ORACLE

Oracle® Retail Integration Bus
Implementation Guide

Release 16.0.2

F11233-01

November 2018

Oracle Retail Integration Bus Implementation Guide, Release 16.0.2
F11233-01

Copyright © 2018, Oracle and/or its affiliates. All rights reserved.
Primary Author: Sanal Parameswaran

Contributing Author: Maria Andrew

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Value-Added Reseller (VAR) Language
Oracle Retail VAR Applications

The following restrictions and provisions only apply to the programs referred to in this section and licensed
to you. You acknowledge that the programs may contain third party software (VAR applications) licensed to
Oracle. Depending upon your product and its version number, the VAR applications may include:

(i) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail Data
Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(ii) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of Kirkland,
Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory Management.

(iii) the software component known as Access Via™ licensed by Access Via of Seattle, Washington, and
imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(iv) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of San Jose,
California, and imbedded in Oracle Retail Promotion Planning & Optimization application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR Applications.
Oracle will not deliver source code to the VAR Applications to you. Notwithstanding any other term or
condition of the agreement and this ordering document, you shall not cause or permit alteration of any VAR

Applications. For purposes of this section, "alteration" refers to all alterations, translations, upgrades,
enhancements, customizations or modifications of all or any portion of the VAR Applications including all
reconfigurations, reassembly or reverse assembly, re-engineering or reverse engineering and recompilations
or reverse compilations of the VAR Applications or any derivatives of the VAR Applications. You
acknowledge that it shall be a breach of the agreement to utilize the relationship, and/or confidential
information of the VAR Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall not attempt,
cause, or permit the alteration, decompilation, reverse engineering, disassembly or other reduction of the
VAR Applications to a human perceivable form. Oracle reserves the right to replace, with functional
equivalent software, any of the VAR Applications in future releases of the applicable program.

Contents

Send Us YOUr COMMENTScoo.cooiiiiicee s Xi
PPEIACE ...ttt Xiii
AUAIEIICE ...ttt ettt ettt et te et e e te et e eteestesas e seesaesbeessesbeessesbeessesseessesseensesrsenbesreensenreans Xiii
Documentation AcCesSIDIlityccociiiiiiiiiiiiiiiiii e Xiii
Related DOCUIMENTESccueeviriiiiieieieietetetete et e e s sessesbeste st esseseeseasaesaasassessessessessessessessassessnsessensenses Xiii
CUSTOMET SUPPOIt ...vtititiititet s Xiv
Review Patch DOCUMENTATIONccvieviiiiiiiieceieiectecte ettt ettt et te et e ebeesaeereeasesseessesseersesesreens Xiv
Improved Process for Oracle Retail Documentation Corrections..........c.ccccccucucueucieieercienieicennennns Xiv
Oracle Retail Documentation on the Oracle Technology Networkcccooeviiiiiiiiiiccicne XV
CONVEINTIONS ...vvieuvieiieiieeeieeteesteeteesteessteesteessteeseessseassaeassaasseesssaassaenssessssassseassaesseasseesssesaessseenseesssensseenns XV

1 Introduction

2 Standards and Specifications

Java Platform Enterprise Edition (Java EE)ccccoiiiiiniiiceceecceeeeee s 2-1
JAVA EE SEIVET ...uviiieieeiieiieteeeeet ettt ettt ettt e s s et e s s e e st e s st e s e sseensesseensesssensesseensansennsensesnes 2-1
Java Message Service (JIMS) ... s 2-1
JIMIS PrOVIAET ...ttt ettt ettt ettt et st et e et et e st esessees e s e sessassensensensansensensensensaneaseesensenes 2-2
Java Management Extensions (JMX)cccccoviiiiiiiiiniii s 2-2

3 Core Concepts

Key Functional Requirements ..o s 3-1
Guaranteed Once-and-Only-Once Successful Delivery ..o, 3-1
Preservation of Publication SeqUencecccooviiiiiiiciieiniccccc e, 3-2

Message Family and Message TYPesccccoovvvvinininiiininiiiiiiii s 3-2
Foundation MeSSagesc.oirurieiiiiciiiicice e 3-2
Transactional MESSAGES.........ccccuiiiiiiriiiiiiiiiiiii e 3-3

RIB Message Envelope and Payloads.............cccccooiiiiiiiiiiiiniiiiiiies 3-3

Message Life Cycle.........coooiiiiiiiiiiiii s 3-3

Messaging COMPONENLS............coiuiiiiiiiiiiiii s 3-5
RIB Subsystem COMPONENtScoouriiiirieieiicie e 3-5

AAPTETS ..o 3-5
JMS Domains, Destinations, SUbSCIIPIONSccocvuviviviiiiiiiniiiccas 3-6
JMS MeSsage SElectOrc.ouiiieieiiiecii 3-7

Additional RIB JMS Message Properties ..o 3-7

Integration Gateway Services (IGS).......ccouoiiiiiiiiiiiic 3-9
IGS INEETTACES ... s 3-9
Integration t0 IGS........c.ouiii s 3-10
IGS Deployment Considerationscceuvecieieiicicieiiccteeec i 3-11

IGS and WebLogic Server (WLS) ClUStering..........ccocvueuvuvvevererernnnerrrnrsereeccenes 3-11
Simple Message FIOW ...ttt 3-11
The RIB HOSPItalcocoiiiiiiiiiiiiiiiicc s 3-12

RIB Hospital Dependency Checkccccccciiiiiiiiiieiiiceeeeeeeeeeeeeeeeeeeeeeeee e 3-12

RIB HOSPital INSETt.....c.cviviviiiiiiiiiiiiicicictcc s 3-12

RIB Hospital Tables..........c.ociiiiiiiicii s 3-13

RIB HOSPital REIY ...cocviiiiiiiiiiiiiiciiiiii s 3-14
PUB Retry AdApter.......coouiueiiiiiiiic st 3-14
Hospital Attempt (Retry) COUNt ..o 3-17
JMS Delivery COUNL......ccviiiiiiiiiiic e s 3-17

4 Oracle Retail Application APIs

PL/SQL Stored Procedure APIScooouiiiiieiicieeeeete ettt ettt te e veeve e s aeereesareesbaesssesnbeesnennns 4-1
Oracle CLOB APIS.....cuicieiieieieetee ettt te e st e s tessaessessaesbaesaesseesaessaessesseessessesssansesssessessees 4-1
RIB_XML and RIB_SXW Database Packages............ccccecevuiiiiiiiinniiiiiiiniiiiiiens 4-2

Oracle ODJect APISc.cciiiiiiiiiicccceee st 4-2
RIB Related Database Tables..........cceeieiiiieiiiieiirieiesieeteeete sttt 4-2

Detail Architecture - PL/SQL APPS.....cooiiiiiieiiieiectei s 4-3
Oracle Retail Java EE APIScc.ooooiiiiiieieceee sttt ettt et e s s ssessaessessseseessensaensenseenes 4-3
Detail Architecture Java EE APPS ... 4-4
Oracle Retail SOAP APIS........ooiieieieeeeeeteete ettt et te et s e et e e e et e ereesseessesseesaestesssessaessesseessenseenes 4-4
API Return Statts COAESoocevvieieiieieiieieseeteet et ettt te st este e et et e essesseensesseessesnsensesseesenseens 4-4
PL/SQL GETNEXT RetUrn COAeS.ccouiiiuiieiiiiieeieeeiie ettt et eeteeeveeeteesveeeveesaneevsesaneenveessseenseens 4-4
PUB_RETRY RetuUrn COAES.......ccvevuiiieiiitieieciteieeieereeteesteeteesteeeesteeaesseesaesveessesseessessesssesseessesseenns 4-4
CONSUME RetUIT COE ..oviiiiiiiieieieiieeteeetetietestestestestesaessessessessessssessessessasessessessessessessesessensens 4-4

5 Pre-Implementation Considerations

RIB Software Lifecycle Management..............cccccooooiviiiiiiiiiiices 5-1
Centralized Configuration and Management...............c.cccocoeviiiiiiiiiiniies 5-2
Physical Location Considerations................c.ccccoiiiiiiiiiiiicees 5-3
Pre-implementation Considerations for Multibyte Deployments................ccccccoviiiiiiinnn. 5-3
Error Hospital SIZe ... 5-4
JMS Server ConsSiderationsc.ccccoeriiiirinininenestcsest ettt ettt ettt 5-4
Using Multiple JIMS SEIVETS......cocvvviiiiiiiiiiiicc ettt 5-5
Oracle Streams AQ JIMSouiiiiiiiiieett ettt sttt ettt b e sae st st e st e e et ebeebenaea 5-5
High Availability Considerations...............cococoviiiiiiiniiiiii s 5-6
Oracle Database Cluster (RAC) CONCEPLSccueuememeueuemimeieiiieieieieieieieieieireeeeeeeseeeseeeees e 5-6
rib-<app> application and Oracle Database Cluster (RAC)cccccevvviiniiiiiiiiiiiiceeens 5-7
WebLogic Server Cluster CONCEPLSovvuiiiiiurieiiiiceeicc s 5-7
rib-<app> application and WebLogic Application Server CIUSter..........cccccoeoeeuiuiecceccennes 5-7

vi

Deployment Architecture and Options

Recommended Deployment Options..............ccccoeiiiiiiiiiiiiiiiiiins 6-1
Distributed Deployment Alternative.............cccooovniiiiiiiiiiies 6-2
AAVANTAZES ..ot 6-2
DiSAdVANtAZES.oucveiiieciei et 6-2
Who Should Use This Configuration?ccccceiiiciiiiieiieeeeeeeneeieeneeneseneeenenenseenenes 6-3
Centralized Deployment Alternative ..o 6-3
AAVANTAZES ..ecvveiet e 6-3
DHSAAVANTAZES.vvvviiciiiiciiice ettt 6-4
Who should use this Configuration?..............coeiioiiiiiii 6-4
CONCIUSIONS ...t 6-4

