

Oracle® Retail
Payload Mapper Guide
Release 15.0
E66509-01

December 2015

Oracle® Retail Payload Mapper Guide, Release 15.0

E66509-01

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Primary Author: Sanal Parameswaran

Contributing Author : Maria Andrew

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or
display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S.
Government end users are "commercial computer software" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be
subject to license terms and license restrictions applicable to the programs. No other rights are
granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications,
including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an
applicable agreement between you and Oracle.

iii

Value-Added Reseller (VAR) Language

Oracle Retail VAR Applications
The following restrictions and provisions only apply to the programs referred to in this section and
licensed to you. You acknowledge that the programs may contain third party software (VAR
applications) licensed to Oracle. Depending upon your product and its version number, the VAR
applications may include:

(i) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail
Data Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(ii) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of
Kirkland, Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory
Management.

(iii) the software component known as Access Via™ licensed by Access Via of Seattle, Washington,
and imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(iv) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of
San Jose, California, and imbedded in Oracle Retail Promotion Planning & Optimization
application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR
Applications. Oracle will not deliver source code to the VAR Applications to you. Notwithstanding
any other term or condition of the agreement and this ordering document, you shall not cause or
permit alteration of any VAR Applications. For purposes of this section, "alteration" refers to all
alterations, translations, upgrades, enhancements, customizations or modifications of all or any
portion of the VAR Applications including all reconfigurations, reassembly or reverse assembly, re-
engineering or reverse engineering and recompilations or reverse compilations of the VAR
Applications or any derivatives of the VAR Applications. You acknowledge that it shall be a breach
of the agreement to utilize the relationship, and/or confidential information of the VAR
Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall
not attempt, cause, or permit the alteration, decompilation, reverse engineering, disassembly or
other reduction of the VAR Applications to a human perceivable form. Oracle reserves the right to
replace, with functional equivalent software, any of the VAR Applications in future releases of the
applicable program.

v

Contents
Send Us Your Comments .. ix

Preface ... xi
Audience .. xi
Documentation Accessibility ... xi
Related Documents ... xi
Customer Support .. xii
Review Patch Documentation .. xii
Improved Process for Oracle Retail Documentation Corrections xii
Oracle Retail Documentation on the Oracle Technology Network............................... xii
Conventions ... xiii

1 Support Policy Disclaimer ... 1

2 PL/SQL Application Mixed Version Support Use Cases .. 3
Use Cases.. 3
Forward and Backward Mapping Use Case Solutions .. 3

3 PL/SQL Solution Approach and Concepts .. 5
The Adapter Pattern ... 5
Concepts ... 5
Benefits ... 6

4 Introduction to the PL/SQL Payload Mapper .. 7
Simple Message Flow and Processes .. 7

Mixed Version Subscription Process ... 8
Mixed Version Publication Process ... 8

Tool Overview and Relationships .. 9

5 PL/SQL Payload Mapper Technical Specifications ... 11
Supported Database Versions ... 11
Supported RIB Versions ... 11

6 PL/SQL Payload Mapper User Interface Tool ... 13
Prerequisites .. 13
Task List ... 13
Installation ... 14
Configuration .. 14
Internationalization .. 15
PL/SQL Payload Mapper UI Usage ... 16

Launch the Mapper UI .. 16
Create a New Mapping ... 17
Edit an Existing Mapping ... 21

Mapping Metadata XML File .. 22

7 PL/SQL Payload Mapper Runtime Tool .. 25

vi

Mapper Runtime Components.. 25
Mapper Runtime Adaptive APIs .. 25
Mapper Runtime Procedure .. 25
Functional Resolvers ... 26
Support Scripts .. 26
Recommended Deployment Topology .. 26
PL/SQL Payload Mapper Runtime Installation ... 26

Prerequisite Tasks .. 27
Installation Process .. 27
Purging .. 32

PAYLOAD_MAPPER PL/SQL Procedure .. 32
MAP_OBJECT_SOURCE_TO_TARGET Execution Flow ... 32
Error Handling .. 34
Logging ... 34

8 Functional Resolvers .. 35
Use Cases Examples ... 35
General Recommendations .. 35
RIB Object Customization .. 36
How to Create a Functional Resolver ... 36

Naming Convention .. 36
Basic Concepts .. 37
Examples ... 37

9 Integration Testing ... 39
Example Compatibility Testing Outline .. 39
Performance Considerations ... 39

10 Java Payload Mapper .. 41
RIB Payload Versions ... 41
Install a Web Service in WebLogic ... 41

Prerequisites ... 41
Deploy Payload Mapper Web Service .. 41
Verify Payload Mapper Web Service .. 42
Redeploy the Application ... 42
Post Deployment Activity .. 42
Custom Payload Mapper for payloads that are not Packaged 43
Directory Structure .. 43
Java Payload Mapper Web Service Usage .. 44
Payload Mapper as a Service .. 45

A Appendix: Examples of Adapting APIs ... 47

B Appendix: Sample Log File .. 49

C Appendix: Examples of Functional Resolvers ... 55
Example Scenario 1 ... 55

vii

Example Scenario 2 ... 55

D Appendix: Mapper Runtime Sequence Diagram .. 57

E Appendix: Examples of APIs and Objects (RWMS).. 59

F Appendix: Examples of RWMS PUB Files .. 61

G Appendix: Examples of RWMS SUB Files .. 63

ix

Send Us Your Comments
Oracle Retail Payload Mapper Guide, Release 15.0

Oracle welcomes customers' comments and suggestions on the quality and usefulness of
this document.

Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:

 Are the implementation steps correct and complete?

 Did you understand the context of the procedures?

 Did you find any errors in the information?

 Does the structure of the information help you with your tasks?

 Do you need different information or graphics? If so, where, and in what format?
 Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us
your name, the name of the company who has licensed our products, the title and part
number of the documentation and the chapter, section, and page number (if available).

Note: Before sending us your comments, you might like to
check that you have the latest version of the document and if
any concerns are already addressed. To do this, access the
Online Documentation available on the Oracle Technology
Network Web site. It contains the most current
Documentation Library plus all documents revised or
released recently.

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number
(optional).

If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at www.oracle.com.

http://www.oracle.com/

xi

Preface
This Oracle Retail Payload Mapper Guide is intended to outline our general product
direction. It is intended for information purposes only, and may not be incorporated into
any contract. It is not a commitment to deliver any material, code, or functionality, and
should not be relied upon in making purchasing decisions. The development, release,
and timing of any features or functionality described for Oracle’s products remains at the
sole discretion of Oracle.

Audience
This guide is for:

 Systems administration and operations personnel

 Database administrators
 System analysts and programmers

 Integrators and implementation staff personnel

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program Web site at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through
My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

 Related Documents
For more information, see the following:
 Oracle Retail Integration Bus Implementation Guide

 Oracle Retail Integration Bus Installation Guide

 Oracle Retail Integration Bus Operations Guide

 Oracle Retail Integration Bus Release Notes

 Oracle Retail Integration Bus Hospital Administration Guide

 Oracle Retail Integration Bus Security Guide

 Oracle Retail Integration Bus Support Tools Guide

 Oracle Retail Enterprise Integration Guide

 Oracle Retail Integration Bus Integration Gateway Services Guide

 Oracle Retail Functional Artifact Guide

 Oracle Retail Functional Artifact Generator Guide

 Oracle Retail Service-Oriented Architecture Enabler Tool Guide

 Oracle Retail Integration Bus Java Messaging Service (JMS) Console Guide

 Oracle Retail Integration Bus Data Model

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

xii

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com
When contacting Customer Support, please provide the following:

 Product version and program/module name

 Functional and technical description of the problem (include business impact)

 Detailed step-by-step instructions to re-create

 Exact error message received

 Screen shots of each step you take

Review Patch Documentation
When you install the application for the first time, you install either a base release (for
example, 15.0) or a later patch release (for example, 15.0.1). If you are installing the base
release or additional patch releases, read the documentation for all releases that have
occurred since the base release before you begin installation. Documentation for patch
releases can contain critical information related to the base release, as well as information
about code changes since the base release.

Improved Process for Oracle Retail Documentation Corrections
To more quickly address critical corrections to Oracle Retail documentation content,
Oracle Retail documentation may be republished whenever a critical correction is
needed. For critical corrections, the republication of an Oracle Retail document may at
times not be attached to a numbered software release; instead, the Oracle Retail
document will simply be replaced on the Oracle Technology Network Web site, or, in the
case of Data Models, to the applicable My Oracle Support Documentation container
where they reside.

This process will prevent delays in making critical corrections available to customers. For
the customer, it means that before you begin installation, you must verify that you have
the most recent version of the Oracle Retail documentation set. Oracle Retail
documentation is available on the Oracle Technology Network at the following URL:
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

An updated version of the applicable Oracle Retail document is indicated by Oracle part
number, as well as print date (month and year). An updated version uses the same part
number, with a higher-numbered suffix. For example, part number E123456-02 is an
updated version of a document with part number E123456-01.

If a more recent version of a document is available, that version supersedes all previous
versions.

Oracle Retail Documentation on the Oracle Technology Network
Oracle Retail product documentation is available on the following web site:
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

(Data Model documents are not available through Oracle Technology Network. You can
obtain them through My Oracle Support.)

https://support.oracle.com/
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

xiii

Conventions
Navigate: This is a navigate statement. It tells you how to get to the start of the procedure
and ends with a screen shot of the starting point and the statement “the Window Name
window opens.”
This is a code sample
 It is used to display examples of code

1

1
Support Policy Disclaimer

The PL/SQL Payload Mapper tool is complex and should be used carefully to avoid
breaking functionality with Oracle Retail Integration Bus products—and to avoid making
future generally available (GA) releases difficult or impossible to accept. Such
predicaments are not supported by Oracle Retail, including My Oracle Support.

This guide aims to mitigate the risks of unsupported architectural revamping by
providing guidance and references for how to attempt mixed version integration safely
and effectively. The sample code and the approaches described in this guide are complex
and require a high level of skill and knowledge of the products involved. Any issues that
may arise with mixed version integration are considered part of a customization and,
therefore, are the responsibility of the customer, not Oracle Retail.

The PL/SQL Payload Mapper tools and examples are designed and tested to work with
GA RIB Business Objects.

The sample code referenced throughout in this guide is a non-GA deliverable intended to
complement this document and provide proof of concepts useful in a mixed version
integration solution.
The PL/SQL Payload Mapper tool support does not extend to the use of the output. Support does
not extend beyond the normal support that any tool has; it must conform to its own specifications
and documentation.

PL/SQL Application Mixed Version Support Use Cases 3

2
PL/SQL Application Mixed Version Support

Use Cases
The following are known problems concerning PL/SQL Application Mixed Version
Support:

 Customer deployments of the Oracle Retail applications are Enterprise Release
specific (for example, 13.0.2, 13.1.1, 14.1.0, and 15.0.0).

 Between any given enterprise release (and often point releases) there are
functional and technical changes to the RIB integration layer that can make them
incompatible. These functional gaps must be analyzed and resolved specifically
for each base release and for each customer’s business needs. Often there are
technology stack gaps as well, such as the transition from Oracle Application
servers to WebLogic.

 With few exceptions, every Oracle Retail deployment has customer specific
modifications to the retail applications and the RIB integration flows.

 Enterprise deployment is expensive, as is customization. Reapplying
customizations to upgrade an application or RIB can be cost prohibitive.

Use Cases
The following are the primary mixed version support use cases:

 Upgrade one application but not all. For example, upgrade RWMS to 15.0.0 but
do not upgrade RMS 12.x.

 Add a new application from a newer release. For example, add 15.0.0 RWMS to a
RMS/RPM 10, 11, 12.x, or 13.x deployment.

 Gradually upgrade all Oracle Retail applications in the entire deployment, when
the goal is for a phased approach.

Adaptation should be applied closest to the application end points as possible— and as
close to the end point that causes least disruption to the existing deployment and still
satisfy the customer’s long-term objective.

The customer’s long-term objective determines the best mixed version approach. Each
case has either a forward or backward adaptation strategy.

Forward and Backward Mapping Use Case Solutions
Forward adaptation is done at the lowest version application. Backward adaptation is
done at the higher version application. Regardless of whether forward or backward
adaptation is chosen, the solution may require custom code involving mapping payloads
in both directions, publication (PUB) and subscription (SUB).

For example, if the strategy is to keep RMS at a fixed version (say, 12.0.x). But to add
multiple new Oracle Retail applications that integrate through RIB (say, RWMS 15.0.0
and SIM 15.0.0), forward adaptation at the RMS end point is recommended.

Forward and Backward Mapping Use Case Solutions

4 Oracle Retail Payload Mapper Guide

Conversely, if the strategy is to keep RMS at a fixed version (say 12.0.x) and there are
numerous third party integrations through that RIB version and only a use case to add a
single newer version of RWMS (say 15.0.0), backward adaptation at the RWMS end point
is recommended.
You must consider mixes of use cases and strategies.

PL/SQL Solution Approach and Concepts 5

3
PL/SQL Solution Approach and Concepts

This section describes the general approach for adapting a PL/SQL application.

The Adapter Pattern
In programming, the adapter pattern is a design pattern that translates one interface into
a compatible interface. An adapter allows applications to work together, when normally
they cannot because of incompatible interfaces. It provides its interface to clients while
using the original interface. The adapter translates calls to its interface into calls to the
original interface. Typically, the amount of code necessary to do this is small. The adapter
also transforms data into appropriate forms.

The Payload Mapper tools, of which the PL/SQL Payload Mapper tool set is a part,
implement the adaptive pattern between two versions of RIB.

Concepts
The following diagram illustrates the general approach for adapting a PL/SQL
application into an existing deployment topology of a differing version:

Oracle Retail PL/SQL App Version Y – Mixed Version

Payload Mapper

RIB Version X

rib-<app> Adapter

Oracle Retail App Version X

RIB InfrastructureAPIBusiness Logic
 rib-<app>
Adapter Custom API Stubs

Functional Resolvers

GA API GA Business Logic

Mapper is co-
located with the
base application.
For PL/SQL in
same instance.

