
Oracle® Retail Integration Bus
Implementation Guide

Release 13.2.3

E39347-02

January 2013

Oracle Retail Integration Bus Implementation Guide, Release 13.2.3

Copyright © 2013, Oracle. All rights reserved.

Primary Author: Kris Lange

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Value-Added Reseller (VAR) Language

Oracle Retail VAR Applications

The following restrictions and provisions only apply to the programs referred to in this section and licensed
to you. You acknowledge that the programs may contain third party software (VAR applications) licensed to
Oracle. Depending upon your product and its version number, the VAR applications may include:

(i) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail Data
Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(ii) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of Kirkland,
Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory Management.

(iii) the software component known as Access Via™ licensed by Access Via of Seattle, Washington, and
imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(iv) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of San Jose,
California, and imbedded in Oracle Retail Promotion Planning & Optimization application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR Applications.
Oracle will not deliver source code to the VAR Applications to you. Notwithstanding any other term or
condition of the agreement and this ordering document, you shall not cause or permit alteration of any VAR
Applications. For purposes of this section, "alteration" refers to all alterations, translations, upgrades,
enhancements, customizations or modifications of all or any portion of the VAR Applications including all
reconfigurations, reassembly or reverse assembly, re-engineering or reverse engineering and recompilations
or reverse compilations of the VAR Applications or any derivatives of the VAR Applications. You
acknowledge that it shall be a breach of the agreement to utilize the relationship, and/or confidential
information of the VAR Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall not attempt,
cause, or permit the alteration, decompilation, reverse engineering, disassembly or other reduction of the

VAR Applications to a human perceivable form. Oracle reserves the right to replace, with functional
equivalent software, any of the VAR Applications in future releases of the applicable program.

vii

Contents

Send Us Your Comments ... xi

Preface ... xiii

Audience... xiii
Related Documents ... xiii
Customer Support ... xiii
Review Patch Documentation ... xiv
Oracle Retail Documentation on the Oracle Technology Network ... xiv
Conventions ... xiv

1 Introduction

2 Standards and Specifications

Java Platform Enterprise Edition (Java EE) ... 2-1
Java EE Server... 2-1

Java Message Service (JMS) ... 2-1
JMS Provider... 2-2

Java Management Extensions (JMX) .. 2-2

3 Core Concepts

Key Functional Requirements ... 3-1
Guaranteed Once-and-Only-Once Successful Delivery ... 3-1
Preservation of Publication Sequence ... 3-2

Message Family and Message Types .. 3-2
Foundation Messages .. 3-2
Transactional Messages... 3-3

RIB Message Envelope and Payloads... 3-3
Message Life Cycle... 3-3
Messaging Components.. 3-5

RIB Subsystem Components .. 3-5
Adapters ... 3-5
JMS Domains, Destinations, Subscriptions ... 3-6
JMS Message Selector ... 3-6
Additional RIB JMS Message Properties ... 3-7

Integration Gateway Services (IGS)... 3-9

viii

IGS Interfaces... 3-9
Integration to IGS.. 3-9
IGS Deployment Considerations ... 3-10

IGS and WebLogic Server (WLS) Clustering.. 3-10
Simple Message Flow ... 3-10
The RIB Hospital ... 3-11

RIB Hospital Dependency Check ... 3-11
RIB Hospital Insert.. 3-12
RIB Hospital Tables... 3-12
RIB Hospital Retry .. 3-13

PUB Retry Adapter .. 3-14
Hospital Attempt (Retry) Count .. 3-17
JMS Delivery Count... 3-17

4 Oracle Retail Application APIs

PL/SQL Stored Procedure APIs ... 4-1
Oracle CLOB APIs.. 4-1

RIB_XML and RIB_SXW Database Packages.. 4-2
Oracle Object APIs ... 4-2

RIB Related Database Tables ... 4-2
Detail Architecture - PL/SQL Apps.. 4-3

Oracle Retail Java EE APIs ... 4-3
Detail Architecture Java EE Apps.. 4-4

API Return Status Codes .. 4-4
PL/SQL GETNEXT Return Codes... 4-4
PUB_RETRY Return Codes... 4-4
CONSUME Return Code .. 4-4

5 Pre-Implementation Considerations

RIB Software Lifecycle Management ... 5-1
Centralized Configuration and Management... 5-2
Physical Location Considerations ... 5-3
Preimplementation Considerations for Multibyte Deployments .. 5-3
JMS Server Considerations .. 5-4

Using Multiple JMS Servers.. 5-4
Oracle Streams AQ JMS .. 5-5

High Availability Considerations ... 5-5
Oracle Database Cluster (RAC) Concepts .. 5-6
rib-<app> application and Oracle Database Cluster (RAC) .. 5-6
WebLogic Server Cluster Concepts ... 5-6
rib-<app> application and WebLogic Application Server Cluster... 5-7

6 Deployment Architecture and Options

Recommended Deployment Options... 6-1
Distributed Deployment Alternative ... 6-2

Advantages ... 6-2

ix

Disadvantages... 6-2
Who Should Use This Configuration? .. 6-3

Centralized Deployment Alternative ... 6-3
Advantages ... 6-3
Disadvantages... 6-4
Who should use this Configuration?... 6-4

Conclusions ... 6-4

7 Implementation Process

Implementation Verification and Validation.. 7-2
Implementation Environment Verification .. 7-2
Integration Environment Testability ... 7-2

8 Performance

Performance Factors ... 8-1
Performance and Parallel Logical Channels ... 8-1

9 Security

RIB Application Administrators Security Domain ... 9-1
RIB System Administrators Security Domain.. 9-1

10 Integration with Fusion Middleware

General RIB to Fusion Middleware Architecture ... 10-2
General Process of Integration .. 10-2
 Configure FWM JMS Adapter to RIB AQJMS ... 10-3

11 RIB Customization/Extension

Prerequisites for RIB Customization... 11-1
Rules for Customization... 11-2

Message Family and Message Type Customization ... 11-2
Adding a New Message Type ... 11-3
Message Flows with PL/SQL Applications .. 11-3

Procedure for Adding a New Message Type for PL/SQL Applications......................... 11-3
Message Flows with Java EE Applications.. 11-6

Procedure for Adding a New Message Type for Java EE Applications 11-7
Creating a New Message Family .. 11-9

Additional Rules .. 11-9
Procedure for Adding a New Message Family ... 11-10

Adding New Adapters.. 11-13
Adding the Custom Adapter to the rib-integration-flows.xml File....................................... 11-13

Procedure for Adding the Flow to the rib-integration-flows.xml File 11-13
Adding a Publishing Adapter for PL/SQL Applications ... 11-14

Procedure for Adding a Publishing Adapter for PL/SQL Applications....................... 11-15
Adding a Publishing Adapter for Java EE Applications... 11-16

Procedure for Adding a Publishing Adapter for Java EE Applications 11-17

x

Adding a Subscriber Adapter for PL/SQL Applications.. 11-18
Procedure for Adding a New Subscribing Adapter for a PL/SQL Application 11-18

Adding a Subscribing Adapter for Java EE Applications ... 11-20
Procedure for Adding a New Subscribing Adapter for a Java EE Application............ 11-20

Custom TAFR Adapters ... 11-21
TAFR Considerations ... 11-21

Transformation... 11-21
Filtering Configuration ... 11-21
Routing .. 11-22

Adding a New TAFR Adapter .. 11-22
Procedure for Adding a New TAFR Adapter.. 11-22

Custom TAFR Implementation .. 11-22
Procedure for Completing Custom TAFR Implementation .. 11-23

Changing an Existing TAFR Adapter .. 11-24
Verification of RIB Customizations... 11-25

Verifying the New Message Type... 11-25
Verifying the New Message Family ... 11-26
Verifying the New Publishing Adapter... 11-27
Verifying the New Subscribing Adapter ... 11-28
Verifying the New TAFR Adapter.. 11-29

Prerequisites for RIB Localization ... 11-30

xi

Send Us Your Comments

Oracle Retail Integration Bus Implementation Guide, Release 13.2.3

Oracle welcomes customers' comments and suggestions on the quality and usefulness
of this document.

Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:

■ Are the implementation steps correct and complete?

■ Did you understand the context of the procedures?

■ Did you find any errors in the information?

■ Does the structure of the information help you with your tasks?

■ Do you need different information or graphics? If so, where, and in what format?

■ Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell
us your name, the name of the company who has licensed our products, the title and
part number of the documentation and the chapter, section, and page number (if
available).

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number
(optional).

If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at www.oracle.com.

Note: Before sending us your comments, you might like to check
that you have the latest version of the document and if any concerns
are already addressed. To do this, access the new Applications Release
Online Documentation CD available on My Oracle Support and
www.oracle.com. It contains the most current Documentation Library
plus all documents revised or released recently.

xii

xiii

Preface

The Oracle Retail Integration Bus Implementation Guide provides detailed
information that is important when implementing RIB.

Audience
The Implementation Guide is intended for the Oracle Retail Integration Bus
application integrators and implementation staff, as well as the retailer’s IT personnel.

Related Documents
For more information, see the following documents in the Oracle Retail Integration
Bus 13.2.3 documentation set:

■ Oracle Retail Integration Bus Data Model

■ Oracle Retail Integration Bus Installation Guide

■ Oracle Retail Integration Bus Operations Guide

■ Oracle Retail Integration Bus Release Notes

■ Oracle Retail Integration Bus Hospital Administration Guide

■ Oracle Retail Functional Artifacts Guide

■ Oracle Retail Functional Artifact Generator Guide

■ Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following:

■ Product version and program/module name

■ Functional and technical description of the problem (include business impact)

■ Detailed step-by-step instructions to re-create

■ Exact error message received

■ Screen shots of each step you take

xiv

Review Patch Documentation
When you install the application for the first time, you install either a base release (for
example, 13.1) or a later patch release (for example, 13.1.2). If you are installing the
base release, additional patch, and bundled hot fix releases, read the documentation
for all releases that have occurred since the base release before you begin installation.
Documentation for patch and bundled hot fix releases can contain critical information
related to the base release, as well as information about code changes since the base
release.

Oracle Retail Documentation on the Oracle Technology Network
Documentation is packaged with each Oracle Retail product release. Oracle Retail
product documentation is also available on the following Web site:

http://www.oracle.com/technology/documentation/oracle_retail.html

(Data Model documents are not available through Oracle Technology Network. These
documents are packaged with released code, or you can obtain them through My
Oracle Support.)

Documentation should be available on this Web site within a month after a product
release.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction 1-1

1Introduction

The Oracle Retail Integration Bus (RIB) is a fully distributed integration infrastructure
that uses Message Oriented Middleware (MOM) to integrate applications. RIB enables
various Oracle Retail applications to integrate in asynchronous and near real time
fashion. RIB provides additional value added business and infrastructure services to
the Oracle Retail applications in addition to providing integration connectivity.

Each of the Oracle Retail Applications has its own implementation and deployment
strategies and approaches, as well as individual integration touch points defined. The
implementation of the RIB must take into account the overall Oracle Retail application
enterprise deployment architecture and try to fit into the model seamlessly.

RIB acts as a shared communication layer for connecting various Oracle Retail
applications and external applications throughout an enterprise computing
infrastructure. It supplements the core asynchronous messaging backbone with
additional application functionality such as intelligent transformation, routing and
error handling.

1-2 Oracle Retail Integration Bus Implementation Guide

Communication across the RIB is via xml messages (payloads). These payloads
describe the retail business objects (such as items, purchase orders, suppliers, and so
on) in a standard way and are governed by RIB on behalf of the Oracle Retail
applications.

RIB architecture is based on standard Java EE components and the Java Message
Service (JMS). JMS is an integral part of the Java EE (Java Enterprise Edition)
Technology stack.

The integration solution provided by the RIB system is made up of multiple Java EE
RIB applications (rib-<app>.ear) that are autonomous in their execution behavior and
deployed in a fully distributed topology. Even though they (rib-<app>.ear) are
distributed and autonomous, they communicate and coordinate messages with each
other--and work to provide the final asynchronous integration solution that the
enterprise expects.

The Integration Gateway Services (IGS) component provides an integration
infrastructure for external system (3rd Party) connectivity to the Oracle Retail
Integration Bus (RIB) in the form of a tested set of Web service providers and the
configurations to connect to RIB 13.2.

The issues and considerations needed to properly deploy and configure the integration
solution within an enterprise are the subject of this guide.

2

Standards and Specifications 2-1

2 Standards and Specifications

RIB is designed and built on industry standard non-proprietary Java EE concepts and
standards.

Java Platform Enterprise Edition (Java EE)
Java Platform Enterprise Edition (Java EE) is an umbrella standard for Java's enterprise
computing facilities. It bundles together technologies for a complete enterprise-class
server-side development and deployment platform in java.

Java EE specification includes several other API specifications, such as JDBC, RMI,
Transaction, JMS, Web Services, XML, Persistence, mail, and others and defines how to
coordinate among them. Java EE specification also features some specifications unique
to enterprise computing. These include Enterprise JavaBeans (EJB), servlets, portlets,
JavaServer Pages (JSP), Java Server Faces (JSF) and several Web service technologies.

A Java EE application server manages transactions, security, scalability, concurrency,
pooling, and management of the EJB/Web components that are deployed to it. This
frees the developers to concentrate more on the business logic/problem of the
components rather than spending time building scalable, robust infrastructure on
which to run on.

Java EE Server
Oracle Application Server implements the Java EE specification and is the Java EE
server vendor for RIB in this release. Oracle Application Server provides many
additional services beyond the standard services required by the Java EE specification.

See the WebLogic® Application Server documentation for more information:

 http://download.oracle.com/docs/cd/E15523_01/index.htm.

 http://download.oracle.com/docs/cd/E15523_01/wls.htm.

Java Message Service (JMS)
The Java Message Service (JMS) defines the standard for reliable Enterprise Messaging.
Enterprise messaging, also referred to as Messaging Oriented Middleware (MOM), is
universally recognized as an essential tool for building enterprise applications. By
combining Java technology with enterprise messaging, the JMS API provides a
powerful tool for solving enterprise computing problems.

See http://java.sun.com/products/jms.

http://java.sun.com/products/jms
http://java.sun.com/products/jms
http://java.sun.com/products/jms

Java Management Extensions (JMX)

2-2 Oracle Retail Integration Bus Implementation Guide

Enterprise messaging provides a reliable, flexible service for the asynchronous
exchange of critical business data and events throughout an enterprise. The JMS API
adds to this a common API and provider framework that enables the development of
portable, message based applications in the Java programming language.

The JMS API improves programmer productivity by defining a common set of
messaging concepts and programming strategies that will be supported by all JMS
technology-compliant messaging systems.

The JMS API is an integral part of the Java Enterprise Edition platform, and
application developers can use messaging with components using Java EE APIs (Java
EE components).

JMS Provider
A JMS Provider is a vendor supplied implementation of the JMS interface, such as
Oracle AQ JMS. Oracle Streams AQ implements the JMS specification and is the
certified JMS provider for RIB in this release. AQ is built on top of the Oracle Database
11g Enterprise Edition.

See the Oracle® Database Enterprise Edition documentation for AQ information.

Java Management Extensions (JMX)
The RIB is a backend, headless application that does not need active business user
participation for its daily operations. When the environment is stable there is no user
intervention required for the system to keep running. For such a backend system it is
critical that there are proper alerting and notification mechanisms built into the
application for situations when the system runs into trouble or to communicate
interesting business situations to administrators.

Java Management Extensions (JMX) is a specification to provide management and
monitoring capabilities to applications that are built using java programming
language.

 The JMX is based on a three-level architecture:

■ The Probe/Instrumentation level: This layer contains the probes (called MBeans)
that instrument the application resources and make the resource available through
an agent layer.

■ The Agent level: The MBeanServer is at the core of JMX infrastructure. It is a
registry/catalog of all MBeans available for management.

■ The Remote Management level: This layer enables remote applications to access
the MBeanServer through Connectors and Adaptors. A connector provides full
remote access to the MBeanServer API using various RPC communication protocol
like RMI, IIOP, WS-*, and others. A JMX adapter on the other hand adapts the JMX
API and events to other standard protocol like SNMP or provide a web based GUI
(HTML/HTTP) interface to the JMX API/Events.

Java Management Extensions (JMX)

Standards and Specifications 2-3

JMX Architecture Diagram

In addition to the three layers presented in the architecture, JMX provides a
notification model that follows the observer observable design pattern. By using
notifications, JMX agents and MBeans can send alerts or report information to third
party management applications. Users can receive notifications as a way of being
informed of critical events or requests for attention.

Because efficient management and monitoring of RIB components are essential to the
RIB product, and also seamless integration to standard third party enterprise
management tools was a requirement, the RIB application has been fully instrumented
to be manageable by any JMX compatible management tools.

The RIB adapters can be controllable using standard JMX tools such as Oracle
Enterprise Manager. When interesting business activity happens inside RIB, the RIB
components emit alerting events to the RIB alerting framework. By default the alerting
framework is configured to send JMX and Email alert notifications. Anyone interested
in RIB's JMX alerts can subscribe to RIB notification types using their choice of JMX
compatible management tools. JMX management tools provide a way to configure
your listener/handler in the tool to react to the incoming alert event.

Note: See JMX management tool vendor documentation on how to
add your own listeners to JMX alerts.