Cloud Enhancements

Implementation Process

Implementation Verification and Validation...............ccccoooiiin, 8-2
Implementation Environment Verificationcccccococciiiiiiiiiiiiicceeeccceeeeeeennes 8-2
Integration Environment Testabilitycooooiiiiiiiiii e, 8-2

Performance
Performance FAcCtOrs ... s 9-1
Performance and Parallel Logical Channelscccccocoiiiiiii 9-1

10 Security

11

RIB Application Administrators Security Domaincccocoooiiiiiiiiiiia, 10-1
RIB System Administrators Security Domain..............cccoeiiniiiiini, 10-1
Monitoring
Monitoring the RIB at Run Timeccccooiiiiiiiiiiic s 11-1
Instance and Central RePoSitory ... 11-1
Monitoring Data as XIML ... 11-2
Push Versus Pull...........ccocoooiiiiiiiii s 11-2
Service INErfaces. ... s 11-2
Deployment Considerations 11-2
What is an EVent? ... 11-2
How are Event Count and Messages Count Related?ccccoiiiiiiniinnie, 11-2
Adapter EVENES...........ccoiiiiiiiiiiii s 11-3
APPLCAtion EVENES........ccooviiiiiiiiiciccee ettt 11-3
Event Collection Schedule................ccccocooiiiiiiiiiiiii s 11-3
Publisher Versus Subscriber EVENts............ccocoiiiiiiiiiiiiniiciiicecieceeereeesse s 11-3
TAFR Instrumentation............cccocoiiiiiiiiiiii s 11-3
Data Retentionccccooiiiiiiiiiiiiiiiiii s 11-4
Metrics Definitionsccoouiiiiiiiiiiiiiciciicc ettt e 11-4
.. Event Counts 11-4
... Adapter Execution Time 11-4

vii

... API Execution Time 11-4

.. Adapter Status 11-4
.. Commits and Rollbacks 11-4
.. CPU and Memory 11-5
... Error Hospital Metrics 11-5
... Server Status 11-5
.. RIB Application Status 11-5
JIMS CONSO0LE MELIICS ...ttt sttt ettt sttt b e e 11-5
MONItOring SEIVICES........ccouiiiiiiiiiiiiii s 11-5
APPLICAtion SErVICESocucuiuiiiiiiiici e 11-5
Integration Services ... 11-6
JIMIS CONS01E S@IVICESoouieieeieeieiieeeeeieette et ete et e te st e ssesneesseeseesseensesseensesseessesseensesseensesseensensenn 11-6
Caching and Expiration of Data ..o 11-6
Updates to Functional Artifact Deployment...............cccocoeviiiiiiiiiinii, 11-6
Turning Off MONItOTING ..o 11-7
Troubleshooting the Monitoring Framework ... 11-7
ROLE Of RIC ...ttt 11-7
ROLE Of JIMS COMSOLE.......ccoeiieiieiieieeeeteette ettt ettt eet et et e st e esaesseeseesseensesseensesseensaeseensenneensennes 11-7
Performance Considerations.............ccoooiiiiiiiiiiiii e 11-7
DePENencCyccoouiiiiiiiiiiiiiiiiiiii s 11-8
Security (Monitoring Services) ... 11-8
External Application Integration...............cccccocviiiiiiiiini 11-8
12 Integration with Fusion Middleware
General RIB to Fusion Middleware Architecture..............cccccoooiiiiin 12-2
General Process of INtegrationcociioiiiiiiiiiicic 12-2
Configure FWM JMS Adapter to RIB AQ JMSccccoiiiiiiiiiicirccerereeeeeeeeeeeee e 12-3
13 RIB Customization/Extension

Prerequisites for RIB Customization...........c..cccoeoriiiriiiniiiniinieeeeereeereeeeeeeee e 13-1
Rules for CUStOmMIZAtION........ccouiviiiiiiiiiiicc s 13-2
Message Family and Message Type Customization...............cccccoevvviivviiinininnnnnnccnn 13-2
Adding a New Message TYPEcccccuimimiiiiiiiiieciieeieeteieieeeeeeeeie e seaeaens 13-3
Message Flows with PL/SQL Applications..........cccccveveviiiiiiniiininiiiiiiiccccccs 13-3
Procedure for Adding a New Message Type for PL/SQL Applications............ccccoe...... 13-3
Message Flows with Java EE Applications.........c.cccccceiiiiiiiiiiiieecceeeeieeieeeeeeeenenens 13-5
Procedure for Adding a New Message Type for Java EE Applicationsccccccueuce. 13-6
Creating a New Message Familyccooiiiiiiiiiiiiccceeees 13-8
Additional RUIESc.cvviiiiiiiiiiiic 13-8
Procedure for Adding a New Message Familyc.cocoooiiiiiii 13-9
Adding New Adapters...........ccooviiiiiiiiiiii e 13-12
Adding the Custom Adapter to the rib-integration-flows.xml File...........cccocvoiviiiinnes 13-12
Procedure for Adding the Flow to the rib-integration-flows.xml File........................... 13-12
Adding a Publishing Adapter for PL/SQL Applicationsc.cccceeeiiiniiiiniiiniiiicnnnes 13-13
Procedure for Adding a Publishing Adapter for PL/SQL Applications.........c.ccec...... 13-14
Adding a Publishing Adapter for Java EE Applications..........ccccccovvvniininnnnnninnnn 13-15
Procedure for Adding a Publishing Adapter for Java EE Applications..............c......... 13-16

viii

Adding a Subscriber Adapter for PL/SQL Applications..........cccccccvvvviviininnnniininnn 13-17

Procedure for Adding a New Subscribing Adapter for a PL/SQL Application 13-17
Adding a Subscribing Adapter for Java EE Applications...........cccccceeueuevrvvnnnnnnrnencnes 13-19
Procedure for Adding a New Subscribing Adapter for a Java EE Application............ 13-19
Custom TAFR AdQpPters ... 13-20
TAFR Considerations ..o 13-20
Transformation...........ccceiiiiiiiiiiii 13-20
Filtering Configurationccooiuoiiiiiiiiie s 13-20
ROULING .o 13-21
Adding a New TAFR AdQpPtercooiuiiiiiiiieiiicie 13-21
Procedure for Adding a New TAFR Adapter.........cccoooooiiiieiiiiiiiiicecc e 13-21
Custom TAFR Implementationc.cccccccceciiiiiiniriiicieireeerereees s 13-21
Procedure for Completing Custom TAFR Implementationc.cccoooviiiiiiiinnnnes 13-22
Changing an Existing TAFR Adaptercccooooiiiiiiiiiiccc 13-23
Adding a New rib-<app> ... 13-24
Adding a new PLSQL 1ib-<app>....cccocovviiiiiiniiiiiiiiiccnesss s 13-25
Adding a New JavaEE rib-<app> ... 13-30
Adding a New SOAP 1ib-<app>....ccviiiiiiiiiirrr e 13-34
Verification of RIB Customizations...............ccoooiviiiiiiiiiiiicccc e 13-38
Verifying the New Message TYPecccocruiiiiiiiiiicicecc e 13-39
Verifying the New Message Family ... 13-39
Veritying the New Publishing Adapter..........coooiiiiiiiie 13-40
Verifying the New Subscribing Adapter ..o 13-41
Verifying the New TAFR AdapPter ... 13-42
Prerequisites for RIB Localization...............ccooiiiiiiiiiiiiiiiicccnes 13-43

14 RIB Localization - Business Objects

Prerequisites for RIB Localization..............ccoociiiiiiiiiiiiiiiccccs 14-1
Business Objects Localization ... 14-1
Localization Hooks in Base Business ODJECSccccccuiuiuiuiiciciiiiiciiiecccceccceieeeeeeeeeeees 14-2
Region Specific PlacehOlders............ccuoiiurieiiiiiiiiiii 14-3
Localization CUStOMIZAtIONc.ccooviiiuiiiriieiiieiectre e e 14-5
Adding Localization FIelds...........ccccoiiiiiiiiiiiiiiiiceecccceeeee e 14-5
Adding Localization Customization Fields...........ccooeoiiiiiiiiie, 14-6
PaCKAGINEooviiiiiiiic s 14-6

A External LDAP Configuration

Introducing the Oracle Internet Directory (OID)ccccccciiiiiiiiiiiiiiicceeeeeeeees A-1

Architecture OVeIVIEWcccooviiiiiiiiiiicc s A-1

Configuring the Oracle Internet Directory (OID) as an Authentication Provider in WebLogic......

A-2

Verifying the Oracle Internet Directory (OID) Configuration............cccccoevvvinnnnnnnnnnnnn. A-8

Using LDIF Scripts to Configure Users and Groups for OIDcccoeiiiiiniiinniininnnnn A-8
Integration-oid-create-groups.Idif ... A-9
Integration-oid-create-users.Idif ... A-14

B Sample Data from RIB App Monitoring Service

C Sample Data from Integration Monitoring Service

Send Us Your Comments

Oracle Retail Integration Bus Implementation Guide, Release 16.0.2

Oracle welcomes customers' comments and suggestions on the quality and usefulness
of this document.

Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:

= Are the implementation steps correct and complete?

= Did you understand the context of the procedures?

= Did you find any errors in the information?

= Does the structure of the information help you with your tasks?

= Do you need different information or graphics? If so, where, and in what format?
= Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell
us your name, the name of the company who has licensed our products, the title and
part number of the documentation and the chapter, section, and page number (if
available).