RIB Version
Matches App

Version API Stub
match RIB

VersionCustom

GA Products

Mapper Runtime

Adapting a PL/SQL Application

The PL/SQL solution approach is to perform the adaptation at the PL/SQL application
end point using PL/SQL code. The choice of which PL/SQL application end point in the
deployment the adaptation will co-locate with and adapt to depends on the customer’s
use case and long term strategy.

The general approach is to create an adapting database schema that contains a set of
adapting application API’s to intercept the deployed RIB’s PUB and SUB calls (GETNXT
and CONSUME). The adapting APIs call the Mapper Runtime procedure. Using pre-
created mapping metadata, the Mapper Runtime procedure performs mapping from the
source to the target payload, inserts default values or calls a Functional Resolver as
needed, and returns the converted object. The adapting API either calls the GA
CONSUME API for SUB calls, or it returns the converted object to the RIB adapter
making the GETNXT call.

Benefits

6 Oracle Retail Payload Mapper Guide

Benefits
The following are the benefits of adapting a PL/SQL application:

 No changes are required to the existing RIB objects, RIB infrastructure, or base
application APIs.

 Both versions of RIB can co-exist and be fully functional, with some additional
customization logic for GETNXT, thus allowing for a phased upgrade path.

 Mapping is isolated from the base products and follows the principle of
separation of concerns.

 Upgrades to any of the mixed versions can be applied without modification, so
the GA support is not broken.

 Existing application and RIB customizations remain untouched.

Introduction to the PL/SQL Payload Mapper 7

4
Introduction to the PL/SQL Payload Mapper

The PL/SQL Payload Mapper tools provide a standard way to assist in the custom
development of PL/SQL side solutions to mixed version integrations that use RIB, while
avoiding situations that break functionality of the base RIB and Oracle application
products. A primary design goal is to avoid making future GA releases of Oracle Retail
base products difficult or impossible to accept.

Simple Message Flow and Processes
The following illustrates the message flow:

Note: The numbered list in the right corner corresponds to
the numbers noted within the flow.

Simple Message Flow

Note: See the Oracle Retail Enterprise Integration Guide for
information.

Simple Message Flow and Processes

8 Oracle Retail Payload Mapper Guide

Mixed Version Subscription Process
The following steps describe the mixed version subscription process:

1. The deployed version application’s publishing adapter creates the message. The
event that triggers the message creation may be a polling operation (for PL/SQL
applications) or a synchronous invocation (for of Java EE applications). The message
is published to a pre-determined JMS topic and is available for all registered
subscribers to the JMS topic for pick up.

2. The deployed version RIB SUB adapter on the Mixed Version end picks up the
message from the JMS and converts the deployed version RIB XML message to a
corresponding deployed version RIB object.

3. In the GA RIB message flow process, the deployed version RIB adapter invokes the
subscribe PL/SQL API in the application database schema. This is the point in the
flow that is altered for the Mixed Version Support.

4. PL/SQL Payload Mapper Runtime procedures are deployed in a database schema
separate from the Mixed Version application database schema. It has all the required
grants from the Mixed Version application database schema.

5. Mapper Runtime includes the adapting CONSUME APIs; each one has the same
signature as the base APIs. The RIB deployed version adapter is configured to
connect to these APIs. The RIB object is passed from the deployed version RIB
adapter to the adapting CONSUME APIs (see 1 in the Simple Message Flow above).
The RIB Object is the deployed version RIB Object.

6. The adapting CONSUME APIs in the Mapper Runtime schema invoke the Mapper
Runtime procedure to convert the RIB object to and from the Mixed Version RIB
object (see 2 in the Simple Message Flow above).

7. The Mapper Runtime procedure invokes the appropriate Functional Resolver if
needed, as defined in the mapping metadata created by the Mapper UI tool (see 3 in
the Simple Message Flow above). The Functional Resolvers reside in the Mapper
Runtime database schema and resolve differences in mapping.

8. The Adapting CONSUME API invokes the Mixed Version CONSUME API with the
converted object. The process continues as in the base release (see 4 in the Simple
Message Flow above).

Mixed Version Publication Process
The following steps describe the Mixed Version Publication Process:

1. For PL/SQL Applications, publication is handled by a polling RIB adapter.
2. The deployed version RIB Adapter polls the Mapping Runtime adapting GETNXT

API, each having the same signature as the base API’s (see 1 in the Simple Message
Flow above).

3. The adapting GETNXT API invokes the Mixed Version application’s GETNXT API
(see 2 in the Simple Message Flow above).

4. The Mixed Version GETNXT returns a RIB Oracle Object.
5. The Mapper Runtime adapting GETNXT passes the Object to the Mapper Runtime

procedure for conversion (see 3 in the Simple Message Flow above).

6. The Mapper Runtime procedure invokes the appropriate Functional Resolver as
needed, as defined in the mapping metadata created by the Mapper UI tool (see 4 in
the Simple Message Flow above), and hands the converted object back to the Mapper
Runtime adapting GETNXT.

 Tool Overview and Relationships

 Introduction to the PL/SQL Payload Mapper 9

7. The Mapper Runtime Adapter GETNXT returns the deployed version RIB object to
the calling deployed version RIB Adapter for publication to the JMS.

Tool Overview and Relationships
The PL/SQL Payload Mapper tool set comprises a design time and a runtime
component. The design time tool is the PL/SQL Payload Mapper UI (or Mapper UI), and
the runtime tool is the PL/SQL Payload Mapper Runtime (or Mapper Runtime). The
Mapper Runtime uses the metadata output of the Mapper UI and the custom PL/SQL
code required to complete the payload adaptation.

The Mapper UI assists developers in defining the mappings between RIB objects for the
different versions and to create the metadata XML file. The metadata includes the rules to
map the source payload to the target payload. It is then deployed with and used by the
Mapper Runtime in adapting the source version of a payload to the target version
payload. Because the Oracle Retail RIB is bi-directional (PUB and SUB), adaptation
mappings are required where source and target are for both directions.

During the design activity, elements of the target database type with no direct mapping
to source elements are identified by the Mapper UI. The tool provides the facility to
create hooks for custom components to resolve the differences in the payloads. The hooks
created by the Mapper UI are called Functional Resolvers. They are the custom PL/SQL
code units designed and coded by the developer, based on business needs and the
functional analysis of the application’s use of the unmapped elements.

Tool Overview and Relationships

PL/SQL Payload Mapper Technical Specifications 11

5
PL/SQL Payload Mapper Technical

Specifications
This section describes technical specifications for the PL/SQL Payload Mapper.

Supported Database Versions
The following database version is supported:

Supported On Version Supported

Oracle Database 12c Enterprise Edition

Supported RIB Versions
The PL/SQL Payload Mapper is supported for the following versions of RIB Objects:

Supported On Version Supported

Oracle Retail Integration Bus 12.x, 13.x , 14.x and 15.0.0

PL/SQL Payload Mapper User Interface Tool 13

6
PL/SQL Payload Mapper User Interface Tool

The PL/SQL Payload Mapping UI (Mapper UI) is designed and built as a stand-alone
application. This section provides an overview of the Mapper UI and how to install and
use it.

Prerequisites
The PL/SQL Mixed Version Application and PL/SQL Payload Mapper Runtime
database schemas must exist and have the RIB Oracle Objects installed.

Because the mapping is at the Oracle Object level from the database schemas, it is critical
to understand the RIB Objects and the relationship to RIB messages and message types.

Note: See the Oracle Retail Enterprise Integration Guide for
information about message families and types.
Also see Appendix E: Examples of APIs and Objects
(RWMS).

Task List

Task Notes

Create the Payload Mapper database schema and
install per the instructions in this guide.

See the section, Installation.

Have connection information available for the two
schemas available, including the following:

 Machine details of the database, such as hostname,
database port, and database SID.

 Application database schema details (user ID and
password).

 Payload Mapping schema (user ID and password)

See the section, Recommended
Deployment Topology.

Prepare a directory structure to save the metadata XML
files created during the Mapping UI sessions.

PUB and SUB for both directions. See
Mapping Metadata XML File.

Make sure that the JAVA_HOME environment variable
is set and in the path for the user performing these
tasks.

Java version 1.7.0_x with latest
security updates.

Installation

14 Oracle Retail Payload Mapper Guide

Installation
The PL/SQL Payload Mapper UI (Mapper UI) is created as an Eclipse RCP plug-in.
Installation of Eclipse is not required; the Mapper UI is a standalone tool distributed as a
zip archive:

PlsqlPayloadMappingDesignUi15.0.0ForAllx.x.xApps_eng_ga.tar

Installation of the UI is an extraction of the tar file to a desired location, as follows.

1. Create a folder where the UI will reside (for example, mapperUI).

2. Copy the tar file to the new folder.

3. Extract the tar file.
4. The extraction creates a folder called PlsqlPayloadMappingDesignUi.

5. Browse to the directory PlsqlPayloadMappingDesignUi.

6. Extract PlsqlPayloadMappingDesignUi.jar.

7. The extraction creates a folder called PlsqlPayloadMappingDesignUi.

8. Under PlsqlPayloadMappingDesignUi, browse to the appropriate OS directory (Run
the command "uname -a" to identify the appropriate operating system).

9. Go to the folder, PlsqlPayloadMappingDesignUi.

10. Launch the Mapper UI.

Configuration
To configure the properties for the Mapper UI, open the oracle.retail.rib.mapper_xxx.jar
and edit the application.properties file.
The application.properties file contains the following editable configurations:

 newmapping.wizard.entertext, which denotes whether the PL/SQL Payload
Mapper UI takes its source and target configuration values from the
application.properties file or prompts the user for them. Valid values are True
and False.

– True disables the splash screens for source/target prompts from being
shown.

– False enables the splash screen for source/target to enter them.

 The source and target schema details.

Note: The source and target depend on the direction of the
message flow (PUB/SUB). Mappings are required in both
directions.

New and Open mapping wizard default values (used if
newmapping.wizard.entertext=TRUE)

source.driver=oracle.jdbc.driver.OracleDriver
source.dbhost=localhost
source.dbport=1521
source.dbsid=orcl
source.dbuser=<source db user>
source.version=12.0.9

target.driver=oracle.jdbc.driver.OracleDriver
target.dbhost=localhost
target.dbport=1521

 Internationalization

 PL/SQL Payload Mapper User Interface Tool 15

target.dbsid=orcl
target.dbuser=<target db user>
target.version=15.0.0

Note: The source and target depend on the direction of the
message flow. Flows are in both directions, from the
Deployed Version to the Mixed Version, and from the Mixed
Version to the Deployed Version.

 application.default.locale, which is the locale of the design time tool.

Internationalization
The Mapper UI messages and window attributes, such as the title messages and buttons,
are internationalized using the standard Eclipse framework.

Internationalization is at the following levels:
 Messages, prompts, and dialog texts.

 Buttons and menu provided by the Workbench.

In the tool plug-in executable (oracle.retail.rib.mapper_xxx.jar) is a folder within the jar
file called locale. It contains the localized messages for various languages.

The class LocalePropertiesLoader refers to the application.properties file setting of
application.default.locale for the default locale and loads the language bundle of the
mentioned locale. The locale specific file contains localized text for messages, prompts,
and dialogs.

As shipped, the MapperUI includes the following:

 application.default.locale = en

 file in locale folder = applicationText_en.properties

The buttons and menu contributions are localized using the properties file,
plugin_<Locale>.properties. The file is located in the root level of the plug-in executable
(oracle.retail.rib.mapper_xxx.jar). The Mapper UI has shipped the locale en properties.

To add a new language bundle so that it can be used by the Mapper UI, do the following:

 Add the new bundle into the locale directory in the MapperUI plug-in jar file.

 Add the new bundle plugin.properties to the root level in the MapperUI plug-in
jar file.

 Set the value of the default locale in the application.properties file.

Note: See Eclipse documentation for addition details.

PL/SQL Payload Mapper UI Usage

16 Oracle Retail Payload Mapper Guide

PL/SQL Payload Mapper UI Usage
This section describes how to use the Mapper UI.

Launch the Mapper UI
To launch the Mapper UI, move to the directory where the Mapper UI was installed and
to the subdirectory appropriate for the Operating System (OS) on which the Mapper UI
resides.

For example, cd ~
/PlsqlPayloadMappingDesignUi/<OS>/PlsqlPayloadMappingDesignUi.

For Windows, click PlsqlPayloadMappingDesignUi.exe.
For Linux, sh PlsqlPayloadMappingDesignUi.

Note: Java must be installed and in the user path.

 A splash screen is displayed.

The tool opens with a blank screen. From this blank screen, select the Mapping menu.

 PL/SQL Payload Mapper UI Usage

 PL/SQL Payload Mapper User Interface Tool 17

Create a New Mapping
To create a new mapping, complete the following steps:

1. From the Mapping menu, select New Mapping.

The Source and Target Configuration splash screen shows when the launcher is
invoked, unless the application.properties file property
newmapping.wizard.entertext is set to True.

When the property is set toTrue, the wizards are not displayed. Instead, the user is
prompted for the source and target database schema passwords.

Note: See the section, Configuration.

Source and Target Configuration

The source and target depend on the direction of the flow. Usually, flows are in both
directions, from the Deployed Version to the Mixed Version and from the Mixed
Version to the Deployed Version.

2. Click Finish.

3. Enter the name and location of the metadata XML file created as a result of the
mapping.

For example, RIB_AllocDesc_REC_15.0.0_13.2.0.xml.

Note: See the section, Mapping Metadata XML File.
See also the examples in these appendices:
Appendix F: Examples of RWMS PUB Files
Appendix G: Examples of RWMS SUB Files

PL/SQL Payload Mapper UI Usage

18 Oracle Retail Payload Mapper Guide

Note: After the file name is specified and the location
specified, click Save to create the file. From that point, saving
the XML file is handled programmatically based on user
action throughout the mapping session (for example,
automap, or drag and drop).

In the Workbench screen shown, type has not been selected. The left side view is
for the source type; the right side is for target type. The various options and
menu buttons are shown.

