
Oracle® Retail Integration Bus
Service-Oriented Architecture Enabler Tool Guide

Release 14.0

E49440-01

December 2013

Oracle Retail Service-Oriented Architecture Enabler Tool Guide, Release 14.0

E49440-01

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Primary Author: Sanal Parameswaran

Contributing Author: Gloreen Soans

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Value-Added Reseller (VAR) Language

Oracle Retail VAR Applications

The following restrictions and provisions only apply to the programs referred to in this section and licensed
to you. You acknowledge that the programs may contain third party software (VAR applications) licensed to
Oracle. Depending upon your product and its version number, the VAR applications may include:

(i) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail Data
Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(ii) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of Kirkland,
Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory Management.

(iii) the software component known as Access Via™ licensed by Access Via of Seattle, Washington, and
imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(iv) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of San Jose,
California, and imbedded in Oracle Retail Promotion Planning & Optimization application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR Applications.
Oracle will not deliver source code to the VAR Applications to you. Notwithstanding any other term or
condition of the agreement and this ordering document, you shall not cause or permit alteration of any VAR
Applications. For purposes of this section, "alteration" refers to all alterations, translations, upgrades,
enhancements, customizations or modifications of all or any portion of the VAR Applications including all

reconfigurations, reassembly or reverse assembly, re-engineering or reverse engineering and recompilations
or reverse compilations of the VAR Applications or any derivatives of the VAR Applications. You
acknowledge that it shall be a breach of the agreement to utilize the relationship, and/or confidential
information of the VAR Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall not attempt,
cause, or permit the alteration, decompilation, reverse engineering, disassembly or other reduction of the
VAR Applications to a human perceivable form. Oracle reserves the right to replace, with functional
equivalent software, any of the VAR Applications in future releases of the applicable program.

Contents

Send Us Your Comments .. ix

Preface .. xi

Audience.. xi
Documentation Accessibility .. xi
Related Documents .. xi
Customer Support .. xii
Review Patch Documentation .. xii
Improved Process for Oracle Retail Documentation Corrections ... xii
Oracle Retail Documentation on the Oracle Technology Network ... xiii
Conventions ... xiii

1 Introduction

Major Features of the RSE Tool ... 1-1
Concepts ... 1-3

What is a Service?... 1-3
Oracle Fusion Reference Architecture (OFRA).. 1-3
Where Does RSE Fit? ... 1-5

Technical Specifications .. 1-5
Supported Operating Systems ... 1-5

2 Installation and Basic Setup

Installation as a Web Application in Oracle WebLogic .. 2-1
Prerequisites.. 2-1
Deploy the Retail Service-Oriented Architecture Enabler ... 2-1
Verify the Retail Service-Oriented Architecture Enabler ... 2-2
Redeploy the Application ... 2-3

3 Tool Inputs and Outputs

Tool Inputs ... 3-1
ServiceProviderDefLibrary.xml ... 3-1
RestServiceProviderDefLibrary.xml.. 3-1
XSDs and retail-public-payload-java-beans.jar ... 3-1
PL/SQL Oracle Objects ... 3-2
v

WSDL ... 3-2
Tool Outputs.. 3-2

PL/SQL Provider Web Service .. 3-2
PL/SQL Consumer Web Service ... 3-4
Java EE Provider Web Service.. 3-5
Java EE Consumer Web Service... 3-6

4 User Interface Usage

Service Provider ... 4-2
Service Definition Library XML File ... 4-2
Service Definition Library XML File for Restful web services .. 4-2
Custom Business Objects Jar File ... 4-3
Localization Business Object Jar File ... 4-3
Service Implementation Jar File ... 4-3

Service Consumer... 4-3
Help... 4-4

5 Service Definition Library XML File

Schema Definition ... 5-1
serviceProviderDefLibrary ... 5-1

Attributes ... 5-1
Elements ... 5-2

Managing the Service Definition Library XML File ... 5-4
Creating the File ... 5-4
Changing the Version of the File ... 5-4
Changing the appName Attribute in the File .. 5-4
Renaming a Service or Operation Name in the File.. 5-5
Adding a New Service or New Operation to the File... 5-5
Deleting a Service or Deleting Operations from the File.. 5-7
Defining New Exceptions to the Operations.. 5-7
Using Different Versions of Objects as Input/Output to an Operation..................................... 5-7

6 Service Definition Library XML File for Restful services

Schema Definition ... 6-1
ServiceProviderDefLibrary .. 6-4
Validation rules for a service definition xml for RESTful web services 6-4

7 Web Service Standards and Conventions

Web Service Naming.. 7-1
Web Service Versioning .. 7-3

8 Creating the Java EE Implementation Jar

Step 1: Generate Web Services with Default Implementation.. 8-1
Step 2: Implement Interfaces ... 8-1
Step 3: Upload the jar .. 8-1
vi

9 Implementation Guidelines

Important Note About this Chapter ... 9-1
PL/SQL Service Consumer Implementation Notes ... 9-1
PL/SQL Provider Service Implementation Notes .. 9-2
Java EE Service Consumer Implementation Notes.. 9-3

Sample Client Code ... 9-4
Java EE Service Provider Implementation Notes ... 9-5

Use Case 1: Complete the Generator Provided Stub Code Implementation............................. 9-5
Use Case 2: Provide a Custom impl jar to the RSE Tool... 9-5
Use Case 3: Package the Generated Service Classes in an Existing Application 9-5

Web Service Call as a Remote EJB Call .. 9-6
Prerequisites.. 9-6
Procedure .. 9-6
Code Description.. 9-8

Web Service Call as a POJO Call ... 9-8
Procedure .. 9-9
Sample Code for POJO Invocation ... 9-10

Deploying the Web Service ... 9-11
Redeploy the Service Application... 9-11
Verify the Service Application Installation Using the Administration Console.................... 9-12

Creating a JDBC Data Source.. 9-12

10 Implementation Guidelines For Restful web services

Important Note About this Chapter .. 10-1
PL/SQL Provider Service Implementation Notes ... 10-1
Java EE Service Provider Implementation Notes .. 10-2

Use Case 1: Complete the Generator Provided Stub Code Implementation.......................... 10-2
Use Case 2: Provide a Custom impl jar to the RSE Tool.. 10-3
Use Case 3: Package the Generated Service Classes in an Existing Application 10-3

Deploying the Web Service ... 10-4
Creating a JDBC Data Source in Glassfish Server.. 10-4

11 Web Services Security Setup Guidelines

Client-Side Setup .. 11-2
Java Client Setup ... 11-2
PL/SQL Client Setup.. 11-3

A Appendix: Installer Screens

Installation as a Web Application in Oracle WebLogic ... A-1
Deploy the Retail SOA Enabler Application... A-1
Creating the rseAdminGroup ... A-9
Verify the Retail SOA Enabler Web Application.. A-9
Redeploy the Application .. A-12
vii

B Appendix: Sample ServiceProviderDefLibrary.xml

ServiceProviderDefLibrary.xml .. B-1

C Appendix: Creating a JDBC Data Source

Procedure .. C-1
viii

Send UsYour Comments

Oracle Retail Service-Oriented Architecture Enabler Tool Guide, Release 14.0

Oracle welcomes customers' comments and suggestions on the quality and usefulness
of this document.

Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:

■ Are the implementation steps correct and complete?

■ Did you understand the context of the procedures?

■ Did you find any errors in the information?

■ Does the structure of the information help you with your tasks?

■ Do you need different information or graphics? If so, where, and in what format?

■ Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell
us your name, the name of the company who has licensed our products, the title and
part number of the documentation and the chapter, section, and page number (if
available).

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number
(optional).

If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at www.oracle.com.

Note: Before sending us your comments, you might like to check
that you have the latest version of the document and if any concerns
are already addressed. To do this, access the new Applications Release
Online Documentation CD available on My Oracle Support and
www.oracle.com. It contains the most current Documentation Library
plus all documents revised or released recently.
ix

x

Preface

The Oracle Retail Service-Oriented Architecture Enabler (RSE) Tool Guide provides
information about the tool as well as installation instructions.

Audience
The Oracle Retail Service-Oriented Architecture Enabler (RSE) Tool Guide is written for the
following audience:

■ Database administrators (DBA)

■ System analysts and designers

■ Integrators and implementation staff

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following documents in the Oracle Retail Integration
Bus 14.0 documentation set:

■ Oracle Retail Integration Bus Implementation Guide

■ Oracle Retail Integration Bus Security Guide

■ Oracle Retail Integration Bus Installation Guide

■ Oracle Retail Integration Bus Release Notes

■ Oracle Retail Integration Bus Hospital Administration Guide

■ Oracle Retail Integration Bus Operations Guide

■ Oracle Retail Integration Bus Support Tools Guide
xi

■ Oracle Retail Enterprise Integration Guide

■ Oracle Retail Functional Artifacts Guide

■ Oracle Retail Integration Bus Integration Gateway Services Guide

■ Oracle Retail Functional Artifact Generator Guide

■ Oracle Retail Integration Bus Data Model

■ Oracle Retail PL-SQL Payload Mapper Guide (ID 1590674.1)

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following:

■ Product version and program/module name

■ Functional and technical description of the problem (include business impact)

■ Detailed step-by-step instructions to re-create

■ Exact error message received

■ Screen shots of each step you take

Review Patch Documentation
When you install the application for the first time, you install either a base release (for
example, 13.2) or a later patch release (for example, 13.2.6). If you are installing the
base release, additional patch, and bundled hot fix releases, read the documentation
for all releases that have occurred since the base release before you begin installation.
Documentation for patch and bundled hot fix releases can contain critical information
related to the base release, as well as information about code changes since the base
release.

Improved Process for Oracle Retail Documentation Corrections
To more quickly address critical corrections to Oracle Retail documentation content,
Oracle Retail documentation may be republished whenever a critical correction is
needed. For critical corrections, the republication of an Oracle Retail document may at
times not be attached to a numbered software release; instead, the Oracle Retail
document will simply be replaced on the Oracle Technology Network Web site, or, in
the case of Data Models, to the applicable My Oracle Support Documentation
container where they reside.

This process will prevent delays in making critical corrections available to customers.
For the customer, it means that before you begin installation, you must verify that you
have the most recent version of the Oracle Retail documentation set. Oracle Retail
documentation is available on the Oracle Technology Network at the following URL:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.ht
ml
An updated version of the applicable Oracle Retail document is indicated by Oracle
part number, as well as print date (month and year). An updated version uses the
xii

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

same part number, with a higher-numbered suffix. For example, part number
E123456-02 is an updated version of a document with part number E123456-01.

If a more recent version of a document is available, that version supersedes all
previous versions.

Oracle Retail Documentation on the Oracle Technology Network
Documentation is packaged with each Oracle Retail product release. Oracle Retail
product documentation is also available on the following Web site:

http://www.oracle.com/technology/documentation/oracle_retail.html

(Data Model documents are not available through Oracle Technology Network. These
documents are packaged with released code, or you can obtain them through My
Oracle Support.)

Documentation should be available on this Web site within a month after a product
release.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.
xiii

xiv

1

1Introduction

The purpose of the Retail Service-Oriented Architecture Enabler (RSE) tool is to
provide a standard, consistent way to develop Web services for PL/SQL and Java EE
applications. Because it allows them to expose their business logic, the focus of
development can be on the business logic code, not on the Web service infrastructure.

The RSE tool creates Web service provider end-points, consumer clients for Web
service providers, and templates for interfacing with PL/SQL APIs and Java EE APIs.

The tool also produces design time and run time artifacts. It works in conjunction with
another RTG tool, the Retail Functional Artifact Generator.

Major Features of the RSE Tool
The following is a list of the essential features of the RSE tool:

■ The RSE tool is standards based.

■ The RSE tool supports SOAP and RESTful based web services.

■ SOAP based web services:

– All services are generated in a consistent and standard manner.

– All services are SOAP/HTTP based.

– All services comply with the JAX-WS specification.

– All services are WS-Addressing enabled.

– WS-Security can be plugged into these Web services without any code change.

– All Web services are Document Literal Wrapped.

– Generated services are capable of using SOAP headers.

■ RESTful based web services:

– REST is an architectural style, not a standard.

– The services comply with the JAX-RS specification.

– The services support all HTTP methods.

– WS-Security can be plugged into these Web services without any code change.

■ The RSE tool generates technology-specific API templates for PL/SQL APIs and
Java EE.

Note: For more information on the tool, see the Oracle Retail
Functional Artifact Generator Guide.
Introduction 1-1

Major Features of the RSE Tool
– It supports PL/SQL as a Web service provider.

– PL/SQL code can directly call any third party SOAP/HTTP based Web
services.

– It supports java code as a Web service provider.

– It supports java code as a Web service consumer.

■ Generation by the RSE tool is controlled by a single Service Definition Library
XML file.

– By creating Web services from the high level abstraction in the Service
Definition Library, top down Web services development is supported.

– All service operation inputs and outputs are validated against the XML
schema.

– There is a single source of truth for all service and domain object
documentation.

– The same documentation is propagated to static WSDL, Java/PLSQL API
code, UDDI published content, and live WSDL.

– The Service Definition Library XML file is a service-oriented architecture
governance asset.

■ The generated services deploy in any Java EE 5 with JDK 7 compliant application
server, with certification on Oracle WebLogic Server. (Services are deployable to a
clustered Java EE application server.)

■ The generated services are callable as SOAP based Web services over
SOAP/HTTP, local EJB calls, remote EJB calls, or POJO services.

■ All services support Web service versioning strategy.

■ All generated Web services are forward and backward compatible.

■ For every Web service, a static WSDL is generated. (The generated static WSDL
pulls in all of the Business Object (BO) and Web service level documentation.)

■ All deployed services can be published to any standard UDDI registry.

– UDDI publishing has been tested with both WebLogicServer and Oracle
Service Repository (OSR).

– Every generated <appname>-service.ear contains an Infrastructure
Management Service that can "talk to" the UDDI registry and publish all the
services available within the .ear to the registry.

■ Services can take advantage of Oracle Database Real Application Cluster (RAC).

