic Servers
Administration Console.

Attach Policy File to the Web Service

The usernametoke.xml contains the policy used by the Web Service and is found in the
META_INF/policies folder in the .ear file. Complete the following steps to attach the
policy file to a Web service:

1. In the Summary of Deployments screen, click the application. In the illustration

below, the application is "rms-service."

Summary of Deployments

B | wonwionng |

Deployments
m - Shawing 111c i1 Had
1 | Hame == | Stato Health Type Deployment Dnder
£ | ® @ma AR At B ok Wb Applicatan 100
[| weut 1.0.1.2 3 Litrasy]
] T o B ok ”&'\‘lf“'l"ll'}ll Applicatian |
= '. A0S 50 ATCN V8 ey 1 H ok Wab Application 100
0 T s t B ok Entepnise Applicaian 100
B o EJB 100
1 5 R oraie a T Entadpnsa Applicanan 100
m = - Sherwing 1116 17 af 17 Pra Man

Web Services Security Setup Guidelines 9-1

Server-side Setup

2. Anoverview page is displayed, including a list of modules and components
installed as part of the application.

Miadulen and Componmants
Bhowing 110 108 1 Previows | Mexd
Moo Typs
H rmis-senice Egm:
= EJE
O InfrastruchwelianagerBean L]
CiPaTarmBaan (4]
i ReporiLocatorBean EsB
[y SunperBean EsB
= Wadulen
EF5
-sEra]
{)irn-amnace-—ais jar frre-dvn
E Wb Sendces
. el
fria Bruch el gl =
AN U $LIan d e Terace Berdon
P o Termbanice :“a
@ Reporl. acatorFanice :;::“'
i Suncharaanics bty

Showing 106 1681 Pravious | M

3. In the list of Web service, click the one for which you want to enable security. The
following screen is displayed, providing an overview of the Web service.

A VWeb Sensce is a set of fundions packaged info a single endly hat is avadable io offver sysiems on a network B is implamented using a Java Web Service (13 file
WhHIEh I8 8 J3va CIass thal uses JVWS Metadata INNoEMBoNs 1o Speciy e Shape 3nd bahader ol the Wab Senios.

This page ®spdays the genaral configuratan of & daployed VWeb Sensce. Such 48 Be name st appears in the Deploymants tble of the Administason Conscls, tha
AR Cf e WAR oF JAR AlE in wiich IS paCEI5e0. Snd RAME Thatl SPEESE in e WEDL et SeRcrbes Me Wab Senice

Crophaymant Harms: mmis-asndce Tha name of the Wb Sardce 58 it appears in Me Deployrmants
tabie Lione inda
Modhule Hamae: nmis-serace-eb jar The name of the Weh Serdce archive Be, aiffier 2 WAR file or E58

JAR file depending on e Web Servdce fealures d
imglemenis. More info

Sendice Hame: FayTermESenics The namae of thes Web Serace. This name appears in The W3DL
file hai defines tho public contrad of this Web Sendce. More
Inig

4. On this screen, click the Configuration tab. Click the WS-Policy tab. The Web
service port is shown under Service Endpoints and Operations:

Tris pags 1ists ha poicy Alas that are il 1P and ot tnis Tha o 5 5ra 115800 Bt Ml enApSint - Cick on the +
iGN 10 vhirw T Click on Bhe andooint of operalion Name 1o Conigure 0 ae30ciabed policy e, For armple, you can Speci; Thal e Doy Me applied ond; for
NBoLna (raueEl) TOAR Meliages. and 50 en

WE-Poiey Files Associabed With This Web Senice
Showing 110 1 6f 1 Pravious | Het

Service aned - Poiicien

E PasTermPor

Showing 1101 of 1 Pravious | Hert

9-2 Orace Retail Service-Oriented Architecture Enabler Tool Guide

Server-side Setup

5. Click the + next to the port name. The Web service operations are displayed:

Tres page BEts Fie poicy Bies WISl 408 ANE0CNE0 Wil [T @ap0INka 00 CEeraRens of s WaBEenice The speeanons e mabed Daidv e sndpse - chck on e +
lge B2 e thaem. CHCK SN Tha andpos of Goarabon name ks corfiguns an 83300ialad policy Mle, For axampls, you can Specily at the policy Nis appbes only 16
INESUN (request; SOAF mestsdes. and 82 on

WS- Policy Files AsSocialed W THis Wb Servicn
Showing 1651 41 Previous | MNest

Sanice Dnopoins and Operaions == Paiicies

S Py T iR e

Cresis Dt Tarmbans

e et ade Pa TermDesg
CoamEP A TairnDans

Setetnl agTemCenc

Ainc®ay TarmDess

pirsg
updaitnOetanP sy TermDenc

updabibieada? ay Tembes:

L dale® s TarmiDasc

Showing 1k 1011 Previous | Fast

6. You can secure all the Web service operations or select only the operations you
want to secure. Click the name of the port. On the Configure a Web Service policy
screen, you can attach the policy file to the Web service:

Configure o Wi-Policy Tile 1or 8 Web Serace Lndpont

Lt Wi pAS B CORRGUNS Ui VS-Foncy e TEl 1e EESoCBlEd Wil Tai Vel Seniod endgcint

The Acailable Endpoiud Poboss window ists the &3 -Pobcy By el ars sadable far iou fe sessmete o e Wak Serars sndpsinl Uss the scws 1o movs a fis o B
Cnomsn Endpsint Fobicies abie. maam ik O I SO0/ pOUr UDDSIR

Serace Eracont Feiioes

AE] Service Endpoint Ponciea:
A e O Cnosen Lragset Hoss s

palcriaen1 34Ves 1 1xs00- H Wl [Pl
paticy W sn 1 Ve s
péhcy daspl 34Ws

mm.b‘ Mﬂm E _I_I
A HEEEA] Lol L]

7. From the Available Endpoint Policies list, select policy:usernametoken.xml. Click
the right arrow to move it to the drop down list below Chosen Endpoint Policies.
Click OK. The Save Deployment Plan Assistant screen is displayed:

1
o= coeont]
Save Dugopment Plan
Vot Rl miaS9 ConlguraBion changes hal reed ia be sSered in @ new Oeplapment Plan

DT 07 ST Wel NS OF B PABA 08, B AR Nirew B ST S BamEEI B 1k FETOPTIER 0 T Bl 08 0e I:I'!il:l Fran s, Bis) T SO0 $AEA DS MDEIET ¥ 3 UNHE
Ty B Wl Bl SR 8 i D OeeTaTBEn O T i P BN 68007y Tely D il &

Bt] 18 Taangies _saresia srupload Fian wml |
Hacanily Lsed Pashe: O ihe atmtiere_ 10 Fasmpleaidamiingbed_yenenannars auargies Senscupinad

