ORACLE

Oracle® Retail Integration Bus
Implementation Guide

Release 14.0

E48340-01

December 2013

Oracle Retail Integration Bus Implementation Guide, Release 14.0
E48340-01

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.
Primary Author: Sanal Parameswaran

Contributing Author: Anshuman Accanoor

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and /or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Value-Added Reseller (VAR) Language
Oracle Retail VAR Applications

The following restrictions and provisions only apply to the programs referred to in this section and licensed
to you. You acknowledge that the programs may contain third party software (VAR applications) licensed to
Oracle. Depending upon your product and its version number, the VAR applications may include:

(i) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail Data
Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(ii) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of Kirkland,
Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory Management.

(iii) the software component known as Access Via™ licensed by Access Via of Seattle, Washington, and
imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(iv) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of San Jose,
California, and imbedded in Oracle Retail Promotion Planning & Optimization application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR Applications.
Oracle will not deliver source code to the VAR Applications to you. Notwithstanding any other term or
condition of the agreement and this ordering document, you shall not cause or permit alteration of any VAR
Applications. For purposes of this section, "alteration" refers to all alterations, translations, upgrades,
enhancements, customizations or modifications of all or any portion of the VAR Applications including all

reconfigurations, reassembly or reverse assembly, re-engineering or reverse engineering and recompilations
or reverse compilations of the VAR Applications or any derivatives of the VAR Applications. You
acknowledge that it shall be a breach of the agreement to utilize the relationship, and/or confidential
information of the VAR Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall not attempt,
cause, or permit the alteration, decompilation, reverse engineering, disassembly or other reduction of the
VAR Applications to a human perceivable form. Oracle reserves the right to replace, with functional
equivalent software, any of the VAR Applications in future releases of the applicable program.

Contents

Send Us YOUr COMMENTS ... ix
Preface xi
ATIEIICE ... bbbt Xi
Documentation AcCeSSIDILIEYc.cciuimiiiiiiiiiiiiiic e Xi
Related DOCUINENEScucuuiiiiiiiiieieicicecieieecce e Xi
CUSLOMET SUPPOTT ...eeiiet et Xii
Review Patch DOCUMENEATIONc.cuioiriiiiiiiiiieiciiicctree et Xii
Improved Process for Oracle Retail Documentation Corrections............cococeececccciccccicncnc. Xii
Oracle Retail Documentation on the Oracle Technology Networkcoooiiiiiiin, Xiii
CONVEINEIONS ...ttt a e aenes Xiii

1 Introduction

2 Standards and Specifications

Java Platform Enterprise Edition (Java EE)c.cccccociviiiiiiiiiinccneccreeceneeee e 2-1
T W = T =d v ST 2-1
Java Message Service (JIMS)ociiiiiiiiiic e 2-1
JIMIS PrOVIAET ...vieiieiieiieiietteie ettt sttt ettt et et et e e e s e eseese st eesessesse st assassessensansansansensensensessesensensens 2-2
Java Management Extensions (JIMX) ... 2-2

3 Core Concepts

Key Functional Requirements ... 3-1
Guaranteed Once-and-Only-Once Successful Delivery ... 3-1
Preservation of Publication SEqUeNCecccccovvieiiiiiiiiiic s 3-2

Message Family and Message TYPES ... 3-2
Foundation MeSSagescc.euiiurieiiiicicieieci s 3-2
Transactional MESSAGES.........cccuiuiuiuiiiiiiiiiiiiicccce e 3-3

RIB Message Envelope and Payloads.............ccccccooviiiiiniiiiiiiiiiiccccnes 3-3

Message Life Cycle..........ooooiiiiiiiiii s 3-3

Messaging COMPONENLES..............ccooiiiiiiiiiiiii s s 3-5
RIB Subsystem COMPONENLSc.c.ceueueuriiieieieirieieieieieeeieeeieieteeeeeeeseeeteeeeeseseseasasaeseseseseassesesesessasasaenes 3-5

AAPTETS ..o 3-5
JMS Domains, Destinations, SUbSCIIPHIONScccccuiuiuiiiiiiiiiiiiiicccccccccecces 3-6
JMS MESSAZE SELECLOT ...ttt ene 3-7

Additional RIB JMS Message Propertiescooceueiiiricieiiiciceccecc s 3-7

Integration Gateway Services (IGS).......coouriiiiiiiiiiiiicee 3-9
IGS INEETTACES ... 3-9
Integration t0 IGS..........oii s 3-10
IGS Deployment Considerationsccccueueieieiiiniiiiiiiiininiiiceeeees 3-11

IGS and WebLogic Server (WLS) Clustering..........cccccecueueveeurieiiinneeeiceereeeeeeeenns 3-11
Simple Message FIOWccccooviiiiiiiiiiiiiii s 3-11
The RIB HOSPItal........cccoiiiiiiiiiiiiiii s 3-12

RIB Hospital Dependency Checkcccccciiiiiiiiiiiiiciccceeeeeeeeeeeeee s 3-12

RIB HOSPital INSEIt.......covieiiiiiceci s 3-12

RIB Hospital Tables..........cccooiiiiiiiiiiiiiiiiiiiiiii s 3-13

RIB HOSPItal RELIYoviiiiiiiiiciciciccicccc et 3-14
PUB Retry AdApter ..ot 3-14
Hospital Attempt (Retry) CouNt.......ccceuviviiiiiiiiiiiiiiiiii s 3-17
JMS DelivVery COUNLc.c.cuiueiiiiiiiciicicicciccete et 3-17

4 Oracle Retail Application APIs

PL/SQL Stored Procedure APIScooviiiieiiirieieeeeeeeeeeete ettt ettt et e e ve s re e eveeseereennans 4-1
Oracle CLOB APIS....cciiiieieieeieeeeteeeete ettt et te st e ste st e stessaesse e b esba e s essaessesssessesseessesseessesssensenseenees 4-1
RIB_XML and RIB_SXW Database Packages.............ccccoceviriiiiniiininiinniiiiinniiinnns 4-2

Oracle OBJect APIS ... 4-2
RIB Related Database Tables..........ccvcieviiiiiiiieieiecieieeieseeieee et ae e v ae s 4-2

Detail Architecture - PL/SQL APPS ..o 4-3
Oracle Retail Java EE APIScc.oooiiieiieieeeeeeetetestt ettt ettt st sse e seess et e eseesseensenseensenns 4-3
Detail Architecture Java EE APPS ..ot 4-4
Oracle Retail SOAP APIS. ...ttt et et st eteste e te s e et e e saeebeessesseeasesssessesssensesssesesseens 4-4
API Return SEatts COAESoocvivieiieieieeiereetere ettt te st e s etesse et e sseessesntessesnsessesnsessesnsenseensens 4-4
PL/SQL GETNEXT RetUIN COAES....uecoviiriiriiriieteeeeeete ettt ettt eeteete e et eeve et eevseaeeeseereeeseensenseensennes 4-4
PUB_RETRY ReEtUIN COAES....ueiiieeiiieiieeeeeeeeee ettt ettt et eeate e st e e st e s sasesseaaeessnnsesssnneesanseeas 4-4
CONSUME RetUIT COAE ...ovveereeieeieiiriiriieiistesiesteietestetesteteseessssessessessessessessessessessessessessessessessesenses 4-4

5 Pre-Implementation Considerations

RIB Software Lifecycle Management..............ccooovviriiinniiinininniiierreeeeeeeeee e 5-1
Centralized Configuration and Management...............ccocccovvviiiiniiiiiiniin 5-2
Physical Location Considerations..............ccccccoviiiiniiniiiinnii s 5-3
Preimplementation Considerations for Multibyte Deploymentscccccoevvivvnninnnenns 5-3
Error HOspital Size ... 5-4
JMS Server ConSIAErationscoccoeuevieuirieuirieiinieinie ettt ettt et s seene 5-4
Using Multiple JIMS SEIVETS.......ccoiiiiiiiiiiiiiiiiccc et 5-5
Oracle Streams AQ JIMIS..... .ottt ettt et be et s he bbb st e b e b et et et et eneeais 5-5
High Availability Considerations..............cccccooiiiiiiiiiiiiiiccne 5-6
Oracle Database Cluster (RAC) CONCEPLSc.cveuemrurururiiiiiiiriririeicicieeeieieieeeeeeeeeeseeeeeeeeeeeeeseeeeseeanas 5-6
rib-<app> application and Oracle Database Cluster (RAC)c.cccooorriiiiiiiiiii 5-7
WebLogic Server Cluster CONCEPLScouevirieiiicicieiccie s 5-7
rib-<app> application and WebLogic Application Server CIuster...........ccccocevueuvvvvrirrrnenns 5-7

vi

6 Deployment Architecture and Options

Recommended Deployment OPtions............ccccoviiiiiiiiiniii s 6-1
Distributed Deployment Alternative................ccccocoiiiiiiiiiiiiiiireeeeeeeee e 6-2
AAVANTAZESeviiiect b 6-2
DiSadVANTAZES.c.cviviviiiiiiiiii s 6-2
Who Should Use This Configuration? ... 6-3
Centralized Deployment Alternative.............ccocoviiiiiiiiiiiiiiiii e 6-3
AAVANTAZES ... 6-3
DiISAAVANTAZES......vvvviiiicieicieiciecce et 6-4
Who should use this Configuration?...........cccceoiueiiieiiiieiiiciice e 6-4
CONCIUSIONS ... s 6-4

7 Implementation Process

Implementation Verification and Validation.............ccccooiiiiin, 7-2
Implementation Environment Verificationccccocceiirniiiiiniiiiireeccceeeeeeeeeeeees 7-2
Integration Environment Testabilitycooooiiiiiiiii 7-2

8 Performance

Performance FActOrs ... 8-1
Performance and Parallel Logical Channels ..., 8-1

9 Security

RIB Application Administrators Security Domain ..o, 9-1
RIB System Administrators Security Domain..............ccccocooivniiiiin 9-1

10 Integration with Fusion Middleware

General RIB to Fusion Middleware Architecture...........ccooovvivviiiiiiiiicieeeeeeceeeeeeeee e 10-2
General Process of INtegrationc.oeueieiiiiiniciniic e 10-2
Configure FWM JMS Adapter to RIB AQJMS ... 10-3

11 RIB Customization/Extension

Prerequisites for RIB Customization.............ccccocovviiiiiiiiiis 11-1
Rules for CUStOmMIZation.........ccocviuiiiiiiiiiiiiii e 11-2
Message Family and Message Type Customization...............cccccoevviiiiiiniiiiiinnciie 11-2
Adding a New Message TYPecccccvriiiiiiiiiiniiiiiii s 11-3
Message Flows with PL/SQL Applicationscccccceueueueiiirririniiieieieiccceeeeceeeeeeeeeeeees 11-3
Procedure for Adding a New Message Type for PL/SQL Applications.........c..ccceeue.c 11-3
Message Flows with Java EE Applications..........ccoceuriiiiieiiiiieiiccccce e 11-5
Procedure for Adding a New Message Type for Java EE Applicationscccccccueeee. 11-6
Creating a New Message Familycccooiiiiiiiiii e, 11-8
Additional RUIEScocuiiiiiiiiiciccc e 11-8
Procedure for Adding a New Message Familyccccocoeiiiiniinnnniiicccccee 11-9
Adding New Adapters............ccccoviiiiiiiiiiiiiiiiii s 11-12
Adding the Custom Adapter to the rib-integration-flows.xml File...........cccccccceuvvininnnnn. 11-12

vii

viii

Procedure for Adding the Flow to the rib-integration-flows.xml File............................ 11-12

Adding a Publishing Adapter for PL/SQL Applicationsccccccevvieivivinniniinniniiiine, 11-13
Procedure for Adding a Publishing Adapter for PL/SQL Applications....................... 11-14
Adding a Publishing Adapter for Java EE Applications..........ccccocvueiniiniiiiniicciicieie, 11-15
Procedure for Adding a Publishing Adapter for Java EE Applications........................ 11-16
Adding a Subscriber Adapter for PL/SQL Applications..........ccccceeueueueucuirnnceinncciccnnee 11-17
Procedure for Adding a New Subscribing Adapter for a PL/SQL Application........... 11-17
Adding a Subscribing Adapter for Java EE Applications.............cococoveieiiiicceiniiiccieicne, 11-19
Procedure for Adding a New Subscribing Adapter for a Java EE Application............ 11-19
Custom TAFR Adapters ... 11-20
TAFR Considerations ...t s 11-20
TransformMation.........ccoceiiiieiii s 11-20
Filtering Configurationcccooceiieiiiniiicic e 11-20
ROULING .t 11-21
Adding a New TAFR AdapPterccccocccuiiiiiiiiiiiiiieiceeeeeieeeeeeteee e 11-21
Procedure for Adding a New TAFR Adapter........cccocoovrueiiniiieiiieicccc 11-21
Custom TAFR Implementation ... 11-21
Procedure for Completing Custom TAFR Implementationcccccceeeeeuvcccnincnnne. 11-22
Changing an Existing TAFR Adaptercccoiiioiiiiceccc e 11-23
Adding a New Iib-<app>.......cccccoiiiiiiiiiiiiiiiiii s 11-24
Adding a new PLSQL 1ib-<app> ...c.ccvuiiiiiiiiiiiiciicceeceeeeeee e 11-25
Adding a New JavaEE rib-<app> ..o 11-29
Adding a New SOAP 1ib-<app>.....cccocoiiiiiiniiiiiiiiiiic s 11-34
Verification of RIB Customizations............cccccooeiiiiiiiiiicic s 11-38
Verifying the New Message TYPe........cccooeuriiiriiiiniiieiciici e 11-38
Verifying the New Message Family ..o 11-39
Verifying the New Publishing Adapter ... 11-40
Verifying the New Subscribing Adapterccccooooiiiniiniic e, 11-41
Verifying the New TAFR Adapter........cccccooeiiiiiiiiiiiiniiiiiiiines 11-42
Prerequisites for RIB LocaliZationc.cccooeiininieieiiinniecinnieeicneecceneeeeeeereseeessene s 11-43

Send Us Your Comments

Oracle Retail Integration Bus Implementation Guide, Release 14.0

Oracle welcomes customers' comments and suggestions on the quality and usefulness
of this document.

Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:

= Are the implementation steps correct and complete?

= Did you understand the context of the procedures?

= Did you find any errors in the information?

= Does the structure of the information help you with your tasks?

= Do you need different information or graphics? If so, where, and in what format?
= Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell
us your name, the name of the company who has licensed our products, the title and
part number of the documentation and the chapter, section, and page number (if
available).

Note: Before sending us your comments, you might like to check
that you have the latest version of the document and if any concerns
are already addressed. To do this, access the new Applications Release
Online Documentation CD available on My Oracle Support and
www.oracle.com. It contains the most current Documentation Library
plus all documents revised or released recently.

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com
Please give your name, address, electronic mail address, and telephone number
(optional).

If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at www.oracle.com.

Audience

Preface

The Oracle Retail Integration Bus Implementation Guide provides detailed
information that is important when implementing RIB.

The Implementation Guide is intended for the Oracle Retail Integration Bus
application integrators and implementation staff, as well as the retailer’s IT personnel.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents

For more information, see the following documents in the Oracle Retail Integration
Bus 14.0 documentation set:

» Oracle Retail Integration Bus Implementation Guide

» Oracle Retail Integration Bus Installation Guide

» Oracle Retail Integration Bus Operations Guide

» Oracle Retail Integration Bus Release Notes

» Oracle Retail Integration Bus Hospital Administration Guide
» Oracle Retail Integration Bus Security Guide

» Oracle Retail Integration Bus Support Tools Guide

» Oracle Retail Integration Bus Integration Guide

» Oracle Retail Functional Artifacts Guide

» Oracle Retail Functional Artifact Generator Guide

xi

» Oracle Retail Service-Oriented Architecture Enabler Tool Guide
» Oracle Retail Integration Bus Data Model
» Oracle Retail PL-SQL Payload Mapper Guide (ID 1590674.1)

Customer Support

To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following;:

s Product version and program/module name

= Functional and technical description of the problem (include business impact)
» Detailed step-by-step instructions to re-create

» Exact error message received

= Screen shots of each step you take

Review Patch Documentation

When you install the application for the first time, you install either a base release (for
example, 14.0) or a later patch release (for example, 14.0.1). If you are installing the
base release and additional patch releases, read the documentation for all releases that
have occurred since the base release before you begin installation. Documentation for
patch releases can contain critical information related to the base release, as well as
information about code changes since the base release.

Improved Process for Oracle Retail Documentation Corrections

Xii

To more quickly address critical corrections to Oracle Retail documentation content,
Oracle Retail documentation may be republished whenever a critical correction is
needed. For critical corrections, the republication of an Oracle Retail document may at
times not be attached to a numbered software release; instead, the Oracle Retail
document will simply be replaced on the Oracle Technology Network Web site, or, in
the case of Data Models, to the applicable My Oracle Support Documentation
container where they reside.

This process will prevent delays in making critical corrections available to customers.
For the customer, it means that before you begin installation, you must verify that you
have the most recent version of the Oracle Retail documentation set. Oracle Retail
documentation is available on the Oracle Technology Network at the following URL:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.ht
ml

An updated version of the applicable Oracle Retail document is indicated by Oracle
part number, as well as print date (month and year). An updated version uses the
same part number, with a higher-numbered suffix. For example, part number
E123456-02 is an updated version of a document with part number E123456-01.

If a more recent version of a document is available, that version supersedes all
previous versions.

Oracle Retail Documentation on the Oracle Technology Network

Documentation is packaged with each Oracle Retail product release. Oracle Retail
product documentation is also available on the following Web site:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.ht
ml

(Data Model documents are not available through Oracle Technology Network. These
documents are packaged with released code, or you can obtain them through My
Oracle Support.)

Documentation should be available on this Web site within a month after a product
release.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Xiii

Xiv

1

Introduction

The Oracle Retail Integration Bus (RIB) is a fully distributed integration infrastructure
that uses Message Oriented Middleware (MOM) to integrate applications. RIB enables
various Oracle Retail applications to integrate in asynchronous and near real time
fashion. RIB provides additional value added business and infrastructure services to
the Oracle Retail applications in addition to providing integration connectivity.

Each of the Oracle Retail Applications has its own implementation and deployment
strategies and approaches, as well as individual integration touch points defined. The
implementation of the RIB must take into account the overall Oracle Retail application
enterprise deployment architecture and try to fit into the model seamlessly.

g 3" Farty Systems
-

2" Barty Web
Servica Clients

Jom oty |
3 Pany Managanem
Wi hoian &)
Bystams - j -
—————
| Remsa, Freca |
Skt S L WA DR T w
[} e]
L
FIBTRELIGE Frodacl | Moo EoEND
i Syulorn Inkecfos Foutl
—_ RIMASLYES Doman Syuiar Racoed Cinisboen L P
B [oonee [i
2 ==, Bymem Syviem Hapin 18 Taze:
5 oL [Y Entcanal 1o Cutindka af Arior
= Y e FoEL
= = Braeeol Diz-pagn
HIESS L R A @
g o= e

& -Odacks Coporanon

RIB acts as a shared communication layer for connecting various Oracle Retail
applications and external applications throughout an enterprise computing
infrastructure. It supplements the core asynchronous messaging backbone with
additional application functionality such as intelligent transformation, routing and
error handling.

Introduction 1-1

Communication across the RIB is via xml messages (payloads). These payloads
describe the retail business objects (such as items, purchase orders, suppliers, and so
on) in a standard way and are governed by RIB on behalf of the Oracle Retail
applications.

RIB architecture is based on standard Java EE components and the Java Message
Service (JMS). JMS is an integral part of the Java EE (Java Enterprise Edition)
Technology stack.

The integration solution provided by the RIB system is made up of multiple Java EE
RIB applications (rib-<app>.ear) that are autonomous in their execution behavior and
deployed in a fully distributed topology. Even though they (rib-<app>.ear) are
distributed and autonomous, they communicate and coordinate messages with each
other--and work to provide the final asynchronous integration solution that the
enterprise expects.

The Integration Gateway Services (IGS) component provides an integration
infrastructure for external system (3rd Party) connectivity to the Oracle Retail
Integration Bus (RIB) in the form of a tested set of Web service providers and the
configurations to connect to RIB 14.0.

The issues and considerations needed to properly deploy and configure the integration
solution within an enterprise are the subject of this guide.

1-2 Oracle Retail Integration Bus Implementation Guide

2

Standards and Specifications

RIB is designed and built on industry standard non-proprietary Java EE concepts and
standards.

Java Platform Enterprise Edition (Java EE)

Java Platform Enterprise Edition (Java EE) is an umbrella standard for Java's enterprise
computing facilities. It bundles together technologies for a complete enterprise-class
server-side development and deployment platform in java.

Java EE specification includes several other API specifications, such as JDBC, RMI,
Transaction, JMS, Web Services, XML, Persistence, mail, and others and defines how to
coordinate among them. Java EE specification also features some specifications unique
to enterprise computing. These include Enterprise JavaBeans (E]JB), servlets, portlets,
Java Server Pages (JSP), Java Server Faces (JSF) and several Web service technologies.

A Java EE application server manages transactions, security, scalability, concurrency,
pooling, and management of the EJB/Web components that are deployed to it. This
frees the developers to concentrate more on the business logic/problem of the
components rather than spending time building scalable, robust infrastructure on
which to run on.

Java EE Server

Oracle Application Server implements the Java EE specification and is the Java EE
server vendor for RIB in this release. Oracle Application Server provides many
additional services beyond the standard services required by the Java EE specification.

See the WebLogic® Application Server documentation for more information:
http://docs.oracle.com/cd/E23943_01/index.htm
http://docs.oracle.com/cd/E23943_01/wls.htm
http://download.oracle.com/docs/cd/E15523_01/index.htm.

http://download.oracle.com/docs/cd/E15523_01/wls.htm.

Java Message Service (JMS)

The Java Message Service (JMS) defines the standard for reliable Enterprise Messaging.
Enterprise messaging, also referred to as Messaging Oriented Middleware (MOM), is
universally recognized as an essential tool for building enterprise applications. By
combining Java technology with enterprise messaging, the JMS API provides a
powerful tool for solving enterprise computing problems.

Standards and Specifications 2-1

http://java.sun.com/products/jms
http://java.sun.com/products/jms

Java Management Extensions (JMX)

JMS Provider

See http://java.sun.com/products/jms.

Enterprise messaging provides a reliable, flexible service for the asynchronous
exchange of critical business data and events throughout an enterprise. The J]MS API
adds to this a common API and provider framework that enables the development of
portable, message based applications in the Java programming language.

The JMS API improves programmer productivity by defining a common set of
messaging concepts and programming strategies that will be supported by all J]MS
technology-compliant messaging systems.

The JMS APl is an integral part of the Java Enterprise Edition platform, and
application developers can use messaging with components using Java EE APIs (Java
EE components).

A JMS Provider is a vendor supplied implementation of the JMS interface, such as
Oracle AQ JMS. Oracle Streams AQ implements the JMS specification and is the
certified JMS provider for RIB in this release. AQ is built on top of the Oracle Database
11g Enterprise Edition.

See the Oracle® Database Enterprise Edition documentation for AQ information.

Java Management Extensions (JMX)

The RIB is a backend, headless application that does not need active business user
participation for its daily operations. When the environment is stable there is no user
intervention required for the system to keep running. For such a backend system, it is
critical that there are proper alerting and notification mechanisms built into the
application for situations when the system runs into trouble or to communicate
interesting business situations to administrators.

Java Management Extensions (JMX) is a specification to provide management and
monitoring capabilities to applications that are built using java programming
language.

The JMX is based on a three-level architecture:

s The Probe/Instrumentation level: This layer contains the probes (called MBeans)
that instrument the application resources and make the resource available through
an agent layer.

» The Agent level: The MBeanServer is at the core of JMX infrastructure. It is a
registry/catalog of all MBeans available for management.

s The Remote Management level: This layer enables remote applications to access
the MBeanServer through Connectors and Adaptors. A connector provides full
remote access to the MBeanServer API using various RPC communication protocol
like RMI, IIOP, WS-*, and others. A JMX adapter on the other hand adapts the J]MX
API and events to other standard protocol like SNMP or provide a web based GUI
(HTML/HTTP) interface to the JMX API/Events.

2-2 Oracle Retail Integration Bus Implementation Guide

http://java.sun.com/products/jms

Java Management Extensions (JMX)

JMX-compliant
Management
Application

?
\

T~

Server Services

=l

Server Senvices
{az MBeans)

H MBean se
Seer Java Virtual Machihe

3

JMX Architecture Diagram

In addition to the three layers presented in the architecture, JMX provides a
notification model that follows the observer observable design pattern. By using
notifications, JMX agents and MBeans can send alerts or report information to third
party management applications. Users can receive notifications as a way of being
informed of critical events or requests for attention.

Because efficient management and monitoring of RIB components are essential to the
RIB product, and also seamless integration to standard third party enterprise
management tools was a requirement, the RIB application has been fully instrumented
to be manageable by any JMX compatible management tools.