■ The RSE tool has the following built-in functionality:

– Every service generated has a ping operation to test for network connectivity.

– A Service Operation Context is passed to both Java EE and PL/SQL service
provider API implementation code.

– The Web service consumer generated has client side asynchronous service
invocation capability.

– User-defined Web service Faults are automatically generated and handled by
the infrastructure at runtime. The definitions are made in the Service
Definition Library XML file.
1-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Concepts
■ All Web service operations are transactional. A SOAP Fault response automatically
rolls back the service operations transaction. A success response automatically
commits the service operations transaction.

■ Web service consumers do not participate in the Web service provider side
transaction. There is no transaction context propagation from client to server.

Concepts
Service-oriented architecture (SOA) is a strategy for constructing business-focused
software systems from loosely coupled, interoperable building blocks (called Services)
that can be combined and reused quickly, within and between enterprises, to meet
business needs (as described in Oracle Fusion Reference Architecture, SOA
Foundation Release 1.0).

Service Infrastructure products focus on enabling SOA projects, rather than
developing new business function, or providing for other business driven needs. The
goal of Service Infrastructure is to enable delivery teams to deliver SOA projects faster,
and to make the overall SOA undertaking much more manageable.

The Retail Service-Oriented Architecture Enabler Tool (RSE) is designed and
developed to support the creation of Web services by allowing a high level abstraction,
higher than the WSDL, and tailored to the business analyst/functional analyst. The
Business Analyst can easily understand, define, and design without knowing the
intricacies of WSDLs and the technical details of the implementation. This approach is
also called top-down Web services development.

What is a Service?
A service can be described as a way of packaging reusable software building blocks to
provide functionality to users and to other services. A service is an independent,
self-sufficient, functional unit of work that is discoverable, manageable, and
measurable, has the ability to be versioned, and offers functionality that is required by
a set of users or consumers.

A logical definition of a service has three components:

■ Contract: A description of what the service provides (and its constraints).

■ Interface: The means by which the service is invoked.

■ Implementation: The deployed code and configuration of infrastructure.

Oracle Fusion Reference Architecture (OFRA)
It is important to understand the position and role of the RSE tool within the broader
context of service-oriented architecture and development. It is beyond the scope of this
document to cover the range of SOA approaches and methodologies, but it is
necessary to cover some aspects to place the tool in the appropriate context.

Oracle has developed and published the Oracle Fusion Reference Architecture (OFRA)
for building and integrating enterprise-class solutions, part of the IT Strategies from
Oracle collection.

The Oracle Fusion Architecture Framework is a collection of assets designed to
provide guidance on building solutions for the Oracle Fusion solution environment,
which includes the Oracle Fusion Reference Architecture (OFRA). The following
diagrams and definitions are from OFRA documentation.
Introduction 1-3

Concepts
The service analysis phase of the Oracle Service Engineering Framework consists of
three main sets of engineering practices: SOA Requirements Management, Service
Identification & Discovery, and Service Release Planning.

As with traditional software engineering, service engineering also begins with
requirements and analysis, as illustrated below:

After Service Analysis, the next phase is Service Delivery, which includes the core
delivery engineering activities. In this phase, a service candidate is molded into one or
more services. Service candidates entering this phase have been justified for realization
and scheduled for release.

Service Delivery begins with Service Definition, which primarily determines service
boundaries as well as the construction of the service contract.

Service Design then acts upon the Service contracts to develop the Services' interfaces.
The process of defining a Service interface is much more involved than simply coming
up with the input and output for the Service. Service design analyzes the contract from
the consumer's perspective, and is influenced by factors such as scope (enterprise,
LOB, application, and so on), message exchange patterns (MEPs) as well as
non-functional requirements such as expected volume, and response time
requirements (specified in the contract).

Note: See Oracle Practitioner Guide Software Engineering in an SOA
Environment Release 1.0 E14486-01.
1-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Technical Specifications
Service Implementation ensures that all aspects of the service contracts are
implemented and upheld through the delivery of business logic as well as the
deployment to Service Infrastructure. The implementation must faithfully realize the
Service Contract and interface which are defined through Service definition and
design.

Where Does RSE Fit?
The Retail Service-Oriented Architecture Enabler (RSE) is a Service Infrastructure tool
developed by Oracle Retail to enable the adoption of service-oriented architecture
(SOA) and avoid some of the typical pitfalls of many SOA projects. It addresses many
common issues, such as versioning, contract design, security, consistency, reuse,
documentation, governance, compliance, and customization. It does this by enforcing
SOA Best Practices and patterns that are proven and time tested by various SOA
pioneers.

The tool provides the capability for business analysts and developers to define the
correct service contract. It provides ease-of-use and a level of abstraction such that the
domain experts or subject matter experts are not required to understand code to
design services. The SOA developers can be completely focused on implementing the
business logic code behind the service and do not have to worry about SOA
infrastructure issues such as versioning and customization.

The Retail Service-Oriented Architecture Enabler Tool fits within the Service Delivery
phases. The appropriate use of the tool is after the service analysis phases and the
development team is ready for service definition and design. The RSE tool outputs can
then be used in the Service Implementation.

RSE is designed to support this type of approach, which is also called top-down Web
services development.

Technical Specifications
The Oracle Retail SOA Enabler tool has dependencies on Oracle Retail application
installations. This section covers these requirements.

Supported Operating Systems

Note: See: Oracle Fusion Reference Architecture, Overview. Release
1.0 E14482-01

Supported On Version Supported

Application Server OS OS certified with Oracle Fusion Middleware 11g
Release1 (11.1.1.6). Options are:

■ Oracle Linux 5 for x86-64 (Actual hardware or
Oracle virtual machine).

■ Red Hat Enterprise Linux 5 for x86-64 (actual
hardware or Oracle virtual machine)

■ IBM AIX 6.1, 7.1 (actual hardware or LPARs)

■ Solaris 10, 11 Sparc (actual hardware or logical
domains)

■ HP-UX 11.31 Integrity (actual hardware, HPVM, or
vPars)
Introduction 1-5

Technical Specifications
Application Server Oracle Fusion Middleware 11g Release 1 (11.1.1.6)

Components:

■ Oracle WebLogic Server 11g Release 1 (10.3.6)

■ Java:

JDK 1.7.0+ 64 bit, or

Jrockit 1.6 R28 build or later, within the 1.6 code
line. 64 bit. For Linux and Solaris OS only.

Supported On Version Supported
1-6 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

2

2Installation and Basic Setup

This chapter explains how to deploy the Retail Service-Oriented Architecture Enabler
tool to an Oracle WebLogic application server as a Web application.

Installation as a Web Application in Oracle WebLogic
The steps below describe how to deploy the Retail Service-Oriented Architecture
Enabler tool to an Oracle WebLogic Application Server as a Web application.

Prerequisites
The following are prerequisites for installation:

■ The retail-soa-enabler-gui.war file is located within the directory structure of the
RetailSOAEnabler14.0.0ForAll14.0.0Apps_eng_ga.tar. Locate and extract the
contents to a location that is accessible by the browser for deployment.

■ The installation and base configuration of the Oracle WebLogic Server is beyond
the scope of this document. Work with the Application Server Administration
team to determine the physical and logical placement of the retail-soa-enabler-gui
component within the WebLogic Server deployment.

Deploy the Retail Service-Oriented Architecture Enabler
Using the WebLogic Server Administration Console, complete the following steps:

1. Navigate to the Deployments page.

2. If necessary, click Lock and Edit on the left navigation bar to enable the Install
button.

3. Click Install.

Note: See "Technical Specifications" in Chapter 1.

Note: See the Oracle WebLogic Server 11g Release 3 (10.3.6) Installation
Guide.

Note: For instructions with illustrations (screen captures), see
"Appendix: Installer Screens."
Installation and Basic Setup 2-1

Installation as a Web Application in Oracle WebLogic
The Locate deployment to install and prepare for deployment page is displayed.
Follow the instructions to locate the retail-soa-enabler-gui.war file.

4. Select Upload Files.

5. On the Upload a Deployment to the admin server page, use the Browse button to
locate the retail-soa-enabler-gui.war file in the Deployment Archive.

6. Select the retail-soa-enabler-gui.war.

7. Click Next and move to Choose targeting style.

8. Select Install this deployment as an application.

9. Click Next and move to Optional Settings.

10. Click Next and move to Select deployment targets. Select the Server name where
you want to install the application.

11. Click Next and move to Optional Settings page.

12. In the Security section, select the option DD only: Use only roles and policies that
are defined in the deployment descriptors.

13. Select No, I will review the configuration later.

14. Click Finish to deploy the application.

15. Click Activate Changes to finish install. Go to Deployments page, select the
retail-soa-enabler-gui application and click on Start > Servicing all requests
button. This should change the status of retail-soa-enabler-gui application to
Active status.

16. After the application is deployed, we need to create a group and users who can
access the RSE GUI applications.

17. Go to Security Realms page, click on the default realm and go to Users and
Groups tab.

18. Create a new group named rseAdminGroup in the Groups page.

19. Go to Users page and create a new user.

20. Click on the newly created user and go to the Groups tab of that user. From the
Available groups, select rseAdminGroup and move it to the Chosen window.

21. Click Save.

This completes the deployment of RSE GUI application

Verify the Retail Service-Oriented Architecture Enabler
1. Navigate to the Deployments page.

2. Locate retail-soa-enabler-gui on the Summary of Deployments page.

3. Click the name, retail-soa-enabler-gui, to move to the Settings for the
retail-soa-enabler-gui.

4. Select the Testing tab.

5. Click the index.jsp URL in the Test Point.

Note: If the application has already been installed, see "Redeploy the
Application".
2-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Installation as a Web Application in Oracle WebLogic
6. The URL opens the Retail Service-Oriented Architecture Enabler login page.

7. Enter the credentials created in the 'Deploy the Retail Service-Oriented
Architecture Enabler' section, and the RSE home page is displayed.

8. The installation is complete. See Chapter 4, "User Interface Usage."

Redeploy the Application
If the retail-soa-enabler-gui application has already been deployed, follow these steps:

1. If the retail-soa-enabler-gui application is running, select Stop and When Work
Completes or Force Stop Now, depending on the environment. The
recommended option always is When Work Completes.

2. Select Delete.

3. The retail-soa-enabler-gui should now not show on the Summary of Deployment
page.

4. Return to the appropriate step in "Deploy the Retail Service-Oriented Architecture
Enabler."
Installation and Basic Setup 2-3

Installation as a Web Application in Oracle WebLogic
2-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

3

3 Tool Inputs and Outputs

This chapter describes the tool inputs and tool outputs associated with RSE.

Tool Inputs
Tool inputs include the following:

■ ServiceProviderDefLibrary.xml

■ RestServiceProviderDefLibrary.xml

■ XSDs and retail-public-payload-java-beans.jar

■ PL/SQL Oracle Objects

■ WSDL

ServiceProviderDefLibrary.xml
This is based on ServiceProviderDefLibrary.xsd schema. This definition file contains a
high level definition for Provider services for both PL/SQL and Java EE services, and
conforms to the ServiceProviderDefinition of a set of services which use Retail
Business Objects (BOs) as inputs and outputs.

RestServiceProviderDefLibrary.xml
This is the definition file for Restful Provider services for both PL/SQL and Java EE
services, and conforms to the ServiceProviderDefLibrary.xsd schema. This definition
file contains a high level definition of a set of services which use Retail Business
Objects (BOs) as inputs and outputs.

XSDs and retail-public-payload-java-beans.jar
■ The RSE tool references JAXB created java beans based on the BO source schema

XSDs. These beans are contained in the retail-public-payload-java-beans.jar.

■ The RSE tool will use Oracle Retail BOs from retail-public-payload-java-beans.jar.

■ The jar file is located in the WebLogic deployment directory where the RSE tool is
deployed.

■ The jar file is created using the Retail Artifact Generator from the source BO XSDs.

■ The jar file also contains the source XSDs themselves, which will be used by the
deployed service to validate all requests and responses against.
Tool Inputs and Outputs 3-1

Tool Outputs
PL/SQL Oracle Objects
These artifacts are created from the XSDs using the Retail Artifact Generator. The
Objects have to be installed into the database and accessible to the target Web service
APIs generated by RSE.

WSDL
For the Web service consumers, the input is the WSDL of the Web service provider that
the service will be consuming.

Tool Outputs
Tool outputs include the following:

■ PL/SQL Provider Web service

■ PL/SQL Consumer Web service

■ Java EE Provider Web service

■ Java EE Consumer Web service

■ PL/SQL Provider Restful Web service

■ Java EE Provider Restful Web service

PL/SQL Provider Web Service

PL/SQL Applications (such as the Oracle Retail Merchandising System) use Oracle
Objects, which are similar to the Oracle Retail RIB style APIs. The tool generates a Web
service provider layer between the external clients and the PL/SQL APIs to provide
the Web service functionality.

The RSE PL/SQL provider output is a zip file. The filename convention is <app>_
PLSQLServiceProvider.zip. For example, rms_PLSQLServiceProvider.zip. The zip file
contains the following:

■ <ServiceName>ProviderImplSpec.sql
3-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Tool Outputs
This is the specification for the <ServiceName>. It creates the package for the
<ServiceName> in the <app> database. It describes all the operations and their IN
and OUT parameters for the service.

■ <ServiceName>ProviderImplBody.sql

This is the package body for the <ServiceName>. This is where the application
teams have to write the business logic.

■ <app>-service.ear

The.ear file has to be deployed on an Oracle WebLogic. The steps for deployment
are in the RSE PL/SQL WS Installation Guide.

■ <app>-decorator-services.zip

This zip file contains OSB decorator jars for each service defined in the service
definition file. These jars are used by Retail Service Backbone(RSB) as input files.

■ ServiceProviderDefLibrary.xml

This is a copy of the ServiceProviderDefLibrary.xml file that was used to create the
output.