O el cpmant

O ihe giwisarier_ 10 Taampissidamane sl _sensranrmryaisrgass Ganer
Lwi_pavvw | nerarn b siamoles Sener | eaload

U LOC Ay 109080 PO VD \ Do winerser_£0 3\ semoies | dormss

= pian
@ ([paps
[H sercsProwssen ey s

Web Services Security Setup Guidelines 9-3

Server-side Setup

8. At the bottom of the Save Deployment Plan Assistant screen, click OK. The
following screen is displayed, including status messages near the top:

]
=
A TVl Tl I PREATT 0T QP Tl 3 T R CT Tl sy AN
Senmings for PayTerm Sarvice

Secusiy | Teniing | Monsioring

iaywd 3 i 2 i of the Adminsstralion Conacle, e

e angd name

Daplayemen hama BT

Ehouaie fdgie RO RiD 8

B w bame FaTerm3enics

9. On the Web Service page, under the Testing tab, click the WSDL to view the details
of the policy just added to the Web service. The WSDL will contain information
similar to the following:

<?xml version='1.0"' encoding='UTF-8'?>

<definitions
xmlns:wssutil="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecuri
ty-utility-1.0.xsd" xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wsaw="http://www.w3.0rg/2006/05/addressing/wsdl"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.oracle.com/retail/rms/integration/services/PayTermService
/vl" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://www.oracle.com/retail/rms/integration/services/PayTermS
ervice/v1l" name="PayTermService">
<wsp:UsingPolicy wssutil:Required="true" />
<wsp:Policy wssutil:Id="usernametoken">
<nsl:SupportingTokens
xmlns:nsl="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512">
<wsp:Policy>
<nsl:UsernameToken
nsl:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/Inc
ludeToken/AlwaysToRecipient">
<wsp:Policy>
<nsl:WssUsernameTokenl0 />
</wsp:Policy>
</nsl:UsernameToken>
</wsp:Policy>
</nsl:SupportingTokens>
</wsp:Policy>

9-4 Orace Retail Service-Oriented Architecture Enabler Tool Guide

Server-side Setup

Create Roles and Users

This section describes how to add roles and users who can access the Web services.
The first step is to add users to the security realm.

1. Within the Oracle WebLogic Servicers Administration Console, click the Security
Realms link in the Domain Structure window:

o= D
W Caagssatis

2. The Summary of Security Realms screen is displayed, including the name of the
default realm:

& BECWIRS reBkT i & Cortainer far B MEChaniama—acuSng UMM, Grougs, Besarly . Seurity colcies, Bnd seturly providens- Bl are b i proled WabLogis
THRERION . V0w G Tk MUSGHe B0 TSI 0 8 Vit ogk Serar domain Sul only one Can B B a8 e delaud (achie) realm

Trih Doty Realsri bge Bil &k S0 feab® Pl Nl bien CSrlgured m M FebLegs Secve domiin CRO N N o De /a5 epiiie and toifiges
ot raadm

W Ciaziarniie Biid Lalse

HealnaiEinied - ote Cohanns L)

- 'm-uu-] Bnowing 1o 1 of 1 Pradous | Rl

] | e Chaim lipais

[| messm L]

-.-:.J Bnawing i T ol 1 Praious | Naest

3. Click the name of the default realm. The settings for the realm are displayed.

Une Fin page o conlgues B genaral ehadon of Bey wacuy /sm

Hos
o e ETpHIMENENGD BR0Unl WEng JADT L Aunonzabon Conbad Ior Containans 8 defesd m JSR 1155 ou musd use T DD Dnay wacury medsl
O WabLogic Serar modsly ane sl seslatin and he secury lundlons for Vieb applicatons and £0 in e ASsunitlaton Comiale am Snabisd
e LT The Niwmss of Tis S80HR FRBim . Uoes ik
] Becurity Mol Delst: oo o o t sppicaticns oriEM
(Ccmmibinag Fioke Rkaoping Enebind Diwfarminet Bow T rele rmaping i Be Cniergrias Apgicibon
B s M BppReanen T M Corlan wl Tris 4]
Gty B PRt BODRCBBSNE Bnd EITFE Tl UES P AdvEn
macsl snd st indalcs robes Fom degloyman descriol
iy

[] wie Aushonaancs Prossasrs i Prowect JEEG Access

LS s o

Web Services Security Setup Guidelines 9-5

Server-side Setup

4. On the Settings screen, click the Users and Groups tab.

TR A0S BEPLATE INAITRIDEN LTl S ICH U7 T B NEE DEe COMBguIRD N IS B ECUTR, IRMM

¥ Custsmice Sea tably

(rsars
-ml Showsng 1193603 Prasssus | et
O | nama = Decripaon Provides

L1 | Pusinns whal 1 pUBEUD BamDle Datastintharncaie:

) | smscrina b 12 pubuh Aamaie [

B |webiegic This e o T Safaul adminiphair Dalautlictmnacater

-“!!F_'IFl Bhormang 1103003 Pressus | Hed

5. In the Users and Groups tab, click the Users tab. At the bottom of the Users tab,
click New. The Create a New User screen is displayed.

‘¢rasts s Hew V9@r ___________

Unar Propariies.
T Ipitgwing Erogarbey sl Be wpsd 53 a0y ot P L par

* i G Selde

T A O P B PTG N LT

i | T —
Haw mwid sy Bhe o desote Ta ey UserT
Descaigrisem I |

Plikis Shosis B Droaser sl M use

Provder: DBl A bt W %
Thee paasaoid s ansociaied wih the logn name lor the nes Ueser
Prshesa
Contm Pssson

9-6 Orace Retail Service-Oriented Architecture Enabler Tool Guide

Server-side Setup

6. In the Create a New User screen, enter a user name/password. Leave the default
value for Provider. Click OK to save the information. The new user is added to the
list of users.

Mirnsirms

T rasad Sudsesaray

MNote message here.

Thin gage drplary infarmatien 3doul 25h uier Tt had been condguied in ik pecurs, realm

¥ Customiza Fem tabis

Unars

[o | Showing 1104 564 Prakous | Nt
01 | Pesnaner et ior pubaub Bample Erebwitiatiieicaiod

0O | e Cafntiatmertcator

] | sscesar WA for pUBSUD 13mple Detssamerncater

1 | witiogic Thin w1 T Sefaul adminilatoc Cfauladneracatae

_ -nm| Showing 1104 664 Presous | Hlet

Note: Adding roles can be done from the Roles and Policies tab of
the security realm or through the Security tab of the Web service. The
following instructions are for creating a role through the Security tab
of the Web service.