Note: Before sending us your comments, you might like to check
that you have the latest version of the document and if any concerns
are already addressed. To do this, access the new Applications Release
Online Documentation CD available on My Oracle Support and
www.oracle.com. It contains the most current Documentation Library
plus all documents revised or released recently.

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number
(optional).

If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at www.oracle.com.

xi

Xii

Audience

Preface

The Oracle Retail Integration Bus Implementation Guide provides detailed
information that is important when implementing RIB.

The Implementation Guide is intended for the Oracle Retail Integration Bus
application integrators and implementation staff, as well as the retailer’s IT personnel.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents

For more information, see the following documents in the Oracle Retail
documentation set:

» Oracle Retail Integration Bus Implementation Guide

» Oracle Retail Integration Bus Installation Guide

» Oracle Retail Integration Bus Operations Guide

» Oracle Retail Integration Bus Release Notes

» Oracle Retail Integration Bus Hospital Administration Guide

» Oracle Retail Integration Bus Security Guide

» Oracle Retail Integration Bus Support Tools Guide

» Oracle Retail Integration Bus Java Messaging Service (JMS) Console Guide
» Oracle Retail Integration Bus Integration Guide

» Oracle Retail Functional Artifacts Guide

xiii

» Oracle Retail Functional Artifact Generator Guide

» Oracle Retail Service-Oriented Architecture Enabler Tool Guide
» Oracle Retail Integration Bus Data Model

» Oracle Retail Payload Mapper Guide

Customer Support

To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following;:

= Product version and program/module name

= Functional and technical description of the problem (include business impact)
» Detailed step-by-step instructions to re-create

= Exact error message received

= Screen shots of each step you take

Review Patch Documentation

When you install the application for the first time, you install either a base release (for
example, 16.0) or a later patch release (for example, 16.0.1). If you are installing the
base release and additional patch releases, read the documentation for all releases that
have occurred since the base release before you begin installation. Documentation for
patch releases can contain critical information related to the base release, as well as
information about code changes since the base release.

Improved Process for Oracle Retail Documentation Corrections

Xiv

To more quickly address critical corrections to Oracle Retail documentation content,
Oracle Retail documentation may be republished whenever a critical correction is
needed. For critical corrections, the republication of an Oracle Retail document may at
times not be attached to a numbered software release; instead, the Oracle Retail
document will simply be replaced on the Oracle Technology Network Web site, or, in
the case of Data Models, to the applicable My Oracle Support Documentation
container where they reside.

This process will prevent delays in making critical corrections available to customers.
For the customer, it means that before you begin installation, you must verify that you
have the most recent version of the Oracle Retail documentation set. Oracle Retail
documentation is available on the Oracle Technology Network at the following URL:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.ht
ml

An updated version of the applicable Oracle Retail document is indicated by Oracle
part number, as well as print date (month and year). An updated version uses the
same part number, with a higher-numbered suffix. For example, part number
E123456-02 is an updated version of a document with part number E123456-01.

If a more recent version of a document is available, that version supersedes all
previous versions.

Oracle Retail Documentation on the Oracle Technology Network

Oracle Retail product documentation is available on the following web site:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.ht

ml
(Data Model documents are not available through Oracle Technology Network. You
can obtain them through My Oracle Support.)

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XV

XVi

1

Introduction

The Oracle Retail Integration Bus (RIB) is a fully distributed integration infrastructure
that uses Message Oriented Middleware (MOM) to integrate applications. RIB enables
various Oracle Retail applications to integrate in asynchronous and near real time
fashion. RIB provides additional value added business and infrastructure services to
the Oracle Retail applications in addition to providing integration connectivity.

Each of the Oracle Retail Applications has its own implementation and deployment
strategies and approaches, as well as individual integration touch points defined. The
implementation of the RIB must take into account the overall Oracle Retail application
enterprise deployment architecture and try to fit into the model seamlessly.

oy 3™ Farty Systems
-

27 arty Web
Servoe Glents

—

-

Warshcuss

| maragomart Ssmem

e | L@_A =
et e = i

T, =]

s === P

3 Pary |

N A

Aiocaion 1 Rriail Prica Ee L |
I Masigermai | wanagano
Warahouan) itlhaa | | e l I -
Aytems \‘___{__ m.__}___t_ \-.__j.__
—————
Remma Frcay |
LA | wmscc et
1 oA
L
FIBRELNGE Prodect Mt LEGEND
[,
= RIS LGS Daman O Sprlar @ :,::"_';:" E:i Cintabasn @ Inierfnoe Roini
T |Ostrate ot s .
= 5
. = Serm Sysism Hurean JAE Toze
5 Foleags 13,25 { Y Exspinalio Ou bkl 0 Arioe
'E R (=)
= = Srakead Oa-page
-g EMACLE f)Rt Dot (] 1‘.’.\(3:.- O £oba
L s \[EER] " Domain

& -Ouacks Coporanon

RIB acts as a shared communication layer for connecting various Oracle Retail
applications and external applications throughout an enterprise computing
infrastructure. It supplements the core asynchronous messaging backbone with
additional application functionality such as intelligent transformation, routing and
error handling.

Introduction 1-1

Communication across the RIB is via xml messages (payloads). These payloads
describe the retail business objects (such as items, purchase orders, suppliers, and so
on) in a standard way and are governed by RIB on behalf of the Oracle Retail
applications.

RIB architecture is based on standard Java EE components and the Java Message
Service (JMS). JMS is an integral part of the Java EE (Java Enterprise Edition)
Technology stack.

The integration solution provided by the RIB system is made up of multiple Java EE
RIB applications (rib-<app>.ear) that are autonomous in their execution behavior and
deployed in a fully distributed topology. Even though they (rib-<app>.ear) are
distributed and autonomous, they communicate and coordinate messages with each
other and work to provide the final asynchronous integration solution that the
enterprise expects.

The Integration Gateway Services (IGS) component provides an integration
infrastructure for external system (3rd Party) connectivity to the Oracle Retail
Integration Bus (RIB) in the form of a tested set of Web service providers and the
configurations to connect to RIB.

The issues and considerations needed to properly deploy and configure the integration
solution within an enterprise are the subject of this guide.

1-2 Oracle Retail Integration Bus Implementation Guide

2

Standards and Specifications

RIB is designed and built on industry standard non-proprietary Java EE concepts and
standards.

Java Platform Enterprise Edition (Java EE)

Java Platform Enterprise Edition (Java EE) is an umbrella standard for Java's enterprise
computing facilities. It bundles together technologies for a complete enterprise-class
server-side development and deployment platform in java.

Java EE specification includes several other API specifications, such as JDBC, RMI,
Transaction, JMS, Web Services, XML, Persistence, mail, and others and defines how to
coordinate among them. Java EE specification also features some specifications unique
to enterprise computing. These include Enterprise JavaBeans (E]JB), servlets, portlets,
Java Server Pages (JSP), Java Server Faces (JSF) and several Web service technologies.

A Java EE application server manages transactions, security, scalability, concurrency,
pooling, and management of the EJB/Web components that are deployed to it. This
frees the developers to concentrate more on the business logic/problem of the
components rather than spending time building scalable, robust infrastructure on
which to run on.

Java EE Server

Oracle Application Server implements the Java EE specification and is the Java EE
server vendor for RIB in this release. Oracle Application Server provides many
additional services beyond the standard services required by the Java EE specification.

See the WebLogic® Application Server documentation for more information:
http://docs.oracle.com/cd/E23943_01/index.htm
http://docs.oracle.com/cd/E23943_01/wls.htm
http://download.oracle.com/docs/cd/E15523_01/index.htm.

http://download.oracle.com/docs/cd/E15523_01/wls.htm.

Java Message Service (JMS)

The Java Message Service (JMS) defines the standard for reliable Enterprise Messaging.
Enterprise messaging, also referred to as Messaging Oriented Middleware (MOM), is
universally recognized as an essential tool for building enterprise applications. By
combining Java technology with enterprise messaging, the JMS API provides a
powerful tool for solving enterprise computing problems.

Standards and Specifications 2-1

http://java.sun.com/products/jms
http://java.sun.com/products/jms

Java Management Extensions (JMX)

JMS Provider

Enterprise messaging provides a reliable, flexible service for the asynchronous
exchange of critical business data and events throughout an enterprise. The JMS API
adds to this a common API and provider framework that enables the development of
portable, message based applications in the Java programming language.

The JMS API improves programmer productivity by defining a common set of
messaging concepts and programming strategies that will be supported by all J]MS
technology-compliant messaging systems.

The JMS API is an integral part of the Java Enterprise Edition platform, and
application developers can use messaging with components using Java EE APIs (Java
EE components).

A JMS Provider is a vendor supplied implementation of the JMS interface, such as
Oracle AQ JMS. Oracle Streams AQ implements the JMS specification and is the
certified JMS provider for RIB in this release. AQ is built on top of the Oracle Database
12c Enterprise Edition.

See the Oracle® Database Enterprise Edition documentation for AQ information.

Java Management Extensions (JMX)

The RIB is a backend, headless application that does not need active business user
participation for its daily operations. When the environment is stable there is no user
intervention required for the system to keep running. For such a backend system, it is
critical that there are proper alerting and notification mechanisms built into the
application for situations when the system runs into trouble or to communicate
interesting business situations to administrators.

Java Management Extensions (JMX) is a specification to provide management and
monitoring capabilities to applications that are built using java programming
language.

The JMX is based on a three-level architecture:

s The Probe/Instrumentation level: This layer contains the probes (called MBeans)
that instrument the application resources and make the resource available through
an agent layer.