The Mapper UI Workbench

 PL/SQL Payload Mapper UI Usage

 PL/SQL Payload Mapper User Interface Tool 19

4. The button shown on the view toolbar includes database icon with the Select Source
RIB Object tooltip. Click this button to open a selection dialog with database types
from the source/target database. The selection screen is as shown below.

Type Selection Dialog

5. Database types are obtained by reading the data dictionary of the target or source
schema. Select the source and target database type to map. Once these values are
selected, the Workbench is shown as follows.

Mapper UI Workbench

PL/SQL Payload Mapper UI Usage

20 Oracle Retail Payload Mapper Guide

6. The selected source and target type is shown in the views as a tree structure. From
the target object view toolbar, select Auto Map Action to create a best fit map.

Auto Map Action

Auto mapping compares the target object with the selected source object and
creates the best fit map. The mapping editor is refreshed to show the best fit map.
The elements not mapped on the target view are changed to a different color.

Result of Auto Map Action

Once Auto Map is compete, the drag and drop feature is provided to map the
elements that do not map.

Note: The drag and drop feature is enabled only on an
element-to-element basis.

7. Drag the source attributes to the target attributes. Mappings are created as the result
of the action. Mapping should be between only elements belonging to the same
hierarchy in source and target Objects.

 PL/SQL Payload Mapper UI Usage

 PL/SQL Payload Mapper User Interface Tool 21

For example:

RIB_ASNInDesc_REC has an element ASNInPO_TBL(collection), and ASNInPO_TBL
has an ASNInItem_TBL(collection).

In this case, elements of source ASNInItem_TBL should be mapped to elements of
target ASNInItem_TBL only.

The viewer in the middle of the source and target view is an editor that displays the
metadata XML as it is created.

8. After dragging and dropping, if the drop target does not match the dragged source
(data type mismatch), the developer is prompted to enter Functional Resolver or a
default value.
Data type and Data length are validated on the value entered for the default value.

Note: See the section, Functional Resolvers.

Edit an Existing Mapping
To edit an existing mapping, do the following:

1. From the Mapping menu, select the Open Mapping. You will be prompted to select
the mapping file to edit. Once the mapping file is selected, the source and target
objects open automatically. The object names are picked up from the mapping xml
file.

2. Edit the mapping using the drag-drop or the double click feature, as described in the
section, Create a New Mapping.

Note: Re-selecting auto map is not advised. Doing so erases
all previously created mappings from the file.

Mapping Metadata XML File

22 Oracle Retail Payload Mapper Guide

Mapping Metadata XML File
The metadata XML file defines the rules for creating a version of database type from
another version of the same type. The XML file is used by the Mapper Runtime to create
the target database type from a source type.

Note: Manually editing metadata XML files is strongly
discouraged. Elements must be in the same order as in the
Oracle object. The Mapper UI maintains that order and adds
all elements of the target object, mapped and unmapped. To
manually edit the files, you must ensure all elements are
present and accurately defined.

The XML file is formatted as follows:

Mapping XML Format

There is one XML file for each RIB object database type. For ease of use and clarity,
naming the file name to match the RIB object as well as the version is recommended. This
allows unambiguous naming for source code control and moving to the Runtime Host
system.

For example, RIB_AllocDesc_REC_15.0.0_13.2.1.xml.

Note: Object names are maintained in the XML file and
used for processing. The name of the file is not used for
processing.

The XML file content is the metadata loaded into the Mapper Runtime. This identifies
the Oracle object for source and destination:
<Mapping targetRibObject="RIB_AllocDesc_REC" sourceRibObject="RIB_ALLOCDESC_REC">

The source and destination vary, depending on whether the mapping is for a PUB or a
SUB. The source and target versions:
<MappingVersion sourceVersion="13.2.1" targetVersion="15.0.0">

The following identifies the element (node) of the Oracle Object being adapted:
<Element name="RIB_AllocDesc_REC" tableType="" recordType="RIB_AllocDesc_REC"
source="RIB_ALLOCDESC_REC" functionalResolver="" unmapped="false">

 Mapping Metadata XML File

 PL/SQL Payload Mapper User Interface Tool 23

For each attribute in the node, there is a line identifying the element, the source element
mapped to it, the functional resolver to be called at runtime (if there is one), a default (if
specified), and the identifier set by the Mapper UI to indicate that it has been mapped
(true or false):
<Attribute name="ALLOC_NO" source="RIB_ALLOCDESC_REC.ALLOC_NO"
functionalResolver="" default=”” unmapped="false" />
<Attribute name="RIB_OID" source="" functionalResolver="" defaultValue="10" />

Note: Mapper Runtime checks for the default value and
inserts it. The default value takes precedence over the call to
a Functional Resolver.

PL/SQL Payload Mapper Runtime Tool 25

7
PL/SQL Payload Mapper Runtime Tool
The PL/SQL Mapper Runtime uses payload (Oracle object) as source values and maps
them to a target payload (Oracle object). The source and target depend on the direction of
the message flow (PUB/SUB).

Mapping is based on the Mapping XML, which is created using the mapping utility
discussed in the previous section. Mapping may be direct, one for one (like to like). Or
gaps may be detected in the design phase that either adds a default value or identifies a
Functional Resolver to be called.

Note: See the section, Simple Message Flow and Processes.

Mapper Runtime Components
The Runtime Mapper comprises the following components:

 Adaptive APIs (custom)
 Runtime Mapper (base tool)

 Functional Resolvers (custom)

 Support scripts and PL/SQL packages (examples provided)

Mapper Runtime Adaptive APIs
The custom adapting PL/SQL APIs, CONSUME and GETNXT (which correspond to the
Mixed Version schema), are installed into the Mapper Runtime schema. These adapting
APIs (also known as pseudo APIs) must be created by the developer. The signature on
each API must be identical to the signature on the corresponding Mixed Version API.
These APIs make the call to the Mapper Runtime and invoke the actual CONSUME
/GETNXT APIs in the application database schema.

Note: See the section, Simple Message Flow and Processes.
See also the appendices at the end of this guide.

Mapper Runtime Procedure
The Mapper Runtime procedure is the mapping engine and a PL/SQL package installed
into the Mapper Runtime Schema. The transformations it performs are controlled by the
metadata mappings between specific source and target objects. The metadata is created
by the Mapper UI and stored in files that are loaded into the MAPPING_DETAIL table.

Note: See the section, PAYLOAD_MAPPER PL/SQL
Procedure.

Functional Resolvers

26 Oracle Retail Payload Mapper Guide

Functional Resolvers
Functional Resolvers are custom program units that may have to be created during the
mapping process to resolve a specific mapping difference that functional analysis has
determined as a gap that must be handled by something more than a default.

Note: See the section, Functional Resolvers.

Support Scripts
Support scripts are sample scripts for performing many of the basic tasks required to
install and maintain Mapper Runtime.

Note: See the section, Packaged PL/SQL Payload Mapper
Runtime PL/SQL Procedures

Recommended Deployment Topology

The Runtime Mapper is co-located in the same database instance as the installed GA
Mixed Version of the application mapped to the deployed RIB version.

 Mixed Version Main Schema -- Contains the GA application. Grants from this
schema for all objects are given to Mapper Runtime schema.

 Mapper Runtime Schema -- Contains all deployed RIB Version RIB object types,
as well as tables, packages, and procedures for PL/SQL runtime, including the
adapting (pseudo) APIs for GETNXT and CONSUME calls.

PL/SQL Payload Mapper Runtime Installation
Payload Mapper installation has many pre-requisites and dependencies that must be
understood by the customer’s database administrators, system administrators,
application server administrators, and Oracle Retail application teams.

 PL/SQL Payload Mapper Runtime Installation

 PL/SQL Payload Mapper Runtime Tool 27

Prerequisite Tasks

Task Notes

Create the Mapper Runtime database schema <mapper runtime schema>

Grant the Mapper Runtime schema

 Connect

 Resource

 Create Any Directory

 Grant Select on v_$session

Install the Mixed Version Application. Follow installation and deployment
instructions for the application.

Create or identify a user that can hold the
directory structure on the database host system to
place the Mapper Runtime metadata, adapting
APIs, and logging files.

The user location must have appropriate
read and write permissions.

In the Mapper Runtime Schema, install the
version of RIB Oracle Objects that matches the
version of RIB that was deployed.

The Mapper Schema also requires that the
version of the installed RIB Objects match
the version of the deployed RIB. The grants
scripts give permission on the Mixed
Version Objects to the Mapper Runtime.

Installation Process
The following tables describe the tasks required to complete the installation process:

Initial Installation Summarized Task List

Task Notes

Place the distribution into the
directory structure created in
the pre-requisites and untar the
contents.

> tar xvf
PlsqlPayloadMapperEngine15.0.0ForAllx.x.xApps_eng_ga.tar

Create grants on the Mixed
Version application schema
objects to the Mapper Runtime
schema owner.

An example script is provided in the distribution,
GrantPrivileges.sql.

Note: It is important to re-run the grants whenever there is a
change to the Objects in the Mixed Version schema; otherwise,
the Runtime fails with errors when it attempts to use the base
RIB Objects.

See the section, Packaged Support Scripts and PL/SQL
Procedures.

Create the database entry for the
external file system location to
hold logs and metadata.

An example script is provided in the distribution,
CreateDirectory.sql.

See the section, Packaged Support Scripts and PL/SQL
Procedures.

Create the tables used by the
Mapper Runtime.

An example script is provided in the distribution,
CreateTables.sql.

Create the triggers needed. An example script is provided in the distribution,
CreateTriggers.sql

PL/SQL Payload Mapper Runtime Installation

28 Oracle Retail Payload Mapper Guide

Task Notes

Run the
CreateMappingErrorLog script
to create the logger.

The package is provided in CreateMappingErrorLog.sql.

Create the Mapper Runtime
procedure.

The package is provided in Create_Payload_Mapper.sql.

Note: The custom Adapter APIs must be compiled into the
Mapper schema before the Create_Payload_Mapper.sql and
ConvertRoutinginfo.sql can be run.

Run the ConvertRoutingInfo
procedure.

The package is provided in ConvertRoutingInfo.sql.

Mapping Runtime Files and Procedures

Task Notes

Move the custom Adapting APIs to the directory structure
created in the prerequisites.

Install and compile them in the Mapper Runtime schema.

These are the custom APIs that
must be created.

You must create a custom adaptive
API in the Mapper schema for
every RIB API (SUB or PUB) used
by the installation
(for example, RWMS).

See Appendix A: Examples of
Adapting APIs

Move the custom Functional Resolvers to the directory
structure created in the prerequisites. Install and compile
them in the Mapper Runtime schema.

Move the metadata XML files created by the Mapper UI to
the directory structure created in the prerequisites. Execute
the cachemapping tool to install them into the Mapper
Runtime schema.

See the section, Cachemapping
Usage.

Configure RIB to the Mapper Runtime

Task Notes

Install the deployed RIB error hospital for the
Mixed Version application.

This must be the hospital for the deployed
release of RIB, not the Mixed Version.

Configure the deployed RIB adapters to point to
the Mapper Runtime Adapting APIs and to the
deployed version of RIB’s error hospital installed
in the Mapper Runtime schema.

(See documentation for the deployed release
of the Oracle Retail Integration Bus.)

This may require a new installation of the
deployed RIB adapters (ribforxxx) that
correspond to the name of the mixed version
applications but match the version of the
deployed RIB.

If a deployed version of the ribforxxx exists,
make a simple configuration change in rib-
home to point to the Adapting APIs in the
Mapper schema.

 PL/SQL Payload Mapper Runtime Installation

 PL/SQL Payload Mapper Runtime Tool 29

Packaged PL/SQL Payload Mapper Runtime PL/SQL Procedures

Task Notes

Create_Payload_Mapper.sql

For example,

>sqlplus <mapper runtime schema>

SQL> @Create_Payload_Mapper.sql <mixed
version schema> <mapper runtime schema> 15.0.0
12.0.9

The PL/SQL Mapper Runtime PL/SQL
package.

The arguments are Mixed Version schema
name, Runtime Mapper schema name,
Mixed Version and deployed version. These
versions should be same as what has been
provided while creating the XML Mappings
(for example, 15.0.0 and 12.0.9).

Warning: If at runtime the release numbers
do not match, this error is logged: “ORA-
01403: no data found.”

ConvertRoutingInfo.sql/

For example,

>sqlplus <mapper runtime schema>

SQL> @ConvertRoutingInfo.sql <mixed version
schema> <mapper runtime schema>

The procedure to map the RIB Routing
Information Objects in the Payload Mapper
database schema.

The arguments are Mixed Version schema
name and Runtime Mapper schema name.

Packaged Support Scripts and PL/SQL Procedures

Task Notes

GrantPrivileges.sql

For example,

>sqlplus <mixed version schema>

SQL> @ GrantPrivileges.sql <mapper
runtime schema>

This example script grants permissions to the
Payload Mapper database schema in the RIB Oracle
Objects of the Application database schema.

Note: It is important to re-run the grants whenever
there is a change to the Objects in the Mixed Version
schema; otherwise, the Runtime fails with errors
when it attempts to use the base RIB Objects.

CreateTables.sql

For example,

>sqlplus <mapper runtime schema>

SQL> @CreateTables.sql

The script creates the required Mapper Runtime
tables in the Payload Mapper database schema.

CreateTriggers.sql

For example,

>sqlplus <mapper runtime schema>

SQL> @CreateTriggers.sql

The script creates the required Mapper Runtime
triggers in the Payload Mapper database schema.

CreateSequences.sql

For example,

>sqlplus <mapper runtime schema>

SQL> @CreateSequences.sql

The script creates the required Mapper Runtime
sequences in the Payload Mapper DB Schema.

InsertSeedData.sql

For example,

>sqlplus <mapper runtime schema>

SQL> @InsertSeedData.sql

The script inserts into the OBJECT_FILE_MAPPING
table name/value pairs to associate a RIB object to its
logging file.

Note: This script may require adjustments to
support RMS versus RWMS, as well as any
customizations.