7. Navigate to the Security tab of the Web service. Click the Roles tab.

RIS A0S BUITHTLAIENS T Baourty Foims B3t Can S0 UBesd Dol i T ohcy for M Ve sanace moguls

I CLstsrmilse Pai Libis

Wab feracs Morhids Scoped Rolas

- .WI Shiwing 046 0600 Praksus | Nt
n:llma |nmn-

Traes 58 53 A4S 8 B30
[o | Anowing 1o Dt Fredein | Hist

Web Services Security Setup Guidelines 9-7

Server-side Setup

8. In the Roles tab, click New. The Create a Web Service Module Role screen is
displayed.

s Propartes.
The Is8owing proparbes wil Ba wnad 5 ubardly youl raw 1ok

* PR (e Blpy

Wt wepasld sou b B0 mama (o new raleY

B
WIS (OHE MAaRE-ad wolld poo e 10 ule WIS Pl ok 7

bl Ny KACAN Fislebdappar =

[o i cancem |

9. In the Create a Web Service Module Role screen, enter the role name in the Name
field (for example, rmsrole). Leave the default value in the Provider Name field.
Click OK. The new role is displayed in the Role tab of the Web service.

TRiE G208 BUITIMANoes T Bkl roisn Mai Can 8 Use3 Gnly in M eoicy fon TUE Ve varace meduls

I CListamiss P Litvis

Web Servics Mouls Scopsd Rolos
Bhewing 116 1801 Prassus | Net

|
[| mama - Proviter ama

E1 | reeecis saC UL Ressllaggar

“ o j Showng 110 1601 Fraessus | Bl

10. To add the user to the role, click the name of the new role in the Roles tab. The Edit
Web Service Module Scoped Roles screen is displayed.

ek Bericw Rols Congtsne

Lrpa Bn e) 40 P ConaBons of @ nacurm 108 Bo00ed I HUY Vel penice moduls

Trwd 6 Wb ABTil Fobe Tl e BN B 10 iedbd TUE Vel Sarios

lama: mamie

Tien Iiawing CONGBANE deMITRING MEM-rSNG s P 10l

Boda OumIon |
| rv congaene i comtme I uncombee I e vv [s oen [v [e |
M Peficy Spacibad

9-8 Orace Retail Service-Oriented Architecture Enabler Tool Guide

Server-side Setup

11. In the Edit Web Service Module Scoped Roles screen, click Add Conditions. The
option to Choose a Predicate is displayed.

Edit Web Service Maduls Seoped Rabes

Choone 8 Predcats

SNOIEE Ta DredCEe (04 wilh D UBE BB (04 NEw COnOBEn
The piecals RELiE 5501 o Svailabis pIeScalin ahich Ean Be Ul 1S Mals up & Seiusly poScy Soadlion
Pradcals List — =

12. From Predicate List, select User. Click Next. An option to Edit Arguments is
displayed.

Edit Wab Sarvice Modula Seepad Roles

Ebt Argramends

0 W B B WO B STt T B | e Bru ORCaNE pes P CND AN
Lsar &purnmsl Daacngban
LPder Anguami Rame Jm
I

13. In the User Argument Name field, enter the user name created in the security

realm. Click Add. The name will move down to the box below the Add button.
Click Finish. The following screen is displayed.

Edit Web Service Maoduls Scepad Reles

Vb Sarace Roly Conatony
L e Daige 80 aiE M conaons of & Reowly 08 B0008E 1 TN WG IenAcE mouls

TR i Tl ATV O TV 1 A 1 e P Vsl Banane

laams rianche

T Raigaing CoORAEnY Dalemmsns Mambarsae i P e
Mpia Conditiivg

|

14. Click Save. The same screen is displayed with this message near the top: "Changes
saved successfully."

Web Services Security Setup Guidelines 9-9

Server-side Setup

15. Return to the Security tab of the Web service and click the Policies tab.

I ;
H

Liss ihis paps 1o managa Me sscully policy tor P Wab Serdos module. This poScy prolscs Web senics cparalons. 1 e opeaiong ane irglsmanisd by
classes Tis policy Mso pritechs Bie Java img Fiha op By an EJB. this policy proticis Tia EJ8 mefhods whin sccessed from

i
Wil serioa dhants, i dos nof proliect e EJB whan acosssed foon EJE chenty waing RN e JHDE

- Pravidars
Thaks aié v SURGRIIESN Croudars 8 BEmInEE I San Relc Fom
Austhonzation Provders: | RACARLAuthoozer =

© Mlathoy
ST e MaTaan in Py Wl Sersos Bl rou wantie iCens Tou 30 sdhic BRCUe ALL malSdy (PeCommandidl of Snly tf memod Ay maihed T pou da net
SRCUTE will D proseciad By I DOBCy fof e Webh Serice's panent Bpeicaiion (f pou Rl Sebned such 5 p2hoy)

~ Poney ©
Tha Felraing ooniliny SHbbimirtd wid B BIoAed b SooRN Ml Wb Sanioe

o Pokicy Epsofied

Poficy Used By Delaut
GISUR | evipEng

16. On the Policies tab, click Add Conditions. The option to Choose a Predicate is
displayed.

Sl - U

Comzan v praOhale pis weBh B el & (2l il CONSB0N
Tha predicate B5T 18 & st oF 3:adabie predicates which can be used 53 make up 3 SeCRfly pailcy condien

Pracicate List (Ficke =

L) ||

17. From Predicate List, select Role. Click Next. The option to Edit Arguments is
displayed.

o e

ST a0 10 W B I I SOJUMETE T ST 1 el (eI 0 Pl OhEREN
Add ane or mane foies A3 TNE Conaion B o 308 mumiphe ok, e Sooton eeakuates 38 B T e senis i ANY of e roies

- =

Fcin Argarsent, liam:

= =

9-10 Orace Retail Service-Oriented Architecture Enabler Tool Guide

Server-side Setup

18. In the Role Argument Name field, enter the role name created earlier. Click Add.
the role name will move down to the box below the Add button. Click Finish to
return to the Policy Conditions screen.

19. Click Add. The Policy Conditions screen is displayed with a message near the top:
"Changes saved successfully."

epaages
R —— Note message here.

