

Oracle® Retail Integration Bus
Operations Guide

Release 16.0.3

F29141-01

March 2020

Oracle Retail Integration Bus Operations Guide, Release 16.0.3

F29141-01

Copyright © 2020. Oracle and/or its affiliates. All rights reserved.

Primary Author: Sanal Parameshwaran

Contributing Author: Maria Andrew

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Value-Added Reseller (VAR) Language

Oracle Retail VAR Applications

The following restrictions and provisions only apply to the programs referred to in this section and licensed
to you. You acknowledge that the programs may contain third party software (VAR applications) licensed to
Oracle. Depending upon your product and its version number, the VAR applications may include:

(i) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail Data
Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(ii) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of Kirkland,
Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory Management.

(iii) the software component known as Access Via™ licensed by Access Via of Seattle, Washington, and
imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(iv) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of San Jose,
California, and imbedded in Oracle Retail Promotion Planning & Optimization application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR Applications.
Oracle will not deliver source code to the VAR Applications to you. Notwithstanding any other term or
condition of the agreement and this ordering document, you shall not cause or permit alteration of any VAR

Applications. For purposes of this section, "alteration" refers to all alterations, translations, upgrades,
enhancements, customizations or modifications of all or any portion of the VAR Applications including all
reconfigurations, reassembly or reverse assembly, re-engineering or reverse engineering and recompilations
or reverse compilations of the VAR Applications or any derivatives of the VAR Applications. You
acknowledge that it shall be a breach of the agreement to utilize the relationship, and/or confidential
information of the VAR Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall not attempt,
cause, or permit the alteration, decompilation, reverse engineering, disassembly or other reduction of the
VAR Applications to a human perceivable form. Oracle reserves the right to replace, with functional
equivalent software, any of the VAR Applications in future releases of the applicable program.

v

Contents

Send Us Your Comments ... xi

Preface ... xiii

Audience... xiii
Documentation Accessibility ... xiii
Customer Support ... xiii
Review Patch Documentation ... xiv
Improved Process for Oracle Retail Documentation Corrections .. xiv
Oracle Retail Documentation on the Oracle Technology Network ... xiv
Conventions ... xv

1 Introduction

Oracle WebLogic Application Server ... 1-1
Oracle Retail Integration Bus Supplied Components .. 1-1

2 Application Builder

RIB Application Builder Directory Structure ... 2-1
Directory Structure and Key Files ... 2-1

RIB Application Builder Tools .. 2-3
Logging.. 2-3
Backup and Archive of Key Files... 2-3
rib-app-compiler... 2-4
rib-app-deployer .. 2-4
Check-version-and-unpack... 2-5
check-version-and-apply-defect-fix... 2-5
inventory-management ... 2-6
setup-security-credential... 2-6
Hot Fix Installation Reports.. 2-7
rib-adapter-controller .. 2-7

Start Flow .. 2-8
Stop Flow ... 2-8
List Flow... 2-8
Start Adapters By Type ... 2-9
Stop Adapters by Type .. 2-9
Start Adapter ... 2-10

vi

Stop Adapter .. 2-10
Test Durable Subscriber for Adapter ... 2-10
Test Durable Subscriber for RIB Application .. 2-10
List RIB Application Adapters .. 2-11

RIB Deployment Configuration File Editor... 2-11
Important Installation Warning .. 2-11

Key Rule .. 2-12
Editor Usage... 2-12

3 Backend System Administration and Logging

rib-<app>-adapters.xml... 3-1
<subscribers> elements ... 3-2
<publisher> elements .. 3-2

<timer-driven> .. 3-2
<request-driven>... 3-2
<hospital> element ... 3-2

rib-<app>-adapters-resource.properties .. 3-3
rib-<app>-plsql-api.xml .. 3-3
rib-<app>.properties .. 3-3
rib-system.properties ... 3-3
rib-integration-flows.xml.. 3-4
rib-deployment-env-info.xml .. 3-5

app-in-scope-for-integration ... 3-5
rib-jms-server ... 3-5
rib-application-server ... 3-6
rib-javaee-containers ... 3-6
rib-applications .. 3-6

commons-logging.properties .. 3-7
log4j2.xml ... 3-7
rib-app-builder-paths.properties... 3-7
rib-application-assembly-info.xml ... 3-7
retail_service_config_info_ribserver.xml .. 3-7
remote_service_locator_info_ribserver.xml .. 3-7
RIB Logging... 3-8

Log Level Recommendations ... 3-8
Changing Logging Levels ... 3-8

RIB Administration GUI .. 3-8
log4j2.xml Configuration File.. 3-8

Adapter Logging (RIBLOGS) ... 3-8
RIB Timing Logs... 3-9
RIB Audit Logs .. 3-10
Other RIB Management Logs .. 3-11

deploy.rib.log.. 3-11
management.rib.log... 3-11
global.rib.log—Example ... 3-12

vii

4 RIB and JMX

Third Party JMX Client Example... 4-1

5 RIB Administration GUI

RIB Administration URLs .. 5-1
RIB Administration GUI ... 5-1
Authorization.. 5-2
RIB Functional Artifacts .. 5-2
RIB Message Flows .. 5-2
RIB Payloads (xsds).. 5-2

RIB Administration GUI Home .. 5-3
Adapter Manager ... 5-3

Adapter Manager Screen ... 5-3
Log Viewer ... 5-4

Log Manager.. 5-4
RIB Logs ... 5-5

6 JMS Provider Management

RIB on AQ JMS... 6-1
Queue Monitor Process Setup.. 6-1
Optimizing Enqueue/Dequeue Performance.. 6-2
Sizing Considerations.. 6-2

RIB on AQ JMS - Server Side Processes .. 6-3
Types of Oracle Database Side Processes ... 6-3
RIB and Application Server and JDBC Connections... 6-3
RIB Connections - Summary .. 6-4
rib-rms Connections... 6-4
rib-rwms Connections ... 6-4
rib-sim Connections ... 6-5
rib-tafr Connections ... 6-5
rib-rpm Connections.. 6-5
rib-rfm Connections... 6-5
rib-oms Connections .. 6-6
rib-lgf Connections... 6-6
rib-rxm Connections .. 6-6
Configuration Recommendations.. 6-7

Support for Multiple JMS Servers Within a Single Deployment .. 6-7
Design .. 6-7

rib-app-builder Validation Checks... 6-7
How to Set Up Multiple JMS Servers .. 6-8

Process Overview.. 6-8
General Recommendations.. 6-8
AQ Recommendation... 6-8

Sample Configuration.. 6-8
rib-integration-flows.xml... 6-8
rib-deployment-env-info.xml.. 6-9

viii

RIB-RMS Application Configuration .. 6-9
rib-rms-adapters.xml ... 6-9
rib-rms-adapters-resources.properties ... 6-10

RIB-TAFR Application Configuration ... 6-10
rib-tafr-adapters.xml.. 6-10
rib-tafr-adapters-resources.properties .. 6-11

RIB-SIM Application Configuration... 6-11
rib-sim-adapters.xml ... 6-11
rib-sim-adapters-resources.properties .. 6-12

RIB-RWMS Application Configuration ... 6-12
rib-rwms-adapters.xml.. 6-12
rib-rwms-adapters-resources.properties .. 6-13

RIB-RFM Application Configuration ... 6-13
rib-rfm-adapters.xml ... 6-13
rib-rfm-adapters-resources.properties.. 6-13

Compile and Deploy... 6-14
RIB-ADMIN-GUI .. 6-14

7 Message Transform, Filtering and Routing (TAFR)

TAFR Adapter Process ... 7-1
Configuration .. 7-2

Transformation ... 7-2
Filtering Configuration.. 7-2
Routing .. 7-3

Configuration Example - Facility ID .. 7-3
Single RWMS Configuration .. 7-3
Configuration Process ... 7-3
Two RWMS Configuration ... 7-5

Description... 7-5
Configuration Process ... 7-5

8 RIB in Operation

Operational Considerations ... 8-1
Alerts and Notifications ... 8-1
How to Configure Alerts and Notification... 8-1
RIB Log File Monitoring.. 8-3
Log File Archive and Purge.. 8-3
Hospital Size and Growth... 8-3
RMS MFQ and RWMS UPLOAD Tables Sizes ... 8-3
Remote RWMS.. 8-3
RIB Components Start and Stop .. 8-3
RIB Operation Support Staff Requirements ... 8-4
RIB Components - Source Code Control .. 8-4
RIB HA Requirements ... 8-4
RIB Disaster Recovery ... 8-4
RIB Administration Roles and Security .. 8-5

RIB Operation Support Staff Requirements... 8-5

ix

RIB System Administrator .. 8-5
Technology Background .. 8-5
Experience or Training .. 8-5
Areas of Responsibility .. 8-5

RIB Application Administrator.. 8-6
Technology Background .. 8-6
Experience or Training on ... 8-6
Areas of Responsibility .. 8-6

Hospital Monitoring and Maintenance ... 8-6

9 Testing RIB

RIB Test Harness... 9-1
Master Checklist ... 9-2

PL/SQL Application API Stubs ... 9-2
Architecture and Design ... 9-3

The Common Subsystem ... 9-3
The Thin API layer.. 9-4

The Stub Administration and Setup Functions ... 9-4
Configuration Files .. 9-4
Installation and Setup.. 9-5

Prerequisite Tasks ... 9-5
Installation ... 9-5

Configure_API.. 9-6
Prerequisites .. 9-7

Java EE Application API Stubs .. 9-8
Architecture and Design ... 9-8
Installation and Setup.. 9-8

Prerequisite Tasks ... 9-8
Installation ... 9-9
Configuration of the rib-<app> to use Injection Stubs... 9-10

10 Performance Considerations

Performance Factors .. 10-1
Performance Requirements ... 10-2
Multi-Channel.. 10-2
End-to-End Timing.. 10-3

How to Calculate Average Message Size .. 10-3
Purchase Order Example ... 10-5

Understand the Message Family .. 10-6
RIB Timing Log Analysis... 10-7

Purchase Order Example ... 10-8
Key Interfaces to Consider .. 10-9

ASN (Inbound/Outbound) ... 10-9
Receipts... 10-10
Stock Order (Allocations & Transfers) ... 10-10
How to Approach a RIB Performance Test ... 10-11

x

Multi-Channel Adapters .. 10-13
Adding Multi-Channels to a Message Family .. 10-13

Logical Channels and Thread Value.. 10-14
Algorithm Used to Calculate Channel ... 10-14

How to Configure a Multi-Channel Flow .. 10-15
Example .. 10-15
RIB-RMS ... 10-16
RIB-TAFR ... 10-17
RIB-SIM... 10-18
RIB-RWMS ... 10-18
Edit the RIB_SETTINGS table ... 10-19
Compile and Deploy... 10-19

Message Aggregation ... 10-19
How to Configure Message Aggregate.. 10-20
Aggregation Example... 10-20

Multiple Hospital Retry ... 10-21
Family Specific Hospital Retry Adapters .. 10-21

How Family Specific Hospital Retry Works .. 10-22
How to Configure a Family Specific Retry Adapter... 10-22

xi

Send Us Your Comments

Oracle Retail Integration Bus Operations Guide, Release 16.0.3

Oracle welcomes customers' comments and suggestions on the quality and usefulness
of this document.

Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:

■ Are the implementation steps correct and complete?

■ Did you understand the context of the procedures?

■ Did you find any errors in the information?

■ Does the structure of the information help you with your tasks?

■ Do you need different information or graphics? If so, where, and in what format?

■ Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell
us your name, the name of the company who has licensed our products, the title and
part number of the documentation and the chapter, section, and page number (if
available).

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number
(optional).

If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at www.oracle.com.

Note: Before sending us your comments, you might like to check
that you have the latest version of the document and if any concerns
are already addressed. To do this, access the new Applications Release
Online Documentation CD available on My Oracle Support and
www.oracle.com. It contains the most current Documentation Library
plus all documents revised or released recently.

xii

xiii

Preface

The Oracle Retail Integration Bus Operations Guide is designed so that you can view and
understand the application's behind-the-scenes processing, including such information
as the following:.

■ Key system administration configuration settings

■ Technical architecture

■ Functional integration dataflow across the enterprise

■ Batch processing

Audience
Anyone who has an interest in better understanding the inner workings of the Oracle
Retail Integration Bus (RIB) system can find valuable information in this guide. There
are three audiences in general for whom this guide is written:

■ Systems analysts and system operations personnel who need information about
Oracle Retail Integration Bus processes.

■ Integrators and implementers who are responsible for implementing RIB.

■ Business analysts who need information about Oracle Retail Integration Bus
processes and interfaces.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

xiv

When contacting Customer Support, please provide the following:

■ Product version and program/module name

■ Functional and technical description of the problem (include business impact)

■ Detailed step-by-step instructions to re-create

■ Exact error message received

■ Screen shots of each step you take

Review Patch Documentation
When you install the application for the first time, you install either a base release (for
example, 16.0) or a later patch release (for example, 16.0.3). If you are installing the
base release, additional patch, and bundled hot fix releases, read the documentation
for all releases that have occurred since the base release before you begin installation.
Documentation for patch and bundled hot fix releases can contain critical information
related to the base release, as well as information about code changes since the base
release.

Improved Process for Oracle Retail Documentation Corrections
To more quickly address critical corrections to Oracle Retail documentation content,
Oracle Retail documentation may be republished whenever a critical correction is
needed. For critical corrections, the republication of an Oracle Retail document may at
times not be attached to a numbered software release; instead, the Oracle Retail
document will simply be replaced on the Oracle Technology Network Web site, or, in
the case of Data Models, to the applicable My Oracle Support Documentation
container where they reside.

This process will prevent delays in making critical corrections available to customers.
For the customer, it means that before you begin installation, you must verify that you
have the most recent version of the Oracle Retail documentation set. Oracle Retail
documentation is available on the Oracle Technology Network at the following URL:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.ht
ml

An updated version of the applicable Oracle Retail document is indicated by Oracle
part number, as well as print date (month and year). An updated version uses the
same part number, with a higher-numbered suffix. For example, part number
E123456-02 is an updated version of a document with part number E123456-01.

If a more recent version of a document is available, that version supersedes all
previous versions.

Oracle Retail Documentation on the Oracle Technology Network
Oracle Retail product documentation is available on the following web site:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.ht
ml
(Data Model documents are not available through Oracle Technology Network. You
can obtain them through My Oracle Support.)

xv

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xvi

1

Introduction 1-1

1Introduction

This chapter describes the components that make up the Oracle Retail Integration Bus
(RIB). These components are distributed within the Oracle Fusion Middleware
platform. The final deployed system may be distributed across multiple computing
systems.

Oracle WebLogic Application Server
RIB is configured and deployed to the Oracle WebLogic Application Server.
Installation and configuration of the application server is not in the scope of the
document, but a thorough understanding is strongly recommended.

Oracle Retail Integration Bus Supplied Components
This section contains a brief description of the components that Oracle Retail has built
upon the Oracle Fusion Middleware platform to create the Oracle Retail Integration
Bus.

■ Publishing adapters create messages from the information captured by the
applications. These publishing adapters are designed to publish events from a
single message family and are specific to an Oracle Retail application, such as
Oracle Retail Merchandising System (RMS).

■ Subscribing adapters are used to consume messages. These are specific to Oracle
Retail and each subscribing adapter is designed to consume all messages from a
specific message family.

■ Transformation Address Filters/Router (TAFR) adapters transform message data
and route messages. Multiple, message family specific TAFRs have been
implemented. Different TAFR adapters may be active on different message
families or on the same message family depending on the needs of an application.
Not all message families require TAFRs. The TAFR acronym is a generic term.

■ RIB Database Objects are Oracle objects and tables to support the PL/SQL
Message Family API stored procedures that are called by the Publishing and
Subscribing Adapters. They are part of a specific PL/SQL Oracle Retail
application, such as RMS or Oracle Retail Warehouse Management System
(RWMS).

Note: For more information, see the Oracle WebLogic Server
Administrator's Guide12c Release (12.2.1).

Oracle Retail Integration Bus Supplied Components

1-2 Oracle Retail Integration Bus Operations Guide

■ RIB Hospital database tables are used as a basis for storing and re-trying
problematic messages. Each application, both PL/SQL and Java EE, has a
dedicated Hospital.

■ RIHA is the Oracle Retail Integration Bus Hospital Administration tool.

■ The Integration Gateway Services (IGS) provides an integration infrastructure for
external (third party) system connectivity.

2

Application Builder 2-1

2Application Builder

The RIB Application Builder and its directories and content are not a temporary
staging structure. The directory structure and the tools must be in a permanent
location and treated as a core application home. The location of the rib-app-builder is a
key implementation decision.

The RIB installation process builds and executes out of rib-home. The RIB installer
gathers all of the information that these tools require, constructs the key XML file
(rib-deployment-env-info.xml), and then performs the installation, assembly,
configuration, and deployment by invoking, as appropriate, a given task. Therefore,
for most RIB software life cycle activities, the RIB installer should be used instead of
the command line tools.

RIB Application Builder Directory Structure
The rib-<app> application configuration and installation process follows the RIB
lifecycle phases. Each of the lifecycle phases can be managed by a certain role. To
support the separation of roles and responsibilities and to clearly define these phases,
RIB has adopted a specific directory structure. The tools required for each of these
roles are provided within this directory structure.

This directory structure supports access permissions to different tools that are
managed according to the site-specific business requirements. For example, a systems
administrator can be given access permissions to all the tools, while a RIB
administrator or applications administrator can be provided access to only certain
operation tools.

The RIB Application Builder directory structure is fixed and is created by the RIB
kernel tar file: RibKernel<release>ForAll<release>Apps_eng_ga.tar.

The rib-home is a controlled structure and there are very specific rules for using the
tools and the key files with in it. A key rule is that the tools scan and check versions of
all files within rib-home (except for tools-home). The processes do not allow files to
have the same name with only an additional extension.

The following is not allowed: rib-rms.properties.bak

Directory Structure and Key Files
rib-home

Note: See "Pre-Implementation Considerations" in the Oracle
Integration Bus Implementation Guide.

RIB Application Builder Directory Structure

2-2 Oracle Retail Integration Bus Operations Guide

 rib-installer.sh -- this is the RIB GUI Installer
 .retail-installer -- this directory contains the RIB GUI installer file
 application-assembly-home
 bin
 rib-app-compiler.sh
 conf
 log
 rib-aip
 rib-func-artifacts
 rib-func-artifact-<version>.war
 rib-private-tafr-business-impl-<version>.jar
 retail-public-payload-java-beans-base-<version>.jar
 retail-public-payload-database-object-types-<version>.jar
 retail-public-payload-database-xml-library-<version>.jar
 retail-public-payload-java-beans-<version>.jar
 retail-public-payload-xml-samples-<version>.jar
 rib-rms
 rib-<app>-adapters-resources.properties
 rib-<app>-adapters.xml
 rib-<app>-plsql-api.xml
 rib-<app>.properties
 rib-rpm
 rib-rfm
 rib-rwms
 rib-sim
 rib-tafr
 rib-oms
 rib-rxm
 rib-lgf
 deployment-home
 bin
 rib-app-deployer.sh
 conf
 rib-deployment-env-info.xml
 log
 download-home
 all-rib-apps
 all-rib-defect-fixes
 bin
 check-version-and-unpack.sh
 log
 rib-func-artifacts
 integration-lib
 internal-build
 third-party
 maintenance-home
 bin
 check-version-and-apply-defect-fix.sh
 inventory-management.sh
 inventory-reports.sh
 setup-security-credential.sh
 history-repository
 rib-inventory-info.xml
 log
 operation-home
 bin
 rib-adapter-controller.sh
 log
 tools-home
 javaee-api-stubs

RIB Application Builder Tools

Application Builder 2-3

 plsql-api-stubs
 integration-bus-gateway-services
 rdmt
 rib-func-artifact-gen
 riha

RIB Application Builder Tools
All RIB Application Builder tools use the rib-deployment-env-info.xml as the source of
all values.

Logging
Logging is done for each tool with a log directory, where the execution log is
maintained (for example, rib-app-builder.compiler.log). These logs are maintained by
log4j2 and the log4j2.xml in rib-home. Do not edit this log4j2.xml. It is set for DEBUG
when the tools are executed by command line. When the RIB installer is used, it
displays the logging at the console level as INFO, but the tools themselves write the
logs at DEBUG.

Backup and Archive of Key Files
The rib-app-builder tools automatically generate a backup when a patch is installed. It
is recommended that each site develop a backup plan to include a regular backup at
the file system level of the rib-app-builder directory structure.

RIB Application Builder Tools

2-4 Oracle Retail Integration Bus Operations Guide

rib-app-compiler
The rib-compiler is a tool that drives the rib-<app>.ear creation process. It performs
validation of the input XML files. The following XML files are used to build the
rib-<app>.ear.

■ rib-<app>-adapters.xml

■ rib-integration-flows.xml

■ rib-application-assembly-info.xml

■ rib-deployment-env-info.xml.

The compiler tool generates the rib-<app> specific application level configuration files,
collects the generated files, and packages them to create a deployable rib-<app>.ear
file.

This tool works with all applications in scope in the rib-deployment-env-info.xml file.

rib-app-deployer
This tool performs operations related to deploying RIB components. It takes a set of
command line arguments and values for each function. All functions are driven by the
contents of the rib-deployment-env-info.xml.

Command Line Option Description

-setup-security-credential This argument must be used when running the
rib-app-compiler for the first time. It prompts the user to enter
the credentials for each user alias required to install RIB
components. It stores the details as credentials in a wallet file
inside the rib-home/deployment-home/conf/security/
directory. The credentials are retrieved and used by the
deployer when installing RIB components.

Command Line Option Description

-prepare-jms Prepares the JMS server with RIB JMS topics using the
information in rib-deployment-env-info.xml.

The JMS server must be running.

See Chapter 6, "JMS Provider Management."

-deploy-rib-func-artifact-war Deploys the rib-func-artifact.war to the Java EE application
server defined in rib-deployment-env-info.xml.

The Java EE server must be running.

-deploy-rib-app-ear rib-<app> Deploys the rib-<app>.ear to the Java EE application server
defined in rib-deployment-env-info.xml.

The Java EE server must be running.

-update-remote-rib-app-config
-files rib-<app>

Updates the rib-<app> application level configuration files in
the remote server where rib-<app>.ear is or will be deployed.

The remote server information is defined in
rib-deployment-env-info.xml.

The Java EE server must be running.

-undeploy-rib-func-artifact-
war

Undeploys the rib-func-artifact.war from the Java EE
application server defined in rib-deployment-env-info.xml.

The Java EE server must be running.

RIB Application Builder Tools

Application Builder 2-5

Check-version-and-unpack
This tool verifies the version compatibility between RIB paks and extracts the files. The
extracted files are moved to the appropriate directories under the rib-home.

The version compatibility between RibKernel, RibFuncArtifact and RIBPaks is
determined based on the naming conventions used in the tar files and the information
in the MANIFEST.mf file inside the kernel tar file.

The RIB infrastructure kernel, RIB functional Pak, and RIB functional artifacts version
naming convention should be the same. All should have the same major and minor
versions.

For verification, the tool does the following:

1. Gets the version of the Rib kernel from the MANIFEST.MF file of the RIB kernel
tar file. This is the RibKernel<RIB_MAJOR_VERSION>ForAll<RETAIL_APP_
VERSION>Apps_eng_ga.tar.

