ORACLE

Oracle® Retail Integration Bus
Operations Guide

Release 13.2.4
E29234-03

April 2014

Oracle Retail Integration Bus Operations Guide, Release 13.2.4

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
Primary Author: Gloreen Soans

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Value-Added Reseller (VAR) Language
Oracle Retail VAR Applications

The following restrictions and provisions only apply to the programs referred to in this section and licensed
to you. You acknowledge that the programs may contain third party software (VAR applications) licensed to
Oracle. Depending upon your product and its version number, the VAR applications may include:

(i) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail Data
Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(ii) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of Kirkland,
Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory Management.

(iii) the software component known as Access Via™ licensed by Access Via of Seattle, Washington, and
imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(iv) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of San Jose,
California, and imbedded in Oracle Retail Promotion Planning & Optimization application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR Applications.
Oracle will not deliver source code to the VAR Applications to you. Notwithstanding any other term or
condition of the agreement and this ordering document, you shall not cause or permit alteration of any VAR
Applications. For purposes of this section, "alteration" refers to all alterations, translations, upgrades,
enhancements, customizations or modifications of all or any portion of the VAR Applications including all
reconfigurations, reassembly or reverse assembly, re-engineering or reverse engineering and recompilations
or reverse compilations of the VAR Applications or any derivatives of the VAR Applications. You
acknowledge that it shall be a breach of the agreement to utilize the relationship, and/or confidential
information of the VAR Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall not attempt,
cause, or permit the alteration, decompilation, reverse engineering, disassembly or other reduction of the

VAR Applications to a human perceivable form. Oracle reserves the right to replace, with functional
equivalent software, any of the VAR Applications in future releases of the applicable program.

Contents

SenNd US YOUIr COMMENLES ...t xiii
PUOIACE ... et s et s e e XV
AN S Lo = VLT OPRRRRRRT XV
RELATEA DIOCUIMIEIES ...ttt e eeee e et e e et e e s et e e e s et e seaaeeseateesanteesssseessssaeesnseessaeeessseeens XV
CUSLOMET SUPPOTL ..vviiiiiiiiiiiicicc e Xvi
Review Patch DOCUMENTATIONcoouiiiieiieeceeie ettt et e e e st e e s aa e e saaeeenaeessaeeesnneeeas XVi
Oracle Retail Documentation on the Oracle Technology Networkccccocvviviiiiiiniicniiennnen, Xvi
(@) 43743 415 [0 1= TR XVi

1 Introduction

Oracle WebLogic Application Server ... 1-1
Oracle Retail RIB Supplied Components...............cccccccueiiiiiiiiiiiiiiiiienesnenenes 1-1

2 Application Builder

RIB Application Builder Directory Structure..............cccocooiiiiiiiiiiiis 2-1
Directory Structure and Key Files ... 2-1
RIB Application Builder TOOIScccoiiiiiiiiiiii e 2-3
LOGZINE ..ottt 2-3
Backup and Archive of Key Files.........cccoooiiiiiiiieeeee 2-3
FID-aPP-COMPILET....oviiiiii s 2-3
FID-aPP-AEPLOYET ..ot 2-4
Check-version-and-Unpack...........cccccciiiiiiiii s 2-4
check-version-and-apply-defect-fiX........c.cooviiiiiiii 2-5
INVENtOry-MAaNAZEeMENTcciiiiiiiiiiiiiieici e 2-6
setup-security-credential...........cccccociiiiiiiiiii s 2-6
Hot Fix Installation RePOIts........cccviiiiiiiiiiiiiiiiiicicic 2-7
rib-adapter-Controller ... 2-7
STATE FLOW <.ttt st 2-7

SEOP FLOW it 2-8

LSt FLOW .. 2-8

Start Adapters By TYPE ...ccccciiiiiiiiicc e 2-8

Stop Adapters bY TYPeccveviiiiiiiiiiiicicccc s 2-9

Start AdApPLer ... e 2-9

STOP AAPLET ..ot 2-10

Test Durable Subscriber for Adapter ... 2-10

Test Durable Subscriber for RIB Applicationcoeiiiiiiiiiiicieeccce 2-10

List RIB Application Adapters ... eeenes 2-10

RIB Deployment Configuration File Editor...............cccccoiiiiiic 2-11
Important Installation Warmningcccouoiriioiiiicicice e 2-11
Key RUIE ..o 2-11

Editor USAZE.....cvviiieiieieiicici ettt 2-11

3 Backend System Administration and Logging

rib-<app>-adapters.Xml...........cccocooiiiiiiiii e 3-1
<SUDSCIIDETS> EIEMENLS ...t 3-2
<PUDLISher> EleMENtScooviiiiii e 3-2

<HMET-ATIVENS> oot 3-2
STEQUEST-ATIVEN> ..ottt s 3-2
<hospital> ElEMENLcoiiiiiiiic s 3-2

rib-<app>-adapters-resource.properties ... 3-3

rib-<app>-plsql-api.Xml........ccccccooiiiiiiiiiiiiiii s 3-3

TID-<APPS PIOPEILIES ...ttt sttt st e ae e enenne 3-3

Fib-SYStEM.PIOPEIIES 3-3

rib-integration-flows.Xxml..............ccccooiiiiiiii 3-4

rib-deployment-env-info.Xmlcccccooiiiiiiiiii 3-5
app-in-scope-for-INtegration ... 3-5
FIDJINS-SEIVET ..ottt 3-5
Fib-aPPLICAtION-SEIVETc.cuimimiiiiiiiiiiiiciciciccctc ettt 3-6
Iib-Javaee-CONAINETScoiviiiiiiiiiiii e 3-6
FID-aPPLCALIONS .o.voieieciit 3-6

commoOnNS-logging.properties ... 3-7

TOZA]XINL ... 3-7

rib-app-builder-paths.properties..............ccccoooviiiiiiiii 3-7

rib-application-assembly-info.xmlcccccooooiiiiii 3-7

retail_service_config_info_ribserverxmlccccoiiiiniiii 3-7

remote_service_locator info_ribServer. XMlcooooiiiiiiiiiiiiiiieeeieeeeee et 3-7

RIB LOZGING......oiiiiiiiiiiiiiiic e 3-8
Log Level Recommendations ..ottt 3-8
Changing Logging Levels ... 3-8

RIB Administration GUI..........ccccceiiiiiiiiiiiiiicceeeeee e 3-8
log4j.xml Configuration File...........ccoiiiiiiiiiiiii 3-8
Adapter Logging (RIBLOGS)ccccovuiiiiiinininiiiiiciiiiicricrncsesssssses s 3-8
RIB TimiNg LOEScoviviviiiiiiiiiiiiiiiccnc s 3-9
RIB AUdit LOZS covviiiiieice 3-10
Other RIB Management LOEScccccciiiiiiiiiiiiiiiiiiccici s 3-11
AEPLOY.TIDLOG ... 3-11
mManagement.rib.1Og ..o 3-11
global.rib.Jog—EXampleccccccciiiiiiiiiiiiii s 3-11

4 Integration Gateway Services (IGS) Testing
Using the soapUI Tool and the IGS Test Suitecccoovviiiiniiinin, 4-1

vi

Download s0apUL ..o 4-1
IMPOTt IGS ..o 4-1
Execute IGS Test Cases.......cccuiiviiiiiiiiniiiiiiiiic e 4-2

5 RIB and JMX

RIB JMX CHENEooniiiiiiiiiiicc s 5-1
USET INEETTACE ... 5-1
Third Party JMX Client Example.............cccocoiiiniiiiiiiiiiiii s 5-2

6 RIB Administration GUI

RIB Administration URLScccoiiiiiiiiiiccc e 6-1
RIB Administration GUIcccccciuiiiiiiiiiiiiiicceecceeeeeeeeeeeeeeee e 6-1
RIB Functional ATHactScoiiiiiiiiiiiiiiiiiic e 6-2
RIB MeSSAZE FIOWS ...ttt 6-2
RIB Payloads (XSAS)......ccoceueueueiieiimiieieicicicieieieieieicteeeieeeeeieteeeeeseseee e 6-2

RIB Admininistration GUI HOME..............ccccooiiiiiiiiiiiii e 6-2

Adapter MANAETcccoviiiiiiiiiiiiiii s 6-2
Adapter Manager SCTEEINccccvuvuiuiiriririririeieeeere et 6-2
LOZ VIEWET ..ottt s 6-3

LOG MANQAGET ...ttt et 6-4

RIB LOGSoviiiiiiiiiiic bbb 6-5

7 JMS Provider Management

RIB 0N AQ JMS....ooiiiiii s 7-1
Queue Monitor Process SEUP ...t 7-1
Optimizing Enqueue/Dequeue Performance............cocoooiiiiiiiniciccceceee, 7-2
Sizing Considerations..........ccccvviiiiiiiiiiiniiiiii s 7-2

RIB on AQ JMS - Server Side Processes..........cocccvecivieiniiinieineineinentnieteeeereeeeeeresee e s seseeseeene 7-3
Types of Oracle Database Side Processescooceueiiiueieiniiiicieiiicciee e 7-3
RIB and Application Server and JDBC CONNECtIONS.........ccccreuiuimiueucmimemeieiimcreieieeneneneieienenenenenes 7-3
RIB ConNections = SUMIMATYccccoiiueieiniiicie sttt 7-4
FID-TMS CONNECTIONS. .. .viuiiiiiiiieieeicr ettt et 7-4
Fib-TWMS CONNECHIONScovvviciiiicc s 7-4
Fib-SIM CONNECHIONSvviiiiiiiiicicc s 7-5
FID-taft CONMECLIONSuiuiiiiiiiiiccctet ettt 7-5
FID-TPIMN CONMECHIONS ...ttt 7-5
Configuration Recommendations............cooeueiiiiiiiiiiiicie 7-5

Support for Multiple JMS Servers Within a Single Deploymentccccccoeviiinnininnnnn. 7-6
DIESIGI ..ot 7-6

rib-app-builder Validation Checks............cccocoviiiiiiininiiiiiiiiiii 7-6
How to Set Up Multiple JMS SeIVers.........cooiuiiiiiiieiiicieieicie e 7-6
Process OVEIVIEWccuiiiiiiiiiieiieeeee s 7-7
General Recommendations...........cceiiiiiiiiiiiiiiiii 7-7
AQ ReCOMMENAALIONc.viveiiiiieiierecieeteete ettt ettt et e ereeeaeereesse e s e beessesbeessenseessenns 7-7
Sample CONFIGUIATION.c.ccciuiiiiiiiiciciiicicceeie et 7-7
rib-integration-flows. XMlcccooiiiiiiiiiiiii s 7-7

vii

rib-deployment-env-info.Xml.......ccoooiiiiiiii e 7-8

RIB-RMS Application Configurationoooeeioiiiiiiiiicc e 7-8
rib-rms-adapters.Xmlccccccoiiiiiii e 7-8
rib-rms-adapters-resources.properties ... 7-9

RIB-TAFR Application Configurationc.cooceieioiiiieiiiicceeceee e 7-9
rib-tafr-adapters.Xml.........cccccociiiiiiii e 7-9
rib-tafr-adapters-resources.properties ... 7-10

RIB-SIM Application Configuration...........cccceueveiiiiiioiiiiiciec 7-10
rib-sim-adapters.Xmlccccciiiiiiiicc s 7-10
rib-sim-adapters-resources.properties. ... 7-11

RIB-RWMS Application Configuration ... 7-11
rib-rwms-adapters.Xml.........c.cccociiiiiiiiic s 7-11
rib-rwms-adapters-resources. pProperties ... 7-11
Compile and Deploy ...t 7-12
RIB-ADMIN-GUL ..ottt s 7-12

8 Message Transform, Filtering and Routing (TAFR)

TAFR AdQpter PrOCESSc.coveiriiirieiiieieiciiteeeete ettt sttt a et sae e ne e sae e enenees 8-1
CONFIGUIALION ... s 8-2
TransformMatioNcccciiiiiiiii s 8-2
Filtering Configuration........c.ccccccuiiiiiiiiiiiicciccece e 8-2
ROUBNE ottt 8-3
Configuration Example - Facility IDcccccocooiiiiiiies 8-3
Single RWMS Configurationcccevvereeririririririniirnrersesesee e 8-3
Configuration PrOCESScceviiieiucieiiiiicie ettt 8-3
Two RWMS Configurationc.oueiiiiioiiiici e 8-5
DeSCIIPLION ...t 8-5
Configuration PrOCESSoccveiieiucieiiitct et 8-5

9 Diagnostic and Monitoring Tools

FUNCHONAlitycocooviiiiiiii s 9-1
RDMT and User Roles and Responsibilities...............cccccccooiiiiiiiiiiiiicccccecce 9-1
Local or Remote Installations and Capabilitiesc..cccoeoniiininiinniniieeceeee 9-2
RDMT SUPPOTLL JALS ... 9-2
Sample XIML MESSAZEScccouiuimimimiiiiiiiiiiiieieieieieeiete et 9-2
TOOIS OVEIVIEW ...ttt 9-2
RDMT as an ApPliCation........cccceveiiiiiiiiiiiiiiiiiiccccc s 9-2
SCRIPTDIRoiiiiiiiciriiscrre s 9-3

SEEUD o s 9-3
Current Configuration ... e 9-3
RDMTLOGS......cciiiiiiiiiiiciciirisccrssr s 9-3

RDMT RAC SUPPOTIL...oiuiiiiiiiiiiiiiictiiicc s 9-3
RDMT Main MEeNUccooiiiiiiiiiiiiiiiiiii bbb 9-4
WLS/JMX UHIIHES ..o 9-4
JIMIS TOOIS ...ttt ettt et e et et e e s st enae s e essessee st e seenseeseenseeseensesseenseeneensesnsesennsensenneens 9-6
PUB/SUB MSg TOOIS ...ttt 9-7
RIB Health TOOIS......c.ocoiiiiiiiiiiciciieiccitrte ettt ettt 9-8

viii

Hospital Scan TOOIS.........cccoiiiiiiiiiiiiiii e 9-9

RIB Administration TOOIS.............cccooiiiiiiiiiiiicc e 9-10
RIB Application Builder TOOLScccccooeiricirieiicinicre ettt 9-11
Scan RIB Logs / Scan RIB Logs (Delta)cccccooiiiiiiiiiiiiiiccc e 9-12
RIB Healthcocoooiiiiiiii et 9-12
RIB Configuration Reportccoooiiiiiiiiiiiiii s 9-13
RIB Timings ULItY ... 9-13
JMS Publish UHIEYccooiiiiiiiiiiiiic s 9-14
EJB Publish Uitycccoovimiiiiiiiiiicc e 9-14
TAFR MSZ UHLIEYooooviiiiiiiiiiiiic s 9-15
EJB Ping (RIB)ooooooovoooooeoeeeeeeeeeeeeeeooooeeeeee e eeeeeoosssse e sessomessss e esesesssssens e eeesesomnn e 9-17
EJB Ping (APP)cooviiiiiiiiee s 9-17
Tool Usage EXaMPLESccccovviiiiiiiiiiiiiiicicccc s 9-18
Ensure RIB is correctly installed ... 9-18
Determine whether the local WLS is TUNNING......c.ccceuiiiiiiiiiiiiiiccccccecececeeeeeees 9-18
Determine where an issue iS OCCUITINGcooueiiiiiiieiiiiiccc 9-18
Determine whether the adapter status is up or dOWn........ccoooiiiiii 9-19
Perform a config/switch for a new WLS INStancec.cccccocceucieceeiiciennccrereeeeeenes 9-19
Determine the subscriber for a particular JMS topic........coiiiiiiiiiniiiicccce, 9-19

10 RIB in Operation

Operational Considerations.................cooooueiiiiiiiiii s 10-1
Alerts and NOtIfiCatioNSccciiiiiiiiiiiiii s 10-1
RIB Log File MONITOTING.......ccviiiiiiiiiiiiiiicic s 10-1
Log File Archive and PUIZe ..o 10-1
Hospital Size and GIrowth.........ccoooiiii 10-2
RMS MFQ and RWMS UPLOAD Tables SIZESc.ccveveereeiieiieeeeeeeeeteeveete e eve v 10-2
Remote RWIMS ..o 10-2
RIB Components Start and StOPcoeeueieiiiiiiieiicce e 10-2
RIB Operation Support Staff Requirements...........c.ccccoceecciiiiiiiiiiceeeceeeeeeeeeeeeees 10-2
RIB Components - Source Code CONtrol.......c.couoviiieiiiiiiiiicee e 10-3
RIB HA ReqQUITEMENESoovviiiiiiiiiiiciccccc s 10-3
RIB Disaster RECOVETYccovviiiiiimiiiiiiiiiiiiiic s 10-3
RIB Administration Roles and Security ... 10-3

RIB Operation Support Staff Requirements.............coccccceoiviiiciinineiinnieiieeeeneeeeseenees 10-3
RIB System AdmINIisStrator..........ccccociiiiiiiiiiiicceeeeeeee e eeees 10-4

Technology Background ... 10-4
Experience or Training ..o 10-4

Areas Of ReSPONSIDILILYc.c.ouiuiuiiiiiiiiiiiicccccce s 10-4

RIB Application AdminiStrator ... 10-4
Technology Background ... 10-4
Experience or Training Occcccoiiviiiiiiiiiiiniiii s 10-5

Areas of ReSPONSIDILILY ...c.oviviviiiiiiiiiiiiiciiicc 10-5
Hospital Monitoring and Maintenancec.cococcioiriiiininiicinniiceceeeee e 10-5

11 Testing RIB

RIB Test HAIness. ..ottt e e 11-1
Master CheckListccoviviiiiiiiii e 11-2
PL/SQL Application APL Stubs ..o 11-2
Architecture and DeSIgIcouiuriiiiiiii 11-3
The CommOn SUDSYSTEMc.ccuiiiiiiiiiiiiiiccccccece s 11-3

The Thin APTIAYeT ...t 11-4

The Stub Administration and Setup FUNCHONSccouoioiiciiiii, 11-4
Configuration FILEs ..o 11-4
Installation and SEtUP ... 11-5
Prerequisite TasKScccoirrieiiiecce s 11-5
INSAIAtIONvoieiiiiei s 11-5
CONFIGUIE_API ..eviviiiiiieiiicicicccc s 11-6
PrerequiSites ...t 11-7

Java EE Application API StuDSccocoiiiiiiiicccee et 11-8
Architecture and DeSIZINc.coiiuiiiiiiiiii 11-8
Installation and SEtUP ... 11-8
Prerequisite Tasks ..o 11-8
INStAllAtioN ...oovviiiiii s 11-9
Configuration of the rib-<app> to use Injection Stubs...........ccoovoiviiiiiiii 11-10

12 Performance Considerations

Performance FActOrS ... 12-1
Performance REQUITEIMENESc.coveiriiiriiiniiiiciiceeereeee e s 12-2
Multi-Channel............cccoooiiiiiii s 12-2
End-t0-End Timing ..o 12-3
How to Calculate Average Message SiZeccooceiviiiiiiiiiiiniiiiicns 12-3
Purchase Order EXampleccoooiiiiiiiiiiiniiiiiici s 12-5
Understand the Message Family ..o 12-6
RIB Timing Log ANalysis..........cccccviiiiiiiniiiiiiiii s 12-7
Purchase Order EXample ..o 12-8
Key Interfaces t0 CONSIAETcccoiiiiiiiiiiiiiicc e 12-9
ASN (INbound /OUtbOUNA)ccveiiiriiiiriiiieeeet ettt sb e b a s sseseessesaesessessansas 12-9
RECEIPES ..ttt 12-10
Stock Order (Allocations & TTANSTErS)cc.evvueirieririerireirietrteteieee et 12-10
How to Approach a RIB Performance Testcocovururirrinnrinnnnirreees s 12-11
Multi-Channel Adapters............cccccciiiiiiiiniiiiii s 12-13
Adding Multi-Channels to a Message Familyccocoooeiiiiiiniiiiccce, 12-13
Logical Channels and threadValue................cccooiiininiiiiiie 12-14
Algorithm Used to Calculate Channel...........c.cc.ooiiiiiii 12-14
How to Configure a Multi-Channel FIOWcccccoiiiiiiiiiiiiccccccccccne, 12-15
EXQIMIPLE ..ot 12-15
RIB-RMS ..ot 12-16
RIB-TAFR ..ottt 12-17
RIB-SIM...oiiiiiiiiiiiiiiic s 12-18
RIB-RWMS ..ot 12-18
Edit the RIB_SETTINGS tableccccccoiiiiiiiiiiiiiiiiiiiiiiicncnc e 12-19

Compile and Deploy.......ccccvviiiiiiiniiiiiiiii 12-19

Message Aggregationccoooiiiiiiiiiiii s 12-19
How to Configure Message AZEIegate...... ..o iiiiniiiiiicccicieeceescseeeseeseseseeenenas 12-20
Aggregation EXample ..o 12-20

Multiple Hospital Retry ..o 12-21
Family Specific Hospital Retry Adapters ... 12-21

How Family Specific Hospital Retry WOrks...........ccoooiieiiiiiiiii 12-22
How to Configure a Family Specific Retry Adapter..........ccoooooiiiiii 12-22

xi

Xii

Send Us Your Comments

Oracle Retail Integration Bus Operations Guide, Release 13.2.4

Oracle welcomes customers' comments and suggestions on the quality and usefulness
of this document.

Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:

= Are the implementation steps correct and complete?

= Did you understand the context of the procedures?

= Did you find any errors in the information?

= Does the structure of the information help you with your tasks?

= Do you need different information or graphics? If so, where, and in what format?
= Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell
us your name, the name of the company who has licensed our products, the title and
part number of the documentation and the chapter, section, and page number (if
available).

Note: Before sending us your comments, you might like to check
that you have the latest version of the document and if any concerns
are already addressed. To do this, access the new Applications Release
Online Documentation CD available on My Oracle Support and
www.oracle.com. It contains the most current Documentation Library
plus all documents revised or released recently.

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number
(optional).

If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at www.oracle.com.

xiii

Xiv

Preface

Oracle Retail Operations Guides are designed so that you can view and understand
the application's behind-the-scenes processing, including such information as the
following:

Audience

Key system administration configuration settings
Technical architecture
Functional integration dataflow across the enterprise

Batch processing

Anyone who has an interest in better understanding the inner workings of the Oracle
Retail Integration Bus (RIB) system can find valuable information in this guide. There
are three audiences in general for whom this guide is written:

Systems analysts and system operations personnel who need information about
Oracle Retail Integration Bus processes.

Integrators and implementers who are responsible for implementing RIB.

Business analysts who need information about Oracle Retail Integration Bus
processes and interfaces.

Related Documents

For more information, see the following documents in the Oracle Retail Integration
Bus 13.2.4 documentation set:

Oracle Retail Integration Bus Implementation Guide

Oracle Retail Integration Bus Installation Guide

Oracle Retail Integration Bus Release Notes

Oracle Retail Integration Bus Hospital Administration Guide
Oracle Retail Functional Artifacts Guide

Oracle Retail Functional Artifact Generator Guide

Oracle Retail Service-Oriented Architecture Enabler Tool Guide

XV

Customer Support

To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following:

= Product version and program/module name

= Functional and technical description of the problem (include business impact)
= Detailed step-by-step instructions to re-create

= Exact error message received

» Screen shots of each step you take

Review Patch Documentation

When you install the application for the first time, you install either a base release (for
example, 13.1) or a later patch release (for example, 13.1.2). If you are installing the
base release, additional patch, and bundled hot fix releases, read the documentation
for all releases that have occurred since the base release before you begin installation.
Documentation for patch and bundled hot fix releases can contain critical information
related to the base release, as well as information about code changes since the base
release.

Oracle Retail Documentation on the Oracle Technology Network

Documentation is packaged with each Oracle Retail product release. Oracle Retail
product documentation is also available on the following Web site:

http://www.oracle.com/technology/documentation/oracle_retail.html
(Data Model documents are not available through Oracle Technology Network. These

documents are packaged with released code, or you can obtain them through My
Oracle Support.)

Documentation should be available on this Web site within a month after a product
release.

Conventions

XVi

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction

This chapter describes the components that make up the Oracle Retail Integration Bus
(RIB). These components are distributed within the Oracle Fusion Middleware
platform. The final deployed system may be distributed across multiple computing
systems.

Oracle WebLogic Application Server

RIB is configured and deployed to the Oracle WebLogic Application Server.
Installation and configuration of the application server is not in the scope of the
document, but a thorough understanding is strongly recommended.

Note: See Oracle® WebLogic Server Administrator's Guide 11g
Release (10.3.3)

Oracle Retail RIB Supplied Components

This section contains a brief description of the components that Oracle Retail has built
upon the Oracle Fusion Middleware platform to create the Oracle Retail Integration
Bus.

Publishing adapters create messages from the information captured by the
applications. These publishing adapters are designed to publish events from a
single message family and are specific to an Oracle Retail application, such as
Oracle Retail Merchandising System (RMS).

Subscribing adapters are used to consume messages. These are specific to Oracle
Retail and are designed to consume all messages from a specific message family.

Transformation Address Filters/Router (TAFR) adapters transform message data
and route messages. Multiple, message family specific TAFRs have been
implemented. A different TAFR adapter may be active on different message
families or on the same message family depending on the needs of an application.
Not all message families require TAFRs. The TAFR acronym is a generic term.

RIB Database Objects are Oracle objects and tables to support the PL/SQL
Message Family API stored procedures that are called by the Publishing and
Subscribing Adapters. They are part of a specific PL/SQL Oracle Retail
application, such as RMS and Oracle Retail Warehouse Management System
(RWMS).

RIB Hospital database tables are used as a basis for storing and re-trying
problematic messages. Each application, both PL/SQL and Java EE, have a
dedicated Hospital.

Introduction 1-1

Oracle Retail RIB Supplied Components

= RIHA is the Oracle Retail Integration Bus Hospital Administration tool.

s The Integration Gateway Service (IGS) provides an integration infrastructure for
external (third party) system connectivity.

1-2 Oracle Retail Integration Bus Operations Guide

2

Application Builder

The RIB Application Builder and its directories and content are not a temporary
staging structure. The directory structure and the tools must be in a permanent
location and treated as a core application home. The location of the rib-app-builder is a
key implementation decision.

Note: See "Pre-Implementation Considerations" in the Oracle
Integration Bus Implementation Guide.

The RIB installation process builds and executes out of rib-home. The RIB installer
gathers all of the information that these tools require, constructs the key XML file
(rib-deployment-env-info.xml), and then performs the installation, assembly,
configuration, and deployment by invoking, as appropriate, a given task. Therefore,
for most RIB software life cycle activities, the RIB installer should be used instead of
the command line tools.

RIB Application Builder Directory Structure

The rib-<app> application configuration and installation process follows the RIB
lifecycle phases. Each of the lifecycle phases can be managed by a certain role. To
support the separation of roles and responsibilities and to clearly define these phases,
RIB has adopted a specific directory structure. The tools required for each of these
roles are provided within this directory structure.

This directory structure supports access permissions to different tools that are
managed according to the site-specific business requirements. For example, a systems
admininstrator can be given access permissions to all the tools, while a RIB
administrator or applications administrator can be provided access to only certain
operation tools.

The RIB Application Builder directory structure is fixed and is created by the RIB
kernel tar file: RibKernel<release>ForAll<release>Apps_eng_ga.tar.

The rib-home is a controlled structure and there are very specific rules for using the
tools and the key files with in it. A key rule is that the tools scan and check versions of
all files within rib-home (except for tools-home). The processes do not allow files to
have the same name with only an additional extension.

The following is not allowed: rib-rms.properties.bak

Directory Structure and Key Files

rib-home

Application Builder 2-1

RIB Application Builder Directory Structure

rib-installer.sh -- this is the RIB GUI Installer
.retail-installer -- this directory contains the RIB GUI installer file
application-assembly-home

bin

rib-app-compiler.sh

conf

log

rib-aip

rib-func-artifacts
rib-func-artifact.war
rib-private-tafr-business-impl.jar
rib-public-payload-database-object-types.zip
rib-public-payload-database-xml-library.zip
rib-public-payload-java-beans.jar
rib-public-payload-xml-samples.zip
rib-rms
rib-<app>-adapters-resources.properties
rib-<app>-adapters.xml
rib-<app>-plsgl-api.xml
rib-<app>.properties
rib-rpm
rib-rwms
rib-sim
rib-tafr
deployment-home
bin
rib-app-deployer.sh
conf
rib-deployment-env-info.xml
log
download-home
all-rib-apps
all-rib-defect-fixes
bin
check-version-and-unpack.sh
log
rib-func-artifacts
integration-1ib
internal-build
third-party
maintenance-home
bin
check-version-and-apply-defect-fix.sh
inventory-management.sh
setup-security-credential.sh
history-repository
rib-inventory-info.xml
log
operation-home
bin
rib-adapter-controller.sh
log
tools-home
javaee-api-stubs
plsgl-api-stubs
rdmt
rib-func-artifact-gen
riha

2-2 Oracle Retail Integration Bus Operations Guide

RIB Application Builder Tools

RIB Application Builder Tools

All RIB Application Builder tools use the rib-deployment-env-info.xml as the source of
all values.

{rib-app-builder tools
[}

| Creates rib-home.
file structure with
tools and kemel

RibKernel jar code

RibPakFor<app
Aar

RibFuncArtifact.
tar

varify compatibiity,
extract app files. move

10 appropriate
B directories
[checl(fverslonfnndfunpac}D/

{rib-func-artifact-oc4;-
linstance

flows. xml .
rib-<app>-

adapters xml

Tib-
deployment-
env-info.xml

Creates

e

fib-application-
assembly-
info.xml

Deploysil
(rib-app-deployer ' Updates

. T Prepares
rib-inventory-

info.xml

Updates

verlfy compatibility,
extract defect fles,
movE to appropriate
diectories

RiB<version=8
ugDBxxx zip

file-change-

check-version-and-apply-defect-fix f
history-report

Generates

Updates

(meonton . p
0

defect-fix-
applied-report

defect-fix-
detail

RTG Dev — RIBIRSL Notes LEGEND

Domain
System System of G Database
Configuration Tools Record
AT TN
]

© |perspective .

'g | System System Human

= |Release: 13.1 B 1 Exterqal o outside of Actor

T ___/ Domain RGBU

£ <777 systemof

15 ORACLE' [p Sysem Off-page On-page connectar

5 | Record External connector i
o RETAIL \; to Domain © Oracle Corporation

Logging
Logging is done for each tool with a log directory, where the execution log is
maintained (for example, rib-app-builder.compiler.log). These logs are maintained by
log4j and the log4j.xml in rib-home. Do not edit this log4j.xml. It is set for DEBUG
when the tools are executed by command line. When the RIB installer is used, it
displays the logging at the console level as INFO, but the tools themselves write the
logs at DEBUG.

Backup and Archive of Key Files

The rib-app-builder tools automatically generate a backup when a patch is installed. It
is recommended that each site develop a backup plan to include a regular backup at
the file system level of the rib-app-builder directory structure.

rib-app-compiler
The rib-compiler is a tool that drives the rib-<app>.ear creation process. It performs

validation of the input XML files. The following XML files are used to build the
rib-<app>.ear.

s rib-<app>-adapters.xml

» rib-integration-flows.xml

Application Builder 2-3

RIB Application Builder Tools

s rib-application-assembly-info.xml

s rib-deployment-env-info.xml.

The compiler tool generates the rib-<app> specific application level configuration files,
collects the generated files, and packages them to create a deployable rib-<app>.ear

file.

This tool works with all applications in scope in the rib-deployment-env-info.xml file.