■ <ServiceName>Service.wsdl

This is a WSDL file describing the generated Web service. This WSDL file will be
fully documented, pulling in documentation elements from both the service def
file as well as the BO XSD files. This is a single file with all types inlined. It can be
used as input to create a consumer for the generated provider.
Tool Inputs and Outputs 3-3

Tool Outputs
PL/SQL Consumer Web Service
3-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Tool Outputs
Java EE Provider Web Service
Tool Inputs and Outputs 3-5

Tool Outputs
Java EE Consumer Web Service
3-6 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

4

4 User Interface Usage

The Retail Service-Oriented Architecture Enabler (RSE) tool produces design time and
run time artifacts, and it works in conjunction with another tool, the Retail Functional
Artifact Generator.

The graphical user interface (GUI) for RSE is hosted on an Oracle WebLogic server as a
Web application. Once installed and configured, the GUI is accessed through a URL
(http://host:port/contextroot). For example,
http://linux1:7001/retail-soa-enabler-gui. First it shows the login page. Here, use the
same user name and password to log in which was created in the RSE deployment
step and added to the rseAdminGroup. After successful login, it goes to the home
page of the application.

The RSE user interface has three tabs, or sections:

■ Home

■ Server Provider

■ Service Consumer

The user interface is designed to be easy to use. Online help is available, including
examples for each function.

The following is the Home Page.

Note: See the Retail Functional Artifact Generator Guide.
User Interface Usage 4-1

Service Provider
Service Provider
The service provider screen gives the option of selecting the Web Service Type (SOAP
or REST) and Provider type (a Java EE or a PL/SQL service provider).

A PL/SQL service provider can be used by PL/SQL applications such as RMS to
expose PL/SQL packages as Web services. The Java EE service provider option allows
Java EE applications to create Web services using Oracle Retail payload classes as
input and outputs.

The generated Web services do not have any business logic in them. They provide only
the framework for the development of Web services.

The inputs for creating Java EE or PL/SQL Web services are as follows:

■ Service Definition Library XML file for SOAP web services

■ Service Definition Library XML file for RESTful web services

■ Custom Business Objects jar file

■ Localization Business Object Jar file

■ Service Implementation jar file

Service Definition Library XML File
The mandatory input for creating a Java EE or a PL/SQL service provider is a Service
Definition Library XML file. This file should contain all the details about the Web
services that need to be created.

Service Definition Library XML File for Restful web services
The mandatory input for creating a Restful Java EE or a PL/SQL service provider is a
Rest Service Definition Library XML file. This file should contain all the details about
the web services that need to be created.

Note: See Chapter 5," Service Definition Library XML File."
4-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Service Consumer
Custom Business Objects Jar File
While creating Web services, users may want to use their own payloads to extend the
existing payloads. These payloads are known as custom payloads and can be provided
to the tool as input for creating Web services. The service provider screen has a field
for custom Business Objects jar file. It allows the user to upload a jar file which
contains the custom payloads. This jar file is optional; if this is not provided the base
payloads are used to create the Web services.

Localization Business Object Jar File
While creating Web services, users may want to use localized version of payloads.
These payloads are known as localized payloads and can be provided to the tool as an
input for creating Web services. The service provider screen has a field for localization
Business Object Jar file. It allows the user to upload a jar file which contains the
localized payloads. This jar file is optional; if this is not provided, the base payloads
are used to create the Web services.

Service Implementation Jar File
This jar file is used only while creating Java EE Web services. While creating Java EE
Web services the tool generates empty implementation for the services. Users will have
to create their own implementation classes for the Web services and use those classes
in the generation of the .ear file in the zip file.

After entering the file names in all the text boxes, click Generate Stub.

On successful generation of the stub, the output zip file (<app>_
JavaEEServiceProvider.zip or <app>_PLSQLServiceProvider.zip) will be available as
download from the browser. The zip folder contains .ear file which can be deployed on
Application Server. In case of RESTful WebService, the ear needs to be deployed on
JEE6 compatible server, that is, Glassfish server.

Service Consumer
The Service Consumer tab allows for the creation of a Java EE or PL/SQL service
consumer. Service consumer option for restful web services is not supported currently.

Select any one of the option to choose the WSDL file as shown in the screen.

1. Select your WSDL file. Ex: Choose from drive.

2. Enter your WSDL file URL. Example:
http/https://<host>:<port>/<ServiceName>Bean/<ServiceName>Service?wsdl

3. Click Generate Stub button to generate the consumer zip file.

When the tool is finished, the consumer distribution zip file can be downloaded to a
specific location.

Note: See the Oracle Retail Functional Artifact Generator Guide for how
to create a custom Business Objects jar file.

Note: See the Oracle Retail Functional Artifacts Generator Guide for
how to create a localization Business Objects jar file.

Note: See Chapter 7, "Creating the Java EE Implementation Jar."
User Interface Usage 4-3

Help
Help
Click the Help link on the right upper corner of the Home page for a brief description
of the Service Provider and Service Consumer functionality.
4-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

5

5Service Definition Library XML File

The Service Definition Library XML file (ServiceDef) is the mandatory input for
creating a Java EE or a PL/SQL service provider. This file should contain all the details
about the Web services that need to be created.

This chapter provides a detailed description of each section of the schema as well as
instructions for managing the Service Definition Library XML file.

Schema Definition
This section discusses the elements of the schema, beginning with the root element
and including child elements.

serviceProviderDefLibrary
This is the root element of the schema. The following is an example of the
serviceProviderDefLibrary element:

<xs:element name="serviceProviderDefLibrary">
<xs:complexType>

<xs:sequence>
<xs:element ref="service" maxOccurs="unbounded" />

</xs:sequence>
<xs:attribute name="appName" type="xs:string" use="required"/>

<xs:attribute name="version" type="xs:string" use="optional" default="v1"/>
<xs:attribute name="serviceNamespacePattern" type="xs:string" use="optional"

default="http://www.oracle.com/retail/APPNAME/integration/services/SERVICENAMEServ
ice/VERSION"/>

</xs:complexType>
</xs:element>

Attributes
The serviceProviderDefLibrary has the following attributes:

■ appName

This is the name of the application for which the .ear file is being built. When the
.ear file is generated, the name of the .ear file starts with the application name. The
format of the generated .ear file is <appName>-service.ear. For example, if the
appName is rms, the .ear file name is rms-service.ear.

■ serviceNamespacePattern

This attribute specifies the pattern for the namespaces that are generated for the
Web services. The default value for this attribute is
Service Definition Library XML File 5-1

Schema Definition
http://www.oracle.com/retail/APPNAME/integration/services/SERVICENAM
EService/VERSION.

■ Version

This is the version of the service definition.

Elements
The serviceProviderDefLibrary contains the following elements:

service

Each service element in serviceProviderDefLibrary represents one Web service. The
service provider definition should have at least one service defined in it.

The following is an example of the service element:

<xs:element name="service">
<xs:complexType>

<xs:sequence>
<xs:element ref="documentation" minOccurs="0" />
<xs:element ref="operation" maxOccurs="unbounded" />

</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="serviceNamespace" type="xs:string"

use="optional"/>
<xs:attribute name="serviceVersion" type="xs:string" use="optional"

default="v1"/>
<xs:attribute name="custom" type="xs:boolean" use="optional"

default="false"/>
</xs:complexType>

</xs:element>

The service element has the following attributes:

■ name

This is the name of the Web service to be created.

■ serviceNamespace

This is the namespace in which the Web service will be created.

■ serviceVersion

This is the version of the Web service. The default value is v1.

The service element contains the following elements:

■ Documentation

This field describes the purpose of the service.

■ Operation

The operation represents the method in the generated Web service. Each service
should contain at least one operation.

The following is an example of the operation element:

<xs:element name="operation">
<xs:complexType>

<xs:sequence>
<xs:element ref="documentation" minOccurs="0" />
<xs:element ref="input" />
5-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Schema Definition
<xs:element ref="output" minOccurs="0" />
<xs:element ref="fault" minOccurs="0"

maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="suffix" default="inputType">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:enumeration value="inputType" />
<xs:enumeration value="outputType" />
<xs:enumeration value="NONE" />

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="custom" type="xs:boolean" use="optional" default="false"/>
</xs:complexType>
</xs:element>

The operation element has the following attributes:

■ name

This is the name of the operation.

■ suffix

This is the string to be added to the end of the operation name. One of the
following values is supported for this attribute:

– inputType

If the suffix value is inputType, the input type name of the operation is added
to the generated method name. For example, if the operation name is create
and input type for that operation name is SupplierDesc, the generated
operation name will be createSupplierDesc.

– outputType

If the suffix value is outputType, the output type name of the operation is
added to the generated method name. For example, if the operation name is
create and output type for that operation name is SupplierRef, the generated
operation name will be createSupplierRef.

– NONE

If the suffix value is NONE, a suffix is not added to the operation name.

The operation element contains the following child elements:

■ Documentation

■ Input

■ Output

■ Fault

Fault contains the following elements:

– Documentation

Note: If no value is provided for the suffix attribute, inputType is
used as the default value.
Service Definition Library XML File 5-3

Managing the Service Definition Library XML File
The description of the fault.

– Faulttype

The name of the fault.

Managing the Service Definition Library XML File
The Service Definition Library XML file is the single source of truth for the RSE tool.
This section discusses the creation and management of the file.

Creating the File
The Service Definition Library XML example in "Appendix: Sample
ServiceProviderDefLibrary.xml" can be used as the initial template. Use the
instructions in the Service Definition Library XML File section to construct the
ServiceDef according to the goals of the service requirements.

As discussed in the Concepts section, the creation of this file is the result of the
analysis phase and part of the Service Design phase. The template provides the
placeholders for the standard service components: service name, operation name, and
the contracts for each of the operations, as well as the standard faults.

The ServiceDef should be created and managed (or governed) as a service-oriented
architecture asset in a source code control system. It is as important as the Service
Contracts (XSDS) and implementation source code.

Changing the Version of the File
To change the version of the service definition library file, a version attribute must be
added to the root element, serviceProviderDefLibrary.

For example:

<serviceProviderDefLibrary appName="rms"
xmlns=http://www.oracle.com/retail/integration/services/serviceProviderDefLibrary/
v1
version="v2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
...

</serviceProviderDefLibrary>

Changing the appName Attribute in the File
To change the application name in the services, edit the appName attribute in the root
element, serviceProviderDefLibrary.

For example:

<serviceProviderDefLibrary appName="editThisAppName"
xmlns=http://www.oracle.com/retail/integration/services/serviceProviderDefLibrary/
v1 version="v2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
...

</serviceProviderDefLibrary>
5-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Managing the Service Definition Library XML File
Renaming a Service or Operation Name in the File
To rename a service, edit the name attribute in the service element.

For example:

<serviceProviderDefLibrary appName="rms"
xmlns=http://www.oracle.com/retail/integration/services/serviceProviderDefLibrary/
v1
version="v2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<service name="EditThisName">
...
</serviceProviderDefLibrary>

To rename an operation in the service, edit the name attribute of the operation
element.

Adding a New Service or New Operation to the File
To add a new service to library, add a new service element with its child elements.

For example:

<serviceProviderDefLibrary appName="rmscostchange"
xmlns=http://www.oracle.com/retail/integration/services/serviceProviderDefLibrary/
v1
version="v2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<service name="ExistingService">
<operation name="existingOperation">

<documentation></documentation>
<input type="XXX">

<documentation></documentation>
</input>
<output type="YYY">

<documentation></documentation>
</output>
<fault faultType="IllegalArgumentWSFaultException">

<documentation>Throw this exception when a
"soap:Client" side message problem occurs.</documentation>

</fault>
<fault faultType="EntityAlreadyExistsWSFaultException">

<documentation>Throw this exception when the attempt
made to create a object that already exists.</documentation>

</fault>
<fault faultType="IllegalStateWSFaultException">

<documentation>Throw this exception when an unknown
"soap:Server" side problem ccurs.</documentation>

</fault>
</operation>

</service>
<service name="AddedNewServiceName">

<operation name="Operation">
<documentation></documentation>
<input type="XXX">

<documentation></documentation>
</input>
<output type="YYY">

<documentation></documentation>
Service Definition Library XML File 5-5

Managing the Service Definition Library XML File
</output>
<fault faultType="IllegalArgumentWSFaultException">

<documentation>Throw this exception when a
soap:Client" side message problem occurs.</documentation>

</fault>
<fault faultType="EntityAlreadyExistsWSFaultException">

<documentation>Throw this exception when the attempt
made to create a object that already exists.</documentation>

</fault>
<fault faultType="IllegalStateWSFaultException">

<documentation>Throw this exception when an unknown
"soap:Server" side problem

occurs.</documentation>
</fault>

</operation>
</service>

...

</serviceProviderDefLibrary>

To add a new operation to a service, add the operation element with its child elements.

For example:

<service name="service">
<service name="ServiceName">
<operation name="NewAddedOperation">

<documentation></documentation>
<input type="XXX">

<documentation></documentation>
</input>
<output type="YYY">

<documentation></documentation>
</output>
<fault faultType="IllegalArgumentWSFaultException">

<documentation>Throw this exception when a
"soap:Client" side message problem occurs.</documentation>

</fault>
<fault faultType="EntityAlreadyExistsWSFaultException">

<documentation>Throw this exception when the attempt
made to create a object that already exists.</documentation>

</fault>
<fault faultType="IllegalStateWSFaultException">

<documentation>Throw this exception when an unknown
"soap:Server" side problem ccurs.</documentation>

</fault>
</operation>
<operation name="ExistingOperation">

<documentation></documentation>
<input type="XXX">

<documentation></documentation>
</input>
<output type="YYY">

<documentation></documentation>
</output>
<fault faultType="IllegalArgumentWSFaultException">

<documentation>Throw this exception when a
soap:Client" side message problem occurs.</documentation>

</fault>
5-6 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Managing the Service Definition Library XML File
<fault faultType="EntityAlreadyExistsWSFaultException">
<documentation>Throw this exception when the attempt

made to create a object that already exists.</documentation>
</fault>
<fault faultType="IllegalStateWSFaultException">

<documentation>Throw this exception when an unknown
"soap:Server" side problem

occurs.</documentation>
</fault>

</operation>
</service>

Deleting a Service or Deleting Operations from the File
To delete a service from the library, remove the service element and all its child
elements from the library.