PL/SQL Payload Mapper Runtime Installation

30 Oracle Retail Payload Mapper Guide

Task Notes

CreateDirectory.sql

For example,

>sqlplus <mapper runtime schema>

SQL> @CreateDirectory.sql
/stage/Payload_Mapper/mapper_dir

The script creates a directory in Payload Mapper
database schema that points to an external file
system location. This directory is where the Mapping
metadata XML file resides. The directory must be
passed as a parameter, and it must have appropriate
read and write privileges.

CreateMappingErrorLog.sql

For example,

>sqlplus <mapper runtime schema>

SQL> @CreateMappingErrorLog.sql

The script compiles the procedure to log errors.

Installation and Usage: Database Caching of Mapping Metadata
To improve performance, Mapping Runtime must not access the file system for every
message conversion. A tool has been developed to read the file system for the Mapping
UI metadata XML files, parse the files, and cache the mappings into database tables.

The Mapping Runtime reads the database table to obtain the mappings. This prevents the
mapping utility from accessing the file system again and again. The same PL/SQL tool
can be used to reload/refresh a mapping XML.

Task Notes

The java executable should be in the PATH
environment variable of the user.

CLASSPATH is set by the script.

Java 1.7.x with latest security updates.

Execute cachemapping.sh/cachemapping.bat.

The script to cache the PL/SQL Payload
Mapping metadata XML in the Payload
Mapper database schema.

Cachemapping Usage
The script requires the following input:

 JDBC URL to connect to the utility schema. For example, jdbc.oracle.thin:@<DB
machine name>:<DB PORT>:<DB SID>.

 Mapper Runtime schema user name.
 Mapper Runtime schema password. (The user is prompted for it.)

 User name or login ID (also prompted). The operator ID is used for audit
columns, such as Created By and Modified By in Mapper Runtime tables.

 Directory where the metadata XMLs are located.

 Mapping XML name: This is an optional argument. If the name is provided, only
that file is uploaded and refreshed in the database. This argument can be used to
refresh selective mappings if a mapping XML is later changed.

Database Tables
This section generally describes the database tables used by the Mapper Runtime. The
tables are shown here for representation; actual structure may change with releases.

 PL/SQL Payload Mapper Runtime Installation

 PL/SQL Payload Mapper Runtime Tool 31

MAPPING_HEADER: This table is the master table for the mappings. It stores the Object
Name along with the Source and Target versions. MAPPING_ID is the primary key.

Column Name Description

MAPPING_ID Primary Key. This is just a sequential number

OBJECT_NAME The name of the message type.

SOURCE_VERSION The version of the message that needs to be converted.

TARGET_VERSION The version of the message that needs to be created.

CREATE_BY Audit column

CREATE_DATE Audit column

MODIFY_BY Audit column

MODIFY_DATE Audit column

MAPPING_DETAIL: This table stores all the mappings for all the necessary objects.
MAPPING_ID is the foreign key that refers to the MAPPING_HEADER table.

Column Name Description

MAPPING_DETAIL_NO Primary Key. Populated by sequence SEQ_MAPPING_DETAIL

MAPPING_ID References Mapping_Header.

ELEMENT_TYPE Indicates whether it is an attribute or element from XML. This is for
future use.

TARGET The target flattened element. For example, RIB_ItemDesc_REC.
ITEMUPCDESC_TBL. ITEM_NUMBER_TYPE.

SOURCE The source element. For example, RIB_ITEMDESC_REC.RIB_OID.

FUNC_RES If any functional resolver is suggested in the mapping, the same is
stored here.

SUP_TYPE The base object from which the target child collection is made.

NEST_TABLE The actual collection for the element.

DEFAULT_VALUE Default value, if provided in the Mapping.

CREATE_BY Audit column

CREATE_DATE Audit column

MODIFY_BY Audit column

MODIFY_DATE Audit column

MAPPING_ERROR_LOG: This table stores all the unhandled errors.

Column Name Description

SEQ_NO Primary Key. This is a sequential number

ERROR_TS Date when the error occurred

ERROR_DESC Description of the error. Most likely this stores SQLERRM

PAYLOAD_MAPPER PL/SQL Procedure

32 Oracle Retail Payload Mapper Guide

UTILITY_SYSTEM_OPTIONS: This table stores Runtime name/value options.

Column Name Description

CONFIG_ID Option Name

CONFIG_VALUE Option Value

OBJECT_FILE_MAPPING: This table stores lookup values for files used by the Mapper
Runtime Logger.

Column Name Description

OBJECT_NAME RIB Object Name

FILE_NAME External logging file name

Purging
The MAPPING_ERROR_LOG table stores only the errors related to file handling. Once
the Mapper directory where the log files and the other artifacts are stored is in place and
permissions are granted, the growth of this table is not expected to substantial.
Oracle Retail does recommend periodic checking of the table deleting all rows which are
more than 90 days old.

PAYLOAD_MAPPER PL/SQL Procedure
PL/SQL Mapper Runtime transforms an object from one version to another. It
transforms the object of source version as input and returns the transformed object of the
target version as output. Transformation is based on mappings between source and
target object stored in the MAPPING_DETAIL table. The target object element value
could be the source object element itself; or it could be a default value or a functional
resolver.

The PAYLOAD_MAPPER procedure is the Mapper Runtime engine and contains one
overloaded function, MAP_OBJECT_SOURCE_TO_TARGET. This function is called from
each of the Adapter APIs created in the Mapper Runtime schema.
MAP_OBJECT_SOURCE_TO_TARGET uses the source RIB_OBJECT as input and
transforms it into target RIB_OBJECT.

For subscriptions, the MAP_OBJECT_SOURCE_TO_TARGET is called first in the
Adapter API. Then the actual CONSUME call is made, using the transformed object. For
publishing, the actual GETNXT call is made first; then
MAP_OBJECT_SOURCE_TO_TARGET is called to transform the object.

During transformation, the target object element value can be the source object element;
or, if it is missing, MAP_OBJECT_SOURCE_TO_TARGET inserts a default value or a call
to a Functional Resolver. These decisions are made in the Mapper UI and in the metadata
store in the MAPPING_DETAIL table.

MAP_OBJECT_SOURCE_TO_TARGET Execution Flow
The following steps comprise the MAP_OBJECT_SOURCE_TO_TARGET execution flow:

Note: See Appendix D: Mapper Runtime Sequence Diagram.

1. Call GetRibObjectType to get the actual underlying object type. For example,
RIB_OBJECT may store RIB_AllocDesc_Rec.

 MAP_OBJECT_SOURCE_TO_TARGET Execution Flow

 PL/SQL Payload Mapper Runtime Tool 33

2. Open the log file defined in OBJECT_FILE_MAPPING for logging.

3. Call GetXMLMappings to get the mappings defined in MAPPING_DETAIL table. If
no mappings are defined, “No Data Found” is logged in the log file. The mappings
are populated in a collection defined at the Package Level (tbMap).

4. Convert the RIB_OBJECT into the actual underlying object type.

5. Log the values of the Source Object into the log file (only if LOGGING = Y in the
UTILITY_SYSTEM_OPTIONS table).

Call RECUR, passing in the first element position in Mapping_Detail table. It is
always 1. Also pass the hierarchy, which is also 1.

a. Get the values of the object at first level and log it into a file.
b. Get the position of the first element of the object or collection at the next level.

c. Call RECUR again, passing in the position and level of hierarchy.

d. Get the values of the object at this level and log it into a file.

e. Get the position of the first element of object or collection at the next level or the
position of the first element of a different object or collection at the same level.

f. Call RECUR again, passing in the position and level of hierarchy.
g. Get the values of the object at this level and log it into a file.

h. Perform the above two steps repeatedly until all child objects are covered and
values are logged in the file.

6. Call InitObj to start transformation of the object.

a. Using a CLOB, start creating constructor for the target object.

b. Start traversing through tbMap to get mappings.
c. If the element is at level 1, enter the value in the CLOB based on mappings.

d. If it is a direct mapping, call ConstructSourceValue to get the source column.

e. To use a default value, enter the default value.

f. To use a functional resolver, call GetFunctionalResolver to get the actual function
with parameters.

g. If the element is at a level higher than 1, call CreateChildObject. (This element
will be a part of the collection within the main object.)

i. Call RecursiveChildObjects passing the current position of tbMap.

ii. Get the count of the collection and get the number of elements in the
collection.

iii. Create two loops, where the outer one is for count of the collection and the
inner one is for the number of elements in the collection.

iv. For each element of target object find the source per mapping and enter the
correct value in the CLOB.

If it is a direct mapping, use the source element directly.

To use a default value, enter the default value.

To use a functional resolver, call GetFunctionalResolver to get the actual
function with parameters.
If an element is found at a higher level, or if the element is at a lower level
than the current level, execute the steps in Item “g” until all the elements are
mapped.

h. Run the constructor so that we get the transformed object.

7. Log the values of the Target Object into the log file (only if LOGGING = Y in the
UTILITY_SYSTEM_OPTIONS table).

Error Handling

34 Oracle Retail Payload Mapper Guide

Call RECUR, passing in the first element position in Mapping_Detail table. It always
will be 1. Also pass the hierarchy, which is also 1.

a. Get the values of the object at first level and log it into file.

b. Get the position of first element of object or collection at the next level
c. Call RECUR again, passing in the position and level of hierarchy.

d. Get the values of the object at this level and log it into file.

e. Get the position of first element of object or collection at the next level, or the
position of the first element of a different object or collection at the same level.

f. Call RECUR again, passing in the position and level of hierarchy.

g. Get the values of the object at this level and log it into file.
h. Perform the above two steps repeatedly until all child objects are covered and the

values are logged in the file.

8. Close the log file.

9. Return the target object.

Error Handling
The Adapting (pseudo) APIs are the point of invocation from the RIB Adapter. These
APIs interact with the CONSUME and GETNXT APIs.

Exceptions raised by the actual APIs are forwarded to the RIB Adapter accordingly.

Any fatal exceptions raised by the PL/SQL Mapping Runtime are mapped to the errors
already handled by the RIB adapter. Unless a fatal exception is encountered, the
conversion of the RIB object from one version to the next is not stopped.
Errors related to file handling are logged in the MAPPING_ERROR_LOG table;
conversion of the RIB object continues.

Logging
The flow of execution and errors are logged in the file, rib_mapper_<RIB
MessageFamily.log>. There is one log file for each RIB message family.

Note: Log File maintenance is not automated. A customer
process to watch, archive, and purge must be built.

Logging is globally controlled by a setting a name/value pair in the Mapper Runtime
UTILITY_SYSTEM_OPTIONS table in the Mapper Runtime schema.

During installation, the name/value pair setting for logging is enabled, where LOGGING
= Y and a seeding script is run to associate the RIB_OBJECT with the logging file:

Insert into OBJECT_FILE_MAPPING (OBJECT_NAME,FILE_NAME) values
('RIB_ALLOCDESC_REC','rib_mapper_Alloc.log');
Insert into OBJECT_FILE_MAPPING (OBJECT_NAME,FILE_NAME) values
('RIB_ALLOCREF_REC','rib_mapper_Alloc.log');
Insert into OBJECT_FILE_MAPPING (OBJECT_NAME,FILE_NAME) values
('RIB_APPOINTDESC_REC','rib_mapper_Receiving.log');
Insert into OBJECT_FILE_MAPPING (OBJECT_NAME,FILE_NAME) values
('RIB_APPOINTREF_REC','rib_mapper_Receiving.log');

Note: See Appendix B: Sample Log File.

Functional Resolvers 35

8
Functional Resolvers

Functional Resolvers are custom program units that must be created during the mapping
process to resolve a specific mapping difference. The PL/SQL Payload Mapper does not
have pre-built functional resolvers.

The functional gaps among Oracle Retail Enterprise releases can vary widely and must
be determined through careful impact analysis at functional and operational levels.

Simple element to element differences are only part of the analysis required. Changes
behind the messages and elements to support new or enhanced Enterprise functionality
among the releases also require impact analysis. Keep in mind that the more complex the
Functional Resolver becomes, the larger the impact on message throughput when calling
it for every message.

Use Cases Examples
The following are use case examples:

 The source version of an Object does not have simple attribute X, which exists on
the Y table. The target version of the object does have attribute X. The Functional
Resolver will enrich the information by selecting values from other sources (such
as other tables in the application schema) and adding them to the target version
of the object.

 The target version of the Object uses XYZ information to support new
functionality. The source version of the object does not have XYZ information.
There is no convenient base place from where to select this information in the
source system, and a simple default value is not adequate. The Functional
Resolver can either create or look-up a simple value for XYZ, or it can look up
values for XYZ from a custom implemented table in the source system.

General Recommendations
Carefully consider the value in adding a functional resolver: Is the new information
really necessary, and will it drive value in the target system? Or is inserting a default
value or null value valid (and not too functionally limiting) for the target system?

Because Functional Resolvers exist at the element level, every message will have a call to
the Functional Resolver package, which obviously introduces additional performance
impact to the message flow.

RIB Object Customization

36 Oracle Retail Payload Mapper Guide

RIB Object Customization
The PL/SQL Payload Mapper Runtime supports the customization and extension of RIB
as outlined in the Oracle Retail Integration Bus Implementation Guide.
The customization process must follow the guidelines for the deployed version of RIB
and the Mixed Version of the RIB Objects. When the Deployed Objects are installed in the
Mapper Runtime schema, the corresponding Mixed Version RIB objects must be installed
in the Mixed Version base schema.

Note: It is important to re-run the grants whenever there is a
change to the Objects in the Mixed Version schema;
otherwise, the Runtime fails with errors when it attempts to
use the base RIB Objects.

How to Create a Functional Resolver
The tool designed with functional resolution at the element level. So for an unmapped
element between source and target, the Mapper Runtime expects that the metadata
created by the Mapper UI contains a default, or a Functional Resolver package to call.
The developer and analyst must work together on requirements and to make sure the
code is created to match the name entered during the Mapper UI session.

Enter the Functional Resolver screen

Naming Convention
For clarity, it is recommended that a common naming convention for all Functional
Resolvers is used.

For example, GET_<element_name>(param1, param2,…) RETURN <data type>.