L Bk pEEE 10 MRANAQS Ma SEoully PEACy I s Vel Serice mosule. THil palicy Brabecis VWS Berite Soarabon. T M coMMONS B8 implemenisd By Javs
CFEBEE, MiE DOBCy BIEE DIOSTIN V8 JEvE WTSrraniaton. IT e S0ershoes in argiemenied iy an EH0. his Doboy Drotecs e EJ8 mamods whan BIceased Fem
WA BRAACE CRAME B B06E No1 prebect M ED whan Booented i ETB clents usesg i sna JHDI

Prorsiars
Thiks s Tel SuTSvabon (= id0eid B STHel Wl Can Sale0 Ndm

Asshorization Providen: RACMLARRGHZS %

— Miethids
Salwct N metsd i P eh Beface Mal piu want5s Seturs. VouU £3n0 sffed 18crs ALL meTads (narmmendad) o only o maihsa Ay maihed s o da ast
SRCLTE W 8 DIOASOIRA Dy M8 2025 FOF I V8D 108 D et ApERCaBin (1 you Rl S6RnEd SUCH § g3bEr]

Wndh S e Listroai: Y |

— PoRcy €
Tha felisaing conaibond debarming wha (s sliowed 1o accuss fus Wab Seride

[Rots | imarta

Web Services Security Setup Guidelines 9-11

Client-side Setup

Client-side Setup

Client code for calling Web services can be generated using the Java consumer option
of the retail-soa-enabler-gui tool. The generated zip file contains all the jar files
required for the classpath of the application that calls the Web service. To run the
client, follow the steps required to run Java consumer.

The following is sample code for calling a secured Web service.

Note: The code below is sample code for invoking the PayTerm
service. When you generate Java consumer for a Web service, the
generated jar file will contain classes specific to that Web service. Use
the appropriate classes in the client code. Service namespace and
WSDL location also should be changed appropriately.

package com.oracle.retail.rms.client;

import java.net.URL;

import java.util.ArrayList;
import java.util.List;
import java.util.Map;

import javax.xml.namespace.QName;
import javax.xml.ws.BindingProvider;

import com.oracle.retail.integration.base.bo.paytermdesc.vl.PayTermDesc;
import com.oracle.retail.integration.base.bo.paytermref.vl.PayTermRef;

import
com.oracle.retail.rms.integration.services.paytermservice.vl.PayTermPortType;
import
com.oracle.retail.rms.integration.services.paytermservice.vl.PayTermService;

import weblogic.wsee.security.unt.ClientUNTCredentialProvider;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.xml.crypto.wss.provider.CredentialProvider;

import junit.framework.TestCase;

public class PayTermClient extends TestCasef{
public void testFindPayTerm() {
try{
//aName is namespace of the service
QName gName = new
QName ("http://www.oracle.com/retail/rms/integration/services/PayTermService/v1l", "P
ayTermService") ;

// url is the URL of the WSDL of the web service
URL url = new
URL ("http://10.141.26.93:7001/PayTermBean/PayTermService?WSDL") ;

//create an instance of the web service
PayTermService service = new PayTermService (url,gName) ;
PayTermPortType port = service.getPayTermPort () ;

//set the security credentials in the service context

List credProviders = new ArrayList();
CredentialProvider cp = new

9-12 Orace Retail Service-Oriented Architecture Enabler Tool Guide

Client-side Setup

ClientUNTCredentialProvider ("rmsuser", "rmsuserl");
credProviders.add(cp) ;
Map<String, Object> rc =
((BindingProvider)port) .getRequestContext () ;
rc.put (WSSecurityContext .CREDENTIAL_PROVIDER_LIST,
credProviders) ;

//populate the service method input object
PayTermRef ref = new PayTermRef ();
ref.setTerms ("terms") ;
ref.setTermsXrefKey ("key") ;

//call the web service.here desc is the response object
PayTermDesc desc = port.findPayTermDesc (ref);

System.out.println("desc="+desc);

}catch (Exception e){
e.printStackTrace() ;

Web Services Security Setup Guidelines 9-13

Client-side Setup

9-14 Orace Retail Service-Oriented Architecture Enabler Tool Guide

A

Appendix: Installer Screens

This appendix provides step-by-step instruction (with illustrations) for installing the

Oracle Retail Service-Oriented Architecture Enabler tool as a Web application in Oracle
WebLogic.

Installation as a Web Application in Oracle WebLogic

Deploy the Artifact Generator Application
Using the WebLogic Server Administration Console, complete the following steps:

1. Navigate to the Deployments page:

fie i e gy fechvarin [fisp
[CERERTRY T S B
Changs Curiet
Summany of Daplopments
ot TR
Ciowmain Streiure
e,
Rarss Mty | Smash Ty iyt Cres
4 "
B o
B
B i
Hew do o
B
B e

Appendix: Installer Screens A-1

Installation as a Web Application in Oracle WebLogic

2. Click Install.

Bie i fow iaghoy Jectvarks ek ey
w o X Al s TERELIT 1M O] s wmi e i e s s e b AR e nite S e

‘___.l_'_. Ll bmnideren

ORACLE" WsblLogic Servers Adminisiralion Conscla

P, o |t e s L) D Poeiocan [memn e |

EER——— . e

[P ————

Shersts v st L pe—p—

ol haagen wa -

AT @8 o T B

P T -_,..|- 1_._1-
Locuts i

abuct For Bie il Binl reotw ookt Bon apyeabon ool Sratlers iifevs Bie epioded wrchiss Stk or apohcabon rode e rphsl Bl ros weed i inifel Yin tae
S B W R of b Igcaon Srwctony £ M n T Pam ek

Wt vy v S il S 30 puaeted S B ol ok Bt o giorTaind B, yor 7 (i %41 By conem sl v appiciion contmna B iegseed
L s]

- = KT T T e
4 B e]

A e e P e g P e v YT Tk %

BUIE €11 kamgsnn | v | W _sneves § sare | e Sare upiesd

Carvwnl Loction: TR T

O g v

= rwind henc aritecd g guuma
T

Y . Il]

Note: If the application has already been installed, see "Redeploy the
Application”.

The Locate deployment to install and prepare for deployment page is displayed.
Follow the instructions to locate the retail-soa-enabler-gui.war file.

Select Upload Files.