2. Reads the functional artifact file from rib-home/download-home/
rib-func-artifacts.

3. Reads the list of all the RIB application packs from the
-home/download-home/all-rib-apps directory.

4. Uses the naming convention to check if the kernel version is the same as the
functional artifact version. If the versions are compatible, the tar file is un-tar'd
into the rib-home/application-assembly/ rib-func-artifacts directory.

5. Uses the naming convention to check if the kernel version is the same as the
application packs. If the versions are compatible, the tar file is un-tar'd into the
rib-home/application-assembly/rib-<app> directory.

check-version-and-apply-defect-fix
RIB has been designed to centrally manage and track the application of defect fixes.
The check-version-and-apply-defect-fix tool is responsible for that activity.

All RIB defect fixes are in the form of a zip file (for example, RIB16_Bug1234.zip). The
zip file always contains a README.txt file in the format below.

 Product : Oracle Retail Integration Bus
 Version # : 16.0.0
 Defect # : 1234
 Date : MM/DD/YYYY

Defects Fixed by this patch:

Resolution:

Files included:

Defect Fix Install Instructions:

-undeploy-rib-app-ear
rib-<app>

Undeploys the rib-<app> from the Java EE application server
defined in rib-deployment-env-info.xml.

The Java EE server must be running.

Command Line Option Description

RIB Application Builder Tools

2-6 Oracle Retail Integration Bus Operations Guide

The README.txt file contains specific instructions to apply the defect fix. It is always
applied to the rib-home and deployed from there. Depending on the type of defect, it
may be necessary to migrate the jar to one of the Oracle Retail applications into the
appropriate directories.

Take the following steps to apply the defect fixes to the rib-home:

1. Drop the Defect.zip into /rib-home/download-home/all-rib-defect-fixes directory.

2. Run the check-version-and-apply-defect-fix.sh script from the
/rib-home/maintenance-home/bin directory.

3. Run the rib-home/application-assembly-home/bin/rib-app-compiler.sh script
from the rib-home/application-assembly-home/bin directory.

4. Run the rib-home/deployment-home/bin/rib-app-deployer.sh script from
rib-home/deployment-home/bin directory to deploy the appropriate rib-<app>s.

The tool check-version-and-apply-defect-fix.sh will perform version compatibility
checks and will update the RIB inventory XML file.

inventory-management
RIB jars and XML files in rib-home are tracked through an XML file called
rib-inventory-info.xml located in the
rib-home/maintenance-home/history-repository/ directory. This file is initially
created when the RIB installer, or user, executes the check-version-and-unpack tool the
first time to extract the RIB application packs and the functional artifacts. Thereafter
this file is updated and tracks the file change history of the jars and xml files in the
rib-home system.

setup-security-credential
The user names and passwords required to install RIB components are stored as
security credentials in a wallet file located in the
rib-home/deployment-home/conf/security/ directory. The file is initially created
when the RIB installer, or user, executes the rib-app-compiler tool with the
setup-security-credential argument the first time and enters all the user names and
passwords required for installing RIB components. Thereafter, this file can be modified
using the setup-security-credential script located in rib-home/maintenance-home/bin
directory. After updating existing credentials, the user must run the rib-app-compiler
tool again and redeploy RIB applications to use the new credentials.

Command Line Option Description

-update-current-inventory Scans the rib-home file system and updates the inventory
database.

-generate-file-change-history
-report

Generates a report of how the files in the rib-home file system
have changed over time.

-generate-defect-fix-applied-
report

Generates a report of what defect fixes have been applied to
rib-home on this system.

-generate-defect-fix-detail
<defect-fix-id>

Displays the long defect resolution description for a given
defect fix id.

Command Line Option Description

-setup-aq-credential <aq-id> Updates the security credential for the AQ JMS Server ID
specified in rib-deployment-env-info.xml

RIB Application Builder Tools

Application Builder 2-7

Hot Fix Installation Reports
The following HTML reports can be used to verify the successful installation of RIB
hot fixes:

■ defect-fix-applied-report.html

■ file-change-history-report.html

■ defect-fix-detail-<defect-fix-id>.html

These reports are available at
rib-home/maintenance-home/history-repository/HTML-Report.

Sample: file-change-history-report

Sample: defect-fix-detail-<defect-fix-id>

rib-adapter-controller
The rib-adapter-controller provides a set of tools that perform RIB adapter control
functions such as start/stop and subscriber check. The command line options and

-setup-weblogic-credential<
wls-id>

Updates security credential for the specified WebLogic instance.

-setup-admin-gui-credential
rib-<app>

Updates security credential for the RIB Administration GUI
user for the specified RIB application.

-setup-error-hospital-credent
ial rib-<app>

Updates security credential for the error hospital database user
for the specified RIB application.

-setup-app-database-credent
ial rib-<app>

Updates security credential for the application database for the
specified RIB application.

-setup-jndi-credential
rib-<app>

Updates security credential for the remote JNDI for the
specified RIB application.

Command Line Option Description

RIB Application Builder Tools

2-8 Oracle Retail Integration Bus Operations Guide

usage are summarized here. For more information, see "RIB Components Start and
Stop."

Start Flow
This function starts all adapters in a message flow for a given family or family list
(comma separated list without any space).

start integration-message-flows <family-name-list>[no-subscriber-check]

The function does the following:

1. For a given family, it identifies all message flow IDs in which this family directly
or indirectly participates.

2. Using the message flow IDs defined in the rib-integration-flows.xml, it connects to
all application servers where the respective rib-apps are deployed.

3. It starts the adapters in the order as defined in the message flows.

4. It checks if durable subscribers exist before starting an adapter.

5. It ignores all RIB applications that are not in scope.

Examples:

rib-adapter-controller.sh start integration-message-flows Alloc
rib-adapter-controller.sh start integration-message-flows Alloc,Order

Stop Flow
This function stops all adapters in a message flow for a given family or family list
(comma separated list without any space).

stop integration-message-flows <family-name-list>

The function does the following:

1. For a given family, it identifies all message flow IDs in which this family directly
or indirectly participates.

2. Using the message flow IDs in the rib-integration-flows.xml, it connects to all
application servers where the respective rib-apps are deployed.

3. It stops the adapters in the order as defined in the message flows.

4. It ignores RIB applications that are not in scope.

Examples:

rib-adapter-controller.sh stop integration-message-flows Alloc
rib-adapter-controller.sh stop integration-message-flows Alloc,Order

List Flow
This function lists all adapters in a message flow for a given family or family list
(comma separated list without any space).

Note: The rib-adapter-controller does not work if the adapters have
not been started from the RIB Admin GUI at least once. If the
rib-adapter-controller does not work, log in to the RIB Admin GUI
and start all adapters. After this initial start, the adapters can be in any
status and will respond to rib-adapter-controller commands.

RIB Application Builder Tools

Application Builder 2-9

list integration-message-flows <family-name-list>

The function does the following:

1. It displays all message node IDs for all message flows in which the given family
participates.

2. It lists the adapters in the order as defined in the message flows.

3. It ignores RIB applications that are not in scope.

Examples:

rib-adapter-controller.sh list integration-message-flows Alloc
rib-adapter-controller.sh list integration-message-flows Alloc,Order

Start Adapters By Type
This function starts all adapters by type, given a rib-app or rib-app-list (comma
separated list without any space).

start rib-app-adapters-by-type <sub,tafr,pub,hosp_retry,all><rib-app-list>
[no-subscriber-check]

The function does the following:

1. For every adapter type specified in the input, it collects the adapter instances from
the given rib-app-list.

2. It re-sorts the input adapter types to start in the correct order.

3. It connects to the respective applications servers where rib-apps are deployed.

4. It starts the sub adapters first in all rib-apps and then moves on to start all TAFR
adapters in all rib-apps, and so on.

5. It checks if durable subscribers exist before starting an adapter.

6. It ignores all RIB applications that are not in scope.

Examples:

rib-adapter-controller.sh start rib-app-adapters-by-type sub,tafr rib-rms
rib-adapter-controller.sh start rib-app-adapters-by-type pub,sub rib-rms,rib-sim
rib-adapter-controller.sh start rib-app-adapters-by-type all rib-rms,rib-sim

Stop Adapters by Type
This function stops all adapters by type, given a rib-app or rib-app-list (comma
separated list without any space).

stop rib-app-adapters-by-type <sub,tafr,pub,hosp_retry,all><rib-app-list>

The function does the following:

1. For every adapter type specified in the input, it collects the adapter instances from
the given rib-app-list.

2. It connects to the respective applications servers where rib-apps are deployed.

3. It stops the first adapter type first in all rib-apps, and then it moves on to stop the
second adapter types in all rib-apps and so on.

4. It ignores all RIB applications that are not in scope.

Examples:

rib-adapter-controller.sh stop rib-app-adapters-by-type sub,tafr rib-rms,rib-sim

RIB Application Builder Tools

2-10 Oracle Retail Integration Bus Operations Guide

rib-adapter-controller.sh stop rib-app-adapters-by-type pub,sub
rib-adapter-controller.sh stop rib-app-adapters-by-type all rib-rms,rib-sim

Start Adapter
This function starts individual adapter instances. The adapter instance must be fully
qualified as rib-<app>.<Family>_<type>_<n>. A comma separated list of adapter
instances names can also be provided.

start rib-app-adapter-instance <rib-app.Family_type_1-list>[no-subscriber-check]

The function does the following:

1. Checks if durable subscribers exist before starting an adapter.

2. Starts the adapter instance.

Examples:

rib-adapter-controller.sh start rib-app-adapter-instance rib-rms.Alloc_pub_1
rib-adapter-controller.sh start rib-app-adapter-instance rib-rms.Alloc_pub_
1,rib-sim.ASNIn_sub_1

Stop Adapter
This function stops individual adapter instances. Adapter instances must be fully
qualified as rib-<app>.<Family>_<type>_<n>. A comma separated list of adapter
instances names can also be provided.

stop rib-app-adapter-instance <rib-app.Family_type_1-list>

Examples:

rib-adapter-controller.sh stop rib-app-adapter-instance rib-rms.Alloc_pub_1
rib-adapter-controller.sh stop rib-app-adapter-instance rib-rms.Alloc_pub_
1,rib-sim.ASNIn_sub_1

Test Durable Subscriber for Adapter
This function tests if durable subscribers exist for topics associated with a given
adapter class definition. Adapter class definition must be fully qualified as
rib-<app>.<Family>_<type>. A comma separated list of adapter class definition
names can also be provided.

test durable-subscriber-exist-for-adapter-class-def <rib-app.Family_type-list>

The function does the following:

1. It finds the topic names to which the input RIB application adapter class definition
publishes.

2. For each topic it publishes to, it checks to see if there is a durable subscriber
registered.

Examples:

rib-adapter-controller.sh test durable-subscriber-exist-for-adapter-class-def
rib-rms.Alloc_pub
rib-adapter-controller.sh test durable-subscriber-exist-for-adapter-class-def
rib-rms.Alloc_pub,rib-tafr.ASNOutToASNOutAT_tafr

Test Durable Subscriber for RIB Application
This function tests if durable subscribers exist for all publishing topics associated with
a given rib-app or rib-app-list (comma separated list without any spaces).

RIB Deployment Configuration File Editor

Application Builder 2-11

test durable-subscriber-exist-for-rib-app <rib-app-list>

The function does the following:

1. Finds all adapter instances that publish for the given rib-app-list.

2. For each topic it publishes to, it checks to see if there is a durable subscriber
registered.

Examples:

rib-adapter-controller.sh test durable-subscriber-exist-for-rib-app rib-rms
rib-adapter-controller.sh test durable-subscriber-exist-for-rib-app
rib-rms,rib-sim

List RIB Application Adapters
The rib-adapter-controller lists all adapter instances for a given rib-app or rib-app-list
(comma separated list without any spaces).

list rib-app-adapters <rib-app-list>

Examples:

rib-adapter-controller.sh list rib-app-adapters rib-rms
rib-adapter-controller.sh list rib-app-adapters rib-rms,rib-sim

RIB Deployment Configuration File Editor
The RIB Deployment Configuration File Editor is an application used to configure the
rib-deployment-env-info.xml file, following installation. The editor tool simplifies user
interaction with the XML file by hiding the raw text form of XML. It provides a user
interface for adding, removing, and rearranging the elements of the RIB configuration.

The tool is located in the RDMT package and installed with RDMT in the
<rib-home>/tools-home/RDMT directory. It is available as a menu selection from the
RIB Admin sub menu.

Important Installation Warning
All rib-app-builder tools use the rib-deployment-env-info.xml as the single source of
truth about the deployment configuration. See "RIB Deployment Configuration File
Editor" in Chapter 3, "Backend System Administration and Logging."

All tools use the values in this file. Editing the file directly affects the compilation,
configuration, and deployment of the rib-apps. Use extreme caution and understand
the ramification of the values being manipulated.

Note: See the "RIB Application Builder Tools" in this chapter and
"rib-deployment-env-info.xml" in Chapter 3, "Backend System
Administration and Logging."

Note: The editor is a GUI application. To execute it on a host other
than the one on which RDMT is installed, use an X server, such as
Exceed, and set the DISPLAY environment variable.

RIB Deployment Configuration File Editor

2-12 Oracle Retail Integration Bus Operations Guide

Before editing the source file in rib-home, make a backup of the file and place it
securely outside of rib-home. Do not create a backup in the rib-home.

Key Rule
The rib-app-builder tools scan and check versions of all files within rib-home (except
for tools-home). The processes do not allow files to have the same name with only an
additional extension.

Editor Usage
The following is an illustration of the editor interface.

The RIB Deployment Configuration File Editor allows users to do the following:

■ Add, delete and move applications.

■ Add, delete and move WebLogic instances.

■ Add and delete Application Server instances.

■ Configure JMS servers.

To edit files using the editor, do the following:

1. Select File from the menu bar. Click Open.

2. Navigate to the directory containing rib-deployment-env-info.xml.

Note: See the Oracle Integration Bus Implementation Guide.

Note: See the online help provided in the tool for additional details.

RIB Deployment Configuration File Editor

Application Builder 2-13

3. Select the file and open it.

4. Complete the required task (for example add, delete, or move).

5. Save the file using the File menu.

RIB Deployment Configuration File Editor

2-14 Oracle Retail Integration Bus Operations Guide

3

Backend System Administration and Logging 3-1

3Backend System Administration and
Logging

The following graphic illustrates the names of the actual RIB files and shows their
location in the deployment picture.

rib-<app>-adapters.xml
This file specifies all the adapter instances needed by RIB to interact with an
application. Each rib-<app_name> has its own rib-<app-name>_adapter.xml.

The file is located in the rib-home/application-assembly/rib-<app> directory. After
deployment, it is found in the path $application_instance_home, where $application_
instance_home is the WebLogic instance path where the application is deployed.

The following sections describe the standard RIB defined adapter types.

rib-<app>-adapters.xml

3-2 Oracle Retail Integration Bus Operations Guide

<subscribers> elements
The <subscribers> elements consist of multiple occurrences of <message-driven>
elements that define all the subscribers available for a particular application. Each
<message-driven> element consists of ID (the ID for the adapter) and initialState (the
initial state of the adapter) attributes. The initialState attribute for <message-driven>
adapters accepts two values: running and stopped.

 <subscribers>
 <message-driven id="ASNIn_sub_1" initialState="running"/>
 <message-driven id="ASNOut_sub_1" initialState="running"/>

<publisher> elements
The <publisher> elements consist of multiple occurrences of <timer-driven> or
<request-driven> elements, used to define all the publishers available for a particular
application.

<timer-driven>
This element is used to define publishers for PL/SQL (RMS, RFM, and RWMS)
applications. Each <timer-driven> element consists of an id (specifies id for adapter),
initialState (specifies the initial state of the adapter) and timeDelay (delay after which
the GETNXT needs to be called each time) attributes. The initialState attribute for
<timer-driven> adapters accepts two values: running and stopped. This consists of an
element called <timer-task> which specifies the implementation details of the adapter.
The <timer-task> element specifies the GETNXT implementation through the <class>
element.

<publishers>
 <timer-driven id="Alloc_pub_1" initialState="running" timeDelay="10">
 <timer-task>
 <class name="com.retek.rib.app.getnext.impl.GetNextTimerTaskImpl"/>
 <property name="maxChannelNumber" value="1" />
 </timer-task>
 </timer-driven>

<request-driven>
This element is used to define publishers for Java EE (Oracle Retail Price Management
(RPM), Oracle Retail Store Inventory Management (SIM), and Oracle Retail Advance
Inventory Planning (AIP) applications. Each <request-driven> element consists of ID
(specifies ID for adapter) and initialState (specifies the initial state of the adapter)
attributes. The initialState attribute has a value of notConfigurable.

<publishers>
 <request-driven id="ASNOut_pub_1" initialState="notConfigurable"/>
 <request-driven id="DSDReceipt_pub_1" initialState="notConfigurable"/>

<hospital> element
This element specifies hospital related adapter information. The structure is very
similar to the <publisher> element except that the name and value attributes in the
property element define the different hospital adapter types.

<hospitals>

Note: The only valid states are running and stopped, and they are
case sensitive.

rib-system.properties

Backend System Administration and Logging 3-3

 <timer-driven id="sub_hosp_0" initialState="running" timeDelay="10">
 <timer-task>
 <class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask"/>
 <property name="reasonCode" value="SUB"/>
 </timer-task>
 </timer-driven>

rib-<app>-adapters-resource.properties
These properties internationalize strings for internal RIB adapter key names.

Example:

sub_all.name=Subscribers
sub_all.desc=Manages all subscribers at the same time.

ASNIn_sub_1.name=ASNIn Subscriber, channel 1
ASNIn_sub_1.desc=Subscriber for the ASNIn family through channel 1.

ASNOut_sub_1.name=ASNOut Subscriber, channel 1
ASNOut_sub_1.desc=Subscriber for the ASNOut family through channel 1.

rib-<app>-plsql-api.xml
This configuration file is specific to RMS, RFM, and RWMS. RIB interfaces with RMS,
RFM, and RWMS through two database procedures: GETNXT and CONSUME. This
file contains the calling signatures for these procedures, the parameters to be
configured before calling these procedures, and the implementation class for handling
the objects returned from these procedures.

rib-<app>.properties
These properties internationalize strings for internal rib adapter key names.

rib-system.properties
All properties for RIB have been classified into kernel properties and application
properties. This file contains kernel properties that are used specifically for the
functioning of the RIB kernel. They are mostly related to hospital retry configuration,
payload locations, or alerting.

Property Name and Default Value Description

facility_id

defaultValue = "facility_id";

This property is used to refer to the warehouse routing
configuration. The value of this property is used to
construct the facility type

dc_dest_id

defaultValues = 1,2 and 3;

This property is used to refer to the warehouse
distribution center. Destination ID

facility_type_default

defaultValue = "PROD";

Specifies the default facility type to be used by RWMS
publishing adapters for calls to RWMS.

rib-integration-flows.xml

3-4 Oracle Retail Integration Bus Operations Guide

rib-integration-flows.xml
This file is the single source of all values used by the RIB Application Builder tools to
define and configure the JMS topics as well as perform start and stop activities,
including subscriber checks. For RIB deployments, this file should not be edited.

Property Name and Default
Value Description

hospital_attempt_max

defaultValue = "5";

This property refers to the maximum number of attempts to
try to push this record through RIB automatically. Once this
retry count is exceeded, the message remains in the RIB
Hospital DB but is no longer retried automatically

hospital_attempt_delay

defaultValue = "10";

This property refers to the value (in seconds) used to calculate
the next attempt time.

hospital_attempt_
delayIncrement

defaultValue = "10";

This property refers to the value (in seconds) used to calculate
the next attempt time. The next attempt time is calculated as:
hospitalAttemptDelay + (hospitalAttemptDelyIncrement *
attempt count). This is done so that the delay between each
attempt is longer than the previous delay.

numOfRecordsToRetry

defaultValue = "20";

This property refers to the maximum number of RIB Hospital
records to be retried in one RIB Hospital retry attempt.

xml_schema_base_url

defaultValue =
"http://localhost:8888/rib-
func-artifact";

This property refers to the location of web application
(rib-func-artifact) which has RIB related XML Schema (XSD)
files.

log.default.file_path

defaultValue=$DOMAIN_
HOME/servers/$$SERVER
NAME/logs/$APP_NAME

This property refers to the location where log files are created
by the RIB application. By default this location is in the
logs/app_name directory inside the WebLogic instance home
where the app has been installed.

mail_smtp_host

defaultValue =
"mail.smtp.host";

This property is used to identify the smtp host from which to
send out emails.

mail_smtp_port

defaultValue = "25";

This property is used to identify the smtp port from which to
send out emails.

mail_smtp_from

defaultValue =
"admin@company.com";

This property refers to the email id that the RIB platform needs
to use to send the emails for administrative purposes.

war_http_port

defaultValue = "9080";

This property refers to the port number used by the web based
Hospital Retry Administration Tool.

wls.wallet.file.location

defaultValue=$DOMAIN_
HOME/serves/$SERVER
NAME

This property refers to the wallet file that contains the user
name/password details for connecting to the WebLogic
instance. The user should not change this value.

wls.wallet.map.name

defaultValue=rib-rms-wls

This property refers to the map name that is stored in the
wallet file for connecting to the WebLobic instance. The user
should not change this value.

wls.wallet.user.alias

defaultValue=rib-rms-wls-
user-alias

This property refers to the alias stored in the wallet file for
connecting to the WebLogic instance. The user should not
change this value.

rib-deployment-env-info.xml

Backend System Administration and Logging 3-5

This file is packaged and deployed as part of the rib-func-artifacts war file.

Example:

 <message-flow id="1">
 <node id="rib-rms.Alloc_pub" app-name="rib-rms"
 adapter-class-def="Alloc_pub" type="DbToJms">
 <in-db>default</in-db>
 <out-topic>etAllocFromRMS</out-topic>
 </node>
 <node id="rib-tafr.Alloc_tafr" app-name="rib-tafr"
 adapter-class-def="Alloc_tafr" type="JmsToJms">
 <in-topic>etAllocFromRMS</in-topic>
 <out-topic name="topic-name-key-iso">etStockOrdersISO</out-topic>
 <out-topic
name="topic-name-key-wh">etStkOrdersFromRIBToWH{*}</out-topic>
 </node>
 <node id="rib-sim.StockOrder_sub" app-name="rib-sim"
 adapter-class-def="StockOrder_sub" type="JmsToDb">
 <in-topic>etStockOrdersISO</in-topic>
 <out-db>default</out-db>
 </node>
 <node id="rib-rwms.StockOrder_sub" app-name="rib-rwms"
 adapter-class-def="StockOrder_sub" type="JmsToDb">
 <in-topic>etStkOrdersFromRIBToWH1</in-topic>
 <out-db>default</out-db>
 </node>
 </message-flow>

rib-deployment-env-info.xml
This file is the single source of all values used in the RIB Application Builder tools and
is the only (or should be the only) file that requires editing for using them. The RIB
Installer gathers the appropriate values from the user, constructs the file, and invokes
the appropriate tools.

For example, when the RIB Application Builder is used to extract error hospital tables
from an application schema, this file supports those tables.

The RIB Application Builder tools can be executed independent of the RIB installer
tool. In some cases the file must be edited manually.

app-in-scope-for-integration
This section defines what applications are in scope for this environment.