Command Line Option

Description

-setup-security-credential

This argument must be used when running the
rib-app-compiler for the first time. It prompts the user to enter
user-alias required to install RIB components. It stores the
details as credentials in a wallet file inside the
rib-home/deployement-home/conf/security/ directory. The
credentials are retrieved and used by the deployer when
installing RIB components.

rib-app-deployer

This tool performs operations related to deploying RIB components. It takes a
command line set of arguments and values for each function. All functions are driven
by the contents of the rib-deployment-env-info.xml.

Command Line Option

Description

-prepare-jms

Prepares the JMS server with RIB JMS topics using the
information in rib-deployment-env-info.xml.

The JMS server must be running.
See Chapter 7, "JMS Provider Management."

-deploy-rib-func-artifact-war

Deploys the rib-func-artifact.war to the Java EE application
server defined in rib-deployment-env-info.xml.

The Java EE server must be running.

-deploy-rib-app-ear rib-<app>

Deploys the rib-<app>.ear to the Java EE application server
defined in rib-deployment-env-info.xml.

The Java EE server must be running.

-update-remote-rib-app-config
-files rib-<app>

Updates the rib-<app> application level configuration files in
the remote server where rib-<app>.ear is or will be deployed.

The remote server information is defined in
rib-deployment-env-info.xml.

The Java EE server must be running.

-undeploy-rib-func-artifact-
war

Undeploys the rib-func-artifact.war from the Java EE
application server defined in rib-deployment-env-info.xml.

The Java EE server must be running.

-undeploy-rib-app-ear
rib-<app>

Undeploys the rib-<app> from the Java EE application server
defined in rib-deployment-env-info.xml.

The Java EE server must be running.

Check-version-and-unpack

This tool verifies the version

compatibility between RIB paks and extract the files. The

extracted files are moved to the appropriate directories under the rib-home.

2-4 Oracle Retail Integration Bus Operations Guide

RIB Application Builder Tools

The version compatibility between RibKernel, RibFuncArtifact and RIBPaks is
determined based on the naming conventions used in the tar files and the information
in the MANIFEST.mf file inside the kernel tar file.

The RIB infrastructure kernel, RIB functional Pak, and RIB functional artifacts version
naming convention should be the same. All should have the same number of major
and minor versions.

For verification, the tool does the following:

1. Gets the version of the Rib kernel from the MANIFEST.MF file of the RIB kernel
tar file. This is the RibKernel<RIB_MAJOR_VERSION>ForAll<RETAIL_APP_
VERSION>Apps_eng_ga.tar.

2. Reads the functional artifact file from rib-home/download-home/
rib-func-artifacts.

3. Reads the list of all the RIB application packs from the
-home/download-home/all-rib-apps directory.

4. Uses of the naming convention to check if the kernel version is the same as the
functional artifact version. If the version is compatible, the tar file is un-tar'd into
the rib-home/application-assembly/ rib-func-artifacts directory.

5. Uses the naming convention to check if the kernel version is the same as the
application packs. If the version is compatible, the tar file is un-tar'd into the
rib-home/application-assembly /rib-<app> directory.

check-version-and-apply-defect-fix

RIB has been designed to centrally manage and track the application of defect fixes.
The check-version-and-apply-defect-fix tool is responsible for that activity.

All RIB defect fixes are in the form of a zip file (for example, RIB13_HPQC1789.zip).
The zip file always contains a README.txt file in the format below.

Product : Oracle Retail Integration Bus
Version # : 13.2.x

Defect # : 1789

Date : 02/27/2010

The README.txt file contains the specific instructions on the application of the defect.
It is always applied to the rib-home and deployed from there. Depending on the type
of defect, it may be necessary to migrate a jar to one of the Oracle Retail applications
into the appropriate directories.

All defects are applied to rib-home in the same manner, as follows.
1. Drop the Defect.zip into /rib-home/download-home/all-rib-defect-fixes directory.

2. Run the check-version-and-apply-defect-fix.sh from the
/rib-home/maintenance-home/bin directory.

Application Builder 2-5

RIB Application Builder Tools

3. Run the rib-home/application-assembly-home /bin/rib-app-compiler.sh script
from the rib-home /application-assembly-home /bin directory.

4. Run the rib-home/deployment-home/bin/rib-app-deployer.sh script from
rib-home/deployment-home/bin directory to the appropriate rib-<app>s.

The tool check-version-and-apply-defect-fix.sh will perform version compatibility
checks and will update the RIB inventory XML file.

inventory-management

RIB jars and XML files in rib-home are tracked through an XML file called
rib-inventory-info.xml located in the
rib-home/maintenance-home/history-repository/ directory. This file is initially
created when the RIB installer, or user, executes the check-version-and-unpack tool the
first time to extract the RIB application packs and the functional artifacts. Thereafter
this file is updated and tracks the file change history of the jars and xml files in the

rib-home system.

Command Line Option

Description

-update-current-inventory

Scans the rib-home file system and updates the inventory
database.

-generate-file-change-history
-report

Generates a report of how the files in the rib-home file system
have changed over time.

-generate-defect-fix-applied-
report

Generates a report of what defect fixes have been applied to
rib-home on this system.

-generate-defect-fix-detail
<defect-fix-id>

Displays the long defect resolution description for a given
defect fix id.

setup-security-credential

The user names and passwords required to install RIB components are stored as
security credentials in a wallet file located in the
rib-home/deployment-home/conf/security/ directory. The file is initially created
when the RIB installer, or user, executes the rib-app-compiler tool with the
setup-security-credential argument the first time and enters all the user names and

passwords required for installing RIB components. Thereafter, this file can be modified
using the setup-security-credential script located in rib-home/maintenance-home/bin
directory. After updating existing credentials, the user must run the rib-app-compiler

tool again and redeploy RIB applications to use the new credentials.

Command Line Option

Description

-setup-aq-credential <aqg-id>

Updates the security credential for the AQ JMS Server ID
specified in rib-deployment-env-info.xml

-setup-weblogic-credential<
wls-id>

Updates security credential for the specified WebLogic instance.

-setup-admin-gui-credential
rib-<app>

Updates security credential for the RIB Administration GUI
user for the specified RIB application.

-setup-error-hospital-credent
ial rib-<app>

Updates security credential for the error hospital database user
for the specified RIB application.

-setup-app-database-credent
ial rib-<app>

Updates security credential for the application database for the
specified RIB application.

2-6 Oracle Retail Integration Bus Operations Guide

RIB Application Builder Tools

Command Line Option Description
-setup-jndi-credential Updates security credential for the remote JNDI for the
rib-<app> specified RIB application.

Hot Fix Installation Reports

The following HTML reports can be used to verify the successful installation of RIB
hot fixes:

» defect-fix-applied-report.html
» file-change-history-report.html
» defect-fix-detail-<defect-fix-id>.html

These reports are available at
rib-home /maintenance-home/history-repository/HTML-Report.

Sample: file-change-history-report

File Change History Report

File L\ \wib homelintegration liblinternal buildsiblsib admin-guiwar

content-creation-date creation-date-on-local file-system md§ size dotoctfix-ref dutuct-racking Identifier
Toe Jol 03 11:56:22 15T 2008 Wed Jul 16 122947 IST 2008 877354 0c hewudbe 0885 22 M 15 TEED1 NO_ASSOCIATED_DEFECT_Fii_REF A
Eack 1o top

File .\ il homatintegration liblinternal builduib'vib-app builder.jar

‘content-creation-date creation-date-on-local file-system md5 size defect fix-rof defect tracking-identifier
Wed Jul 16 12.29:42 15T 2008 Wed Ml 16 12:29.47 15T 2008 o 0MBRTELaRadbdec Doc 5B 1bI0d5eE T2TTER NO_ASSOCIATED DEFECT_FIX_REF A
Back 1o l0p

Filn L.\ \wib hamolinngratian lislntarnal builfsibisib eonfig sgontwae

content-creation.date creation-date-on bocal-file-system md5 sire defectdix.rel defectaracking.identifier
Wed Jul 16 12 29.42 IST 2008 Viied Jul 16 12.29 48 IST 2008 ©98520361145 14124 22092e5dd3513 2310 NO_ASSOCIATED _DEFECT_FIX_REF HA.
2 top

.\ lrib hamaelintegration liblinternal bulldibirib private app plugin jar

conbent-¢roation dote crwation date-on-local file system md§ size defectfixrel dubuct-tracking identifier
Fib Jun 06 14:07-35 15T 2008 Wed Jul 16 12 29.47 I5T 2008 Sba3TeT28T4alDeb 30285 36T 0t T 5157 NO_ASSOCIATED DEFECT FIX_REF A
Back 1o g

Sample: defect-fix-detail-<defect-fix-id>

Defect Fix Applied Report

defectfix datectracking identifier short defect description

" HPOCDact_169 ASHOWTeASHISLaz TAFR shuts AssH down sfer tha Transler i sispatchad

bl BuglBer209670 ERROR HOSPITAL RETRY PROBLEM FOR ENTRIES WITH JMS REASON CODE
Fal BugDBsT209670 ERROR HOSFTAL RETRY PROBLEM FOR ENTRIES WITH JMS REASON CODE
F73 BugDBsT209670 ERROR HOSFITAL RETRY PROBLEM FOR ENTRIES WITH JMS REASON CODE
23 BugDB#T200670 ERROR HOSPITAL RETRY PROBLEM FOR ENTRIES WITH JMS REASCH CODE

rib-adapter-controller

The rib-adapter-controller a set of tools that perform RIB adapter control functions
such as start/stop and subscriber check. The command line options and usage are
summarized here. See also "RIB Components Start and Stop."

Start Flow
This function starts all adapters in a message flow for a given family or family list
(comma separated list without any space).

start integation-message-flows <family-name-list>[no-subscriber-check]

The function does the following:

Application Builder 2-7

RIB Application Builder Tools

1. For a given family, it identifies all message flow IDs in which this family directly
or indirectly participates.

2, Using the message flow IDs defined in the rib-integration-flows.xml, it connects to
all application servers where the respective rib-apps are deployed.

3. It starts the adapters in the order as defined in the message flows.
4. It checks if durable subscribers exist before starting an adapter.

5. Itignores all RIB applications that are not in scope.

Examples:

rib-adapter-controller.sh start integation-message-flows Alloc
rib-adapter-controller.sh start integation-message-flows Alloc,Order

Stop Flow

This function stops all adapters in a message flow for a given family or family list
(comma separated list without any space).

stop integation-message-flows <family-name-list>

The function does the following;:

1. For a given family, it identifies all message flow IDs in which this family directly
or indirectly participates.

2. Using the message flow IDs in the rib-integration-flows.xml, it connects to all
application servers where the respective rib-apps are deployed.

3. It stops the adapters in the order as defined in the message flows.
4. Itignores RIB applications that are not in scope.
Examples:

rib-adapter-controller.sh stop integation-message-flows Alloc
rib-adapter-controller.sh stop integation-message-flows Alloc,Order

List Flow

This function lists all adapters in a message flow for a given family or family list
(comma separated list without any space).

list integation-message-flows <family-name-list>

The function does the following:

1. It displays all message node ids for all message flows that are part of the given
family.

2, It lists the adapters in the order as defined in the message flows.
3. Itignores RIB applications that are not in scope.
Examples:

rib-adapter-controller.sh 1list integation-message-flows Alloc
rib-adapter-controller.sh 1list integation-message-flows Alloc,Order

Start Adapters By Type

This function starts all adapters by type, given a rib-app or rib-app-list (comma
separated list without any space).

2-8 Oracle Retail Integration Bus Operations Guide

RIB Application Builder Tools

start rib-app-adapters-by-type <sub, tafr,pub,hosp_retry,all><rib-app-list>
[no-subscriber-check]

The function does the following;:

1. For every adapter type specified in the input, it collects the adapter instances from
the given rib-app-list.

2. It re-sorts the input adapter types to start in the correct order.
3. It connects to the respective applications servers where rib-apps are deployed.

4. It starts the sub adapters first in all rib-apps and then moves on to start all TAFR
adapters in all rib-apps, and so on.

5. It checks if durable subscribers exist before starting an adapter.
6. Itignores all RIB applications that are not in scope.
Examples:

rib-adapter-controller.sh start rib-app-adapters-by-type sub,tafr rib-rms
rib-adapter-controller.sh start rib-app-adapters-by-type pub,sub rib-rms,rib-sim
rib-adapter-controller.sh start rib-app-adapters-by-type all rib-rms,rib-sim

Stop Adapters by Type

This function stops all adapters by type, given a rib-app or rib-app-list (comma
separated list without any space).

stop rib-app-adapters-by-type <sub, tafr,pub,hosp_retry,all><rib-app-list>

The function does the following:

1. For every adapter type specified in the input, it collects the adapter instances from
the given rib-app-list.

2. It connects to the respective applications servers where rib-apps are deployed.

3. It stops the first adapter type first in all rib-apps, and then it moves on to stop the
second adapter types in all rib-apps and so on.

4. Itignores all RIB applications that are not in scope.
Examples:

rib-adapter-controller.sh stop rib-app-adapters-by-type sub, tafr rib-rms,rib-sim
rib-adapter-controller.sh stop rib-app-adapters-by-type pub, sub
rib-adapter-controller.sh stop rib-app-adapters-by-type all rib-rms,rib-sim

Start Adapter

This function starts individual adapter instances. The adapter instance must be fully
qualified as rib-<app>.<Family>_<type>_<n>. A comma separated list of adapter
instances names can also be provided.

start rib-app-adapter-instance <rib-app.Family_ type_1l-list>[no-subscriber-check]

The function does the following:

1. Checks if durable subscribers exist before starting an adapter.
2, Starts the adapter instance.

Examples:

rib-adapter-controller.sh start rib-app-adapter-instance rib-rms.Alloc_pub_1

Application Builder 2-9

RIB Application Builder Tools

rib-adapter-controller.sh start rib-app-adapter-instance rib-rms.Alloc_pub_
1,rib-sim.ASNIn_sub_1

Stop Adapter

This function stops individual adapter instances. Adapter instances must be fully
qualified as rib-<app>.<Family>_<type>_<n>. A comma separated list of adapter
instances names can also be provided.

stop rib-app-adapter-instance <rib-app.Family_ type_1-list>

Examples:

rib-adapter-controller.sh stop rib-app-adapter-instance rib-rms.Alloc_pub_1
rib-adapter-controller.sh stop rib-app-adapter-instance rib-rms.Alloc_pub_
1,rib-sim.ASNIn_sub_1

Test Durable Subscriber for Adapter

This function tests if durable subscribers exist for topics associated with a given
adapter class definition. Adapter class definition must be fully qualified as
rib-<app>.<Family>_<type>. A comma separated list of adapter class definition
names can also be provided.

test durable-subscriber-exist-for-adapter-class-def <rib-app.Family_ type-list>

The function does the following:

1. It finds the topic names to which the input RIB application adapter class definition

publishes.

2. For each topic it publishes to, it checks to see if there is a durable subscriber
registered.

Examples:

rib-adapter-controller.sh test durable-subscriber-exist-for-adapter-class-def
rib-rms.Alloc_pub

rib-adapter-controller.sh test durable-subscriber-exist-for-adapter-class-def
rib-rms.Alloc_pub, rib-tafr.ASNOUtToASNOuUtAT tafr

Test Durable Subscriber for RIB Application

This function tests if durable subscribers exist for all publishing topics associated with
a given rib-app or rib-app-list (comma separated list without any spaces).

test durable-subscriber-exist-for-rib-app <rib-app-list>

The function does the following:
1. Finds all adapter instances that publish to a topic name for the given rib-app-list.

2. For each topic it publishes to, it checks to see if there is a durable subscriber
registered.

Examples:

rib-adapter-controller.sh test durable-subscriber-exist-for-rib-app rib-rms
rib-adapter-controller.sh test durable-subscriber-exist-for-rib-app
rib-rms, rib-sim

List RIB Application Adapters

The rib-adapter-controller lists all adapter instance for a given rib-app or rib-app-list
(comma separated list without any spaces).

2-10 Oracle Retail Integration Bus Operations Guide

RIB Deployment Configuration File Editor

list rib-app-adapters <rib-app-list>

Examples:

rib-adapter-controller.sh list rib-app-adapters rib-rms
rib-adapter-controller.sh list rib-app-adapters rib-rms,rib-sim

RIB Deployment Configuration File Editor

The RIB Deployment Configuration File Editor is an application used to configure the
rib-deployment-env-info.xml file, following installation. The editor tool simplifies user
interaction with the XML file by hiding the raw text form of XML. It provides a user
interface for adding, removing, and rearranging the elements of the RIB configuration.

Note: See the "RIB Application Builder Tools" in this chapter and
"rib-deployment-env-info.xml" in Chapter 3, "Backend System
Administration and Logging."

The tool is located in the RDMT package and installed with RDMT in the
<rib-home>/tools-home/RDMT directory. It is available as a menu selection from the
ribadmin sub menu. See also Chapter 9, "Diagnostic and Monitoring Tools."

Note: The editor is a GUI application. To execute it on a host other
than the one on which RDMT is installed, use an X server, such as
Exceed, and set the DISPLAY environment.

Important Installation Warning

Editor Usage

All rib-app-builder tools use the rib-deployment-env-info.xml as the single source of
truth about the deployment configuration. See "RIB Deployment Configuration File
Editor" in Chapter 3, "Backend System Administration and Logging."

All tools use the values in this file. Editing the file directly affects the compilation,
configuration, and deployment of the rib-apps. Use extreme caution and understand
the ramification of the values being manipulated.

Note: See the Oracle Integration Bus Implementation Guide.

Before editing the source file in rib-home, make a backup of the file and place it
securely outside of rib-home. Do not create a backup in the rib-home.

Key Rule

The rib-app-builder tools scan and check versions of all files within rib-home (except
for tools-home). The processes do not allow files to have the same name with only an
additional extension.

The following is an illustration of the editor interface.

Note: See the online help provided in the tool for additional details.

Application Builder 2-11

RIB Deployment Configuration File Editor

W Beplaymsent Configeration Fike Editor - rib-doploymest-ony. fsto i

Fie oo

01 | M5 S Canfiuraton | Soare

skt dor e
Webloge: Coman lame
et Eran s
it ves port runten
dmerdarves port profocol
e home

gpication Databass Carfepration st sbeon ordapaston

vy Dot ass Condepr st Bpphostion MA Configur s

Configune the Sepkoyment beearchy of the document. Walkd

The RIB Deployment Configuration File Editor allows users to do the following:
= Add, delete and move applications.

= Add, delete and move WebLogic instances.

= Add and delete Application Server instances.

= Configure JMS servers.

To edit files using the editor, do the following:

1. Select File from the menu bar. Click Open.

2. Navigate to the directory containing rib-deployment-env-info.xml.
3. Select the file and open it.

4. Complete the required task (for example, add, delete, or move).

5

Save the file using the File menu.

2-12 Oracle Retail Integration Bus Operations Guide

3

Backend System Administration and
Logging

, P |_RIBkernel |
RIB’s component distribution structure BIEES
RIB Runtime
Retail PLISQL RIE Functional Retail JavaEE
Application Artifacts Application
({RMS,RWMS) (SIM,RPM,AIP)

rib-func-artifact.war

rib-<app=>.ear for
JavaEE Application

rib-<app>.ear for PL/
- S

rib-public-api jar

rib-private-

COMIMON,jar

rib-public-api-
confjar(sample

Emor Hospital Tables Error Hospital Tables

database-library.zip

rib-private-kernel-
database-library.zip

nfo.
ib-inventory-
rib-
system.properties

This illustration includes the names of actual RIB files and shows where they are
located in the deployment picture.

rib-<app>-adapters.xml

This file specifies all the adapter instances needed by RIB to interact with an
application. Each rib-<app_name> has its own rib-<app-name>_adapter.xml.

The file is located in the rib-home/application-assembly /rib-<app> directory. After
deployment, it is found in the path $application_instance_home/$application_name,
where $application_instance_home is the WebLogic instance path where the
application is deployed.

These are the standard RIB defined adapter types.

Backend System Administration and Logging 3-1

rib-<app>-adapters.xml

<subscribers> elements

The <subscribers> elements consist of multiple occurrences of <message-driven>
elements that define all the subscribers available for a particular application. Each
<message-driven> element consists of ID (the ID for the adaptor) and initialState (the
initial state of the adaptor) attributes. The initialState attribute for <message-driven>
adaptors accepts two values: running and stopped.

<subscribers>
<message-driven 1d="ASNIn_sub_1" initialState="running"/>
<message-driven id="ASNOut_sub_1" initialState="running"/>

Note: The only valid states are running and stopped, and they are
case sensitive.

<publisher> elements

The <publisher> elements consist of multiple occurrences of <timer-driven> or
<request-driven> elements, used to define all the publishers available for a particular
application.

<timer-driven>

This element is used to define publishers for PL/SQL (RMS and RWMS) applications.
Each <timer-driven> element consists of an id (specifies id for adaptor), initialState
(specifies the initial state of the adaptor) and timeDelay (delay after which the
GETNXT needs to call each time) attributes. The initialState attribute for
<timer-driven> adaptors accepts two values: running and stopped. This consists of an
element called <timer-task> which specifies the implementation details of the adaptor.
The <timer-task> element specifies the GETNXT implementation through the <class>
element.

<publishers>
<timer-driven id="Alloc_pub_1" initialState="running" timeDelay="10">
<timer-task>
<class name="com.retek.rib.app.getnext.impl.GetNextTimerTaskImpl" />
<property name="maxChannelNumber" value="1" />
</timer-task>
</timer-driven>

<request-driven>

This element is used to define publishers for Java EE (Oracle Retail Price Management
(RPM), Oracle Retail Store Inventory Management (SIM), and Oracle Retail Advance
Inventory Planning (AIP) applications. Each <request-driven> element consists of ID
(specifies ID for adaptor) and initialState (specifies the initial state of the adaptor)
attributes. The initialState attribute has a value of notConfigurable.

<publishers>
<request-driven i1d="ASNOut_pub_1" initialState="notConfigurable"/>
<request-driven id="DSDReceipt_pub_1" initialState="notConfigurable"/>

<hospital> element

This element specifies hospital related adaptor information. The structure is very
similar to the <publisher> element except that the name and value attribute in the
property element defines the different hospital adaptor types.

<hospitals>

3-2 Oracle Retail Integration Bus Operations Guide

rib-system.properties

<timer-driven id="sub_hosp_0" initialState="running" timeDelay="10">
<timer-task>
<class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask"/>
<property name="reasonCode" value="SUB"/>
</timer-task>
</timer-driven>

rib-<app>-adapters-resource.properties

These properties internationalize strings for internal RIB adapter key names.

Example:
sub_all.name=Subscribers

sub_all.desc=Manages all subscribers at the same time.

ASNIn_sub_1.name=ASNIn Subscriber, channel 1
ASNIn_sub_1.desc=Subscriber for the ASNIn family through channel 1.

ASNOut_sub_1.name=ASNOut Subscriber, channel 1
ASNOut_sub_1.desc=Subscriber for the ASNOut family through channel 1.

rib-<app>-plsql-api.xmi
This configuration file is specific to RMS and RWMS. RIB interfaces with RMS and
RWMS through two database procedures: GETNXT and CONSUME. This file contains
the calling signatures for these procedures, the parameters to be configured before
calling these procedures, and the implementation class for handling the objects
returned from these procedures.

rib-<app>.properties

These properties internationalizable strings for internal rib adapter key names.

Property Name and Default Value | Description

facility_id This property is used to refer to the warehouse routing
WNf i s, configuration. The value of this property is used to
defaultValue = "facility_id"; construct the facility type

dc_dest_id This property is used to refer to the warehouse
defaultValue = "*"- distribution center. Destination ID

facility_type_default Specifies the default facility type to be used by RWMS
defaultValue = "PROD": publishing adapters for calls to RWMS.

rib-system.properties

All properties for RIB have been classified into kernel properties and application
properties. This file contains kernel properties that are used specifically for the
functioning of the RIB kernel. They are mostly related to hospital retry configuration,
payload locations, or alerting.

Backend System Administration and Logging 3-3

rib-integration-flows.xml

Property Name and Default
Value

Description

hospital_attempt_max
defaultValue = "5";

This property refers to the maximum number of attempts to
try to push this record through RIB automatically. Once this
retry count is exceeded, the message remains in the RIB
Hospital DB but is no longer retried automatically

hospital_attempt_delay
defaultValue = "10";

This property refers to the value (in seconds) used to calculate
the next attempt time.

hospital_attempt_
delayIncrement

defaultValue = "10";

This property refers to the value (in seconds) used to calculate
the next attempt time. The next attempt time is calculated as:
hospitalAttemptDelay + (hospitalAttemptDelyIncrement *
attempt count). This is done so that the delay between each
attempt is longer than the previous delay.

numOfRecordsToRetry
defaultValue = "20";

This property refers to the maximum number of RIB Hospital
records to be retried in one RIB Hospital retry attempt.

xml_schema_base_url

defaultValue =
"http:/ /localhost:8888 /rib-
func-artifact”;

This property refers to the location of web application
(rib-func-artifact) which has RIB related XML Schema (XSD)
files.

log.default.file_path

defaultValue=$DOMAIN_
HOME /servers/$$SERVER
NAME/logs/$APP_NAME

This property refers to the location where log files are created
by the RIB application. By default this location is in the
logs/app_name directory inside the WebLogic instance home
where the app has been installed.

mail_smtp_host

defaultValue =
"mail.smtp.host";

This property is used to identify the smtp host from which to
send out emails.

mail_smtp_port
defaultValue = "25";

This property is used to identify the smtp port from which to
send out emails.

mail_smtp_from

defaultValue =
"admin@company.com";

This property refers to the email id that the RIB platform needs
to use to send the emails for administrative purposes.

war_http_port
defaultValue = "9080";

This property refers to the port number used by the web based
Hospital Retry Administration Tool.

wls.wallet.file.location

defaultValue=$DOMAIN_
HOME /serves/$SERVER
NAME

This property refers to the wallet file that contains the user
name/password details for connecting to the WebLogic
instance. The user should not change this value.

wls.wallet.map.name

defaultValue=rib-rms-wls

This property refers to the map name that is stored in the
wallet file for connecting to the WebLobic instance. The user
should not change this value.

wls.wallet.user.alias

defaultValue=rib-rms-wls-
user-alias

This property refers to the alias stored in the wallet file for
connecting to the WebLogic instance. The user should not
change this value.

rib-integration-flows.xml

This file is the single source of all values used by the RIB Application Builder tools to
define and configure the JMS topics as well as perform start and stop activities,
including subscriber checks. For RIB deployments this file should not be edited.

3-4 Oracle Retail Integration Bus Operations Guide

rib-deployment-env-info.xml

This file is packaged and deployed as part of the rib-func-artifacts war file.
Example:

<message-flow id="1">
<node id="rib-rms.Alloc_pub" app-name="rib-rms"
adapter-class-def="Alloc_pub" type="DbToJms">
<in-db>default</in-db>
<out-topic>etAllocFromRMS</out-topic>
</node>
<node id="rib-tafr.Alloc_tafr" app-name="rib-tafr"
adapter-class-def="Alloc_tafr" type="JmsToJms">
<in-topic>etAllocFromRMS</in-topic>
<out-topic name="topic-name-key-iso">etStockOrdersISO</out-topic>
<out-topic
name="topic-name-key-wh">etStkOrdersFromRIBToWH{*}</out-topic>
</node>
<node id="rib-sim.StockOrder_sub" app-name="rib-sim"
adapter-class-def="StockOrder_sub" type="JmsToDb">
<in-topic>etStockOrdersISO</in-topic>
<out-db>default</out-db>
</node>
<node id="rib-rwms.StockOrder_sub" app-name="rib-rwms"
adapter-class-def="StockOrder_sub" type="JmsToDb">
<in-topic>etStkOrdersFromRIBToWH1</in-topic>
<out-db>default</out-db>
</node>
</message-flow>

rib-deployment-env-info.xml

This file is the single source of all values used in the RIB Application Builder tools and
is the only (or should be the only) file that requires editing for using them. The RIB
Installer gathers the appropriate values from the user, constructs the file, and invokes
the appropriate tools.

For example, when the RIB Application Builder is used to extract error hospital tables
from an application schema, this file supports those tables.

The RIB Application Builder tools can be executed independent of the RIB installer
tool. In some cases the file must be edited manually.

app-in-scope-for-integration
This section defines what applications are in scope for this environment.
Example:

<app id="rms" type="plsgl-app"/>
<app id="tafr" type="tafr-app"/>
<app 1d="sim" type="javaee-app"/>
<app i1d="rwms" type="plsqgl-app"/>
<app 1d="rpm" type="javaee-app"/>
<app id="rfm" type="plsqgl-app"/>

rib-jms-server
This section defines the JMS server information.
Example:

<jms-server-home>linuxl@linuxl:/home/oracle/oracle/product/10.2.0/db_

Backend System Administration and Logging 3-5

rib-deployment-env-info.xml

1</jms-server-home>
<jms-url>jdbc:oracle:thin:@linux1:1521:0ral0g</jms-url>
<jms-port>1521</jms-port>
<jms-user-alias>jmsl_user-name-alias</jms-user-alias>

rib-application-server
This section defines the WebLogic Server information.
Example:

<weblogic-domain-name>base_domain</ weblogic-domain-name >
<weblogic-domain-home>soal@linuxl: /home/soal/Oracle/Middleware/user_
projects/domains/base_domain</weblogic-domain-home>
<weblogic-admin-server-port>7001</ weblogic-admin-server-port >
<java-home>/usr/java/jdkl.5.0_01</java-home>

rib-javaee-containers

This section defines the WebLogic instances for each of your rib-<app> applications
that are in-scope.

Example:

<wls id="rib-rms-wls-instance">
<wls-instance-name>rib-rms-wls-instance</wls-instance-name>
<wls-instance-home>
soal@linuxl:/home/soal/Oracle/Middleware/user_projects/domains/base_
domain/servers/rib-rms-wls-instance</wls-instance-home>
<wls-listen-port protocol="http">7003</wls-listen-port>
<wls-user-alias>rib-rms-wls-user-alias</wls-user-alias>
</wls>

rib-applications
This section defines the rib-<app> specific information for each applicable rib-<app>.
Example 1: RIB-RMS (for app-type=PL/SQL)

<rib-app id="rib-rms" type="plsgl-app">
<deploy-in refid="rib-rms-wlsl" />
<rib-admin-gui>
<web-app-url>URL to the rib admin gui web app.</web-app-url>
<web-app-user-alias>rib-rms_rib-admin-gui_
web-app-user-alias</web-app-user-alias>
</rib-admin-gui>

<notifications>
<email>
<email-server-host>mail.oracle.com</email-server-host>
<email-server-port>25</email-server-port>
<from-address>rib@oracle.com</from-address>
<to-address-list>rib@oracle.com</to-address-1list>
</email>
<jmx/>
</notifications>

Example 2: Application Database (for app-type=PL/SQL)

<app-database>

3-6 Oracle Retail Integration Bus Operations Guide

remote_service_locator_info_ribserver.xml

<app-url> DB host URL for pl/sgl application</app-url>
<app-db-user-alias>rib-rms_app-database_user-name-alias</app-db-user-alias>
</app-database>

Example 3: Java EE application with JNDI information defined

<jndi>

<url>t3://mspdv170:18022/sim-app</url>
<factory>weblogic.jndi.WLInitialContextFactory</factory>
<user-alias>sim_jndi_user-name-alias</user-alias>

</jndi>

Example 4: Error Hospital Database (for app-type=JavaEE/TAFR)

<error-hospital-database>
<hosp-url>jdbc:oracle:thin:@mspdvl170:1522:rrtsl170dv64</hosp-url>
<hosp-user-alias>rib-rms_error-hospital-database_user-name-alias</hosp-user-alias>
</error-hospital-database>

commons-logging.properties

RIB uses the Apache Commons Logging subsystem as the logging interface. For RIB
deployments this file should not be edited.

log4j.xml

The log4j Open Source software is used to control all RIB logging. This software
requires the log4j.xml file to configure the file name, logging level, and type of file
used.

rib-app-builder-paths.properties

For RIB deployments this file should not be edited

rib-application-assembly-info.xml

This is a non editable file that describes the structure of the rib-<app>.ear and the
resources it uses.

retail_service_config_info_ribserver.xml

This is a non editable file that describes the service related configuration used by
rib-<app> to identify the relevant service implementations.

remote_service locator _info_ribserver.xml

This is a non editable file that describes the JNDI related configuration used by
rib-<app> to invoke remote E]JBs hosted on Java retail apps (for example, RPM and
SIM). This file is built runtime, based on the information provided in
rib-deployment-env-info.xml.