To delete an operation from the service, delete the operation element and all its child
elements.

Defining New Exceptions to the Operations
Users can define a new exception in the service definition library. The RSE tool creates
the artifacts with this new exception.

For example:

<operation name="ExistingOperation">
<documentation></documentation>
<input type="XXX">

<documentation></documentation>
</input>
<output type="YYY">

<documentation></documentation>
</output>
<fault faultType="IllegalArgumentWSFaultException">

<documentation>Throw this exception when a
"soap:Client" side message problem occurs.</documentation>

</fault>
<fault faultType="EntityAlreadyExistsWSFaultException">

<documentation>Throw this exception when the attempt
made to create a object that already exists.</documentation>

</fault>
<fault faultType="IllegalStateWSFaultException">

<documentation>Throw this exception when an unknown
"soap:Server" side problem occurs.</documentation>

</fault>
<fault faultType="UserDefinedException">

<documentation>This is user defined exception for a
particular scenerio.</documentation>

</fault>
</operation>

Using Different Versions of Objects as Input/Output to an Operation
The version difference between objects does not impact the RSE tool, as long as the
objects adhere to standards.
Service Definition Library XML File 5-7

Managing the Service Definition Library XML File
5-8 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

6

6Service Definition Library XML File for

Restful services

The REST Service Definition Library XML file (ServiceDef) is the mandatory input for
creating a RESTful Java EE or a PL/SQL service provider. This file should contain all
the details about the Web services that need to be created.

This chapter provides a detailed description of each section of the schema as well as
instructions for managing the Service Definition Library XML file.

Schema Definition
This section discusses the elements of the schema, beginning with the root element
and including child elements.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.oracle.com/retail/integration/services/serviceProvider
DefLibrary/v1"

xmlns="http://www.oracle.com/retail/integration/services/serviceProviderDefLibrary
/v1"

elementFormDefault="qualified">
<xs:element name="serviceProviderDefLibrary">

<xs:complexType>
<xs:sequence>

<xs:element ref="service" maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="appName" type="xs:string" use="required"/>
<xs:attribute name="version" type="xs:string" use="optional"

default="v1"/>
<xs:attribute name="serviceNamespacePattern" type="xs:string"

use="optional"
default="http://www.oracle.com/retail/APPNAME/integration/services/SERVICENAMEServ
ice/VERSION"/>

</xs:complexType>
</xs:element>
<xs:element name="documentation" type="xs:string" />

<xs:element name="header">
<xs:complexType>

<xs:attribute name="type" type="xs:string" use="required"/>
<xs:attribute name="headerName" type="xs:string" use="required"/>
<xs:attribute name="headerRequired" type="xs:boolean" use="optional"
Service Definition Library XML File for Restful services 6-1

Schema Definition
default="false"/>
</xs:complexType>

</xs:element>
<xs:element name="input">

<xs:complexType>
<xs:sequence>

<xs:element ref="documentation" minOccurs="0" />
<xs:element ref="header" minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>
<xs:attribute name="type" type="xs:string" use="required"/>
<xs:attribute name="version" type="xs:string" use="optional"

default="v1"/>
<xs:attribute name="custom" type="xs:boolean" use="optional"

default="false"/>
<xs:attribute name="identifierNameList" type="xs:string"

use="optional" />
</xs:complexType>

</xs:element>
<xs:element name="output">

<xs:complexType>
<xs:sequence>

<xs:element ref="documentation" minOccurs="0" />
<xs:element ref="relations" minOccurs="0"/>

</xs:sequence>
<xs:attribute name="type" type="xs:string" use="required"/>
<xs:attribute name="version" type="xs:string" use="optional"

default="v1"/>
<xs:attribute name="custom" type="xs:boolean" use="optional"

default="false"/>

</xs:complexType>
</xs:element>
<xs:element name="relations">

<xs:complexType>
<xs:sequence>

<xs:element ref="relatedTo" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="relatedTo">
<xs:complexType>

<xs:attribute name="name" use="required">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:patternvalue="[a-zA-Z0-9]*|EXTERNAL_SYSTEM"></xs:pattern>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="value" type="xs:string" use="optional" />

</xs:complexType>
</xs:element>

<xs:element name="fault">
<xs:complexType>

<xs:sequence>
6-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Schema Definition
<xs:element ref="documentation" minOccurs="0" />
</xs:sequence>
<xs:attribute name="faultType" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="operation">

<xs:complexType>
<xs:sequence>

<xs:element ref="documentation" minOccurs="0" />
<xs:element ref="input" />
<xs:element ref="output" minOccurs="0" />
<xs:element ref="fault" minOccurs="0"

maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="suffix" default="inputType">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="inputType" />
<xs:enumeration value="outputType" />
<xs:enumeration value="NONE" />

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="custom" type="xs:boolean" use="optional"

default="false"/>
<xs:attribute name="operationType" default="READ_WITH_IDENTITY">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="CREATE" />
<xs:enumeration value="READ_WITH_IDENTITY" />
<xs:enumeration value="READ_WITH_PREDICATE" />
<xs:enumeration value="UPDATE" />
<xs:enumeration value="DELETE" />
<xs:enumeration value="PROCESS" />

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>

</xs:element>
<xs:element name="service">

<xs:complexType>
<xs:sequence>

<xs:element ref="documentation" minOccurs="0" />
<xs:element ref="operation" maxOccurs="unbounded" />

</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="serviceNamespace" type="xs:string"

use="optional"/>
<xs:attribute name="serviceVersion" type="xs:string" use="optional"

default="v1"/>
<xs:attribute name="custom" type="xs:boolean" use="optional"

default="false"/>
</xs:complexType>

</xs:element>
</xs:schema>
Service Definition Library XML File for Restful services 6-3

ServiceProviderDefLibrary
ServiceProviderDefLibrary
This is the root element of the schema. The following is an example of the
serviceProviderDefLibrary element.

Sample Rest Service Definition Library file:

<serviceProviderDefLibrary appName="rms"
xmlns="http://www.oracle.com/retail/integration/services/serviceProviderDefLibrary
/v1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<service name="Suppliers">

<operation name="find" operationType="READ_WITH_PREDICATE"
suffix="outputType">

<input type="SupplierColRef" identifierNameList="country_id"/>
<output type="SupplierColDesc">
</output>
<fault faultType="IllegalArgumentWSFaultException" />

</operation>
<operation name="delete" operationType="DELETE">

<input type="SupplierColRef" identifierNameList="country_id"/>
<output type="SupplierColRef">
</output>
<fault faultType="IllegalArgumentWSFaultException" />

</operation>

</service>
</serviceProviderDefLibrary>

Validation rules for a service definition xml for RESTful web services
■ There must be a valid appName specified in service def. It must follow these rules:

■ must not be empty.

■ must be alphanumeric.

■ must not start with a number.

■ There must be at least one service in the service def.

■ The service name must be unique in the service def.

■ The service name must follow these rules:

■ must not be empty.

■ must be alphanumeric.

■ must not start with a number.

■ There must be at least one operation in the service.

■ For each operation a valid OperationType must be defined. Operation type can be
one of the following:

■ CREATE

■ UPDATE

■ DELETE

■ PROCESS

■ READ_WITH_IDENTITY
6-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Validation rules for a service definition xml for RESTful web services
■ READ_WITH_PREDICATE

■ A service must have an operation of either READ_WITH_IDENTITY or READ_
WITH_PREDICATE type. If the operation type is READ_WITH_IDENTITY, then
the service will generate methods to work with one object. If it operation is READ_
WITH_PREDICATE, then the web service is for collection of objects.

■ The operation name must follow these rules:

■ must not be empty.

■ must be alphanumeric.

■ must not start with a number.

■ Each operation must have a valid input type and output type defined. These types
must be the names of valid payload objects.

■ There can be multiple methods of operation type PROCESS for a service.

■ A service can have either READ_WITH_IDENTITY operation or READ_WITH_
PREDICATE, it cannot have both.

■ READ_WITH_PREDICATE operation type is only supported for CREATE and
PROCESS operations. DELETE and UPDATE operations are not supported on a
collection of objects.

■ The input type of an operation must have a valid value for the field
identifierNameList, which means that the value specified for that field must
follow these rules:

■ It can have comma-separated names of fields.

■ The fields must be valid elements present in the xsd of the payload name
specified in inputType of that operation.

■ If the service has an operation of type READ_WITH_PREDICATE, then the
payload specified in inputType must have an element named "collection_
size".That signifies that this service is for collection of objects.

■ The identifierNameList specified in READ_WITH_IDENTITY is used for building
URI for the service. For example, if the service name is "Supplier" and
identifierNameList for READ_WITH_IDENTITY operation has a value such as
"supplier_id, sup_xref_key" then the URI of that service will be
http://<host>:<port>/<contextPath>/SupplierResource/<supplierId>/<sup_
xref_key>. An example of a request is:
http://localhost:7001/rms-service/1/xref1.In this example, "1" will be substituted
as the value for supplierId and "xref1" will be substituted as the value for "sup_
xref_key" field.

■ All the operations of a service should contain the same value for
identifierNameList. The identifierNameList specified in READ_WITH_IDENTITY
operation is used for building the URI for UPDATE, DELETE and PROCESS
methods also for the service, because the URI represents the object it is working
on, and the READ_WITH_IDENTITY, DELETE, UPDATE and PROCESS methods
should work on the same object.

■ A service can have relations sepcified in the outputType of the operation. The
name specified in relatedTo element must be the name of a service which exists in
the same service def xml.

■ A service cannot have its own name in relatedTo field
Service Definition Library XML File for Restful services 6-5

Validation rules for a service definition xml for RESTful web services
6-6 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

7

7Web Service Standards and Conventions

This chapter includes standards and conventions for Web service naming and
versioning.

Web Service Naming
The following standards and conventions apply to the naming of Web services.

The Web service name should be a business noun, concept or process.

Avoid verbs when naming Web services.

The first 30 characters of the Web service name must be unique.

The integration/services qualifier should be in the namespace.

Item Description

Recommendation The Web service name should be a business noun, a business
concept, or a business process.

Rationale To be in alignment with other Web service standards.

Example Supplier Service

Item Description

Recommendation The Web service name should be a business noun, a business
concept, or a business process.

Rationale Verbs generally are at the operation level, not at the service level.

Example Avoid names such as CreateSupplierService.

Item Description

Recommendation The first 30 characters of the Web service name must be unique.

Rationale Some systems truncate names at 30 characters.

Example N/A

Item Description

Recommendation The integration/services qualifier should be in the namespace.
Web Service Standards and Conventions 7-1

Web Service Naming
The Web service namespace should contain the application short name.

The Web service type should be document/literal wrapped.

The Web service must comply with Web Service Basic Profile 1.1.

Rationale

Example http://www.oracle.com/retail/rms/integration/services/PayTerm
Service.

Item Description

Recommendation The Web service namespace should contain the application short
name.

Rationale Multiple applications may publish services with similar names. To
categorize and identify which application is hosting what service,
the service namespace should contain the application short name.

Example http://www.oracle.com/retail/rms/integration/services/PayTerm
Service.

Item Description

Recommendation The Web service type should be document/literal wrapped.

Rationale This is defined in the WSDL.

Example <soap:binding
transport="http://schemas.xmlsoap.org/soap/http"
style="document"/>
<operation name="createPayTermBO">
<ns21:PolicyReference
xmlns:ns21="http://www.w3.org/ns/ws-policy"
URI="#PayTermServicePortBinding_createPayTermBO_WSAT_
Policy"/>
<soap:operation soapAction=""/>
<input>
<soap:body use="literal"/>
</input>

Item Description

Recommendation The Web service must comply with Web Service Basic Profile 1.1.

Rationale The specification is called the WS-I Basic Profile 1.1. It consists of a
set of non-proprietary Web services specifications, clarifications,
refinements, interpretations, and amplifications of those
specifications which promote interoperability.

Example N/A

Item Description
7-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Web Service Versioning
The Web service operation naming pattern should be
verb<TopLevelComplexType>(TopLevelComplexType variable).

Web Service Versioning
Service versioning is in the namespace, including the application and the version
identifier.

The service namespace is versioned.

Item Description

Recommendation The operation name pattern should be either of the following:

■ verb<TopLevelComplexType>(TopLevelComplexType
variable)

■ verb<NonTopLevelComplexType>Using<TopLevelComplexType>
(TopLevelComplexType variable).

Rationale The operation name should reflect the Top Level Complex Type of
the service’s primary entity object to ensure the name is
unambiguous.

Example createItemListBO

Item Description

Recommendation The WSDL for the RBS will have the namespace versioned.

Rationale For breaking changes only, the WSDL for the RBS will have the
namespace versioned.

http://www.oracle.com/retail/<retail
app>/integration/services/<service name>/V<incremental change
number>

Example http://www.oracle.com/retail/rms/integration/services/PayTerm
Service/V2
Web Service Standards and Conventions 7-3

Web Service Versioning
7-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

8

8Creating the Java EE Implementation Jar

Creating Web services with different implementations is a three-step process, as
described below.

Step 1: Generate Web Services with Default Implementation
Generate Web services with the default implementation as follows:

1. Provide the Service Definition Library XML file and click Generate Stub to create
a zip file.

2. The zip file contains a jar file with the interface classes for the Web services. The
name pattern of the jar file is <appName>-service-ejb.jar.

For example, if the application name in ServiceDef is rms, the jar file name is
rms-service-ejb.jar.

The jar file also contains a properties file named
ServiceProviderImplLookupFactory.properties. This file contains the name of the
Web service interface and the class implementing the Web service.

Step 2: Implement Interfaces
Implement the interfaces and create the implementation classes. The classes can be
packaged in a jar file. Upload the jar file while creating the final ear file.

Step 3: Upload the jar
When using the Service Implementation Jar File option to upload the jar containing the
implementations, the default service implementation jar is not included in the .ear file.
Rather, the jar file provided by the user is included. When the Web service is invoked,
the service implementation provided by the user is invoked.