Example:

 <app id="rms" type="plsql-app"/>
 <app id="tafr" type="tafr-app"/>
 <app id="sim" type="javaee-app"/>
 <app id="rwms" type="plsql-app"/>
 <app id="rpm" type="javaee-app"/>
 <app id="rfm" type="plsql-app"/>
 <app id="oms" type="soap-app"/>
 <app id="rxm" type=" javaee -app"/>
 <app id="lgf" type="soap-app" />

rib-jms-server
This section defines the JMS server information.

rib-deployment-env-info.xml

3-6 Oracle Retail Integration Bus Operations Guide

Example:

<jms-server-home>linux1@linux1:/home/oracle/oracle/product/12.1.0.2/db_
1</jms-server-home>
<jms-url>jdbc:oracle:thin:@linux1:<port>:ora12c</jms-url>
<jms-port><port></jms-port>
<jms-user-alias>jms1_user-name-alias</jms-user-alias>

rib-application-server
This section defines the WebLogic Server information.

Example:

<weblogic-domain-name>base_domain</ weblogic-domain-name >
<weblogic-domain-home>soa1@linux1:/home/soa1/Oracle/Middleware/user_
projects/domains/base_domain</weblogic-domain-home>
<weblogic-admin-server-port
protocol="http">7001</weblogic-admin-server-port><java-home>/usr/java/jdk1.8</java
-home>

rib-javaee-containers
This section defines the WebLogic instances for each of your rib-<app> applications
that are in-scope.

Example:

<wls id="rib-rms-wls-instance">
<wls-instance-name>rib-rms-wls-instance</wls-instance-name>
 <wls-instance-home>
soa1@linux1:/home/soa1/Oracle/Middleware/user_projects/domains/base_
domain/servers/rib-rms-wls-instance</wls-instance-home>
<wls-listen-port protocol="http">7003</wls-listen-port>
<wls-user-alias>rib-rms-wls-user-alias</wls-user-alias>
</wls>

rib-applications
This section defines the rib-<app> specific information for each applicable rib-<app>.

Example 1: RIB-RMS (for app-type=PL/SQL)

<rib-app id="rib-rms" type="plsql-app">
 <deploy-in refid="rib-rms-wls1" />
 <rib-admin-gui>
 <web-app-url>URL to the rib admin gui web app.</web-app-url>
 <web-app-user-alias>rib-rms_rib-admin-gui_
web-app-user-alias</web-app-user-alias>
</rib-admin-gui>

<notifications>
 <email>
 <email-server-host>mail.example.com</email-server-host>
 <email-server-port>25</email-server-port>
 <from-address>rib-email@example.com</from-address>
 <to-address-list>rib@example.com</to-address-list>
 </email>
 <jmx/>
</notifications>

remote_service_locator_info_ribserver.xml

Backend System Administration and Logging 3-7

Example 2: Application Database (for app-type=PL/SQL)

<app-database>
<app-url> DB host URL for pl/sql application</app-url>
<app-db-user-alias>rib-rms_app-database_user-name-alias</app-db-user-alias>
</app-database>

Example 3: Java EE application with JNDI information defined

<jndi>
<url>t3://simhost.example.com:<port>/sim-app</url>
<factory>weblogic.jndi.WLInitialContextFactory</factory>
<user-alias>sim_jndi_user-name-alias</user-alias>
</jndi>

Example 4: Error Hospital Database (for app-type=JavaEE/TAFR)

<error-hospital-database>
<hosp-url>jdbc:oracle:thin:@simdbhost.example.com:<port>:orcl</hosp-url>
<hosp-user-alias>rib-rms_error-hospital-database_user-name-alias</hosp-user-alias>
</error-hospital-database>

commons-logging.properties
RIB uses the Apache Commons Logging subsystem as the logging interface. For RIB
deployments, this file should not be edited.

log4j2.xml
The log4j2 Open Source software is used to control all RIB logging. This software
requires the log4j2.xml file to configure the file name, logging level, and type of file
used.

rib-app-builder-paths.properties
For RIB deployments, this file should not be edited.

rib-application-assembly-info.xml
This is a non editable file that describes the structure of the rib-<app>.ear and the
resources it uses.

retail_service_config_info_ribserver.xml
This is a non editable file that describes the service related configuration used by
rib-<app> to identify the relevant service implementations.

remote_service_locator_info_ribserver.xml
This is a non editable file that describes the JNDI related configuration used by
rib-<app> to invoke remote EJBs hosted on Java retail apps (for example, RPM and
SIM). This file is built at runtime, based on the information provided in
rib-deployment-env-info.xml.

RIB Logging

3-8 Oracle Retail Integration Bus Operations Guide

RIB Logging
All logging in RIB is through log4j2, the Apache Software Foundation's Open Source
software. For details about log4j2 visit the Apache Software Foundation's log4j2 home
page.

Log Level Recommendations
The logging level must be adjusted for the phase of the deployment. What is
appropriate in development and test (DEBUG) is not appropriate in production
(INFO). It is important to note that while the DEBUG logging level provides insight
into the low-level processing occurring within the RIB, logging at such a low level
comes at a cost. Specifically, such detailed logging is very CPU-intensive, and
depending on the application server hardware configuration, the actual RIB message
processing logic could be forced to wait for the CPU cycles being occupied by the
detailed DEBUG logging, which will result in an increase in overall message
processing time. In a production environment, the logging level must be set to the
lowest level possible in order to ensure proper resource allocation to all RIB message
processing logic.

There are some logs such as audit and timing that may be used differently at certain
phases as well. Audit is either on (DEBUG) or off (INFO); the same is true with timings
as described for the logging level above. To summarize once again, the lowest level of
audit and timing logging should be used in a production environment.

As a rule, the appropriate level is INFO.

Changing Logging Levels
RIB use of log4j2 allows the control of logging levels to suit the deployment and
situation. There are two methods of setting the logging levels: directly manipulating
the log4j2.xml file using a text editor, and the RIB Administration GUI.

RIB Administration GUI
The RIB Administration GUI allows control of the logging levels for each adapter
individually. It permits the change to affect only the runtime logging and is dynamic.
It also provides the ability to persist the change so that the adapters retain that level
when restarted. This is the recommended approach.

log4j2.xml Configuration File
The RIBLOGS log4j2.xml file can be directly edited. This requires that the adapters be
bounced for the change to take effect. See the following sections for what to edit, as
related to the type of log (RIBLOG, Timing Log, and so on).

Adapter Logging (RIBLOGS)
The RIB adapter code contains logging logic that writes all of RIB’s runtime logs to the
RIBLOG log files. The logs are written to the path <rib-application_instance_
home>/logs/<rib-app>.

Example:

/u01/webadmin/Oracle/Middleware/user_projects/domains/base_
domain/servers/rib-rms-wls-instance/logs/rib-rms

The RIBLOG file names are in this format: <adapter-instance-name>.rib.log.

RIB Logging

Backend System Administration and Logging 3-9

Example:

Alloc_pub_1.rib.log
ASNIn_sub_1.rib.log
ASNOut_sub_1.rib.log

To enable this function, parameters must be set per adapter.

Be careful because there are multiple entries for each adapter instance in the log4j2.xml
file. Search for the section of the log4j2.xml file:

<!--RIB Appender for adapterInstance: Alloc_pub_1-->

RIB Timing Logs
The RIB messaging components code is instrumental in logging timing entries on the
internal activities whenever they create, transform, route, filter, or subscribe to
messages on RIB. These timings logs are written using the log4j2 logging mechanism.

The timings log files follow the name convention
<adapter-instance-name>.timings.log and are found in the same locations as the
RIBLOGS.

Typically, one timings log file is created per component (EJB or other) that holds the
entries for that component. These files are cumulative, meaning that they do not get
overwritten with every initialization of the component, but they append new entries to
the current information already recorded. The files do roll over after they reach a
certain configurable size and backup files are created to preserve previous entries.

Each entry in the timings log represents a timestamp of a particular event in the RIB
component, listing the date and time information, name of the component, thread ID
and a distinct message for each event. The list of time stamped events includes such
items as the start time and/or end time of the following actions:

■ Overall publication, subscription, routing, or transformation process

■ Calls to stored procedures (getnxt and consume)

■ Actual publication and subscription of messages to and from the JMS server

■ Calls to the RIB Hospital to check for dependencies and insert messages

■ Calls to other applications to process messages after subscription (injectors)

The log4j2.xml file must have the "level value" property set to DEBUG. This tag is not
normally present in the standard log4j2.xml file, it must be added. The following
example shows how and where.

Note that there are multiple entries for each adapter instance in the log4j2.xml file.
Search for the section of the log4j2.xml file:

<!--Timings Logger for adapterInstance: -->".

Before:

<logger additivity="false" name="rib.pub.timings.Order_pub_1">
 <!-- Possible levels are TRACE, DEBUG, INFO, WARN, ERROR and FATAL -->
 <level value="INFO"/>
 <appender-ref ref="appender.rib.pub.timings.Order_pub_1"/>
 </logger>

 After:

<logger additivity="false" name="rib.pub.timings.Order_pub_1">

RIB Logging

3-10 Oracle Retail Integration Bus Operations Guide

 <!-- Possible levels are TRACE, DEBUG, INFO, WARN, ERROR and FATAL -->
 <level value="DEBUG"/>
 <appender-ref ref="appender.rib.pub.timings.Order_pub_1"/>
 </logger>

RIB Audit Logs
RIB has an auditing feature that logs a message as it passes though the RIB
infrastructure. Each messaging component can be set to write the message, and only
the message, to a separate log file. This allows the tracing of message content from
publication to subscription, and all steps, such as a TAFR, in between.

There are two benefits to this mechanism: the ability to audit each step, and the ability
to create a recovery plan. The messages can be played back, without effort being spent
to extract them from inside other more systemic log files.

Typically, one audit log file is created per component (EJB or other) that holds the
entries for that component. These files are non rolling, meaning that they do get
overwritten after they reach a certain configurable size. Customer has to take care to
manage audit log file size.Audit logs has some performance impact so should be
enabled only when there is need to save messages.

Refer Chapter 6 “RIB Administrator GUI” for more information on setting the
non-persistent log levels to persistent i.e. DEBUG and viewing audit logs in GUI.

The log4j2.xml can be edited to remove the <audit-entry> tag from the output and to
have only the message in the file.

<!--Audit Appender for adapterInstance: ASNIn_sub_1-->
 <appender class="org.apache.log4j2.FileAppender"
 name="appender.rib.sub.audit.ASNIn_sub_1">
"/u00/webadmin/product/12.2.1/WLS/user_projects/domains/rib_
domain/servers/rib-rms-server/logs/rib-rms/ASNIn_sub_1.audit.log"/>
 <!--param name="MaxFileSize" value="2048KB"/-->
 <!--param name="MaxBackupIndex" value="1"/-->
 <layout class="org.apache.log4j2.PatternLayout">
 <param name="ConversionPattern" value="<audit-entry
audit-time="%d{yyyy.MM.dd
 HH.mm.ss,SSS}">%n%m%n</audit-entry>%n"/>
 </layout>
 </appender>

Remove the “value=” in the ConversionPattern with %m%n

RIB also can log a set of audit logs used to audit all the events processed by RIB. To
enable this function, parameters must be set per adapter.

Proceed cautiously because there are multiple entries for each adapter instance in the
log4j2.xml file. Search for the section of the log4j2.xml file:

<!--Audit Logger for adapterInstance: ItemLoc_pub_1-->.

Before:

<!--Audit Logger for adapterInstance: ItemLoc_pub_1-->
 <logger additivity="false" name="rib.pub.audit.ItemLoc_pub_1">
 <!-- Possible levels are TRACE, DEBUG, INFO, WARN, ERROR and FATAL -->
 <level value="INFO "/>
 <appender-ref ref="appender.rib.pub.audit.ItemLoc_pub_1"/>
 </logger>

After:

RIB Logging

Backend System Administration and Logging 3-11

 <!--Audit Logger for adapterInstance: ItemLoc_pub_1-->
 <logger additivity="false" name="rib.pub.audit.ItemLoc_pub_1">
 <!-- Possible levels are TRACE, DEBUG, INFO, WARN, ERROR and FATAL -->
 <level value="DEBUG"/>
 <appender-ref ref="appender.rib.pub.audit.ItemLoc_pub_1"/>

Sample Log Entry:

<audit-entry audit-time="2008.01.28 11.37.57,642">
<?xml version="1.0" encoding="UTF-8"?>
<RibMessages
xmlns="http://www.oracle.com/retail/integration/rib/RibMessages"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.oracle.com/retail/integration/rib/RibMessages
http://ribhost.example.com:7777/rib-func-artifact/integration/xsd/RibMessages.xsd"
>
<ribMessage><family>Banner</family><type>BannerCre</type> <id>1</id>
<ribmessageID>Banner_pub_1|2008.01.28 11:37:57.500|6936</ribmessageID>
<publishTime>2008-01-28 11:37:57.500 CST</publishTime>
<messageData><BannerDesc
xmlns="http://www.oracle.com/retail/integration/payload/BannerDesc"
xmlns:ribdate="http://www.oracle.com/retail/integration/payload/RIBDate"
;
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.oracle.com/retail/integration/payload/BannerDe
sc http://ribhost.example.com:7777/rib-func-artifact/payload/xsd/BannerDesc.xsd
http://www.oracle.com/retail/integration/payload/RIBDate
http://ribhost.example.com:7777/rib-func-artifact/payload/xsd/RIBDate.xsd">
; <banner_id>1</banner_id> <banner_
name>B&amp;M</banner_name></BannerDesc>
</messageData>
<customData></customData><customFlag>F</customFlag>
</ribMessage>
</RibMessages>

Other RIB Management Logs
The following are examples of other RIB management logs.

deploy.rib.log
This log will track the source rib-app-builder home that pushed the changes to this
WebLogic instance. For example:

Uploading configuration file from machine(ribhost.example.com)
dir(/stage/Rib1600-ms7.1/Rib1600ForAll16xxApps/rib-home/deployment-home/bin/../../
../rib-home) at(Mon Jan 28 11:15:57 PST 2016).

management.rib.log
RIB maintains a management log which is used to keep track of the WebLogic instance
on the whole.

This log usually is written during the startup of a WebLogic instance. The
recommendation is that each rib-app be deployed in a separate WebLogic instance, so
management logs are specific to a rib-app.

The management log writes RIB information common to all the components like
loading property files and creating logging files.

Example:

RIB Logging

3-12 Oracle Retail Integration Bus Operations Guide

2008-02-01 14:33:23,928 [AJPRequestHandler-RMICallHandler-6] DEBUG
com.retek.rib.management.adapters.client.action.StopAdapterAction - Invoking
operation to stop the adapters
2008-02-01 14:33:23,928 [AJPRequestHandler-RMICallHandler-6] DEBUG
com.retek.rib.monitor.engine.MBeanAbstractFactory - Invoking MBean operation
domain(rib-rms) objectNameProperty(level=adapters,type=sub,name=Receiving_sub_1)
methodName(stop) parameter([Ljava.lang.Object;@1452a1)
signature([Ljava.lang.String;@3d06a4).

global.rib.log—Example
2008-02-06 10:14:26,688 [AJPRequestHandler-RMICallHandler-7] DEBUG
retek.com.retek.rib.ui.view.tags.IteratePropertyTag.com.retek.rib.management.adap
ters.model.AdapterTypes - Invoking Operation returnStatusForAll of MBean.
2008-02-06 10:14:26,777 [AJPRequestHandler-RMICallHandler-7] DEBUG
retek.com.retek.rib.ui.view.tags.IteratePropertyTag.com.retek.rib.monitor.engine.M
BeanAbstractFactory - Invoking MBean operation domain(rib-rms)
objectNameProperty(level=types,type=pub,name=pub_all)
methodName(returnStatusForAll) parameter(null) signature(null).
2008-02-06 10:14:26,780 [AJPRequestHandler-RMICallHandler-7] DEBUG
retek.com.retek.rib.ui.view.tags.IteratePropertyTag.com.retek.rib.management.adapt
ers.model.AdapterTypes - Operation returnStatusForAll for type pub invoked
successfully :<type name="pub"><adapter id="Alloc_pub_1" name="Alloc Publisher,
channel 1" state="running" /><adapter id="SeedData_pub_1" name="SeedData
Publisher, channel 1" state="running" /><adapter id="SeedObj_pub_1" name="SeedObj
Publisher, channel 1" state="running" /><adapter id="WOOut_pub_1" name="WOOut
Publisher, channel 1" state="running" /><adapter id="Banner_pub_1" name="Banner
Publisher, channel 1" state="running" /><adapter id="Transfers_pub_1"
name="Transfers Publisher, channel 1" state="running" /><adapter
id="RcvUnitAdj_pub_1" name="RcvUnitAdj Publisher, channel 1" state="running"
/><adapter
id="Vendor_pub_1" name="Vendor Publisher, channel 1" state="running" /><adapter
id="WH_pub_1" name="WH Publisher, channel 1" state="running" /><adapter
id="RTVReq_pub_1" name="RTVReq Publisher, channel 1" state="running" /><adapter
id="MerchHier_pub_1" name="MerchHier Publisher, channel 1" state="running"
/><adapter id="UDAs_pub_1" name="UDAs Publisher, channel 1" state="running"
/><adapter id="Order_pub_1" name="Order Publisher, channel 1" state="running"
/><adapter id="Items_pub_1" name="Items Publisher, channel 1" state="running"
/><adapter id="DiffGrp_pub_1" name="DiffGrp Publisher, channel 1" state="running"
/><adapter id="Item
Loc_pub_1" name="ItemLoc Publisher, channel 1" state="running" /><adapter
id="Partner_pub_1" name="Partner Publisher, channel 1" state="running" /><adapter
id="Diffs_pub_1" name="Diffs Publisher, channel 1" state="running" /><adapter
id="WOIn_pub_1" name="WOIn Publisher, channel 1" state="running" /><adapter
id="Stores_pub_1" name="Stores Publisher, channel 1" state="running" /></type>

4

RIB and JMX 4-1

4RIB and JMX

This chapter describes the RIB JMX infrastructure. JMX is a specification that provides
capability for runtime management of Java components. Each RIB software
component (PublisherEjb, SubscriberEjb, TafrEjb, HospitalRetryEjb, and so on)
provides its own management facility by implementing management beans.

RIB MBean components use uniform registration, deployment, and communication
mechanisms provided by the RIB JMX infrastructure.

RIB uses log4j2 to log business and system events in the RIB runtime system. The
definitions of the loggers are statically defined and come from a configuration file
(log4j2.xml). As logging is an expensive process we need to provide capability to
manage log levels dynamically. The RIB Administration UI Log Manager MBean
registers itself through the standard RIB JMX registration process at application
startup. It provides an API to access current RIB loggers and change the log levels.

The AlertPublisherFactory is a factory that allows the user to select what alerting
mechanism they want. A new JMX alerting mechanism will be added to the system.
The JmxAlertPublisher class extends NotificationBroadcasterSupport and provides
JMX notification capability. The JMX alerting capability is only available when running
inside a container. A message type attribute will be added to the Alert class to provide
the message filtering capability.

Any third party JMX console compatible with the Java EE container can be used to
manage RIB components. RDMT uses the JMX command line interface provided by
this design.

Third Party JMX Client Example
This example is for the Sun JConsole tool.

See:
http://docs.oracle.com/javase/6/docs/technotes/guides/management
/jconsole.html

Complete the following steps:

1. Copy the following file to the host where the jconsole runs:

wljmxclient.jar

2. Create a startup file that sets the properties and classpath:

Note: For more information, see the "Java Management Extensions
(JMX)" section in the Oracle Retail Integration Bus Implementation Guide.

Third Party JMX Client Example

4-2 Oracle Retail Integration Bus Operations Guide

jconsole
-J
-Djava.class.path=$JAVA_HOME/lib/jconsole.jar:$JAVA_HOME/lib/tools.jar:$WL_
HOME/server/lib/wljmxclient.jar
-J-Djmx.remote.protocol.provider.pkgs=weblogic.management.remote -debug

3. Start the JConsole and log in to MBean server using a connect URL (for example,
service:jmx:rmi:///jndi/iiop://localhost:18006/weblogic.management.mbeanser
vers.runtime).

4. Select and open any one of the MBean. It opens a window with four tabs:
Attributes, Operations, Notifications, and Info.

a. The Attributes tab provides information about the attributes of the MBean.

Third Party JMX Client Example

RIB and JMX 4-3

b. The Operations tab includes the list of operations supported by that MBean.

c. The Notifications tab includes the list of notifications captured on that MBean.
(You must subscribe for capturing the notifications.) Subscribing,
unsubscribing, and clearing notifications can be done from this tab.

Third Party JMX Client Example

4-4 Oracle Retail Integration Bus Operations Guide

d. The Info tab provides details about the MBean.

e. When an MBean is subscribed for notifications, you can see the list of
notifications that occurred for that MBean. The default is zero.

Third Party JMX Client Example

RIB and JMX 4-5

f. When some operations of the subscribed MBean are executed/invoked,
notifications are captured under the Notifications tab.

Third Party JMX Client Example

4-6 Oracle Retail Integration Bus Operations Guide

5

RIB Administration GUI 5-1

5RIB Administration GUI

RIB provides four types of adapters that Oracle Retail applications can exploit to
integrate with one another. These adapter types are publisher, subscriber, TAFR, and
hospital retry adapters. They have been built using different technologies based on
their particular needs.

Subscriber and TAFR adapters use Message Driven Bean (MDB) technology to register
with JMS topics and receive messages for further processing.

Publisher and hospital retry adapters make use of the Java SE (Standard Edition) timer
facility to schedule repetitive events. These events trigger calls to Enterprise Java
Beans (EJB) to query application tables for messages to publish to the JMS server.

A fifth type of adapter exists for publishing messages in a pushing fashion, which the
Retail Java EE applications, such as SIM and RPM, invoke at will for publishing
messages. These are not controlled via this framework, they are always on.

Due to the variety of technologies used by the adapters, the goal of the RIB
Administration GUI is to isolate users from these differences and provide a common
management interface that can be used to control the state of the adapters and logging.

RIB Administration URLs
RIB Administration tools are obtained through URLs within each of the deployed
rib-<apps>.

RIB Administration GUI
http://<server>:<http-port>/rib-<app>-admin-gui/

Replace <server> with the name or IP address of the server in the environment in
which the rib-<app> is deployed.

Replace <http-port> with the port number that the Oracle WebLogic Server is listening
on (for example, 7777).

Replace <app> with one of the following:

■ rms

■ rfm

■ rpm

■ aip

■ tafr

RIB Administration URLs

5-2 Oracle Retail Integration Bus Operations Guide

■ rwms

■ sim

■ lgf

■ oms

■ rxm

Authorization
The following roles are defined to restrict access to operations in Admin GUI:

■ AdminRole

■ OperatorRole

■ MonitorRole

There are three categories of users in RIB Admin GUI: Administrators, Operators, and
Monitors. Adapters can be started and stopped from the RIB Admin GUI. The
following operations can be performed by the users based on their role:

The WebLogic server has a default security realm. During the deployment of
rib-<app>s, it creates three groups in the security realm - RibAdminGroup,
RibOperatorGroup, and RibMonitorGroup. By default, it creates users for all three
groups. The Rib Admin System Administrators can manage RIB Admin GUI
application's users and access control through WebLogic server Administration
Console.