Die s e lighory [Jevoverts Lesn ey

F o X S | SRR 18

‘___.l_'_. Ll bmnideren

ORACLE" WsblLogic Servers Adminisiralion Conscla

—— (L et (G e | L Tt Pty [Beimy cew [=

=ipin prnE g Bra P st i T e

..... e

[P ————

Sohorsts v st L pe—p—

Tl RS W T T

AT @8 o T B

P T --_'1_._’1-
L CRpAOYEAT T T R RV

e W Do Saion St 15 ebec] e depicifion i wvoddibe o B machess Foe which jos e el Bevwiing Whan sou haew ocaled e e 505 e Riaat
B T L e

Gk sy Pty B

Lopepd 8 dmploresd piee (They, Vg 1y oyl
& uinirranl F 18§ GRS Mes whek (g T e B] ol e e § el P bl e
3 Sha ks 3 cepkeTand pn schiss naw 1mm_m-u-m-m‘mmmuu i Bew resbed i oy
R et fnd et

* Diageezhc

[T

Coppioyrna Fan
Archive

o) JEl

A-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Installation as a Web Application in Oracle WebLogic

4. On the Upload a Deployment to the admin server page, use the Browse button to
locate the retail-soa-enabler-gui.war file in the Deployment Archive.

b pa e Hpery fesbmsis Losh e
[e AR S ST ye—r— et pemte o b comc st g s et | G e
& ot Vaswd i Goiting Barted . Lstwnt Feadiess

ORACLE" WetLogic Servens Administration Consola

e e Ty = LR R I e | - |

P
S vmsaren: | R
Fumas crumgas il L

| |

U [l PP K B S GBI

[=21] B roduie on T Factins Fom i s e Qrrenilly Seowiing Whin pou baed ioCed e Ba ches Be
Ll L s Sarvad

DT AT b b s - ' e S oy e | B

gk Al

4 Smpiymand plan o 1 s can e srchive. & Secoprant will won wilhoul 3 SegRoTent pia

R M85 P o Fhen Begh LAY R w5 Srwciony B Sonlouraion IiSrmaRon Cckagee] 48 & 16 e D ielaed
A B

B . e

- | Bapaa |

5. Select the retail-soa-enabler-gui.war.

Bie G e iagiory (Jectvaci [esin ey
L R T T i pcn s e bew e et el e - | e

Wl Vit [Gmng et . Lt i

B CRTSINTTRE SRR - CRRSU — |

..... iy mms—
Wi ¢ Rt i (3o -
i e DB o o8 gleee]
Thas RIS S B B TP B e R e o i B R i £ 4 P e e
BT 08 T B3
e LS

ea) - [l

Locats [P Tt

tw(] o B 0 TR 0w e apa el oot BOR(01 iriPive Bhd. Hebiieded ahion Seuihenn o BOESCHMR Tt n 0 rihsl ol riw el B Ielal You (8
S B T i of P appcahon Sewciory o1 e n e P et

Mot (s s S . arw c puseted S pou Cant B por chigiormsent Bien. ocas v S arvor conflem full vear appicalion nortar B g

Sagi et Sl
rem (™ RLE PR A, et B it s WY (s mad
My vt b Putt 12 T gyt ey e eutted
TN AT R bt in s FL 558 s b, P DL Bt sPemint
Csrant Localion 0 UTIT TRIIE i w58 11 Sty | S e iy | ey | A irpnen Sents | anbaad
g
O T e smrc s
B w i esi arule g g
TR | s

Lo ewm | —

Appendix: Installer Screens A-3

Installation as a Web Application in Oracle WebLogic

6. Click Next and move to "Choose targeting style."

Bis i fow tighoy Jectvacs Jesh ey
9-..: X

sty CTEELIT 1M PO s i empin pens Applamie penier sl el sctonCoanaes T EmU B | PTsE srtemn s masd el

e
& Wi Viste I Gomg Samad . Lovist madinan
ODRACLE" wWeblLogic Servers Administralion Conscio
: S e e L e e ey < s |

Cbrpr Cotriet P —

[p—

P — e .

Fikire ikimgas il mulomnlainil Fnwtall Applicasan Apsivtant

(R E—_—

Sl (e] I .

ks Largenng urp
"Dt B = Tirgehi e e nervary Chuileed. el sl Funif o mhich Bisi egiavee s m i Thesh aen v s mih i 08 gl B8 aEERLabin

malil B dwphryriesd oy e appis slee

Thoi i ilies il B RSty wil o e 3] 1 Py &b =w liliornd Thas i ol Suinil P Swtan k80

Al s depkpiat 58 & b

R S B S T T S BRI b RS O L NI T SEAtEE G 80 o o S] T ey
T

7. Select "Install this deployment as an application."

Biw i s iaghory jectvarin [esh iy
A c ~ 4" Ly CTERELIT I O] wesnde 1 e pin pen Ay genie sl peln_ sotondsmreies LU B | RIS srtern spp vrl e ger
o W s i G lemed . L besiien

e, s | e o _res i e L

= = e Ul = LT T — - |

Wiy ¢ Bt i fradain

Comgirmtes Hmeg i Sasbisd — —
P, vy milt kel i Ertall Applacason Aunigiant
EWEE 5 eI B

SIS ™Y e Y
pcaat fermags
[g e Houar ol Bwrn aeSe g moacoeg) B ey

[
Wl e i merd s e Pt impicerenl™

Wi vt bt g e

]
ol [
VI 00 i 8 o e T W)
= 10 Doy L oy 1y e T s b i D depkoyraeni bens g

Cuntmm Rokea. U mies B are Sl @ the Adwennttabon Coannis; a5e pobce St ars deined m B fepoyTe
[r—

i Bk bl ke LI Gy i et ik P 40 el o8 [A] | o8 b

- Bfaaied Use ¥ = e

by
Tmmrre gcc wvidnify

Fim WA Wb § Bt [W] b P e T

A-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Installation as a Web Application in Oracle WebLogic

8. Click Next for Optional Settings.

Biw et e gy [fevtvarin [esh iy
g"-- © K | s 105710 MO0 ey e e e s sl i scisnCumnies (Te e el o s el - -

& Wl Viste [Gomesg Shamad . Libat baiina

& Twrgean Cr -
— -
o o P Batvarn
i v
[1
—

Duse

aramy
Wil mnruniy mode 82 e mant b une el F acomcrkon™

N (el s sy by aal o it Pl e el i e deployrama] dosd g

it iskay e ks Tl 540 il 8 The 2 e e Bl L1
e

Canimr Rokey ged Pubc n e onfy rey e polc s B are Sefmed @ e Adrewnir gbon Caasom

Bafsanced s v g pe the e g
T iy

iow s nourse Sen £R mad GCtE ST
® i B ey drinnd |y Do dupioyramal s Lasgely
L S TT T
o T i S s) LAt 14 P
(g Gl o Bk el 8 ol il s UG SR R b P P e 18 L]

i i e o

Provade B iocsbion Yo whers ol tergety will scoans Fun scpecalior o Bea Thea o pllen o sharee drscion: Fau rurd smurs Sa sppscaiior S sexi = Fea ocsbon »
L RRCE E G R e e

9. Click Next to review your choices. Click Finish.

Bis s o ieghoy Jectvatn [esh sy
g"-- © X A | s 105710 MO0l ey e e e s sl i scismCumaies (Tem e el srior e A v L - -

o Wl Visten [Gomeng Shamad . Libast baifins

Cardqursion sakeg i1 ssated
Vet chumgen wl sutorulicas b
cllied 8 o Ty Bdd
e e i Ban B