The RIB adapters can be controllable using standard JMX tools such as Oracle
Enterprise Manager. When interesting business activity happens inside RIB, the RIB
components emit alerting events to the RIB alerting framework. By default, the
alerting framework is configured to send J]MX and Email alert notifications. Anyone
interested in RIB's JMX alerts can subscribe to RIB notification types using their choice
of JMX compatible management tools. JMX management tools provide a way to
configure your listener/handler in the tool to react to the incoming alert event.

Note: See JMX management tool vendor documentation on how to
add your own listeners to JMX alerts.

Standards and Specifications 2-3

Java Management Extensions (JMX)

2-4 Oracle Retail Integration Bus Implementation Guide

3

Core Concepts

The RIB is designed as an asynchronous publication and subscription messaging
integration architecture. This allows the decoupling of applications and their systems.
For example, a publishing application need not know about the subscribing
applications, other than the requirement that at least one durable subscriber must
exist. It decouples the systems operationally. Once a subscriber is registered, the RIB
persists all published messages until all subscribers have seen them.

The publishing adapter does not know, or care, how many subscribers are waiting for
the message, what types of adapters the subscribers are, what the subscribers' current
states are (running or stopped), or where the subscribers are located. Delivering the
message to all subscribing adapters is the responsibility of the RIB with the help of the
underlying JMS server.

Physically, the message must reside somewhere so that it is available until all
subscribers have processed it. The RIB uses the JMS specification for its messaging
infrastructure. The JMS accepts the message from the publisher and saves it to stable
storage, a JMS topic, until it is ready to be picked up by a subscriber. In all cases,
message information must be kept on the JMS until all subscribers have read and
processed it.

The RIB interfaces are organized by message family. Each message family contains
information specific to a related set of operations on a business entity or related
business entities. The publisher is responsible for publishing messages in response to
actions performed on these business entities in the same sequence as they occur.

Each message family has specific message payloads based on agreed upon business
elements between the Oracle Retail applications.

Key Functional Requirements

The design and architecture of the RIB infrastructure is based on two key requirements
driven by the Oracle Retail application business model.

Guaranteed Once-and-Only-Once Successful Delivery

The RIB must preserve and persist all business events (messages) until all applications
(subscribers) have looked at the message and have successfully consumed it or
decided they do not care about that event (message). In other words, RIB must deliver
to every subscriber all messages except those filtered as per a subscribing application's
requirements.

A business event (message) must be redelivered to the consumer application if the
business event (message) was not consumed successfully. The redelivery process is

Core Concepts 3-1

Message Family and Message Types

bound by the same rules of sequencing as normal (non-redelivered) business event
(message).

Preservation of Publication Sequence

The business event (message) must be delivered to all the subscribing applications in
the order (FIFO) the business event (messages) was published by the publishing
application.

To enable this, the publishing application defines a business object ID whose existence
informs RIB that this and all subsequent messages with the same business object ID
have to be processed in order. Business event (message) ordering (FIFO) is assured
only for messages with the same business object ID within the same message family.

Message Family and Message Types

The RIB messaging adapters and payloads are designed around the concept of a
message family.

Each RIB message belongs to a specific message family. Each message family contains
information specific to a related set of operations on a business entity or related
business entities. The publisher is responsible for publishing messages in response to
actions performed on these entities in the same sequence as they occur.

One example of a message family is the Order message family used to contain
information about purchase order events.

A message family may contain multiple message types. Each message type
encapsulates the information specific to a business entity within one or more business
events. For example, the Order message family is published for events such as Create
PO Header, Create PO Detail, Update PO Header, or Delete PO Detail.

A single business event, such as updating a purchase order, may involve multiple
business entities, such as a line item within the purchase order.

Because a single business event may involve multiple business entities, the application
may publish messages for this event from multiple message families for a single
business transaction. More than one message type within a message family may also
be created.

There are two broadly defined types of functional interfaces in the RIB (message
families): foundation data and transactional data.

Foundation Messages

After populating application tables with initial company seed data, item foundation
information is needed. Foundation messages are defined as those with payload that
carry basic product data.

This table is an example from the Oracle Retail Integration Bus Integration Guide.

Functional Area Publishing Applications Subscribing Applications
Items RMS RWMS, SIM

Item Locations RMS SIM

Locations RIB RWMS

Stores RMS RWMS, SIM

3-2 Oracle Retail Integration Bus Implementation Guide

Message Life Cycle

Functional Area Publishing Applications Subscribing Applications
Vendor RMS RWMS, SIM
Warehouses RMS RWMS, SIM

Transactional Messages

After populating application tables with initial seed data and after all required item
foundation data messages have been subscribed to, all applications are prepared to
publish and subscribe transaction data messages. Transactional messages
communicate business events involving two or more organizations within a retail
supply chain, for instance, among Oracle Retail Merchandising System (RMS), Oracle
Retail Store Inventory Management (SIM), and Oracle Retail Warehouse Management
System (RWMS), external suppliers and financial systems.

This table is an example from the Oracle Retail Integration Bus Integration Guide.

Functional Area Publishing Applications Subscribing Applications

Allocations RMS RWMS, SIM

Appointments RWMS RMS, SIM

ASN Outbound RWMS, SIM, RMS, REM RMS, SIM, RWMS, OMS

ASN Inbound RWMS, External, RMS RMS, SIM, RWMS, OMS
RFM

Inventory Adjustments RWMS, SIM RMS

Inventory Request SIM RMS

Receipts RWMS, SIM RMS

Purchase Order RMS, SIM RWMS, SIM

Stock Order Status RWMS, SIM RMS

Transfers RMS RWMS, SIM

RIB Message Envelope and Payloads

Whenever a publishing application adapter publishes a message, it wraps the message
in an envelope known as the RIB message envelope. The envelope is a standard
message delivery format where the message information, the data payload, is
contained within the overall delivery information. The envelope itself provides
information that the RIB uses, such as RIB hospital information and routing
information.

Note: Payloads do not support time zone formats.

Message Life Cycle

The publishing application is responsible for creating the initial message contents. The
RIB publishing adapter publishes it to the JMS Server and makes it available to any
JMS subscribers. The RIB knows what subscribers are to receive the message due to
the RIB configuration—this configuration associates a set of subscribers to each
publisher and message family combination.

Core Concepts 3-3

Message Life Cycle

For PL/SQL Applications, database tables associated with the publishing application
typically stage message information. One or more RIB publishing adapters poll the
application via a stored procedure call. For Java EE Applications, the application calls
a RIB Enterprise Java Bean (E]JB) with the payload information to be published.
Similarly, SOAP Applications calls with the payload information in the request to be
published.

The message resides on a Java Message Service (JMS) immediately after publication.
The JMS topic provides stable storage for the message in case a system crash occurs
before all message subscribers receive and process it.

A fundamental RIB system requirement is that a message must be delivered to and
processed successfully exactly once by each subscriber. Furthermore, all work
performed by the subscriber and the RIB must be atomically committed or rolled back,
even if the JMS server is on a remote host. The standard way to perform this is by
using an XA compliant interface and two-phase commit protocol.

After initial publication, a message may undergo a series of transformation, filtering,
or routing operations. A RIB component that implements these operations is known as
a Transformation and Address Filter/Router (TAFR) component. TAFR is the acronym
for Transform, Address, Filter, and Route. A TAFR is completely internal to the RIB
and does not reside in either the publishing or subscribing application. The RIB
performs these intermediate transformation and routing operations on some messages
before making them available to the subscribing application.

A single TAFR may only transform a given message, only filter the message, only
route it, or combine any of the three operations.

s Transform - A message may be transformed from one message type into another,
for example, WH (warehouse) from RMS to Location for RWMS.

= Filter - A message may be filtered. Filtering can occur based on message type or
based on content.

= Route - A TAFR may route a message. For example, whenever a stock order
message is published for a warehouse with an instance of RWMS, the TAFR routes
it to the particular RWMS instance from where the stock will be fulfilled and not to
warehouses that do not stock the order's items.

TAFR operations are specific to the set of subscribers to a specific message family.
Multiple TAFRs may process a single message for a specific subscriber and different
specific TAFRs may be present for different subscribers. Different sets of TAFRs are
necessary for different message families. If all subscribers to a message can process all
messages within a message family without any TAFR operations, then no TAFR
components are needed.

Message processing continues until a subscribing adapter successfully processes the
message or determines that no subscriber needs this message.

When a subscriber gets a message to be processed, the adapter checks to see if the RIB
Hospital contains any messages associated with the same entity as the current
message. If so, then the adapter places the current message in the hospital as well. This
is to ensure messages are always processed in the proper sequence. If proper
sequencing is not maintained, the subscribing application's data can be corrupted.

If an error occurs during message processing, the subscribing adapter notes this
internally and rolls back all database work associated with the message. When the
message is re-processed (because it has yet to be processed successfully), the adapter
now recognizes this message is problematic and checks it into the hospital.

3-4 Oracle Retail Integration Bus Implementation Guide

Messaging Components

After a message is checked into the RIB Hospital, a retry adapter extracts the message
from the hospital and re-publishes it to the JMS topic for reprocessing. The message
remains in the hospital during all re-tries until the subscribing adapter successfully
processes it.

Messaging Components

The RIB is a messaging system made-up of components that are packaged and
shipped as an integration solution between the Oracle Retail applications. The
application boundary between RIB and Oracle Retail applications can be confusing at
times, so this section defines the RIB components and their responsibility and
ownership. A diagram illustrating the RIB integration message flow follows:

Coniaxt Model

RIB Subsystem Components

This section describes the components of the RIB subsystem.

Adapters

A RIB adapter is a component that coordinates business event (message) generation
and processing with the respective Oracle Retail application interface. Each adapter in
the RIB is created to handle a specific functional interface. RIB adapters are developed
using Enterprise Java Beans (EJB) components architecture, subscribing adapters use
Message Driven Beans (MDBs) and publishing adapters use Stateless Session Beans
(SLSBs).

RIB provides four types of adapters that Oracle Retail applications can exploit to
integrate with one another. These adapter types are: publisher, subscriber, TAFR, and
hospital retry. They have been built using different technologies based on their
particular needs.

Subscriber and TAFR adapters use Message Driven Bean (MDB) technology to register
with JMS topics and receive messages for further processing.

Core Concepts 3-5

Messaging Components

Publisher and hospital retry adapters make use of the Java SE (Standard Edition) timer
facility to schedule repetitive events that trigger calls to Stateless Session Beans
(SLSBs) to query application tables for messages to publish to the JMS server.

As stated in the introduction, a fifth type of adapter exists for publishing messages in a
pushing fashion. The Oracle Retail applications invoke this adapter at will for
publishing messages.

These adapters have not been considered part of the scope of this technical document
in regard to providing a mechanism for starting and stopping them.

Due to the variety of technologies used by the adapters, the goal of this technical
design has been to isolate users from these differences and provide them with a
common management interface that can be used to control the state of the adapters.
During the last few years, the Java Management Extensions (JMX) specification has
become a well known standard that defines the management layer for enterprise Java
applications. JMX defines standard methodologies for declaring enterprise application
components as manageable resources that can be exposed in a consistent way such
that any J]MX compliant management application can access and provide means for
control.

JMS Domains, Destinations, Subscriptions

JMS defines two types of messaging domains: point-to-point and publish/subscribe.
RIB uses publish/subscribe types of messaging domains for all its communication.
Publish /subscribe is a one-to-many type of message distribution model where one
source application en-queues the message and many destination applications can
de-queue the same message and process independently of the other peer applications.
In publish/subscribe the destinations are known as topics, the en-queuer application is
known as publisher, and the de-queuer is known as subscriber. Unlike point-to-point,
in publish/subscribe the publisher and subscriber are totally ignorant of each other
and do not and should not know about each others existence. The JMS Topics retain
the messages only as long as it takes to distribute them to current active (running)
subscribers. There is also a timing dependency between publishers and subscribers.

A client that subscribes to a topic can consume only messages published after the
client has created a subscription, and the subscriber must continue to be active in order
for it to consume messages. The JMS specification relaxes this timing dependency to
some extent by allowing clients to create durable subscriptions. By creating durable
subscriptions the JMS server will continue to hold the messages for all registered
subscribers for that topic until the subscriber consumes the message or deletes the
subscription.

There are two types of subscribers, non-durable and durable subscribers. The RIB uses
only durable subscribers which allows the Oracle Retail edge applications to be in up
or down state independently but still not loose any messages and catch up when the
application comes back up. Every subscribing RIB adapter registers its durable
subscriber with a subscription name that contains its rib-<app> application name and
the adapter name in it.

RIB defines logical grouping of retail specific business objects (BO) and business

functions in a concept called message family. For every message family there is a
corresponding JMS topic. These JMS topics are used as communication pipelines
between the source and destination Oracle Retail applications for exchanging the
business objects.

The list of JMS topics used by RIB components is detailed in the Reports section of the
Oracle Retail Integration Bus Integration Guide.

3-6 Oracle Retail Integration Bus Implementation Guide

Messaging Components

JMS Message Selector

A key aspect of the JMS usage that the RIB relies on is the attachment of message
properties to published messages and the use of selectors by message subscribers.
Message properties are used to convey information about the message outside of the
actual message data to establish a logical channel for messages.

JMS message selectors are used by the RIB to filter the messages that each subscriber
picks up. In other words, using the message properties, selectors act as a filter to weed
out messages a subscriber should not process.

The message property set and used by the RIB messages is called threadValue. The
thread value is associated with a logical channel of a message stream. All messages for
a specific family with a specific business object ID always contain the same
threadValue property. This, combined with the standard first in, first out (FIFO)
message ordering on the topic, is integral to message sequencing. Messages with
different thread Value properties are not guaranteed to be processed in the same
relative order as publishing.

Messages published without JMS Message Property present will not be picked up by
the standard subscribing RIB adapters.

Pseudo code for message selector:

(
(
(appName is not null) AND
(appName == $APP_NAME)
) AND

(retryLocation is not null) AND
(retryLocation LIKE $ADP_CLASS_DEF)

(appName is null) OR
(appName != SAPP_NAME)
) AND

(retryLocation is null) OR
(retryLocation LIKE $SADP_CLASS_DEF)

)
) AND
(threadvalue == S$ADP_INSTANCE_NUMBER)

Additional RIB JMS Message Properties

Every message published by the rib-<app> applications includes a number of J]MS
user defined header properties. In the current release, these properties are only set, not
used by any RIB components. In the future, these properties will be used for intelligent
performance enhancement and optimization and for traceability and auditability of
RIB messages.

The message properties are as follows:
= Property Name: appName

Type: java.lang.String

Required Property: false

Example: appName=rib-rms

Core Concepts 3-7

Messaging Components

Description: The appName property contains the rib-<app> application name that
published this particular message.

Property Name: adapterInstance

Type: java.lang.String

Required Property: false

Example: adapterInstance=Item_pub_1

Description: The adapterInstance property contains the rib-<app> adapter
instance name that published this particular message.

Property Name: family
Type: java.lang.String
Required Property: false
Example: family=Item

Description: The family property contains the name of the RIB family name to
which the message belongs.

Property Name: needMessageOrderPreservation
Type: boolean

Required Property: false

Example: needMessageOrderPreservation=true

Description: This property will have a value of true if any ribMessage node within
the RibMessages xml has a message that has businessObjectld set. This property
will allow us to take advantage of the fact that now we know which messages
need message order preserving at JMS header level (without opening the
message). In the future, we will be able to take advantage of that information,
make our processing parallel, and get better throughput without losing message
sequencing.

Property Name: topic
Type: java.lang.String
Required Property: false
Example: topic=etltem

Description: This topic property contains the RIB topic name that this particular
message is published to or subscribed from.

Property Name: ribKernelVersion
Type: java.lang.String

Required Property: false
Example: ribKernelVersion=14.0

Description: The system determines the rib kernel jar version number at runtime
and includes its value in this JMS property.

Property Name: ribFuncArtifactVersion
Type: java.lang.String

Required Property: false

Example: ribFuncArtifactVersion=14.0

3-8 Oracle Retail Integration Bus Implementation Guide

Messaging Components

Description: This is a place holder for future enhancement. The idea is the system
will somehow determine the runtime payload version and include that
information in the message for better compatibility management. This property
will be enhanced in a future release.

= Property Name: ribMessageCount
Type: int
Required Property: false
Example: ribMessageCount=12

Description: This property contains the number of ribMessage nodes there are in a
RibMessages xml message. This value gives us some indication of message
aggregation in play. It might be used in the future to better optimize message flow
paths based on the size/number of the messages.

s Property Name: uuid
Type: java.lang.String
Required Property: false
Example: uuid=116cfabd-8949-4f93-bb61-aaa88e168f30

Description: This property contains a universally unique identifier for every
message. This unique identifier will provide better traceability of a message within
the JMS system. This property complements the ribMessagelD xml element that is
there to trace messages within the RIB logs.

Integration Gateway Services (IGS)

The Integration Gateway Services (IGS) provides an integration infrastructure for
external (third party) connectivity to the Oracle Retail Integration Bus (RIB) in the
form of a tested set of Web service providers and the configurations to connect to RIB.

Integration Gateway Services are designed to ease the integration to the RIB interfaces
and RIB payloads. Traditionally, this required custom RIB adapters to create and
publish RIB payloads wrapped in RIB Messages envelopes to the RIB JMS topics. The
IGS provides the integration to these RIB interfaces through standard
request/response Web services using only the standard XSD based RIB message
payloads.

IGS Interfaces

There are 19 RIB Message Family interfaces included in the IGS. They are the interfaces
most commonly used for custom integration to legacy systems. A Web service
corresponds to each of the selected Message Families. Each service exposes the
message types supported by the RIB Message Family.

Table 3-1 IGS Interfaces

Functional Area Message Types
Financials s Chart of Account (GLCOA)

= Currency Rates

= Freight Terms

= Payment Terms

Core Concepts 3-9

Messaging Components

Table 3—-1 (Cont.) IGS Interfaces

Functional Area

Message Types

Foundation Data

Transactional - External

Transactional - Internal

Item

Item Location
Store

Vendor

Allocations

Cost Changes

Purchase Order
Transfers (Stock Orders)

ASN Inbound

ASN Outbound

FulfillOrder

Inventory Adjustments

Inventory Request

Receiving (Appointments, Receipts)

Return to Vendor

Integration to IGS

The customer or integrator creates Web service clients from the IGS WSDLs, using
tools or technology appropriate to the retailer's organization. The message payloads
are the standard XSDs that ship with the RIB Functional Artifacts. The business logic
behind the client must be written to match the RIB Integration and the Oracle Retail
Application API rules. These are the same rules that apply to any GA or custom
adapter, as included in RIB documentation and other Oracle applications guides.

The IGS Web Service infrastructure has been designed to support the RIB feature of
multi-channel publication, through the Business Object ID. It also supports message
routing through RIB TAFRs, where the Message Family supports it. Additional XSDs
have been added to support these requirements.

(RIBNGS

K1 Bisanw
I Wikt wnd

ag
-FCEED

(]

|
R
RN Ma L]
e | AP D
wromh

L | L
105 S fucdapr L

7

3-10 Oracle Retail Integration Bus Implementation Guide

ey =

Coura Obiest ==
[————

Fa

Applcsine |
| RS, Bl FrobEn |

e = = =

Simple Message Flow

RERELIGS HOTES: LEGEHD
Presdust Cormain 1 T
i Sy s ar . . Forgredien.s
1 aben Qe Crmow LA Topa Sl a2 L
T Byl RIBIKDS Saracn and RIN
Logéeal b, Dogicts | -
8 etz wiud 28 - el ran
= i o] 4 N [[Eomzonen stk ul B fr o
= CETER SR TS Loy W
] I — —— RCEU = wtie
[*] - — = (= 0
= - I 1 i
| oracs et = m:'-'_: CONRERN s Pl e NETOSIDNGUS
= — _ _Mﬂll'" contedr Honymd

£ Oracie Cotpodaion

IGS Deployment Considerations

There are additional deployment options that must be considered if the IGS is
required.

The RIB Integration Gateway Service (IGS) component requires Oracle® WebLogic
Server 11g Release 1 (10.3.6).

In addition to the RIB considerations during implementation, coordination with the
Application Server Administration team also is required to determine the physical and
logical placement of the RIB IGS component within the WebLogic Server deployment.

IGS and WebLogic Server (WLS) Clustering The core RIB components do not support
deployment to an active-active cluster. However, the IGS can be deployed to an
active-active Oracle WebLogic cluster.

See the WebLogic® Server documentation for more information:
http://download.oracle.com/docs/cd/E15523_01/index.htm.

http://download.oracle.com/docs/cd/E15523_01/wls.htm.

Simple Message Flow
The typical lifecycle of a message through the RIB is as follows:

1. The publishing adapter creates the message. The event that triggers the message
creation may be a polling operation in case of PL/SQL applications or a
synchronous invoke in case of Java EE applications or a request in case of SOAP
application. The message is published to a predetermined JMS topic.

2. The message is now available for all registered subscribers to the JMS topic for
pick up. Subscription is based on the message family.

3. Once a subscriber gets the message, it is free to process that message according to
its own rules. In the case of a transformer adapter, the adapter can open the
message, modify its contents, and then publish the modified message to a new
topic. The source topic and destination topic that a TAFR uses must always be
distinct/different topics. There may be new subscribers to the modified message,
and the scenario is repeated for each of these subscribers.

4. When each subscriber has finished (commit) processing a message, the JMS server
updates the state of the message to reflect that it has been processed by this
subscriber.

5. The JMS Server deletes the messages on the topic after delivering it to all the
registered subscribers.

Two types of applications require this data and subscribe to it. One type of subscribing
application requires a certain transformation be applied to the data, but the other type
of subscriber can process the message without any transformations.

Core Concepts 3-11

http://java.sun.com/products/jms
http://java.sun.com/products/jms

The RIB Hospital

The RIB Hospital

The RIB Hospital is a collective term for a set of Java Classes and database tables
whose purpose is to provide a mechanism to handle system and business related
errors while meeting the fundamental RIB requirements:

= Guaranteed once-and-only-once successful delivery.
= Preservation of publication sequence (even in case of failures).

When a message is processed, the adapter checks to see if the RIB Hospital contains
any messages associated with the same businessObjectld as the current message. If so,
then the adapter places the current message in the hospital as well. This is to ensure
messages are always processed in the proper sequence. If proper sequencing is not
maintained, then the subscribing application's data can get corrupted.

If an error occurs during message processing, the subscribing adapter notes this
internally and rolls back all work associated with the message. When the message is
re-processed (since it is yet to be processed successfully), the adapter now recognizes
this message is problematic and checks it into the hospital.

For Publication, there are some RMS publishers that return an 'H' status to denote a
problem creating a new message for a specific business object. This status may be due
to database locks being held by on-line users of an Oracle Forms application or it
could also be due to some data incompatibility found in the GETNXT() procedure.
Whenever a publisher recognizes that a message for a business object cannot be
published due to one of these conditions, the message must go into the RIB Hospital.

After a message is checked into the RIB Hospital, a retry adapter extracts the message
from the hospital and tries to re-publish it to the integration bus.

RIB Hospital Dependency Check

The RIB Hospital dependency check logic assumes that each message family has a
single unique businessObjectld for all business object entities its messages are
associated with. This businessObjectld must be the same for the same business entity
across all message types within the message family. If any message for a specific
business entity is placed into the RIB Hospital, then the RIB Hospital dependency
check logic automatically inserts any subsequent messages for the same business
object. This is to preserve the message sequencing and guaranteed exactly once
successful message processing. Otherwise, multiple update messages for a business
object may be processed in an incorrect order and create incompatibilities between
applications.

If the businessObjectid is not set, then there is no dependency check. Not all message
families set the businessObjectld or it is not set on all message types. See the Oracle
Retail application documentation (for example, "Message Publication and Subscription
Designs" in the Oracle Retail Merchandising System Operations Guide Volume 2).

RIB Hospital Insert

In an event of failure during message subscription, the error is flagged within the RIB
Hospital software, resulting in rollback of the work done in the retail application, the
adapter returns failure so that the database transaction is rolled back as well, and the
message is kept on the integration bus topic. This is because subscribing adapters are
executed within the context of a distributed transaction, using the XA two-phase
commit protocol. This transaction is controlled by the Java EE Application Server.
Immediately after the roll back, JMS re-delivers the message back to the subscribing
adapter and this time the RIB Hospital software detects the previously flagged

3-12 Oracle Retail Integration Bus Implementation Guide

The RIB Hospital

message and inserts the message in to the RIB Hospital tables and message is removed
from the JMS topic.

When the initial failure occurs while processing the message, the error is flagged
within the RIB Hospital software, the adapter returns failure so that the database
transaction is rolled back, and the message is kept on the integration bus topic.

Note: The XA interface is a standard protocol between a transaction
manager and a database or resource manager. Note that both the JMS
topic connection and the database connection must support the XA
protocol. For more information regarding the XA standard, see the
URL http://www.opengroup.ord.

RIB Hospital Tables
The RIB Hospital tables are:
= RIB_MESSAGE - contains the message payload, all single-field envelope

information, and a concatenated string made from <id> tags. It also contains a
unique hospital ID identifying this record within the hospital.

s RIB_ MESSAGE_FAILURE - contains all failure information for each time the
message was processed.

s RIB_MESSAGE_ROUTING_INFO - contains all of the routing element information
found in the message envelope.