RIB Functional Artifacts
http://<server>:<port>/rib-func-artifact/

Replace <server> with the name or IP address of the server in the environment that
has the rib-<app>'s deployed.

RIB Message Flows
http://<server>:<port>/rib-func-artifact/rib-integration-flows.xml

RIB Payloads (xsds)
http://<server>:<port>/rib-func-artifact/payloads/xsd

Role Name AdminRole OperatorRole MonitorRole

GroupName ribAdminGroup ribOperatorGroup ribMonitorGroup

Start/Stop Adapters Yes Yes No

Chaneg Log levels Yes Yes No

View Logs Yes Yes Yes

Manage Configuration Yes No (view only) No

Adapter Manager

RIB Administration GUI 5-3

RIB Administration GUI Home
On the Home screen, click Adapter Manager to view all adapters for the given
application.

Adapter Manager
All message functions in RIB are performed by adapters. The four categories of
adapters are publishers, subscribers, TAFRs (transform, address, filtering and routing),
and RIB hospital retry. The adapter manager console is used to start and stop adapters,
configure settings, and view adapter log files.

Adapter Manager Screen
This screen shows the current status of all adapters for the specified application. The
following signifies an adapter is up and running:

The following signifies that the adapter is offline or has shut itself down:

From this screen any listed adapters can be started and stopped by selecting the check
box related to the adapter and then using the following buttons:

Click the following symbol in the "View Log" column to return to the log file viewer
for the specified adapter.

Log Manager

5-4 Oracle Retail Integration Bus Operations Guide

Log Viewer
Depending on what level the logging is set to, the log for the adapter can contain very
little to extreme amounts of data, errors, and message failures.

Log Manager
The Log Manager screen allows the user to change the logging level of the adapters. It
also allows the user to enable audit and timings logging.

The UI displays each logger and the current log level. If the log level is inherited, it
displays a * along with the log level.

When Audit logging is turned on, each message that is processed by the adapter, the
XML payload is persisted to an audit log. Audit logging only works when the audit
log level is set to DEBUG for the specified adapter.

The Timings logging captures adapter processing performance data to another
separate log. As with the audit log, this only works with the logging level set to
DEBUG. The RDMT command line tool can be used to process and view the results of
the timings logging output.

RIB Logs

RIB Administration GUI 5-5

RIB Logs
The RIB Logs screen can be used to view the regular adapter log file as well as the
Timings and Audit logs for each adapter, if they have been activated. (See instructions
for the Log Manager screen.)

The screen also is accessed by clicking the following symbol in the View Log column
on the Adapter Manager screen:

RIB Logs

5-6 Oracle Retail Integration Bus Operations Guide

6

JMS Provider Management 6-1

6JMS Provider Management

The Oracle Enterprise Messaging Service (OEMS) provides a robust architecture for
integrating business-critical applications. It is built on Java 2 Enterprise Edition (J2EE)
standards such as the Java Message Service (JMS) and the J2EE ConnectorArchitecture
(JCA). In addition, OEMS reduces the time, cost, and effort required to build
integrated and distributed applications. Through a common interface, JMS, OEMS
offers developers a quality of service (QoS) choice for persisting messages.

RIB will be certified with several JMS providers, starting with the OEMS JMS Database
persistence option, which is the JMS interface to the Oracle Database Streams
Advanced Queuing (AQ) feature. Subsequent releases will add certification of the
WLS JMS (for the file and memory-persistence version) that is bundled with the
WebLogic Application Server, as well as other JMS standard providers.

For more details on OEMS, see the Oracle® Containers for J2EE Services Guide - Using
Oracle Enterprise Messaging Service.

RIB on AQ JMS
The AQ JMS is a database and needs to be installed, configured, and tuned to support
the anticipated transaction loads for a retailer’s production message volumes.

The RIB team and the Database Administrators should consider the following.

■ It is strongly recommended that the Oracle Database Instance that is configured to
be the AQ JMS provider is not shared with any other applications and is not on the
same host (physical or logical) with any other applications.

■ AQ, on the server side is I/O intensive. Pay close attention to the disk layout.

■ AQ JMS as used by RIB has high transaction rates. Consider this when configuring
the redo logs.

AQ JMS should be run in archive log mode. If the database crashes, it must be
recoverable to a point-in-time, or messages (business events) will be lost.

■ RIB is a client of the AQ database and uses JDBC connections through the aqapi
client. The average message size for a given interface affects the network and
overall performance behavior.

■ AQ JMS sizing to avoid out-of-space situations is critical.

Queue Monitor Process Setup
The QMON processes are optional background processes for Oracle Streams
Advanced Queuing (AQ) which monitor and maintain all the system and user owned
AQ objects. They provide the mechanism for message expiration, retry, and delay,

RIB on AQ JMS

6-2 Oracle Retail Integration Bus Operations Guide

maintain queue statistics, remove processed messages from the queue table and
maintain the dequeue IOT.

The number of queue monitor processes is controlled by the dynamic initialization
parameter AQ_TM_PROCESSES. There can be a maximum of 10 QMON processes.
The parameter AQ_TM_PROCESSES can be set in the PFILE or SPFILE:

■ aq_tm_processes=4

■ alter system set aq_tm_processes=4

Starting with Oracle RDBMS release 10.1, Oracle automatically manages the QMON
monitor processes depending on the system load. Explicitly setting AQ_TM_
PROCESSES is not required. However, monitoring the workload and making
adjustments as necessary is recommended. If the QMON processes lag behind, there is
a chance of expired messages remaining in the queue and the tablespace eventually
running out of space.

If explicitly setting AQ_TM_PROCESSES, the recommended value is between 2 and 8.
Do not set the value to the maximum allowed value of 10 in Oracle, because all
explicitly started QMON processes work only with persistent messages. Oracle can
automatically start processes to maintain buffered messages. Setting AQ_TM_
PROCESSES to a maximum value of 8 still leaves two processes for Oracle that can be
started to maintain buffered messages.

Optimizing Enqueue/Dequeue Performance
The AQ database performance must be tuned according to Oracle database tuning
practices.

To tune the SGA, use tools such as Statspack, Oracle Enterprise Manager and SQL
trace to identify bottlenecks. An inefficiently configured SGA slows down enqueue
and dequeue transactions.

To tune the Server Resources, check server CPU, memory, I/O, and network
utilization. Tools such as nmon, sar, iostat, vmstat, and glance can be used to collect
system statistics. Use shared memory and semaphore parameters that are
recommended for the Oracle database on that type of server.

Tuning Physical Schema setup entails creating right tablespaces, placements of
datafiles, tables, and indexes.

Sizing Considerations
The RIB team and Database Administrators provide the following considerations for
sizing the deployment of RIB on AQ JMS:

■ The enqueuing/dequeuing rate for the messages per message family affects the
requirement for the number of available database segments.

By default, all RIB topics are created in a single tablespace. AQ creates multiple
tables for each topic within that tablespace. A topic (message family) with a high
transaction rate can quickly consume available segments. If the tablespace is not
sized appropriately, a single interface can negatively impact all interfaces.

Note: See also Oracle® Database Administrator's Guide 12c Release
2 (12.2.1), Oracle® Streams Advance Queuing User's Guide, and
Reference 12c Release 2 (12.2.1)

RIB on AQ JMS - Server Side Processes

JMS Provider Management 6-3

The QMON background process that is responsible for space management will not
keep up the transaction rates of some RIB interfaces. In this case, the transaction
rate is defined as the rate of enqueuing versus dequeuing. Messages that are
subscribed (consumed) are not removed from the AQ tables immediately. It is the
normal case that the enqueue rate will be faster than the dequeue rate. This time
lag should be a sizing consideration.

■ The total tablespace sizing must be calculated based on the business requirement
for the number of messages that have to be retained per message family if a
subscribing application is off-line.

It is very common for a subscribing application to go off-line. This means that
messages must be retained (persisted) on the JMS until the subscriber comes back
on-line. The general sizing guideline for any RIB JMS sub-system is for the disk
(mount points or database) to be able to handle 24 hours of maximum messages
per topic as defined by the site's projected volume requirements. For example,
OrdersFromRMS may be specified to retain 355,000 details (such as 1000 1M
messages = 1GB). This calculation must be performed for each of the 90+ topics in
the GA RIB system and based on the customer's estimated volume per interface.

RIB on AQ JMS - Server Side Processes
A process is a "thread of control," or a mechanism in an operating system, that can run
a series of steps. (Some operating systems use the terms "job" or "task.") A process
normally has its own private memory area in which it runs.

When RIB is configured to use the Oracle AQ JMS, there are considerations that affect
RDBMS tuning and the configuration of database processes. This section is intended to
outline these considerations.

Types of Oracle Database Side Processes
The processes in an Oracle database system are categorized into two major groups:

■ User processes run the application or Oracle tool code.

■ Oracle database processes run the Oracle database server code. They include
server processes and background processes.

RIB and Application Server and JDBC Connections
The number of RIB related server side processes can grow based on activity. It is
related to the way the application server container manages jdbc connections. The
following rules apply:

■ Each subscriber uses one JDBC connection to AQ JMS.

■ Each Publisher or Hospital Retry may use one or more connections, depending on
volume and activity.

■ When a RIB adapter (Java code) asks for a connection, the application server may
decide to get more than one connection and add it to its pool.

Note: See "How to Calculate Average Message Size."

RIB on AQ JMS - Server Side Processes

6-4 Oracle Retail Integration Bus Operations Guide

RIB Connections - Summary

At any time, depending on deployment options in a non-multiple channel
deployment, RIB can have at least 200 AQ connections. The application server may ask
for more than 200 from the database.

These numbers will increase if there are multiple retry adapters configured and if
message flows are configured for multiple channels. So the calculation includes the
base numbers plus one for each additional retry--and one for each multiple channel
publisher or subscriber. Always assume that the result is the lowest number of
connections, because the container can ask for more.

rib-rms Connections

At any time, depending on deployment option, the rib-rms app can have at least 62
AQ connections. The application server may ask for more than 62 from the database.

rib-rwms Connections

RIB Adapter Type Total Adapters in RIB

rib-app Subscriber 88

TAFR Subscriber 21

rib-app Polling Publisher 33

rib-app Request-driven
Publisher

19

TAFR Publishers 21

Hospital Retry - Polling
Publisher

18

Total 200

RIB Adapter Type Total Adapters in RIB

Subscriber 36

Polling Publisher 23

Hospital Retry - Polling
Publisher

3

Total 62

RIB Adapter Type Total Adapters in RIB

Subscriber 16

Polling Publisher 8

Hospital Retry - Polling
Publisher

2

Total 26

RIB on AQ JMS - Server Side Processes

JMS Provider Management 6-5

At any time, depending on deployment option, the rib-rwms application can have at
least 27 AQ connections. The application server may ask for more than 27 from the
database.

rib-sim Connections

At any time, depending on deployment option, the rib-sim app can have at least 35
AQ connections. The application server may ask for more than 35 from the database.

rib-tafr Connections

At any time, depending on deployment option, the rib-tafr app can have at least 46 AQ
connections. The application server may ask for more than 46 from the database.

rib-rpm Connections

At any time, depending on deployment option, the rib-rpm app can have at least four
AQ connections. The application server may ask for more than four from the database.

rib-rfm Connections

RIB Adapter Type Total Adapters in RIB

Subscriber 21

Request Driven Publishers 12

Hospital Retry - Polling
Publisher

2

Total 35

RIB Adapter Type Total Adapters in RIB

Subscriber 21

Publishers 21

Hospital Retry - Polling Publisher 2

Total 44

RIB Adapter Type Total Adapters in RIB

Subscriber 0

Request Driven Publisher 3

Hospital Retry - Polling
Publisher

1

Total 4

RIB Adapter Type Total Adapters in RIB

Subscriber 1

Polling Publisher 2

RIB on AQ JMS - Server Side Processes

6-6 Oracle Retail Integration Bus Operations Guide

At any time, depending on deployment option, the rib-rfm app can have at least six
AQ connections. The application server may ask for more than six from the database.

rib-oms Connections

At any time, depending on deployment option, the rib-oms app can have at least ten
AQ connections. The application server may ask for more than four from the database.

rib-lgf Connections

At any time, depending on deployment option, the rib-lgf app can have at least fifteen
AQ connections. The application server may ask for more than fifteen from the
database.

rib-rxm Connections

At any time, depending on deployment option, the rib-rxm app can have at least nine
AQ connections. The application server may ask for more than nine from the database.

Hospital Retry - Polling
Publisher

3

Total 6

RIB Adapter Type Total Adapters in RIB

Subscriber 7

Request Driven Publisher 1

Hospital Retry - Polling
Publisher

2

Total 10

RIB Adapter Type Total Adapters in RIB

Subscriber 8

Request Driven Publisher 5

Hospital Retry - Polling
Publisher

2

Total 15

RIB Adapter Type Total Adapters in RIB

Subscriber 7

Request Driven Publisher 0

Hospital Retry - Polling
Publisher

2

Total 9

RIB Adapter Type Total Adapters in RIB

Support for Multiple JMS Servers Within a Single Deployment

JMS Provider Management 6-7

Configuration Recommendations
It is strongly recommended that, for the production RIB deployment, the Oracle
database instance configured as the AQ JMS be separate from all other uses. There are
performance considerations as well as architectural reasons for maintaining this
separation.

For the testing and QA phases of the deployment life cycle, co-location is not
recommended. Regardless of the life cycle phase, the AQ JMS should not be
configured with any other applications, including the rib-app, Error Hospital.

If the option to co-locate is chosen, work with the database administrators to
determine and set the appropriate maximum database sessions and processes,
depending on the RIB environment setup (single channel or multiple channel, for
example.) Note that the result may be more than 500 processes. The issues that may
arise from having this many processes can be obscure, and it is difficult to isolate their
root cause.

Support for Multiple JMS Servers Within a Single Deployment
Employing multiple JMS servers allows for the isolation of flows (for example, high
volume versus low, custom versus base, and message families) for performance and
operational QoS.

Design
To meet the JMS agnostic requirement for RIB, a unique JMS server ID (jms-server-id)
is assigned to each RIB adapter. Accordingly, each RIB adapter can identify the JMS
server to which it is associated. As the default, out-of-the-box adapters are configured
to be on jms-server, jms1.

For each new jms-server-ID, a new resource adapter must be configured to point the
application server to the JMS provider’s resource. The adapter communicates with the
JMS server and is deployed as part of the application. Where customization is
required, the adapter can be configured to point to a different JMS server.

rib-app-builder Validation Checks
The rib-app-builder performs several validation checks, as listed below. To prevent the
rib-app-builder compilation process from failing, the following criteria must be met:

■ Each jms-server-id is unique where more than one JMS server is configured.

■ Within a message flow, the jms-server-id is the same for all applications.

■ A jms-server-id is present in the rib-deployment-env-info.xml and present in at
least one of the rib-<app>-adapters.xml files.

■ A jms-server-id is present in rib-<app>-adapters.xml and present in the
rib-deployment-env-info.xml file.

■ Multiple channels configured for a given family are on the same JMS server.

■ Proper hospitals are configured for all JMS servers. (Where additional JMS servers
are configured, the rib-app-builder checks to see if hospital adapters are
configured for all JMS servers.)

Note: See the Oracle Integration Bus Implementation Guide.

Support for Multiple JMS Servers Within a Single Deployment

6-8 Oracle Retail Integration Bus Operations Guide

How to Set Up Multiple JMS Servers
This section describes the process for setting up multiple JMS servers.

Process Overview
The following are basic steps.

1. Determine the family to be configured.

2. Examine the rib-integration-flows.xml to identify all RIB applications in the full
integration flow.

3. Add a new JMS server by updating rib-deployment-env-info.xml.

4. In the rib-home, modify the appropriate files for each of the rib-<apps>
participating in the integration flow. Point the adapters to the correct JMS server:

a. rib-<app>-adapters.xml

b. rib-<app>-adapter-resources.properties

5. Compile all applicable rib-<apps>.

6. Run prepare-jms for the newly created JMS server.

7. Deploy.

General Recommendations
Consider the following recommendations.

■ The default ID for out-of-the-box JMS servers is jms1. It is recommended that the
same naming convention is followed when additional JMS servers are configured
(for example, jms2).

■ If multiple JMS servers require configuration, it is recommended that the
application (for example, rib-rms) be completely removed (or undeployed) before
the new deployment begins.

AQ Recommendation
If multiple AQ JMS servers are configured, each must be on a different database server
instance.

Sample Configuration
Following are portions of the Items message flow from rib-integration-flows.xml. The
message originates from RMS and flows through a TAFR. The TAFR sends the
message to two topics, and the message is subscribed by RWMS and SIM. The samples
below assume that a new jms-server-id (jms2) is required for the message flow.

rib-integration-flows.xml
 <message-flow id="6">
 <node id="rib-rms.Items_pub" app-name="rib-rms"
 adapter-class-def="Items_pub" type="DbToJms">
 <in-db>default</in-db>
 <out-topic>etItemsFromRMS</out-topic>
 </node>
 <node id="rib-tafr.ItemsToItemsTL_tafr" app-name="rib-tafr"
 adapter-class-def="ItemsToItemsTL_tafr" type="JmsToJms">
 <in-topic>etItemsFromRMS</in-topic>
 <out-topic>etItemsTLFromRIB</out-topic>

Support for Multiple JMS Servers Within a Single Deployment

JMS Provider Management 6-9

 </node>
 <node id="rib-tafr.ItemsToItemsISO_tafr" app-name="rib-tafr"
 adapter-class-def="ItemsToItemsISO_tafr" type="JmsToJms">
 <in-topic>etItemsFromRMS</in-topic>
 <out-topic>etItemsISO</out-topic>
 </node>
 <node id="rib-rwms.Items_sub" app-name="rib-rwms"
 adapter-class-def="Items_sub" type="JmsToDb">
 <in-topic>etItemsTLFromRIB</in-topic>
 <out-db>default</out-db>
 </node>
 <node id="rib-sim.Items_sub" app-name="rib-sim"
 adapter-class-def="Items_sub" type="JmsToDb">
 <in-topic>etItemsISO</in-topic>
 <out-db>default</out-db>
 </node>
 </message-flow>

rib-deployment-env-info.xml
A new JMS server with jms-server-id="jms2" is added in rib-deployment-env-info.xml
file as follows:

<aq-jms-servers>
 <aq-jms-server jms-server-id="jms1">
 <jms-server-home>user@host:/u00/db</jms-server-home>
 <jms-url>jdbc:oracle:thin:@host:port:SID</jms-url>
 <jms-port><port></jms-port>
 <jms-user-alias>aq1</jms-user-alias>
 </aq-jms-server>
 <aq-jms-server jms-server-id="jms2">
 <jms-server-home>user@host:/u00/db</jms-server-home>
 <jms-url>jdbc:oracle:thin:@host:port:SID</jms-url>
 <jms-port><port></jms-port>
 <jms-user-alias>aq2</jms-user-alias>
 </aq-jms-server>
 </aq-jms-servers>

RIB-RMS Application Configuration
To configure the RIB-RMS application, complete the following steps:

rib-rms-adapters.xml
For rib-rms-adapters.xml, do the following.

1. Edit $RIB_HOME/application-assembly-home/rib-rms/rib-rms-adapters.xml,
where $RIB_HOME is the rib-home directory.

2. Point the Items_pub_1 adapter to jms-server-id "jms2" as follows.

<timer-driven id="Items_pub_1" initialState="stopped" timeDelay="10"
jms-server-id="jms2">
 <timer-task>
 <class
name="com.retek.rib.app.getnext.impl.GetNextTimerTaskImpl"/>

Note: The following are the configuration changes required for the
message flow. The example assumes that all applications apply (RMS,
TAFR, SIM, and RWMS).

Support for Multiple JMS Servers Within a Single Deployment

6-10 Oracle Retail Integration Bus Operations Guide

 <property name="maxChannelNumber" value="1" />
 </timer-task>
</timer-driven>

3. Add hospital adapters for jms-server-id jms2, as follows.

<!-Hospital adapter configuration starts here -->
<timer-driven id="sub_hosp_2" initialState="stopped" timeDelay="10"
jms-server-id="jms2">
 <timer-task>
 <class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask"/>
 <property name="reasonCode" value="SUB"/>
 </timer-task>
</timer-driven>
<timer-driven id="pub_hosp_2" initialState="stopped" timeDelay="10"
jms-server-id="jms2">
 <timer-task>
 <class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask"/>
 <property name="reasonCode" value="PUB"/>
 </timer-task>
</timer-driven>
<timer-driven id="jms_hosp_2" initialState="stopped" timeDelay="10"
jms-server-id="jms2">
 <timer-task>
 <class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask"/>
 <property name="reasonCode" value="JMS"/>
 </timer-task>
</timer-driven>

rib-rms-adapters-resources.properties
Add the following properties to the resource file:

■ sub_hosp-2.name=SUB Hospital Retry jms2

■ sub_hosp-2.desc=Inject messages into the Error Hospital.

■ pub_hosp-2.name=PUB Hospital Retry jms2

■ pub_hosp-2.desc=Re-publish messages to JMS.

■ jms_hosp-2.name=JMS Hospital Retry jms2

■ jms_hosp-2.desc=Re-publish messages from the Error Hospital to JMS after JMS is
brought up again.

RIB-TAFR Application Configuration
To configure the RIB-TAFR application, complete the following steps.

rib-tafr-adapters.xml
For rib-tafr-adapters.xml, do the following.

1. Edit $RIB_HOME/application-assembly-home/rib-tafr/rib-tafr-adapters.xml,
where $RIB_HOME is the rib-home directory.

2. Point the ItemsToItemsTL_tafr_1 adapter to jms-server-id "jms2", as shown below.

3. Point the ItemsToItemsISO_tafr_1 adapter to jms-server-id "jms2", as shown
below:

<tafrs>
 <message-driven id="ItemsToItemsTL_tafr_1" initialState="stopped"

Support for Multiple JMS Servers Within a Single Deployment

JMS Provider Management 6-11

tafr-business-impl="com.retek.rib.domain.tafr.bo.impl.ItemsToItemsTLFromRibBOIm
pl" jms-server-id="jms2" />

 <message-driven id="ItemsToItemsISO_tafr_1" initialState="stopped"
tafr-business-impl="com.retek.rib.domain.tafr.bo.impl.ItemsToItemsISOFromRibBOI
mpl" jms-server-id="jms2" />

</tafrs>

4. Add hospital adapters for jms-server-id jms2.

<!-Hospital adapter configuration starts here -->
<timer-driven id="sub_hosp_0" initialState="stopped" timeDelay="20"
jms-server-id="jms2">
 <timer-task>
 <class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask"/>
 <property name="reasonCode" value="SUB"/>
 </timer-task>
 </timer-driven>

<timer-driven id="jms_hosp_0" initialState="stopped" timeDelay="30"
jms-server-id="jms2">
 <timer-task>
 <class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask"/>
 <property name="reasonCode" value="JMS"/>
 </timer-task>
</timer-driven>

rib-tafr-adapters-resources.properties
Add the following properties to the resource file:

■ sub_hosp-2.name=SUB Hospital Retry jms2

■ sub_hosp-2.desc=Inject messages into the Error Hospital.

■ jms_hosp-2.name=JMS Hospital Retry jms2

■ jms_hosp-2.desc=Re-publish messages from the Error Hospital to JMS after JMS is
brought up again.