Note: For creating an implementation class, interface classes are
required.
Creating the Java EE Implementation Jar 8-1

Step 3: Upload the jar
8-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

9

9 Implementation Guidelines

This chapter provides a set of implementation notes that may be helpful when
implementing the Oracle Retail Service-Oriented Architecture Enabler (RSE) tool. The
information included here is intended to provide guidance on the following topics:

■ PL/SQL Service Consumer

■ PL/SQL Provider Service

■ Java EE Web Service Consumer

■ Java EE Service Provider

■ Web Service Call as a Remote EJB Call

■ Web Service Call as a POJO Call

■ Deploying the Web Service

■ Creating a JDBC Data Source

Important Note About this Chapter
The implementation notes in this chapter are intended to provide some guidance in
the development and deployment of the Web service layer. This information does not
take into account the implementation of the business logic required to complete the
application API layer.

The RSE tool and approaches described in this section are complex. A high level of
skill and knowledge of the product is required to complete these implementation
tasks. Also required is technology specific development of application APIs and the
business logic that is needed to complete it.

Any issues that may arise with development tools, development environments,
custom APIs, or custom message flows are the responsibility of the customer and not
Oracle Retail.

PL/SQL Service Consumer Implementation Notes
To set up the Web service consumer side proxies, complete the following steps:

1. loadjava -u <username>/<password>@<host>:<port>:<SID> -r -v -f -genmissing
dbwsclientws.jar dbwsclientdb102.jar

Note: See the section, "Important Note About this Chapter".
Implementation Guidelines 9-1

PL/SQL Provider Service Implementation Notes
2. Edit and run *_grant.sql script as sysdba to give the user proper permission.

3. Load the following jars to the database.

Instructions to load jars to database can be found in PLSQLServiceConsumer_
ReadMe.doc packaged with the generated zip file.

■ xmlparserv2.jar

■ dbwsa.jar

■ dbwsclientdb11.jar

■ dbwsclientws.jar

■ <WebServiceName>ServiceConsumer.jar

■ http_client.jaradMe.doc packaged with the generated zip file

4. Run the *Consumer_create.sql in the schema that will use this API. The schema
owner is the user granted permission in Step 2.

5. Write a PL/SQL procedure to work as the client to call the Web service. A sample
is provided below:

create or replace PROCEDURE wstestClient IS
BEGIN
PayTermServiceConsumer.setEndpoint('http://10.141.26.93:7001/PayTermBean/PayTer
mService');
dbms_output.PUT_LINE(PayTermServiceConsumer.getEndPoint());
dbms_output.PUT_LINE(PayTermServiceConsumer.ping('TestMessage'));
dbms_output.PUT_LINE('Done.');
END;

PL/SQL Provider Service Implementation Notes
The distribution (.zip) file includes an .ear file that contains all the generated code for
the service; it is ready to be deployed to the application server. The business logic can
be implemented in PL/SQL packages in Oracle. The distribution contains the "spec"
and body scripts for the packages called by the deployed service.

To complete implementation, follow these steps:

Note: loadjava is a utility available in Oracle Database.

Note: The ojdbc6.jar should not be loaded, because it is used only for
loading the other jars. If the jar is already loaded, drop the jar. If you
get ORA-29533 while dropping the jar, drop the individual files.

For example:

dropjava -u
<username>/<password>@<host>:<port>:<SID>packageName/SourceName

Note: The following sample code is written for the PayTerm Web
service. Replace the service endpoint URL and the consumer class
name according to the Web service for which the client is generated.
9-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Java EE Service Consumer Implementation Notes
1. Create the PL/SQL service provider distribution file using the RSE tool. The
output of this process is the .zip file.

2. Extract the <service_name>.ProviderImplSpec.sql and <service_
name>ProviderImplBody.sql files from the distribution zip file.

3. These files will be modified to provide a PL/SQL implementation for the service.

4. Extract the <service_name>-service.ear file from the distribution zip file. This file
is the generated Web service that will be deployed.

5. Create the JDBC data source.

6. If not already deployed, deploy the Oracle Objects to the appropriate database
user.

7. Modify the PL/SQL body file for the business logic implementation. The <service_
name>ProviderImplBody.sql file contains comments about where to implement
logic for each method on the service.

8. Install the modified PL/SQL packages to the database. They will be called by the
Web service methods.

9. Deploy the <service_name>.ear file to the Oracle WebLogic Server.

Java EE Service Consumer Implementation Notes
The Java Web service consumer artifacts generated by this tool are based on the
JAX-WS 2.1 specification. Services can be invoked in synchronous and asynchronous
mode by using these artifacts.

To complete implementation, follow these steps:

1. Create a Web service client.

2. Create the application that uses the {WebsSrviceName}ServiceConsumer.jar and
code your Web service client. The {WebsSrviceName}ServiceConsumer.jar contains
all necessary code to invoke the {WebsSrviceName}Service WebService.

3. Additional JAX-WS library jars might be required.

4. Deploy the service in the server.

Note: See the section, "Important Note About this Chapter".

Note: See Chapter 4,"User Interface Usage".

Note: See "Creating a JDBC Data Source".

Note: See the Oracle Retail Functional Artifact Generator Guide.

Note: See the section, "Important Note About this Chapter".
Implementation Guidelines 9-3

Java EE Service Consumer Implementation Notes
5. Invoke the Web service client to see the results.

Sample Client Code
The code below is an example of how to invoke Oracle Retail's PayTerm Web service.
For each Web service, a specific WebServiceConsumer code/jar must be generated that
can "talk to" the service.

import java.math.BigDecimal;
import java.net.URL;
import javax.xml.namespace.QName;
import com.oracle.retail.integration.base.bo.paytermdesc.v1.PayTermDesc;
import com.oracle.retail.integration.base.bo.paytermref.v1.PayTermRef;
import
com.oracle.retail.rms.integration.services.paytermservice.v1.PayTermPortType;
import
com.oracle.retail.rms.integration.services.paytermservice.v1.PayTermService;
import junit.framework.TestCase;

public class PayTermTest extends TestCase{
public void testCreatePayTerm(){

try{
//qname is the namespace of the web service
QName qName = new

QName("http://www.oracle.com/retail/rms/integration/services/PayTermService/v1",
"PayTermService");

//wsdlLocation is the URL of the WSDL of the web service
URL wsdlLocation = new

URL("http://10.141.26.93:7001/PayTermBean/PayTermService?WSDL");

//get the web service instance
PayTermService service = new PayTermService(wsdlLocation,qName);
PayTermPortType port = service.getPayTermPort();

//populate input object for the web service method
PayTermDesc desc = new PayTermDesc();
desc.setTerms("terms");
desc.setDiscdays("1");
desc.setDueDays("1");
desc.setEnabledFlag("t");
desc.setPercent(new BigDecimal("1"));
desc.setRank("1");
desc.setTermsCode("code");
desc.setTermsDesc("desc");
desc.setTermsXrefKey("key");

//call the web service method. here ref is the response object
of the web service.

PayTermRef ref = port.createPayTermDesc(desc);

}catch(Exception e){

Note: The following sample code is for invoking the PayTerm Web
service. When you generate Java consumer for a Web service, the
generated jar file will contain classes specific to that Web service. Use
the appropriate classes in the client code. Service namespace and
WSDL location also should be changed accordingly.
9-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Java EE Service Provider Implementation Notes
e.printStackTrace();
}

}
}

Java EE Service Provider Implementation Notes
The RSE tool creates the appropriate provider Web service end-points as well as a
skeleton implementation layer where the developer implements business logic. All of
this is packaged inside the provider distribution archive file.

The Java EE Provider distribution file provides a sample deployable application and
all the libraries that can be used to create Web services using retail payloads. The
distribution file follows the naming convention of <appname>_
JavaEEServiceProvider.zip. For example, the distribution file for the RMS application
is named rms_JavaEEServiceProvider.zip. The <rms> prefix must be replaced with the
name of any other application being developed.

The Web services generated by the RSE tool can be implemented and deployed in a
number of ways. This section includes three implementation use cases for reference.

Use Case 1: Complete the Generator Provided Stub Code Implementation
1. Generate the distribution file using the RSE tool.

2. Extract the <service_name>-ejb-impl-src.jar file from the zip file.

3. Extract the <service_name>-service.ear file from the zip file.

4. Add business logic code where indicated in the Impl java files.

5. Use the java jar command to re-build the <service_name>-service-ejb-impl.jar file.

6. Use the jar command to update .ear file with the new implementation jar.

7. Deploy the .ear file to the server.

Use Case 2: Provide a Custom impl jar to the RSE Tool
1. Create custom java classes that implement the <service_name>ServiceProvider

interfaces contained in the <service_name>-service-ejb.jar file.

2. Extract the ServiceProviderImplLookupFactory.properties file from the .ear file.

3. Modify the properties file to point to your implementation classes for the services.

4. Use the jar command to create a jar containing your implementation classes, as
well as the modified properties file.

5. Run the RSE tool again and provide the new custom implementation jar file.

6. Extract and deploy the generated .ear file to the server.

Use Case 3: Package the Generated Service Classes in an Existing Application
1. Generate the distribution file using the RSE tool.

2. The service interfaces are provided in the <appname>-service-ejb.jar file in the
distribution file. This jar file should be included in the application classpath.

Note: See the section, "Important Note About this Chapter".
Implementation Guidelines 9-5

Web Service Call as a Remote EJB Call
3. Source code of sample implementations for the service interfaces are provided in
the <appname>-service-ejb-src.jar file in the distribution file. (If application
developers want to use the same classes in their application, they can extract the
java files from the jar file and include those in application source code. They also
can add their own business logic in the method implementations. If they decide to
write their own implementations, they should make sure that the appropriate
service interfaces are implemented.)

4. After writing the Web service implementations, the java files should be compiled.
The class files can be included in a new jar file or in the same jar file used for the
rest of the classes of the application.

5. Modify the ServiceProviderImplLookupFactory.properties file to include
appropriate class names of service implementations and include it in application
classpath. A recommended approach is to include the properties file in the jar file
that contains the service implementation classes.

6. Make sure that the following jar files are included in the application ear file:

■ <appname>-service-ejb.jar

■ Jar file containing the service implementation classes

■ jaxb-api.jar

■ retail-public-payload-java-beans-base.jar

■ retail-public-payload-java-beans.jar

■ retail-soa-enabler.jar

7. Include an ejb-module in the application.xml of the application. The module name
should be same as the name of <appname>-service-ejb.jar file.

8. The .ear file is ready for deployment on the server.

Web Service Call as a Remote EJB Call
This section applies to PL/SQL Web service implementations and Java EE Web service
implementations.

A client can call a Web service as a remote EJB call to improve performance by
avoiding marshalling and unmarshalling.

Prerequisites
The following is a list of prerequisites to implementation.

1. Get the updated wlfullclient.jar (integration-lib\third-party\oracle\wl\10.3\)&
retail-soa-enabler.jar (integration-lib\internal-build\rse\) from the Repository.

2. Run build.xml for retail-soa-enabler.

3. Generate the .ear and deploy it to server.

4. Configure the data source in the server.

Procedure
Complete the following steps.

Note: See the section, "Important Note About this Chapter".
9-6 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Web Service Call as a Remote EJB Call
1. Create a Java file containing the code below inside any package. (See code sample
at the end of this section.)

2. Include the following jar files in the classpath:

■ retail-public-payload-java-beans-base.jar

■ retail-public-payload-java-beans.jar

■ oo-jaxb-bo-converter.jar

■ retail-soa-enabler.jar

■ <appname>-service-ejb.jar

3. Run code as a Java application.

import java.util.Properties;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import com.oracle.retail.integration.base.bo.paytermdesc.v1.PayTermDesc;
import com.oracle.retail.integration.base.bo.paytermref.v1.PayTermRef;
import
com.oracle.retail.integration.services.exception.v1.EntityNotFoundWSFaultException
;
import
com.oracle.retail.integration.services.exception.v1.IllegalArgumentWSFaultExceptio
n;
import
com.oracle.retail.integration.services.exception.v1.IllegalStateWSFaultException;
import com.oracle.retail.rms.integration.services.paytermservice.v1.PayTermRemote;

public class WebLogicEjbClient {

public static void main(String[] args) throws NamingException,
IllegalArgumentWSFaultException, EntityNotFoundWSFaultException,
IllegalStateWSFaultException {

Context ctx = getInitialContext("t3://localhost:7001", "<WLS
user>","<WLS password>");
Object ref = ctx .lookup("PayTerm#com.oracle.retail.rms.integration.services.
paytermservice.v1.PayTermRemote");

PayTermRemote remote = (PayTermRemote)(ref);

PayTermRef ref = new PayTermRef();
PayTermDesc desc = remote.findPayTermDesc(ref);

System.out.println("findPayTermDesc=" + desc);

}

static Context getInitialContext(String url, String user, String password)

Note: The sample code below obtains a context for accessing the
WebLogic naming service and calls a lookup method to get the Object
inside the container by providing a binding name. It then calls a
corresponding Web service method. As an example, the code sample
calls the PayTerm service.
Implementation Guidelines 9-7

Web Service Call as a POJO Call
throws NamingException {

Properties h = new Properties();
h.put(Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory");
h.put(Context.PROVIDER_URL, url);
h.put(Context.SECURITY_PRINCIPAL, user);
h.put(Context.SECURITY_CREDENTIALS, password);
return new InitialContext(h);

}
}

Code Description
Code sample 1:

Context ctx = getInitialContext("t3://localhost:7001", "<WLS user>","<WLS
password>");

Description: Gets Initial Context object by passing the URL (local WebLogic URL, if
not configured to other), user name, and password of the server.

Code sample 2:

Object ref = ctx .lookup("PayTerm#com.oracle.retail.rms.integration.services.
paytermservice.v1.PayTermRemote");

Description: Lookup method retrieves the name of Object. Throws naming exception if
the binding name is missing from the server. Binding name can be found after
deploying the .ear file to the server, at JNDI Tree Page. (Summary of Servers
>examplesServer>view JNDI Tree).