- —

Iratall dgpieatean Anatant

Warvaarw et 1 Bamloen pod LR bl
Chcn Fammin s Toomgiets e egiwrrian Pan iy G § bw STl W COPE
PR PRS-

e T S TR T SIS Py TR S oS e [0 i R 0 (e T Sppaaten s conbgursban ale ranpsg e S HTTY

Fea T

N R

Byl e gwtiared 10 L E TGRS] T S BT S M SR e e
v i R WY g
Shagny et L0 T Qb MASR G P (RS ey

L e e e L

¥ =
gt Samemary
] nwrpe S

10. Select No, I will review the configuration later.

Appendix: Installer Screens A-5

Installation as a Web Application in Oracle WebLogic

11. Click Finish to deploy the application.

- | LT 14 el i page E - 7 -l ﬁ-_ — &
L] -

ORACLE WobLogc Servors AdminisiraSion Console

)

L L Ty "y y= o ARINNL | WRSMNE e |
E = - by o Dep————
Verw | haages mnf cwalais

s it o o]

P g i || SOy S DU

kil gy el el prom——
P e L C

FRERTIUEERTIIINN | ot st et seimirets = b P e b g sk s g P s i s
[grelics ?FME ﬂm Shwwng Vi 100l B Prevesa | S
| 1 S et
Verify the Artifact Generator Web Application
1. Navigate to the Deployments page.
T e, ST = e
€ % A s o e » B - »

ORACLE WobLogc Servors AdminisiraSion Console

L L Ty "y y= o ARINNL | WRSMNE e |
E = - by o Dep————
Verw | haages mnf cwalais

S remsn et | RSO
Pty chargen sl s mobomss TH

kil gy el el .
s

_

Tk B Wiarh § K OF aen 1 KGPACERLRG, ST Tl S AT Tk B ek L LT B PSR BTN R ARSI PSR (88
Domsin Srursers 0 staried wpped adsted wdszieeed; o dessied B e dorem by Bl priecing B Eosclon e sl seeg e oo on e page
- i =g e iy o e e (53 e gl Tl
Farp—
Imjimat
- e
Cacia®: B
[
Smpprn

-mEﬂm T
i'ﬂ]'_n'_' e e e | Doy e |
| D |yt st s) Jes

| T |

iu-t Biom Frawpess s L] |
|| ® S e

|t B pm Erimpes S | e

A-6 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Installation as a Web Application in Oracle WebLogic

2. On the Summary of Deployments page, locate the retail-soa-enabler-gui.

e e Pos tigpuy . lnieue L. Ly

C X @

L SR ERLINCR L L]

a Bty tesd s L

Bl i
B A oY 1 AT
Vit changes wall Bulomabcats S

b i otey Py il
L L) T

‘Domain Strucmers
w_nw
ireran et
[
- Sarare
it BaE
® e
[——

LT S

[P ep———_—,
T T e ———
[

s e | st (B o i o Poetrnnns [Mt e T

b

Sumniry of Deplpmasts
e

Thus Fage Sataes @ ol o Jona 0 OB, Bd 1ard Sins ARERCENSN Toodkined Pl M (el FULL 15 T SOTSEn IR SRS TSRS S RS
o tharted puraed avtsied wduieend) o debrieed e B e b bl vsbeceg S mescmon es aed vemg P oo o e page

| —

iy Pui dengn S0l P mplph falle
[—
e
e] e s e s s
i | . e .
T [nmen L |
Enmnn T L e
! :‘itnll'lv"*lziﬂ' ‘MH .-.'m -“‘- ‘IOQ
EI e el] i
| # o s ey | B Em |
!' E“:"*ﬁl "M‘Q -ih .-m“ ‘:“

3. Click retail-soa-enabler-gui to view Settings for the retail-soa-enabler-gui.

e i Poan ey . jutmee Jpuh jp

C X @

L SR ERLINCR L L]

a Bty Mot e L

ORACLE WobLogc Servors AdminisiraSion Console

Verw | haages mnf cwalais

1l e]
Pty chargen sl s mobomss TH
kil gy el el

P e L

-_Ew
| et
amn

* Carer

i Bp s
& rargerazen
[g

L LT Ty "y = RINNSY . | WRSMNE e |

et ey e B S e

‘B gt e B il d corursbon of § Bt greusbn

e e e g g s e e e

| Bl s e R g e ey ot e By e ey e e
wieee Birn i

- T i1 A e e b g gl b o e g pincgben s e

K e g ww s e Mo i

Dephoyraest Pigm (20 pa npaled i i g e W e g e e sk g
Baar ey i

By Bk et apcled Thap =abm Bond ppmeiban abwban o aysisbor 1 By @ roped

e e L L S
S g S T PR YRR e

Appendix: Installer Screens A-7

Installation as a We

b Application in Oracle WebLogic

7.

4. Select the Testing tab.

Bl e e gy et Jnsh fp
ﬂ B 0 B 5 | || hen A7 40 X0 et il s, e, e it s epuliimalemrors i o burs 7 [0
& et bt [Lnftny Wbyl L byt Py

ORACLE WobLogc Servors AdminisiraSion Console

SO SR r— L —— T -

= ==
Chirrgs Carder
[P -
[—
s rbereY Sattings for retsl furc-ar¥fac genqu
L L
e e v | eyt s Comtratms s furpets | Comtrs JER e | e |
11 T A 1 L T by o o W BT St (A e s R BAI
Ciomain Smureare
-y Capepraes lean
Wwwrsg £ 1§ Pran | Pl
Wi o Tt Pt [
e I " Datnt i on dever cnaepantare
roden 1z Gipin g g e, 1 9 EEna AT D
By tin 0} Frovses | pist
..

5. Click on the index.jsp URL in the Test Point.

6. The URL should open to the Retail Service-Oriented Architecture Enabler Home
page.

Bl (e pem gy feissts Jusn jm

Sl R R) 1 LT 18 T vt b e e e e -
g e e]
ORACLE

Retall deiifmcs Gorsaster

Tha Arafact Gassmw 1ol conmen fencmonsl amiact S sl sppic maes
Vs stiered det iy [Redns ts Tor St al [oralons Sies Coteiitol e Caede

T o i o e b e g SIS] P St P Arusi Tab

T nrwgie el ety] a Comer b detdmty Tab

v (eermn AdSacis Setes Via Amie

g
LT T

O L LTI e e e

The installation is complete. See Chapter 4, "User Interface Usage".

A-8 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Installation as a Web Application in Oracle WebLogic

Redeploy the Application

If the retail-fsoa-enabler-gui application has already been deployed, follow these steps:

1. If the retail-soa-enabler-gui application is running, select Stop and When Work

Completes or Force Stop Now, depending on the environment. The
recommended option always is When Work Completes.