= RIB_MESSAGE_HOSPITAL_REF - contains all of the hospital reference
information found in the message envelope.

A database sequence, RIB_MESSAGE_SEQ, is used to maintain a unique message
number associated with each message placed into the RIB Hospital.

RIB_MESSAGE
PK | MESSAGE NUM

11 |ADAPTER_CLASS_LOCATION
11 | ADAPTER_INSTANCE_NUMBER
1 |FAMILY

TYPE

11 |ID

RIB_MESSAGE_ID
PUBLISH_TIME

IN_QUEUE
MESSAGE_DATA
ATTEMPT_COUNT
MAX_ATTEMPTS
NEXT_ATTEMPT_TIME
DELETE_PENDING
TOPIC_NAME
THREAD_VALUE

11 |JMS_QUEUE_ID
CUSTOM_FLAG
CUSTOM_DATA
REASON_CODE

A

A

v

RIB_MESSAGE_FAILURE RIB_MESSAGE_HOSPITAL_REF RIB_MESSAGE_ROUTING_INFO

PK,FK1 | MESSAGE NUM PK,FK1 | MESSAGE NUM PK,FK1 | MESSAGE NUM

PK SEQ NUMBER PK SEQ NUMBER PK SEQ NUMBER
TIME HOSPITAL_REF NAME
ADAPTER_GLASS_LOCATION ADAPTER_CLASS_LOCATION VALUE
ADAPTER_INSTANGE_NUMBER ADAPTER_INSTANCE_NUMBER DETAIL1_NAME
DESCRIPTION MESSAGE_FAMILY DETAIL1_VALUE
ERROR_TYPE NEW_REASON_CODE DETAIL2_NAME
ERROR_CODE OLD_REASON_CODE DETAIL2_VALUE

These tables will have been created during the database portion of the Oracle Retail
application installation (for example, RWMS, SIM, RPM, AIP, REM, OMS, or RMS).

Core Concepts 3-13

http://www.opengroup.org
http://www.opengroup.org
http://www.opengroup.org

The RIB Hospital

The RIB Hospital tables are internal system tables that maintain the RIB runtime state
of the system. The entries in these tables must not be manipulated by non RIB tools
when the RIB is running.

RIB Hospital Retry

After a message is inserted into the RIB Hospital, the hospital retry adapter is used to
re-post the message to the JMS in order to retry its processing. The assumption is that
the error is a transitory one; records locked or there is an external dependency that has
not been met. The number of times a message is retried is configurable.

The hospital retry is responsible for maintaining state information for hospital records
or what has happened to the record or message information. Each time the message is
reprocessed, a record is kept of the event along with the results. The design is to
provide a means to halt processing for messages that cause errors while allowing
continued processing for the good messages.

One element of this information is whether the message has been queued to the J]MS
topic for re-try processing. So manually deleting messages from the hospital database
using SQL directly may produce severe processing problems. Also, deleting messages
directly from the JMS provider may result in a message that is never retried again, as
the logic in the retry assumes the message is queued within the JMS.

There are three kinds of hospital retry adapters:
s Sub Retry Adapter
= JMS Retry Adapter
s Pub Retry Adapter

All subscriber side retrying of messages are handled by the Sub Retry Adapter. The
Sub Retry Adapter looks at all messages with reason code SUB, then filters and
identifies the messages that are ready to be reprocessed, keeping message ordering in
mind.

Oracle Retail applications are unaware that the integrations of the business data is
happening through a JMS server. RIB abstracts the fact it is using a JMS server from the
retail applications. When the JMS server is down or RIB has some problem publishing
to the JMS server, RIB will not rollback the transaction as long as it is a recoverable
problem. In such situation all messages are inserted to the RIB Hospital with a reason
code of JMS and publications continues on. The JMS Retry Adapter retries all
messages with reason code of JMS at a later time.

All messages with reason code of PUB are retried by the Pub Retry Adapter. RMS is
the only retail application that needs the Pub Retry Adapter.

PUB Retry Adapter
The following diagrams illustrate how the PUB Retry Adapter works.

3-14 Oracle Retail Integration Bus Implementation Guide

The RIB Hospital

PUB_RETRY with
STATUS_CODE 'S’

PUB_RETRY with
STATUS_CODE ‘I

RIB PUB_RETRY
Adapter Processing

Core Concepts 3-15

The RIB Hospital

PUB_RETRY with
STATUS_CODE 'N'

PUB_RETRY with
STATUS_CODE 'H'

RIB PUB_RETRY
Adapter Processing

3-16 Oracle Retail Integration Bus Implementation Guide

The RIB Hospital

N

rib-<app=

Calls GETNEXT pkg

s
GetNext EJB
TATUS CODE *H” raturned—pl\‘_

STATUS CODE “E” returned > adapter Insers Message to
I
l'fhuts Do _/,l
PUB_RETRY with Gets the message

STATUS CODE ‘E' or any
other invalid codes.

Hospital Attempt (Retry) Count

When the message first comes through the subscriber, if there is no businessObjectid,
then there is no dependency check performed. If the message cannot be processed, it is
then inserted into the hospital with an attempt_count = 1.

A message that comes through the subscriber, that has a businessObjectid, a
dependency check is performed. If there is no dependency and the message cannot be
processed, it is then inserted into the hospital with an attempt_count = 1.

A message that comes through the subscriber that does match the ID and family of
another message in the hospital is known to be dependent, so it goes to the hospital
immediately, with an attempt_count = 0.

Exception to this rib-tafr app, in case of rib-tafr attempt_count is 1, even if the message
is insterted into the hospital as a dependent message because tafr adapters work with
two topics and message would already be subscribed once by the tafr, therefore it
always has attempt_count=1.

JMS Delivery Count

JMSXDeliveryCount is a message property set by AQ JMS. This property is checked to
see if the message is being redelivered by the JMS. If the count MAX_REDELIVERY _
THRESHOLD (set to 2) is reached, the RIB subscribers assume that the message is
being re-delivered; the message will be determined as a poison message. The message
is written to the file system (at the same location where application log files are
written), and the adapter is shut down in such scenarios. An administrator must
decide how this message will be handled.

Core Concepts 3-17

The RIB Hospital

3-18 Oracle Retail Integration Bus Implementation Guide

4

Oracle Retail Application APIs

This chapter describes Oracle Retail Application APIs.

PL/SQL Stored Procedure APIs

Each PL/SQL based application uses a Message Family Manager (MFM) specific API
for publishing all messages within a specific message family. This API is the interface
to a stored procedure package and wrappers the staging table and additional business
logic surrounding the message publication.

The RIB Publishing Adapter polls the API by calling a routine in the MFM called
GETNXT(). The MFM "GETNXT()" PL/SQL stored procedure may contain simple or
complex logic that is specific to the message types published. For example, a simple
Create Vendor message may involve merely selecting and then deleting a single record
from the vendor staging table. On the other hand, a Create Purchase Order message
requires fairly complex logic to create because of the business process dependencies.
Many changes may be made to a PO before it is approved.

The RIB Subscribing Adapter invokes the API by calling a routine in the MFM called
CONSUMEY(). The CONSUME() API consumes the subscribed messages. Depending
on the message family, it takes the message, message type, and other information
required as inputs to process the message. It returns a status code of 'S' for Success and
'E' for Error after processing. If the status 'E' is returned, the error message is also
displayed.

The RIB Pub Hospital Retry Adapter invokes the API by calling a routine in the MFM
called PUB_RETRY(). All those messages for which GETNXT() returns a status code
'H' are sent to Error Hospital with reason code PUB. These messages are retried by the
PUB Retry Adapter by calling routine PUB_RETRY(). It returns a status code 'S’ for
Success, 'H' for Hospital, T' for Keep Calling till the status code 'S’ is returned, 'N' for
No message, and 'E' for Error. If 'E' is returned, the pub retry adapter is shutdown.

Oracle CLOB APIs

The main facet of this API involves the use of Oracle CLOBs (Character Large Object
Binaries) as the means to pass information to and from an Oracle stored procedure.
The stored procedure is responsible for parsing or building the message payload.

There are only a few of this type remaining in RMS.

APIs using CLOBs have internal triggers that are fired when a specific database table
is modified. The trigger retrieves all of pertinent information to create a specific type of
message (XML payload) and inserts it into a staging table using an application specific
Message Family Manager (MFM) API. The payload is contained in an Oracle

Oracle Retail Application APIs 4-1

PL/SQL Stored Procedure APls

Character Large Object Binary (CLOB). The staging table that holds the payload data
must also maintain the following:

s The order that messages are created
s The CLOB containing the "payload" XML
= Any routing or filtering key values

= The message type associated with the business event that created the message. The
message type is specific to the message family and a single business event may
produce multiple messages of differing types within different families.

RIB_XML and RIB_SXW Database Packages

These PL/SQL packages contain utilities to make the generation and parsing of XML
documents easier. It is based on Oracle's XDK, and is designed to support CLOB
application-specific APIs that read and write XML messages.

Oracle Object APIs

These application interfaces use Oracle Objects to pass information to and from the
stored procedure. Each RIB Object corresponds to the XSD that defines the RIB
Message payloads for that message family. This is the predominant type of PL/SQL
API used in Oracle Retail integration via RIB.

When a message is ready for publication, the Message Family Manager GETNXT()
Stored Procedure examines its staging tables and creates the appropriate RIB Object
for publication. In many cases, these staging tables contain columns that are
themselves declared a specific type of RIB Object. Once the complete RIB Object is
ready, the GETNXT() Stored Procedure returns this (RIB Object) to the calling RIB
Adapter, which then converts the RIB Object into an equivalent XML string.

When a subscribing adapter gets a message from the JMS topic it constructs the Oracle
Object by parsing the incoming payload xml. The newly created Oracle Object is
passed in to the CONSUME() stored procedure to process the message.

RIB Related Database Tables

PL/SQL stored procedures use three tables to refine their behavior: RIB_SETTINGS,
RIB_TYPE_SETTINGS, and RIB_OPTIONS. Not all applications use these.

The RIB_SETTINGS table defines, on a per message family basis:

s The number of channels to use when publishing (see the Multi-channel section in
the Oracle Retail Integration Bus Operations Guide).

s The maximum number of details to publish within a create, update, or delete
message. Oracle Retail applications typically do not have a limit to the number of
details a specific business object can have. So a purchase order may be created
containing tens of thousands of detail lines, each line a specific item/location
combination. A single PO Create message containing 30,000 or so lines require a
vast amount of resident memory to parse. This column limits the PO Create and
subsequent PO Detail Add messages to a set number of details.

The RIB_TYPE_SETTINGS table is used internally by the application.
The RIB_OPTIONS table is used by the CLOB APIs for the creation of XML.

4-2 Oracle Retail Integration Bus Implementation Guide

Oracle Retail Java EE APIs

Detail Architecture - PL/SQL Apps

RIB Detail Architecture — PL/SQL Apps

Java EE Server

JSP/Serviet MBean Server EJB Container JCA Container
Container
rib: p>.ear
GetNext SLSB
. - - Rib Timer Adapter 46 - -
Retail PL/SQL App rib-admin-gui MBeans TopicConnection
Factor
.
7 — Topic A
PL/SQL API (GETNXT) - RibMdbAdaples v j‘

Poll Publisher Timer 1 MBeans | Publisher SLSB }_4 4>| Pub Topic A f” .
Poll Publisher Timer 2 Rib Config

MBean % Subscriber MDB 1 }*Z"I Sub Topic 1 I IMS-Server

PLISQL API (CONSUME) [x I
57 | Subscriber MDB 2 | | Sub Topic 2 F‘"ﬁ’() Topic 2)
Hosp Retry Timer |
Sub Error Hosp Mgr
Fosp ety T2
»| Hosp Retry SLSB
Rib Log Mgr %
MBean
Retry Error Hosp Mgr
| ‘ [Ey JMX Management
E Client
Pub(5) - Sub(4/8) - Retry(3)-

Oracle Retail Java EE APIs

These interfaces to the RIB are via Message Driven Bean (MDB) for subscribers and by
Stateless Session Bean (SLSB) to publish messages to the JMS. This architecture uses
Payload Java Beans to communicate event information from the RIB code to the
application messaging processing logic.

The internal architecture of RIB is very similar between Oracle Retail PL/SQL
applications and Oracle Retail Java EE applications. The only significant difference is
in the publishing adapter types. For PL/SQL Retail applications RIB keeps on polling
the stored procedure every few seconds to find out if there is any work. When the
stored procedure returns some data (that is, when there is some work), RIB goes and
does the work. In Oracle Retail Java EE applications RIB does not do any polling. The
roles are reversed where the Oracle Retail application requests RIB to publish a
message. Thus, there are two types of publishing adapters in RIB depending on the
connecting Oracle Retail application type. The Java EE application uses request-driven
publishers and the PL/SQL application uses timer-driven publishers.

Oracle Retail Application APIs 4-3

Oracle Retail SOAP APIs

Detail Architecture Java EE Apps

RIB Detail Architecture — JavaEE Apps

Java EE Server

JSP/Serviet MBean Server EJB Container
Container

JCA Container

b: p>.ear

Rib Timer Adapter
Retail JavaEE App rib-admin-gui ’7

r
TopicConnection
24 Factory
Rib Mdb Adapter —
1 pi
MBeans Pub Error Hosp Mgr SV_
rib-private-app-plugin 1 - L]
J E ()
MBean % Subscriber MDB 1 }« —«I Sub Topic 1 I IMS Server
Injector]
229 [subseriberMpB2 | || [sub Topie2 |»~~~4f>() Topic 2)
Hosp Retry Timer |
Sub Error Hosp Mgr
Hosp Retry Timer 2. Topic3
Hosp Retry SLSB
Rib Log Mgr 4
MBean
Retry Error Hosp Mgr
| ‘] JMX Management
Error E i
Hospital b(3) - Sub(4/9) - 3 | Client
Tables

Oracle Retail SOAP APIs

The interfaces to the RIB are via the Injector Service.

API Return Status Codes

Below are lists of API return status codes.

PL/SQL GETNEXT Return Codes

S - Success

N - No message
H - Hospital

E - Error

PUB_RETRY Return Codes

S - Success

N - No message
H - Hospital

E - Error

I - Keep calling

CONSUME Return Code

S - Success

E - Error

4-4 Oracle Retail Integration Bus Implementation Guide

O

Pre-Implementation Considerations

Before the RIB is installed into an enterprise, there are many factors that need to be
considered. Planning and addressing each of the factors will avoid having to re-install
or re-architect because of performance or operational problems.

The process of RIB implementation requires the creation or modification of a retailer's
Enterprise Integration Architecture. Typically, retailers will already have an integration
strategy, plan or architecture and products in place to integrate their current systems.

The deployment of the RIB is always a portion of the deployment of the Oracle Retail
applications, almost always with RMS. Because the implementation of RMS is a long
cycle project, and always involves data conversions and integration into a retailer’s
existing infrastructure, the RIB implementation planning is strategic to that effort.

RIB Software Lifecycle Management

Software applications, after being made generally available (GA), have a well defined
lifecycle process. The implementer must manage and perform tasks in these phases:

= Acquire the software components.

= Prepare the environment

= Assemble the application

= Deploy and start the application

s Perform day-to-day monitoring to make sure the application is running properly

= Apply code fixes to the application

Pre-Implementation Considerations 5-1

Centralized Configuration and Management

RIB Software Life Cycle

Preparation Phase

Step 1
Dewnload RIB Kemel and untar to create your RIB.
workspace{rib-home)

area within rib-home. Do not untar

Step
[Dwrlcﬂﬂ RIB func arfect tar'n downloads staging J

Step
[D(mnmd Al RIB Pk lars o dowribads staging area

within rib-heme, Do not untar,
Slep 4
Run chack-varsion-and-unpack utility It will chack

version compatibifity and exiract the downloaded files
o the comect locations in the application assembly
area

2 =

Application Assembly Phase

Dafine your RIB aspmyman architacture by ediing
rib-depl infouxm under

directory ree.

Step 6
Run the rib-app-compller o generate all deployment
descriptor and build the rib-app=>.ears using the
correct classpath and Jars from rib-application-
assembly-infooxm

fDepIuyment Phase

Step 7
Configure your JUS Sk by running the rib-app-
deployer utility

Step 8
Run the nbapp—dealcyarw uamoy the RIB functional

Step 9
Run the rib- appﬂep\c\y\ar !'ur each rib-<app=.ear in

e

Operations Phase

rib-adapter-coniraller wliity under operation-home
directory tree

e

Manage your Error umm al using RIHA tool

Step 12
Manage and Monitar el nkem system using
RDMT

G e

l(l\rhu'menance Phase

Step 13
Apply a defect fix to your env by execuling check-
version-and-apply-defact-fix utlity

Step 10
Manage your runtime integration adapters using the

Step 14
Get your system change history and inventary report
by executing Inventory-management utifity.

RIB supports and follows the RIB Software Lifecycle Management, a well-defined
process life cycle that has implemented specific tools and functionality for each of
these phases.

Preparation Phase—In this phase all relevant components are downloaded,
extracted, configured, and version compatibility checks done.

Application Assembly Phase—In this phase, site specific configuration changes are
made and all the relevant rib-<app>.ears are generated.

Deployment Phase—In this phase, using the rib-<app>.ears created in the
previous step and the site specific information present in a global configuration
file, the rib-<app> .ears are deployed to the application server instances.

Operations Phase—In this phase, day-to-day operations of the rib-<app>
applications are performed.

Maintenance Phase—In this phase, code fixes, patching, configuration changes
and maintenance of the RIB is performed.

Centralized Configuration and Management

Another key concept in the design of RIB is that all configuration and management is
done from a single centralized location using specific RIB provided tools. The RIB is
built on a completely de-centralized model. However, to ensure consistency and

5-2 Oracle Retail Integration Bus Implementation Guide

Preimplementation Considerations for Multibyte Deployments

compatibility within an enterprise deployment, a centralized management and
configuration model has been designed.

The RIB provides a RIB installer, consistent with all of the Oracle Retail applications, in
addition to a command line set of tools that are used at installation, assembly and
deployment time to create the Oracle Retail application specific integration.
Collectively these command line tools are called the rib-app-builder and provide
functionality to support the RIB Software Life Cycle.

Physical Location Considerations

The Oracle Retail Merchandising System (RMS) is the most important core business
application from the suite of Oracle Retail Product offerings. RMS provides most of the
retail business functionality that Oracle Retail offers its customers. In other words RMS
is the central hub of oracle retail applications. Since RMS is the central hub of retail
information/data and most information/data flows outward from RMS to other edge
retail applications through RIB, the decision on where to physically/logically locate
RIB is very important and will have direct impact on functioning of your enterprise.

It is recommend to keep the RIB's JMS server logically (not physically) close to the
RMS database server as 80% of the data flowing through RIB will interact with RMS
database server. Normally RMS up or down status defines your overall enterprise
retail business status and so keeping your integration infrastructure status in sync with
RMS is beneficial.

TAFR adapters use RIB Hospital functionality. In order to avoid situations where
entire integration can be down just because the TAFR RIB Hospital database is down,
it is strategic and beneficial to put the TAFR RIB Hospital tables in the same database
instance as the RMS database instance. Obviously it is required to separate the RMS
RIB Hospital tables and the TAFR RIB Hospital tables by installing them in their own
respective database schemas.

The argument above can be extended to the rib-tafr.ear application and rib-rms.ear
application, and so it is recommended to collocate rib-rms.ear and rib-tafr.ear as much
as possible.

RWMS and SIM are edge retail applications which might be running closer to your
physical warehouse location or your physical store management location. It is
recommended collocate rib-sim.ear near SIM application and rib-rwms.ear near
RWMS application.

The integration message flow is centrally managed in this release. The
rib-func-artifact.war web application determines which messages go where between
the rib adapters across all rib-<app> applications. At runtime, the rib-<app>.ear needs
access to the central message flow repository available in rib-func-artifact.war.
Therefore, rib-func-artifact.war must be deployed in a central location where all
rib-<app>.ears have access to it at runtime.

The RIB is a central office enterprise integration solution; it is not designed to work
optimally on a low (non LAN) bandwidth network. Distribute the rib-<app>.ear
applications in such a way where you can avoid lots of network hops, any network
protocol bridges, and any communication over a WAN.

Preimplementation Considerations for Multibyte Deployments

If the RIB is deployed into an environment where multibyte characters are used in the
message data, improper database setup can lead to error messages indicating that
insert values are too long.

Pre-Implementation Considerations 5-3

Error Hospital Size

There are several database settings that can affect the behavior of the processing
messages that contain multi-byte characters. Some are set during the creation of the
instance, and others are configurable. The settings to pay attention to are NLS_
CHARACTERSET, NLS_LANG, NLS_LENGTH_SEMANTICS. The interactions and
considerations are beyond the scope of the RIB documentation and should be
discussed with the database administration team prior to installation.

The BYTE vs. CHAR setting is especially important. If it is not set up correctly, errors
can result, indicating the value being inserted is too long for the field. The following is
an example of an insert error:

Internal Exception: java.sqgl.SQLException: ORA-01461: can bind a LONG value only
for insert into a LONG column.

Error Hospital Size

The RIB error hospital is designed to handle systemic and business related error
conditions while preserving publication sequence. The error hospital is not designed
to stage large volumes of data for lengthy time periods. When sizing the Error
Hospitals as part of any topology suggested in this document, keep in mind that they
can suddenly grow to many times what will be considered normal. This condition is
called flooding the hospital and one of the situations that can have catastrophic effect
on the run-time performance of the RIB flows that are associated with that hospital.

The tuning and performance of the Hospital and associated retry components is not
designed to support large numbers of messages; aka flooding. Flooding is difficult to
define, but generally speaking when the number of messages in the hospital is
measured in the 5 figures (10,000) and up, operational impacts will occur and process
and procedures should be developed to stop the flow(s) and deal immediately with
the source of the issue causing the messages to go to the hospital. During the
development and test phases, a customer should consider the possibility of flooding to
occur and to have predetermined processes in-place before production. When the
problem hits is not the time to be trying to find answers, the out-come of a hospital
flood situation is often a business-down situation.

JMS Server Considerations

Retail business generates huge volume of transactions that are time sensitive in nature.
For the business to be agile and react quickly, RIB has to transmit the business events
over the JMS server very quickly. The RIB depends upon the underlying JMS server for
its performance, robustness, and reliability. Therefore, your retail business’
performance and reliability is directly dependent on how robust the JMS server is and
how much CPU, memory, network and other system resources are available to it. It is
critical to provide adequate hardware resource to the JMS server in order for it to be
able to meet your performance requirements.

It is not recommended to locate the JMS server and the RIB application server on the
same machine. RIB tools automatically configure the JMS server to meets RIB's
required configuration. Do not modify the RIB JMS server configuration unless it is
advised by RIB documentations. RIB provides tools to monitor the RIB JMS server and
only those recommended tools must be used for your daily operations.

It is important to consider the sizing, either file system space or database table space,
when planning the deployment of the JMS Provider to a host. It is a very common
operational use case for one of the Oracle Retail subscribing applications to go off-line
for an extended period, either due to business requirements or problems. Basic sizing

5-4 Oracle Retail Integration Bus Implementation Guide

JMS Server Considerations

at a customer for any JMS system is for the disk (mount points or database) to be able
to handle 24 hours of maximum messages per topic.

Using Multiple JMS Servers
Having multiple JMS servers can improve overall system performance and
accommodate the following:
= the separation of high volume families from low volume ones.
= the customization of integration flows.
s Operational Quality of Service(QoS).
s distribution of the overall load on the integration system.

To meet the JMS agnostic requirement for RIB, a unique JMS server ID (jms-server-id)
is assigned to each RIB adapter. Accordingly, each RIB adapter can identify the J]MS
server to which it is associated. As the default, out-of-the-box adapters are configured
to be on jms-server jms1.

For each new jms-server-ID, a new resource adapter must be configured to point the
application server to the JMS provider's resource. The adapter communicates with the
JMS server and is deployed as part of the application. Where customization is
required, the adapter can be configured to point to a different JMS.

Note: For more information on using multiple JMS, see Chapter 6,
"JMS Provider Management," in the Oracle Retail Integration Bus
Operations Guide.

Oracle Streams AQ JMS

Streams AQ provides PL/SQL APIs to interact with the native AQ server inside the
Oracle database. Native AQ stream is not the same as AQ behaving as a JMS server.
RIB configures the native AQ server to behave as a JMS specification compliant JMS
server implementation. Therefore, it is strictly prohibited to manipulate RIB's JMS
topics and RIB's AQ configurations directly with the AQ PL/SQL or java APL

AQ JMS server can be configured to be highly available by taking advantage of Real
Application Cluster (RAC) functionality of the Oracle Database.

The RIB installation process defines the minimum RDBMS permissions and role that
are required for the RIB code to properly create the AQ JMS topics per the
specifications required for the RIB behavior. There should be no attempt to use
alternate settings or configurations.

Beyond the installation, there are critical considerations that must be addressed for
performance and operations that depend on the volumes and topology of the
deployment.