Backend System Administration and Logging 3-7

RIB Logging

RIB Logging
Alllogging in RIB is through log4j, the Apache Software Foundation's Open Source
software. For details about log4j visit the Apache Software Foundation's log4j home
page.

Log Level Recommendations

The logging level must be adjusted for the phase of the deployment. What is
appropriate in development and test (DEBUG) is not appropriate in production
(INFO).

There are some logs such as audit and timing that may be used differently at certain
phases as well. Audit is either on (DEBUG) or off (INFO); the same is true with
timings.

Note: See "RIB Timings Utility."

As a rule, the appropriate level is INFO.

Changing Logging Levels
RIB use of log4j allows the control of logging levels to suit the deployment and

situation. There are two methods of setting the logging levels: directly manipulating
the log4.xml file using a text editor, and the RIB Administration GUL

RIB Administration GUI

The RIB Administration GUI allows control of the logging levels for each adapter
individually. It permits the change to affect only the runtime logging and is dynamic.
It also provides the ability to persist the change so that the adapters retains that level
when restarted. This is the recommended approach.

log4j.xml Configuration File

The RIBLOGS log4j.xml file can be directly edited. This requires that the adapters be
bounced for the change to take effect. See the following sections for what to edit, as
related to the type of log (RIBLOG, Timing Log, and so on).

Adapter Logging (RIBLOGS)

The RIB adapter code contains logging logic that writes all of it runtime logs to the
RIBLOG log files. The logs are written to the path <rib-application_instance_
home>/logs/<rib-app>.

Example:

/ul0l/rrtswls/Oracle/Middleware/user_projects/domains/base_
domain/servers/rib-rms-wls-instance/logs/rib-rms

The RIBLOG file names are in this format: <adapter-instance-name>.rib.log.
Example:

Alloc_pub_1l.rib.log
ASNIn_sub_1l.rib.log
ASNOut_sub_1.rib.log

3-8 Oracle Retail Integration Bus Operations Guide

RIB Logging

To enable this function, parameters must be set per adapter.

Be careful because there are multiple entries for each adapter instance in the log4j.xml
file. Search for the section of the log4j.xml file:

<!--RIB Appender for adapterInstance: Alloc_pub_l1-->

RIB Timing Logs

The RIB messaging components code is instrumental to log timing entries on the
internal activities whenever they create, transform, route, filter, or subscribe to
messages on RIB. These timings logs are written using the log4j logging mechanism.

The timings log files follow the name convention
<adaptor-instance-name>.timings.log and are found in the same locations as the
RIBLOGS.

Typically, one timings log file is created per component (EJB or other) that holds the
entries for that component. These files are cumulative, meaning that they do not get
overwritten with every initialization of the component, but they append new entries to
the current information already recorded. The files do roll over after they reach a
certain configurable size and backup files are created to preserve previous entries.

Each entry in the timings log represents a timestamp of a particular event in the RIB
component, listing the date and time information, name of the component, thread ID
and a distinct message for each event. The list of time stamped events includes such
items as the start time and/or end time of the following actions:

s Overall publication, subscription, routing, or transformation process

= Calls to store procedures (getnxt and consume)

= Actual publication and subscription of messages to and from the JMS server
= Calls to the RIB Hospital to check for dependencies and insert messages

= Calls to other applications to process messages after subscription (injectors)

The log4j.xml file must have the "level value" property set to DEBUG. This tag is not
normally present in the standard log4j.xml file, it must be added. The following
example shows how and where.

Note that there are multiple entries for each adapter instance in the log4j.xml file.
Search for the section of the log4j.xml file:

<!--Timings Logger for adapterInstance: -->".

Before:

<logger additivity="false" name="rib.pub.timings.Order_pub_1">
<!-- Possible levels are TRACE, DEBUG, INFO, WARN, ERROR and FATAL -->
<level value="INFO"/>
<appender-ref ref="appender.rib.pub.timings.Order_pub_1"/>
</logger>

After:

<logger additivity="false" name="rib.pub.timings.Order_pub_1">
<!-- Possible levels are TRACE, DEBUG, INFO, WARN, ERROR and FATAL -->
<level value="DEBUG"/>
<appender-ref ref="appender.rib.pub.timings.Order_pub_1"/>
</logger>

Backend System Administration and Logging 3-9

RIB Logging

RIB Audit Logs

RIB has an auditing feature that logs a message as it passes though the RIB
infrastructure. Each messaging component can be set to write the message, and only
the message, to a separate log file. This allows the tracing of message content from
publication to subscription, and all steps, such as a TAFR, in between.

There are two benefits to this mechanism: the ability to audit each step, and the ability
to create a recovery plan. The messages can be played back, without effort being spent
to extract them from inside other more systemic log files.

The log4j.xml can be edited to remove the <audit-entry> tag from the output and to
have only the message in the file.

<!--Audit Appender for adapterInstance: ASNIn_sub_1-->
<appender class="org.apache.log4j.FileAppender"
name="appender.rib.sub.audit.ASNIn_sub_1">
<param name="File" value= "/u00/webadmin/product/10.3.3/WLS/user_
projects/domains/rib_domain/servers/rib-rms-server/logs/rib-rms/ASNIn_sub_
l.audit.log"/>
<!--param name="MaxFileSize" value="2048KB"/-->
<!--param name="MaxBackupIndex" value="1"/-->
<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern" value="<audit-entry
audit-time="%$d{yyyy.MM.dd
HH.mm.ss, SSS}" > ; $n¥m¥n< /audit-entry> %n" />
</layout>
</appender>

Remove the “value=" in the ConversionPattern with %m%n

RIB also can log a set of audit logs used to audit all the events processed by RIB. To
enable this function, parameters must be set per adapter.

Proceed cautiously because there are multiple entries for each adapter instance in the
log4j.xml file. Search for the section of the log4j.xml file:

<!--Audit Logger for adapterInstance: ItemLoc_pub_1-->.

Before:

<!--Audit Logger for adapterInstance: ItemLoc_pub_1-->
<logger additivity="false" name="rib.pub.audit.ItemLoc_pub_1">
<!-- Possible levels are TRACE, DEBUG, INFO, WARN, ERROR and FATAL -->
<level value="INFO "/>
<appender-ref ref="appender.rib.pub.audit.ItemLoc_pub_1"/>
</logger>

After:

<!--Audit Logger for adapterInstance: ItemLoc_pub_l-->
<logger additivity="false" name="rib.pub.audit.ItemLoc_pub_1">
<!-- Possible levels are TRACE, DEBUG, INFO, WARN, ERROR and FATAL -->
<level value="DEBUG"/>
<appender-ref ref="appender.rib.pub.audit.ItemLoc_pub_1"/>

Sample Log Entry:

<audit-entry audit-time="2008.01.28 11.37.57,642">

<?xml version="1.0" encoding="UTF-8"?>

<RibMessages
xmlns="http://www.oracle.com/retail/integration/rib/RibMessages"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

3-10 Oracle Retail Integration Bus Operations Guide

RIB Logging

xsi:schemalocation="http://www.oracle.com/retail/integration/rib/RibMessages
http://mspdev85:7777/rib-func-artifact/integration/xsd/RibMessages.xsd" >
<ribMessage><family>Banner</family><type>BannerCre</type> <id>l</id>
<ribmessageID>Banner_pub_1]2008.01.28 11:37:57.500|6936</ribmessagelD>
<publishTime>2008-01-28 11:37:57.500 CST</publishTime>
<messageData><BannerDesc
xmlns="http://www.oracle.com/retail/integration/payload/BannerDesc"
xmlns:ribdate="http://www.oracle.com/retail/integration/payload/RIBDate"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemalocation="http://www.oracle.com/retail/integration/payload/BannerDe
sc http://mspdev8l:7777/rib-func-artifact/payload/xsd/BannerDesc.xsd
http://www.oracle.com/retail/integration/payload/RIBDate
http://mspdev81:7777/rib-func-artifact/payload/xsd/RIBDate.xsd">
<banner_id>l< /banner_id> <banner_name>B&amp;M< /banner_
name> < /BannerDescé>

</messageData>

<customData></customData><customFlag>F</customFlag>

</ribMessage>

</RibMessages>

Other RIB Management Logs

The following are examples of other RIB management logs.

deploy.rib.log

This log will track the source rib-app-builder home that pushed the changes to this
WebLogic instance. For example:

Uploading configuration file from machine (mspdev81l)
dir(/stage/Ribl1324-ms7.1/Rib1324ForAl113xxApps/rib-home/deployment-home/bin/../../
../rib-home) at(Mon Jan 28 11:15:57 PST 2008).

management.rib.log

RIB maintains a management log which is used to keep track of the WebLogic instance
on the whole.

This log usually is written during the startup of an WebLogic instance. The
recommendation is that each rib-app be deployed in a separate WebLogic instance, so
management logs are specific to a rib-app.

The management log writes RIB information common to all the components like
loading property files and creating logging files.

Example:

2008-02-01 14:33:23,928 [AJPRequestHandler-RMICallHandler-6] DEBUG
com.retek.rib.management.adapters.client.action.StopAdapterAction - Invoking
operation to stop the adapters

2008-02-01 14:33:23,928 [AJPRequestHandler-RMICallHandler-6] DEBUG
com.retek.rib.monitor.engine.MBeanAbstractFactory - Invoking MBean operation
domain (rib-rms) objectNameProperty (level=adapters, type=sub,name=Receiving_sub_1)
methodName (stop) parameter ([Ljava.lang.Object;@1452al)
signature([Ljava.lang.String;@3d06a4) .

global.rib.log—Example

2008-02-06 10:14:26,688 [AJPRequestHandler-RMICallHandler-7] DEBUG
retek.com.retek.rib.ui.view.tags.IteratePropertyTag.com.retek.rib.management .adap
ters.model .AdapterTypes - Invoking Operation returnStatusForAll of MBean.

Backend System Administration and Logging 3-11

RIB Logging

2008-02-06 10:14:26,777 [AJPRequestHandler-RMICallHandler-7] DEBUG
retek.com.retek.rib.ui.view.tags.IteratePropertyTag.com.retek.rib.monitor.engine.M
BeanAbstractFactory - Invoking MBean operation domain(rib-rms)
objectNameProperty (level=types, type=pub, name=pub_all)

methodName (returnStatusForAll) parameter (null) signature(null).

2008-02-06 10:14:26,780 [AJPRequestHandler-RMICallHandler-7] DEBUG
retek.com.retek.rib.ui.view.tags.IteratePropertyTag.com.retek.rib.management.adapt
ers.model.AdapterTypes - Operation returnStatusForAll for type pub invoked
successfully :<type name="pub"><adapter id="Alloc_pub_1" name="Alloc Publisher,
channel 1" state="running" /><adapter id="SeedData_pub_1" name="SeedData
Publisher, channel 1" state="running" /><adapter id="SeedObj_pub_1" name="SeedObj
Publisher, channel 1" state="running" /><adapter id="WOOut_pub_1" name="WOOut
Publisher, channel 1" state="running" /><adapter id="Banner_pub_1" name="Banner
Publisher, channel 1" state="running" /><adapter id="Transfers_pub_ 1"
name="Transfers Publisher, channel 1" state="running" /><adapter
id="RcvUnitAdj_pub_1" name="RcvUnitAdj Publisher, channel 1" state="running"
/><adapter

id="Vendor_pub_1" name="Vendor Publisher, channel 1" state="running" /><adapter
id="WH_pub_1" name="WH Publisher, channel 1" state="running" /><adapter
id="RTVReqg pub_1" name="RTVReq Publisher, channel 1" state="running" /><adapter
id="MerchHier_pub_1" name="MerchHier Publisher, channel 1" state="running"
/><adapter id="UDAs_pub_l1" name="UDAs Publisher, channel 1" state="running"
/><adapter id="Order_pub_l1" name="Order Publisher, channel 1" state="running"
/><adapter id="Items_pub_1" name="Items Publisher, channel 1" state="running"
/><adapter i1d="DiffGrp_pub_l1" name="DiffGrp Publisher, channel 1" state="running"
/><adapter id="Item

Loc_pub_1" name="ItemLoc Publisher, channel 1" state="running" /><adapter
id="Partner_pub_1" name="Partner Publisher, channel 1" state="running" /><adapter
id="Diffs_pub_1" name="Diffs Publisher, channel 1" state="running" /><adapter
id="WOIn_pub_1" name="WOIn Publisher, channel 1" state="running" /><adapter
id="Stores_pub_l1" name="Stores Publisher, channel 1" state="running" /></type>

3-12 Oracle Retail Integration Bus Operations Guide

4

Integration Gateway Services (IGS) Testing

The RIB Integration Gateway Services (IGS) component is a set of standard Web
services that provide access to the RIB infrastructure. Once the IGS is installed, it
should be tested. The Oracle Retail Integration Bus Installation Guide describes a basic
test completed through the Oracle WebLogic Administration Console.

Note: See "Integration Gateway Services Installation Tasks" in the
Oracle Retail Integration Bus Installation Guide.

As part of this release, IGS includes a test suite that can be used by soapUl, a product
of Eviware that is used to test Web services. An open source version of soapUI is
available through the Eviware internet site, shown below.

Using the soapUl Tool and the IGS Test Suite

This section describes how to use the soapUlI tool and the IGS test suite.

Download soapUl
To download soapUl, do the following.

1. Download the latest release of the open source version of soapUI from the Eviware
internet site: http://www.soapui.org/

2. Using the documentation found at Eviware’s product home page, follow the
instructions for installing and configuring soapUL

Import IGS
To import IGS, do the following.

1. Open the soapUI tool. Right click Projects.
2. Click Import Project.

3. Select igs-service-test-soapui-project.xml, as shown in the following illustration.

Integration Gateway Services (IGS) Testing 4-1

Using the soapUl Tool and the IGS Test Suite

§ woapdll Startis Page 10007 4 e % T
[y| Mew soaplr Projest =t | ®
Irpogt Rermote Frojeck (e P 5
Save All Projects ol vt
Cpan Al Clodad Projects
= 4l Dpers Projects Working Cffline?
Fenane F2
M ‘Wiorkapar soaplif ran't eocen e fnsermet
Zwkch Workspece
soapll is urahle 1o access the Internet. This maght caese some ispaes
arine el F1 when doing Web Servce Tezling,
I youw kroower Chat ywou need Inlerresd Secess moorder o do Web
Sevice Testmg, pleass check wou Indemet Conpection
YRS, GOSN T
What's new in soapUI 2.57
soaplil 2.5, the REST Releasr,
soaplll 3.5 mowr inchudes market leadng support for REST 1esting
= —— In the new release you get fill sopport for REST Testg We wrould
l"”“"‘“‘ “"":’" | . fe Lo think it's a gem| soaplll REST Testing makes & possibis for
= == Preiocts o to o comnplete ReetTezta with or silhout a WADL.
[Descrigtion
jFl: il s Euresh Gopalnbyl ..
Praject ook A e i aemenenened
(operties | soapllleg Wipkg jettriog emor kg menory g
B e —

Execute IGS Test Cases

To execute IGS test cases, do the following.

1. Right-click the project to select run time, Launch TestRunner, as shown in the
following illustration.

4-2 Oracle Retail Integration Bus Operations Guide

Using the soapUl Tool and the IGS Test Suite

B e ——

File Tools Desktop Help

Bas XN
= soapUI Starter F
Projects s
=B
Show Project Wiew Enter
Add WSDL U pUI
Add WaDL Ctd-F

MNew REST Service

ng

Launch TestRunner

Ilu:ﬂlmnmﬂ-iﬁT&dﬂumfud‘ispru@
e

Launch SO&P Monitor

Mew TestSuite Crl-T kahle
MNew MockService - Wet
R.enarne F2 r tha
Remove Delete :Ing,
Feload Project F&

Resolve lLorg
Close Project

Save Project Ctd-S

Save Project As el +Shift-S ' N

Impart Test Suite

Crnline Help F1 |ﬁ£

In the Launch TestRunner screen, for TestSuite, select <all> for all Web services; or
select the Web service to test.

In the Launch TestRunner screen (below) For TestCase, select <all> for all
operations; or select the operation to test.

Integration Gateway Services (IGS) Testing 4-3

Using the soapUl Tool and the IGS Test Suite

. Launch TestRunner eS|
Launch TestRunner [@?
| Specify arguments For launching soapUl TestRunner

[Basic | Overrides | Custom Args |

TestSuite: [{d} -
TestCase: [{d} v]
Print Report: [] Prints & summary report bo the console
Export JUnit Results: [] Exports results to a JUnit-Style report]
Export &ll: [] Expaorts all results {not only errors)
Root Folder: |C:'I,Llsers'l,‘ir&d1 GopalakrishnalDeskiop | [Browse. ..]
Coverage Report: |] Generate WSDL Coverage report {soapUI Pro only)
Cpen Report: [] Open generated HTML report in browser {soapUl Pra only)
Enable LI [] Enables LI components in scripks
TestRunner Path: | | [Braowse. .]
Save Project: [] saves project before running
&dd Settings: [] Adds global settings to command-line

@

4. Click the Overrides tab to enter the environment host and port. (This is the host
and port of the Oracle WebLogic server on which the igs-service.ear is deployed.
For example, linux1:7101.)

4-4 Oracle Retail Integration Bus Operations Guide

Using the soapUl Tool and the IGS Test Suite

Launch LoadTestRunner

Launch LoadTestRunner {@
Specify arguments for launching soapUI Load TestRunner

| Basic | Overrides | Custom Args |
Endpoint: |

Host:Port: |Iinux1:?101 |

Limit: | |

ThreadCount: | |

Username: | |

Password: |

5. Click Launch.

6. Results similar to those shown below are displayed on the console.

i soapUl TestRunner @

09:31:52,984 INFO [SoapUITestCaseRunner] running step [publishASHInDeletel lsingASMINRef - Sc| * |
09:31:53,015 DEBUG [SoapUIMultiThreadedHttpConnectionManager] HipConnectionManager.getC
09:31:53,015 DEBUG [SoapUIMultiThreadedHttpConnectionManager] Getting free connection, hostd
09:31:53,062 DEBUG [SoapUIMultiThreadedHttpConnectionManager] Freeing connection, hostConfi
09:31:53,062 DEBUG [SoapUIMultiThreadedHttpConnectionManager] Motifying no-one, there are ng
09:31:53,078 INFO [SoapUlTestCaseRunner] Assertion [SOAP Response] has status VALID
09:31:53,078 INFO [SoapUITestCaseRunner] Assertion [Contains] has status VALID

09:31:53,078 INFO [SoapUITestCaseRunner] Finished running soapll testcase [publishASNINDelet
09:31:53,078 INFO [SoapUITestCaseRunner] soaplll suite [ASNINnPublishingPortBinding TestSuite] 1

SoapUL 2.5.1 TestCaseRunner Summary

Time Taken: 5238ms

Total TestSuites: 1

Total TestCases: 3 (0 failed)
Total TestSteps: 21

Total Request Assertions: 42
Total Failed Assertions: 0
Total Exported Results: 0

[

Integration Gateway Services (IGS) Testing 4-5

Using the soapUl Tool and the IGS Test Suite

Note: For detailed instruction on test execution and to gain a better
understanding of testing output, see soapUI tool documentation at the
Eviware internet site: http://www. soapui.org/

4-6 Oracle Retail Integration Bus Operations Guide

O

RIB and JMX

This section describes the RIB JMX infrastructure. J]MX is a specification that provides
capability for runtime management of Java components. Each RIB software
components (PublisherEjb, SubscriberEjb, TafrEjb, HospitalRetryEjb, and so on)
provides its own management facility by implementing management beans.

RIB MBean components use uniform registration, deployment, and communication
mechanisms provided by the RIB J]MX infrastructure.

RIB uses log4j to log business and system events in the RIB runtime system. The
definitions of the loggers are statically defined and come from a configuration file
(log4j.xml). As logging is an expensive process we need to provide capability to
manage log levels dynamically. The RIB Administration UI Log Manager MBean
registers itself through the standard RIB JMX registration process at application
startup. It provides an API to access current RIB loggers and change the log levels.

The AlertPublisherFactory is a factory that allows the user to select what alerting
mechanism they want. A new JMX alerting mechanism will be added to the system.
The JmxAlertPublisher class extends NotificationBroadcasterSupport and provides
JMX notification capability. The JMX alerting capability is only available when running
inside a container. A message type attribute will be added to the Alert class to provide
the message filtering capability.

Any third party JMX console compatible with the Java EE container can be used to
manage RIB components. RDMT uses the JMX command line interface provided by
this design.

Note: See "Java Management Extensions (JMX)" in the Oracle Retail
Integration Bus Implementation Guide.

RIB JMX Client

RIB provides a command line interface to the RIB JMX system. The client is shipped as
Java classes in the jmx-cmd-line-ui.jar. The entry point is JmxClientMain and allows
the user to either execute a single JMX command or run JMX commands in an
interactive shell. There is a menu selection that invokes the interactive shell feature.
See Chapter 9, "Diagnostic and Monitoring Tools," for examples of how to interface to
this utility.

User Interface

JMXClient> help
Executing command : JmxCommand (help) .
exit

RIB and JMX 5-1

Third Party JMX Client Example

Example: exit

info objectName
Example ==> OAS: info oc4j:j2eeType=JVM,name=single,J2EEServer=standalone

setattribs ObjectName attributeNamel attributeValuel [attributeName?2
attributevalue2]...

setattribs will only work with attribute types that have

a constructor with java.lang.String argument.
Example ==> OAS: setattribs
ocdj:j2eeType=JTAResource, name="oc4j-tm", J2EEServer=standalone transactionTimeout
31

getattribs ObjectName [attributel] [attribute2]..

Example ==> OAS: getattribs oc4j:j2eeType=JVM, name=single, J2EEServer=standalone
javaVersion freeMemory

Example ==> WLS: getattribs rib-rms:appName=rib-rms, name=ribLogManager
CurrentLoggerNames

help [command]
invoke ObjectName methodName pramTypel paramValuel [pramType2 paramValue2]...

Example ==> OAS: invoke

ocdj:j2eeType=JNDINamespace, name=JNDINamespace, J2EEServer=standalone
getAl1BindingsAsXMLString

Example ==> OAS: invoke oc4j:j2eeType=JVM, name=single, J2EEServer=standalone
getproperty java.lang.String java.library.path

Example ==> WLS: invoke rib-rms:appName=rib-rms, level=application startAll
list objectName

Example: list *:*

close
Example: close

connect jmxServiceUrl jmxUser jmxPassword jmxConnectionProtocolProviderPackage
Example ==> OAS: connect service:jmx:rmi://localhost:23791/0oc4j ocdjadmin
oc4jadmin oracle.ocd4j.admin.jmx.remote

Example ==> WLS: connect
service:jmx:t3://localhost:8001/jndi/weblogic.management .mbeanservers.runtime
weblogic weblogicl weblogic.management.remote

Previous command successful: JmxCommand (help) .
JMXClient>

For clients such as RDMT that might issue single JMX commands from shell scripts,
the JmxClientMain class provides a user interface that is similar to the JMX commands
above, with additional connection options for each command.

Third Party JMX Client Example

This example is for the Sun JConsole tool.

See:
http://java.sun.com/developer/technicalArticles/J2SE/jconsole.ht
ml
http://java.sun.com/j2se/1.5.0/docs/guide/management/jconsole.ht
m

Complete the following steps.

5-2 Oracle Retail Integration Bus Operations Guide

http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html
http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html
http://java.sun.com/j2se/1.5.0/docs/guide/management/jconsole.htm
http://java.sun.com/j2se/1.5.0/docs/guide/management/jconsole.htm

Third Party JMX Client Example

1. Copy the following files to the host where jconsole will run.
wljmxclient.jar
2. Create a startup file that sets the properties and classpath:

jconsole

-J
-Djava.class.path=$JAVA_HOME/lib/jconsole.jar:$JAVA_HOME/lib/tools.jar:SWL_
HOME/server/lib/wljmxclient.jar

-J-Djmx.remote.protocol .provider.pkgs=weblogic.management .remote -debug

3. Start the JConsole and log in to MBean server using a connect URL (for example,
servicejjmx:rmi:// /jndi/iiop:/ /localhost:18006 / weblogic. management.mbeanser
vers.runtime).

[7] IConsole: Mew Connection =]

: S,
New Connection e
) Local Process:

MName | FID | |
wiblogic Server 1GE4]L |-
wiblogic Server 21803
wizblogic, Server 14231
weblogic. Server 16200
weblogic. Server 12939
weblogic. Server 20073 (5

® Remote Process:

Usagpe: <hdsthame =i <port > O Service: mx<proteco] = <sapc-

—_—
Username: weblogic | Password; |esssssss

1
Lonnect || Cancel l

4. Select and open any one of the MBean. It opens a window with four tabs:
Attributes, Operations, Notifications, and Info.

a. The Attributes tab provides information about the attributes of the MBean.

RIB and JMX 5-3

Third Party JMX Client Example

Connection Window Help

E qiciser

J it f Ao | l6Eal o SELBO0G, | b

Vi runtinme

(Overview [Memory [Threads [Classes [VM Summary [MEeans |

) su

oA FIELNGREY PU0. T
o= o BTV _pubs_1

o o Recenang_pub_ 1
o i SOSanes_pub. 1

o o SkCounSCh pub, 1

& 2 hypes
T b
¢ @ application
&= Cperations
& Natifications
& @@ ribLogM anager
& danributes
&= Opeérations
& Hgiifications
& @ ribProperiies
& Aanributes
o Oprations
= Hotifications

sim

¢ 2 rib=gim
¢ sctapers

% ® AsMin,sub. 1

-

& Oparations

o N i 38l
o @ QrProchg,sug. 1
o & Diffs_sub_1
o= @ DiaSi_sul_1
o= i nemboc_sub_1
o= o mems_sub_1
o o MerchHier sub_1
o o Ordder_sub, 1
& W Pamner, suls 1
& W PrevPreChe, siits. 1
& & RTVReq.sub_1
& @ Rovinitad), sub, 1
& & RegProChg.sub. 1
& i SO5tatus_sub_1
& @ SeedData_sub_ 1
o= @ SrockOrder_sub_1
o= i Srores_sub_1
o= @ Vendor_sub_1
o= M WH_zub_1

7= rypes

¢ sub sl

= Artribute values

Hamg] Vialue
JDescription [Subscrier for 1he S5MNIN famik ihrough channel 1
o AEHIn_sub._ 1
Infial State running
Hame AGHIR Subsonber, channg 1

b. The Operations tab includes the list of operations supported by that MBean.

B
o 3 Mimplsman
o [defautt
= ocd
- Drib-sim
T Srit-sm
O3 adach

tatice,

S hosp
o e _hosp_0
o sus_hoss 1
¥ 3 _sub
o ASNOW_pub_Y
o DSOReceEps_|
o kgt pub_1
o wwRe_pub_ 1
W PreCogRig_gub_1
@ RT3
o Recexing_pub_t
@ Eogmtus_pub_t
o SHCounSn_pub_1
2 sun
o ASHIn_sub_1
@ CiProchg_suk_|
o Ot sub_3
L

o RTVFeq_ s 1
B ReUnlAS_sup_|
@ RegPrechy_ w1
o S05tats_sub_1
@ Eoodbiata_sub_{
o SlockOrder_sud_|
o Stoes_sub_1
o Vendar,_sub_1
A AH_sub_1

o apgiicaton

W ribLegManigar

o rinPrapenies

IRALANGSIN | enurnstats | ()

ImeataogSing | g ()

ImeaLann S | gunmasate | (}

LIS | caiperced |{)

[morresn |

c. The Notifications tab includes the list of notifications captured on that MBean.
(You must subscribe for capturing the notifications.) Subscribing,
unsubscribing, and clearing notifications can be done from this tab.

5-4 Oracle Retail Integration Bus Operations Guide

Third Party JMX Client Example

[Summany_ | Mamn

MEsans
go it | Opmatums | Mostotens(i) | o |
o O3 Mimplimantstion - T
~ S dotaut Tmeftace. Tipe Mesagn [Fvorn_Jeaur,
= ocd
- Drib-sim
T Srit-sm
O adagbars
S hosp
@ s o0
o sus_hoss 1
¥ 3 _sub
o ASNOU_pub_t
B DSOReceRL_pE_1
o s _pub_1
o wwRe_pub_ 1
W PreCrgRug pub_1
@ RT3
o Recexing_pub_t
@ Eogmtus_pub_t
o SHCounSn_pub_1
2 sun
o ASHIn_sub_1
@ Cifroihg_sus 1
o Ot sub_3
L

o Ores_sub_1
o PrePrechg_sub 1

o S05tats_sub_1
@ Eoodbiata_sub_{
o SlockOrder_sud_|
o Stoes_sub_1
o Vendar,_sub_1
A AH_sub_1

o apgiicaton

W ribLegManigar

o rinPrapenies

Sutncritn Unisscrm lll

d. The Info tab provides details about the MBean.

Connection
[Summary | Bamony | Teewads | Clises | MBoans | V8 |
MEsans
B
& 3 Mimplmanttice
o [defautt
= ocd
- Drib-sim
T Srit-sm
O adagbars
S hosp
o e _hosp_0
o sus_hoss 1
¥ 3 _sub
o ASNOW_pub_Y
o DSOReceEps_|
o s _pub_1
o wwRe_pub_ 1
W PreCogRig_gub_1
o RTV_pub_t
o Recexing_pub_t
@ Eogmtus_pub_t
o SHCounSn_pub_1
2 sun
o ASHIn_sub_1
@ CiProchg_suk_|
o Ot sub_3
L

1

o Eoms_sut_1
o MeachHir_sub_1
o Ores_sub_1
o PrePrechg_sub 1
o RTVFeq_ s 1
B ReUnlAS_sup_|
@ RegPrechy_ w1
o S05tats_sub_1
@ Eoodbiata_sub_{
o SlockOrder_sud_|
o Stoes_sub_1
o Vendar,_sub_1
A AH_sub_1

o apgiicaton

W ribLegManigar

o rinPrapenies

[morresn |

e. When an MBean is subscribed for notifications, you can see the list of
notifications that occurred for that MBean. The default is zero.