Code sample 3:

PayTermRemote remote = (PayTermRemote)(ref);

Description: Create PayTermRemote object by casting ref object.

Code sample 4:

PayTermRef ref = new PayTermRef();
PayTermDesc desc = remote.findPayTermDesc(ref);

Description: Invoked Web service method findPayTermDesc as a remote call.
Depending on the requirement, the user can vary the binding name and create a
different object to invoke the Web service deployed to the server as a remote EJB call
using the above code.

Web Service Call as a POJO Call
This section applies to PL/SQL Web service implementations and Java EE Web service
implementations.

If an application is a core Java application, it can still call the Web services classes, but
as POJO classes. In this case, the Web service classes act as simple Java classes, and
there is no marshalling of XML involved, nor a remote call as an EJB.

The PL/SQL provider services need a database connection to call PL/SQL packages.
In the case of a Web service call or an EJB call, the service gets the connection from the
data source supplied by the Java EE container through resource injection. But in the
9-8 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Web Service Call as a POJO Call
case of a Java application, the data source is not available through this mechanism. The
connection must be passed to the Web service class before invoking any business
methods on it. To achieve this, the caller application must create an instance of the Web
service class using the non-default constructor available in the service bean class. An
example of the signature of the constructor is below:

public PayTermBean(Connection conn,Map<String,String> serviceContext)

In the constructor shown above, the first parameter is for database connection. The
second parameter is for the calling application to provide any additional parameters to
the bean passed on to the PL/SQL package. When the bean is called as a Web service,
an instance of ServiceOpContext class is created by using properties available from an
instance of javax.xml.ws.WebServiceContext, available through resource injection.
When the bean is called as EJB, an instance of ServiceOpContext is created from the
values in an instance of javax.ejb.EJBContext, available through resource injection. But
when the bean is called as a POJO, none of these objects is available. Therefore, a map
has been added in the constructor so that the calling application can set the required
values. If a null object is passed to the constructor for the map, an empty instance of
ServiceOpContext is created. If the map contains a key named "user," a Principal object
is created with the value of that key, and it is set in the ServiceOpContext object.

Procedure
Complete the following steps.

1. Generate the .ear file for Web services and extract the following jar files from it:

■ retail-public-payload-java-beans-base.jar

■ retail-public-payload-java-beans.jar

■ oo-jaxb-bo-converter.jar

■ retail-soa-enabler.jar

■ <appname>-service-ejb.jar

2. Include these jar files in the classpath of the Java application that is going to
invoke the beans as POJO classes.

3. Write the code to call the bean classes. (Sample code is provided below in this
section.)

4. Run the calling class.

Note: The bean class is available in the <appname>-service-ejb.jar for
each Web service generated. For example, if the service name is
PayTerm in the service definition XML, the name of the generated
bean class will be PayTermBean. This is the class that should be used
to call a Web service as a POJO.

Note: See the section, "Important Note About this Chapter".
Implementation Guidelines 9-9

Web Service Call as a POJO Call
Sample Code for POJO Invocation
public class PayTermService extends TestCase{

public void testPayTerm(){
Connection conn = null;
try{

//get the database connection
Class.forName("oracle.jdbc.OracleDriver");
conn

=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:orcl","stubby","ret
ek");

//create map for ServiceOpContext
Map<String,String> ctxMap = new HashMap<String, String>();
ctxMap.put("user", "user1");

//instantiate the web service bean class
PayTermBean bean = new PayTermBean(conn,ctxMap);

//populate the input object for web service method
PayTermRef ref = new PayTermRef();
ref.setTerms("terms");
ref.setTermsXrefKey("key");

//call the web service.here desc is the response object
PayTermDesc desc = bean.findPayTermDesc(ref);

//print the response object value
System.out.println("desc value="+desc.getTerms());

//commit the database connection
conn.commit();

}catch(Exception e){
e.printStackTrace();
try{

conn.rollback();
}catch(SQLException se){

se.printStackTrace();
}

}finally{
if(conn !=null){

try{
conn.close();

}catch(SQLException se){
se.printStackTrace();

}
}

Note: The connection must be committed or rolled back by the
calling application. Because there is no Java EE container available in
this case, the bean cannot start and end a transaction. Therefore, it is
the responsibility of the calling application to manage the transaction
and the connection. In the following sample code, the calling class is
committing the connection in case of a successful response from the
bean, and it is rolling back the connection in case of any exception
thrown by the Web service. The calling application determines how it
wants to handle exceptions.
9-10 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Deploying the Web Service
}
}

}

Deploying the Web Service
This section applies to PL/SQL Web service implementations and Java EE Web service
implementations.

Complete the following steps using the WebLogic Server Administration Console:

1. If necessary, click Lock and Edit on the left navigation bar to enable the Install
button

2. Navigate to the Deployments page.

3. Click Install.

4. The Locate deployment to install and prepare for deployment screen is
displayed. Follow the instructions to locate the <service-name>.ear file on the
WebLogic Server host

If rib-home is located on a host other than the Oracle WebLogic Server, select
Upload Files. On the Upload a Deployment to the admin server screen, use the
browse button to locate the <service-name>.ear file in the Deployment Archive.

5. Select the igs-service.ear.

6. Click Next to move to Choose targeting style.

7. Select Install this deployment as an application.

8. Click Next to move to Select deployment targets. Here select the server to which
you want the ear file to be deployed.

9. Click Next to move to Optional Settings. Here in the Security section, select the
option Custom Roles and Policies:Use only roles and policies that are defined in
the Administration Console. This is required to be able to attach roles and policies
to secure the web services.

10. Click Next to move to Review your choices and click Finish.

11. Select No, I will review the configuration later.

12. Click Finish to deploy the application.

13. Click Activate Changes to commit changes to server.

14. Go to Deployments page, select the service application and click on Start >
Servicing all requests to start the application and change the status to Active.

Redeploy the Service Application
If the <service-name> application has already been deployed, follow these steps:

Note: See the section, "Important Note About this Chapter".

Note: If the service application has already been installed, see
"Redeploy the Service Application".
Implementation Guidelines 9-11

Creating a JDBC Data Source
1. If the <service-name> application is running, select Stop and When Work
Completes or Force Stop Now, depending on the environment. The
recommended option always is When Work Completes.

2. Select Delete.

3. The Summary of Deployments should now include the igs-service.

4. Return to "Deploying the Web Service".

Verify the Service Application Installation Using the Administration Console
To verify the Service installations using the Oracle WebLogic Administration Console,
follow these steps.

1. Navigate to the Deployments screen.

2. Locate the <service-name> on the Summary of Deployments screen.

3. Click plus sign next to the ig-service to expand the tree.

4. Locate the Web services section.

5. Click any Web service to move to a Settings for <service name> Service screen.

6. Click the Testing tab.

7. Click plus sign next to the service name to expand the tree.

8. Click the Test Client link to move to the WebLogic Test Client screen.

9. Select Ping Operation.

10. The test page will show the request message and the response message.

Creating a JDBC Data Source
This section applies to PL/SQL Web service implementations and to Java EE Web
service implementations.

To create a JDBC Data Source, follow these steps:

1. Log in to the WebLogic administration console. Use the URL,
http://<host>:<listen port>/console/login/LoginForm.jsp.

2. Navigate the domain structure tree to Services/JDBC/Data Sources.

3. Click New to start creating the new Data Source. Enter the required information:

Name: Enter any name for the data source.

JNDI name: This field must be set to jdbc/RetailWebServiceDs. The generated
code for the service will use this JNDI name to look up the data source.

4. Select the transaction options for your data source and click Next.

5. Enter the database name and user information for the data source. Click Next.

Note: See Oracle WebLogic Server 11g Release 3 (10.3.3)
documentation about the Administration console.

Note: See the section, "Important Note About this Chapter".
9-12 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Creating a JDBC Data Source
6. The screen includes the connection information for your data source. Click Test
Configuration to ensure the connection information is correct. If it is correct, the
following message is displayed: "Connect test succeeded."

7. Click Next and select a server to deploy the data source to. This is not necessary at
this point if you want to deploy the data source to a server at a later time.

8. Click Finish to complete the data source setup. The new data source is displayed
on the data sources screen.

9. Click the new data source to view the properties. A default connection pool is
created for the data source. Click the Connection Pool tab to view the connection
pool properties.

10. The generated JDBC connection URL for the data source is displayed. The Oracle
URL is formatted as follows: jdbc:oracle:thin:@<hostname>:<port>:<sid>.

For example: jdbc:oracle:thin:@localhost:1521:orc

11. If the database is a RAC database, the URL should be in the following format

jdbc:oracle:thin:@(DESCRIPTION =(ADDRESS_LIST =(ADDRESS = (PROTOCOL = TCP)(HOST
= <host>)(PORT = <port>))(ADDRESS = (PROTOCOL = TCP)(HOST = <host>)(PORT =
<port>))(LOAD_BALANCE = yes))(CONNECT_DATA =(SERVICE_NAME = <sid>)))

For example:

jdbc:oracle:thin:@(DESCRIPTION =(ADDRESS_LIST =(ADDRESS = (PROTOCOL = TCP)(HOST
= dbhost1.example.com)(PORT = 1521))(ADDRESS = (PROTOCOL = TCP)(HOST =
dbhost1.example.com)(PORT = 1521))(LOAD_BALANCE = yes))(CONNECT_DATA =(SERVICE_
NAME = orcl)))

12. Restart the WebLogic instance to apply the data source changes.
Implementation Guidelines 9-13

Creating a JDBC Data Source
9-14 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

10

10Implementation Guidelines For Restful web

services

This chapter provides a set of implementation notes that may be helpful when
implementing the Oracle Retail Service-Oriented Architecture Enabler (RSE) tool. The
information included here is intended to provide guidance on the following topics:

■ PL/SQL Provider Service

■ Java EE Service Provider

■ Deploying the Web service

■ Creating a JDBC Data Source

Important Note About this Chapter
The implementation notes in this chapter are intended to provide some guidance in
the development and deployment of the Web service layer. This information does not
take into account the implementation of the business logic required to complete the
application API layer.

The RSE tool and approaches described in this section are complex. A high level of
skill and knowledge of the product is required to complete these implementation
tasks. Also required is technology specific development of application APIs and the
business logic that is needed to complete it.

Any issues that may arise with development tools, development environments,
custom APIs, or custom message flows are the responsibility of the customer and not
Oracle Retail.

PL/SQL Provider Service Implementation Notes
The distribution (.zip) file includes an .ear file that contains all the generated code for
the service; it is ready to be deploy to the application server. The business logic can be
implemented in PL/SQL packages in Oracle. The distribution contains the
specification and body scripts for the packages called by the deployed service.

To complete implementation, follow these steps:

1. Create the PL/SQL service provider distribution file using the RSE tool. The
output of this process is the .zip file.

Note: See Important Note About this Chapter.
Implementation Guidelines For Restful web services 10-1

Java EE Service Provider Implementation Notes
2. Extract the <service_name>ProviderImplSpec.sql and <service_
name>ProviderImplBody.sql files from the distribution zip file.

These files are modified to provide a PL/SQL implementation for the service.

3. Extract the <appname>-service.ear file from the distribution zip file. This file is the
generated Web service that is deployed.

4. Create the JDBC data source.

5. If not already deployed, deploy the Oracle Objects to the appropriate database
user.

6. Modify the PL/SQL body file for the business logic implementation. The <service_
name>ProviderImplBody.sql file contains comments about where to implement
logic for each method on the service.

7. Install the modified PL/SQL packages to the database. They are called by the Web
service methods.

8. Deploy the <appname>-rest-service.ear file to the Oracle Glassfish Server.

Java EE Service Provider Implementation Notes
The RSE tool creates the appropriate provider restful resources as well as a skeleton
implementation layer where the developer implements business logic. All of this is
packaged inside the provider distribution archive file.

The Java EE Provider distribution file provides a sample deployable application and
all the libraries that can be used to create Web services using retail payloads. The
distribution file follows the naming convention of <appname>_
JavaEEServiceProvider.zip. For example, the distribution file for the RMS application
is named rms_JavaEEServiceProvider.zip. The <rms> prefix must be replaced with the
name of any other application being developed.

The Web services generated by the RSE tool can be implemented and deployed in a
number of ways. This section includes three implementation use cases for reference.

Use Case 1: Complete the Generator Provided Stub Code Implementation
1. Generate the distribution file using the RSE tool.

2. Extract the <appname>-service-ejb-impl-src.jar file from the zip file.

3. Extract the <appname>-rest-service.ear file from the zip file.

Note: See Chapter 4, "User Interface Usage".

Note: See Chapter , "Creating a JDBC Data Source in Glassfish
Server".

Note: See the Oracle Retail Functional Artifact Generator Guide.

Note: See the section, Important Note About this Chapter.
10-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Java EE Service Provider Implementation Notes
4. Add business logic code where indicated in the Impl java files.

5. Use the java jar command to re-build the <appname>-service-ejb-impl.jar file.

6. Use the jar command to update .ear file with the new implementation jar.

7. Deploy the .ear file to the server.

Use Case 2: Provide a Custom impl jar to the RSE Tool
1. Create custom java classes that implement the <service_name>ServiceProvider

interfaces contained in the <appname>-service-provider.jar file.

2. Extract the ServiceProviderImplLookupFactory.properties file from the .ear file.

3. Modify the properties file to point to your implementation classes for the services.

4. Use the jar command to create a jar containing your implementation classes, as
well as the modified properties file.

5. Run the RSE tool again and provide the new custom implementation jar file.

6. Extract and deploy the generated .ear file to the server.

Use Case 3: Package the Generated Service Classes in an Existing Application
1. Generate the distribution file using the RSE tool.

2. The service interfaces are provided in the <appname>-service-provider.jar file in the
distribution file. This jar file should be included in the application classpath.

3. Source code of sample implementations for the service interfaces are provided in
the <appname>-service-ejb-impl-src.jar file in the distribution file. (If application
developers want to use the same classes in their application, they can extract the
java files from the jar file and include those in application source code. They also
can add their own business logic in the method implementations. If they decide to
write their own implementations, they should make sure that the appropriate
service interfaces are implemented.)