The Oracle RDBMS instance that will be configured as the AQ JMS must be tuned to
support the number of processes needed for the RIB adapters installed and configured
in each deployment environment.

The number of J]MS AQ processes depend on the RIB configuration.

Note: To determine the probable number of RIB AQ JMS processes in
the deployment, see "The RIB on AQ JMS" in the Oracle Retail
Integration Bus Operations Guide.

Pre-Implementation Considerations 5-5

High Availability Considerations

Note: See also the Oracle Database Performance Tuning Guide 11g
Release 2 (11.2).

See also the following information about High Availability.

High Availability Considerations

As businesses are maturing and having to do everything quicker, better, faster, and
with less resource and money, they are pushing similar expectation onto their IT
infrastructure. Business users are expecting more out of their IT investments, with zero
down time. Consistent predictable responding systems, which are highly available,
has become a basic requirement of today's business applications.

Modern business application requirements are classified by the abilities that the
system must provide. This list of abilities such as availability, scalability, reliability,
scalability, audit ability, recoverability, portability, manageability, and maintainability
determine the success or failure of a business.

With a clustered system many of these business requirement abilities gets addressed
without having to do lots of development work within the business application.
Clustering directly addresses availability, scalability, recoverability requirements
which is very attractive to a business. In reality though it is a tradeoff, clustered system
increases complexity, is normally more difficult to manage and secure, so one should
evaluate the pros and cons before deciding to use clustering.

Oracle provides many clustering solutions and options; those relevant to RIB are
Oracle database cluster (RAC) and WebLogic Server clusters.

Oracle Database Cluster (RAC) Concepts

A cluster comprises multiple interconnected computers or servers that appear as if
they are one server to end users and applications. Oracle Database Real Application
Clusters (Oracle RAC) enables the clustering of the Oracle database. Oracle RAC uses
Oracle Clusterware for the infrastructure to bind multiple servers so that they operate
as a single system.

Single-instance Oracle databases have a one-to-one relationship between the Oracle
database and the instance. Oracle RAC environments, however, have a one-to-many
relationship between the database and instances. In Oracle RAC environments, the
cluster database instances access one database. The combined processing power of the
multiple servers can provide greater throughput and scalability than is available from
a single server. Oracle RAC is the Oracle database option that provides a single system
image for multiple servers to access one Oracle database. In Oracle RAC, each Oracle
instance usually runs on a separate server.

Oracle RAC technology provides high availability and scalability for all database
applications. Having multiple instances access a single database prevents the server
from being a single point of failure. Oracle RAC enables the capability to combine
smaller commodity servers into a cluster to create scalable environments that support
mission critical business applications.

Note: For more information, see Oracle RAC documentation.

5-6 Oracle Retail Integration Bus Implementation Guide

High Availability Considerations

rib-<app> application and Oracle Database Cluster (RAC)

In this release, rib-<app> uses Oracle Streams AQ as the JMS provider. Oracle Streams
AQ is built on top of an Oracle database system. Since AQ is hosted by Oracle
database system, RIB can take advantage of database RAC capability for its JMS
provider. By using RAC configured AQ as the RIB's JMS provider you can scale the
RIB's JMS server vertically and horizontally to meet any retailer's scalability and high
availability need.

At runtime, rib-<app> uses the database for keeping track of its RIB Hospital records.
These RIB Hospital tables can be hosted by an Oracle RAC database providing high
availability and scalability for these RIB Hospital records.

WebLogic Server Cluster Concepts

A WebLogic Server cluster consists of multiple WebLogic Server server instances
running simultaneously and working together to provide increased scalability and
reliability. A cluster appears to clients to be a single WebLogic Server instance. The
server instances that constitute a cluster can run on the same machine, or be located on
different machines. You can increase a cluster's capacity by adding additional server
instances to the cluster on an existing machine, or you can add machines to the cluster
to host the incremental server instances. Each server instance in a cluster must run the
same version of WebLogic Server.

In an active-passive configuration, the passive components are only used when the
active component fails. Active-passive solutions deploy an active instance that handles
requests and a passive instance that is on standby. In addition, a heartbeat mechanism
is usually set up between these two instances together with a hardware cluster (such
as Sun Cluster, Veritas, RedHat Cluster Manager, and Oracle CRS) agent so that when
the active instance fails, the agent shuts down the active instance completely, brings up
the passive instance, and resumes application services.

In an active-active model all equivalent members are active and none are on standby.
All instances handle requests concurrently.

An active-active system generally provides higher transparency to consumers and has
a greater scalability than an active-passive system. On the other hand, the operational
and licensing costs of an active-passive model are lower than that of an active-active
deployment.

See the Oracle® Fusion Middeware Using Clusters for Oracle WebLogic Server
documentation for more information:

http://download.oracle.com/docs/cd/E15523_
01/web.1111/e13709/toc.htm.

rib-<app> application and WebLogic Application Server Cluster

RIB uses a JMS server for message transportation between the integrating retail
applications. Since RIB must preserve the message publication and subscription
ordering, rib-<app>s deployed in Weblogic Application Server cannot be configured in
an active-active cluster mode. In active-active cluster mode, multiple subscribers and
publishers process messages simultaneously and there is no way to preserve message
ordering.

rib-<app> can be deployed to a single managed server instance of an Weblogic
Application Server that is clustered(active-passive). In this configuration even though
rib-<app> is deployed in a Weblogic cluster, multiple instances of the same rib-<app>

Pre-Implementation Considerations 5-7

http://java.sun.com/products/jms

High Availability Considerations

are not running at the same time, as there is only one managed server instance where
the rib-<app> is deployed and so RIB can still preserve message ordering.

To truly configure rib-<app>s for high availability, the only option is to configure it in
active-passive mode.

For WebLogic server, using a concept called Pinned Deployment, you can deploy and
target your applications to a particular instance in the cluster.

Note: When the AdminServer and second node are on two different

physical machines, the deployment of RIB to the second node may fail
the first time due to timing issues. If this occurs, the workaround is to

run the deployment script a second time.

At any given time, only one instance of the same RIB app can be running in a cluster.
Failure to ensure that only one is running can cause messages to be processed out of
sequence or applications to receive duplicate copies of messages.

5-8 Oracle Retail Integration Bus Implementation Guide

6

Deployment Architecture and Options

There are no physical location constraints on where rib-<app> applications can be
deployed as long as they are visible from the same network. But the decision on where
to physically and logically locate your rib-<app> applications has a huge impact on
the high availability, performance and maintainability of your integration solution, so
this decision must be given careful consideration.

Recommended Deployment Options

The RIB applications can be deployed in a variety of physical and logical
configurations depending on the retailer's needs. Oracle Retail has two recommended
configuration alternatives.

s Distributed: In this deployment, each of the rib application (rib-<app>.ear) is
deployed in the same Weblogic Application Server as integrating application
(<app>.ear) but in its own WLS managed server instance.

» Centralized: In this deployment, all rib applications (rib-<app>.ear) are deployed
in a single Weblogic Application Server (not managed server instance)
independent of where the Oracle Retails apps (<app>.ear) Weblogic Application
Server is.

In all cases, the rib application (rib-<app>.ear) should be deployed in its own managed
server instance. It is not recommended to deploy multiple rib applications into the
same WLS managed server instance, or to have the rib application (rib-<app>.ear)
deployed into the same WLS managed server instance as the integrating application
(<app>.ear). This configuration of deploying multiple rib-<app>s in one managed
server instance is not recommended or supported by WLS.

Deployment Architecture and Options 6-1

Distributed Deployment Alternative

Distributed Deployment Alternative

Advantages

Disadvantages

6-2

Doak Arwry
R]
gt |

[
*| Classen, 1O
-~ B L

3
3
=
g
S
n'.

Following are some advantages and disadvantages of this configuration.

Required single Oracle Application Server for both rib (rib-<app>.ear) and
integrating application (<app>.ear).

<app>.ear and rib-<app>.ear are close to each other but are still loosely coupled.

It is easy to find which rib-<app>.ear is associated with which integrating
application (<app>.ear).

A single WLS instance is never the single point of failure for the whole integration
system.

When WLS server of rib-<app>.ear has to be bounced, the integrating application
(<app>.ear) becomes unavailable, as both reside in the same application server.
Similarly rib-<app>.ear has to bounce when <app>.ear needs bouncing. This
dependency between the two applications is not ideal.

Even though both the applications reside within the same application server, it is
the configuration with the applications that are tying them together not the
physical characteristics of both being deployed in the same application server.
Physical location might be misleading if the system is not configured correctly.

One application server has to work harder for management of resources and
services for both applications.

System load distribution between rib-<app>.ear and <app>.ear is not possible as
both applications reside within the machine.

Oracle Retail Integration Bus Implementation Guide

Centralized Deployment Alternative

Who Should Use This Configuration?

Medium to large size deployments can use this configuration. This configuration is
appropriate when the machine hosting WLS is adequately sized for its job. A high
message volume in rib-<app>.ear can adversely affect the performance of the
integrating application (<app>.ear) in areas that are not related to integration. Ideally
this kind of behavior is not desirable for an online system.

Centralized Deployment Alternative

In this deployment, all rib application (rib-<app>.ear) are deployed in a single
WebLogic Application Server but in separate Java EE containers (managed server
instances). The integrating applications (<app>.ear) are deployed in their own
separate WebLogic Application Server. There is only one JMS server and all
participating rib-<app> are configured to use the same JMS server.

Java App Server 2.

Each rib-<app> has a

/_ Hosgital

Database Server
Error
Hospit
a

Thate can only ba
one nb-<app> per
managed server and

Database Server

—— only 1 instance of

Advantages

'ﬁOM Application Server ™ each running at any
i 5 RIB Server point (Chustering is not
:WLS Server : T S T suppored)
i <app>.ear | ; “f‘ h
! | i ribecapp> aar h
: 1 10 2 h
| 5 " 1| | <awe>Adapt it DRak SMTey
——— e —————— [Fie-SystenT
] ors 1
=== mmmmmm 5 "= A | (ma
1 WS Serve i N s ot Clissas, IO
i rsl.ear | T Y o i e - LR
: " I Ty roy r
1 [
ik 1 NS Server ! rib-func- [S VIC
f | 5 SService
oty 7] 1 antitact war ks o b
1 "
I chustired
Oracle 1 [across
AQ JMS v ST e T Sl - multiphe
= WLS
Server
- Sanvers.
Database Server
: Frrgee
i .
r“'a., '::"W Meb Servicd
i
5 5 sljmz = o g
b L
o
PL/SOL AFL
5,
= | RIBIGSMRSL Motes: The Cennized | LEGEND Flanoiea snd
2 |Parspactive Mu-n.w..ri::f [MOM O Onm1:§:on 7 On-page
© |Centralized o apphcations o & Syshem System conneclor
= | Deployment caniral host, aach rib- ——
E oec must e in g O Stores 17 g'“gﬂ
5 WLS maraged servec Syslam s Sysem
2 Reloase: 13.2.x | o @ ore can R’TG S
= iy bs one rit-Lapps 3" Party
oracLE = i In[ras"uch:re:
T == Systom System
& Oracle
Corporation

Following are some advantages and disadvantages of this configuration.

= Allintegration relegated components are deployed in one application server.

= The configuration is simple to find, view, and manage.

Deployment Architecture and Options 6-3

Conclusions

Disadvantages

= Because all rib-<app>.ear (applications) reside on the same WebLogic Application
Server, system resources are shared among the applications, which means each can
adversely affect the performance of another. For example, rib-aip.ear can become
slow when rib-rpm.ear is processing a lot of messages, even though these
applications are not at all related to each other.

= Opverall performance can be slower as one application server machine has to do
lots of work.

s The RIB application server and host become the single point of failure for the
whole integration system (environment). That is, when the WebLogic Application
Server goes down the whole integration is down for all retail applications
(<app>.ear).

Who should use this Configuration?

Small to Medium size deployments can use this configuration. When the message size
is small and high volume is not expected, this configuration can be used. This
configuration can also be used when there are only two integrating application. As
each rib-<app>.ear publishes and subscribes to each other, they are indirectly (through
JMS) interdependent and so performance should not be affected too much when the
message volume is less.

Conclusions

RIB deployment recommendation does not take into account your hardware size,
network topology, existing legacy system, and so on. One size fits all does not work.
You need to do proper due diligence based on our recommendations and your specific
environment settings in order to come up with the best deployment architecture that
meets your needs.

6-4 Oracle Retail Integration Bus Implementation Guide

7

Implementation Process

This release of RIB defines the full life cycle of the RIB software product. The RIB life
cycle and phases are described in detail in the software lifecycle management section
of this document. For every life cycle phase and task that RIB defines, it provides
corresponding tools and utilities to manage and operate on those phases. The tools
and utilities are described in detail in the Oracle Retail Integration Bus Operations Guide.

There are several prerequisite steps that should be followed to have a successful RIB
installation and deployment.

Understand the RIB Core Concepts.
Understand the integration message flow paths.
Understand the deployment options.
Understand the RIB life cycle.

Understand the physical and logical requirements and limitations of the RIB
Components.

Understand the RIB Operational considerations.

The process of implementation should follow these general steps:

Work with the teams at your organization dedicated to Oracle Retail to coordinate
plans for the number and type of environments needed (for example, Dev,
Integration, Production).

Each type of environment needs to be sized, deployed, and managed in
conjunction with the implementation of the Oracle Retail applications.

— Itis critical to understand the volume requirements of the production system
so that the appropriate decisions can be made about the deployment option
and the physical location and sizing.

All deployments have integration to existing retailer systems. It is critical to
understand the position of the RIB as it fits into the overall integration architecture
and that the current operations and architecture team understand the RIB and its
capabilities.

Select a deployment option (centralized or distributed).

— This may be mixed depending on the phases of deployment. Development
and test may be centralized and production distributed.

— Understand the operational complexities of each and plan for the staffing.

Work with the application server administration teams to determine the physical
and logical placement of the RIB components.

Implementation Process 7-1

Implementation Verification and Validation

= Work with the system administrator and database administrator to appropriately
place, size, and configure the AQ JMS.

= Work with the system administrators to select the central RIB management
location, rib-home.

s The installation of the RIB has many pre-requisites and dependencies that require
the understanding, support and effort of database administrators, system
administrators, application server administrators, and your organization's Oracle
Retail application teams. It is a critical role of the RIB system administrator to
work with each team, regardless of the site organization structure. See the Oracle
Retail Integration Bus Installation Guide.

— The operation requirements and considerations are covered in the Oracle Retail
Integration Bus Operations Guide. The guide should be understood before the
implementation so that the factors can be considered in the planning.

» Create operational plans for the RIB life cycle. See the Oracle Retail Integration Bus
Operations Guide.

s Create plans for environment monitoring and maintenance. See the Oracle Retail
Integration Bus Operations Guide.

= Plan to performance test. The RIB supplies tools to aid in the testing, but it is a
difficult task that involves the database administrators, system administrators,
application server administrators, and the Oracle Retail application teams.

Note: For more discussion on Performance see "Performance
Considerations" in the Oracle Retail Integration Bus Operations Guide.

Implementation Verification and Validation

Verification is the process of reviewing, inspecting, testing, and documenting that the
product behaves in a manner as defined by the product requirement specification.
Validation on the other hand is the process of making sure that the product's runtime
behavior meets the retailer's needs and requirements. RIB provides tools and utilities
to verify that a RIB installation is configured correctly and works properly when
business events (messages) occur in your enterprise. RIB also provides tools to test
integration infrastructure standalone, independent of any Oracle Retail applications.

Implementation Environment Verification

The RIB Diagnostic and Monitoring Tool (RDMT) can be used to verify your
installation and configurations. The RDMT configuration report utility generates an
extensive configuration report of your runtime environment. It is recommended to
regularly perform full RIB health check using the RDMT tool sets to proactively find
problems and recover before any problem becomes a serious issue.

See the Oracle Retail Integration Bus Support Tools Guide for RDMT information.

Integration Environment Testability

Identifying the ownership of an integration problem is one of the hardest problems in
any integration project. Data mismatch problems always show up in the integration
layer but in reality it is the source and the destination applications that have a
mismatch in the data model. To be able to isolate integration infrastructure problem
versus retail application API problem it is very important to be able to test the
integration infrastructure independent of the retail applications.

7-2 Oracle Retail Integration Bus Implementation Guide

Implementation Verification and Validation

In this release, RIB provides four test harnesses that allow you to build a standalone
working integration environment without the need to install any Oracle Retail
applications. The test harnesses simulate Oracle Retail PL/SQL applications (RMS,
RFM, and RWMS), Oracle Retail Java EE applications (SIM, RPM, and AIP), and
Oracle Retail SOAP applications (OMS). The test harnesses are known as
plsql-api-stubs, javaee-api-stubs, plsql service interface tester, and java service
interface tester respectively.

See the Oracle Retail Integration Bus Operations Guide for information about the RIB test
harness.

Implementation Process 7-3

Implementation Verification and Validation

7-4 Oracle Retail Integration Bus Implementation Guide

8

Performance

Performance Factors

The performance of each of these components is influential in the overall performance
of the system:

The application server(s) topology and configuration.
The RIB deployment approach.
The hardware sizing and configuration of the RIB hosts.

The hardware sizing and configuration of the applications that are connected to
the RIB.

The hardware sizing and configuration of the JMS provider host.

The hardware sizing and configuration of the RIB Hospitals hosts.

There are other factors that determine the performance of the overall system. Some of
these factors in a RIB environment are:

Number of channels configured

Number of messages present in the topic

Size of the message

Database clustering

Application Server topology

Number of TAFRs in the processing of the message

Message aggregation

See "Performance Considerations" in the Oracle Retail Integration Bus Operations Guide.

Note: For more information, see “Performance Considerations,” in
the Oracle Retail Integration Bus Operations Guide.

Performance and Parallel Logical Channels

The RIB must provide guaranteed once and only once processing of business events
(messages) across the enterprise. Maintaining the order of business events across the
enterprise is critical to data integrity.

Performance 8-1

Performance and Parallel Logical Channels

To provide guaranteed sequencing of message processing, RIB requires a guaranteed
first in, first out (FIFO) messaging system with guaranteed FIFO rollback. That is,
when you rollback the message from the consumer you get the same message back the
next time so that it is processed in sequence. JMS Provider provides this FIFO topic
and FIFO rollback capability, which enables RIB to guarantee message sequencing.

Processing messages in sequence results in operational overhead, as every message
must be checked against the database to find the status of previous messages on which
itis dependent (same businessObjectid). Sequencing creates an inherent bottleneck, in
that only one message is processed at once. For example, messages can come at the
rate of 100 messages per second, but a RIB subscribing adapter can process only one of
those messages at a time to preserve the order. To get around this bottleneck and
improve performance, RIB provides options for optimization and functionality.

First, RIB processes messages in sequence only when the publishing application wants
it to be processed in sequence. The message producer application defines a
businessObjectid whose existence informs RIB that this and all subsequent messages
with the same businessObjectid have to be processed in order.

Second, parallel logical channels can be created for each message flow paths in the
integration system to improve performance. Parallel logical channels are virtual logical
message flow paths within the same physical JMS topics. To add additional channels,
each adapter participating in a message flow must be configured with additional
adapter instances. See the Oracle Retail Integration Bus Operations Guide for how to
configure parallel logical channels.

Using parallel logical channels is not the solution for all performance problems in the
integration system. They can help only when the API for the corresponding
applications is written with non-locking logic and concurrency invocation in mind.

Generally, integration for the retail application APIs are the biggest factor for
bottlenecks in the overall messaging system throughput. It is not appropriate to start
creating parallel logical channels at the first sign of performance problem. It is
important to analyze and tune the integration APIs of the retail applications before
considering the use of parallel channels.

Using parallel logical channels increases complexity, CPU demands, and memory
requirement, resulting in more operational overhead. Use them only when, after all
other components are fully tuned, you are still not able to meet your target numbers.

8-2 Oracle Retail Integration Bus Implementation Guide

9

Security

Security in the integration layer is a big concern for every retail enterprise. The
security system should be open enough to allow trusted remote applications to
integrate easily and, at the same time, lock down unauthorized remote access. To
address security concerns, RIB utilizes the security modules available in the Oracle
middle ware and database systems.

There are two categories of administrators in RIB: RIB System Administrators and RIB
Application Administrators. RIB System Administrators are involved in installing,
configuring, deploying defect fixes, and making sure that the integration infrastructure
is up and running properly. They generally are concerned with the business side of the
integration system. Their tasks include bringing up or taking down RIB adapters, and
fixing data issues with message payloads using RIHA. There are separate realms,
roles, groups, and users defined for each category of RIB administrators.

RIB Application Administrators Security Domain

WebLogic server has a default security realm. For each rib-<app>.ear deployed, RIB
creates a user in the default security realm. This realm defines a group called
ribAdminGroup. By default, RIB creates a user that belongs to the ribAdminGroup
and Administrators groups. The RIB System Administrators can manage rib-<app>
application's users and access control through the WebLogic Server Administration
Console. The default group and user that RIB creates must not be deleted or modified

RIB System Administrators Security Domain

The RIB System Administrators focus primarily on managing access to the RIB JMS
server, application server instances, RIB Hospital database, and the rib-home
workspace. RIB must be deployed with the default WebLogic admin user.

Note: For more information about security, see Oracle Retail
Integration Bus Security Guide or see Chapter 7, "RIB Security," in the
Oracle Retail Integration Bus Installation Guide.

Security 9-1

RIB System Administrators Security Domain

9-2 Oracle Retail Integration Bus Implementation Guide

10

Integration with Fusion Middleware

RIB is certified on the Oracle Fusion Middleware Application Server. All RIB
publishers, subscribers, and TAFRs are Java EE standard components (EJBs and
MDBs) that are deployed and managed by the WebLogic Application Server in
managed instances. This means that the RIB can be deployed into an existing Fusion
Middleware architecture without any changes.

All RIB message payloads are fully standard compliant XSD based. All of the XML
payloads are namespace aware and follow the general standards as well as the
conventions that make them compatible with other Oracle Fusion products such ESB
and BPEL. The payload schema definitions (XSDs) are packaged with each release
along with sample messages.

The recommended approach for integration between the RIB and Oracle Fusion
Middleware products is at the JMS topic level. Any standards compliant tool or
product that can interface to the JMS and subscribe and publish messages can be
integrated with the RIB.

There are some key functional requirements that an integrating application must
follow. It must have the ablity to do the following:

= Connect to a standard JMS and publish to a topic.
» Create a durable subscriber to a RIB JMS topic
= Set user-defined message properties.

= Encode and decode RIB payloads embedded within the RIB message envelope.

Integration with Fusion Middleware 10-1

General RIB to Fusion Middleware Architecture

General RIB to Fusion Middleware Architecture

JMS Provider

(RIB Certified

Oracle Retail Oracle Retail
Warehouse Store
Management Inventory
System Management

The Oracle Fusion Middleware products, such as ESB and BPEL, use a common
standard JMS Adapter. This adapter can be used to connect to the RIB certified JMS
Provider and topics.

The JMS topics that the RIB creates for publication and subscription are detailed in the
Oracle Retail Integration Bus Integration Guide, along with all of the message payloads
for each message family.

The RIB html encodes each message payload and inserts it into the RIB messages
envelope. Each message has a JMS user-defined property called threadValue that is
required to be set on all in-bound messages. In a multi-channel message flow, the
subscriber will need to set the message selector to an appropriate threadValue to
maintain message publication sequencing.

The xml schema definitions for the payloads and the RIB Messages envelopes are
packaged and shipped with the RIB.

See the Oracle Retail Integration Bus Integration Guide for more information.

The RIB JMS topic names and message flows between the RIB adapters for each of the
Oracle Retail applications are defined in the rib-integration-flows.xml file. This file is
the single source of truth that the RIB release uses at configuration and run-time. It is
required to be accessible within each RIB deployment:

http:/ / <server>:<port>/rib-func-artifact/rib-integration-flows.xml. During
installation and configuration, this file is deployed as a part of the functional artifact
war file.

General Process of Integration

The general process for custom integration with the RIB:
s Determine the Message Family of interest (such as Items)

» Use the Oracle Retail Integration Bus Integration Guide to determine the message
payloads and topics involved.

» Configure the JMS Adapter within the tool (ESB/BPEL) to the RIB JMS provider.

s Understand the RIB envelope (RibMessage.xsd) and the message type
relationship.

10-2 Oracle Retail Integration Bus Implementation Guide

General RIB to Fusion Middleware Architecture

s Understand the payload for each message. These are html-encode inside the
RibMessage envelope.

— The RIB XSDs are included in the Oracle Retail Integration Bus Integration Guide
as well as the Function Artifacts war file.

= Understand the Oracle Retail Application API mappings. These are included in
the Oracle Retail Integration Bus Integration Guide. This is important because the
XSDs do not reflect the actual optional/mandatory state of an element. For
historical reasons (to support previous releases), all elements in the XSD that have
been added since RIB version 10.3 have been optional at the message level.

- The Mapping reports are included with the Oracle Retail Integration Bus
Integration Guide.

- Each of the Oracle Retail applications has documentation on the behavior of
the APL

= All RIB messages must have the message property threadValue set by publishing
applications, and in a multi-channel message flow, the subscriber will need to set
the message selector to an appropriate thread Value to maintain message
publication sequencing.