Java Management Extensions (JMX)

2-4 Oracle Retail Integration Bus Implementation Guide

3

Core Concepts 3-1

3Core Concepts

The RIB is designed as an asynchronous publication and subscription messaging
integration architecture. This allows the decoupling of applications and their systems.
For example, a publishing application need not know about the subscribing
applications, other than the requirement that at least one durable subscriber must
exist. It decouples the systems operationally. Once a subscriber is registered, the RIB
persists all published messages until all subscribers have seen them.

The publishing adapter does not know, or care, how many subscribers are waiting for
the message, what types of adapters the subscribers are, what the subscribers' current
states are (running or stopped), or where the subscribers are located. Delivering the
message to all subscribing adapters is the responsibility of the RIB with the help of the
underlying JMS server.

Physically, the message must reside somewhere so that it is available until all
subscribers have processed it. The RIB uses the JMS specification for its messaging
infrastructure. The JMS accepts the message from the publisher and saves it to stable
storage, a JMS topic, until it is ready to be picked up by a subscriber. In all cases,
message information must be kept on the JMS until all subscribers have read and
processed it.

The RIB interfaces are organized by message family. Each message family contains
information specific to a related set of operations on a business entity or related
business entities. The publisher is responsible for publishing messages in response to
actions performed on these business entities in the same sequence as they occur.

Each message family has specific message payloads based on agreed upon business
elements between the Oracle Retail applications.

Key Functional Requirements
The design and architecture of the RIB infrastructure is based on two key requirements
driven by the Oracle Retail application business model.

Guaranteed Once-and-Only-Once Successful Delivery
The RIB must preserve and persist all business events (messages) until all applications
(subscribers) have looked at the message and have successfully consumed it or
decided they do not care about that event (message). In other words RIB must deliver
to every subscriber all messages except those filtered per a subscribing application's
requirements.

A business event (message) must be redelivered to the consumer application if the
business event (message) was not consumed successfully. The redelivery process is

Message Family and Message Types

3-2 Oracle Retail Integration Bus Implementation Guide

bound by the same rules of sequencing as normal (non-redelivered) business event
(message).

Preservation of Publication Sequence
The business event (message) must be delivered to all the subscribing applications in
the order (FIFO) the business event (messages) was published by the publishing
application.

To enable this, the publishing application defines a business object ID whose existence
informs RIB that this and all subsequent messages with the same business object ID
have to be processed in order. Business event (message) ordering (FIFO) is assured
only for messages with the same business object ID within the same message family.

Message Family and Message Types
The RIB messaging adapters and payloads are designed around the concept of a
message family.

Each RIB message belongs to a specific message family. Each message family contains
information specific to a related set of operations on a business entity or related
business entities. The publisher is responsible for publishing messages in response to
actions performed on these entities in the same sequence as they occur.

One example of a message family is the orders message family used to contain
information about purchase order events.

A message family may contain multiple message types. Each message type
encapsulates the information specific to a business entity within one or more business
events. For example, the order message family is published for events such as Create
PO Header, Create PO Detail, Update PO Header, or Delete PO Detail.

A single business event, such as updating a purchase order, may involve multiple
business entities, such as a line item within the purchase order.

Because a single business event may involve multiple business entities, the application
may publish messages for this event from multiple message families for a single
business transaction. More than one message type within a message family may also
be created.

There are two broadly defined types of functional interfaces in the RIB (message
families): foundation data and transactional data.

Foundation Messages
After populating application tables with initial company seed data, item foundation
information is needed. Foundation messages are defined as those with payload that
carry basic product data.

This table is an example from the Oracle Retail Integration Bus Integration Guide.

Functional Area Publishing Applications Subscribing Applications

Items RMS RWMS, SIM

Item Locations RMS SIM

Locations RIB RWMS

Stores RMS RWMS, SIM

Message Life Cycle

Core Concepts 3-3

Transactional Messages
After populating application tables with initial seed data and after all required item
foundation data messages have been subscribed to, all applications are prepared to
publish and subscribe transaction data messages. Transactional messages
communicate business events involving two or more organizations within a retail
supply chain, for instance, between Oracle Retail Merchandising System (RMS), Oracle
Retail Store Inventory Management (SIM), and Oracle Retail Warehouse Management
System (RWMS), external suppliers and financial systems.

This table is an example from the Oracle Retail Integration Bus Integration Guide.

RIB Message Envelope and Payloads
Whenever a publishing application adapter publishes a message, it wraps the message
in an envelope known as the RIB message envelope. The envelope is a standard
message delivery format where the message information, the data payload, is
contained within the overall delivery information. The envelope itself provides
information that the RIB uses, such as RIB hospital information and routing
information.

Message Life Cycle
The publishing application is responsible for creating the initial message contents. The
RIB publishing adapter publishes it to the JMS Server and makes it available to any
JMS subscribers. The RIB knows what subscribers are to receive the message due to
the RIB configuration—this configuration associates a set of subscribers to each
publisher and message family combination.

For PL/SQL Applications, database tables associated with the publishing application
typically stage message information. One or more RIB publishing adapters poll the
application via a stored procedure call. For Java EE Applications, the application calls
a RIB Enterprise Java Bean (EJB) with the payload information to be published.

Vendor RMS RWMS, SIM

Warehouses RMS RWMS, SIM

Functional Area Publishing Applications Subscribing Applications

Allocations RMS RWMS

Appointments RWMS RMS

ASN Outbound RWMS, SIM RMS, SIM, RWMS

ASN Inbound RWMS, External RMS, SIM, RWMS

Inventory Adjustments RWMS, SIM RMS

Inventory Request SIM RMS

Receipts RWMS, SIM RMS

Purchase Order RMS, SIM RWMS, SIM

Stock Order Status RWMS, SIM RMS

Transfers RMS RWMS, SIM

Functional Area Publishing Applications Subscribing Applications

Message Life Cycle

3-4 Oracle Retail Integration Bus Implementation Guide

The message resides on a Java Message Service (JMS) immediately after publication.
The JMS topic provides stable storage for the message in case a system crash occurs
before all message subscribers receive and process it.

A fundamental RIB system requirement is that a message must be delivered to and
processed successfully exactly once by each subscriber. Furthermore, all work
performed by the subscriber and the RIB must be atomically committed or rolled back,
even if the JMS server is on a remote host. The standard way to perform this is by
using an XA compliant interface and two-phase commit protocol.

After initial publication, a message may undergo a series of transformation, filtering,
or routing operations. A RIB component that implements these operations is known as
a Transformation and Address Filter/Router (TAFR) component. TAFR is the acronym
for Transform, Address, Filter, and Route. A TAFR is completely internal to the RIB
and does not reside in either the publishing or subscribing application. The RIB
performs these intermediate transformation and routing operations on some messages
before making them available to the subscribing application.

A single TAFR may only transform a given message, only filter the message, only
route it, or combine any of the three operations.

■ Transform - A message may be transformed from one message type into another,
for example, WH (warehouse) from RMS to Location for RWMS.

■ Filter - A message may be filtered. Filtering can occur based on message type or
based on content.

■ Route - A TAFR may route a message. For example, whenever a stock order
message is published for a warehouse with an instance of RWMS, the TAFR routes
it to the particular RWMS instance from where the stock will be fulfilled and not to
warehouses that do not stock the order's items.

TAFR operations are specific to the set of subscribers to a specific message family.
Multiple TAFRs may process a single message for a specific subscriber and different
specific TAFRs may be present for different subscribers. Different sets of TAFRs are
necessary for different message families. If all subscribers to a message can process all
messages within a message family without any TAFR operations, then no TAFR
components are needed.

Message processing continues until a subscribing adapter successfully processes the
message or determines that no subscriber needs this message.

When a subscriber gets a message to be processed, the adapter checks to see if the RIB
Hospital contains any messages associated with the same entity as the current
message. If so, then the adapter places the current message in the hospital as well. This
is to ensure messages are always processed in the proper sequence. If proper
sequencing is not maintained, the subscribing application's data can be corrupted.

If an error occurs during message processing, the subscribing adapter notes this
internally and rolls back all database work associated with the message. When the
message is re-processed (because it has yet to be processed successfully), the adapter
now recognizes this message is problematic and checks it into the hospital.

After a message is checked into the RIB Hospital, a retry adapter extracts the message
from the hospital and re-publishes it to the JMS topic for reprocessing. The message
remains in the hospital during all re-tries until the subscribing adapter successfully
processes it.

Messaging Components

Core Concepts 3-5

Messaging Components
The RIB is a messaging system made-up of components that are packaged and
shipped as an integration solution between the Oracle Retail applications. The
application boundary between RIB and Oracle Retail applications can be confusing at
times, so this section defines the RIB components and their responsibility and
ownership. A diagram illustrating the RIB integration message flow follows:

RIB Subsystem Components
This section describes the components of the RIB subsystem.

Adapters
A RIB adapter is a component that coordinates business event (message) generation
and processing with the respective Oracle Retail application interface. Each adapter in
the RIB is created to handle a specific functional interface. RIB adapters are developed
using Enterprise Java Beans (EJB) components architecture, subscribing adapters use
Message Driven Beans (MDBs) and publishing adapters use Stateless Session Beans
(SLSBs).

RIB provides four types of adapters that Oracle Retail applications can exploit to
integrate with one another. These adapter types are: publisher, subscriber, TAFR, and
hospital retry. They have been built using different technologies based on their
particular needs.

Subscriber and TAFR adapters use Message Driven Bean (MDB) technology to register
with JMS topics and receive messages for further processing.

Publisher and hospital retry adapters make use of the Java SE (Standard Edition) timer
facility to schedule repetitive events that trigger calls to Stateless Session Beans
(SLSBs) to query application tables for messages to publish to the JMS server.

As stated in the introduction, a fifth type of adapter exists for publishing messages in a
pushing fashion. The Oracle Retail applications invoke this adapter at will for
publishing messages.

Messaging Components

3-6 Oracle Retail Integration Bus Implementation Guide

These adapters have not been considered part of the scope of this technical document
in regard to providing a mechanism for starting and stopping them.

Due to the variety of technologies used by the adapters, the goal of this technical
design has been to isolate users from these differences and provide them with a
common management interface that can be used to control the state of the adapters.
During the last few years, the Java Management Extensions (JMX) specification has
become a well known standard that defines the management layer for enterprise Java
applications. JMX defines standard methodologies for declaring enterprise application
components as manageable resources that can be exposed in a consistent way such
that any JMX compliant management application can access and provide means for
control.

JMS Domains, Destinations, Subscriptions
JMS defines two types of messaging domains: point-to-point and publish/subscribe.
RIB uses publish/subscribe types of messaging domains for all its communication.
Publish/subscribe is a one-to-many type of message distribution model where one
source application en-queues the message and many destination applications can
de-queue the same message and process independently of the other peer applications.
In publish/subscribe the destinations are known as topics, the en-queuer application is
known as publisher, and the de-queuer is known as subscriber. Unlike point-to-point,
in publish/subscribe the publisher and subscriber are totally ignorant of each other
and do not and should not know about each others existence. The JMS Topics retain
the messages only as long as it takes to distribute them to current active (running)
subscribers. There is also a timing dependency between publishers and subscribers.

 A client that subscribes to a topic can consume only messages published after the
client has created a subscription, and the subscriber must continue to be active in order
for it to consume messages. The JMS specification relaxes this timing dependency to
some extent by allowing clients to create durable subscriptions. By creating durable
subscriptions the JMS server will continue to hold the messages for all registered
subscribers for that topic until the subscriber consumes the message or deletes the
subscription.

There are two types of subscribers, non-durable and durable subscribers. The RIB uses
only durable subscribers which allows the Oracle Retail edge applications to be in up
or down state independently but still not loose any messages and catch up when the
application comes back up. Every subscribing RIB adapter registers its durable
subscriber with a subscription name that contains its rib-<app> application name and
the adapter name in it.

RIB defines logical grouping of retail specific business objects (BO) and business
functions in a concept called message family. For every message family there is a
corresponding JMS topic. These JMS topics are used as communication pipelines
between the source and destination Oracle Retail applications for exchanging the
business objects.

The list of JMS topics used by RIB components is detailed in the Reports section of the
Oracle Retail Integration Bus Integration Guide.

JMS Message Selector
A key aspect of the JMS usage that the RIB relies on is the attachment of message
properties to published messages and the use of selectors by message subscribers.
Message properties are used to convey information about the message outside of the
actual message data to establish a logical channel for messages.

Messaging Components

Core Concepts 3-7

JMS message selectors are used by the RIB to filter the messages that each subscriber
picks up. In other words, using the message properties, selectors act as a filter to weed
out messages a subscriber should not process.

The message property set and used by the RIB messages is called threadValue. The
thread value is associated with a logical channel of a message stream. All messages for
a specific family with a specific business object ID always contain the same
threadValue property. This, combined with the standard first in, first out (FIFO)
message ordering on the topic, is integral to message sequencing. Messages with
different threadValue properties are not guaranteed to be processed in the same
relative order as publishing.

Messages published without JMS Message Property present will not be picked up by
the standard subscribing RIB adapters.

Additional RIB JMS Message Properties
Every message published by the rib-<app> applications includes a number of JMS
user defined header properties. In the current release, these properties are only set, not
used by any RIB components. In the future, these properties will be used for intelligent
performance enhancement and optimization and for traceability and auditability of
RIB messages.

The message properties are as follows:

■ Property Name: appName

Type: java.lang.String

Required Property: false

Example: appName=rib-rms

Description: The appName property contains the rib-<app> application name that
published this particular message.

■ Property Name: adapterInstance

Type: java.lang.String

Required Property: false

Example: adapterInstance=Item_pub_1

Description: The adapterInstance property contains the rib-<app> adapter
instance name that published this particular message.

■ Property Name: family

Type: java.lang.String

Required Property: false

Example: family=Item

Description: The family property contains the name of the RIB family name to
which the message belongs.

■ Property Name: needMessageOrderPreservation

Type: boolean

Required Property: false

Example: needMessageOrderPreservation=true

Messaging Components

3-8 Oracle Retail Integration Bus Implementation Guide

Description: This property will have a value of true if any ribMessage node within
the RibMessages xml has a message that have businessObjectId set. This property
will allow us to take advantage of the fact that now we know which messages
need message order preserving at JMS header level (without opening the
message). In the future, we will be able to take advantage of that information,
make our processing parallel, and get better throughput without losing message
sequencing.

■ Property Name: topic

Type: java.lang.String

Required Property: false

Example: topic=etItem

Description: This topic property contains the RIB topic name that this particular
message is published to or subscribed from.

■ Property Name: ribKernelVersion

Type: java.lang.String

Required Property: false

Example: ribKernelVersion=13.2

Description: The system determines the rib kernel jar version number at runtime
and includes its value in this JMS property.

■ Property Name: ribFuncArtifactVersion

Type: java.lang.String

Required Property: false

Example: ribFuncArtifactVersion=13.2

Description: This is a place holder for future enhancement. The idea is the system
will somehow determine the runtime payload version and include that
information in the message for better compatibility management. This property
will be enhanced in a future release.

■ Property Name: ribMessageCount

Type: int

Required Property: false

Example: ribMessageCount=12

Description: This property contains the number of ribMessage nodes there are in a
RibMessages xml message. This value gives us some indication of message
aggregation in play. It might be used in the future to better optimize message flow
paths based on the size/number of the messages.

■ Property Name: uuid

Type: java.lang.String

Required Property: false

Example: uuid=116cfabd-8949-4f93-bb61-aaa88e168f30

Description: This property contains a universally unique identifier for every
message. This unique identifier will provide better traceability of a message within
the JMS system. This property complements the ribMessageID xml element that is
there to trace messages within the RIB logs.

Messaging Components

Core Concepts 3-9

Integration Gateway Services (IGS)
The Integration Gateway Services (IGS) provides an integration infrastructure for
external (third party) connectivity to the Oracle Retail Integration Bus (RIB) in the
form of a tested set of Web service providers and the configurations to connect to RIB.

Integration Gateway Services are designed to ease the integration to the RIB interfaces
and RIB payloads. Traditionally, this required custom RIB adapters to create and
publish RIB payloads wrapped in RIB Messages envelopes to the RIB JMS topics. The
IGS provides the integration to these RIB interfaces through standard
request/response Web services using only the standard XSD based RIB message
payloads.

IGS Interfaces
There are 18 RIB Message Family interfaces included in the IGS. They are the interfaces
most commonly used for custom integration to legacy systems. A Web service
corresponds to each of the selected Message Families. Each service exposes the
message types supported by the RIB Message Family.

Integration to IGS
The customer or integrator creates Web service clients from the IGS WSDLs, using
tools or technology appropriate to the retailer's organization. The message payloads
are the standard XSDs that ship with the RIB Functional Artifacts. The business logic
behind the client must be written to match the RIB Integration and the Oracle Retail
Application API rules. These are the same rules that apply to any GA or custom
adapter, as included in RIB documentation and other Oracle applications guides.

The IGS Web Service infrastructure has been designed to support the RIB features of
multi-channel publication, through the Business Object ID. It also supports message

Functional Area Message Types

Financials ■ Chart of Account (GLCOA)

■ Currency Rates

■ Freight Terms

■ Payment Terms

Foundation Data ■ Item

■ Item Location

■ Store

■ Vendor

Transactional - External ■ Allocations

■ Cost Changes

■ Purchase Order

■ Transfers (Stock Orders)

Transactional - Internal ■ ASN Inbound

■ ASN Outbound

■ Inventory Adjustments

■ Inventory Request

■ Receiving (Appointments, Receipts)

■ Return to Vendor

Simple Message Flow

3-10 Oracle Retail Integration Bus Implementation Guide

routing through RIB TAFRs, where the Message Family supports it. Additional XSDs
have been added to support these requirements.