 How to Create a Functional Resolver

 Functional Resolvers 37

Basic Concepts
The following are basic concepts concerning Functional Resolvers:

 They are PL/SQL functions that may or may not have input parameters.

 They should have built in exception handlers so that all exceptions are caught, as
well as an acceptable value that can be substituted when an object or collection
element is returned.

 NULL can be returned for any exceptions.

 Parameters containing the full hierarchy should be from the same collection or
object for which the Functional Resolver is written.

Examples
RIB Object Types may not be simple objects. They may contain collections as elements,
and these collections may contain collections within them. So the developer must take
care to create a Functional Resolvers with parameters from the same hierarchy level.

Collections
If a Functional Resolver is needed for the Object RIB_ASNInPO_REC for the
FINAL_LOCATION element in the collection RIB_ASNIn_Item_Rec, the parameters
used should be from the same collection. See the collection example below.

Collection Example

How to Create a Functional Resolver

38 Oracle Retail Payload Mapper Guide

Using the naming convention suggested, a sample Functional Resolver created in the
Mapper UI is as follows:
Get_FinalLocation(RIB_ASNInPO_REC. RIB_ASNInItem_Rec.DISTRO_NBR)
Constants can also be passed with this function:
Get_FinalLocation(RIB_ASNInPO_REC.RIB_ASNInItem_Rec.DISTRO_NBR, 100)

A source element (p_distro_nbr) is used to resolve another element
(FINAL_LOCATION)

FUNCTION Get_FinalLocation(p_distro_nbr VARCHAR2) RETURN VARCHAR2

FUNCTION Get_FinalLocation(p_distro_nbr VARCHAR2, p_const NUMBER default 100)
RETURN VARCHAR2

Note: See Appendix C: Examples of Functional Resolvers.

Integration Testing 39

9
Integration Testing

The use of the Payload Mapper means that an additional sub-system is inserted into
every RIB message family. For every message type new logic is executed. This custom
sub system has not been tested by Oracle Retail.

Oracle Retail always recommends that every deployment plan includes Integration and
Performance testing. With the addition of the Payload Mapper to a deployment, it is
critical that full integration testing is part of the deployment planning.

Example Compatibility Testing Outline
For inbound messages (those coming from the Deployed RIB), build and execute a test
suite of messages of all message families and message types. Verify that the Deployed
RIB Version (such as 12.0.9) messages are successfully converted to the Mixed Version
(such as 15.0.0) RIB Objects and are consumed by the Mixed Version application
successfully.

This testing can be done through the RIB tools that allow messages to be injected directly
to the various JMS topics.

Note: See “Testing the RIB” in the Oracle Retail Integration
Bus Operations Guide.

To test the outbound messages (those that originate with the Mixed Version application),
testing requires using the application to generate business events that will be published
to RIB. As the messages are published, use RIB tools to capture the messages at the
topics and verify them. Then allow the messages to flow to a test installation of the
deployed applications to validate that functional gaps have been addressed.

Performance Considerations
The impact on performance must be considered when deciding whether to use the
Payload Mapper. Flows perform at something less than a non-mapped flow.

Therefore, Oracle Retail recommends applying the transformation/mapping as close to
application end points as possible. The location of the PL/SQL Mapper Runtime within
the same Oracle database instance as the Mixed Version application will help to mitigate
the impact.
Oracle Retail also recommends a Performance Test as part of every deployment plan.
Even if formal testing is not planned, the use of RIB tools and processes discussed in the
Oracle Retail Integration Bus Operations Guide can measure the relative performance of the
RIB subsystem and diagnose bottlenecks. For a deployment with a Mapper approach,
performance testing is especially encouraged.

Performance Considerations

40 Oracle Retail Payload Mapper Guide

For the PL/SQL approach, mapping occurs in the Oracle database instance. Testing the
performance of the RIB message flows adds a measurement component that is neither
obvious nor distinct when using the tools and methods described in the Oracle Retail
Integration Bus Operations Guide. Mapping activities take place as the application is in
use, so database side tools and measures common to PL/SQL application tuning must be
used.

Note: See “Performance Considerations and Testing the RIB”
in the Oracle Retail Integration Bus Operations Guide.

Java Payload Mapper 41

10
Java Payload Mapper

The purpose of the Java Payload Mapper is to provide a standard, consistent way to
assist in the custom development of Java side solutions to mixed version integrations that
use RIB, and do it in a way that avoids situations that break functionality of the base RIB
and the Oracle Application products. One of the primary goals is to avoid making future
releases of Oracle Retail based products difficult or impossible to accept.

RIB Payload Versions
The Java Payload Mapper is tested with the following versions of RIB payloads:

 11.1.0

 12.0.9

 13.0.2
 13.1.0

 13.2.0

 14.1.0

 15.0.0

Install a Web Service in WebLogic
Take the following steps to deploy the Payload Mapper utility to an Oracle WebLogic
Application Server as a Web service.

Prerequisites
1. Download JavaPayloadMapper15.0.0ForAllx.x.xApps_eng_ga.tar.

2. Extract the downloaded archive.
tar –xvf JavaPayloadMapper15.0.0ForAllx.x.xApps_eng_ga.tar

3. The payloadmapper-service-<version>.ear is located in payload-mapper/webservice
directory.

4. The installation and base configuration of the Oracle WebLogic Server is beyond the
scope of this document. Work with the Application Server Administration team to
determine the physical and logical placement of the Payload Mapper component
within the WebLogic Server deployment.

Deploy Payload Mapper Web Service
Using the WebLogic Server Administration Console, complete the following steps:

1. Login to WebLogic Administration Console.

2. Navigate to the Deployments page.

3. Click Install. Click Lock & Edit, if needed.

Note: If the application has already been installed, see
"Redeploy the Application".

The Locate deployment to install and prepare for deployment page is displayed.

Install a Web Service in WebLogic

42 Oracle Retail Payload Mapper Guide

Follow the instructions to locate the payloadmapper-service-<version>.ear file.

4. Select upload your file(s).

5. On the Upload a Deployment to the admin server page, use Browse to locate the
payloadmapper-service-<version>.ear file in the <PM_HOME>/payload-
mapper/webservice directory.

6. Select the payloadmapper-service-<version>.ear.

7. Click Next and move to Choose targeting style page.

8. Select Install this deployment as an application.

9. Select a target to deploy the application (for example, payloadmapper-server).

10. Click Next and move to Optional Settings page.
11. Click Next and move to Review Your Choices page.

12. Select No, I will review the configuration later and click Finish to deploy the
application.

13. For production mode, click Activate Changes.

14. Select the payloadmapper-service and click Start --> Servicing all requests.

Verify Payload Mapper Web Service
To verify the Payload Mapper Web service, complete the following steps:

1. Navigate to the Deployments page.

2. Locate the payloadmapper-service on the Summary of Deployments page.

3. Click payloadmapper-service, to move to the Settings for payloadmapper-service.

4. Select the Testing tab.

5. Expand the PayloadMapperService.
6. Click ?WSDL in the Test Point column.

7. You can see the WSDL. You can use this WSDL to test the service (using a testing tool
like SoapUI).

The installation is complete. For more information, see the Java Payload Mapper Web
Service Usage section.

Redeploy the Application
If the payloadmapper-service application has already been deployed, follow these steps:

1. If payloadmapper-service application is running, select Stop and When Work
Completes or Force Stop Now, depending on the environment.

Note: The recommended option always is When Work
Completes.

2. Select Delete.

The payloadmapper-service should now not display on the Summary of Deployment
page.

Once the application is redeployed, you may return to the appropriate step in "Deploy
the Payload Mapper".

Post Deployment Activity
Once the deployment is successful, copy the directory payloadmapperjars from the
location where JavaPayloadMapper15.0.0ForAllx.x.xApps_eng_ga.tar is

 Install a Web Service in WebLogic

 Java Payload Mapper 43

extracted, to the Domain Home. Domain Home is the directory of the WebLogic domain
of the server to which you deploy the Web service. Restart WebLogic server, if needed.

Custom Payload Mapper for payloads that are not Packaged
To use the Java Payload Mapper for versions of RIB Payloads those are not packaged as
part of JavaPayloadMapper15.0.0ForAllx.x.xApps_eng_ga.tar, you need to download the
Payload libraries for the versions you want to map. RIB payload libraries for all available
versions of RIB can be obtained from corresponding RIB Functional Artifacts.

For example: To use the payload version 14.1.0, which is not packaged in the
payloadmapperjars by default.

1. Create a folder “14.1.0” under $DOMAIN_HOME/payloadmapperjars/
2. Download the RibFuncArtifact14.1.0ForAll14.1.0Apps_eng_ga.tar

3. Extract the RibFuncArtifact14.1.0ForAll14.1.0Apps_eng_ga.tar and copy these
below jars to payloadmapperjars/14.1.0
retail-public-payload-java-beans-14.1.0.jar

retail-public-payload-java-beans-base-14.1.0.jar

Download and Extract RetailSOAEnabler14.1.0ForAll14.1.0Apps_eng_ga.tar

4. Locate and copy over the below jars from /retail-soa-enabler/integration-lib/ to
$DOMAIN_HOME/payloadmapperjars/14.1.0

jaxb-api-2.2.9.jar

jaxb-impl-2.2.6.jar

jaxb-xjc-2.2.6.jar

jsr173_1.0_api.jar

5. Copy the $DOMAIN_HOME/payloadmapperjars/15.0.0/payloadmapper-util-15.0.0.jar to
$DOMAIN_HOME/payloadmapperjars/14.1.0

Directory Structure
The following directory structure is created on extracting the Java Payload Mapper. The
location where this tar is extracted is PM_HOME.

payload-mapper/
|-- java-docs
|-- payloadmapperjars
| |-- 11.1.0
| | |-- castor-0.9.4.3.jar
| | |-- retek-payload-typed.jar
| | `-- retek-rib-support.jar
| |-- 12.0.9
| | |-- castor-0.9.4.3.jar
| | |-- retek-payload-typed.jar
| | `-- retek-rib-support.jar
| |-- 13.0.2
| | |-- castor-1.0.5-xml.jar
| | |-- rib-public-api.jar
| | |-- rib-public-payload-java-beans.jar
| | `-- xercesImpl-2.10.0.jar
| |-- 13.1.0
| | |-- jaxb-api.jar
| | |-- jaxb-impl.jar
| | |-- jaxb-xjc.jar
| | |-- jsr173_1.0_api.jar
| | |-- payloadmapper-util.jar
| | |-- retail-public-payload-java-beans-base.jar
| | `-- retail-public-payload-java-beans.jar
| |-- 13.2.0

Install a Web Service in WebLogic

44 Oracle Retail Payload Mapper Guide

| | |-- jaxb-api.jar
| | |-- jaxb-impl.jar
| | |-- jaxb-xjc.jar
| | |-- jsr173_1.0_api.jar
| | |-- payloadmapper-util.jar
| | |-- retail-public-payload-java-beans-base.jar
| | `-- retail-public-payload-java-beans.jar
| `-- 15.0.0
| |-- jaxb-api-2.2.9.jar
| |-- jaxb-impl-2.2.6.jar
| |-- jaxb-xjc-2.2.6.jar
| |-- jsr173_1.0_api.jar
| |-- payloadmapper-util-15.0.0.jar
| |-- retail-public-payload-java-beans-15.0.0.jar
| `-- retail-public-payload-java-beans-base-
15.0.0.jar|
`-- webservice
 `-- payloadmapper-service-<version>.ear

Java Payload Mapper Web Service Usage
The Java Payload Mapper dynamically maps the fields of one version of the payload to
that of another version of the payload, on a best effort basis.

Format of the input to Payload Mapper Web Service

The Java Payload Mapper Web service exposes an operation called convertMappingData
that accepts xml as input.

The inputs required are:

 sourcePayloadReleaseVersion

 destinationPayloadReleaseVersion

 DataToMap (This is the source payload)

 Install a Web Service in WebLogic

 Java Payload Mapper 45

 needExecutionLog (Optional)

The possible values for needExecutionLog are true or false.

If needExecutionLog is set to true, then Payload Mapper populates the
MappingFunctionExecutionLog of the above XML with the list of
elements that were mapped and the list of elements that were not
mapped with the reason code (issue code) and reason.

The DataAfterApplyingMappingFunction section of the above XML is populated with
the converted destination payload.

Payload Mapper as a Service
Java Payload Mapper can be used as a service to perform the payload translation. In this
scenario, the payload mapper is hosted as a Web service. The service is called from an
orchestration layer (for example, SOA, Service Bus, etc.) for the payload conversion. The
service does its best effort in conversion. Since the service will report the list of fields that
it cannot convert, the orchestration layer can enrich the conversion by adding custom
conversion logic to the fields that were not converted.