= The Agent level: The MBeanServer is at the core of J]MX infrastructure. It is a
registry/catalog of all MBeans available for management.

s The Remote Management level: This layer enables remote applications to access
the MBeanServer through Connectors and Adaptors. A connector provides full
remote access to the MBeanServer API using various RPC communication protocol
like RMI, IIOP, WS-*, and others. A JMX adapter on the other hand adapts the JMX
API and events to other standard protocol like SNMP or provide a web based GUI
(HTML/HTTP) interface to the JMX API/Events.

2-2 Oracle Retail Integration Bus Implementation Guide

Java Management Extensions (JMX)

JMX-compliant
Management
Application

?
\

T~

Server Services

=l

Server Senvices
{az MBeans)

H MBean se
Seer Java Virtual Machihe

3

JMX Architecture Diagram

In addition to the three layers presented in the architecture, JMX provides a
notification model that follows the observer observable design pattern. By using
notifications, JMX agents and MBeans can send alerts or report information to third
party management applications. Users can receive notifications as a way of being
informed of critical events or requests for attention.

Because efficient management and monitoring of RIB components are essential to the
RIB product, and also seamless integration to standard third party enterprise
management tools was a requirement, the RIB application has been fully instrumented
to be manageable by any JMX compatible management tools.

The RIB adapters can be controllable using standard JMX tools such as Oracle
Enterprise Manager. When interesting business activity happens inside RIB, the RIB
components emit alerting events to the RIB alerting framework. By default, the
alerting framework is configured to send JMX and Email alert notifications. Anyone
interested in RIB's JMX alerts can subscribe to RIB notification types using their choice
of JMX compatible management tools. JMX management tools provide a way to
configure your listener/handler in the tool to react to the incoming alert event.

Note: See JMX management tool vendor documentation on how to
add your own listeners to JMX alerts.

Standards and Specifications 2-3

Java Management Extensions (JMX)

2-4 Oracle Retail Integration Bus Implementation Guide

3

Core Concepts

The RIB is designed as an asynchronous publication and subscription messaging
integration architecture. This allows the decoupling of applications and their systems.
For example, a publishing application need not know about the subscribing
applications, other than the requirement that at least one durable subscriber must
exist. It decouples the systems operationally. Once a subscriber is registered, the RIB
persists all published messages until all subscribers have seen them.

The publishing adapter does not know, or care, how many subscribers are waiting for
the message, what types of adapters the subscribers are, what the subscribers' current
states are (running or stopped), or where the subscribers are located. Delivering the
message to all subscribing adapters is the responsibility of the RIB with the help of the
underlying JMS server.

Physically, the message must reside somewhere so that it is available until all
subscribers have processed it. The RIB uses the JMS specification for its messaging
infrastructure. The JMS accepts the message from the publisher and saves it to stable
storage, a JMS topic, until it is ready to be picked up by a subscriber. In all cases,
message information must be kept on the JMS until all subscribers have read and
processed it.

The RIB interfaces are organized by message family. Each message family contains
information specific to a related set of operations on a business entity or related
business entities. The publisher is responsible for publishing messages in response to
actions performed on these business entities in the same sequence as they occur.

Each message family has specific message payloads based on agreed upon business
elements between the Oracle Retail applications.

Key Functional Requirements

The design and architecture of the RIB infrastructure is based on two key requirements
driven by the Oracle Retail application business model.

Guaranteed Once-and-Only-Once Successful Delivery

The RIB must preserve and persist all business events (messages) until all applications
(subscribers) have looked at the message and have successfully consumed it or
decided they do not care about that event (message). In other words, RIB must deliver
to every subscriber all messages except those filtered as per a subscribing application'’s
requirements.

A business event (message) must be redelivered to the consumer application if the
business event (message) was not consumed successfully. The redelivery process is

Core Concepts 3-1

Message Family and Message Types

bound by the same rules of sequencing as normal (non-redelivered) business event
(message).

Preservation of Publication Sequence

The business event (message) must be delivered to all the subscribing applications in
the order (FIFO) the business event (messages) was published by the publishing
application.

To enable this, the publishing application defines a business object ID whose existence
informs RIB that this and all subsequent messages with the same business object ID
have to be processed in order. Business event (message) ordering (FIFO) is assured
only for messages with the same business object ID within the same message family.

Message Family and Message Types

The RIB messaging adapters and payloads are designed around the concept of a
message family.

Each RIB message belongs to a specific message family. Each message family contains
information specific to a related set of operations on a business entity or related
business entities. The publisher is responsible for publishing messages in response to
actions performed on these entities in the same sequence as they occur.

One example of a message family is the Order message family used to contain
information about purchase order events.

A message family may contain multiple message types. Each message type
encapsulates the information specific to a business entity within one or more business
events. For example, the Order message family is published for events such as Create
PO Header, Create PO Detail, Update PO Header, or Delete PO Detail.

A single business event, such as updating a purchase order, may involve multiple
business entities, such as a line item within the purchase order.

Because a single business event may involve multiple business entities, the application
may publish messages for this event from multiple message families for a single
business transaction. More than one message type within a message family may also
be created.

There are two broadly defined types of functional interfaces in the RIB (message
families): foundation data and transactional data.

Foundation Messages

After populating application tables with initial company seed data, item foundation
information is needed. Foundation messages are defined as those with payload that
carry basic product data.

This table is an example from the Oracle Retail Integration Bus Integration Guide.

Functional Area Publishing Applications Subscribing Applications
Items RMS RWMS, SIM

Item Locations RMS SIM, RXM

Locations RIB RWMS, RXM

Stores RMS RWMS, SIM, RXM

3-2 Oracle Retail Integration Bus Implementation Guide

Message Life Cycle

Functional Area Publishing Applications Subscribing Applications
Vendor RMS RWMS, SIM
Warehouses RMS RWMS, SIM, RXM

Transactional Messages

After populating application tables with initial seed data and after all required item
foundation data messages have been subscribed to, all applications are prepared to
publish and subscribe transaction data messages. Transactional messages
communicate business events involving two or more organizations within a retail
supply chain, for instance, among Oracle Retail Merchandising System (RMS), Oracle
Retail Store Inventory Management (SIM), and Oracle Retail Warehouse Management
System (RWMS), external suppliers and financial systems.

This table is an example from the Oracle Retail Integration Bus Integration Guide.

Functional Area Publishing Applications Subscribing Applications

Allocations RMS RWMS, SIM

Appointments RWMS RMS, SIM

ASN Outbound RWMS, SIM, RMS, REFM RMS, SIM, RWMS, OMS

ASN Inbound RWMS, External, RMS RMS, SIM, RWMS, OMS
RFM

Inventory Adjustments RWMS, SIM RMS

Inventory Request SIM RMS

Receipts RWMS, SIM RMS

Purchase Order RMS, SIM RWMS, SIM

Stock Order Status RWMS, SIM RMS, SIM, OMS

Transfers RMS RWMS, SIM

RIB Message Envelope and Payloads

Whenever a publishing application adapter publishes a message, it wraps the message
in an envelope known as the RIB message envelope. The envelope is a standard
message delivery format where the message information, the data payload, is
contained within the overall delivery information. The envelope itself provides
information that the RIB uses, such as RIB hospital information and routing
information.

Note: Payloads do not support time zone formats.

Message Life Cycle

The publishing application is responsible for creating the initial message contents. The
RIB publishing adapter publishes it to the JMS Server and makes it available to any
JMS subscribers. The RIB knows what subscribers are to receive the message due to
the RIB configuration—this configuration associates a set of subscribers to each
publisher and message family combination.

Core Concepts 3-3

Message Life Cycle

For PL/SQL Applications, database tables associated with the publishing application
typically stage message information. One or more RIB publishing adapters poll the
application via a stored procedure call. For Java EE Applications, the application calls
a RIB Enterprise Java Bean (E]B) with the payload information to be published.
Similarly, SOAP Applications calls with the payload information in the request to be
published.

The message resides on a Java Message Service (JMS) immediately after publication.
The JMS topic provides stable storage for the message in case a system crash occurs
before all message subscribers receive and process it.

A fundamental RIB system requirement is that a message must be delivered to and
processed successfully exactly once by each subscriber. Furthermore, all work
performed by the subscriber and the RIB must be atomically committed or rolled back,
even if the JMS server is on a remote host. The standard way to perform this is by
using an XA compliant interface and two-phase commit protocol.

After initial publication, a message may undergo a series of transformation, filtering,
or routing operations. A RIB component that implements these operations is known as
a Transformation and Address Filter /Router (TAFR) component. TAFR is the acronym
for Transform, Address, Filter, and Route. A TAFR is completely internal to the RIB
and does not reside in either the publishing or subscribing application. The RIB
performs these intermediate transformation and routing operations on some messages
before making them available to the subscribing application.

A single TAFR may only transform a given message, only filter the message, only
route it, or combine any of the three operations.

s Transform - A message may be transformed from one message type into another,
for example, WH (warehouse) from RMS to Location for RWMS.

= Filter - A message may be filtered. Filtering can occur based on message type or
based on content.

= Route - A TAFR may route a message. For example, whenever a stock order
message is published for a warehouse with an instance of RWMS, the TAFR routes
it to the particular RWMS instance from where the stock will be fulfilled and not to
warehouses that do not stock the order's items.

TAFR operations are specific to the set of subscribers to a specific message family.
Multiple TAFRs may process a single message for a specific subscriber and different
specific TAFRs may be present for different subscribers. Different sets of TAFRs are
necessary for different message families. If all subscribers to a message can process all
messages within a message family without any TAFR operations, then no TAFR
components are needed.

Message processing continues until a subscribing adapter successfully processes the
message or determines that no subscriber needs this message.