B s e ey (motmais [mi by

- = Ll st TG LELIT 1M T s i ey e sl e abe Aapr g e Pl AepDepaey e pee i e
o Wl Viste [P Gomeng Samad . Likat builina

[L———
Danbhgurabin eameg 5 sabied

FAbEY TRBAIY sl SN T Tty o Dpherptienty

armed 0 e Ty B33

swets f4m i Pun Soriae i [C—

Thus page Swpsn 8 it of taen U sppicaiany ancd siand-snse sppkaben modubey Fal 10w been erisied i SomEn nrsied sppocalany s modans Cn
Topemain Srrecturs 0 iwied vrped apdaied Tedapinssd) o dwisted e T domun by nf asacing e Enpkcaion rare aruing e conimi o e

T L & i P 4 Pt B e 1 L)) Bhad A0 (M3 Tk IS v

Sl e

My VA B P | T
T g s i
frem pre
el dgwc i AL
et dpracalon ™
Fampans sppurmor a3

Hewdol - | 1}
[#] 1
(AR R A —— P (g P
o Wy o e Mt 11 300 Pt {
g 10 L T 1M TR ChRian rivinen FOR A - Vi i, sbits e vt st ved skl savs Ealihpply Far b P r—
2. Select Delete.
R i e lgiory jevovehs Jesn ey
- T o et UREEIT LM PO s mm e e it g 4k Aapl eper e e @ s el Applapie eyl peemi oy il
o Wl Viste [P Gomeng Samad . Likat builina
ERangs Carier ¥ = : P M
Vit it i
i A i
PukFY Aaget W ApmaNCIy B Bummary o Deplopsants
v safpd =t~
swets f4m i Pun Soriae i [C—
Tran page Anpman 8 i of 2aen 06 JpFECESNE Sncd (and- Base SOCATIAE el Tl A 0440 Erisied b FEL S0TIEA MITSSI SPRECEINE M mo-RARL CHN
‘Dpenain Fireciun

e wiaee vEpped apdaed (Tedapissd, o diied Y3 T domun by bnf asiecing B apphcalon rame sn ning e coniris o b pe
T LS o BRI B i e W 1 LN I D A0 (R T RS ol
i preatn

3

g prrmmiy.
=3 e e eEn

My V10 M Pt | P
LR, fTale | Ty Forcmprrme
" fe— 13
¥ mgn 1 B | wen dpssemon w
3 Bs wesdggicson m
- o wrs BEow Fawrpans Apparmon RE]
Hewdol =) ! ! : 1]
e — wne |Hes L8 pr
el s . — [~ [ep—— e
L W B oo Moo L o L] T LT W —
[

Appendix: Installer Screens A-9

Installation as a Web Application in Oracle WebLogic

3. The retail-soa-enabler-gui should now not show on the Summary of Deployment
page.

57 C 5 0 o 10000 et e e st gt et el sttt | (G-

Wl Vit [Gmng Samad . L i

et U T YT PSRy ~ L - |

R e R e]

|

Verm by e ety

Corvguraton sdeg i pratied T W e
Tdturn changen wl auomuica b

ke an o e a0 r

T

Tres g it o bl o e £ e mase e Fi Pl B9t Inelied aE0SLaben s arel Teikinh Lo
"Dambin Brectire B e T T T i R gl] Fob S0l o0 B i
w_uw 12 atsd krsew nEpbishon o madise b daserement i ety B domn o Fa i Sl
4 Enarrrrand
Dmpyrseiy
* Tarmn ey
e b Castomge Pot ipsn

A e gy

CRT——— L]
e e e e el
. Lermy m
Jime [Boc im0
oo g e ,T'_q
B e -] I"'-r__n_uu.- [T FoR—— i'll
I_r' | .IIIJ.TVI Ancapr ‘-.M I-m .wwlq-:- Im

B it i § e b pisii’ SR

4. Return to the appropriate step in "Deploy the Artifact Generator Application".

A-10 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Appendix: Sample
ServiceProviderDefLibrary.xml

The sample below can be used as an initial template.

ServiceProviderDefLibrary.xmi

<serviceProviderDefLibrary appName="rms"
xmlns="http://www.oracle.com/retail/integration/services/serviceProviderDefLibrary
/vl

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<service name="Supplier"><!-- Noun, don't put suffix Service -->
<documentation />
<operation name="create"><!-- Verb -->

<documentation>Create a new
SupplierDesc.</documentation>
<input type="SupplierDesc"><!-- Existing BO -->

<documentation>
Input SupplierDesc to create.
</documentation>
</input>
<output type="SupplierRef">
<documentation>
Return the SupplierRef for the newly
created
SupplierDesc.
</documentation>
</output>
<fault faultType="IllegalArgumentWSFaultException">
<documentation>
Throw this exception when it is
"soap:Client" side
message problem.
</documentation>
</fault>
<fault
faultType="EntityAlreadyExistsWSFaultException">
<documentation>
Throw this exception when the object
already exist.
</documentation>
</fault>
<fault faultType="IllegalStateWSFaultException">
<documentation>

Throw this exception when there is

Appendix: Sample ServiceProviderDefLibrary.xml B-1

ServiceProviderDefLibrary.xm|

unknown
"soap:Server" side problem.
</documentation>
</fault>
</operation>
<operation name="createSupSiteUsing"><!-- Verb -->

<documentation>Create a new
SupplierSite.</documentation>
<input type="SupplierDesc"><!-- Existing BO -->

<documentation>
Input SupplierDesc to create.
</documentation>
</input>
<output type="SupplierRef">
<documentation>
Return the SupplierRef for the
newly created
SupplierDesc.
</documentation>
</output>
<fault faultType="IllegalArgumentWSFaultException">
<documentation>
Throw this exception when it is
"soap:Client" side
message problem.
</documentation>
</fault>
<fault
faultType="EntityAlreadyExistsWSFaultException">
<documentation>
Throw this exception when the
object already exist.
</documentation>
</fault>
<fault faultType="IllegalStateWSFaultException">
<documentation>
Throw this exception when there
is unknown
"soap:Server" side problem.
</documentation>
</fault>
</operation>
<operation name="createSupSiteAddrUsing"><!-- Verb -->

<documentation>Create a new
SupplierSite.</documentation>
<input type="SupplierDesc"><!-- Existing BO -->
<documentation>
Input SupplierDesc to create.
</documentation>
</input>
<output type="SupplierRef">
<documentation>
Return the SupplierRef for the
newly created
SupplierDesc.
</documentation>
</output>
<fault faultType="IllegalArgumentWSFaultException">
<documentation>
Throw this exception when it is

B-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

ServiceProviderDefLibrary.xm|

"soap:Client" side
message problem.