Appendix: Examples of Adapting APIs 47

A
Appendix: Examples of Adapting APIs
RIB Publication API (GETNXT)
create_<rms,rdm>mfm_<message family>.sql

BEGIN
EXECUTE IMMEDIATE '
CREATE OR REPLACE PACKAGE <API_NAME> AS

PROCEDURE getnxt (o_status_code OUT VARCHAR2,
 o_error_msg OUT VARCHAR2,
 o_message_type OUT VARCHAR2,
 o_message OUT '||'&2'||'.RIB_OBJECT,
 o_bus_obj_id OUT '||'&2'||'.RIB_BUSOBJID_TBL,
 o_routing_info OUT '||'&2'||'.RIB_ROUTINGINFO_TBL,
 i_num_threads IN NUMBER DEFAULT 1,
 i_thread_val IN NUMBER DEFAULT 1,
 i_facility_type IN VARCHAR2,
 i_dc_dest_id IN VARCHAR2);
END;';

EXECUTE IMMEDIATE'
CREATE OR REPLACE PACKAGE BODY <API_NAME> AS

PROCEDURE getnxt (o_status_code OUT VARCHAR2,
 o_error_msg OUT VARCHAR2,
 o_message_type OUT VARCHAR2,
 o_message OUT '||'&2'||'.RIB_OBJECT,
 o_bus_obj_id OUT '||'&2'||'.RIB_BUSOBJID_TBL,
 o_routing_info OUT '||'&2'||'.RIB_ROUTINGINFO_TBL,
 i_num_threads IN NUMBER DEFAULT 1,
 i_thread_val IN NUMBER DEFAULT 1,
 i_facility_type IN VARCHAR2,
 i_dc_dest_id IN VARCHAR2) IS
 lo_util_message '||'&1'||'.RIB_OBJECT;
 lo_util_bus_obj_id '||'&1'||'.RIB_BUSOBJID_TBL;
 lo_util_routing_info '||'&1'||'.RIB_ROUTINGINFO_TBL;
BEGIN

 '||'&1'||'.<API_NAME>.GETNXT(o_status_code, o_error_msg, o_message_type,
lo_util_message, lo_util_bus_obj_id, lo_util_routing_info, i_num_threads,
i_thread_val, i_facility_type, i_dc_dest_id);
 IF lo_util_message IS NOT NULL AND o_status_code =
'||'&1'||'.RIB_CODES.MFM_SUCCESS THEN
 o_message := Payload_Mapper.Map_Object_Source_To_Target(lo_util_message,
o_error_msg);
 IF o_error_msg IS NULL THEN
 o_routing_info := Convert_RIB_ROUTINGINFO_TBL(lo_util_routing_info,
o_error_msg);
 IF o_error_msg IS NOT NULL THEN
 o_status_code := '||'&1'||'.RIB_CODES.MFM_FATAL_ERROR;
 END IF;
 SELECT cast(lo_util_bus_obj_id as '||'&2'||'.RIB_BUSOBJID_TBL)
 INTO o_bus_obj_id
 FROM dual;
 END IF;
 END IF;
EXCEPTION

Install a Web Service in WebLogic

48 Oracle Retail Payload Mapper Guide

 WHEN OTHERS THEN
 o_status_code := '||'&1'||'.RIB_CODES.MFM_FATAL_ERROR;
 o_error_msg := Substr(''Error converting RIB_ROUTINGINFO_TBL
''||sqlcode||'' ''||sqlerrm, 1, 2000);
END getnxt;

END;';
EXCEPTION
WHEN OTHERS THEN
 NULL;
END;
/

RIB Subscription API (CONSUME)
create_<rms,rdm>rdmsub_<message family>.sql

BEGIN
EXECUTE IMMEDIATE '
CREATE OR REPLACE PACKAGE <API_NAME> IS

 PROCEDURE consume (O_STATUS_CODE OUT VARCHAR2,
 O_ERROR_MESSAGE OUT VARCHAR2,
 I_MESSAGE IN '||'&2'||'.RIB_OBJECT,
 I_MESSAGE_TYPE IN VARCHAR2,
 I_FACILITY_TYPE IN VARCHAR2);
END RDMSUB_ASNIN;';

EXECUTE IMMEDIATE '
CREATE OR REPLACE PACKAGE BODY <API_NAME> IS

 PROCEDURE consume (O_STATUS_CODE OUT VARCHAR2,
 O_ERROR_MESSAGE OUT VARCHAR2,
 I_MESSAGE IN '||'&2'||'.RIB_OBJECT,
 I_MESSAGE_TYPE IN VARCHAR2,
 I_FACILITY_TYPE IN VARCHAR2) AS
 lo_Util_Message '||'&1'||'.RIB_OBJECT;
 BEGIN
 lo_Util_Message := Payload_Mapper.Map_Object_Source_To_Target(I_MESSAGE,
O_ERROR_MESSAGE);
 IF O_ERROR_MESSAGE IS NULL THEN
 '||'&1'||'.RDMSUB_ASNIN.consume(O_STATUS_CODE, O_ERROR_MESSAGE,
lo_Util_Message,
 I_MESSAGE_TYPE, I_FACILITY_TYPE);
 ELSE
 o_status_code := '||'&1'||'.RIB_CODES.MFM_FATAL_ERROR;
 END IF;
 EXCEPTION
 WHEN OTHERS THEN
 O_STATUS_CODE := '||'&1'||'.RIB_CODES.MFM_FATAL_ERROR;
 O_ERROR_MESSAGE := Substr(''Error converting object ''||sqlcode||''
''||sqlerrm, 1, 2000);
 END;
END RDMSUB_ASNIN;';
EXCEPTION
WHEN OTHERS THEN
 NULL;
END;
/

Appendix: Sample Log File 49

B
Appendix: Sample Log File

4741008 21-OCT-10-06-20-44: Starting conversion of RIB_ASNINDESC_REC from version
12.0.9 to 13.2.1
4741008 21-OCT-10-06-20-44: Fetching the mappings from database
4741008 21-OCT-10-06-20-44: Starting conversion of object
4741008 21-OCT-10-06-20-44: Source Object to be converted is:
4741008 21-OCT-10-06-20-44: RIB_ASNInDesc_REC: RIB_OID, TO_LOCATION,
FROM_LOCATION, ASN_NBR, ASN_TYPE, CONTAINER_QTY, BOL_NBR, SHIPMENT_DATE,
EST_ARR_DATE, SHIP_ADDRESS1, SHIP_ADDRESS2, SHIP_ADDRESS3, SHIP_ADDRESS4,
SHIP_ADDRESS5, SHIP_CITY, SHIP_STATE, SHIP_ZIP, SHIP_COUNTRY_ID, TRAILER_NBR,
SEAL_NBR, CARRIER_CODE, VENDOR_NBR, SHIP_PAY_METHOD, <ASNINPO_TBL>, COMMENTS,
4741008 21-OCT-10-06-20-44: 1, A, A, A, A, 1, A, 13-OCT-10, 13-OCT-10, A, A, A,
A, A, A, A, A, A, A, A, A, A, A, <ASNINPO_TBL>, A,
4741008 21-OCT-10-06-20-44: RIB_ASNInPO_REC: RIB_OID, PO_NBR, DOC_TYPE,
NOT_AFTER_DATE, COMMENTS, <ASNINCTN_TBL>, <ASNINITEM_TBL>,
4741008 21-OCT-10-06-20-44: 1, A, A, 13-OCT-10, A, <ASNINCTN_TBL>,
<ASNINITEM_TBL>,
4741008 21-OCT-10-06-20-44: RIB_ASNInCtn_REC: RIB_OID, FINAL_LOCATION,
CONTAINER_ID, CONTAINER_WEIGHT, CONTAINER_LENGTH, CONTAINER_WIDTH,
CONTAINER_HEIGHT, CONTAINER_CUBE, EXPEDITE_FLAG, IN_STORE_DATE, RMA_NBR,
TRACKING_NBR, FREIGHT_CHARGE, MASTER_CONTAINER_ID, <ASNINITEM_TBL>, COMMENTS,
4741008 21-OCT-10-06-20-44: 1, A, A, 1, 1, 1, 1, 1, A, 13-OCT-10, A, A,
1, A, <ASNINITEM_TBL>, A,
4741008 21-OCT-10-06-20-44: RIB_ASNInItem_REC: RIB_OID,
FINAL_LOCATION, ITEM_ID, UNIT_QTY, PRIORITY_LEVEL, VPN, ORDER_LINE_NBR, LOT_NBR,
REF_ITEM, DISTRO_NBR, DISTRO_DOC_TYPE, CONTAINER_QTY, COMMENTS,
4741008 21-OCT-10-06-20-44: 1, A, A, 1, 1, A, 1, A, A, A, A, 1, A,
4741008 21-OCT-10-06-20-44: RIB_ASNInItem_REC: RIB_OID, FINAL_LOCATION,
ITEM_ID, UNIT_QTY, PRIORITY_LEVEL, VPN, ORDER_LINE_NBR, LOT_NBR, REF_ITEM,
DISTRO_NBR, DISTRO_DOC_TYPE, CONTAINER_QTY, COMMENTS,
4741008 21-OCT-10-06-20-44: 1, A, A, 1, 1, A, 1, A, A, A, A, 1, A,
4741008 21-OCT-10-06-20-44: Creating target object
4741008 21-OCT-10-06-20-44: Number of elements in Object: 128
4741008 21-OCT-10-06-20-44: Assigning value for RIB_OID
4741008 21-OCT-10-06-20-44: Using Source column: PayloadSourceObj.RIB_OID
4741008 21-OCT-10-06-20-44: Assigning value for ns_version_v1
4741008 21-OCT-10-06-20-44: Assigning value for ns_name_ASNInDesc
4741008 21-OCT-10-06-20-44: Assigning value for ns_type_bo
4741008 21-OCT-10-06-20-44: Assigning value for ns_location_base
4741008 21-OCT-10-06-20-44: Assigning value for ns_level_top
4741008 21-OCT-10-06-20-44: Assigning value for SCHEDULE_NBR
4741008 21-OCT-10-06-20-44: Assigning value for AUTO_RECEIVE
4741008 21-OCT-10-06-20-44: Assigning value for TO_LOCATION
4741008 21-OCT-10-06-20-44: Using Source column: PayloadSourceObj.TO_LOCATION
4741008 21-OCT-10-06-20-44: Assigning value for FROM_LOCATION
4741008 21-OCT-10-06-20-44: Using Source column: PayloadSourceObj.FROM_LOCATION
4741008 21-OCT-10-06-20-44: Assigning value for ASN_NBR
4741008 21-OCT-10-06-20-44: Using Source column: PayloadSourceObj.ASN_NBR
4741008 21-OCT-10-06-20-44: Assigning value for ASN_TYPE
4741008 21-OCT-10-06-20-44: Using Source column: PayloadSourceObj.ASN_TYPE
4741008 21-OCT-10-06-20-44: Assigning value for CONTAINER_QTY
4741008 21-OCT-10-06-20-44: Using Source column: PayloadSourceObj.CONTAINER_QTY
4741008 21-OCT-10-06-20-44: Assigning value for BOL_NBR
4741008 21-OCT-10-06-20-44: Using Source column: PayloadSourceObj.BOL_NBR
4741008 21-OCT-10-06-20-44: Assigning value for SHIPMENT_DATE
4741008 21-OCT-10-06-20-44: Using Source column: PayloadSourceObj.SHIPMENT_DATE
4741008 21-OCT-10-06-20-44: Assigning value for EST_ARR_DATE

Install a Web Service in WebLogic

50 Oracle Retail Payload Mapper Guide

4741008 21-OCT-10-06-20-44: Using Source column: PayloadSourceObj.EST_ARR_DATE
4741008 21-OCT-10-06-20-44: Assigning value for SHIP_ADDRESS1
4741008 21-OCT-10-06-20-44: Using Source column: PayloadSourceObj.SHIP_ADDRESS1
4741008 21-OCT-10-06-20-44: Assigning value for SHIP_ADDRESS2
4741008 21-OCT-10-06-20-44: Using Source column: PayloadSourceObj.SHIP_ADDRESS2
4741008 21-OCT-10-06-20-44: Assigning value for SHIP_ADDRESS3
4741008 21-OCT-10-06-20-44: Using Source column: PayloadSourceObj.SHIP_ADDRESS3
4741008 21-OCT-10-06-20-44: Assigning value for SHIP_ADDRESS4
4741008 21-OCT-10-06-20-44: Using Source column: PayloadSourceObj.SHIP_ADDRESS4
4741008 21-OCT-10-06-20-44: Assigning value for SHIP_ADDRESS5
4741008 21-OCT-10-06-20-44: Using Source column: PayloadSourceObj.SHIP_ADDRESS5
4741008 21-OCT-10-06-20-44: Assigning value for SHIP_CITY
4741008 21-OCT-10-06-20-44: Using Source column: PayloadSourceObj.SHIP_CITY
4741008 21-OCT-10-06-20-44: Assigning value for SHIP_STATE
4741008 21-OCT-10-06-20-44: Using Source column: PayloadSourceObj.SHIP_STATE
4741008 21-OCT-10-06-20-44: Assigning value for SHIP_ZIP
4741008 21-OCT-10-06-20-44: Using Source column: PayloadSourceObj.SHIP_ZIP
4741008 21-OCT-10-06-20-44: Assigning value for SHIP_COUNTRY_ID
4741008 21-OCT-10-06-20-44: Using Source column: PayloadSourceObj.SHIP_COUNTRY_ID
4741008 21-OCT-10-06-20-44: Assigning value for TRAILER_NBR
4741008 21-OCT-10-06-20-44: Using Source column: PayloadSourceObj.TRAILER_NBR
4741008 21-OCT-10-06-20-44: Assigning value for SEAL_NBR
4741008 21-OCT-10-06-20-44: Using Source column: PayloadSourceObj.SEAL_NBR
4741008 21-OCT-10-06-20-44: Assigning value for CARRIER_CODE
4741008 21-OCT-10-06-20-44: Using Source column: PayloadSourceObj.CARRIER_CODE
4741008 21-OCT-10-06-20-44: Assigning value for VENDOR_NBR
4741008 21-OCT-10-06-20-44: Using Source column: PayloadSourceObj.VENDOR_NBR
4741008 21-OCT-10-06-20-44: Assigning value for SHIP_PAY_METHOD
4741008 21-OCT-10-06-20-44: Using Source column: PayloadSourceObj.SHIP_PAY_METHOD
4741008 21-OCT-10-06-20-44: Creating collection RIB_ASNInPO_TBL
4741008 21-OCT-10-06-20-44: Count of collection is 1
4741008 21-OCT-10-06-20-44: Processing Record 1
4741008 21-OCT-10-06-20-44: Assigning Value for RIB_OID
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).RIB_OID
4741008 21-OCT-10-06-20-44: Assigning Value for ns_version_v1
4741008 21-OCT-10-06-20-44: Assigning Value for ns_name_ASNInDesc
4741008 21-OCT-10-06-20-44: Assigning Value for ns_type_bo
4741008 21-OCT-10-06-20-44: Assigning Value for ns_location_base
4741008 21-OCT-10-06-20-44: Assigning Value for ns_level_nontop
4741008 21-OCT-10-06-20-44: Assigning Value for PO_NBR
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).PO_NBR
4741008 21-OCT-10-06-20-44: Assigning Value for DOC_TYPE
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).DOC_TYPE
4741008 21-OCT-10-06-20-44: Assigning Value for NOT_AFTER_DATE
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).NOT_AFTER_DATE
4741008 21-OCT-10-06-20-44: Assigning Value for COMMENTS
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).COMMENTS
4741008 21-OCT-10-06-20-44: Creating collection RIB_ASNInCtn_TBL
4741008 21-OCT-10-06-20-44: Count of collection is 1
4741008 21-OCT-10-06-20-44: Processing Record 1
4741008 21-OCT-10-06-20-44: Assigning Value for RIB_OID
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINCTN_TBL(1).RIB_OID
4741008 21-OCT-10-06-20-44: Assigning Value for ns_version_v1
4741008 21-OCT-10-06-20-44: Assigning Value for ns_name_ASNInDesc
4741008 21-OCT-10-06-20-44: Assigning Value for ns_type_bo
4741008 21-OCT-10-06-20-44: Assigning Value for ns_location_base
4741008 21-OCT-10-06-20-44: Assigning Value for ns_level_nontop