IGS Deployment Considerations
There are additional deployment options that must be considered if the IGS is
required.

The RIB Integration Gateway Service (IGS) component requires Oracle® WebLogic
Server 11g Release 3 (10.3.3).

In addition to the RIB considerations during implementation, coordination with the
Application Server Administration team also is required to determine the physical and
logical placement of the RIB IGS component within the WebLogic Server deployment.

IGS and WebLogic Server (WLS) Clustering The core RIB components do not support
deployment to an active-active cluster. However, the IGS can be deployed to an
active-active Oracle WebLogic cluster.

See the WebLogic® Server documentation for more information:

 http://download.oracle.com/docs/cd/E15523_01/index.htm.

 http://download.oracle.com/docs/cd/E15523_01/wls.htm.

Simple Message Flow
The typical lifecycle of a message through the RIB is as follows:

1. The publishing adapter creates the message. The event that triggers the message
creation may be a polling operation in case of PL/SQL applications or a

http://java.sun.com/products/jms
http://java.sun.com/products/jms

The RIB Hospital

Core Concepts 3-11

synchronous invoke in case of Java EE applications. The message is published to a
predetermined JMS topic.

2. The message is now available for all registered subscribers to the JMS topic for
pick up. Subscription is based on the message family.

3. Once a subscriber gets the message, it is free to process that message according to
its own rules. In the case of a transformer adapter, the adapter can open the
message, modify its contents, and then publish the modified message to a new
topic. The source topic and destination topic that a TAFR uses must always be
distinct/different topic. There may be new subscribers to the modified message,
and the scenario repeated for each of these subscribers.

4. When each subscriber has finished (commit) processing a message, the JMS server
updates the state of the message to reflect that it has been processed by this
subscriber.

5. The JMS Server deletes the messages on the topic after delivering it to all the
registered subscribers.

Two applications require this data and subscribe to it. One subscribing application
requires a certain transformation be applied to the data, but the other subscriber can
process the message without any transformations.

The RIB Hospital
The RIB Hospital is a collective term for a set of Java Classes and database tables
whose purpose is to provide a mechanism to handle system and business related
errors while meeting the fundamental RIB requirements:

■ Guaranteed once-and-only-once successful delivery.

■ Preservation of publication sequence (even in case of failures).

When a message is processed, the adapter checks to see if the RIB Hospital contains
any messages associated with the same businessObjectId as the current message. If so,
then the adapter places the current message in the hospital as well. This is to ensure
messages are always processed in the proper sequence. If proper sequencing is not
maintained, then the subscribing application's data can get corrupted.

If an error occurs during message processing, the subscribing adapter notes this
internally and rolls back all work associated with the message. When the message is
re-processed (since it has yet to be processed successfully), the adapter now recognizes
this message is problematic and checks it into the hospital.

For Publication, there are some RMS publishers that return an 'H' status to denote a
problem creating a new message for a specific business object. This status may be due
to database locks being held by on-line users of an Oracle Forms application or it
could also be due to some data incompatibility found in the GETNXT() procedure.
Whenever a publisher recognizes that a message for a business object cannot be
published due to one of these conditions, the message must go into the RIB Hospital.

After a message is checked into the RIB Hospital, a retry adapter extracts the message
from the hospital and tries to re-publishes it to the integration bus.

RIB Hospital Dependency Check
The RIB Hospital dependency check logic assumes that each message family has a
single unique businessObjectId for all business object entities its messages are
associated with. This businessObjectId must be the same for the same business entity

The RIB Hospital

3-12 Oracle Retail Integration Bus Implementation Guide

across all message types within the message family. If any message for a specific
business entity is placed into the RIB Hospital, then the RIB Hospital dependency
check logic automatically inserts any subsequent messages for the same business
object. This is to preserve the message sequencing and guaranteed exactly once
successful message processing. Otherwise, multiple update messages for a business
object may be processed in an incorrect order and create incompatibilities between
applications.

If the businessObjectid is not set, then there is no dependency check. Not all message
families set the businessObjectId or it is not set on all message types. See the Oracle
Retail application documentation (for example, "Message Publication and Subscription
Designs" in the Oracle Retail Merchandising System Operations Guide Volume 2).

RIB Hospital Insert
If a message is to be inserted into the RIB Hospital because of an error during
processing, it is sent to the subscribing adapter twice. This is because subscribing
adapters are executed within the context of a distributed transaction, using the XA
two-phase commit protocol. This transaction is controlled by the Java EE Application
Server. If the RIB adapter returns success, the application server removes the message
and all database work is committed. If the adapter returns failure, the message never
leaves the integration bus topic and the database work is rolled back.

When the initial failure occurs while processing the message, the error is flagged
within the RIB Hospital software, the adapter returns failure so that the database
transaction is rolled back, and the message is kept on the integration bus topic.

RIB Hospital Tables
The RIB Hospital tables are:

■ RIB_MESSAGE - contains the message payload, all single-field envelope
information, and a concatenated string made from <id> tags. It also contains a
unique hospital ID identifying this record within the hospital.

■ RIB_MESSAGE_FAILURE - contains all failure information for each time the
message was processed.

■ RIB_MESSAGE_ROUTING_INFO - contains all of the routing element information
found in the message envelope.

■ RIB_MESSAGE_HOSPITAL_REF - contains all of the hospital reference
information found in the message envelope.

A database sequence, RIB_MESSAGE_SEQ, is used to maintain a unique message
number associated with each message placed into the RIB Hospital.

Note: The XA interface is a standard protocol between a transaction
manager and a database or resource manager. Note that both the JMS
topic connection and the database connection must support the XA
protocol. For more information regarding the XA standard, see the
URL http://www.opengroup.org.

http://www.opengroup.org
http://www.opengroup.org
http://www.opengroup.org

The RIB Hospital

Core Concepts 3-13

These tables will have been created during the database portion of the Oracle Retail
application installation (for example, RWMS, SIM, RPM, AIP, or RMS).

The RIB Hospital tables are internal system tables that maintain the RIB runtime state
of the system. The entries in these tables must not be manipulated by non RIB tools
when the RIB is running.

RIB Hospital Retry
After a message is inserted into the RIB Hospital, the hospital retry adapter is used to
re-post the message to the JMS in order to retry its processing. The assumption is that
the error is a transitory one; records locked or there is an external dependency that has
not been met. The number of times a message is retried is configurable.

The hospital retry is responsible for maintaining state information for hospital records
— or what has happened to the record or message information. Each time the message
is reprocessed, a record is kept of the event along with the results. The design is to
provide a means to halt processing for messages that cause errors while allowing
continued processing for the good messages.

One element of this information is whether the message has been queued to the JMS
topic for re-try processing. So manually deleting messages from the hospital database
using SQL directly may produce severe processing problems. Also, deleting messages
directly from the JMS provider may result in a message that is never retried again, as
the logic in the retry assumes the message is queued within the JMS.

There are three kinds of hospital retry adapters:

■ Sub Retry Adapter

■ JMS Retry Adapter

■ Pub Retry Adapter

All subscriber side retrying of messages are handled by the Sub Retry Adapter. The
Sub Retry Adapter looks at all messages with reason code SUB, then filters and

The RIB Hospital

3-14 Oracle Retail Integration Bus Implementation Guide

identifies the messages that are ready to be reprocessed, keeping message ordering in
mind.

Oracle Retail applications are unaware that the integrations of the business data is
happening through a JMS server. RIB abstracts the fact it is using a JMS server from the
retail applications. When the JMS server is down or RIB has some problem publishing
to the JMS server, RIB will not rollback the transaction as long as it is a recoverable
problem. In such situation all messages are inserted to the RIB Hospital with a reason
code of JMS and publications continues on. The JMS Retry Adapter retries all
messages with reason code of JMS at a later time.

All messages with reason code of PUB are retried by the Pub Retry Adapter. RMS is
the only retail application that needs the Pub Retry Adapter.

PUB Retry Adapter
The PUB Retry Adapter retries all messages with a reason code of PUB. RMS is the
only Oracle Retail application that needs the PUB RetryAdapter.

The following diagrams illustrate how the PUB Retry Adapter works.

The RIB Hospital

Core Concepts 3-15

The RIB Hospital

3-16 Oracle Retail Integration Bus Implementation Guide

The RIB Hospital

Core Concepts 3-17

Hospital Attempt (Retry) Count
When the message first comes through the subscriber, if there is no businessObjectid,
then there is no dependency check performed. If the message cannot be processed, it is
then inserted into the hospital with an attempt_count = 1.

A message that comes through the subscriber that has a businessObjectid has a
dependency check performed. If there is no dependency and the message cannot be
processed, it Is then inserted into the hospital with an attempt_count = 1.

A message that comes through the subscriber that does match the ID and family of
another message in the hospital is known to be dependent, so it goes to the hospital
immediately, with an attempt_count = 0.

JMS Delivery Count
JMSXDeliveryCount is a message property set by AQ JMS. This property is checked to
see if the message is being redelivered by the JMS. If the count MAX_REDELIVERY_
THRESHOLD (set to 2) is reached, the RIB subscribers assume that the message is
being re-delivered; the message will be determined as a poison message. The message
is written to the file system (at the same location where application log files are
written), and the adapter is shut down in such scenarios. An administrator must
decide how this message will be handled.

The RIB Hospital

3-18 Oracle Retail Integration Bus Implementation Guide

4

Oracle Retail Application APIs 4-1

4Oracle Retail Application APIs

This chapter describes Oracle Retail Application APIs.

PL/SQL Stored Procedure APIs
Each PL/SQL based application uses a Message Family Manager (MFM) specific API
for publishing all messages within a specific message family. This API is the interface
to a stored procedure package and wrappers the staging table and additional business
logic surrounding the message publication.

The RIB Publishing Adapter polls the API by calling a routine in the MFM called
GETNXT(). The MFM "GETNXT()" PL/SQL stored procedure may contain simple or
complex logic that is specific to the message types published. For example, a simple
Create Vendor message may involve merely selecting and then deleting a single record
from the vendor staging table. On the other hand, a Create Purchase Order message
requires fairly complex logic to create because of the business process dependencies.
Many changes may be made to a PO before it is approved.

The RIB Subscribing Adapter invokes the API by calling a routine in the MFM called
CONSUME().

The RIB Pub Hospital Retry Adapter invokes the API by calling a routine in the MFM
called PUB_RETRY().

Oracle CLOB APIs
The main facet of this API involves the use of Oracle CLOBs (Character Large Object
Binaries) as the means to pass information to and from an Oracle stored procedure.
The stored procedure is responsible for parsing or building the message payload.

There are only a few of this type remaining in RMS.

List of Interfaces.

APIs using CLOBs have internal triggers that are fired when a specific database table
is modified. The trigger retrieves all of pertinent information to create a specific type of
message (XML payload) and inserts it into a staging table using an application specific
Message Family Manager (MFM) API. The payload is contained in an Oracle
Character Large Object Binary (CLOB). The staging table that holds the payload data
must also maintain the following:

■ The order that messages are created

■ The CLOB containing the "payload" XML

■ Any routing or filtering key values

PL/SQL Stored Procedure APIs

4-2 Oracle Retail Integration Bus Implementation Guide

■ The message type associated with the business event that created the message. The
message type is specific to the message family and a single business event may
produce multiple messages of differing types within different families.

RIB_XML and RIB_SXW Database Packages
These PL/SQL packages contain utilities to make the generation and parsing of XML
documents easier. It is based on Oracle's XDK, and is designed to support CLOB
application-specific APIs that read and write XML messages.

Oracle Object APIs
These application interfaces use Oracle Objects to pass information to and from the
stored procedure. Each RIB Object corresponds to the XSD that defines the RIB
Message payloads for that message family. This is the predominant type of PL/SQL
API used in Oracle Retail integration via RIB.

When a message is ready for publication, the Message Family Manager GETNXT()
Stored Procedure examines its staging tables and creates the appropriate RIB Object
for publication. In many cases, these staging tables contain columns that are
themselves declared a specific type of RIB Object. Once the complete RIB Object is
ready, the GETNXT() Stored Procedure returns this (RIB Object) to the calling RIB
Adapter, which then converts the RIB Object into an equivalent XML string.

When a subscribing adapter gets a message from the JMS topic it constructs the Oracle
Object by parsing the incoming payload xml. The newly created Oracle Object is
passed in to the CONSUME() stored procedure to process the message.

RIB Related Database Tables
PL/SQL stored procedures use three tables to refine their behavior: RIB_SETTINGS
and RIB_TYPE_SETTINGS and RIB_OPTIONS. Not all applications use these.

The RIB_SETTINGS table defines, on a per message family basis:

■ The number of channels to use when publishing (see the Multi-channel section in
the Oracle Retail Integration Bus Operations Guide).

■ The maximum number of details to publish within a create, update, or delete
message. Oracle Retail applications typically do not have a limit to the number of
details a specific business object can have. So a purchase order may be created
containing tens of thousands of detail lines, each line a specific item/location
combination. A single PO Create message containing 30,000 or so lines require a
vast amount of resident memory to parse. This column limits the PO Create and
subsequent PO Detail Add messages to a set number of details.

The RIB_TYPE_SETTINGS table is used internally by the application.

The RIB_OPTIONS table is used by the CLOB APIs for the creation of XML.

Oracle Retail Java EE APIs

Oracle Retail Application APIs 4-3

Detail Architecture - PL/SQL Apps

Oracle Retail Java EE APIs
These interfaces to the RIB are via Message Driven Bean (MDB) for subscribers and by
Stateless Session Bean (SLSB) to publish messages to the JMS. This architecture uses
Payload Java Beans to communicate event information from the RIB code to the
application messaging processing logic.

The internal architecture of RIB is very similar between Oracle Retail PL/SQL
applications and Oracle Retail Java EE applications. The only significant difference is
in the publishing adapter types. For PL/SQL Retail applications RIB keeps on polling
the stored procedure every few seconds to find out if there is any work. When the
stored procedure returns some data (that is, when there is some work), RIB goes and
does the work. In Oracle Retail Java EE applications RIB does not do any polling. The
roles are reversed where the Oracle Retail application requests RIB to publish a
message. Thus, there are two types of publishing adapters in RIB depending on the
connecting Oracle Retail application type. The Java EE application uses request-driven
publishers and the PL/SQL application uses timer-driven publishers.

API Return Status Codes

4-4 Oracle Retail Integration Bus Implementation Guide

Detail Architecture Java EE Apps

API Return Status Codes
Below are lists of API return status codes.

PL/SQL GETNEXT Return Codes
S - Success

N - No message

H - Hospital

E - Error

PUB_RETRY Return Codes
S - Success

N - No message

H - Hospital

E - Error

I - Keep calling

CONSUME Return Code
S - Success

E - Unhandled Error

5

Pre-Implementation Considerations 5-1

5 Pre-Implementation Considerations

Before the RIB is installed into an enterprise, there are many factors that need to be
considered. Planning and addressing each of the factors will avoid having to re-install
or re-architect because of performance or operational problems.

The process of RIB implementation requires the creation or modification of a retailer's
Enterprise Integration Architecture. Typically, retailers will already have an integration
strategy, plan or architecture and products in place to integrate their current systems.

The deployment of the RIB is always a portion of the deployment of the Oracle Retail
applications, almost always with RMS. Because the implementation of RMS is a long
cycle project, and always involves data conversions and integration into a retailer’s
existing infrastructure, the RIB implementation planning is strategic to that effort.

RIB Software Lifecycle Management
Software applications, after being made generally available (GA), have a well defined
lifecycle process. The implementer must manage and perform tasks in these phases.

■ Acquire the software components.

■ Prepare the environment

■ Assemble the application

■ Deploy and start the application

■ Perform day-to-day monitoring to makes sure the application is running properly

■ Apply code fixes to the application

Centralized Configuration and Management

5-2 Oracle Retail Integration Bus Implementation Guide

RIB supports and follows the RIB Software Lifecycle Management., a well-defined
process life cycle that has implemented specific tools and functionality for each of
these phases.

■ Preparation Phase—In this phase all relevant components are downloaded,
extracted configured, and version compatibility checks done.

■ Application Assembly Phase—In this phase, site specific configuration changes are
made and all the relevant rib-<app>.ears are generated.

■ Deployment Phase—In this phase, using the rib-<app>.ears created in the
previous step and the site specific information present in a global configuration
file, the rib-<app> .ears are deployed to the application server instances.

■ Operations Phase—In this phase day-to-day operations of the rib-<app>
applications are performed.

■ Maintenance Phase—In this phase, code fixes, patching and configuration changes
and maintenance of the RIB is performed.

Centralized Configuration and Management
Another key concept in the design of RIB is that all configuration and management is
from a single centralized location using specific RIB provided tools. The RIB is built on
a completely de-centralized model. However, to ensure consistency and compatibility
within an enterprise deployment, a centralized management and configuration model
has been designed.

Preimplementation Considerations for Multibyte Deployments

Pre-Implementation Considerations 5-3

The RIB provides a RIB installer, consistent with all of the Oracle Retail applications, in
addition to a command line set of tools that are used at installation, assembly and
deployment time to create the Oracle Retail application specific integration.
Collectively these command line tools are called the rib-app-builder and provide
functionality to support the RIB Software Life Cycle.

Physical Location Considerations
The Oracle Retail Merchandising System (RMS) is the most important core business
application from the suite of Oracle Retail Product offerings. RMS provides most of the
retail business functionality that Oracle Retail offers its customers. In other words RMS
is the central hub of oracle retail applications. Since RMS is the central hub of retail
information/data and most information/data flows outward from RMS to other edge
retail applications through RIB the decision on where to physically/logically locate
RIB is very important and will have direct impact on functioning of your enterprise.