RIB and JMX 5-5

Third Party JMX Client Example

Comnoction

MEsans

e | Migutes | Opewations | Neeficatinsio] | o |

& 3 Mimplmanttice Times Tre

Message

Evni

Eaur,

- C detautt
= ocd
- Drib-sim
T Srit-sm
& S adagtirs
S hosp
& pt_hots 0
o sus_hoes 0
¥ 3 _sub
o ASNOW_pub_Y
o DSOReceEps_|
o kgt pub_1
o iwflen_pub_1
W PreCogRig_gub_1
o RTV_pub_t
o Recexing_pub_t
@ Eogmtus_pub_t
o SHCounSn_pub_1
2 sun
o ASHin_sub_1
M Cifrochg g
o Ot sub_3

L
o Eems_sub_1
o MeachHir_sub_1
W Ot
o PrePrechg_sub 1
o RTVFeq_ s 1
B ReUnlAS_sup_|
@ RegPrechy_ w1
o 505taks_sub_1
@ Eoodbiata_sub_{
o SlockOrder_sud_|
o Stoes_sub_1
o Vendor_sut_{
A AH_sub_1

o apgiicaton

W ribLegManigar

o rinPrapenies

= e
= I syswm

Sutncritn Unisscrm lil

f. When some operations of the subscribed MBean are executed/invoked,
notifications are captured under the Notifications tab.

Comnoction

[Summary | Bamony | Thewads | Climses | MBoans | V8 |
MBeans

Free

& 3 Mimplmanttice

o detaul
= ocd

TimeStamg. e
TEAG:07 730 __com aracle nib sB-3im Nesra a¢,_3ub_1 ninimastais munmng

UsnrDta] Seghium
15

- Drib-sim

oL OnaEh b -Sim ETLOE_Sub_Y. runbmELate sty

[HOTEICATION:

cerm oracle rib ri-sim NesrLoe_

T Srit-sm
& S adagtirs

S hosp
& pt_hots 0
o sus_hoes 0

¥ 3 _sub
o ASNOW_pub_Y
o DSOReceEps_|
o kgt pub_1
o iwflen_pub_1
W PreCogRig_gub_1
o RTV_pub_t
o Recexing_pub_t
@ Eogmtus_pub_t
o SHCounSn_pub_1

2 sun
o ASHIn_sub_1
M Cifroihg_tub_t
o Ot sub_3
L

B ReUnlAS_sup_|
@ RegPrechy_ w1
o 505taks_sub_1
@ Eoodbiata_sub_{
o SlockOrder_sud_|
o Stoes_sub_1
o Vendor_sut_{
A AH_sub_1

o apgiicaton

W ribLegManigar

o rinPrapenies

= e
- I sptem

2 runbmaitate sppes
o aracle rib rE-3im e oc_sub_1 nunimastas sopprg |

i
v ana

aracmana..
|van rreana._.

Eour.
B3

wvar reana

s

Sutncritn Unisscrm lil

5-6 Oracle Retail Integration Bus Operations Guide

6

RIB Administration GUI

RIB provides four types of adapters that Oracle Retail applications can exploit to
integrate with one another. These adapter types are publisher, subscriber, TAFR, and
hospital retry adapters. They have been built using different technologies based on
their particular needs.

Subscriber and TAFR adapters use Message Driven Bean (MDB) technology to register
with JMS topics and receive messages for further processing.

Publisher and hospital retry adapters make use of the Java SE (Standard Edition) timer
facility to schedule repetitive events. These events trigger calls to Enterprise Java
Beans (EJB) to query application tables for messages to publish to the JMS server.

A fifth type of adapter exists for publishing messages in a pushing fashion, which the
Retail Java EE applications, such as SIM and RPM, invoke at will for publishing
messages. These are not controlled via this framework, they are always on.

Due to the variety of technologies used by the adapters, the goal of the RIB
Administration GUI is to isolate users from these differences and provide a common
management interface that can be used to control the state of the adapters and logging.

RIB Administration URLs

RIB Administration tools are obtained through URLs within each of the deployed
rib-<apps>.

RIB Administration GUI

http://<server>.us.oracle.com:<http-port>/rib-<app>-admin-gui/
Replace <server> with the name or IP address of the server in the environment in
which the rib-<app> is deployed.

Replace <http-port> with the port number that the Oracle Application Server is
listening on (for example, 7777).

Replace <app> with one of the following:

| rms
= tafr
| rwms
m Sim

RIB Administration GUI 6-1

RIB Admininistration GUI Home

RIB Functional Artifacts

http://<server>.us.oracle.com:7777/rib-func-artifact/
Replace <server> with the name or IP address of the server in the environment that

has the rib-<app>'s deployed.

RIB Message Flows

http://<server>.us.oracle.com:7777/rib-func-artifact/rib-integration-flows.xml

RIB Payloads (xsds)

http://<server>.us.oracle.com:7777/rib-func-artifact/payloads/xsd

RIB Admininistration GUI Home

On the Home screen, click Adapter Manager to view all adapters for the given
application.

/€ Oracle Retail Integration Bus Manager - Windows Internet Explorer

@ 3y~ €| bt /mepdevas.us.oracle.com 7777 frib-r ms-admin-guifindes, jsp :" N

W | @ Oracle Retail Integration Bus Manager | | i

ORACLE
RETAIL

Retail Integration Bus Manager

rib-rms:Home
Pat

Home Adapter Manager Log Manager RIB Logs

General

Status Up
Start Time Thu Jan 24 17:17:51 CST 2008
Up Time 498893950 ms
Host mspdevé5.us.oracle.com

Home Adapter Manager Log Manager RIB Logs

Copyright & 1998, 2005, Oracle. All rights reserved.

Done

Adapter Manager

All message functions in RIB are performed by adapters. The four categories of
adapters are publishers, subscribers, TAFRs (transform, address, filtering and routing),
and RIB hospital retry. The adapter manager console is used to start and stop adapters,
configure settings, and view adapter log files.

Adapter Manager Screen

This screen shows the current status of all adapters for the specified application. The
following signifies an adapter is up and running:

6-2 Oracle Retail Integration Bus Operations Guide

Adapter Manager

Log Viewer

i
The following signifies that the adapter is offline or has shut itself down:
4

From this screen any listed adapters can be started and stopped by selecting the check

box related to the adapter and then using the following buttons:

| Start)| Stop |

Click the following symbol in the "View Log" column to return to the log file viewer
for the specified adapter.

[

' 4

/& Oracle Retail Integration Bus Manager - Windows Internet Explorer QE

g\;: - |§. http: //mspdevBs.us.oracle.com 7777 frib-rms-admin-gui/ b_adapter _manager. jsp M *+|| X | |IE7Pro Search

i‘:? o [@ Oracle Retail Integration Bus Manager lil @ B Eé; v |_"," Page - .@' Toolk
RETAIL

Retail Integration Bus Manager

rib-rms:RIB Adapter Manager
Page Refreshed Wed Jan 30 11:46:07 2008

Home Adapter Manager l Log Manager RIB Logs

This page shows the RIB Adapters (publishers, subscribers tafrs and/or hospitals) deployed on this RIB instance.

vew MW

(Befrosh Dats
| Start)| Stop)
Expand All | Collapse All
Select Name Status Start Time Edit Properties View Log

i ¥ Polling_Publishers

O Alloc Publisher, channel 1 4 Mon Jan 2§ 15:59:21 CST 2008 Ey Ef

O Banner Publisher, channel 1 4 Mon Jan 28 15:59:21 CST 2008 By By

O DiffGrp Publisher, channel 1 4 Mon Jan 28 15:569:21 CST 2008 E‘f Ef

O Diffs Publisher, channel 1 4 Mon Jan 2§ 15:69:21 CST 2008 Ey Ef

O ltemLoc Publisher, channel 1 3 Ey Ef

O ltems Publisher, channel 1 4 Mon Jan 2§ 15:59:21 CST 2008 Ey Ef

O MerchHier Publisher, channel 1 £+ Mon Jan 28 15:59:21 CST 2008 E‘f Ef

O Order Publisher, channel 1 o Ey Ef

O Partner Publisher, channel 1 4 Mon Jan 2§ 15:59:21 CST 2008 Ey Ef

Dore ©J Local intranst @ #i00%

Depending on what level the logging is set to, the log for the adapter can contain very
little to extreme amounts of data, errors, and message failures.

RIB Administration GUI 6-3

Log Manager

o % el
R T T — B0 W eae - Dok T
-
rib-rms:Alloc Publisher, channel 1 Log
Prage Fabirihed Wad Jar 30 12:09:42 7008,

Hema | Adaper Manager | LogManager R Logs

Displaying Sarver Log : NaDifwab. 1 yomms_ i 4} JAtloe_pub,_1.xib log
2008-01:30. 120401 974 [Tames 1 g “mglype =
2008.01-30 12:04:01,97% [Tumee.1 b collab h

[
2008-01.30 12,04 01,975 [Tames-112] OEBUG e pata b 24185 girsesl WKW Pawnumm iz RALSUFELL ALLDCCE'I'III.T‘?'I LELTEL™M
2008-01-30 12.04:0°.976 [Tmar-112] DEBUG com nete, "blwl»w
2008-01-30 12104.01,97% [Times-112] DEBL . t‘.uqu
20080138 120407, 577 [Tumee-1 ok + Chaciang loe GET_RES SETTINGS pros: on dafishase
F006-01-20 12.04.01.973 [Tamex-112] b wticga on database
F008-01-30 1204 01,960 [Tames-112] INFO com. ek n;” deuWumd mqu Data Max Detats To Publish = 1000
20080130 12:04.01.981 [Tamesr-112] INFO com. metek b collab general OracleObpctPublisherlomponentimgl . FibSetting Diata: Nember of Thesads = 1
20080730 12 04:01 581 Tmer: nzjmum et 1 Collat wdoexmmmwm Rmsm Data: Mwses Tare Lag = 0
2008-01-30 120801 967 [Tunee. Hee riplachap i (ol
FMSMFM_ALLGS GETHEATI? 7 an 2379

e S Lo et @ taow -

Log Manager

The Log Manager screen allows the user to change the logging level of the adapters. It
also allows the user to enable audit and timings logging.

The Ul displays each logger and the current log level. If the log level is inherited, it
displays a * along with the log level.

When Audit logging is turned on, each message that is processed by the adapter, the
XML payload is persisted to an audit log. Audit logging only works when the audit
log level is set to DEBUG for the specified adapter.

The Timings logging captures adapter processing performance data to another
separate log. As with the audit log, this only works with the logging level set to
DEBUG. The RDMT command line tool can be used to process and view the results of
the timings logging output.

g:_; = | i frapsdndteS o o it le com: TTTT b - s mineguik b_iog_maruger . ip :] ks B e
W | EOrade Bstol Snkegrstion Bus Manag Ep= 1 - rPage = 5 Tool s
-
ORACLE
RETAIL
Retadl Imingration Hus Bansgo

rib-rms:RIB Log Manager
Page Rufeshed Wed Jan 30 16:13:31 2008

HMome Adspter Mansger | Log Manager | Bl Logs
Cutrei Loggeds on the RIB stance

thame Log Level taherind Leg Leval
ritok subscrbar Pricelhy_sub fatse DEBUG (]
wlak subscebar X3tore_sub_1 Glso mﬂ
etk subbtrber XTsf_sab_1 talse DEBUG [
ib hotgpdaliery bmings e _hosp_0 talse BFD ‘:]
i hosgetakruiry imings pby_hosp_0 iaige |
nib hogpdaliny bmings sws_hosp 0 talse MFO ﬂ
ris e aeedt Adicss_puty_1 taise MO ¥
tis b vt Cirches_puib_1 falsn MO v
rib s st Pastrer_pub,_1 ialse o |wl
1 s et RTVRog g1 tlse o (x|
R e N - 1 e warA al i

S Lol rranet @ *imw

6-4 Oracle Retail Integration Bus Operations Guide

RIB Logs

RIB Logs

The RIB Logs screen can be used to view the regular adapter log file as well as the
Timings and Audit logs for each adapter, if they have been activated. (See instructions
for the Log Manager screen.)

The screen also is accessed by clicking the following symbol in the View Log column
on the Adapter Manager screen:

S <)

o:-_: - F:W'fmmﬁw#ximmﬁﬁﬁwm-ﬁm.m B K 7 . -
W B | 8 ok Rkl kecrition Bus Murisgss i s B s P D Tookr
A
ORACLE
RETAIL
Resall Infegeation Bus Managore

rib-rms:RIE Adapter Manager

! Page Refwshed Wad Jan 30 16:11:18 2004
Homs AdaplerMasagsr LooMasagsr | RIE Logs

Files from ful0iwebadmin/product10.1.3/0racleAS_1fj2ee/ribrms-ocdjinstancefogirib-rms
Fllo Mams Sizo Last Modified

deploy ob kg 155 Mon Jan 28 160038 CET 2008

ASipn sub | Simings log] Wed Jan 23 15.34:11 CST 2008

AShn sub 1 s log [1} Wed Jan X3 16:22 11 CST 2008

A%Hn sub 1 o log o Wod Jan 21 163412 C5T 2008

ASHOW_gub 1 timings log] Wed Jan 23 15:14-12 C5T 2000

ASHOW sub 1 et log [Wed Jan 23 15: 3492 CST 2008

BEHO sub 1 b g o Wed Jan 27 15:34.12 CST 2008

COCogn gb 1 timings kg L] Wed Jan 21 15:34.92 CST 2008

COGogs wob 1 audi iog] Wed Jan 23 153412 CST 2008

COCogs g 1k log o Wed Jan 23 15:34:12 CST 2008 P>
Do 84 Lol brant e 0% -

RIB Administration GUl 6-5

RIB Logs

6-6 Oracle Retail Integration Bus Operations Guide

7

JMS Provider Management

The Oracle Enterprise Messaging Service (OEMS) provides a robust architecture for
integrating business-critical applications. It is built on Java 2 Enterprise Edition (J2EE)
standards such as the Java Message Service (JMS) and the J2EE ConnectorArchitecture
(JCA). In addition, OEMS reduces the time, cost, and effort required to build
integrated and distributed applications. Through a common interface, JMS, OEMS
offers developers a quality of service (QoS) choice for persisting messages.

RIB will be certified with several J]MS providers, starting with the OEMS JMS Database
persistence option, which is the JMS interface to the Oracle Database Streams
Advanced Queuing (AQ) feature. Subsequent releases will add certification of the
WLS JMS (for the file and memory-persistence version) that is bundled with the
WebLogic Application Server, as well as other JMS standard providers.

For more details on OEMS, see the Oracle® Containers for J2EE Services Guide 11g -
Using Oracle Enterprise Messaging Service.

RIB on AQ JMS

The AQ JMS is a database and needs to be installed, configured, and tuned to support
the anticipated transaction loads for a retailer’s production message volumes.

The RIB team and the Database Administrators should consider the following.

s Itis strongly recommended that the Oracle Database Instance that is configured to
be the AQ JMS provider is not shared with any other applications and is not on the
same host (physical or logical) with any other applications.

= AQ, on the server side is I/O intensive. Pay close attention to the disk layout.

= AQJMS as used by RIB has high transaction rates. Consider this when configuring
the redo logs.

AQ JMS should be run in archive log mode. If the database crashes, it must be
recoverable to a point-in-time, or messages (business events) will be lost.

= RIBis aclient of the AQ database and uses JDBC connections through the aqapi
client. The average message size for a given interface affects the network and
overall performance behavior.

= AQ JMSsizing to avoid out-of-space situations is critical.

Queue Monitor Process Setup

The QMON processes are optional background processes for Oracle Streams
Advanced Queuing (AQ) which monitor and maintain all the system and user owned
AQ objects. They provide the mechanism for message expiration, retry, and delay,

JMS Provider Management 7-1

RIB on AQ JMS

maintain queue statistics, remove processed messages from the queue table and
maintain the dequeue IOT.

The number of queue monitor processes is controlled by the dynamic initialization
parameter AQ_TM_PROCESSES. There can be a maximum of 10 QMON processes.
The parameter AQ_TM_PROCESSES can be set in the PFILE or SPFILE:

s aq_tm_processes=4
= alter system set aq_tm_processes=4

Starting with Oracle RDBMS release 10.1, Oracle automatically manages the QMON
monitor processes depending on the system load. Explicitly setting AQ_TM_
PROCESSES is not required. However, monitoring the workload and making
adjustments as necessary is recommended. If the QMON processes lag behind, there is
a chance of expired messages remaining in the queue and the tablespace eventually
running out of space.

If explicitly setting AQ_TM_PROCESSES, the recommended value is between 2 and 8.
Do not set the value to the maximum allowed value of 10 in Oracle 11g, because all
explicitly started QMON processes work only with persistent messages. Oracle can
automatically start processes to maintain buffered messages. Setting AQ_TM_
PROCESSES to a maximum value of 8 still leaves two processes for Oracle that can be
started to maintain buffered messages.

Optimizing Enqueue/Dequeue Performance

The AQ database performance must be tuned according to Oracle database tuning
practices.

To tune the SGA, use tools such as Statspack, Oracle Enterprise Manager and SQL
trace to identify bottlenecks. An inefficiently configured SGA slows down enqueue
and dequeue transactions.

To tune the Server Resources, check server CPU, memory, I/O, and network
utilization. Tools such as nmon, sar, iostat, vimstat, and glance can be used to collect
system statistics. Use shared memory and semaphore parameters that are
recommended for the Oracle database on that type of server.

Tuning Physical Schema setup entails creating right tablespaces, placements of
datafiles, tables, and indexes.

Note: See also Oracle® Database Administrator's Guide 11g Release
2 (11.2), Oracle® Streams Advance Queuing User's Guide, and
Reference 11g Release 2 (11.2)

Sizing Considerations

The RIB team and Database Administrators provide the following considertions for
sizing the deployment of RIB on AQ JMS.

= The enqueuing/dequeuing rate for the messages per message family affects the
requirement for the number of available database segments.

By default, all RIB topics are created in a single tablespace. AQ creates multiple
tables for each topic within that tablespace. A topic (message family) with a high
transaction rate can quickly consume available segments. If the tablespace is not
sized appropriately, a single interface can negatively impact all interfaces.

7-2 Oracle Retail Integration Bus Operations Guide

RIB on AQ JMS - Server Side Processes

The QMON background process that is responsible for space management will not
keep up the transaction rates of some RIB interfaces. In this case, the transaction
rate is defined as the rate of enqueuing versus dequeuing. Messages that are
subscribed (consumed) are not removed from the AQ tables immediately. It is the
normal case that the enqueue rate will be faster than the dequeue rate. This time
lag should be a sizing consideration.

The total tablespace sizing must be calculated based on the business requirement
for the number of messages that have to be retained per message family if a
subscribing application is off-line.

It is very common for a subscribing application to go off-line. This means that
messages must be retained (persisted) on the JMS until the subscriber comes back
on-line. The general sizing guideline for any RIB JMS sub-system is for the disk
(mount points or database) to be able to handle 24 hours of maximum messages
per topic as defined by the site's projected volume requirements. For example,
OrdersFromRMS may be specified to retain 355,000 details (such as 1000 1M
messages = 1GB). This calculation must be performed for each of the 90+ topics in
the GA RIB system and based on the customer's estimated volume per interface.

Note: See "How to Calculate Average Message Size."

RIB on AQ JMS - Server Side Processes

A process is a "thread of control," or a mechanism in an operating system, that can run
a series of steps. (Some operating systems use the terms "job" or "task.") A process
normally has its own private memory area in which it runs.

When RIB is configured to use the Oracle AQ JMS, there are considerations that affect
RDBMS tuning and the configuration of database processes. This section is intended to
outline these considerations.

Types of Oracle Database Side Processes

The processes in an Oracle database system are categorized into two major groups:

User processes run the application or Oracle tool code.

Oracle database processes run the Oracle database server code. They include
server processes and background processes.

RIB and Application Server and JDBC Connections

The number of RIB related server side processes can grow based on activity. It is
related to the way the application server container manages jdbc connections. The
following rules apply:

Each subscriber uses one JDBC connection to AQ JMS.

Each Publisher or Hospital Retry may use one or more connections, depending on
volume and activity.

When a RIB adapter (Java code) asks for a connection, the application server may
decide to get more than one connection and add it to its pool.

JMS Provider Management 7-3

RIB on AQ JMS - Server Side Processes

RIB Connections - Summary

RIB Adapter Type Total Adapters in RIB
rib-app Subscriber 69

TAFR Subscriber 22

rib-app Polling Publisher 35

rib-app Request-driven 14

Publisher

TAFT Publishers 22

Hospital Retry - Polling 11

Publisher

Total 173

At any time, depending on deployment options in a non-mulitiple channel
deployment, RIB can have at least 173 AQ connections. The application server may ask
for more than 173 from the database.

These numbers will increase if there are multiple retry adapters configured and if
message flows are configured for multiple channels. So the calculation includes the
base numbers plus one for each additional retry--and one for each multiple channel
publisher or subscriber. Always assume that the result is the lowest number of
connections, because the container can ask for more.

rib-rms Connections

RIB Adapter Type

Total Adapters in RIB

Subscriber 35
Polling Publisher 22
Hospital Retry - Polling 3
Publisher

Total 60

At any time, depending on deployment option, the rib-rms app can have at least 60
AQ connections. The application server may ask for more than 60 from the database.

rib-rwms Connections

RIB Adapter Type Total Adapters in RIB
Subscriber 15

Polling Publisher 11

Hospital Retry - Polling 2

Publisher

Total 28

7-4 Oracle Retail Integration Bus Operations Guide

RIB on AQ JMS - Server Side Processes

At any time, depending on deployment option, the rib-rwms application can have at
least 28 AQ connections. The application server may ask for more than 28 from the
database.

rib-sim Connections

RIB Adapter Type Total Adapters in RIB
Subscriber 19

Request Driven Publishers 9

Hospital Retry - Polling 2

Publisher

Total 30

At any time, depending on deployment option, the rib-sim app can have at least 30
AQ connections. The application server may ask for more than 30 from the database.

rib-tafr Connections
RIB Adapter Type Total Adapters in RIB
Subscriber 22
Publishers 22

Hospital Retry - Polling Publisher | 2
Total 47

At any time, depending on deployment option, the rib-tafr app can have at least 47 AQ
connections. The application server may ask for more than 47 from the database.

rib-rpm Connections

RIB Adapter Type Total Adapters in RIB
Subscriber 0

Request Driven Publisher 3

Hospital Retry - Polling 1
Publisher
Total 4

At any time, depending on deployment option, the rib-rpm app can have at least four
AQ connections. The application server may ask for more than four from the database.

Configuration Recommendations

It is strongly recommended that, for the production RIB deployment, the Oracle
database instance configured as the AQ JMS be separate from all other uses. There are
performance considerations as well as architectural reasons for maintaining this
separation.

JMS Provider Management 7-5

Support for Multiple JMS Servers Within a Single Deployment

Note: See the Oracle Integration Bus Implementation Guide.

For the testing and QA phases of the deployment life cycle, co-location is not
recommended. Regardless of the life cycle phase, the AQ JMS should not be
configured with any other applications, including the rib-app, Error Hospital.

If the option to co-locate is chosen, work with the database administrators to
determine and set the appropriate maximum database sessions and processes,
depending on the RIB environment setup (single channel or multiple channel, for
example.) Note that the result may be more than 500 processes. The issues that may
arise from having this many processes can be obscure, and it is difficult to isolate their
root cause.

Support for Multiple JMS Servers Within a Single Deployment

Design

Employing multiple JMS servers allows for the isolation of flows (for example, high
volume versus low, custom versus base, and message families) for performance and
operational QoS.

To meet the JMS agnostic requirement for RIB, a unique JMS server ID (jms-server-id)
is assigned to each RIB adapter. Accordingly, each RIB adapter can identify the J]MS
server to which it is associated. As the default, out-of-the-box adapters are configured
to be on jms-server, jms1.

For each new jms-server-ID, a new resource adapter must be configured to point the
application server to the JMS provider’s resource. The adapter communicates with the
JMS server and is deployed as part of the application. Where customization is
required, the adapter can be configured to point to a different JMS server.

rib-app-builder Validation Checks

The rib-app-builder performs several validation checks, as listed below. To prevent the
rib-app-builder compilation process from failing, the following criteria must be met:

s Each jms-server-id is unique where more than one JMS server is configured.
= Within a message flow, the jms-server-id is the same for all applications.

= Ajms-server-id is present in the rib-deployment-env-info.xml and present in at
least one of the rib-<app>-adapters.xml files.

= Ajms-server-id is present in rib-<app>-adapters.xml and present in the
rib-deployment-env-info.xml file.

= Multiple channels are configured for a give family are on the same JMS server.

= Proper hospitals are configured for all JMS servers. (Where additional JMS servers
are configured, the rib-app-builder checks to see if hospital adapters are
configured for all JMS servers.)

How to Set Up Multiple JMS Servers

This section describes the process for setting up multiple JMS servers.

7-6 Oracle Retail Integration Bus Operations Guide

Support for Multiple JMS Servers Within a Single Deployment

Process Overview
The following are basic steps.

1.
2.

Determine the family to be configured.

Examine the rib-integration-flows.xml to identify all RIB applications in the full
integration flow.

Add a new JMS server by updating rib-deployment-env-info.xml.

In the rib-home, modify the appropriate files for each of the rib-<apps>
participating in the integration flow. Point the adapters to the correct JMS server:

a. rib-<app>-adapters.xml

b. rib-<app>-adapter-resources.properties
Compile all applicable rib-<apps>.

Run prepare-jms for the newly created JMS server.

Deploy.

General Recommendations
Consider the following recommendations.

The default ID for out-of-the-box JMS servers is jms1. It is recommended that the
same naming convention is followed when additional JMS servers are configured
(for example, jms2).

If multiple JMS servers require configuration, it is recommended that the
application (for example, rib-rms) be completely removed (or undeployed) before
the new deployment begins.

AQ Recommendation

If multiple AQ JMS servers are configured, each must be on a different database server
instance.

Sample Configuration

Following are portions of the Items message flow from rib-integration-flows.xml. The
message originates from RMS flows through a a TAFR. The TAFR sends the message
to two topics, and the message is subscribed by RWMS and SIM. The samples below
assume that a new jms-server-id (jms2) is required for the message flow.

rib-integration-flows.xml

<message-flow id="6">

<node id="rib-rms.Items_pub" app-name="rib-rms"
adapter-class-def="Items_pub" type="DbToJms">
<in-db>default</in-db>
<out-topic>etItemsFromRMS</out-topic>

</node>

<node id="rib-tafr.ItemsToItemsTL_tafr" app-name="rib-tafr"
adapter-class-def="ItemsToItemsTL_tafr" type="JmsToJms">
<in-topic>etItemsFromRMS</in-topic>
<out-topic>etItemsTLFromRIB</out-topic>

</node>

<node id="rib-tafr.ItemsToItemsISO_tafr" app-name="rib-tafr"
adapter-class-def="ItemsToItemsISO_tafr" type="JmsToJms">
<in-topic>etItemsFromRMS</in-topic>

JMS Provider Management 7-7

Support for Multiple JMS Servers Within a Single Deployment

<out-topic>etItemsISO</out-topic>

</node>

<node id="rib-rwms.Items_sub" app-name="rib-rwms"
adapter-class-def="Items_sub" type="JImsToDb">
<in-topic>etItemsTLFromRIB</in-topic>
<out-db>default</out-db>

</node>

<node id="rib-sim.Items_sub" app-name="rib-sim"
adapter-class-def="Items_sub" type="JmsToDb">
<in-topic>etItemsISO</in-topic>
<out-db>default</out-db>

</node>

</message-flow>

Note: The following are the configuration changes required for the
message flow. The example assumes that all applications apply (RMS,
TAFR, SIM, and RWMS).

rib-deployment-env-info.xml
A new JMS server with jms-server-id="jms2" is added in rib-deployment-env-info.xml
file as follows:

<ag-jms-servers>

<ag-jms-server jms-server-id="jmsl">
<jms-server-home>user@host: /u00/db</jms-server-home>
<jms-url>jdbc:oracle:thin:@host:port:SID</jms-url>
<jms-port>1521</jms-port>
<jms-user>ribag</jms-user-alias>
<jms-password>ribag</jms-user-alias>

</ag-jms-server>

<ag-jms-server jms-server-id="jms2">
<jms-server-home>user@host: /u00/db</jms-server-home>
<jms-url>jdbc:oracle:thin:@host:port:SID</jms-url>
<jms-port>1521</jms-port>
<jms-user-alias>aqg2</jms-user-alias>
</ag-jms-server>

</ag-jms-servers>

RIB-RMS Application Configuration

To configure the RIB-RMS application, complete the following steps:

rib-rms-adapters.xml
For rib-rms-adapters.xml, do the following.

1. Edit $RIB_HOME/application-assembly-home/rib-rms/rib-rms-adapters.xml,
where $RIB_HOME is the rib-home directory.

2. Point the Items_pub_1 adapter to jms-server-id "jms2" as follows.

<timer-driven id="Items_pub_1" initialState="stopped" timeDelay="10"
jms-server-id="jms2">
<timer-task>
<class
name="com.retek.rib.app.getnext.impl.GetNextTimerTaskImpl" />
<property name="maxChannelNumber" value="1" />
</timer-task>
</timer-driven>

7-8 Oracle Retail Integration Bus Operations Guide

Support for Multiple JMS Servers Within a Single Deployment

Add hospital adapters for jms-server-id jms2, as follows.

<!-Hospital adapter configuration starts here -->
<timer-driven id="sub_hosp_2" initialState="stopped" timeDelay="10"
jms-server-id="jms2">
<timer-task>
<class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask"/>
<property name="reasonCode" value="SUB"/>
</timer-task>
</timer-driven>
<timer-driven id="pub_hosp_2" initialState="stopped" timeDelay="10"
jms-server-id="jms2">
<timer-task>
<class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask"/>
<property name="reasonCode" value="PUB"/>
</timer-task>
</timer-driven>
<timer-driven id="jms_hosp_2" initialState="stopped" timeDelay="10"
jms-server-id="jms2">
<timer-task>
<class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask" />
<property name="reasonCode" value="JMS"/>
</timer-task>
</timer-driven>

rib-rms-adapters-resources.properties
Add the following properties to the resource file:

sub_hosp-2.name=SUB Hospital Retry jms2

sub_hosp-2.desc=Inject messages into from the Error Hospital.
pub_hosp-2.name=PUB Hospital Retry jms2

pub_hosp-2.desc=Re-publish messages from to JMS.

jms_hosp-2.name=]JMS Hospital Retry jms2

jms_hosp-2.desc=Re-publish messages from to JMS after JMS is brought up again.

RIB-TAFR Application Configuration
To configure the RIB-TAFR application, complete the following steps.

rib-tafr-adapters.xml
For rib-tafr-adapters.xml, do the following.

1.

Edit $RIB_ HOME/ application-assembly-home/rib-rms/rib-tafr-adapters.xml,
where $RIB_HOME is the rib-home directory.

Point the ItemsToltemsTL_tafr_1 adapter to jms-server-id "jms2", as shown below.

Point the ItemsToltemsISO_tafr_1 adapter to jms-server-id "jms2", as shown
below:

<tafrs>

<message-driven id="ItemsToItemsTL_tafr 1" initialState="stopped"
tafr-business-impl="com.retek.rib.domain.tafr.bo.impl.ItemsToIltemsTLFromRibBOIm
pl" jms-server-id="jms2" />

<message-driven id="ItemsToItemsISO_tafr 1" initialState="stopped"

JMS Provider Management 7-9

Support for Multiple JMS Servers Within a Single Deployment

tafr-business-impl="com.retek.rib.domain.tafr.bo.impl.ItemsToItemsISOFromRibBOI
mpl" Jjms-server-id="jms2" />

</tafrs>

Add hospital adapters for jms-server-id jms2.