When a subscriber gets a message to be processed, the adapter checks to see if the RIB
Hospital contains any messages associated with the same entity as the current
message. If so, then the adapter places the current message in the hospital as well. This
is to ensure messages are always processed in the proper sequence. If proper
sequencing is not maintained, the subscribing application's data can be corrupted.

If an error occurs during message processing, the subscribing adapter notes this
internally and rolls back all database work associated with the message. When the
message is re-processed (because it has yet to be processed successfully), the adapter
now recognizes this message is problematic and checks it into the hospital.

3-4 Oracle Retail Integration Bus Implementation Guide

Messaging Components

After a message is checked into the RIB Hospital, a retry adapter extracts the message
from the hospital and re-publishes it to the JMS topic for reprocessing. The message
remains in the hospital during all re-tries until the subscribing adapter successfully
processes it.

Messaging Components

The RIB is a messaging system made-up of components that are packaged and
shipped as an integration solution between the Oracle Retail applications. The
application boundary between RIB and Oracle Retail applications can be confusing at
times, so this section defines the RIB components and their responsibility and
ownership. A diagram illustrating the RIB integration message flow follows:

—— o —

Sractha T Topc i) fe——
e R LR
.

rib-tnir sar

..........

Conigxi Model

RIB Subsystem Components

This section describes the components of the RIB subsystem.

Adapters

A RIB adapter is a component that coordinates business event (message) generation
and processing with the respective Oracle Retail application interface. Each adapter in
the RIB is created to handle a specific functional interface. RIB adapters are developed
using Enterprise Java Beans (EJB) components architecture, subscribing adapters use
Message Driven Beans (MDBs) and publishing adapters use Stateless Session Beans
(SLSBs).

RIB provides four types of adapters that Oracle Retail applications can exploit to
integrate with one another. These adapter types are: publisher, subscriber, TAFR, and
hospital retry. They have been built using different technologies based on their
particular needs.

Subscriber and TAFR adapters use Message Driven Bean (MDB) technology to register
with JMS topics and receive messages for further processing.

Core Concepts 3-5

Messaging Components

Publisher and hospital retry adapters make use of the Java SE (Standard Edition) timer
facility to schedule repetitive events that trigger calls to Stateless Session Beans
(SLSBs) to query application tables for messages to publish to the JMS server.

As stated in the introduction, a fifth type of adapter exists for publishing messages in a
pushing fashion. The Oracle Retail applications invoke this adapter at will for
publishing messages.

These adapters have not been considered part of the scope of this technical document
in regard to providing a mechanism for starting and stopping them.

Due to the variety of technologies used by the adapters, the goal of this technical
design has been to isolate users from these differences and provide them with a
common management interface that can be used to control the state of the adapters.
During the last few years, the Java Management Extensions (JMX) specification has
become a well known standard that defines the management layer for enterprise Java
applications. JMX defines standard methodologies for declaring enterprise application
components as manageable resources that can be exposed in a consistent way such
that any JMX compliant management application can access and provide means for
control.

JMS Domains, Destinations, Subscriptions

JMS defines two types of messaging domains: point-to-point and publish/subscribe.
RIB uses publish/subscribe types of messaging domains for all its communication.
Publish/subscribe is a one-to-many type of message distribution model where one
source application en-queues the message and many destination applications can
de-queue the same message and process independently of the other peer applications.
In publish/subscribe the destinations are known as topics, the en-queue application is
known as publisher, and the de-queue is known as subscriber. Unlike point-to-point,
in publish/subscribe the publisher and subscriber are totally ignorant of each other
and do not and should not know about each other’s existence. The JMS Topics retain
the messages only as long as it takes to distribute them to current active (running)
subscribers. There is also a timing dependency between publishers and subscribers.

A client that subscribes to a topic can consume only messages published after the
client has created a subscription, and the subscriber must continue to be active in order
for it to consume messages. The JMS specification relaxes this timing dependency to
some extent by allowing clients to create durable subscriptions. By creating durable
subscriptions the JMS server will continue to hold the messages for all registered
subscribers for that topic until the subscriber consumes the message or deletes the
subscription.

There are two types of subscribers, non-durable and durable subscribers. The RIB uses
only durable subscribers which allow the Oracle Retail edge applications to be in up or
down state independently but still not lose any messages and catch up when the
application comes back up. Every subscribing RIB adapter registers its durable
subscriber with a subscription name that contains its rib-<app> application name and
the adapter name in it.

RIB defines logical grouping of retail specific business objects (BO) and business

functions in a concept called message family. For every message family there is a
corresponding JMS topic. These JMS topics are used as communication pipelines
between the source and destination Oracle Retail applications for exchanging the
business objects.

The list of JMS topics used by RIB components is detailed in the Reports section of the
Oracle Retail Integration Bus Integration Guide.

3-6 Oracle Retail Integration Bus Implementation Guide

Messaging Components

JMS Message Selector

A key aspect of the JMS usage that the RIB relies on is the attachment of message
properties to published messages and the use of selectors by message subscribers.
Message properties are used to convey information about the message outside of the
actual message data to establish a logical channel for messages.

JMS message selectors are used by the RIB to filter the messages that each subscriber
picks up. In other words, using the message properties, selectors act as a filter to weed
out messages a subscriber should not process.

The message property set and used by the RIB messages is called threadValue. The
thread value is associated with a logical channel of a message stream. All messages for
a specific family with a specific business object ID always contain the same
threadValue property. This, combined with the standard first in, first out (FIFO)
message ordering on the topic, is integral to message sequencing. Messages with
different thread Value properties are not guaranteed to be processed in the same
relative order as publishing.

Messages published without J]MS Message Property present will not be picked up by
the standard subscribing RIB adapters.

Pseudo code for message selector:

(
(
(appName is not null) AND
(appName == $APP_NAME)
) AND
(
(retryLocation is not null) AND
(retryLocation LIKE S$ADP_CLASS_DEF)
)
) OR
(
(
(appName is null) OR
(appName != SAPP_NAME)
) AND

(retryLocation is null) OR
(retryLocation LIKE $ADP_CLASS_DEF)

)
) AND
(threadvalue == $ADP_INSTANCE_NUMBER)

Additional RIB JMS Message Properties

Every message published by the rib-<app> applications includes a number of J]MS
user defined header properties. In the current release, these properties are only set, not
used by any RIB components. In the future, these properties will be used for intelligent
performance enhancement and optimization and for traceability and auditability of
RIB messages.

The message properties are as follows:
s Property Name: appName

Type: java.lang.String

Required Property: false

Example: appName=rib-rms

Core Concepts 3-7

Messaging Components

Description: The appName property contains the rib-<app> application name that
published this particular message.

= Property Name: adapterInstance
Type: java.lang.String
Required Property: false
Example: adapterInstance=Item_pub_1

Description: The adapterInstance property contains the rib-<app> adapter
instance name that published this particular message.

= Property Name: family
Type: java.lang.String
Required Property: false
Example: family=Item

Description: The family property contains the name of the RIB family name to
which the message belongs.

= Property Name: needMessageOrderPreservation
Type: boolean
Required Property: false
Example: needMessageOrderPreservation=true

Description: This property will have a value of true if any ribMessage node within
the RibMessages xml has a message that has businessObjectld set. This property
will allow us to take advantage of the fact that now we know which messages
need message order preserving at JMS header level (without opening the
message). In the future, we will be able to take advantage of that information,
make our processing parallel, and get better throughput without losing message
sequencing.

» Property Name: topic
Type: java.lang.String
Required Property: false
Example: topic=etltem

Description: This topic property contains the RIB topic name that this particular
message is published to or subscribed from.

s Property Name: ribKernelVersion
Type: java.lang.String
Required Property: false
Example: ribKernelVersion=16.0

Description: The system determines the rib kernel jar version number at runtime
and includes its value in this JMS property.

s Property Name: ribFuncArtifactVersion
Type: java.lang.String
Required Property: false
Example: ribFuncArtifactVersion=16.0

3-8 Oracle Retail Integration Bus Implementation Guide

Messaging Components

Description: This is a place holder for future enhancement. The idea is the system
will somehow determine the runtime payload version and include that
information in the message for better compatibility management. This property
will be enhanced in a future release.

= Property Name: ribMessageCount
Type: int
Required Property: false
Example: ribMessageCount=12

Description: This property contains the number of ribMessage nodes there are in a
RibMessages xml message. This value gives us some indication of message
aggregation in play. It might be used in the future to better optimize message flow
paths based on the size/number of the messages.

s Property Name: uuid
Type: java.lang.String
Required Property: false
Example: uuid=116cfabd-8949-4f93-bb61-aaa88e168£30

Description: This property contains a universally unique identifier for every
message. This unique identifier will provide better traceability of a message within
the JMS system. This property complements the ribMessagelD xml element that is
there to trace messages within the RIB logs.

Integration Gateway Services (IGS)

The Integration Gateway Services (IGS) provides an integration infrastructure for
external (third party) connectivity to the Oracle Retail Integration Bus (RIB) in the
form of a tested set of Web service providers and the configurations to connect to RIB.

Integration Gateway Services are designed to ease the integration to the RIB interfaces
and RIB payloads. Traditionally, this required custom RIB adapters to create and
publish RIB payloads wrapped in RIB Messages envelopes to the RIB JMS topics. The
IGS provides the integration to these RIB interfaces through standard
request/response Web services using only the standard XSD based RIB message
payloads.

IGS Interfaces

There are 19 RIB Message Family interfaces included in the IGS. They are the interfaces
most commonly used for custom integration to legacy systems. A Web service
corresponds to each of the selected Message Families. Each service exposes the
message types supported by the RIB Message Family.