It is recommend to keep the RIB's JMS server logically (not physically) close to the
RMS database server as 80% of the data flowing through RIB will interact with RMS
database server. Normally RMS up or down status defines your overall enterprise
retail business status and so keeping your integration infrastructure status in sync with
RMS is beneficial.

RIB Hospital functionality has been added to the TAFR adapters in this release. In
order to avoid situations where entire integration can be down just because the TAFR
RIB Hospital database is down, it is strategic and beneficial to put the TAFR RIB
Hospital tables in the same database instance as the RMS database instance. Obviously
it is required to separate the RMS RIB Hospital tables and the TAFR RIB Hospital
tables by installing then in their own respective database schemas.

The argument above can be extended to the rib-tafr.ear application and rib-rms.ear
application, and so it is recommended to collocate rib-rms.ear and rib-tafr.ear as much
as possible.

RWMS and SIM are edge retail applications which might be running closer to your
physical warehouse location or your physical store management location. It is
recommended collocate rib-sim.ear near SIM application and rib-rwms.ear near
RWMS application.

The integration message flow is centrally managed in this release. The
rib-func-artifact.war web application determines which messages go where between
the rib adapters across all rib-<app> applications. At runtime the rib-<app>.ear needs
access to the central message flow repository available in rib-func-artifact.war.
Therefore, rib-func-artifact.war must be deployed in a central location where all
rib-<app>.ears have access to it at runtime.

The RIB is a central office enterprise integration solution; it is not designed to work
optimally on a low (non LAN) bandwidth network. Distribute the rib-<app>.ear
applications in such a way where you can avoid lots of network hops, any network
protocol bridges, and any communication over a WAN.

Preimplementation Considerations for Multibyte Deployments
If the RIB is deployed into an environment where multibyte characters are used in the
message data, improper database setup can lead to error messages indicating that
insert values are too long.

There are several database settings that can affect the behavior of the processing
messages that contain multi-byte characters. Some are set during the creation of the

JMS Server Considerations

5-4 Oracle Retail Integration Bus Implementation Guide

instance, and others are configurable. The settings to pay attention to are NLS_
CHARACTERSET, NLS_LANG, NLS_LENGTH_SEMANTICS. The interactions and
considerations are beyond the scope of the RIB documentation and should be
discussed with the database administration team prior to installation.

The BYTE vs. CHAR setting is especially important. If it is not set up correctly, errors
can result, indicating the value being inserted is too long for the field. The following is
an example of an insert error:

Internal Exception: java.sql.SQLException: ORA-01461: can bind a LONG value only
for insert into a LONG column.

JMS Server Considerations
Retail business generates huge volume of transactions that are time sensitive in nature.
For the business to be agile and react quickly RIB has to transmit the business events
over the JMS server very quickly. The RIB depends upon the underlying JMS server for
its performance, robustness, and reliability. Therefore, your retail business
performance and reliability is directly dependent on how robust the JMS server is and
how much CPU, memory, network and other system resources are available to it. It is
critical to provide adequate hardware resource to the JMS server in order for it to be
able to meet your performance requirements.

It is not recommended to locate the JMS server and the RIB application server on the
same machine. RIB tools automatically configure the JMS server to meets RIB's
required configuration. Do not modify the RIB JMS server configuration unless it is
advised by RIB documentations. RIB provides tools to monitor the RIB JMS server and
only those recommended tools must be used for your daily operations.

It is important to consider the sizing, either file system space or database table space,
when planning the deployment of the JMS Provider to a host. It is a very common
operational use case for one of the Oracle Retail subscribing applications to go off-line
for an extended period, either due to business requirements or problems. Basic sizing
at a customer for any JMS system is for the disk (mount points or database) to be able
to handle 24 hours of maximum messages per topic.

Using Multiple JMS Servers
Having multiple JMS servers can improve overall system performance and
accommodate the following:

■ the separation of high volume families from low volume ones.

■ the customization of integration flows.

■ Operational Quality of Service(QoS).

■ distribution of the overall load on the integration system.

To meet the JMS agnostic requirement for the RIB, a unique JMS server ID
(jms-server-id) is assigned to each RIB adapter. Accordingly, each RIB adapter can
identify the JMS server to which it is associated. As the default, out-of-the-box
adapters are configured to be on jms-server, jms1.

For each new jms-server-ID, a new resource adapter must be configured to point the
application server to the JMS provider's resource. The adapter communicates with the
JMS server and is deployed as part of the application. Where customization is
required, the adapter can be configured to point to a different JMS.

High Availability Considerations

Pre-Implementation Considerations 5-5

Oracle Streams AQ JMS
Streams AQ provides PL/SQL APIs to interact with the native AQ server inside the
Oracle database. Native AQ stream is not the same as AQ behaving as a JMS server.
RIB configures the native AQ server to behave as a JMS specification compliant JMS
server implementation. Therefore, it is strictly prohibited to manipulate RIB's JMS
topics and RIB's AQ configurations directly with the AQ PL/SQL or java API.

AQ JMS server can be configured to be highly available by taking advantage of Real
Application Cluster (RAC) functionality of the Oracle Database.

The RIB installation process defines the minimum RDBMS permissions and role that
are required for the RIB code to properly create the AQ JMS topics per the
specifications required for the RIB behavior. There should be no attempt to use
alternate settings or configurations.

Beyond the installation, there are critical considerations that must be addressed for
performance and operations that depend on the volumes and topology of the
deployment.

The Oracle RDBMS instance that will be configured as the AQ JMS must be tuned to
support the number of processes needed for the RIB adapters installed and configured
in each deployment environment.

The number of JMS AQ processes is depends on the RIB configuration.

See also the following information about High Availability.

High Availability Considerations
As businesses are maturing and having to do everything quicker, better, faster, and
with less resource and money they are pushing similar expectation onto their IT
infrastructure. Business users are expecting more out of their IT investments, with zero
down time, consistent predictable responding systems which are highly available has
become basic requirements of today's business applications.

Modern business application requirements are classified by the abilities that the
system must provide. This list of abilities such as availability, scalability, reliability,
scalability, audit ability, recoverability, portability, manageability, and maintainability
determine the success or failure of a business.

With a clustered system many of these business requirement abilities gets addressed
without having to do lots of development work within the business application.

Note: For more information on using multiple JMS, see Chapter 6,
"JMS Provider Management," in the Oracle Retail Integration Bus
Operations Guide.

Note: To determine the probable number of RIB AQ JMS processes in
the deployment, see "The RIB on AQ JMS" in the Oracle Retail
Integration Bus Operations Guide.

Note: See also the Oracle Database Performance Tuning Guide 11g
Release 1 (11.1).

High Availability Considerations

5-6 Oracle Retail Integration Bus Implementation Guide

Clustering directly address availability, scalability, recoverability requirements which
is very attractive to a business. In reality though it is a tradeoff, clustered system
increases complexity, is normally more difficult to manage and secure so one should
evaluate the pros and cons before deciding to use clustering.

Oracle provides many clustering solutions and options; those relevant to RIB are
Oracle database cluster (RAC) and WebLogic Server clusters.

Oracle Database Cluster (RAC) Concepts
A cluster comprises multiple interconnected computers or servers that appear as if
they are one server to end users and applications. Oracle Database Real Application
Clusters (Oracle RAC) enables the clustering of the Oracle database. Oracle RAC uses
Oracle Clusterware for the infrastructure to bind multiple servers so that they operate
as a single system.

Single-instance Oracle databases have a one-to-one relationship between the Oracle
database and the instance. Oracle RAC environments, however, have a one-to-many
relationship between the database and instances. In Oracle RAC environments, the
cluster database instances access one database. The combined processing power of the
multiple servers can provide greater throughput and scalability than is available from
a single server. Oracle RAC is the Oracle database option that provides a single system
image for multiple servers to access one Oracle database. In Oracle RAC, each Oracle
instance usually runs on a separate server.

Oracle RAC technology provides high availability and scalability for all database
applications. Having multiple instances access a single database prevents the server
from being a single point of failure. Oracle RAC enables capability to combine smaller
commodity servers into a cluster to create scalable environments that support mission
critical business applications.

rib-<app> application and Oracle Database Cluster (RAC)
In this release rib-<app> uses Oracle Streams AQ as the JMS provider. Oracle Streams
AQ is built on top of an Oracle database system. Since AQ is hosted by Oracle
database system, RIB can take advantage of database RAC capability for its JMS
provider. By using RAC configured AQ as the RIB's JMS provider you can scale the
RIB's JMS server vertically and horizontally to meet any retailer's scalability and high
availability need.

At runtime rib-<app> uses the database for keeping track of its RIB Hospital records.
These RIB Hospital tables can be hosted by an Oracle RAC database providing high
availability and scalability for these RIB Hospital records.

WebLogic Server Cluster Concepts
A WebLogic Server cluster consists of multiple WebLogic Server server instances
running simultaneously and working together to provide increased scalability and
reliability. A cluster appears to clients to be a single WebLogic Server instance. The
server instances that constitute a cluster can run on the same machine, or be located on
different machines. You can increase a cluster's capacity by adding additional server
instances to the cluster on an existing machine, or you can add machines to the cluster
to host the incremental server instances. Each server instance in a cluster must run the
same version of WebLogic Server.

Note: For more information, see Oracle RAC documentation.

High Availability Considerations

Pre-Implementation Considerations 5-7

In an active-passive configuration the passive components are only used when the
active component fails. Active-passive solutions deploy an active instance that handles
requests and a passive instance that is on standby. In addition, a heartbeat mechanism
is usually set up between these two instances together with a hardware cluster (such
as Sun Cluster, Veritas, RedHat Cluster Manager, and Oracle CRS) agent so that when
the active instance fails, the agent shuts down the active instance completely, brings up
the passive instance, and resumes application services.

In an active-active model all equivalent members are active and none are on standby.
All instances handle requests concurrently.

An active-active system generally provides higher transparency to consumers and has
a greater scalability than an active-passive system. On the other hand, the operational
and licensing costs of an active-passive model are lower than that of an active-active
deployment.

See the Oracle® Fusion Middeware Using Clusters for Oracle WebLogic Server
documentation for more information:

 http://download.oracle.com/docs/cd/E15523_
01/web.1111/e13709/toc.htm.

rib-<app> application and WebLogic Application Server Cluster
RIB uses a JMS server for message transportation between the integrating retail
applications. Since RIB must preserve the message publication and subscription
ordering, rib-<app>s deployed inWeblogic Application Server cannot be configured in
an active-active cluster mode. In active-active cluster mode, multiple subscribers and
publishers process messages simultaneously and there is no way to preserve message
ordering.

rib-<app> can be deployed to a single managed server instance of an Weblogic
Application Server that is clustered(active-passive). In this configuration even though
rib-<app> is deployed in a Weblogic cluster, multiple instance of same rib-<app> is not
running at the same time, as there is only one managed server instance where the rib-
<app> is deployed and so RIB can still preserve message ordering.

To truly configure rib-<app>s for high availability the only option is to configure it in
active-passive mode.

For WebLogic server, using a concept called Pinned Deployment, you can deploy and
target your applications to a particular instance in the cluster. At any given time, only
one instance of the same RIB app can be running in a cluster. Failure to ensure that
only one is running can cause messages to be processed out of sequence or
applications to receive duplicate copies of messages.

http://java.sun.com/products/jms

High Availability Considerations

5-8 Oracle Retail Integration Bus Implementation Guide

6

Deployment Architecture and Options 6-1

6Deployment Architecture and Options

 There are no physical location constraints on where rib-<app> applications can be
deployed as long as they are visible from the same network. But the decision on where
to physically and logically locate your rib-<app> applications has a huge impact on
the high availability, performance and maintainability of your integration solution, so
this decision must be given careful consideration.

Recommended Deployment Options
The RIB applications can be deployed in a variety of physical and logical
configurations depending on the retailer's needs. Oracle Retail has two recommended
configuration alternatives.

■ Distributed: In this deployment each of the rib application (rib-<app>.ear) is
deployed in the same Weblogic Application Server as integrating application
(<app>.ear) but in its own WLS managed server instance.

■ Centralized: In this deployment all rib applications (rib-<app>.ear) are deployed
in a single Weblogic Application Server (not managed server instance)
independent of where the Oracle Retails apps (<app>.ear) Weblogic Application
Server is.

In all cases, the rib application (rib-<app>.ear) should be deployed in its own managed
server Instance. It is not recommended to deploy multiple rib applications into the
same WLS instance, or to have the rib application (rib-<app>.ear) deployed into the
same WLS instance as the integrating application (<app>.ear). This configuration of
deploying multiple rib-<app>s in one managed server instance is not recommended or
supported for WLS.

Distributed Deployment Alternative

6-2 Oracle Retail Integration Bus Implementation Guide

Distributed Deployment Alternative

Following are some advantages and disadvantages of this configuration.

Advantages
■ Required single Oracle Application Server for both rib (rib-<app>.ear) and

integrating application (<app>.ear).

■ <app>.ear and rib-<app>.ear are close to each other but are still loosely coupled.

■ It is easy to find which rib-<app>.ear is associated with which integrating
application (<app>.ear).

■ A single WLS instance is never the single point of failure for the whole integration
system.

Disadvantages
■ When WLS server of rib-<app>.ear has to be bounced, the integrating application

(<app>.ear) becomes unavailable, as both reside in the same application server.
Similarly rib-<app>.ear has to bounce when <app>.ear needs bouncing. This
dependency between the two applications is not ideal.

■ Even though both the applications reside within the same application server, it is
the configuration with the applications that are tying them together not the
physical characteristics of both being deployed in the same application server.
Physical location might be misleading if the system is not configured correctly.

■ One application server has to work harder for management of resources and
services for both applications.

■ System load distribution between rib-<app>.ear and <app>.ear is not possible as
both applications reside within the machine.

Centralized Deployment Alternative

Deployment Architecture and Options 6-3

Who Should Use This Configuration?
Medium to large size deployments can use this configuration. This configuration is
appropriate when the machine hosting WLS is adequately sized for its job. A high
message volume in rib-<app>.ear can adversely affect the performance of the
integrating application (<app>.ear) in areas that are not related to integration. Ideally
this kind of behavior is not desirable for an online system.

Centralized Deployment Alternative
In this deployment all rib application (rib-<app>.ear) are deployed in a single
WebLogic Application Server but in separate Java EE containers (managed server
instances). The integrating applications (<app>.ear) are deployed in their own
separate WebLogic Application Server. There is only one JMS server and all
participating rib-<app> are configured to use the same JMS server.

Following are some advantages and disadvantages of this configuration.

Advantages
■ All integration relegated components are deployed in one application server.

■ The configuration is simple to find, view, and manage.

Conclusions

6-4 Oracle Retail Integration Bus Implementation Guide

Disadvantages
■ Because all rib-<app>.ear (applications) reside on the same WebLogic Application

Server, system resources are shared among the applications, which means each can
adversely affect the performance of another. For example, rib-aip.ear can become
slow when rib-rpm.ear is processing a lot of messages, even though these
applications are not at all related to each other.

■ Overall performance can be slower as one application server machine has to do
lots of work.

■ The RIB application server and host become the single point of failure for the
whole integration system (environment). That is, when the WebLogic Application
Server goes down the whole integration is down for all retail applications
(<app>.ear).

Who should use this Configuration?
Small to Medium size deployments can use this configuration. When the message size
is small and high volume is not expected, this configuration can be used. This
configuration can also be used when there are only two integrating application. As
each rib-<app>.ear publishes and subscribes to each other, they are indirectly (through
JMS) interdependent and so performance should not be affected too much when the
message volume is less.

Conclusions
RIB deployment recommendation does not take into account your hardware size,
network topology, existing legacy system, and so on. One size fits all does not work.
You need to do proper due diligence based on our recommendations and your specific
environment settings in order to come up with the best deployment architecture that
meets your needs.

7

Implementation Process 7-1

7Implementation Process

This release of RIB defines the full life cycle of the RIB software product. The RIB life
cycle and phases are described in detail in the software lifecycle management section
of this document. For every life cycle phases and task that RIB defines it provides
corresponding tools and utilities to manage and operate on those phases. The tools
and utilities are described in detail in the Oracle Retail Integration Bus Operations Guide.

There are several prerequisite steps that should be followed to have a successful RIB
installation and deployment.

■ Understand the RIB Core Concepts.

■ Understand the integration message flow paths.

■ Understand the deployment options.

■ Understand the RIB life cycle.

■ Understand the physical and logical requirements and limitations of the RIB
Components.

■ Understand the RIB Operational considerations.

The process of implementation should follow these general steps:

■ Work with the teams at your organization dedicated to Oracle Retail to coordinate
plans for the number and type of environments needed (for example, Dev,
Integration, Production).

■ Each type of environment needs to be sized, deployed, and managed in
conjunction with the implementation of the Oracle Retail applications.

– It is critical to understand the volume requirements of the production system
so that the appropriate decisions can be made about the deployment option
and the physical location and sizing.

■ All deployments have integration to existing retailer systems. It is critical to
understand the position of the RIB as it fits into the overall integration architecture
and that the current operations and architecture team understand the RIB and its
capabilities.

■ Select a deployment option (centralized or distributed).

– This may be mixed depending on the phases of deployment. Development
and test may be centralized and production distributed.

– Understand the operational complexities of each and plan for the staffing.