- Understand the relationship between the threadValue and multiple-channels
within the RIB. See "Multiple Channels" in the Oracle Retail Integration Bus
Operations Guide.

= Many of the Message Families have a RIB Component called a TAFR involved.
Understand what a TAFR is and how it works within a message flow. This can be
very involved in some families, and can actually create additional mandatory
elements with a message that may not be obvious. See "Transform, Filtering and
Routing" in the Oracle Retail Integration Bus Operations Guide.

s The Oracle Retail Integration Bus Integration Guide for each family has the general
functional specifications for the TAFRs involved with that family.

= Understand the volume characteristics of a message family. The RIB is designed to
handle retail volumes, so a poorly designed subscriber can have a huge impact on
the JMS. Conversely, a publisher that tries to use the RIB as a bulk transfer
mechanism is also inappropriate.

Configure FWM JMS Adapter to RIB AQJMS

There is nothing special about configuration of the JMS Adapter in either ESB or BPEL
to now connect to the Resource Provider configured to the RIB AQ JMS. (See Oracle
Service Oriented Architecture Suite tutorials and documentation.) RIB AQ must be
configured as foreign JMS, while RIB is deployed on WebLogic server.

For information about configuring foreign JMS adapter, see the Weblogic® Application
Server Administrator's Guide 11g Release 1 (10.3.6).

Integration with Fusion Middleware 10-3

General RIB to Fusion Middleware Architecture

10-4 Oracle Retail Integration Bus Implementation Guide

11

RIB Customization/Extension

The customization of an Oracle Retail Application often drives requirements to
customize or extend the messages that flow among the Oracle Retail applications, or to
create new message flows to support new business logic.

This section discusses the customization/extension approaches and best practices
(from a RIB perspective) for extending base messages, creating new messages and
adapters. These are complex topics and should be performed with great care to avoid
making future generally available (GA) releases difficult or impossible to accept.

Retailers often modify retail software either in-house or through third-party system
integrators. The customization and extension of Oracle Retail base products and
messages are not supported by Oracle Retail, including My Oracle Support. This
chapter aims to mitigate the risks of unsupported customization by providing
guidance and references on how to attempt to customize safely and effectively. The
tools and approaches described in this chapter are complex and require a high level of
skill and knowledge of the product. Any issues that may arise with custom flows,
custom APIs or customized message families are the responsibility of the customer
and not Oracle Retail.

Prerequisites for RIB Customization

Customization requires careful consideration and planning for extending the RIB.
Planning helps to avoid re-installation or re-architecture because of operational or
performance problems.

The following prerequisites help to ensure a successful customization of RIB:
= A functional RIB environment without any customizations.

s Familiarity with the Core RIB Concepts, components, and architecture, including
an understanding of all of the following;:

- Oracle database triggers, RIB adapters, RIB Message envelope, RIB Message
payloads and the functionality of GETNXT () and CONSUME () stored
procedures.

- Integration message flow paths.

- RIBlife cycle.

- Physical and logical requirements and limitations of the RIB components.
- RIB operational considerations.

The tools used in the customization and extension of the RIB are separately
documented. The primary tools are the Retail Functional Artifact Generator and the

RIB Customization/Extension 11-1

Message Family and Message Type Customization

rib-app-builder tools. The message (payload) structure and packaging is covered in the
Oracle Retail Functional Artifacts Guide.

The following documents are referenced throughout this chapter and are required for
the customization effort.

» Oracle Retail Functional Artifacts Guide
» Oracle Retail Functional Artifact Generator Guide

» Oracle Retail Integration Bus Operations Guide

Rules for Customization

Understand the following customization rules.

= Always keep an environment with a base version release to reproduce any base
version issues. Only GA base code and messages are supported.

= Always take a backup of the particular files being modified during the
customization, to allow for reversal of the changes.

= Always use RIB tools such as RDMT, RIHA, the PL/SQL and Java EE
API-simulators (also known as Stubby) and the PLSQL and JavaEE Service
Interface Testers to test the customization changes whenever possible.

s Never modify the existing base flows in rib-integration-flows.xml. Modification
can cause errors in functionality that are difficult to detect. Also, modifications you
make to base flows do not carry over to new releases, nor are they retained when
defect fixes are applied to base code and objects.

s When customizing or extending the RIB messages or flows, all publishing and
subscribing applications participating in the flow must be considered.

= Inscenarios where payload customization or the addition of a new message type
for a particular message family is planned, and the flow contains a TAFR, the
following rules apply:

- TAFRs that do not examine RIB Message types/payloads do not require
modification.

- For TAFRs that examine message type/payloads for filtering or
transformation purposes, the TAFR implementation code must be changed. If
this code is not changed, the messages will fail and land in RIB Error Hospital
tables.

Message Family and Message Type Customization

In the RIB, all messages are categorized by message family message type. A message
family is specific to one or more Business Objects. It defines all publishable events
occurring on the Business Object(s).

The message type classifies a specific event. For example, the Orders message family is
designed for messages regarding purchase orders, and the Vendor message family is
associated with supplier or vendor information.

Typical message types for a message family include at least one create, modify, and
delete operation.

Note: See "Message Family and Message Types" in Chapter 3.

11-2 Oracle Retail Integration Bus Implementation Guide

Message Family and Message Type Customization

Adding a New Message Type

To add a new message to an existing message family, the simplest approach is to add a
new message type. The first step is to determine and create the payload for the new
message type. The message payload must be created following the guideline and
packaging rules for RIB messages.

Note: See the Oracle Retail Functional Artifact Generator Guide and the
Oracle Retail Functional Artifacts Guide.

Once the desired payload is ready, follow the appropriate steps for the type of
applications in the message family and the message flow.

Message Flows with PL/SQL Applications

The new message type created for an already existing or new message family must be
added in the rib-<app>-plsql-api.xml of the subscribing PL/SQL retail application.

Note: No configuration changes are needed in rib-<plsql-app>
whenever PL/SQL applications publish a new message type to which
no PL/SQL applications subscribe.

The following illustration indicates the files that must be changed inside the RIB
infrastructure during the addition of a new message type when a PL/SQL application
is involved in the message flow.

RIE Functiomal Ariificts

FirsTeasd mals

nk i alke-
e xml

rib-privire-fak-
husoess impl jar

retal public-paylosd.
Juen-heas jur

metl pubdi:-paload-

Betail I'LSCH. Application

Jivarbiums beea jar

et pubdec-paioed

Retail Javakk Application
[SIMLRPM, AP

(RS W) : sib-pulic-palead-
dainhase-obyeci- jarva-heans jur
2
RIH Uxache Objects fib-<appe-gar Tor FLSCH Ttk bl it
rib-puhlic-paylnad- Application ""'“—'"l""*‘”l'
damahase-pbject-
TRpesFp ib-<apg-
i< xml RIE Rl
by ar o ek E
CLEHL AP libeary " Tr.,:f,_!w:,.m
rib- puhlic-paylnad rib-=app adapers . :
chriabese-xml FEMUTCE S P
libeary 2ipi BMS Cily) nb-application: ribsappre-achimers sl -
bl infon. el) rib-pulic- -
el g saimple]
ib==appe peapenics T <appc=- adapiess
Erverr Flcepilil Tablis e Frred Hospizal Tahles,
|l||-r|ma|ﬁ'-=\-|rc|_- ilpe vale- kel
tatase library zip b proputie: databses-library. ap

Procedure for Adding a New Message Type for PL/SQL Applications
To add a new message type for PL/SQL applications, complete the following steps.

RIB Customization/Extension 11-3

Message Family and Message Type Customization

1. Add the new message type in rib-<app>-plsql-api.xml where app = rms, orfm, or
rwms, present under <RIB_HOME>/application-assembly-home/rib-<app>
directory.

For example, to add a new message type, DiffGrpFooCre, for the DiffGrp message
family using DiffGrpFooDesc as the payload XML that is subscribed by RWMS
app: Add the message type under the <adaptorClassDef name="DiffGrp_sub"> of
rib-rwms-plsql-api.xml present under <RIB_
HOME->/application-assembly-home/rib-rwms as below.

> cd <RIB_HOME>/application-assembly-home/rib-rwms
> vi rib-rwms-plsgl-api.xml

<adaptorClassDef name="DiffGrp_sub">

<messageFamily name="DiffGrp">
<storedProc>
<signature>{call RDMSUB_
DIFFGRP.CONSUME (?,?,?,?,?)}</signature>
<useFacilityType>true</useFacilityType>
</storedProc>
<messageType name="DIFFGRPDEL">
<oracleObject>RIB_DiffGrpRef REC</oracleObject>
</messageType>
<messageType name="DIFFGRPDTLCRE">
<oracleObject>RIB_DiffGrpDtlDesc_REC</oracleObject>
</messageType>
<messageType name="DIFFGRPDTLDEL">
<oracleObject>RIB_DiffGrpDtlRef REC</oracleObject>
</messageType>
<messageType name="DIFFGRPHDRCRE">
<oracleObject>RIB_DiffGrpHdrDesc_REC</oracleObject>
</messageType>
<messageType name="DIFFGRPDTLMOD">
<oracleObject>RIB_DiffGrpDtlDesc_REC</oracleObject>
</messageType>
<messageType name="DIFFGRPHDRMOD">
<oracleObject>RIB_DiffGrpHdrDesc_REC</oracleObject>
</messageType>
</messageType name="DIFFGRPFOOCRE">
<oracleObject>RIB_DiffGrpFooDesc_REC</oracleObject>
</messageType>
</messageFamily>
</adaptorClassDef>
2. Create a temporary working directory, customization workarea, under <RIB_
HOME->/tools-home to perform any customization related tasks.

3. Using the Functional Artifact Generator tool, create
custom-retail-public-payload-java-beans jar. Copy it to the customization
workarea directory created in the previous step.

> cd <RIB_HOME>/tools-home/customization-workarea
> cp <RIB_HOME>/application-assembly-home/rib-func-artifacts/
retail-public-payload-java-beans.jar

Note: See the Oracle Retail Functional Artifact Generator Guide for
steps to create custom artifacts.

11-4 Oracle Retail Integration Bus Implementation Guide

Message Family and Message Type Customization

4. Create custom-payload.properties and add the new payload message definitions.
The format of the definition is:

"RIBFAMILY. TYPE=IMPLEMENTATION CLASS NAME"

> vi payload.properties (make changes)
For example, when adding the new message type, DiffGrpFooCre, under the
DiffGrp message family, the custom-payload.properties file is modified as follows:

DIFFGRP.DIFFGRPFOOCRE=com.oracle.retail.integration.custom.bo.extofdiffgrpf
oodesc.v1.ExtOfDiffGrpFooDesc

For this example, DiffGrpFooCre calls the implementation class,
ExtOfDiffGrpFooDesc.

Note: If there is a TAFR involved in the flow, the appropriate
changes must be made to the TAFR to handle the new message types.

5. Add custom-payload.properties to custom-retail-public-payload-java-beansjar.

> jar -uvf custom-retail-public-payload-java-beans.jar
META-INF/custom-payload.properties

6. Copy the updated custom-retail-public-payload-java-beans.jar to <RIB_
HOME> /application-assembly-home/rib-func-artifacts/ directory.

7. Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME> /application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

Note: See the Oracle Retail Integration Bus Operations Guide -
(rib-app-builder tools).

> cd <RIB_HOME>/application-assembly-home/bin
> sh rib-app-compiler.sh

8. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME->/deployment-home/bin directory as follows:

> cd <RIB_HOME>/tools-home/customization-workarea

> cp <RIB_HOME>/application-assembly-home/rib-func-artifacts/
retail-public-payload-java-beans.jar

This deploys the rib-func-artifact-war.

> sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>
This deploys the rib-<app>. Repeat this step for each rib-<app> in scope for this
integration environment.

Note: The <app> must be an RMS, ORFM, or RWMS application.

Message Flows with Java EE Applications

The illustration below indicates the files that must be changed inside the RIB
infrastructure during the addition of a new message type when a Java EE application
is involved in the message flow.

RIB Customization/Extension 11-5

Message Family and Message Type Customization

RIB Functional
Artifacts

Payload xsds Change Needed

rib-integration-flows.xml

rib-private-tafr-business-
impl.jar

beans j A
Ansiar Application
" rib-public-payload- (SIM,RPM,AIP)
Retal LSO
Application
(RMS,RWMS) rib-public-payload- rib-public-payload-
database-xml|-library.zip java-beans jar
rib-<app>.ear for PL/

i SQL Application rib-public-payload-xmi- —
EoE §
rib-public-payloas ibers only)

database-object-

types.zip rib-<app>-
adapters.xml RIB Kernel rib-public-api.jar

CLOE AP! library rib-deployment-env- rib-<app>.ear for
rib-public-payload- rib-<app>-adapters- info.xmi JavaEE Application ’m‘
database-xml- resources.properties :
rib-<app>-adapters.xml ‘ rib-public-api-
conf jar(sample)

rib-<app>.properties

Error Hospital Tables

library.zip(RMS rib-application-
Only) assambly-info.xml
rib-<app>-adapters-
resources. properties

rib-inventory-info.xml

Error Hospital Tables
rib-private-kemel-
rib-<app=>.properties database-library.zip

|
Ik

rib-private-kemel-
database-library.zip fib-<app>-plsql- rib-system properties
api.xmi

Procedure for Adding a New Message Type for Java EE Applications

1.

Create a temporary working directory, customization-workarea, under <RIB_
HOME> /tools-home to perform any customization related tasks

Go to the customization-workarea directory and create a file called
custom-payload.properties.

> cd <RIB_HOME>/tools-home/customization-workarea

> vi custom-payload.properties

Edit the custom-payload.properties created in the step above. The
custom-payload.properties would contain the new payload message definitions.

The format of the definition is:
"RIBFAMILY.TYPE=IMPLEMENTATION CLASS NAME"

> vi custom-payload.properties (make changes)
For example, when adding the new message type, DiffFooCre, under the Diffs
message family, the custom-payload.properties file is modified as follows:

DIFFGRP.DIFFGRPFOOCRE=com.oracle.retail.integration.custom.bo.extofdiffgrpf
oodesc.v1.ExtOfDiffGrpFooDesc

For this example, DiffGrpFooCre calls the implementation class,
ExtOfDiffGrpFooDesc.

If this involves a customized payload, then copy over the
custom-retail-public-payload-java-beans.jar generated using Functional Artifact
Generator tool to customization-workarea directory.

> cp
<path-to-the-jar-generated-by-artifact-generator>/custom-retail-public-payload-
java-beans.jar

For example, :cp <RIB_
HOME>/tools-home/retail-func-artifact-gen/dist/custom-retail-public-payload-jav
a-beans.jar

and add the custom-payload.properties to the jar

> jar -uvf custom-retail-public-payload-java-beans.jar
custom-payload.properties

11-6 Oracle Retail Integration Bus Implementation Guide

Message Family and Message Type Customization

Copy the updated custom-retail-public-payload-java-beans.jar to <RIB_
HOME->/application-assembly-home/rib-func-artifacts/ directory.

For example: cp
<path-to-the-jar-generated-by-artifact-generator>/custom-retail-public-payload-
java-beans.jar <RIB_HOME>/application-assembly-home/rib-func-artifacts/

Go to <RIB_HOME?>/ application-assembly-home/conf and edit
rib-application-assembly-info.xml.

> cd <RIB_HOME>/ application-assembly-home/conf
> vi rib-application-assembly-info.xml
Add the following line, as shown in the code example below:

<include name="payload-lib/custom-retail-public-payload-java-beans.jar"/>

Note: If there is a TAFR involved in the flow, the appropriate
changes must be made to the TAFR to handle the new message
types.Message Family and Message Type Customization.

Example:

<rib-app id="rib-tafr" type="javaee-app">

<ear>

<classpath>

<classpath refid="rib-app.global.ejb-jar.classpath"/>

<fileset dir=".">

<include name="lib/rib-private-tafr-business-impl.jar"/>

<include name="lib/rib-custom-tafr-business-impl.jar"/>

<include name="payload-lib/custom-retail-public-payload-java-beans.jar"/>
<include name="payload-lib/retail-public-payload-java-beans.jar"/>
</fileset>

</classpath>

<java-ee-module>

<web-war/>

<ejb-jar>

<classpath>

<classpath refid="rib-app.global.ejb-jar.classpath"/>

<fileset dir=".">

<include name="lib/rib-private-tafr-business-impl.jar"/>

<include name="lib/rib-custom-tafr-business-impl.jar"/>

<include name="payload-lib/custom-retail-public-payload-java-beans.jar"/>
<include name="payload-lib/retail-public-payload-java-beans.jar"/>
</fileset>

</classpath>

</ejb-jar>

<jms-jca-connector>

<classpath refid="rib-app.global.jms-jca-connector.classpath"/>
</jms-jca-connector>

</java-ee-module>

</ear>

<resource>

<resource-path refid="rib-app.global.resource-path"/>
<resource-path>

<fileset dir=".">

<include name="rib-tafr.properties"/>

<include name="rib-tafr-adapters.xml"/>

<include name="rib-tafr-adapters-resources.properties"/>
</fileset>

</resource-path>

</resource>

RIB Customization/Extension 11-7

Message Family and Message Type Customization

Run the rib-app-compiler: Run the rib-app-compiler.sh script from <RIB_
HOME->/application-assembly-home/bin directory as follows.

>cd <RIB_HOME>/application-assembly-home/bin

>sh rib-app-compiler.sh

Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME?>/deployment-home/bin directory as follows.

> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -deploy-rib-func-artifact-war
This deploys the rib-func-artifact-war.

> sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>
This deploys the rib-<app>. Repeat this step for all rib-<app> that is in scope for
this integration environment.

Note: The <app> must be a TAFR, SIM, AIP, or RPM application.

Note: To verify the addition of a new message type for a message
family, see "Verifying the New Message Type".

Creating a New Message Family

In RIB, all messages are categorized by message family and message type. One option
for customizing the RIB is to create a new message family with a new publishing
adapter and a new subscribing adapter.

Additional Rules

If the new message family also corresponds to a topic, it is recommended that the
customization also include the creation of a new topic for that family.

A publishing adapter cannot publish to more than one JMS topic.
A subscribing adapter cannot subscribe to more than one JMS topic.

The first custom message flow must start with 901, with each subsequent custom
message flow id increasing by one from 901. For example, 901, 902, 903, and so on.

Each customized message flow id should be unique and must follow the sequence.

A new message family requires new (or custom) Oracle Retail Application side API(s).
Each API should be written, installed and tested independently, and then connected to
the custom message family flows.

The following illustration indicates the files that require changes during the addition
of a new message family inside the RIB infrastructure:

11-8 Oracle Retail Integration Bus Implementation Guide

Message Family and Message Type Customization

Rectad FLASOL. Applacasaon
TRME RWMS)

R ke

et public.

darahase.obyect.
TpERZIp

CLOH AT ibesy
rib public- payloud
duiabere xml
Iy rip RS Oy

ey cad Rl FLSCH
Appliies

RIB Famctional Artilsms

gk

iy - b
busoess impl jar

; 3
it ol s load-
Jimirboam: b jar

i

b =app ademers

PESOLTOE 3 PrUperines

Ermor Hospital Tabies
sl
daeduane libesey sap

il

gy, e e LnnEE
Apphcatan

Clunpes Nevdnd

Hetml Jovab b Applumsas
SN RPN AP

i bl -
e vl
CEMTITICAY. i

rb-spplicaion ik appe-iadagrors xml
oty info e | b ic- g
oxwd g samphel
TRy Iiﬂw--ilﬂv
L .
T EOLITES Propertie s
el Frnoe Hnspieal Tables
gy ivale- ke b

dithano-library. Ap

Procedure for Adding a New Message Family
To add a new message family, complete the following steps.

1.

Create a temporary working directory, customization-workarea, under <RIB_
HOME?> /tools-home to perform any customization related tasks.

Copy the rib-func-artifact.war present under <RIB_
HOME> /application-assembly-home /rib-func-artifacts/ directory into <RIB_
HOME> /tools-home/ customization-workarea/ directory.

> cd <RIB_HOME>/application-assembly-home/rib-func-artifacts

> cp rib-func-artifact.war <RIB_HOME>/tools-home/ customization-workarea
Extract the rib-integration-flows.xml from the copied rib-func-artifact.war
requiring modification.

> cd <RIB_HOME>/tools-home/ customization-workarea

> jar -xvf rib-func-artifact.war integration/rib-integration-flows.xml
Define the entire flow for the particular message family in
rib-integration-flows.xml present under /integration/ directory of <RIB_
HOME-> /tools-home/ customization-workarea.

The first custom message flow should always begin with <message-flow
id="901">. Each customized message flow id should be unique and must follow
the sequence. Adding a new customized message flow with a message-flow ID
between 1 and 900 is not recommended, as this range is reserved for adding base
flows in higher versions of RIB.

For example, when adding a new message family, Foo, that flows from the RMS
application to the RWMS application, the flow is defined in
rib-integration-flows.xml as follows:

<message-flow id="901">
<node id="rib-rms.Foo_pub" app-name="rib-rms"
adapter-class-def="Foo_pub" type="DbToJms">
<in-db>default</in-db>
<out-topic>etFooFromRMS</out-topic>

RIB Customization/Extension

Message Family and Message Type Customization

</node>
<node id=" rib-rwms.Foo_sub" app-name=" rib-rwms"
adapter-class-def="Foo_sub" type="JmsToDb">
<in-topic>etFooFromRMS</in-topic>
<out-db>default</out-db>
</node>
</message-flow>

The convention is as follows:

= node id = rib-<app>.<family>_pub or = rib-<app>.<family>_sub or could be
external-system.<family>_pub or external-system.<family>_sub.

= app-name = rib-<app> is the application name. The <app> is one of the
following: rms, rwms, sim, rpm aip, orfm, oms, or tafr-- or external-system.

» adapter-class-def = <family>_pub or <family>_sub.

= type = DbToJms, JmsToDb, or JmsToJms.

= <in-db> means the source of the message is a database.

= <out-db> means the destination of the message is a database.

= <out-topic> is the topic name to which the message is published.

= <in-topic> is the topic name from which the message is consumed.

5. Replace the previous existing rib-integration-flows.xml with the changed
rib-integration-flows.xml in the /integration/ directory of rib-func-artifact.war
under <RIB_HOME-> /tools-home/customization-workarea/ directory and
generate the rib-func-artifact.war as follows.

> cd <RIB_HOME>/tools-home/customization-workarea
> jar -uvf rib-func-artifact.war integration/rib-integration-flows.xml

6. Create a new publishing adapter, subscribing adapter and TAFR adapter (only if
necessary), depending on the requirement for the new message family as
explained later in this chapter.

Note: See "Adding New Adapters."

7. Create the message family XSD.

Note: See the Oracle Retail Functional Artifact Guide for information
about adding a new payload.

The newly created XSD should conform to the Meta schema,
IntegrationMetaschema.xsd. The artifact generator tool checks the validity of the
schema before generating any artifacts. If the schema is not compliant with the
IntegrationXmlMetaSchema, the artifact generator fails.

8. Create a new message type.

Note: See "Adding a New Message Type."

11-10 Oracle Retail Integration Bus Implementation Guide

Message Family and Message Type Customization

9. [Edit the custom-payload.properties file present in /conf directory of Rib Artifact
Generator tool installation. The custom-payload.properties contains the new
payload message definitions. The format of the definition is:

"RIBFAMILY.TYPE=IMPLEMENTATION CLASS NAME"
> cd conf
> vi payload.properties (make changes)

For example, when adding a new message type, FooCre, (under the Foo message
family) that calls the implementation class, FooDesc, the
custom-payload.properties file is modified as follows:

FOO.FOOCRE=com.oracle.retail.integration.custom.bo.extoffoodesc.vl.ExtOfFooDesc

Note: See the RibMessages.xsd bundled inside rib-func-artifact.war
for the maximum supported length for message type.

10. Run the Artifact Generator to generate functional artifacts.

> SGROOVY_HOME/bin/groovy
com.oracle.retail.integration.artifact.generator.GenArtifacts.groovy -g
generateCustom

Upon completion of this step, the generated artifacts are in the appropriate
./output*/dist folders: custom-retail-public-payload-database-object-types.zip and
custom-retail-public-payload-java-beans.jar

11. Copy these newly generated artifacts from the appropriate ./output*/dist folders
to <RIB_HOME> /application-assembly-home/rib-func-artifacts/ directory:
custom-retail-public-payload-database-object-types.zip and
custom-retail-public-payload-java-beans jar.

12. New entries may be needed in RIB_SETTINGS in the RMS application database to
reference the new message family only if the RMS application is in scope.

13. Run the rib-app-builder compile: Run the rib-app-compiler.sh script from <RIB_
HOME> /application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin

> sh rib-app-compiler.sh

14. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME?>/deployment-home/bin directory as follows to create the new topic
(etFooFromRMS) in the flow. (The prepare jms step is not destructive, so even if it
is run again it would remove all the topics and recreate them.)

> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -prepare-jms
15. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME->/deployment-home /bin directory as follows.
> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -deploy-rib-func-artifact-war
This deploys the rib-func-artifact.war.

> sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>

RIB Customization/Extension 11-11

Adding New Adapters

The rib-<app> is deployed. Repeat this step for each Rib-<app> in scope for this
integration environment.

Note: The <app> value must be rms, rwms, tafr, sim, orfm, aip, or
rpm.

Note: To verify the addition of a new message family, see "Verifying
the New Message Family."

Adding New Adapters

A RIB Adapter is a component that coordinates business event (message) generation
and processing with the respective Oracle Retail application interface. Each adapter in
the RIB is created to handle a specific functional interface.

Note: See "Adapters" in Chapter 3.

Adding the Custom Adapter to the rib-integration-flows.xml File

While adding a custom publishing, subscribing or TAFR adapter, it is necessary to add
or modify the message flows to which you are adding a custom adapter in the
rib-integration-flows.xml, update the rib-func-artifact.war, and deploy the updated
rib-func-artifact.war.

Example: Adding a new publisher Foo_pub that publishes a message for a message
family Foo that flows from RMS to RWMS. We need to define the flow in
rib-integration-flows.xml.

<message-flow 1d="901">
<node id="rib-rms.Foo_pub" app-name="rib-rms"
adapter-class-def="Foo_pub" type="DbToJdms">

<in-db>default</in-db>
<out-topic>etFooFromRMS</out-topic>

</node>

<node id=" rib-rwms.Foo_sub" app-name=" rib-rwms"
adapter-class-def="Foo_sub" type="JmsToDb">
<in-topic>etFooFromRMS</in-topic>
<out-db>default</out-db>
</node>
</message-flow>

Procedure for Adding the Flow to the rib-integration-flows.xml File
To add the flow to the rib-integration-flows.xml file, complete the following steps:

Note: Before adding the above flow to the rib-integration-flows.xml
flow, it is recommended that a temporary working directory
("customization-workarea" under <RIB_HOME> /tools-home) be
created. This directory can be used for performing any customization
related tasks.

11-12 Oracle Retail Integration Bus Implementation Guide

Adding New Adapters

1. Copy the rib-func-artifact.war from <RIB_HOME>/
application-assembly-home/rib-func-artifacts to <RIB_
HOME-> /tools-home/customization-workarea/ directory.

> cd <RIB_HOME>/ application-assembly-home/rib-func-artifacts
> cp rib-func-artifact.war <RIB_HOME>/tools-home/customization-workarea
2. Extract the rib-integration-flows.xml requiring modification from the copied

rib-func-artifact.war as follows:

> jar -xvf rib-func-artifact.war integration/ rib-integration-flows.xml

3. Add the flow shown above to the rib-integration-flows.xml.
4. Update the rib-func-artifact.war with the modified rib-integration-flows.xml.

> jar -uvf rib-func-artifact.war integration/ rib-integration-flows.xml

5. Copy the rib-func-artifact.war from <RIB_
HOME-> /tools-home /customization-workarea to <RIB_
HOME->/application-assembly-home/rib-func-artifacts/ directory.

> c¢d <RIB_HOME>/tools-home/customization-workarea
> cp rib-func-artifact.war <RIB_HOME>/
application-assembly-home/rib-func-artifacts

6. Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME>/application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin
> sh rib-app-compiler.sh
7. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME?>/deployment-home/bin directory as follows.
"cd <RIB_HOME>/deployment-home/bin

"sh rib-app-deployer.sh -deploy-rib-func-artifact-war

The rib-func-artifact.war is deployed.

Adding a Publishing Adapter for PL/SQL Applications

Publishing adapters create messages from the information captured by the
applications. These publishing adapters are designed to publish events for a single
message family and are specific to an Oracle Retail application. This section explains
how to create a new publishing adapter for a message family for a PL/SQL application
(such as RMS and RWMS).

The illustration below indicates the files that require changes inside the RIB
infrastructure for the addition of a new publishing adapter for a PL/SQL application:

RIB Customization/Extension 11-13

Adding New Adapters

Betail I'LSCH. Application

RIE Functiomal Ariificts

FirsTeasd mals

nk i alke-

e xml

rib-privire-fak-
husoess impl jar

retal public-paylosd.
Juen-heas jur

metl pubdi:-paload-
Jivarbiums beea jar

et pubdec-paioed

Chanpes Meeded

Retail Javakk Application
[SIMLRPM, AP

TRMS RWMS) . rib-pushlic-pay kad-
dainhase-obyeci- Jova-heans jor
Ly 2
RIH Uxache Objects fib-<appe-gar Tor FLSCH Ttk bl it
tibpuhlic-payinad- Application [
damahase-pbject-
TpesFip il
RIB K]
chapers zanl
e cuppie.ar o v E
CLOAE AP library : t‘-‘\’.‘rlr!l‘lﬂ:.!anl.-mmh
rib-public- pay lnad sib-app adapers :)
ahaiabere xml FESDAITOE S JEUPETS
libeary 2ipi BMS Cily) nb-application: ribsappre-achimers sl
bl infon. el) rib-pulic- -
el g saimple]
b= s
1B gaopcu N T <appc=- adapiess
Emar Foepinal Tables imfoxml TesoLETe propestios Frie Hospizal Tahles,
rib-privie-aemd- ilpe vale- kel

dattuse library 2ip rib-<zappesplsgl opixml

b~ propastics

dhatabsse- by, ap

rib-sysian proparlics

Procedure for Adding a Publishing Adapter for PL/SQL Applications
To add a publishing adapter for PL/SQL applications, complete the following steps.

1. Identify the flow to which the new adapter in being added.

2. Define the name of the publishing adapter. It should always follow the naming
convention, RIBFAMILY_pub_ADAPTER INSTANCE NO.

3. Define the particular publishing adapter in rib-<app>-adapters.xml under <RIB_
HOME?>/application-assembly-home/rib-<app>, where <app> refers to either
RMS, RFM, or RWMS. The customer also must mention a custom attribute equal
to "true" whenever a new customized publishing adapter is added.

For example, a new publishing adapter, Foo_pub_1, (for the Foo message family)
is defined in rib-<app>-adapters.xml as follows:

<timer-driven id="Foo_pub_1" initialState="running" timeDelay="10"
custom="true">
<timer-task>
<class name="com.retek.rib.app.getnext.impl.GetNextTimerTaskImpl"/>
<property name="maxChannelNumber" value="1" />
</timer-task>
</timer-driven>

4. Define the particular publishing adapter in
rib-<app>-adapters-resources.properties under <RIB_
HOME?>/application-assembly-home/rib-<app>, where <app> refers to either
RMS, ORFM, or RWMS.

Foo_pub_1.name=Foo Publisher, channel 1
Foo_pub_1.desc=Publisher for the Foo family through channel 1.

5. Define the particular publishing adapter in rib-<app>-plsql-api.xml under <RIB_
HOME>/application-assembly-home/rib-<app>, where <app> refers to either
RMS, OREM, or RWMS, as shown in the example below.

11-14 Oracle Retail Integration Bus Implementation Guide

Adding New Adapters

Note: The signature of the stored procedure should come from the
corresponding PL/SQL applications.

<adaptorClassDef name="Foo_pub">
<class>com.retek.rib.collab.general.OracleObjectPublisherComponentImpl</class>
<messageFamily name="Foo">
<storedProc>
<signature>{call RMSMFM_FOO.GETNXT(?,?,?,?,?,?,?,?)}</signature>
<storedProc>
</messageFamily>
</adaptorClassDef>

6. Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME> /application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin
> sh rib-app-compiler.sh

7. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME>/deployment-home/bin directory as follows.
> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>
The <app> is deployed.

8. Make the required changes to the rib-integration-flows.xml. See "Adding the
Custom Adapter to the rib-integration-flows.xml File."

Note: To verify the addition of the new adapter, see "Verifying the
New Publishing Adapter."

Adding a Publishing Adapter for Java EE Applications

Publishing adapters create messages from the information captured by the
applications. These publishing adapters are designed to publish events for a single
message family and are specific to an Oracle Retail application. This section explains
how to create a new publishing adapter for a message family for a Java EE application,
such as RPM, AIP, or SIM.

The illustration below indicates the files that require changes inside the RIB
infrastructure for the addition of a new publishing adapter for a Java EE application.

RIB Customization/Extension 11-15

Adding New Adapters

RIE Funetisnal Artifaoes

Fivload xaids

bl e-

s xnl

rib-privire-Gak
bustess-impl.jar

et pubdic-payioed-
Jaren-heans jor

mehial pubdi:-pandoad-
i tiverin Bk Retail Javakk Application
favrbrams beeu [SIMRPM,ATF)
Retail PLSCL Applicasion e . -
k il e-papdoed b
TRME RS . sib-puhblic-pay kad-
danbase-object- jiva-bemns jur
DR
RIH Unacke Objects [T Er—
nib-puhlic-paylnad- ambsawgies sip
derabase-pbyect-
TpesZip =g
bapiers xml RIE Rl
; " L ar fir JiveaEE
CLOE AT library - e " Tr.,hﬂh._:,.m
nibpublic-payload sib-=app - adaprers ;
akatabese.xml TR 5 JEUpE RS
libeary zip! BMS Cly) nb-application: rib-appre-acdapiers il
bl infir.aml rib-pedslic -
conl g aamplel
[e
A e ritrimnky- TR i
Ensrr Hieepitil Tablios imfmml e Finis Hospital Tahles
|l||-r|ma|f'-'ﬂ-|rc|_- _ g vl kerrac -
datsibase- libeary zip |“" sappes plaglapi el it propatic databsse-libeary, ap

Procedure for Adding a Publishing Adapter for Java EE Applications
To add a publishing adapter for Java EE applications, complete the following steps.

1. Identify the flow to which the new adapter in being added.

2. Define the name of the publishing adapter. It should always follow the naming
convention, RIBFAMILY_pub_ADAPTER INSTANCE NO.

3. Define the particular publishing adapter in rib-<app>-adapters.xml under <RIB_
HOME?>/application-assembly-home /rib-<app>, where <app> refers to RPM,
AIP, or SIM. The customer also must mention a custom attribute equal to "true"
whenever a new customized publishing adapter is added.

For example, a new publishing adapter, Foo_pub_1, (for the Foo message family)
is defined in rib-<app>-adapters.xml as follows:

<request-driven id=" Foo_pub_1" initialState="notConfigurable" custom="true" />

4. Define the particular publishing adapter in
rib-<app>-adapters-resources.properties under <RIB_
HOME>/application-assembly-home/rib-<app>, where <app> refers to RPM,
AIP, or SIM.

Foo_pub_1.name=Foo Publisher, channel 1
Foo_pub_1.desc=Publisher for the Foo family through channel 1.

5. Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME> /application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin
> sh rib-app-compiler.sh

6. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME->/deployment-home/bin directory as follows.

> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>

11-16 Oracle Retail Integration Bus Implementation Guide

Adding New Adapters

The <app> is deployed.

7. Make the required changes to the rib-integration-flows.xml. See "Adding the
Custom Adapter to the rib-integration-flows.xml File."

Note: To verify the addition of the new adapter, see "Verifying the
New Publishing Adapter."

Adding a Subscriber Adapter for PL/SQL Applications

Subscribing adapters are specific to Oracle Retail and designed to consume all
messages from a specific message family.

The illustration below indicates the files that require changes inside the RIB
infrastructure for the addition of a new subscriber adapter (for a particular message
family) for PL/SQL applications, such as RMS, ORFM, or RWMS.

RIE Funetisal Arfifaets Chanpes Meeded

Fersloasd zails

Al ratioe
Mzl

rib-privere-tat-
hustes-impl jar

neial pubdec-payloed-
jervn-heans jar

ctail public-paoluad-
I:-IL-E\:‘:: EH':: Retsil lavakk Application
: (SIMLRPM, AIP)

Reetail I'L'SCH. Applicarion tetoa k- public-paload-

TREME BWMEL . ribepushlic-paybad-
datnhase-abject- jurvn-hens. jar
PP
RIH Onacke Objects i< apgcar for FLOASCH el -l et
ar i - ol - o - T
rib-puhlic-payinad- Application wmilsiergles i "um"r}ww"mh
deihase-ckject- i

TPz rih-<appe-
Mm R
-eplovemmen-cane-
g vl

CLOE AT library it “,:F;lﬂ_'::,lj"' ofE
nib-public: payload sibe <appe adymers.
chrtabese-xm| TEREUTCE S EUPEriS
lbeary zip{ RMS Clyt rib-applicasicn [M — -
¥ m—rﬂ; i ib-<app-achipiers manl T pralic -
ol janzample)
rib-invenkry- s et
Erer Hospital Tabdus imbo il TesouTes propreties Ermes Hospical Tabbes
rib-privane-ounel- ibprivate-kerch-
datizase libeery zip . . rib- <appos propurtiss dtabiec-libary, ap

Procedure for Adding a New Subscribing Adapter for a PL/SQL Application

To add a new subscribing adapter for a PL/SQL application, complete the following
steps.

1. Identify the flow to which the new adapter is being added.

2. Define the name of the subscribing adapter. It should always follow the naming
convention, "RIBFAMILY_sub_ADAPTER INSTANCE NO".

3. Define the particular subscribing adapter in rib-<app>-adapters.xml under <RIB_
HOME->/application-assembly-home/rib-<app>, where <app> refers to either
RMS, ORFM, or RWMS. The customer also must mention a custom attribute equal
to True whenever a new customized subscribing adapter is added.

For example, a new subscribing adapter, Foo_sub_1, (for the Foo message family)
is defined in rib-<app>-adapters.xml as follows:

RIB Customization/Extension 11-17

Adding New Adapters

<message-driven id="Foo_sub_1" initialState="running" custom="true"/>
Define the particular subscribing adapter in
rib-<app>-adapters-resources.properties under <RIB_
HOME>/application-assembly-home/rib-<app>, where <app> refers to either
RMS, ORFM, or RWMS.

Foo_sub_1.name=Foo Subscriber, channel 1
Foo_sub_1.desc=Subscriber for the Foo family through channel 1.

Define the particular subscribing adapter in rib-<app>-plsql-api.xml under <RIB_
HOME>/application-assembly-home/rib-<app>, where <app> refers to either
RMS, ORFM or RWMS, as shown in the example below.

Note: The signature of the stored procedure should come from the
corresponding PL/SQL applications.

<adaptorClassDef name="Foo_sub">
<class>com.retek.rib.collab.general.OracleObjectSubscriberComponentImpl</class>
<messageFamily name="Foo">
<storedProc>
<signature>{callRMSSUB_FOO.CONSUME (?,?,?,?) }</signature>
</storedProc>
<messageType name=" FOOCRE">
<oracleObject>RIB_FooDesc_REC</oracleObject>
</messageType>
<messageType name=" FooMOD">
<oracleObject>RIB_FooDesc_REC</oracleObject>
</messageType>
<messageType name=" FOODEL">
<oracleObject>RIB_FooRef_ REC</oracleObject>
</messageType>
</messageFamily>
</adaptorClassDef>

Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME->/application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin

> sh rib-app-compiler.sh

Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME->/deployment-home/bin directory as follows.

> cd <RIB_HOME>/deployment-home/bin

> sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>

The <app> is deployed.

Make the required changes to the rib-integration-flows.xml. See "Adding the
Custom Adapter to the rib-integration-flows.xml File."

Note: To verify the addition of the new adapter, see "Verifying the
New Subscribing Adapter."

11-18 Oracle Retail Integration Bus Implementation Guide

Adding New Adapters

Adding a Subscribing Adapter for Java EE Applications

Subscribing adapters are specific to Oracle Retail and designed to consume all
messages from a specific message family.

The illustration below indicates the files that require changes inside the RIB
infrastructure for the addition of a new subscriber adapter (for a particular message
family) for Java EE applications, such as RPM, AIP, or SIM.

RIE Functisnal Arfifacs

Fivload xaids

nkimegratioe-

iz mnl

rib-privire-Gak
buswess-impl.jar

et pubdic-paydioed
Jaren-heans jor

mehl pubdi:-padoaed-
I:'M-[wu\ rﬁ,_ i i Retail Javakk Application
. TSI RPM AL

Betail I'L/SCH. Applicacion - " "
RS RS retash puchic-payload: rib-pushlic-pay boad-
[RMERWME) datrihase-cbject. F ;
N jarva-heans jar
Lypezip

RIH Oracle Objerts Fit-<inpgt- car Tor PO il b ae-pandised - 9 -

tib-puhlic-payinad- Application w,:__.,,“l,.,'”l, "'J"'"'?I‘:T:I"fl’"”'h
daabase-ckject- b

rpes2ip Tib-sapge
whapiera x| RIBE Baermel ribi- pruibilic i jar

rib-gppe- war K JivaEE

CLOHL AP libgary Apnlicar i il -
rib-public- paylad sib-=appe adaers - A ‘I:.:...I..I;..
akatabese.xml TR 5 JEUpE RS
libeary zipi BMS Cily) ic g
RS Oy e o p-sdgpes -
! erdil g aamplel
b i
B Ao e E— B =
Emse Hespilil Tablis ksl ErL e] Ermt Hospizal Tables.
rib-privvan:-faml- _ ibpe vale- kel
datibase library zip |“" sappes-plsgl apixmd b propaics databsse-librarg, ap

Procedure for Adding a New Subscribing Adapter for a Java EE Application
1. Identify the flow to which the new adapter is being added.

2. Define the name of the subscribing adapter. It should always follow the naming
convention, RIBFAMILY_sub_ADAPTER INSTANCE NO.

3. Define the particular subscribing adapter in rib-<app>-adapters.xml under <RIB_
HOME?>/application-assembly-home/rib-<app>, where <app> refers to SIM,
RPM, or AIP. The customer also must mention a custom attribute equal to "true"
whenever a new customized subscribing adapter is added.

For example, a new subscribing adapter, Foo_sub_1, (for the Foo message family)
is defined in rib-<app>-adapters.xml as follows:

<message-driven id="Foo_sub_1" initialState="running" custom="true"/>

4. Define the particular subscribing adapter in
rib-<app>-adapters-resources.properties under <RIB_
HOME->/application-assembly-home/rib-<app>, where <app> refers to SIM,
RPM, or AIP.

Foo_sub_1.name=Foo Subscriber, channel 1
Foo_sub_1l.desc=Subscriber for the Foo family through channel 1.

5. Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME> /application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin

RIB Customization/Extension 11-19

Custom TAFR Adapters

> sh rib-app-compiler.sh
6. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME?>/deployment-home/bin directory as follows.
> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -deploy-rib-app-ear rib-<app>
The <app> is deployed.

7. Make the required changes to the rib-integration-flows.xml. See "Adding the
Custom Adapter to the rib-integration-flows.xml File."

Note: To verify the addition of the new adapter, see "Verifying the
New Subscribing Adapter."

Custom TAFR Adapters

Transformation Address Filters/Router (TAFR) adapters transform message data and
route messages. Multiple, message family specific TAFRs have already been
implemented. Different TAFR adapters may be active on different message families or
on the same message family depending on the needs of an application. Not all
message families require TAFRs.

TAFR Considerations

The following topics should be considered before writing a customized TAFR
implementation for transformation, filtering or routing.

Transformation

Transformation is handled in the TAFR implementation class. Here is an example
method of a TAFR that handles transformation:

public RibMessage transformRibMessage (RibMessage inMsg) throws TafrException {
// Transforms the incoming RibMessage into an outgoing RibMessage

RibMessage newMsg = transform(inMsg);

return newMsg; }

Filtering Configuration

Filtering configuration involves updating the rib-tafr.properties file with the
appropriate information. The property follows the usual properties naming
convention (name=value). The property used for filtering is:

"for.<tafr name>_tafr.drop-messages-of-types"

Example:

for.ItemsToItemsISO_
tafr.drop-messages-of-types=ISCDimCre, ISCDimMod, ISCDimDel, ItemImageCre, ItemImageMo
d, ItemImageDel, ItemUdaDateCre, ItemUdaDateMod, ItemUdaDateDel, ItemUdaFfCre, ItemUdaFf
Mod, ItemUdaFfDel, ItemUdaLovCre, ItemUdaLovMod, ItemUdaLovDel

This property should be read as, "for ItemsToltemsISO TAFR, drop these message
types.” A comma delimits the message types. If customization is required,
rib-tafr.properties files must be updated for filtering to take place.

11-20 Oracle Retail Integration Bus Implementation Guide

Custom TAFR Adapters

Routing

Routing is enabled by default for TAFRs; the RIB infrastructure handles this routing. If
a TAFR requires routing based on message content, implementation classes override
the following method.

public void routeRibMessage (RibMessage newMsg,MessageRouterIface router) throws

TafrException {
router.addMessageForTopic (eventType, newMsg) ;

}

Adding a New TAFR Adapter

This section explains how to create a new TAFR adapter for a particular message

family.

The illustration below indicates the files that require changes inside the RIB
infrastructure during the addition of a new TAFR adapter to a message family.

KB Functisnal Artifaces

Payload nsds

libeary 2ipi BMS Cily)

Erar Foepital Tables
rib-privie-aemd-

dattase libeary 2ip

iB=appe peapenice

nb-application:

', hemnear Fil- 16T, sy
retal public panivad Retail Javakk Application
Java beams_bese jar T af bt [SIMRFMLAIF)
Betail I'LSCH. Application - "
{RAMS RWMS) '”':';_':h'i'“tr::‘lw sib-puhlic-paylad-
e Ab-tali-adaprci- jervn-bemns jar
RIH Onache Objects ib-<apgrecar for FLOSCH o1 il probdac-pendinet - : -
tibpuhlic-payinad- Application " :,":::_.”:J::'r:;. sib-talt prupertas. "'J'-‘-""I"—l'_“‘l-*f‘"h“h
damahase-pbject- "fﬂu'-.:m ers ofily)
peszip [rr——
adagaezami CT Y=
L ; rib-<ippon i K JineaEE
CLOA AP library) Aqplicaion Fre—TS
nibpublic-paylnad rib- <appe adarers enmmen i
chriabese-xml FEMUTCE S P

rib-cappre-achimers sl

bl - infin.wenl rib-prblic-oge-
el g saimple]
ritrimanky- rib: <appi= adaphers
iz xml resoLrTes poopesties

||ih sappes plsgl aplxml

rib-sysian proparlics

b~ propastics

Frms Hospizal Tahles
ibpeivate-ker -
dhatabsse- by, ap

Procedure for Adding a New TAFR Adapter
To add a new TAFR adapter, complete the following steps.

1. Identify the flow to which the new adapter is being added.

2. Define the name of the TAFR adapter. It should always follow the naming
convention, RIBFAMILY_tafr_ ADAPTER INSTANCE NO.

3. Define the corresponding implementation class name the TAFR needs to call.

4. Write the implementation class for the TAFR.

Custom TAFR Implementation

The default implementation of a TAFR implements the following interface in the RIB

infrastructure:

RIB Customization/Extension 11-21

Custom TAFR Adapters

package com.retek.rib.collab.tafr;

import com.retek.rib.domain.ribmessage.bo.RibMessage;

public interface TafrIface {
@return ribMessage that has been modified from the original one
public RibMessage transformRibMessage (RibMessage ribMsgIn) throws TafrException;

/**

* Filters message or messages contents accordingly. It is possible that
* this method could filter away the entire message thus returning null

* from this method.

*

* @param ribMsg

* @return ribMessage that may have been modified from the original one

* passed in or null.

*/

public RibMessage filterRibMessage (RibMessage ribMsgIn) throws TafrException;

/‘k*

* Routes the message to the appropriate topic for publication.
*

* @param ribMsg RibMessage to be routed to the appropriate topic.
*/

public void routeRibMessage (RibMessage ribMsgIn, MessageRouterIface
router) throws TafrException;

public void processRibMessage (RibMessage ribMsgIn, MessageRouterIface
router) throws TafrException;

}

Procedure for Completing Custom TAFR Implementation
To complete custom TAFR implementation, do the following.

1.

First check if the default implementation that comes with the RIB infrastructure is
appropriate.

Create a rib-custom-tafr-business-impl jar containing the customized
implementation class for the specific message family and replace the same under
<RIB_HOME?>/application-assembly-home /rib-func-artifacts.

Note: See the My Oracle Support document, "How to Create a
Custom TAFR Implementation.”

Define the particular TAFR adapter in rib-tafr-adapters.xml under <RIB_
HOME?>/application-assembly-home/rib-tafr. The customer must mention a
custom attribute equal to "true" whenever a new customized TAFR adapter is
added.

For example, when adding a new TAFR adapter, Foo_tafr_1, for a Foo message

family, the implementation class written is SampleToSampleWH. It is under the
package com.retek.rib.collab.tafr.bo.impl inside rib-custom-tafr-business-impl.jar
and should be defined in rib-tafr-adapters.xml as shown below:

<message-driven id="Foo_tafr_1" initialState="running" tafr-business-
impl="com.retek.rib.collab.tafr.bo.impl.SampleToSampleWH" custom="true" />

11-22 Oracle Retail Integration Bus Implementation Guide

Custom TAFR Adapters

Define the particular TAFR adapter as below in
rib-tafr-adapters-resources.properties under <RIB_
HOME->/application-assembly-home/rib-tafr:

Foo_tafr_1.name=Foo TAFR, channel 1

Foo_tafr_1.desc=TAFR for the Foo family through channel 1.

Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME> /application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin

> sh rib-app-compiler.sh

Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME->/deployment-home/bin directory as follows.

> cd <RIB_HOME>/deployment-home/bin

> sh rib-app-deployer.sh -deploy-rib-app-ear rib-tafr

Make the required changes to the rib-integration-flows.xml. See "Adding the
Custom Adapter to the rib-integration-flows.xml File."

Note: To verify the addition of the new TAFR adapter, see the
section, "Verifying the New TAFR Adapter."

Changing an Existing TAFR Adapter

If there is a need to add more functionality than what is already provided for an
existing TAFR, a class can be added to extend from the original TAFR class.

To change an existing TAFR adapter, complete the following steps.

1.
2.

Identify the TAFR to which more functionality should be added.

Define the corresponding implementation class name the TAFR needs to call. This
class should extend from the original TAFR implementation class.

For example, if additional functionality is required for the ASNOutToASNIn_tafr_
1 TAFR, for which the implementation class is
ASNOutToASNInLocFromRibBOImpl, a new class can be written for the
additional functionality that extends from ASNOutToASNInLocFromRibBOImpl.
Also, if additional functionality is needed for the transformation of the message,
call the transform method of the ASNOutToASNInLocFromRibBOImpl class and
write the additional code/logic.

Note: For information on how to write the implementation class.,
see the My Oracle Support document, "How to Create a Custom TAFR
Implementation.”

Write the implementation class for the TAFR.

Create a rib-custom-tafr-business-impl.jar containing the implementation class and
place the same under <RIB_
HOME?>/application-assembly-home /rib-func-artifacts.

Note: For more information on how to create the
rib-custom-tafr-business-impl jar, see the My Oracle Support
document, "How to Create a Custom TAFR Implementation."

RIB Customization/Extension 11-23

Adding a New rib-<app>

Replace the name of the implementation class with the new class name in the
rib-tafr-adapters.xml as shown below.

For example, if the name of the new class name is
CustomASNOutToASNInLocFromRibBOImpl, the entry in rib-tafr-adapters.xml
should be:

<message-driven id="ASNOutToASNIn_tafr_1" initialState="running"
tafr-business-impl=" com.retek.rib.collab.tafr.bo.impl.
CustomASNOutToASNInLocFromRibBOImpl " custom ="true"/>

Run the rib-app-builder compiler: Run the rib-app-compiler.sh script from <RIB_
HOME?>/application-assembly-home /bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin

> sh rib-app-compiler.sh

Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME?>/deployment-home/bin directory as follows.

> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -deploy-rib-app-ear rib-tafr

Adding a New rib-<app>

One aspect of RIB customization/extension includes adding a new rib-app for a new
application which user wants to integrate using RIB. This new app can be a PLSQL
application, JavaEE application or a SOAP application. This section discusses the
general steps required to add a new rib-app followed by the detailed steps for adding
a rib-app specific to PLSQL Application, JavaEE Application or a SOAP application.

General steps to add a new rib-<app> are as follows:

1.

Create a rib-<app> folder for new application in rib-home/application-assembly
-home. Add rib-<app>-adapters.xml, rib-<app>-adapters-resources.properties,
rib-<app>.properties. If new app is a plsql-app, add rib-<app>-plsql-api.xml too.

Update rib-<app>-adapters.xml with information about subscriber, publisher and
hospital adapters.

Update rib-<app>-adapters-resources.properties with name, description of
subscribers, publishers and hospital retriers.

Update rib-application-assembly-info.xml with new rib-app information under
<rib-applications>.

rib-<app>.properties file cannot be left empty, add some text (example below) in
case nothing specific to rib-<app> in properties file:

HHHHHHE BB
rib-<app> application specific properties go here.#

All properties have default values, add the

property here only if the default value does not

suit your environment.
HHHHHHHHHHHHHHHHHHHHH

Update the various sections of the deployment-home/conf/rib-deployment-
env-info.xml file to include information about the new rib-<app>.

Update the rib-integration-flows.xml file to add the publisher and subscriber flow
information for the new rib-app.

11-24 Oracle Retail Integration Bus Implementation Guide

Adding a New rib-<app>

7. Follow RIB installation defined lifecycle steps to complete compilation and
deployment of rib-<app>.ear

Adding a new PLSQL rib-<app>

Following section lists down the detailed steps required to create a new PLSQL
rib-<app> corresponding to a PLSQL application named foo. The application name
(foo) is for sample purposes only. The new rib application will be named rib-foo, (i.e.
rib-<app> where <app> = foo). Subscribing adapter will be for family Banner and will
subscribe from jms topic etBannerFromRMS. The publishing adapter will be for family
CurRate and will publish to jms topic etEXTCurRate.

The publishing adapter and subscribing adapter and business objects that are used,
while actual, are illustrative only and chosen for their simplicity in the example and
should be replaced with the actual ones that match the business case.

Note: The application (foo.ear) that integrates with the rib-foo is
designed and developed to satisfy whatever business requirements
have driven the need for a new rib-<app> and is beyond the scope of
this document.

Note: It is assumed that rib-home is already in place and working
properly without the rib-foo application.

The following are the steps to create a new rib-foo.ear application that can
communicate with a new application (called foo.ear in this example) designed to meet
the business objective.

1. Go to rib-home and create a directory rib-foo under application-assembly-home.

> cd rib-home
> mkdir application-assembly-home/rib-foo

2. Addrib-foo-adapters.xml, rib-foo-adapters-resources.properties, rib-foo.properties
and rib-foo-plsql-api.xml to rib-foo folder created above.

> touch application-assembly-home/rib-foo/rib-foo-adapters.xml
application-assembly-home/rib-foo/rib-foo-adapters-resources.properties
application-assembly-home/rib-foo/rib-foo.properties
application-assembly-home/rib-foo/rib-foo-plsgl-api.xml

3. Add rib adapter (subscriber, publisher and hospital) details to the file
application-assembly-home/rib-foo/rib-foo-adapters.xml.

<?xml version="1.0" encoding="UTF-8"?>
<rib-adapters xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="rib-adapters.xsd" appName="rib-foo">
<subscribers>
<message-driven id="Banner_sub_1" initialState="running" />
</subscribers>
<publishers>
<timer-driven id="CurRate_pub_1" initialState="running" timeDelay="10" >
<timer-task>
<class name="com.retek.rib.app.getnext.impl.GetNextTimerTaskImpl" />
<property name="maxChannelNumber" value="1" />
</timer-task>
</timer-driven>
</publishers>
<hospitals>

RIB Customization/Extension 11-25

Adding a New rib-<app>

<timer-driven id="sub_hosp_0" initialState="running" timeDelay="10" >
<timer-task>
<class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask"/>
<property name="reasonCode" value="SUB" />
</timer-task>
</timer-driven>
<timer-driven id="jms_hosp_0" initialState="running" timeDelay="10" >
<timer-task>
<class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask" />
<property name="reasonCode" value="JMS"/>
</timer-task>
</timer-driven>
</hospitals>
</rib-adapters>
Add publisher, subscriber and hospital retrier details to the file
application-assembly-home/rib-foo/rib-foo-adapters-resources.properties.

#

If this changes, ManagedAdaptersResourcesPropertiesTest will need to
change accordingly.

#

sub_all.name=Subscribers

sub_all.desc=Manages all subscribers at the same time.

Banner_ sub_1.name=Banner Subscriber, channel 1
Banner_sub_1.desc=Subscriber for the Banner family through channel 1.
CurRate_pub_1l.name=CurRate Publisher, channel 1
CurRate_pub_1.desc=Publisher for the CurRate family through channel 1.
hosp_all.name=Hospital Retriers

hosp_all.desc=Manages all hospital retriers at the same time.
sub_hosp_0.name=SUB Hospital Retry

sub_hosp_0.desc=Inject messages into from the Error Hospital.
jms_hosp_0.name=JMS Hospital Retry

jms_hosp_0.desc=Re-publish messages from to JMS after JMS is brought back up.
Put the following xml content into rib-foo-plsqgl-api.xml

<?xml version="1.0" encoding="UTF-8"?>

<rib-app-plsgl-api
xmlns="http://www.oracle.com/retail/integration/rib/rib-app-plsgl-api"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xs1:noNamespaceSchemaLocation="http://www.oracle.com/retail/integration/rib/rib
-app-plsgl-api.xsd">

<adaptorClassDef name="Banner_sub">
<class>com.retek.rib.collab.general .CLOBSubscriberComponentImpl</class>
<messageFamily name="Banner">

<storedProc>

<signature>{call RMSSUB_BANNERCRE.CONSUME(?, ?, ?)}</signature>
</storedProc>

</messageFamily>

</adaptorClassDef>

<adaptorClassDef name="CurRate_pub">
<class>com.retek.rib.collab.general .CLOBPublisherComponentImpl</class>
<messageFamily name="CURRATE">

<storedProc>

<signature>{call RMSMFM_CURRATE.GETNXT(?,?,?,?,?,?)}</signature>
<outParameter index="5">

<type>

<value>NUMERIC</value>

</type>

<!--NUMERIC, VARCHAR, INTEGER, FLOAT, DATE -->
<toJavaField>ID</toJavaField>

</outParameter>

11-26 Oracle Retail Integration Bus Implementation Guide

Adding a New rib-<app>

<outParameter index="6">

<type>

<value>NUMERIC</value>

</type>

<!--NUMERIC, VARCHAR, INTEGER, FLOAT, DATE -->

</outParameter>

</storedProc>

</messageFamily>

</adaptorClassDef>

</rib-app-plsgl-api>

Update rib-application-assembly-info.xml under
application-assembly-home/conf. Near the end (before </rib-applications>),
append the following section to
application-assembly-home/conf/rib-application-assembly-info.xml.

<rib-app id="rib-foo" type="plsqgl-app">
<ear>
<classpath refid="rib-app.global.ear.classpath" />
<java-ee-module>
<web-war />
<ejb-jar>
<classpath refid="rib-app.global.ejb-jar.classpath" />
</ejb-jar>
<jms-jca-connector>
<classpath
refid="rib-app.global.jms-jca-connector.classpath" />
</jms-jca-connector>
</java-ee-module>
</ear>
<resource>
<resource-path refid="rib-app.global.resource-path" />
<resource-path>
<fileset dir=".">
<include name="retail/remote_service_locator_info_
ribserver.xml"

/>

<include name="rib-foo.properties" />

<include name="rib-foo-adapters.xml" />

<include name="rib-foo-adapters-resources.properties"
/>

<include name="rib-foo-plsgl-api.xml" />

</fileset>
</resource-path>
</resource>

</rib-app>
Update the various sections of the
deployment-home/conf/rib-deployment-env-info.xml file.

a. Update <app-in-scope-for-integration> section to add the new application.
Add the following XML section under <app-in-scope-for-integration>.

<app 1d="foo" type="plsqgl-app"/>

b. Define the WebLogic Server information for the foo application. Add the
following XML section under the <weblogic> (before </weblogic>). Refer to
the Oracle Retail Integration Bus Installation Guide for details about the WLS
path and ports.

<wls id="rib-foo-wlsl">
<wls-instance-name>rib-foo-server</wls-instance-name>
<wls-instance-home>webadmin@ribhost.example.com://u0l/rrtswls/Oracle/Middle

RIB Customization/Extension 11-27

Adding a New rib-<app>

ware/user_projects/domains/base_
domain/servers/rib-foo-server</wls-instance-home>
<wls-listen-port protocol="http">7003</wls-listen-port>
<wls-user-alias>rib-foo-wls-user-alias</wls-user-alias>
</wls>
c. Add the following XML section under the <rib-applications> (before
</rib-applications>) section. In the jndi/url xml tag section, point it to the
location where foo.ear (not rib-foo.ear) is deployed. Refer to Oracle Retail
Integration Bus Installation Guide for details.

<rib-app id="rib-foo" type="plsqgl-app">
<deploy-in refid="rib-foo-wlsl" />
<rib-admin-gui>
<web-app-url>http://ribhost.example.com:7003/rib-foo-appserver-gui/index.Jjs
p</web-app-url>
<web-app-user-alias>rib-foo_rib-admin-gui_
web-app-user-alias</web-app-user-alias>
</rib-admin-gui>
<error-hospital-database>
<hosp-url>jdbc:oracle:thin:@hospdbhost.example.com:1521:0rcl</hosp-url>
<hosp-user-alias>rib-foo_error-hospital-database_
user-name-alias</hosp-user-alias>
</error-hospital-database>
<app-database>
<app-db-url>jdbc:oracle:thin:@hospdbhost.example.com:1521:0rcl</app-db-url>
<app-db-user-alias>rib-foo_app-database_
user-name-alias</app-db-user-alias>
</app-database>
<notifications>
<email>
<email-server-host>mail.example.com</email-server-host>
<email-server-port>25</email-server-port>
<from-address>admin@example.com</from-address>
<to-address-list>admin@example.com</to-address-1list>
</email>
<jmx/>
</notifications>
<app id="foo" type="plsgl-app">
<jndi-not-applicable/>
</app>
</rib-app>
8. Update the rib-integration-flows.xml to add the publisher and subscriber flow
information for the app.

a. Create a customization-workarea directory under rib-home, extract
rib-integration-flows.xml present in rib-func-artifact.war.

> mkdir customization-workarea
> cd customization-workarea

>jar xf ../ application-assembly-home/rib-func-artifacts /rib-func-artifact.war
integration/rib-integration-flows.xml

b. Edit integration/rib-integration-flows.xml to add message flow details for
new app (rib-foo).

a. Add the following xml section as the last node of message-flow ID
number 2. Search for Banner to take you to the right message-flow.

<node id="rib-foo.Banner_sub" app-name="rib-foo"
adapter-class-def="Banner_sub" type="JmsToDb">

11-28 Oracle Retail Integration Bus Implementation Guide

Adding a New rib-<app>

<in-topic>etBannerFromRMS</in-topic>
<out-db>default</out-db>
</node>
b. Add the following XML section as the first node of message-flow ID
number 40. Search for CurRate to take you to the right message-flow.

<node id="rib-foo.CurRate_pub" app-name="rib-foo"
adapter-class-def="CurRate_pub" type="DbToJms">
<in-db>default</in-db>
<out-topic>etEXTCurRate</out-topic>
</node>
c. Add updated rib-integration-flows.xml to rib-func-artifact.war.

> jar uvf
../application-assembly-home/rib-func-artifacts/rib-func-artifact.war
integration/rib-integration-flows.xml

d. Cleanup and remove the temporary working directory

>cd ..
> rm -rf customization-workarea
9. Run the rib-app-builder compiler: Run the rib-app-builder script from <RIB_
HOME>/application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin
>sh rib-app-compiler.sh -setup-security-credential

10. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME?>/deployment-home/bin directory as follows to register the new
publishing and subscribing adapters in the flow. (The prepare jms step is not
destructive, so even if it is run again it will just remove all the topics and recreate
them.)

> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -prepare-jms

11. Run the rib-app-builder deployer: Run the rib-app-deployer script from <RIB_
HOME>/deployment-home/bin directory as follows:

> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -deploy-rib-func-artifact-war
This deploys the rib-func-artifact-war

> sh rib-app-deployer.sh -deploy-rib-app-ear rib-foo
This deploys the new javaee rib-<app>.

Adding a New JavaEE rib-<app>

Following section lists down the detailed steps required to create a new JavaEE
rib-<app> corresponding to a JavaEE application named foo. The application name
(foo) is for sample purposes only. The new rib application will be named rib-foo, (i.e.
rib-<app> where <app> = foo). Subscribing adapter will be for family Banner and will
subscribe from jms topic etBannerFromRMS. The publishing adapter will be for family
CurRate and will publish to jms topic etEXTCurRate.

The publishing adapter and subscribing adapter and business objects that are used,
while actual, are illustrative only and chosen for their simplicity in the example and
should be replaced with the actual ones that match the business case.

RIB Customization/Extension 11-29

Adding a New rib-<app>

Note: The application (foo.ear) that integrates with rib-foo is
designed and developed to satisfy whatever business requirements
have driven the need for a new rib-<app> and is beyond the scope of
this document.

Note: Itis assumed that rib-home is already in place and working
properly without the rib-foo application.

The following are the steps to create a new rib-foo.ear application that can
communicate with a new application (called foo.ear in this example). Design to meet
the business objective.

1.

Go to rib-home and create a directory rib-foo under application-assembly-home.

> cd rib-home

> mkdir application-assembly-home/rib-foo

Add rib-foo-adapters.xml, rib-foo-adapters-resources.properties and
rib-foo.properties to rib-foo folder created above.

> touch application-assembly-home/rib-foo/rib-foo-adapters.xml
application-assembly-home/rib-foo/rib-foo-adapters-resources.properties
application-assembly-home/rib-foo/rib-foo.properties

Add rib adapter (subscriber, publisher and hospital) details to the file
application-assembly-home/rib-foo/rib-foo-adapters.xml.

<?xml version="1.0" encoding="UTF-8"?>
<rib-adapters xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="rib-adapters.xsd" appName="rib-foo">
<subscribers>
<message-driven id="Banner_sub_1" initialState="running" />
</subscribers>
<publishers>
<request-driven id="CurRate_pub_l1" initialState="notConfigurable" />
</publishers>

<hospitals>
<timer-driven id="sub_hosp_ 0" initialState="running" timeDelay="10" >
<timer-task>
<class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask" />
<property name="reasonCode" value="SUB" />
</timer-task>
</timer-driven>
<timer-driven id="jms_hosp_0" initialState="running" timeDelay="10" >
<timer-task>
<class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask" />
<property name="reasonCode" value="JMS"/>
</timer-task>
</timer-driven>
</hospitals>
</rib-adapters>
Add publisher, subscriber and hospital retrier details to the file
application-assembly-home/rib-foo/rib-foo-adapters-resources.properties.

#

If this changes, ManagedAdaptersResourcesPropertiesTest will need to
change accordingly.

#

11-30 Oracle Retail Integration Bus Implementation Guide

Adding a New rib-<app>

sub_all.name=Subscribers

sub_all.desc=Manages all subscribers at the same time.

Banner_ sub_1.name=Banner Subscriber, channel 1
Banner_sub_1.desc=Subscriber for the Banner family through channel 1.
CurRate_pub_1l.name=CurRate Publisher, channel 1
CurRate_pub_1.desc=Publisher for the CurRate family through channel 1.
hosp_all.name=Hospital Retriers

hosp_all.desc=Manages all hospital retriers at the same time.
sub_hosp_0.name=SUB Hospital Retry

sub_hosp_0.desc=Inject messages into from the Error Hospital.
jms_hosp_0.name=JMS Hospital Retry

jms_hosp_0.desc=Re-publish messages from to JMS after JMS is brought back up.

rib-<app>.properties file cannot be left empty, add some text (example below) in
case nothing specific to rib-<app> to set in properties file:

AR
rib-<app> application specific properties go here

All properties have default values, add the

property here only if the default value does not

suit your environment.
AR

Update rib-application-assembly-info.xml under
application-assembly-home/conf. Near the end (before </rib-applications>),
append the following section to
application-assembly-home/conf/rib-application-assembly-info.xml.

<rib-app id="rib-foo" type="javaee-app">
<ear>
<classpath refid="rib-app.global.ear.classpath" />
<java-ee-module>
<web-war />
<ejb-jar>
<classpath refid="rib-app.global.ejb-jar.classpath" />
</ejb-jar>
<jms-jca-connector>
<classpath
refid="rib-app.global.jms-jca-connector.classpath" />
</jms-jca-connector>
</java-ee-module>
</ear>
<resource>
<resource-path refid="rib-app.global.resource-path" />
<resource-path>
<fileset dir=".">
<include name="retail/remote_service_locator_info_
ribserver.xml"

/>

<include name="rib-foo.properties" />

<include name="rib-foo-adapters.xml" />

<include name="rib-foo-adapters-resources.properties"”
/>

</fileset>
</resource-path>
</resource>

</rib-app>

RIB Customization/Extension 11-31

Adding a New rib-<app>

6. Update the various sections of the
deployment-home/conf/rib-deployment-env-info.xml file.

a. Update <app-in-scope-for-integration> section to add the new application.
Add the following XML section under <app-in-scope-for-integration>.

<app id="foo" type="javaee-app"/>

b. Define the WebLogic Server information for the foo application. Add the
following XML section under the <weblogic> (before </weblogic>). Refer to
the Oracle Retail Integration Bus Installation Guide for details about the WLS
path and ports.

<wls id="rib-foo-wlsl">
<wls-instance-name>rib-foo-server</wls-instance-name>

<wls-instance-home>pbora@ribhost.example.com://ull/rrtswls/Oracle/Middlewar
e/user_projects/domains/base_
domain/servers/rib-foo-server</wls-instance-home>
<wls-listen-port protocol="http">7003</wls-listen-port>
<wls-user-alias>rib-foo-wls-user-alias</wls-user-alias>
</wls>
c. Add the following XML section under the <rib-applications> (before
</rib-applications>) section. In the jndi/url xml tag section, point it to the
location where foo.ear (not rib-foo.ear) is deployed. Refer to Oracle Retail
Integration Bus Installation Guide for details.

<rib-app id="rib-foo" type="javaee-app">
<deploy-in refid="rib-foo-wlsl"/>
<rib-admin-gui>
<web-app-url>http://ribhost.example.com:7003/rib-foo-appserver-gui/index.js
p</web-app-url>
<web-app-user-alias>
rib-foo_rib-admin-gui_web-app-user-alias
</web-app-user-alias>
</rib-admin-gui>
<error-hospital-database>
<hosp-url>
jdbc:oracle:thin:@hospdbhost.example.com:1521:0rcl</hosp-url>
<hosp-user-alias>rib-foo_error-hospital-database_
user-name-alias</hosp-user-alias>
</error-hospital-database>
<app-database-not-applicable/>
<notifications>
<email>

<email-server-host>mail.example.com</email-server-host>

<email-server-port>25</email-server-port>

<from-address>admin@example.com</from-address>

<to-address-list>admin@example.com</to-address-list>

</email>

<jmx/>

</notifications>

<app 1d="foo" type="javaee-app">
<jndi>

<url>t3://foohost.example.com:7002/foo</url>
<factory>weblogic.jndi.WLInitialContextFactory</factory>
<user-alias>foo_jndi_user-name-alias</user-alias>
</jndi>
</app>
</rib-app>

11-32 Oracle Retail Integration Bus Implementation Guide

Adding a New rib-<app>

7.

10.

Update the rib-integration-flows.xml to add the publisher and subscriber flow
information for the app.

a. Create a customization-workarea directory under rib-home, extract
rib-integration-flows.xml present in rib-func-artifact.war.

> mkdir customization-workarea

> cd customization-workarea

>jar xf ../ application-assembly-home/rib-func-artifacts/rib-func-artifact.war
integration/rib-integration-flows.xml

b. Edit integration/rib-integration-flows.xml to add message flow details for
new app (rib-foo).

a. Add the following xml section as the last node of message-flow ID
number 2. Search for Banner to take you to the right message-flow.

<node id="rib-foo.Banner_sub" app-name="rib-foo"
adapter-class-def="Banner_sub" type="JmsToDb">
<in-topic>etBannerFromRMS</in-topic>
<out-db>default</out-db>
</node>
b. Add the following XML section as the first node of message-flow ID
number 40. Search for CurRate to take you to the right message-flow.

<node id="rib-foo.CurRate_pub" app-name="rib-foo"
adapter-class-def="CurRate_pub" type="DbToJms">
<in-db>default</in-db>
<out-topic>etEXTCurRate</out-topic>
</node>
c. Add updated rib-integration-flows.xml to rib-func-artifact.war.

> jar uvf
../application-assembly-home/rib-func-artifacts/rib-func-artifact.war
integration/rib-integration-flows.xml

d. Cleanup and remove the temporary working directory

>cd ..

> rm -rf customization-workarea
Run the rib-app-builder compiler: Run the rib-app-builder script from <RIB_
HOME?>/application-assembly-home /bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin

>sh rib-app-compiler.sh -setup-security-credential

Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME>/deployment-home /bin directory as follows to register the new
publishing and subscribing adapters in the flow.

> cd <RIB_HOME>/deployment-home/bin

> sh rib-app-deployer.sh -prepare-jms

Run the rib-app-builder deployer: Run the rib-app-deployer script from <RIB_
HOME>/deployment-home/bin directory as follows:

> cd <RIB_HOME>/deployment-home/bin

> sh rib-app-deployer.sh -deploy-rib-func-artifact-war
This deploys the rib-func-artifact-war

> sh rib-app-deployer.sh -deploy-rib-app-ear rib-foo
This deploys the new javaee rib-<app>.

RIB Customization/Extension 11-33

Adding a New rib-<app>

Adding a New SOAP rib-<app>

Following section lists down the detailed steps required to create a new SOAP
rib-<app> corresponding to a SOAP application named foo. The application name
(foo) is for sample purposes only. The new rib application will be named rib-foo, (i.e.
rib-<app> where <app> = foo). Subscribing adapter will be for family Receiving and
will subscribe from jms topic etReceiving. The publishing adapter will be for family
FulfilOrder and will publish to jms topic etFulfillOrder.