Table 3-1 1GS Interfaces

Functional Area Message Types

Financials s Chart of Account (GLCOA)

s Currency Rates

= Freight Terms

= Payment Terms

Core Concepts 3-9

Messaging Components

Table 3-1 (Cont.) IGS Interfaces

Functional Area

Message Types

Foundation Data

Item

Item Location
Store

Vendor

Transactional - External

Allocations
Cost Changes
Purchase Order

Transfers (Stock Orders)

Transactional - Internal

ASN Inbound
ASN Outbound
FulfillOrder

Inventory Adjustments

Inventory Request

Receiving (Appointments, Receipts)

Return to Vendor

Integration to IGS

The customer or integrator creates Web service clients from the IGS WSDLs, using
tools or technology appropriate to the retailer's organization. The message payloads
are the standard XSDs that ship with the RIB Functional Artifacts. The business logic
behind the client must be written to match the RIB Integration and the Oracle Retail
Application API rules. These are the same rules that apply to any GA or custom
adapter, as included in RIB documentation and other Oracle applications guides.

The IGS Web Service infrastructure has been designed to support the RIB feature of
multi-channel publication, through the Business Object ID. It also supports message
routing through RIB TAFRs, where the Message Family supports it. Additional XSDs
have been added to support these requirements.

(RIBNGS

ETH Basus
Akt wed

| |
| |
| |
I B i wom o T i |
N- -
| |
| ' o

G |
4
RIN Marasga wed | —
2]

1

105 Sub Adepir b _'J

3-10 Oracle Retail Integration Bus Implementation Guide

Owaicks Retad
Appicatns |
| PR, Bl oAb

P ===

Simple Message Flow

RERELIGS HOTES: LEGEHD
Produgt Camain v o e
: SremaT Lt Ay — 5 Eorprehecross
et e c:mu-uua = Tog R R AmquemRespesss
@ [evswen: RIBKGE |Sorecemndmn
Logizal bom. Dogiois | »
B rfacts wro 23 - F an
= a5 50 4 u Il:-cm.'.-rrn okt ol B Bt Bvarbonk
= LETE R B THEE LEcugrrg We
] A — RCEU = watip
[*] - — = (=
= - I 1 B
| oracs Epe i 2 m:'-'; CONRERN s Pl e NETOSDNGUS
= - ! Epram =it g Haymd

£ Oracie Cregodakon

IGS Deployment Considerations

There are additional deployment options that must be considered if the IGS is
required.

The RIB Integration Gateway Service (IGS) component requires Oracle® WebLogic
Server 12c Release(12.2.1).

In addition to the RIB considerations during implementation, coordination with the
Application Server Administration team also is required to determine the physical and
logical placement of the RIB IGS component within the WebLogic Server deployment.

IGS and WebLogic Server (WLS) Clustering The core RIB components do not support
deployment to an active-active cluster. However, the IGS can be deployed to an
active-active Oracle WebLogic cluster.

See the WebLogic® Server documentation for more information:
http://download.oracle.com/docs/cd/E15523_01/index.htm.
http://download.oracle.com/docs/cd/E15523_01/wls.htm.

Simple Message Flow
The typical lifecycle of a message through the RIB is as follows:

1. The publishing adapter creates the message. The event that triggers the message
creation may be a polling operation in case of PL/SQL applications or a
synchronous invoke in case of Java EE applications or a request in case of SOAP
application. The message is published to a predetermined JMS topic.

2. The message is now available for all registered subscribers to the JMS topic for
pick up. Subscription is based on the message family.

3. Once a subscriber gets the message, it is free to process that message according to
its own rules. In the case of a transformer adapter, the adapter can open the
message, modify its contents, and then publish the modified message to a new
topic. The source topic and destination topic that a TAFR uses must always be
distinct/different topics. There may be new subscribers to the modified message,
and the scenario is repeated for each of these subscribers.

4. When each subscriber has finished (commit) processing a message, the JMS server
updates the state of the message to reflect that it has been processed by this
subscriber.

5. The JMS Server deletes the messages on the topic after delivering it to all the
registered subscribers.

Two types of applications require this data and subscribe to it. One type of subscribing
application requires a certain transformation be applied to the data, but the other type
of subscriber can process the message without any transformations.

Core Concepts 3-11

http://java.sun.com/products/jms
http://java.sun.com/products/jms

The RIB Hospital

The RIB Hospital

The RIB Hospital is a collective term for a set of Java Classes and database tables
whose purpose is to provide a mechanism to handle system and business related
errors while meeting the fundamental RIB requirements:

= Guaranteed once-and-only-once successful delivery.
= Preservation of publication sequence (even in case of failures).

When a message is processed, the adapter checks to see if the RIB Hospital contains
any messages associated with the same businessObjectld as the current message. If so,
then the adapter places the current message in the hospital as well. This is to ensure
messages are always processed in the proper sequence. If proper sequencing is not
maintained, then the subscribing application's data can get corrupted.

If an error occurs during message processing, the subscribing adapter notes this
internally and rolls back all work associated with the message. When the message is
re-processed (since it is yet to be processed successfully), the adapter now recognizes
this message is problematic and checks it into the hospital.

For Publication, there are some RMS publishers that return an 'H' status to denote a
problem creating a new message for a specific business object. This status may be due
to database locks being held by on-line users of an Oracle Forms application or it
could also be due to some data incompatibility found in the GETNXT() procedure.
Whenever a publisher recognizes that a message for a business object cannot be
published due to one of these conditions, the message must go into the RIB Hospital.

After a message is checked into the RIB Hospital, a retry adapter extracts the message
from the hospital and tries to re-publish it to the integration bus.

RIB Hospital Dependency Check

The RIB Hospital dependency check logic assumes that each message family has a
single unique businessObjectld for all business object entities its messages are
associated with. This businessObjectld must be the same for the same business entity
across all message types within the message family. If any message for a specific
business entity is placed into the RIB Hospital, then the RIB Hospital dependency
check logic automatically inserts any subsequent messages for the same business
object. This is to preserve the message sequencing and guaranteed exactly once
successful message processing. Otherwise, multiple update messages for a business
object may be processed in an incorrect order and create incompatibilities between
applications.

If the businessObjectid is not set, then there is no dependency check. Not all message
families set the businessObjectld or it is not set on all message types. See the Oracle
Retail application documentation (for example, "Message Publication and Subscription
Designs" in the Oracle Retail Merchandising System Operations Guide Volume 2).

RIB Hospital Insert

In an event of failure during message subscription, the error is flagged within the RIB
Hospital software, resulting in rollback of the work done in the retail application, the
adapter returns failure so that the database transaction is rolled back as well, and the
message is kept on the integration bus topic. This is because subscribing adapters are
executed within the context of a distributed transaction, using the XA two-phase
commit protocol. This transaction is controlled by the Java EE Application Server.
Immediately after the roll back, JMS re-delivers the message back to the subscribing
adapter and this time the RIB Hospital software detects the previously flagged

3-12 Oracle Retail Integration Bus Implementation Guide

The RIB Hospital

message and inserts the message in to the RIB Hospital tables and message is removed
from the JMS topic.

When the initial failure occurs while processing the message, the error is flagged
within the RIB Hospital software, the adapter returns failure so that the database
transaction is rolled back, and the message is kept on the integration bus topic.

Note: The XA interface is a standard protocol between a transaction
manager and a database or resource manager. Note that both the JMS
topic connection and the database connection must support the XA
protocol. For more information regarding the XA standard, see the
URL http://www.opengroup.ord.

RIB Hospital Tables
The RIB Hospital tables are:
= RIB_MESSAGE - contains the message payload, all single-field envelope

information, and a concatenated string made from <id> tags. It also contains a
unique hospital ID identifying this record within the hospital.

s RIB MESSAGE_FAILURE - contains all failure information for each time the
message was processed.

s RIB_MESSAGE_ROUTING_INFO - contains all of the routing element information
found in the message envelope.

» RIB_MESSAGE_HOSPITAL_REEF - contains all of the hospital reference
information found in the message envelope.

A database sequence, RIB_MESSAGE_SEQ), is used to maintain a unique message
number associated with each message placed into the RIB Hospital.

RIB_MESSAGE
PK | MESSAGE NUM

11 | ADAPTER_CLASS_LOCATION
11 | ADAPTER_INSTANCE_NUMBER
11 |FAMILY

TYPE

11 |ID

RIB_MESSAGE_ID
PUBLISH_TIME

IN_QUEUE
MESSAGE_DATA
ATTEMPT_COUNT
MAX_ATTEMPTS
NEXT_ATTEMPT_TIME
DELETE_PENDING
TOPIC_NAME
THREAD_VALUE

11 |JMS_QUEUE_ID
CUSTOM_FLAG
CUSTOM_DATA
REASON_CODE

A

v
A

RIB_MESSAGE_FAILURE RIB_MESSAGE_HOSPITAL_REF RIB_MESSAGE_ROUTING_INFO

PK,FK1 | MESSAGE NUM PKFK1 | MESSAGE NUM PK,FK1 | MESSAGE NUM

PK SEQ NUMBER PK SEQ NUMBER PK SEQ NUMBER
TIME HOSPITAL_REF NAME
ADAPTER_CLASS_LOCATION ADAPTER_CLASS_LOCATION VALUE
ADAPTER_INSTANGE_NUMBER ADAPTER_INSTANCE_NUMBER DETAIL1_NAME
DESCRIPTION MESSAGE_FAMILY DETAIL1_VALUE
ERROR_TYPE NEW_REASON_CODE DETAILZ_NAME
ERROR_CODE OLD_REASON_CODE DETAIL2_VALUE

These tables will have been created during the database portion of the Oracle Retail
application installation (for example, RWMS, SIM, RPM, AIP, RFM, OMS, or RMS).