■ Work with the application server administration teams to determine the physical
and logical placement of the RIB components.

Implementation Verification and Validation

7-2 Oracle Retail Integration Bus Implementation Guide

■ Work with the system administrator and database administrator to appropriately
place, size, and configure the AQ JMS.

■ Work with the system administrators to select the central RIB management
location, rib-home.

■ The installation of the RIB has many pre-requisites and dependencies that require
the understanding, support and effort of database administrators, system
administrators, application server administrators, and your organization's Oracle
Retail application teams. It is a critical role of the RIB system administrator to
work with each team, regardless of the site organization structure. See the Oracle
Retail Integration Bus Installation Guide.

– The operation requirements and considerations are covered in the Oracle Retail
Integration Bus Operations Guide. The guide should be understood before the
implementation so that the factors can be considered in the planning.

■ Create operational plans for the RIB life cycle. See the Oracle Retail Integration Bus
Operations Guide.

■ Create plans for environment monitoring and maintenance. See the Oracle Retail
Integration Bus Operations Guide.

■ Plan to performance test. The RIB supplies tools to aid in the testing, but it is a
difficult task that involves the database administrators, system administrators,
application server administrators, and the Oracle Retail application teams.

Implementation Verification and Validation
Verification is the process of reviewing, inspecting, testing, and documenting that the
product behaves in a manner as defined by the product requirement specification.
Validation on the other hand is the process of making sure that the product's runtime
behavior meets the retailer's needs and requirements. RIB provides tools and utilities
to verify that a RIB installation is configured correctly and works properly when
business events (messages) occur in your enterprise. RIB also provides tools to test
integration infrastructure standalone, independent of any Oracle Retail applications.

Implementation Environment Verification
The RIB Diagnostic and Monitoring Tool (RDMT) can be used to verify your
installation and configurations. The RDMT configuration report utility generates an
extensive configuration report of your runtime environment. It is recommended to
regularly perform full RIB health check using the RDMT tool sets to proactively find
problems and recover before any problem becomes a serious issue.

See the Oracle Retail Integration Bus Operations Guide for RDMT information.

Integration Environment Testability
Identifying the ownership of an integration problem is one of the hardest problems in
any integration project. Data mismatch problems always show up in the integration
layer but in reality it is the source and the destination applications that has mismatch
data model. To be able to isolate integration infrastructure problem versus retail
application API problem it is very important to be able to test the integration
infrastructure independent of the retail applications.

Note: For more discussion on Performance see "Performance
Considerations" in the Oracle Retail Integration Bus Operations Guide.

Implementation Verification and Validation

Implementation Process 7-3

In this release, RIB provides two test harnesses that allow you to build a standalone
working integration environment without the need to install any Oracle Retail
applications. The test harnesses simulate Oracle Retail PL/SQL applications (RMS and
RWMS) and Oracle Retail Java EE applications (SIM, RPM, and AIP). The test
harnesses are known as plsql-api-stubs and javaee-api-stubs respectively.

See the Oracle Retail Integration Bus Operations Guide for information about on the RIB
test harness.

Implementation Verification and Validation

7-4 Oracle Retail Integration Bus Implementation Guide

8

Performance 8-1

8Performance

Performance Factors
The performance of each of these components is influential in the overall performance
of the system:

■ The application server(s) topology and configuration.

■ The RIB deployment approach.

■ The hardware sizing and configuration of the RIB hosts.

■ The hardware sizing and configuration of the applications that are connected to
the RIB.

■ The hardware sizing and configuration of the JMS provider host.

■ The hardware sizing and configuration of the RIB Hospitals hosts.

There are other factors that determine the performance of the overall system. Some of
these factors in a RIB environment are:

■ Number of channels configured

■ Number of messages present in the topic

■ Size of the message

■ Database clustering

■ Application Server topology

■ Number of TAFRs in the processing of the message

■ Message aggregation

See "Performance Testing the RIB" in the Oracle Retail Integration Bus Operations Guide.

Performance and Parallel Logical Channels
The RIB must provide guaranteed once and only once processing of business events
(messages) across the enterprise. Maintaining the order of business events across the
enterprise is critical to data integrity.

To provide guaranteed sequencing of message processing, RIB requires a guaranteed
first in, first out (FIFO) messaging system with guaranteed FIFO rollback. That is,
when you rollback the message from the consumer you get the same message back the

Performance and Parallel Logical Channels

8-2 Oracle Retail Integration Bus Implementation Guide

next time so that it is processed in sequence. JMS Provider provides this FIFO topic
and FIFO rollback capability, which enables RIB to guarantee message sequencing.

Processing messages in sequence results in operational overhead, as every message
must be checked against the database to find the status of previous messages on which
it is dependent (same businessObjectid). Sequencing creates an inherent bottleneck, in
that only one message is processed at once. For example, messages can come at the
rate of 100 messages per second, but RIB a subscribing adapter can process only one of
those messages at a time to preserve the order. To get around this bottleneck and
improve performance, RIB provides options for optimization and functionality.

First, RIB processes messages in sequence only when the publishing application wants
it to be processed in sequence. The message producer application defines a
businessObjectid whose existence informs RIB that this and all subsequent messages
with the same businessObjectid have to be processed in order.

Second, parallel logical channels can be created for each message flow paths in the
integration system to improve performance. Parallel logical channels are virtual logical
message flow paths within the same physical JMS topics. To add additional channels,
each adapter participating in a message flow must be configured with additional
adapter instances. See the Oracle Retail Integration Bus Operations Guide for how to
configure parallel logical channels.

Using parallel logical channels is not the solution for all performance problems in the
integration system. They can help only when the API for the corresponding
applications is written with non-locking logic and concurrency invocation in mind.

Generally, integration for the retail application APIs are the biggest factor for
bottlenecks in the overall messaging system throughput. It is not appropriate to start
creating parallel logical channels at the first sign of performance problem. It is
important to analyze and tune the integration APIs of the retail applications before
considering the use of parallel channels.

Using parallel logical channel increases complexity, CPU demands, and memory
requirement, resulting in more operational overhead. Use them only when, after all
other components are fully tuned, you are still not able to meet your target numbers.

9

Security 9-1

9Security

Security in the integration layer is a big concern for every retail enterprise. The
security system should be open enough to allow trusted remote applications to
integrate easily and, at the same time, lock down unauthorized remote access. To
address security concerns RIB utilizes the security modules available in the Oracle
middle ware and database systems.

There are two categories of administrators in RIB: RIB System Administrators and RIB
Application Administrators. RIB System Administrators are involved in installing,
configuring, deploying defect fixes, and making sure that the integration infrastructure
is up and running properly. They generally are concerned with the business side of the
integration system. Their tasks include bringing up or taking down RIB adapters, and
fixing data issues with message payloads using RIHA. There are separate realms, roles
and users defined for each category of RIB administrators.

RIB Application Administrators Security Domain
WebLogic server has a default security realm. For each rib-<app>.ear deployed, RIB
creates a user in the default security realm. This realm defines a group called
ribadminrole. By default, RIB creates a user that belongs to the ribadminrole and
Administrators groups. The RIB System Administrators can manage rib-<app>
application's users and access control through the WebLogic Server Administration
Console. The default group and user that RIB creates must not be deleted or modified

RIB System Administrators Security Domain
The RIB System Administrators focus primarily on managing access the RIB JMS
server, application server instances, RIB Hospital database, and the rib-home
workspace. RIB must be deployed with the default WebLogic admin user.

Note: For more information about security, see Chapter 7, "RIB
Security," in the Oracle Retail Integration Bus Installation Guide.

RIB System Administrators Security Domain

9-2 Oracle Retail Integration Bus Implementation Guide

10

Integration with Fusion Middleware 10-1

10 Integration with Fusion Middleware

RIB is certified on the Oracle Fusion Middleware Application Server. All RIB
publishers, subscribers, and TAFRs are Java EE standard components (EJBs and
MDBs) that are deployed and managed by the WebLogic Application Server in
managed instances. This means that the RIB can be deployed into an existing Fusion
Middleware architecture without any changes.

All RIB message payloads are fully standard compliant XSD based. All of the XML
payloads are namespace aware and follow the general standards as well as the
conventions that make them compatible with other Oracle Fusion products such ESB
and BPEL. The payload schema definitions (XSDs) are packaged with each release
along with sample messages.

The recommended approach for integration between the RIB and Oracle Fusion
Middleware products is at the JMS topic level. Any standards compliant tool or
product that can interface to the JMS and subscribe and publish messages can be
integrated with the RIB.

There are some key functional requirements that an integrating application must
follow. It must have the ablity to do the following:

■ Connect to a standard JMS and publish to a topic.

■ Create a durable subscriber to a RIB JMS topic

■ Set user-defined message properties.

■ Encode and decode RIB payloads embedded within the RIB message envelope.

General RIB to Fusion Middleware Architecture

10-2 Oracle Retail Integration Bus Implementation Guide

General RIB to Fusion Middleware Architecture

The Oracle Fusion Middleware products, such as ESB and BPEL, use a common
standard JMS Adapter. This adapter can be used to connect to the RIB certified JMS
Provider and topics.

The JMS topics that the RIB creates for Publication and Subscription are detailed in the
Oracle Retail Integration Bus Integration Guide, along with all of the message payloads
for each message family.

The RIB html encodes each message payload and inserts it into the RIB messages
envelope. Each message has a JMS user-defined property called threadValue that is
required to be set on all in-bound messages. In a multi-channel message flow, the
subscriber will need to set the message selector to an appropriate threadValue to
maintain message publication sequencing.

The xml schema definitions for the payloads and the RIB Messages envelopes are
packaged and shipped with the RIB.

See the Oracle Retail Integration Bus Integration Guide for more information.

The RIB JMS topic names and message flows between the RIB adapters for each of the
Oracle Retail applications are defined in the rib-integration-flows.xml file. This file is
the single source of truth that the RIB release uses at configuration and run-time. It is
required to be accessible within each RIB deployment:
http://<server>:<port>/rib-func-artifact/rib-integration-flows.xml. During
installation and configuration, this file is deployed as part of the functional artifact war
file.

General Process of Integration
The general process for custom integration with the RIB:

■ Determine the Message Family of interest (such as Items)

■ Use the Oracle Retail Integration Bus Integration Guide to determine the message
payloads and topics involved.

■ Configure the JMS Adapter within the tool (ESB/BPEL) to the RIB JMS provider.

■ Understand the RIB envelope (RibMessage.xsd) and the message type
relationship.

General RIB to Fusion Middleware Architecture

Integration with Fusion Middleware 10-3

■ Understand the payload for each message. These are html-encode inside the
RibMessage envelope.

– The RIB XSDs are included in the Oracle Retail Integration Bus Integration Guide
as well as the Function Artifacts war file.

■ Understand the Oracle Retail Application API mappings. These are included in
the Oracle Retail Integration Bus Integration Guide. This is important because the
XSDs do not reflect the actual optional/mandatory state of an element. For
historical reasons (to support previous releases) all elements in the XSD that have
been added since RIB version 10.3 have been optional at the message level.

– The Mapping reports are included with the Oracle Retail Integration Bus
Integration Guide.

– Each of the Oracle Retail applications has documentation on the behavior of
the API.

■ All RIB messages must have the message property threadValue set by publishing
applications, and in a multi-channel message flow, the subscriber will need to set
the message selector to an appropriate threadValue to maintain message
publication sequencing.

– Understand the relationship between the threadValue and multiple-channels
within the RIB. See "Multiple Channels" in the Oracle Retail Integration Bus
Operations Guide.

■ Many of the Message Families have a RIB Component called a TAFR involved.
Understand what a TAFR is and how it works within a message flow. This can be
very involved in some families, and can actually create additional mandatory
elements with a message that may not be obvious. See "Transform, Filtering and
Routing" in the Oracle Retail Integration Bus Operations Guide.

■ The Oracle Retail Integration Bus Integration Guide for each family has the general
functional specifications for the TAFRs involved with that family.

■ Understand the volume characteristics of a message family. The RIB is designed to
handle retail volumes, so a poorly designed subscriber can have a huge impact on
the JMS. Conversely, a publisher that tries to use the RIB as a bulk transfer
mechanism is also inappropriate.

 Configure FWM JMS Adapter to RIB AQJMS
There is nothing special about configuration of the JMS Adapter in either ESB or BPEL
to now connect to the Resource Provider configured to the RIB AQ JMS. (See Oracle
Service Oriented Architecture Suite tutorials and documentation.) RIB AQ must be
configured as foreign JMS, while RIB is deployed on WebLogic server.

For information about configuring foreign JMS adapter, see the Weblogic® Application
Server Administrator's Guide 11g Release 3 (10.3.3).

General RIB to Fusion Middleware Architecture

10-4 Oracle Retail Integration Bus Implementation Guide

11

RIB Customization/Extension 11-1

11 RIB Customization/Extension

The customization of an Oracle Retail Application often drives requirements to
customize or extend the messages that flow among the Oracle Retail applications, or to
create new message flows to support new business logic.

This section discusses the customization/extension approaches and best practices
(from a RIB perspective) for extending base messages, creating new messages and
adapters. These are complex topics and should be performed with great care to avoid
making future generally available (GA) releases difficult or impossible to accept.

Retailers often modify retail software either in-house or through third-party system
integrators. The customization and extension of Oracle Retail base products and
messages are not supported by Oracle Retail, including My Oracle Support. This
chapter aims to mitigate the risks of unsupported customization by providing
guidance and references for how to attempt to customize safely and effectively. The
tools and approaches described in this chapter are complex and require a high level of
skill and knowledge of the product. Any issues that may arise with custom flows,
custom APIs or customized message families are the responsibility of the customer
and not Oracle Retail.

Prerequisites for RIB Customization
Customization requires careful consideration and planning for extending the RIB.
Planning helps to avoid re-installation or re-architecture because of operational or
performance problems.

The following prerequisites help to ensure a successful customization of RIB:

■ A functional RIB environment without any customizations.

■ Familiarity with the Core RIB Concepts, components, and architecture, including
an understanding of all of the following:

– Oracle database triggers, RIB adapters, RIB Message envelope, RIB Message
payloads and the functionality of GETNXT () and CONSUME () stored
procedures.

– Integration message flow paths.

– RIB life cycle.

– Physical and logical requirements and limitations of the RIB components.

– RIB operational considerations.

The tools used in the customization and extension of the RIB are separately
documented. The primary tools are the Retail Functional Artifact Generator and the

Message Family and Message Type Customization

11-2 Oracle Retail Integration Bus Implementation Guide

rib-app-builder tools. The message (payload) structure and packaging is covered in the
Oracle Retail Functional Artifacts Guide.

The following documents are referenced thoroughout this chapter and are required for
the customization effort.

■ Oracle Retail Functional Artifacts Guide

■ Oracle Retail Functional Artifact Generator Guide

■ Oracle Retail Integration Bus Operations Guide

Rules for Customization
Understand the following customization rules.

■ Always keep an environment with a base version release to reproduce any base
version issues. Only GA base code and messages are supported.

■ Always take a backup of the particular files being modified during the
customization, to allow for reversal of the changes.

■ Always use RIB tools such as RDMT, RIHA, and the PL/SQL and Java EE
api-simulators (also known as Stubby) to test the customization changes whenever
possible.

■ Never modify the existing base flows in rib-integration-flows.xml. Modification
can cause errors in functionality that are difficult to detect. Also, modifications you
make to base flows do not carry over to new releases, nor are they retained when
defect fixes are applied to base code and objects.

■ When customizing or extending the RIB messages or flows, all publishing and
subscribing applications participating in the flow must be considered.

■ In scenarios where payload customization or the addition of a new message type
for a particular message family is planned, and the flow contains a TAFR, the
following rules apply:

– TAFRs that do not examine RIB Message types/payloads do not require
modification.

– For TAFRs that examine message type/payloads for filtering or
transformation purposes, the TAFR implementation code must be changed. If
this code is not changed, the messsages will fail and land in RIB Error Hospital
tables.

Message Family and Message Type Customization
In the RIB, all messages are categorized by message family message type. A message
family is specific to one or more Business Objects. It defines all publishable events
occurring on the Business Object(s).

The message type classifies a specific event. For example, the Orders message family is
designed for messages regarding purchase orders, and the Vendor message family is
associated with supplier or vendor information.

Typical message types for a message family include at least one Create, Mod, and
Delete operation.

Note: See"Message Family and Message Types" in Chapter 3.

Message Family and Message Type Customization

RIB Customization/Extension 11-3

Adding a New Message Type
To add a new message to an existing message family, the simplest approach is to add a
new message type. The first step is to determine and create the payload for the new
message type. The message payload must be created following the guideline and
packaging rules for RIB messages.

Once the desired payload is ready, follow the appropriate steps for the type of
applications in the message family and the message flow.

Message Flows with PL/SQL Applications
The new message type created for an already existing or new message family must be
added in the rib-<app>-plsql-api.xml of the subscribing PL/SQL retail application.

The following illustration indicates the files that must be changed inside the RIB
infrastructure during the addition of a new message type when a PL/SQL application
is involved in the message flow.

Procedure for Adding a New Message Type for PL/SQL Applications
To add a new message type for PL/SQL applications, complete the following steps.

1. Add the new message type in rib-<app>-plsql-api.xml where app = rms or rwms,
present under <RIB_HOME>/application-assembly-home/rib-<app> directory.

Note: See the Oracle Retail Functional Artifact Generator Guide and the
Oracle Retail Functional Artifacts Guide.