 Install a Web Service in WebLogic

 Appendix: Sample Log File 51

4741008 21-OCT-10-06-20-44: Assigning Value for FINAL_LOCATION
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINCTN_TBL(1).FINAL_LOCATION
4741008 21-OCT-10-06-20-44: Assigning Value for CONTAINER_ID
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINCTN_TBL(1).CONTAINER_ID
4741008 21-OCT-10-06-20-44: Assigning Value for CONTAINER_WEIGHT
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINCTN_TBL(1).CONTAINER_WEIGHT
4741008 21-OCT-10-06-20-44: Assigning Value for CONTAINER_LENGTH
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINCTN_TBL(1).CONTAINER_LENGTH
4741008 21-OCT-10-06-20-44: Assigning Value for CONTAINER_WIDTH
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINCTN_TBL(1).CONTAINER_WIDTH
4741008 21-OCT-10-06-20-44: Assigning Value for CONTAINER_HEIGHT
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINCTN_TBL(1).CONTAINER_HEIGHT
4741008 21-OCT-10-06-20-44: Assigning Value for CONTAINER_CUBE
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINCTN_TBL(1).CONTAINER_CUBE
4741008 21-OCT-10-06-20-44: Assigning Value for EXPEDITE_FLAG
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINCTN_TBL(1).EXPEDITE_FLAG
4741008 21-OCT-10-06-20-44: Assigning Value for IN_STORE_DATE
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINCTN_TBL(1).IN_STORE_DATE
4741008 21-OCT-10-06-20-44: Assigning Value for RMA_NBR
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINCTN_TBL(1).RMA_NBR
4741008 21-OCT-10-06-20-44: Assigning Value for TRACKING_NBR
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINCTN_TBL(1).TRACKING_NBR
4741008 21-OCT-10-06-20-44: Assigning Value for FREIGHT_CHARGE
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINCTN_TBL(1).FREIGHT_CHARGE
4741008 21-OCT-10-06-20-44: Assigning Value for MASTER_CONTAINER_ID
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINCTN_TBL(1).MASTER_CONTAINER_ID
4741008 21-OCT-10-06-20-44: Creating collection RIB_ASNInItem_TBL
4741008 21-OCT-10-06-20-44: Count of collection is 1
4741008 21-OCT-10-06-20-44: Processing Record 1
4741008 21-OCT-10-06-20-44: Assigning Value for RIB_OID
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINCTN_TBL(1).ASNINITEM_TBL(1).RIB_OID
4741008 21-OCT-10-06-20-44: Assigning Value for ns_version_v1
4741008 21-OCT-10-06-20-44: Assigning Value for ns_name_ASNInDesc
4741008 21-OCT-10-06-20-44: Assigning Value for ns_type_bo
4741008 21-OCT-10-06-20-44: Assigning Value for ns_location_base
4741008 21-OCT-10-06-20-44: Assigning Value for ns_level_nontop
4741008 21-OCT-10-06-20-44: Assigning Value for FINAL_LOCATION
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINCTN_TBL(1).ASNINITEM_TBL(1).FINAL_LOCATION
4741008 21-OCT-10-06-20-44: Assigning Value for ITEM_ID
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINCTN_TBL(1).ASNINITEM_TBL(1).ITEM_ID
4741008 21-OCT-10-06-20-44: Assigning Value for UNIT_QTY
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINCTN_TBL(1).ASNINITEM_TBL(1).UNIT_QTY
4741008 21-OCT-10-06-20-44: Assigning Value for PRIORITY_LEVEL
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINCTN_TBL(1).ASNINITEM_TBL(1).PRIORITY_LEVEL
4741008 21-OCT-10-06-20-44: Assigning Value for VPN

Install a Web Service in WebLogic

52 Oracle Retail Payload Mapper Guide

4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINCTN_TBL(1).ASNINITEM_TBL(1).VPN
4741008 21-OCT-10-06-20-44: Assigning Value for ORDER_LINE_NBR
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINCTN_TBL(1).ASNINITEM_TBL(1).ORDER_LINE_NBR
4741008 21-OCT-10-06-20-44: Assigning Value for LOT_NBR
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINCTN_TBL(1).ASNINITEM_TBL(1).LOT_NBR
4741008 21-OCT-10-06-20-44: Assigning Value for REF_ITEM
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINCTN_TBL(1).ASNINITEM_TBL(1).REF_ITEM
4741008 21-OCT-10-06-20-44: Assigning Value for DISTRO_NBR
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINCTN_TBL(1).ASNINITEM_TBL(1).DISTRO_NBR
4741008 21-OCT-10-06-20-44: Assigning Value for DISTRO_DOC_TYPE
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINCTN_TBL(1).ASNINITEM_TBL(1).DISTRO_DOC_TYPE
4741008 21-OCT-10-06-20-44: Assigning Value for CONTAINER_QTY
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINCTN_TBL(1).ASNINITEM_TBL(1).CONTAINER_QTY
4741008 21-OCT-10-06-20-44: Assigning Value for COMMENTS
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINCTN_TBL(1).ASNINITEM_TBL(1).COMMENTS
4741008 21-OCT-10-06-20-44: Creating collection
RIB_ExtOfASNInItem_TBL
4741008 21-OCT-10-06-20-44: Count of collection is 0
4741008 21-OCT-10-06-20-44: Assigning Value for COMMENTS
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINCTN_TBL(1).COMMENTS
4741008 21-OCT-10-06-20-44: Creating collection RIB_ExtOfASNInCtn_TBL
4741008 21-OCT-10-06-20-44: Count of collection is 0
4741008 21-OCT-10-06-20-44: Creating collection RIB_ASNInItem_TBL
4741008 21-OCT-10-06-20-44: Count of collection is 1
4741008 21-OCT-10-06-20-44: Processing Record 1
4741008 21-OCT-10-06-20-44: Assigning Value for RIB_OID
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINITEM_TBL(1).RIB_OID
4741008 21-OCT-10-06-20-44: Assigning Value for ns_version_v1
4741008 21-OCT-10-06-20-44: Assigning Value for ns_name_ASNInDesc
4741008 21-OCT-10-06-20-44: Assigning Value for ns_type_bo
4741008 21-OCT-10-06-20-44: Assigning Value for ns_location_base
4741008 21-OCT-10-06-20-44: Assigning Value for ns_level_nontop
4741008 21-OCT-10-06-20-44: Assigning Value for FINAL_LOCATION
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINITEM_TBL(1).FINAL_LOCATION
4741008 21-OCT-10-06-20-44: Assigning Value for ITEM_ID
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINITEM_TBL(1).ITEM_ID
4741008 21-OCT-10-06-20-44: Assigning Value for UNIT_QTY
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINITEM_TBL(1).UNIT_QTY
4741008 21-OCT-10-06-20-44: Assigning Value for PRIORITY_LEVEL
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINITEM_TBL(1).PRIORITY_LEVEL
4741008 21-OCT-10-06-20-44: Assigning Value for VPN
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINITEM_TBL(1).VPN
4741008 21-OCT-10-06-20-44: Assigning Value for ORDER_LINE_NBR
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINITEM_TBL(1).ORDER_LINE_NBR
4741008 21-OCT-10-06-20-44: Assigning Value for LOT_NBR
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINITEM_TBL(1).LOT_NBR

 Install a Web Service in WebLogic

 Appendix: Sample Log File 53

4741008 21-OCT-10-06-20-44: Assigning Value for REF_ITEM
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINITEM_TBL(1).REF_ITEM
4741008 21-OCT-10-06-20-44: Assigning Value for DISTRO_NBR
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINITEM_TBL(1).DISTRO_NBR
4741008 21-OCT-10-06-20-44: Assigning Value for DISTRO_DOC_TYPE
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINITEM_TBL(1).DISTRO_DOC_TYPE
4741008 21-OCT-10-06-20-44: Assigning Value for CONTAINER_QTY
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINITEM_TBL(1).CONTAINER_QTY
4741008 21-OCT-10-06-20-44: Assigning Value for COMMENTS
4741008 21-OCT-10-06-20-44: Using Source column:
PayloadSourceObj.ASNINPO_TBL(1).ASNINITEM_TBL(1).COMMENTS
4741008 21-OCT-10-06-20-44: Creating collection
RIB_ExtOfASNInItem_TBL
4741008 21-OCT-10-06-20-44: Count of collection is 0
4741008 21-OCT-10-06-20-44: Creating collection RIB_ExtOfASNInPO_TBL
4741008 21-OCT-10-06-20-44: Count of collection is 0
4741008 21-OCT-10-06-20-44: Assigning value for COMMENTS
4741008 21-OCT-10-06-20-44: Using Source column: PayloadSourceObj.COMMENTS
4741008 21-OCT-10-06-20-44: Creating collection RIB_ExtOfASNInDesc_TBL
4741008 21-OCT-10-06-20-44: Count of collection is 0
4741008 21-OCT-10-06-20-44: Converted Target Object is:
4741008 21-OCT-10-06-20-44: RIB_ASNInDesc_REC: RIB_OID, ns_version_v1,
ns_name_ASNInDesc, ns_type_bo, ns_location_base, ns_level_top, SCHEDULE_NBR,
AUTO_RECEIVE, TO_LOCATION, FROM_LOCATION, ASN_NBR, ASN_TYPE, CONTAINER_QTY,
BOL_NBR, SHIPMENT_DATE, EST_ARR_DATE, SHIP_ADDRESS1, SHIP_ADDRESS2, SHIP_ADDRESS3,
SHIP_ADDRESS4, SHIP_ADDRESS5, SHIP_CITY, SHIP_STATE, SHIP_ZIP, SHIP_COUNTRY_ID,
TRAILER_NBR, SEAL_NBR, CARRIER_CODE, VENDOR_NBR, SHIP_PAY_METHOD, <ASNINPO_TBL>,
COMMENTS, <EXTOFASNINDESC_TBL>,
4741008 21-OCT-10-06-20-44: 1, , , , , , , , A, A, A, A, 1, A, 13-OCT-10, 13-OCT-
10, A, A, A, A, A, A, A, A, A, A, A, A, A, A, <ASNINPO_TBL>, A,
<EXTOFASNINDESC_TBL>,
4741008 21-OCT-10-06-20-44: RIB_ASNInPO_REC: RIB_OID, ns_version_v1,
ns_name_ASNInDesc, ns_type_bo, ns_location_base, ns_level_nontop, PO_NBR,
DOC_TYPE, NOT_AFTER_DATE, COMMENTS, <ASNINCTN_TBL>, <ASNINITEM_TBL>,
<EXTOFASNINPO_TBL>,
4741008 21-OCT-10-06-20-44: 1, , , , , , A, A, 13-OCT-10, A, <ASNINCTN_TBL>,
<ASNINITEM_TBL>, <EXTOFASNINPO_TBL>,
4741008 21-OCT-10-06-20-44: RIB_ASNInCtn_REC: RIB_OID, ns_version_v1,
ns_name_ASNInDesc, ns_type_bo, ns_location_base, ns_level_nontop, FINAL_LOCATION,
CONTAINER_ID, CONTAINER_WEIGHT, CONTAINER_LENGTH, CONTAINER_WIDTH,
CONTAINER_HEIGHT, CONTAINER_CUBE, EXPEDITE_FLAG, IN_STORE_DATE, RMA_NBR,
TRACKING_NBR, FREIGHT_CHARGE, MASTER_CONTAINER_ID, <ASNINITEM_TBL>, COMMENTS,
<EXTOFASNINCTN_TBL>,
4741008 21-OCT-10-06-20-44: 1, , , , , , A, A, 1, 1, 1, 1, 1, A, 13-OCT-
10, A, A, 1, A, <ASNINITEM_TBL>, A, <EXTOFASNINCTN_TBL>,
4741008 21-OCT-10-06-20-44: RIB_ASNInItem_REC: RIB_OID,
ns_version_v1, ns_name_ASNInDesc, ns_type_bo, ns_location_base, ns_level_nontop,
FINAL_LOCATION, ITEM_ID, UNIT_QTY, PRIORITY_LEVEL, VPN, ORDER_LINE_NBR, LOT_NBR,
REF_ITEM, DISTRO_NBR, DISTRO_DOC_TYPE, CONTAINER_QTY, COMMENTS,
<EXTOFASNINITEM_TBL>,
4741008 21-OCT-10-06-20-44: 1, , , , , , A, A, 1, 1, A, 1, A, A, A,
A, 1, A, <EXTOFASNINITEM_TBL>,
4741008 21-OCT-10-06-20-44: RIB_ExtOfASNInItem_REC:
4741008 21-OCT-10-06-20-44: <NULL>
4741008 21-OCT-10-06-20-45: RIB_ASNInItem_REC: RIB_OID, ns_version_v1,
ns_name_ASNInDesc, ns_type_bo, ns_location_base, ns_level_nontop, FINAL_LOCATION,
ITEM_ID, UNIT_QTY, PRIORITY_LEVEL, VPN, ORDER_LINE_NBR, LOT_NBR, REF_ITEM,
DISTRO_NBR, DISTRO_DOC_TYPE, CONTAINER_QTY, COMMENTS, <EXTOFASNINITEM_TBL>,

Install a Web Service in WebLogic

54 Oracle Retail Payload Mapper Guide

4741008 21-OCT-10-06-20-45: 1, , , , , , A, A, 1, 1, A, 1, A, A, A, A, 1,
A, <EXTOFASNINITEM_TBL>,
4741008 21-OCT-10-06-20-45: RIB_ExtOfASNInItem_REC:
4741008 21-OCT-10-06-20-45: <NULL>
4741008 21-OCT-10-06-20-45: RIB_ExtOfASNInPO_REC:
4741008 21-OCT-10-06-20-45: <NULL>
4741008 21-OCT-10-06-20-45: Successfully converted.