RIB-SIM Application Configuration
To configure the RIB-SIM application, complete the following steps:

rib-sim-adapters.xml
For rib-sim-adapters.xml, do the following.

1. Edit $RIB_HOME/application-assembly-home/rib-sim/rib-sim-adapters.xml,
where $RIB_HOME is the rib-home directory.

<subscribers>
 <message-driven id="Items_sub_1" initialState="running"
jms-server-id="jms2"/>
</subscribers>

2. Add hospital adapters for jms-server-id jms2.

<!-Hospital adapter configuration starts here -->

<timer-driven id="sub_hosp_0" initialState="stopped" timeDelay="20"
jms-server-id="jms2">

Support for Multiple JMS Servers Within a Single Deployment

6-12 Oracle Retail Integration Bus Operations Guide

 <timer-task>
 <class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask"/>
 <property name="reasonCode" value="SUB"/>
 </timer-task>
</timer-driven>

<timer-driven id="jms_hosp_0" initialState="stopped" timeDelay="30"
jms-server-id="jms2">
 <timer-task>
 <class
name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask"/>
 <property name="reasonCode" value="JMS"/>
 </timer-task>
</timer-driven>

rib-sim-adapters-resources.properties
Add the following properties to the resources file:

■ sub_hosp-2.name=SUB Hospital Retry jms2

■ sub_hosp-2.desc=Inject messages into the Error Hospital.

■ jms_hosp-2.name=JMS Hospital Retry jms2

■ jms_hosp-2.desc=Re-publish messages from the Error Hospital to JMS after JMS is
brought up again.

RIB-RWMS Application Configuration
To configure the RIB-RWMS application, complete the following steps.

rib-rwms-adapters.xml
For rib-rwms-adapters.xml, do the following.

1. Edit $RIB_HOME/application-assembly-home/rib-rwms/rib-rwms-adapters.xml

2. Point the Items_sub_1 adapter to jms-server-id jms2.

<subscribers>
 <message-driven id="Items_sub_1" initialState="running"
jms-server-id="jms2"/>
</subscribers>

3. Add hospital adapters for jms-server-id jms2.

<!-Hospital adapter configuration starts here -->

<timer-driven id="sub_hosp_0" initialState="stopped" timeDelay="20"
jms-server-id="jms2">
 <timer-task>
 <class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask"/>
 <property name="reasonCode" value="SUB"/>
 </timer-task>
</timer-driven>
<timer-driven id="jms_hosp_0" initialState="stopped" timeDelay="30"
jms-server-id="jms2">
 </timer-task>
 <class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask"/>
 <property name="reasonCode" value="JMS"/>
 </timer-task>
</timer-driven>

Support for Multiple JMS Servers Within a Single Deployment

JMS Provider Management 6-13

rib-rwms-adapters-resources.properties
Add the following properties to the resources file:

■ sub_hosp-2.name=SUB Hospital Retry jms2

■ sub_hosp-2.desc=Inject messages into the Error Hospital.

■ jms_hosp-2.name=JMS Hospital Retry jms2

■ jms_hosp-2.desc=Re-publish messages from the Error Hospital to JMS after JMS is
brought up again.

RIB-RFM Application Configuration
To configure the RIB-RFM application, complete the following steps.

rib-rfm-adapters.xml
For rib-rfm-adapters.xml, do the following.

1. Edit $RIB_HOME/application-assembly-home/rib-rfm/rib-rfm-adapters.xml

2. Point the Items_sub_1 adapter to jms-server-id jms2.

<subscribers>
 <message-driven id="ShipInfo_sub_1" initialState="running"
jms-server-id="jms2"/>
</subscribers>

3. Add hospital adapters for jms-server-id jms2.

<!-Hospital adapter configuration starts here -->

<timer-driven id="sub_hosp_0" initialState="stopped" timeDelay="20"
jms-server-id="jms2">
 <timer-task>
 <class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask"/>
 <property name="reasonCode" value="SUB"/>
 </timer-task>
</timer-driven>
<timer-driven id="jms_hosp_0" initialState="stopped" timeDelay="30"
jms-server-id="jms2">
 </timer-task>
 <class name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask"/>
 <property name="reasonCode" value="JMS"/>
 </timer-task>
</timer-driven>

rib-rfm-adapters-resources.properties
Add the following properties to the resources file:

■ sub_hosp-2.name=SUB Hospital Retry jms2

■ sub_hosp-2.desc=Inject messages into the Error Hospital.

■ jms_hosp-2.name=JMS Hospital Retry jms2

■ jms_hosp-2.desc=Re-publish messages from the Error Hospital to JMS after JMS is
brought up again.

Support for Multiple JMS Servers Within a Single Deployment

6-14 Oracle Retail Integration Bus Operations Guide

Compile and Deploy
Using the RIB Installer or the RIB Application Builder command line tools compile,
and deploy the new rib-<app>.ears.

RIB-ADMIN-GUI
After deployment, check if the adapters configured point to the correct JMS server.

7

Message Transform, Filtering and Routing (TAFR) 7-1

7Message Transform, Filtering and Routing
(TAFR)

After initial publication, a message may require a series of transformation, filtering, or
routing operations. The RIB component that implements these operations is known as
a Transformation and Address Filter/Router (TAFR) component.

■ A transformation operation changes the message data or contents.

■ A filter operation examines the message contents and makes a determination as to
whether the message is appropriate to the specific subscriber.

■ A router operation examines the message contents and forwards the message to a
subset of its subscribers. A filter operation can be considered a special case of a
routing operation. Although logically separate operations, for performance
reasons, TAFR components usually combine as many as is appropriate.

TAFR operation is specific to a message family and its set of subscribers. Multiple
TAFRs may process a single message for a specific subscriber, and different specific
TAFRs may be present for other subscribers. Separate sets of TAFRs are necessary for
the various message families.

Multiple TAFRs may be needed, depending on the types of subscribers. The following
diagram shows an example of the message flow with TAFR.

TAFR Adapter Process
A Transformation Address Filter/Router (TAFR) adapter is used to perform operations
on all messages from a single message family. The specific activities performed are
dependent on the needs of its subscribers.

Configuration

7-2 Oracle Retail Integration Bus Operations Guide

■ TAFRs in a message flow are an exception rather than the norm. (For example, a
TAFR that does message transformation for only a single application is not
recommended.) The subscribing application is responsible for filtering and
transformation of the payload data.

■ Payload content based routing is not recommended as it degrades performance.

■ TAFR adapters take advantage of the RIB hospital.

■ Error messages are automatically retried by the hospital retry adapter.

■ The TAFR configuration makes most of the routing decision dynamic without
requiring any configuration.

■ TAFRs are standard Java EE Message Driven Beans(MDB).

■ Custom TAFR business implementation can be easily plugged in by editing
rib-tafr-adapters.xml.

Configuration
Deployment configuration of the TAFR in the Java EE container is handled by the
rib-app-builder application. Refer to the documentation for the rib-app-builder on
how to deploy a TAFR application. The following is an example configuration in
rib-tafr-adapters.xml.

<tafrs>
 <message-driven id="Alloc_tafr_1" initialState="running"
tafr-business-impl="com.retek.rib.domain.tafr.bo.impl.AllocToStockOrderFromRibBOIm
pl" />
</tafrs>

■ message-driven—Indicates that the TAFR is deployed as an MDB.

■ id—The ID for this particular adapter.

■ InitialState—The state of the adapter.

■ Tafr-business-impl—The implementation class for this TAFR. This class contains
the implementation for transformation, filtering, and routing of RIBMessage.

Transformation
Message transformation is the process of converting one message family payload to
another message family payload.

Filtering Configuration
Filtering configuration involves updating the rib-tafr.properties file with the
appropriate information.

The property follows the usual properties naming convention (name=value).

The property that is used for filtering is for.<tafr name>_tafr.drop-messages-of-types.

Example:

for.ItemsToItemsISO_tafr.drop-messages-of-types=
ISCDimCre,ISCDimMod,ISCDimDel,ItemImageCre,ItemImageMod,ItemImageDel,
ItemUdaDateCre,ItemUdaDateMod,ItemUdaDateDel,ItemUdaFfCre,ItemUdaFfMod,ItemUdaFfDe
l,
ItemUdaLovCre,ItemUdaLovMod,ItemUdaLovDel

Configuration Example - Facility ID

Message Transform, Filtering and Routing (TAFR) 7-3

This property should be read as, "for ItemsToItemsISO tafr" drop these message types.
A comma delimits the message types.

If customization is required then the rib-tafr.properties file needs to be updated for
filtering to take place.

Routing
Routing is enabled by default for TAFR's, the RIB infrastructure handles this routing. If
a TAFR requires routing based on message content, then implementation classes
override the following method.

public void routeRibMessage(RibMessage newMsg,MessageRouterIface router) throws
 TafrException {
 router.addMessageForTopic(eventType, newMsg);
}

Configuration Example - Facility ID
One of the common configurations requirements is to set up the flow of transfers and
orders to RWMS. This is based on Facility ID.

These examples and step-by-step instructions illustrate how to configure a TAFR for
one and two RWMS deployments.

Single RWMS Configuration
RIB allows stock based transactions to be routed between different RWMS instances.
An RWMS instance is assigned to a physical distribution center which may have one
or more facilities assigned to it. A company may have one or more distribution centers.

By default the standard RIB configuration is set for a single RWMS instance. This
means that all physical warehouses in RMS route directly to a single RWMS instance
(in this case denoted as WH1) with each RMS physical warehouse directly correlating
to a facility ID in RWMS.

Configuration Process
Complete the following steps.

1. Modify the TAFR routing settings:

■ For each physical warehouse set up in RMS there should be a matching entry
in the rib-tafr.properties file. This file resides in the $RIB_
HOME/application-assembly-home/rib-tafr directory and is used by the
TAFR adapters, amongst other things, to route messages by facility ID to the
correct RWMS instances.

■ The file by default contains the following mappings:

– facility_id.PROD.1=1

– facility_id.PROD.2=1

– facility_id.PROD.3=1

■ The routing properties are structured in the following way: facility_
id.<FACILITY_TYPE>.<RMS_PHYSICAL_WH_ID>=<RWMS_INSTANCE_
NAME>

Configuration Example - Facility ID

7-4 Oracle Retail Integration Bus Operations Guide

– <FACILITY_TYPE> - This should match the facility_type.default value in
the rib-tafr.properties file. In most cases it is defaulted to PROD.

– <RMS_PHYSICAL_WH_ID> - The physical warehouse ID from RMS.

– <RWMS_INSTANCE_NAME> - The RWMS installation topic name
identifier to which the warehouses messages is routed.

■ These mappings must be edited so that each physical warehouse in RMS has
its own entry. The physical warehouses can be found by running the following
query in the RMS schema:

– SELECT wh FROM wh
 WHERE wh.wh = wh.physical_wh;

■ For the example in the diagram below, the query returns physical warehouse
IDs 60, 70, and 80 .

■ There is only one RWMS instance (WH1) in this example, and the RWMS
installation topic name identifier is 1. This corresponds to the name of the
topics that RIB routes the messages to. It also is the default name suffix of the
RWMS topics in the rib-integration-flows.xml file.

■ Therefore, mapping in the rib-tafr.properties file should read as follows:

– facility_id.PROD.60=1

– facility_id.PROD.70=1

– facility_id.PROD.80=1

2. Deploy the settings to the rib-tafr instance:

The new TAFR routing settings must be migrated to the rib-tafr instance. Run the
following script found in the $RIB_HOME/deployment-home/bin directory.

rib-app-deployer.sh -deploy-rib-app-ear rib-tafr

3. Configuration should now be complete.

Note: For every new physical warehouse added to RMS, the
rib-tafr.properties file requires a new entry. The new settings must be
deployed to the instance.

Configuration Example - Facility ID

Message Transform, Filtering and Routing (TAFR) 7-5

Two RWMS Configuration

Description
RIB can be configured to route stock based transactions between multiple distribution
centers, each with their own RWMS instance. The purpose of this is to only send stock
transactions that are shipped to or from a certain warehouse to the distribution center
that contains that warehouse (facility).

From RMS the user only has visibility to the warehouse that they are performing a
stock shipment to or from. RIB TAFRs route the messages to the separate RWMS
instances, based on the configuration stated in the rib-tafr.properties file. In the above
example, RMS physical warehouses 60 and 70 are assigned to the RWMS instance
called WH1, while RMS physical warehouse 80 is assigned to another RWMS instance
called WH2.

Configuration Process
Complete the following steps.

1. Modify the TAFR routing settings:

■ For each physical warehouse set up in RMS there should be a matching entry
in the rib-tafr.properties file. This file resides in the $RIB_
HOME/application-assembly-home/rib-tafr directory and is used by the
TAFR adapters, among other things, to route messages by facility ID to the
correct RWMS instances.

■ The file by default contains the following mappings:

– facility_id.PROD.1=1

– facility_id.PROD.2=1

– facility_id.PROD.3=1

■ The routing properties are structured in the following way: facility_
id.<FACILITY_TYPE>.<RMS_PHYSICAL_WH_ID>=<RWMS_INSTANCE_
NAME>

– <FACILITY_TYPE> - This should match the facility_type.default value in
the rib-tafr.properties file (in most cases, PROD).

– <RMS_PHYSICAL_WH_ID> - The physical warehouse ID from RMS.

– <RWMS_INSTANCE_NAME> - The RWMS installation topic name
identifier to which the warehouses messages are routed.

Configuration Example - Facility ID

7-6 Oracle Retail Integration Bus Operations Guide

■ These mappings must be edited so that each physical warehouse in RMS has
its own entry. The physical warehouses can be found by running the following
query in the RMS schema:

– SELECT wh FROM wh
 WHERE wh.wh = wh.physical_wh;

■ Before editing the file for multiple RWMS instance routing, the user should
know which RMS physical warehouses are to be routed to the particular
RWMS instances and the RWMS installation topic name identifiers.

■ For the example, in the diagram above, physical warehouse IDs 60 and 70 are
routed to RWMS instance WH1, where the RWMS installation topic name
identifier is 1 and RMS physical warehouse ID 80 are routed to RWMS
instance WH2, where the RWMS installation topic name identifier is 2. To
support this, the mapping in the rib-tafr.properties file should read:

– facility_id.PROD.60=1

– facility_id.PROD.70=1

– facility_id.PROD.80=2

2. Modify the rib-integration-flows.xml file:

■ RIB requires information on how to route the messages between the two
RWMS instances. This is done by adding new entries to the
rib-integration-flows.xml file.

■ By default the file contains entries for the RWMS instance "rib-rwms" and all
appropriate warehouse based adapter mappings point to the et<TOPIC_
NAME>WH1 topics. When adding multiple RWMS instances all the entries
for RWMS need to be duplicated for the second instance "rib-rwms2" and all
adapter mappings for the new instance need to point to et<TOPIC_
NAME>WH2 topics.

■ The entire RWMS PUBLISHERS section in the integration-flows.xml file needs
to be duplicated and all new entries need to be changed to the second RWMS
instance name of "rib-rwms2" for example:

– <node id="rib-rwms2.ASNIn_pub" app-name="rib-rwms2"
adapter-class-def="ASNIn_pub"
type="DbToJms"><in-db>default</in-db><out-topic>etASNIn</out-topi
c></node>

■ Each RWMS adapter mapping in the file that follows the et<TOPIC_
NAME>WH1 format needs to be duplicated as well but needs to point to
et<TOPIC_NAME>WH2. With the original adapter mapping and the new
adapter mapping to route to the second RWMS instance, for the Stock Order
adapter, the entry should be similar to the following example:

– <node id="rib-rwms.StockOrder_sub" app-name="rib-rwms"
adapter-class-def="StockOrder_sub"
type="JmsToDb"><in-topic>etStkOrdersFromRIBToWH1</in-topic><out-
db>default</out-db></node>

– <node id="rib-rwms2.StockOrder_sub" app-name="rib-rwms2"
adapter-class-def="StockOrder_sub"
type="JmsToDb"><in-topic>etStkOrdersFromRIBToWH2</in-topic><out-
db>default</out-db></node>

■ The rib-integration-flows.xml file can be edited and then deployed in the
following way:

Configuration Example - Facility ID

Message Transform, Filtering and Routing (TAFR) 7-7

– cd $RIB_HOME/application-assembly-home/rib-func-artifacts

– jar -xvf rib-func-artifact.war

– cd integration

– vi rib-integration-flows.xml

– Make the changes specified above.

– jar -uvf rib-func-artifact.war integration/rib-integration-flows.xml

3. Deploy the settings to the rib-tafr instance:

The new TAFR routing settings need to be migrated to the rib-tafr instance, to do
this run the following script found in the $RIB_HOME/deployment-home/bin
directory.

rib-app-deployer.sh -deploy-rib-app-ear rib-tafr

4. Deploy the settings to the functional artifact:

The new integration flow settings need to be migrated to the rib-func-artifact
instance, to do this run the following script found in the $RIB_
HOME/deployment-home/bin directory.

rib-app-deployer.sh -deploy-rib-func-artifact-war

Configuration should now be complete.

Changes to this configuration affect the following TAFRS.

■ AllocToStockOrder

■ ASNOutToASNInLoc

■ CustOrderToStockOrder

■ ItemLocToItemLocLoc

■ OrderToOrderWH

■ PendReturnToPendReturnWH

■ RTVReqToRTVReqLoc

■ TransfersToStockOrder

■ WOInToWOInWH

■ WOOutToWOOutWH

Note: For every new physical warehouse added to RMS the
rib-tafr.properties will require a new entry and the new settings will
need to be deployed to the instance.

Note: Multiple RWMS instances can be added as per the instructions
above.

Configuration Example - Facility ID

7-8 Oracle Retail Integration Bus Operations Guide

8

RIB in Operation 8-1

8RIB in Operation

This chapter address common issues faced while operating the RIB.

Operational Considerations
This section contains common issues that need to be thought about and addressed by a
retailer as they progress towards a production environment involving RIB. It is not a
comprehensive list, nor does it seek to answer the questions, since they are very
dependent on the retailer implementation. The intent of this section is to provide a
starting point for a site-specific RIB operations planning effort.

Alerts and Notifications
RIB has built in alerts and notification through JMX. An external system can subscribe
to all of the built-ins.

How to Configure Alerts and Notification
The RIB code has been instrumented to send alerts to notify interesting internal events
like the following:

■ Adapter status changes

■ Dynamically changing runtime configuration

■ Fatal error condition that needs user intervention

■ Inconsistent persistence store because of user error

The following are the alerting mechanism supported in RIB:

■ JMX – JSR-174, JSR-160

■ Email - JavaMail

Any standard JMX client. (E.g. JConsole) can subscibe to RIB JMX notifications and
receive notification/alerts. Follow the steps described in chapter 4 “RIB and JMX” to
configure jconsole and view notification/alerts in jconsole.

The JMX Client can also be coded to monitor jmx notifications and act upon the
notifications (sample code see below).

 public class Client {
/**
 * Inner class that will handle the notifications.

Note: See Chapter 4, "RIB and JMX."

Operational Considerations

8-2 Oracle Retail Integration Bus Operations Guide

 */
public static class ClientListener implements NotificationListener {
public void handleNotification(Notification notification,Object handback) {
// logic to act upon notifications goes here
echo("\nReceived notification:");
...
echo("\tSource: " + notification.getSource());
echo("\tMessage: " + notification.getMessage());
}
}

public static void main(String[] args) throws Exception {
...
echo("Connecting to the remote server");
String protocol = "t3";
Integer portInteger = Integer.valueOf(portString);
int port = portInteger.intValue();
String jndiroot = "/jndi/";
String mserver = "weblogic.management.mbeanservers.runtime";
JMXServiceURL serviceURL = new JMXServiceURL(protocol, hostname, port,
jndiroot + mserver);
...
jmxc = JMXConnectorFactory.connect(serviceURL, h);
ClientListener listener = new ClientListener();
// Get an MBeanServerConnection
//
mbsc = jmxc.getMBeanServerConnection();
// Construct the ObjectName for adding listener to
ObjectName mbeanName = new ObjectName(
"rib-rms:appName=rib-rms,name=ribLogManager");
// Add notification listener on ribLogManager mbean
//
echo("\nAdd notification listener...");
mbsc.addNotificationListener(mbeanName, listener, null, null);
echo("\nWaiting for notification...");
echo("\nClose the connection to the server");
jmxc.close();
}

}

For email alerts, email IDs need to be configured at install time for RIB kernel to send
out emails. The RIB deployment config file (rib-deployment-env-info.xml) contains
notifications tag for each rib-<app> as below. Set all the values correctly to configure
email alert for that app. RIB kernel sends out poison messages to email ids configured
at install.

Example:

 <notifications>
 <email>
 <email-server-host>mail.example.com</email-server-host>
 <email-server-port>25</email-server-port>
 <from-address>rib-email@example.com</from-address>
 <to-address-list>rib@example.com</to-address-list>
 </email>
 <jmx/>
</notifications>

Operational Considerations

RIB in Operation 8-3

RIB Log File Monitoring
Because RIB is a subsystem that runs with no console, it is important to monitor the
various log file that are created. Not only for the content (looking for exceptions), but
also their size and growth.

RDMT includes several tools to assist in scanning and can provide examples on how to
customize them to conform to a particular site.

Log File Archive and Purge
RIB uses log4j2 for all of its logging control. It manages the logs size via its control file.

In various phases of deployment and in triaging a problem it is often desirable or
necessary to archive the logs so that the logs are smaller and scanning them by tools or
by people is easier. RDMT includes tools to assist and can provide examples on how to
customize them to conform to a particular site.

Hospital Size and Growth
The Hospital tables, wherever they are, need to be monitored for size and growth.
They have a huge effect on the performance of the entire RIB. As it gets larger, several
interfaces dramatically slow down.

RDMT includes tools to assist and can provide examples on how to customize them to
conform to a particular site.

RMS MFQ and RWMS UPLOAD Tables Sizes
The MFQ and Upload table size and growth needs to be monitored. They can indicate
a poorly performing (hung) adapter or forecast a slow interface because the Hospital
tables are filling. In the case of some of the slower interfaces there will be slow down
of dependency records being processed.

RDMT includes tools to assist and can provide examples on how to customize them to
conform to a particular site.

Remote RWMS
If the situation exists where a retailer is deploying instances of RWMS in different
geographic locations connect by a WAN then there are several RIB deployment
architectural alternatives that need to be considered and decided.

RIB Components Start and Stop
The RIB components must be started and stopped in particular order, and there are
recommendations on when and how to do this and tools to assist in building out
operational processes to suite a retailer’s site requirements.

Note: RDMT also sends email alerts. For more information on
configuring email alerts in RDMT, see the RIB Support Tool Guide.

Note: See Apache Software Foundation
http://logging.apache.org/log4j2/2.x/manual/index.ht
ml for details.

http://logging.apache.org/log4j/docs/documentation.html

Operational Considerations

8-4 Oracle Retail Integration Bus Operations Guide

It is always recommended that the order of startup be SUB, TAFR, PUB and the
shutdown be in the reverse order. RIB supplies tools to control the adapter start and
stop process in the proper sequence in the rib-app-builder tool called
rib-adapter-controller.

RIB Operation Support Staff Requirements
The RIB application environment often presents a new dimension to a retailer's
infrastructure, and there are training and support issues that do not fit the existing
organization and current staff skill sets.