</documentation>
</fault>
<fault
faultType="EntityAlreadyExistsWSFaultException">
<documentation>
Throw this exception when the
object already exist.
</documentation>
</fault>
<fault faultType="IllegalStateWSFaultException">
<documentation>
Throw this exception when there is
unknown
"soap:Server" side problem.
</documentation>
</fault>
</operation>

<operation name="update">
<input type="SupplierDesc" />
<output type="SupplierDesc" />
<fault faultType="IllegalArgumentWSFaultException" />
<fault
faultType="EntityNotFoundWSFaultException"
/>
<fault faultType="IllegalStateWSFaultException" />
</operation>
<operation name="updateSupSiteUsing">
<input type="SupplierDesc" />
<output type="SupplierDesc" />
<fault faultType="IllegalArgumentWSFaultException" />

<fault
faultType="EntityNotFoundWSFaultException"
/>
<fault faultType="IllegalStateWSFaultException" />
</operation>
<operation name="updateSupSiteOrgUnitUsing">
<input type="SupplierDesc" />
<output type="SupplierDesc" />
<fault faultType="IllegalArgumentWSFaultException" />
<fault
faultType="EntityNotFoundWSFaultException"
/>
<fault faultType="IllegalStateWSFaultException" />
</operation>
<operation name="updateSupSiteAddrUsing">
<input type="SupplierDesc" />
<output type="SupplierDesc" />
<fault faultType="IllegalArgumentWSFaultException" />
<fault
faultType="EntityNotFoundWSFaultException"
/>

<fault faultType="IllegalStateWSFaultException" />
</operation>
<operation name="find" suffix="outputType">
<input type="SupplierRef" />
<output type="SupplierDesc" />
<fault faultType="IllegalArgumentWSFaultException" />
<fault

Appendix: Sample ServiceProviderDefLibrary.xml B-3

ServiceProviderDefLibrary.xm|

faultType="EntityNotFoundWSFaultException"

/>
<fault faultType="IllegalStateWSFaultException" />
</operation>
<operation name="delete">
<input type="SupplierRef" />
<output type="SupplierRef" />
<fault faultType="IllegalArgumentWSFaultException" />
<fault
faultType="EntityNotFoundWSFaultException"
/>
<fault faultType="IllegalStateWSFaultException" />
</operation>
<operation name="create">
<input type="SupplierCollectionDesc" />
<output type="SupplierCollectionRef" />
<fault faultType="IllegalArgumentWSFaultException" />
<fault faultType="EntityAlreadyExistsWSFaultException"
/>
<fault faultType="IllegalStateWSFaultException" />
</operation>
<operation name="update">
<input type="SupplierCollectionDesc" />
<output type="SupplierCollectionDesc" />
<fault faultType="IllegalArgumentWSFaultException" />
<fault
faultType="EntityNotFoundWSFaultException"
/>
<fault faultType="IllegalStateWSFaultException" />
</operation>
<operation name="find" suffix="outputType">
<input type="SupplierCollectionRef" />
<output type="SupplierCollectionDesc" />
<fault faultType="IllegalArgumentWSFaultException" />
<fault
faultType="EntityNotFoundWSFaultException"
/>
<fault faultType="IllegalStateWSFaultException" />
</operation>
<operation name="delete">
<input type="SupplierCollectionRef" />
<output type="SupplierCollectionRef" />
<fault faultType="IllegalArgumentWSFaultException" />
<fault
faultType="EntityNotFoundWSFaultException"
/>
<fault faultType="IllegalStateWSFaultException" />
</operation>
</service>

</serviceProviderDefLibrary>

B-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

	Contents
	Preface
	1 Introduction
	Major Features of the RSE Tool
	Concepts
	What is a Service?
	Oracle Fusion Reference Architecture (OFRA)
	Where Does RSE Fit?

	Technical Specifications
	Supported Operating Systems

	2 Installation and Basic Setup
	Installation as a Web Application in Oracle WebLogic
	Prerequisites
	Deploy the Retail Service-Oriented Architecture Enabler
	Verify the Retail Service-Oriented Architecture Enabler
	Redeploy the Application

	3 Tool Inputs and Outputs
	Tool Inputs
	ServiceProviderDefLibrary.xml
	XSDs and retail-public-payload-java-beans.jar
	PL/SQL Oracle Objects
	WSDL

	Tool Outputs
	PL/SQL Provider Web Service
	PL/SQL Consumer Web Service
	Java EE Provider Web Service
	Java EE Consumer Web Service

	4 User Interface Usage
	Service Provider
	Service Definition Library XML File
	Custom Business Object Jar File
	Service Implementation Jar File

	Service Consumer
	Help

	5 Service Definition Library XML File
	Schema Definition
	serviceProviderDefLibrary
	Attributes
	Elements
	service

	Managing the Service Definition Library XML File
	Creating the File
	Changing the Version of the File
	Changing the appName Attribute in the File
	Renaming a Service or Operation Name in the File
	Adding a New Service or New Operation to the File
	Deleting a Service or Deleting Operations from the File
	Defining New Exceptions to the Operations
	Using Different Versions of Objects as Input/Output to an Operation

	6 Web Service Standards and Conventions
	Web Service Naming
	Web Service Versioning

	7 Creating the Java EE Implementation Jar
	Step 1: Generate Web Services with Default Implementation
	Step 2: Implement Interfaces
	Step 3: Upload the jar

	8 Implementation Guidelines
	Important Note About this Chapter
	PL/SQL Service Consumer Implementation Notes
	PL/SQL Provider Service Implementation Notes
	Java EE Service Consumer Implementation Notes
	Sample Client Code

	Java EE Service Provider Implementation Notes
	Use Case 1: Complete the Generator Provided Stub Code Implementation
	Use Case 2: Provide a Custom impl jar to the RSE Tool
	Use Case 3: Package the Generated Service Classes in an Existing Application

	Web Service Call as a Remote EJB Call
	Prerequisites
	Procedure
	Code Description

	Web Service Call as a POJO Call
	Procedure
	Sample Code for POJO Invocation

	Deploying the Web Service
	Redeploy the Service Application
	Verify the Service Application Installation Using the Administration Console

	Creating a JDBC Data Source

	9 Web Services Security Setup Guidelines
	Server-side Setup
	Attach Policy File to the Web Service
	Create Roles and Users

	Client-side Setup

	A Appendix: Installer Screens
	Installation as a Web Application in Oracle WebLogic
	Deploy the Artifact Generator Application
	Verify the Artifact Generator Web Application
	Redeploy the Application

	B Appendix: Sample ServiceProviderDefLibrary.xml
	ServiceProviderDefLibrary.xml