<!-Hospital adapter configuration starts here -->
<timer-driven id="sub_hosp_0" initialState="stopped" timeDelay="20"
jms-server-id="jms2">
<timer-task>
<class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask"/>
<property name="reasonCode" value="SUB"/>
</timer-task>
</timer-driven>

<timer-driven id="jms_hosp_0" initialState="stopped" timeDelay="30"
jms-server-id="jms2">
<timer-task>
<class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask" />
<property name="reasonCode" value="JMS"/>
</timer-task>
</timer-driven>

rib-tafr-adapters-resources.properties
Add the following properties to the resource file:

sub_hosp-2.name=SUB Hospital Retry jms2

sub_hosp-2.desc=Inject messages into from the Error Hospital.
jms_hosp-2.name=JMS Hospital Retry jms2

jms_hosp-2.desc=Re-publish messages from to JMS after JMS is brought up again.

RIB-SIM Application Configuration
To configure the RIB-SIM application, complete the following steps:

rib-sim-adapters.xml
For rib-sim-adapters.xml, do the following.

1.

Edit $RIB_HOME/application-assembly-home/rib-rms/rib-sim-adapters.xml,
where $RIB_HOME is the rib-home directory.

<subscribers>

<message-driven id="Items_sub_1" initialState="running"
jms-server-id="jms2" />
</subscribers>

Add hospital adapters for jms-server-id jms2.

<!-Hospital adapter configuration starts here -->

<timer-driven id="sub_hosp_0" initialState="stopped" timeDelay="20"
jms-server-id="jms2">
<timer-task>
<class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask"/>
<property name="reasonCode" value="SUB"/>
</timer-task>
</timer-driven>

7-10 Oracle Retail Integration Bus Operations Guide

Support for Multiple JMS Servers Within a Single Deployment

<timer-driven id="jms_hosp_0" initialState="stopped" timeDelay="30"
jms-server-id="jms2">
<timer-task>

<class
name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask" />

<property name="reasonCode" value="JMS"/>

</timer-task>

</timer-driven>

rib-sim-adapters-resources.properties
Add the following properties to the resources file:

sub_hosp-2.name=SUB Hospital Retry jms2

sub_hosp-2.desc=Inject messages into from the Error Hospital.
jms_hosp-2.name=JMS Hospital Retry jms2

jms_hosp-2.desc=Re-publish messages from to JMS after JMS is brought up again.

RIB-RWMS Application Configuration
To configure the RIB-SIM application, complete the following steps.

rib-rwms-adapters.xml
For rib-rwms-adapters.xml, do the following.

1.
2.

Edit $RIB_HOME/application-assembly-home /rib-tafr /rib-rwms-adapters.xml
Point the Items_sub_1 adapter to jms-server-id jms2.

<subscribers>

<message-driven id="Items_sub_1" initialState="running"
jms-server-id="jms2"/>
</subscribers>

Add hospital adapters for jms-server-id jms2.

<!-Hospital adapter configuration starts here -->

<timer-driven id="sub_hosp_0" initialState="stopped" timeDelay="20"
jms-server-id="jms2">
<timer-task>
<class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask"/>
<property name="reasonCode" value="SUB"/>
</timer-task>
</timer-driven>
<timer-driven id="jms_hosp_0" initialState="stopped" timeDelay="30"
jms-server-id="jms2">
</timer-task>
<class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask"/>
<property name="reasonCode" value="JMS"/>
</timer-task>
</timer-driven>

rib-rwms-adapters-resources.properties
Add the following properties to the resources file:

sub_hosp-2.name=SUB Hospital Retry jms2

JMS Provider Management 7-11

Support for Multiple JMS Servers Within a Single Deployment

s sub_hosp-2.desc=Inject messages into from the Error Hospital.
= jms_hosp-2.name=JMS Hospital Retry jms2
= jms_hosp-2.desc=Re-publish messages from to JMS after JMS is brought up again.

Compile and Deploy

Using the RIB Installer or the RIB Application Builder command line tools compile,
and deploy the new rib-<app>.ears.

RIB-ADMIN-GUI
After deployment check if the adapters configured point to the correct JMS server.
ORACLE 1

RETAIL

rib-rms:RIB Adapter Manager
ed Th Moy 28 2008 16:01:17 GMT.0680 (Contral Standasd Time)

Home = Adapier Manager Log Mansger B Logs
This page shows the RIE Adapters (publishers, swbecribers tafs andior hospitals) deployed on this RIB instance.

View [=]

Fuatiash Datn

ET T

Espan

olianze A1
Salect Mama: Status Stant Time JMS Server 1D Edit Properties View Log —
¥ Paling_Publishers

ASNOW Publshar, channel 1

Aloe Pusksher, channel 1
Bannar Publisher, chasned 1
DuGrp Publeshae, channd 1
ity Pulsksbar. channel 1

& a e e

BemLes Pobkabar, chineal 1
Bema Publisher, chansel 1 o 2
Bema Publishes, chansal 10 o ima2
Eems Publither, channel 7 & imad
Eems Publisher, chansel 3 & a2
Eems Publisher, chanel 4 3 ima2
Eems Publisher, chamel § jma2
Bems Publisher, chansel §
Bems Publishes, chamel 7
Bems Pubiisher, channel § & mad
Bems Publisher, chansel 3 a2
Merchier Publisher, chansel 1
Ordes Publishes, chamsel 1
Ordes Publishes, chansel 10
Ordes Fublishor, chansel 2
Ordee Fublishor, chansal 3

<
O

Order Publisher, chansel 4

Glala e e e e

v Publisher, chaneal &

o 1l 0 1 e 1 1 s e e e e e T e 1 0 1 [1 1l i 1l i
L R R e A

Order Publisher, chanal & & jad

7-12 Oracle Retail Integration Bus Operations Guide

8

Message Transform, Filtering and Routing
(TAFR)

After initial publication, a message may require a series of transformation, filtering, or
routing operations. The RIB component that implements these operations is known as
a Transformation and Address Filter /Router (TAFR) component.

= A transformation operation changes the message data or contents.

= A filter operation examines the message contents and makes a determination as to
whether the message is appropriate to the specific subscriber.

= A router operation examines the message contents and forwards the message to a
subset of its subscribers. A filter operation can be considered a special case of a
routing operation. Although logically separate operations, for performance
reasons, TAFR components usually combine as many as is appropriate.

TAFR operation is specific to a message family and its set of subscribers. Multiple
TAFRs may process a single message for a specific subscriber, and different specific
TAFRs may be present for other subscribers. Separate sets of TAFRs are necessary for
the various message families.

Multiple TAFRs may be needed, depending on the types of subscribers. The following
diagram shows the message flow with TAFR.

Publishing RS
Adapter massage

1
1]
N

sagi R o
! ! 1 1
1 1
ALY 14MS
Topic » TAFR 2 . 4 Topic + Sub Adapler 3
[
\ !

TAFR Adapter Process

A Transformation Address Filter/Router (TAFR) adapter is used to perform operations
on all messages from a single message family. The specific activities performed are
dependent on the needs of its subscribers.

Message Transform, Filtering and Routing (TAFR) 8-1

Configuration

s TAFRs in a message flow are an exception rather than than norm. (For example, a
TAFR that does message transformation for only a single application is not
recommended.) The subscribing application is responsible for filtering and
transformation of the payload data.

= Payload content based routing is not recommended as it degrades performance.
s TAFR adapters take advantage of the RIB hospital.
= Error messages are automatically retried by the hospital retry adapter.

s The TAFR configuration makes most of the routing decision dynamic without
requiring any configuration.

s TAFRs are standard Java EE Message Driven Beans(MDB).

s Custom TAFR business implementation can be easily plugged in by editing
rib-tafr-adapters.xml.

Configuration

Deployment configuration of the TAFR in the Java EE container is handled by the
rib-app-builder application. Refer to the documentation for the rib-app-builder on
how to deploy a TAFR application. The following is an example configuration in
rib-tafr-adapters.xml.

<tafrs>
<message-driven id="Alloc_tafr_ 1" initialState="running"
tafr-business-impl="com.retek.rib.domain.tafr.bo.impl.AllocToStockOrderFromRibBOIm
pl n />
</tafrs>
» message-driven—Indicates that the TAFR is deployed as an MDB.
» id—The ID for this particular adaptor.
» InitialState—The state of the adaptor.

» Tafr-business-impl—The implementation class for this TAFR. This class contains
the implementation for transformation, filtering, and routing of RIBMessage.

Transformation

Message transformation is the process of converting one message family payload to
another message family payload.

Filtering Configuration

Filtering configuration involves updating the rib-tafr.properties file with the
appropriate information.

The property follows the usual properties naming convention (name=value).
The property that is used for filtering is for.<tafr name>_tafr.drop-messages-of-types.
Example:

for.ItemsToItemsISO_tafr.drop-messages-of-types=

ISCDimCre, ISCDimMod, ISCDimDel, ItemImageCre, ItemImageMod, ItemImageDel,
ItemUdaDateCre, ItemUdaDateMod, ItemUdaDateDel, ItemUdaFfCre, ItemUdaFfMod, ItemUdaFfDe
1,

ItemUdaLovCre, ItemUdaLovMod, ItemUdaLovDel

8-2 Oracle Retail Integration Bus Operations Guide

Configuration Example - Facility ID

This property should be read as, "for ItemsToltemsISO tafr" drop these message types.
A comma delimits the message types.

If customization is required then the rib-tafr.properties file needs to be updated for
filtering to take place.

Routing

Routing is enabled by default for TAFR's, the RIB infrastructure handles this routing. If
a TAFR requires routing based on message content, then implementation classes
override the following method.

public void routeRibMessage (RibMessage newMsg,MessageRouterIface router) throws
TafrException {
router.addMessageForTopic (eventType, newMsg);

}

Configuration Example - Facility ID

One of the common configurations requirements is to set up the flow of transfers and
orders to RWMS. This is based on Facility ID.

These examples and step-by-step instructions illustrate how to configure a TAFR for
one and two RWMS deployments.

Single RWMS Configuration

RIB allows stock based transactions to be routed between different RWMS instances.
An RWMS instance is assigned to a physical distribution center which may have one
or more facilities assigned to it. A company may have one or more distribution centers.

By default the standard RIB configuration is set for a single RWMS instance. This
means that all physical warehouses in RMS route directly to a single RWMS instance
(in this case denoted as WH1) with each RMS physical warehouse directly correlating
to a facility ID in RWMS.

Configuration Process
Complete the following steps.

1. Modify the TAFR routing settings:

» For each physical warehouse set up in RMS there should be a matching entry
in the rib-tafr.properties file. This file resides in the $RIB_
HOME/ application-assembly-home /rib-tafr directory and is used by the
TAFR adapters, amongst other things, to route messages by facility ID to the
correct RWMS instances.

» The file by default contains the following mappings:
- facility_id. PROD.1=1
- facility_id. PROD.2=1
- facility_id. PROD.3=1

» The routing properties are structured in the following way: facility_
id.<FACILITY_TYPE>.<RMS_PHYSICAL_WH_ID>=<RWMS_INSTANCE_
NAME>

Message Transform, Filtering and Routing (TAFR) 8-3

Configuration Example - Facility ID

- <FACILITY_TYPE> - This should match the facility_type.default value in
the rib-tafr.properties file. In most cases it is defaulted to PROD.

- <RMS_PHYSICAL_WH_ID> - The physical warehouse ID from RMS.

- <RWMS_INSTANCE_NAME> - The RWMS installation topic name
identifier to which the warehouses messages is routed.

= These mappings must be edited so that each physical warehouse in RMS has
its own entry. The physical warehouses can be found by running the following
query in the RMS schema:

— SELECT wh FROM wh
WHERE wh.wh = wh.physical_wh;

= For the example in the diagram above, the query returns physical warehouse
IDs 60, 70, and 80 .

s There is only one RWMS instance (WH]1) in this example, and the RWMS
installation topic name identifier is 1. This corresponds to the name of the
topics that RIB routes the messages to. It also is the default name suffix of the
RWMS topics in the rib-integration-flows.xml file.

JMS Provider

RMS
Physical W 60
Physical WH 0
IPhysical WH 50

RWMS WH1
Faciliry 1D 60
Facility 1D 70
Facility 1D 80

s Therefore, mapping in the rib-tafr.properties file should read as follows:
- facility_id. PROD.60=1
- facility_id. PROD.70=1
- facility_id. PROD.80=1
2. Deploy the settings to the rib-tafr instance:

The new TAFR routing settings must be migrated to the rib-tafr instance. Run the
following script found in the $RIB_HOME /deployment-home/bin directory.

rib-app-deployer.sh -deploy-rib-app-ear rib-tafr

3. Configuration should now be complete.

Note: For every new physical warehouse added to RMS, the
rib-tafr.properties file requires a new entry. The new settings must be
deployed to the instance.

Oracle Retail Integration Bus Operations Guide

Configuration Example - Facility ID

Two RWMS Configuration
: —_—
JMS Provider wins
BT R
P, piE— ==
T

-~

I

Description

RIB can be configured to route stock based transactions between multiple distribution
centers, each with their own RWMS instance. The purpose of this is to only send stock
transactions that are shipped to or from a certain warehouse to the distribution center
that contains that warehouse (facility).

From RMS the user only has visibility to the warehouse that they are performing a
stock shipment to or from. RIB TAFRs route the messages to the separate RWMS
instances, based on the configuration stated in the rib-tafr.properties file. In the above
example, RMS physical warehouses 60 and 70 are assigned to the RWMS instance
called WH1, while RMS physical warehouse 80 is assigned to another RWMS instance
called WH2.

Configuration Process
Complete the following steps.

1. Modify the TAFR routing settings:

» For each physical warehouse set up in RMS there should be a matching entry
in the rib-tafr.properties file. This file resides in the $RIB_
HOME/ application-assembly-home /rib-tafr directory and is used by the
TAFR adapters, among other things, to route messages by facility ID to the
correct RWMS instances.

s The file by default contains the following mappings:
- facility_id.PROD.1=1
- facility_id.PROD.2=1
- facility_id.PROD.3=1

= The routing properties are structured in the following way: facility_
id.<FACILITY_TYPE>.<RMS_PHYSICAL_WH_ID>=<RWMS_INSTANCE_
NAME>

- <FACILITY_TYPE> - This should match the facility_type.default value in
the rib-tafr.properties file (in most cases, PROD).

- <RMS_PHYSICAL_WH_ID> - The physical warehouse ID from RMS.

- <RWMS_INSTANCE_NAME> - The RWMS installation topic name
identifier to which the warehouses messages are routed.

Message Transform, Filtering and Routing (TAFR) 8-5

Configuration Example - Facility ID

These mappings must be edited so that each physical warehouse in RMS has
its own entry. The physical warehouses can be found by running the following
query in the RMS schema:

— SELECT wh FROM wh
WHERE wh.wh = wh.physical_wh;

Before editing the file for multiple RWMS instance routing, the user should
know which RMS physical warehouses are to be routed to the particular
RWMS instances and the RWMS installation topic name identifiers.

For the example, in the diagram above, physical warehouse IDs 60 and 70 are
routed to RWMS instance WH1, where the RWMS installation topic name
identifier is 1 and RMS physical warehouse ID 80 are routed to RWMS
instance WH2, where the RWMS installation topic name identifier is 2. To
support this, the mapping in the rib-tafr.properties file should read:

- facility_id.PROD.60=1
- facility_id.PROD.70=1
- facility_id.PROD.80=2

2. Modify the rib-integration-flows.xml file:

RIB requires information on how to route the messages between the two
RWMS instances. This is done by adding new entries to the
rib-integration-flows.xml file.

By default the file contains entries for the RWMS instance "rib-rwms" and all
appropriate warehouse based adaptor mappings point to the et<TOPIC_
NAME>WHI topics. When adding multiple RWMS instances all the entries
for RWMS need to be duplicated for the second instance "rib-rwms2" and all
adapter mappings for the new instance need to point to et<TOPIC_
NAME>WHI topics.

The entire RWMS PUBLISHERS section in the integration-flows.xml file needs
to be duplicated and all new entries need to be changed to the second RWMS
instance name of "rib-rwms2" for example:

- <node id="rib-rwms2.ASNIn_pub" app-name="rib-rwms2"
adapter-class-def="ASNIn_pub"
type="DbToJms"><in-db>default</in-db><out-topic>etASNIn</out-topi
c></node>

Each RWMS adapter mapping in the file that follows the et<TOPIC_
NAME>WH]I1 format needs to be duplicated as well but needs to point to
et<TOPIC_NAME>WH2. With the original adapter mapping and the new
adapter mapping to route to the second RWMS instance, for the Stock Order
adapter, the entry should be similar to the following example:

- <node id="rib-rwms.StockOrder_sub" app-name="rib-rwms"
adapter-class-def="StockOrder_sub"
type="JmsToDb"><in-topic>etStkOrdersFromRIBToWH1</in-topic><out-
db>default</out-db></node>

- <node id="rib-rwms2.StockOrder_sub" app-name="rib-rwms2"
adapter-class-def="StockOrder_sub"
type="JmsToDb"><in-topic>etStkOrdersFromRIBToWH2</in-topic><out-
db>default</out-db></node>

The rib-integration-flows.xml file can be edited and then deployed in the
following way:

8-6 Oracle Retail Integration Bus Operations Guide

Configuration Example - Facility ID

- cd $RIB_HOME/ application-assembly-home /rib-func-artifacts

- jar -xvf rib-func-artifact.war

- codintegration

- virib-integration-flows.xml

- Make the changes specified above.

- jar -uvf rib-func-artifact.war integration/rib-integration-flows.xml

Deploy the settings to the rib-tafr instance:

The new TAFR routing settings need to be migrated to the rib-tafr instance, to do

this run the following script found in the $RIB_HOME/deployment-home/bin

directory.

rib-app-deployer.sh -deploy-rib-app-ear rib-tafr

Deploy the settings to the functional artifact:

The new integration flow settings need to be migrated to the rib-func-artifact
instance, to do this run the following script found in the $RIB_
HOME/deployment-home/bin directory.

rib-app-deployer.sh -deploy-rib-func-artifact-war

Configuration should now be complete.

Note: For every new physical warehouse added to RMS the
rib-tafr.properties will require a new entry and the new settings will
need to be deployed to the instance.

Note: Multiple RWMS instances can be added as per the instructions

above.

Changes to this configuration affect the following TAFRS.

AllocToStockOrder
ASNOutToASNInLoc
CustOrderToStockOrder
ItemLocToltemLocLoc
OrderToOrderWH
PendReturnToPendReturnWH
RTVReqToRTVReqLoc
TransfersToStockOrder
WOInToWOInWH
WOOutToWOOutWH

Message Transform, Filtering and Routing (TAFR)

8-7

Configuration Example - Facility ID

8-8 Oracle Retail Integration Bus Operations Guide

9

Diagnostic and Monitoring Tools

The RIB Diagnostic and Monitoring Tool Kit (RDMT) is a collection of command line
tools, written in UNIX shell script along with supporting Java classes packaged in jar
files. There are various tools to address these areas:

» Installation Verification (reports)

= Operations (scanning and monitoring)

s Production (scanning and quick triage)

s Test and Support (scanning and fine grain control)
= AQ]JMS support and tools

RIB is a complex collection of distributed components, and there are a variety of GUI
tools. These tools augment those tools and provide command line control and access to
RIB functions at all levels. The tools are written to be stand-alone and to provide
examples and capabilities for integration into enterprise level OSS and management
frameworks, such as Oracle Enterprise Manager, Tivoli, or HP OpenView.

Functionality
= Support for Oracle WLS RIB Version.
= Support for local/remote installation.
= Support for Oracle Streams AQ JMS as the JMS Provider.
= Support for RIB Hospital databases.
= Support for RAC Configured Databases.
= Support for JMX control of all RIB Components
= Support for message Pub/Sub.

All of the scripts are written to be examples of specific functionality, but have been
integrated into a simple tool kit that is configuration driven and has a very simple
character-based menu system provided to allow a single point of integration.

RDMT and User Roles and Responsibilities

The tools are written to provide capabilities and examples of functions for users with
various roles and responsibilities.

The primary target role is the RIB administrator, who is responsible for the installation,
configuration, and deployment of RIB components. The RIB administrator also
performs ongoing RIB Software Life Cycle management and provides production

Diagnostic and Monitoring Tools 9-1

Local or Remote Installations and Capabilities

operation support. This person has full permissions on all of the application server
directories and has full read and execute permissions on the Oracle Application Server
tools, such as opmnctl and the WLS instance sub directories.

Local or Remote Installations and Capabilities

RDMT can be installed by a user on the system that may or may not have the
RIB/WLS environment. RDMT tools support local and remote WLS functions through
JMX.

In remote installations, some scripts in the toolkit expect the installing user to have
read permissions of the WebLogic home RIB WLS sub-directories or require execute
permission of opmnctl. Therefore, these will return file or permissions errors.

Once the roles and responsibilities of the user have been understood and established,
follow the installation instructions. See the Oracle Integration Bus Installation Guide.

RDMT Support jars

.jar File Description

rib-jms-api.jar Support classes for jms.

ribjms-admin-ag-impljar Specific impl for AQ

rib-jms-admin jar Support classes for AQ admin
jmx-cmd-line-ui.jar JMX client
rdmt.jar Support tools

Sample XML Messages

The RDMT release packages a zip file of example xml messages for each message
family and message type payload. The zip file is located in the RDMT subdirectory
testmsgs.

Tools Overview

RDMT has been designed as a set of command line tools that can serve generally
needed functions with examples for retailer specific uses, and to provide a ready to
use, low impact application. In many situations, it is a requirement to have tools that
consume low bandwidth to manage and triage RIB. These tools provide alternatives to
the GUI based tools. The other common requirement is for control and monitoring
command line scripts that can be incorporated into enterprise operations scheduling
frameworks, such as Autosys or Appworkx.

RDMT has been organized around a very simple character-based menu system that
can be modified to suit the deployment roles and responsibilities and to provide some
structure by functional area.

RDMT as an Application

This section describes RDMT as an application.

9-2 Oracle Retail Integration Bus Operations Guide

Tools Overview

SCRIPTDIR

All of the tools have been organized into a simple application and accessible via the
character-based menu system. All of the tools have been designed to execute relative
to a based directory (readmit). Within that base directory all tools expect to find all of
the support libraries and other scripts. To execute any tool, all that is needed is to set
the base directory as an environmental variable, SCRIPTDIR.

Setup

RDMT can be installed either inside/outside rib-home or in a remote server. To install

inside/outside rib-home, the installation script (configbuilder.sh) automatically fetches
all necessary configuration parameters from rib-deployment-env.-info.xml from inside
the specified rib-home/deployment-home/conf directory.

However, if RDMT is installed in a remote server, the installation script prompts for
the RIB deployment environment specific values. All of the scripts have been designed
to be configuration driven by property files. The setup process updates these files.

Current Configuration

Because there are multiple configurations possible with the fully distributed RIB, all of
the tools are designed to work against a set of property files that provide the values
need to execute. Collectively, these are called "current." In the menu system there are
functions that allow configuration of n-number of configurations. For example there
can be n-number of rib-<app>'s configured. Other functions set runtime configuration
files to these "current" configurations. All tools then read these "current” values and
perform tasks against them.

RDMTLOGS

All of the tools are designed to produce logs and to use temporary files. The location of
these logs is a configuration parameter and defaults to RDMTLOGS within the rdmt
base directory.

RDMT RAC Support

RDMT supports RAC configured databases. The user needs to provide the entire
database connection URL when prompted during the setup process.

The user needs to provide the same JDBC connection URL for AQ JMS or Hospital
Databases as supplied in rib-deployment-env-info.xml during RIB installation. The
user can provide either thin JDBC connection URL or long JDBC connection URL

format (in case of RAC configured database) depending on the user's environment.

The user needs to provide only the database user name, password, and connection
URL to configure for any AQ JMS/ Hospital database. The example below shows the
configuration for an hospital database during the RDMT setup process.

Example:

Enter RMS database Connection URL [needs_value]: jdbc:oracle:thin:@(DESCRIPTION
=(ADDRESS_LIST =(ADDRESS = (PROTOCOL = TCP)(HOST = mspvip72)(PORT =
1521))(ADDRESS = (PROTOCOL = TCP)(HOST = mspvip73)(PORT = 1521))(LOAD_
BALANCE = yes))(CONNECT_DATA =(SERVICE_NAME = orcl)))

You entered: jdbc:oracle:thin:@(DESCRIPTION =(ADDRESS_LIST =(ADDRESS =
(PROTOCOL = TCP)(HOST = mspvip72)(PORT = 1521))(ADDRESS = (PROTOCOL =
TCP)(HOST = mspvip73)(PORT = 1521))(LOAD_BALANCE = yes))(CONNECT_
DATA =(SERVICE_NAME = orcl)))

Diagnostic and Monitoring Tools 9-3

RDMT Main Menu

Enter to Continue? y/n/q [yl

RDMT Main Menu

This is the main entry point into the RDMT tool kit application. Most selections invoke
other submenus. But, for convenience, several tools include in other submenus, are
directly accessed from this menu.

" mmbderin geblewd JE A A ERIL T/ LT ek Y Famkp ik e Py, vy e

WLS/JMX Utilities
Script Used:
rdmt_jmx_submenu
Description:

This menu option exposes the various tools that use JMX to interact with the WLS
instance and to control or status the current rib-<app> and its components.

9-4 Oracle Retail Integration Bus Operations Guide

WLS/JMX Utilities

¢ wpleidirsisg el 0 - M PR TR M5 PR R ek el il el Saviy dev)

Script

Description

jmx_app_state.sh

status of the currently active rib application

jmxcmdline_interactive.sh

A wrapper to the jmx client support classes. This script
directly invoke the interactive functions.

jmxcmdline.sh

General wrapper for other tools to invoke specific jmx
functions.

jmxconfig.sh

There are multiple configurations possible with the
fully distributed J2EE RIB. This utility is used to
manage the configuration files that allow the rdmt tools
to access them. This option can also be used to
switch/re-configure the previously configured

WLS/JMX configuration.
jmx_get_logger_names.sh RIB app logging tool
jmx_get_logging_levels_all.sh RIB app logging tool
jmx_get_logging levels.sh RIB app logging tool
jmx_set_logging_levels.sh RIB app logging tool

jmx_managed_adpaters.sh

Common script used by all jmx tools to interact with
the jmx client jar. Many of the menu selections merely
set the calling parameters to this tool.

jmx_OC4]Jribstatus.sh

Get the run state of the rib-app WLS instance and
application for all configured.

jmx_OC4]Jrib_scan.sh

For all configured rib-app scans the state of the
instance, app and adapters.

jmx_oc4j_state.sh

Status of the currently active WLS instance.

jmx_switch_config.sh

This utility is used to switch the active configuration
file that the rdmt tools use.

Diagnostic and Monitoring Tools 9-5

JMS Tools

Script

Description

jmx_tester.sh

Test script for testing arbitrary jmx commands within
the RDMT framework. This is not a menu selection
since it requires user editing.

Utility

Description

start all adapters (jmx)

This utility option starts all adapters of a rib-<app>,
where app refers to rms, rwms, sim, rpm, or tafr. The
adapters start only when the initial state is specified as
running for the adapters in the
rib-<app>-adapters.xml. If the initial state=stopped, an
error is thrown: "Cannot start; initial state is set to
stopped.” If an adapter already is running, executing
this option keeps the adapter in the previous state.

start adapter (jmx)

This utility option starts a single adapter of a
rib-<app>, where app refers to rms, rwms, sim, rpm, or
tafr. It starts the adapter only when the initial state is
specified as running for the adapter in the
rib-<app>-adapters.xml. If the initial state=stopped, an
error is thrown: "Cannot start; initial state is set to
stopped." If the adapter already is running, executing
this option keeps the adapter in the previous state
itself.

startForced adapters (jmx)

This utility starts all adapters of a rib-<app>, where
app refers to rms, rwms, sim, rpm, or tafr. It starts all
adapters irrespective of their initial state in
rib-<app>-adapters.xml.

startForced adapter (jmx)

This utility option starts a single adapter of a
rib-<app>, where app refers to rms, rwms, sim, rpm, or
tafr. It starts the adapter irrespective of its initial state
in rib-<app>-adapters.xml.

JMS Tools
Script Used:
rdmt_jmsutil_AQ_submenu

Description:

This menu option exposes the various JMS functionalities available in the tool kit. For
convenience some tools in other submenus are presented here as well.

9-6 Oracle Retail Integration Bus Operations Guide

PUB/SUB Msg Tools

o mewmdr e JU SET PLIALD S DR 1S n RT] Bk et i b mes Pl e

Script

Description

agjmscmdline.sh

Common script used by all JMS tools to interact with the
AQ JMS client jar. Many of the menu selections merely set
the calling parameters to this tool.

deletemsgAQ.sh Delete message(s) on a specified JMS topic for a specified
subscriber.
dmpmsgAQ.sh Dump a message(s) on an AQ JMS topic for a specified

subscriber.

dmp_msg_statsAQ.sh

Dump properties of message(s) on an AQ JMS topic for a
specified subscriber.

jmsconfig.sh

RDMT supports configuration of n-number of J]MS
Providers. This utility configures the values to support.

rdmt_jms_submenu is used to make one the current
configuration.

jmstopicsAQ.sh

Query the AQ JMS for all of the topics and the message
count on each topic.

jmstopicsAQ_scan.sh

Query the AQ JMS for just the topics with message counts.

jmsutil.sh

This utility provides direct access to the AQ JMS Java API
utilities.

PUB/SUB Msg Tools

Script Used:

rdmt_msgutil_submenu

Description:

All of the tools is this menu are wrappers that expose functions in the Java utilities
rib-jms-api.jar included in the tool kit library. These are general purpose pub/sub
functions that are written to support the various JMS Providers for RIB, such as AQ

JMS.

Diagnostic and Monitoring Tools 9-7

RIB Health Tools

In addition to these, we have a utility to test any TAFR's business implementation. By
providing the necessary parameters which are prompted, the user can see the output
of a particular TAFR either on the console or in the specified file.

- il g D BB BAIAE SR AT LEH e ki) Sankgm e b (Tt St dred

Script

Description

pubmsgutil.sh

Provides direct access the Java API by prompting for all of
the expected command line values it expects.

submsgutil.sh

Provides direct access the Java API by prompting for all of
the expected command line values it expects.

submsg.sh Higher level wrapper that uses the configuration values to
shortcut the values needed to call the JavaAPIs.
pubmsg.sh Higher level wrapper that uses the configuration values to

shortcut the values needed to call the Java APIs.

pubmsgutil_multiple.sh

Script that supports multi-message publication.

pubmsgutil_directory.sh

Script that supports multi-message publication.

ejbpub_util.sh

Utility to wrapper the EJB Message Publish Java APL

ejbpubutil_multiple.sh

Script that supports multi-message publication through EJB
Message Publish Java API

ejbpubutil _directory.sh

Script that supports multi-message publication through EJB
Message Publish Java APIL

tafrmsgutil.sh

Script that can be used to test any TAFR Business
implementation.

RIB Health Tools

Script Used:

rdmt_ribhealth_submenu

Description:

This option leads the user to the submenu through which the user can get the current

RIB health status.