RIB Components - Source Code Control
RIB contains code and configurations that are critical to the Enterprise. This version of
RIB is designed to be centrally managed and contains tools for tracking inventory and
versions and configuration changes. A backup strategy also needs to be developed
specific to the site.

RIB has an inventory tracking mechanism that is maintained by the tools in the RIB
Application Builder. These tools also manage the application of defect fixes and
tracking the defect fixes applied in the inventory.

RIB HA Requirements
RIB is usually considered a HA requirement, so an architecture and operations plan to
handle this needs to be developed.

RIB Disaster Recovery
In addition to the HA requirements, there is the issue of message retention, auditing
and recovery. It is common for an end-point application to experience an issue such as
a crash that requires recovery or a rebuild. Syncing the data that the other applications
have been publishing and subscribing to during the down time presents a major
challenge.

It is important for a site to develop a plan and approach for this. In a large volume site,
the JMS topics can build to huge numbers very quickly and over-run a system or the
ability of the recovered system to catch-up in a time frame the business finds
acceptable.

Note: See "RIB Application Builder Tools."

Note: See Chapter 2, "Application Builder."

Note: See "check-version-and-apply-defect-fix."

Note: See the Oracle Retail Integration Bus Installation Guide: The RIB
and Oracle Database Cluster (RAC)

Oracle® WebLogic Application Server High Availability Guide

Oracle® Database Administrator's Guide 12c Release 1

RIB Operation Support Staff Requirements

RIB in Operation 8-5

RIB Administration Roles and Security
The users and roles for the production environment need to be determined and put in
place.

RIB Operation Support Staff Requirements
Regardless of the organization structure or where the staff reports to, there are two
distinct sets of roles and capabilities needed: the RIB system administrator role and
RIB application administrator role. The number of persons filling those roles is
dependent on the size of the deployment, breadth of the products being integrated,
levels of customization and schedule compression.

Integration support is a team effort, with one or two strong RIB administrators who
can work through difficult failure modes using the RIB logs to help isolate the issue
and determine type. Users with knowledge of Oracle Retail application (such as RMS,
RWMS, and SIM) must also have a good level of RIB understanding. As a team, they
triage issues and then work on them. By the Integration Test phase of an
implementation, the types of RIB failure issues become more related to complicated
data sets for business case tests. Gross level functionality issues are generally solved
by then.

Production requirements are similar, but need to reflect the realities of pager rotation,
24x7 issues, as well as how many applications are deployed and over what geography.

RIB System Administrator
This section describes the RIB System Administrator role and responsibilities.

Technology Background
■ UNIX (strong) - shell scripts and Unix tools

■ Oracle Database and Stored Procedures

■ Oracle WebLogic Application Server (strong)

■ Java EE (strong)—ability to read and understand exceptions and log files.

■ Message Oriented Middleware (MOM) or communication technologies.

Experience or Training
■ Oracle WebLogic Application Server

■ RIB

■ Java EE concepts

■ JMS technology

Areas of Responsibility
■ Installation of WLS and patches

■ Configuration of Oracle WebLogic Application Server

■ Installation and configuration of RIB

Note: See "RIB Audit Logs."

Hospital Monitoring and Maintenance

8-6 Oracle Retail Integration Bus Operations Guide

■ Support and configuration of Adapters and patches

■ Operational issues such as backup/restore, failure analysis using RIBLOGS and
Application Server logs as well as tools and various UNIX scripts and programs,
and aid in the determination of error causes resulting in RIB Hospital entries.

RIB Application Administrator
This section describes the RIB Application Administrator role and responsibilities.

Technology Background
■ UNIX— shell scripts, Unix tools

■ Oracle Database and Stored Procedures

■ Oracle Retail Applications—strong (RMS, RWMS, RPM, and SIM)

Experience or Training on
■ RIB

■ Oracle Retail Applications

■ JMS technology

Areas of Responsibility
■ Operational support and failure analysis using RIBLOGS and the RIB Hospital.

Hospital Monitoring and Maintenance
Under normal operations, messages go into the hospital, get retried and are
automatically deleted from the hospital. But if there is a steady increase in hospitalized
messages, the reasons should be immediately determined and addressed.

Triage of messages placed in the RIB Hospital is a time consuming task. This is a
difficult task when only Oracle Retail applications are involved; adding other outside
applications, as many retailers do, further complicates this process. Problems can be
introduced at the application level, in the extract, or the transformation process.

Having the integration team take a first look at the messages is another common
practice at Oracle Retail customer sites. This team's success at resolving and correcting
data issues is dependent on their access to business analysts who understand the
desired function.

The RIB Hospital tables need to be monitored for size and growth. The number of
entries in the RIB Hospital has a large impact on the performance of the entire RIB.
Each adapter checks the RIB Hospital for previous related failures for each message (to
see if the message should be held until any previous errors have been resolved). As the
RIB Hospital gets larger, interfaces can dramatically slow down.

The RIB Hospital is a crucial component in the operation and performance of RIB.
Processes and procedures to handle it are very important, and should be decided on
and practiced early. It is suggested that discussions and planning be started as soon as
possible in the implementation phase to work through the possible scenarios and
develop tools and procedures to handle them.

There are tools in RDMT that can be leveraged to not only build monitoring scripts but
to aid in the initial triage of issues.

Hospital Monitoring and Maintenance

RIB in Operation 8-7

Oracle Retail Integration Bus Hospital Administration (RIHA) is the recommended
tool for maintenance of the Hospital. It understands the Hospital table structure and
how to appropriately correct, submit and, as needed, delete messages. The use of tools
such as SQLDeveloper or TOAD is discouraged. Although they allow similar
activities, they do not provide the safe guards that RIHA has to maintain the integrity
of the tables and the JMS.

RIB Hospital tables are packaged with applications and therefore reside in the base
schema of the applications. To reduce maintenance, upgrade and support concerns,
users may choose to extract Hospital tables from application schemas.

Using the RIB Application Builder tool, error Hospital tables can be removed from the
application space and placed under the control of the RIB kernel, where data sources
meant for Hospital-related database operations are differentiated from application
calls (such as GetNext and Consume). The data source, hosp-managed-datasource,
supports the separation of the Hospital schema from the application schema.

To facilitate the externalization of the RIB Hospital tables from the application schema,
two placeholders (one for PL/SQL applications and one for JavaEE applications) exist
in the rib-deployment-env-info.xml file, as described in Chapter 3, "Backend System
Administration and Logging ."

Hospital Monitoring and Maintenance

8-8 Oracle Retail Integration Bus Operations Guide

9

Testing RIB 9-1

9Testing RIB

The Oracle Retail Integration Bus is difficult to test as a stand-alone sub-system. It is
part infrastructure and part application, and needs to have the integrating application
end-points for even a simple installation.

To aid in the initial installation and evaluation of RIB, a test harness has been
developed and made available. The test harness is comprised of these components:

■ plsql-api-stub—An API simulator of the PL/SQL API applications, RMS, RFM,
and RWMS.

■ javaee-api-stubs—An API simulator of the applications exposing JavaEE APIs,
SIM, RPM, and AIP.

■ RDMT—The RIB Diagnostic and Monitoring Tool kit is a collection of command
line tools, written in UNIX shell script along with supporting Java classes
packaged in jar files.

■ Sample XML files—These samples conform to the message payloads (XSDs).

■ Message auditing—This is a feature that allows end-to-end auditing of a message
as it passes through all RIB components.

Initially, installing and deploying RIB requires connecting to the Oracle Retail
applications to verify that messages could flow end to end. RIB installation requires
that end points exist and respond. To test it, the end points must be configured to
publish or subscribe.

This test harness is completely independent of the applications, but uses the same RIB
artifacts (payloads and Oracle Objects) as the actual applications. Additional tools and
artifacts support the construction of test messages and the publication of these test
messages.

RIB Test Harness
The ability to initially install and deploy RIB has always been difficult because of the
need to connect to the Oracle Retail applications to verify that messages could flow
end-to-end. RIB installation requires that end-points exist and respond, and to test it
requires that the end-points are configured to publish or subscribe.

The dependency on the application end-points can be not only a scheduling issue, but
to produce messages for testing can require data seeding and coordination with the
individual application teams.

Note: See "RIB Test Harness."

See "RIB Logging."

PL/SQL Application API Stubs

9-2 Oracle Retail Integration Bus Operations Guide

RIB has several tools, including application API simulators that combine to provide a
test harness that allows for RIB installation, configuration, and testing. These were
developed to address the requirement for the full application to be present to validate
a RIB installation as well as providing a tool for integration and system tests.

Master Checklist
This check list covers all of the sequential steps required to create a stand-alone RIB
Test Harness.

PL/SQL Application API Stubs
The plsql-api-stubs is an API simulator designed to act in the same manner as when
RIB is connected to the actual application, but at the same time, have means to process
specific status and other parameters from a "stubbed" application. This set of tools is
designed to emulate those applications exposing PL/SQL APIs to RIB: RMS, RFM, and
RWMS.

Task Notes

Create the rib-home Follow the guidelines in the Oracle Retail Integration
Bus Installation Guide and the Oracle Retail Integration
Bus Implementation Guide for prerequisites.

Do not invoke the installer yet.

Install the javaee-api-stubs and
plsql-api-stubs into the
rib-home/tools-home.

Follow the instruction in the tools section.

Install the pl/sql api stubs Follow the instruction in the tools section. The
plsql-api-stubs can simulate both RMS and RWMS
from the same user, but if it is desired to test full flow
including hospital, then install to two users.

For the PL/SQL app subs install a set
of Hospital Tables in the same user
account.

See the Oracle Retail Integration Bus Installation Guide.

See note about two stubs.

Deploy the javaee-api-stubs. Follow the instruction in the tools section.

Install RIB using the stubs as
application end-points.

See the Oracle Retail Integration Bus Installation Guide.

PL/SQL Application API Stubs

Testing RIB 9-3

Architecture and Design

The tool set contains three main subsystems

■ A common set of PL/SQL packages, stored procedures and database tables. These
are used by the other subsystems.

■ A thin API-specific set of packages and stored procedures that RIB directly
interfaces with. These interfaces map calls to the common subsystem to output
parameters or statuses.

■ The Stub Administration and Setup Application. A set of simple application
function and a character based menu that allow installation and set up of specific
behaviors for a specific API.

The Common Subsystem
The purpose of the common subsystem is to provide a standard means of
implementing specific behavior by an API. The stubbed APIs simulate a real
application by using the common subsystem which will be loaded during the
installation through JDBC calls to the database. It is comprised of a group of tables,
sequences and other database objects created for each stubbed API.

There is a set of tables and sequences created for each GETNXT procedure. These
tables are generated with the OUT and IN/OUT parameters of the GETNXT
procedure as the fields. The user is prompted to enter data into these tables when he is
trying to test for a particular API.

For example:

If there is a GETNXT procedure in a package called RMSMFM_ORDER then the
common subsystem for this procedure would be a table RMSMFM_ORDER_GE_TBL
and a sequence called RMSMFM_ORDER_GE_SEQ created in the database.

For each PUB_RETRY Procedure in the API a set of tables and sequences are created
the same as GETNXT except that the names of tables and sequences have PU instead
of GE

PL/SQL Application API Stubs

9-4 Oracle Retail Integration Bus Operations Guide

For a CONSUME API there is a table called RIB_CONSUME created with the O_
STATUS_CODE, O_ERROR_MESSAGE and EXCEPTION_TO_THROW as the fields. If
the user needs the CONSUME to throw a specific type of exception then the exception
can be uploaded into the RIB_CONSUME table, so when the consume procedure is
executed it will throw the specified exception type.

The Thin API layer
The API subsystem consists of packages and stored procedures that have the exact
same signature as those found within the real application. This layer queries the
appropriate common subsystem tables, sequences and other database objects to get the
appropriate out parameters. These are then mapped to the API specific parameters of
the stubbed application API.

The implementation of the stubbed API is written as Java classes and loaded into the
database during installation. The PL/SQL stubbed APIs are implemented in a way
that these APIs internally call the Java functions present in the classes and the PL/SQL
OUT parameters are mapped with the Java return types.

So when RIB calls the GETNXT stubbed API as it normally calls the GETNXT API of a
real application, the stubbed API internally calls the Java class that uses the common
subsystem tables to get messages as a CLOB. It then converts the CLOB to an Oracle
Object and maps it with the PL/SQL OUT parameters and returns.

The Stub Administration and Setup Functions
These are a set of simple application functions written in Java and wrapped by shell
scripts and a character based menu that allow installation and set up of specific
behaviors for a specific API.

Configuration Files
The following are /conf directory files.

Shell Script Description

stubbymenu.sh Simple character based menu that calls the wrapper scripts.

install.sh Wrapper script that calls the Java classes to install RIB Objects
and stubby Java classes dynamically created from the metadata
into the database (see stubby.properties).

configure_api.sh Wrapper script that calls the Java classes to set up the behavior
and messages of a given consume or getnxt API.

read_metadata.sh Wrapper script to call a Java utility that will read a PL/SQL
application (RMS, RWMS) schema and create a metadata file as
input to create the stubbed APIs.

Configuration File Description

stubby.properties Primary configuration file. Contains database url info
and the metadata scripts to load.

commons-logging.properties Apache logging conf

simplelog.properties Apache logging conf

SqlToJavaMapper.java Generated from the storedproceduremetadatxml
specified in the Stubby.properties file.

Note: Do not edit.

PL/SQL Application API Stubs

Testing RIB 9-5

Installation and Setup
Complete the following steps:

Prerequisite Tasks

Installation

StoredProcedureMetaData_
RWMS.xml

Note: Do not edit.

StoredProcedureMetaData_
RMS.xml

Note: Do not edit.

Task Notes

Select a location for the
plsql-api-stubs to reside.

Recommended location is in the
rib-app-builder/rib-home tree structure:

rib-app-builder/rib-home/tools-home

Get the latest version of the
plsql-api-stubs.

The plsql-api-stubs is packaged as a stand-alone tar.

Get the latest version of the
retail-public-payload-database-objec
t-types.

retail-public-payload-database-object-types-<version>.j
ar is packaged with the RibFuncArtifacts and should be
extracted from there.

If this installation is in rib-home then the objects will be
located in the
rib-home/download-home/rib-func-artifacts

Create a database user that will own
the plsql-api-stubs schema and the
objects.

Note: Do not share the
plsql-api-stubs schema with any
other test-tools.

The user requires no special permissions.

CREATE USER <plsql stub user>

PROFILE "DEFAULT"

IDENTIFIED BY <plsql stub password>

DEFAULT TABLESPACE "USERS" TEMPORARY
TABLESPACE "TEMP";

GRANT "CONNECT" TO <plsql stub user>;

GRANT "RESOURCE" TO <plsql stub user>;

This version requires a path to
jdk1.8 for compiling Java stored
procedures.

Be prepared to specify the path when prompted.

Task Notes

Extract the tar file.

cd
rib-app-builder/rib-home/too
ls-home

tar xvf
PlsqlApiStubs16.0.0ForAll16.x.
xApps_eng_ga.tar

This will create the file folders and place the executables and
configuration files.

In rib-home/tool-home there is a directory already. It is a
placeholder and this will over write it.

Place the database objects file
in the scripts subdirectory

Configuration File Description

PL/SQL Application API Stubs

9-6 Oracle Retail Integration Bus Operations Guide

The installation is now complete, and the tool is ready to be used.

Configure_API
The next step in using the tool set is to configure the desired behavior of the APIs
under test. Use of the tool requires that the user understand the APIs involved at
enough detail to understand and answer several prompts during the configuration
process. See the Oracle Retail Enterprise Integration Guide and the operations guides for
the RMS and RWMS applications.

Extract the
retail-public-payload-database
-object-types-<version>.jar
into the scripts directory.

unzip
retail-public-payload-database
-object-types-<version>.jar

Edit /conf/stubby.properties
to point to the database url
and user/password (see
prerequisites).

vi stubby.properties

Database details

hostname= <host name>

port= <port>

sid=ora12c

dbuseralias=rms16dbuseralias

Base Script File names This is where the selection of either RMS or RWMS objects is
made. There can be only one per installation.

Execute the installation using
menu item or install.sh in the
stubby base directory

cd
rib-app-builder/rib-home/too
ls-home/ plsql-api-stubs

./install.sh

Or

./stubbymenu.sh

Then select the menu item to
install.

The installation performs these actions:

Runs a cleanup that will remove any existing RIB related
tables, sequences, packages and types installed in the
configured user schema.

Runs all the scripts files in the sub-directory.

Runs a drop Java utility to remove any existing classes in the
configured user schema. Note: The warnings generated by
the drop Java can be ignored.

Runs the load Java utility to load Java classes as objects in the
configured user schema.

All the RMS and RWMS packages are created in the
configured user schema.

The PLSQL stubby needs its own schema. It cannot share its
tools with the other test tools.

Install Hospital tables See the Oracle Retail Integration Bus Installation Guide.

Enter the complete path for
jdk1.7:

This version of stubby and the RDBMS require jdk1.7 for
compiling Java stored procedures.

Note: The database credentials setup must be complete before
configuring the API.

Task Notes

PL/SQL Application API Stubs

Testing RIB 9-7

Prerequisites

Execute the configure_api.sh script or select the menu item and respond to the
prompts.

Prompts during configuration of a GETNXT and PUB_RETRY.

Prompts during configuration of a CONSUME.

Task Notes

Create a sub-directory for the test messages
to configure the API to use. These can be
any location on the same host where the
tool user has permissions to read.

RIB ships with sample xml files for each
message family. These are packaged with
RDMT and are located under the testmsg
subdirectory in the rdmt directory.

retail-public-payload-xml-samples-<version>.ja
r

These should be used as a basis for testing and
modified to suit the test cases.

Understand and know which API and its
type to configure.

For example:

API Type: GETNXT

API Package name: RMSMFM_ITEMS

Message Type: ITEMCRE

API Types supported:

GETNXT

CONSUME

PUB_RETRY

Prompt Notes

Status Code the GETNXT API should return:

S for Success, H for hospital, N for no message, and E
for exception

Case sensitive

Enter Error Message to be returned (to be entered only
for H or E status codes).

Enter data for O_MESSAGE The complete file path of the
message to uploaded

Enter Business Object ID to be returned. Optional

Do you want to enter Routing Information for the
message? [Y/N]:N

Enter the Thread Value for the message.

Enter the number of times the message must be
replicated.

Prompt Notes

Enter Status Code the Consume should return
[S-Success]/[E-Error]

Enter the Exception to be Thrown
eg:nullpointerexception:

Enter the Exception Message to be Thrown.

The Exception_To_Throw and Error
Message with only be prompted if the
status code is E.

Enter Message Type the Consume should return
[CRE,MOD,DEl] eq:ITEMCRE:

Java EE Application API Stubs

9-8 Oracle Retail Integration Bus Operations Guide

Java EE Application API Stubs
The javaee-api-stubs is an API simulator designed to acts in the same manner as when
RIB is connected to the actual application, but at the same time, have means to process
specific status and other parameters from a stubbed application. This set of tools is
designed to emulate those applications exposing Java EE APIs to RIB: SIM, RPM, and
AIP.

Architecture and Design

Installation and Setup
Complete the steps described below.

Prerequisite Tasks

Task Notes

Select a location for the javaee-api-stubs to
reside.

Recommended location is in the
rib-app-builder/rib-home tree structure:

rib-home/tools-home/javaee-api-stubs/rib-ho
me/tools-home/ javaee-api-stubs

Get the latest version of the javaee-api-stubs. The javaee-api-stubs is packaged as a
stand-alone tar.

Java EE Application API Stubs

Testing RIB 9-9

Installation

Create a database user that will own the
javaee-api-stubs objects.

The user requires no special permissions.

CREATE USER <javaee stub user>

PROFILE DEFAULT

IDENTIFIED BY <plsql stub user>

DEFAULT TABLESPACE USERS
TEMPORARY TABLESPACE TEMP;

GRANT CONNECT TO <javaee stub user>;

GRANT RESOURCE TO <javaee stub user>;

Task Notes

Determine the WebLogic instance to which
to deploy the
javaee-api-stubs-<version>.ear.

It is recommend but not required that an
instance separate from the rib-<app> instance is
used.

Using the WebLogic console, select the
WebLogic instance and then deploy
javaee-api-stubs-<version>.ear.

See WebLogic deployment documentation for
more details on how to deploy a Java EE
application.

Using the WebLogic console, configure the
database resources for the javaee-api-stubs
JDBC resources.

■ Log in to the WebLogic administration
console

■ Navigate to the Data Sources sceen
using Services > JDBC > Data Sources
menu.

■ Click New. Enter the following values
in the respective fields.

Name:
javaee-api-stubs-non-xa-managed-datas
ource

JNDI Name: jdbc/OracleRibDsNonXA

Database Type: Oracle

Database Driver: Oracle’s Driver(Thin)

■ Click Next. Uncheck Supports Global
Transactions.

■ Define connection properties for the
database user in question.

■ Verify the configuration by clicking Test
Configuration.

■ Do not proceed if the test fails. Ensure
that the configuration is accurate.

■ Select target as the server that would
host javaee-stubby (for example,
javaee-stubby-instance). Click Finish.

See WebLogic documentation for details.

Task Notes

Java EE Application API Stubs

9-10 Oracle Retail Integration Bus Operations Guide

Configuration of the rib-<app> to use Injection Stubs

Create one more data source named
javaee-api-stubs-xa-managed-datasource.
Navigate to the Data Sources screen using
Services > JDBC > Data Sources menu.

■ Click New. Enter the following values
in the respective fields.

Name:
javaee-api-stubs-xa-managed-datasourc
e

JNDI Name: jdbc/OracleRibDs

Database Type: Oracle

Database Driver: Oracle’s Driver (Thin
XA)

■ Click Next for Transaction Properties.

■ Define connection properties for the
database user in question.

■ Verify the configuration by clicking Test
Configuration.

■ Do not proceed if the test fails. Ensure
that the configuration is accurate.

■ Select target as the server that would
host javaee-stubby (for example,
javaee-stubby-instance). Click Finish.

■ Verify that both data sources are listed
on Services > JDBC > Data Sources
screen.

Install Hospital tables See the Oracle Retail Integration Bus Installation
Guide.

Task Notes

Decide which rib-<app> to configure for. The stubbed implementation has been written
to insert the payload to a database once inject
has been called. Injectors.xml has been
configured to include all the SIM subscribing
families.

Using RIB Application Builder or the RIB
Installer configure and deploy the rib-app
using the jndi information of the
javaee-api-stubs in place of the app.

<app id="sim" type="javaee-app">
<jndi>
<url>t3://javaeestubhost.example.com
:<port>/javaee-api-stubs</url>
<factory>weblogic.jndi.WLInitialContextFa
ctory</factory>
<user-alias>sim_jndi_
user-name-alias</user-alias>
 </jndi>
</app>

Task Notes

10

Performance Considerations 10-1

10 Performance Considerations

The chapter discusses the performance characteristics of RIB, the factors that affect it,
and a process to test it.

Performance of RIB within a customer site is critical to the performance of the
business, and is determined by factors specific to a given deployment. Because of this
is, a Performance Test is recommended as part of every deployment plan. Even if
formal testing is not planned, the use of the tools and processes discussed can measure
the relative performance of the RIB sub-system and can be used to diagnose
bottlenecks.

It is beyond the scope of this document to discuss all of the tools and techniques
available at the host, network, database, and application server level.

See the Oracle Integration Bus Implementation Guide.