4. After writing the Web service implementations, the java files should be compiled.
The class files can be included in a new jar file or in the same jar file used for the
rest of the classes of the application.

5. Modify the ServiceProviderImplLookupFactory.properties file to include
appropriate class names of service implementations and include it in application
classpath. A recommended approach is to include the properties file in the jar file
that contains the service implementation classes.

6. Make sure that the following jar files are included in the application ear file:

■ <appname>-service-provider.jar

■ Jar file containing the service implementation classes

■ jersey-client.jar

■ jersey-core.jar

■ jersey-json.jar

■ rms-service-util.jar

■ retail-public-payload-java-beans-base.jar

■ retail-public-payload-java-beans.jar
Implementation Guidelines For Restful web services 10-3

Deploying the Web Service
■ retail-soa-enabler.jar

7. Include web-module in the application.xml of the application. The module name
should be same as the name of <appname>-rest-service.war file.

8. The .ear file is ready for deployment on the server.

Deploying the Web Service
Below are the steps for installing the <service-name>.ear on glassfish server:

1. Download and install Glassfish 3.1.1 server.

2. After installing, go to the glassfish-3.1.1/bin folder and run the below command:

./asadmin start-domain -v domain1

3. Access the admin console at URL: http://<host>:4848/

4. For creating an Oracle datasource in glassfish, copy ojdbc6.jar to the path
$GLASSFISH_HOME/domains/domain1/lib/ext folder.

5. Stop and start the server again.

Steps for creating a datasource are listed in the section Creating a JDBC Data
Source in Glassfish Server.

6. After creating data source, access the Applications page

7. Click Deploy.

8. Browse the <appname>-rest-service.ear file to deploy and click OK.

The deployed application is listed on the Applications page.

9. The URL to test a web service is like this:
http://<host>:8080/rms-rest-service/SupplierResource/4/5.

10. In the above example, "rms-rest-service" is the context of web application in ear
file, SupplierResource is the name of service, and the numbers are values supplied
for path parameters for the web service.

The above URL makes a call to the GET method of the web service.

11. For testing all other operations you can install SOAP-UI. And provide the URL of
the WADL to create test cases. A sample URL of the WADL is
http://<host>:8080/rms-rest-service/application.wadl

12. It will show all the operations that are available for a web service. You can enter
request xml and execute the web service method.

Creating a JDBC Data Source in Glassfish Server
To create a JDBC Data Source in Glassfish Server, follow these steps:

1. Select Resources > JDBC > JDBC Connection Pools.

2. Click New.

3. In the Pool Namefield, enter OraclePool.

4. Select Resource Type as javax.sql.DataSource.

5. Select driver vendor as Oracle.

6. In Additional Properties section, enter the following details:
10-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Creating a JDBC Data Source in Glassfish Server
■ user: <database user name>

■ DatabaseName: <sid>

■ password: <database password>

■ URL: jdbc:oracle:thin:@<host>:<port>:<sid>

7. Save the connection pool.

8. Select Resources > JDBC > JDBC Resources.

9. Click New.

10. Enter JNDI Name: jdbc/RetailWebServiceDs

11. Select Pool Name as the one that was just created.

12. Click OK.

13. After saving the changes, restart the server.
Implementation Guidelines For Restful web services 10-5

Creating a JDBC Data Source in Glassfish Server
10-6 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

11

11Web Services Security Setup Guidelines

There are numerous ways to build or implement secured service to protect the SOA
infrastructure against attack. Standards allow policies to be applied to SOA, thus
allowing controlled usage and monitoring and provide security ramifications in
enterprise integration. Standards such as WS-Security, SAML, WS-Trust, WS-Secure
Conversation and WS-SecurityPolicy focus on the security and identity management
aspects of SOA implementations that use web services.

The WS-* architecture is a set of standards-based protocols designed to secure Web
service communication. WebLogic Web Services use WS-Policy files to enable a
destination endpoint to describe and advertise its Web Service reliable messaging
capabilities and requirements. The WS-Policy specification provides a general purpose
model and syntax to describe and communicate the policies of a Web service.

These WS-Policy files are XML files that describe features such as the version of the
supported WS-ReliableMessaging specification, the source endpoint's retransmission
interval, the destination endpoint's acknowledgment interval, and so on.

The web services exposed by Oracle retail applications are used as service providers in
Retail Service Backbone (RSB) architecture. Please refer to RSB documentation for
more details about RSB architecture.The Oracle Retail application services are used as
edge application services in RSB and they are consumed by Web services through the
OSB layer. When used with RSB, the Oracle Retail application services are not
consumed directly, instead the consumers invoke OSB services which in turn invoke
the Oracle retail application services. Due to these requirements, Oracle Retail
application services need to be secured with WebLogic Web service polices, which are
interoperable with OWSM policies. Following is the list of WebLogic Web service
policies that are currently supported for securing application services

1. Username token over SSL: The following WebLogic policy is used for username
token over SSL, it is also referred to as PolicyA in RSB documentation:

Wssp1.2-2007-Https-UsernameToken-Plain.xml:

2. Username token with Message Protection: Following is the set of policies which
are used to secure services with username token and message protection. This is
also referred to as PolicyB in RSB documentation:

Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey-Basic128.xml

Wssp1.2-2007-SignBody.xml

Wssp1.2-2007-EncryptBody.xml
Web Services Security Setup Guidelines 11-1

Client-Side Setup
This document doesn't go into the detailed steps for securing Web services. The
detailed step-by-step instructions are provided in RSB Security Guide. Refer to that
document for more details.

Client-Side Setup
Web services can be invoked from Java clients as well as PL/SQL clients. This section
describes the configuration for invoking a secured Web service from both clients.

Java Client Setup
Client code for calling Web services can be generated using the Java consumer option
of the retail-soa-enabler-gui tool. The generated zip file contains all the jar files
required for the classpath of the application that calls the Web service. To run the
client, follow the steps required to run Java consumer.

The following is sample code for calling a secured Web service.

package com.oracle.retail.rms.client;

import java.net.URL;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;

import javax.xml.namespace.QName;
import javax.xml.ws.BindingProvider;

Note: The code below is sample code for invoking the PayTerm
service. When you generate Java consumer for a Web service, the
generated jar file will contain classes specific to that Web service. Use
the appropriate classes in the client code. Service namespace and
WSDL location also should be changed appropriately.
11-2 Orace Retail Service-Oriented Architecture Enabler Tool Guide

Client-Side Setup
import com.oracle.retail.integration.base.bo.paytermdesc.v1.PayTermDesc;
import com.oracle.retail.integration.base.bo.paytermref.v1.PayTermRef;
import
com.oracle.retail.rms.integration.services.paytermservice.v1.PayTermPortType;
import
com.oracle.retail.rms.integration.services.paytermservice.v1.PayTermService;

import weblogic.wsee.security.unt.ClientUNTCredentialProvider;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.xml.crypto.wss.provider.CredentialProvider;

import junit.framework.TestCase;

public class PayTermClient extends TestCase{
public void testFindPayTerm(){

try{
//qName is namespace of the service
QName qName = new

QName("http://www.oracle.com/retail/rms/integration/services/PayTermService/v1","P
ayTermService");

// url is the URL of the WSDL of the web service
URL url = new

URL("http://10.141.26.93:7001/PayTermBean/PayTermService?WSDL");

//create an instance of the web service
PayTermService service = new PayTermService(url,qName);
PayTermPortType port = service.getPayTermPort();

//set the security credentials in the service context
List credProviders = new ArrayList();
CredentialProvider cp = new

ClientUNTCredentialProvider("rmsuser","rmsuser1");
credProviders.add(cp);
Map<String, Object> rc =

((BindingProvider)port).getRequestContext();
rc.put(WSSecurityContext.CREDENTIAL_PROVIDER_LIST,

credProviders);

//populate the service method input object
PayTermRef ref = new PayTermRef();
ref.setTerms("terms");
ref.setTermsXrefKey("key");

//call the web service.here desc is the response object
PayTermDesc desc = port.findPayTermDesc(ref);

System.out.println("desc="+desc);
}catch(Exception e){

e.printStackTrace();
}

}
}

PL/SQL Client Setup
Client code for calling Web services can be generated using the PL/SQL consumer
option of the retail-soa-enabler-gui tool. The generated zip file contains all the jar files
Web Services Security Setup Guidelines 11-3

Client-Side Setup
and PL/SQL code required to invoke the web service from PL/SQL. To run the client,
follow the steps required to run PL/SQL consumer.

The following is a sample PL/SQL procedure for calling a secured Web service.

create or replace
PROCEDURE wstestClient IS

ref "OBJ_PAYTERMREF" := null ;
objdesc "OBJ_PAYTERMDESC" := null;
wsm varchar2(100);config varchar2(32000);
BEGIN
wsm := 'oracle.webservices.dii.interceptor.pipeline.port.config';

config :='<port-info>
<runtime enabled="security">
<security>
<outbound>
<username-token name="" password=""/>
</outbound>
</security>
</runtime>
</port-info>' ;

PayTermServiceConsumer.setProperty(wsm, config);

PayTermServiceConsumer.setEndpoint('http://10.141.22.204:7001/PayTermBean/PayTermS
ervice');
PayTermServiceConsumer.setUsername('<RMS username>');
PayTermServiceConsumer.setPassword('<RMS password>');
ref := "OBJ_PAYTERMREF"('x','t',null,null,null);
dbms_output.PUT_LINE(PayTermServiceConsumer.getEndPoint());
dbms_output.PUT_LINE(PayTermServiceConsumer.ping('TestMessage'));
objdesc := PayTermServiceConsumer.findPayTermDesc(ref) ;
dbms_output.PUT_LINE('Done.');
EXCEPTION

WHEN OTHERS THEN
dbms_output.PUT_LINE(SQLCODE);
dbms_output.PUT_LINE(SQLERRM);

END;

Note: The code below is sample code for invoking the PayTerm
service. When you generate PL/SQL consumer for a Web service, the
generated jar file will contain classes specific to that Web service. Use
the appropriate classes in the client code. Service namespace and
WSDL location should also be changed appropriately.
11-4 Orace Retail Service-Oriented Architecture Enabler Tool Guide

A

AAppendix: Installer Screens

This appendix provides step-by-step instructions for installing the Oracle Retail
Service-Oriented Architecture Enabler tool as a Web application in Oracle WebLogic.

Installation as a Web Application in Oracle WebLogic
To install the Oracle Retail Service-Oriented Architecture Enabler tool as a Web
application in Oracle WebLogic, complete these steps.

Deploy the Retail SOA Enabler Application
Using the WebLogic Server Administration Console, complete the following steps:

1. Navigate to the Deployments page:

2. In the left navigation bar, click Lock & Edit. Click Install.
Appendix: Installer Screens A-1

Installation as a Web Application in Oracle WebLogic
The Locate deployment to install and prepare for deployment page is displayed.
Follow the instructions to locate the retail-soa-enabler-gui.war file.

3. Select Upload Files.

4. On the Upload a Deployment to the admin server page, use the Browse button to
locate the retail-soa-enabler-gui.war file in the Deployment Archive.

5. Select the retail-soa-enabler-gui.war.

Note: If the application has already been installed, see the section,
"Redeploy the Application."
A-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Installation as a Web Application in Oracle WebLogic
6. Click Next and move to Choose targeting style.
Appendix: Installer Screens A-3

Installation as a Web Application in Oracle WebLogic
7. Select Install this deployment as an application.

8. Select Deployment Target.

9. Click Next to select security options. Here select the option DD Only: Use only
roles and policies that are defined in the deployment descriptors.
A-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Installation as a Web Application in Oracle WebLogic
10. Click Next to review your choices. Click Finish.

11. Select No, I will review the configuration later.

12. Click Finish to deploy the application.
Appendix: Installer Screens A-5

Installation as a Web Application in Oracle WebLogic
13. Click Activate Changes to finish the deployment.
A-6 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Installation as a Web Application in Oracle WebLogic
14. Select the retail-soa-enabler-gui application. Click Start > Servicing All Requests.

15. Next step is to add group and user required to acess RSE GUI application. To
create the group click on Security Realms.

16. Click on the default realm name and go to Users and Groups tab, and go to
Groups tab.
Appendix: Installer Screens A-7

Installation as a Web Application in Oracle WebLogic
17. Click on New button. In the next page, enter the name of group as
rseAdminGroup. Enter description for the group.

18. Click OK button. The new group gets added.

19. Now go to the Users tab of security realm.

20. Click on New button to create a new user. In the next page, enter username and
password for the new user to be created.

21. Click OK button.The new user gets added.

22. Now click on the new user and go to Groups tab of that user.

23. Select the group rseAdminGroup from the Available window and move it to
Chosen window.
A-8 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Installation as a Web Application in Oracle WebLogic
24. Click Save button. It will add the newly created user to the group
rseAdminGroup.

This completes the security setup for RSE GUI application. Now if you go to the
RSE GUI login page, you should be able to login using the new user.

Creating the rseAdminGroup
To create the rseAdminGroup, do the following:

1. In WebLogic, click Security Realms.

2. Click on myrealm and then Users and Groups.

3. Click on groups and then New.

4. Enter rseAdminGroup in the name field, leaving the other fields at default.

5. Click OK.

6. Add at least one user to the rseAdminGroup group.

Verify the Retail SOA Enabler Web Application
1. Navigate to the Deployments page.
Appendix: Installer Screens A-9

Installation as a Web Application in Oracle WebLogic
2. On the Summary of Deployments screen, locate retail-soa-enabler-gui.
A-10 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Installation as a Web Application in Oracle WebLogic
3. Click retail-soa-enabler-gui to view settings for the retail-soa-enabler-gui.

4. Select the Testing tab.

5. Click the index.jsp URL in the Test Point.

6. The URL should open to the login screen for the Retail Service-Oriented
Architecture Enabler Home page.

7. Enter the credentials created in Creating the rseAdminGroup section.

The RSE home page is displayed.
Appendix: Installer Screens A-11

Installation as a Web Application in Oracle WebLogic
8. The installation is complete. See Chapter 4, "User Interface Usage."