Core Concepts 3-13

http://www.opengroup.org
http://www.opengroup.org
http://www.opengroup.org

The RIB Hospital

The RIB Hospital tables are internal system tables that maintain the RIB runtime state
of the system. The entries in these tables must not be manipulated by non RIB tools
when the RIB is running.

RIB Hospital Retry

After a message is inserted into the RIB Hospital, the hospital retry adapter is used to
re-post the message to the JMS in order to retry its processing. The assumption is that
the error is a transitory one; records locked or there is an external dependency that has
not been met. The number of times a message is retried is configurable.

The hospital retry is responsible for maintaining state information for hospital records
or what has happened to the record or message information. Each time the message is
reprocessed, a record is kept of the event along with the results. The design is to
provide a means to halt processing for messages that cause errors while allowing
continued processing for the good messages.

One element of this information is whether the message has been queued to the JMS
topic for re-try processing. So manually deleting messages from the hospital database
using SQL directly may produce severe processing problems. Also, deleting messages
directly from the JMS provider may result in a message that is never retried again, as
the logic in the retry assumes the message is queued within the JMS.

There are three kinds of hospital retry adapters:
= Sub Retry Adapter
= JMS Retry Adapter
s Pub Retry Adapter

All subscriber side retrying of messages are handled by the Sub Retry Adapter. The
Sub Retry Adapter looks at all messages with reason code SUB, then filters and
identifies the messages that are ready to be reprocessed, keeping message ordering in
mind.

Oracle Retail applications are unaware that the integrations of the business data is
happening through a JMS server. RIB abstracts the fact it is using a JMS server from the
retail applications. When the JMS server is down or RIB has some problem publishing
to the JMS server, RIB will not rollback the transaction as long as it is a recoverable
problem. In such situation all messages are inserted to the RIB Hospital with a reason
code of JMS and publications continues on. The JMS Retry Adapter retries all
messages with reason code of JMS at a later time.

All messages with reason code of PUB are retried by the Pub Retry Adapter. RMS is
the only retail application that needs the Pub Retry Adapter.

PUB Retry Adapter
The following diagrams illustrate how the PUB Retry Adapter works.

3-14 Oracle Retail Integration Bus Implementation Guide

The RIB Hospital

PUB_RETRY with
STATUS_CODE 'S’

PUB_RETRY with
STATUS_CODE ‘I

RIB PUB_RETRY
Adapter Processing

Core Concepts 3-15

The RIB Hospital

PUB_RETRY with
STATUS_CODE 'N'

PUB_RETRY with
STATUS_CODE 'H'

RIB PUB_RETRY
Adapter Processing

3-16 Oracle Retail Integration Bus Implementation Guide

The RIB Hospital

N

rib-<app=

Calls GETNEXT pkg

(GetNext EJB

TATUS CODE *H” raturned—pl\‘_

STATUS CODE “E” returned > adapter Insers Message to
I
llfhuts Do _/,l
PUB_RETRY with Gets the message

STATUS CODE ‘E' or any
other invalid codes.

Hospital Attempt (Retry) Count

When the message first comes through the subscriber, if there is no businessObjectid,
then there is no dependency check performed. If the message cannot be processed, it is
then inserted into the hospital with an attempt_count = 1.

A message that comes through the subscriber, that has a businessObjectid, a
dependency check is performed. If there is no dependency and the message cannot be
processed, it is then inserted into the hospital with an attempt_count = 1.

A message that comes through the subscriber that does match the ID and family of
another message in the hospital is known to be dependent, so it goes to the hospital
immediately, with an attempt_count = 0.

Exception to this rib-tafr app, in case of rib-tafr attempt_count is 1, even if the message
is inserted into the hospital as a dependent message because tafr adapters work with
two topics and message would already be subscribed once by the tafr, therefore it
always has attempt_count=1.

JMS Delivery Count

JMSXDeliveryCount is a message property set by AQ JMS. This property is checked to
see if the message is being redelivered by the JMS. If the count MAX_REDELIVERY _
THRESHOLD (set to 2) is reached, the RIB subscribers assume that the message is
being re-delivered; the message will be determined as a poison message. The message
is written to the file system (at the same location where application log files are
written), and the adapter is shut down in such scenarios. An administrator must
decide how this message will be handled.

Core Concepts 3-17

The RIB Hospital

3-18 Oracle Retail Integration Bus Implementation Guide

4

Oracle Retail Application APIs

This chapter describes Oracle Retail Application APIs.

PL/SQL Stored Procedure APIs

Each PL/SQL based application uses a Message Family Manager (MFM) specific API
for publishing all messages within a specific message family. This API is the interface
to a stored procedure package and wrappers the staging table and additional business
logic surrounding the message publication.

The RIB Publishing Adapter polls the API by calling a routine in the MFM called
GETNXT(). The MFM "GETNXT()" PL/SQL stored procedure may contain simple or
complex logic that is specific to the message types published. For example, a simple
Create Vendor message may involve merely selecting and then deleting a single record
from the vendor staging table. On the other hand, a Create Purchase Order message
requires fairly complex logic to create because of the business process dependencies.
Many changes may be made to a PO before it is approved.

The RIB Subscribing Adapter invokes the API by calling a routine in the MFM called
CONSUMEY(). The CONSUME() API consumes the subscribed messages. Depending
on the message family, it takes the message, message type, and other information
required as inputs to process the message. It returns a status code of 'S' for Success and
'E' for Error after processing. If the status 'E' is returned, the error message is also
displayed.

The RIB Pub Hospital Retry Adapter invokes the API by calling a routine in the MFM
called PUB_RETRY(). All those messages for which GETNXT() returns a status code
'H' are sent to Error Hospital with reason code PUB. These messages are retried by the
PUB Retry Adapter by calling routine PUB_RETRY(). It returns a status code 'S’ for
Success, 'H' for Hospital, T for Keep Calling till the status code 'S’ is returned, 'N' for
No message, and 'E' for Error. If 'E' is returned, the pub retry adapter is shutdown.

Oracle CLOB APIs

The main facet of this API involves the use of Oracle CLOBs (Character Large Object
Binaries) as the means to pass information to and from an Oracle stored procedure.
The stored procedure is responsible for parsing or building the message payload.

There are only a few of this type remaining in RMS.

APIs using CLOBs have internal triggers that are fired when a specific database table
is modified. The trigger retrieves all of pertinent information to create a specific type of
message (XML payload) and inserts it into a staging table using an application specific
Message Family Manager (MFM) API. The payload is contained in an Oracle

Oracle Retail Application APIs 4-1

PL/SQL Stored Procedure APls

Character Large Object Binary (CLOB). The staging table that holds the payload data
must also maintain the following;:

s The order that messages are created
s The CLOB containing the "payload" XML
= Any routing or filtering key values

= The message type associated with the business event that created the message. The
message type is specific to the message family and a single business event may
produce multiple messages of differing types within different families.

RIB_XML and RIB_SXW Database Packages

These PL/SQL packages contain utilities to make the generation and parsing of XML
documents easier. It is based on Oracle's XDK, and is designed to support CLOB
application-specific APIs that read and write XML messages.

Oracle Object APIs

These application interfaces use Oracle Objects to pass information to and from the
stored procedure. Each RIB Object corresponds to the XSD that defines the RIB
Message payloads for that message family. This is the predominant type of PL/SQL
API used in Oracle Retail integration via RIB.

When a message is ready for publication, the Message Family Manager GETNXT/()
Stored Procedure examines its staging tables and creates the appropriate RIB Object
for publication. In many cases, these staging tables contain columns that are
themselves declared a specific type of RIB Object. Once the complete RIB Object is
ready, the GETNXT() Stored Procedure returns this (RIB Object) to the calling RIB
Adapter, which then converts the RIB Object into an equivalent XML string.

When a subscribing adapter gets a message from the JMS topic it constructs the Oracle
Object by parsing the incoming payload xml. The newly created Oracle Object is
passed in to the CONSUME() stored procedure to process the message.

RIB Related Database Tables

PL/SQL stored procedures use three tables to refine their behavior: RIB_SETTINGS,
RIB_TYPE_SETTINGS, and RIB_OPTIONS. Not all applications use these.

The RIB_SETTINGS table defines, on a per message family basis:

s The number of channels to use when publishing (see the Multi-channel section in
the Oracle Retail Integration Bus Operations Guide).

s The maximum number of details to publish within a create, update, or delete
message. Oracle Retail applications typically do not have a limit to the number of
details a specific business object can have. So a purchase order may be created
containing tens of thousands of detail lines, each line a specific item/location
combination. A single PO Create message containing 30,000 or so lines require a
vast amount of resident memory to parse. This column limits the PO Create and
subsequent PO Detail Add messages to a set number of details.

The RIB_TYPE_SETTINGS table is used internally by the application.
The RIB_OPTIONS table is used by the CLOB APIs for the creation of XML.

4-2 Oracle Retail Integration Bus Implementation Guide

Oracle Retail Java EE APIs

Detail Architecture - PL/SQL Apps

RIB Detail Architecture — PL/SQL Apps

Java EE Server

JSP/Serviet MBean Server EJB Container JCA Container
Container
ib p>.ear
GetNext SLSB
- 46
Retail PL/SQL App rib-admin-gui
Pub Error Hosp M,
[o] | =
PL/SQL API (GETNXT) :) j‘
IR T [Pubtisner stsp |- Topica |-+ [e
Poll Publisher Timer 2 Rib Config
MBean Subscriber MDB 1 -2—— Sub Topic 1 l IMS-Server
B I
PLISQL API (CONSUME) [z ‘
o ’7|Subscribcf MDB 2 | |Sub Topic 2 }—;Afb() Topic 2)
Hosp Retry Timer |
Sub Error Hosp Mgr
S [s
»| Hosp Retry SLSB
Rib Log Mgr o
MBean
Retry Error Hosp Mgr

JMX Management
Client

Pub(S) - Sub(d/) - Relry()———————————

Oracle Retail Java EE APIs

These interfaces to the RIB are via Message Driven Bean (MDB) for subscribers and by
Stateless Session Bean (SLSB) to publish messages to the JMS. This architecture uses
Payload Java Beans to communicate event information from the RIB code to the
application messaging processing logic.