Performance Factors
The performance of each of these components affects the overall performance of the
system:

■ Application Server topology and configuration.

■ RIB deployment approach.

■ Hardware sizing and configuration of the following:

– RIB hosts

– Applications connected to RIB

– JMS provider host

– RIB Hospital hosts

There are other factors that determine the performance of the overall system. Some of
these factors in a RIB environment are:

■ Number of channels configured

■ Number of messages present in the topic

■ Size of the message

■ Database clustering

■ Application Server topology

■ Number of TAFRs in the processing of the message

■ Message aggregation

Performance Requirements

10-2 Oracle Retail Integration Bus Operations Guide

Performance Requirements
For each RIB message family, volume requirements are almost always described for
the end-to-end message flow, from publication to completion of subscription by all
Oracle Retail applications. Retail businesses express volume requirements in terms of
details per hour and per day.

Each message family has its own volume requirements, and any given family may
have an intermediate component between the originating publication and the end
subscriber. These components are called TAFRs (Message Transform, Filtering, and
Routing). This is an important concept, because it means that in a given flow, a
message published by the source system may be subscribed to and then re-published
by a TAFR before it is subscribed to by the destination application. This is true for
many Message Families.

The following are examples of volume requirements:

Message construction is the same for all Oracle Retail Publishing applications and RIB
adapters. There are configuration control points that allow flexibility in the size of the
message. The application side has the ability to specify the number of details per
message. There is a RIB setting that controls the aggregation of the messages
(ribMessage) within the larger RibMessages envelope. There is a setting that controls
the number of RibMessages published within a commit to the JMS.

See "Message Aggregation."

Multi-Channel
RIB is designed to support parallel message handling to increase throughput by way
of a mechanism called multi-channel, which logically partitions the flow of messages
within the JMS topic so that multiple publishers and subscribers can simultaneously

Family Details Per Day Details Per Hour

Purchase Orders 355,000 355,000

ASN Inbound 19,200,000 19,200,000

Appointments 240,000 30,000

PO Receipt 240,000 30,000

Store Receipt 4,000,000 2,000,000

Transfers 1,000,000 250,000

Stock Order Allocation 600,000 75,000

Stock Order Transfer 1,000,000 75,000

Stock Order Status 600,000 75,000

ASN Outbound (BOL) 285,000 285,000

Promotions 5,000,000 250,000

Item Locations 1,000,000 300,000

Items 100,000 20,000

Note: Although these examples are for illustration, they are
representative of actual customer requirements.

End-to-End Timing

Performance Considerations 10-3

use the same JMS topic without contention or interference and preserve publication
message ordering within the logical channel.

Every adapter instance of a publisher, subscriber, or TAFR configured in RIB is
considered to belong to a logical channel for processing messages. Multi-channel
adapters are multiple adapter instances for the same message family, each processing
messages asynchronously and in parallel. When multiple channels are used, they must
be defined and configured across all publisher, subscriber, and TAFRs that participate
in an end-to-end message flow to and from all Oracle Retail applications for that
message family.

Each messaging RIB component involved in publishing or subscribing to a logical
channel is distinctly identified by a JMS Message property known as "threadValue"
with a specific value. This JMS message property and the value it contains define the
logical channel.

JMS Message properties are user-defined additional properties included with the
message. Message properties have types to define application-specific information that
message consumers can use to select the messages that interest them. Each RIB
subscriber has the "threadValue" property, and this value is part of its JMS Durable
Subscriber selector and each RIB publisher sets the "threadValue" JMS message
property to a specific value for each message it publishes.

Oracle Retail RIB components are capable of being multi-channeled by making
configuration changes to the system. The base RIB configuration provides each
message family with one channel, where all components set or look for "threadValue"
of 1 (one). The naming convention and the RIB kernel code identify the RIB adapters
by adding the logical channel to the end of the adapter class name.

The diagram below demonstrates the multi-channeling of the Purchase Order flow to
two channels.

End-to-End Timing
RIB performance is judged by the average time a message family detail takes to flow
from a publisher to consumption by all active subscribers. This is not a straightforward
measurement.

Message throughput is not a calculation of the sum of the individual message times.
Although the average time per message will remain fixed, messages are processed in
parallel. So the total time to process n messages on a single channel will not be the
serial sum of the individual messages.

Additionally, it is possible to configure multiple logical channels to increase overall
throughput.

How to Calculate Average Message Size
It is important to understand the average messages in an integration flow. Where
interfaces are separated into messages families with differing payloads per message

End-to-End Timing

10-4 Oracle Retail Integration Bus Operations Guide

type, these calculations can be difficult. This section outlines an approach for arriving
at averages using the sample XML files that ship with RIB.

RIB delivers sample files generated for each message family.

In practice, of course, this size will vary depending on the number of characters that a
description element may contain, but for performance testing calculations, this is a
reasonable start for calculations.

The RIB message envelope, called a RibMesssages contains a variable number of
ribMessage nodes. Within a ribMessage node is a message family payload. A
minimum payload for this exercise is defined as one header and a variable number of
details.

The general process to determine the size in bytes of a message family message per
detail using the RIB sample xml messages and xsds is as follows:

■ Determine the RIB envelope size (RibMessages elements + ribMessage elements).

■ Determine the size of a single header.

■ Determine the size of a detail.

RIB has a standard message envelope (RIBMessages.xsd) that can be easily calculated
exclusive of the message family payload.

Each message family is comprised of message type and an associate payload (for
example, POCre uses PODesc.xsd). These relationships are defined in the Oracle Retail
Enterprise Integration Guide.

The sample XML messages for each release are packaged in the functional artifacts
war file and with RDMT in the rib-home/tools-home/rdmt/testmsgs directory.

Select the message payload file and look at the byte count. This will always be 1
header and 1 detail. Be aware that this relationship varies by family and can be
complex for some message types (for example, ItemCre and ItemDesc.xsd) where
optional details can be present.

Select the payload file and remove all detail nodes and look at the byte count. This will
be the standard header. Use the same procedure for the details. This will be the detail
size.

Note: Several families have variable types of details per header so a
close investigation is required to understand what the relationship is
and what a representative message can be.

Note: An alternative is to use the audit feature of RIB. These
messages can then be used to estimate the average sizes.

ribMessage header elements no payload 823 Bytes

RibMessages header elements 324 Bytes

RibMessages with 1 or no payload 1147 Bytes

Example Message - PODesc

Header Size (PODesc no detail) 9413

End-to-End Timing

Performance Considerations 10-5

The next step is to determine the average number of details per message. This will
vary based on the business needs and the selected RIB configuration.

See "Message Aggregation."

Using the desired number of details per message, this calculation is the result:

For example:

Purchase Order Example

The following is an example using the default settings.

RIB messages created by the Order publishing adapter (details per message):

■ Contains a maximum of 20 ribMessages per RibMessage.

■ Has 20 details per PODesc payload in a ribMessage.

For a 400 Details PO Message the calculation is:

RibMessage = 1 RibMessages header + 20 ribMessage headers + 20 PODesc + 400
PODtls

1 Detail Size (PODtl) 1943

Total 1 RibMessages + 1 ribMessage + 1 Header + 1 Detail Avg Message Size

Total 1 RibMessages + 1 ribMessage + 1 PODesc + 1 PODtl 12,053

ribMessage header elements no payload 823

RibMessages header elements 324

RibMessages with 1 rM no payload 1147

Message - PODesc

Header Size (PODesc no detail) 9413

1 Detail Size (PODtl) 1943

Total 1 RibMessages + 1 ribMessage + 1 PODesc + 1 PODtl 12,053

ribMessage nodes 20

Details 400

RibMessages Header (1) 324

ribMessage Header (20) 16,460

PODesc (20) 188,260

PODtl (400) 777,200

Total Bytes/Msg 982,644

Understand the Message Family

10-6 Oracle Retail Integration Bus Operations Guide

Using the example volume requirement for the Purchase Orders, and using the same
RIB message configuration settings:

So:

End-to-End — 1 message with 400 details can take a max of 4.058 seconds.

End-to-End — 982,644 Bytes can take a max of 4.058 seconds (which in this example is
400 details).

So:

982644 Bytes/4.058 sec = 242149.83 bytes/sec = 0.2421498 MB/sec Total end-to-end
throughput to meet the Purchase Order example requirements.

Understand the Message Family
These are end-to-end processing time requirements across the entire message flow
from Publisher to Subscription completion.

The following diagram is a generic message flow.

To continue the Purchase Order example, the requirements and timings have to be
broken down further. The Purchase Order flow has a TAFR as well as multiple
subscribers. For purposes of this example, consider the Subscribers Consume times as
equivalent. As the diagram depicts, for a flow like the Purchase Orders, there are
multiple components and for a single message to flow there will be, at a minimum, a
message published twice and subscribed twice, as well as a marshalling and
un-marshalling of the message twice (Family dependent). There will be at least one,
and possibly two, Hospital Dependency checks as well.

The following diagram is a logical view of the Oracle Retail Purchase Order flow.

Details per hour requirement (Total Through-put) 355,000

Details per Message 400

Total messages per hour (355,000/400) 887

Message/sec required (982 KB each - 60*60/887) 4.058

RIB Timing Log Analysis

Performance Considerations 10-7

The following diagram is a functional, detailed view of the Oracle Retail Purchase
Order flow.

RIB Timing Log Analysis
RIB performance is a complex subsystem to measure. It involves not only host level
performance, but database, network, and application server subsystems performance.
To measure the RIB components’ timing characteristics available for analysis, the RIB
kernel code logs events as it processes them. The logging of these events is through
log4j2; timings are logged per adapter. Once the timings are enabled the events log
continuously to the file. The RIB RDMT supplies a post-processing tool to take the
timing file and produce summary reports.

This table lists the currently predefined times that are tracked in the RIB Timings logs.
The description is the definition of interval calculation.

Timing Type Description

T1 PUB_B4_GETNXT_CALL Time interval between start of the publisher
and the actual GETNXT call.

T2 PUB_TIME_IN_GETNXT_CALL Time taken by the GETNXT call to the plsql
app.

T3 PUB_TIME_IN_EJB_PUBLISH_CALL Time taken for the publish call in the EJB,
includes RIB overhead surrounding the actual
publish to the JMS.

T4 PUB_TOTAL_PUBLISH_TIME Time taken for the complete PUB process =
GETNXT + hospital dependency + publish +
commit.

T5 PUB_TIME_IN_REAL_JMS_PUBLISH Time taken to publish a message to the AQ
JMS.

RIB Timing Log Analysis

10-8 Oracle Retail Integration Bus Operations Guide

Purchase Order Example

Order_pub_1 (Publisher)

OrderToOrderTafr_1 (TAFR)

Order_sub_1

T6 SUB_TIME_IN_CONSUME_CALL Time taken by the CONSUME call to the plsql
application.

T7 SUB_TOTAL_SUBSCRIBE_TIME Time taken for the complete SUB process =
CONSUME/INJECT + hospital dependency
+ subscribe + commit.

T8 SUB_TIME_IN_EJB_SUBSCRIBE_CALL Time taken for the subscribe call in the EJB,
includes RIB overhead surrounding the actual
subscribe.

T9 SUB_TIME_IN_INJECT_CALL Time taken by the INJECT call to the Java
application.

T10 TAFR_TOTAL_MSGPROCESS_TIME Time taken in the complete message tafring
Process = TAFRing + hospital dependency +
publish + RIB overhead.

T11 TAFR_TIME_IN_EJB_CALL Time taken for the TAFR call in the EJB,
includes RIB overhead surrounding the actual
TAFRing.

T12 TAFR_TIME_IN_REAL_JMS_PUBLISH_
EJB

Time taken by the TAFR to publish a message
to the AQ JMS.

Note: The following examples illustrate the process and concepts,
but not test results.

TIMING_TYPE COUNT AVERAGE TIME _SUM
MIN_
TIME

MAX_
TIME

PUB_B4_GETNXT_CALL 100 0.03787 3.7904 0.036 0.07

PUB_TIME_IN_GETNXT_CALL 100 0.06546 6.5528 0.061 0.254

PUB_TIME_IN_EJB_PUBLISH_
CALL

100 0.04192 4.1961 0.039 0.308

PUB_TOTAL_PUBLISH_TIME 100 0.19675 19.6947 0.186 2.738

PUB_TIME_IN_REAL_JMS_
PUBLISH_EJB

100 0.02931 2.9341 0.027 0.292

TIMING_TYPE COUNT AVERAGE TIME _SUM
MIN_
TIME

MAX_
TIME

TAFR_TOTAL_MSGPROCESS_
TIME

100 1.58708 158.708 1.296 4.135

TAFR_TIME_IN_EJB_CALL 100 1.51371 151.371 1.23 3.24

TAFR_TIME_IN_REAL_JMS_
PUBLISH_EJB

100 1.1802 118.02 0.914 2.414

Timing Type Description

Key Interfaces to Consider

Performance Considerations 10-9

In this example, to describe the serial processing through-put time to Publish 100
messages through the TAFR to Subscriber Consume:

Publisher (19.69 Sec) + TAFR (158.708 sec) + Subscriber (193.943 sec) = 372.341 seconds
= Average 3.72 msg/sec

It is important to understand that the actual message through-put is not a calculation
of the sum of the individual message times. Although the average time per message
will remain fixed, messages are processed in parallel. So the total time to process n
messages on a single channel will not be the serial sum of the individual messages.

Key Interfaces to Consider
Every customer site has unique requirements and flows, so the ones to focus on will
vary. However, there are ones that always make to the list.

■ ASN

■ Receipts (PO and Store)

■ Promotions

■ Stock Order (Allocation & Transfers)

■ Item Locations

■ Items

It is strongly recommended that during the deployment planning phase, the business
requirements for these and others be gathered and analyzed. Some form of
performance testing should be planned, even if only a characterization by measuring
the actual flows during other test phases (for example, Integration Test).

ASN (Inbound/Outbound)
The following diagram is a functional, detailed view of the Oracle Retail
ASNin/ASNOut Flows.

TIMING_TYPE COUNT AVERAGE TIME _SUM
MIN_
TIME

MAX_
TIME

SUB_TIME_IN_CONSUME_CALL 100 1.359 135.9 0.671 2.203

SUB_TOTAL_SUBSCRIBE_TIME 100 1.93943 193.943 0.718 5.593

SUB_TIME_IN_EJB_SUBSCRIBE_
CALL

100 1.92386 192.386 0.687 5.593

Note: This is an illustration. The number of message needed to
arrive at a calculation of through-put requires much higher counts, a
broad spectrum of time, and system load. Other factors include
average size of message.

Key Interfaces to Consider

10-10 Oracle Retail Integration Bus Operations Guide

Receipts
The following diagram is logical view of the Oracle Retail Receipts Flow.

The following diagram is functional, detail view of the Oracle Retail Receipts Flow.

The Receipts message family is transactional data, and often a candidate for
performance testing. Receiving consists of appointment and receipt messages that are
published to RIB for RMS providing open to buy visibility. An appointment is
information about the arrival of merchandise at a location. A receipt message informs
RMS when merchandise arrives in a warehouse or store system.

Stock Order (Allocations & Transfers)
The following diagram is a logical view of the Oracle Retail Stock Order Flow.

Key Interfaces to Consider

Performance Considerations 10-11

The following diagram is a functional, detail view of the Oracle Retail Stock Order
Flow.

How to Approach a RIB Performance Test
There are two distinct approaches to measuring RIB performance: using actual
application end-points or using the RIB API simulators. Both are useful at different
phases of deployment.

Keep in mind, that performance measuring is possible at any time in any phase,
performance testing is more formal and requires planning, dedicated people and
systems and test data. Building test data is difficult. Do not underestimate the
complexity and this time consuming aspect of testing. To do testing with the
applications involved, all of the data has to be consumable without errors.

There are tools available in RDMT to assist in this, as well as the audit feature of RIB.
By enabling audit on an interface all messages are saved to a file in a form that can be
played back by RDMT utilities.

The API Simulators (PL/SQL and Java EE) allow the focus to be on RIB infrastructure
and is possible without resources outside of the RIB team. The value is limited to
profiling the deployment architecture independent of the application API behavior
and is much simpler in terms of data generation.

The performance measures of the end-to-end flow using the application's API is the
only way to match performance against requirements since the majority of the time

Key Interfaces to Consider

10-12 Oracle Retail Integration Bus Operations Guide

spent in the flow is in the application API. Customers do not distinguish a separation
between RIB components and the application APIs.

The following illustrates the RIB Performance Test Harness.

Tools supplied to support both forms of tests are the RIB Test Harness, the API
simulators, and the RDMT tools (timing utility, JMS Publish and EJB Publish).

This is a general process for measuring the flow end-to-end.

1. Prepare for the run. Use RIB Administration GUI to do the following.

■ Stop all adapters (PUB, SUB, TAFR).

■ Archive all logs so that the run has clean logs.

■ Enable timings logs (DEBUG) on all adapters.

■ Set all other adapter logs to INFO.

2. Determine how to generate the messages.

■ Using the Oracle Retail Application (for example, RMS to generate some
orders).

■ Using RDMT EJB Publish (will use a portion of the PUB Adapter).

■ Using RDMT JMS Publish (will not use the PUB Adapter).

3. Start the appropriate adapters depending on the above decision.

■ Use RIB Administration GUI to start adapters (PUB, SUB, TAFR).

4. Generate the test messages.

5. Stop the adapters.

6. Analyze the data.

■ Use RDMT to run the Timing Analysis Utility on each adapter timing log. This
creates a .csv file.

■ Upload the .csv files for display and further analysis using a tool such as
Excel.

Multi-Channel Adapters

Performance Considerations 10-13

Multi-Channel Adapters
A channel is a solution approach to maintaining the previous RIB release concept of a
Logical Channel.

Multi-channel applies to the logical partitioning of the flow of messages within the
JMS topic. Multiple publishers and subscribers can simultaneously use the same JMS
topic without any contention or interference, thus preserving publication message
ordering within the logical channel.

Every adapter instance of a publisher, subscriber, or TAFR configured in RIB belongs
to a logical channel for processing messages. Multi-channel adapters are multiple
adapter instances for the same message family, each processing messages
asynchronously and in parallel.

There are critical rules of behavior that must be observed and enforced to maintain the
two primary RIB functional requirements of once-and-only-once successful delivery
and guaranteed sequencing of messages within a message family.

To ensure that these rules are followed—and to simplify RIB configuration tasks that
support a multi-channel message flow—the process has been integrated into the RIB
application builder tools.

Multiple channels must be defined and configured across all publisher, subscriber, and
TAFRs that participate in an end-to-end message flow, to and from all Oracle Retail
applications, for that message family. The RIB Application Builder tools have checks
and verification logic to prevent deployment of incomplete flows.

Use of multi-channels can increase performance, but it does not help in every
situation. There is overhead and complexity associated with implementing multiple
channels so they should not be considered unless a defined and performance problem
exists.

Adding Multi-Channels to a Message Family
The process of adding multi-channels to a message family should be part of a
performance test and tuning process. Multi-channeling capability for a message family
is limited by the multi-channel support in the publishing performed by applications.

For example, the Inventory Adjustment (InvAdjust) message family is published by
RWMS and subscribed to by RMS. Because RWMS supports only single-channel
publishing, RMS must be set up for single-channel processing for the InvAdjust
message family. All RWMS subscription APIs support multi-channel processing.

The following RMS publishing APIs support multi-channel processing:

■ ASNOUT Publication API

■ Allocations Publication API

■ Delivery Slot Publication API

■ Fulfill Order Confirmation Publication API

■ Item Location Publication API

■ Item Publication API

■ Merchandise Hierarchy Publishing API

■ Order Publication API

■ Receiver Unit Adjustment Publication API

Logical Channels and Thread Value

10-14 Oracle Retail Integration Bus Operations Guide

■ RTV Request Publication API

■ Seed Object Publication API

■ Transfers Publication API

■ Work Orders in Publication API

■ Work Orders out Publication API

The following RMS publishing APIs do not support multi-channel processing:

■ Banner Publication API

■ Differentiator Groups Publication API

■ Differentiator ID Publication API

■ Partner Publication API

■ Seed Data Publication API

■ Store Publication API

■ Vendor Publication API

■ UDA Publication API

■ Warehouse Publication API

Logical Channels and Thread Value
Each messaging RIB component involved in publishing or subscribing to a logical
channel is distinctly identified by a JMS Message property known as “Thread Value”
with a specific value. This JMS message property and the value it contains define the
logical channel.

JMS Message properties are user-defined additional properties that are included with
the message. Message properties have types, and these types define
application-specific information that message consumers can use to select the
messages that interest them.

So each RIB subscriber has the Thread Value property and this value as part of its JMS
Durable Subscriber selector and each RIB publisher sets the “Thread Value” JMS
message property to a specific value for each message it publishes.

Oracle Retail RIB components are capable of being multi-channeled by making
configuration changes to the system. The base RIB configuration, as shipped GA,
provides each message family with one channel where all components set or look for
Thread Value of 1 (one). The naming convention and the RIB kernel code identify RIB
adapters by adding the logical channel to the end of the adapter class name.

Algorithm Used to Calculate Channel
Channels are calculated based on Business object ID(BOID) found in the RibMessages
<id> tag. The algorithm used to calculate is as follows.

MOD(MD5(family + ":" + businessObjectId)%maxChannelNumber) + 1

■ First the algorithm calculates the message digest of the string
family+":"+businessObjectId which produces a unique number.

■ Then this number is divided by the maxChannelNumber, which is calculated by
the number of configured channels for that message family.

How to Configure a Multi-Channel Flow

Performance Considerations 10-15

■ A 1 is added to the result, so that the channel number is always greater than 0.

For example:

Family = Alloc
BusinessObjectID (BOID) = 10202123
MaxChannelNumber = 7 (Total number of channels configured for the Alloc family)
Then the channel number for the BOID is calculated as
sMOD(MD5(Alloc + ":" + 10202123)%7) + 1 = 4
which means that all the messages that have BusinessObjectID of 10202123
are ALWAYS sent through channel 4 (Alloc_pub_4).

Example of a message family flow with a TAFR:

Alloc_pub_1

Alloc_tafr_1

StockOrder_sub_1

How to Configure a Multi-Channel Flow
The following is the basic process for configuring a multi-channel flow.

1. Determine the family to configure as multi-channel.

2. Examine the rib-integration-flows.xml to identify all participants in the full flow.

3. In the rib-home modify the appropriate configuration files for each of the
rib-<apps>.

a. rib-<app>-adapters.xml

b. rib-<app>-adapter-resources.properties

4. For PL/SQL Application edit the RIB_SETTINGS table.

5. Compile and deploy.

Example
This example is to configure the Alloc message flow with five channels. Alloc is a
complex flow, in that it has multiple Oracle Retail application subscribers and a TAFR
that transforms the messages from one family to another: Alloc to StockOrder.

Back up the following files.

■ rib-home/application-assembly-home/rib-rms/rib-rms-adapters.xml

■ rib-home/application-assembly-home/rib-rms/rib-rms-resources.properties.

The following is the message flow for the Alloc Family from rib-integration-flows.xml
that this example uses.

<message-flow id="1">
 <node id="rib-rms.Alloc_pub" app-name="rib-rms" adapter-class-def="Alloc_pub"
 type="DbToJms">
 <in-db>default</in-db>
 <out-topic>etAllocFromRMS</out-topic>
 </node>

Note: The channels have to be configured throughout the integration
flow using the rib-app builder tool.