9-8 Oracle Retail Integration Bus Operations Guide

Hospital Scan Tools

T e T T L L]

T | rap———

Script

Description

cron_ribhealth.sh

See "RIB Health" in this chapter.

ribejbping.sh See "EJB Ping (RIB)" in this chapter.
appejbping.sh See "EJB Ping (RIB)" in this chapter.
loglookoc4j.sh See "Scan RIB Logs / Scan RIB Logs (Delta)" in this

chapter.

loglookoc4j_delta.sh

See "Scan RIB Logs / Scan RIB Logs (Delta)" in this
chapter.

timingsutil.sh

See "RIB Timings Utility" in this chapter.

ttestrms.sh

This script scans a list of RMS MFQ tables using a JDBC
connection. (see mfqtables.conf).

ttestrdm.sh This script scans a list of RWMS Upload tables using a
JDBC connection. (see uploadtables.conf).
OC4]JConfigReport.sh See "RIB Configuration Report" in this chapter.

Hospital Scan Tools
Script Used:
rdmt_hosp_submenu

Description:

This option leads the user to the RIB hospital for various applications submenu
through which the user can get the current RIB hospital status.

Diagnostic and Monitoring Tools

9-9

RIB Administration Tools

s o e S P R | ek Ak b e b B ety vk et . b e

Script Description

htest.sh This script calls a Java class that uses JDBC to access the
database(s) containing the Hospital tables.

It scans the Hospital RIB_MESSAGES table and report thing such
as:

= how many messages (row count),
= how many have exceed the retry count,

= how many messages of a topic as present.

htest_failures.sh This script calls a Java class to scan the RIB Hospital Message
Failure table using a JDBC connection.

RIB Administration Tools
Script Used:
rdmt_ribadmin_submenu
Description:

The ribadmin script was stand-alone in previous RIB releases. Those functions have
since been moved into this menu item. The ribadmin.sh script is sourced to make the
existing functions available to the menu items and the variables that the scripts
expected have been mapped to rdmt configuration files.

Since many of the functions expect execute permissions on opmnctl as well as
read/write permissions on the WLS directory tree, this menu and the tools are
designed for the RIB administrator role.

If RDMT is installed in the RIB Application Builder rib-home and that is accessible and
configured, then this menu exposes the rib-app-builder menu selection. A test is
performed to verify the rib-home is configured, if not, then the selection will not

appear.

9-10 Oracle Retail Integration Bus Operations Guide

RIB Application Builder Tools

& wmbpdewecpbirenD 0 - B L TAIL 5 RN T | Bamhgpate @ bor dioad Aoerals dret

Script Description

ribadmin.sh This script contains most all of the functions that are exposed
by this menu.

RIB Application Builder Tools
Script Used:
rdmt_ribappbuilder_submenu
Description:

This option leads the user to the RIB Application Builder tools installed in the
rib-home. For a description of the tools and usage, see Chapter 2, "Application
Builder."

Diagnostic and Monitoring Tools 9-11

Scan RIB Logs / Scan RIB Logs (Delta)

< wwbadevecpblrersl - - S PRTALL a6 TASE Y JFH o A0 Samkppadvib borsitesi hawal) dos

Scan RIB Logs / Scan RIB Logs (Delta)

RIB Health

Scripts Used:
loglookoc4j.sh, scan_logs.sh, loglookoc4j_delta.sh, scan_logs_delta.sh
Description:

These scripts perform a log scan to look for a pattern ("Exception”) in all of the log files
in a directory of the currently active WLS instance. Since they perform file system
scans, the RDMT tools must be installed on the host that contains these logs and must
have read permissions on the directories and the files.

As the tool scans all of the logs it writes the matches to a single log file. This becomes
the base file. A second script (delta) looks for the same pattern, but compares the
matches against the base file, and outputs only new ones. The primary scripts are the
scan_logs.sh and the scan_logs_delta.sh. The files created and used by these scripts are
controlled by the rdmt.conf entries.

The location of these files should be sized to handle large text files, since it is possible
for there to be many exceptions and these will contain the consolidated entries from
potentially hundreds of logs. The location is the tmp files parameter set during RDMT
installation and is defaulted to RDMTLOGS/tmp.

Script Used:
cron_ribhealth.sh
Description:

This utility is a general purpose script that invokes other tools and functions in the tool
kit to take a snapshot in time of the run-time state of all of the configured rib-apps.
Because this script uses specific jar files as well as other tools in the tool kit, it requires
that SCRIPTDIR be set to the rdmt base directory.

9-12 Oracle Retail Integration Bus Operations Guide

RIB Timings Utility

It produces a rib_health report on the console as well as a time-stamped log written to
the RDMTLOGS/tmp directory. Each execution of the script produces one of the logs,
and then over-writes a log called lastrun as well. There is a menu selection that views
the lastrun report.

RIB Configuration Report
Script Used:
OC4JConfigReport.sh
Description:

After RIB has been installed and configured on WLS, the user can verify installations
and configurations using RDMT. A script is linked in the RDMT menu that scans the
installations and configurations of rib applications deployed using the configuration
settings in the RDMT configuration files.

It is recommended that after the installation is complete, the user runs the RIB
Configuration Report utility from the RIB Health Menu option. This outputs the
results of the scan on the console as well as in an output file under the specified TEMP
FILES DIRECTORY. Each run produces a time-stamped log and updates a log called
lastrun-config that is viewable from a menu selection.

This script was written to take a snapshot of the RIB environment and test for basic
configuration issues. This utility does the following:

= Displays all RIB apps and shows the status for each RIB WLS instance and
application.

» Performs JMX related functions such as scanning configurations for each
jmxX.conf file and displays the status of the adapters, exceptions from scanning
the logs, and so on.

» Performs checks using JMS configuration.

» Performs checks using Hospital configurations.

RIB Timings Utility
Script Used:
timingsutil.sh
Description:

RIB can log a set of timing entries whenever it creates, transform, routes, filters, or
subscribes to messages on RIB. This utility on functions when RDMT is installed on
the host system where the logs are generated and the RDMT user has permissions to
read the log directories.

The timingsutil.sh script is a wrapper to the RIBTimings Java class. This script runs the
RibTimings post processor on an adapter's timing file. It prompts for the adapter name
then it analyzes the timings logs for that particular adapter. The output is to the screen
as well as a file of CSV format in the RDMT temp files directory:

RDMTLOGS/tmp /<adapter>.csv. which contains the detailed analysis of timings
logs.

This csv file can be directly viewed by Excel. To use this function, the adapter timing
log parameters must be set to DEBUG.

Diagnostic and Monitoring Tools 9-13

JMS Publish Utility

JMS Publish Utility
Script Used:
pubmsgutil.sh
Class:
RibJmsPublisherTester
Description:

This utility was developed to publish a message to a JMS topic. The pubmsgutil.sh is a
wrapper script to RibJmsPublisherTester. It calls the JMS API and publishes the
message on to the topic.

Usage:

= "java com.retek.rib.jms.RibJmsPublisherTester
= -j <JMS provider>

= x<JMSURL>

s -u <JMS username>

= -p <JMS password>

s -t <topicName>

= -n <xmlFileName>

= -wm <should messages be wrapped in RIBMessage envelop>
s -f <messageFamily>

= -m <messagelype>

= -1i <routingInfo>

s -tv<threadValue>

= -nt <<number of times - optional (default value is 1)>>

EJB Publish Utility
Script Used:
ejbpub_util.sh
Class:
RibMessagePublisherClient
Description:

This utility was developed to wrapper the EJB Message Publish Java APL The ejbpub_
util.sh is a wrapper script to RibMessagePublisherClient. It calls the specified EJB
service and publishes the message on to the AQ JMS. It uses the platform service to
publish the message. The user needs to specify the necessary parameters.

Usage:

= "java com.oracle.rib.rdmt.util. RibMessagePublisherClient
s -host <<host!|1>>

s -port <<RMI port -- required>

= -app <<App name -- required>>

9-14 Oracle Retail Integration Bus Operations Guide

TAFR Msg Utility

s -fa <<family -- required>>

s -ty <<type--required>>

= -us <<user | optional>>

= -pw <<password | optional>>

s -fi <<file--required>>

TAFR Msg Utility
Script Used:
tafrmsgutil.sh
Class:
TestAnyTafrBOImpl
Description:

This utility is developed to test any TAFR Business implementation. This helps to
check the output of a particular TAFR by providing the necessary prompted
arguments. It prompts the user for the TAFR name, the location of the input sample
file, adapter id, and the output file name to direct the output (optional). If the output
file name is not specified, the default output is routed to stdout. Once provided the
valid arguments, the user can see the output of that particular TAFR.

Sample Output:

This utility was developed to test any TAFR Business implementation.
These are designed to help diagnose/validate the TAFR implementation.

Usage: java TestAnyTafrBOImpl

<tafr name -- required>

<file path -- required>

<true|false print message data -- required>

<adapter-id -- required>

<file name -- optional | default output routed to stdout>

Do you wish to continue ?
Enter to Continue? y/n/qg [y]:

Existing parameter values:
StoresToStoresPhys /u00/rib-home/tools-home/rdmt/testmsgs/PODesc.xml true
StoresToStoresPhys_tafr 1

Do you wish to execute using existing values?

Enter to Continue? y/n/g [y]l: n

Enter TAFR Name [StoresToStoresPhys]:

You entered: StoresToStoresPhys

Enter to Continue? y/n/q [y]:

Enter the Input message file and path
/u00/rib-home/tools-home/rdmt/testmsgs/PODesc.xml] :

/u00/rib-home/tools-home/rdmt/testmsgs/storedel .xml
You entered: /u00/rib-home/tools-home/rdmt/testmsgs/storedel.xml

Diagnostic and Monitoring Tools 9-15

TAFR Msg Utility

Enter to Continue? y/n/qg [y]:

Print Message Data? [true | false] [truel:
You entered: true
Enter to Continue? y/n/qg [y]:

Enter Adapter ID [StoresToStoresPhys_tafr_1]:

You entered: StoresToStoresPhys_tafr_ 1

Enter to Continue? y/n/q [y]:

Enter the Output file name and path if required (default output routed to stdout)
[1:

You entered:

Enter to Continue? y/n/qg [y]:

log4j:WARN No appenders could be found for logger
(com.retek.rib.domain.ribmessage.bo.RibMessagesFactory) .

log4j:WARN Please initialize the log4j system properly.

Trying to load rib-system.properties from

class.path=1ib/rib-private-tafr-business-impl.jar:../../application-assembly-home/

rib-tafr/

rib-system.properties loaded from
file:/u00/rib-home/application-assembly-home/rib-tafr/rib-system.properties

Trying to load rib-tafr.properties from

class.path=1ib/rib-private-tafr-business-impl.jar:../../application-assembly-home/

rib-tafr/

rib-tafr.properties loaded from
file:/u00/rib-home/application-assembly-home/rib-tafr/rib-tafr.properties

*********************RIBMESSAGES TRANSFORMED DATA*************************
<?xml version="1.0" encoding="UTF-8"?>
<RibMessages xmlns="http://www.oracle.com/retail/integration/rib/RibMessages"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.oracle.com/retail/integration/rib/RibMessages
file:///C:/rib-home/application-assembly-home/rib-tafr/integration/xsd/RibMessages
.xsd">
<ribMessage>
<family>Stores</family>
<type>storedel</type>
<ribmessageID>11.0.x|RIBMessagePublisherEjb|null|2006.01.23
11:45:46.052|510</ribmessageID>
<routingInfo>
<name>loc_type</name>
<value>p</value>
</routingInfo>
<routingInfo>
<name>dest_id</name>
<value/>
<detail>
<dtl_name>loc_type</dtl_name>
<dtl_value>p</dtl_value>
</detail>
</routingInfo>
<publishTime>2006-01-23 11:45:46.052 CST</publishTime>
<messageData><AllocDesc> <store>5&1t; /store>
< /AllocDescé>
</messageData>
<customData/>
<customFlag>F</customFlag>
</ribMessage>

</RibMessages>
*********************PAYLOAD DATA*************************

9-16 Oracle Retail Integration Bus Operations Guide

EJB Ping (APP)

<?xml version="1.0" encoding="UTF-8"?>
<AllocDesc>
<store>5</store>

</AllocDesc>
R R S R R SR R R R S R R R R R R R RS R RS R R R SRR R R R R R R R R R R R R R R

QUT MESSAGE WILL BE ROUTED TO THE FOLLOWING TOPIC(S)****xxxx

LRSS SR SRR SRR S S SR SRR SRS S SRS EE RS S SRS EEEEEEEEEEEEEEEEEEEEEEEE]

1) etStoresPhys

LRSS SR SRR R R RS EE SRR R EREEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEE]

EJB Ping (RIB)
Script Used:
ribejbping.sh
Class:
RibMessagelnjectorClient
Description:

This utility is developed to ping any RIB-<app> EJB component. This helps to test the
connectivity between the rib-<app> and the <app> where app refers to RMS, SIM,
RWMS, RPM, and AIP. This uses the platform configuration to call the E]Bs. The user
needs to put the necessary configuration files namely services_*.xml, jndi_providers_
xml and service_flavors_.xml of the particular rib-<app> under

$HOME /rdmtXX/rib-app/extracted_conf_from_rib-<app>/retek folder before using
this utility option. The user can also use the jndi_config_extractor.sh script for
extracting the necessary configuration files from the system.

The jndi_config_extractor.sh script can be found under the RDMT home directory. The
user needs to copy the jndi_config_extractor.sh script to the machine where the
particular rib-<app> is deployed and then execute the script. The user can execute this
script from any place in that machine. The user also needs to set JAVA_HOME before
running this script. This script will extract the files namely services_*.xml, jndi_
providers_*.xml and service_flavors_*.xml files of that particular rib-<app> instance
by checking the entire file system. All the extracted xml files are finally zipped into
xmlfiles.zip in the current directory from where this script was executed. The user then
needs to transfer /ftp this xmlfiles.zip into the server where RDMT is installed and put
these files under SHOME /rdmtXX/rib-app /extracted_conf_from_rib-<app>/retek
folder.

After performing the above steps, the user can execute the RIB EJB Ping menu option.

EJB Ping (APP)
Script Used:
appejbping.sh
Class:
RibMessagePublisherClient
Description:

This utility is developed to ping any <app> EJB component. This helps to test the
connectivity between the rib-<app> and the <app> where app refers to only SIM,
RPM, and AIP. This uses the platform configuration to call the E]Bs. The user needs to
put the necessary configuration files namely services_*xml, jndi_providers_*.xml and

Diagnostic and Monitoring Tools 9-17

Tool Usage Examples

service_flavors_*.xml of the particular <app> under $HOME/rdmtXX/
app/extracted_conf_from_<app>/retek folder before using this utility option. The
user can also use the jndi_config_extractor.sh script for extracting the necessary
configuration files from the system.

The jndi_config_extractor.sh script can be found under the RDMT home directory. The
user needs to copy the jndi_config_extractor.sh script to the machine where the
particular <app> is deployed and then execute the script. The user can execute this
script from any place in that machine. The user also needs to set JAVA_HOME before
running this script. This script will extract the files namely services_*.xml, jndi_
providers_*.xml and service_flavors_*.xml files of that particular <app> by checking
the entire file system. All the extracted xml files are finally zipped into xmlfiles.zip in
the current directory from where this script was executed. The user then needs to
transfer/ftp this xmlfiles.zip into the server where RDMT is installed and put these
files under SHOME /rdmtXX/app/extracted_conf_from_<app>/retek folder.

After performing the above steps, the user can execute the APP EJB Ping menu option.

Tool Usage Examples

The following are sets of steps for resolving tool usage concerns.

Ensure RIB is correctly installed
Complete the following steps.

1. Using the RDMT Menu system, select the RIB Health SubMenu.

2. Execute RIB Configuration Report option. This produces the basic report on
installation.

This step scans the installations and configurations of rib applications deployed in
wls. It finally produces a RIB WLS configuration report on the console as well as
written into a file under the RDMT Temp directory, which contain the status of all
RIB configurations required to detect/diagnose any RIB related issues.

3. If you find any discrepancies, refer to the Oracle Retail Integration Bus Installation
Guide and follow the steps mentioned there.

Determine whether the local WLS is running
Complete the following steps.

1. Using the RDMT Menu system, select the WLS/JMX Utilities SubMenu.
2. Execute Get WLS Instance State option. It displays the current WLS status.

3. Ifitis not running, start the local WLS instance. See the Oracle Retail Integration Bus
Installation Guide for how to start it.

Determine where an issue is occurring
Complete the following steps.

1. Select RDMT Main Menu.

2. Execute the Scan RIB Logs option. It performs a log scan to look for a /pattern/
("Exception") in all of the log files in a directory of the currently active WLS
instance.

3. Select JMS Topic Scan. Look for topics with messages stuck.

9-18 Oracle Retail Integration Bus Operations Guide

Tool Usage Examples

Determine whether the adapter status is up or down
Complete the following steps.

1.
2.

Select WLS/JMX Utilities Menu.

Execute Status ALL Adapters option. It displays the status of all the adapters,
namely the publishers, subscribers, hospital and TAFR for the currently active
WLS instance.

If anything is down, use the Start ALL adapters option and start the same.

Perform a config/switch for a new WLS instance
Complete the following steps.

1.

2
3.
4

Select WLS/JMX Utilities Menu.
Execute WLS/JMX Configuration Utility option.
Provide the desired parameters and configure an instance.

You can switch to the desired instance using the same option.

Determine the subscriber for a particular JMS topic
Complete the following steps.

1.

2
3.
4

Select RDMT Main Menu.
Select JMS Utilities Menu.
Execute the JMS Topics Subscribe List option.

Provide the topic name for which the subscriber name is needed. It provides the
same.

Diagnostic and Monitoring Tools 9-19

Tool Usage Examples

9-20 Oracle Retail Integration Bus Operations Guide

10

RIB in Operation

Operational Considerations

This section contains common issues that need to be thought about and addressed by a
retailer as they progress towards a production environment involving RIB. It is not a
comprehensive list, nor does it seek to answer the questions, since they are very
dependent on the retailer implementation. The intent of this section is to provide a
starting point for a site-specific RIB operations planning effort.

Alerts and Notifications

RIB has built in alerts and notification through JMX. An external system can subscribe
to all of the built-ins.

Note: See Chapter 5, "RIB and JMX."

RIB Log File Monitoring

Because RIB is a subsystem that runs with no console, it is important to monitor the
various log file that are created. Not only for the content (looking for exceptions), but
also their size and growth.

RDMT includes several tools to assist in scanning and can provide examples on how to
customize them to conform to particular site.

Note: See "Scan RIB Logs / Scan RIB Logs (Delta)" in this manual.

Log File Archive and Purge

RIB uses log4j for all of its logging control. It manages the logs size via its control file.

Note: See Apache Software Foundation
http://logging.apache.org/logdj/docs/documentation.h
tml for details.

In various phases of deployment and in triaging a problem it is often desirable or
necessary to archive the logs so the logs are smaller and scanning by tools or people is

RIB in Operation 10-1

http://logging.apache.org/log4j/docs/documentation.html

Operational Considerations

easier. RDMT includes tools to assist and can provide examples on how to customize
them to conform to particular site.

Note: See Chapter 9, "Diagnostic and Monitoring Tools."

Hospital Size and Growth

The Hospital tables, wherever they are, need to be monitored for size and growth.
They have a huge effect on the performance of the entire RIB. As it gets larger, several
interfaces dramatically slow down.

RDMT includes tools to assist and can provide examples on how to customize them to
conform to particular site.

Note: See "Hospital Scan Tools."

RMS MFQ and RWMS UPLOAD Tables Sizes

The MFQ and Upload table size and growth need to be monitored. They can indicate a
poorly performing (hung) adapter or forecast a slow interface because the Hospital
tables are filling. In the case of some of the slower interfaces there will be slow down
of dependency records being processed.

RDMT includes tools to assist and can provide examples on how to customize them to
conform to particular site.

Note: See, "Hospital Scan Tools."

Remote RWMS

If the situation exists where a retailer is deploying instances of RWMS in different
geographic locations connect by a WAN then there are several RIB deployment
architectural alternatives that need to be considered and decided.

RIB Components Start and Stop

The RIB component must be started and stopped in particular order, and there are
recommendations on when and how to do this and tools to assist in building out
operational processes to suite a retailers site requirements.

It is always recommended that the order of startup be SUB, TAFR, PUB and the
shutdown is in the reverse order. RIB supplies tools to control the adapter start and
stop process in the proper sequence in the rib-app-builder tool called
rib-adapter-controller.

Note: See "RIB Application Builder Tools."

RIB Operation Support Staff Requirements

The RIB application environment often presents a new dimension to a retailer's
infrastructure, and there are training and support issues that do not fit the existing
organization and current staff skill sets.

10-2 Oracle Retail Integration Bus Operations Guide

RIB Operation Support Staff Requirements

RIB Components - Source Code Control

RIB contains code and configurations that are critical to the Enterprise. This version of
RIB is designed to be centrally managed and contains tools for tracking inventory and
versions and configuration changes. A backup strategy also needs to be developed
specific to the site.

Note: See Chapter 2, "Application Builder."

RIB has an inventory tracking mechanism that is maintained by the tools in the RIB
Application Builder. These tools also manage the application of defects and tracking
the defects applied in the inventory.

Note: See "check-version-and-apply-defect-fix."

RIB HA Requirements

RIB is usually considered a HA requirement, so an architecture and operations plan to
handle this needs to be developed.

Note: See the Oracle Retail Integration Bus Installation Guide: The RIB
and Oracle Database Cluster (RAC)

Oracle® Application Server High Availability Guide 11g Release 1
(11.1.1)

Oracle® Database Administrator's Guide 11g Release 2

RIB Disaster Recovery

In addition to the HA requirements, there is the issue of message retention, auditing
and recovery. It is a common for an end-point application to experience an issue such
as a crash that requires recovery or a rebuild. Syncing the data that the other
applications have been publishing and subscribing to during the down time presents a
major challenge.

It is important for a site to develop a plan and approach for this. In a large volume site,
the JMS topics can build to huge numbers very quickly and over-run a system or the
ability of the recovered system to catch-up in a time frame the business finds
acceptable.

Note: See "RIB Audit Logs."
See Chapter 9, "Diagnostic and Monitoring Tools."

RIB Administration Roles and Security

The users and roles for the production environment need to be determined and put in
place.

RIB Operation Support Staff Requirements

Regardless of the organization structure or where the staff reports to, there are two
distinct sets of roles and capabilities needed: the RIB system administrator role and

RIB in Operation 10-3

RIB Operation Support Staff Requirements

RIB application administrator role. The number of the persons filling those roles is
dependent on the size of the deployment, breadth of the products being integrated,
levels of customization and schedule compression.

Integration support is a team effort, with one or two strong RIB administrators who
can work through difficult failure modes using the RIB logs to help isolate the issue
and determine type. Users with knowledge of Oracle Retail application (such as RMS,
RWMS, and SIM) must also also have a good level of RIB understanding. As a team,
they triage issues and then work them. By the Integration Test phase of an
implementation, the types of RIB failure issues become more related to complicated
data sets for business case tests. Gross level functionality issues are generally solved
by then.

Production requirements are similar, but need to reflect the realities of pager rotation,
24x7 issues, as well as how many applications are deployed and over what geography.

RIB System Administrator

This section describes the RIB System Administrator role and responsibilities.

Technology Background
= UNIX (strong) - shell scripts and Unix tools

» Oracle Database and Stored Procedures
s Oracle Application Server (strong)
= Java EE (strong)—ability to read and understand exceptions and log files.

s Message Oriented Middleware (MOM) or communication technologies.

Experience or Training
s WebLogic Application Server

= RIB
» Java EE concepts

s JMS technology

Areas of Responsibility
» Installation or WLS and patches

s Configuration of WebLogic Application Server
= Installation and configuration of RIB
= Support and configuration of Adapters and patches

= Operational issues such as backup /restore, failure analysis using RIBLOGS and
Application Server logs as well as tools and various UNIX scripts and programs,
and aid in the determination of error causes resulting in RIB Hospital entries.

RIB Application Administrator

This section descibes the RIB Application Administrator role and responsibilities.

Technology Background
» UNIX— shell scripts, Unix tools

10-4 Oracle Retail Integration Bus Operations Guide

Hospital Monitoring and Maintenance

s Oracle Database and Stored Procedures

s Oracle Retail Applications—strong (RMS, RWMS, RPM, and SIM)

Experience or Training on
« RIB

s Oracle Retail Applications
= JMS technology

Areas of Responsibility
= Operational support and failure analysis using RIBLOGS and the RIB Hospital.

Hospital Monitoring and Maintenance

Under normal operations, messages go into the hospital, get retried and are
automatically deleted from the hospital. But if there is a steady increase in hospitalized
messages, the reasons should be immediately determined and worked.

Triage of messages placed in the RIB Hospital is a time consuming task. This is a
difficult task when only Oracle Retail applications are involved; adding other outside
applications, as many retailers do, further complicates this process. Problems can be
introduced at the application level, in the extract, or the transformation process.

Having the integration team take a first look at the messages is another common
practice at Oracle Retail customer sites. This team's success at resolving and correcting
data issues is dependant on their access to business analysts who understand the
desired function.

The RIB Hospital tables need to be monitored for size and growth. The number of
entries in the RIB Hospital has a large impact on the performance of the entire RIB.
Each adapter checks the RIB Hospital for previous related failures for each message (to
see if the message should be held until any previous errors have been resolved). As the
RIB Hospital gets larger interfaces can dramatically slow down.

The RIB Hospital is a crucial component in the operation and performance of RIB.
Processes and procedures to handle it are very important, and should be decided on
and practiced early. It is suggested that discussions and planning be started as soon as
possible in the implementation phase to work through the possible scenarios and
develop tools and procedures to handle them.

There are tools in RDMT that can be leveraged to not only build monitoring scripts but
to aid in the initial triage of issues.

Oracle Retail Integration Bus Hospital Administration (RIHA) is the recommended
tool for maintenance of the Hospital. It understands the Hospital table structure and
how to appropriately correct, submit and, as needed, delete messages. The use of tools
such as SQLDeveloper or TOAD is discouraged. Although they allow similar
activities, they do not provide the safe guards that RIHA has to maintain the integrity
of the tables and the JMS.

RIB Hospital tables are packaged with applications and therefore reside in the base
schema of the applications. To reduce maintenance, upgrade and support concerns,
users may choose to extract Hospital tables from application schemas.

Using the RIB Application Builder tool, error Hospital tables can be removed from the
application space and placed under the control of the RIB kernel, where data sources
meant for Hospital-related database operations are differentiated from application

RIB in Operation 10-5

Hospital Monitoring and Maintenance

calls (such as GetNext and Consume). The data source, hosp-managed-datasource,
supports the separation of the Hospital schema from the application schema.

To facilitate the externalization of the RIB Hospital tables from the application schema,
two placeholders (one for PL/SQL applications and one for JavaEE applications) exist
in the rib-deployment-env-info.xml file, as described in Chapter 3, "Backend System
Administration and Logging ."

10-6 Oracle Retail Integration Bus Operations Guide

11

Testing RIB

The Oracle Retail Integration Bus is difficult to test as a stand-alone sub-system. It is
part infrastructure and part application, and needs to have the integrating application
end-points for even a simple installation.

To aid in the initial installation and evaluation of RIB, a test harness has been
developed and made available. The test harness is comprised of the these components:

= plsql-api-stub—An API simulator of the PL/SQL API applications, RMS and
RWMS.

= javaee-api-stubs—An API simulator of those applications exposing JavaEE APIs,
SIM, RPM, and AIP.

= RDMT—The RIB Diagnostic and Monitoring Tool kit is a collection of command
line tools, written in UNIX shell script along with supporting Java classes
packaged in jar files.

= Sample XML files—These samples conform to the message payloads (XSDs).

= Message auditing—This is a feature that allows end-to-end auditing of a message
as it passes through all RIB components.

Initially installing and deploying RIB requires connecting to the Oracle Retail
applications to verify that messages could flow end to end. RIB installation requires
that end points exist and respond. To test it the end points must be configured to
publish or subscribe.

This test harness is completely independent of the applications, but uses the same RIB
artifacts (payloads and Oracle Objects) as the actual applications. Additional tools and
artifacts support the construction of test messages and the publication of these test
messages.

Note: See "RIB Test Harness."
See Chapter 9, "Diagnostic and Monitoring Tools."
See "RIB Logging."

RIB Test Harness

The ability to initially install and deploy RIB has always been difficult because of the
need to connect to the Oracle Retail applications to verify that messages could flow
end-to-end. RIB installation requires that end-points exist and respond, and to test it
requires that the end-points are configured to publish or subscribe.

Testing RIB 11-1

PL/SQL Application API Stubs

The dependency on the application end-points can be not only a scheduling issue, but
to produce messages for can require data seeding and coordination with the individual

application teams.

RIB has several tools, including application API simulators that combine to provide a
test harness that allows for RIB installation, configuration, and testing. These were
developed to address the requirement for the full application to be present to validate
a RIB installation as well as a providing a tool for integration and system tests.

This test harness is completely independent of the applications, but uses the same RIB
artifacts (payloads and Oracle objects) as the actual applications. Additional tools and
artifacts support the construction of test messages and the publication of these test

messages.

Master Checklist

This check list covers all of the sequential steps required to create a stand-alone RIB

Test Harness.

Task

Notes

Create the rib-home

Follow the guidelines in the Oracle Retail Integration
Bus Installation Guide and the Oracle Retail Integration
Bus Implementation Guide for prerequisites.

Do not invoke the installer yet.

Install the javaee-api-stubs and
plsql-api-stubs into the
rib-home/tools-home.

Follow the instruction in the tools section.

Install the pl/sql api stubs

Follow the instruction in the tools section. The
plsql-api-stubs can simulate both RMS and RWMS
from the same user, but if it is desired to test full flow
including hospital, then install to two users.

of Hospital Tables in the same user
account.

For the PL/SQL app subs install a set

See the Oracle Retail Integration Bus Installation Guide.

See note about two stubs.

Deploy the javaee-api-stubs.

Follow the instruction in the tools section.

Install RIB using the stubs as
application end-points.

See the Oracle Retail Integration Bus Installation Guide.

PL/SQL Application API Stubs

The plsql-api-stubs is an API simulator designed to acts in the same manner as when
RIB is connected to the actual application, but at the same time, have means to process
specific status and other parameters from a "stubbed" application. This set of tools is
designed to emulate those applications exposing PL/SQL APIs to RIB: RMS and

RWMS.

11-2 Oracle Retail Integration Bus Operations Guide

PL/SQL Application API Stubs

Architecture and Design

PL/SQL Application Implementation

RIB RIB
GETNXT() Publisher Message Subscriber
returns publishes delivered to calls
payload or RIB — RIB appropriate
status Message to ™, Subscriber CONSUME()
JMS A
RMS or RWMS JMS | RMS or RWMS
XHXXXX.GETNXT() \ / XAXXXX.CONSUME()
Stubbed Implementation
RIE RIB
GSET:I?.ID)?'I?(] Publisher Message Subscriber
retums pul{gllli.hes dellv:lr;d to calls stubbed
~ CONSUME
payload or Message to “, Subscriber 0
status IMS / \
Stubbed JMS l- Stubbed
XXXXXX GETNXT() XXXXXX CONSUME()
s

The tool set contains three main subsystems

= A common set of PL/SQL packages, stored procedures and database tables. These
are used by the other subsystems.

= A thin API-specific set of packages and stored procedures that RIB directly
interfaces with. These interfaces map calls to the common subsystem to output
parameters or statuses.