Note: No configuration changes are needed in rib-<plsql app>
whenever PL/SQL applications publish a new message type to which
no PL/SQL applications subscribe.

Message Family and Message Type Customization

11-4 Oracle Retail Integration Bus Implementation Guide

For example, to add a new message type, DiffGrpFooCre, for the DiffGrp message
family using DiffGrpFooDesc as the payload XML that is subscribed by RWMS
app: Add the message type under the <adaptorClassDef name="DiffGrp_sub"> of
rib-rwms-plsql-api.xml present under <RIB_
HOME>/application-assembly-home/rib-rwms as below.

> cd <RIB_HOME>/application-assembly-home/rib-rwms
> vi rib-rwms-plsql-api.xml

<adaptorClassDef name="DiffGrp_sub">
class>com.retek.rib.collab.general.OracleObjectSubscriberComponentImpl</class>
 <messageFamily name="DiffGrp">
 <storedProc>
 <signature>{call RDMSUB_
DIFFGRP.CONSUME(?,?,?,?,?)}</signature>
 <useFacilityType>true</useFacilityType>
 </storedProc>
 <messageType name="DIFFGRPDEL">
 <oracleObject>RIB_DiffGrpRef_REC</oracleObject>
 </messageType>
 <messageType name="DIFFGRPDTLCRE">
 <oracleObject>RIB_DiffGrpDtlDesc_REC</oracleObject>
 </messageType>
 <messageType name="DIFFGRPDTLDEL">
 <oracleObject>RIB_DiffGrpDtlRef_REC</oracleObject>
 </messageType>
 <messageType name="DIFFGRPHDRCRE">
 <oracleObject>RIB_DiffGrpHdrDesc_REC</oracleObject>
 </messageType>
 <messageType name="DIFFGRPDTLMOD">
 <oracleObject>RIB_DiffGrpDtlDesc_REC</oracleObject>
 </messageType>
 <messageType name="DIFFGRPHDRMOD">
 <oracleObject>RIB_DiffGrpHdrDesc_REC</oracleObject>
 </messageType>
 </messageType name="DIFFGRPFOOCRE">
 <oracleObject>RIB_DiffGrpFooDesc_REC</oracleObject>
 </messageType>
 </messageFamily>
 </adaptorClassDef>

2. Go to the customization-workarea directory and create a file called
custom-payload.properties.

> cd <RIB_HOME>/tools-home/customization-workarea
> vi custom-payload.properties

3. Edit the custom -payload.properties created in the step above. The
custom-payload.properties would contain the new payload message definitions.
The format of the definition is:

"RIBFAMILY.TYPE=IMPLEMENTATION CLASS NAME"
> vi custom-payload.properties (make changes)

For example, when adding the new message type, DiffFooCre, under the Diffs
message family, the custom-payload.properties file is modified as follows:

DIFFGRP.DIFFGRPFOOCRE=com.oracle.retail.integration.custom.bo.diffgrphdrdesc.v1
.DiffGrpHdrDesc

For this example, DiffGrpFooCre calls the implementation class, DiffGrpHdrDesc.

Message Family and Message Type Customization

RIB Customization/Extension 11-5

4. Create a jar called custom-retail-public-payload-java-beans.jar in the
customization-workarea directory and add the custom-payload.properties to the
jar

> jar -cvf custom-retail-public-payload-java-beans.jar
custom-payload.properties

5. Copy the newly generated custom-retail-public-payload-java-beans.jar to <RIB_
HOME>/application-assembly-home/rib-func-artifacts/ directory.

6. Go to <RIB_HOME>/ application-assembly-home/conf and edit the
rib-application-assembly-info.xml.

.vi rib-application-assembly-info.xml

■ Add the following line, as shown in the code example below.

<include name="lib/custom-retail-public-payload-java-beans.jar"/>
■ This needs to be repeated for each application in scope for

compilation/deployment.

Example:

<rib-app id="rib-tafr" type="javaee-app">
 <ear>
 <classpath>
 <classpath refid="rib-app.global.ejb-jar.classpath"/>
 <fileset dir=".">
 <include name="lib/rib-private-tafr-business-impl.jar"/>
 <include name="lib/rib-custom-tafr-business-impl.jar"/>
 <include
name="lib/custom-retail-public-payload-java-beans.jar"/>
 <include name="lib/retail-public-payload-java-beans.jar"/>
 </fileset>
 </classpath>
 <java-ee-module>
 <web-war/>
 <ejb-jar>
 <classpath>
 <classpath refid="rib-app.global.ejb-jar.classpath"/>
 <fileset dir=".">
 <include name="lib/rib-private-tafr-business-impl.jar"/>
 <include name="lib/rib-custom-tafr-business-impl.jar"/>
 <include
name="lib/custom-retail-public-payload-java-beans.jar"/>
 <include
name="lib/retail-public-payload-java-beans.jar"/>
 </fileset>
 </classpath>
 </ejb-jar>
 <jms-jca-connector>
 <classpath refid="rib-app.global.jms-jca-connector.classpath"/>
 </jms-jca-connector>
 </java-ee-module>
 </ear>
 <resource>
 <resource-path refid="rib-app.global.resource-path"/>

Note: If there is a TAFR involved in the flow, the appropriate
changes must be made to the TAFR to handle the new message types.

Message Family and Message Type Customization

11-6 Oracle Retail Integration Bus Implementation Guide

 <resource-path>
 <fileset dir=".">
 <include name="rib-tafr.properties"/>
 <include name="rib-tafr-adapters.xml"/>
 <include name="rib-tafr-adapters-resources.properties"/>
 </fileset>
 </resource-path>
 </resource>
 </rib-app>

7. Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME>/application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin
> sh rib-app-compiler.sh

8. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME>/deployment-home/bin directory as follows:

> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>

The rib-<app> is deployed. Repeat this step for each rib-<app> in scope for this
integration environment.

Message Flows with Java EE Applications
The illustration below indicates the files that must be changed inside the RIB
infrastructure during the addition of a new message type when a Java EE application
is involved in the message flow.

Note: See the Oracle Retail Integration Bus Operations Guide -
(rib-app-builder tools).

Note: The <app> must be an RMS or RWMS application.

Message Family and Message Type Customization

RIB Customization/Extension 11-7

Procedure for Adding a New Message Type for Java EE Applications

1. Go to the customization-workarea directory and create a file called
custom-payload.properties.

> cd <RIB_HOME>/tools-home/customization-workarea
> vi custom-payload.properties

2. Edit the custom -payload.properties created in the step above. The
custom-payload.properties would contain the new payload message definitions.
The format of the definition is:

"RIBFAMILY.TYPE=IMPLEMENTATION CLASS NAME"
> vi custom-payload.properties (make changes)

For example, when adding the new message type,"DiffFooCre," under the
merchier message family to call the implementation class, the
custom-payload.properties file is modified as follows:

MERCHHIER.FOODEPTCRE=com.oracle.retail.integration.custom.bo.mrchhrclsdesc.v1.M
rchHrDeptDesc

3. Create a jar called custom-retail-public-payload-java-beans.jar in the
customization-workarea directory and add the custom-payload.properties to the
jar.

Note: Creating a temporary working directory,
"customization-workarea," under <RIB_HOME>/tools-home is
recommendied. This directory can be used when performing
customization related tasks.

Note: See the RibMessages.xsd bundled inside rib-func-artifact.war
for the maximum supported length of the message type.

Message Family and Message Type Customization

11-8 Oracle Retail Integration Bus Implementation Guide

jar -cvf custom-retail-public-payload-java-beans.jar custom-payload.properties

4. Copy the newly generated custom-retail-public-payload-java-beans.jar to <RIB_
HOME>/application-assembly-home/rib-func-artifacts/ directory.

5. Go to <RIB_HOME>/ application-assembly-home/conf and edit the
rib-application-assembly-info.xml.

> vi rib-application-assembly-info.xml

■ Add the following line, as shown in the code example below:

 <include name="lib/custom-retail-public-payload-java-beans.jar"/>

■ Add the following line, as shown in the code example below:

 <include name="lib/custom-retail-public-payload-java-beans.jar"/>

Example:

<rib-app id="rib-tafr" type="javaee-app">
 <ear>
 <classpath>
 <classpath refid="rib-app.global.ejb-jar.classpath"/>
 <fileset dir=".">
 <include name="lib/rib-private-tafr-business-impl.jar"/>
 <include name="lib/rib-custom-tafr-business-impl.jar"/>
 <include
name="lib/custom-retail-public-payload-java-beans.jar"/>
 <include name="lib/retail-public-payload-java-beans.jar"/>
 </fileset>
 </classpath>
 <java-ee-module>
 <web-war/>
 <ejb-jar>
 <classpath>
 <classpath refid="rib-app.global.ejb-jar.classpath"/>
 <fileset dir=".">
 <include name="lib/rib-private-tafr-business-impl.jar"/>
 <include name="lib/rib-custom-tafr-business-impl.jar"/>
 <include
name="lib/custom-retail-public-payload-java-beans.jar"/>
 <include
name="lib/retail-public-payload-java-beans.jar"/>
 </fileset>
 </classpath>
 </ejb-jar>
 <jms-jca-connector>
 <classpath refid="rib-app.global.jms-jca-connector.classpath"/>
 </jms-jca-connector>
 </java-ee-module>
 </ear>
 <resource>
 <resource-path refid="rib-app.global.resource-path"/>
 <resource-path>
 <fileset dir=".">
 <include name="rib-tafr.properties"/>
 <include name="rib-tafr-adapters.xml"/>
 <include name="rib-tafr-adapters-resources.properties"/>
 </fileset>
 </resource-path>
 </resource>

Message Family and Message Type Customization

RIB Customization/Extension 11-9

/rib-app>

6. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME>/deployment-home/bin directory as follows.

> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -deploy-rib-func-artifact-war

This deploys the rib-func-artifact-war.

> sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>

This deploys the rib-<app>. Repeat this step for all rib-<app> that is in scope for
this integration environment.

Creating a New Message Family
In RIB, all messages are categorized by message family and message type. One option
for customizing the RIB is to create a new message family with a new publishing
adapter and a new subscribing adapter.

Additional Rules
■ If the new message family also corresponds to a topic, it is recommended that the

customization also include the creation of a new topic for that family.

■ A publishing adapter cannot publish to more than one JMS topic.

■ A subscribing adapter cannot subscribe to more than one JMS topic.

■ The first custom message flow must start with 901, with each subsequent custom
message flow id increasing by one from 901. For example, 901, 902, 903, and so on.

■ Each customized message flow id should be unique and must follow the sequence.

A new message family requires new (or custom) Oracle Retail Application side API(s).
Each API should be written, installed and tested independently, and then connected to
the custom message family flows.

The following illustration indicates the files that require changes during the addition
of a new message family inside the RIB infrastructure.

Note: The <app> must be a TAFR, SIM, or RPM application.

Note: To verify the addition of a new message type for a message
family, see "Verifying the New Message Type".

Message Family and Message Type Customization

11-10 Oracle Retail Integration Bus Implementation Guide

Procedure for Adding a New Message Family
To add a new message family, complete the following steps.

1. Create a temporary working directory, customization-workarea, under <RIB_
HOME>/tools-home to perform any customization related tasks.

2. Copy the rib-func-artifact.war present under <RIB_
HOME>/application-assembly-home/rib-func-artifacts/ directory into <RIB_
HOME>/tools-home/ customization-workarea/ directory.

> cd <RIB_HOME>/application-assembly-home/rib-func-artifacts
> cp rib-func-artifact.war <RIB_HOME>/tools-home/ customization-workarea

3. Extract the rib-integration-flows.xml from the copied rib-func-artifact.war
requiring modification.

> cd <RIB_HOME>/tools-home/ customization-workarea
> jar -xvf rib-func-artifact.war integration/rib-integration-flows.xml

4. Define the entire flow for the particular message family in
rib-integration-flows.xml present under /integration/ directory of <RIB_
HOME>/tools-home/ customization-workarea.

A new custom message flow should always begin with <message-flow id="901">.
Each customized message flow id should be unique and must follow the sequence.
Adding a new customized message flow with a message-flow ID between 1 and
900 is not recommended, as this range is reserved for adding base flows in higher
versions of RIB.

For example, when adding a new message family, Foo, that flows from the RMS
application to the RWMS application, the flow is defined in
rib-integration-flows.xml as follows:

 <message-flow id="901">
 <node id="rib-rms.Foo_pub" app-name="rib-rms"
 adapter-class-def="Foo_pub" type="DbToJms">

Message Family and Message Type Customization

RIB Customization/Extension 11-11

 <in-db>default</in-db>
 <out-topic>etFooFromRMS</out-topic>
 </node>
 <node id=" rib-rwms.Foo_sub" app-name=" rib-rwms"
 adapter-class-def="Foo_sub" type="JmsToDb">
 <in-topic>etFooFromRMS</in-topic>
 <out-db>default</out-db>
 </node>
</message-flow>

The convention is as follows:

■ node id = rib-<app>.<family>_pub or = rib-<app>.<family>_sub or could be
external-system.<family>_pub or external-system.<family>_sub

■ app-name = rib-<app> is the application name. The <app> is one of the
following: rms, rwms, sim, rpm or tafr-- or external-system

■ adapter-class-def = <family>_pub or <family>_sub

■ type = DbToJms or JmsToDb

■ <in-db> means the source of the message is a database.

■ <out-db> means the destination of the message is a database.

■ <out-topic> is the topic name to which the message is published.

■ <in-topic> is the topic name from which the message is consumed.

5. Replace the previous existing rib-integration-flows.xml with the changed
rib-integration-flows.xml to the /integration/ directory of rib-func-artifact.war
under <RIB_HOME>/tools-home/customization-workarea/ directory and
generate the rib-func-artifact.war as follows.

> cd <RIB_HOME>/tools-home/customization-workarea
> jar -uvf rib-func-artifact.war integration/rib-integration-flows.xml

6. Create a new publishing adapter, subscribing adapter and TAFR adapter (only if
necessary), depending on the requirement for the new message family as
explained later in this chapter.

7. Create the message family XSD.

The newly created XSD should conform to the Meta schema,
IntegrationMetaschema.xsd. The artifact generator tool checks the validity of the
schema before generating any artifacts. If the schema is not compliant with the
IntegrationXmlMetaSchema, the artifact generator fails.

8. Create a new message type.

Note: See "Adding New Adapters."

Note: See the Oracle Retail Functional Artifact Guide for information
about adding a new payload.

Note: See "Adding a New Message Type."

Message Family and Message Type Customization

11-12 Oracle Retail Integration Bus Implementation Guide

9. Edit the payload.properties file present in /conf directory of Rib Artifact
Generator tool installation. The payload.properties contains the new payload
message definitions. The format of the definition is

"RIBFAMILY.TYPE=IMPLEMENTATION CLASS NAME"
> cd conf
> vi payload.properties (make changes)

For example, when adding a new message type, FooCree, (under the Foo message
family) that calls the implementation class, FooDesc, the payload.properties file is
modified as follows:

FOO.FOOCRE=com.oracle.retail.integration.custom.bo.foodesc.v1.FooDesc

10. Run the Artifact Generator to generate functional artifacts.

> $GROOVY_HOME/bin/groovy
com.oracle.retail.integration.artifact.generator.GenArtifacts.groovy -g
generateBase

Upon completion of this step, the generated artifacts, the following generated artifacts
are in the appropriate ./output*/dist folders: retail-public-
payload-database-object-types.zip and retail-public-payload-java-beans.jar.

11. Copy these newly generated artifacts from the appropriate ./output*/dist folders
to <RIB_HOME>/application-assembly-home/rib-func-artifacts/ directory:
retail-public-payload-database-object-types.zip,
retail-public-payload-java-beans.jar, and retail-public-payload-xml-samples.zip.

12. New entries may be needed in RIB_SETTINGS in the RMS application database to
reference the new message family only if the RMS application is in scope.

13. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME>/deployment-home/bin directory as follows to create the new topic
(etFooFromRMS) in the flow. (The prepare jms step is not destructive, so even if it
is run again it would remove all the topics and recreate them.)

> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -prepare-jms

14. Run the rib-app-builder compile: Run the rib-app-compiler.sh script from <RIB_
HOME>/application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin
> sh rib-app-compiler.sh

15. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME>/deployment-home/bin directory as follows.

> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -deploy-rib-func-artifact-war

This deploys the rib-func-artifact.war.

> sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>

Note: See the RibMessages.xsd bundled inside rib-func-artifact.war
for the maximum supported length for message type.

Adding New Adapters

RIB Customization/Extension 11-13

The rib-<app> is deployed. Repeat this step for each Rib-<app> in scope for this
integration environment.

Adding New Adapters
A RIB Adapter is a component that coordinates business event (message) generation
and processing with the respective Oracle Retail application interface. Each adapter in
the RIB is created to handle a specific functional interface.

Adding the Custom Adapter to the rib-integration-flows.xml File
While adding a custom publishing, subscribing or tafr adapter it is necessary to add or
modify the message flows to which you are adding a custom adapter in the
rib-integration-flows.xml and update the rib-func-artifact.war and deploy the updated
rib-func-artifact.war.

Example: Adding a new publisher Foo_pub that publishes a message for a message
family Foo that flows from RMS to RWMS. We need to define the flow in
rib-integration-flows.xml.