How to Configure a Multi-Channel Flow

10-16 Oracle Retail Integration Bus Operations Guide

 <node id="rib-tafr.Alloc_tafr" app-name="rib-tafr" adapter-class-def="Alloc_tafr"
type="JmsToJms">
 <in-topic>etAllocFromRMS</in-topic>
 <out-topic name="topic-name-key-iso">etStockOrdersISO</out-topic>
 <out-topic name="topic-name-key-wh">etStkOrdersFromRIBToWH{*}</out-topic>
 </node>
 <node id="rib-sim.StockOrder_sub" app-name="rib-sim"
 adapter-class-def="StockOrder_sub" type="JmsToDb">
 <in-topic>etStockOrdersISO</in-topic>
 <out-db>default</out-db>
 </node>
 <node id="rib-rwms.StockOrder_sub" app-name="rib-rwms"
 adapter-class-def="StockOrder_sub" type="JmsToDb">
 <in-topic>etStkOrdersFromRIBToWH1</in-topic>
 <out-db>default</out-db>
 </node>
</message-flow>

RIB-RMS
For RIB-RMS, complete the following steps.

1. Modify rib-rms-adapters.xml to add multiple channels.

Following is a portion of rib-rms-adapters.xml

 <publishers>
 <timer-driven id="Alloc_pub_1" initialState="running"
timeDelay="10">
 <timer-task>
 <class
name="com.retek.rib.app.getnext.impl.GetNextTimerTaskImpl"/>
 <property name="maxChannelNumber" value="5" />
 </timer-task>
 </timer-driven>
 <timer-driven id="Alloc_pub_2" initialState="running"
timeDelay="10">
 <timer-task>
 <class
name="com.retek.rib.app.getnext.impl.GetNextTimerTaskImpl"/>
 <property name="maxChannelNumber" value="5" />
 </timer-task>
 </timer-driven>
 <timer-driven id="Alloc_pub_3" initialState="running"
timeDelay="10">
 <timer-task>
 <class
name="com.retek.rib.app.getnext.impl.GetNextTimerTaskImpl"/>
 <property name="maxChannelNumber" value="5" />
 </timer-task>
 </timer-driven>
 <timer-driven id="Alloc_pub_4" initialState="running"
timeDelay="10">
 <timer-task>
 <class
name="com.retek.rib.app.getnext.impl.GetNextTimerTaskImpl"/>
 <property name="maxChannelNumber" value="5" />
 </timer-task>
 </timer-driven>
 <timer-driven id="Alloc_pub_5" initialState="running"
timeDelay="10">

How to Configure a Multi-Channel Flow

Performance Considerations 10-17

 <timer-task>
 <class
name="com.retek.rib.app.getnext.impl.GetNextTimerTaskImpl"/>
 <property name="maxChannelNumber" value="5" />
 </timer-task>
 </timer-driven>

2. Modify rib-rms-adapter-resources.properties.

 Alloc_pub_1.name=Alloc Publisher, channel 1
 Alloc_pub_1.desc=Publisher for the Alloc family through channel 1.

 Alloc_pub_2.name=Alloc Publisher, channel 2
 Alloc_pub_2.desc=Publisher for the Alloc family through channel 2.

 Alloc_pub_3.name=Alloc Publisher, channel 3
 Alloc_pub_3.desc=Publisher for the Alloc family through channel 3.

 Alloc_pub_4.name=Alloc Publisher, channel 4
 Alloc_pub_4.desc=Publisher for the Alloc family through channel 4.

 Alloc_pub_5.name=Alloc Publisher, channel 5
 Alloc_pub_5.desc=Publisher for the Alloc family through channel 5.

RIB-TAFR
For RIB-TAFR, complete the following steps.

1. Modify rib-tafr--adapters.xml to add channels for a family.

<tafrs>
 <message-driven id="Alloc_tafr_1" initialState="running"
tafr-business-impl="com.retek.rib.domain.tafr.bo.impl.AllocToStockOrderFromRibB
OImpl" />
 <message-driven id="Alloc_tafr_2" initialState="running"
tafr-business-impl="com.retek.rib.domain.tafr.bo.impl.AllocToStockOrderFromRibB
OImpl" />
 <message-driven id="Alloc_tafr_3" initialState="running"
tafr-business-impl="com.retek.rib.domain.tafr.bo.impl.AllocToStockOrderFromRibB
OImpl" />
 <message-driven id="Alloc_tafr_4" initialState="running"
tafr-business-impl="com.retek.rib.domain.tafr.bo.impl.AllocToStockOrderFromRibB
OImpl" />
 <message-driven id="Alloc_tafr_5" initialState="running"
tafr-business-impl="com.retek.rib.domain.tafr.bo.impl.AllocToStockOrderFromRibB
OImpl" />

2. Modify rib-tafr-adapters-resources.properties.

Alloc_tafr_1.name=AllocToStockOrder TAFR, channel 1
Alloc_tafr_1.desc=TAFR for converting Allocation messages to StockOrders and
routing them to the correct warehouse or store system

Alloc_tafr_2.name=AllocToStockOrder TAFR, channel 2
Alloc_tafr_2.desc=TAFR for converting Allocation messages to StockOrders and
routing them to the correct warehouse or store system

Alloc_tafr_3.name=AllocToStockOrder TAFR, channel 3
Alloc_tafr_3.desc=TAFR for converting Allocation messages to StockOrders and
routing them to the correct warehouse or store system

How to Configure a Multi-Channel Flow

10-18 Oracle Retail Integration Bus Operations Guide

Alloc_tafr_4.name=AllocToStockOrder TAFR, channel 4
Alloc_tafr_4.desc=TAFR for converting Allocation messages to StockOrders and
routing them to the correct warehouse or store system

Alloc_tafr_5.name=AllocToStockOrder TAFR, channel 5
Alloc_tafr_5.desc=TAFR for converting Allocation messages to StockOrders and
routing them to the correct warehouse or store system

RIB-SIM
For RIB-SIM, complete the following steps.

1. Modify rib-sim-adapters.xml to add channels for a family.

 <subscribers>
 <message-driven id="StockOrder_sub_1" initialState="running"/>
 <message-driven id="StockOrder_sub_2" initialState="running"/>
 <message-driven id="StockOrder_sub_3" initialState="running"/>
 <message-driven id="StockOrder_sub_4" initialState="running"/>
 <message-driven id="StockOrder_sub_5" initialState="running"/>

2. Modify rib-sim-adapters-properties.properties.

StockOrder_sub_1.name=StockOrder Subscriber, channel 1
StockOrder_sub_1.desc=Subscriber for the StockOrder family through channel 1.

StockOrder_sub_2.name=StockOrder Subscriber, channel 2
StockOrder_sub_2.desc=Subscriber for the StockOrder family through channel 2.

StockOrder_sub_3.name=StockOrder Subscriber, channel 3
StockOrder_sub_3.desc=Subscriber for the StockOrder family through channel 3.

StockOrder_sub_4.name=StockOrder Subscriber, channel 4
StockOrder_sub_4.desc=Subscriber for the StockOrder family through channel 4.

StockOrder_sub_5.name=StockOrder Subscriber, channel 5
StockOrder_sub_5.desc=Subscriber for the StockOrder family through channel 5.

RIB-RWMS
For RIB-RWMS, complete the following steps.

1. Modify rib-rwms-adapters.xml to add channels for a family.

 <subscribers>
 <message-driven id="StockOrder_sub_1" initialState="running"/>
 <message-driven id="StockOrder_sub_2" initialState="running"/>
 <message-driven id="StockOrder_sub_3" initialState="running"/>
 <message-driven id="StockOrder_sub_4" initialState="running"/>
 <message-driven id="StockOrder_sub_5" initialState="running"/>

2. Modify rib-rwms-adapters-properties.properties.

StockOrder_sub_1.name=StockOrder Subscriber, channel 1
StockOrder_sub_1.desc=Subscriber for the stockorder family through channel 1.

StockOrder_sub_2.name=StockOrder Subscriber, channel 2
StockOrder_sub_2.desc=Subscriber for the stockorder family through channel 2.

StockOrder_sub_3.name=StockOrder Subscriber, channel 3
StockOrder_sub_3.desc=Subscriber for the stockorder family through channel 3.

Message Aggregation

Performance Considerations 10-19

StockOrder_sub_4.name=StockOrder Subscriber, channel 4
StockOrder_sub_4.desc=Subscriber for the stockorder family through channel 4.

StockOrder_sub_5.name=StockOrder Subscriber, channel 5
StockOrder_sub_5.desc=Subscriber for the stockorder family through channel 5.

Edit the RIB_SETTINGS table
When a PL/SQL Publishing adapter is multi-channeled, the application code needs to
designate the message to a specific thread. In order to do this, a change needs to be
made in the RIB_SETTINGS table.

Find the Family of messages that is being multi-channeled, and adjust the column
NUM_THREADS to the appropriate number. In this example, the number will be set
to 5 for the Alloc Family.

Compile and Deploy
Using the RIB Installer or the RIB Application Builder command line tools, compile
and deploy the new rib-<app>.ears.

Message Aggregation
To improve message publication throughput within the integration system, RIB
provides multiple capabilities. The most efficient way to increase throughput of any
system is to start working on the collection of data units instead of single data units.
Using that philosophy, RIB provides capabilities to process the collection of multiple
detail payloads in one transaction. To control the number of details (payload details)
per payload header, the user must update the RIB_SETTING.MAX_DETAILS_TO_
PUBLISH column in the PL/SQL retail applications database schema. This
configuration allows users to control the size of the payload published within the RIB
system.

Users also may aggregate messages in a transaction by bundling multiple payloads
within a single message published to the JMS server, for example. Through message
aggregation (<family>.maxNodesPerMessages), users can control the number of
ribMessage nodes bundled into a single RibMessages message. Different families can
have different nodes per message, so this property is qualified (prefixed) by the family
name. This property allows control of the overall size of the RibMessages XML
message.

RIB also allows users to optimize/minimize XA transaction overhead by allowing the
system to commit multiple RibMessages to the JMS server in a single, two-phase XA
commit. The number of messages committed to the JMS server in a single XA commit
is controlled by the property named <family>.messagePerCommit. Different families
may need different RibMessages per commit, so this property is qualified (prefixed) by
the family name.

The configurable properties (<family>.maxNodesPerMessages and
<family>.messagePerCommit) apply to each individual rib-<app>. To update the
property and propagate the configuration to the app server, edit the corresponding
rib-<app>.properties in rib-home and redeploy the updated rib-<app>.

Understand that the bigger the payload size, the bigger the memory requirement. A
process (JVM) has limited amounts of operating system memory. If the size is too
large, memory will run out, resulting in OutOfMemoryError.

Message Aggregation

10-20 Oracle Retail Integration Bus Operations Guide

If numerous ribMessageNodes are bundled into the same RibMessages message, a
single failure in one of the ribMessages will roll back the full transaction, which will
result in the following: The error hospital table will fill up and throughput will
decrease by many factors, because now it has to go through the retry process.

The general best practice is to not prematurely optimize. Test with business data and
only if the default values are not meeting business needs. Think about optimization by
updating these properties.

How to Configure Message Aggregate
To configure message aggregate, complete the following steps.

1. Edit the following file in rib-home:

rib-home/application-assembly-home/rib-<app>/rib-<app>.properties

2. Add the following properties:

■ <family>.maxNodesPerMessages=<your value>

■ <family>.MessagePerCommit=<your value>

3. Using the app-builder tool compile/deploy the application.

■ rib-app-compiler.sh

■ rib-app-deployer.sh -deploy-rib-app-ear rib-<app>

Aggregation Example
Suppose there are 1,300 payload details waiting to be published for a family. Suppose
the following configuration in RIB:

MAX_DETAILS_TO_PUBLISH=100
maxNodesPerMessagess=5
MessagePerCommit=2

The diagram below explains the message aggregation in play in the RIB system. All
1,300 payload details will be published in three RibMessages within only two XA
transaction commits. Each of the first two RibMessages will have five ribMessage
nodes, and each of the ribMessage nodes will have a payload with 100 payload details.
The example shows 1,300 payload details; the third RibMessages XML will have only
three ribMessage nodes, each with 100 payload details.

XA transaction 1 = (RibMessages1 + RibMessages2)
RibMessages1 = ribMessage1 + ribMessage2 + ribMessage3 + ribMessage4 +
ribMessage5.
ribMessage1 = PayloadHeader + 100 * PayloadDetail
ribMessage2 = PayloadHeader + 100 * PayloadDetail
…..
ribMessage5 = PayloadHeader + 100 * PayloadDetail

RibMessages2 equivalent to RibMessages1

XA Transaction 2 = RibMessages3
RibMessages3 = ribMessage1 + ribMessage2 + ribMessage3

Note: The value for <family> must be entered in all capital letters.
For example, VENDOR.

Multiple Hospital Retry

Performance Considerations 10-21

Total = (XA Transaction 1 + XA Transaction 2)
100*5 + 100*5 + 100*3 = 1300

The following is an illustration of RIB Message Aggregation.

Multiple Hospital Retry
This section explains the multiple hospital retry process.

Family Specific Hospital Retry Adapters
RIB supports configuration of hospital retry adapters specific to message families. The
family based adapters are configured to address performance issues when the error
hospital gets very large--and a single retry adapter cannot handle the load.

Multiple Hospital Retry

10-22 Oracle Retail Integration Bus Operations Guide

How Family Specific Hospital Retry Works
Errors during processing result in messages in the error hospital. Reasons for errors
include the following.

■ Incomplete or partial data from RMS: In this case, the messages are inserted into
the error hospital with a reason code of PUB.

■ JMS related publication error conditions: (For example, the JMS server is down or
not available due to network failures.) In this case, the messages are inserted into
the error hospital with a reason code of JMS.

■ The subscriber application is not able to consume the message: In this case, the
messages are inserted into the error hospital with a reason code of SUB.

By default, there are three kinds of hospital adapters, as listed below:

■ Sub retry adapter

■ JMS retry adapter

■ Pub retry adapter (RMS is the only application for which the Pub retry adapter is
required.)

The sub retry adapter retries messages with a reason code of SUB only. Similarly, the
JMS retry adapter and the Pub retry adapter retry messages with reason codes of JMS
and PUB, respectively.

Each message in the error hospital belongs to a particular message family. When the
error hospital has a large number of messages from different families, the retry process
becomes a performance bottleneck, as the default retry adapters retry the messages
one by one (first in, first out), irrespective of message family.

To alleviate a bottleneck situation, retry adapters can be configured for a specific
family and reason code. A family retry adapter can coexist with the default retry
adapters. However, the default retry adapters will not retry those messages for which
family retry adapters have been configured.

A family based retry adapter retries messages only for the family and reason code for
which it is configured. For example, if a retry adapter is configured for the Order
family and the SUB reason code, it retries only those messages from the Order family
that failed with a reason code of SUB.

For each message family, a maximum of three family retry adapters can be
configured—one for each reason code (PUB, SUB, and JMS).

How to Configure a Family Specific Retry Adapter
The following is a process overview.

1. Determine the rib-<apps> where the family specific hospital retry adapter is to be
configured.

2. Determine the family for which the retry adapter should be configured.

3. Determine the reason code (for example, PUB, SUB, or JMS) for the family retry
adapter.

4. In the rib-home, modify the appropriate configuration files for the rib-<apps>:

Note: For more information about the hospital retry mechanism, see
"RIB Hospital Retry" in the Oracle Integration Bus Implementation Guide.

Multiple Hospital Retry

Performance Considerations 10-23

a. rib-<app>-adapters.xml

b. rib-<app>-adapter-resources.properties

5. Compile and deploy.

Example:

To configure a family specific adapter for the Order family, where reason code = SUB
and application = rib-rms, complete the following steps:

1. Backup the following files:

■ rib-home/application-assembly-home/rib-rms/rib-rms-adapters.xml

■ rib-home/application-assembly-home/rib-rms-resources.properties

2. Modify rib-rms-adapters.xml to add the family specific hospital retry adapter. The
following is a portion of rib-rms-adapters.xml:

 <hospitals>
 <timer-driven id="Order_familysubhosp_0"
initialState="stopped" timeDelay="10" >
 <timer-task>
 <class
name="com.retek.rib.j2ee.ErrorHospitalRetryTimerTask"/>
 </timer-task>
 </timer-driven/>
 <hospitals>

3. Modify rib-rms-adapter-resources.properties as follows:

■ Order_familysubhosp_0.name=Order SUB Hospital Retry

■ Order_familysubhosp_0.desc=Inject messages into JMS from Error Hospital

4. Compile and deploy:

Using the RIB Installer or the RIB Application Builder command line tools,
compile and deploy the new rib-<app>.ears.

Note: Only one instance of family retry adapter can be configured
per family and per reason code.

Multiple Hospital Retry

10-24 Oracle Retail Integration Bus Operations Guide

	Contents
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Customer Support
	Review Patch Documentation
	Improved Process for Oracle Retail Documentation Corrections
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	1 Introduction
	Oracle WebLogic Application Server
	Oracle Retail Integration Bus Supplied Components

	2 Application Builder
	RIB Application Builder Directory Structure
	Directory Structure and Key Files

	RIB Application Builder Tools
	Logging
	Backup and Archive of Key Files
	rib-app-compiler
	rib-app-deployer
	Check-version-and-unpack
	check-version-and-apply-defect-fix
	inventory-management
	setup-security-credential
	Hot Fix Installation Reports
	rib-adapter-controller
	Start Flow
	Stop Flow
	List Flow
	Start Adapters By Type
	Stop Adapters by Type
	Start Adapter
	Stop Adapter
	Test Durable Subscriber for Adapter
	Test Durable Subscriber for RIB Application
	List RIB Application Adapters

	RIB Deployment Configuration File Editor
	Important Installation Warning
	Key Rule

	Editor Usage

	3 Backend System Administration and Logging
	rib-<app>-adapters.xml
	<subscribers> elements
	<publisher> elements
	<timer-driven>
	<request-driven>
	<hospital> element

	rib-<app>-adapters-resource.properties
	rib-<app>-plsql-api.xml
	rib-<app>.properties
	rib-system.properties
	rib-integration-flows.xml
	rib-deployment-env-info.xml
	app-in-scope-for-integration
	rib-jms-server
	rib-application-server
	rib-javaee-containers
	rib-applications

	commons-logging.properties
	log4j2.xml
	rib-app-builder-paths.properties
	rib-application-assembly-info.xml
	retail_service_config_info_ribserver.xml
	remote_service_locator_info_ribserver.xml
	RIB Logging
	Log Level Recommendations
	Changing Logging Levels
	RIB Administration GUI
	log4j2.xml Configuration File

	Adapter Logging (RIBLOGS)
	RIB Timing Logs
	RIB Audit Logs
	Other RIB Management Logs
	deploy.rib.log
	management.rib.log
	global.rib.log—Example

	4 RIB and JMX
	Third Party JMX Client Example

	5 RIB Administration GUI
	RIB Administration URLs
	RIB Administration GUI
	Authorization
	RIB Functional Artifacts
	RIB Message Flows
	RIB Payloads (xsds)

	RIB Administration GUI Home
	Adapter Manager
	Adapter Manager Screen
	Log Viewer

	Log Manager
	RIB Logs

	6 JMS Provider Management
	RIB on AQ JMS
	Queue Monitor Process Setup
	Optimizing Enqueue/Dequeue Performance
	Sizing Considerations

	RIB on AQ JMS - Server Side Processes
	Types of Oracle Database Side Processes
	RIB and Application Server and JDBC Connections
	RIB Connections - Summary
	rib-rms Connections
	rib-rwms Connections
	rib-sim Connections
	rib-tafr Connections
	rib-rpm Connections
	rib-rfm Connections
	rib-oms Connections
	rib-lgf Connections
	rib-rxm Connections
	Configuration Recommendations

	Support for Multiple JMS Servers Within a Single Deployment
	Design
	rib-app-builder Validation Checks

	How to Set Up Multiple JMS Servers
	Process Overview
	General Recommendations
	AQ Recommendation

	Sample Configuration
	rib-integration-flows.xml
	rib-deployment-env-info.xml

	RIB-RMS Application Configuration
	rib-rms-adapters.xml
	rib-rms-adapters-resources.properties

	RIB-TAFR Application Configuration
	rib-tafr-adapters.xml
	rib-tafr-adapters-resources.properties

	RIB-SIM Application Configuration
	rib-sim-adapters.xml
	rib-sim-adapters-resources.properties

	RIB-RWMS Application Configuration
	rib-rwms-adapters.xml
	rib-rwms-adapters-resources.properties

	RIB-RFM Application Configuration
	rib-rfm-adapters.xml
	rib-rfm-adapters-resources.properties

	Compile and Deploy
	RIB-ADMIN-GUI

	7 Message Transform, Filtering and Routing (TAFR)
	TAFR Adapter Process
	Configuration
	Transformation
	Filtering Configuration
	Routing

	Configuration Example - Facility ID
	Single RWMS Configuration
	Configuration Process
	Two RWMS Configuration
	Description

	Configuration Process

	8 RIB in Operation
	Operational Considerations
	Alerts and Notifications
	How to Configure Alerts and Notification
	RIB Log File Monitoring
	Log File Archive and Purge
	Hospital Size and Growth
	RMS MFQ and RWMS UPLOAD Tables Sizes
	Remote RWMS
	RIB Components Start and Stop
	RIB Operation Support Staff Requirements
	RIB Components - Source Code Control
	RIB HA Requirements
	RIB Disaster Recovery
	RIB Administration Roles and Security

	RIB Operation Support Staff Requirements
	RIB System Administrator
	Technology Background
	Experience or Training
	Areas of Responsibility

	RIB Application Administrator
	Technology Background
	Experience or Training on
	Areas of Responsibility

	Hospital Monitoring and Maintenance

	9 Testing RIB
	RIB Test Harness
	Master Checklist

	PL/SQL Application API Stubs
	Architecture and Design
	The Common Subsystem
	The Thin API layer

	The Stub Administration and Setup Functions
	Configuration Files
	Installation and Setup
	Prerequisite Tasks
	Installation

	Configure_API
	Prerequisites

	Java EE Application API Stubs
	Architecture and Design
	Installation and Setup
	Prerequisite Tasks
	Installation
	Configuration of the rib-<app> to use Injection Stubs

	10 Performance Considerations
	Performance Factors
	Performance Requirements
	Multi-Channel
	End-to-End Timing
	How to Calculate Average Message Size
	Purchase Order Example

	Understand the Message Family
	RIB Timing Log Analysis
	Purchase Order Example

	Key Interfaces to Consider
	ASN (Inbound/Outbound)
	Receipts
	Stock Order (Allocations & Transfers)
	How to Approach a RIB Performance Test

	Multi-Channel Adapters
	Adding Multi-Channels to a Message Family

	Logical Channels and Thread Value
	Algorithm Used to Calculate Channel

	How to Configure a Multi-Channel Flow
	Example
	RIB-RMS
	RIB-TAFR
	RIB-SIM
	RIB-RWMS
	Edit the RIB_SETTINGS table
	Compile and Deploy

	Message Aggregation
	How to Configure Message Aggregate
	Aggregation Example

	Multiple Hospital Retry
	Family Specific Hospital Retry Adapters
	How Family Specific Hospital Retry Works
	How to Configure a Family Specific Retry Adapter