» The Stub Administration and Setup Application. A set of simple application
function and a character based menu that allow installation and set up of specific
behaviors for a specific APL

The Common Subsystem

The purpose of the common subsystem is to provide a standard means of
implementing specific behavior by an API. The stubbed APIs simulate a real
application by using the common subsystem which will be loaded during the
installation through JDBC calls to the database. It is comprised of a group of tables,
sequences and other database objects created for each stubbed APL

There is a set of tables and sequences created for each GETNXT procedure. These
tables are generated with the OUT and IN/OUT parameters of the GETNXT
procedure as the fields. The user is prompted to enter data into these tables when he is
trying to test for a particular API.

For example:

If there is a GETNXT procedure in a package called RMSMFM_ORDER then the
common subsystem for this procedure would be a table RMSMFM_ORDER_GE_TBL
and sequence called RMSMFM_ORDER_GE_SEQ created in the data base.

For each PUB_RETRY Procedure in the API a set of tables and sequences are created
the same as GETNXT except that the names of tables and sequences have PU instead
of GE

Testing RIB 11-3

PL/SQL Application API Stubs

For a CONSUME API there is a table called RIB_CONSUME created with the O_
STATUS_CODE, O_ERROR_MESSAGE and EXCEPTION_TO_THROW as the fields. If
the user needs the CONSUME to throw a specific type of exception then the exception
can be uploaded into the RIB_CONSUME table, so when the consume procedure is
execute it will throw the specified exception type.

The Thin API layer

The API subsystem consists of packages and stored procedures that have the exact
same signature as those found within the real application. This layer queries the
appropriate common subsystem tables, sequences and other database objects to get the
appropriate out parameters. These are then mapped to the API specific parameters of
the stubbed application APL

The implementation of the stubbed API is written as Java classes and loaded into the
database during installation. The PL/SQL stubbed APIs are implemented in a way
that these API internally call the Java functions present in the classes then the PL/SQL
OUT parameters are mapped with the Java return types.

So when RIB calls the GETNXT stubbed API as it normally calls the GETNXT API of a
real application, the stubbed API internally calls the Java class that uses the common
subsystem tables to get messages as a CLOB. It then converts the CLOB to an Oracle
Object and maps it with the PL/SQL OUT parameters and returns.

The Stub Administration and Setup Functions

These are a set of simple application functions written in Java and wrapped by shell
scripts and a character based menu that allow installation and set up of specific
behaviors for a specific APL

Shell Script Description
stubbymenu.sh Simple character based menu that calls the wrapper scripts.
install.sh Wrapper script that calls the Java classes to install RIB Objects

and stubby Java classes dynamically created from the metadata
into the database (see stubby.properties).

configure_api.sh Wrapper script that calls the Java classes to set up the behavior
and messages of a given consume or getnxt APIL

read_metadata.sh Wrapper script to call a Java utility that will read a PL/SQL
application (RMS, RWMS) schema and create a metadata file as
input to create the stubbed APIs.

Configuration Files

The following are /conf directory files.

Configuration File Description

stubby.properties Primary configuration file. Contains database url info
and the metadata scripts to load.

commons-logging.properties Apache logging conf

simplelog.properties Apache logging conf

SqlToJavaMapper.java generated from the storedproceduremetadatxml

specified in the Stubby.properties file.

Note: Do not edit.

11-4 Oracle Retail Integration Bus Operations Guide

PL/SQL Application API Stubs

Configuration File

Description

StoredProcedureMetaData_
RWMS.xml

Note: Do not edit.

StoredProcedureMetaData_
RMS.xml

Note: Do not edit.

Installation and Setup

Complete the steps described below.

Prerequisite Tasks

Task

Notes

Select a location for the
plsql-api-stubs to reside.

Recommended location is in the
rib-app-builder/rib-home tree structure:

rib-app-builder/rib-home/tools-home

Get the latest version of the
plsql-api-stubs.

The plsql-api-stubs is packaged as a stand-alone tar.

Get the latest version of the
rib-public-payload-database-object-t
ypes.

rib-public-payload-database-object-types.zip is
packaged with the RibFuncArtifacts and should be
extracted from there.

If this installation is in rib-home then the objects will be
located in the
rib-home/download-home/rib-func-artifacts

Create a database user that will own
the plsql-api-stubs schema and the
objects.

The user requires no special permissions.
CREATE USER "PLSQLSTUB"

PROFILE "DEFAULT"

IDENTIFIED BY " PLSQLSTUB "

DEFAULT TABLESPACE "USERS" TEMPORARY
TABLESPACE "TEMP";

GRANT "CONNECT" TO " PLSQLSTUB ";
GRANT "RESOURCE" TO " PLSQLSTUB ";

This version requires a path to
jdk1.6 for compiling Java stored

Be prepared to specify the path when prompted.

procedures.
Installation
Task Notes
Extract the tar file. This will create the file folders and place the executables and
od configuration files.
rib-app-builder/rib-home/too | In rib-home/tool-home there is a directory already. It is a
Is-home placeholder and this will over write it.
tar xvf

PlsqlApiStubs13.2.4ForAll13.x.
xApps_eng_ga.tar

Place the database objects file
in the scripts subdirectory

Testing RIB 11-5

PL/SQL Application API Stubs

Configure_api

Task

Notes

Extract the
rib-public-payload-database-o
bject-types.zip into the scripts
directory.

unzip
rib-public-payload-database-o
bject-types.zip

Edit /conf/stubby.properties
to point to the database url
and user/password (see
prerequisites).

vi stubby.properties

Database details
hostname=linux1
port=1521
sid=oral0g

dbuseralias=rms13dbuseralias

Base Script File names

This is where the selection of either RMS or RWMS objects is
made. There can be only one per installation.

Execute the installation using
menu item or install.sh in the
stubby base directory

cd
rib-app-builder/rib-home/too
Is-home/ plsql-api-stubs

./install.sh
Or
./stubbymenu.sh

Then select the menu item to
install.

The installation performs these actions:

Runs a cleanup that will remove any existing RIB related
tables, sequences, packages and types installed in the
configured user schema.

Runs all the scripts files in the udt sub-directory.

Runs a drop Java utility to remove any existing classes in the
configured user schema. Note: The warnings generated by
the drop Java can be ignored.

Runs the load Java utility to load Java classes as objects in the
configured user schema.

All the RMS and RWMS packages are created in the
configured user schema.

Install Hospital tables

See the Oracle Retail Integration Bus Installation Guide.

Enter the complete path for
jdk1.5:

This version of stubby and the RDBMS requires jdk1.5 for
compiling Java stored procedures.

The installation is now complete, and the tool is ready to be used.

The next step in using the tool set is to configure the desired behavior of the APIs
under test. Use of the tool requires that the user understand the APIs involved at
enough detail to understand and answer several prompts during the configuration
process. See the Oracle Retail Integration Bus Integration Guide and the operations guides
for the RMS and RWMS applications.

Note:
configuring the api.

The database creditials setup must be complete before

11-6 Oracle Retail Integration Bus Operations Guide

PL/SQL Application API Stubs

Prerequisites

Task

Notes

Create a sub-directory for the test messages
to configure the API to use. These can be
any location on the same host where the
tool user has permissions to read.

RIB ships with sample xml files for each
message family. These are packaged with
RDMT and are located under the testmsg
subdirectory in the rdmt directory.

rib-public-payload-xml-samples.zip.

These should be used as a basis for testing and
modified to suit the test cases.

API Package name: RMSMFM_ITEMS
Message Type: ITEMCRE

Understand and know which API and its API Types supported:
type to configure. GETNXT

For example: CONSUME

API Type: GETNXT PUB_RETRY

Execute the configure_api.sh script or select the menu item and respond to the

prompts.

Prompts during configuration of a GETNXT and PUB_RETRY.

Prompt

Notes

Status Code the GETNXT API should return:

S for Success, H for hospital, N for no message, and E
for exception

Case sensitive

Enter Error Message to be returned (to be entered only
for H or E status codes).

Enter data for O_MESSAGE

The complete file path of the
message to uploaded

Enter Business Object ID to be returned.

Optional

Do you want to enter Routing Information for the
message? [Y/N]:N

Enter the Thread Value for the message.

Enter the number of times the message must be
replicated.

Prompts during configuration of a CONSUME.

Prompt

Notes

Enter Status Code the Consume should return
[S-Success]/[E-Error]

Enter the Exception to be Thrown
eg:nullpointerexception:

Enter the Exception Message to be Thrown.

The Exception_To_Throw and Error
Message with only be prompted if the
status code is E.

Enter Message Type the Consume should return
[CRE,MOD,DE]] eq:ITEMCRE:

Testing RIB 11-7

Java EE Application API Stubs

Java EE Application API Stubs

The javaee-api-stubs is an API simulator designed to acts in the same manner as when
RIB is connected to the actual application, but at the same time, have means to process
specific status and other parameters from a stubbed application. This set of tools is
designed to emulate those applications exposing Java EE APIs to RIB: SIM, RPM, and
AIP.

Architecture and Design

Java EE Application Implementation

RIB RIB
Publisher Message Subscriber
publishes delivered to ‘35“5_
RIB J— RIB appropriate
Message to Subscriber INJECTOR
JMS
RPM or SIM JMS | RMS or RWMS
KKK PUBLISHI) HOOOKINJECT
Java EE Stubbed
Implementation
RIE RIB
Publisher Message Subscriber
publishes delivered to calls stubbed
RIB — RIB INJECTOR
Message to Subscriber
JMS \
Stubbed JMS | Stubbed
JOOOOKK PUBLISH KXXXXXINJECT
.
Installation and Setup
Complete the steps described below.
Prerequisite Tasks
Task Notes

Select a location for the javaee-api-stubs to | Recommended location is in the
reside. rib-app-builder/rib-home tree structure:

rib-app-builder/rib-home/tools-home/
javaee-api-stubs

Get the latest version of the plsql-api-stubs. | The plsql-api-stubs is packaged as a stand-alone
tar.

11-8 Oracle Retail Integration Bus Operations Guide

Java EE Application API Stubs

Task

Notes

Create a database user that will own the
javaee-api-stubs objects.

The user requires no special permissions.
CREATE USER JAVAEESTUB

PROFILE DEFAULT

IDENTIFIED BY STUBBY

DEFAULT TABLESPACE USERS
TEMPORARY TABLESPACE TEMP;

GRANT CONNECT TO JAVAEESTUB;
GRANT RESOURCE TO JAVAEESTUB;

Installation

Task

Notes

to deploy the javaee-api-stubs.ear.

Determine the WebLogic instance to which

It is recommend but not required that an
instance separate from the rib-<app> instance is
used.

Using the WebLogic console, select the
WebLogic instance and then deploy
javaee-api-stubs-.ear.

See WebLogic deployment documentation for
more details on how to deploy a Java EE
application.

Using the WebLogic console, configure the
database resources for the javaee-api-stubs
JDBC resources.

console

= Navigate to the Data Sources sceen
using Services > JDBC > Data Sources
menu.

in the respective fields.

Name:

ource

Database Type: Oracle

» Click Next. Uncheck Supports Global
Transactions.

= Define connection properties for hte
database user in question.

Configuration.

that the configuration is accurate.

n Select target as the server that would
host javaee-stubby (for example,
javaee-stubby-instance). Click Finish.

= Log in to the WebLogic administration

= Click New. Enter the following values

javaee-api-stubs-non-xa-managed-datas

JNDI Name: jdbc/OracleRibDsNonXA

Database Driver: Oracle’s Driver(Thin)

= Verify the configuration by clicking Test

= Do not proceed if the test fails. Ensure

See WebLogic documentation for details.

Testing RIB 11-9

Java EE Application API Stubs

Task

Notes

Create one more data source named
javaee-api-stubs-xa-managed-datasource.
Navigate to the Data Sources screen using
Services > JDBC > Data Sources menu.

Click New. Enter the following values
in the respective fields.

Name:
javaee-api-stubs-non-xa-managed-datas
ource

JNDI Name: jdbc/OracleRibDs
Database Type: Oracle

Database Driver: Oracle’s Driver(Thin)
Click Next for Transaction Properties.

Define connection properties for the
database user in question.

Verify the configuration by clicking Test
Configuration.

Do not proceed if the test fails. Ensure
that the configuration is accurate.

Select target as the server that would
host javaee-stubby (for example,
javaee-stubby-instance). Click Finish.

Verify that both data sources are listed
on Services > JDBC > Data Sources
screen.

Install Hospital tables

See the Oracle Retail Integration Bus Installation
Guide.

Configuration of the rib-<app> to use Injection Stubs

Task

Notes

Decide which rib-<app> to configure for.

The stubbed implementation has been written
to insert the payload to a database once inject
has been called. Injectors.xml has been
configured to include all the RPM,SIM
subscribing families.

Using RIB Application Builder or the RIB
Installer configure and deploy the rib-app
using the jndi information of the
javaee-api-stubs in place of the app.

<app i1d="sim" type="javaee-app">
<jndi>
<url>t3://mspdvl70.us.oracle.com:18022/ja
vaee-api-stubs</url>
<factory>weblogic.jndi.WLInitialContextFa
ctory</factory>
<user-alias>sim_jndi_
user-name-alias</user-alias>

</jndi>
</app>

11-10 Oracle Retail Integration Bus Operations Guide

12

Performance Considerations

The chapter discusses the performance characteristics of RIB, the factors that affect it,
and a process to test it.

Performance of RIB within a customer site is critical to the performance of the
business, and is determined by factors specific to a given deployment. Because of this
is, a Performance Test is recommended as part of every deployment plan. Even if
formal testing is not planned, the use of the tools and processes discussed can measure
the relative performance of the RIB sub-system and can be used to diagnose
bottlenecks.

It is beyond the scope of this document to discuss all of the tools and techniques
available at the host, network, database, and application server level.

See the Oracle Integration Bus Implementation Guide.

Performance Factors

The performance of each of these components affects the overall performance of the
system:

= Application Server topology and configuration.
= RIB deployment approach.
= Hardware sizing and configuration of the following:
- RIB hosts
- Applications connected to RIB
- JMS provider host
- RIB Hospital hosts

There are other factors that determine the performance of the overall system. Some of
these factors in a RIB environment are:

= Number of channels configured

= Number of messages present in the topic

= Size of the message

= Database clustering

= Application Server topology

= Number of TAFRs in the processing of the message

= Message aggregation

Performance Considerations 12-1

Performance Requirements

Performance Requirements

For each RIB message family, volume requirements are almost always described for
the end-to-end message flow, from publication to completion of subscription by all
Oracle Retail applications. Retail businesses express volume requirements in terms of
details per hour and per day.

Each message family has its own volume requirements, and any given family may
have an intermediate component between the originating publication and the end
subscriber. These components are called TAFRs (Message Transform, Filtering, and
Routing). This is an important concept, because it means that in a given flow, a
message published by the source system may be subscribed to and then re-published
by a TAFR before it is subscribed to by the destination application. This is true for
many Message Families.

The following are examples of volume requirements:

Family Details Per Day Details Per Hour
Purchase Orders 355,000 355,000
ASN Inbound 19,200,000 19,200,000
Appointments 240,000 30,000

PO Receipt 240,000 30,000
Store Receipt 4,000,000 2,000,000
Transfers 1,000,000 250,000
Stock Order Allocation 600,000 75,000
Stock Order Transfer 1,000,000 75,000
Stock Order Status 600,000 75,000
ASN Outbound (BOL) 285,000 285,000
Promotions 5,000,000 250,000
Item Locations 1,000,000 300,000
Items 100,000 20,000

Note: Although these examples are for illustration, they are
representative of actual customer requirements.

Message construction is the same for all Oracle Retail Publishing applications and RIB
adapters. There are configuration control points that allow flexibility in the size of the
message. The application side has the ability to specify the number of details per
message. There is a RIB setting that controls the aggregation of the messages
(ribMessage) within the larger RibMessages envelope. There is a setting that controls
the number of RibMessages published within a commit to the JMS.

See "Message Aggregation.”

Multi-Channel

RIB is designed to support parallel message handling to increase throughput by way
of a mechanism called multi-channel, which logically partitions the flow of messages
within the JMS topic so that multiple publishers and subscribers can simultaneously

12-2 Oracle Retail Integration Bus Operations Guide

End-to-End Timing

use the same JMS topic without contention or interference and preserve publication
message ordering within the logical channel.

Every adapter instance of a publisher, subscriber, or TAFR configured in RIB is
considered to belong to a logical channel for processing messages. Multi-channel
adapters are multiple adapter instances for the same message family, each processing
messages asynchronously and in parallel. When multiple channels are used, they must
be defined and configured across all publisher, subscriber, and TAFRs that participate
in an end-to-end message flow to and from all Oracle Retail applications for that
message family.

Each messaging RIB component involved in publishing or subscribing to a logical
channel is distinctly identified by a J]MS Message property known as "threadValue"
with a specific value. This JMS message property and the value it contains define the
logical channel.

JMS Message properties are user-defined additional properties included with the
message. Message properties have types to define application-specific information that
message consumers can use to select the messages that interest them. Each RIB
subscriber has the "threadValue" property, and this value is part of its JMS Durable
Subscriber selector and each RIB publisher sets the "threadValue" JMS message
property to a specific value for each message it publishes.

Oracle Retail RIB components are capable of being multi-channeled by making
configuration changes to the system. The base RIB configuration provides each
message mamily with one channel, where all components set or look for "thread Value"
of 1 (one). The naming convention and the RIB kernel code identify the RIB adapters
by adding the logical channel to the end of the adapter class name.

The diagram below demonstrates the multi-channeling of the Purchase Order flow to
two channels.

il
h

End-to-End Timing

RIB performance is judged by the average time a message family detail takes to flow
from a publisher to consumption by all active subscribers. This is not a straightforward
measurement.

Message throughput is not a calculation of the sum of the individual message times.
Although the average time per message will remain fixed, messages are processed in
parallel. So the total time to process n messages on a single channel will not be the
serial sum of the individual messages.

Additionally, it is possible to configure multiple logical channels to increase overall
throughput.

How to Calculate Average Message Size

It is important to understand the average messages in an integration flow. Where
interfaces are separated into messages families with differing payloads per message

Performance Considerations 12-3

End-to-End Timing

type, these calculations can be difficult. This section outlines an approach for arriving
at averages using the sample XML files that ship with RIB.

RIB delivers sample files generated for each message family.

Note: Several families have variable types of details per header so a
close investigation is required to understand what the relationship is
and what a representative message can be.

In practice, of course, this size will vary depending on the number of characters that a
description element may contain, but for performance testing calculations, this is a
reasonable start for calculations.

Note: An alternative is to use the audit feature of RIB. These
messages can then be used to estimate the average sizes.

The RIB message envelope, called a RibMesssages contains a variable number of
ribMessage nodes. Within a ribMessage node is a message family payload. A
minimum payload for this exercise is defined as one header and a variable number of
details.

The general process to determine the size in bytes of a message family message per
detail using the RIB sample xml messages and xsds is as follows:

s Determine the RIB envelope size (RibMessages elements + ribMessage elements).
= Determine the size of a single header.
s Determine the size of a detail.

RIB has a standard message envelope (RIBMessages.xsd) that can be easily calculated
exclusive of the message family payload.

ribMessage header elements no payload 823 Bytes

RibMessages header elements 324 Bytes

RibMessages with 1 rM no payload 1147 Bytes

Each message family is comprised of message type and an associate payload (for
example, POCre uses PODesc.xsd). These relationships are defined in the Oracle Retail
Integration Bus Integration Guide.

The sample XML messages for each release are packaged in the functional artifacts
war file and with RDMT in the rib-home/tools-home/rdmt/testmsgs directory.

Select the message payload file and look at the byte count. This will always be 1
header and 1 detail. Be aware that this relationship varies by family and can be
complex for some message types (for example, ItemCre and ItemDesc.xsd) where
optional details can be present.

Select the payload file and remove all detail nodes and look at the byte count. This will
be the standard header. Use the same procedure for the details. This will be the detail
size.

Example Message - PODesc
Header Size (PODesc no detail) 9413

12-4 Oracle Retail Integration Bus Operations Guide

End-to-End Timing

1 Detail Size (PODtl) 1943

The next step is to determine the average number of details per message. This will
vary based on the business needs and the selected RIB configuration.

See "Message Aggregation.”

Using the desired number of details per message, this calculation is the result:

Purchase Order Example

Total 1 RibMessages + 1 ribMessage + 1 Header + 1 Detail | Avg Message Size
For example:

Total 1 RibMessages + 1 ribMessage + 1 PODesc + 1 PODtl | 12,053

ribMessage header elements no payload 823

RibMessages header elements 324

RibMessages with 1 rM no payload 1147

Message - PODesc

Header Size (PODesc no detail) 9413

1 Detail Size (PODtl) 1943

Total 1 RibMessages + 1 ribMessage + 1 PODesc + 1 PODtl 12,053

The following is an example using the default settings.

RIB messages created by the Order publishing adapter (details per message):

s Contains a maximum of 20 ribMessages per RibMessage.

= Has 20 details per PODesc payload in a ribMessage.

For a 400 Details PO Message the calculation is:

RibMessage = 1 RibMessages header + 20 ribMessage headers + 20 PODesc + 400

PODtls
ribMessage nodes 20
Details 400
RibMessages Header (1) 324
ribMessage Header (20) 16,460
PODesc (20) 188,260
PODtl (400) 777,200
Total Bytes/Msg 982,644

Performance Considerations 12-5

Understand the Message Family

Using the example volume requirement for the Purchase Orders, and using the same
RIB message configuration settings:

Details per hour requirement (Total Through-put) 355,000

Details per Message 400

Total messages per hour (355,000/400) 887

Message/sec required (982 KB each - 60*60/887) 4.058
So:

End-to-End — 1 message with 400 details can take a max of 4.058 seconds.

End-to-End — 982,644 Bytes can take a max of 4.058 seconds (which in this example is
400 details).

So:

982644 Bytes/4.058 sec = 242149.83 bytes/sec = 0.2421498 MB/sec Total end-to-end
throughput to meet the Purchase Order example requirements.

Understand the Message Family

These are end-to-end processing time requirements across the entire message flow
from Publisher to Subscription completion.

The following diagram is a generic message flow.

Total Through-put

LT

— S S—

rib-tafr.ear

Y Tib-=app= ear IMS Provider ‘ rib-<app.car L
Vo

To continue the Purchase Order example, the requirements and timings have to be
broken down further. The Purchase Order flow has a TAFR as well as multiple
subscribers. For purposes of this example, consider the Subscribers Consume times as
equivalent. As the diagram depicts, for a flow like the Purchase Orders, there are
multiple components and for a single message to flow there will be, at a minimum, a
message published twice and subscribed twice, as well as a marshalling and
un-marshalling of the message twice (Family dependent). There will be at least one,
and possibly two, Hospital Dependency checks as well.

The following diagram is a logical view of the Oracle Retail Purchase Order flow.

12-6 Oracle Retail Integration Bus Operations Guide

RIB Timing Log Analysis

Purchasi

Purchase Orders Purchase Orders—p Management
System

e Orders

Warehouse

Store
Inventory

Management

The following diagram is a functional, detailed view of the Oracle Retail Purchase
Order flow.

- JMS Provider
rib-rms rib-rwms
S TN B ETT T — | (]

Tib-tafr

RIB Timing Log Analysis

RIB performance is a complex subsystem to measure. It nvolves not only host level
performance, but database, network, and application server subsystems performance.
To measure the RIB components’ timing characteristics available for analysis, the RIB
kernel code logs events as it processes them. The logging of these events is through
log4j; timings are logged per adapter. Once the timings are enabled the events log
continuously to the file. The RIB RDMT supplies a post-processing tool to take the
timing file and produce summary reports.

This table lists the currently predefined times that are tracked in the RIB Timings logs.

The description is the definition of interval calculation.

Timing Type Description

T1 | PUB_B4_GETNXT_CALL Time interval between start of the publisher
and the actual GETNXT call.

T2 | PUB_TIME_IN_GETNXT_CALL Time taken by the GETNXT call to the plsql
app.

T3 | PUB_TIME_IN_EJB_PUBLISH_CALL Time taken for the publish call in the E]JB,
includes RIB overhead surrounding the actual
publish to the JMS.

T4 | PUB_TOTAL_PUBLISH_TIME Time taken for the complete PUB process =
GETNXT + hospital dependency + publish +
commit.

T5 | PUB_TIME_IN_REAL_JMS_PUBLISH | Time taken to publish a message to the AQ
JMS.

Performance Considerations 12-7

RIB Timing Log Analysis

Timing Type

Description

T6 | SUB_TIME_IN_CONSUME_CALL

Time taken by the CONSUME call to the plsql
application.

T7 | SUB_TOTAL_SUBSCRIBE_TIME

Time taken for the complete SUB process =
CONSUME/INJECT + hospital dependency
+ subscribe + commit.

T8 | SUB_TIME_IN_EJB_SUBSCRIBE_CALL

Time taken for the subscribe call in the EJB,
includes RIB overhead surrounding the actual
subscribe.

T9 | SUB_TIME_IN_INJECT_CALL

Time taken by the INJECT call to the Java
application.

T10

TAFR_TOTAL_MSGPROCESS_TIME

Time taken in the complete message tafring
Process = TAFRing + hospital dependency +
publish + RIB overhead.

T11 | TAFR_TIME_IN_EJB_CALL

Time taken for the TAFR call in the EJB,
includes RIB overhead surrounding the actual
TAFRing.

T12
EJB

TAFR_TIME_IN_REAL_JMS_PUBLISH_

Time taken by the TAFR to publish a message
to the AQ JMS.

Purchase Order Example

Note:
but not test results.

The following examples illustrate the process and concepts,

Order_pub_1 (Publisher)

MIN_ MAX_
TIMING_TYPE COUNT | AVERAGE | TIME _SUM | TIME TIME
PUB_B4_GETNXT_CALL 100 0.03787 3.7904 0.036 0.07
PUB_TIME_IN_GETNXT_CALL 100 0.06546 6.5528 0.061 0.254
PUB_TIME_IN_EJB_PUBLISH_ 100 0.04192 4.1961 0.039 0.308
CALL
PUB_TOTAL_PUBLISH_TIME 100 0.19675 19.6947 0.186 2.738
PUB_TIME_IN_REAL_JMS_ 100 0.02931 2.9341 0.027 0.292
PUBLISH_EJB

OrderToOrderTafr 1 (TAFR)

MIN_ MAX_
TIMING_TYPE COUNT | AVERAGE | TIME _SUM | TIME TIME
TAFR_TOTAL_MSGPROCESS _ 100 1.58708 158.708 1.296 4.135
TIME
TAFR_TIME_IN_EJB_CALL 100 1.51371 151.371 1.23 3.24
TAFR_TIME_IN_REAL_JMS_ 100 1.1802 118.02 0.914 2414
PUBLISH_EJB

Order_sub_1

12-8 Oracle Retail Integration Bus Operations Guide

Key Interfaces to Consider

MIN_ MAX_
TIMING_TYPE COUNT | AVERAGE | TIME _SUM | TIME TIME
SUB_TIME_IN_CONSUME_CALL | 100 1.359 135.9 0.671 2.203
SUB_TOTAL_SUBSCRIBE_TIME 100 1.93943 193.943 0.718 5.593
?:[ili_LTIME_IN_E]B_SUBSCRIBE_ 100 1.92386 192.386 0.687 5.593

In this example, to describe the serial processing through-put time to Publish 100
messages through the TAFR to Subscriber Consume:

Publisher (19.69 Sec) + TAFR (158.708 sec) + Subscriber (193.943 sec) = 372.341 seconds
= Average 3.72 msg/sec

It is important to understand that the actual message through-put is not a calculation
of the sum of the individual message times. Although the average time per message
will remain fixed, messages are processed in parallel. So the total time to process n
messages on a single channel will not be the serial sum of the individual messages.

Note: This is an illustration. The number of message needed to
arrive at a calculation of through-put requirse much higher counts, a
broad spectrum of time, and system load. Other factors include
average size of message.

Key Interfaces to Consider

Every customer site has unique requirements and flows, so the ones to focus on will
vary. However, there are ones that always make to the list.

= ASN

= Receipts (PO and Store)

s Promotions

m Stock Order (Allocation & Transfers)
s Jtem Locations

s Jtems

It is strongly recommended that during the deployment planning phase, the business
requirements for these and others be gathered and analyzed. Some form of
performance testing should be planned, even if only a characterization by measuring
the actual flows during other test phases (for example, Integration Test).

ASN (Inbound/Outbound)

The following diagram is a functional, detailed view of the Oracle Retail
ASNin/ASNOut Flows.

Performance Considerations 12-9

Key Interfaces to Consider

S Provider -
rib-rms
rib-rwms
<« |«
Ruis — R «
| | A < v
S
rib-sim
T g
SIM
4 __mu

rib-tafr

Receipts

The following diagram is logical view of the Oracle Retail Receipts Flow.

Warehouse
Management
Receipt- System

Receipt

Store
Inventory
Management

The following diagram is functional, detail view of the Oracle Retail Receipts Flow.

. JMS Provider
rib-rms rib-rwms
(o5 e] ~) 3 “ N, (s]
rib-sim

The Receipts message family is transactional data, and often a candidate for
performance testing. Receiving consists of appointment and receipt messages that are
published to RIB for RMS providing open to buy visibility. An appointment is
information about the arrival of merchandise at a location. A receipt message informs
RMS when merchandise arrives in a warehouse or store system.

Stock Order (Allocations & Transfers)

The following diagram is a logical view of the Oracle Retail Stock Order Flow.

12-10 Oracle Retail Integration Bus Operations Guide

Key Interfaces to Consider

roeat Stock on Warehouse
ncations- tocl roer
" Management
System
Transfers- Stock Order—|

Stock Order

The following diagram is a functional, detail view of the Oracle Retail Stock Order

Stock Order Store
Inventory
Management

h 4

Flow.
- JMS Provider
rib-rms rib-rwms
+{Tnstos pub |-— ertansertoms | i
rib-sim
FYY
> JRISETRR -
rib-tafr

How to Approach a RIB Performance Test

There are two distinct approaches to measuring RIB performance: using actual
application end-points or using the RIB API simulators. Both are useful at different
phases of deployment.

Keep in mind, that performance measuring is possible at any time in any phase,
performance testing is more formal and requires planning, dedicated people and
systems and test data. Building test data is difficult. Do not underestimate the
complexity and this time consuming aspect of testing. To do testing with the
applications involved, all of the data has to be consumable without errors.

There are tools available in RDMT to assist in this, as well as the audit feature of RIB.
By enabling audit on an interface all messages are saved to a file in a form that can be
played back by RDMT utilities.

The API Simulators (PL/SQL and Java EE) allow the focus to be on RIB infrastructure
and is possible without resources outside of the RIB team. The value is limited to
profiling the deployment architecture independent of the application API behavior
and is much simpler in terms of data generation.

The performance measures of the end-to-end flow using the application's APl is the
only way to match performance against requirements since the majority of the time

Performance Considerations 12-11

Key Interfaces to Consider

spent in the flow is in the application API. Customers do not distinguish a separation
between RIB components and the application APIs.

The following illustrates the RIB Performance Test Harness.

JMS Host APP Test Host
AQIMS /
l PLSOL APLCONSUME)
A
[
T e s
RIB OC4.) Instance T ROMT Taols
APP Test Host [mspUB Uity]
.o [Emrov)
— | o TR
[m} Z RIB OC4J Instance RIB OC4J Instance
|'-E e osppon
[1t AP Bopial ot —
| TAFR llowpital Lt _-*
|

Tools supplied to support both forms of tests are the RIB Test Harness, the API
simulators, and the RDMT tools (timing utility, JMS Publish and E]JB Publish).