The internal architecture of RIB is very similar between Oracle Retail PL/SQL
applications and Oracle Retail Java EE applications. The only significant difference is
in the publishing adapter types. For PL/SQL Retail applications RIB keeps on polling
the stored procedure every few seconds to find out if there is any work. When the
stored procedure returns some data (that is, when there is some work), RIB goes and
does the work. In Oracle Retail Java EE applications RIB does not do any polling. The
roles are reversed where the Oracle Retail application requests RIB to publish a
message. Thus, there are two types of publishing adapters in RIB depending on the
connecting Oracle Retail application type. The Java EE application uses request-driven
publishers and the PL/SQL application uses timer-driven publishers.

Oracle Retail Application APIs 4-3

Oracle Retail SOAP APIs

Detail Architecture Java EE Apps

RIB Detail Architecture — JavaEE Apps

Java EE Server

Container

JSP/Serviet ‘ ‘ MBean Server EJB Container JCA Container

b: p>.ear

Rib Timer Adapter
Retail JavaEE App rib-admin-gui ’7

r
TopicConnection
24 Factory
Rib Mdb Adapter —
1 pi
MBeans Pub Error Hosp Mgr SV_
rib-private-app-plugin 1 - L]
J E ()
MBean % Subscriber MDB 1 }« —«I Sub Topic 1 I IMS Server
Injector]
229 [subseriberMpB2 | || [sub Topie2 }_4.4f>() Topic 2)
Hosp Retry Timer |
Sub Error Hosp Mgr
Hosp Retry Timer 2. Topic3
Hosp Retry SLSB
Rib Log Mgr H
MBean
Retry Error Hosp Mgr
| ‘] JMX Management
Error E i
Hospital b(3) - Sub(4/9) - 3 | Client
Tables

Oracle Retail SOAP APIs

The interfaces to the RIB are via the Injector Service.

API Return Status Codes

Below are lists of API return status codes.

PL/SQL GETNEXT Return Codes

S - Success

N - No message
H - Hospital

E - Error

PUB_RETRY Return Codes

S - Success

N - No message
H - Hospital

E - Error

I - Keep calling

CONSUME Return Code

S - Success

E - Error

4-4 Oracle Retail Integration Bus Implementation Guide

O

Pre-iImplementation Considerations

Before the RIB is installed into an enterprise, there are many factors that need to be
considered. Planning and addressing each of the factors will avoid having to re-install
or re-architect because of performance or operational problems.

The process of RIB implementation requires the creation or modification of a retailer's
Enterprise Integration Architecture. Typically, retailers will already have an integration
strategy, plan or architecture and products in place to integrate their current systems.

The deployment of the RIB is always a portion of the deployment of the Oracle Retail
applications, almost always with RMS. Because the implementation of RMS is a long
cycle project, and always involves data conversions and integration into a retailer’s
existing infrastructure, the RIB implementation planning is strategic to that effort.

RIB Software Lifecycle Management

Software applications, after being made generally available (GA), have a well defined
lifecycle process. The implementer must manage and perform tasks in these phases:

= Acquire the software components.

» Prepare the environment

= Assemble the application

= Deploy and start the application

s Perform day-to-day monitoring to make sure the application is running properly

= Apply code fixes to the application

Pre-Implementation Considerations 5-1

Centralized Configuration and Management

RIB Software Life Cycle

Preparation Phase

Dewnload RIB Kemel and un.armcmats your RIB
workspace(rib-home).

area within rib-home. Do not untar.

Dawnload All RIB Pak (Ers Lu dcwnlvads staging area
within rib-home. Do not untar,

Step 2
Download RIB func artfact tar to downloads staging

r—\/—\r—\

version compatibifity and extract the downloaded files
1o the correct locations in the application assembly
area.

Step4
Run check-version-and-unpack utiity. It will check
E A

Application Assembly Phase

tep

Define your RIB asmuyman architecture by editing

rib-deployment-env-info.xml under deployment-home
directory tree.

Step 6
Run the rib-app-compller (o generate all deployment
descriptor and build the ib-app> ears using the
correct classpath and jars from rib-application-
assembly-info xml.

(Deplnyment Phase

Step7
Configure your JUS S by running tha rib-app-
deployer utilty.

Step8
RNioe vt dsploy the RIB functicnal
artifact

Step 9
Run the rib- appdep\wer lur each rit-<app=.ear in

(e

Operations Phase

troller utiity under op
directory tree

lep
Manage your Error Ha':p: al using RIHA toal

Step 12
Manage and Monitar ycur e system using

e .

(Mnimenance Phase

Step 13
Apply a defect fix o your env by executing check-
version-and-apply-defect-fix utlity

Step
Manage your runtime \r\[aqna fon adapters using the J

Step 14
Get your system change history and Inventory repart
by executing Inventory-management utiity.

RIB supports and follows the RIB Software Lifecycle Management, a well-defined
process life cycle that has implemented specific tools and functionality for each of
these phases.

Preparation Phase—In this phase, all relevant components are downloaded,
extracted, configured, and version compatibility checks are done.

Application Assembly Phase—In this phase, site specific configuration changes are
made and all the relevant rib-<app>.ears are generated.

Deployment Phase—In this phase, using the rib-<app>.ears created in the
previous step and the site specific information present in a global configuration
file, the rib-<app> .ears are deployed to the application server instances.

Operations Phase—In this phase, day-to-day operations of the rib-<app>
applications are performed.

Maintenance Phase—In this phase, code fixes, patching, configuration changes
and maintenance of the RIB is performed.

Centralized Configuration and Management

Another key concept in the design of RIB is that all configuration and management is
done from a single centralized location using specific RIB provided tools. The RIB is
built on a completely de-centralized model. However, to ensure consistency and

5-2 Oracle Retail Integration Bus Implementation Guide

Pre-implementation Considerations for Multibyte Deployments

compatibility within an enterprise deployment, a centralized management and
configuration model has been designed.

The RIB provides a RIB installer, consistent with all of the Oracle Retail applications, in
addition to a command line set of tools that are used at installation, assembly and
deployment time to create the Oracle Retail application specific integration.
Collectively these command line tools are called the rib-app-builder and provide
functionality to support the RIB Software Life Cycle.

Physical Location Considerations

The Oracle Retail Merchandising System (RMS) is the most important core business
application from the suite of Oracle Retail Product offerings. RMS provides most of the
retail business functionality that Oracle Retail offers its customers. In other words RMS
is the central hub of oracle retail applications. Since RMS is the central hub of retail
information/data and most information/data flows outward from RMS to other edge
retail applications through RIB, the decision on where to physically /logically locate
RIB is very important and will have direct impact on functioning of your enterprise.

It is recommend to keep the RIB's JMS server logically (not physically) close to the
RMS database server as 80% of the data flowing through RIB will interact with RMS
database server. Normally RMS up or down status defines your overall enterprise
retail business status and so keeping your integration infrastructure status in sync with
RMS is beneficial.

TAFR adapters use RIB Hospital functionality. In order to avoid situations where
entire integration can be down just because the TAFR RIB Hospital database is down,
it is strategic and beneficial to put the TAFR RIB Hospital tables in the same database
instance as the RMS database instance. Obviously it is required to separate the RMS
RIB Hospital tables and the TAFR RIB Hospital tables by installing them in their own
respective database schemas.

The argument above can be extended to the rib-tafr.ear application and rib-rms.ear
application, and so it is recommended to co-locate rib-rms.ear and rib-tafr.ear as much
as possible.

RWMS and SIM are edge retail applications which might be running closer to your
physical warehouse location or your physical store management location. It is
recommended collocate rib-sim.ear near SIM application and rib-rwms.ear near
RWMS application.

The integration message flow is centrally managed in this release. The
rib-func-artifact.war web application determines which messages go where between
the rib adapters across all rib-<app> applications. At runtime, the rib-<app>.ear needs
access to the central message flow repository available in rib-func-artifact.war.
Therefore, rib-func-artifact.war must be deployed in a central location where all
rib-<app>.ears have access to it at runtime.

The RIB is a central office enterprise integration solution; it is not designed to work
optimally on a low (non LAN) bandwidth network. Distribute the rib-<app>.ear
applications in such a way where you can avoid lots of network hops, any network
protocol bridges, and any communication over a WAN.

Pre-implementation Considerations for Multibyte Deployments

If the RIB is deployed into an environment where multibyte characters are used in the
message data, improper database setup can lead to error messages indicating that
insert values are too long.

Pre-Implementation Considerations 5-3

Error Hospital Size

There are several database settings that can affect the behavior of the processing
messages that contain multi-byte characters. Some are set during the creation of the
instance, and others are configurable. The settings to pay attention to are NLS_
CHARACTERSET, NLS_LANG, NLS_LENGTH_SEMANTICS. The interactions and
considerations are beyond the scope of the RIB documentation and should be
discussed with the database administration team prior to installation.

The BYTE vs. CHAR setting is especially important. If it is not set up correctly, errors
can result, indicating the value being inserted is too long for the field. The following is
an example of an insert error:

Internal Exception: java.sql.SQLException: ORA-01461: can bind a LONG value only
for insert into a LONG column.

Error Hospital Size

The RIB error hospital is designed to handle systemic and business related error
conditions while preserving publication sequen