Appendix: Examples of Functional Resolvers 55

C
Appendix: Examples of Functional

Resolvers
This appendix includes two example scenarios.

Example Scenario 1
RIB_LocationDesc_REC is used by RWMS to subscribe to Locations from RMS. In this
object, org_unit_id is a column that is not mapped. In the Mapper UI, when prompted,
the Functional Resolver is specified as follows:
Get_Unit_Id(RIB_LOCATIONDESC_REC.DEST_ID).

In this example, the parameter passed is the column from the same object in the same
hierarchy.
Create or replace
 FUNCTION GET_UNIT_ID
 (p_dest_id IN VARCHAR2)
 RETURN VARCHAR2 AS lnUnit NUMBER;
 BEGIN
 SELECT ORG_UNIT_ID
 INTO lnUnit
 FROM RWMS01.WH
 WHERE wh = p_dest_id
 AND ROWNUM = 1;
 RETURN lnUnit;
 EXCEPTION
 RETURN NULL;
 END GET_UNIT_ID;

Note: All exceptions must be handled, and a value must be
returned.

In this example the message is enriched by selecting against the base application tables.
As discussed, doing this has a serious impact on performance and should be carefully
considered.

Example Scenario 2
RIB_ItemDesc_REC is used by RWMS to subscribe to Items from RMS.

RIB_ItemDesc_REC contains an object type of RIB_ItemHdrDesc_REC called
ItemHdrDesc as one of its columns. In RIB_ItemDesc_REC, NOTIONAL_PACK_IND is
a column that is not mapped.

In the Mapper UI, when prompted, the Functional Resolver is specified as follows:
Get_Indicator(RIB_ItemDesc_REC.ITEMHDRDESC.ITEM).
The parameter selected is the column from the same object in the same hierarchy.
Create or replace
FUNCTION GET_ Indicator
(p_item_id IN VARCHAR2)
RETURN VARCHAR2 AS lvInd VARCHAR2(1);
BEGIN
SELECT PACK_IND

Example Scenario 2

56 Oracle Retail Payload Mapper Guide

INTO lvInd
FROM RMS01.ITEM_MASTER
WHERE item = p_item_id
 AND ROWNUM = 1;
RETURN lvInd;
EXCEPTION
 RETURN NULL;
END GET_INDICATOR;

Note: All exceptions must be handled, and a value must be
returned.

In this example the message is enriched by selecting against another base application
table. As discussed, doing this has a serious impact on performance and should be
carefully considered.

Appendix: Mapper Runtime Sequence Diagram 57

D
Appendix: Mapper Runtime Sequence

Diagram
The following diagram illustrates the mapper runtime sequence:

Appendix: Examples of APIs and Objects (RWMS) 59

E
Appendix: Examples of APIs and Objects

(RWMS)
Publish API RIB Oracle Objects

RDMMFM_ASNIN.GETNXT RIB_ASNInDesc_REC, RIB_ASNInRef_REC

RDMMFM_ASNOUT.GETNXT RIB_ASNOutDesc_REC

RDMMFM_CUSTRETURN.GETNXT RIB_CustRetDesc_REC

RDMMFM_INVADJUST.GETNXT RIB_InvAdjustDesc_REC

RDMMFM_ITEMWH.GETNXT RIB_ItemWHDesc_REC, RIB_ItemWHRef_REC

RDMMFM_RTV.GETNXT RIB_RTVDesc_REC

RDMMFM_RECEIVING.GETNXT RIB_ReceiptDesc_REC

RDMMFM_SOSTATUS.GETNXT RIB_SOStatusDesc_REC

RDMMFM_SPACELOCS.GETNXT RIB_SpaceLocsDesc_REC, RIB_SpaceLocsRef_REC

RDMMFM_WHEQUIPCLS.GETNXT RIB_WHEquipClsDesc_REC,
RIB_WHEquipClsRef_REC

RDMMFM_WHEQUIP.GETNXT RIB_WHEquipDesc_REC, RIB_WHEquipRef_REC

RDMMFM_WHSPACELOCS.GETNXT RIB_WHSpaceLocsDesc_REC,
RIB_WHSpaceLocsRef_REC

RDMMFM_WHTRANS.GETNXT RIB_WHTransDesc_REC

Subscribe API RIB Oracle Objects

RDMSUB_ASNIN.CONSUME RIB_ASNInDesc_REC, RIB_ASNInRef_REC

RDMSUB_DIFFGRP.CONSUME RIB_DiffGrpRef_REC, RIB_DiffGrpDtlRef_REC,
RIB_DiffGrpHdrDesc_REC, RIB_DiffGrpDtlDesc_REC

RDMSUB_DIFFS.CONSUME RIB_DiffRef_REC, RIB_DiffDesc_REC

RDMSUB_DlvySlt.CONSUME RIB_DeliverySlotRef_REC, RIB_DeliverySlotDesc_REC

RDMSUB_ITEMS.CONSUME RIB_ItemDesc_REC, RIB_ISCDimRef_REC,
RIB_ItemBOMRef_REC, RIB_ItemRef_REC,
RIB_ItemSupCtyRef_REC, RIB_ItemSupRef_REC,
RIB_ItemUDALOVRef_REC, RIB_ItemUPCRef_REC

RDMSUB_LOC.CONSUME RIB_LocationDesc_REC, RIB_LocationRef_REC

RDMSUB_ORDER.CONSUME RIB_PODesc_REC, RIB_PORef_REC

RDMSUB_PENDRETURN.CONSUME RIB_PendRtrnRef_REC, RIB_PendRtrnDtlRef_REC,
RIB_PendRtrnDesc_REC

RDMSUB_SKUOPTM.CONSUME RIB_SKUOptmDesc_REC

RDMSUB_SO.CONSUME RIB_SODesc_REC, RIB_SORef_REC

Example Scenario 2

60 Oracle Retail Payload Mapper Guide

Subscribe API RIB Oracle Objects

RDMSUB_UDAS.CONSUME RIB_UDARef_REC, RIB_UDAValRef_REC,
RIB_UDADesc_REC, RIB_UDAValDesc_REC

RDMSUB_VENDOR.CONSUME RIB_VendorRef_REC, RIB_VendorAddrRef_REC,
RIB_VendorDesc_REC

RDMSUB_WOIN.CONSUME RIB_WOInDesc_REC, RIB_WOInRef_REC

RDMSUB_WOOUT.CONSUME RIB_WOOutDesc_REC, RIB_WOOutRef_REC

Appendix: Examples of RWMS PUB Files 61

F
Appendix: Examples of RWMS PUB Files

The following is a list of RWMS PUB files:

RIB_AppointDesc_REC _13.2.0.xml

RIB_AppointRef_REC _13.2.0.xml

RIB_ASNInDesc_REC _13.2.0.xml

RIB_ASNInRef_REC _13.2.0.xml

RIB_ASNOutDesc_REC _13.2.0.xml

RIB_CustRetDesc_REC _13.2.0.xml

RIB_InvAdjustDesc_REC _13.2.0.xml

RIB_ItemWHDesc_REC _13.2.0.xml

RIB_ItemWHRef_REC _13.2.0.xml

RIB_ReceiptDesc_REC _13.2.0.xml

RIB_RTVDesc_REC _13.2.0.xml

RIB_RTVReqDesc_REC _13.2.0.xml

RIB_RTVReqRef_REC _13.2.0.xml

RIB_SOStatusDesc_REC _13.2.0.xml

RIB_SpaceLocsDesc_REC _13.2.0.xml

RIB_SpaceLocsRef_REC _13.2.0.xml

RIB_WHEquipClsDesc_REC _13.2.0.xml

RIB_WHEquipClsRef_REC _13.2.0.xml

RIB_WHEquipDesc_REC _13.2.0.xml

RIB_WHEquipRef_REC _13.2.0.xml

RIB_WHSpaceLocsDesc_REC _13.2.0.xml

RIB_WHSpaceLocsRef_REC _13.2.0.xml

RIB_WHTransDesc_REC _13.2.0.xml

Appendix: Examples of RWMS SUB Files 63

G
Appendix: Examples of RWMS SUB Files

The following is a list of RWMS SUB files:

RIB_AllocDesc_REC_12.0.9.xml RIB_StoreDesc_REC _12.0.9.xml

RIB_AllocRef_REC_12.0.9.xml RIB_StoreRef_REC _12.0.9.xml

RIB_ASNInDesc_REC_12.0.9.xml RIB_UDADesc_REC _12.0.9.xml

RIB_ASNInRef_REC_12.0.9.xml RIB_UDARef_REC _12.0.9.xml

RIB_DiffDesc_REC_12.0.9.xml RIB_UDAValDesc_REC _12.0.9.xml

RIB_DiffGrpDtlDesc_REC_12.0.9.xml RIB_UDAValRef_REC _12.0.9.xml

RIB_DiffGrpDtlRef_REC_12.0.9.xml RIB_VendorAddrRef_REC _12.0.9.xml

RIB_DiffGrpHdrDesc_REC_12.0.9.xml RIB_VendorDesc_REC _12.0.9.xml

RIB_DiffGrpRef_REC_12.0.9.xml RIB_VendorRef_REC _12.0.9.xml

RIB_DiffRef_REC_12.0.9.xml RIB_WOInDesc_REC _12.0.9.xml

RIB_ISCDimRef_REC_12.0.9.xml RIB_WOInRef_REC _12.0.9.xml

RIB_ItemBOMRef_REC_12.0.9.xml RIB_WOOutDesc_REC _12.0.9.xml

RIB_ItemDesc_REC _12.0.9.xml RIB_WOOutRef_REC _12.0.9.xml

RIB_ItemRef_REC _12.0.9.xml

RIB_ItemSupCtyRef_REC _12.0.9.xml

RIB_ItemSupRef_REC _12.0.9.xml

RIB_ItemTcktRef_REC _12.0.9.xml

RIB_ItemUDADateRef_REC _12.0.9.xml

RIB_ItemUDAFFRef_REC _12.0.9.xml

RIB_ItemUDALOVRef_REC _12.0.9.xml

RIB_ItemUPCRef_REC _12.0.9.xml

RIB_LocationDesc_REC _12.0.9.xml

RIB_LocationRef_REC _12.0.9.xml

RIB_PendRtrnDesc_REC _12.0.9.xml

RIB_PendRtrnDtlRef_REC _12.0.9.xml

RIB_PendRtrnRef_REC _12.0.9.xml

RIB_PODesc_REC _12.0.9.xml

RIB_PORef_REC _12.0.9.xml

RIB_SODesc_REC _12.0.9.xml

RIB_SORef_REC _12.0.9.xml

	Contents
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Access to Oracle Support

	Related Documents
	Customer Support
	Review Patch Documentation
	Improved Process for Oracle Retail Documentation Corrections
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	Support Policy Disclaimer
	PL/SQL Application Mixed Version Support Use Cases
	Use Cases
	Forward and Backward Mapping Use Case Solutions

	PL/SQL Solution Approach and Concepts
	The Adapter Pattern
	Concepts
	Benefits

	Introduction to the PL/SQL Payload Mapper
	Simple Message Flow and Processes
	Mixed Version Subscription Process
	Mixed Version Publication Process

	Tool Overview and Relationships

	PL/SQL Payload Mapper Technical Specifications
	Supported Database Versions
	Supported RIB Versions

	PL/SQL Payload Mapper User Interface Tool
	Prerequisites
	Task List
	Installation
	Configuration
	Internationalization
	PL/SQL Payload Mapper UI Usage
	Launch the Mapper UI
	Create a New Mapping
	Edit an Existing Mapping

	Mapping Metadata XML File

	PL/SQL Payload Mapper Runtime Tool
	Mapper Runtime Components
	Mapper Runtime Adaptive APIs
	Mapper Runtime Procedure
	Functional Resolvers
	Support Scripts
	Recommended Deployment Topology
	PL/SQL Payload Mapper Runtime Installation
	Prerequisite Tasks
	Installation Process
	Initial Installation Summarized Task List
	Mapping Runtime Files and Procedures
	Configure RIB to the Mapper Runtime
	Packaged PL/SQL Payload Mapper Runtime PL/SQL Procedures
	Packaged Support Scripts and PL/SQL Procedures
	Installation and Usage: Database Caching of Mapping Metadata
	Cachemapping Usage

	Database Tables

	Purging

	PAYLOAD_MAPPER PL/SQL Procedure
	MAP_OBJECT_SOURCE_TO_TARGET Execution Flow
	Error Handling
	Logging

	Functional Resolvers
	Use Cases Examples
	General Recommendations
	RIB Object Customization
	How to Create a Functional Resolver
	Naming Convention
	Basic Concepts
	Examples
	Collections

	Integration Testing
	Example Compatibility Testing Outline
	Performance Considerations

	Java Payload Mapper
	RIB Payload Versions
	Install a Web Service in WebLogic
	Prerequisites
	Deploy Payload Mapper Web Service
	Verify Payload Mapper Web Service
	Redeploy the Application
	Post Deployment Activity
	Custom Payload Mapper for payloads that are not Packaged
	Directory Structure
	Java Payload Mapper Web Service Usage
	Format of the input to Payload Mapper Web Service

	Payload Mapper as a Service

	Appendix: Examples of Adapting APIs
	Appendix: Sample Log File
	Appendix: Examples of Functional Resolvers
	Example Scenario 1
	Example Scenario 2

	Appendix: Mapper Runtime Sequence Diagram
	Appendix: Examples of APIs and Objects (RWMS)
	Appendix: Examples of RWMS PUB Files
	Appendix: Examples of RWMS SUB Files