This is a general process for measuring the flow end-to-end.
1. Prepare for the run. Use RIB Administration GUI to do the following.
= Stop all adapters (PUB, SUB, TAFR).
= Archive all logs so that the run has clean logs.
= Enable timings logs (DEBUG) on all adapters.
= Set all other adapter logs to INFO.
2. Determine how to generate the messages.

= Using the Oracle Retail Application (for example, RMS to generate some
orders).

= Using RDMT EJB Publish (will use a portion of the PUB Adapter).
s Using RDMT JMS Publish (will not use the PUB Adapter).
3. Start the appropriate adapters depending on the above decision.
s Use RIB Administration GUI to start adapters (PUB, SUB, TAFR).
4. Generate the test messages.
5. Stop the adapters.
6. Analyze the data.

= Use RDMT to run the Timing Analysis Utility on each adapter timing log. This
creates a .csv file.

s Upload the .csv files for display and further analysis using a tool such as
Excel.

12-12 Oracle Retail Integration Bus Operations Guide

Multi-Channel Adapters

Multi-Channel Adapters

A channel is a solution approach to maintaining the previous RIB release concept of a
Logical Channel.

Multi-channel applies to the logical partitioning of the flow of messages within the
JMS topic. Multiple publishers and subscribers can simultaneously use the same JMS
topic without any contention or interference, thus preserving publication message
ordering within the logical channel.

Every adapter instance of a publisher, subscriber, or TAFR configured in RIB belongs
to a logical channel for processing messages. Multi-channel adapters are multiple
adapter instances for the same message family, each processing messages
asynchronously and in parallel.

There are critical rules of behavior that must be observed and enforced to maintain the
two primary RIB functional requirements of once-and-only-once successful delivery
and guaranteed sequencing of messages within a message family.

To ensure that these rules are followed—and to simplify RIB configuration tasks that
support a multi-channel message flow—the process has been integrated into the RIB
application builder tools.

Multiple channels must be defined and configured across all publisher, subscriber, and
TAFRs that participate in an end-to-end message flow, to and from all Oracle Retail
applications, for that message family. The RIB Application Builder tools have checks
and verification logic to prevent deployment of incomplete flows.

Use of multi-channels can increase performance, but it does not help in every
situation. There is overhead and complexity associated with implementing multiple
channels so they should not be considered unless a defined and performance problem
exists.

Adding Multi-Channels to a Message Family

The process of adding multi-channels to a message family should be part of a
performance test and tuning process. Multi-channeling capability for a message family
is limited by the muti-channel support in the publishing performed by applications.

It is a known issue that currently none of the publishing APIs of RWMS support
multi-channeling. Therefore, integration flows involving RWMS publishing cannot be
multi-channeled.

For example, the Inventory Adjustment (InvAdjust) message family is published by
RWMS and subscribed to by RMS. Because RWMS supports only single-channel
publishing, RMS must be set up for single-channel processing for the InvAdjust
message family. All RWMS subscription APIs support multi-channel processing.

The following RMS publishing APIs support multi-channel processing;:
= Allocations Publication API

s Item Location Publication API

s Item Publication API

= Merchandise Hierarchy Publishing API

s Order Publication API

= Receiver Unit Adjustment Publication API

s RTV Request Publication API

Performance Considerations 12-13

Logical Channels and threadValue

= Seed Object Publication API

s ASNOUT Publication API

» Transfers Publication API

s Work Orders in Publication API

s Work Orders out Publication API

The following RMS publishing APIs do not support multi-channel processing:
» Banner Publication API

= Differentiator Groups Publication API
» Differentiator ID Publication API

» Partner Publication API

= Seed Data Publication API

= Store Publication API

= Vendor Publication API

s UDA Publication API

s Warehouse Publication API

Logical Channels and threadValue

Each messaging RIB component involved in publishing or subscribing to a logical
channel is distinctly identified by a JMS Message property known as "thread Value"
with a specific value. This JMS message property and the value it contains define the
logical channel.

JMS Message properties are user-defined additional properties that are included with
the message. Message properties have types, and these types define
application-specific information that message consumers can use to select the
messages that interest them.

So each RIB subscriber has the thread Value property and this value as part of its JMS
Durable Subscriber selector and each RIB publisher sets the "thread Value" JMS
message property to a specific value for each message it publishes.

Oracle Retail RIB components are capable of being multi-channeled by making
configuration changes to the system. The base RIB configuration, as shipped GA,
provides each message family with one channel where all components set or look for
threadValue of 1 (one). The naming convention and the RIB kernel code identify RIB
adapters by adding the logical channel to the end of the adapter class name.

Algorithm Used to Calculate Channel

Channels are calculated based on Business object ID(BOID) found in the RibMessages
<id> tag. The algorithm used to calculate is as follows.

MOD (MD5 (family + ":" + businessObjectId)$maxChannelNumber) + 1

» First the algorithm calculates the message digest of the string

non

family+":"+businessObjectld which produces a unique number.

» Then this number is divided by the maxChannelNumber, which is calculated by
the number of configured channels for that message family.

12-14 Oracle Retail Integration Bus Operations Guide

How to Configure a Multi-Channel Flow

s Alisadded to the result, so that the channel number is always greater than 0.
For example:

Family = Alloc

BusinessObjectID (BOID) = 10202123

MaxChannelNumber = 7 (Total number of channels configured for the Alloc family)
Then the channel number for the BOID is calculated as

sMOD (MD5 (Alloc + ":" + 10202123)%7) + 1 = 4

which means that all the messages that have BusinessObjectID of 10202123

are ALWAYS sent through channel 4 (Alloc_pub_ 4).

Note: The channels have to be configured throughout the integration
flow using the rib-app builder tool.

Example of a message family flow with a TAFR:
Alloc_pub_1

Alloc_tafr_1

StockOrder_sub_1

How to Configure a Multi-Channel Flow
The following is the basic process for configuring a multi-channel flow.
1. Determine the family to multi-channel.
2. Examine the rib-integration-flows.xml to identify all participants in the full flow.

3. In the rib-home modify the appropriate configuration files for each of the
rib-<apps>.

a. rib-<app>-adapters.xml

b. rib-<app>-adapter-resources.properties
4. For PL/SQL Application edit the RIB_SETTINGS table.
5. Compile and deploy.

Example

This example is to configure the Alloc message flow with five channels. Alloc is a
complex flow, in that it has multiple Oracle Retail application subscribers and a TAFR
that transforms the messages from one family to another: Alloc to StockOrder.

Back up the following files.
= rib-home/application-assembly-home /rib-rms/rib-rms-adapters.xml
= rib-home/application-assembly-home /rib-rms/rib-rms-resources.properties.

The following is the message flow for the Alloc Family from rib-integration-flows.xml
that this example uses.

<message-flow id="1">
<node id="rib-rms.Alloc_pub" app-name="rib-rms" adapter-class-def="Alloc_pub"
type="DbToJms">
<in-db>default</in-db>
<out-topic>etAllocFromRMS</out-topic>
</node>
<node id="rib-tafr.Alloc_tafr" app-name="rib-tafr" adapter-class-def="Alloc_tafr"

Performance Considerations 12-15

How to Configure a Multi-Channel Flow

type="JmsToJms">

<in-topic>etAllocFromRMS</in-topic>

<out-topic name="topic-name-key-iso">etStockOrdersISO</out-topic>
<out-topic name="topic-name-key-wh">etStkOrdersFromRIBToWH{*}</out-topic>
</node>

<node id="rib-sim.StockOrder_sub" app-name="rib-sim"
adapter-class-def="StockOrder_sub" type="JmsToDb">

<in-topic>etStockOrdersISO</in-topic>
<out-db>default</out-db>
</node>

<node id="rib-rwms.StockOrder_sub" app-name="rib-rwms"
adapter-class-def="StockOrder_sub" type="JmsToDb">

<in-topic>etStkOrdersFromRIBToWH1</in-topic>
<out-db>default</out-db>
</node>

</message-flow>

RIB-RMS

For RIB-RMS, complete the following steps.

1.

Modify rib-rms-adapters.xml to add multiple channels.
Following is a portion of rib-rms-adapters.xml

<publishers>
<timer-driven id="Alloc_pub_1" initialState="running"
timeDelay="10">
<timer-task>
<class
name="com.retek.rib.app.getnext.impl.GetNextTimerTaskImpl" />
<property name="maxChannelNumber" value="5" />
</timer-task>
</timer-driven>
<timer-driven id="Alloc_pub_2" initialState="running"
timeDelay="10">
<timer-task>
<class
name="com.retek.rib.app.getnext.impl .GetNextTimerTaskImpl" />
<property name="maxChannelNumber" value="5" />
</timer-task>
</timer-driven>
<timer-driven id="Alloc_pub_3" initialState="running"
timeDelay="10">
<timer-task>
<class
name="com.retek.rib.app.getnext.impl.GetNextTimerTaskImpl" />
<property name="maxChannelNumber" value="5" />
</timer-task>
</timer-driven>
<timer-driven id="Alloc_pub_4" initialState="running"
timeDelay="10">
<timer-task>
<class
name="com.retek.rib.app.getnext.impl.GetNextTimerTaskImpl" />
<property name="maxChannelNumber" value="5" />
</timer-task>
</timer-driven>
<timer-driven id="Alloc_pub_5" initialState="running"
timeDelay="10">
<timer-task>

12-16 Oracle Retail Integration Bus Operations Guide

How to Configure a Multi-Channel Flow

RIB-TAFR

<class

name="com.retek.rib.app.getnext.impl.GetNextTimerTaskImpl" />

<property name="maxChannelNumber" value="5" />
</timer-task>
</timer-driven>

2. Modify rib-rms-adapter-resources.properties.

Alloc_pub_1.name=Alloc Publisher, channel 1
Alloc_pub_1.desc=Publisher for the Alloc family through channel 1.

Alloc_pub_2.name=Alloc Publisher, channel 2
Alloc_pub_2.desc=Publisher for the Alloc family through channel 2.

Alloc_pub_3.name=Alloc Publisher, channel 3
Alloc_pub_3.desc=Publisher for the Alloc family through channel 3.

Alloc_pub_4.name=Alloc Publisher, channel 4
Alloc_pub_4.desc=Publisher for the Alloc family through channel 4.

Alloc_pub_5.name=Alloc Publisher, channel 5
Alloc_pub_5.desc=Publisher for the Alloc family through channel 5.

For RIB-TAFR, complete the following steps.

1. Modify rib-tafr--adapters.xml to add channels for a family.

<tafrs>

<message-driven id="Alloc_tafr_ 1" initialState="running"
tafr-business-impl="com.retek.rib.domain.tafr.bo.impl.AllocToStockOrderFromRibB

OImpl" />

<message-driven id="Alloc_tafr_2" initialState="running"
tafr-business-impl="com.retek.rib.domain.tafr.bo.impl.AllocToStockOrderFromRibB

OImpl" />

<message-driven id="Alloc_tafr_ 3" initialState="running"
tafr-business-impl="com.retek.rib.domain.tafr.bo.impl.AllocToStockOrderFromRibB

OImpl" />

<message-driven id="Alloc_tafr_4" initialState="running"
tafr-business-impl="com.retek.rib.domain.tafr.bo.impl.AllocToStockOrderFromRibB

OImpl" />

<message-driven id="Alloc_tafr_ 5" initialState="running"
tafr-business-impl="com.retek.rib.domain.tafr.bo.impl.AllocToStockOrderFromRibB

OImpl" />

2. Modify rib-tafr-adapters-resources.properties.

Alloc_tafr 1.
Alloc_tafr 1.
routing them

Alloc_tafr_2.
Alloc_tafr_2.
routing them

Alloc_tafr 3.
Alloc_tafr 3.

routing them

Alloc_tafr_4.

name=AllocToStockOrder TAFR, channel 1
desc=TAFR for converting Allocation messages to StockOrders and
to the correct warehouse or store system

name=AllocToStockOrder TAFR, channel 2

desc=TAFR for converting Allocation messages to StockOrders and
to the correct warehouse or store system

name=AllocToStockOrder TAFR, channel 3

desc=TAFR for converting Allocation messages to StockOrders and

to the correct warehouse or store system

name=AllocToStockOrder TAFR, channel 4

Performance Considerations 12-17

How to Configure a Multi-Channel Flow

RIB-SIM

RIB-RWMS

Alloc_tafr_4.desc=TAFR for converting Allocation messages to StockOrders and

routing them to the correct warehouse or store system

Alloc_tafr 5.name=AllocToStockOrder TAFR,
Alloc_tafr_5.desc=TAFR for converting Allocation messages to StockOrders and

channel 5

routing them to the correct warehouse or store system

For RIB-SIM, complete the following steps.

1.

Modify rib-sim-adapters.xml to add channels for a family.

<subscribers>
<message-driven
<message-driven
<message-driven
<message-driven
<message-driven

id="StockOrder_sub_1"
id="StockOrder_sub_2"
id="StockOrder_sub_3"
i1id="StockOrder_sub_4"
id="StockOrder_sub_5"

initialState="running"/>
initialState="running"/>
initialState="running"/>
initialState="running"/>
initialState="running"/>

Modify rib-sim-adapters-properties.properties.

StockOrder_sub_1.name=StockOrder
StockOrder_sub_1.desc=Subscriber

StockOrder_sub_2.name=StockOrder
StockOrder_sub_2.desc=Subscriber

StockOrder_sub_3.name=StockOrder
StockOrder_sub_3.desc=Subscriber

StockOrder_sub_4.name=StockOrder
StockOrder_sub_4.desc=Subscriber

StockOrder_sub_5.name=StockOrder
StockOrder_sub_5.desc=Subscriber

For RIB-RWMS, complete the following steps.

1.

Modify rib-rwms-adapters.xml to add channels for a family.

<subscribers>

<message-driven
<message-driven
<message-driven
<message-driven
<message-driven

id="StockOrder_sub_1"
id="StockOrder_sub_2"
id="StockOrder_sub_3"
id="StockOrder_sub_4"
id="StockOrder_sub_5"

Modify rib-rwms-adapters-properties.properties.

StockOrder_sub_1.name=StockOrder Subscriber,

StockOrder_sub_1.desc=Subscriber

StockOrder_sub_2.name=StockOrder
StockOrder_sub_2.desc=Subscriber

StockOrder_sub_3.name=StockOrder
StockOrder_sub_3.desc=Subscriber

StockOrder_sub_4.name=StockOrder

12-18 Oracle Retail Integration Bus Operations Guide

Subscriber, channel 1
for the StockOrder family through channel 1.
Subscriber, channel 2
for the StockOrder family through channel 2.
Subscriber, channel 3
for the StockOrder family through channel 3.
Subscriber, channel 4
for the StockOrder family through channel 4.
Subscriber, channel 5
for the StockOrder family through channel 5.
initialState="running"/>
initialState="running"/>
initialState="running"/>
initialState="running"/>
initialState="running"/>
channel 1
for the stockorder family through channel 1.
Subscriber, channel 2
for the stockorder family through channel 2.
Subscriber, channel 3
for the stockorder family through channel 3.

Subscriber, channel 4

Message Aggregation

StockOrder_sub_4.desc=Subscriber for the stockorder family through channel 4.

StockOrder_sub_5.name=StockOrder Subscriber, channel 5
StockOrder_sub_5.desc=Subscriber for the stockorder family through channel 5.

Edit the RIB_SETTINGS table

When a PL/SQL Publishing adapter is multi-channeled, the application code needs to
designate the message to a specific thread. In order to do this, a change needs to be
made in the RIB_SETTINGS table.

Find the Family of messages that is being multi-channeled, and adjust the column
NUM_THREADS to the appropriate number. In this example, the number will be set
to 5 for the Alloc Family.

Compile and Deploy

Using the RIB Installer or the RIB Application Builder command line tools, compile
and deploy the new rib-<app>.ears.

Message Aggregation

To improve message publication throughput within the integration system, RIB
provides multiple capabilities. The most efficient way to increase throughput of any
system is to start working on the collection of data units instead of single data units.
Using that philosophy, RIB provides capabilities to process the collection of multiple
detail payloads in one transaction. To control the number of details (payload details)
per payload header, the user must update the RIB_SETTING.MAX_DETAILS_TO_
PUBLISH column in the PL/SQL retail applications database schema. This
configuration allows users to control the size of the payload published within the RIB
system.

Users also may aggregate messages in a transaction by bundlibg multiple payloads
within a single message published to the JMS server, for example. Through message
aggregation (<family>.maxNodesPerMessages), users can control the number of
ribMessage nodes bundled into a single RibMessages message. Different families can
have different nodes per message, so this property is qualified (prefixed) by the family
name. This property allows control of the overall size of the RibMessages XML
message.

RIB also allows users to optimize/minimize XA transaction overhead by allowing the
system to commit multiple RibMessages to the JMS server in a single, two-phase XA
commit. The number of messages committed to the JMS server in a single XA commit
is controlled by the property named <family>.messagePerCommit. Different families
may need different RibMessages per commit, so this property is qualified (prefixed) by
the family name.

The configurable properties (<family>.maxNodesPerMessages and
<family>.messagePerCommit) apply to each individual rib-<app>. To update the
property and propagate the configuration to the app server, edit the corresponding
rib-<app>.properties in rib-home and redeploy the updated rib-<app>.

Understand the bigger the payload size, the bigger the memory requirement. A
process (JVM) has limited amounts of operating system memory. If the size is too
large, memory will run out, resulting in OutOfMemoryError.

If numerous ribMessageNodes are bundled into the same RibMessages message, a
single failure in one of the ribMessages will roll back the full transaction. which will

Performance Considerations 12-19

Message Aggregation

result in the following: The error hospital table will fill up and throughput will
decrease by many factors, because now it has to go through the retry process.

The general best practice is to not prematurely optimize. Test with business data and
only if the default values are not meeting business needs. Think about optimization by
updating these properties.

How to Configure Message Aggregate

To configure message aggregate, complete the following steps.
1. Edit the following file in rib-home:
rib-home/application-assembly-home/rib-<app>/rib-<app>.properties
2. Add the following properties:
s <family>maxNodesPerMessages=<your value>

s <family>MessagePerCommit=<your value>

Note: The value for <family> must be entered in all capital letters.
For example, VENDOR.

3. Using the app-builder tool compile/deploy the application.
s rib-app-compile.sh
= rib-app-deployer.sh -deploy-rib-app-ear rib-<app>

Aggregation Example

Suppose there are 1,300 payload details waiting to be published for a family. Suppose
the following configuration in RIB:

MAX_DETAILS_TO_PUBLISH=100
maxNodesPerMessagess=5
MessagePerCommit=2

The diagram below explains the message aggregation in play in the RIB system. All
1,300 payload details will be published in three RibMessages within only two XA
transaction commits. Each of the first two RibMessages will have five ribMessage
nodes, and each of the ribMessage nodes will have a payload with 100 payload details.
The example shows 1,300 payload details; the third RibMessages XML will have only
three ribMessage nodes, each with 100 payload details.

XA transaction 1 = (RibMessages1 + RibMessages2)

RibMessages1 = ribMessagel + ribMessage2 + ribMessage3 + ribMessage4 +
ribMessage5.

ribMessagel = PayloadHeader + 100 * PayloadDetail

ribMessage2 = PayloadHeader + 100 * PayloadDetail

ribMessage5 = PayloadHeader + 100 * PayloadDetail

RibMessages2 equivalent to RibMessagesl

XA Transaction 2 = RibMessages3
RibMessages3 = ribMessagel + ribMessage2 + ribMessage3

Total = (XA Transaction 1 + XA Transaction 2)
100*5 + 100*5 + 100*3 = 1300

12-20 Oracle Retail Integration Bus Operations Guide

Multiple Hospital Retry

The following is an illustration of RIB Message Aggregation.

Header Payload 1 XA TRANSACTION BOUNDARY

Header Pavioad 1
I 00
100 Payload Details Payload
Details

ribMessage 5
Header Pavioad 1
Header Payload 2 I]
Payload
Details

100 Payload Datails

PUBLISH 1

Deatails

JMS
Topic

PUBLISH 2

XA TRANSACTION BOUNDARY

Header Payload 13

Header Pav|o
I 0
Payload
—[\ Details
_l/ PUBLISH 3
100 Payload Details i

MAX_DETAILS TO _PUBLISH=100 13 Header
Payload
maxNodesPerMessagess=5 132100 Detais
Payload
MessagePerCommit=2 -
2x5+3
ribMessage

Multiple Hospital Retry

This section explains the multiple hospital retry process.

Family Specific Hospital Retry Adapters

RIB supports configuration of hospital retry adapters specific to message families. The
family based adapters are configured to address performance issues when the error
hospital gets very large--and a single retry adapter cannot handle the load.

Performance Considerations 12-21

Multiple Hospital Retry

How Family Specific Hospital Retry Works

Errors during processing result in messages in the error hospital. Reasons for errors
include the following.

= Incomplete or partial data from RMS: In this case, the messages are inserted into
the error hospital with a reason code of PUB.

= JMS related publication error conditions: (For example, the JMS server is down or
not available due to network failures.) In this case, the messages are inserted into
the error hospital with a reason code of JMS.

s The subscriber application is not able to consume the message: In this case, the
messages are inserted into the error hospital with a reason code of SUB.

By default, there are three kinds of hospital adapters, as listed below:
= Sub retry adapter
» JMSretry adapter

s Pub retry adapter (RMS is the only application for which the Pub retry adapter is
required.)

The sub retry adapter retries only those messages with a reason code of SUB. Similarly,
the JMS retry adapter and the Pub retry adapter retry messages with reason codes of
JMS and PUB, respectively.

Note: For more information about the hospital retry mechanism, see
"RIB Hospital Retry" in the Oracle Integration Bus Implementation Guide.

Each message in the error hospital belongs to a particular message family. When the
error hospital has a large number of messages from different families, the retry process
becomes a performance bottleneck, as the default retry adapters retry the messages
one by one (first in, first out), irrespective of message family.

To alleviate a bottleneck situation, retry adapters can be configured for a specific
family and reason code. A family retry adapter can coexist with the default retry
adapters. However, the default retry adapters will not retry those messages for which
family retry adapters have been configured.

A family based retry adapter retries messages only for the family and reason code for
which it is configured. For example, if a retry adapter is configured for the Order
family and the SUB reason code, it retries only those messages from the Order family
that failed with a reason code of SUB.

For each message family, a maximum of three family retry adapters can be
configured—one for each reason code (PUB, SUB, and JMS).

How to Configure a Family Specific Retry Adapter

The following is a process overview.

1. Determine the rib-<apps> where the family specific hospital retry adapter is to be
configured.

2. Determine the family for which the retry adapter should be configured.

3. Determine the reason code (for example, PUB, SUB, or JMS) for the family retry
adapter.

4. In the rib-home, modify the appropriate configuration files for the rib-<apps>:

12-22 Oracle Retail Integration Bus Operations Guide

Multiple Hospital Retry

5.

a. rib-<app>-adapters.xml
b. rib-<app>-adapter-resources.properties

Compile and deploy.

Example:

To configure a family specific adapter for the Order family, where reason code = SUB
and application = rib-rms, complete the following steps:

1.

Backup the following files:
s rib-home/application-assembly-home/rib-rms/rib-rms-adapters.xml
= rib-home/application-assembly-home/rib-rms-resources.properties

Modify rib-rms-adapters.xml to add the family specific hospital retry adapter. The
following is a portion of rib-rms-adapters.xml:

<hospitals>
<timer-driven id="Order_familysubhosp_0"
initialState="stopped" timeDelay="10" >
<timer-task>
<class
name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask" />
</timer-task>
</timer-driven/>
<hospitals>

Modify rib-rms-adapter-resources.properties as follows:
s Order_familysubhosp_0.name=Order SUB Hospital Retry

s Order_familysubhosp_0.desc=Inject messages into JMS from Error Hospital

Note: Only one instance of family retry adapter can be configured
per family and per reason code.

Compile and deploy:

Using the RIB Installer or the RIB Application Builder command line tools,
compile and deploy the new rib-<app>.ears.

Performance Considerations 12-23

Multiple Hospital Retry

12-24 Oracle Retail Integration Bus Operations Guide

	Contents
	Send Us Your Comments
	Preface
	Audience
	Related Documents
	Customer Support
	Review Patch Documentation
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	1 Introduction
	Oracle WebLogic Application Server
	Oracle Retail RIB Supplied Components

	2 Application Builder
	RIB Application Builder Directory Structure
	Directory Structure and Key Files

	RIB Application Builder Tools
	Logging
	Backup and Archive of Key Files
	rib-app-compiler
	rib-app-deployer
	Check-version-and-unpack
	check-version-and-apply-defect-fix
	inventory-management
	setup-security-credential
	Hot Fix Installation Reports
	rib-adapter-controller
	Start Flow
	Stop Flow
	List Flow
	Start Adapters By Type
	Stop Adapters by Type
	Start Adapter
	Stop Adapter
	Test Durable Subscriber for Adapter
	Test Durable Subscriber for RIB Application
	List RIB Application Adapters

	RIB Deployment Configuration File Editor
	Important Installation Warning
	Key Rule

	Editor Usage

	3 Backend System Administration and Logging
	rib-<app>-adapters.xml
	<subscribers> elements
	<publisher> elements
	<timer-driven>
	<request-driven>
	<hospital> element

	rib-<app>-adapters-resource.properties
	rib-<app>-plsql-api.xml
	rib-<app>.properties
	rib-system.properties
	rib-integration-flows.xml
	rib-deployment-env-info.xml
	app-in-scope-for-integration
	rib-jms-server
	rib-application-server
	rib-javaee-containers
	rib-applications

	commons-logging.properties
	log4j.xml
	rib-app-builder-paths.properties
	rib-application-assembly-info.xml
	retail_service_config_info_ribserver.xml
	remote_service_locator_info_ribserver.xml
	RIB Logging
	Log Level Recommendations
	Changing Logging Levels
	RIB Administration GUI
	log4j.xml Configuration File

	Adapter Logging (RIBLOGS)
	RIB Timing Logs
	RIB Audit Logs
	Other RIB Management Logs
	deploy.rib.log
	management.rib.log
	global.rib.log—Example

	4 Integration Gateway Services (IGS) Testing
	Using the soapUI Tool and the IGS Test Suite
	Download soapUI
	Import IGS
	Execute IGS Test Cases

	5 RIB and JMX
	RIB JMX Client
	User Interface

	Third Party JMX Client Example

	6 RIB Administration GUI
	RIB Administration URLs
	RIB Administration GUI
	RIB Functional Artifacts
	RIB Message Flows
	RIB Payloads (xsds)

	RIB Admininistration GUI Home
	Adapter Manager
	Adapter Manager Screen
	Log Viewer

	Log Manager
	RIB Logs

	7 JMS Provider Management
	RIB on AQ JMS
	Queue Monitor Process Setup
	Optimizing Enqueue/Dequeue Performance
	Sizing Considerations

	RIB on AQ JMS - Server Side Processes
	Types of Oracle Database Side Processes
	RIB and Application Server and JDBC Connections
	RIB Connections - Summary
	rib-rms Connections
	rib-rwms Connections
	rib-sim Connections
	rib-tafr Connections
	rib-rpm Connections
	Configuration Recommendations

	Support for Multiple JMS Servers Within a Single Deployment
	Design
	rib-app-builder Validation Checks

	How to Set Up Multiple JMS Servers
	Process Overview
	General Recommendations
	AQ Recommendation

	Sample Configuration
	rib-integration-flows.xml
	rib-deployment-env-info.xml

	RIB-RMS Application Configuration
	rib-rms-adapters.xml
	rib-rms-adapters-resources.properties

	RIB-TAFR Application Configuration
	rib-tafr-adapters.xml
	rib-tafr-adapters-resources.properties

	RIB-SIM Application Configuration
	rib-sim-adapters.xml
	rib-sim-adapters-resources.properties

	RIB-RWMS Application Configuration
	rib-rwms-adapters.xml
	rib-rwms-adapters-resources.properties
	Compile and Deploy
	RIB-ADMIN-GUI

	8 Message Transform, Filtering and Routing (TAFR)
	TAFR Adapter Process
	Configuration
	Transformation
	Filtering Configuration
	Routing

	Configuration Example - Facility ID
	Single RWMS Configuration
	Configuration Process
	Two RWMS Configuration
	Description

	Configuration Process

	9 Diagnostic and Monitoring Tools
	Functionality
	RDMT and User Roles and Responsibilities
	Local or Remote Installations and Capabilities
	RDMT Support jars
	Sample XML Messages
	Tools Overview
	RDMT as an Application
	SCRIPTDIR
	Setup
	Current Configuration
	RDMTLOGS

	RDMT RAC Support

	RDMT Main Menu
	WLS/JMX Utilities
	JMS Tools
	PUB/SUB Msg Tools
	RIB Health Tools
	Hospital Scan Tools
	RIB Administration Tools
	RIB Application Builder Tools
	Scan RIB Logs / Scan RIB Logs (Delta)
	RIB Health
	RIB Configuration Report
	RIB Timings Utility
	JMS Publish Utility
	EJB Publish Utility
	TAFR Msg Utility
	EJB Ping (RIB)
	EJB Ping (APP)
	Tool Usage Examples
	Ensure RIB is correctly installed
	Determine whether the local WLS is running
	Determine where an issue is occurring
	Determine whether the adapter status is up or down
	Perform a config/switch for a new WLS instance
	Determine the subscriber for a particular JMS topic

	10 RIB in Operation
	Operational Considerations
	Alerts and Notifications
	RIB Log File Monitoring
	Log File Archive and Purge
	Hospital Size and Growth
	RMS MFQ and RWMS UPLOAD Tables Sizes
	Remote RWMS
	RIB Components Start and Stop
	RIB Operation Support Staff Requirements
	RIB Components - Source Code Control
	RIB HA Requirements
	RIB Disaster Recovery
	RIB Administration Roles and Security

	RIB Operation Support Staff Requirements
	RIB System Administrator
	Technology Background
	Experience or Training
	Areas of Responsibility

	RIB Application Administrator
	Technology Background
	Experience or Training on
	Areas of Responsibility

	Hospital Monitoring and Maintenance

	11 Testing RIB
	RIB Test Harness
	Master Checklist

	PL/SQL Application API Stubs
	Architecture and Design
	The Common Subsystem
	The Thin API layer

	The Stub Administration and Setup Functions
	Configuration Files
	Installation and Setup
	Prerequisite Tasks
	Installation

	Configure_api
	Prerequisites

	Java EE Application API Stubs
	Architecture and Design
	Installation and Setup
	Prerequisite Tasks
	Installation
	Configuration of the rib-<app> to use Injection Stubs

	12 Performance Considerations
	Performance Factors
	Performance Requirements
	Multi-Channel
	End-to-End Timing
	How to Calculate Average Message Size
	Purchase Order Example

	Understand the Message Family
	RIB Timing Log Analysis
	Purchase Order Example

	Key Interfaces to Consider
	ASN (Inbound/Outbound)
	Receipts
	Stock Order (Allocations & Transfers)
	How to Approach a RIB Performance Test

	Multi-Channel Adapters
	Adding Multi-Channels to a Message Family

	Logical Channels and threadValue
	Algorithm Used to Calculate Channel

	How to Configure a Multi-Channel Flow
	Example
	RIB-RMS
	RIB-TAFR
	RIB-SIM
	RIB-RWMS
	Edit the RIB_SETTINGS table
	Compile and Deploy

	Message Aggregation
	How to Configure Message Aggregate
	Aggregation Example

	Multiple Hospital Retry
	Family Specific Hospital Retry Adapters
	How Family Specific Hospital Retry Works
	How to Configure a Family Specific Retry Adapter