<message-flow id="901">
 <node id="rib-rms.Foo_pub" app-name="rib-rms"
 adapter-class-def="Foo_pub" type="DbToJms">
 <in-db>default</in-db>
 <out-topic>etFooFromRMS</out-topic>
 </node>
 <node id=" rib-rwms.Foo_sub" app-name=" rib-rwms"
 adapter-class-def="Foo_sub" type="JmsToDb">
 <in-topic>etFooFromRMS</in-topic>
 <out-db>default</out-db>
 </node>
 </message-flow>

Procedure for Adding the Flow to the rib-integration-flows.xml File
To add the flow to the rib-integration-flows.xml file, complete the following steps.

1. Copy the rib-func-artifact.war from <RIB_HOME>/
application-assembly-home/rib-func-artifacts to <RIB_
HOME>/tools-home/customization-workarea/ directory.

Note: The <app> value must be rms, rwms, tafr, sim, or rpm.

Note: To verify the addition of a new message family, see "Verifying
the New Message Family."

Note: See "Adapters" in Chapter 3.

Note: Before adding the flow above to the rib-integration-flows.xml
flow, it is recommended that a temporary working directory
("customization-workarea" under <RIB_HOME>/tools-home) be
created. This directory can be used for performing any customization
related tasks.

Adding New Adapters

11-14 Oracle Retail Integration Bus Implementation Guide

> cd <RIB_HOME>/ application-assembly-home/rib-func-artifacts
> cp rib-func-artifact.war <RIB_HOME>/tools-home/customization-workarea

2. Extract the rib-integration-flows.xml requiring modification from the copied
rib-func-artifact.war as follows:

> jar -xvf rib-func-artifact.war integration/ rib-integration-flows.xml

3. Add the flow shown above to the rib-integration-flows.xml.

4. Update the rib-func-artifact.war with the modified rib-integration-flows.xml.

> jar -uvf rib-func-artifact.war integration/ rib-integration-flows.xml

5. Copy the rib-func-artifact.war from <RIB_
HOME>/tools-home/customization-workarea to <RIB_
HOME>/application-assembly-home/rib-func-artifacts/ directory.

> cd <RIB_HOME>/tools-home/customization-workarea
> cp rib-func-artifact.war <RIB_HOME>/
application-assembly-home/rib-func-artifacts

6. Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME>/application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin
> sh rib-app-compiler.sh

7. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME>/deployment-home/bin directory as follows.

"cd <RIB_HOME>/deployment-home/bin
"sh rib-app-deployer.sh -deploy-rib-func-artifact-war

The rib-func-artifact.war. is deployed.

Adding a Publishing Adapter for PL/SQL Applications
Publishing adapters create messages from the information captured by the
applications. These publishing adapters are designed to publish events for a single
message family and are specific to an Oracle Retail application. This section explains
how to create a new publishing adapter for a message family for a PL/SQL application
(such as RMS and RWMS).

The illustration below indicates the files that require changes inside the RIB
infrastructure for the addition of a new publishing adapter for a PL/SQL application.

Adding New Adapters

RIB Customization/Extension 11-15

Procedure for Adding a Publishing Adapter for PL/SQL Applications
To add a publishing adapter for PL/SQL applications, complete the following steps.

1. Identify the flow to which the new adapter in being added.

2. Define the name of the publishing adapter. It should always follow the naming
convention, RIBFAMILY_pub_ADAPTER INSTANCE NO.

3. Define the particular publishing adapter in rib-<app>-adapters.xml under <RIB_
HOME>/application-assembly-home/rib-<app>, where <app> refers to either
RMS or RWMS. The customer also must mention a custom attribute equal to "true"
whenever a new customized publishing adapter is added.

For example, a new publishing adapter, Foo_pub_1, (for the Foo message family)
is defined in rib-<app>-adapters.xml as follows:

<timer-driven id="Foo_pub_1" initialState="running" timeDelay="10">
 <timer-task>
 <class name="com.retek.rib.app.getnext.impl.GetNextTimerTaskImpl"/>
 <property name="maxChannelNumber" value="1" />
 </timer-task>
</timer-driven>

4. Define the particular publishing adapter in
rib-<app>-adapters-resources.properties under <RIB_
HOME>/application-assembly-home/rib-<app>, where <app> refers to either
RMS or RWMS.

Foo_pub_1.name=Foo Publisher, channel 1
Foo_pub_1.desc=Publisher for the Foo family through channel 1.

5. Define the particular publishing adapter in rib-<app>-plsql-api.xml under <RIB_
HOME>/application-assembly-home/rib-<app>, where <app> refers to either
RMS or RWMS, as shown in the example below.

Adding New Adapters

11-16 Oracle Retail Integration Bus Implementation Guide

<adaptorClassDef name="Foo_pub">
 <class>com.retek.rib.collab.general.OracleObjectPublisherComponentImpl</class>
 <messageFamily name="Foo">
 <storedProc>
 <signature>{call RMSMFM_FOO.GETNXT(?,?,?,?,?,?,?,?)}</signature>
 <storedProc>
 </messageFamily>
 </adaptorClassDef>

6. Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME>/application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin
> sh rib-app-compiler.sh

7. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME>/deployment-home/bin directory as follows.

> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>

The <app> is deployed.

8. Make the required changes to the rib-integration-flows.xml. See "Adding the
Custom Adapter to the rib-integration-flows.xml File."

Adding a Publishing Adapter for Java EE Applications
Publishing adapters create messages from the information captured by the
applications. These publishing adapters are designed to publish events for a single
message family and are specific to an Oracle Retail application. This section explains
how to create a new publishing adapter for a message family for a Java EE application,
such as RPM, or SIM.

The illustration below indicates the files that require changes inside the RIB
infrastructure for the addition of a new publishing adapter for a Java EE application.

Note: The signature of the stored procedure should come from the
corresponding PL/SQL applications.

Note: To verify the addition of the new adapter, see "Verifying the
New Publishing Adapter."

Adding New Adapters

RIB Customization/Extension 11-17

Procedure for Adding a Publishing Adapter for Java EE Applications
To add a publishing adapter for Java EE applications, complete the following steps.

1. Identify the flow to which the new adapter in being added.

2. Define the name of the publishing adapter. It should always follow the naming
convention, RIBFAMILY_pub_ADAPTER INSTANCE NO.

3. Define the particular publishing adapter in rib-<app>-adapters.xml under <RIB_
HOME>/application-assembly-home/rib-<app>, where <app> refers to RPM, or
SIM. The customer also must mention a custom attribute equal to "true" whenever
a new customized publishing adapter is added.

For example, a new publishing adapter, Foo_pub_1, (for the Foo message family)
is defined in rib-<app>-adapters.xml as follows:

<request-driven id=" Foo_pub_1" initialState="notConfigurable" custom="true" />

4. Define the particular publishing adapter in
rib-<app>-adapters-resources.properties under <RIB_
HOME>/application-assembly-home/rib-<app>, where <app> refers to RPM, or
SIM.

Foo_pub_1.name=Foo Publisher, channel 1
Foo_pub_1.desc=Publisher for the Foo family through channel 1.

5. Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME>/application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin
> sh rib-app-compiler.sh

6. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME>/deployment-home/bin directory as follows.

> cd <RIB_HOME>/deployment-home/bin

Adding New Adapters

11-18 Oracle Retail Integration Bus Implementation Guide

> sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>

The <app> is deployed.

7. Make the required changes to the rib-integration-flows.xml. See "Adding the
Custom Adapter to the rib-integration-flows.xml File."

Adding a Subscriber Adapter for PL/SQL Applications
Subscribing adapters specific to Oracle Retail and designed to consume all messages
from a specific message family.

The illustration below indicates the files that require changes inside the RIB
infrastructure for the addition of a new subscriber adapter (for a particular message
family) for PL/SQL applications, such as RMS or RWMS.

Procedure for Adding a New Subscribing Adapter for a PL/SQL Application
To add a new subscribing adapter for a PL/SQL application, complete the following
steps.

1. Identify the flow to which the new adapter is being added.

2. Define the name of the publishing adapter. It should always follow the naming
convention, "RIBFAMILY_sub_ADAPTER INSTANCE NO".

3. Define the particular publishing adapter in rib-<app>-adapters.xml under <RIB_
HOME>/application-assembly-home/rib-<app>, where <app> refers to either
RMS or RWMS. The customer also must mention a custom attribute equal to True
whenever a new customized subscribing adapter is added.

For example, a new subscribing adapter, Foo_sub_1, (for the Foo message family)
is defined in rib-<app>-adapters.xml as follows:

Note: To verify the addition of the new adapter, see "Verifying the
New Publishing Adapter."

Adding New Adapters

RIB Customization/Extension 11-19

<message-driven id="Foo_sub_1" initialState="running" custom="true"/>
4. Define the particular subscribing adapter in

rib-<app>-adapters-resources.properties under <RIB_
HOME>/application-assembly-home/rib-<app>, where <app> refers to either
RMS or RWMS.

Foo_sub_1.name=Foo Publisher, channel 1
Foo_sub_1.desc=Publisher for the Foo family through channel 1.

5. Define the particular publishing adapter in rib-<app>-plsql-api.xml under <RIB_
HOME>/application-assembly-home/rib-<app>, where <app> refers to either
RMS or RWMS, as shown in the example below.

<adaptorClassDef name="Foo_sub">
<class>com.retek.rib.collab.general.OracleObjectSubscriberComponentImpl</class>
 <messageFamily name="Foo">
 <storedProc>
 <signature>{callRMSSUB_FOO.CONSUME(?,?,?,?)}</signature>
 </storedProc>
 <messageType name=" FOOCRE">
 <oracleObject>RIB_FooDesc_REC</oracleObject>
 </messageType>
 <messageType name=" FooMOD">
 <oracleObject>RIB_FooDesc_REC</oracleObject>
 </messageType>
 <messageType name=" FooDEL">
 <oracleObject>RIB_FooRef_REC</oracleObject>
 </messageType>
 </messageFamily>
 </adaptorClassDef>

6. Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME>/application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin
> sh rib-app-compiler.sh

7. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME>/deployment-home/bin directory as follows.

> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>

The <app> is deployed.

8. Make the required changes to the rib-integration-flows.xml. See "Adding the
Custom Adapter to the rib-integration-flows.xml File."

Note: The signature of the stored procedure should come from the
corresponding PL/SQL applications.

Note: To verify the addition of the new adapter, see "Verifying the
New Subscribing Adapter."

Adding New Adapters

11-20 Oracle Retail Integration Bus Implementation Guide

Adding a Subscribing Adapter for Java EE Applications
Subscribing adapters specific to Oracle Retail and designed to consume all messages
from a specific message family.

The illustration below indicates the file sthat require changes inside the RIB
infrastructure for the addition of a new subscriber adapter (for a particular message
family) for Java EE applications, such as SIM.

Procedure for Adding a New Subscribing Adapter for a Java EE Application
1. Identify the flow to which the new adapter is being added.

2. Define the name of the publishing adapter. It should always follow the naming
convention, RIBFAMILY_sub_ADAPTER INSTANCE NO.

3. Define the particular publishing adapter in rib-<app>-adapters.xml under <RIB_
HOME>/application-assembly-home/rib-<app>, where <app> refers to SIM. The
customer also must mention a custom attribute equal to "true" whenever a new
customized subscribing adapter is added.

For example, a new subscribing adapter, Foo_sub_1, (for the Foo message family)
is defined in rib-<app>-adapters.xml as follows:

<message-driven id="Foo_sub_1" initialState="running" custom="true"/>

4. Define the particular subscribing adapter in
rib-<app>-adapters-resources.properties under <RIB_
HOME>/application-assembly-home/rib-<app>, where <app> refers to SIM.

Foo_sub_1.name=Foo Publisher, channel 1
Foo_sub_1.desc=Publisher for the Foo family through channel 1.

5. Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME>/application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin

Custom TAFR Adapters

RIB Customization/Extension 11-21

> sh rib-app-compiler.sh

6. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME>/deployment-home/bin directory as follows.

> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>

The <app> is deployed.

7. Make the required changes to the rib-integration-flows.xml. See "Adding the
Custom Adapter to the rib-integration-flows.xml File."

Custom TAFR Adapters
Transformation Address Filters/Router (TAFR) adapters transform message data and
route messages. Multiple, message family specific TAFRs have already been
implemented. Different TAFR adapters may be active on different message families or
on the same message family depending on the needs of an application. Not all
message families require TAFRs.

TAFR Considerations
The following topics should be considered before writing a customized TAFR
implementation for transformation, filtering or routing.

Transformation
Transformation is handled in the TAFR implementation class. Here is an example
method of a TAFR that handles transformation.

public RibMessage transformRibMessage(RibMessage inMsg) throws TafrException {
// Transforms the incoming RibMessage into an outgoing RibMessage
RibMessage newMsg = transform(inMsg);
return newMsg; }

Filtering Configuration
Filtering configuration involves updating the rib-tafr.properties file with the
appropriate information. The property follows the usual properties naming
convention (name=value). The property used for filtering is:

"for.<tafr name>_tafr.drop-messages-of-types"

Example:

for.ItemsToItemsISO_
tafr.drop-messages-of-types=ISCDimCre,ISCDimMod,ISCDimDel,ItemImageCre,ItemImageMo
d,ItemImageDel,ItemUdaDateCre,ItemUdaDateMod,ItemUdaDateDel,ItemUdaFfCre,ItemUdaFf
Mod,ItemUdaFfDel,ItemUdaLovCre,ItemUdaLovMod,ItemUdaLovDel
This property should be read as, "for ItemsToItemsISO TAFR, drop these message
types." A comma delimits the message types. If customization is required,
rib-tafr.properties files must be updated for filtering to take place.

Note: To verify the addition of the new adapter, see "Verifying the
New Subscribing Adapter."

Custom TAFR Adapters

11-22 Oracle Retail Integration Bus Implementation Guide

Routing
Routing is enabled by default for TAFRs; the RIB infrastructure handles this routing. If
a TAFR requires routing based on message content, implementation classes override
the following method.

public void routeRibMessage(RibMessage newMsg,MessageRouterIface router) throws
TafrException {
 router.addMessageForTopic(eventType, newMsg);
}

Adding a New TAFR Adapter
This section explains how to create a new TAFR adapter for a particular message
family.

The illustration below indicates the files that require changes inside the RIB
infrastructure during the addition of a new TAFR adapter to a message family.

Procedure for Adding a New TAFR Adapter
To add a new TAFR adapter, complete the following steps.

1. Identify the flow to which the new adapter is being added.

2. Define the name of the TAFR adapter. It should always follow the naming
convention, RIBFAMILY_tafr_ADAPTER INSTANCE NO.

3. Define the corresponding implementation class name the TAFR needs to call.

4. Write the implementation class for the TAFR.

Custom TAFR Implementation
The default implementation of a TAFR implements the following interface in the RIB
infrastructure.

Custom TAFR Adapters

RIB Customization/Extension 11-23

package com.retek.rib.collab.tafr;

import com.retek.rib.domain.ribmessage.bo.RibMessage;

public interface TafrIface {
@return ribMessage that has been modified from the original one
public RibMessage transformRibMessage(RibMessage ribMsgIn) throws TafrException;

/**
 * Filters message or messages contents accordingly. It is possible that
 * this method could filter away the entire message thus returning null
 * from this method.
 *
 * @param ribMsg
 * @return ribMessage that may have been modified from the original one
 * passed in or null.
 */
public RibMessage filterRibMessage(RibMessage ribMsgIn) throws TafrException;

/**
 * Routes the message to the appropriate topic for publication.
 *
 * @param ribMsg RibMessage to be routed to the appropriate topic.
 */
public void routeRibMessage(RibMessage ribMsgIn, MessageRouterIface
router) throws TafrException;

public void processRibMessage(RibMessage ribMsgIn, MessageRouterIface
router) throws TafrException;
}

Procedure for Completing Custom TAFR Implementation
To complete custom TAFR implementation, do the following.

1. First check if the default implementation that comes with the RIB infrastructure s
is appropriate.

2. Create a rib-custom-tafr-business-impl.jar containing the customized
implementation class for the specific message family and replace the same under
<RIB_HOME>/application-assembly-home/rib-func-artifacts.

3. Define the particular TAFR adapter in rib-tafr-adapters.xml under <RIB_
HOME>/application-assembly-home/rib-tafr. The customer must mention a
custom attribute equal to "true" whenever a new customized TAFR adapter is
added.

For example, when adding a new TAFR adapter, Foo_tafr_1, for a Foo message
family, the implementation class written is SampleToSampleWH. It is under the
package com.retek.rib.collab.tafr.bo.impl inside rib-custom-tafr-business-impl.jar
and should be defined in rib-tafr-adapters.xml as shown below:

<message-driven id="Foo_tafr_1" initialState="running" tafr-business-
impl="com.retek.rib.collab.tafr.bo.impl.SampleToSampleWH" custom="true" />

Note: See the Metalink Note, "How to Create a Custom TAFR
Implementation."

Custom TAFR Adapters

11-24 Oracle Retail Integration Bus Implementation Guide

4. Define the particular TAFR adapter as below in
rib-tafr-adapters-resources.properties under <RIB_
HOME>/application-assembly-home/rib-tafr.

Foo_tafr_1.name=Foo TAFR, channel 1
Foo_tafr_1.desc=TAFR for the Foo family through channel 1.

5. Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME>/application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin
> sh rib-app-compiler.sh

6. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME>/deployment-home/bin directory as follows.

> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -deploy-rib-app-ear rib-tafr

7. Make the required changes to the rib-integration-flows.xml. See "Adding the
Custom Adapter to the rib-integration-flows.xml File."

Changing an Existing TAFR Adapter
If there is a need to add more functionality than what is already provided for an
existing TAFR, a class can be added to extend from the original TAFR class.