The publishing adapter and subscribing adapter and business objects that are used,
while actual, are illustrative only and chosen for their simplicity in the example and
should be replaced with the actual ones that match the business case.

Note: The application (foo.ear) that integrates with the rib-foo is
designed and developed to satisfy whatever business requirements
have driven the need for a new rib-<app> and is beyond the scope of
this document.

Note: Itis assumed that rib-home is already in place and working
properly without the rib-foo application.

The following are the steps to create a new rib-foo.ear application that can
communicate with a new application (called foo.ear in this example) designed to meet
the business objective.

1. Go to rib-home and create a directory rib-foo under application-assembly-home.

> cd rib-home
> mkdir application-assembly-home/rib-foo

2. Add rib-foo-adapters.xml, rib-foo-adapters-resources.properties and
rib-foo.properties to rib-foo folder created above.

> touch application-assembly-home/rib-foo/rib-foo-adapters.xml
application-assembly-home/rib-foo/rib-foo-adapters-resources.properties
application-assembly-home/rib-foo/rib-foo.properties
application-assembly-home/rib-foo/rib-foo-plsgl-api.xml

3. Add rib adapter (subscriber, publisher and hospital) details to the file
application-assembly-home/rib-foo/rib-foo-adapters.xml.

<?xml version="1.0" encoding="UTF-8"?>
<rib-adapters xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="rib-adapters.xsd" appName="rib-foo">
<subscribers>
<message-driven id="Receiving sub_1" initialState="running" />
</subscribers>
<publishers>
<request-driven id="FulfilOrd_pub_1" initialState="notConfigurable" />
</publishers>
<hospitals>
<timer-driven id="sub_hosp_0" initialState="running" timeDelay="10" >
<timer-task>
<class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask" />
<property name="reasonCode" value="SUB" />
</timer-task>
</timer-driven>
<timer-driven id="jms_hosp_0" initialState="running" timeDelay="10" >
<timer-task>

11-34 Oracle Retail Integration Bus Implementation Guide

Adding a New rib-<app>

<class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask" />
<property name="reasonCode" value="JMS"/>
</timer-task>
</timer-driven>
</hospitals>
</rib-adapters>
Add publisher, subscriber and hospital retrier details to the file
application-assembly-home/rib-foo/rib-foo-adapters-resources.properties.

#

If this changes, ManagedAdaptersResourcesPropertiesTest will need to

change accordingly.

#

sub_all.name=Subscribers

sub_all.desc=Manages all subscribers at the same time.
Receiving_sub_1l.name=Receiving Subscriber, channel 1
Receiving_sub_1.desc=Subscriber for the Receiving family through channel 1.
FulfilOrd_pub_1.name=FulfillOrder Publisher, channel 1
FulfilOrd_pub_1.desc=Publisher for the FulfilOrd family through channel 1.
hosp_all.name=Hospital Retriers

hosp_all.desc=Manages all hospital retriers at the same time.
sub_hosp_0.name=SUB Hospital Retry

sub_hosp_0.desc=Inject messages into from the Error Hospital.
jms_hosp_0.name=JMS Hospital Retry

jms_hosp_0.desc=Re-publish messages from to JMS after JMS is brought back up.
Update rib-application-assembly-info.xml under
application-assembly-home/conf. Near the end (before </rib-applications>),
append the following section to
application-assembly-home/conf/rib-application-assembly-info.xml.

<rib-app id="rib-foo" type="soap-app">
<ear>
<classpath refid="rib-app.global.ear.classpath" />
<java-ee-module>
<web-war />
<ejb-jar>
<classpath refid="rib-app.global.ejb-jar.classpath" />
</ejb-jar>
<jms-jca-connector>
<classpath
refid="rib-app.global.jms-jca-connector.classpath" />
</jms-jca-connector>
</java-ee-module>
</ear>
<resource>
<resource-path refid="rib-app.global.resource-path" />
<resource-path>
<fileset dir=".">
<include name="retail/remote_service_locator_info_
ribserver.xml"

/>

<include name="rib-foo.properties" />

<include name="rib-foo-adapters.xml" />

<include name="rib-foo-adapters-resources.properties"
/>

</fileset>
</resource-path>
</resource>

</rib-app>

RIB Customization/Extension 11-35

Adding a New rib-<app>

rib-<app>.properties file cannot be left empty, add some text (example below) in
case nothing specific to rib-<app> to set in properties file

AR
rib-<app> application specific properties go here

All properties have default values, add the

property here only if the default value does not

suit your environment.
AR

Update the various sections of the
deployment-home/conf/rib-deployment-env-info.xml file.

a. Update <app-in-scope-for-integration> section to add the new application.
Add the following XML section under <app-in-scope-for-integration>

<app id="foo" type="soap-app"/>

b. Define the WebLogic Server information for the foo application. Add the
following XML section under the <weblogic> (before </weblogic>). Refer to
the Oracle Retail Integration Bus Installation Guide for details about the WLS
path and ports.

<wls id="rib-foo-wlsl">
<wls-instance-name>rib-foo-server</wls-instance-name>
<wls-instance-home>webadmin@ribhost.example.com://ull/rrtswls/Oracle/Middle
ware/user_projects/domains/base_
domain/servers/rib-foo-server</wls-instance-home>
<wls-listen-port protocol="http">7003</wls-listen-port>
<wls-user-alias>rib-foo-wls-user-alias</wls-user-alias>
</wls>
c. Add the following XML section under the <rib-applications> (before
</rib-applications>) section. In the jndi/url xml tag section, point it to the
location where foo.ear (not rib-foo.ear) is deployed. Refer to Oracle Retail
Integration Bus Installation Guide for details.

<rib-app id="rib-foo" type="soap-app">

<deploy-in refid="rib-foo-wlsl"/>

<rib-admin-gui>
<web-app-url>https://ribhost.example.com:8108/rib-foo-appserver-gui/index.j
sp</web-app-url>
<web-app-user-alias>rib-foo_rib-admin-gui_
web-app-user-alias</web-app-user-alias>
</rib-admin-gui>

<error-hospital-database>
<hosp-url>jdbc:oracle:thin:@hospdbhost.example.com:1521:0rcl</hosp-url>
<hosp-user-alias>rib-foo_error-hospital-database_
user-name-alias</hosp-user-alias>
</error-hospital-database>
<app-database-not-applicable/>

<notifications>

<email>
<email-server-host>mail.example.com</email-server-host>
<email-server-port>25</email-server-port>
<from-address>admin@example.com</from-address>
<to-address-list>admin@example.com</to-address-1list>
</email>

<jmx/>

</notifications>

11-36 Oracle Retail Integration Bus Implementation Guide

Adding a New rib-<app>

<app id="foo" type="soap-app">
<end-point>
<url>http://hostname:9001/injector-service/InjectorService</url>
<ws-policy-name>X/Y/Z</ws-policy-name>
<user-alias>rib-foo_ws_security_user-name-alias</user-alias>
</end-point>
</app>
</rib-app>

7. Update the rib-integration-flows.xml to add the publisher and subscriber flow

information for the app.

a. Create a customization-workarea directory under rib-home, extract
rib-integration-flows.xml present in rib-func-artifact.war.

> mkdir customization-workarea
> cd customization-workarea
> jar xf ../
application-assembly-home/rib-func-artifacts/rib-func-artifact.war
integration/rib-integration-flows.xml

b. Edit integration/rib-integration-flows.xml to add message flow details for
new app (rib-foo).

a. Add the following xml section as the last node of message-flow ID
number 28. Search for Receiving to take you to the right message-flow.

<node id="rib-foo.Receiving_sub" app-name="rib-foo"
adapter-class-def="Receiving_sub" type="JmsToDb">
<in-topic>etReceiving</in-topic>
<out-db>default</out-db>
</node>
b. Add the following XML section as the first node of message-flow ID
number 65. Search for FulfilOrd to take you to the right message-flow.

<node id="rib-foo.FulfilOrd_pub" app-name="rib-foo"
adapter-class-def="FulfilOrd_pub" type="DbToJms">
<in-db>default</in-db>
<out-topic>etFulfillOrder</out-topic>
</node>
c. Add updated rib-integration-flows.xml to rib-func-artifact.war.

> jar uvf
../application-assembly-home/rib-func-artifacts/rib-func-artifact.war
integration/rib-integration-flows.xml

d. Cleanup and remove the temporary working directory

>cd ..
> rm -rf customization-workarea
8. Run the rib-app-builder compiler: Run the rib-app-builder script from <RIB_
HOME?>/application-assembly-home/bin directory to generate/assemble a
rib-<app> and make it ready for deployment.

> cd <RIB_HOME>/application-assembly-home/bin
> sh rib-app-compiler.sh -setup-security-credential

9. Run the rib-app-builder deployer: Run the rib-app-deployer.sh script from <RIB_
HOME> /deployment-home/bin directory as follows to register the new
subscribing and publishing adapters in the flow.

> cd <RIB_HOME>/deployment-home/bin
> sh rib-app-deployer.sh -prepare-jms

10. Run the rib-app-builder deployer: Run the rib-app-deployer script from <RIB_
HOME?>/deployment-home/bin directory as follows:

> cd <RIB_HOME>/deployment-home/bin

RIB Customization/Extension 11-37

Verification of RIB Customizations

> sh rib-app-deployer.sh -deploy-rib-func-artifact-war
This deploys the rib-func-artifact-war

> sh rib-app-deployer.sh -deploy-rib-app-ear rib-foo
This deploys the new javaee rib-<app>.

Verification of RIB Customizations

This section explains how to verify the various customizations using the RIB
diagnostic and test tools, RDMT, the PL/SQL API simulator, and the Java EE API
simulator.

These verification tests are described only from a RIB perspective and not as
end-to-end testing. They should be considered only as the first step in a process to
move the customizations through the RIB life cycle.

The verification steps assume that these RIB tools have already been installed and are
in working condition.

Note: See "Testing the RIB" in the Oracle Retail Integration Bus
Operations Guide.

Verifying the New Message Type

To verify the addition of a new message type under a message family from a RIB
perspective, complete the following steps.

1. Login to the RDMT main menu.

2. Select menu option 3 - PUB/SUB/TAFR Msg Menu.

3. Publish a message using 8 - EJB Publish Utility.

4. Provide the new message type when prompted for the <type> parameter.
5

Use the sample message that was generated using the RIB Artifact Generator tool
after adding the new message type for the corresponding message family.

6. Check the corresponding adapter's RIBLOGS to be sure the message was
published successfully. The logs are written to the path, <rib-application_instance_
home>/<rib-app>/logs/<rib-app>.

For example, for /home/rib/product/10.1.3.3/OracleAS_
1/j2ee/rib-rms-oc4j-instance/log/rib-rms, the RIBLOG filenames are in the
format, <adapter-instance-name>.rib.log.

Example:

Alloc_pub_1.rib.log
ASNIn_sub_1.rib.log

7. Enable the RIB Audit Logs for all the corresponding adapters involved in the
message flow. The auditing feature logs the message as it passes though the RIB
infrastructure. This helps the tracing of message content from publication to
subscription and all steps, such as a TAFR, in between.

Note: To enable RIB Audit logs, see the section, "RIB Logging," in
the Oracle Retail Integration Bus Operations Guide .

11-38 Oracle Retail Integration Bus Implementation Guide

Verification of RIB Customizations

Check the RIB audit logs for the particular message family adapters (publisher,
subscriber, and TAFR if involved) and verify whether the new message type is
part of the message header. Also ensure that the message passes successfully
through all the adapters involved in the particular message flow.

Check whether the new message type was successfully consumed by the
subscribing adapter. The CONSUME API call from the subscribing adapter should
successfully return the status S.

Verifying the New Message Family

To verify the addition of a new message family in the RIB, complete the following
steps:

1.

o g & 0D

Once RIB is compiled and deployed (after adding a new message family), check
whether the new family adapters (publisher, subscriber, and TAFR if involved) are
visible through RIB Admin GUL

The RIB admin GUI can be accessed via the URL as below.

http://<server>.example.com:<http-port>/rib-<app>-admin-gui/

= Replace <server> with the name or IP address of the server in the environment
where the rib-<app> is deployed.

= Replace <http-port> with the port number that the WebLogic managed server
instance is listening on (for example, 7777).

= Replace <app> with rms, tafr, rwms, sim, rfm, aip, oms, or rpm.

Note: See the section, "Admin GUL" in the Oracle Retail Integration
Bus Operations Guide.

Log in to the RDMT main menu.

Select menu option 3 - PUB/SUB/TAFR Msg Menu.

Publish a message using 8 - EJB Publish Utility.

Provide the new message family when prompted for the <family> parameter.

Use the sample message created by the Functional Artifact Generator.

Note: See the Oracle Retail Functional Artifact Generator Guide.

Check the corresponding adapter's RIBLOGS to be sure the message was
published successfully. The logs are written to the path, <rib-application_instance_
home>/logs/<rib-app>.

For example, for "/u00/webadmin/product/10.3.3/WLS/user_
projects/domains/rib_domain/servers/rib-rms-server/logs/rib-rms" the
RIBLOG filenames are in the format, <adapter-instance-name>.rib.log.

Example:

Foo_pub_1l.rib.log
Foo_sub_1.rib.log

Also enable the RIB Audit Logs for all the corresponding adapters involved in the
message flow. The auditing feature logs the message as it passes though the RIB

RIB Customization/Extension 11-39

Verification of RIB Customizations

infrastructure. This helps the tracing of message content from publication to
subscription and all steps, such as a TAFR, in between.

Note: To enable RIB Audit logs, see "RIB Logging" in the Oracle Retail
Integration Bus Operations Guide.

Check the RIB audit logs for the particular message family adapters (publisher,
subscriber, and TAFR if involved) and verify whether the new message family is
part of the message header. Also ensure that the message passes successfully
through all the adapters involved in the particular message flow.

Verifying the New Publishing Adapter

To verify the addition of a new publishing adapter for PL/SQL or Java EE
applications, complete the following steps:

1.

a 2 0N

Once the RIB has been compiled and deployed (after adding a new publishing
adapter), check whether the new publishing adapter is visible through RIB Admin
GUL

The RIB admin GUI can be accessed via the URL as below:

http://<server>.example.com:<http-port>/rib-<app>-admin-gui/

= Replace <server> with the name or IP address of the server in the environment
where the rib-<app> is deployed.

= Replace <http-port> with the port number that the WebLogic managed server
instance is listening on (for example, 7777).

= Replace <app> with rms, rwms, sim, orfm, aip, oms, or rpm.

Note: See "Admin GUI" in the Oracle Retail Integration Bus Operations
Guide

Log in to the RDMT main menu.
Select menu option 3, PUB/SUB/TAFR Msg Menu.
Publish a message using 8 - EJB Publish Utility.

Use the sample message created by the Functional Artifact Generator for the
corresponding message family.

Check the corresponding adapter's RIBLOGS to be sure the message was
published successfully. The logs are written to the path, <rib-application_instance_
home>/logs/<rib-app>.

For example, for "/u00/webadmin/product/10.3.3/WLS/user_
projects/domains/rib_domain/servers/rib-rms-server/logs/rib-rms" the
RIBLOG filenames are in the format, <adapter-instance-name>.rib.log.

Example:

Foo_pub_1l.rib.log

Also enable the RIB Audit Logs for the corresponding publishing adapter
involved in the message flow. The auditing feature logs the message as it passes

11-40 Oracle Retail Integration Bus Implementation Guide

Verification of RIB Customizations

though the RIB infrastructure. This helps the tracing of message content from
publication to subscription.

Note: To enable RIB Audit logs, see "RIB Logging" in the Oracle Retail
Integration Bus Operations Guide.

Check the RIB audit logs for the particular publishing adapter and verify whether
the message content is displayed correctly as published. Also ensure that the
message passes successfully through all the adapters involved in the particular
message flow.

Verifying the New Subscribing Adapter

To verify the addition of a new subscribing adapter for PL/SQL or Java EE
applications, complete the following steps:

1.

Once the RIB has been compiled and deployed (after adding a new subscribing
adapter), check whether the new subscribing adapter is visible through RIB
Admin GUL

The RIB admin GUI can be accessed via the URL as below.

http://<server>.example.com:<http-port>/rib-<app>-admin-gui/

= Replace <server> with the name or IP address of the server in the environment
where the rib-<app> is deployed.

= Replace <http-port> with the port number that the WebLogic managed server
instance is listening on (for example, 7777).

= Replace <app> with rms, rwms, sim, rfm, aip, oms, or rpm.

Note: See the section,"Admin GUI," in the Oracle Retail Integration
Bus Operations Guide.

Log in to the RDMT main menu.
Select menu option 3 - PUB/SUB/TAFR Msg Menu.

Publish a message using 1 - Publish Msg Utility to the topic from which the newly
added subscriber has to subscribe the message.

Use the sample message.

Check the corresponding adapter's RIBLOGS to be sure the message was
subscribed from the topic successfully. The logs are written to the path,
<rib-application_instance_home>/logs/ <rib-app>.

For example, "/u00/webadmin/product/10.3.3/WLS/user_
projects/domains/rib_domain/servers/rib-rms-server/logs/rib-rms" the
RIBLOG filenames are in the format, <adapter-instance-name>.rib.log.

Example:

Foo_pub_1l.rib.log

Also enable the RIB Audit Logs for the corresponding subscribing adapter
involved in the message flow. The auditing feature logs the message as it passes

RIB Customization/Extension 11-41

Verification of RIB Customizations

though the RIB infrastructure. This helps the tracing of message content from
publication to subscription.

Note: To enable RIB Audit logs, see "RIB Logging" in the Oracle Retail
Integration Bus Operations Guide.

Check the RIB audit logs for the particular message family’s subscribing adapter
and verify whether the message content is displayed correctly. Also ensure that the
message is subscribed successfully by the subscribing adapter.

Verifying the New TAFR Adapter

To verify the addition of a new TAFR adapter, complete the following steps:

1.

Once the RIB has been compiled and deployed (after adding a new TAFR adapter),
check whether the new TAFR adapter is visible through RIB Admin GUI

The RIB Admin GUI can be accessed via the URL as below.

http://<server>.example.com:<http-port>/rib-tafr-admin-gui/

= Replace <server> with the name or IP address of the server in the environment
where the rib-<app> is deployed.

= Replace <http-port> with the port number that the WebLogic managed server
instance is listening on (for example, 7777).

Note: See the section, "Admin GUI," in the Oracle Retail Integration
Bus Operations Guide.

Log in to the RDMT main menu.
Select menu option 3, PUB/SUB/TAFR Msg Menu.

Publish a message using 1—Publish Msg Utility to the topic from which the newly
added TAFR has to subscribe the message.

Use the sample message generated by the RIB Artifact Generator tool for the
corresponding message family.

Check the corresponding TAFR adapter's RIBLOGS to be sure the message was
subscribed by the TAFR from the particular topic and again published to the next
destination topic successfully. The logs are written to the path, <rib-application_
instance_home>/logs/rib-tafr.

For example, for "/u00/webadmin/product/10.3.3/WLS/user_
projects/domains/rib_domain/servers/rib-rms-server/logs/rib-rms" the
RIBLOG filenames are in the format, <adapter-instance-name>.rib.log.

Example:
SampleToSampleWH_tafr_ 1.rib.log
Also enable the RIB Audit Logs for the corresponding TAFR adapter. The auditing

feature logs the message as it passes though the RIB infrastructure. This helps the
tracing of message content from publication to subscription.

11-42 Oracle Retail Integration Bus Implementation Guide

Prerequisites for RIB Localization

Note: To enable RIB Audit logs, see "RIB Logging" in the Oracle Retail
Integration Bus Operations Guide.

8. Check the RIB audit logs for the particular message family’s TAFR adapter and
verify whether the message content is displayed correctly.

Prerequisites for RIB Localization

The tools used for localization extension of the RIB are separately documented. The
primary tool is the Retail Functional Artifact Generator. The message (payload)
structure and packaging is covered in the Oracle Retail Functional Artifacts Guide.

The following documents are referenced in this chapter and are required for the
localization effort:

» Oracle Retail Functional Artifacts Guide

» Oracle Retail Functional Artifact Generator Guide

RIB Customization/Extension 11-43

Prerequisites for RIB Localization

11-44 Oracle Retail Integration Bus Implementation Guide

	Contents
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Customer Support
	Review Patch Documentation
	Improved Process for Oracle Retail Documentation Corrections
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	1 Introduction
	2 Standards and Specifications
	Java Platform Enterprise Edition (Java EE)
	Java EE Server

	Java Message Service (JMS)
	JMS Provider

	Java Management Extensions (JMX)

	3 Core Concepts
	Key Functional Requirements
	Guaranteed Once-and-Only-Once Successful Delivery
	Preservation of Publication Sequence

	Message Family and Message Types
	Foundation Messages
	Transactional Messages

	RIB Message Envelope and Payloads
	Message Life Cycle
	Messaging Components
	RIB Subsystem Components
	Adapters
	JMS Domains, Destinations, Subscriptions
	JMS Message Selector
	Additional RIB JMS Message Properties

	Integration Gateway Services (IGS)
	IGS Interfaces
	Integration to IGS
	IGS Deployment Considerations
	IGS and WebLogic Server (WLS) Clustering

	Simple Message Flow
	The RIB Hospital
	RIB Hospital Dependency Check
	RIB Hospital Insert
	RIB Hospital Tables
	RIB Hospital Retry
	PUB Retry Adapter
	Hospital Attempt (Retry) Count
	JMS Delivery Count

	4 Oracle Retail Application APIs
	PL/SQL Stored Procedure APIs
	Oracle CLOB APIs
	RIB_XML and RIB_SXW Database Packages

	Oracle Object APIs
	RIB Related Database Tables

	Detail Architecture - PL/SQL Apps

	Oracle Retail Java EE APIs
	Detail Architecture Java EE Apps

	Oracle Retail SOAP APIs
	API Return Status Codes
	PL/SQL GETNEXT Return Codes
	PUB_RETRY Return Codes
	CONSUME Return Code

	5 Pre-Implementation Considerations
	RIB Software Lifecycle Management
	Centralized Configuration and Management
	Physical Location Considerations
	Preimplementation Considerations for Multibyte Deployments
	Error Hospital Size
	JMS Server Considerations
	Using Multiple JMS Servers
	Oracle Streams AQ JMS

	High Availability Considerations
	Oracle Database Cluster (RAC) Concepts
	rib-<app> application and Oracle Database Cluster (RAC)
	WebLogic Server Cluster Concepts
	rib-<app> application and WebLogic Application Server Cluster

	6 Deployment Architecture and Options
	Recommended Deployment Options
	Distributed Deployment Alternative
	Advantages
	Disadvantages
	Who Should Use This Configuration?

	Centralized Deployment Alternative
	Advantages
	Disadvantages
	Who should use this Configuration?

	Conclusions

	7 Implementation Process
	Implementation Verification and Validation
	Implementation Environment Verification
	Integration Environment Testability

	8 Performance
	Performance Factors
	Performance and Parallel Logical Channels

	9 Security
	RIB Application Administrators Security Domain
	RIB System Administrators Security Domain

	10 Integration with Fusion Middleware
	General RIB to Fusion Middleware Architecture
	General Process of Integration
	Configure FWM JMS Adapter to RIB AQJMS

	11 RIB Customization/Extension
	Prerequisites for RIB Customization
	Rules for Customization

	Message Family and Message Type Customization
	Adding a New Message Type
	Message Flows with PL/SQL Applications
	Procedure for Adding a New Message Type for PL/SQL Applications

	Message Flows with Java EE Applications
	Procedure for Adding a New Message Type for Java EE Applications

	Creating a New Message Family
	Additional Rules
	Procedure for Adding a New Message Family

	Adding New Adapters
	Adding the Custom Adapter to the rib-integration-flows.xml File
	Procedure for Adding the Flow to the rib-integration-flows.xml File

	Adding a Publishing Adapter for PL/SQL Applications
	Procedure for Adding a Publishing Adapter for PL/SQL Applications

	Adding a Publishing Adapter for Java EE Applications
	Procedure for Adding a Publishing Adapter for Java EE Applications

	Adding a Subscriber Adapter for PL/SQL Applications
	Procedure for Adding a New Subscribing Adapter for a PL/SQL Application

	Adding a Subscribing Adapter for Java EE Applications
	Procedure for Adding a New Subscribing Adapter for a Java EE Application

	Custom TAFR Adapters
	TAFR Considerations
	Transformation
	Filtering Configuration
	Routing

	Adding a New TAFR Adapter
	Procedure for Adding a New TAFR Adapter

	Custom TAFR Implementation
	Procedure for Completing Custom TAFR Implementation

	Changing an Existing TAFR Adapter

	Adding a New rib-<app>
	Adding a new PLSQL rib-<app>
	Adding a New JavaEE rib-<app>
	Adding a New SOAP rib-<app>

	Verification of RIB Customizations
	Verifying the New Message Type
	Verifying the New Message Family
	Verifying the New Publishing Adapter
	Verifying the New Subscribing Adapter
	Verifying the New TAFR Adapter

	Prerequisites for RIB Localization