Redeploy the Application
If the retail-soa-enabler-gui application has already been deployed, follow these steps:

1. If the retail-soa-enabler-gui application is running, select Stop and When Work
Completes or Force Stop Now, depending on the environment. The
recommended option always is When Work Completes.
A-12 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Installation as a Web Application in Oracle WebLogic
2. Click Lock & Edit. Click Delete.
Appendix: Installer Screens A-13

Installation as a Web Application in Oracle WebLogic
3. Click Activate Changes.

4. The retail-soa-enabler-gui should now not show on the Summary of Deployment
screen.
A-14 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

Installation as a Web Application in Oracle WebLogic
Appendix: Installer Screens A-15

Installation as a Web Application in Oracle WebLogic
A-16 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

B

BAppendix: Sample

ServiceProviderDefLibrary.xml

The sample below can be used as an initial template.

ServiceProviderDefLibrary.xml
<serviceProviderDefLibrary appName="rms"
xmlns="http://www.oracle.com/retail/integration/services/serviceProviderDefLibrary
/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<service name="Supplier"><!-- Noun, don't put suffix Service -->
<documentation />
<operation name="create"><!-- Verb -->

<documentation>Create a new
SupplierDesc.</documentation>

<input type="SupplierDesc"><!-- Existing BO -->
<documentation>

Input SupplierDesc to create.
</documentation>

</input>
<output type="SupplierRef">

<documentation>
Return the SupplierRef for the newly

created
SupplierDesc.

</documentation>
</output>
<fault faultType="IllegalArgumentWSFaultException">

<documentation>
Throw this exception when it is

"soap:Client" side
message problem.

</documentation>
</fault>
<fault

faultType="EntityAlreadyExistsWSFaultException">
<documentation>

Throw this exception when the object
already exist.

</documentation>
</fault>
<fault faultType="IllegalStateWSFaultException">

<documentation>
Throw this exception when there is
Appendix: Sample ServiceProviderDefLibrary.xml B-1

ServiceProviderDefLibrary.xml
unknown
"soap:Server" side problem.

</documentation>
</fault>

</operation>
<operation name="createSupSiteUsing"><!-- Verb -->

<documentation>Create a new
SupplierSite.</documentation>

<input type="SupplierDesc"><!-- Existing BO -->
<documentation>

Input SupplierDesc to create.
</documentation>

</input>
<output type="SupplierRef">

<documentation>
Return the SupplierRef for the

newly created
SupplierDesc.

</documentation>
</output>
<fault faultType="IllegalArgumentWSFaultException">

<documentation>
Throw this exception when it is

"soap:Client" side
message problem.

</documentation>
</fault>
<fault

faultType="EntityAlreadyExistsWSFaultException">
<documentation>

Throw this exception when the
object already exist.

</documentation>
</fault>
<fault faultType="IllegalStateWSFaultException">

<documentation>
Throw this exception when there

is unknown
"soap:Server" side problem.

</documentation>
</fault>

</operation>
<operation name="createSupSiteAddrUsing"><!-- Verb -->

<documentation>Create a new
SupplierSite.</documentation>

<input type="SupplierDesc"><!-- Existing BO -->
<documentation>

Input SupplierDesc to create.
</documentation>

</input>
<output type="SupplierRef">

<documentation>
Return the SupplierRef for the

newly created
SupplierDesc.

</documentation>
</output>
<fault faultType="IllegalArgumentWSFaultException">

<documentation>
Throw this exception when it is
B-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

ServiceProviderDefLibrary.xml
"soap:Client" side
message problem.

</documentation>
</fault>
<fault

faultType="EntityAlreadyExistsWSFaultException">
<documentation>

Throw this exception when the
object already exist.

</documentation>
</fault>
<fault faultType="IllegalStateWSFaultException">

<documentation>
Throw this exception when there is

unknown
"soap:Server" side problem.

</documentation>
</fault>

</operation>
<operation name="update">

<input type="SupplierDesc" />
<output type="SupplierDesc" />
<fault faultType="IllegalArgumentWSFaultException" />
<fault

faultType="EntityNotFoundWSFaultException"
/>

<fault faultType="IllegalStateWSFaultException" />
</operation>

<operation name="updateSupSiteUsing">
<input type="SupplierDesc" />
<output type="SupplierDesc" />
<fault faultType="IllegalArgumentWSFaultException" />
<fault

faultType="EntityNotFoundWSFaultException"
/>

<fault faultType="IllegalStateWSFaultException" />
</operation>

<operation name="updateSupSiteOrgUnitUsing">
<input type="SupplierDesc" />
<output type="SupplierDesc" />
<fault faultType="IllegalArgumentWSFaultException" />
<fault

faultType="EntityNotFoundWSFaultException"
/>

<fault faultType="IllegalStateWSFaultException" />
</operation>

<operation name="updateSupSiteAddrUsing">
<input type="SupplierDesc" />
<output type="SupplierDesc" />
<fault faultType="IllegalArgumentWSFaultException" />
<fault

faultType="EntityNotFoundWSFaultException"
/>

<fault faultType="IllegalStateWSFaultException" />
</operation>
<operation name="find" suffix="outputType">

<input type="SupplierRef" />
<output type="SupplierDesc" />
<fault faultType="IllegalArgumentWSFaultException" />
<fault
Appendix: Sample ServiceProviderDefLibrary.xml B-3

ServiceProviderDefLibrary.xml
faultType="EntityNotFoundWSFaultException"
/>

<fault faultType="IllegalStateWSFaultException" />
</operation>
<operation name="delete">

<input type="SupplierRef" />
<output type="SupplierRef" />
<fault faultType="IllegalArgumentWSFaultException" />
<fault

faultType="EntityNotFoundWSFaultException"
/>

<fault faultType="IllegalStateWSFaultException" />
</operation>
<operation name="create">

<input type="SupplierCollectionDesc" />
<output type="SupplierCollectionRef" />
<fault faultType="IllegalArgumentWSFaultException" />
<fault faultType="EntityAlreadyExistsWSFaultException"

/>
<fault faultType="IllegalStateWSFaultException" />

</operation>
<operation name="update">

<input type="SupplierCollectionDesc" />
<output type="SupplierCollectionDesc" />
<fault faultType="IllegalArgumentWSFaultException" />
<fault

faultType="EntityNotFoundWSFaultException"
/>

<fault faultType="IllegalStateWSFaultException" />
</operation>
<operation name="find" suffix="outputType">

<input type="SupplierCollectionRef" />
<output type="SupplierCollectionDesc" />
<fault faultType="IllegalArgumentWSFaultException" />
<fault

faultType="EntityNotFoundWSFaultException"
/>

<fault faultType="IllegalStateWSFaultException" />
</operation>
<operation name="delete">

<input type="SupplierCollectionRef" />
<output type="SupplierCollectionRef" />
<fault faultType="IllegalArgumentWSFaultException" />
<fault

faultType="EntityNotFoundWSFaultException"
/>

<fault faultType="IllegalStateWSFaultException" />
</operation>

</service>
</serviceProviderDefLibrary>
B-4 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

C

CAppendix: Creating a JDBC Data Source

This section describes the steps required to create a JDBC data source.

Procedure
To create a JDBC data source, complete the following steps.

1. Log in to the WebLogic administration console. Use this URL:
http://<host>:<listen port>/console/login/LoginForm.jsp.

2. Navigate the domain structure tree to Services/JDBC/Data Sources.

3. Click New to create the new data source. Enter the following required
information.

■ Name: Select any name for the data source,

■ JNDI name: This field must be set to jdbc/RetailWebServiceDs. The generated
code for the service uses this JNDI name to look up the data source.

4. Select the transaction options for the data source. Click Next.

5. Enter the database name and user information for the data source. Click Next.

6. The connection information for the data source is displayed. Click Test
Configuration to ensure the connection information is correct. If the information is
correct, the following message is displayed: "Connect test succeeded."

7. Click Next. Select a server to which to deploy the data source. (This step is not
required at this point in the procedure if you want to deploy the data source to a
server at a later time.)

8. Click Finish to complete the data source setup. The data sources page is displayed,
including the new data source.

9. Click the new data source to see the properties page. A default connection pool is
created for the data source. Click the Connection Pool tab to view the connection
pool properties.

10. The generated JDBC connection URL for the data source is displayed in the
following format:

jdbc:oracle:thin:@<hostname>:<port>:<sid>

For example:

jdbc:oracle:thin:@localhost:1521:orc

11. If the database is a RAC database, the URL should be in the following format:

jdbc:oracle:thin:@(DESCRIPTION =(ADDRESS_LIST =(ADDRESS = (PROTOCOL = TCP)(HOST
Appendix: Creating a JDBC Data Source C-1

Procedure
= <host>)(PORT = <port>))(ADDRESS = (PROTOCOL = TCP)(HOST = <host>)(PORT =
<port>))(LOAD_BALANCE = yes))(CONNECT_DATA =(SERVICE_NAME = <sid>)))

For example:

jdbc:oracle:thin:@(DESCRIPTION =(ADDRESS_LIST =(ADDRESS = (PROTOCOL = TCP)(HOST
= dbhost1.example.com)(PORT = 1521))(ADDRESS = (PROTOCOL = TCP)(HOST =
dbhost1.example.com)(PORT = 1521))(LOAD_BALANCE = yes))(CONNECT_DATA =(SERVICE_
NAME = orcl)))

12. In the Configuration > Connection Pool tab of the data source, set the following
properties.

■ Initial capacity: Set the value to 20 connections. This value should be increased
or decreased based on the expected load on the server.

■ Maximum capacity: Set the value to 100 connections. This value should be
increased or decreased based on the expected load on the server.

■ Capacity Increment: Set the value to 20 connections. This value should be
increased or decreased based on the expected load on the server.

■ Inactive Connection Time-out: This property is available in the advanced
section of the connection pool configuration. Set the value of this property to
60 seconds.

■ Remove Infected Connections Enabled: This check box must be unchecked.

13. Restart the WebLogic instance to reflect the data source changes.
C-2 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

	Contents
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Customer Support
	Review Patch Documentation
	Improved Process for Oracle Retail Documentation Corrections
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	1 Introduction
	Major Features of the RSE Tool
	Concepts
	What is a Service?
	Oracle Fusion Reference Architecture (OFRA)
	Where Does RSE Fit?

	Technical Specifications
	Supported Operating Systems

	2 Installation and Basic Setup
	Installation as a Web Application in Oracle WebLogic
	Prerequisites
	Deploy the Retail Service-Oriented Architecture Enabler
	Verify the Retail Service-Oriented Architecture Enabler
	Redeploy the Application

	3 Tool Inputs and Outputs
	Tool Inputs
	ServiceProviderDefLibrary.xml
	RestServiceProviderDefLibrary.xml
	XSDs and retail-public-payload-java-beans.jar
	PL/SQL Oracle Objects
	WSDL

	Tool Outputs
	PL/SQL Provider Web Service
	PL/SQL Consumer Web Service
	Java EE Provider Web Service
	Java EE Consumer Web Service

	4 User Interface Usage
	Service Provider
	Service Definition Library XML File
	Service Definition Library XML File for Restful web services
	Custom Business Objects Jar File
	Localization Business Object Jar File
	Service Implementation Jar File

	Service Consumer
	Help

	5 Service Definition Library XML File
	Schema Definition
	serviceProviderDefLibrary

	Managing the Service Definition Library XML File
	Creating the File
	Changing the Version of the File
	Changing the appName Attribute in the File
	Renaming a Service or Operation Name in the File
	Adding a New Service or New Operation to the File
	Deleting a Service or Deleting Operations from the File
	Defining New Exceptions to the Operations
	Using Different Versions of Objects as Input/Output to an Operation

	6 Service Definition Library XML File for Restful services
	Schema Definition
	ServiceProviderDefLibrary
	Validation rules for a service definition xml for RESTful web services

	7 Web Service Standards and Conventions
	Web Service Naming
	Web Service Versioning

	8 Creating the Java EE Implementation Jar
	Step 1: Generate Web Services with Default Implementation
	Step 2: Implement Interfaces
	Step 3: Upload the jar

	9 Implementation Guidelines
	Important Note About this Chapter
	PL/SQL Service Consumer Implementation Notes
	PL/SQL Provider Service Implementation Notes
	Java EE Service Consumer Implementation Notes
	Sample Client Code

	Java EE Service Provider Implementation Notes
	Use Case 1: Complete the Generator Provided Stub Code Implementation
	Use Case 2: Provide a Custom impl jar to the RSE Tool
	Use Case 3: Package the Generated Service Classes in an Existing Application

	Web Service Call as a Remote EJB Call
	Prerequisites
	Procedure
	Code Description

	Web Service Call as a POJO Call
	Procedure
	Sample Code for POJO Invocation

	Deploying the Web Service
	Redeploy the Service Application
	Verify the Service Application Installation Using the Administration Console

	Creating a JDBC Data Source

	10 Implementation Guidelines For Restful web services
	Important Note About this Chapter
	PL/SQL Provider Service Implementation Notes
	Java EE Service Provider Implementation Notes
	Use Case 1: Complete the Generator Provided Stub Code Implementation
	Use Case 2: Provide a Custom impl jar to the RSE Tool
	Use Case 3: Package the Generated Service Classes in an Existing Application

	Deploying the Web Service
	Creating a JDBC Data Source in Glassfish Server

	11 Web Services Security Setup Guidelines
	Client-Side Setup
	Java Client Setup
	PL/SQL Client Setup

	A Appendix: Installer Screens
	Installation as a Web Application in Oracle WebLogic
	Deploy the Retail SOA Enabler Application
	Creating the rseAdminGroup
	Verify the Retail SOA Enabler Web Application
	Redeploy the Application

	B Appendix: Sample ServiceProviderDefLibrary.xml
	ServiceProviderDefLibrary.xml

	C Appendix: Creating a JDBC Data Source
	Procedure