To change an existing TAFR adapter, complete the following steps.

1. Identify the TAFR to which more functionality should be added.

2. Define the corresponding implementation class name the TAFR needs to call. This
class should extend from the original TAFR implementation class.

For example, if additional functionality is required for the ASNOutToASNIn_tafr_
1 TAFR, for which the implementation class is
ASNOutToASNInLocFromRibBOImpl, a new class can be written for the
additional functionality that extends from ASNOutToASNInLocFromRibBOImpl.
Also, if additional functionality is needed for the transformation of the message,
call the transform method of the ASNOutToASNInLocFromRibBOImpl class and
write the additional code/logic.

3. Write the implementation class for the TAFR.

4. Create a rib-custom-tafr-business-impl.jar containing the implementation class and
replace the same under <RIB_
HOME>/application-assembly-home/rib-func-artifacts.

Note: To verify the addition of the new TAFR adapter, see the
section, "Verifying the New TAFR Adapter."

Note: For information on how to write the implementation class.,
see the My Oracle Support document, "How to Create a Custom TAFR
Implementation."

Verification of RIB Customizations

RIB Customization/Extension 11-25

5. Replace the name of the implementation class with the new class name in the
rib-tafr-adapters.xml as shown below.

For example, if the name of the new class name is
CustomASNOutToASNInLocFromRibBOImpl, the entry in tafr-adapters.xml
should be:

<message-driven id="ASNOutToASNIn_tafr_1" initialState="running"
tafr-business-impl=" com.retek.rib.collab.tafr.bo.impl.
CustomASNOutToASNInLocFromRibBOImpl " custom ="true"/>

6. Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME>/application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin
> sh rib-app-compiler.sh

7. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME>/deployment-home/bin directory as follows.

> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -deploy-rib-app-ear rib-tafr

Verification of RIB Customizations
This section explains how to verify the various customizations using the RIB
diagnostic and test tools, RDMT, the PL/SQL API simulator, and the Java EE API
simulator.

These verification tests are described only form a RIB perspective and not as
end-to-end testing. They should be considered only the first step in a process to move
the customizations through the RIB life cycle.

The verification steps assume that these RIB tools have already been installed and are
in working condition.

Verifying the New Message Type
To verify the addition of a new message type under a message family from a RIB
perspective, complete the following steps.

1. Log in to the RDMT main menu.

2. Select menu option 3, PUB/SUB/TAFR Utilities Submenu.

3. Publish a message using 8 - EJB Publish Utility.

4. Provide the new message type when prompted for the <type> parameter.

5. Use the sample message that was generated using the RIB Artifact Generator tool
after adding the new message type for the corresponding message family.

Note: For more information on how to create the
rib-custom-tafr-business-impl.jar, see the My Oracle Support
document, "How to Create a Custom TAFR Implementation."

Note: See "Testing the RIB" in the Oracle Retail Integration Bus
Operations Guide.

Verification of RIB Customizations

11-26 Oracle Retail Integration Bus Implementation Guide

6. Check the corresponding adapter's RIBLOGS to be sure the message was
published successfully. The logs are written to the path, <rib-application_instance_
home>/<rib-app>/logs/<rib-app>.

For example, for /home/rib/product/10.1.3.3/OracleAS_
1/j2ee/rib-rms-oc4j-instance/log/rib-rms, the RIBLOG filenames are in the
format, <adapter-instance-name>.rib.log.

Example:

Alloc_pub_1.rib.log
ASNIn_sub_1.rib.log

7. Enable the RIB Audit Logs for all the corresponding adapters involved in the
message flow. The auditing feature logs the message as it passes though the RIB
infrastructure. This helps the tracing of message content from publication to
subscription and all steps, such as a TAFR, in between.

8. Check the RIB audit logs for the particular message family adapters (publisher,
subscriber, and TAFR if involved) and verify whether the new message type is
part of the message header. Also ensure that the message passes successfully
through all the adapters involved in the particular message flow.

9. Check whether the new message type was successfully consumed by the
subscribing adapter. The CONSUME API call from the subscribing adapter should
successfully return the status, S.

Verifying the New Message Family
To verify the addition of a new message family in the RIB, complete the following
steps:

1. Once the RIB has been compiled and deployed (after adding a new message
family), check whether the new family adapters (publisher, subscriber, and TAFR
if involved) are visible through RIB Admin GUI.

The RIB admin GUI can be accessed via the URL as below.

http://<server>.us.oracle.com:<http-port>/rib-<app>-admin-gui/

■ Replace <server> with the name or IP address of the server in the environment
where the rib-<app> is deployed.

■ Replace <http-port> with the port number that the WebLogic managed server
instance is listening on (for example, 7777).

■ Replace <app> with rms, tafr, rwms, sim, or rpm.

2. Log in to the RDMT main menu.

3. Select menu option 3, PUB/SUB/TAFR Utilities submenu.

4. Publish a message using 8 - EJB Publish Utility.

Note: To enable RIB Audit logs, see the section, "RIB Logging," in
the Oracle Retail Integration Bus Operations Guide .

Note: See the section, "Admin GUI," in the Oracle Retail Integration
Bus Operations Guide.

Verification of RIB Customizations

RIB Customization/Extension 11-27

5. Provide the new message family when prompted for the <family> parameter.

6. Use the sample message created by the Functional Artifact Generator.

7. Check the corresponding adapter's RIBLOGS to be sure the message was
published successfully. The logs are written to the path, <rib-application_instance_
home>/logs/<rib-app>.

For example, for "/u00/webadmin/product/10.3.3/WLS/user_
projects/domains/rib_domain/servers/rib-rms-server/logs/rib-rms" the
RIBLOG filenames are in the format, <adapter-instance-name>.rib.log.

Example:

Foo_pub_1.rib.log
Foo_sub_1.rib.log

8. Also enable the RIB Audit Logs for all the corresponding adapters involved in the
message flow. The auditing feature logs the message as it passes though the RIB
infrastructure. This helps the tracing of message content from publication to
subscription and all steps, such as a TAFR, in between.

9. Check the RIB audit logs for the particular message family adapters (publisher,
subscriber, and TAFR if involved) and verify whether the new message family is
part of the message header. Also ensure that the message passes successfully
through all the adapters involved in the particular message flow.

Verifying the New Publishing Adapter
To verify the addition of a new publishing adapter for PL/SQL for Java EE
applications, complete the following steps:

1. Once the RIB has been compiled and deployed (after adding a new publishing
adapter), check whether the new publishing adapter is visible through RIB Admin
GUI.

The RIB admin GUI can be accessed via the URL as below.

http://<server>.us.oracle.com:<http-port>/rib-<app>-admin-gui/

■ Replace <server> with the name or IP address of the server in the environment
where the rib-<app> is deployed.

■ Replace <http-port> with the port number that the WebLogic managed server
instance is listening on (for example, 7777).

■ Replace <app> with rms, rwms, sim, or rpm.

Note: See the Oracle Retail Functional Artifact Generator Guide.

Note: To enable RIB Audit logs, see "RIB Logging" in the Oracle Retail
Integration Bus Operations Guide.

Note: See "Admin GUI" in the Oracle Retail Integration Bus Operations
Guide

Verification of RIB Customizations

11-28 Oracle Retail Integration Bus Implementation Guide

2. Log in to the RDMT main menu.

3. Select menu option 3, PUB/SUB/TAFR Utilities Submenu.

4. Publish a message using 8 - EJB Publish Utility.

5. Use the sample message created by the Functional Artifact Generator for the
corresponding message family.

6. Check the corresponding adapter's RIBLOGS to be sure the message was
published successfully. The logs are written to the path, <rib-application_instance_
home>/logs/<rib-app>.

For example, for "/u00/webadmin/product/10.3.3/WLS/user_
projects/domains/rib_domain/servers/rib-rms-server/logs/rib-rms" the
RIBLOG filenames are in the format, <adapter-instance-name>.rib.log.

Example:

Foo_pub_1.rib.log

7. Also enable the RIB Audit Logs for the corresponding publishing adapter
involved in the message flow. The auditing feature logs the message as it passes
though the RIB infrastructure. This helps the tracing of message content from
publication to subscription.

8. Check the RIB audit logs for the particular publishing adapter and verify whether
the message content is displayed correctly as published. Also ensure that the
message passes successfully through all the adapters involved in the particular
message flow.

Verifying the New Subscribing Adapter
To verify the addition of a new subscribing adapter for PL/SQL for Java EE
applications, complete the following steps:

1. Once the RIB has been compiled and deployed (after adding a new subscribing
adapter), check whether the new subscribing adapter is visible through RIB
Admin GUI.

The RIB admin GUI can be accessed via the URL as below.

http://<server>.us.oracle.com:<http-port>/rib-<app>-admin-gui/

■ Replace <server> with the name or IP address of the server in the environment
where the rib-<app> is deployed.

■ Replace <http-port> with the port number that the WebLogic managed server
instance is listening on (for example, 7777).

■ Replace <app> with rms, rwms, sim, or rpm.

2. Log in to the RDMT main menu.

Note: To enable RIB Audit logs, see "RIB Logging" in the Oracle Retail
Integration Bus Operations Guide.

Note: See the section,"Admin GUI," in the Oracle Retail Integration
Bus Operations Guide.

Verification of RIB Customizations

RIB Customization/Extension 11-29

3. Select menu option 3, PUB/SUB/TAFR Utilities Submenu.

4. Publish a message using 1 - Publish Msg Utility to the topic from which the newly
added subscriber has to subscribe the message.

5. Use the sample message.

6. Check the corresponding adapter's RIBLOGS to be sure the message was
subscribed from the topic successfully. The logs are written to the path,
<rib-application_instance_home>/logs/<rib-app>.

For example, "/u00/webadmin/product/10.3.3/WLS/user_
projects/domains/rib_domain/servers/rib-rms-server/logs/rib-rms" the
RIBLOG filenames are in the format, <adapter-instance-name>.rib.log.

Example:

Foo_pub_1.rib.log

7. Also enable the RIB Audit Logs for the corresponding subscribing adapter
involved in the message flow. The auditing feature logs the message as it passes
though the RIB infrastructure. This helps the tracing of message content from
publication to subscription.

8. Check the RIB audit logs for the particular message family’s subscribing adapter
and verify whether the message content is displayed correctly. Also ensure that the
message is subscribed successfully by the subscribing adapter.

Verifying the New TAFR Adapter
To verify the addition of a new TAFR adapter, complete the following steps:

1. Once the RIB has been compiled and deployed (after adding a new TAFR adapter),
check whether the new TAFR adapter is visible through RIB Admin GUI.

The RIB admin GUI can be accessed via the URL as below.

http://<server>.us.oracle.com:<http-port>/rib-tafr-admin-gui/

■ Replace <server> with the name or IP address of the server in the environment
where the rib-<app> is deployed.

■ Replace <http-port> with the port number that the WebLogic managed server
instance is listening on (for example, 7777).

2. Log in to the RDMT main menu.

3. Select menu option 3, PUB/SUB/TAFR Utilities Submenu.

4. Publish a message using 1—Publish Msg Utility to the topic from which the newly
added TAFR has to subscribe the message.

5. Use the sample message generated by the RIB Artifact Generator tool for the
corresponding message family.

Note: To enable RIB Audit logs, see "RIB Logging" in the Oracle Retail
Integration Bus Operations Guide.

Note: See the section, "Admin GUI," in the Oracle Retail Integration
Bus Operations Guide.

Prerequisites for RIB Localization

11-30 Oracle Retail Integration Bus Implementation Guide

6. Check the corresponding TAFR adapter's RIBLOGS to be sure the message was
subscribed by the TAFR from the particular topic and again published to the next
destination topic successfully. The logs are written to the path, <rib-application_
instance_home>/logs/rib-tafr.

For example, for "/u00/webadmin/product/10.3.3/WLS/user_
projects/domains/rib_domain/servers/rib-rms-server/logs/rib-rms" the
RIBLOG filenames are in the format, <adapter-instance-name>.rib.log.

Example:

SampleToSampleWH_tafr_1.rib.log

7. Also enable the RIB Audit Logs for the corresponding TAFR adapter. The auditing
feature logs the message as it passes though the RIB infrastructure. This helps the
tracing of message content from publication to subscription.

8. Check the RIB audit logs for the particular message family’s TAFR adapter and
verify whether the message content is displayed correctly.

Prerequisites for RIB Localization
The tools used for localization extension of the RIB are separately documented. The
primary tool is the Retail Functional Artifact Generator. The message (payload)
structure and packaging is covered in the Oracle Retail Functional Artifacts Guide.

The following documents are referenced in this chapter and are required for the
localization effort:

■ Oracle Retail Functional Artifacts Guide

■ Oracle Retail Functional Artifact Generator Guide

Note: To enable RIB Audit logs, see "RIB Logging" in the Oracle Retail
Integration Bus Operations Guide.

	Contents
	Send Us Your Comments
	Preface
	Audience
	Related Documents
	Customer Support
	Review Patch Documentation
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	1 Introduction
	2 Standards and Specifications
	Java Platform Enterprise Edition (Java EE)
	Java EE Server

	Java Message Service (JMS)
	JMS Provider

	Java Management Extensions (JMX)

	3 Core Concepts
	Key Functional Requirements
	Guaranteed Once-and-Only-Once Successful Delivery
	Preservation of Publication Sequence

	Message Family and Message Types
	Foundation Messages
	Transactional Messages

	RIB Message Envelope and Payloads
	Message Life Cycle
	Messaging Components
	RIB Subsystem Components
	Adapters
	JMS Domains, Destinations, Subscriptions
	JMS Message Selector
	Additional RIB JMS Message Properties

	Integration Gateway Services (IGS)
	IGS Interfaces
	Integration to IGS
	IGS Deployment Considerations
	IGS and WebLogic Server (WLS) Clustering

	Simple Message Flow
	The RIB Hospital
	RIB Hospital Dependency Check
	RIB Hospital Insert
	RIB Hospital Tables
	RIB Hospital Retry
	PUB Retry Adapter
	Hospital Attempt (Retry) Count
	JMS Delivery Count

	4 Oracle Retail Application APIs
	PL/SQL Stored Procedure APIs
	Oracle CLOB APIs
	RIB_XML and RIB_SXW Database Packages

	Oracle Object APIs
	RIB Related Database Tables

	Detail Architecture - PL/SQL Apps

	Oracle Retail Java EE APIs
	Detail Architecture Java EE Apps

	API Return Status Codes
	PL/SQL GETNEXT Return Codes
	PUB_RETRY Return Codes
	CONSUME Return Code

	5 Pre-Implementation Considerations
	RIB Software Lifecycle Management
	Centralized Configuration and Management
	Physical Location Considerations
	Preimplementation Considerations for Multibyte Deployments
	JMS Server Considerations
	Using Multiple JMS Servers
	Oracle Streams AQ JMS

	High Availability Considerations
	Oracle Database Cluster (RAC) Concepts
	rib-<app> application and Oracle Database Cluster (RAC)
	WebLogic Server Cluster Concepts
	rib-<app> application and WebLogic Application Server Cluster

	6 Deployment Architecture and Options
	Recommended Deployment Options
	Distributed Deployment Alternative
	Advantages
	Disadvantages
	Who Should Use This Configuration?

	Centralized Deployment Alternative
	Advantages
	Disadvantages
	Who should use this Configuration?

	Conclusions

	7 Implementation Process
	Implementation Verification and Validation
	Implementation Environment Verification
	Integration Environment Testability

	8 Performance
	Performance Factors
	Performance and Parallel Logical Channels

	9 Security
	RIB Application Administrators Security Domain
	RIB System Administrators Security Domain

	10 Integration with Fusion Middleware
	General RIB to Fusion Middleware Architecture
	General Process of Integration
	Configure FWM JMS Adapter to RIB AQJMS

	11 RIB Customization/Extension
	Prerequisites for RIB Customization
	Rules for Customization

	Message Family and Message Type Customization
	Adding a New Message Type
	Message Flows with PL/SQL Applications
	Procedure for Adding a New Message Type for PL/SQL Applications

	Message Flows with Java EE Applications
	Procedure for Adding a New Message Type for Java EE Applications

	Creating a New Message Family
	Additional Rules
	Procedure for Adding a New Message Family

	Adding New Adapters
	Adding the Custom Adapter to the rib-integration-flows.xml File
	Procedure for Adding the Flow to the rib-integration-flows.xml File

	Adding a Publishing Adapter for PL/SQL Applications
	Procedure for Adding a Publishing Adapter for PL/SQL Applications

	Adding a Publishing Adapter for Java EE Applications
	Procedure for Adding a Publishing Adapter for Java EE Applications

	Adding a Subscriber Adapter for PL/SQL Applications
	Procedure for Adding a New Subscribing Adapter for a PL/SQL Application

	Adding a Subscribing Adapter for Java EE Applications
	Procedure for Adding a New Subscribing Adapter for a Java EE Application

	Custom TAFR Adapters
	TAFR Considerations
	Transformation
	Filtering Configuration
	Routing

	Adding a New TAFR Adapter
	Procedure for Adding a New TAFR Adapter

	Custom TAFR Implementation
	Procedure for Completing Custom TAFR Implementation

	Changing an Existing TAFR Adapter

	Verification of RIB Customizations
	Verifying the New Message Type
	Verifying the New Message Family
	Verifying the New Publishing Adapter
	Verifying the New Subscribing Adapter
	Verifying the New TAFR Adapter

	Prerequisites for RIB Localization

